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Introduction

REVIEW OF DISCRETE TIME SIGNALS AND SYSTEMS
Anything that carries some information can be called as signals. Some examples
are ECG, EEG, ac power, seismic, speech, interest rates of a bank, unemployment
rate of a country, temperature, pressure etc.
A signal is also defined as any physical quantity that varies with one or more
independent variables.
A discrete time signal is the one which is not defined at intervals between two
successive samples of a signal. It is represented as graphical, functional, tabular
representation and sequence.
Some of the elementary discrete time signals are unit step, unit impulse, unit
ramp, exponential and sinusoidal signals (as you read in signals and systems).

Classification of discrete time signals
Energy and Power signals
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If the value of E is finite, then the signal x(n) is called energy signal.

A

. ] .
F = hll_l"ﬂ:l "—'——'—-'2N 1 n;, lx(n}

If the value of the P is finite, then the signal x(n) is called Power signal.

Periodic and Non periodic signals
A discrete time signal is said to be periodic if and only if it satisfies the condition X
(N+n) =x (n), otherwise non periodic

Symmetric (even) and Anti-symmetric (odd) signals
The signal is said to be even if x(-n)=x(n)
The signal is said to be odd if x(-n)= - x(n)

Causal and non causal signal
The signal is said to be causal if its value is zero for negative values of n’.

Some of the operations on discrete time signals are shifting, time reversal, time
scaling, signal multiplier, scalar multiplication and signal addition or
multiplication.

Discrete time systems
A discrete time signal is a device or algorithm that operates on discrete time
signals and produces another discrete time output.

Classification of discrete time systems

Static and dynamic systems

A system is said to be static if its output at present time depend on the input at
present time only.



Causal and non causal systems
A system is said to be causal if the response of the system depends on present and
past values of the input but not on the future inputs.

Linear and non linear systems

A system is said to be linear if the response of the system to the weighted sum of
inputs should be equal to the corresponding weighted sum of outputs of the
systems. This principle is called superposition principle.

Time invariant and time variant systems
A system is said to be time invariant if the characteristics of the systems do not
change with time.

Stable and unstable systems
A system is said to be stable if bounded input produces bounded output only.

TIME DOMAIN ANALYSIS OF DISCRETE TIME SIGNALS AND SYSTEMS
Representation of an arbitrary sequence
Any signal x(n) can be represented as weighted sum of impulses as given below
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The response of the system for unit sample input is called impulse response of the
system h(n)
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By time invariant property, we have
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The above equation is called convolution sum.
Some of the properties of convolution are commutative law, associative law and
distributive law.

Correlation of two sequences

It is basically used to compare two signals. It is the measure of similarity between
two signals. Some of the applications are communication systems, radar, sonar
etc.

The cross correlation of two sequences x(n) and y(n) is given by
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One of the important properties of cross correlation is given by
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The auto correlation of the signal x(n) is given by
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Linear time invariant systems characterized by constant coefficient
difference equation
The response of the first order difference equation is given by

y() =a" My + Y a*xn—k) n>=0
k=0

The first part contain initial condition y(-1) of the system, the second part contains
input x(n) of the system.

The response of the system when it is in relaxed state at n=0 or

y(-1)=0 is called zero state response of the system or forced response.
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The output of the system at zero input condition x(n)=0 is called zero input
response of the system or natural response.

The impulse response of the system is given by zero state response of the system

Yas(n) = a*d(n k)
k=0
=a" n>0

The total response of the system is equal to sum of natural response and forced
responses.

FREQUENCY DOMAIN ANALYSIS OF DISCRETE TIME SIGNALS AND SYSTEMS

A s we have observed from the discussion o f Section 4.1, the Fourier series
representation o f a continuous-time periodic signal can consist of an infinite
number of frequency components, where the frequency spacing between two
successive harmonically related frequencies is 1 / T p, and where Tp is the
fundamental period.

Since the frequency range for continuous-time signals extends infinity on both
sides it is possible to have signals that contain an infinite number of frequency
components.



In contrast, the frequency range for discrete-time signals is unique over the
interval. A discrete-time signal of fundamental period N can consist of frequency
components separated by 2n / N radians.

Consequently, the Fourier series representation o f the discrete-time periodic
signal will contain at most N frequency components. This is the basic difference
between the Fourier series representations for continuous-time and discrete-time
periodic signals.

4.2.1 The Fourier Series for Discrete-Time Pericdic
Signals

Suppose that we are given a periodic sequence xin) with period N, that is, xin) =
xtn + N) for all n. The Fourier series representation for x(n) consists of & har-
monically related exponential functions
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and 1s expressed as
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where the {¢;} are the coefficients in the series representation.
To derive the expression for the Fourier coefficients, we use the following
formula:
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Note the similarity of (4.2.2) with the continuous-time counterpart in (4.1.3). The
proof of {(4.2.2) follows immediately from the application of the geometric sum-
mation formula

M=1 N. a=1
a"=1{1-a" (4.2.3)
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The expression for the Fourier coefficients ¢, can be obtained by multiplying
both sides of (4.2.1) by the exponential ¢~/**"/* and summing the product from
n=0ton=N~—1. Thus
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If we perform the summation over n first, in the right-hand side of (4.2.4),
we ohtain
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where we have made use of (4.2.2). Therefore. the right-hand side of (4.2.4)
reduces to N¢; and hence

] = o=l /N
(= S xtnie [=0.1...., N-—1 {4.2.6)
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Thus we have the desired expression for the Founer coefficients in terms of the
signal x(n).



4.2.3 The Fourier Transform of Discrete-Time Aperiodic
Signals

Just as in the case of continuous-time aperiodic energy signals, the frequency anal-
ysis of discrete-time aperiodic finite-energy signals involves a Fourier transform of
the time-domain signal. Consequently, the development in this section parallels
to a large extent, that given in Section 4.1.3.

The Fourier transform of a finite-energy discrete-time signal x(n) is defined as
ac
Xw)y= ) x(me ™" (4.2.23)
n==0
Physically, X (w} represents the frequency content of the signal x(n). In other
words, Xiw) is a decomposition of x(n) into its frequency components.

We observe two basic differences between the Founer transform of a discrete-
ttme finite-energy signal and the Fourier transform of a finite-energy analog signal.
First, for continuous-time signals, the Fourier transform, and hence the spectrum
of the signal, have a frequency range of (—oc,oc). In contrast. the frequency
range for a discrete-time signal is unique over the frequency interval of (—m, 7)
or, equivalently, (0. 2r). This property is refiected in the Fourier transform of the

signal. Indeed. X (w) is periodic with period 2. that is.
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Hence X (w) is periodic with period Zw. But this property is just a consequence of
the fact that the frequency range for any discrete-time signal 1s limited to (=, )
or (0, 2mr). and any frequency outside this interval is equivalent to a frequency
within the mterval.

The second basic difference is also a consequence of the discrete-time nature
of the signal. Since the signal is discrete in time. the Fourier transform of the
signal involves a summation of terms instead of an integral, as in the case of
continuous-time signals.

Since X{w) is a periodic function of the frequency variable w, it has a Fourier
series expansion, provided that the conditions for the existence of the Fourier
series, described previously, are satisfied. In fact, from the definition of the
Fourier transform X (w) of the sequence x(n). given by (4.2.23), we observe that
X(ew) has the form of a Fourier series. The Fourier coefficients in this series
expansion are the values of the sequence x(n).



To demonstrate this point. let us evaluate the sequence x(n) from X (w). First,
we multiply both sides (4.2.23) by ¢/ and integrate over the intervai (—m, ).

Thus we have
n ™ =
f Xiwye™"dw = f [ E x(n}.e_f‘“"] e dw (4.2.25)
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The integral on the right-hand side of (4.2.25) can be evaluated if we can inter-
change the order of summation and integration. This interchange can be made if
the series
N
Xwlw) = Z x(n)je "
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converges uniformly to X(w) as N — oc. Uniform convergence means that, for
every w, Xy(w) — X(w), as N — oc. The convergence of the Fourier transform
is discussed in more detail in the following section. For the moment. let us as-
sume that the series converges uniformly, so that we can interchange the order of
summation and integration in (4.2.25). Then
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Consequently,
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n;:cx{n_}j; e dw = {0. m=n (4.2.26)
By combining (4.2.25) and (4.2.26). we obtain the desired resuit that
1 ko

If we compare the integral in (4.2.27) with (4.1.9), we note that this is just
the expression for the Fourier series coefficient for a function that is periodic with
period 2nr. The only difference between (4.1.9) and (4.2.27) is the sign on the
exponent in the integrand, which is a consequence of our definition of the Fourier
transform as given by {4.2.23). Therefore. the Fourier transform of the sequence
x(n}, defined by (4.2.23), has the form of a Fourier series expansion.



FREQUENCY DOMAIN SAMPLING: THE DISCRETE FOURIER
TRANSFORM

Before we introduce the DFT. we consider the sampling of the Fourier transform of
an aperiodic discrete-time sequence. Thus, we establish the relationship between
the sampled Fourier transform and the DFT.

5.1.1 Frequency-Domain Sampling and Reconstruction of
Discrete-Time Signals

We recall that aperiodic finite-enerpy signals have continuous spectra. Let us
consider such an aperiodic discrete-time signal x(n) with Founer transform

X(w)= Y x(me /" (5.1.1)
Suppose that we sample X (w) periodically in frequency at a spacing of s radians
between successive samples. Since X (w) is periodic with period 2. only samples
in the fundamental frequency range are necessary. For convenience, we take N
equidistant samples in the interval (0 < w < 27 with spacing dw = 27 /N, as shown
in Fig. 5.1. First, we consider the selection of N, the number of samples in the

frequency domain.
If we evaluate (5.1.1) at w = 27k/N, we obtain

an = —jinkn/N
X (?k = Z x(n)e d2mkn k=0,1..... N-1 (5.1.2)

h==—0C

The summation in (5.1.2) can be subdivided into an infimte number of summations,
where each sum contains N terms. Thus
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If we change the index in the inner summation from » to n — IN and interchange
the order of the summation. we obtain the result
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The signal

Xp(n) = }: xin —IN) (5.1.4)
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obtained by the periodic repetition of x(n) every N samples. is clearly periodic
with fundamental period N. Consequently, 1t can be expanded in a Fourier
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Figure 5.1 Freguency-domain sampling of the Fourier transform.

series as
N1
xpny =Y e =01 N—1 (5.1.5)
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with Fourier coefficients
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Upon comparing (5.1.3) with (5.1.6), we conclude that
1 2
o= —X (iﬁ:) k=0.1.....N—1 (5.1.7)
Thereflore,
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5.1.2 The Discrete Fourier Transform (DFT)

The development in the preceding section is concerned with the frequency-domain
sampling of an aperiodic finite-energy sequence x(n). In general, the equally
spaced frequency samples X (27k/N), k = 0,1,..., N—1, do not uniquely represent
the original sequence x(n) when x(n) has infinite duration. Instead, the frequency
samples X(2mk/N), k=0, 1...., N — 1, correspond to a periodic sequence xp(n)
of period N, where x,(n) is an aliased version of x(n), as indicated by the relation
in (5.1.4), that is,
= ]

xp(n)= Y x(n—IN) (5.1.15)
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When the sequence x(n) has a finite duration of length L < N, then x,(n)
is simply a periodic repetition of x(n), where x,(n) over a single period is

given as
_ _ Jaim D<n=L-1 16)
Xpln) = 0. L<n<N-1 (5.1.
Consequently, the frequency samples X (2rk/N), k = 0. 1..... N — 1. uniquely

represent the finite-duration sequence x{n). Since x(n) = x,(n) over a single pé
riod (padded by N — L zeros). the original finite-duration sequence x{n) can be
obtained from the frequency samples {X (27k/N| by means of the formula (5.1.8):

It is important to note that zero padding does not provide any au:kiihi:ll'l_ill
information about the spectrum X(w) of the sequence {x(n)}. The L equidis

tant samples of X(w) are sufficient to reconstruct X {w) using the reconstruction
formula (5.1.13). However. padding the sequence (x(n)} with N — L zeros and
computing an N-point DFT results in a “better display™ of the Fourier transform
Xiw).

In summary, a finite-duration sequence x(n) of length L [i.e.. x(n) = 0 for
n < 0 and n = L] has a Fourier transform

L-1
X(w) = Zx{nje‘f”" 0<ew<2x (5.1.17)
n=f}
where the upper and lower indices in the summation reflect the fact that x(n) =0
outside the range 0 < n < L — 1. When we sample X(w) at equally spaced
frequencies wy = 2mk/N. &k = 0. 1, 2..... N — 1. where N > L. the resultant
samples are

2k L=l N
X[k} = X (—;3—-) —_ Z-’-’[?!}f—"r‘x“”h
o (5.1.18)
Xty = Y xme N k=012, N -1
n={l

where for convenience. the upper index in the sum has been increased from L -1
ta N - 1 since x(n) =0 forn > L.



The relation in (5.1.18) is a formula for transforming a sequence {x(n)} of
length L < N into a sequence of frequency samples (X (k)} of length N. Since
the frequency samples are obtained by evaluating the Fourier transform X (w)
at a set of N (equally spaced) discrete frequencies. the relation in (5.1.18) is
called the discrere Fourier transform (DFT) of x(n). In turn. the relation given
by (5.1.10). which allows us to recover the sequence x(n) from the frequency
samples

x(n) = Y Xtk TN n =001 N~—1 (5.1.19)
& ={!
is called the inverse DFT (IDFT). Clearly, when x(n) has length I < N, the N-
point IDFT vields x(n) = 0 for L <= n < NV — 1. To summarize, the formulas for
the DFT and IDFT are

DFT
N-1
Xty = xtme Nk =01,2.... .N~1 (5.1.18)
n=0
IDFT
1 N=1 _
x(n) = — S XN p=0,1,2,... N -1 (5.1.19)
k=0

5.1.3 The DFT as a Linear Transformation

The formulas for the DFT and IDFT given by (5.1.18) and (5.1.19) may bc ex-
pressed as

N—1

Xky =Y xmWy  k=01,....N—1 (5.1.20)
n={l
1 N=1
I X —kn — _
x(n) = }?;xmwﬂ n=01...., N—1 (5.1.21)

where, by definition,

Wy = e io"/N (5.1.22)

which is an Nth root of unity.

With these definitions, the N-point DFT may be expressed in matrix form as
x,.r = WNIN (5124)

where Wy, is the matrix of the linear transformation. We observe that Wy is a
symmetric matrix. If we assume that the inverse of Wy exists, then (5.1.24) can
be inverted by premultiplying both sides by W3'. Thus we obtain

xy = W5 Xy (5.1.25)



Relationship to the Fourier series coefficients of a periodic sequence.
A periodic sequence (x,(n)} with fundamental period N can be represented in a
Fourier series of the form

N-1
xp(n) = quﬂ”"w -0 <N <00 (5.1.29)
k=(
where the Fourier series coefficients are given by the expression

1 = —jlmpkN
q=ﬁgxﬂm}f jama k=01,...,N~1 (5.1.30)
If we compare (5.1.29) and (5.1.30) with (5.1.18) and (5.1.19), we observe that the
formula for the Fourier series coefficients has the form of a DFT. In fact, if we
define a sequence x{n) = x,(n), 0 < n < N —1, the DFT of this sequence is simply

X(k) = Nc, {5.1.31)

Furthermore, (5.1.29) has the form of an IDFT. Thus the N-point DFT provides
the exact line spectrum of a periodic sequence with fundamental period N,

Relationship to the Fourler transform of an aperiodic sequence. We
have already shown that if x(n) is an aperiodic finite energy sequence with Fourier
transform X({(w), which is sampied at N equally spaced frequencies a; = 2wk/N,
k=01,..., N — 1, the spectral components
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are the DFT coefficients of the periodic sequence of period N, given by
= 2]
xp(n) =Y x(n—IN) (5.1.33)
{=—00

Thus x,(n) is determined by aliasing {x(n)} over the interval 0 <n < N — 1. The
finite-duration sequence

sy _ ) xp(n), 0<n<N-1
X(n) = [0. otherwise (5139



bears no resemblance to the original sequence {x(n)}, unless x(n) is of finite dura-
tion and length L < A, in which case

x{n) = x(n) O0=n<N-1 (5.1.35)
Only in this case will the IDFT of {X (k)} yield the original sequence {x(n)}.

Relationship to the z-transform. Let us consider a sequence x(n) having
the z-transform

o
X(@)= Y xmz™" (5.1.36)
n=-=0C

with a ROC that includes the unit circle. If X(z) is sampled at the N equally

spaced points on the unit circle z; = ¢/>*/¥ 0, 1,2,..., N — 1, we obtain

XU(} EX(Z”::;']I“;N k:U.l....,N—’l
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The expression in (5.1.37) is identical to the Fourier transform X (w) evaluated at
the N equally spaced frequencies w; = 2nk/N. & =0,1,.... N ~ 1, which is the
lopic treated in Section 5.1.1.

If the sequence x(n) has a finite duration of length N or less, the sequence can
be recovered from its N-point DFT. Hence its z-transform is uniquely determined
by its N-point DFT. Consequently, X (z) can be expressed as a function of the
DFT [X(k)} as follows

MN—1
X@) =Y x(m)z™
n=l

N-1 1 N-1 .
X(2) =) [— ZHHE’M”N} ™"
N =

neoL ok (5.1.38)
1 = & 2wk /N, —1y°
—_— ) -
X(z}—Nng(k];(e z7')
1__ - N N—l k
X(2) = z X (k)

N &g 1= e/2k/N =
When evaluated on the unit circle, (5.1.38) yields the Fourier transform of the
finite-duration sequence in terms of its DFT, in the form

1—eieN =) X (k)

N yers 1 = g~Jlw—2nk/N)

X(w) = (5.1.39)



Relationship to the Fourier series coefficients of a continuous-time

signal.

Suppose that x,(t) is a continuous-time periodic signal with fundamental

period T, = 1/F,. The signal can be expressed in a Fourier series

where {c¢.} are the Fourier coefficients.
F, = N/T, =1/T, we obtain the discrete-time sequence

x(m) = x,(nT)

o
xa(1) = z qeiz’”‘ﬁ]

b=
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If we sample x,(r) at a uniform rate
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It is clear that (5.1.41) is in the form of an IDFT formula. where

and

Xk = N Z -y = .N{-'g

f=—-
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p = 5 Ci—IN
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(5.1.41)
(5.1.42)
(5.1.43)

Thus the {¢;} sequence is an aliased version of the sequence [¢;}.

PROPERTIES OF DFT:_
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Property Time Domain  Frequency Domain
Notation x(n). y(n) Xk}, ¥ (k)
Periodicity x(n)=x(n+N)  X(k)=Xk+N)
Linearity ayxi(n) +axxz{n)  ay X (k) + a2 X,(k)

Time reversal

Circular time shift
Circular frequency shift
Complex conjugate
Circular convolution

Circular correlation

Multiplication of two sequences

Parseval's theorem

x(N =n)
x((n =Ny
x(nkjlﬂnfﬁ

x"(n)
x;(m) ) xa(n)
x{n}@ y*(—n)

xi(n)xa(n)
-1

2 xmy ()

m=li

X(N —=k)
x{klc—jhlﬂﬂ
X (k=D

X*(N ~ k)
Xy (k)X (k)

XY (k)
1
me@ X (k)

1 N=]
= Exuc)y'm
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LINEAR FILTERING METHODS BASED ON THE DFT

Since the D F T provides a discrete frequency representation o f a finite-duration
Sequence in the frequency domain, it is interesting to exp lore its use as a
computational tool for linear system analysis and, especially, for linear filtering.
We have already established that a system with frequency response H{ w ) yw
hen excited with an input signal that has a spectrum possesses an output

spectrum.

The output sequence y(n) is determined from its spectrum via the inverse Fourier
transform. Computationally, the problem with this frequency domain approach is



that are functions o f the continuous variable. As a consequence, the
computations cannot be done on a digital computer, since the computer can only
store and perform computations on quantities at discrete frequencies.

On the other hand, the DFT does lend itself to computation on a digital computer.
In the discussion that follows, we describe how the DFT can be used to perform
linear filtering in the frequency domain. In particular, we present a computational
procedure that serves as an alternative to time-domain convolution.

In fact, the frequency-domain approach based on the DFT, is computationally

m ore efficient than time-domain convolution due to the existence of efficient
algorithms for computing the DFT . These algorithms, which are described

in Chapter 6, are collectively called fast Fourier transform (FFT) algorithms.

5.3.1 Use of the DFT in Linear Filtering

In the preceding section it was demonstrated that the product of two DFTs is
equivalent to the circular convolution of the corresponding time-domain sequences.
Unfortunately, circular convolution is of no use to us if our objective is to deter-
mine the output of a linear filter to a given input sequence. In this case we seek
a frequency-domain methodology equivalent to linear convolution.

Suppose that we have a finite-duration sequence x(n) of length L which
excites an FIR filter of length M. Without loss of generality, let

x(n) =0, n<Q0andn=>=1L
h(n) =0, n<QOandn>M

where h(n) is the impulse response of the FIR filter.
The output sequence y(n) of the FIR filter can be expressed in the time
domain as the convolution of x(n) and k(n), that is

M=1
y(n) = 3 h(k)x(n — k) (5.3.1)
k=0

Since h(n) and x(n) are finite-duration sequences, their convolution is also finite
in duration. In fact, the duration of y(n) is L + M — 1.
The frequency-domain equivalent to (5.3.1) is

Y(w) = X (w) H (@) (5.3.2)



If the sequence y(n) is to be represented uniquely in the frequency domain by
samples of its spectrum Y (w) at a set of discrete frequencies, the number of distinct
samples must equal or exceed L+ M — 1. Therefore, a DFT of size N > L+ M -1,
is required to represent {y(n)} in the frequency domain.

Now if
Y(k) = Y{oNo=2ni/n k=01,....N—-1
= X (@)H (@)ww2mi/N k=01,....,N -1
then
Y(k) = X(k)H (k) k=01,....N-1 (5.3.3)

where {X(k)} and {H(k)} are the N-point DFTs of the corresponding sequences
x(n) and h(n), respectively. Since the sequences x(n) and h(n) have a duration
less than N, we simply pad these sequences with zeros to increase their length to
N. This increase in the size of the sequences does not alter their spectra X (w) and
H (w), which are continuous spectra, since the sequences are aperiodic. However,
by sampling their spectra at N equally spaced points in frequency (computing the
N-point DFTs), we have increased the number of samples that represent these
sequences in the frequency domain beyond the minimum number (L or M, re-

spectively).

Since the N = L + M — 1-point DFT of the output sequence y(n) is sufficient
to represent y(n) in the frequency domain. it follows that the multiplication of the
N-point DFTs X (k) and H(k), according to (5.3.3), followed by the computation
of the N-point IDFT, must yield the sequence {y(n)}. In turn, this implies that
the N-point circular convolution of x(n) with h(n) must be equivalent to the linear
convolution of x(n) with h(n). In other words, by increasing the length of the
sequences x(n) and h(n) to N points (by appending zeros), and then circularly
convolving the resulting sequences, we obtain the same result as would have been
obtained with linear convolution. Thus with zero padding, the DFT can be used
to perform linear filtering.
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