UNIT-5
Searching: List Searches- Sequential Search- Variations on Sequential Searches- Binary Search- Analyzing
Search Algorithm- Hashed List Searches- Basic Concepts- Hashing Methods- Collision Resolutions- Open
Addressing- Linked List Collision Resolution- Bucket Hashing.

5.1 List Searches
Searching is the process used to find the location of a target among a list of objects.
The two basic searches for arrays are the sequential search and the binary search.

a) The sequential search canbe used to locate an item inany array.

b) The binary search, on the other hand, requires an ordered list.

5.2 Sequential search
The sequential search is used whenever the list is not ordered. Generally, you use this technique only for small
lists or lists that are not searched often.

Location Wanted

(3)

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]
4 21| 36 14 | 62 | 91 8 22 7 81| 77 | 10

Target Given
(14)

In the sequential search, we start searching for the target at the beginning of the list and continue until we find
the target. This approach gives us two possibilities: either we find it reach the end of the list.

reex [0 [vanotecuar+ | By
a&)]

a[1] a[2] a[3] al4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]
4 21 36 14 62 o1 8 22 7 81 77 10

index | 1 14 not equal 21]

al0] af1] al2] a[3] al4] a[5] a[6] al7] a[8] a[9] a[10] a[l11]
4 21 36 14 62 91 8 22 7 81 77 10

index | 2 14 not equal 36]

al0] m a[3] a[4] a[5] ale] al[7] a[8] a[9] a[10] a[11]
21 36

4 14 | 62 | 91 8 22 7 | 81| 77 | 10

index | 3 14 equal 14]

al[0] a[1] a2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]
‘4‘21|36|14|62|91| 8‘22‘ 7|81|77|10|

Figure: Successful search of an unordered list

index

72 not equal 4] [Target 72]

(--—-O

al0] a[1] a[2] a[3] a[4] al5] a[e] al[7] a[8] a[e] a[10] a[11]

4 21 36 14 62 o1 8 22 7 81 77 10

index | 1 72 not equal 21]

al[0] a[1] a[2] a[3] a[4] al5] al[e] al[7] al[8] a[9] a[10] a[11]

4 21 36 14 62 91 8 22 7 81 77 10

index 5 72 not equal 91]

index 11

alo] a[1] a[2] a[3] a[4] al5 ale] al7] a[8] al9] a[10] a[11]

4 21 36 14 62 91 8 22 7 81 77 10

[72 not equal 10

al0] a[1] a[2] a[3] a[4] al5] a[e] al[7] al[8] a[9] a[10] a[11]

4 21 36 14 62 91 8 22 7 81 77 | 10

Note: Not all test points are shown.

Figure: Unsuccessful search of an unordered list

Sequential Search Algorithm:

The search algorithm requires four parameters: (1) the list we are searching, (2) an index to the last element in

the list,’ (3) the target, and (4) the address where the found element's index location is to be stored.

To tell the calling algorithm whether the data were found, we returna Boolean-true if we found it or false if

we didn't find it.

Sequential Search

6

4
8

Algorithm segSearch (list, last, target, locn)
Locate the target in an unordered list of elements.

Pre list must contain at least one element
last is index to last element in the list
target contains the data to be located
locn is address of index in calling algorithm
Post if found: index stored in locn & found true
if not found: last stored in locn & found false
Return found true or false
set looker to 0
loop (looker < last AND target not equal list[looker])
1 increment looker
end loop
set locn to looker
if (target equal list[looker])
1 set found to true
else
1 set found to false
end if
return found

end segSearch

5.3 Variations on Sequential Searches
Three useful variations on the sequential search algorithmare: (1) the sentinel search, (2) the probability
search, and (3) the ordered list search.

5.3.1Sentinel Search

"When the inner loop of a program tests two or more conditions, we should try to reduce the testing to just one
condition."2 If we know that the target will be found in the list, we can eliminate the test for the end of the list.
The only way we can ensure that a target is actually in the list is to put it there our self. A target is put in the
list by adding an extra element (sentinel entry) at the end of the array and placing the target in the sentinel. We
can then optimize the loop and determine after the loop completes whether we found actual data or the
sentinel.” The obvious disadvantage is that the rest of the processing must be careful to never look at the
sentinel element at the end of the list. The pseudo code for the sentinel search is shown in Algorithm.

5.3.2 Probability Search

In the probability search, the data in the array are arranged with the most probable search elements at the
beginning of the array and the least probable at the end. It is especially useful when relatively few elements
are the targets for most of the searches. To ensure that the probability ordering is correct over time, in each
search we exchange the located element with the element immediately before it in the array. A typical
implementation of the probability search is shown in Algorithm.

Senfinel Search k !
Probability Search
Algorithm SentinelSearch (list, last, target, locn) ‘
Locate the target in an unordered list of elements. Algorithm ProbabilitySearch (list, last, target, locn)
Pre list must contain element at the end for sentinel Locate the target in a list ordered by the probability of each
last is index to last data element in the list element being the target--most probable first, least probable
last.,

target contains the data to be located
loen is address of index in calling algorithm
Post if found--matching index stored in locn & found
set true
if not found--last stored in locn & found false
Return found true or false

Pre list must contain at least one element
last is index to last element in the list
target contains the data to be located
locn is address of index in calling algorithm
Post if found--matching index stored in locn,
found true, and element moved up in priority.

1 set list(last + 1] to target if not found--last stored in locn & found false
2 set looker to 0 b Return found true or false (
3 loop (target not equal list[looker]) | find target in list

| increment looker 2 if (target in list)
4 end loop 1 set found to true
5 if (looker <= last) 2 set locn to index of element containing target

| set found to true 3 if (target after first element)

) get loen to looker 1 move element containing target up one location
6 else : :ls:nd it

| set found to false A o s e ey

2 set locn to last)

4 end if

7 end if 5 return found

§ return found | end ProbabilitySearch
end SentinelSearch ‘ i

5.3.3 Ordered List Search

Although we generally recommend a binary search when searching a list ordered on the key (target), if the list
is small it may be more efficient to use a sequential search. When searching an ordered list sequentially,
however, it is not necessary to search to the end of the list to determine that the target is not in the list. We can
stop when the target becomes less than or equal to the current element we are testing. In addition, we can
incorporate the sentinel concept by bypassing the search loop when the target is greater than the last item. In

3

other words, when the target is less than or equal to the last element, the last element becomes a sentinel,
allowing us to eliminate the test for the end of the list.

Although it can be used with array implementations, the ordered list search is more commonly used when
searching linked list implementations. The pseudo code for searching an ordered array is found in Algorithm.

Ordered List Search

Algorithm OrderedListSearch (list, last, target, locn)
Locate target in a list ordered on target.
Pre list must contain at least one element

last is index to last element in the list

target contains the data to be located
locn is address of index in calling algorithm
Post if found--matching index stored in locn-found true
if not found--locn is index of first element >
target or locn egual last & found is false
Return found true or false
1 if (target less than last element in list)
1 find first element less than or equal to target
2 set lcocn to index of element
2 else
1 set lccn to last
3 end if
4 if (target in list)
1 set found to true
5 else
1 set found to false
6 end if
7 return found
end OrderedListSearch

5.4 Binary Search
The sequential search algorithm is very slow. If we have an array of 1000 elements, we must make 1000
comparisons in the worst case.

The- binary search starts by testing the data in the element at the middle of the array to determine if the target
is in the first or the second half of the list.

mid = (begin + end) / 2
If it is in the first half, we do not need to check the second half. If it is in the second half, we do not need to
test the first half.
In other words, we eliminate half the list from further consideration with just one comparison. We repeat this
process, eliminating half of the remaining list with each test, until we find the target or determine that it is not
in the list.
To find the middle of the list, we need three variables: one to identify the beginning of the list, one to identify
the middle of the list, and one to identify the end of the list. We analyze two cases here: the target is in the list
and the target is not in the list.

first mid last [Target: 22 J
Lo |l s J[11]

alo] al1] al[2] al[3] al4] als5] als] al7] als] al9] a[10] af11]

4 7 8 | 10 | 14 | 21 | 22 | 36 | e2 | ravd | 81 | 21
first mid last
22 = 21
Le [[=][]
alo a1 al=2 al3 al4a als ale a7 als alo al[10] af11
< 7 8 10 14 21 22 36 e2 rard 81 21

first mid last
e [[e][7] ===]

alo] al1] al=2] al[3] al4] al5] al[s] al[7] al[8s] al[9] al[10] af[11]

a | 7 | 8 | 1o| 14| 21| 22| 36|¥%2| 77| 81 |91
first mid last
| P | | P | | - I 22 equals 22]

function terminates

Figure: Successful search of binary search

4

first mid last
| o || 5 || 11 | [Target: 11]

I :) 1

alo] af[1] al[2] al3] af4] a[5] a[e] a[r] a[8] a[9] al[10] a[11]

4|7|8|10|14|2\1\|22|36 62|77 81 91
first mid last

11 < 21
Lo [2][=]

alo] al1] al[2] al3] al4a] als5] a[e] al[7] a[8] a[9] a[10] a[11]

4|7ll8|10|14 21|22|36|62|77|81|91
first mid last

11 = 8
ENIENIER

a[o] af[1] al[2] a[3] al[4] al[5] al[6] a[7] a[8] a[9] a[10] a[11]
4|7|s 10|14|21|22|36|62|77|81|91

|,
|’ 1 1o l first mid last
=
| 1H/4U «]

al0] a[1] al2] a[3] al4] al[5] a[e] a[7] a[8] a[2] a[10] a[11]

4 | 7 | a8 | 10|4j4| 21| 22| 36| 62| 77| a1 |91
first mid last
== [a][=][=]

Function terminates

Figure: Unsuccessful search of binary search
Binary Search Algorithm

Algorithm binarvSearch (list, last, target, locn)
Search an ordered list using Binarvyv Search
Pre list is ordered; it must have at least 1 wvalue
last is index to the largest element in the list
target is the wvalue of element being sought
locn is address of index in calling algorithm

Post FOUND: locn assigned index to target element
found set true
NOT FOUND: locn = element below or above target

found set false
Return found true or false
set begin to O
set end to last
loop {(begin <= end)
1 set mid to (kbegin + end) / 2
2 if (target => list[mid]l)
Look in upper half
1 set begin to {(mid + 1)
3 else if (target < list[mid])
Look in lower half
1 set end to mid — 1
4 else
Found: force exit
1 set begin to (end + 1)
= end if
4 end loop
5 set locn to mid
6 if (target equal list [mid])

W N

1 set found to true
7 else
1 set found to false

8 end if
9 return found
end binarySearch

5.5 Analyzing Search Algorithms

a) For Sequential Search The basic loop for the sequential search is shown below.

2 loop (locker < last AND target not egual list[looker])

1 increment looker

The efficiency of the sequential search is O(n).
The search efficiency for the sentinel search is basically the same as for the sequential search. Although the
sentinel search saves a few instructions in the loop, its design is identical. Therefore, it is also an O(n).

b) The binary search locates an item by repeatedly dividing the list in half. Its loop is:

< A <> <>E>

. 8

(becgimn -
sSaet mi<a e —=

erxci)

{ Baercyg 3 - «>xaci) 7~ =

= S B { Carget = A dscfifimidaj]l)
.o i< 3 xx o E> e o P _ W= B
A = = Iercy A T— <> mmi<a - Q)
|
| |
= elsae = BE = (target < list('h:{id] >
.o S o A owes a1l ©
b 8 set erxcd o mid — 1t
<1 el se
FFound = fFforce >3 it
b =set begin to ({ena = i)
= endad irT

<3 exxcd lLloop

This loop obviously divides, and it is therefore a logarithmic loop.

The efficiency is the binary search is O(log n).

The comparison of sequential search & binary search is as follows:

I List size Iteratlons _.
binary | sequential
16 4 16
50 6 50

256 8 256 [
1000 10 1000
10000 14 10000
100000 17 100000
1000000 20 1000000

5.6 Hashed List Searches

5.6.1 Basic concept:

In a hashed search, the key, through an algorithmic function, determines the location of the data.
We use a hashing algorithm to transform the key into the index that contains the data we need to locate.
Another way to describe hashing is as a key-to-address transformation in which the keys map to addresses ina

list.

Hashing is a key-to address mapping process.

Key ——]

y fu l < l—» Address

{ Address

[oocac]

[0O11
—{OOZ}
‘| [oos]
[00<]

g [—.—{0051

001
002

00S

102002
107095 ——
111080

Hash

< {006]
1 C2>0 (0071
= [008]

007

(L %3

L

Key I

[009]

I [099]
L {100}

The memory that contains all of the home addresses is .known as the prime area.
The address produced by the hashing algorithm is known as the home address.
A collision occurs when a hashing algorithm produces an address for an insertion key and that address is

already occupied.

5.7 Hashing Methods

Hash}ng
methods

1

|
— | sl [1]
5 odulo- . |
Direct I ‘ division I Midsquare I Rotation I l
& e Digit [. Pseud om
Subtraction I ' Seudai
L " I ’ extraction l Folding ’ generation

Basic Hashing Techniques

5.7.1 Direct Method
In direct hashing the key is the address without any algorithmic manipulation. The data structure must

therefore contain an element for every possible key. The situations in which you can use direct hashing are
limited.

—rl Vi,

[
[000_1 (Notused) |
[001] }_001 Harry Lee l

1002T>| 002 | Sarah Tram
[003) (

J [004]

X oo
ST \;, | ;ooé)H' 005 Muyen 5
100 — " Hash 100 ¥ |
g ‘*2—7 - |’-°°7 |Ray Black |
| [[[Jr 5

8]

B u:j:::“ﬂ

l [099] 1:
-{1OOM 100 JohnAdam;(

T _\‘___“_xx_ RS
——— s
Direct Hashing of Employee Numbers

5.7.2 Subtraction Method
Sometimes keys are consecutive but do not start from 1. For example, a company may have only 100
employees, but the employee numbers start from 1001 and go to 1100. In this case we use subtraction
hashing, a very simple hashing function that subtracts 1000 from the key to determine the address.
The direct and subtraction hash functions both guarantee a search effort of one with no collisions.

They are 'one-to-one hashing methods: only one key hashes to each address.

5.7.3 Modulo-division Method
Also known as division remainder, the modulo-division method divides the key by the array size and uses the
remainder for the address. This method gives us the simple hashing algorithm shown below in which listSize

is the number of elements in the array:

address = key MODULO listSize

- ~sapoyee num|

Modulo-diyision Hashing

>“) danvn...

5.7.4 Digit-extraction Method
Using digit extraction selected digits are extracted from the key and used as the address. For example, using

our six-digit employee number to hash to a three digit address (000-999), we could select the first, third, and
fourth digits (from the left) and use them as the address.

379452 ~ 394
121267 = 112
378845 < 3g4
160252 102
045128 051

5.7.5 Mid square Method
In mid square hashing the key is squared and the address is selected fromthe middle of the squared number.

9452? = 89340304: address is 3403
We can select the first three digits and then use the mid square method as shown below.
379452: 379° = 143641 ~ 364
121267: 121 = 014641 ~ 464

378845: 378° = 142884 -~ 288
160252: 160° = 025600 ~ 560
045128: 045* = 002025 -~ 202

5.7.6 Folding Methods

Two folding methods are used: fold shift and fold boundary.

In fold shift the key value is divided into parts whose size matches the size of the required address. Then the
left and right parts are shifted and added with the middle part.

8

In fold boundary the left and right numbers are folded on a fixed boundary between themand the center
number.

Key
123456789

»123 Digits

456 reversed
789 —= />321
D368 @23 456 @89
O o987 -
‘ Discarded \ @764 re%legrlésed

(a) Fold shift (b) Fold boundary

Hash Fold Examples

5.7.7 Rotation Method
It is most useful when keys are assigned serially. Rotating the last character to the front of the key

minimizes this effect.

5.7.8 Pseudorandom Hashing

In pseudorandom hashing the key is used as the seed in a pseudorandom-number generator and the resulting
random number is then scaled into the possible address range using modulo-division. A common random-
number generator is shown below.

y = ax + ¢

To use the pseudorandom-number generator as a hashing method, we set x to the key, multiply it by the
coefficient a, and then add the constant c. The result is then divided by the list size, with the remainder being
the hashed address. For maximum efficiency, the factors a and ¢ should be prime numbers.

To keep the calculation reasonable, we use 17 and 7 for factors a and c, respectively. Also, the list size

in the example is the prime number 307.

((17 * 121267) + 7) modulo 307
(2061539 + 7) modulo 307
2061546 modulo 307

41

| | |

K

5.8 Collision Resolutions
A collision occurs when a hashing algorithm produces an address for an insertion key and that address is

already occupied.

| Comsi—o:
resolution

S e .
r———f\ E= = Ty

Open
addressing

| Linked -y [—

lists | Buckets

Linear probe
Quadratic probe
ll_ Pseudorandom
— Key offset

Concepts
a) The load factor of a hashed list is- the number of elements in the list divided by the number of physical

elements allocated for the list, expressed as a percentage. Traditionally, load factor is assigned the symbol

alpha (a). The formula in which k repesents the number of filled elements in the listand n represents the total
number of elements allocated to the list is

o = % 500
77

b) Computer scientists have identified two distinct types of clusters.
(1) Primary clustering occurs when data cluster around a home address. Primary clustering is easy to
identify.
(i) Secondary clustering occurs when data become grouped along a collision throughout a list. This type of
clustering is not easy to identify.

Resolutions

i

[¥ v ,
s el (o] i

List
A A
h(K) —
h(P) Collision
h{)- —¢
h(Y) Collision
(a) Primary clustering
- - - - ®- - - - - -
g 3 ,v .’—v‘ig‘.';_ ra ::fi:"‘ff?'i Resolutions
List o B el P i
A Y
h(K) —
h({P) | Collision
h(Q) 1 ———— Collision
hiY) Collision

(b) Secondary clustering

5.8.1 Open Addressing

The first collision resolution method, open addressing, resolves collisions in the prime area-that is, the area
that contains all of the home addresses.

When a collision occurs, the prime area addresses are searched for an 0 or unoccupied element where the new
data can be placed.

5.8.1.1 Linear Probe

Ina linear probe, which is the simplest, when data cannot be stored in the home address we resolve the
collision by adding 1 to the current address.

Linear probes have two advantages. First, they are quite simple to implement. Second, data tend to remain
near their home address.

[000] [379452 [Mary Dodd |

—> [001] | 070918 |Sarah Trapp j
| [002] | 121267 |Bryan Devaux JProbel

First insert: [003] | 166702 |Harry Eagle -«— Probe2
/So collision [004] R bk i

070918] S Tl e
j Hash ’ [006) (173 |
V067921 [007] | 378845 |Patrick Linn
Second insert: (008] _«;Jm : !
collision

[305] | 160252 | Tuan Ngo
[306] | 045128 | Shouli Feldman

Linear Probe Collision Resolution

10

5.8.1.2 Quadratic Probe
In the quadratic probe, the increment is the collision probe number squared.
Thus for the first probe we add 12, for the second collision probe we add 22, for the third collision probe we

add 32, and so forth until we either find an empty element or we exhaust the possible elements.

P : ;
: “:’::‘- : f;lll.s;on ProbeZand New
3 ation increment address

1

> ; 1:’ 1 1+ 1 = 02

2 2 2= 4 2 + 4 = 06

4 e - hmAll - 6 + 9. 15

5 L 42 =S 15 + 16 = 31

6 =& 52= 25 31 ¥+ 25 < 56

- s P oo 56 + 36 <= 92

8 iy 72= 49 92 + 49 < 43

9 = 8= 54 41 + 64 -~ 05

1 92= g1 5. 8T o B6

86 10°= 100 86 + 100 — 86

Quadratic Collision Resolution Increments

5.8.1.3 Pseudorandom Collision Resolution
Pseudorandom collision resolution uses a pseudorandom number to resolve the collision. We now use it

a collision resolution method. In this case, rather than use the key as a factor in the random- number

calculation, we use the collision address.
We now resolve the collision using the following pseudorandom-number generator, where a is 3 and ¢ is 5:

(ax + c¢) modulo listSize

y =
= (3 X1+ 5) Modulo 307
= 8
[000] | 379452 |Mary Dodd
—» [001] | 070918 |Sarah Trapp +—
[002] | 121267 |Bryan Devaux
First inAs'en: [003]
no collision [004]
Probe 1
070918 [003]
1 [006]
166702 [007] | 378845 |Patrick Linn
Second isert: [008] | 166702 |Harry Eagle <—J
collision . Re.]
o Pseudorandom
y=3x+5
[305] | 160252 |Tuan Ngo
[306] | 045128 [Shouli Feldman

Pseudorandom Collision Resolution

5.8.1.4 Key Offset
Key offset is a double hashing method that produces different collision paths for different keys. Whereas the

pseudorandom-number generator produces a new address as a function of the previous address, key offset

calculates the new address as a function of the old address and the key.
One of the simplest versions simply adds the quotient of the key divided by the list size to the address to

determine the next collision resolution address, as shown in the formula below.

11

offset = |key/listsize]

address = ((offSet + old address) modulo listSize)
Example:

offset = lLiee702/307] = s4a3

address = ((543 + 001) modulo 307) = 237

If 237 were also a collision, we would repeat the process to locate the

next address, as shown below.

offsSet = Liee702/307]1 = s543
address = ((543 + 237) modulo 307) = 166
Key Home address Key offset Probe 1 Probe 2
166702 1 543 237 166
572556 1 1865 024 o477
067234 1 212 220 T332

5.8.2 Linked list Collision Resolution

A linked list is ordered collection of data in which each element contains the location of next element.

It uses two storage areas: the prime area and the overflow area.

Each element in the prime area contains an addtional field-a link head pointer to a linked list of overflow data
in the overflow area. When a collision occurs, one element is stored in the prime area and chained to its
corresponding linked list in the overflow area.

Although the overflow area can be any data structure, it is typically implemented as a linked list in dynamic
memory.

The linked list data can be stored inany order, but a last in-first out (LIFO) sequence-or a key sequence is the
most common.

[000] [379452 [Mary Dodd

[001] | 070918 |Sarah Trapp ,—17@6702] Harry Eagle
sper

[002] | 121267 |Bryan Devaux X
[003] X| |[572556 | Chris Wallj

X ja
[004] s l
[005]
[006]
[007] | 378845 |Patrick Linn
[008]

[305] | 160252 |Tuan Ngo
[306] | 045128 | Shouli Feldman

Linked List Collision Resolution

5.8.3 Bucket Hashing
Another approach to handling the collision problems is bucket hashing, in which keys are hashed to buckets,

nodes that accommodate multiple data occurrences. Because a bucket can hold multiple data, collisions are
postponed until the bucket is full.

| 379452 [Mary Dodd
[000] [pe T

070918 [Sarah Trapp
[001] Bu?ket 166702 |Harry Eagle
367173 |Ann Giorgis
121267 |Bryan Devaux
572556 |Chris Walljasper

l‘ Linear proE]

placed here

[002] Buca:ket

045128 |Shouli Feldman

Bucket
[307] | ap7

Bucket Hashing

12

