
1

Linked Lists(Unit 1.2)

1.DEFINITION
A linked list is an ordered collection of finite, homogeneous data elements called nodes where the linear

order is maintained by means of links or pointers. The linked list can be classified into three major groups:
single linked list, circular linked list, and double linked list.

2. SINGLE LINKED LIST
In a single linked list each node contains only one link which points to the subsequent node in the list.
Figure shows a linked list with six nodes. Here, Nl, N2, ... , N6 are the constituent nodes in the list.
HEADER is an empty node (having data content NULL) and only used to store a pointer to the first node
Nl. Thus, if one knows the address of the HEADER node from the link field of this node, the next node can
be traced, and so on. This means that starting from the first node one can reach to the last node whose link
field does not contain any address but has a null value.

Representation of a Linked List in Memory
There are two ways to represent a linked list in memory:

Static representation using array and Dynamic representation using free pool of storage
Static representation: In static representation of a single linked list, two arrays are maintained: one array for
data and the other for links. The static representation of the linked list in above Figure is shown in below
Figure.

Two parallel arrays of equal size are allocated which should be sufficient to store the entire linked list.

Nevertheless this contradicts the idea of the linked list (that is non-contagious location of elements). But in
some programming languages, for example, ALGOL, FORTRAN, BASIC, etc. such a representation is the
only representation to manage a linked list.

Dynamic representation

The efficient way of representing a linked list is using the free pool of storage. In this method, there is a
memory bank (which "is nothing but a collection of free memory spaces) and a memory manager (a
program, in fact). During the creation of a linked list, whenever a node is required the request is placed to

2

the memory manager; the memory manager will then search the memory bank for the block requested and,
if found, grants the desired block to the caller. Again, there is also another program called the garbage
collector; it plays whenever a node is no more in use; it returns the unused node to the memory bank. It may
be noted that memory bank is basically a list of memory' spaces which is available to a programmer. Such a
memory management is known as dynamic memory management. The dynamic representation of linked
list uses the dynamic memory management policy.

The mechanism of dynamic representation of single linked list is illustrated in Figures (a) and (b). A list of
available memory spaces is there whose pointer is stored in AVAIL. For a request of a node, the list AVAIL
is searched for the block of right size. If AVAIL is null or if the block of desired size is not found, the
memory manager will return a message accordingly. Suppose the block is found and let it be XY. Then the
memory manager will return the pointer of XY to the caller in a temporary buffer, say NEW. The newly
availed node XY then can be inserted at any position in the linked list by changing the pointers of the
concerned nodes. In Figure (a), the node XY is inserted at the end and change of pointers is shown by the
dotted arrows. Figure (b) explains the mechanism of how a node can be returned from a linked list to the
memory bank.

The pointers which are required to be manipulated while returning a node are shown with dotted arrows.
Note that such allocations or deallocations are carried out by changing the pointers only.

3

Operations on a Single Linked List
The operations possible on a single linked list are listed below: Traversing the list, Inserting a node into the
list, Deleting a node from the list, Copying the list to make a duplicate of it, Merging the linked list with
another one to make a larger list, Searching for an element in the list.

suppose X is a pointer to a node. The values in the DATA field and LINK field will be denoted by
XDDATA and XDLINK, respectively, We will write NULL to imply nil value in the DATA and LINK
fields.

Traversing a single linked list
In traversing a single linked list, we visit every node in the list starting from the first node to the last node.
The following is the algorithm Traverse_SL for the same.
Algorithm Traverse_SL
Input: HEADER is the pointer to the header node.
Output: According to the Process()
Data structures: A single linked list :-vhose address of the starting node is known from the HEADER.

Inserting a node into a single linked list
There are various positions where a node can be inserted:

(i) Inserting at the front (as a first element)
 (ii) Inserting at the end (as a last element)
 (iii) Inserting at any other position.
Let us assume a procedure GetNode(NODE) to get a pointer of a memory block which suits the type NODE.
The procedure may be defined as follows:

4

Inserting a node at the front of a single linked list
The algorithm lnsertliront Sl: is used to insert a node at the front of a single linked list.

Inserting a node at the end of a single linked list
The algorithm InsertEnd_SL is used to insert a node at the end of a single linked list

5

Inserting a node into a single linked list at any position in the list
The algorithm InsertAny _SL is used to insert a node into a single linked list at any position in
the list.

6

Deleting a node from a single linked list
Like insertions, there are also three cases of deletions:

(i) Deleting from the front of the list
(ii) Deleting from the end of the list
(iii) Deleting from any position in the list

Assume a procedur namely ReturnNode(ptr) which returns a node having pointer ptr to the free pool of
storage. The procedure ReturnNode(ptr) is defined as fallows.

Deleting the node at the front of a single linked list
The algorithm Deleteliront Sl: is used to delete the node at the front of a single linked list. Such
a deletion operation is explained in Figure 3.6(a).

Deleting the node at the end of a single linked list
The algorithm DeleteEnd_SL is used to delete the node at the end of a single linked list. This is shown in
Figure.

7

DeletIng the node from any position of a single linked list
The algorithm DeleteAny _SL is used to delete a node from any position in a single linked list. Thi s is illustrated
in Figure.

8

Copying a single linked list
For a given list we can copy it into another list by duplicating the content of each node into the newly
allocated node. The following is an algorithm to copy an entire single linked list.

Merging two single linked lists into one list
Two single linked lists, namely Ll and L2 are available and we want to merge the list L2 after Ll. Also
assume that, HEADER1 and HEADER2 are the header nodes of the lists L1 and L2, respectively. Merging
can be done by setting the pointer of the link field of the last node in the list L1 with the pointer of the first
node in L2. The header node in the list L2 should be returned to the pool of free storage. Merging two
single linked lists into one list is illustrated in Figure.

9

Searching for an element in a single linked list
The algorithm Search_SL() is given below to search an item in a single linked list.

3. CIRCULAR LINKED LIST
In a single linked list, the link field of the last node is null (hereafter a single linked list may be read as
ordinary linked list), but a number of advantages can be gained if we utilize this link field to store the
pointer of the header node. A linked list where the last node points the header node is called the circular
linked list. Figure shows a pictorial representation of a circular linked list.

Circular linked lists have certain advantages over ordinary linked lists. Some advantages of circular

linked lists are discussed below:
Accessibility of a member node in the list

In an ordinary list, a member node is accessible from a particular node, that is, from the header node only.
But in a circular linked list, every member node is accessible from any node by merely chaining through the
list.

10

Example: Suppose, we are manipulating some information which is stored in a list. Also, think of a case
where for a given data, we want to find the earlier occurrence(s) as well as post occurrence(s). Post
occurrence(s) can be traced out by chaining through the list from the current node irrespective of whether
the list is maintained as a circular linked or an ordinary linked list. In order to find all the earlier
occurrences, in case of ordinary linked lists, we have to start our traversing from the header node at the cost
of maintaining the pointer for the header in addition to the pointers for the current node and another for
chaining. But in the case of a circular linked list, one can trace out the same without maintaining the header
information, rather maintaining only two pointers. Note that in ordinary linked lists, one can chain through
left to right only whereas it is virtually in both the directions for circular linked lists.

Null link problem
The null value in the link field may create some problem during the execution of programs if proper care is
not taken. This is illustrated below by mentioning two algorithms to perform search on ordinary linked lists
and circular linked lists.

Some easy-to-implement operations
Some operations can more easily be implemented with a circular linked list than with an ordinary linked list.
Operations like merging (concatenation), splitting (decatenation), deleting, disposing of an entire list, etc.

11

can easily be performed on circular linked list. The merging operat ion, as in Figure 3.9, is explained in the
algorithm Merge_CL as follows:

One can easily compare the algorithm Merge_CL with the algorithm Merge_SL. In the algorithm
Merge_SL, the entire list is needed to be traversed in order to locate the last node, which is not required in
the algorithm Merge_CL. This implies that Meger _CL works faster than Merge_SL.

Circular linked lists have some disadvantages as well. One main disadvantage is that without adequate care
in processing, it is possible to get trapped into an infinite loop! This problem occurs when we are unable to
detect the end of the list while moving from one node to the next. To get rid of this problem, we have to
maintain a special node whose data content is possibly NULL, as such a node does not contain any valid
information, so it is nothing but just a wastage of memory space.

4. DOUBLE LINKED LISTS
In a single linked list one can move beginning from the header node to any node in one direction only (from
left to right). This is why a single linked list is also termed a one-way list. On the other hand, a double
linked list is a two-way list because one can move in either direction, either from left to right or from right to
left. This is accomplished by maintaining two link fields instead of one as in a single linked list. A structure
of a node for a double linked list is represented as in Figure.

Figure Structure of a node and a double linked list.

From the figure, it can be noticed that two links, viz. RLINK and LLINK, point to the nodes on the right side
and left side of the node, respectively. Thus, every node, except the header node and the last node, points to
its immediate predecessor and immediate successor.

12

Operations on a Double Linked List
In this section, only the insertion and deletion operations are discussed.

Inserting a node into a double linked list
Figure shows a schematic representation of various cases of inserting a node into a double linked list. Let us
consider the algorithms of various cases of insertion.

Inserting a node in the front
The algorithm Insertliront Dl: is used to define the insertion operation in a double linked list.

13

Inserting a node at the end
The algorithm InsertEnd_DL is to insert a node at the end into a double linked list.

Inserting a node at any position in the list
The algorithm InsertAny_DL is used to insert a node at any position into a double linked list.

14

Deleting a node from a double linked list
Deleting a node from a double linked list may take place from any position in the list, as shown in Figure.
Let us consider each of those cases separately. Deleting a node from the front of a double linked list

Deleting a node at the end of a double linked list
The algorithm is as follows:

Deleting a node from any position in a double linked list
The algorithm is as follows:

15

5. CIRCULAR DOUBLE LINKED LIST
The advantages of both double linked list and circular linked list are incorporated into another type of list
structure called circular double linked list and it is known to be the best of its kind. Figure shows a
schematic representation of a circular double linked list.

Here, note that the RLINK (right link) of the rightmost node and LLINK (left link) of the leftmost node
contain the address of the header node; again the RLINK and LLINK of the header node contain the address
of the rightmost node and the leftmost node, respectively. An empty circular double linked list is represented
as shown in Figure. In case of an empty list, both LLINK and RLINK of the header node point to itself.

Operations on Circular Double Linked List
Sorting operation with a circular double linked list.
The algorithm SorCCDL shows the sorting of elements stored in a circular double linked list

16

In the above algorithm, we have assumed the procedure Order(datal, data2) to test whether two data are in a
desired order or not; it will return TRUE if they are in order else FALSE.

The above algorithm uses the bubble sorting technique. The execution of each outer loop bubbles up the
largest node towards the right end of sorting (say, in ascending order) and each inner loop is used to
compare the successive nodes and push up the largest towards the right if they are not in order. Figure
illustrates the sorting procedure. Students may see whether the algorithm SorcCDL is also applicable to the
double linked list data structure or not.

6. APPLICATIONS OF LINKED LISTS

Sparse Matrix Manipulation
In Figure, the fields i and j store the row and column numbers for a matrix element, respectively. DATA
field stores the matrix element at the ith row and the jth column, i.e. aij. The ROWLINK points the next
node in the same row and COLLINK points the next node in the same column. The principle is that all the
nodes particularly in a row (column) are circular linked with each other; each row (column) contains a
header node. Thus, for a sparse matrix of order m x n, we have to maintain m headers for all rows and n
headers for all columns, plus one extra node the use of which would be evident from Figure (b). For an
illustration, a sparse matrix of order 6 x 5 is assumed, as shown in Figure (a).

Figure (b) describes the representation of a sparse matrix. Here, CHI, CH2, ... , CH5 are the 5 headers
heading 5 columns and RHl, RH2, ... , RH6 are the 6 headers heading 6 rows. HEADER is one additional
header node keeping the starting address of the sparse matrix.

With this representation, any node is accessible from any other node. Now let us consider the algorithm

Createsparsebdatrxi Ll. to create a linked list and hence to store a sparse matrix.

17

18

Polynomial Representation
An important application of linked lists is to represent polynomials and their manipulations. The main
advantage of a linked list for polynomial representation is that it can accommodate number of polynomials
of growing sizes so that their combined size does not exceed the total memory available. The methodology
of representing polynomials and the operations on them are discussed in this section. First, let us consider
the case of representation of polynomials.

Considering the single linked list representation, a node should have three fields: COEFF (to store the
coefficient Qi), EXP (to store the exponent ei) and a LINK (to store the pointer to the next node representing
the next term). It is evident that the number of nodes required to represent a polynomial is the same as the
number of terms in the polynomial. An additional node may be considered for a header. As an example, let
us consider that the single linked list representation of the polynomial P(x) = 3x

8
 - 7x

6
 + 14x

3
 + 10x - 5 would

be stored as shown in Figure.

Note that the terms whose coefficients are zero are not stored here. Next let us consider two basic operations,
namely the addition and multiplication of two polynomials using this representation.

Polynomial addition
In order to add two polynomials, say P and Q, to get a resultant polynomial R, we have to compare their
terms starting at their first nodes and moving towards the end one by one. Two pointers Pptr and Qptr are
used to move along the terms of P and Q. There may arise three cases during the comparison between the
terms of two polynomials.
Case 1: The exponents of two terms are equal. In this case the coefficients in the two nodes are added and
 a new term is created with the values

Rptr→COEFF = Pptr→COEFF + Qptr→COEFF
and

Rptr→EXP = Pptr→EXP
Case 2: Pptr→EXP > Qptr→EXP, i.e. the exponent of the current term in P is greater than the exponent
 of the current term in Q. Then, a duplicate of the current term in P is created and inserted in the
 polynomial R.

Case 3: Pptr→EXP < Qptr→EXP, i.e. the case when the exponent of the current term in P is less

than the exponent of the current term in Q. In this case, a duplicate of the current term of Q is
created and inserted in the polynomial R. The algorithm PolynomialAdd_LL is described as below:

Algorithm PolynomialAdd_LL
Input: Two polynomials P and Q whose header pointers are PHEADER and QHEADER.
Output: A polynomial R is the sum of P and Q having the header RHEADER.
Data structure: Single linked list structure for representing a term in a single variable polynomial.

1. Pptr = PHEAEDER→LINK, Qptr = QHEADER→LINK

//Get a header node for the resultant polynomia l//

2. RHEADER = GetNode(NODE)

3. RHEADER→LINK = NULL, RHEADER→EXP = NULL, RHEADER→COEFF = NULL

19

4. Rptr = RHEADER II Current pointer to the resultant polynomial R

5. While (Pptr != NULL) and (Qptr != NULL) do

 6. CASE: Pptr→EXP = Qptr→EXP II Case 1

7. new = GetNode (NODE)

8. Rptr→LINK = new, Rptr = new

9. Rptr→COEFF = Pptr→COEFF + Qptr→COEFF

 lO. Rptr→EXP = Pptr→EXP

11. Rptr→LINK = NULL

12. Pptr = Pptr→LINK, Qptr = Qptr→LINK

 13. CASE: Pptr→EXP > Qptr→EXP II Case 2

14. new = GetNode (NODE)

15. Rptr→LINK = new, Rptr = new

Polynomial Multiplication
Suppose, we have to multiply two polynomials P and Q so that the result will be stored in R, another
polynomial. The method is quite straightforward: let Pptr denote the current term in P and Qptr be that of in
Q. For each term of P we have to visit all the terms in Q; the exponent values in two terms are added
(R→EXP = P→EXP + Q→EXP), the coefficient values are multiplied (R→COEFF = P→COEFF x
Q→COEFF), and these values are included into R in such a way that if there is no term in R whose exponent

20

value is the same as the exponent value obtained by adding the exponents from P and Q, then create a new
node and insert it to R with the values so obtained (that is, R→COEFF, and R→EXP); on the other hand, if a
node is found in R having same exponent value R→EXP, then update the coefficient value of it by adding
the resultant coefficient (R→COEFF) into it. The algorithm PolynomialMultiply_LL is described as
below:

Algorithm PolynomialMultiply _LL
Input: Two polynomials P and Q having their headers as PHEADER, QHEADER.
Output: A polynomial R storing the result of multiplication of P and Q.
Data structure: Single linked list structure for representing a term in a single variable
polynomial.
Pptr = PHEADER, Qptr = QHEADER

1* Get a node for the header of R */

RHEADER = GetNode(NODE)

RHEADER→LINK = NULL, RHEADER→COEFF = NULL, RHEADER→EXP = NULL

If (Pptr→LINK = NULL) or (Qptr→LINK = NULL) then

 Exit II No valid operation possible

EndIf

 Pptr = Pptr→LINK

 While (Pptr !=. NULL) do II For each term of P

 While (Qptr !=. NULL) do

 C = Pptr→COEFF x Qptr→COEFF

 X = Ppt→EXP + Qptr→EXP

/* Search for the equal exponent value in R */

 Rptr = RHEADER

 While (Rptr !=. NULL) and (Rptr→EXP > X) do

Rptrl = Rptr

Rptr = Rptr→LINK

If (Rptr→EXP = X) then

 Rpt→COEFF = Rptr→COEFF + C

 Else II Add a new node at the correct position in R

new = GetNode(NODE)

new→EXP = X, new→COEFF = C

If (Rptr→LINK = NULL) then

 Rptr→LINK = new II Append the node at the end

 new~LINK = NULL

 Else

 Rptr1→LINK = new II Insert the node in ordered position

 New→LINK = Rptr

 Endff

 Endff

 EndWhile

EndWhile

EndWhile

Return (RHEADER)

Stop

Dynamic Storage Management
The basic task of any program is to manipulate data. These data should be stored in memory during their
manipulation. There are two memory management schemes for the storage allocations of data:

1. Static storage management
2. Dynamic storage management

In the case of the static storage management scheme, the net amount of memory required for various data
for a program is allocated before the start of the execution of the program. Once memory is allocated, it can
neither be extended nor be returned to the memory bank for the use of other programs at the same time. On
the other hand, the dynamic storage management scheme allows the user to allocate and deallocate as per the
requirement during the execution of programs. This dynamic memory management scheme is suitable in
multiprogramming as well as in single-user environment where generally more than one program reside in
the memory and their memory requirement can be known only during their execution. An operating system
(OS) generally provides the service of dynamic memory management. The data structure for implementing
such a scheme is a linked list.

