Queyes(Unit 2.2)
Llintroduction

Queues are useful to solve various system programs. Some simple applications of queues in our everyday
life as well as in computer science.

Queuing in front of a counter

Suppose there are a number of customers in front of a counter to get service (say, to collect tickets or to
withdraw/deposit money in a teller of a bank). The customers are forming a queue and they will be served in
the order they arrived, that is, a customer who comes first will be served first.

Traffic control at a turning point

Suppose there is a turning point in a highway where the traffic has to turn. All the traffic will have wait in a
line till it gets the signal for moving. On getting the 'Go’ signal the vehicles will turn on a first come, first
turn basis.

Process synchronization in multi-user environment

In a multi-user environment, more than one process is handled by the monitor (operating system). The three
different states that a process may have are the following: READY, RUNNING, and AWAITED. A process

is in the READY state when it is submitted to the system for execution. A process is in the RUNNING state
if it is currently under execution. Similarly, a process will be transferred to the AWAITED state when it
requires resource(s) which is/are busy: In order to synchronize the execution of processes, the monitor

has to maintain two queues, namely Q 1 and Q2, for READY and A WAITED states respectively where a
process which entered a queue first will be exited first.

Resource sharing in a computer centre

In a computer centre, where resources are limited compared to the demand, users must sign a waiting
register. The user who has been waiting for a terminal for the longest period of time gets hold of the
resource first, then the second candidate, and so on. Here the waiting list maintains a queue and the first
signed will be the first allowed.

2 DEEINITION

Like a stack, a queue is an ordered collection of homogeneous data elements; in contrast with the stack,

here, insertion and deletion operations take place at two extreme ends. A queue is also a linear data structure
like an array, a stack and a linked list where the ordering of elements is in a-linear fashion. The only
difference between a stack and a queue is that in the case of stack insertion and deletion (PUSH and POP)
operations are at one end (TOP) only, but in a queue insertion (called ENQUEUE) and deletion (called
DEQUEUE) operations take place at two ends called the REAR and FRONT of the queue, respectively.
Figure represents a model of a queue structure. Queue is also termed first-in first-out (FIFO)

Rear Front
| ..
Enqueug —» | o | @ = | B | ——& Dequeue

u

Figure 5.2 Model of a queue.
3 REPRESENTATION OF QUEUES

There are two ways to represent a queue in memory: Using an array & Using a linked list

The first kind of representation uses a one-dimensional array and it is a better choice where a queue of fixed
size is required. The other representation uses a double linked list and provides a queue whose size can vary
during processing.

3.1 Representation of a Queue using an Array

A one-dimensional array, say Q[I ... N], can be used to represent a queue. Figure shows an instance of such a
gueue. With this representation, two pointers, namely FRONT and REAR, are used to indicate the two ends
of the queue. For the insertion of the next element, the pointer REAR will be the consultant and for deletion
the pointer FRONT will be the consultant.

123

N -
ZZZ

I

Front

!

Rear

Figure 5.3 Array representation of a queue.

Three states of a queue with this representation are given below:

Queue is empty

FRONT =0

REAR =0 (and/or)

Queue is full
REAR =N

FRONT = 1 (when full by compact)
Queue contains elements 2 1

FRONT < REAR

Number of elements = REAR -~ FRONT + |

Alporithm Enqucue
Inpat: An element [TEM that has to be inseried.
Qupat; The ITEM is at the REAR of the queue.

Data structure; Q is the amay representation of @ queve structure; two pointers FRONT and

REAR of the queue Q are known.

Algorithm Dequeue

Int: A queue with elements. FRONT and REAR are the two pointers of the quese Q.
Oiput: The deleted ekement s stored in [TEM.

Deia strctures: (i the ammay representation of a queue strchu.

Step:

L. IF(REAR =) then
2 Prnl"Quae s full
b B
{ Hse

S, W(REAR = 0) i (FRONT = 0) then
b FRONT=]

1 Bl

B REAR=REAR+

. (IREAR] = ITEM

0. Edl
1. Stap

I

I Quese is full

1 Ques s copty

1 s e e o the quee o REAR

Steps:

L. 1 (FRONT = 0) then

2 Print "Queve is empy”

Exit

Ele

ITEM = QFRONT] 1 Gt the lement
If (FRONT = REAR) /i When the queue contaans 8 single element
REAR =0 11 The queue becomes empty
FRONT =0

Eie

10 FRONT = FRONT + |

Il Eodif

M PO 3 PN A e e

12 Bl
|13 Sop

Let us trace the above two algorithms with a queue of size = 10. Suppose the current state of
the queue is FRONT = 8, REAR = 9. Ten operations are requested as under:

. DEQUEUE
4. DEQUEUE
7. ENQUEUE
10. DEQUEUE

2. ENQUEUE 3. ENQUEUE
5. DEQUEUE 6. DEQUEUE
8. ENQUEUE 9. DEQUEUE

Queue al its current state 5. Request : DEQUEUE
1 2 3 4 5 6 7 8 9 10

-

t
A
6. Request : DEQUEUE

"
X0 ™

1. Request : DEQUEUE 4" = 5 v
? FR
7. Requast : ENQUEUE
> ? f .
2 Request : ENQUEUE FA T <
FR
. . 8. Request : ENQUEUE
> ’ f . .
3. Request : ENQUEUE F R ; Ia <
o | 9, Request : DEQUEUE
> Message Queue is ful l ; .

4. Roquost : DEQUEUE e
10. Request : DEQUEUE

.
S e
FR Figure 5.4 Operations on a queve.

There is one potential problem with this representation. From Figure, we can see that with this

representation, a queue may not be full, still a request for insertion operation may be denied. For example,

on request (3) (in Figure) 8 rooms are available but insertion is not possible as the insertion pointer reaches
the end of the queue. This is simply wastage of the storage. This type of representation can be recommended
for an application where the queue is emptied at certain intervals.

3.2 Representation of a Queue using a Linked List

One more limitation of a queue, other than the inadequate service of insertion represented with an array, is

the rigidness of its length. In several applications, the length of the queue cannot be predicated before and it
varies abruptly. To overcome this problem, another preferable representation of a queue is with a linked list.
Here, we select a double linked list which allows us to move both ways. Figure shows the double, linked list
representation of a queue. The pointers FRONT and REAR point the first node and the last node in the list.

Header Front Rear

| | |

s W
A oxm]d’_\‘ oATAzlo: - o “|g |DATAn

\v" s
Figure 5.6 A double linked list representation of a queue.

Two states of the queue, either empty or containing some elements, can be judged by the following tests:

4 VARIOUS QUFUF STRUCTURFES
Two different queue structures, that is, either using an array or using a linked list. Other than these, there are
some more known queue structures.

4.1 Circular Queue
For a queue represented using an array when the REAR pointer reaches the end, insertion will be denied
even if room is available at the front. One way to avoid this is to use a circular array. Physically, a circular

array is the same as an ordinary array, say A[l ... N], but logically it implies that A[1] comes after A[N] or

after A[N], A[1] appears. Figure shows logical and physical views of a circular array.

(8) Circudar queve fogical)
Figure 57 Logical and physical views of a circular queue.

) Circular array (physical)

The principle underlying the representation of a circular array is as stated below:

Both pointers will move in a clockwise direction. This is controlled by the MOD operation; for example, if
the current pointer is at i then shift to the next location will be i MOD LENGTH + 1, 1 <=i <= LENGTH
(where LENGTH is the queue length). Thus, if i = LENGTH (that is at the end), then the next position for
the pointer is 1. With this principle the two states of the queue regarding, i.e. empty or full, will be decided

as follows:

REAR =0

Circtlar-aueue-is-empitvCircular-aueue-is-full
circuiar-quede-1s-emptywiculal-gquede-1sS-tut

FRONT = (REAR MOD LENGTH) + 1IFRONT = 0

The following two algorithms describe the insertion and deletion operations on a circular queue.

Algorithm Enqueoe

Input: An elemeat ITEM that bas 10 be inserted.

Cutpnt; The ITEM is at the REAR of the quene.

Dara strverure: Q is the amay repeesentaton of o quaue strucrere; two paimers FRONT and

Algorithm Dequeune

Inpur: A queue with clements. FRONT and REAR are the two pointers of the queue Q.

Ouipus: The deleted clement is stored in ITEM.
Daia structures: Q is the amay representation of a queue structure.

REAR of the queue Q are knoun.

Steps:
. If (REAR = N) then
2 Print “Queuve is full”
3. Exit
4, Else
s If (REAR = 0) and (FRONT = 0) then
6. FRONT = |
7. Eadlf
8 REAR = REAR + |
9. QIREAR] = ITEM
0. Endif
. Stop

{ Insent the item into the queue & REAR

I Queue is full

Queue is cmpty

Steps:

L.

LI S

e

10.
1L
12,

13,

If (FRONT = (]} then
Print “Quene is empty™
Exit
Else
ITEM = GIFRONT)
If (FRONT = REAR)
REAR =0
FRONT =4
Else
FRONT = FRONT + |
Endif
Endif
Stop

I Get the clement
Whea the queve comains a sisgle element
I The geeue hecames empty

Assume that initially the queue is empty, that is, FRONT = REAR = 0,

Initially the stack is emply

1

(2) Request : ENQUEUE (8)

AlB
i 1
F R <

{4) Raquest : ENQUEUE (D)
Als|c|oD
1 1<
F A

(1) Request : ENCQUEUE (A)

A
53
FR ¢
(3) Roquest : ENQUEUE (C)
AlB|C
|]
3 R <
(5) Request : DEQUEVE
B|C|D
! 1
> F R
Continuved

E B8 c D E c 4}
T1 T

(8) Raquest : ENQUEUE (F) {9) Reques! : DEQUEUE
E F c D E F D
> 11 1.
(10) Raquest : DECQUEUE (11) Request : DECOUEUE
E|F i
T -

(12) Roquest : DECQUEUE

re— Queue is emply

tt
FR

Figure 5.8 Tracing insertion and deletion operations on a circular queue.

4.2 Deque

Another variation of the queue is known as deque (may be pronounced 'deck’). Unlike a queue, in deque,
both insertion and deletion operations can be made at either end of the structure. Actually, the term deque
has originated from double ended queue. Such a structure is shown in Figure.

FRONT REAR
Deletion ——» ———+ Deleton
Insortion «—— «*— Insertion

Figure 59 A deque structure.

It is clear from the deque structure that it is a general representation of both stack and queue. In other words,
a deque can be used as a stack as well as a queue. There are various ways of representing a deque on the
computer. One simpler way to represent it is by using a double linked list. Another popular representation is
using a circular array (as used in a circular queue).

The following four operations are possible on a deque which consists of a list of items:

1.Push_DQ(ITEM): To insert ITEM at the FRONT end of a deque.

2.Pop_DQ(): Toremove the FRONT item from a deque.

3.Inject(ITEM): To insert ITEM at the REAR end of a deque.

4.Eject(): To remove the REAR ITEM from a deque.

These operations are described for a deque based on a circular array of length LENGTH.

Let the array be DQ[1 ... LENGTH].

Algorithm Push_DQ

Input: ITEM to be inserted at the FRONT.

Output: Deque with a newly inserted element ITEM if it is not full already.
Data structures: DQ being the circular array representation of a deque.

' Steps: Algorithm Eject_DQ
oy Inpra: A deque with elements in it
1. I (FRONT = 1) then 11 1F FRONT is ot extreme left | OQwipur: The item is deleted from the REAR end.
2 ahead = LENGTH Data structures: DQ being the circular array representation of deque.
1 Ele If If FRONT is at extreme night or the deque is eapry Steps:
: lf(PJS’[TLENGTHDM(FRO.\T-OIM L. If FRONT = 0) then
. = 2, Print “Deque is empty™
6 Ebe 3 Exit
7 thead = FRONT - | /| FRONT is at wn intermediate position 4. Else
§ Endlf s, If (FRONT = REAR) then #/ The deque contains single clement
9. If(ahead = REAR) then % FEERE = DXIREAR]
fiaie T FRONT = REAR = 0 Il Deque becomes empty
10 Print “Degue is full 8 Ese
1L Ext 9, If (REAR = 1) then / REAR is at extreme Jeft
12 Hse 10, ITEM = DQ[REAR]
1 FRONT = shead Il Push the ITEM :1 wﬂm = LENGTH
4 = v]
:5 En‘;l)‘olmoml e 13, If (REAR = LENGTH) then /I REAR is at exwreme right
i 14, ITEM = DOIREARI
16, Endif 15, REAR =~ |
17, Stop 16. Else 1 REAR is at an intermediate position
17, ITEM = DQ|REAR)
18, REAR = REAR - |
19. Endlf
20. EndIf
21. EndIf
22, Endif
23. Stop

There are, however, two known variations of deque: Input-restricted deque and Output-restricted deque.
These two types of variations are actually intermediate between a queue and a deque. Specifically, an input-
restricted deque is a deque which allows insertions at one end (say REAR end) only, but allows deletions at
both ends. Similarly, an output-restricted deque is a deque where deletions take place at one end only (say
FRONT end), but allows insertions at both ends. Figure represents two such variations of deque.

FRONT REAR FRONT REAR
|) l l
— |nsartion
Deolotion ————e
«——— Delotion —r

(a) Input-restricted doeque A B s e x ® N P

FRONT REAR

! !

Insertion ——e) P. P) Al W p‘ . . P,.
< Insertion

Deletion <+—

(b) Output-restricted deque

Figure 5,11 View of a priority queue.

4.3 Priority Queue
A priority queue is another variation of queue structure. Here, each element has been assigned a value,
called the priority of the element, and an element can be inserted or deleted not only at the ends but at any
position on the queue. Figure shows a priority Queue. With this structure, an element X of priority Pi may
be deleted before an element which is at FRONT. Similarly, insertion of an element is based on its priority,
that is, instead of adding it after the REAR it may be inserted at an intermediate position dictated by its
priority value. There are various models of priority queue known in different applications. Let us consider a
particular model of priority queue.

1.An element of higher priority is processed before any element of lower priority.

2.Two elements with the same priority are processed according to the order in which they were added to

the queue.

Here, process means two basic operations namely insertion or deletion. There are various ways of
implementing the structure of a priority queue. These are:
“Using a simple/circular array, Multi-queue implementation, Using a double linked list, Using heap tree.”

Priority queue using an array
With this representation, an array can be maintained to hold the item and its priority value. The element will

be inserted at the REAR end as usual. The deletion operation will then be performed in either of the two
following ways:

(a) Starting from the FRONT pointer, traverse the array for an element of the highest priority. Delete this
element from the queue. If this is not the front-most element, shift all its trailing elements after the
deleted element one stroke each to fill up the vacant position(see figure) This implementation,
however, is very inefficient as it inwolves searching the queue for the highest priority element and
shifting the trailing elements after the deletion. A better implementation is as follows:

FRONT REAR
FRONT REAR
1 | l 1
1
X X Y | «——Insartion X Y
— . — Delotion e - Insertion
R/ v) /
Deletion Shift one ~ Sor ahor insertion——

Figure 512 Deletion operation in an array representation of a priority queve. Figure 513 Another amray implementation of a prionty queue.

(b) Add the elements at the REAR end as earlier. Using a stable sorting algorithm”, sort the elements of
the queue so that the highest priority element is at the FRONT end. When a deletion is required, delete
it from the FRONT end only (see Figure).

The second implementation is comparatively better than the first one; here the only burden is to sort the
elements.

Multi-queue implementation

This implementation assumes N different priority values. For each priority Pi there are two pointers Fi and
Ri corresponding to the FRONT and REAR pointers respectively. The elements between Fi and Ri are all of
equal priority value Pi. Figure represents a view of such a structure.

R F R £, R 1 v

[N S S T B
Priosity p,

N . ° o H F 13} 12 LENGTH
4 { H]
A== , |

Figure 5.14 Multi-queue representation of a priority queue, "™ % [:E]:]r— Sassocts ftn

= R
fe==x |
. . i
Priority p, Nl N xLENGTH
(8) Multipie queue with simple queves (b) Multiple queue with & matrix

Figure 5.15 Multhqueve implementation with multiple simple queues and matrix

With this representation, an element with priority value Pi will consult Fi for deletion and Ri for insertion.
But this implementation is associated with a number of difficulties:

(i) It may lead to a huge shifting in order to make room for an item to be inserted.

(if) A large number of pointers are involved when the range of priority values is large.

In addition to the above, there are two other techniques to represent a multi-queue, which are shown in
Figures (a) and (b). It is clear from Figure (a) that for each priority value a simple queue is to be maintained.
An element will be added into a particular queue depending on its priority value. The priority queue as

shown in Figure (b) is in some way better than the multi-queue with multiple queues. Here one can get rid of
maintaining several pointers for FRONT and REAR in several queues. A multi-queue with multiple queues
has one advantage that one can have different queues of arbitrary length. In some applications, it is seen that
the number of occurrences of elements with some priority value is much larger than the other value, thus
demanding a queue of larger size.

Linked list representation of a priority queue

This representation assumes the node structure as shown in Figure. LLINK and RLINK are two usual link
fields, DATA is to store the actual content and PRIORITY is to store the priority value of the item. We will
consider FRONT and REAR as two pointers pointing the first and last nodes in the queue, respectively. Here
all the nodes are in sorted order according to the priority values of the items in the nodes. The following is
an instance of a priority queue.

LLINK | DATA |PRIORITY| RLINK

HEAR
Figure 516 Linked list representation of a priority queue

With this structure, to delete an item having priority p, the list will be searched starting from the node under
pointer REAR and the first occurring node with PRIORITY = P will be deleted. Similarly, to insert a node
containing an item with priority p, the search will begin from the node under the pointer FRONT and the
node will be inserted before a node found first with priority value p, or if not found then before the node
with the next priority value. The following two algorithms Insert PQ and Delete_PQ are used to implement
the insertion and deletion operations on a priority queue.

5. APPLICATIONS OF QUEUES

Numerous applications of queue structures are known in computer science. One major application of queues
is in simulation. Another important application of queues is observed in the implementation of various
aspects of an operating system. A multiprogramming environment uses several queues to control various
programs. Various scheduling algorithms are known to use varieties of queue structures.

> CPU Scheduling i : . .

In a multiprogramming environment, a single CPU has to serve more than one program simultaneously. This
section gives a brief idea about how queues are important to manage various programs in such an
environment. Let us consider a multiprogramming environment where the possible jobs for the CPU are
categorized into three groups:

l.Interrupts to be serviced. A variety of devices and terminals are connected to the CPU and they may

interrupt the CPU at any moment to get a particular service from it.
2.Interactive users to be serviced. These are mainly user's programs under execution at various terminals.
3.Batch jobs to be serviced.

Here the problem is to schedule all sorts of jobs so that the required level of performance of the environment
will be attained. One way to implement complex scheduling is to classify the workload acc ording to its
characteristics and to maintain separate process queues. So far as the environment is concerned, we can
maintain three queues, as depicted in Figure. This approach is often called multi-level queues scheduling.
Processes will be assigned to their respective queues. The CP U will then service the processes as per the
priority of the queues. In the case of a simple strategy, absolute priority, the process from the highest priority
queue (for example, system processes) are serviced until the queue becomes empty. Then the CPU switches
to the queue of interactive processes which has medium priority, and so on. A lower priority process may, of
course, be pre-empted by a higher-priority arrival in one of the upper level queues.

S—— Q

”m‘f‘.{ High-prionty quove | S 4.{' = T
Interactive \‘o ——‘_’D
0 o] I T

Batch FCFS

processes | <—
Low-priority queve scheduling Q"(FCFS i
o h
Figure 5.20 Process scheduling with multi-level queues, Figure 5.21 A multi-level feedback queue.

Multi-level queues strategy is a general discipline but has some drawbacks. The main drawback is that when
processes arriving in higher-priority queues are very high, the processes in a lower-priority queue may starve
for a long time. One way out to solve this problem is to time slice between the queues. Each queue gets a
certain portion of the CPU time. Another possibility is known as multi-level feedback queue strategy.
Normally in multi-level queue strategy, as we have seen, processes are permanently assigned to a queue
upon entry to the system and processes do not move between queues. The multi-level feedback queue
strategy, on the contrary, allows a process to move between queues. The idea is to separate out the
processes with different CPU burst characteristics. If a process uses too much of CPU time (that is, long run
process), it will be 'moved to a lower-priority queue. Similarly, a process which is waiting for too long a

time in a lower-priority queue, may be moved to a higher-priority queue. For example, consider a multi-level
feedback queue strategy with three queues Q1, Q2 and Q3 (Figure 5.21).

A process entering the system is put in queue QI. A process in Ql is given a time quantum A of 10 ms, say. If
it does not finish within this time, it is moved to the tail of queue Q2. If Ql is empty, the process at the front

of queue Q2 is given a time quantum r of 20 ms, say. If it does not complete within this time quantum, it is
pre-empted and put into queue Q3. Processes in queue Q3 are serviced only when queues Ql and Q2 are
empty. Thus, with this strategy, the CPU first executes all processes in queue Q1. Only when Q1 is empty it
will execute all processes in queue Q2. Similarly, processes in queue Q3 will only be executed if only
queues Ql and Q2 are empty. A process which arrives in queue Q1 will prempt a process in queue Q2 or Q3.

It can be observed that this strategy gives the highest priority to any process with a CPU burst of 10 ms or
less. Processes which need more than 10 ms, but less than or equal to 20 ms are also served quickly, that is,
they get the next highest priority over the shorter processes. Longer processes automatically sink to queue
Q3; from Q3, processes will be served on a first- come first-serve (FCFS) basis and in the case of a process
waiting for too long a time (as decided by the scheduler) it may be put into the tail of queue Q1.

5.3 Round Robin Algorithm

The round robin (RR) algorithm is a well-known scheduling algorithm and is designed especially for time
sharing systems. Here, we will see how a circular queue can be used to implement such an algorithm. Before
going to implement the RR algorithm, we should first describe the algorithm with illustration. Suppose,

there are n processes P1, P2, ..., P n required to be served by the CPU. Different processes require different
execution times. Suppose, the sequence of processes' arrivals according to their subscripts, that is, PI comes
before P2and, in general, Pi comes after Pi-1for 1 <i<=n. The RR algorithm first decides a small unit of

time, called a time quantum or time slice, A. A time quantum is generally from 10 to 100 milliseconds. The
CPU starts service with P1. P1 gets the CPU for time A; afterwards the CPU switches to P2, and so on. When
the CPU reaches the end of time quantum of Pn it returns to P1 and the same process will be repeated.

Now, during time sharing, if a process finishes its execution before the finishing of its time quantum, the
process then simply releases the CPU and the next process in waiting will get the CPU immediately. The

total CPU time required is 30 unit. Let us assume a time quantum of 4 unit. The RR scheduling for this will
be as shown in Figure.

Table 5.2 Table for process and burst time

P P, P
o fnshed firished frshed
Process Burst time ‘ '
P, 7 -~
P, 18 Pl Py Py| P | PPy PPyl P
Py 5 .

0 4!12';‘!201‘2!.’0
Figure 522 RR scheduling.

The advantage of this kind of scheduling is reduction in the average turm around time (mol
necessanly always true), The rum around time of a process is the time of its completion minus
the time of its amval, Thus, using the FCFS strategy.

T+(T+18)+(7+18+5) 62

Average tum around lime = 3 -~ 20,66 unit
Whereas, using the RR algorithm,
Average tum around time = Al :23-:21.66|nn

See the result by repeating the calculations but using the sequence of processes as Pz, P1 and Ps. In time
sharing systems any process may arrive at any instant of time. Generally, all the processes currently under
execution are maintained in a queue. When a process finishes its execution it is deleted from the queue and
whenever a new process arrives it is inserted at the tail of the queue and waits for its turn. To illustrate this,

let us consider Table 5.3.
P,finished P, finished

Table 5.3 Table for process events 43 execution, and deleled
= x - P, inifial) Geleted from from the
rocess Arrival time Burss time m"' quous quoue P, finished
P, 0 9 4
P, 1 3 l l
Py 9 s |
Py 14 8 ' Py Py P Py Py
e — * KA 5) | BT L A B N N A A W% F 8 T
p ? 0 . 5 s 12 17 2 l
i |
—I [l |,,_'D<],.,'I] = l P, ontors P, entors P, finighed,
i " N mow”:“a
1 Tomere 1 1o queve ks
[T T TPl TT o
Figure 5.24 Deletion of a process from a circular queue. H’m 523 Inandoutin a Queve dm RR sdvedumg.

The total CPU time required is 25 units. Let the time quantum be t = 5 unit. Figure 5.23 illustrates the
snapshot at various instants with RR scheduling. Now let us discuss the implementation of the RR
scheduling algorithm. A circular queue is the best choice for it. It may be noted that it is not strictly a

circular queue, because here a process upon completion is deleted from the queue and it is not necessarily
from the front of the queue rather it can be from any position of the queue. Except this, RR scheduling

follows all the properties of a queue, that is, the process which comes first gets its turn first. The
implementation of the RR algorithm using a circular queue is straightforward. Here, we use a variable sized
circular queue; the size of the queue at any instant is decided by the number of processes in execution at that
instant. Another mechanism is necessary; whenever a process is deleted, to fill the space of the deleted
process, it is required to squeeze all the processes preceding to it, starting from the front pointer(Figure5. 24).

6 HASHTABIE

There are other types of tables which help us to retrieve information very efficiently. The ideal hash table is
merely an array of some constant size; the size depends on the application where it will be used. The hash
table contains key values with pointers to the corresponding records. The basic idea of a hash table is that we
have to place a key value into a location in the hash table; the location will be calculated from the key value
itself. This one-to-one correspondence between a key value and an index in the hash table is known as
address calculation indexing or more commonly hashing. In the present section, we will discuss hashing
techniques and their related issues.

The main idea behind any hashing technique is to find a one-to-one correspondence between a key value and
an index in the hash table where the key value can be placed. Mathematically, this can be expressed as
shown in Figure, where K denotes a set of key values, | denotes a range of indices and H denotes the
mapping function from K to I.

H:K—1
Figure 6.6 Concept of hashing.

It may be noted that the mapping is subjective, that is all key values are mapped into some indices and more
than one key value may be mapped into an index value. The function that governs this mapping is called the
hash function. A particular hashing technique uses a particular hash function. The hash function plays a
dominant role in hashing techniques. There are two principal criteria in deciding a hash function H:K ~ | as
follows:

1.The function H should be very easy and quick to compute.

2.The function H should as far as possible give two different indices for two different key values.
As an example, let us consider a hash table of size 10 whose indices are 0, 1, 2, ..., 8, 9. Suppose a set of key
values are: 10, 19, 35, 43, 62, 59, 31, 49, 77, 33. Let us assume the hash function H is as stated below:

> Add the two digits in the key.

> Take the digit at the unit place of the result as the index; ignore the digit at the tenth place, if any.

Using this hash function, the mappings from key values to indices and to hash table are shown in Figure. In
this example, for the given set of key values, the hash function does not distribute them uniformly over the
hash table; some entries are there which are empty, and in some entries more than one key value needs to be
stored. Allotment of more than one key value in one location in the hash table is called collision. We have
found three collisions for 62, 31 and 77 in the above -mentioned example. It can be noted that |K]| = |I|, that

is, the number of key values is the same as the size of the hash table, but this is not the case always. In
general, |[K| > | 1|. The following are some hash functions which are very common and popularly applied in
various applications.

K] ol 19

10 1 1] 10

19 [2

35 L] 3] 49

43 7 4| 59, 31,77

62 8 5

50 A NERSESCEreT—
B 4 6] 33

49 3 7|

77 p 8| 35 62

33 [9

H:K—1 Hash table

Figure 6.7 Example of hashing

10

Division method
One of the fast hashing functions, and perhaps the most widely accepted, is the division method, which is
defined as follows:
Choose a number h . larger than the number N of keys in K. The hash function H is then defined by
H(k) = k(MOD h) if indices start from O
H(k) = k(MOD h) + 1 ifindices start from 1

where k € K, a key value. The operator MOD defines the modulo arithmetic operation, which is equal to the
remainder of dividing k by h. For example, if k = 31 and h = 13 then

H(31) = 31(MOD 13) =5

or
H(@1) = 31(MOD 13) + 1 =6

The number h is usually chosen to be a prime number or a number without small divisors, since this usually
minimizes the number of collisions. Generally, h is a prime number and equal to the size of the hash table.

Midsquare method

Another hash function which has been widely used in many applications is the midsquare method. The
method is defined as follows:

The hash function H is defined by H(k) = x, where x is obtained by selecting an appropriate number of bits
or digits from the middle of the square of the key value k. This selection usually depends on the size of the
hash table. It needs to be emphasized that the same criteria should be used for selecting the bits or digits for
all of the keys. As an example, suppose the key values are of the integer type, and we require 3-digit
addresses. Our selection criteria are to select 3 digits at even positions starting from the right - most digit in
the square. Let us see the address calculations, for 3 distinct keys and with the hash function, as defined
above:

k : 1234 2345 3456
B - 1522756 5499025 11943936
H(k) : 525 492 933

Here, we observe that the second, the fourth, and the sixth digits, counting from the right, are chosen for the
hash addresses. The midsquare method has been criticized because of time-consuming computation
(multiplication operation), but it usually gives good results so far as the uniform distribution of the keys over
the hash table is concerned.

Folding method

Another fair method for a hash function is the folding method. The method can be defined as follows:
Partition the key k into a number of parts kb k2'... , kno where each part, except possibly the last, has the
same number of bits or digits as the required address width. Then the parts are added together, ignoring the
last carry, if any. Alternatively, H(k) = k1 + k2 + ... + kn

where the last carry, if any, is ignored. If the keys are in binary form, the exclusive -OR operation may be
substituted for addition. There are many variations known in this method. One is called the fold shifting
method, where the even number parts, k2, k4, ... are each reversed before the addition. Another variation is
called the fold boundary method. Here, two boundary parts, namely, k1 and kn, each are reversed and then
added to all other parts. As an example, let us take the size of each part to be 2; the following calculations
are performed on the given key values (integers) as shown below.

k: 1522756 5499025 11943936

Chopping: 01 52 27 56 05 49 90 25 11 94 39 36

Pure folding: 01 +52 +27+56=136 0S +49 +90 +25=169 11 +94 + 39 + 36 = 180

Fold shifting: 10 452 4724 56=190 50+ 49 + 09 +25=133 11 +94 +93 + 36 =234

Fold boundary: 10 + 52 + 27 + 65 = 154 S50 + 49 4 90 + 52 = 241 11 + 94 4+ 39 4+ 63 = 207
Folding is a hashing function which is also useful in converting multi-word keys into a single word so that
another hashing function can be used on that. In fact, the term 'hashing' comes from this technique of
'‘chopping' a key into pieces.

Digit analysis method

The basic idea of this hashing function is to form hash addresses by extracting and/or shifting the extracted
digits or bits of the original key. As an example, given a key value, say 6732541, it can be transformed to the
hash address 427 by extracting the digits in even positions and then reversing this combination. For a given
set of keys, the position in the keys and the same rearrangement pattern must be used consistently. The

11

decision for extraction and then rearrangement is based on some analysis. To do this, an analysis is
performed to determine which key positions should be used in forming hash addresses. For each criterion,
hash addresses are calculated and then a graph is plotted, then that criterion is selected which produces the
most uniform distribution, that is with the smallest peaks and valleys. This method is particularly useful in

the case of static files where the key values of all the records are known in advance. We have assumed the
key values as integers in our previous discussions, but it need not be so always. In fact, any key value can be
represented by a string of characters and then ASCII values of its constituent characters can be taken to
convert it into a numeric value. Thus, assuming that a key value k = k1k2k3 ... knwhere each ki is the
constituent character in k. The hash function using the division method is stated as below in algorithm
HashDivision.

Algorithm HashDivision

Input; K, the key value in the form of a string of characters whose hash address is to be
calculated.

Outpur: INDEX, a positive integer as the hash address.

Data structure: Hash table in the form of an array, H is the size of the hash table which is used
for modulo arithmetic operation.

Steps:
l. i=1 /1 i is the pointer to the string X
2, keyVal=0 !l To store the keyvalue of X
3. While (K[i] # NULL) do
4. keyVal = keyVal + K]i) /I Add the ASCII value of X
5. i=i+l // Move to the next character
6. EndWhile
7. INDEX = keyVal mop H + | /l Find the remainder modulo
8. Return (INDEX)
9. Stop
llisi Iuti hni

Whatever the hash function used in hashing, the complete removal of collisions is almost impossible. This
can be emphasized with an example called birth day surprise. Suppose there is a class of 24 students and
they. are having the same year of birth. We want to know the probability that two students have the same
date of birth. The probability can be calculated as follows:

Open the calendar of the year of their birth. Assume that there are 365 days. Start with any student, and put a
tick on his birthday date on the calendar. Now, the probability that the second student has a different

birthday is 364/365. Tick this date off. The probability that a third student has a different birthday is now
363/365. Continuing this way, we see that if the first (n - 1) students have different birthdays, then the
probability that the nth student has a different birthday is

365-(n=1) a 365-n+1
365 365

Since the hirthdays of different people are independent, we obtain the probability that n students all have a
different birthday is

364 363 362 365-nxl

365 365 365 365

This probability can be calculated as less than 0.5 whenever n>= 24.
In other words, suppose there is a hash table of size 365 and we want to store the records of all the 24
students based on birthdays as their key values. It is therefore a fifty -fifty chance that two of the students
have the same birthday and hence a collision. So, collision in hashing cannot be ignored, whatever be the
size of the hash table. The next question arises therefore is what to do if there is a collision? There are
seweral techniques to resolve the collisions. Two important methods are listed below:

(@) Closed hashing (also called linear probing)

(b) Open hashing (also called chaining).

6.3 Closed Hashing

The simplest method to resolve a collision is closed hashing. Suppose there is a hash table of size h and the
key value of interest is mapped to an address location i, with a hash function. The closed hashing then can be
stated as follows:

12

Start with the hash address where the collision has occurred, let it be i. Then follow the following sequence
of locations in the hash table and do the sequential search. i,i+1,i+2, ..., h, 1, 2, ..., i-1 The search will
continue until anyone of the following cases occurs:

> The key value is found.

> An unoccupied (or empty) location is encountered.

> The searches reaches the. location where the search had started.
The first case corresponds to the successful search and the last two cases correspond to unsuccessful search.
Here the hash table is considered circular, so that when the last location is reached, the search proceeds to
the first location of the table. This is why the technique is termed closed hashing. Since the technique
searches in a straight line, it is also alternatively termed linear probing; probe means key comparison. Let us
illustrate the method with an example. Assume that there is a hash table of size 10 and th e hash function uses
the division method with remainder modulo 7, namely, H(k) = k MOD (7 + 1). Let us consider the build up
of the hash table (initially, the table is empty) with the following set of key values: 15 11 2516 98 12 8
The loading of the hash table will take place successively by performing a search for a key and inserting it
into the table in an empty room if the key is not in the table and leaving if it is overflow, that is, no free room
to accommodate any further key value. This is illustrated in Figure.

’ ! ! ‘—‘ 1 1 1 A\
. oL 18} 2| 15 2| 15 2| 15 2 15 2| 15 e 2| 15
3 3 3 3 al 16 3| 6 |- 3l 16 3| 16
4 4 - 4 4 4 9 af 9 a4l 9
5 5 5] "M Je 5 11 |s 5 n S| 1 5l n sl 1
6 =g 8 o 25 6 s 25 6| 25 6 25 |
71 | . 7 7 7 7|8 7| 8
i s 8 8 8| 12
e | 8 8 8 9 e ; s
o 9] 8 10 10 10 10
10 | 10 10 10 inserton of 16 inserion of 8 inserson of 8 insertion of 12
Initally the insertion of 16 insertion of 11 insertion of 25 Figure 6.8 Building up a hash table.
hash table
is empty

Next, let us define the operation for searching a key-value and inserting a key-value. The algorithm
HashLinearProbe for searching a key value K in a hash table of size HSIZE is given below:

Algorithm HashLinearProbe 8. While (i # inder) and (sot flag) do
Inpu: K s the key value of search. INSERT is a flag for the insertion operation. 2 o P G ;;::'::,:,f:
Owtput; Retum the location if it is found in the hash table else if INSERT is TRUE put X in :' :\’.;’;uz 7ot Son . wien ke (s el ¥
the table if table has not overflown otherwise return NULL, 1 Eadif
' \ 2 L] Ebe I Cell s occuplod
Data structures: A hash table K of size HSIZE in the form of an armay, 5 s b g
16 flag = TRUE
Steps: 1" Return(/)
Exit ¥ End of

1. flag = FALSE 1 Plag for continusion of loing | | o o e

2 index = HashFunction(X) #f Calculate the hash addsess wsing a hash function “I’ - Recdot # Closed looping

3, IN(K = Hiindex]) then Mifthereis abit| | Endil

4, Return(index) 23 EndWhile

5. Exit If End of the & :: ll«:ar:i:’l'.f:‘:: ::‘;;l:l_).n £ No maich and reach %o the starting polet

6 Hse % Esdlf

T izindens! I Set 0 the next kcaion | |3y sup

Note Step 9 in the above algorithm. Here, we assume that whenever a key value is deleted from the hash
table its corresponding entries are made negative instead of NULL. Writing an algorithm for deleting a key
value is straightforward and is left as an exercise.

Drawback of closed hashing and its remedies
The major drawback of closed hashing is that, as half of the hash table is filled, there is a tendency towards
clustering; that is key values are clustered in large groups and as a result a sequential search becomes slower
and slower. This kind of clustering is typically known as primary clustering. The following are some
solutions known to avoid this situation:

() Random probing (b) Double hashing or rehashing (c) Quadratic probing.
Random probing: This method uses a pseudo random number generator to generate a random sequence of
locations, rather than an ordered sequence as was the case in the linear probing method. The random
sequence generated by the pseudo random number generator contains all the positions between 1 and h, the

13

highest location of the hash table. An example of a pseudo random number generator that produces such a
random sequence of locations is given below: i = (i+ m) MOD h + 1

where i is a number in the sequence, and m and h are integers that are relatively prime to each other (that is,
their greatest common divisor is 1). For example, suppose m = 5 and h = 11 and itially i = 2, then the above-

mentioned pseudo random number generator generates the sequence as: 8, 3, 9, 4, 10, 5, 11,6, 1, 7, 2
We stop producing the numbers when the first location is duplicated. Observe that here all the numbers
between 1 and 11 are generated but randomly. We can avoid primary clustering if the probe follows the said

random sequence.

Double hashing: Random hashing however is not free form clustering. Another type of clustering, called
secondary clustering, is involved here. In particular, clustering occurs when two keys are hashed into the
same location. In such an instance, if the same sequence of locations is generated for two different keys by
the random probing method then clustering takes place. An alternative approach to avoid the secondary
clustering problem is to use a second hash function in addition to the first one. This second hash function
results in the value of m for the pseudo random number generator as employed in the random probing
method. This second function should be selected in such a way that the hash addresses generated by the two
hash functions are distinct and the second function generates a value m for the key k so that m and h are

relatively prime. Let us consider the following example.

Suppose Hi(k) is the initially used hash function and Hz(k) is the second one. These two functions are

defined as

Hi(k) = (k MOD h) + 1

Ha(k) :::: (k MOD (h-4)) + 1
Let h = 11 and k = 50 for an instance. Then, H1(50) = 7 and H2(50) = 2. Therefore, H1(50)!'=H2(50), that is,
Hiand Hz are independent and m = 2, h = 11 are relatively prime. Hence, using i = [(i + 2) MOD 11] + 1,
and initially i = 7, we have the random sequence as 10, 2,5, 8, 11, 3,6, 9,1, 4, 7
Now, let us choose another key value which has the same hash address as that of 50 (that is, 7) with the first
hash function H1. Let it be 28 (since H1(28) = 28 MOD 11 + 1 =7). Then Hz(28) =28 MOD 7+ 1=5
Sousing i = [(i + m) MOD 11] with i = 7 and m = 5, we get the sequence: 2, 8, 3, 9, 4, 10,5, 11,6, 1, 7
Thus, for the two key values where the hash address is the same and using rehashing, two different random
sequences are generated, thereby alleviating the secondary clustering.

Quadratic probing: Quadratic probing is a collision resolution method that eliminates the primary
clustering problem of linear probing. For linear probing, if there is a collision at location i, then the next
locations i + 1, i + 2,1 + 3, etc. are probed; but in quadratic probing, the next locations to be probed are i +
1o, i + 22, i + 32, etc. Mathematically, if h is the size of the hash table and H(k) is the hash function then the

guadratic probing searches the locations:

WA+ P woo b for i = L, 2,03,

Noto that in quadratic probing the increment function s . It also assumcs the bash table as
vhose (or cleoular) s in lisear peobing.

This method, no doubt, sabs Ny red primary clustering, but it does not probe all
the locations in the table Lemma 6.1 gives the mformation reganding the number of location
that it can probe at meost

- SO
| Lomma 6.1

‘ 11 & denotes the xize of the hash tabdo then the number of destinet positians that will be probed
| o W2

Provf! Soppose that the hash address for a given Key & is v Thea the #ah probe will look bike

¥y +PFmod hex+ [l +3+5+ (2~ 1) mod &
or,
(=15 A
LR
~ 2

ie ‘
Hence proved

Example: Suppose & =11 and ihe hash address of the key is £ Then the different locations
with nguadratic probe are v, * 4 L x ¢+ 4 v+ 0 x o 5 v+ T with (1] « IN2 = 6 probes

Dvawineck of guadreatic proting: For linear probing, it & not advisable 1o let the hash tahle
et neacty tull because in that case we may bave (o search the entire table and thus perfarmance
degrades. For quadeatic probing, the situation is even more drastic: there is no guaranice of
finding an empty cell omce more than half of the table gets full or even before that if the tshle
slzo W wot prime, Lenuma 6.2 supposts the above situation.

6.2y

Lemma 6.2
I quasdratic probing s used and the wble size is prime, then 2 new key volue can always be
Iserted If the wahle Is st deast half full

Proof (By the method of contendiction): Let the table size & be an (0dd) prime sumber greater
thun 3, We show thal the fest |hl! | alernale locutions we distinet Two of these locations are

e PFwonh sed xe Fuonh

where O <, f 5 | #/2], and x is the hash address of a key. Suppose by comtradiction, these
locations are the same, but | = /. Then
A4 P mooh=xe ok

or
=) moo b= 0

or
U~ xit»sjyaooh«0

Since ki peimee, it follows that either & = j or 1 # j is Gvisible by b Apsin i w» j, i, j % | /2],

50 (1~ f) Moo b # 0. The second option is also not possible as 1, /< | 472 |, their sum can never

bemxh forme=123 ...

Thwe, the fast | 472 | shiemate locativos wre distinet. Sence the clement 10 be mierted can
also be placed in the locatan 1o which it bashes, if there are no colliskons, any element has
'_ht:_{ locaticas (nto which it can be placed. Hence, proved.

Tn quadsutic probing, i is slso very crocial that the table size shoukd be a prinee. 1f the table
xize i nol prime, the mumber of slicrnate Jocationx can be sovercly reducsd. As an cxample,

if the wabde size is 16, (or o power of 23 then the only slicrnae K would be ul i
1.4, 9 elc.

644 Open Hashing

So far we have discussed the closed hashing methods of collision resalution, The closed bashing
method deals with armys as hash ables and thus we mre shle 1o refer gquickly o undom
ponitians in the tahles. Bt there mre two maie difficalties with this technigoe: Fiest, # is very
difficult o handle the siuulon of whle overflow o & sasfocsory musser. Second, de key
valwes are haphazardly intermixed and, om the average, the magoncy of the keys are far from
their hash locations, thas increasing (e number of probes which degrades the overnall
performance.

To resolve these problems anothes hashing method called apen hashing (also called
sepavate chaimng, or simply chaining) is known, The chaimog method is discussed n the
following paragraphs

The chainmg method weex n hash table as e array of potens, cach poister paints o linked
list That &s, here the hash wble is an wruy of list hesders. In Figure 6.9, & bash whie of size
10 is considered. The index of the hash table varies from U bo 9 and key values are taken as
imegers. The hash addsess for a key Is decided by its lust dight (means the right most digic).

of o—— w ¥

1| e

% = ;—‘{L}‘]

a a3 X

4 e tof 2 Jofe| o [} o w0 [X]
s

e] ERC = RO
e e B

ol .

B B T C Y

Flgurm 6.9 An open Nasking

14

For a given key value, the hash address is calculated, It then searches the linked list pointed
by the pointers at that locabon. If the element is found it returns the pointer to the node
contuining that key value else inserts the element af the end of that list. The implementation of
open hashing is stated in the algorithm HoshChaining as follows:

Algorithm HashChaining

Inpur: K is the item of interest. INSERT is a flag for the option of insertion.

Owpur: 1 K is found in the hash table then retum the pointer of the node which contains the
key value K else insert K into the linked list when the INSERT flag is TRUE.

Data structure: Hash wble H having size HSIZE stocing pointer o the single linked fist
structure.

Steps:

1, index = HashFunetion(X) {/ Calculate the hash address of X'
2. pir = Hiindex) # ptr is a pointer (o any pode in the list
3. fag = FALSE If flag for controlling the search
4. While (ptr # NULL) and (flag = FALSE) do

5. I (ptr=DATA = K) then I End of search
6, flag = TRUE
¢ 7 Return(per)
8 Exit

) {1 End of exccution
9. Ebe

10, pur = preLINK If Move o the next node
1. Eodif

12. EndWhile

13, If (flag = FALSE) then

14, Print "Key valee does not exist”

15. If(INSERT) then

16 InsertEad_SL(H[index]) I/ Insert it into the tahle

A key value if it exist can be deleted from a hash table for which a procedure
HaihKeyDeleted...) can be written, This is left a5 an exercise for the reader,

Advantages and disadvantages of chaining
There are several advantages of the chaining method, The most important advantages are stated
below:
L. An overflow situation never arises, The hash table maintains lists which can contain any
number of key values,
2. Collision resolution can be achieved very efficiently if the lists maintain an ordering of
keys, so that keys can be searched quickly.
3. Insertion and deletion become a quick and an ecasy task in open hashing. Deletion
proceeds in exactly the same way as deletion of a node in a single Haked list.
4. Finally, open hashing is best suitzble in applications whene the aumber of key values
varies drastically as open haching uses dynamic storage management policy.
The only disadvantage of the chaining method s that of maintzining linked fists and extra
storage space for link felds.
64.5 Comparison of Collision Resolution Techniques

We will conclude the discussion of hash tables by giving an analytical comparison of various
collision resolution techniques discussed. Let us define the load factor, A, of a hash table as

. Total number of key values
Size of the hash table

(6.3)

- Closed hashing {Random probing)

Cloand hashing (Linear probing)
— Opon hashing
A1)
ua
15.0 v
4
12.0
f SAy
9.0+
~ s
S
6.0~
30+
oo
o B rumber of probes ———« 10
Figure 6.11 Compari of - huth ik

So 4= 1.0 means that the number of key values is the same as the total capacity of the hash
table. We also define S(2) and U(4) as

S(4) = average number of peobes for a suocessful search.

LXA) = average number of probes for an unsuccessful scarch,
These two quantities will measure the performance of collision resolution methods.

Analysis of closed hashing
To analyze the perfornsance of closed hashing, let us assume the case of random probing asd
ignoce the problem of clustering for the sake of simplicity.

Let us first coasider the case of unsuocessful search. 1t is evident that the probability that
the first probe hits an occupied cell is A the load factor. The probebility that a probe hit an
empty cell is 1 - A The probability that the unswecessful search terminates in exactly two
probes is therefore A(1 - A). Arguing similarly this way, the probability that exactly k pobes
are mads in an wnsucoessful search is A'(1 = A), The average number of probes for an
unsuccessful search is therefore

U(A)-Zw ~A=(- 1)2&1‘ (6:4a)
el
Sice 45 1and TA2 =, we have
' At
= 6.
Ud)=(1- 3)“ e z (6.4b)

Next, let us consider the case of a svocessful search, We can think of this problem through
insertion of key values, Then the number of probes required will be exactly one more than the
sumber of probes made in the unsuccessful search before inserting the item. Let us cosider the
case when the table is initially empty. In that state, key values are inserted one at 3 time, Now
us the items are inseried, the load factor grows slowly from 0 to A Thus, we can express the
average mumber of probes in a successful search as

1 i
sw-;]. Ulx) de

1041
TThit
| i
Biln’—:; (U,

A simlar calculation can be performed for closed hashing with lincar probing. This is left as
an assignment for the studeat,

Anaiysis of open hashing

Let us recall the case of chaining. In chaining, we move to the linked list before doing any
probes. Suppose that a list contains » key values. Assuming that the key valves are equally
probable in any list, the expected number of key values oa any list is n/h, h being the size of
the hash table. This is nothing but /, the Joad factor. Now, if the list contains n items, the number

of key comparisons for an unsuccessful search is n. Thus, the average number of probes for an
unsuccessful search is

U = 4 67
Now, suppose the search is successful. From the analysis of sequential search over a list of »
items, we can write

Number of comparisons --Zl -"—” (6.8)

Assume that an item is equally probable in any place. Since the average number of key values
in any list is 4, the average number of probes in o successful search is

S(A)= A—”' (69)

We can draw several conclusions from the results thus obtained. Let us draw a graph
(Figure 6.11) for these results. From this graph, the following points are evident:
1. Open hashing always requires fewer probes than closed hashing.
2. Chaining is especially advantageous when the load factor is significantly low.
3. With closed hashing and successful search, lincar probing is not significantly shower if
A is high. For unsuccessful scarches, however, clustering will occur which quickly
degencrates into a long sequentinl search,
We might therefore conclude that if searches are quite likely 1o be seccessful and the load
factor is moderate, closed hashing is quite satisfactory, but in other circumstances open hashing
is promising.

15

