Unit -2

FAST FOURIER TRANSFORM
EFFICIENT COMPUTATION OF DFT:
In this section we represent several methods for computing dft efficiently. In view of the
importance of the DFT in various digital signal processing applications such as linear
filtering, correlation analysis and spectrum analysis, its efficient computation is a topic
that has received considerably attention by many mathematicians, engineers and
scientists. Basically the computation is done using the formula method.

N-1
X(y=Y xmWf O0<k=N-1
n={

where
WH = E-flﬂfﬂ

In general, the data sequence x(n) is also assumed to be complex valued.
Similarly, the IDFT becomes

1”-1 nk
x(n):FEGX{kJWN" O<n<N-1

We observe that for each value of k, direct computation of X (k) involves
N complex multiplications (4N real multiplications) and N — 1 complex additions
(4N —2 real additions). Consequently, to compute all N values of the DFT requires
N? complex multiplications and N? — N complex additions.

6.1.1 Direct Computation of the DFT

For a complex-valued sequence x(n) of N points, the DFT may be expressed as

s 2wkn . 2mkn
Xp(k) = ; [xg(n)cc:s N + x;(n)sin N] (6.1.6)
N-1
Xi(k) = — ;0 [xg(ﬂ) sin 2mkn — x;(n)cos 2.1'!';!‘1] (6.1.7)

The direct computation of (6.1.6) and (6.1.7) requires:

L 2N? evaluations of trigonometric functions.
2. 4N? real multiplications.

3. AN(N — 1) real additions.
4. A number of indexing and addressing operations.

These operations are typical of DFT computational algorithms. The operations
in items 2 and 3 result in the DFT values Xg(%) and X,(k). The indexing and
addressing operations are necessary to fetch the data x(n), 0 < n < N -1, and
the phase factors and to store the results. The variety of DFT algorithms optimize
each of these computational processes in a different way.

Divide-and-Conquer Approach to Computation of the DFT

The development of computationally efficient algorithms for the DFT is made possible if

we adopt a divide-and-conquer approach. This approach is based on the decomposition of
an N-point DFT into successively smaller DFT. This basic approach leads to a family o f

computationally efficient algorithm s know n collectively as FFT algorithms.

T o illustrate the basic notions, let us consider the computation of an N point DFT , where
N can be factored as a product of two integers, thatis, N=L M

Algorithm 1

1. Store the signal column-wise.

2. Compute the M-point DFT of each row.

3. Multiply the resulting array by the phase factors W:f.
4. Compute the L-point DFT of each column

5. Read the resulting array row-wise.

Algorithm 2

1. Store the signal row-wise.

2. Compute the L-point DFT at each column.

3. Multiply the resulting array by the factors W3,
4, Compute the M-point DFT of each row.

5. Read the resulting array column-wise.

6.1.3 Radix-2 FFT Algorithms

Let us consider the computation of the N = 2" point DFT by the divide-
and-conquer approach specified by (6.1.16) through (6.1.18). We select M = N2
and L = 2. This selection results in a split of the N-point data sequence into two
N /2-point data sequences fi(n) and f2(n), corresponding to the even-numbered
and odd-numbered samples of x(n), respectively, that is,

filn) = x(2n)
N (6.1.23)
fin) = x(2n+1), H=U.l,...,i-1
Thus fi(n) and f>(n) are obtained by decimating x(n) by a factor of 2, and hence
the resulting FFT algorithm is called a decimation-in-time algorithm.
Now the N-point DFT can be expressed in terms of the DFTs of the deci-
mated sequences as follows:

N-1
X(k) =) x(mWr k=01, N-1

nal)

= Y xmWE+ Y x(mWy (6.1.24)
n even n odd
(N2 -1 (/21

= Y xCmWFt+ Y xQm+)WY

m=() m=0

But W7 = Wy,. With this substitution, (6.1.24) can be expressed as

(N/2y=1 (N/2)=1
Xy = Y. AmWin+Wwh Y Hmwin,
m= m=0
=Rk +WERMK k=01,...,N-1

(6.1.25)

where Fi(k) and F>(k) are the N /2-point DFTs of the sequences fi(m) and fa(m).
resPectivelg.

Since Fi(k) and F>(k) are periodic, with period N /2, we have Fi(k+ N/2) =
Fi(k) and Fy(k + N/2) = Fa(k). In addition, the factor Wit"? = —w%. Hence
(6.1.25) can be expressed as

N

X(hy = R +WhFRk) k=0.1,..., 5 -1 (6.1.26)

X(k+%r—)_-.F|(k]-W§,Fg(k) k:ﬂ.l.....%—i (6.1.27)

To be consistent with our previous notation, we may define
Gi(k) = F1(k) k=0.1....,%—1
" N
Go(k) = Wy Fa(k) kzﬂ,l,.“.-i-—]

Then the DFT X (k) may be expressed as

N
X&) = Gi(k) + GaLk) k=0,1....,7—1
(6.1.28)
N N
X(k+il = Gik) - G2k) k=0,1...., 5_1
N{d-point sequences
N
vii(n) = fi(2n) n=01,..., ?_1
N (6.1.29)
va(n) = fi2n+1) n=0/1...., I_l
and f>(n) would yield
N
v (n) = f2(2n) ﬂ='|].11”.‘?—1
N (6.1.30
vaz(n) = f2(2n+1) n=U.1.....-4—-—l

By computing N/4-point DFTs, we would obtain the N/2-point DFTs Fj(k) and
F>(k) from the relations

N
Fi(k) = Vii(k) + Wy, Via (k) k=01,.... 7 -1
(6.1.31)
N A N
F (k+I) = Vik) = Wy 5 Viz(k) k=ﬂ.1.....-z-—l
& N
Fa(k) = V() + WypVal) k=01,..., -1
N N (6.1.32)
Fz(k+-a-)=V21(k}—W:,RVn(k) k=0,...,-4---1

where the (V;;(k)} are the N/4-point DFTs of the sequences {v;;(n}].

x(0) 2-paint
4 DFT .
o _fﬂmklrw f———e X(0)
-point
x(2) 2-point DFT's ig;
x(6) DFT Combi *
‘:-“ nb"_ t“’ e X(3)
poin
x(1)——— 2-point DFT's x4
X(5) DFT . X%
oot o
x3) —— 2-point DFT’s x®
A7) ——o ODFT

Figure 6.5 Three stages in the computation of an N = B-point DFT.

Stage i Stage 2 Stage 3

-ﬂ:ﬂj - —— - —= " 7 + Xi()
‘ >< \/
xfd) o— - ¥ —e X(1)

x16)

X1 -

X4

x(5}

-1
- flll p
x{3) » - - y
-1 -1 ‘\\
]Vll w: w-"_ “\\.
KT} e - — > X

Figore 6.6 Eight-point decimation-in-lime FFT algorithm.

Another important radix-2 FFT algorithm, called the decimation-in-frequency
algorithm, is obtained by using the divide-and-conquer approach described in Sec-
tion 6.1.2 with the choice of M = 2 and L = N/2. This choice of parameters
implies a column-wise storage of the input data sequence. To derive the algo-
rithm, we begin by splitting the DFT formula into two summations, one of which
involves the sum over the first N/2 data points and the second sum involves the

last N'/2 data points. Thus we obtain

(N/2)-1 N=1

Xk = Y xmWe+ Y xmwd
Al n=N/1
(N/2)-1 (N/D-1 N (6.1.33)
= L xwh WY (g) W
nad) n={) 2
Since W:.”’r" = (—1)*, the expression (6.1.33) can be rewritten as
W/2-1 . N .
Xk = - —)| W .
(k) ; [x(n)+(1)x(u+2)] N (6.1.34)
Drata Data
decimation] decimation 2
Memory address Memory
(decimal} (binary)
0 oo0 x(0) - x0) - x(0)
1 001 x(1) x(2) >< xi4)
2 010 x(2) x(4) x(2)
3 011 x(3} x(6) j x(6)
4 100 x(4) x(1) x(1)
5 101 x(5) x(3) >< x(5)
6 110 x(6) x(5) 3
7 1l x(7) x(7) - (T
Natural Bil-reversed
order order

(a)

Now, let us split {(decimate) X (k) into the even- and odd-numbered samples. Thus
we obtain

(N/2)-1 N . N
X(2k) = E [x(n}+x(n+—2-)]wh.ﬁ k=01,...,——-1 (6.1.35)

n=0 2
and
N/2)-1 N) N
X(Zk+1)= ; l[x(n)-x(n-k-z-)]w,'}lwﬂ‘h k=0'1"“‘i-1
(6.1.36)
where we have used the fact that W} = Wy ;.
If we define the N/2-point sequences g;(n) and g;(n) as
N
gi(n) = x(n) +x (n + E)
N N (6.1.37)
§2(n) = [x(n)—x (M-J-E)]Wﬂv n=012..,5-1
then
(N/2)=1
X2 =) smWy,
n=l
ot (6.1.38)
X@+1 = Y aamWy,
n=(}

L

We observe from Fig. 6.11, that the input data x(n) occurs in natural order,
but the output DFT occurs in bit-reversed order. We also note that the computa-
tions are performed in place. However, it is possible to reconfigure the decimation-
in-frequency algorithm so that the input sequence occurs in bit-reversed order
while the output DFT occurs in normal order. Furthermore, if we abandon the
requirement that the computations be done in place, it is also possible to have
both the input data and the output DFT in normal order.

x(0)

x(1}

x(2}

x(3)

) " X)
\ / >< W
e X(4)

N XX e T

L]

::::::::" -1 - -1
- X(1}

X(5)

. X(3)

X()

6.1.4 Radix-4 FFT Algorithms

When the number of data points N in the DFT is a power of 4 (i.e., N = 4"), we
can, of course, always use a radix-2 algorithm for the computation. However. for
this case. it is more efficient computationally to employ a radix-4 FFT algorithm.

Let us begin by describing a radix-4 decimation-in-time FFT algorithm, which
is obtained by selecting L =4 and M = N/4 in the divide-and-conquer approach
described in Section 6.1.2. For this choice of L and M, we have !, p =0, 1, 2, 3: m,
g=0.1,....N4d-1l.n=4am+1I, and k = (N/4) p + g. Thus we split or decimate
the N-point input sequence into four subsequences, x(4n), x(4n + 1), x(4n + 2),
xdn+3).n=01..... N/ —-1.

By applying (6.1.15) we obtain

3
Xpgy=3 [w:r'ru.q]] we o p=0.1.2.3 (6.1.39)

=)

where F(l.g) 1s given by {6.1.16), that is,

LAl I=0.1223,
F.g) = Zz{\. x(l. W, 0=0.1.2..... Tf:_ A (6.1.40)
and
x(l.m) = x{dm + 1) (6.1.41)
X(p.g) = X(%p-\kt}) (6.1.42)

Thus, the four N/4-point DFTs obtained from (6.1.40) are combined according
to (6,1.39) to yield the N-point DFT. The expression in (6.1.39) for combining
the N/4-point DFTs defines a radix-4 decimation-in-time butterfly, which can be
expressed in matrix form as

]
1 1 1] W09

X0, g) 1 ;
X(2.q) 1 =1 1 -1 wWXF@.q "
X(3.q) 1y -1 =j w:‘r'i F(3.q)

3q

=(0)
x(1)
x2)
x(3)
x(4)
x(5)
x(6)
x(7)
x(8)
x(9)
x(10)
x(11)
x(12)
x(13)
x(14)

x15)

SO
TS
A _\

7

b

\

[

X(0)
X(4)
X(8)
X(12)
b ()]
X(S)
X(9)
X(13)
X2y
X(6)
X(10)
X(14)
X(3)
xm
X(11)

X(15)

Nid=1
X4k = I:J{H}-*—l n+)

n-"

N)
+ X (J‘!+) (H+T)] Wﬁ,“’:rﬂ
NE N
X4k +1) = g{lﬂ]—jx u+1-)

N
() + jx (n + —H W W,f,':’m
4
»;4-

X4k + 2) = [.r{n] —r)
n==l

N
+x (n) (+ T)] WE?’W};},,
Nid=1 N
I{H]+,rx(n 4 4)

X(4k+3) = Y [
x(—) - jx (n+BTN)] wﬁ*w;;

=0

6.1.5 Split-Radix FFT Algorithms

An inspection of the radix-2 decimation-in-frequency flowgraph shown in Fig. 6.11
indicates that the even-numbered points of the DFT can be computed indepen-
dently of the odd-numbered points. This suggests the possibility of using different
computational methods for independent parts of the algorithm with the objective
of reducing the number of computations. The split-radix FFT (SRFFT) algorithms
exploit this idea by using both a radix-2 and a radix-4 decomposition in the same
FFT algorithm.

We illustrate this approach with a decimation-in-frequency SRFFT algorithm
due to Duhamel (1986). First, we recall that in the radix-2 dectmation-in-frequency
FFT algorithm, the even-numbered sampies of the N-point DFT are given as

N2 N N
k
X(Ek)= Z" [-f(ﬂ)+x(ﬂ+5)] W,m k=0,1,.... E—] {ﬁlﬁﬁ}
=
Note that these DFT points can be obtained from an N /2-point DFT without any
additional multiplications. Consequently, a radix-2 suffices for this computation.
The odd-numbered samples { X {2k + 1)} of the DFT require the premultipli-
cation of the input sequence with the twiddie factors Wj. For these samples a
radix-4 decomposition produces some computational efficiency because the four-
point DFT has the largest multiplication-free butterfly. Indeed, it can be shown
that using a radix greater than 4, does not result in a significant reduction in com-
putational complexity.
If we use a radix-4 decimation-in-frequency FFT algorithm for the odd-
numbered samples of the N-point DFT, we obtain the following N /4-point DFTs:
Nfd-i
X(4k+1) = Z ([x(n) — x(n + N/2)] (6.1.56)
n=0
— jlx(n + N/4) = x(n + 3N /)| WL WH,

Njd-1
X@k+3) = Y ([x(n) —x(n+ N/2)] (6.1.57)
n=0

+ jlx(n + N/4) = x(n + 3IN/HWH WE,

Thus the N-point DFT is decomposed into one N /2-point DFT without additional
twiddle factors and two N /4-point DFTs with twiddle factors. The N-point DFT
is obtained by successive use of these decompositions up to the last stage. Thus
we obtain a decimation-in-frequency SRFFT algorithm.

Figure 6.15 shows the flow graph for an in-place 32-point decimation-
in-frequency SRFFT algorithm. At stage A of the computation for N = 32, the

16

24

20

12

28

¢ ¥,
=)
4 N

%
9:9:0.
%
000,
XX

N

58, 08 S O

(D

18
10
6

.00, 0.4
%

14
3

%0 %% %% 2% %%
qwﬁﬁﬁﬁﬂﬁﬁgﬁr

4?%%?@@@?@%@&%#
qﬁﬁﬁﬁﬁﬁﬁﬁﬁ
00570005 .
1% % -

@

9%
G
0K
edete %
K5
SRS
KRR
”X
S
\«
-J&?
E5S
<§’}%’
&Y
7
0%
o5
f r%%
()

17

04

21

13

14
]
n

f_ﬁ BRrE
o
XSS
S
///
%!
X8
2RRKS
R
109%6%6%0%%
1$%6%!
olf'ﬂ\\db
¥ %%
N <GF
‘&5 O
-

5
&
%

%
X

15
il

A B
An additional factor of 2 savings in storage of twiddle factors can be obtained by
introducing a 90° phase offset at the mid point of each twiddle array , which can be
removed if necessary at the ouput of the SRFFT computation. The incorporation of this
improvement into the SRFFT results in an other algorithm also due to price called the
PFFT algorithm.
Implementation of FFT Algorithms

Now that w e has described the basic radix-2 and radix -4 F FT algorithm s, let us
consider some of the implementation issues. Our remarks apply directly to

radix-2 algorithms, although similar comments may be made about radix-4 and
higher-radix algorithms.

Basically, the radix-2 FFT algorithm consists of taking two data points at a
time from memory, performing the butterfly computations and returning the re-
sulting numbers to memory. This procedure is repeated many times ((N log, N)/2
times) in the computation of an N-point DFT.

The butterfly computations require the twiddle factors {W},) at various stages
in either natural or bit-reversed order. In an efficient implementation of the algo-
rithm, the phase factors are computed once and stored in a table, either in normal
order or in bit-reversed order, depending on the specific implementation of the
algorithm.

Memory requirement is another factor that must be considered. If the com-
putations are performed in place, the number of memory locations required is 2N
since the numbers are complex. However, we can instead double the memory to
4N, thus simplifying the indexing and control operations in the FFT algorithms. In
this case we simply alternate in the use of the two sets of memory locations from
one stage of the FFT algorithm to the other. Doubling of the memory also allows
us to have both the input sequence and the output sequence in normal order.

Finally. we note that the emphasis in our discussion of FFT algorithms was
on radix-2, radix-4, and split-radix algorithms. These are by far the most widely
used in practice. When the number of data points is not a power of 2 or 4. it is a
simple matter to pad the sequence x(n) with zeros such that N = 2" or N = 4",

The measure of complexity for FFT algorithms that we have emphasized
is the required number of arithmetic operations (muitiplications and additions).
Although this is 2 very important benchmark for computational complexity, there
are other issues to be considered in practical implementation of FFT algorithms.
These include the architecture of the processor. the available instruction set. the
data structures for storing twiddle factors, and other considerations.

For general-purpose computers, where the cost of the numerical operations
dominate, radix-2. radix-4. and split-radix FFT algorithms are good candidates.
However. in the case of special-purpose digital signal processors, featuring single-
cycle multiply-and-accumulate operation, bit-reversed addressing, and a high de-
gree of instruction parallelism. the siructural regularity of the algorithm is equally
important as arithmetic complexity. Hence for DSP processors, radix-2 or radix-
4 decimation-in-frequency FFT algorithms are preferable in terms of speed and
accuracy. The irregular structure of the SRFFT may render it less suitable for
implementation on digital signal processors. Structural regularity is also important
in the implementation of FFT algorithms on vector processors, multiprocessors,
and in VLSI. Interprocessor communication is an important consideration in such
implementations on parallel processors,

In conclusion, we have presented several important considerations in the
implementation of FFT algorithms. Advances in digital signal processing technol-
ogy, in hardware and software, will continue to influence the choice among FFT
algorithms for various practical applications.

APPLICATIONS OF FFT ALGORITHMS

The FFT algorithms described in the preceding section find application in a variety
of areas, including linear filtering, correlation, and spectrum analysis. Basically,
the FFT algorithm is used as an efficient means to compute the DFT and the IDFT.
In this section we consider the use of the FFT algorithm in linear filtering
and in the computation of the crosscorrelation of two sequences. The use of the
FFT in spectrum analysis is considered in Chapter 12. In addition we illustrate
how to enhance the efficiency of the FFT algorithm by forming complex-valued
sequences from real-valued sequences prior to the computation of the DFT.

6.2.1 Efficient Computation of the DFT of Two Real
Sequences

The FFT algorithm is designed to perform complex multiplications and additions,
even though the input data may be real valued. The basic reason for this situation is

Suppose that x,(n) and xa(n) are two real-valued sequences of length N, and
let x(n) be a complex-valued sequence defined as
x{n)=x1(n) + jx(n) O<n=N-1 (6.2.1)
The DFT operation is linear and hence the DFT of x(n) can be expressed as
X (k) = X (k) + jXa(k) (6.2.2)
The sequences x;(n) and xz(n) can be expressed in terms of x(n) as follows:
x{n} + x*(n)

filn) = ————— (6.2.3)

x{n)—x"(n)

T (6.2.4)

x2(m) =

Hence the DFTs of xi(n) and x»(n) are

Xik) = %{DFT[I(H]] + DFT[I'{H)]] (6.2.5)
Xa(k) = %{!}F?'[x(n)] - DFT[x*(n)]) (6.2.6)

Recall that the DFT of x*(a) is X*(N — k). Therefore,

Xq(k) = %[X(k) + X*(N = k)] (6.2.7)

Xa(k) = jlz[xm — XN =) (6.2.8)

6.2.2 Efficient Computation of the DFT of a 2N-Point
Real Sequence

Suppose that g(n) is a real-valued sequence of 2N points. We now demonstrate
how to obtain the 2N-point DFT of g(n) from computation of one N-point DFT
involving complex-valued data. First, we define

x(n) = g(2n)

(6.2.9)
x2(n) = g(2n+1)

Let x(n) be the N-point complex-valued sequence
x(n) = xy(n) + jxs(n) (6.2.10)
From the results of the preceding section, we have

1
Xik) = EEXU:H XN k)]
1 (6.2.11)
Xa(ky = 2—j[xu-) — X" (N = k)]

Finally. we must express the 2N-point DFT in terms of the two N-point DFTs,
X (k}and X2(k). To accomplish this, we proceed as in the decimation-in-time FFT
algorithm, namely.

M-l N1
Gy = Y e@myWHF + 3 en+ Nwy "
n=ll =l

N N-1
= Z.n[u}l‘lf'f,{,‘ + Wiy ng{nlwﬂ‘

=il n=I{)
Consequently,
Gky = Xy (k) + WINXa(k) k=001..... N -1
Gk + N) = Xi(k) — WiNX20h) E=0.1,.... N-~1

Thus we have computed the DFT of a 2N-point real sequence from one N-point
DFT and some additional computation as indicated by (6.2.11) and (6.2.12).

(6.2.12)

6.2.3 Use of the FFT Algorithm in Linear Filtering and
Carrelation

An important application of the FFT algorithm is in FIR linear filtering of long
data sequences. In Chapter 5 we described two methods, the overlap-add and the
overlap-save methods for filtering a long data sequence with an FIR filter, based
on the use of the DFT. In this section we consider the use of these two methods
in conjunction with the FFT algorithm for computing the DFT and the IDFT.

Let h(n),0 < n < M -1, be the unit sample response of the FIR filter and let
x(n) denote the input data sequence. The block size of the FFT algorithm is N,
where N =L+ M -1 and L is the number of new data samples being processed
by the filter. We assume that for any given value of M, the number L of data
samples is selected so that N is a power of 2. For purposes of this discussion, we
consider only radix-2 FFT algorithms.

The N-point DFT of 4(n), which is padded by L -1 zeros, is denoted as H (k).
This computation is performed once via the FFT and the resulting N complex
numbers are stored. To be specific we assume that the decimation-in-frequency

FFT algorithm is used to compute H(k). This yields H(k} in bit-reversed order,
which is the way it is stored in memory.

In the overlap-save method, the first M — 1 data points of each data block are
the last M — 1 data points of the previous data block. Each data block contains L
new data points, such that N = L + M — 1. The N-point DFT of each data block
is performed by the FFT algorithm. If the decimation-in-frequency algorithm is
employed, the input data block requires no shuffling and the values of the DFT
occur in bit-reversed order. Since this is exactly the order of H (k). we can multiply
the DFT of the data, say X, (k}, with H(k) and thus the result

Vulk) = H(K) X, (k)
15 also in bit-reversed order.

The inverse DFT (IDFT) can be computed by use of an FFT algorithm that
takes the input in bit-reversed order and produces an output in normal order,
Thus there is no need to shuffle any block of data either in computing the DFT
or the IDFT,

If the overlap-add method is used to perform the linear filtering, the compu-
tational method using the FFT algorithm is basically the same. The only difference
is that the N-point data blocks consist of L new data points and M — 1 additional
zeros. After the IDFT is computed for each data block, the N-point filtered blocks
are overlapped as indicated in Section 5.3.2, and the M — 1 overlapping data points
between successive output records are added together.

6.3.1 The Goertzel Algorithm

The Goertzel algorithm exploits the periodicity of the phase factors [W%} and
allows us to express the computation of the DFT as a linear filtering operation.
Since W;"‘H = 1, we can multiply the DFT by this factor. Thus

M= N=]
Xy =W 3 xmywir = 5" x(mywy (6.3.1)
m={ =[]

We note that (6.3.1) is in the form of a convolution. Indeed. if we define the
sequence y{(n) as

N-1
welny =3 x(mywgtm™ (6.3.2)
m=0

then it is clear that y(n) is the convolution of the finite-duration input sequence
x{n) of length N with a filter that has an impulse response

hi(n) = Wt u(n) (6.3.3)

The output of this filter at n = N yields the value of the DFT at the frequency
wy = hk}"ﬁ That is.

X(k} = ya(n)n=n 634

as can be verified by comparing (6.3.1) with (6.3.2).
The filter with impulse response hg(n) has the system function

1

S S— 6.3.5)
1—wgkz- (

Hy(z) =

This filter has a pole on the unit circle at the frequency w, = 2nk/N. Thus, the
entire DFT can be computed by passing the block of input data into a paral-
lel bank of ¥ single-pole filters (resonators), where each filter has a pole at the
corresponding frequency of the DFT.

Instead of performing the computation of the DFT as in (6.3.2), via convolu-
tion. we can use the difference equation corresponding to the filter given by (6.3.5)
to compute yi(m) recursively. Thus we have

ve(n) = Wiltyetn — 1)+ x(n) vi(=1)=0 (6.3.6)

The desired output is X(k) = w(N), for k =0, 1,...,N — 1. To perform this
compulation, we can compute once and store the phase factors W*.

The complex multiplications and additions inherent in (6.3.6) can be avoided
by combining the pairs of resonators possessing complex-conjugate poles. This
leads to two-pole filters with system functions of the form

k=1
- Wwk;

3 637
1 - 2cos(2ak /Ny + 22 {)

Hiz)y =

6.3.2 The Chirp-z Transform Algorithm

The DFT of an N-point data sequence x(n) has been viewed as the z-transform
of x(n) evaluated at N equally spaced points on the unit circle. It has also been
viewed as N equally spaced samples of the Fournier transform of the data sequence
x{m). In this section we consider the evaluation of X{z) on other contours in the
z-plane, including the unit circle.

Suppose that we wish to compute the values of the z-transform of x(n) at a
set of points {z;). Then,

N-1

X(z)=) x(mz" k=01,....L—1 (6.3.10)
n=(

For example, if the contour is a circle of radius r and the z; are N equally spaced
points, then

23 = reiimkniN k=012 ..., N-1

N I (6.3.11)
X(z) =3 [x(yr~"Je 20Nk =0.1.2,... . N-1

n=(0

In this case the FFT algorithm can be applied on the modified sequence x(n)r=".
More generally, suppose that the points z; in the z-plane fall on an arc which
begins at some point
20 = roe’®
and spirals either in toward the origin or out away from the origin such that the
points {z;} are defined as
o = roet®(Ree’*Y k=0,1,...,L -1 (6.3.12)
When points {z;) in (6.3.12) are substituted into the expression for the z-
transform, we obtain
N-1

X@) =) x(mz"
= (6.3.13)

N=1

= Z x{n)roe/®)~"y
LE]

where. by definition.

V = Rye!® (6.3.14)
We can express (6.3.13) in the form of a convolution, by noting that
nk = 3[n* + k? — (k — n)’] (6.3.15)
Substitution of (6.3.15) into (6.3.13) vields
N—]
X(z) = VTR Y [x(nhroe/t)y v Ay donia (6.3.16)
n={
Let us define a new sequence g(n) as
g(n) = x(n)(roe/®)y="y ="' 72 (6.3.17)
Then (6.3.16) can be expressed as
N-1
X(z) = VEA Y gmv sz (6.3.18)
n={

The summation in (6.3.18) can be interpreted as the convolution of the sequence
g(n) with the impulse response h{n) of a filter, where

h(n) = V72 (6.3.19)
Consequently, (6.3.18) may be expressed as

X(z) = VERy(k)

(6.3.20
=ﬂ k=01.....L—-1)
hik)

where v(k) is the output of the filter

N-=1
v =Y gmhk—n k=01,....L-1 (6.3.21)

r=(

QUANTIZATION EFFECTS IN THE COMPUTATION OF THE DFT*

As we have observed in our previous discussions, the DFT plays an important role
in many digital signal processing applications, including FIR filtering, the compu-
tation of the correlation between signals, and spectral analysis. For this reason
it is important for us to know the effect of quantization errors in its computa-
tion. In particular, we shall consider the effect of round-off errors due to the
multiplications performed in the DFT with fixed-point arithmetic.

6.4.1 Quantization Errors in the Direct Computation of
the DFT

Given a finite-duration sequence {x{m)}, 0 = n = N — 1, the DFT of {x(n)} is

defined as
w1

Xth)=) xmWy' k=01, N~-1 (6.4.1)

n=li

where Wy = ¢ /*"'¥_ We assume that in general. {x(n)] is a complex-valued se-
quence. We also assume that the real and imaginary components of {x(n)] and
{WS"} are represented by b bits. Consequently, the computation of the product
xmyW" requires four real multiplications. Each real multiplication is rounded
from 2k bits to b bits, and hence there are four quantization errors for cach
complex-valued multiplication.

In the direct computation of the DFT. there are N complex-valued multiplica-
tions for each point in the DFT. Therefore, the total number of real multiplications
in the computation of a single point in the DFT is 4N. Consequently. there are
4N quantization errors.

Let us evaluate the variance of the quantization errors in a fixed-paint com-
putation of the DFT. First. we make the following assumptions about the statistical
properties of the quantization errors.

1. The quantization errors due to rounding are uniformly distributed random
variables in the range (—A /2, A/2) where A = 2-t

2. The 4N quantization errors are mutually uncorrelated.
3. The 4N quantization errors are uncorrelated with the sequence {x(n)}.

Since each of the quantization errors has a variance

A? 27
lm e = 6.4.2
TR (042
the variance of the quantization errors from the 4& multiplications is
o; = 4No}
N (6.4.3)

2%

3

as
LR
ol = i (6.4.4)
3

This expression implies that every fourfold increase in the size N of the DFT
requires an additional bit in computational precision to offset the additional quan-
tization errors.

To prevent overflow, the input sequence to the DFT requires scaling. Clearly,
an upper bound on |X (k)| is

N=1
X = Y x(m)] (6.4.5)
n=l]
Ii the dynamic range in addition is (=1, 1), then | X (k)| < 1 requires that
N=1
E|xl’_u}| =1 (6.4.6)

n=i)

I |x({n)| is initially scaled such that |x(n}| < 1 for all n, then each point in the
sequence can be divided by & to ensure that (6.4.0) is satisfied.

The scaling implied by (6.4.6) is extremely severe. For example, suppose
that the signal sequence {x(n)} is white and. after scaling. each value |x(n)| of the
sequence 1s uniformly distributed in the range (—1/N, 1/N). Then the variance of
the signal sequence is

L
K LA 6.4.7
WET TN (64.7
and the variance of the output DFT coefficients | X (k)| is
a; = Na?
1 (6.4.8)
T 3N
Thus the signal-to-noise power ratio is
oy 2%
A= 6.49

9

We observe that the scaling is responsible for reducing the SNR by ¥ and

the combination of scaling and quantization errors result in a total reduction that

is proportional to N?. Hence scaling the input sequence {x(n)} to satisfy (6.4.6)
imposes a severe penalty on the signal-to-noise ratio in the DFT.

*hhhhkhkhkkkhkhkhkhrrhhhkhkkhkhkhhrrrhhkhkhkhhhhrrhhhhkhkhhhirrrhhhhkhhhihirrihhhhhhiiirix

