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IR and FIR filters
The transfer function is obtained by taking Z transform of finite sample impulse response.
The filters designed by using finite samples of impulse response are called FIR filters.
Some of the advantages of FIR filter are linear phase, both recursive and non recursive,
stable and round off noise can be made smaller.
Some of the disadvantages of FIR filters are large amount of processing is required and
non integral delay may lead to problems.

DESIGN OF FIR FILTERS

An FIR filter of length M with input x(n) and output y(n) is described by the
difference equation

yin) = bpxin) +byxin = 1) +-- -+ by_yxin ~ M+ 1)

M=l (8.2.1)
= E bexin — k)
k]

where (b} is the set of filter coefficients. Alternatively, we can express the output
sequence as the convolution of the unit sample response h(n) of the system with

the input signal. Thus we have
M-

y(r) =) h(k)x(n —k) 822)
k=l

where the lower and upper limits on the convolution sum reflect the causality and
finite-duration characteristics of the filter. Clearly, (8.2.1) and (8.2.2) are identical
in form and hence it follows that by = h(k), k=0.1,..., M - 1.
The filter can also be characterized by its system function
M-l

H(z) = h()z™ (8.2.3)

k=0

which we view as a polynomial of degree M — 1 in the variable z='. The roots of
this polynomial constitute the zeros of the filter.
An FIR filter has linear phase if its unit sample response satisfies the condi-
tion
hin) = =h(M —~ 1 —n) n=01....M-1 (8.2.4)
When the symmetry and antisyrnmetry conditions in (8.2.4) are incorporated into
(B.2.3), we have

H(z) = h(0) + h(1)z7" +h(2)z7  + - + h(M = 2)z7 M2 4 h(M — 1)z~ M-V

—{M =102 M—1 R (M —1—-2k)72 — (M —1—2k)2
=z h( 3 )-r Z .‘T(HJ[Z 4 ziM-1- ] M odd
n={)

(M21-1
= g M1/ Z R(n)[z M 17202 4 o= (M-1=2k2] M even (8.2.5)

r=0
Now, if we substitute z~! for z in (8.2.3) and multiply both sides of the resulting
equation by z~'¥-1! we obtain

T MUHETY) = 2 H(z) (8.2.6)



When h(n) = k(M — 1 —n), H(w) can be expressed as
H(w) = H,(w)e /=MD
where H,(w) is a real function of @ and can be expressed as

Hiw)=h +2 E hin)cosw M—1 -n M odd
2 i 2

(My2)=1 M1
Hw=2 ) h{n}ccsm( 5 -—n) M even

A=l
The phase characteristic of the filter for both M odd and M even is
—w(Ml}_l), if H(aw) =10
Blw) =
M-1 .
—w( 5 )+1r, if H(w) <0

When
hin) =—h{M -1 —n)

(8.2.7)

(8.2.8)

(82.9)

(8.2.10)

the unit sample response is antisymmetric. For M odd, the center point of the

antisymmetric k(n) is n = (M — 1)/2. Consequently,

h(ﬁz_—l)=[}

It is straightfurwalrd to show that the frequency res];ﬂns-e of an FIR filter with

an antisymmetric unit sample response can be expressed as
H(w) = H, (m}ej'[—m[ﬂ-—'l}ﬂ-rﬂﬂ]
where

Hyw) =2 Z h(n) sin w
e

[M~3)2
(M ! —n) M odd

(M2)~1 M-
Hiw) =2 E h{n]sinw(

i)

1
—n) M even

The phase characteristic of the filter for both M odd and M even is

M-1
%-m( 3 ), if H,(w) >0

3 M-1 .
?—w( 5 ) if Hw) <0

(8.2.11)

(8.2.12)

(8.2.13)

(8.2.14)



The choice of a symmetric or antiSsymmetric unit sample response depends
on the application. As we shall see later, a symmetric unit sample response is
suitable for some applications, while an antisymmetric unit sample response is
more suitable for other applications. For example, if h(n) = —h(M —1—n) and M
is odd, (8.2.12) implies that H,(0) = 0 and H, (r) = 0. Consequently, (8.2.12) is not
suitable as either a lowpass filter or a highpass filter. Similarly, the antisymmetric
unit sample response with M even also results in A, (0) = 0, as can be easily verified
from (8.2.13). Consequently, we would not use the antisymmetric condition in the
design of a lowpass linear-phase FIR filter. On the other hand, the symmetry
condition h(n) = h(M — 1 — n) yields a linear-phase FIR filter with a nonzero
response at w = 0, if desired, that is,

M"‘l {M"E:ﬂ
= —— 2 wa
H,(0) h( 5 )+ 2 h(n), M odd (8.2.15)
(™21
H)=2 Y hin), M even (8.2.16)
=0

8.2.2 Design of Linear-Phase FIR Filters Using Windows

In this method we begin with the desired frequency response specification Hy(ew)
and determine the corresponding unit sample response hg(n). Indeed, hy(n) is
related to Hy(w) by the Fourier transform relation

Hy(w) =) _ haln)e™/on (8.2.17)

n={

where i
ha(n) = % Hiy(w)e!*™ dw (8.2.18)

-

Thus, given Hy(w), we can determine the unit sample response hy(n) by evaluating
the integral in (8.2.18).



In general, the unit sample response h,(n) obtained from (8.2.17) is infinite
in duration and must be truncated at some point, say at n = M — 1, to yield an
FIR filter of length M. Truncation of hy(n) to a length M — 1 is equivalent to
multiplying h4(n) by a “rectangular window,” defined as

1. n=01,....M-1

w(n) = {{;1 otherwise (8.2.19)
Thus the unit sample response of the FIR filter becomes
h(n) = ha(n}w(n)
— { ha(n), n=01,....M-1 (8.2.20)
0, otherwise

It is instructive to consider the effect of the window function on the de-
sired frequency response Hy(w). Recall that multiplication of the window function
w(n) with hs(n) is equivalent to convolution of H;(w) with W(w), where W(w) is
the frequency-domain representation (Fourier transform) of the window function,
that is,

M-1 .
Ww) =Y win)e ™" (8.2.21)
n=0
Thus the convolution of Hy(w) with W(w) vields the frequency response of the
(truncated) FIR filter. That is,
k13
Hiw) = 2—:; Ha(v)Wiw — v)dv (8.2.22)

-

The Fourier transform of the rectangular window is

M =1
Ww) = Z g jun
fra=d)

_ (8.2.23)
1=~ g juM _ pJeMR sin(eM /2)
1-—eg-Jjw sin(w/2)
This window function has a magnitude response
| sin(wM /2)]
W = —_—— - 2.24
iW(w)] Tsin@/2)| T<wsnw (8.2.24)
and a piecewise linear phase
M-
-m( 5 1), when sin(fwM/2) = 0
O(w) = M1 (8.2.25)
—m( 3 )+rr. when sm(wM/2) <0

The magnitude response of the window function is illustrated in Fig. 8.4 for M = 31
and 61. The width of the main lobe [width is measured to the first zero of W(w)]



Name of Time-domain sequence,

window hn)0=n=M-=1
d
Bartlett (triangular 1=
(triangular) ——
2mn 4mn
Black 42 =1 iy | )
ckman 0.42 jmﬂ_l I::I{lﬁms”_l
Hamming 0.54 — 0.46 cos ——"
M1
) 1 2mn
Hanning 5(1_505”_1)

Kaiser
fol« (*57))]
2
—_ L
sin[h(n-Hz 1)/{M-l]}
Lanczos 2( M—l) (M-—-l) L=0
W3 / 7]
1, H-—-M:;] fayl_] e =1
1 r—(l+aiM —1)72
Tokey i[l*m T—a)M =12 ”)]
alM —-1)/2 = ﬂ-MH1 _#

8.2.3 Design of Linear-Phase FIR Filters by the
Frequency-Sampling Method

In the frequency sampling method for FIR filter design, we specify the desired
frequency response Hy(w) at a set of equally spaced frequencies, namely
M-1

o = Z(k +a) k=01...,—— M odd

k=ﬂ,1u,.,1"-2£~1 M even (8.2.30)
a=0 or i

and solve for the unit sample response h(n) of the FIR filter from these equally



spaced frequency specifications. To reduce sidelobes, it is desirable to optimize the
frequency specification in the transition band of the filter. This optimization can be
accomplished numerically on a digital computer by means of linear programming
techniques as shown by Rabiner et al. (1970).

In this section we exploit a basic symmetry property of the sampled frequency
response function to simplify the computations. Let us begin with the desired
frequency response of the FIR filter, which is [for simplicity, we drop the subscript
in Hy(w}],

M-1

H(w) =Y k(e (8.2.31)
L

Suppose that we specify the frequency response of the filter at the frequencies
given by (8.2.30). Then from (8.2.31) we obtain

Hk+ea)=H (%{k -Hr]')

M=1
Hik+a) = thye-ih“*““f‘” k=0,1,....M—1 (8.2.32)
e

It is a simple matter to invert (8.2.32) and express h(n) in terms of H(k + ).
If we multiply both sides of (8.2.32) by the exponential, exp(j2rkm /M), m = 0,
1,....M —1, and sum over k = 0, 1,..., M — 1, the right-hand side of (8.2.32)
reduces to Mh(m)exp{—j2mem/M). Thus we obtain
1 M1 )
hin) = — 3 H(k +a)ef2rt+en™ =01, M~1 (8.2.33)
M=
The relationship in (8.2.33) allows us to compute the values of the unit sample
response hin) from the specification of the frequency samples H(k + &), k = 0,
..., M — 1. Note that when ¢ = 0, (8.2.32) reduces to the discrete Fourier
transform (DFT) of the sequence {h(n)} and (8.2.33) reduces to the inverse DFT
(IDFT).
Since [h(n)} is real, we can easily show that the frequency samples {H (k+a)}
satisfy the symmetry condition

Hik+a)=H*M —k - a) (8.2.34)

This symmetry condition, along with the symmetry conditions for {h(n)}, can be
used to reduce the frequency specifications from M points to (M + 1),2 points for
M odd and M/2 points for M even. Thus the linear equations for determining
[A(n)} from {H(k + )} are considerably simplified.

In particular, if (8.2.11) is sampled at the frequencies w; = 2w (k + a)}/M,
k=0,1,...,M -1, we obtain

Hk +a) = H, (%(t + a]) g /1A= 2-2alk+a)M-1)/2M] (8.2.35)



where 8 = 0 when {kh(n)] 1s symmetric and # = 1 when {h(n)} is antisymmetric. A
simplication occurs by defining a set of real frequency samples {G(k + m)]

2
Gk +a) = (-D'H, (II-“: + r:r)) k=0.1,..., M~1 (8.2.36)

We use (8.2.36) in (8.2.35) to eliminate H,(wy), Thus we obtain
Hk + @) = Gk 4+ a)e/™ e/lAn2-2nik+a)(M—1)/2M] (8.2.37)

Now the symmetry condition for H(k + @) given in (8.2.34) translates into a corre-
sponding symmetry condition for G(k + «), which can be exploited by substituting
into (8.2.33), to simplify the expressions for the FIR filter impulse response {h(n)}
for the four cases @ =0, @ = 1, £ =0, and # = 1. The results are summarized in
Table 8.3, The detailed derivations are left as exercises for the reader.

8.2.4 Design of Optimum Equiripple Linear-Phase FIR
Filters

The window method and the frequency-sampling method are relatively simple
techniques for designing linear-phase FIR filters. However, they also possess some
minor disadvantages, described in Section 8.2.6, which may render them undesir-
able for some applications. A major probiem is the lack of precise control of the
critical frequencies such as w, and w,.

The filter design method described in this section is formulated as a Cheby-
shev approximation problem. It is viewed as an optimum design criterion in the
sense that the weighted approximation error between the desired frequency re-
sponse and the actual frequency response is spread evenly across the passband

and evenly across the stopband of the filter minimizing the maximum error. The
resulting filter designs have ripples in both the passband and the stopband.

To describe the design procedure, let us consider the design of a lowpass
filter with passband edge frequency w, and stopband edge frequency w,. From
the general specifications given in Fig. 8.2, in the passband, the filter frequency
response satisfies the condition

1-8 <H <l1+8 ol <o, (8.2.43)

Similarly, in the stopband, the filter frequency response is specified to fall between
the limits +4,, that is,

~hH<HWw=<& |ol>a (8.2.44)

Thus 4, represents the ripple in the passband and é; represents the attenuation or
ripple in the stopband. The remaining filter parameter is M, the filter length or
the number of filter coefficients.



Case 1: Symmetric unit sample response h{n) = h{(M —1—n) and M Odd.
In this case, the real-valued frequency response charactenstic H,(w) is

M=-32

H,{m]:h(M_1)+2 D m:n;msa.-(‘“"l —n) (8.2.45)
2 | 2
If we let k = (M — 1)/2 — n and define a new set of filter parameters {a(k)} as

h(ﬂ) k=0

2

a(k) = (8.2.46)
M1 M-1
%(T-k). k=1.2,_.,,T
then (8.2.45) reduces to the compact form
(M—1)72
H(w)= Y al(k)coswk (8.247)
k=0

Case 2: Symmetric unit sample response h(n) = h(M —1—n) and M Even.
In this case, H,(w) is expressed as

(M/2)~1 M -1
H (w) =2 g} h(n}mw( 5 —-n) (8.2.48)

Again, we change the summation index from n to k = M/2 — n and define a new
set of filter parameters [b(k)} as

b(i:}=2h(£;ﬁ——k).k=1,2,...,&fﬁ (8.2.49)

With these substitutions (8.2.48) becomes

M2
H,(w) = Z b(k) cos w (k — %) (8.2.50)

k]
In carrying out the optimization, it is convenient to rearrange (8.2.50) further into
the form

o MA-T
H, () = cos = 3" b(k) cos wk (8.2.51)

k=l

where the coefficients {E(k)] are linearly related to the coefficients {b(k)}. In fact,
it can be shown that the relationship is

b(0) = 1b(1)

b(k) = 2bik) — bk — 1) k=1,2,3,...,g

H(4-1)-2(%)

-2 (82.52)



Case 3: Antisymmetric unit sample response h(n) = —h(M — 1 — n) and
M Odd. The real-valued frequency response characteristic H,(w) for this case is

(”-3’1"2 M __1
Hw =2 Y h{n}sinw( ; —n) (8.2.53)

Lo

If we change the summation in (8.2.53) from n to k = (M — 1)/2 — n and define a
new set of filter parameters {c(k)} as

c(k) = 2k (Eg;l-k) k=L12.... (M=) (8.2.54)
then (8.2.53) becomes
(M-1)72
H,(w) = ): c(k) sin wk (8.2.55)
k]

As in the previous case, it is convenient to rearrange (8.2.55) into the form

(M=3)2
H.(w) =sinw )  &(k)coswk (8.2.56)
k)

Case 4: Antisymmetric unit sample response hin) = —h(M —1—n) and
M Even. In this case, the real-valued frequency response characteristic H, (w) is

(M2 =1 M~1
H {w) =12 2 hin)sinw ( - n) (R.2.58)
n={ 2
A change in the summation index from n to k = M/2—n combined with a definition
of a new set of filter coefficients {d(k)], related to {h{n)} according to

dik) = 2h (%—f —k) k=1.2,..., % (8.2.59)

results in the expression

M2
Hy(w) =) d(k)sinw (k - %) (8.2.60)

k=1

As in the previous two cases, we find it convenient to rearrange (8.2.60) into the
form
@ MY
H, (w) = sin 5 Y dik)coswk (8.2.61)

k=l



Filter type Q(w) Pw)
hin)=h(M =1 -n) (M-1)2
M odd 1 ) ak)coswk
(case 1) el
hiny=h{iM -1 -n) (M2-1
M even coss Y blk)coswk
2
(case 2) Py
hiny = —h(iM -1 —n) (W-3)2
M odd sinw Y &(k) coswk
(case 3) k=l
hin) = —h(M -1 —n) (M-
M even sin 2 z d (k) cos wk
(case 4) 2 s




IR FILTER DESIGN
DESIGN OF IIR FILTERS FROM ANALOG FILTERS

Just as in the design of FIR filters, there are several methods that can be used to
design digital filters having an infinite-duration unit sample response. The tech-
niques described in this section are all based on converting an analog filter into
a digital filter. Analog filter design is a mature and well developed field, so it is
not surprising that we begin the design of a digital filter in the analog domain and
then convert the design into the digital domain.

An analog filter can be described by its system function.

(8.3.1)

where {o;) and {f;} are the filter coefficients, or by its impulse response, which is
related to H,(s) by the Laplace transform

H,(s) = f ht)e™"dt (8.3.2)
Alternatively, the analog filter having the rational system function H(s) given in
(8.3.1), can be described by the linear constant-coefficient differential equation

Noodtyiny XL dEx)
E Gy ———— = E B {8.3.3)
s kT drk s K drk

where x(r) denotes the input signal and y(r) denotes the output of the filter.

Each of these three equivalent characterizations of an analog filter leads to
alternative methods for converting the filter into the digital domain, as will be
described in Sections 8.3.1 through 8.3.4. We recall that an analog linear time-
invariant system with system function H(s) is stable if all its poles lie in the left
half of the s-plane, Consequently, if the conversion technique is to be effective, it
should possess the following desirable properties:

L The jf2 axis i the s-plane should map into the unit circle in the z-plane.
Thus there will be a direct relationship between the two frequency variables
in the two domains.



2. The left-half plane (LHP} of the s-plane should map into the inside of the
unit circle in the z-plane. Thus a stable analog filter will be converted to a

stable digital filter.

We mentioned in the preceding section that physically realizable and stable
IIR filters cannot have linear phase. Recall that a linear-phase filter must have a
system function that satisfies the condition

Hiz)=+:"YH(E™) (8.3.4)

where z7V represents a delay of N units of time. But if this were the case, the
filter would have a mirror-image pole outside the unit circle for every pole inside
the unit circle. Hence the filter would be unstable. Consequently, a causal and
stable IIR filter cannot have linear phase.

If the restriction on physical realizability is removed, it is possible to obtain
a linear-phase IIR filter, at least in principle. This approach involves performing a
time reversal of the input signal x{n), passing x(—n) through a digital filter H(z),
time-reversing the output of H(z), and finally, passing the result through H(z)
again. This signal processing is computationally cumbersome and appears to offer
no advantages over linear-phase FIR filters. Consequently, when an application
requires a linear-phase filter, it should be an FIR filter.

In the design of IIR filters, we shall specify the desired filter characteristics
for the magnitude response only. This does not mean that we consider the phase
response unimportant. Since the magnitude and phase characteristics are related,
as indicated in Section 8.1, we specify the desired magnitude characteristics and
accept the phase response that is obtained from the design methodology.

8.3.1 IR Filter Design by Approximation of Derivatives

One of the simplest methods for converting an analog filter into a digital filter is to
approximate the differential equation in {8.3.3) by an equivalent difference equa-
tion. This approach is often used to solve a linear constant-coefficient differential
equation numerically on a digital computer.

For the derivative dy(r)/dt at time t = nT, we substitute the backward dif-
ference [y(nT) — y(nT — 1)]}/T. Thus

dy(r) _ y(nT) = y(nT - T)
dr r=nT T
_ ¥n)—yn-1)
= T (8.3.5)

where T represents the sampling interval and y(n) = y(nT). The analog differ-
entiator with output dy(r)/dt has the system function H(s) = s, while the digi-
tal system that produces the output [y(n) — y(n — 1)]/T has the system function
H(z) = (1 —z7!)/T. Consequently, as shown in Fig. 8.29, the frequency-domain



dvir)

ia)

| P - e
He) FL__ ) = n—1)

] T T Figure 829 Substitution of the
= — backward difference for the derivative
(b) implies the mapping s = (1 - z7')/T.

equivailent for the relationship in (8.3.5) is

BEs

¥ =
T
The second derivative d”y(r)/d+* is replaced by the second difference, which
is derived as follows:

(8.3.6)

d*y(1) _ d [dy®
de2 | _,r  dt| dr |_.;
_ [ynT) = ynT = T)/T = [y(nT =T) = y(nT - 2T}/ T
a T
win) =2vin =1} 4 vin = 2)
= 73 (83.7)
In the frequency domain, (8.3.7) is equivalent to
- 2
2 _ 1-2z ]+Z"'2 _ 1-—2-]
§t= 2 = = (8.3.8)

It easily follows from the discussion that the substitution for the kth derivative
of y(r) results in the equivalent frequency-domain relationship

1-z1\*
st = ( = ) (8.3.9)

Consequently, the system function for the digital IIR filter obtained as a result of
the approximation of the derivatives by finite differences is

H(z} = H.ﬂ {sjlsuﬂ—:_ljfr (3-3.1{]}
where H,(s) is the system function of the analog filter characterized by the differ-
ential equation given in (8.3.3).

Let us investigate the implications of the mapping from the s-plane to the
z-plane as given by (8.3.6) or, equivalently,

1
l1—sT
If we substitute s = jQ in (8.2.11), we find that
1
= 1-jar

 —
i ——

(8.3.11)

z



. Qr
= 170 T
As © varies from —oc to oo, the corresponding locus of points in the z-plane is a
circle of radius % and with center at 7 = %, as illustrated in Fig. 8.30.

It is easily demonstrated that the mapping in (8.3.11) takes points in the
LHP of the s-plane into corresponding points inside this circle in the z-plane and
points in the RHP of the s-plane are mapped into points outside this circle. Con-
sequently, this mapping has the desirable property that a stable analog filter is
transformed into a stable digital filter. However, the possible location of the poles
of the digital filter are confined to relatively small frequencies and, as a conse-
quence, the mapping is restricted to the design of lowpass filters and bandpass
filters having relatively small resonant frequencies. It is not possible, for exam-
ple, to transform a highpass analog filter into a corresponding highpass digital
filter.

In an attempt to overcome the limitations in the mapping given above, more
complex substitutions for the derivatives have been proposed. In particular, an
Lth-order difference of the form

dy(f}

(8.3.12)

(8.3.13)

Z ¥y(nT + kT) — v(nT — kT
T

r=nT k::I
has been proposed, where {&:} are a set of parameters that can be selected to
optimize the approximation. The resulting mapping between the s-plane and the
z-plane is now

=:"1:fj (2 — 2 83.14)
\

Figure 830 The mapping 5 = (1 — z~')/T takes LHP in the s-plane into points
inside the circle of radius } and center z = § in the z-plane.



When z = ¢/*, we have

2 i
5 -'_*_;Fgagmmk (8.3.13)

which is purely imaginary. Thus

2 L
Q= — » asinwk 8.3.16
7 E ' (8.3.16)
is the resulting mapping between the two frequency variables. By proper choice
of the coefficients {ay] it is possible to map the jQ-axis into the unit circle. Fur-
thermore, points in the LHP in 5 can be mapped into points inside the unit circle
in z.

Despite achieving the two desirable characteristics with the mapping of
(8.3.16), the problem of selecting the set of coefficients (@) remains. In general,
this is a difficult problem. Since simpler techniques exist for converting analog
filters into IIR digital filters, we shall not emphasize the use of the Lth-order
difference as a substitute for the derivative.

8.3.2 iR Filter Design by Impulse Invariance

In the impulse invariance method, our objective is to design an IIR filter having a
unit sample response k(n) that is the sampled version of the impulse response of
the analog filter. That 1s,

hin) = hi(nT) n=1{012... (8.3.17)

where T is the sampling interval.

To examine the implications of (8.3.17), we refer back to Section 4.2.9. Recall
that when a continuous time signal x,(r) with spectrum X,(F) is sampled at a
rate F; = 1/T samples per second, the spectrum of the sampled signal is the
periodic repetition of the scaled spectrum F,X,(F) with period F,. Specifically,
the relationship is

X(f)=F Y X[(f—KF] (8.3.18)
k=—o0
where f = F/F, is the normalized frequency. Aliasing occurs if the sampling rate
F, is less than twice the highest frequency contained in X.(F).
Expressed in the context of sampling the impulse response of an analog
filter with frequency response H,(F), the digital filter with unit sample response
h(n) = h,(nT) has the frequency response

H(f)y=F, Y Hl(f=bF] (8.3.19)
k=—00
or, equivalently,
H@=F, ) Hl(w-2rk)F] (8.3.20)

k=-00



ar

H(QT) = % > H, (n - %5) (8.3.21)

k=—nC

Figure 8.31 depicts the frequency response of a lowpass analog filter and the
frequency response of the corresponding digital filter.

It is clear that the digital filter with frequency response H(w) has the fre-
quency response characteristics of the corresponding analog filter if the sampling
interval T is selected sufficiently small to completely avoid or at least minimize
the effects of aliasing. It is also clear that the impulse invariance method is in-
appropriate for designing highpass filters due the to spectrum aliasing that results
from the sampling process.

To investigate the mapping of points between the z-plane and the s-plane
implied by the sampling process, we rely on a generalization of (8.3.21) which
relates the z-transform of k(n) to the Laplace transform of h.(r). This relation-
ship is

1 & 2k
H@lmer = = 3 Ha (s - j—) (8322

ke—po



where
(==
H(z) = ) h(m)z™
n={)

£
H(2)|imer = ) h(n)e™*™" (8.3.23)
Rl

Note that when 5 = j2, (8.3.22) reduces to (8.3.21), where the factor of j in H, (52}
is suppressed in our notation.
Let us consider the mapping of points from the s-plane to the z-plane implied
by the relation
r=¢ (8.3.24)

If we substitute 5 = o + /2 and express the complex variable z in polar form as
z = re/®, (8.3.24) becomes

rel® = 9T /49T
Clearly, we must have
r=e¢7
(8.3.25)
w = T

Conseguently, ¢ < 0 implies that 0 < r < 1 and o > 0 implies that r > 1. When
o = (), we have r = 1. Therefore, the LHP in 5 is mapped inside the unit circle in
z and the RHP in 5 is mapped outside the unit circle in z.

Also, the jQ-axis is mapped into the unit circle in z as indicated above. How-
ever, the mapping of the jQ-axis into the unit circle is not one-to-one. Since w
is unigue over the range (—x, 7}, the mapping @ = 27 implies that the interval
—n/T < 2 < n/T maps into the corresponding values of -7 < w < m. Fur-
thermore, the frequency interval /T < Q < 37 /T also maps into the interval
—m < w = 7w and, in general, so does the interval (2k — 1) /T < @ < (Zk+ 1}m /T,
when k is an integer. Thus the mapping from the analog frequency 2 to the fre-
quency variable « in the digital domain is many-to-one, which simply reflects the
effects of aliasing due to sampling. Figure 832 illustrates the mapping from the
s-plane to the z-plane for the relation in (8.3.24).

To explore further the effect of the impulse invariance design method on
the characteristics of the resulting filter, let us express the system function of the
analog filter in partial-fraction form. On the assumption that the poles of the
analog filter are distinct, we can write

N

Ci
H,(s) = (8.3.26)

where {p;) are the poles of the analog filter and {c;} are the coefficients in the
partial-fraction expansion. Consequently,

N
ho() = Z e >0 (8.327)
k=1



the s-plane into points in the unit crele
in the z-plane.

/ Figure 832 The mapping of 1 = &7
/ I maps strips of width 2x/T (for g < 0} in
.. ,ﬁ+ _______

If we sample h,(r) periodically at r = nT, we have
hin) = h,(nT)

= Z Cg—fhr" (8-32'8}

Now, with the substitution of (8.3.28), the system function of the resulting digital
IIR filter becomes

==
H@E) =) h(mz™
e

E ()

il Y kxc]

= ict il{g“rz_l}" (8.3.29)

k=1  na=l
The inner sum in {8.3.29) converges because p;, < 0 and yields

— P Tz—l

DD s e —" — (8.3.30)
A=) 1
Therefore, the system function of the digital filter is

N
Ck

k=1
We observe that the digital filter has poles at
n=eT k=12 ...,N (8.3.32)



8.3.3 lIR Filter Design by the Bilinear Transformation

The IIR filter design techniques described in the preceding two sections have a
severe limitation in that they are appropriate only for lowpass filters and a limited

class of bandpass filters.
In this section we describe a mapping from the s-plane to the z-plane, called
the bilinear transformation, that overcomes the limitation of the other two design

methods described previously. The bilinear transformation is a conformal mapping
that transforms the jQ-axis into the unmit circle in the z-plane only once, thus
avoiding aliasing of frequency components. Furthermore, all points in the LHP of
s are mapped inside the unit circle in the z-plane and all points in the RHP of s
are mapped into corresponding points outside the unit circle in the z-plane.

The bilinear transformation can be linked to the trapezoidal formula for
numerical integration. For example, let us consider an analog linear filter with

system function

H(s) = (8.3.33)
s+a
This system is also characterized by the differential equation
dy(t
-%:1 + av{t) = bx(t) {8.3.34)

Instead of substituting a finite difference for the derivative, suppose that we in-
tegrate the derivative and approximate the integral by the trapezoidal formula.

Thus
I
yi1) = f yir)dt + y(ry) (8.3.35)
L]

where y'(r) denotes the derivative of v(r). The approximation of the integral in
(8.3.35) by the trapezoidal formula at r = rT and 1ty = nT — T yields

T
y(nT) = -f[y'(nT} + ¥ T =T+ yinT —T) (8.3.36)
Now the differential equation in {8.3.34) evaluated at + = nT yields
¥(nT) = —aynT) + bx(nT) (8.3.37)

We use (8.3.37) to substitute for the derivative in (8.3.36) and thus obtain a dif-
ference equation for the equivalent discrete-time system. With y(n) = y(nT) and
x(n) = x(nT), we obtain the result

T T T
(1 + %) v(n) — (1 — ET) yin—1)= %—[x(n;l +x(n —1)] (8.3.38)
The z-transform of this difference equation is
T T bT
(1 + ﬂ?) Y(z) — (1 - fz—) Y@ = - +z7 X ()

Consequently, the system function of the equivalent digital filter is
Y(z) _ (bT/2)A +z7)
X(z) 1+aT/2~(1-al/2)z"}

Hiz) =

or, equivalently,
b

2 f1—z"1
T\l1+z"1 +a

(8.3.39

H(z) =



Clearly, the mapping from the s-plane to the z-plane is

- =1
5= ; (%) (8.3.40)

This is called the bilinear transformation.

Although our derivation of the bilinear transformation was performed for a
first-order differential equation, it holds, in general, for an Nth-order differential
equation.

To investigate the characteristics of the bilinear transformation, let

z = re/®
5 =0+ jQ
Then (8.3.40) can be expressed as
2z-1
F=—=_—
Tz+1
_ 2rev-1
T Trew4]

2( | L 2r sinw )
T T\1+r2+2rcosw 1472 +2rcosw

Consequently,
2 I |
= — 3.41
S T1¥ T 2rcosw (8341)
2 2r sin w (83.42)

T T1+4r+42rcosw

First, we note that if r < 1, then ¢ < 0, and if r > 1, then ¢ > 0. Conse-

quently, the LHP in s maps into the inside of the unit circle in the z-plane and the
EHP in s maps into the outside of the unit circle. When r =1, then o = () and

2 sinw

Q= - —
T1+cosw
2 ]

= —tan — B.3.43
7 an > ( )
or, equivalently,
w=2tan™" 1'12_5" (8.3.44)

The relationship in (8.3.44) between the frequency variables in the two domains
is illustrated in Fig. 8.36. We observe that the entire range in £ is mapped only
once into the range —w < w < m. However, the mapping is highly nonlinear. We
observe a frequency compression or frequency warping, as it is usually called, due
to the nonlinearity of the arctangent function.

It is also interesting to note that the bilinear transformation maps the point
s = oo into the point 7 = —1. Consequently, the single-pole lowpass filter in
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Chebyshev filters. There are two types of Chebyshev filters. Type I
Chebyshev filters are all-pole filters that exhibit equiripple behavior in the pass-
band and a monotonic characteristic in the stopband. On the other hand, the
family of type II Chebyshev filters contains both poles and zeros and exhibits a

monotonic behavior in the passband and an equiripple behavior in the stopband.
The zeros of this class of filters lie on the imaginary axis in the s-plane.

The magnitude squared of the frequency response characteristic of a type I
Chebyshev filter is given as
1

8.3.51)
14+ e2THQ/Q,) [

IH(Q)) =

where € is a parameter of the filter related to the ripple in the passband and Ty (x)
is the Nth-order Chebyshev polynomial defined as

_ | cos(N cos™1 x), Ixl<1 5
T”'[ﬂ‘[mshmmsh‘ix), x| > 1 ®3.52)

The Chebyshev polynomials can be generated by the recursive equation
Typr(x) = 2xTy(x) = Tw-r(x) N=12.... (8.3.33)

where Ty(x) =1 and T7(x) = x. From (8.3.53) we obtain T3(x) = 2x2 -1, Talx) =
4x* — 3x, and so on.
Some of the properties of these polynomials are as follows:

L. [Ty(x) =1 for all x| < 1.
2. Tu(ly=11{orall N.
3. All the roots of the polynomial Tw(x) occur in the interval -1 < x = 1.



The filter parameter € is related to the rtpple in the passband, as illustrated
in Fig. 8.39, for N odd and N even. For N odd, Ty (0) = 0 and hence |H(0)]? = 1.
On the other hand, for N even, Ty(0) = 1 and hence |H(0))F = 1/(1 + €%). At the
band edge frequency Q = £2,. we have Ty(1) = 1, so that

L 15
Jite

. 1

£f= —— — 1
(1—38)?

where 4, is the value of the passband ripple.
The poles of a type [ Chebyshev filter lie on an ellipse in the s-plane with
major axis

or, equivalently,

(8.3.54)

Fp =Sl 28 (8.3.55)
and minor axis
g2 -1
r =8, u___zﬁ (8.3.56)
where # is related to ¢ according to the equation
/N
P [____“‘1 et 1] (8.3.57)
€

The pole locations are most easily determined for a filter of order N by first locating
the poles for an equivalent Nth-order Butterworth filter that lie on circles of radius
ry or radius ry, as illustrated in Fig. 8.40. If we denote the angular positions of the
poles of the Butterworth filter as

x  (2k+ 1w
,i,-—-'i"i'T k-—U‘LE,....N'—'l {8358)
then the positions of the poles for the Chebyshev filter lie on the ellipse at the
coordinates (x,, ve). k=0,1,..., N —1, where

X; = r; COS gy, k=01,...,N-=1
. (B.3.59)
Vi o= rp SN ¢y, k=0,1,..., N-1

A type II Chebyshev filter contains zeros as well as poles. The magnitude
squared of its frequency response is given as

1
[H()]? = - (8.3.60)
14 [TEQ/Q)/ T 5 (52 D)
where Ty (x) is, again, the Nth-order Chebyshev polynomial and £, is the stopband
frequency as illustrated in Fig. 8.41. The zeros are located on the imaginary axis
at the poinis

k=01....,N -1 (8.3.61)

Sk = J—
'Ismem



The poles are located at the points (v, wi), where
ns Xk

W = — k=01,.... N=1 (8.3.62)
R
ns}'k
W = e k=01...,N=-1 (8.3.63)
.‘I.le'i‘_Tf

where {x;} and {y,} are defined in (8.3.59} with 8 now related to the ripple in the
stopband through the eguation

/N
14,/1— 3§

f=|—Y = (8.3.64)
82

Iugl:(‘/ll - E% + Jl u&%(l + EZ}) ,r‘eag}
I'Dg [{ﬁsfﬂp] + y (nxflﬂp:'z - 1]

_ cosh™'(§/¢)
cosh™! (£, /S2,)
where, by definition, & = 1/4/1 4 5.

Frequency Transformations in the Analog Domain

Band edge

Type of frequencies of
transformation Transfermation new filter
EP
Lowpass § — n—:,.; ﬂ‘:,
Q,
Highpass gt —F o,
¥
5% 4 0,
Band: S F s b Q,
Apass ’ P S0 — ) &
Bandstop s — g LS~ S) Q. 0,

s




Frequency Transformations in the Digital Domain

Type of
transformation

Transformation

Parameters

Lowpass

Highpass

Bandpass

Bandstop

-1 4 —d
T —
1—az-?
-1 El_l +ua
- -
14 gz-!

-1 z=2 -ﬂIZ-] +az
l— -

gzt =@zl +1

-1 e

—
agzl =ayz7l +1

iy

L3

=+

hwnH I I 0o

[}

= band edge frequency
of new filter
T sinfiwp + wp) 2]

= band edge frequency
new filter

_ cos{(wp + w,, 2]
cos|(wp — wp}/2)

lower band edge frequency
upper band edge frequency
—2aKJ(K +1)
(K =1)/(K <+ 1)
cos| (wy + ay),2]
cos|(w, — ar)/2]

wy —wf Wy
7 Wy
lower band edge frequency
upper band edge frequency
=2a/(K +1)
(1-K)/(1+K)
cos|(w, + ar)/2]
cos|(w,e — ar)/2]
Wy W &y

2 2

cot

tan
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