UNIT 5
MULTIRATE DIGITAL SIGNAL PROCESSING

INTRODUCTION

The process of sampling rate conversion in the digital domain can be viewed as
a linear filtering operation, as illustrated in Fig. 10.1(a). The input signal x(n)
is characterized by the sampling rate F, = 1/T, and the output signal v(m) is
characterized by the sampling rate F, = 1/T,, where T, and T, are the corre-
sponding sampling intervals. In the main part of our treatment, the ratio F, /F, is
constrained to be rational,

£, f

F, 0
where D and [ are relatively prime integers. We shall show that the linear filter
is characterized by a time-variant impulse response. denoted as hi(n.m). Hence
the input x{(n) and the output v(m} are related by the convolution summation for
lime-variant systems.

The sampling rate conversion process can also be understood from the point
of view of digital resampling of the same analog signal. Let x(7) be the ana-
log signal that is sampled at the first rate F, to generate x{(n). The goal of
rate conversion is to oblain another sequence v(m) directly from x(n). which
is equal to the sampled values of x{r) at a second rate F,. As is depicted in
Fig. 10.1(b), v(m) is a time-shifted version of x(n). Such a time shift can be
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DECIMATION BY A FACTOR D

Let us assume that the signal x(n) with spectrum X(w) is to be downsampled
by an integer factor D. The spectrum X(w) is assumed to be nonzero in the
frequency interval 0 < |w| < 7 or. equivalently, [F| < F,/2. We know that if we
reduce the sampling rate simply by selecting every Dth value of x(n), the resulting
signal will be an aliased version of x(n), with a folding frequency of F,/2D. To
avoid aliasing, we must first reduce the bandwidth of x(r) to Fqa = F: /2D or,
equivalently, t0 wmay = 7/D. Then we may downsample by D and thus avoid
aliasing.

The decimation process is illustrated in Fig. 10.2. The input sequence x(n) is
passed through a lowpass filter, characterized by the impulse response h{n) and a
frequency response Hp(w), which ideally satisfies the condition

1, lw| =x/D

0,  otherwise (10.2.1)

Hplw) = I
Thus the filter eliminates the spectrum of X (w) in the range n/D < w < x. Of
course, the implication is that only the frequency components of x(n) in the range
|w] < /D are of interest in further processing of the signal.
The output of the filter is a sequence v(n) given as
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Figure 102 Decimation by a factor D.



which is then downsampled by the factor D to produce y(m). Thus
yim) = v(mD)

a3 (10.2.3)
= Zh(k}x{mﬂ —k)
k=0

Although the filtering operation on x(n) is linear and time invariant, the
downsampling operation in combination with the filtering results in a time-variant
system. This is easily verified. Given the fact that x(n) produces v(m), we note
that x(n — ng) does not imply y(n —ng) unless ng is a multiple of D. Consequently,
the overall linear operation (linear filtenng followed by downsampling) on x(n) is
not time invariant.

The frequency-domain characteristics of the output sequence y(m) can be
obtained by relating the spectrum of v(m)to the spectrum of the input sequence
x(n). First, it is convenient to define a sequence U(n) as

vin), n=0+D £2D, . .

]
0, otherwise (10.2.4)

vin) = {
Clearly, ©(n) can be viewed as a sequence obtained by multiplying v(n} with a
periodic train of impulses p(n), with period D, as illustrated in Fig. 10.3. The
discrete Fourier series representation of p(n) is

1 = i2mkn
pin) = = Eeﬂ kn/D (10.2.5)
Hence
v{n) = vin)pin) (10.2.6)
and
yim)=v(mD)})=vimD)pimD) = vimD) (10.2.7)

Now the z-transform of the output sequence y{m) is
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where the last step follows from the fact that #(m} = 0, except at multiples of D.
By making use of the relations in (10.2.5) and (10.2.6) in (10.2.8), we abtain
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where the last step follows from the fact that V(z) = Hp(z)X ().
By evaluating ¥(z) in the unit circle, we obtain the spectrum of the output
signal ¥(m). Since the rate of y(m) is F, = 1/T,, the frequency variable, which we
denote as w,, is in radians and is relative to the sampling rate F,,

2nF

wy = =21 FT, (10.2.10)
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Since the sampling rates are related by the expression

Fy
= — 2.11
Fy= 2 (10.2.11)
it follows that the frequency variables @, and
Wy = 2—]?;-{ =2 FT, (10.2.12)
are related by
wy = Day (10.2.13)

Thus, as expected, the frequency range 0 < |w,| < m/D is stretched into the
corresponding frequency range 0 < |w,] < m by the downsampling process.

We conclude that the spectrum ¥ (w,). which is obtained by evaluating (10.2.9)
on the unit circle, can be expressed as

18 w, — 2wk w, — 21k
Yw) =+ ng( = )x( 5 ) (10.2.14)

With a properly designed filter Hp(w). the aliasing is eliminated and. consequently.
all but the first term in {10.2,.14) vanish. Hence

Y(w,) = %Hﬂ (%)x (%)
1 .
= 5%(3)

for @ = jw,| = m. The spectra for the sequences x(n). v(n). and v(m) are illustrated
in Fig. 10.4.
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INTERPOLATION BY A FACTOR |/

An increase in the sampling rate by an integer factor of / can be accomplished
by interpolating / — 1 new samples between successive values of the signal. The
interpolation process can be accomplished in a variety of ways. We shall describe
a process that preserves the spectral shape of the signal sequence x{n).

Let vim) denote a sequence with a rate F, = /F,, which is obtained from
x(n) by adding [ — 1 zeros between successive values of r(n). Thus

xim/l).  m=0,+I +21. ...

0, otherwise (10.3.1)

vim) =[

and its sampling rate is identical to the rate of v(m). This sequence has a :-
transform

i
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The corresponding spectrum of v(m) is obtained by evaluating (10.3.2) on the unit

circle. Thus
Viw,) = X(awyl) (10.3.3)

where w, denotes the frequency variabie relative to the new sampling rate F, (i.e.,
w, = 2nF/F.). Now the relationship between sampling rates is F, = [F, and
hence, the frequency variables w, and w, are related according to the formula

wy === (10.3.4)

The spectra X(w.) and V(w,) are illustrated in Fig. 10.5. We observe that the
sampling rate increase, obtained by the addition of J — 1 zero samples between
successive values of x(n), results in a signal whose spectrum V(w,) is an I-fold
periodic repetition of the input signal spectrum X (w,).

Since only the frequency components of x(n) in the range 0 < w, < n//
are unique, the images of X(w) above w, = n/I/ should be rejected by passing
the sequence v(m) through a lowpass filter with frequency response H(w,) that

ideally has the characteristic

C. 0 < fwy| =/ (10.3.5)

). otherwise

H,rl.'tt.i_l" - {

where C is a scale factor required to properly normalize the output sequence vim).
Consequently, the output spectrum is

CXiw, D). 0=<lw,|=m/i (10.3.6)

FViwy) = {'U. otherwise



The scale factor C is selected so that the output vim) = x(m/I) for m = 0,
=1 421, For mathematical convenience, we select the point m = (. Thus

v = if Yi{w,dw,
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Since w, = w, /I, (10.3.7) can be expressed as

.T{U} = %EI; X{w M,
- (10.3.8)

C
= u
l,x{ )
Therefore, C = [ is the desired normalization factor.

Finally, we indicate that the output sequence y(m) can be expressed as a
convolution of the sequence v(n) with the unit sample response h(n) of the lowpass

filter. Thus
=
yim)= " him - kyv(k) (10.3.9)
k=—0g
Since v(k) = 0 except at multiples of {, where v(k/) = x(k), (10.3.9) becomes
o
yimy= 3" him~ki)x(k) (10.3.10)
b=—og

SAMPLING RATE CONVERSION BY A RATIONAL FACTOR 1/D

Having discussed the special cases of decimation (downsampling by a factor D)
and interpolation (upsampling by a factor /), we now consider the general case
of sampling rate conversion by a rational factor I/D. Basically, we can achieve
this sampling rate conversion by first performing interpolation by the factor 7 and
then decimating the output of the interpolator by the factor D. In other words, a
sampling rate conversion by the rational factor / /D is accomplished by cascading
an interpolator with a decimator. as illustrated in Fig. 10.6.

We emphasize that the importance of performing the interpolation first and
the decimation second, is to preserve the desired spectral characteristics of x(n).
Furthermore, with the cascade configuration illustrated in Fig. 10.6, the two filters
with impulse response {h,(/)} and [h;(])} are operated at the same rate, namely [ F,
and hence can be combined into a single lowpass filter with impulse response h(l)
as illustrated in Fig. 10.7. The frequency response H(w,) of the combined filter
must incorporate the filtering operations for both interpolation and decimation,
and hence it should ideally possess the frequency response characteristic
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In the time domain, the output of the upsampler is the sequence

_Jxuyn. 1 =00%1 221,
Vo= { 0. otherwise (10.4.2)

and the output of the linear time-invariant filter is

w(l) = Y h(l = Kk

= (10.4.3)
b =
= Z hil = k1x(k)
b==nC

Finally. the output of the sampling rate converter is the sequence {v(m}}, which is
obtained by downsampling the sequence {w(/}} by a factor of D, Thus

vim) = w(mD)

x (10.4.4)
- E himD — k1x (k)
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It is illuminating to express (10.4.4) in a different form by making a change

in variable. Let D
k= {"‘TJ —n (10.4.5)

where the notation |r] denotes the largest integer contained in ». With this change
in variable, (10.4.4) becomes

yim) = ni;xh (mD - H—DJ I +n!)x Q":—DJ - n) {10.4.6)

We note that D
mD — J_MTJ I=mD  modulo I

= (mD),
Consequently, (10.4.6) can be expressed as
= D
vim) = n;ﬂh(nf + (mD))x (‘_E‘J’_J — n) (10.4.7)

It is apparent from this form that the output y(m) is obtained by passing the
input sequence x(n) through a time-variant filter with impulse response

gln.m) = hinl + (mD);) —oo<mn <o (10.4.8)

where h(k) is the impulse response of the time-invariant lowpass filter operating
at the sampling rate I F,. We further observe, that for any integer k,

ginm+kl) = hinl + {mD + kDI);)
= hinl + (mD);) (10.4.9)
= gln,m)

Hence g(n, m) 1s periodic in the variable m with penod /.

The frequency-domain relationships can be obtained by combining the results
of the interpolation and decimation processes. Thus the spectrum at the output of
the linear filter with impuise response k() is

Viw,) = Hlw ) X{w, 1)

_ [1X@),  0<iwl < min(@/D, /1) (10.4.10)
)0, otherwise

The spectrum of the output sequence y(m), obtained by decimating the sequence
v(n) by a factor of D, is

Yiw,) =

D —
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where w, = Dw,. Since the linear filter prevents aliasing as imphed by (10.4.10),
the spectrum of the output sequence given by (10.4.11) reduces to

! w, ) D
Yw)={ D" (7). 0= iw<min (”‘ T) (10.4.12)
0. otherwise

SAMPLING-RATE CONVERSION BY AN ARBITRARY FACTOR

o
In'the previous sections of this chapter, we have shown how to perform sampling
rate conversion exactly by a rational number //D. In some applications, it is either
inefficient or, sometimes impossible to use such an exact rate conversion scheme.
We first consider the following two cases.

Case 1. We need to perform rate conversion by the rational number //D,
where [ is a large integer (e.g., //D = 1023/511). Although we can achieve
exact rate conversion by this number, we would need a polyphase filter with 1023
subfilters. Such an exact implementation is obviously inefficient in memory usage
because we need to store a large number of filter coefficients.

Case 2. Insome applications, the exact conversion rate is not known when
we design the rate converter, or the rate is continuously changing during the con-
version process. For example, we may encounter the situation where the input and
output samples are controlled by two independent clocks. Even though it is still
possible to define a nominal conversion rate that is a rational number, the actual

rate would be slightly different, depending on the frequency difference between
the two clocks. Obviously, it is not possible to design an exact rate converter in
this case.

To implement sampling rate conversion for applications similar to these
cases, we resort to nonexact rate conversion schemes. Unavoidably, a nonexact
scheme will introduce some distortion in the converted output signal. (It should
be noted that distortion exists even in an exact rational rate converter because
the polyphase filter is never ideal.) Such a converter will be adequate, as long
as the total distortion does not exceed the specification required in the apph-
cation.

Depending on the application requirements and implementation constraints,
we can use first-order, second-order, or higher-order approximations. We shall de-
scribe first-order and second-order approximation methods and provide an analysis
of the resulting timing errors.



10.8.1 First-Order Approximation

Let us denote the arbitrary conversion rate by r and suppose that the input to the
rate converier is the sequence [x(n}}. We need to generate a sequence of output
samples separated in time by T, /r. where T, is the sample interval for {x(n)}. By
constructing a polyphase filter with a large number of subfilters as just described,
we can approximate such a sequence with a nonuniformly spaced sequence. With-
out loss of generality. we can express |/r as

1k

PR
where k and [ are positive integers and £ is a number in the range

1
{]-:ﬁa::}—

Consequently. 1/r is bounded from above and below as
E 1 k41

_ A E—

I r !
I corresponds to the mterpolation factor, which will be determined to satisfy the
specification on the amount of tolerable distortion introduced by rate conversion.
I 1s also equal to the number of polyphase filters.

For example, suppose that » = 2.2 and that we have determined, as we
will demonstrate, that / = 6 polyphase filters are required to meet the distortion
specification. Then

k2 1 3 k+1

t=l el =212

I 6 r 6 !
s0 that k = 2. The time spacing between samples of the interpolated sequence is
T./I. However, the desired conversion rate r = 2.2 for I = 6 corresponds to a
decimation factor of 2.727, which falls between k = 2 and k = 3. In the first-order

approximation, we achieve the desired decimation rate by selecting the output

sample from the polyphase filter closest in time to the desired sampling time. This
is illustrated in Fig. 10.27 for / = 6.

In general, to perform rate conversion by a factor r, we employ a polyphase
filter to perform interpolation and therefore 1o increase the frequency of the orig-
inal sequence of a factor of I. The time spacing between the samples of the
interpolated sequence is equal to T, /1. If the ideal sampling time of the mth sam-
ple, y(m), of the desired output sequence is between the sampling times of two
samples of the interpolated sequence, we select the sample closer to y(m) as its
approximation.



- Let us assume that the mth selected sample is generated by the (i, )th subfilter
using the input samples x(n), x(n — 1),....x(n — K + 1) in the delay line. The
normalized sampling time error (i.e. the time difference between the selected
sampling time and the desired sampling time normalized by T,) is denoted by ,,.
The sign of 1, 15 positive if the desired sampling time leads the selected sampling
time, and negative otherwise. It is easy to show that |1, | < 0.5/I. The normalized
time advance from the mth output y(m) to the (m + 1)st output y(m + 1) is equal
to (1/r) + ty.

To compute the next output, we first determine a number closest to i, /] +
1/r + ty + kn /T that is of the form In-1 + im+1/7, where both I,.; and iy are
integers and ip.1 < . Then, the (m 4 1)st output y(m + 1) is computed using the
(im+1)th subfilter after shifting the signal in the delay line by I,.; input samples.
The normalized timing error for the (m + 1)th sample is ty41 = (in/T +1/r +1,) —
{lm+1 + ims1/7). It is saved for the computation of the next output sample.

By increasing the number of subfilters used, we can arbitrarily increase the
conversion accuracy. However, we also require more memory to store the large
number of filter coefficients. Hence it is desirable to use as few subfilters as possible
while keeping the distortion in the converted signal below the specification. The
distortion introduced due to the sampling-time approximation is most conveniently
evaluated in the frequency domain.

Suppose that the input data sequence {x(n}} has a flat spectrum from —aw,
10 w,, where w, < 7, with a magnitude A. Its total power can be computed using
Parseval’s theorem, namely,

.
A w,

P, = if X (w)2dw = (10.8.1)

2r J ..

APPLICATIONS OF MULTIRATE SIGNAL PROCESSING

There are numerous practical applications of multirate signal processing. In this
section we describe a few of these applications.

10.9.1 Design of Phase Shifters

Suppose that we wish to design a network that delays the signal x(n) by a fraction
of a sample. Let us assume that the delay is a rational fraction of a sampling

Mmooy Lowpass Delay by o wia)
F, ' IF, fiker IF, k samples | IE, s 'F;

Figure 10.29 Method for generating a delay tn a discrete-time signal.

interval T; [i.e..d = (k/7)T,, where k and / are relatively prime positive integers].
In the frequency domain, the delay corresponds to a linear phase shift of the form
kw

B(w) = ~ (10.9.1)



The design of an all-pass linear-phase filter is relatively difficult. However,
we can use the methods of sample-rate conversion to achieve a delay of (k/IT,,
exactly, without introducing any significant distortion in the signal. To be specific,
let us consider the system shown in Fig. 10.29. The sampling rate is increased by a
factor I using a standard interpolator. The lowpass filter eliminates the images in
the spectrum of the interpolated signal, and its output is delayed by &k samples at
the sampling rate /F,. The delayed signal is decimated by a factor D = J. Thus
we have achieved the desired delay of (k/1)T,.

10.9.2 Interfacing of Digital Systems with Different
Sampling Rates

In practice we frequently encountier the problem of interfacing two digital systems
that are controlied by independently operating clocks. An analog solution to
this problem is to convert the signal from the first system to analog form and
then resample it at the input to the second system using the clock in this system.
However, a simpler approach is one where the interfacing 1s done by a digital
method using the basic sample-rate conversion methods described in this chapter.

To be specific, let us consider interfacing the two systems with independent
clocks as shown in Fig. 10.31. The output of system A at rate F, is fed to an
interpolator which increases the sampling rate by /. The output of the interpolator
is fed at the rate [ F, 1o a digital sample-and-hold which serves as the interface to
system B at the high sampling rate /F,. Signals from the digital sample-and-hold
are read out into system B at the clock rate DF, of system B. Thus the output
rate from the sample-and-hoid is not synchronized with the input rate.

In the special case where D = | and the two clock rates are comparable
but not identical, some samples at the output of the sample-and-hold may be
repeated or dropped at times. The amount of signal distortion resulting from this
method can be kept small if the interpolator/decimator factor is large. By using
linear interpolation in place of the digital sample-and-hold, as we described in
Section 10.8, we can further reduce the distortion and thus reduce the size of the
interpolator factor.

System x(n) _ 1 I£, Digital sample 1F, o x(m) | System
A Interpolation - and hold Decimator B
F DF, r.
Clock™ iF, Clock




10.9.3 Impiementation of Narrowband Lowpass Filters

In Section 10.6 we demonstrated that a multistage implementation of sampling-
rate conversion often provides for a more efficient realization, especially when the
filter specifications are very tight (e.g., a narrow passband and a narrow transition
band). Under similar conditions, a lowpass, linear-phase FIR filter may be more
efficiently implemented in a multistage decimator-interpolator configuration. To
be more specific, we can employ a multistage implementation of a decimator of
size D, followed by a multistage implementation of an interpolator of size 7, where
I=D.

10.9.4 Implementation of Digital Filter Banks

Filter banks are generally categorized as two types, analysis filter banks and syn-
thesis filter banks. An analysis filter bank consists of a set of filters, with sysiem
functions {H.(k)}, arranged in a parallel bank as illustrated in Fig. 10.32a. The
frequency response characteristics of this filter bank splits the signal into a corre-
sponding number of subbands. On the other hand, a synthesis filter bank consists
of a set of filters with system functions [{G.(z)}, arranged as shown in Fig. 10.32b,
with corresponding inputs {v:;(n)}. The outputs of the filters are summed to form
the synthesized signal {x(n)].

Filter banks are often used for performing spectrum analysis and signal syn-
thesis. When a filter bank is emploved in the computation of the discrete Fourier
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transform (DFT) of a sequence {x(n)], the filter bank is called a DFT filter bank.
An analysis filter bank consisting of N filters {H(z). k=0,1,.... N =1} 15 called a
uniform DFT filter bank if H.(2). k=1.2, ..., N --1, are denived from a prototype
filter Hy(z), where

2wk
Hy(w) = Hy (m———-;—) k=12 ..., N =1 (10.9.2)

Hence the frequency response characteristics of the filters [H.(z), Ak =0, 1.....
N —1} are simply obtained by uniformly shifting the frequency response of the pro-
totype filter by multiples of 27 /N, In the time domain the filters are characterized
by their impulse responses, which can be expressed as

he(n) = ho(n)e!> "IN k=0,1,....N -1 (10.9.3)

where {hg(r)} is the impulse response of the prototype filter.

The uniform DFT analysis filter bank can be realized as shown in Fig. 10.33a,
where the frequency components in the sequence {x{(n}} are translated in frequency
to lowpass by multiplying x (n) with the complex exponentials exp(— j2mnk/N), k =
..., N =1, and the resulting product signals are passed through a lowpass filter
with impulse response {hy{n)]. Since the output of the lowpass filter is relatively
narrow in bandwidth, the signal can be decimated by a factor D < N. The resulting
decimated output signal can be expressed as

Xi{m) = Zhn[mﬂ — n)x(n)e TN k=0.1..... N -1
" m=0.1,...

(10.9.4)

where {X;(m)} are samples of the DFT at frequencies w; = 2wk /N.
The corresponding synthesis filter for each element in the filter bank can
be viewed as shown in Fig. 10.33b, where the input signal sequences (¥.(m), k =

0, 1,...,N =1} are upsampled by a factor of I = D, filtered to remove the
images, and translated in frequency by multiplication by the complex exponentials
lexp(j2ank/N), k=0, 1...., N —1}. The resulting frequency-translated signals
from the N filters are then summed. Thus we obtain the sequence
1 MN=1 ) | [~ 7
vin) = = D eiznk/n z Yi(m)goln — ml)
k=0 | m y
I.'--1 N-1 ik 7]
= -mh|=) ¥ jonmkiN 10.9.5
gmn mi) |~ ; k(m)e (1095)

= Y gotn — mI)y(m)

where the factor 1/N is a normalization factor, {y,(m)} represent samples of the
inverse DFT sequence corresponding to {Yi(m)}, {go(n)} is the impulse response
of the interpolation filter, and I = D.
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10.8.5 Subband Coding of Speech Signals

A variety of techniques have been developed to efficiently represent speech signals
in digital form for either transmission or storage. Since most of the speech energy
is contained in the lower frequencies, we would like to encode the lower-frequency
band with more bits than the high-frequency band. Subband coding is a method,
where the speech signal is subdivided into sev eraI frequency bands and each band
1s digitally encoded separately.

An example of a f requency subdivision is shown in Fig. 10.37a. Let us as-
sume that the speech signal is sampled at a rate F, samples per second. The
first frequency subdivision splits the signal spectrum into two eqgual-width seg-
ments, a lowpass signal (0 = F < F./4) and a highpass signal {F,/4 < F < F,/2).
The second frequency subdivision splits the lowpass signal from the first stage
into two equal bands, a lowpass signal (0 <= F < F,/8) and a highpass signal
(F,/8 = F < F,/4). Finally, the third frequency subdivision splits the lowpass
signal from the second stage into two equal bandwidth signals. Thus the sig-
nal is subdivided into four frequency bands, covering three octaves, as shown in
Fig. 10.37b.

Decimation by a factor of 2 is performed after frequency subdivision. By
allocating a different number of bits per sample to the signal in the four subbands,
we can achieve a reduction in the bit rate of the digitalized speech signal.

Lowpass | [Decimator| [ To
Tilter | b=2 [ En ™ channel
Lowpass | Decimator
J" filer || D=
- Highpass | | Decimator | | o _ To
Lowpass L Decimaior filter D=2 Encoder channel
filier D=2 i

Highpass | [ Decimator To
Speect L_{ -
:?;::I] filter D=2 —] Encoder channel

Highpass Decimator To
fiher D=2 [ Encoder E—f{:

T e
ta
et
s

(b)

Figure 10.37 Block diagram of a subband specch coder.



Filter design is particularly important in achieving good performance in sub-
band coding. Alasing resulting from decimation of the subband signals must be
negligible. It is clear that we cannot use brickwall filter characteristics as shown in
Fig. 10.38a, since such filters are physically unrealizable. A particularly practical
solution 1o the aliasing problem is to use guadrature mirror filters (QMF), which
have the frequency response characteristics shown in Fig. 10.38b. These filters are
described in the following section.

The synthesis method for the subband encoded speech signal is basically the
reverse of the encoding process, The signals in adjacent lowpass and highpass
frequency bands are interpolated, filtered, and combined as shown in Fig. 10.39.
A pair of OMF is used in the signal synthesis for each octave of the signal.

Subband coding is also an effective method to achieve data compression in
image signal processing. By combining subband coding with vector quantization
for each subband signal, Safranek et al. (1988) have obtained coded images with
approximately % bit per pixel, compared with 8 bits per pixel for the uncoded
image.

In general, subband coding of signals is an effective method for achieving
bandwidth compression in a digital representation of the signal, when the signal
energy is concentrated in a particular region of the frequency band. Multirate
signal processing notions provide efficient implementations of the subband en-
coder.

10.9.6 Quadrature Mirror Filters

The basic building block in applications of quadrature mirror filters (QMF) is
the two-channel QMF bank shown in Fig. 10.40, This is a multirate digital filter
structure that employs two decimators in the “signal analysis™ section and two
interpolators in the “signal synthesis™ section. The lowpass and highpass filters in
the analysis section have impulse responses ho(n) and A;(n), respectively. Similarly,
the lowpass and highpass filters contained in the synthesis section have impulse

responses go(n) and g (n), respectively.

The Fourier transforms of the signals at the outputs of the two decimators

) (3)+x (257 ) (25
Jin(5)+x (457 ) m (257)]

are

1
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(10.9.17)
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Figure 10.40 Two-channel OMF bank.
If X,0(w) and X,j{(w) represent the two inputs to the synthesis section, the output

is simply
Xiw) = X, 020G o) + X,12w)G1(w)



10.9.7 Transmultiplexers

Another application of multirate signal processing is in the design and implemen-
tation of digital transmultiplexers which are devices for converting between time-
division-multiplexed (TDM) signals and frequency-division-multiplexed (FDM)
signals.

In a transmultiplexer for TDM-to-FDM conversion, the input signal {x(n}}
is a time-division multiplexed signal consisting of L signals, which are separated
by a commutator switch. Each of these L signals are then modulated on different
carrier frequencies to obtain an FDM signal for transmission. In a transmultiplexer
for FDM-10-TDM conversion, the composite signal is separated by filtering into
the L signal components which are then time-division multiplexed.

In telephony, single-sideband transmission is used with channels spaced at
a nominal 4-kHz bandwidth. Twelve channels are usually stacked in frequency
to form a basic group channel, with a bandwidth of 48 kHz. Larger bandwidth
FDM signals are formed by frequency translation of multiple groups into adjacent
frequency bands. We shall confine our discussion to digital transmultiplexers for
12-channel FDM and TDM signals.
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Figure 14.44 Block diagram of FDM-10-TDM transmultipiexer.
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10.9.8 Oversampling A/D and D/A Conversion

Our treatment of oversampling A/D and D/A converters in Chapter 9 provides
another example of multirate signal processing. Recall that an oversampling A/D
converter is implemented by a cascade of an analog sigma-delta modulator (SDM)
followed by a digital antialiasing decimation filter and a digital highpass filter as
shown in Fig. 10.46. The analog SDM produces a 1-bit per sample output at a very
high sampling rate. This 1-bit per sample output is passed through a digital lowpass
filter, which provides a high-precision (multiple-bit) output that is decimated to
a lower sampling rate. This output is then passed to a digital highpass filter that
serves 10 attenuate the quantization noise at the lower frequencies.

The reverse operations take place in an oversampling D/A converter, as
shown in Fig. 10.47. As illustrated in this figure, the digital signal is passed through
a highpass filter whose output is fed to a digital interpolator {upsampler and anti-
imaging filter). This high-sampling-rate signal is the input to the digital SDM that
provides a high-sampling-rate 1-bit per sample output. The 1-bit per sample output
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Figure 10.47 Dnagram of oversampling D/A converter

is then converted to an analog signal by lowpass filtering and further smoothing

with analog filters.

Figure 10.48 illustrates the block diagram of a commercial (Analog Devices
ADSP-28 msp02) codec (encoder and decoder) for voice-band signals based on
sigma-delta A/D and D/A converters and analog front-end circuits needed as an
interface to the analog voice-band signals. The nominal sampling rate (after dec-
imation)} is 8 kHz and the sampling rate of the SDM is 1 MHz., The codec has a

65-dB SNR and harmonic distortion performance.
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