
UNIT-1

Typical Real-Time Applications

Introduction:

System completes its work and delivers its services on a timely basis. Examples of real -time

systems include digital control, command and control, signal processing, and

telecommunication systems.

Real-time applications:

Digital control, optimal control, command and control, signal processing, tracking, real -time

databases, and multimedia

DIGITAL CONTROL:

They are the simplest and the most deterministic real-time applications. Many real-time

systems are embedded in sensors and actuators and function as digital controllers. Figure 1–1

shows such a system. The term plant in the block diagram refers to a controlled system, for

example, an engine, a brake, an aircraft, a patient. The state of the plant is monitored by

sensors and can be changed by actuators.

The real-time (computing) system estimates from the sensor readings the current state of the

plant and computes a control output based on the difference between the current state and

the desired state (called reference input in the figure). We call this computation the control-law

computation of the controller. The output thus generated activates the actuators, which bring

the plant closer to the desired state.

Sampled Data Systems:

Acommon approach to designing a digital controller is to start with an analog controller that

has the desired behavior. The analog version is then transformed into a digital (i.e., discrete-
time and discrete-state) version. The resultant controller is a sampled data system.
Example : we consider an analog single-input/single-output PID (Proportional, Integral, and
Derivative) controller. This simple kind of controller is commonly used in practice. The analog

sensor reading y(t) gives the measured state of the plant at time t. Let e(t) = r (t) − y(t) denote
the difference between the desired state r (t) and the measured state y(t) at time t .
Selection of Sampling Period:

 The length T of time between any two consecutive instants at which y(t) and r (t) are sampled
is called the sampling period. The behavior of the resultant digital controller critically depends

on this parameter. Ideally we want the sampled data version to behave like the analog version.
This can be done by making the sampling period small. However, a small sampling period
means more frequent control-law computation and higher processor-time demand. We want a

sampling period T that achieves a good compromise.

In Figure 1–2, these positions are represented by 0 and 1, respectively, and the time origin is

the instant when the step in r (t) occurs. The dashed lines in Figure 1–2(a) give the output u(t)
of the analog is said to controller and the observed position y(t) of the arm as a function of

time. The solid lines in the lower and upper graphs give, respectively, the analog control signal
constructed from the digital outputs of the controller and the resultant observed position y(t)

of the arm. At the sampling rate shown here, the analog and digital versions are essentially the
same. The solid lines in Figure 1–2(b) give the behavior of the digital version when the sampling
period is increased by 2.5 times. The oscillatory motion of the arm is more pronounced but
remains small enough to be acceptable. Figure 1–2(c), the arm requires larger and larger
control to stay in the desired position; when this occurs, the system have become unstable.
Multirate Systems. A plant typically has more than one degree of freedom. Its stateis defined
by multiple state variables (e.g., the rotation speed, temperature, etc. of an engine or the
tension and position of a video tape). Therefore, it is monitored by multiple sensors and
ontrolled by multiple actuators
Example:

Timing Characteristics

The workload generated by each multivariate, multirate digital controller consists of a

few periodic control-law computations. Their periods range from a few milliseconds to a few

seconds. A control system may contain numerous digital controllers, each of which deals with

some attribute of the plant.

The control laws of each multirate controller may have harmonic periods. They typically
use the data produced by each other as inputs and are said to be a rate group. On the other

hand, no control theoretical reason to make sampling periods of different rate groups related in
a harmonic there is way.
More Complex Control-Law Computations:

A discrete-time control scheme that has no continuous-time equivalence is deadbeat control:

In principle, the control-law computation of a deadbeat controller is also simple. The output

produced by the controller during the kth sampling period is given by

Kalman Filter. Kalman filtering is a commonly used means to improve the accuracyof

measurements and to estimate model parameters in the presence of noise and uncertainty.

The Kalman filter starts with the initial estimate ˜ x1 = y1 and computes a new estimate each
sampling period. Specifically, for k > 1, the filter computes the estimate ˜ xk as follows:

HIGH-LEVEL CONTROLS:

Controllers in a complex monitor and control system are typically organized hierarchically. One
or more digital controllers at the lowest level directly control the physical plant. Each output of
a higher-level controller is a reference input of one or more lower-level controllers.
Examples of Control Hierarchy:

For example, a patient care system may consist of microprocessor-based controllers that
monitor

and control the patient’s blood pressure, respiration, glucose, and so forth. There may be a
higher-level controller (e.g., an expert system) which interacts with the operator (a nurse or

doctor) and chooses the desired values of these health indicators .

Figure1.4 shows a more complex example: the hierarchy of flight control, avionics, and air

traffic control systems.5 The Air Traffic Control (ATC) system is at the highest level. It regulates
the flow of flights to each destination airport. It does so by assigning to each aircraft an arrival

time at each metering fix6 (or waypoint) en route to the destination: The aircraft is supposed to
arrive at the metering fix at the

assigned arrival time.

Guidance and Control

While a digital controller deals with some dynamical behavior of the physical plant, a
econdlevel controller typically performs guidance and path planning functions to achieve a

higher- level goal. In particular, it tries to find one of the most desirable trajectories among all
trajectories that meet the constraints of the system.

Complexity and Timing Requirements:

In principle, these problems can be solved using dynamic programming and mathematical
programming techniques .Heuristic algorithms used for guidance and control purposes typically
consider one constraint at a time, rather than all the constraints at the same time.

Other Capabilities. complexity of a higher-level control system arises for many other reasons in

addition to its complicated control algorithms. It often interfaces with the operator and other

systems. An example is a voice, telemetry, or multimedia communication system that supports

operator interactions. Other examples are radar and navigation devices. The control system

may use the information provided by these devices and partially control these devices.

Real-Time Command and Control:

The controller at the highest level of a control hierarchy is a command and control system. An

Air Traffic Control (ATC) system is an excellent example.

Figure 1–5 shows a possible architecture. The ATC system monitors the aircraft in its coverage

area and the environment Outputs from the ATC system include the assigned arrival times to

metering fixes for individual aircraft. As stated earlier, these outputs are reference inputs to on-

board flight management systems. Thus, the ATC system indirectly controls the embedded

components in low levels of the control hierarchy. In addition, the ATC system provides voice

and telemetry links to on-board avionics.

SIGNAL PROCESSING:

Most signal processing applications have some kind of real-time requirements.We focus here

on those whose response times must be under a few milliseconds to a few seconds. Examples

are digital filtering, video and voice compressing/decompression, and radar signal processing .

Typically, a real-time signal processing application computes in each sampling period one or

more outputs. Each output x(k) is a weighted sum of n inputs y(i)’s:

In the simplest case, the weights, a(k, i)’s, are known and fixed.8 In essence, this computation

transforms the given representation of an object (e.g., a voice, an image or a radar signal) in

terms of the inputs, y(i)’s, into another representation in terms of the outputs, x(k)’s. Different

sets of weights, a(k, i)’s, give different kinds of transforms. This expression that the time

required to produce an output is O(n).

Radar System:

A signal processing application is typically a part of a larger system. As an example, Figure 1–6

shows a block diagram of a (passive) radar signal processing and tracking system. The system

consists of an Input/Output (I/O) subsystem that samples and digitizes the echo signal from the

radar and places the sampled values in a shared memory.

An array of digital signal processors processes these sampled values. The data thus produced

are analyzed by one or more data processors, which not only interface with the display system,

but also generate commands to control the radar and select parameters to be used by signal

processors in the next cycle of data collection and analysis.

Radar Signal Processing:

To search for objects of interest in its coverage area, the radar scans the area by pointing its

antenna in one direction at a time. During the time the antenna dwells in a direction, it first

sends a short radio frequency pulse. It then collects and examines the echo signal returning to

the antenna.

The echo signal consists solely of background noise if the transmitted pulse does not hit any

object. On the other hand, if there is a reflective object (e.g., an airplane or storm cloud) at a

distance x meters from the antenna, the echo signal reflected by the object returns to the

antenna at approximately 2x/c seconds after the transmitted pulse, where c = 3×108 meters.

The echo signal collected at this time should be stronger than when there is no reflected signal.

If the object is moving, the frequency of the reflected signal is no longer equal to that of the

transmitted pulse.

Tracking: track record on a nonexisting object is called a false return. An application that

examines all the track records in order to sort out false returns from real ones and update the

trajectories of detected objects is called a tracker

Gating. Typically, tracking is carried out in two steps: gating and data association Gating is the
process of putting each measured value into one of two categories depending on whether it an

or cannot be tentatively assigned to one or more established trajectories.

Data Association. The tracking process completes if, after gating, every measured value is
assigned to at most one trajectory and every trajectory is assigned at most one measured value.

Complexity and Timing Requirements. In contrast to signal processing, the amounts of
processor time and memory space required by the tracker are data dependent and can vary

widely.When there are n established trajectories and m measured values, the time complexity
of gating is O(nm logm).

OTHER REAL-TIME APPLICATIONS:

Two most common real-time applications. They are real-time databases and multimedia
applications.

Real-Time Databases

Specifically, a real-time database contains data objects, called image objects that represent
real-world objects. The attributes of an image object are those of the represented real world

object. For example, an air traffic control database contains image objects that represent
aircraft in the coverage area. The attributes of such an image object include the position and

heading of the aircraft. The values of these attributes are updated periodically based on the
measured values of the actual position and heading provided by the radar system.

Absolute Temporal Consistency
A set of data objects is said to be absolutely (temporally) consistent if the maximum age of the
objects in the set is no greater than a certain threshold.
Relative Temporal Consistency. A set of data objects is said to be relatively consistent if the
maximum difference in ages of the objects in the set is no greater than the relative consistency
threshold used by the application

Multimedia Applications:

A multimedia application may process, store, transmit, and display any number of video

streams, audio streams, images, graphics, and text. A video stream is a sequence of data frames

which encodes a video. An audio stream encodes a voice, sound, or music.

MPEG Compression/Decompression. A video compression standard is MPEG-2 [ISO94]. The

standard makes use of three techniques. They are motion compensation for reducing temporal

redundancy, discrete cosine transform for reducing spatial redundancy, and entropy encoding

for reducing the number of bits required to encode all the information

Decompression. During decompression, the decoder first produces a close approximation of

the original matrix (i.e., an 8 × 8 pixel block) by performing an inverse transform on each stored

transform matrix. (The computation of an inverse transform is the essentially the same as the

cosine transform.) It then reconstruct the images in all the frames from the major blocks in I -

frames and difference blocks in P- and B-frames.

Real-Time Characteristics. As we can see from the above description, video compression is a

computational-intensive process. For batch applications such as video on de-mand,

compression is done in batch and off-line, while it must be an on-line process for interactive

applications (e.g., teleconferencing). Decompression should be done just before the time the

video and audio are presented, in other words, on the just-in-time basis. Today, compression

and decompression functions are often handled by an affordable special -purpose processor

(e.g., the mmx), rather than by ge

neral-purpose processor.

Hard versus Soft Real-Time Systems

JOBS AND PROCESSORS:

We call each unit of work that is scheduled and executed by the system a job and a set of lated
jobs which jointly provide some system function a task. computation of a control law is a job.
So is the computation of a FFT (Fast Fourier Transform) of sensor data, or the transmission of a
data packet, or the retrieval of a file, and so on. We call them a control -law computation, a FFT

computation, a packet transmission, and so on, only when we want to be specific about the
kinds of work, that is, the types of jobs.

RELEASE TIMES, DEADLINES, AND TIMING CONSTRAINTS:

The release time of a job is the instant of time at which the job becomes available for
execution. The job can be scheduled and executed at any time at or after its release time
whenever its data and control dependency conditions are met.
The deadline of a job is the instant of time by which its execution is required to be completed.

control- law computation job by the release must complete time of the subsequent job.
 timing constraint of a job can be specified in terms of its release time and relative or absolute
deadlines, as illustrated by the above example. Some complex timing constraints cannot be

specified conveniently in terms of release times and deadlines

HARD AND SOFT TIMING CONSTRAINTS:

They are based on the functional criticality of jobs, usefulness of late results, and deterministic
or probabilistic nature of the constraints.a timing constraint or deadline is hard if the failure to

meet it is considered to be a fatal fault. A hard deadline is imposed on a job because a late

result produced by the job after the deadline may have disastrous consequences. (As
examples,a late command to stop a train may cause a collision, and a bomb dropped too late

may hit a civilian population instead of the intended military target.)
In contrast, the late completion of job that has a soft deadline is undesirable In real-

time systems literature, the distinction between hard and soft timing constraints is sometimes
stated quantitatively in terms of the usefulness of results (and therefore the overall system

performance) as functions of the tardinesses of jobs. The tardiness of a job measures how late
it completes respective to its deadline. Its tardiness is zero if the job completes at or before its

deadline; otherwise, if the job is late, its tardiness is equal to the difference between its
completion time.
 The deadline of a job is softer if the usefulness of its result decreases at a slower

rate. By this means, we can define a spectrum of hard/soft timing constraints. Sometimes, we

see this distinction made on the basis of whether the timing constraint is expressed in

deterministic or probabilistic terms. If a job must never miss its deadline, then the deadline is

hard. On the other hand, if its deadline can be missed occasionally with some acceptably low

probability, then its timing constraint is soft

Hard Timing Constraints and Temporal Quality-of-Service Guarantees

The timing constraint of a job is hard, and the job is a hard real-time job, if the user requires the

validation that the system By validation, we mean a demonstration by a provably correct,

efficient procedure or by exhaustive simulation and testing We call an application (task) with

hard timing constraints a hard real-time application and a system containing mostly hard real-

time applications a hard real-time system. For many traditional hard real-time applications

(e.g., digital controllers)

HARD REAL-TIME SYSTEMS

The requirement that all hard timing constraints must be validated invariably places many

restrictions on the design and implementation of hard real-time applications as well as on the

architectures of hardware and system software used to support them.

In principle, our definition of hard and soft timing constraints allows a hard timing constraint to
be specified in any terms. Examples are

1. deterministic constraints (e.g., the relative deadline of every control-law computation is 50
msec or the response time of at most one out of five consecutive control -law computations

exceeds 50 msec);
2. Probabilistic constraints, that is, constraints defined in terms of tails of some probability
distributions (e.g., the probability of the response time exceeding 50 milliseconds is less than
0.2);
3. Constraints in terms of some usefulness function (e.g., the usefulness of every control law

computation is 0.8 or more).

SOFT REAL-TIME SYSTEMS

A system in which jobs have soft deadlines is a soft real-time system. The developer the timing

requirements of soft real-time systems are often specified in probabilistic terms. Take a

telephone network for example. In response to our dialing a telephone number, a sequence of

jobs executes in turn, each routes the control signal from one switch to another in order to set

up a connection through the network on our behalf. We expect that our call will be put through

in a short time.

A Reference Model of Real-Time Systems

PROCESSORS AND RESOURCES:

We divide all the system resources into two major types: processors and resources. Again,
processors are often called servers and active resources; computers, transmission links, disks,
and database server are examples of processors. They carry out machine instructions, move
data from one place to another, retrieve files, process queries, and so on. Every job must have
one or more processors in order to execute and make progress toward completion. Sometimes,
we will need to distinguish the types of processors. Two processors are of the same type if they
are functionally identical and can be used interchangeably.

By resources, we will specifically mean passive resources. Examples of resources are memory,

sequence numbers, mutexes, and database locks. A job may need some resources in addition to
the processor in order to make progress. One of the attributes of a processor is its speed.
Although we will rarely mention this attribute, we will implicitly assume that the rate of
progress a job makes toward its completion depends on the speed of the processor on which it
executes.

We will use the letter R to denote resources. The resources in the examples mentioned above
are reusable,

TEMPORAL PARAMETERS OF REAL-TIME WORKLOAD:

The workload on processors consists of jobs, each of which is a unit of work to be allocated
processor time and other resources. The number of tasks (or jobs) in the system is one such
parameter. In many embedded systems, the number of tasks is fixed as long as the system

remains in an operation mode.
Each job Ji is characterized by its temporal parameters, functional parameters, resource

parameters, and interconnection parameters. Its temporal parameters tell us its timing
constraints and behavior.
the release time, absolute deadline, and relative deadline of a job Ji ; these are temporal
parameters. We will use ri , di, and Di , respectively, to denote them and call the time interval
(ri , di]1 between the release time and absolute deadline of the job Ji its feasible interval.

Fixed, Jittered, and Sporadic Release Times:

In many systems, we do not know exactly when each job will be released. In other words, we do
not know the actual release time ri of each job Ji ; only that ri is in a range [ri − , ri +]. Ri can be
as early as the earliest release time ri − and as late as the latest release time ri +. Indeed, some
models assume that only the range of ri is known and call this range the jitter in ri, or release-

time jitter Almost every real-time system is required to respond to external events which occur

at random instants of time. When such an event occurs, the system executes a set of jobs in
response. The release times of these jobs are not known until the event triggering them occurs.

These jobs are called sporadic jobs or aperiodic jobs because they are released at random time
Instants.

Execution Time:
Another temporal parameter of a job, Ji , is its execution time, ei . ei is the amount of time
required to complete the execution of Ji when it executes alone and has all the resources it
requires.

PERIODIC TASK MODEL
The periodic task model is a well-known deterministic workload model. With its various

extensions, the model characterizes accurately many traditional hard real-time applications,
such as digital control, real-time monitoring, and constant bit-rate voice/video transmission.
Many scheduling algorithms based on this model have good performance and well -understood
behavior

Periods, Execution Times, and Phases of Periodic Tasks

In the periodic task model, each computation or data transmission that is executed repeatly at

regular or semi regular time intervals in order to provide a function of the system on a
continuing basis is modeled as a period task. Specifically, each periodic task, denoted by Ti , is a
sequence of jobs. The period pi of the periodic task Ti is the minimum length of all time
intervals between release times of consecutive jobs in Ti. Its execution time is the maximum
execution time of all the jobs in it. With a slight abuse of the notation, we use ei to denote the
execution time of the periodic task Ti

Aperiodic and Sporadic Tasks

In the periodic task model, the workload generated in response to these unexpected events is
captured by aperiodic and sporadic tasks. Each aperiodic or sporadic task is a stream of
aperiodic or sporadic jobs, respectively.
Tasks containing jobs that are released at random time instants and have hard deadlines are
sporadic tasks. We treat them as hard real-time tasks. Our primary concern is to ensure that

their deadlines are always met; minimizing their response times is of secondary importance.
PRECEDENCE CONSTRAINTS AND DATA DEPENDENCY:
Data and control dependencies among jobs may constrain the order in which they can execute.
In classical scheduling theory, the jobs are said to have precedence constraints if they are
constrained to execute in some order. Otherwise, if the jobs can execute in any order, they are
said to be independent.

There is a directed edge from the vertex Ji to the vertex Jk when the job Ji is an immediate
predecessor of the job Jk . This graph is called a precedence graph. A task graph, which gives us
a general way to describe the application system, is an extended precedence graph.
OTHER TYPES OF DEPENDENCIES:

These extensions include temporal distance, OR jobs, conditional branches, and pipe (or

pipeline).
1 Temporal Dependency

Some jobs may be constrained to complete within a certain amount of time relative to one
another. We call the difference in the completion times of two jobs the temporal distance

between them.
2 AND/OR Precedence Constraints
In the classical model, a job with more than one immediate predecessor must wait until all its
immediate predecessors have been completed before its execution can begin. Whenever it is
necessary to be specific, we call such jobs AND jobs and dependencies among them AND
precedence constraints. In contrast, an OR job is one which can begin execution at or after its
release time provided one or some of its immediate predecessors has been completed.
3 Conditional Branches
Similarly, in the classical model, all the immediate successors of a job must be executed; an
outgoing edge from every vertex expresses an AND constraint. This convention makes it

inconvenient for us to represent conditional execution of jobs, such as the example in Figure

FUNCTIONAL PARAMETERS:
Among them are preemptivity, criticality, optional interval, and laxity type.

 Preemptivity of Jobs:

A job is preemptable if its execution can be suspended at any time to allow the execution of
other jobs and, later on, can be resumed from the point of suspension. A job is nonpreemptable

if it must be executed from start to completion without interruption.

Criticality of Jobs
In any system, jobs are not equally important. The importance (or criticality) of a job is a

positive number that indicates how critical the job is with respect to other jobs; the more
critical the job, the larger its importance. In literature, the terms priority and weight are often
used to refer to importance; the more important a job, the higher its priority or the larger its
weight.

Optional Executions

It is often possible to structure an application so that some jobs or portions of jobs are optiona l.

If an optional job or an optional portion of a job completes late or is not executed at all, the
system performance may degrade, but nevertheless function satisfactorily. In contrast, jobs and

portions of jobs that are not optional are mandatory.

Laxity Type and Laxity Function
The laxity type of a job indicates whether its timing constraints are soft or hard. As mentioned
earlier, in real-time systems literature, the laxity type of a job is sometimes supplemented by a
usefulness function.

RESOURCE PARAMETERS OF JOBS ANDP ARAMETERS OF RESOURCES
Earlier we said that the basic components of the underlying system available to the application
system(s) are processors and resources. Every job requires a processor throughout its
execution.3 In addition to a processor, a job may also require some resources. The resource
parameters of each job give us the type of processor and the units of each resource type

required by the job and the time intervals during its execution when the units are required.
These parameters provide the information that is needed to support resource management
decisions.
Preemptivity of Resources:

resource parameter is preemptivity. A resource is nonpreemptable if each unit of the resource
is constrained to be used serially. In other words, once a unit of a nonpreemptable resource is
allocated to a job, other jobs needing the unit must wait until the job completes its use.
Otherwise, if jobs can use every unit of a resource in an interleaved fashion, the resource is
preemptable. The lock on a data object in a database is an example of nonpreemptable

resource.
Resource Graph:

We can describe the configuration of the resources using a resource graph. In a resource graph,
there is a vertex Ri for every processor or resource Ri in the system. While edges in task graphs

represent different types of dependencies among jobs, edges in a resource graph represent the
relationship among resources.

Scheduling hierarchy:
The application system is represented by a task graph, exemplified by the graph on the top of

the diagram. This graph gives the processor time and resource requirements of jobs, the timing

constraints of each job, and the dependencies of jobs

Scheduler and Schedules:

Jobs are scheduled and allocated resources according to a chosen set of scheduling algorithms
and resource access-control protocols. The module which implements these algorithms is called
the scheduler

1. Every processor is assigned to at most one job at any time.
2. Every job is assigned at most one processor at any time.

3. No job is scheduled before its release time.
4. Depending on the scheduling algorithm(s) used, the total amount of processor time

assigned to every job is equal to its maximum or actual execution time.
5. All the precedence and resource usage constraints are satisfied.

Feasibility, Optimality, and Performance Measures:
A valid schedule is a feasible schedule if every job completes by its deadline (or, in general,

meets its timing constraints).We say that a set of jobs is schedulable according to a scheduling
algorithm if when using the algorithm the scheduler always produces a feasible schedule. The
criterion we use most of the time to measure the performance of scheduling algorithms for

hard real-time applications is their ability to find feasible schedules of the given application
system whenever such schedules exist. Hence, we say that a hard real-time scheduling

algorithm is optimal.

The lateness of a job is the difference between its completion time and its deadline. Unlike the
tardiness of a job which never has negative values, the lateness of a job which completes early
is negative, while the lateness of a job which completes late is positive.
A performance measure that captures this trade-off is the invalid rate, which is the sum of the
miss and loss rates and gives the percentage of all jobs that do not produce a useful result.We
want to minimize the invalid rate

Commonly Used Approaches to Real-Time
Scheduling

CLOCK-DRIVEN APPROACH:

when scheduling is clock-driven (also called time-driven), decisions on what jobs execute at
what times are made at specific time instants. These instants are chosen a priori before the

system begins execution. Typically, in a system that uses clock-driven scheduling, all the
parameters of hard real-time jobs are fixed and known. A schedule of the jobs is computed off-
line and is stored for use at run time. The scheduler schedules the jobs according to this
schedule at each scheduling decision time. In this way, scheduling overhead during run-time
can be minimized.
A frequently adopted choice is to make scheduling decisions at regularly spaced time instants.
One way to implement a scheduler that makes scheduling decisions periodically is to use a
hardware timer. The timer is set to expire periodically without the intervention of the
scheduler. When the system is initialized, the scheduler selects and schedules the job(s) that

will execute until the next scheduling decision time and then blocks itself waiting for the
expiration of the timer. When the timer expires, the scheduler awakes and repeats these

actions.

WEIGHTED ROUND-ROBIN APPROACH:

The round-robin approach is commonly used for scheduling time-shared applications. When
jobs are scheduled on a round-robin basis, every job joins a First-in-first-out (FIFO) queue when

it becomes ready for execution. The job at the head of the queue executes for at most one time
slice. (A time slice is the basic granule of time that is allocated to jobs. In a timeshared

vironment, a time slice is typically in the order of tens of milliseconds.) If the job does not
complete by the end of the time slice, it is preempted and placed at the end of the queue to

wait for its next turn. When there are n ready jobs in the queue, each job gets one time slice
every n time slices, that is, every round. Because the length of the time slice is relatively short,

the execution of every job begins almost immediately after it becomes ready.
Example,
 we consider the two sets of jobs, J1 = {J1,1, J1,2} and J2 = {J2,1, J2,2},
shown in Figure . The release times of all jobs are 0, and their execution times are 1. J1,1 and
J2,1 execute on processor P1, and J1,2 and J2,2 execute on processor P2. Suppose that J1,1 is

the predecessor of J1,2, and J2,1 is the predecessor of J2,2. Figure (a) shows that both sets of
jobs (i.e., the second jobs J1,2 and J2,2 in the sets) complete approximately at time 4 if the jobs

are scheduled in a weighted round-robin manner. (We get this completion time when the
length of the time slice is small compared with 1 and the jobs have the same weight.) In
contrast, the schedule in Figure (b) shows that if the jobs on each processor are executed one

after the other, one of the chains can complete at time 2, while the other can complete at time

3.

PRIORITY-DRIVEN APPROACH:

The term priority-driven algorithms refers to a large class of scheduling algorithms that never
leave any resource idle intentionally. Stated in another way, a resource idles only when no job

requiring the resource is ready for execution. Scheduling decisions are made when events such
as releases and completions of jobs occur. Hence, priority-driven algorithms are event-driven.

Other commonly used names for this approach are greedy scheduling, list scheduling and work-
conserving scheduling.

A priority-driven algorithm is greedy because it tries to make locally optimal decisions.
Leaving a resource idle while some job is ready to use the resource is not locally optimal. So
when a processor or resource is available and some job can use it to make progress, such an
algorithm never makes the job wait. We will return shortly to illustrate that greed does not
always pay; sometimes it is better to have some jobs wait even when they are ready to execute
and the resources they require are available.

Example:

The given Below Figure gives an example. The task graph shown here is a classical precedence
graph; all its edges represent precedence constraints. The number next to the name of each job
is its execution time. J5 is released at time 4. All the other jobs are released at time 0. We want
to schedule and execute the jobs on two processors P1 and P2. They communicate via a shared
memory.
Figure (a) shows the schedule of the jobs on the two processors generated by the priority-
driven algorithm following this priority assignment. At time 0, jobs J1, J2, and J7 are ready for
execution. They are the only jobs in the common priority queue at this time. Since J1 and J2

have higher priorities than J7, they are ahead of J7 in the queue and hence are scheduled. The
processors continue to execute the jobs scheduled on them except when the following events

occur and new scheduling decisions are made.
• At time 1, J2 completes and, hence, J3 becomes ready. J3 is placed in the priority queue

ahead of J7 and is scheduled on P2, the processor freed by J2.
• At time 3, both J1 and J3 complete. J5 is still not released. J4 and J7 are scheduled.

• At time 4, J5 is released. Now there are three ready jobs. J7 has the lowest priority among

them. Consequently, it is preempted. J4 and J5 have the processors.
• At time 5, J4 completes. J7 resumes on processor P1.

• At time 6, J5 completes. Because J7 is not yet completed, both J6 and J8 are not ready for
execution. Consequently, processor P2 becomes idle.

• J7 finally completes at time 8. J6 and J8 can now be scheduled and they are.

Figure (b) shows a nonpreemptive schedule according to the same priority assignment. Before
time 4, this schedule is the same as the preemptive schedule. However, at time 4 when J5 is

released, both processors are busy. It has to wait until J4 completes (at time 5) before it can
begin execution. It turns out that for this system this postponement of the higher priority job

benefits the set of jobs as a whole.

Most scheduling algorithms used in nonreal-time systems are priority-driven. Examples include
the FIFO (First-In-First-Out) and LIFO (Last-In-First-Out) algorithms, which assign priorities to
jobs according their release times, and the SETF (Shortest-Execution-Time-First) and LETF
(Longest-Execution-Time-First) algorithms, which assign priorities on the basis of job execution

times.

DYNAMIC VERSUS STATIC SYSTEMS:

jobs that are ready for execution are placed in a priority queue common to all processors.
When a processor is available, the job at the head of the queue executes on the processor. We
will refer to such a multiprocessor system as a dynamic system, because jobs are dynamically
dispatched to processors.
Another approach to scheduling in multiprocessor and distributed systems is to partition the

jobs in the system into subsystems and assign and bind the subsystems staticall y to the
processors. Jobs are moved among processors only when the system must be reconfigured,

that is, when the operation mode of the system changes or some processor fails. Such a system
is called a static system, because the system is statically configured. If jobs on different

processors are dependent, the schedulers on the processors must synchronize the jobs
according to some synchronization and resource access-control protocol. Except for the

constraints thus imposed, the jobs on each processor are scheduled by themselves

EFFECTIVE RELEASE TIMES AND DEADLINES:

Effective Release Time: The effective release time of a job without predecessors is equal to its

given release time. The effective release time of a job with predecessors is equal to the
maximum value among its given release time and the effective release times of all of its

predecessors.

Effective Deadline: The effective deadline of a job without a successor is equal to its given

deadline. The effective deadline of a job with successors is equal to the minimum value among

its given deadline and the effective deadlines of all of its successors .

 Example: J1 and J3 in above figure have the same effective release time and deadline.An
algorithm which ignores the precedence constraint between them may schedule J3 in an earlier
interval and J1 in a later interval. If this happens, we can always add a step to swap the two
jobs, that is, move J1 to where J3 is scheduled and vice versa. This swapping is always possible,

and it transforms an invalid schedule into a valid one.

OPTIMALITY OF THE EDF AND LST ALGORITHMS:
A way to assign priorities to jobs is on the basis of their deadlines. In particular, the earlier the
deadline, the higher the priority. The priority-driven scheduling algorithm based on this priority
assignment is called the Earliest-Deadline-First (EDF) algorithm. This algorithm is important

because it is optimal when used to schedule jobs on a processor as long as preemption is
allowed and jobs do not contend for resources. This fact is stated formally below.

 THEOREM 4.1. When preemption is allowed and jobs do not contend for resources, the EDF
algorithm can produce a feasible schedule of a set J of jobs with arbitrary release times and

deadlines on a processor if and only if J has feasible schedules.
NONOPTIMALITY OF THE EDF AND THE LST ALGORITHMS
It is natural to ask here whether the EDF and the LST algorithms remain optimal if preemption is
not allowed or there is more than one processor.

(a) Shows the schedule produced by the EDF algorithm. In particular, when J1 completes at time
3, J2 has already been released but not J3. Hence, J2 is scheduled. When J3 is released at time

4, J2 is executing. Even though J3 has an earlier deadline and, hence, a higher priority, it must
wait until J2 completes because preemption is not allowed. As a result, J3 misses its deadline.

(b) Shows At time 3 when J1 completes, the processor is left idle, even though J2 is ready for
execution. Consequently, when J3 is released at 4, it can be scheduled ahead of J2, allowing

both jobs to meet their deadlines .

CHALLENGES IN VALIDATING TIMING CONSTRAINTS IN PRIORITY-DRIVEN
SYSTEMS

Compared with the clock-driven approach, the priority-driven scheduling approach has many

advantages. As examples, you may have noticed that priority-driven schedulers are easy to
implement.

Many well-known priority-driven algorithms use very simple priority assignments, and
for these algorithms, the run-time overhead due to maintaining a priority queue of ready jobs

can be made very small. A clock-driven scheduler requires the information on the release times
and execution times of the jobs a priori in order to decide when to schedule them.

In contrast, a priority-driven scheduler does not require most of this information,

making it much better suited for applications with varying time and resource requirements. You
will see in later chapters other advantages of the priority-driven approach which are at least as

compelling as these two despite its merits, the priority-driven approach has not been widely
used in hard real time systems, especially safety-critical systems, until recently.

The major reason is that the timing behavior of a priority-driven system is
nondeterministic when job parameters vary. Consequently, it is difficult to validate that the

deadlines of all jobs scheduled in a priority driven manner indeed meet their deadlines when
the job parameters vary. In general, this validation problem can be stated as follows: Given a
set of jobs, the set of resources available to the jobs, and the scheduling (and resource access -
control) algorithm to allocate processors and resources to jobs, determine whether all the jobs
meet their deadlines

OFF-LINE VERSUS ON-LINE SCHEDULING:
clock-driven scheduler typically makes use of a pre computed schedule of all hard real-time

jobs. This schedule is computed off-line before the system begins to execute, and the
computation is based on the knowledge of the release times and processor-time/resource
requirements of all the jobs for all times. When the operation mode of the system changes, the
new schedule specifying when each job in the new mode executes is also pre computed and
stored for use. In this case, we say that scheduling is (done) off-line, and the pre computed
schedules are off-line schedules.
An obvious disadvantage of off-line scheduling is inflexibility. This approach is possible only
when the system is deterministic, meaning that the system provides some fixed set(s) of
functions and that the release times and processor-time/resource demands of all its jobs are

known and do not vary or vary only slightly.
Competitiveness of On-Line Scheduling. We say that scheduling is done on-line, or that we use
an on-line scheduling algorithm, if the scheduler makes each scheduling decision without
knowledge about the jobs that will be released in the future; the parameters of each job
become known to the on-line scheduler only after the job is released.
Clearly, on-line scheduling is the only option in a system whose future workload is

unpredictable. An on-line scheduler can accommodate dynamic variations in user demands and
resource availability. The price of the flexibility and adaptability is a red uced ability for the
scheduler to make the best use of system resources. Without prior knowledge about future
jobs, the scheduler cannot make optimal scheduling decisions

