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 UNIT-3 

Priority-Driven Scheduling 

of Periodic Tasks 

STATIC ASSUMPTION: 

we recall that a multiprocessor priority-driven system is either dynamic or static. In a static system, 

all the tasks are partitioned into subsystems. Each subsystem is assigned to a processor, and tasks on 

each processor are scheduled by themselves. In contrast, in a dynamic system, jobs ready for 

execution are placed in one common priority queue and dispatched to processors for execution as the 

processors become available. 

The dynamic approach should allow the processors to be more fully utilized on average as the 

workload fluctuates. Indeed, it may perform well most of the time.  However, in the worst case, the 

performance of priority-driven algorithms can be unacceptably poor. A simple example demonstrates 

this fact. The application system contains m + 1 independent periodic tasks. The first m tasks Ti, for i 

= 1, 2, . . .m, are identical. Their periods are equal to 1, and their execution times are equal to 2ε, 

where ε is a small number. The period of the last task Tm+1 is 1+ε, and its execution time is 1. The 

tasks are in phase. Their relative deadlines are equal to their periods.  

It is arguable that the poor behavior of dynamic systems occurs only for some pathological 

system configurations, and some other algorithms may perform well even for the pathological cases. 

In most cases, the performance of dynamic systems is superior to static systems.  

           The more troublesome problem with dynamic systems is the fact that we often do not know 

how to determine their worst-case and best-case performance. The theories and algorithms presented 

in this and subsequent chapters make it possible for us to validate efficiently, robustly, and accurately 

the timing constraints of static real- time systems characterizable by the periodic task model. 

For these reasons, most hard real-time systems built and in use to date and in the near future 

are static. In the special case when tasks in a static system are independent, we can consider the tasks 

on each processor independently of the tasks on the other processors. The problem of scheduling in 

multiprocessor and distributed systems is reduced to that of uniprocessor scheduling. In general, tasks 

may have data and control dependencies and may share resources on different processors 

 

FIXED-PRIORITY VERSUS DYNAMIC-PRIORITY ALGORITHMS 

Priority-driven algorithms differ from each other in how priorities are assigned to jobs. We classify 

algorithms for scheduling periodic tasks into two types: fixed priority and dynamic priority.  

A fixed-priority algorithm assigns the same priority to all the jobs in each task.  other words, the 

priority of each periodic task is fixed relative to other tasks.  
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 In contrast, a dynamic-priority algorithm assigns different priorities to the individual jobs in each 

task. Hence the priority of the task with respect to that o f the other tasks changes as jobs are released 

and completed. This is why this type of algorithm is said to be “dynamic.”  

Rate-Monotonic and Deadline-Monotonic Algorithms: 

A well-known fixed-priority algorithm is the rate-monotonic algorithm. This algorithm assigns 

priorities to tasks based on their periods: the shorter the period, the higher the priority. The rate (of 

job releases) of a task is the inverse of its period. Hence,  the higher its rate, the higher its priority.  

We will refer to this algorithm as the RM algorithm for short and a schedule produced by the 

algorithm as an RM schedule. 

Example: 

The  system contains three tasks: T1 = (4, 1), T2 = (5, 2), and T3 = (20, 5).  

 
Figure (a) is for The priority of T1 is the highest because its rate is the highest (or equivalently, its 

period is the shortest). Each job in this task is placed at the head of the priority queue and is executed 

as soon as the job is released. T2 has the next highest priority. Its jobs execute in the background of 

T1. For this reason, the execution of the first job in T2 is delayed until the first job in T1 completes, 

and the third job in T2 is preempted at time 16 when the fourth job in T1 is released. Similarly, T3 

executes in the background of T1 and T2; the jobs in T3 execute only when there is no job in the 

higher-priority tasks ready for execution. Since there is always at least one job ready for execution 

until time 18, the processor never idles until that time. 

 
The schedule in Figure (b) is for the tasks T1 = (2, 0.9) and T2 = (5, 2.3). The tasks are in phase. 

Here, we represent the schedule in a different form. Instead of using onetime line, sometimes called a 

Gantt chart, to represent a schedule on a processor as we have done thus far, we use a time line for 

each task. Each time line is labeled at the left by the name of a task; the time line shows the intervals 

during which the task executes. According to the RM algorithm, task T1 has a higher-priority than 

task T2. Consequently, every job in T1 is scheduled and executed as soon as it is released. The jobs in 

T2 are executed in the background of T1. 

Another well-known fixed-priority algorithm is the deadline-monotonic algorithm, called the 

DM algorithm hereafter. This algorithm assigns priorities to tasks according their relative deadlines: 

the shorter the relative deadline, the higher the priority.  
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Example:The system consists of three tasks. They are T1 = (50, 50, 25, 100), T2 = (0, 62.5, 

10, 20), and T3 = (0, 125, 25, 50). Their utilizations are 0.5, 0.16, and 0.2, respectively. The total 

utilization is 0.86. According to the DM algorithm, T2 has the highest priority because its relative 

deadline 20 is the shortest among the tasks. T1, with a relative deadline of 100, has the lowest 

priority. The resultant DM schedule is shown in Below Figure. According to this schedule, all the 

tasks can meet their deadlines. 

 
When the relative deadline of every task is proportional to its period, the RM and DM 

algorithms are identical. When the relative deadlines are arbitrary, the DM algorithm performs better 

in the sense that it can sometimes produce a feasible schedule when the RM algorithm fails, while the 

RM algorithm always fails when the DM algorithm fails.  

 

Well-Known Dynamic Algorithms  

The EDF algorithm assigns priorities to individual jobs in the tasks according to their absolute 

deadlines; it is a dynamic-priority algorithm 

Another well-known dynamic-priority algorithm is the Least-Slack-Time-First (LST) algorithm. You 

recall that at time t , the slack of a job whose remaining execution time (i.e., the execution of its 

remaining portion) is x and whose deadline is d is equal to d −t − x. The scheduler checks the slacks 

of all the ready jobs each time a new job is released and orders the new job and the existing jobs on 

the basis of their slacks: the smaller the slack, the higher the priority 

Coincidentally, the schedule of T1 and T2 in the above example produced by the LST algorithm 

happens to be identical to the EDF schedule 

Relative Merits 

Algorithms that do not take into account the urgencies of jobs in priority assignment usually perform 

poorly. Dynamic-priority algorithms such as FIFO and LIFO are examples. 

The criterion we will use to measure the performance of algorithms used to schedule periodic tasks is 

the schedulable utilization. The schedulable utilization of a scheduling algorithm is defined as 

follows: A scheduling algorithm can feasibly schedule any set of periodic tasks on a processor if the 

total utilization of the tasks is equal to or less than the schedulable utilization of the algorithm . 

While by the criterion of schedulable utilization, optimal dynamic-priority algorithms outperform 

fixed-priority algorithms, an advantage of fixed-priority algorithms is predictability. The timing 

behavior of a system scheduled according to a fixed-priority algorithm is more predictable than that 

of a system scheduled according to a dynamic-priority algorithm. 
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The EDF algorithm has another serious disadvantage. We note that a late job which has already 

missed its deadline has a higher-priority than a job whose deadline is still in the future.  

 

MAXIMUM SCHEDULABLE UTILIZATION: 

 

A system is schedulable by an algorithm if the algorithm always produces a feasible schedule of the 

system. A system is schedulable (and feasible) if it is schedulable by some algorithm, that is, feasible 

schedules of the system exist.  

 

Schedulable Utilizations of the EDF Algorithm: 

 

We first focus on the case where the relative deadline of every task is equal to its period . The 

following theorem Describes  that any such system can be feasibly scheduled if its total utilization is 

equal to or less than one, no matter how many tasks there are and what values the periods and 

execution times of the tasks are. In the proof of this and later theorems, we will use the following 

terms. At any time t , the current period of a task is the period that begins before t and ends at or after 

t .We call the job that is released in the beginning of this period the current job. 

 

THEOREM 1: A system T of independent, preemptable tasks with relative deadlines equal to their 

respective periods can be feasibly scheduled on one processor if and only if its total utilization is 

equal to or less than 1 

 

The following facts follow straightforwardly from this theorem.  

1. A system of independent, preemptable periodic tasks with relative deadlines longer than their 

periods can be feasibly scheduled on a processor as long as the total utilization is equal to or less than 

1. 

2. The schedulable utilization UEDF (n) of the EDF algorithm for n independent, preemptable  

Periodic tasks with relative deadlines equal to or larger than their periods are equal to 1. 

THEOREM 2. A system T of independent, preemptable tasks can be feasibly scheduled on one 

processor if its density is equal to or less than 1.  

Proof: The condition given by this theorem is not necessary for a system to be feasible. A system 

may nevertheless be feasible when its density is greater than 1. The system consisting of (2, 0.6, 1) 

and (5, 2.3) is an example. Its density is larger than 1, but it is schedulable according to the EDF 

algorithm. 

 

Schedulability Test for the EDF Algorithm: 

 

We call a test for the purpose of validating that the given application system can indeed meet all its 

hard deadlines when scheduled according to the chosen scheduling algorithm a schedulability test. If 

a schedulability test is efficient, it can be used as an on- line acceptance test. 

Checking whether a set of periodic tasks meet all their deadlines is a special case of the validation 

problem that can be stated as follows: We are given  
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1. The period pi , execution time ei , and relative deadline Di of every task Ti in a system T = {T1, 

T2, . . . Tn} of independent periodic tasks, and 

2. A priority-driven algorithm used to schedule the tasks in T preemptively on one processor. 

OPTIMALITY OF THE RM AND DM ALGORITHMS 

In fixed-priority scheduling, we index the tasks in decreasing order of their priorities except where 

stated otherwise. In other words, the task Ti has a higher priority than the task Tk if i < k. 

  In Fixed priority they assign fixed priorities to tasks, fixed-priority algorithms cannot be 

optimal: Such an algorithm may fail to schedule some systems for which there are feasible schedules.  

To demonstrate this fact, we consider a system which consists of two tasks: T1 = (2, 1) and T2 = (5, 

2.5). Since their total utilization is equal to 1, we know from Theorem1 that the tasks are feasible. 

J1,1 and J1,2 can complete in time only if they have a higher priority than J2,1. In other words, in the 

time interval (0, 4], T1 must have a higher-priority than T2. However, at time 4 when J1,3 is released, 

J2,1 can complete in time only if T2 (i.e., J2,1) has a higher priority than T1 (i.e., J1,3). This change 

in the relative priorities of the tasks is not allowed by any fixed priority algorithm. 

While the RM algorithm is not optimal for tasks with arbitrary periods, it is optimal in the 

special case when the periodic tasks in the system are simply periodic and the deadlines of the tasks 

are no less than their respective periods. A system of periodic tasks is simply periodic if for every pair 

of tasks Ti and Tk in the system and pi < pk , pk is an integer multiple of pi . An example of a simply 

periodic task system is the flight control system.The RM algorithm is optimal among all fixed-

priority algorithms whenever the relative deadlines of the tasks are proportional to their periods. 

A SCHEDULABILITY TEST FOR FIXED-PRIORITY TASKS WITH SHORT 

RESPONSE TIMES 

Every job completes before the next job in the same task is released. We will consider the 

general case where the response times may be larger than the periods in the next section. Since no 

system with total utilization greater than 1 is schedulable, we assume hereafter that the total 

utilization U is 

equal to or less than 1.  

Critical Instants: 

critical instant of a task Ti is a time instant which is such that 

1. The job in Ti released at the instant has the maximum response time of all jobs in Ti, if the 

response time of every job in Ti is equal to or less than the relative deadline Di of Ti, and 

2. The response time of the job released at the instant is greater than Di if the response time of some 

jobs in Ti exceeds Di . We call the response time of a job in Ti released at a critical instant the 

maximum (possible) response time of the task and denote it by Wi . The following theorem gives us 

the condition under which a critical instant of each task Ti occurs 
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Time-Demand Analysis 

To determine whether a task can meet all its deadlines, we first compute the total demand for 

processor time by a job released at a critical instant of the task and by all the higher-priority tasks as a 

function of time from the critical instant. We then check whether this demand can be met before the 

deadline of the job. For this reason, we name this test a time-demand analysis.  

To carry out the time-demand analysis on T, we consider one task at a time, starting from the 

task T1 with the highest priority in order of decreasing priority. To determine whether a task Ti is 

schedulable after finding that all the tasks with higher priorities are schedulable,  we focus on a job in 

Ti , supposing that the release time t0 of the job is a critical instant of Ti . At time t0 + t for t ≥ 0, the 

total (processor) time demand wi (t) of this job and all the higher-priority jobs released in [t0, t ] is 

given by 

 
This job of Ti can meet its deadline t0 + Di if at some time t0 +t at or before its deadline, the supply 

of processor time, which is equal to t , becomes equal to or greater than the demand wi (t) for 

processor time. In other words, wi (t) ≤ t for some t ≤ Di , where Di is equal to or less than pi . 

Because this job has the maximum possible response time of all jobs in Ti , we can conclude that all 

jobs in Ti can complete by their deadlines if this job can meet its deadline. 

Alternatives to Time-Demand Analysis: 

Instead of carrying out a time-demand analysis, we can also determine whether a system of 

independent preemptable tasks is schedulable by simply simulating this  condition and observing 

whether the system is then schedulable. In other words, a way to test the schedulability of such a 

system is to construct a schedule of it according to the given scheduling algorithm. In this 

construction, we assume that the tasks are in phase and the actual execution times and inter  release 

times of jobs in each task Ti are equal to ei and pi , respectively. 

SCHEDULABILITY TEST FOR FIXED-PRIORITY TASKS WITH 

ARBITRARY RESPONSE TIMES 

The  time-demand analysis method developed by Lehoczky to determine the schedulability of tasks 

whose relative deadlines are larger than their respective periods. Since the response time of a task 

may be larger than its period, it may have more than one job ready for execution at any time. Ready 

jobs in the same task are usually scheduled on the FIFO basis  

Busy Intervals 

We will use the term level-πi busy interval. A level-πi busy interval (t0, t ] begins at an instant t0 

when (1) all jobs in Ti released before the instant have completed and (2) a job in Ti is released. The 

interval ends at the first instant t after t0 when all the jobs in Ti released since t0 are complete. In 

other words, in the interval (t0, t ], the processor is busy all the time executing jobs with priorities πi 

or higher, all the jobs executed in the busy interval are released in the  nterval, and at the end of the 

interval there is no backlog of jobs to be executed afterwards. Hence, when computing the response 
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times of jobs in Ti , we can consider every level-πi busy interval independently from other level-πi 

busy intervals.  

With a slight abuse of the term, we say that a level-πi busy interval is in phase if the first jobs of all 

tasks that have priorities equal to or higher than priority πi and are executed in this interval have the 

same release time. Otherwise, we say that the tasks have arbitrary phases in the interval.  

Example: the schedule of three tasks T1 = (2, 1), T2 =(3, 1.25), and T3 = (5, 0.25) in the first 

hyperperiod. The filled rectangles depict where jobs in T1 are scheduled. The first busy intervals of 

all levels are in phase. The priorities of the tasks are π1 = 1, π2 = 2, and π3 = 3, with 1 being the 

highest priority and 3 being the lowest priority. As expected, every level-1 busy interval always ends 

1 unit time after it begins.  

For this system, all the level-2 busy intervals are in phase. They begin at times 0, 6, and so onwhich 

are the least common multiples of the periods of tasks T1 and T2. The lengths of these intervals are 

all equal to 5.5. Before time 5.5, there is at least one job of priority 1 or 2 ready for execution, but 

immediately after 5.5, there are none.  

Hence at 5.5, the first job in T3 is scheduled. When this job completes at 5.75, the second job in T3 is 

scheduled. At time 6, all the jobs released before time 6 are completed; hence, the first level-3 busy 

interval ends at this time.  

The second level-3 busy interval begins at time 6. This level-3 busy interval is not in phase since the 

release times of the first higher-priority jobs in this interval are 6, but the first job of T3 in this 

interval is not released until time 10. The length of this level-3 busy interval is only 5.75. Similarly, 

all the subsequent level-3 busy intervals in the hyperperiod have arbitrary phases.  

 

General Schedulability Test 

The general schedulability test described below relies on the fact that when determining the 

schedulability of a task Ti in a system in which the response times of jobs can be larger than their 
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respective periods, it still suffices to confine our attention to the special case where the asks are in 

phase. 

General Time-Demand Analysis Method 

Test one task at a time starting from the highest priority task T1 in order of decreasing priority. For 

the purpose of determining whether a task Ti is schedulable, assume that all the tasks are in phase and 

the first level-πi busy interval begins at time 0. 

 

Correctness of the General Schedulability Test 

The general schedulability test described above makes a key assumption: The maximum response 

time of some job Ji, j in an in-phase level-πi busy interval is equal to the maximum possible response 

time of all jobs in Ti . Therefore, to determine whether Ti is schedulable, we only need to check 

whether the maximum response times of all jobs in this busy interval are no greater than the relative 

deadline of Ti . This subsection presents several lemmas as proof that this assumption is valid. 

SUFFICIENT SCHEDULABILITY CONDITIONS FOR THE RM AND DM ALGORITHMS 

When we know the periods and execution times of all the tasks in an application system, we can use 

the schedulability test described in the last section to determine whether the system is schedulable 

according to the given fixed-priority algorithm. However, before we have completed the design of the 

application system, some of these parameters may not be known. In fact, the design process 

invariably involves the trading of these parameters against each other. We may want to vary the 

periods and execution times of some tasks within some range of values for which the system remains 

feasible in order to improve some aspects of the system.  

Schedulable Utilization of the RM Algorithm for Tasks with Di = pi Specifically, the following 

theorem from [LiLa] gives us a schedulable utilization of the RM algorithm. We again focus on the 

case when the relative deadline of every task is equal to its period. For such systems,  the RM and DM 

algorithms are identical. 

THEOREM: A system of n independent, preemptable periodic tasks with relative deadlines equal to 

their respective periods can be feasibly scheduled on a processor according to the RM algorithm if its 

total utilization U is less than or equal to 

 

URM(n) is the schedulable utilization of the RM algorithm when Di = pi for all 1 ≤ k ≤ n. 

Generalization to Arbitrary Period Ratios. The ratio qn,1 = pn/p1 is the period ratio of the system. 

To complete the proof of Theorem 6.11, we must show that any n-task system whose total utilization 

is no greater than URM(n) is schedulable rate-monotonically, not just systems whose period ratios are 

less than or equal to 2. We do so by showing that the following two facts are true.  

1. Corresponding to every difficult-to-schedule n-task system whose period ratio is larger than 2 there 

is a difficult-to-schedule n-task system whose period ratio is less than or equal to 2.  
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2. The total utilization of the system with period ratio larger than 2 is larger than the total utilization 

of the corresponding system whose period ratio is less than or equal to 2.  

Schedulable Utilization of RM Algorithm as Functions of Task Parameters  

When some of the task parameters are known, this information allows us to improve the schedulable 

utilization of the RM algorithm.We now give several schedulable utilizations that are larger than 

URM(n) for independent, preemptive periodic tasks whose relative deadlines are equal to their 

respective periods. These schedulable utilizations are expressed in terms of known parameters of the 

tasks, for example, the utilizations of individual tasks, the number nh of disjoint subsets each 

containing simply periodic tasks, and some functions of the periods of the tasks. The general 

schedulable utilization URM(n) of the RM algorithm is the minimum value of these specific 

schedulable utilizations. Because they are larger than URM(n), when applicable, these schedulable 

utilizations are more accurate criteria of schedulability 

Schedulable Utilization of Fixed Priority Tasks with Arbitrary Relative Deadlines 

A system of n tasks with a total utilization URM(n) may not be schedulable ratemonotonically when 

the relative deadlines of some tasks are shorter than their periods. On the other hand, if the relative 

deadlines of the tasks are larger than the respective task periods, we expect the schedulable utilization 

of the RM algorithm to be larger than URM(n). 

Schedulable Utilization of the RM Algorithm for Multiframe Tasks 

The multiframe task model developed by Mok and Chen [MoCh] is a more accurate model and leads 

to more accurate schedulability tests. The example used by Mok and Chen to motivate the multiframe 

task model is a system of two tasks: T1 and T2. T2 is a task with period 5 and execution time 1. The 

period of T1 is 3. The maximum execution time of J1,k is equal to 3, if k is odd and is equal to 1 if k 

is EVEN. The relative deadlines of the tasks are equal to their respective periods. We can treat  

T1 as the periodic task (3, 3), but if we were to do so, we would conclude that the system is not 

schedulable. This conclusion would be too pessimistic because the system is in fact schedulable. 

Indeed, as we will see shortly, by modeling T1 more accurately as a multiframe task, we can reach the 

correct conclusion. 

Specifically, in the multiframe task model, each (multiframe) task Ti is characterized by a 4-tuple 

In the 4-tuple, pi is the period of the task and has the same meaning as the period of 

a periodic task. Jobs in Ti have either one of two possible maximum execution times: ei p and ei n, 

where . The former is its peak execution time, and the latter is its normal execution time. 

Each period which begins at the release time of a job with the peak execution time is called a peak 

frame, and the other periods are called normal frames. Each peak frame is followed by  normal 

frames, which in turn are followed by a peak frame and so on. 


