
Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

1 Basic concepts of Neural Networks and Fuzzy Logic Systems
Inspirations based on course material by Professors Heikki Koiovo http://www.control.hut.fi/Kurssit/AS-74.115/Material/ and
David S. Touretzki http://www-2.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15782-s04/slides/ are duly acknowledged

Neural networks and Fuzzy Logic Systems are often considered as a part of Soft Computing area:

115

Chapter 8

Conclusion

Figure 8.1 Soft computing as a union of fuzzy logic, neural networks and probabilistic reasoning.
Intersections include neurofuzzy techniques, probabilistic view on neural networks (especially
classification networks) and similar structures of fuzzy logic systems and Bayesian reasoning.

The strengthnesses of each methods are summarized in the following table:

 FUZZY
LOGIC

NEURAL
NETWORKS

PROBAB.
REASONING

SOFT COMPUTING

Figure 1–1: Soft computing as a composition of fuzzy logic, neural networks and probabilistic reasoning.

Intersections include

• neuro-fuzzy systems and techniques,

• probabilistic approaches to neural networks (especially classification networks) and fuzzy logic
systems,

• and Bayesian reasoning.

A.P. Papliński 1–1

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

Neuro-Fuzzy systems

• We may say that neural networks and fuzzy systems try to emulate the operation of human brain.

• Neural networks concentrate on the structure of human brain, i.e., on the “hardware” emulating the
basic functions, whereas fuzzy logic systems concentrate on “software”, emulating fuzzy and symbolic
reasoning.

Neuro-Fuzzy approach has a number of different connotations:

• The term “Neuro-Fuzzy” can be associated with hybrid systems which act on two distinct
subproblems: a neural network is utilized in the first subproblem (e.g., in signal processing) and a
fuzzy logic system is utilized in the second subproblem (e.g., in reasoning task).

• We will also consider system where both methods are closely coupled as in the Adaptive Neuro-Fuzzy
Inference Systems (anfis)

Neural Network and Fuzzy System research is divided into two basic schools

• Modelling various aspects of human brain (structure, reasoning, learning, perception, etc)

• Modelling artificial systems and related data: pattern clustering and recognition, function
approximation, system parameter estimation, etc.

A.P. Papliński 1–2

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

Neural network research in particular can be divided into

• Computational Neuroscience

– Understanding and modelling operations of single neurons or small neuronal circuits, e.g.
minicolumns.

– Modelling information processing in actual brain systems, e.g. auditory tract.

– Modelling human perception and cognition.

• Artificial Neural Networks used in

– Pattern recognition

– adaptive control

– time series prediction, etc.

Areas contributing to Artificial neural networks:

• Statistical Pattern recognition

• Computational Learning Theory

• Computational Neuroscience

• Dynamical systems theory

• Nonlinear optimisation

A.P. Papliński 1–3

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

We can say that in general

• Neural networks and fuzzy logic systems are parameterised computational nonlinear algorithms for
numerical processing of data (signals, images, stimuli).

• These algorithms can be either implemented of a general-purpose computer or built into a dedicated
hardware.

• Knowledge is acquired by the network/system through a learning process.

• The acquired knowledge is stored in internal parameters (weights).

(Parameters)

Unknown
System

Neural Network/
Fuzzy System

control signals

data
Essential aspects of data, or
parameters of the unknown system model

Figure 1–2: System as a data generator

A.P. Papliński 1–4

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

1.1 Biological Fundamentals
of Neural Networks

A typical neuron, or nerve
cell, has the following
structure:

from Kandel, Schwartz and Jessel, Principles of Neural Science

• Most neurons in the vertebrate nervous system have several main features
in common.

• The cell body contains the nucleus, the storehouse of genetic information,
and gives rise to two types of cell processes, axons and dendrites.

• Axons, the transmitting element of neurons, can vary greatly in length;
some can extend more than 3m within the body. Most axons in the central
nervous system are very thin (0.2 . . . 20 µm in diameter) compared with
the diameter of the cell body (50 µm or more).

• Many axons are insulated by a fatty sheath of myelin that is interrupted at
regular intervals by the nodes of Ranvier.

• The action potential, the cell’s conducting signal, is initiated either at the
axon hillock, the initial segment of the axon, or in some cases slightly
farther down the axon at the first nod of Ranvier.

• Branches of the axon of one neuron (the presynaptic neuron) transmit
signals to another neuron (the postsynaptic cell) at a site called the
synapse.

• The branches of a single axon may form synapses with as many as 1000
other neurons.

• Whereas the axon is the output element of the neuron, the dendrites
(apical and basal) are input elements of the neuron. Together with the cell
body, they receive synaptic contacts from other neurons.

A.P. Papliński 1–5

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

Simplified functions of these very complex in their nature “building blocks” of a neuron are as follow:

• The synapses are elementary signal processing devices.

– A synapse is a biochemical device which converts a pre-synaptic electrical signal into a chemical
signal and then back into a post-synaptic electrical signal.

– The input pulse train has its amplitude modified by parameters stored in the synapse. The nature of
this modification depends on the type of the synapse, which can be either inhibitory or excitatory.

• The postsynaptic signals are aggregated and transferred along the dendrites to the nerve cell body.

• The cell body generates the output neuronal signal, activation potential, which is transferred along the
axon to the synaptic terminals of other neurons.

• The frequency of firing of a neuron is proportional to the total synaptic activities and is controlled by
the synaptic parameters (weights).

• The pyramidal cell can receive 104 synaptic inputs and it can fan-out the output signal to thousands of
target cells — the connectivity difficult to achieve in the artificial neural networks.

A.P. Papliński 1–6

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

Another microscopic view of typical neuron of the mammalian cortex (a pyramidal cell):

• Note the cell body or soma, dendrites, synapses
and the axon.

• Neuro-transmitters (information-carrying
chemicals) are released pre-synaptically, floats
across the synaptic cleft, and activate receptors
postsynaptically.

• According to Calaj’s “neuron-doctrine”
information carrying signals come into the
dendrites through synapses, travel to the cell
body, and activate the axon. Axonal signals are
then supplied to synapses of other neurons.

0 5 10 15 20
−20

0

20

40

60

80

100

120

time [msec]

A
ct

io
n

po
te

nt
ia

l [
m

V
]

Injected current and action potential

A.P. Papliński 1–7

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

1.2 A simplistic model of a biological neuron

t

xi

t

Dendrite

Axon

Synapses

Post−synaptic signal

Axon−Hillock
Cell Body (Soma)

Activation potential

Output Signal, j

x

y

Input Signals,

y j

Figure 1–3: Conceptual structure of a biological neuron

Basic characteristics of a biological neuron:

• data is coded in a form of instantaneous frequency of pulses

• synapses are either excitatory or inhibitory

• Signals are aggregated (“summed”) when travel along dendritic trees

• The cell body (neuron output) generates the output pulse train of an average frequency proportional to
the total (aggregated) post-synaptic activity (activation potential).

A.P. Papliński 1–8

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

Levels of organization of the nervous system

from T.P.Trappenberg, Fundamentals of Computational Neuroscience, Oxford University Press, 2002

A.P. Papliński 1–9

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

A few good words about the brain
Adapted from S. Haykin, Neural Networks – a Comprehensive Foundation, Prentice Hall, 2nd ed., 1999

The brain is a highly complex, non-linear, parallel information processing system. It performs tasks like
pattern recognition, perception, motor control, many times faster than the fastest digital computers.

• Biological neurons, the basic building blocks of the brain, are slower than silicon logic gates. The
neurons operate in milliseconds which is about six–seven orders of magnitude slower that the silicon
gates operating in the sub-nanosecond range.

• The brain makes up for the slow rate of operation with two factors:

– a huge number of nerve cells (neurons) and interconnections between them. The number of
neurons is estimated to be in the range of 1010 with 60 · 1012 synapses (interconnections).

– A function of a biological neuron seems to be much more complex than that of a logic gate.

• The brain is very energy efficient. It consumes only about 10−16 joules per operation per second,
comparing with 10−6 J/oper·sec for a digital computer.

Brain plasticity:

• At the early stage of the human brain development (the first two years from birth) about 1 million
synapses (hard-wired connections) are formed per second.

• Synapses are then modified through the learning process (plasticity of a neuron).

• In an adult brain plasticity may be accounted for by the above two mechanisms: creation of new
synaptic connections between neurons, and modification of existing synapses.

A.P. Papliński 1–10

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

What can you do with Artificial Neural Networks (aNN)
Adapted from Neural Nets FAQ: ftp://ftp.sas.com/pub/neural/FAQ.html

• In principle, NNs can compute any computable function, i.e., they can do everything a normal digital
computer can do.

• In practice, NNs are especially useful for classification and function approximation/mapping
problems which are tolerant of some imprecision, which have lots of training data available, but to
which hard and fast rules (such as those that might be used in an expert system) cannot easily be
applied.

• Almost any mapping between vector spaces can be approximated to arbitrary precision by feedforward
NNs (which are the type most often used in practical applications) if you have enough data and enough
computing resources.

• To be somewhat more precise, feedforward networks with a single hidden layer, under certain
practically-satisfiable assumptions are statistically consistent estimators of, among others, arbitrary
measurable, square-integrable regression functions, and binary classification devices.

• NNs are, at least today, difficult to apply successfully to problems that concern manipulation of
symbols and memory. And there are no methods for training NNs that can magically create
information that is not contained in the training data.

A.P. Papliński 1–11

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

Who is concerned with NNs?

• Computer scientists want to find out about the properties of non-symbolic information processing with
neural nets and about learning systems in general.

• Statisticians use neural nets as flexible, nonlinear regression and classification models.

• Engineers of many kinds exploit the capabilities of neural networks in many areas, such as signal
processing and automatic control.

• Cognitive scientists view neural networks as a possible apparatus to describe models of thinking and
consciousness (high-level brain function).

• Neuro-physiologists use neural networks to describe and explore medium-level brain function (e.g.
memory, sensory system, motorics).

• Physicists use neural networks to model phenomena in statistical mechanics and for a lot of other tasks.

• Biologists use Neural Networks to interpret nucleotide sequences.

• Philosophers and some other people may also be interested in Neural Networks for various reasons.

A.P. Papliński 1–12

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

1.3 Taxonomy of neural networks

• From the point of view of their active or decoding phase, artificial neural networks can be classified
into feedforward (static) and feedback (dynamic, recurrent) systems.

• From the point of view of their learning or encoding phase, artificial neural networks can be classified
into supervised and unsupervised systems.

• Practical terminology often mixes up the above two aspects of neural nets.

Feedforward supervised networks

This networks are typically used for function approximation tasks. Specific examples include:

• Linear recursive least-mean-square (LMS) networks

• Multi Layer Perceptron (MLP) aka Backpropagation networks

• Radial Basis networks

A.P. Papliński 1–13

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

Feedforward unsupervised networks

This networks are used to extract important properties of the input data and to map input data into a
“representation” domain. Two basic groups of methods belong to this category

• Hebbian networks performing the Principal Component Analysis of the input data, also known as the
Karhunen-Loeve Transform.

• Competitive networks used to performed Learning Vector Quantization, or tessellation/clustering of
the input data set.

• Self-Organizing Kohonen Feature Maps also belong to this group.

Recurrent networks

These networks are used to learn or process the temporal features of the input data and their internal state
evolves with time. Specific examples include:

• Hopfield networks

• Associative Memories

• Adaptive Resonance networks

A.P. Papliński 1–14

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

1.4 Models of artificial neurons

Three basic graphical representations of a
single p-input (p-synapse) neuron:

.

. ...

summing
node

. . .

. . .

x1

y

w1

= [

= []

] Tx

w

xx2

w2 w

p

p

v
synapse
dendrite

a.
activation
potential

Input layer Output layer
x

x2

x1

y

w1

y

x =

x w

p

p

v

v

synapse

c.

Dendritic representation

b.

Block−diagram representation

σ

σ

σ

w

Signal flow representation

2

wn
.

v = w1 · x1 + · · · + wp · xp = w · x

y = σ(v)

Artificial neural networks are nonlinear information
(signal) processing devices which are built from
interconnected elementary processing devices called
neurons.

An artificial neuron is a p-input single-output signal
processing element which can be thought of as a simple
model of a non-branching biological neuron.

From a dendritic representation of a single neuron we
can identify p synapses arranged along a linear dendrite
which aggregates the synaptic activities, and a neuron body
or axon-hillock generating an output signal.

The pre-synaptic activities are represented by a p-element
column vector of input (afferent) signals

x = [x1 . . . xp]
T

In other words the space of input patterns is p-dimensional.

Synapses are characterised by adjustable parameters called
weights or synaptic strength parameters. The weights are
arranged in a p-element row vector:

w = [w1 . . . wp]
A.P. Papliński 1–15

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

• In a signal flow representation of a neuron p synapses are arranged in a layer of input nodes. A
dendrite is replaced by a single summing node. Weights are now attributed to branches (connections)
between input nodes and the summing node.

• Passing through synapses and a dendrite (or a summing node), input signals are aggregated
(combined) into the activation potential, which describes the total post-synaptic activity.

• The activation potential is formed as a linear combination of input signals and synaptic strength
parameters, that is, as an inner product of the weight and input vectors:

v =
p∑

i=1
wixi = w · x =

[
w1 w2 · · · wp

]
·

x1

x2
...

xp

(1.1)

• Subsequently, the activation potential (the total post-synaptic activity) is passed through an activation
function, σ(·), which generates the output (efferent) signal:

y = σ(v) (1.2)

• The activation function is typically a saturating function which normalises the total post-synaptic
activity to the standard values of output (axonal) signal.

• The block-diagram representation encapsulates basic operations of an artificial neuron, namely,
aggregation of pre-synaptic activities, eqn (1.1), and generation of the output signal, eqn (1.2)

A.P. Papliński 1–16

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

A single synapse in a dendritic representation of a neuron can be represented by the following
block-diagram:

wi

?

����
∗-r
?

��
��∑-

vi−1 -
vi = vi−1 + wi · xi (signal aggregation)

?

xi

xi

In the synapse model we can identify:

• a storage for the synaptic weight,

• augmentation (multiplication) of the pre-synaptic signal with the weight parameter, and

• the dendritic aggregation of the post-synaptic activities.

A synapse is classified as

• excitatory, if a corresponding weight is positive, wi > 0, and as

• inhibitory, if a corresponding weight is negative, wi < 0.

A.P. Papliński 1–17

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

It is sometimes convenient to add an additional parameter called threshold, θ or bias b = −θ. It can be
done by fixing one input signal to be constant. Than we have

xp = +1 , and wp = b = −θ

With this addition, the activation potential is calculated as:

v̂ =
p∑

i=1
wixi = v − θ , v =

p−1∑
i=1

wixi

where v̂ is the augmented activation potential.

-��
��

σ -
v v̂ y

w1 . . . wp−1 wp

@ @ @

x1 · · · xp−1 +1

Figure 1–4: A single neuron with a biasing input

A.P. Papliński 1–18

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

1.5 Types of activation functions

Typically, the activation function generates either unipolar or bipolar signals.

A linear function: y = v.

Such linear processing elements, sometimes called ADALINEs, are studied in the theory of linear
systems, for example, in the “traditional” signal processing and statistical regression analysis.

A step function
unipolar:

y = σ(v) =

 1 if v ≥ 0

0 if v < 0

1

0

y

v

Such a processing element is traditionally called perceptron, and it works as a threshold element with
a binary output.

bipolar:

y = σ(v) =

 +1 if v ≥ 0

−1 if v < 0 0

1
y

-1

v

A step function with bias
The bias (threshold) can be added to both, unipolar and bipolar step function. We then say that a
neuron is “fired”, when the synaptic activity exceeds the threshold level, θ. For a unipolar case, we
have:

y = σ(v) =

 1 if w · x ≥ θ

0 if w · x < θ
θ

1

0

y

w x
(The McCulloch-Pitts perceptron — 1943)

A.P. Papliński 1–19

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

A piecewise-linear function

y = σ(v) =

0 if v ≤ − 1

2α

αv + 1
2 if |v| < 1

2α

1 if v ≥ 1
2α -

6

1
y

− 1
2α

1
2α

v

• For small activation potential, v, the neuron works as a linear combiner (an ADALINE) with the
gain (slope) α.

• For large activation potential, v, the neuron saturates and generates the output signal either) or 1.

• For large gains α →∞, the piecewise-linear function is reduced to a step function.

Sigmoidal functions

unipolar:

σ(v) =
1

1 + e−v
=

1

2
(tanh(v/2)− 1)

y
1

0

v

bipolar:

σ(v) = tanh(βv) =
2

1 + e−2βv
− 1

y
1

0
-1

v

The parameter β controls the slope of the function.

The hyperbolic tangent (bipolar sigmoidal) function is perhaps the most popular choice of the
activation function specifically in problems related to function mapping and approximation.

A.P. Papliński 1–20

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

Radial-Basis Functions

• Radial-basis functions arise as optimal solutions to problems of interpolation, approximation and
regularisation of functions. The optimal solutions to the above problems are specified by some
integro-differential equations which are satisfied by a wide range of nonlinear differentiable
functions (S. Haykin, Neural Networks – a Comprehensive Foundation, Ch. 5).

• Typically, Radial-Basis Functions ϕ(x; ti) form a family of functions of a p-dimensional vector,
x, each function being centered at point ti.

• A popular simple example of a Radial-Basis Function is a symmetrical multivariate Gaussian
function which depends only on the distance between the current point, x, and the center point, ti,
and the variance parameter σi:

ϕ(x; ti) = G(||x− ti||) = exp

−||x− ti||2

2σ2
i

where ||x− ti|| is the norm of the distance vector between the current vector x and the centre, ti,
of the symmetrical multidimensional Gaussian surface.

• The spread of the Gaussian surface is controlled by the variance parameter σi.

A.P. Papliński 1–21

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

Two concluding remarks:

• In general, the smooth activation functions, like sigmoidal, or Gaussian, for which a continuous
derivative exists,

are typically used in networks performing a function approximation task,

whereas the step functions are used as parts of pattern classification networks.

• Many learning algorithms require calculation of the derivative of the activation function (see the
assignments/practical 1).

A.P. Papliński 1–22

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

1.6 A layer of neurons

• Neurons as in sec. 1.4 can be arrange into a layer of
neurons.

• A single layer neural network consists of m

neurons each with the same p input signals.

• Similarly to a single neuron, the neural network can
be represented in all three basic forms: dendritic,
signal-flow, and block-diagram form

• From the dendritic representation of the neural
network it is readily seen that a layer of neurons is
described by a m× p matrix W of synaptic weights.

• Each row of the weight matrix is associated with
one neuron.

Operations performed by the network can be described as
follows:

v1

v2
...

vm

=

w11 · · · w1p

w21 · · · w2p
... · · · ...

wm1 · · · wmp

x1
...

xp

 ;

y1

y2
...

ym

=

σ(v1)

σ(v2)
...

σ(vm)

...
...

...
...

...
...

. . .

. . .

. . .

w

w

w
w

w

w11

21

2n

m1

2

m y

y2

m

W

Input layer Output layer

= yx =

xp

1p

mp

1v

v

v

x]

w w w

y
w w w

y1

w w

y

2

m

w

= [1

11

21

m1

12

m2

2

m

1

x

w

w

w

2

m

1

x2 x

..

1:

2:

m:

w

w

w

.

1p

v

v

v

2p

mp

p
T

W = ...

. . .

22

b. Signal−flow graph

c. Block−diagram

σ

σ

σ

σ

σ

σ

a. Dendritic graph

p
x

m

v
σ

m

y

x

W

1

... ...
... ...

1y

...

v = W · x ; y = σ(W · x) = σ(v) ; v is a vector of activation potentials.A.P. Papliński 1–23

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

From the signal-flow graph it is visible that each weight parameter wij (synaptic strength) is now related
to a connection between nodes of the input layer and the output layer.
Therefore, the name connection strengths for the weights is also justifiable.

The block-diagram representation of the single layer neural network is the most compact one, hence most
convenient to use.

A.P. Papliński 1–24

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

1.7 Multi-layer feedforward neural networks

Connecting in a serial way layers of neurons presented in sec. 1.6 we can build multi-layer feedforward
neural networks also known as Multilayer Perceptrons (MLP).
The most popular neural network seems to be the one consisting of two layers of neurons as in the
following block-diagram

W h ��
��
ϕ W y ��

��
σ-

x
o
p

-
ĥ
o
L

-
h
o
L

-
ŷ
o
m

-
y

o
m︸ ︷︷ ︸

Hidden layer
︸ ︷︷ ︸

Output layer

p input signals
L hidden neurons
m output neurons

In order to avoid a problem of counting an input layer, the two-layer architecture is referred to as a single
hidden layer neural network.

Input signals, x, are passed through synapses of the hidden layer with connection strengths described by
the hidden weight matrix, W h, and the L hidden activation signals, ĥ, are generated.

The hidden activation signals are then normalised by the functions ψ into the L hidden signals, h.

Similarly, the hidden signals, h, are first, converted into m output activation signals, ŷ, by means of the
output weight matrix, W y, and subsequently, into m output signals, y, by means of the functions σ. Hence

h = ϕ(W h · x) , y = σ(W y · h)

If needed, one of the input signals and one of the hidden signals can be constant to form a biasing signals.

Functions ϕ and σ can be identical.

A.P. Papliński 1–25

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

1.8 Static and Dynamic Systems — General Concepts

Static systems

Neural networks considered in previous sections belong to the class of static systems which can be fully
described by a set of m-functions of p-variables as in Figure 1–5.

f(x)-
x

o
p

-
y

o
m

Figure 1–5: A static system: y = f (x)

The defining feature of the static systems is that they are time-independent — current outputs depends
only on the current inputs in the way specified by the mapping function, f .
Such a function can be very complex.

Dynamic systems — Recurrent Neural Networks

In the dynamic systems, the current output signals depend, in general, on current and past input signals.

There are two equivalent classes of dynamic systems: continuous-time and discrete-time systems.

The dynamic neural networks are referred to as recurrent neural networks.

A.P. Papliński 1–26

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

1.9 Continuous-time dynamic systems

• Continuous-time dynamic systems operate with signals which are functions of a continuous variable,
t, interpreted typically as time. A spatial variable can be also used.

• Continuous-time dynamic systems are described by means of differential equations. The most
convenient yet general description uses only first-order differential equations in the following form:

ẏ(t) = f (x(t),y(t)) (1.3)

where
ẏ(t) df=

dy(t)

dt
is a vector of time derivatives of output signals.

• In order to model a dynamic system, or to obtain the output signals, the integration operation is
required. The dynamic system of eqn (1.3) is illustrated in Figure 1–6.

f(x,y)
-

x
o
p

-o
m

-
ẏ
o
m

∫
-
y

o
m

s

Figure 1–6: A continuous-time dynamic system: ẏ(t) = f(x(t),y(t))

• It is evident that feedback is inherent to dynamic systems.

A.P. Papliński 1–27

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

1.9.1 Discrete-time dynamic systems

• Discrete-time dynamic systems operate with signals which are functions of a discrete variable, n,
interpreted typically as time, but a discrete spatial variable can be also used.

• Typically, the discrete variable can be thought of as a sampled version of a continuous variable:

t = n · ts ; t ∈ R , n ∈ N

and ts is the sampling time

• Analogously, discrete-time dynamic systems are described by means of difference equations.

• The most convenient yet general description uses only first-order difference equations in the
following form:

y(n + 1) = f (x(n),y(n)) (1.4)

where y(n + 1) and y(n) are the predicted (future) value and the current value of the vector y,
respectively.

A.P. Papliński 1–28

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

• In order to model a discrete-time dynamic system, or to obtain the output signals, we use the unit
delay operator, D = z−1 which originates from the z-transform used to obtain analytical solutions to
the difference equations.

• Using the delay operator, we can re-write the first order difference equation into the following operator
form:

z−1y(n + 1) = y(n)

which leads to the structure as in Figure 1–7.

f(x,y)
-

x(n)
o
p

-o
m

-
y(n+1)

o
m

D -
y(n)
o
m

s

Figure 1–7: A discrete-time dynamic system: y(n+1) = f(x(n), y(n))

• Notice that feedback is also present in the discrete dynamic systems.

A.P. Papliński 1–29

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

1.9.2 Example: A continuous-time generator of a sinusoid

• As a simple example of a continuous-time dynamic system let us consider a linear system which
generates a sinusoidal signal.

• Eqn (1.3) takes on the following form: ẏ(t) = A · y(t) + B · x(t) (1.5)

where y =

 y1

y2

 ; A =

 0 ω

−ω 0

 ; B =

 0

b

 ; x = δ(t)

δ(t) is the unit impulse which is non-zero only for t = 0 and is used to describe the initial condition.

• In order to show that eqn (1.5) really describes the sinusoidal generator we re-write this equation for
individual components. This yields:

ẏ1 = ω y2 (1.6)
ẏ2 = −ω y1 + b δ(t)

• Differentiation of the first equation and substitution of the second one gives the second-order linear
differential equation for the output signal y1:

ÿ1 + ω2y1 = ω b δ(t)

• Taking the Laplace transform and remembering that Lδ(t) = 1, we have:

y1(s) = b
ω

s2 + ω2

A.P. Papliński 1–30

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

• Taking the inverse Laplace transform we finally have

y1(t) = b sin(ωt)

• The internal structure of the generator can be obtained from eqns (1.7) and illustrated using the
dendritic representation as in Figure 1–8.

-

-

∫ẏ1 y1

∫ẏ2 y2

δ(t)

@

b

r
@

−ω
r

@

ω

Figure 1–8: A continuous-time sinusoidal generator

• The generator can be thought of as a simple example of a linear recurrent neural network with the
fixed weight matrix of the form:

W = [B A] =

 0 0 ω

b −ω 0

• The weights were designed appropriately rather than “worked out” during the learning procedure.

A.P. Papliński 1–31

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

1.9.3 Example: A discrete-time generator of a sinusoid

• It is possible to build a discrete-time version of the sinusoidal generator using difference equations of
the general form as in eqn (1.4):

y(n + 1) = A · y(n) + B · x(n) (1.7)

where

A =

 cos Ω sin Ω

− sin Ω cos Ω

 ; B =

 0

b

 ; x(n) = δ(n)

• This time we take the z-transform directly of eqn (1.7), which gives:

(zI − A)y(z) = B ; where I =

 1 0

0 1

 , and Zδ(n) = 1

Hence
y(z) = (zI − A)−1B

and subsequently

y(z) = (

 z − cos Ω sin Ω

− sin Ω z − cos Ω

 0

b

)/(z2 − 2z cos Ω + 1)

Extracting the first component, we have

y1(z) =
b sin Ω

z2 − 2z cos Ω + 1

A.P. Papliński 1–32

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

Taking the inverse z-transform finally yields

y1(n + 1) = b sin(Ωn)

which means that the discrete-time dynamic system described by eqn (1.7) generates a sinusoidal
signal.

• The structure of the generator is similar to the previous one and is presented in Figure 1–9.

-

-

D
y1(n+1) y1(n)

D
y2(n+1) y2(n)

δ(n)

@

b

r@

cΩ

@

−sΩ
r

@

sΩ

@

cΩ

Figure 1–9: A discrete-time sinusoidal generator

• This time the weight matrix is:

W = [B A] =

 0 cΩ sΩ

b −sΩ cΩ

where
sΩ = sin Ω, and cΩ = cos Ω

A.P. Papliński 1–33

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

1.10 Introduction to learning

• In the previous sections we concentrated on the decoding part of a neural network assuming that the
weight matrix, W , is given.

• If the weight matrix is satisfactory, during the decoding process the network performs some useful task
it has been design to do.

• In simple or specialised cases the weight matrix can be pre-computed, but more commonly it is
obtained through the learning process.

• Learning is a dynamic process which modifies the weights of the network in some desirable way. As
any dynamic process learning can be described either in the continuous-time or in the discrete-time
framework.

• A neural network with learning has the following structure:

DECODING

W

LEARNING
(ENCODING)

�

W

-x r

-

-
yr

�

� d

A.P. Papliński 1–34

Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

• The learning can be described either by differential equations (continuous-time)

Ẇ (t) = L(W (t),x(t),y(t),d(t)) (1.8)

or by the difference equations (discrete-time)

W (n + 1) = L(W (n),x(n),y(n),d(n)) (1.9)

where d is an external teaching/supervising signal used in supervised learning.

• This signal in not present in networks employing unsupervised learning.

• The discrete-time learning law is often used in a form of a weight update equation:

W (n + 1) = W (n) + ∆W (n) (1.10)
∆W (n) = L(W (n),x(n),y(n),d(n))

A.P. Papliński 1–35

