
              UNIT-1 
LAPLACE   TRANSFORMS 

Introduction  

In many problems, a function is transformed to another function through a 
relation of the type:  

 

where is a known function. Here, is called integral transform of . Thus, an integral 

transform sends a given function into another function . This transformation of 

into provides a method to tackle a problem more readily. In some cases, it affords solutions 
to otherwise difficult problems. In view of this, the integral transforms find numerous 

applications in engineering problems. Laplace transform is a particular case of integral transform 

(where is defined on and ). As we will see in the following, 

application of Laplace transform reduces a linear differential equation with constant coefficients 
to an algebraic equation, which can be solved by algebraic methods. Thus, it provides a powerful 

tool to solve differential equations.  

It is important to note here that there is some sort of analogy with what we had learnt during the 
study of logarithms in school. That is, to multiply two numbers, we first calculate their 
logarithms, add them and then use the table of antilogarithm to get back the original product. In a 

similar way, we first transform the problem that was posed as a function of to a problem in 

, make some calculations and then use the table of inverse Laplace transform to get the 

solution of the actual problem.  

In this chapter, we shall see same properties of Laplace transform and its applications in so lving 
differential equations.  

Definitions and Examples  

DEFINITION 10.2.1 (Piece-wise Continuous Function)    

1. A function is said to be a piece-wise continuous function on a closed interval 

, if there exists finite number of points such 



that is continuous in each of the intervals for and has finite 
limits as approaches the end points, see the Figure 10.1.  

2. A function is said to be a piece-wise continuous function for , if is a 

piece-wise continuous function on every closed interval For example, see 

Figure 10.1.  

 

Figure 10.1: Piecewise Continuous Function 

DEFINITION 10.2.2 (Laplace Transform)   Let and Then for 

is called the LAPLACE TRANSFORM of and is defined by  

 
whenever the integral exists.  

(Recall that exists if exists and we define 

.) 
Remark 10.2.3    

1. Let be an EXPONENTIALLY BOUNDED function, i.e.,  

 

Then the Laplace transform of exists.  

http://nptel.ac.in/courses/122104018/node90.html#fig:piecewise
http://nptel.ac.in/courses/122104018/node90.html#fig:piecewise


2. Suppose exists for some function . Then by definition, 
exists. Now, one can use the theory of improper integrals to conclude that  

 

Hence, a function satisfying  

 

cannot be a Laplace transform of a function . 

DEFINITION 10.2.4 (Inverse Laplace Transform)   Let . That is, is the 

Laplace transform of the function Then is called the inverse Laplace transform of 

. In that case, we write  

Properties of Laplace Transform  

LEMMA 10.3.1 (Linearity of Laplace Transform)    

1. Let . Then  

 

 

 

   

  
 

 

   

2.  
 

3. If and , then  

 

The above lemma is immediate from the definition of Laplace transform and the linearity of the 

definite integral.  



EXAMPLE 10.3.2    

1. Find the Laplace transform of  

Solution: Thus  

 

2. Similarly,  

 

3. Find the inverse Laplace transform of .  

Solution:  

 

 

 

   

  
 

 

   

4.  

Thus, the inverse Laplace transform of is  

THEOREM 10.3.3 (Scaling by )   Let be a piecewise continuous function with Laplace 

transform Then for  

Proof. By definition and the substitution we get  
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EXERCIS E 10.3.4    

1. Find the Laplace transform of  

 

where and are arbitrary constants.  

 

Figure 10.2:  

2. Find the Laplace transform of the function given by the graphs in Figure 10.2.  

3. If , find .  

The next theorem relates the Laplace transform of the function with that of .  

THEOREM 10.3.5 (Laplace Transform of Differentiable Functions)   Let for be a 

differentiable function with the derivative, being continuous. Suppose that there exist 

constants and such that for all If then  

 

(10.3.1) 

http://nptel.ac.in/courses/122104018/node92.html#fig:lap:1


 
 

Proof. Note that the condition for all implies that  

 
So, by definition,  
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We can extend the above result for derivative of a function , if 

exist and is continuous for . In this case, a repeated 

use of Theorem 10.3.5, gives the following corollary.  

COROLLARY 10.3.6   Let be a function with If 

exist and is continuous for then  

 

(10.3.2) 

 
 

In particular, for , we have  

 

(10.3.3) 

 

 

COROLLARY 10.3.7   Let be a piecewise continuous function for . Also, let 

. Then  

 
EXAMPLE 10.3.8    

http://nptel.ac.in/courses/122104018/node92.html#thm:diff


1. Find the inverse Laplace transform of  

Solution: We know that Then and therefore, 

 

2. Find the Laplace transform of  

Solution: Note that and Also,  

 

Now, using Theorem 10.3.5, we get  

 

LEMMA 10.3.9 (Laplace Transform of )   Let be a piecewise continuous function 

with If the function is differentiable, then  

 

 

Proof. By definition, The result is obtained by differentiating both 
sides with respect to . height6pt width 6pt depth 0pt  

Suppose we know the Laplace transform of a and we wish to find the Laplace transform of 

the function Suppose that exists. Then writing gives  

 

http://nptel.ac.in/courses/122104018/node92.html#thm:diff


Thus, for some real number . As , we get 

 

Hence,we have the following corollary.  

COROLLARY 10.3.10   Let and Then  

 
EXAMPLE 10.3.11    

1. Find  

Solution: We know Hence  

2. Find the function such that  

Solution: We know and  

 

By lemma 10.3.9, we know that Suppose Then 

Therefore,  

 

Thus we get  

http://nptel.ac.in/courses/122104018/node92.html#lem:tft


LEMMA 10.3.12 (Laplace Transform of an Integral)   If then  

 

Equivalently,  

Proof. By definition,  

 
We don't go into the details of the proof of the change in the order of integration. We assume that 
the order of the integrations can be changed and therefore  

 
Thus,  
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EXAMPLE 10.3.13    

1. Find  

Solution: We know Hence  

 



2. Find  
Solution: By Lemma 10.3.12  

 

3. Find the function such that  

Solution: We know So,  

 

LEMMA 10.3.14 (  -Shifting)   Let Then for  

Proof.  
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EXAMPLE 10.3.15    

1. Find  

Solution: We know Hence  

2. Find  

Solution: By -Shifting, if then . Here, 

and  

http://nptel.ac.in/courses/122104018/node92.html#lem:integral


 

Hence,  

 

Inverse Transforms of Rational Functions  

Let be a rational function of . We give a few examples to explain the methods for 

calculating the inverse Laplace transform of  

EXAMPLE 10.3.16    

1. DENOMINATOR OF MATHEND000# HAS DISTINCT REAL ROOTS:  

 

 

Solution: Thus,  

 

2. DENOMINATOR OF MATHEND000# HAS DISTINCT COMPLEX ROOTS:  

 

 

Solution: Thus,  



 

3. DENOMINATOR OF MATHEND000# HAS REPEATED REAL ROOTS:  

 

 

Solution: Here,  

 

Solving for and , we get 

Thus, 

 

 


