
UNIT-2 

FOURIER SERIES 

A Fourier series is an expansion of a periodic function in terms of an infinite sum of sines 

and cosines. Fourier series make use of the orthogonality relationships of the sine and cosine 
functions. The computation and study of Fourier series is known as harmonic analysis and is 
extremely useful as a way to break up an arbitrary periodic function into a set of simple terms 

that can be plugged in, solved individually, and then recombined to obtain the solution to the 
original problem or an approximation to it to whatever accuracy is desired or practical. Examples 

of successive approximations to common functions using Fourier series are illustrated above.  

In particular, since the superposition principle holds for solutions of a linear homogeneous 
ordinary differential equation, if such an equation can be solved in the case of a single sinusoid, 
the solution for an arbitrary function is immediately available by expressing the original function 

as a Fourier series and then plugging in the solution for each sinusoidal component. In some 
special cases where the Fourier series can be summed in closed form, this technique can even 

yield analytic solutions.  

Any set of functions that form a complete orthogonal system have a corresponding generalized 
Fourier series analogous to the Fourier series. For example, using orthogonality of the roots of a 
Bessel function of the first kind gives a so-called Fourier-Bessel series.  

The computation of the (usual) Fourier series is based on the integral identities  
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for , where is the Kronecker delta.  

Using the method for a generalized Fourier series, the usual Fourier series involving sines and 
cosines is obtained by taking and . Since these functions form a complete 
orthogonal system over , the Fourier series of a function is given by  
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where  
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and , 2, 3, .... Note that the coefficient of the constant term has been written in a special 
form compared to the general form for a generalized Fourier series in order to preserve 
symmetry with the definitions of and .  

The Fourier cosine coefficient and sine coefficient are implemented in the Wolfram 

Language as FourierCosCoefficient[expr, t, n] and FourierSinCoefficient[expr, t, n], 

respectively.  

A Fourier series converges to the function (equal to the original function at points of continuity 
or to the average of the two limits at points of discontinuity)  
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if the function satisfies so-called Dirichlet boundary conditions. Dini's test gives a condition for 
the convergence of Fourier series.  

 

As a result, near points of discontinuity, a "ringing" known as the Gibbs phenomenon, illustrated 
above, can occur.  

For a function periodic on an interval instead of , a simple change of variables 

can be used to transform the interval of integration from to . Let  
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Solving for gives , and plugging this in gives  
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Therefore,  
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Similarly, the function is instead defined on the interval , the above equations simply 
become  
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In fact, for periodic with period , any interval can be used, with the choice 
being one of convenience or personal preference (Arfken 1985, p. 769).  

The coefficients for Fourier series expansions of a few common functions are given in Beyer 
(1987, pp. 411-412) and Byerly (1959, p. 51). One of the most common functions usually 
analyzed by this technique is the square wave. The Fourier series for a few common functions 

are summarized in the table below.  

function 
 

Fourier series 

Fourier series--sawtooth wave  

 
 

Fourier series--square wave  

  

Fourier series--triangle wave  
 

 

If a function is even so that , then is odd. (This follows since is 
odd and an even function times an odd function is an odd function.) Therefore, for all . 
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Similarly, if a function is odd so that , then is odd. (This follows since 
is even and an even function times an odd function is an odd function.) Therefore, 

for all .  

The notion of a Fourier series can also be extended to complex coefficients. Consider a real-
valued function . Write  
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Now examine  
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so  
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The coefficients can be expressed in terms of those in the Fourier series  
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For a function periodic in , these become  
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These equations are the basis for the extremely important Fourier transform, which is obtained 
by transforming from a discrete variable to a continuous one as the length .  

The complex Fourier coefficient is implemented in the Wolfram Language as 
FourierCoefficient[expr, t, n].  

Properties 

We say that f belongs to if f is a 2π-periodic function on R which is k times differentiable, 
and its kth derivative is continuous. 

 If f is a 2π-periodic odd function, then an = 0 for all n. 
 If f is a 2π-periodic even function, then bn = 0 for all n. 

 If f is integrable, , and This result is known as the Riemann–Lebesgue 

lemma. 
 A doubly infinite sequence {an} in c0(Z) is the sequence of Fourier coefficients of a 

function in L1([0, 2π]) if and only if it is a convolution of two sequences in . See [12] 

 If , then the Fourier coefficients of the derivative f′ can be expressed in terms of 

the Fourier coefficients of the function f, via the formula . 

 If , then . In particular, since tends to zero, we have that tends to zero, 
which means that the Fourier coefficients converge to zero faster than the kth power of n. 

 Parseval's theorem. If f belongs to L2([−π, π]), then . 

 Plancherel's theorem. If are coefficients and then there is a unique function 

such that for every n. 
 The first convolution theorem states that if f and g are in L1([−π, π]), the Fourier series 

coefficients of the 2π-periodic convolution of f and g are given by: 
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 The second convolution theorem states that the Fourier series coefficients of the product 

of f and g are given by the discrete convolution of the and sequences: 
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