UNIT-1V

Wave equations for conducting & perfect dielectric media

Uniform plane waves & relations b/w E & H and sinusoidal variations
Wave propagation: In lossless and conducting media

polarization

Wave propagation: In good conductors and good dielectrics



Wave equations:

The Maxwell's equations in the differential form
vxF =TF+22
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Let us consider a source free uniform medium having dielectric constant £, magnetic
permeability H and conductivity & . The above set of equations can be written as
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Using the vector identity ,
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In the same manner for equation eqn 1
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Since ' =0 from eqn 4, we can write

— 3 FH
VUH = pa| —— g
“ [a ] i
These two equations
-
?EE=,MJB—+,HE—§
ot
— H P H
VH = po| — |+ pe| —
H9 ] H [ g ]

are known as wave equations.

Uniform plane waves: A uniform plane wave is a particular solution of Maxwell's equation
assuming electric field (and magnetic field) has same magnitude and phase in infinite planes
perpendicular to the direction of propagation. It may be noted that in the strict sense a uniform
plane wave doesn't exist in practice as creation of such waves are possible with sources of
infinite extent. However, at large distances from the source, the wavefront or the surface of the
constant phase becomes almost spherical and a small portion of this large sphere can be
considered to plane. The characteristics of plane waves are simple and useful for studying many
practical scenarios

Let us consider a plane wave which has only E. component and propagating along z . Since the

plane wave will have no variation along the plane perpendicular to z
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i.e., xy plane, . The Helmholtz's equation reduces to,

The solution to this equation can be written as
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£y & B are the amplitude constants (can be determined from boundary conditions).

£x(2.8) = Re(E, (2)e™)

In the time domain,
£x(z,8) = B cos(at —dz )+ B cos(at + iz
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i s & A
assuming are real constants.
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Here, Ex (2.8) = By voslaz - fz) represents the forward traveling wave. The plot of
several values of t is shown in the Figure below
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Figure : Plane wave traveling in the + 7 direction

As can be seen from the figure, at successive times, the wave travels in the +z direction.

If we fix our attention on a particular point or phase on the wave (as shown by the dot) i.e.

constant
Then we see that as 7 is increased to  + & , z also should increase to £ +42 50 that
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we write 7" & df = phase velocity 'Z .
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If the medium in which the wave is propagating is free space i.e., T8 HT M4
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Where 'C" is the speed of light. That is plane EM wave travels in free space with the speed of light.

The wavelength A is defined as the distance between two successive maxima (or minima or any other
reference points).
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Thus wavelength A also represents the distance covered in one oscillation of the wave. Similarly,

£z f)1=H, a + iz
[Z’ ) 0 ms[ ) represents a plane wave traveling in the -z direction.

The associated magnetic field can be found as follows:
From (6.4),
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k - HE i is the intrinsic impedance of the medium.

When the wave travels in free space

7, = 1P = 1007 - 37762
Fa is the intrinsic impedance of the free space.

In the time domain,

where
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Which represents the magnetic field of the wave traveling in the +z direction.

For the negative traveling wave,
+
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For the plane waves described, both the E & H fields are perpendicular to the direction of propagation, and
these waves are called TEM (transverse electromagnetic) waves.



The E & H field components of a TEM wave is shown in Fig below
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Figure : E & H fields of a particular plane wave at time t.
Poynting Vector and Power Flow in Electromagnetic Fields:

Electromagnetic waves can transport energy from one point to another point. The electric and magnetic
field intensities asscociated with a travelling electromagnetic wave can be related to the rate of such
energy transfer.

Let us consider Maxwell's Curl Equations:

Using vector identity
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In simple medium where SHand T are constant, we can write
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Applying Divergence theorem we can write,
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The term represents the rate of change of energy stored in the electric and

magnetic fields and the term represents the power dissipation within the volume. Hence right
hand side of the equation (6.36) represents the total decrease in power within the volume under
consideration.

f(ExH)dszdeS o
The left hand side of equation (6.36) can be written as where &= E*H
(W/mt?) is called the Poynting vector and it represents the power density vector associated with the
electromagnetic field. The integration of the Poynting vector over any closed surface gives the net power
flowing out of the surface. Equation (6.36) is referred to as Poynting theorem and it states that the net
power flowing out of a given volume is equal to the time rate of decrease in the energy stored within the
volume minus the conduction losses.

Poynting vector for the time harmonic case:

. . . L Jot .
For time harmonic case, the time variation is of the form ¢° |, and we have seen that instantaneous value

' caf
of a quantity is the real part of the product of a phasor quantity and 2" When ©08 @ is ysed as
reference. For example, if we consider the phasor

E[z) = cx: E,(z)= cx: Eo e
then we can write the instanteneous field as
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when E,, is real.
Let us consider two instanteneous quantities A and B such that
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where A and B are the phasor quantities.
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Therefore,
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Since A and B are periodic with period @ | the time average value of the product form AB, denoted
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Further, considering the phasor quantities 4 and B, we find that
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The poynting vector F=E»H canbe expressed as

P-a,(B,H,-EH,)+a,(EH, - EH,)  a,(EH, - BH,)

If we consider a plane electromagnetic wave propagating in +z direction and has only £, component, from
(6.42) we can write:

— a

Fr=£E [z,iny [z,z‘,:l.::;3

Using (6)
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where , for the plane wave under consideration.

For a general case, we can write



Pu =Re(5)
and time average of the instantaneous Poynting vector is given by .
Polarisation of plane wave: The polarisation of a plane wave can be defined as the orientation of the
electric field vector as a function of time at a fixed point in space. For an electromagnetic wave, the
specification of the orientation of the electric field is sufficent as the magnetic field components are related
to electric field vector by the Maxwell's equations.

Let us consider a plane wave travelling in the +z direction. The wave has both E, and E, components.
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The corresponding magnetic fields are given by,
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Depending upon the values of £, and £, we can have several possibilities:
1. If Eoy = 0, then the wave is linearly polarised in the x-direction.
2. If Eoy = 0, then the wave is linearly polarised in the y-direction.

3.If £, and Eoy are both real (or complex with equal phase), once again we get a linearly polarised wave

Eﬂ'

-1 = ay

tan

with the axis of polarisation inclined at an angle By , With respect to the x-axis. This is shown in
fig1 below




Fig1 : Linear Polarisation

4. If Eox and Eoy are complex with different phase angles, & will not point to a single spatial direction.
This is explained as follows:

Lot For =Bl

g, -|g, 1
Then,
E(z6)=Fe [|Em|e‘m£"?ﬁxej"”] = |Em |n:os (@t — Bz +a)

a®

E,

e""’ﬁxea""""’] = cos{ @t — Sz +h)

E,

ACR) =Re[

an

b=
To keep the things simple, let us consider a =0 and
field on the z =0 plain.

i
2 Further, let us study the nature of the electric

From equation (2) we find that,
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and the electric field vector at z = 0 can be written as
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Assuming , the plot of E[G"ﬁ) for various values of t is hown in figure 2
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Figure 2 : Plot of E(o0,?)

From equation (6.47) and figure (6.5) we observe that the tip of the arrow representing electric field vector
traces gn ellipse and the field is said to be elliptically polarised.

Figure 3: Polarisation ellipse
The polarisation ellipse shown in figure 3 is defined by its axial ratio(M/N, the ratio of semimajor to

semiminor axis), tilt angle W (orientation with respect to xaxis) and sense of rotation(i.e., CW or CCW).
Linear polarisation can be treated as a special case of elliptical polarisation, for which the axial ratio is
infinite.

| .::x| ap

In our example, if , from equation the tip of the arrow representing electric field vector traces
out a circle. Such a case is referred to as Circular Polarisation. For circular polarisation the axial ratio is
unity
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Figure 5: Circular Polarisation (RHCP)

Further, the circular polarisation is aside to be right handed circular polarisation (RHCP) if the electric field
vector rotates in the direction of the fingers of the right hand when the thumb points in the direction of
propagation-(same and CCW). If the electric field vector rotates in the opposite direction, the polarisation is
asid to be left hand circular polarisation (LHCP) (same as CW).In AM radio broadcast, the radiated

electromagnetic wave is linearly polarised with the £ field vertical to the ground( vertical polarisation)
where as TV signals are horizontally polarised waves. FM broadcast is usually carried out using circularly
polarised waves.In radio communication, different information signals can be transmitted at the same
frequency at orthogonal polarisation ( one signal as vertically polarised other horizontally polarised or one as
RHCP while the other as LHCP) to increase capacity. Otherwise, same signal can be transmitted at
orthogonal polarisation to obtain diversity gain to improve reliability of transmission.

Behaviour of Plane waves at the inteface of two media: We have considered the propagation of uniform
plane waves in an unbounded homogeneous medium. In practice, the wave will propagate in bounded

; £ oa. L .
regions where several values of il be present. When plane wave travelling in one medium meets

a different medium, it is partly reflected and partly transmitted. In this section, we consider wave reflection
and transmission at planar boundary between two media.

Fig 6 : Normal Incidence at a plane boundary

Case1: Let z = 0 plane represent the interface between two media. Medium 1 is characterised by

8, b T, £ oy . o
(& 44.07) and medium 2 is characterized by RN .Let the subscripts 'i' denotes incident, '7'
denotes reflected and 'f' denotes transmitted field components respectively.
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The incident wave is assumed to be a plane wave polarized along x and travelling in medium 1 along "%

direction. From equation (6.24) we can write

E;‘ [z) =He " a,

Hi(z) = la:XEia (z) ~ B e ay
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where and

Because of the presence of the second medium at z =0, the incident wave will undergo partial reflection

s

g

and partial transmission.The reflected wave will travel along in medium 1.
The reflected field components are:
L 3)
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The transmitted wave will travel in medium 2 along %z for which the field components are
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In medium 1,
§1 =§i +§r and E1 = Ez’ +§r
and in medium 2,

Applying boundary conditions at the interface z = 0, i.e., continuity of tangential field components and
noting that incident, reflected and transmitted field components are tangential at the boundary, we can write

E:{0)+Er (0)=E: {0)
o Hi(0)+H: (0) = He(0)
From equation 3to 6 we get,
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is called the reflection coefficient.

From equation (8), we can write

Ez‘a E?h Eia = TE&:
or Tt
7=_
L ©)

is called the transmission coefficient.

We observe that,



T = Ny _ Mty =1+

The following may be noted

(i) both * and T are dimensionless and may be complex
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Let us now consider specific cases:

Case I: Normal incidence on a plane conducting boundary

T a, =
The medium 1 is perfect dielectric [ 1 ) and medium 2 is perfectly conducting [ 2 m) .

S = 24
S
7y =0

h =Jliew) (jes)
=J@imE = J4
From (9) and (10)
L=
and T =0

Hence the wave is not transmitted to medium 2, it gets reflected entirely from the interface to the medium
1.
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Proceeding in the same manner for the magnetic field in region 1, we can show that,

- o 2R
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The wave in medium 1 thus becomes a standing wave due to the super position of a forward travelling

wave and a backward travelling wave. For a given '¢’, both E1 gng A1 vary sinusoidally with distance
measured from z = 0. This is shown in figure 6.9.
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Zeroes of E,(z,¢) and Maxima of H,(z,?).
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Case2: Normal incidence on a plane dielectric boundary : If the medium 2 is not a perfect conductor

=
(i.e. Gp ™ ) partial reflection will result. There will be a reflected wave in the medium 1 and a transmitted
wave in the medium 2.Because of the reflected wave, standing wave is formed in medium 1.

From equation (10) and equation (13) we can write
El:E&:( T+ )Clx

Let us consider the scenario when both the media are dissipation less i.e. perfect dielectrics (
ap =0, =0

)
W= Janfing =08 = %
1
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In this case both h and 7z become real numbers.

E = &;»;Ei‘, (E"Pﬁ" + 1"2""'3'3)
= axﬁ;-(, ([1 i Tj oI T (émx _ g—mx))
= axE, (Te ™% +T(2sin §2))

From (6.61), we can see that, in medium 1 we have a traveling wave component with amplitude TE,, and a
standing wave component with amplitude 2JE,,. The location of the maximum and the minimum of the
electric and magnetic field components in the medium 1from the interface can be found as follows. The
electric field in medium 1 can be written as

El = éx.»:‘?,-‘,e‘”'” [1 + reﬂﬁx)

.................. (17)
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The maximum value of the electric field is
B =g (1+T
| w S (18)
and this occurs when
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The maximum value of is ¥ which occurs at the z,,, locations and the minimum value of
|&L E,(1+TY) . . .
is which occurs at z,,, locations as given by the equations (6.64) and (6.66).
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From our discussions so far we observe that L can be written as
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The quantity S is called as the standing wave ratio.

0<r|<1
S

A the range of S'is given by =8 =co

From (6.62), we can write the expression for the magnetic field in medium 1 as

El = a,v E—” o A (1 - reﬂ’ﬁx)
oo (23)

H)| |
From (6.68) we find that | will be maximum at locations where is minimum and vice versa.

In medium 2, the transmitted wave propagates in the + z direction.

Oblique Incidence of EM wave at an interface: So far we have discuss the case of normal incidence
where electromagnetic wave traveling in a lossless medium impinges normally at the interface of a second
medium. In this section we shall consider the case of oblique incidence. As before, we consider two cases

.When the second medium is a perfect conductor.
ii.When the second medium is a perfect dielectric.

A plane incidence is defined as the plane containing the vector indicating the direction of propagation of the
incident wave and normal to the interface. We study two specific cases when the incident electric field £y

is perpendicular to the plane of incidence (perpendicular polarization) and Eijs parallel to the plane of
incidence (parallel polarization). For a general case, the incident wave may have arbitrary polarization but
the same can be expressed as a linear combination of these two individual cases.

Oblique Incidence at a plane conducting boundary
i.Perpendicular Polarization

The situation is depicted in figure 8.
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Figure 8: Perpendicular Polarization
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As the EM field inside the perfect conductor is zero, the interface reflects the incident plane wave. #= and

-~

&» respectively represent the unit vector in the direction of propagation of the incident and reflected

waves, 4 is the angle of incidence and & is the angle of reflection.
We find that

Gai = iz COS &+ @y 50 &
Gar = ~dz COSE, Tarsind,

Since the incident wave is considered to be perpendicular to the plane of incidence, which for the present
case happens to be xz plane, the electric field has only y-component.

Ei (x,z)= ayﬂ'&,é‘_’r’aﬁ"' T

-~ — 7 & xsind+acos
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Therefore,

The corresponding magnetic field is given by

— 1 - —
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Similarly, we can write the reflected waves as

£y (x.z)= a yEme_"f’Bla_" T

xsind—zc Ds&rj

= ayEmé'_Jﬁllz
Since at the interface z=0, the tangential electric field is zero.

—i B xeind, —iBxEing, _
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Consider in equation (6.72) is satisfied if we have
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and & =8,

The condition 5'1 N ,5!? is Snell's law of reflection.
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The total electric field is given by
EE'H [x,z) = E;- [x,z) +§r [x,z)
= —ay, 2jF, sin( fzcos 8 :le_"?.’alxsm'%
Similarly, total magnetic field is given by

H (x,z)= —EE—” [&x cos & cos | fz cos ﬂ)eﬂﬁlmn&i + s j sin & sin (Gzcos &, :lé'_j’&lxsm'% ]
G

From eqns (31) and (32) we observe that

1. Along z direction i.e. normal to the boundary

y component of E and x component of f maintain standing wave patterns according to

sin f,2 and "°F Az where Az = foosd . No average power propagates along z as y

component of £ and x component of H are out of phase.
2. Along x i.e. parallel to the interface

y component of £ and z component of  arein phase (both time and space) and propagate with
phase velocity

8, Bsing

and 4, = X - A
By sng )

The wave propagating along the x direction has its amplitude varying with z and hence constitutes a non

uniform plane wave. Further, only electric field ) is perpendicular to the direction of propagation (i.e. x),
the magnetic field has component along the direction of propagation. Such waves are called transverse
electric or TE waves.

ii. Parallel Polarization:

In this case also “»i and “» are given by equations (6.69). Here Hi and 7 have only y component.
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Figure 9: Parallel Polarization
With reference to fig 9: the field components can be written as:

Incident field components:

—

Ei(x,z)=E, [n::os 5‘5&:’: —sin aéx] e_"r.’al[

xsin & +ecosd |

i (x,2) 3y B o I8z
B, (34)
Reflected field components:
= - -~ —i B[ xsing, —zcos8
Ey(x,z)=E, |arcosd, +aszsin 5';,]&' J A rsindy acosty
— ~ B —jg(reng-
Fy(57) -3, B Bl
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Since the total tangential electric field component at the interface is zero.

£, [x,0)+ E[x,U) =

--E

Which leads to 2 wand & = & as before.

Substituting these quantities in (6.79) and adding the incident and reflected electric and magnetic field
components the total electric and magnetic fields can be written as

E; (x.z)=-2E, éxj' cos & sin [ fzros g+ Gz sin 8 cos( fzcos 5'!:]] g~/ ArsIng
and Hi (x.z) = &y 25 cos fzcosd )e_"r.’glxsm'?"
#
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Once again, we find a standing wave pattern along z for the x and y components of Eand # , while a

3
v, =—L v, =

Plx . ¥l
non uniform plane wave propagates along x with a phase velocity given by sin €] where
Since, for this propagating wave, magnetic field is in transverse direction, such waves are called

transverse magnetic or TM waves.

| ®

Oblique incidence at a plane dielectric interface : We continue our discussion on the behavior of plane
waves at an interface; this time we consider a plane dielectric interface. As earlier, we consider the two
specific cases, namely parallel and perpendicular polarization.



F
X
E?’, H?" - —
By, Hr
,
S T i) N
Hl .z
=g
o Ei, Hi
Medium 1 Medium 2
'%.’r'hl'l’ﬂ-l:D Ez:,-“g,llji=|:|

For the case of a plane dielectric interface, an incident wave will be reflected partially and transmitted

partially. In Fig(6.12), 8.6 md6, corresponds respectively to the angle of incidence, reflection and

transmission.

1. Parallel Polarization : As discussed previously, the incident and reflected field
components can be written as

— - . -~ — [ B[ x8in & +Ecos
Ei(x.z)=£E, [n:os 8 atx —smﬂiax]e 14 rein & acosty)
- - : - IS].II SC05
Hi I:x,z) dy —= “’ Jﬁ( 20058
L, (37)
— - -~ —§ B[ xsind, —Zcosd,
By (x,z)=E, |a:cosd, +assin 5',]:3 3 xsiney ’)
—_ - IS].II EC05
H» [x,zj ——a:y—”’ J Ay reingy-zcosty )
L, (38)
In terms of the reflection coefficient [
— - xsmé‘ — 20088,
Ey(x,2) [ﬂx cosé, + s s1n5] S rsincy= 7)
— ~ TE —igfrming -zcosd
Hy (x,z) =—gy—Leg Jorsingy 7)
L, (39)
The transmitted filed can be written in terms of the transmission coefficient T
- - IS].I'I. +zCos
E:[x [czx cos &, —czxsmé'] ‘}’&2 % St)
— -~ TH - YEInd, +20088
He(zz)=ay e S8y rsingy ecost)
i, (40)

We can now enforce the continuity of tangential field components at the boundary i.e. z=0



cos ﬂe_j’&lmn'% +cos H?E_j’&lmm’ =T cos gﬁ—j,&;xsin&;
lg—j,&llxsin&, _ Lg—j,ﬂlxsin&., _ E E—j,ﬁzxsmﬂ;
%) g T (41)

and

If both = and Hv” are to be continuous at z=0 for all x , then form the phase matching we have

Geind = Gend, = &850 8

"+ We find that
8-8,
and Sand =408

Further, from equations (6.86) and (6.87) we have
cos& +lcosd =Tcos
1 7

and —— — =
T T T (43)

cos & (1+T) =Tcosd,
and L(1-Ty= 2

H g

cos & (1+T) = H—E(I—rjcosﬂ
G|

C(mcos 8 taycos ) =ny 0088, — 4 cos

C- mycos 8 —mcos

or  Patesbtmeosb (44)
and T=22(1-T)
G
_ Zuy ooz,
PpCOSEFMEOSE (45)

From equation (6.90) we find that there exists specific angle =4 for which I = 0 such that

#ycosd = cosf,



Jl-sin’g = %Jl—smﬂ 8,

or TR, (46)
sand, = —san g,
Further, T (47)
For non magnetic material HLT T Hy
Using this condition
. & .
1-zin* g =—1[1—sm2 5{,,)
£
and sin® &, = —zin” &,
T (48)

From equation (6.93), solving for sin &) we get
1

=
1+ 2L
£

sind, =

This angle of incidence for which I' = 0is called Brewster angle. Since we are dealing with parallel

. . g
polarization we represent this angle by Il so that

2. Perpendicular Polarization

For this case

B (5.2) =3, 4 AR s

Ez‘ (x,z) = E_i" _&x cos 5} + ax sin 5‘; ]e—,i"ﬁl[xsmﬁg +zc::-s|5rj:]

nEe T (49)
B, (n2) - BoT B Ao 08
Er I:x,z) = E [ax Cos Er + ax sin 5';,] é_j-ﬁ(xsinﬂr-zms&rj

R (50)
E‘Pt I:x, z:l = a}l TEigE_J.ﬁ(xsmﬂ-'-zc Dsﬂ)
E:r [x,z) = TE;‘:: [_&x cos 5; +&x sin 5,:] E—j'ﬁ[xsmﬁﬁaccsﬂj
SO (51)



Using continuity of field components at z=0
A AxEnG | o -fGxsing _ TE, o eingy
1 o . 1" . - T e .
and ——rcos Be TAYENG | o Be TAYNG _ _ ~ cog Be J Eppeingy
! ! B (52)

As in the previous case

Geind = Gend = G an g

& =8
and sin & = ﬁsin a
......................... (53)
Using these conditions we can write
1+I'=T
cosd  [cozd Trosd,

— + = —

% ! i TR (54)

From equation (6.99) the reflection and transmission coefficients for the perpendicular polarization can be
computed as

r _mcosf —acosd,

Hycosd Hamcos s

2uycosd

and T =

H

2|::-::|s.:5'!. +P‘5'1|:OSEI (55)

8 =8

We observe that if I = 0 for an angle of incidence ™!

#ycosdy =mcoes

S 2
Socost g = o &,
)
£

Ly

" 1-sin?g, =29 (1-4in? )
HEy

sn g, = A sin &,
Again
HE)
ey

i 2 2
Josint g = sn” &,



1- A8 gt g | = AR g0
gy HiEy  HE
sin? 8 M8 HyE | 1- M8
or Mgy M5 HE;
- HE; — HE
sin? g, |52 |5 = [AA% 45
or E by HEy
sin g, = Hy [ﬁ*’liﬂ _ﬁ*’zfl)
or El(’”l Ha ) ......................... (56)

We observe if B R i.e. in this case of non magnetic material Brewster angle does not exist as the
denominator or equation (6.101) becomes zero. Thus for perpendicular polarization in dielectric media, there

is Brewster angle so that I" can be made equal to zero.

From our previous discussion we observe that for both polarizations

_A

sand, = —=zsn 8,

. & .
sn &, = ||—1 sin &,
&
2

If -"S*r1=."5'{2=.‘5'{lil

5'1}5'2; 8 >8

For

g-g g, = i 8. = zin |Ii
The incidence angle ¥ for which 2je. b is called the critical angle of incidence.

If the angle of incidence is larger than & total internal reflection occurs. For such case an evanescent
wave exists along the interface in the x direction (w.r.t. fig (6.12)) that attenuates exponentially in the
normal i.e. z direction. Such waves are tightly bound to the interface and are called surface waves.

Solved examples:

1. The magnetic field component of an EM wave propagating through a non magnetic dielectric
medium is given by

H =6cos(2x10°¢ - 6x)a, Afm

Determine the permittivity of the medium and the electric field intensity.



Solution :

H= rSl:os(EXlDB.ﬁ _6.?:)&}!

o= 2w108
8=6

A

2x10%fe, _

Adm

3x10°
or JE =9
or £ =nl
.. The dielectric constant of the medium=81
E = _?}‘ax KE

0 6 cos (2x10% - 6x)ax X Vim

L
e

1207

- 6cos(2x10% ~6z)as  Vim
9

2. A plane wave travelling along +z direction is incident normally on a perfect conducting wall at
z=0.The reflected field is given by

E, (z) = E,:,(—ax +;&y)e~ﬂ“

(a) Determine the incident field and its polarisation.
(b) Determine the current density induced on the conducting wall.

Solution : Tangential component of the electric field is zero on a metallic wall.

(BT,

=]

and

At z=0



Sl represents a right hand circularly polarized wave.

A

Figure
(b) At z=0

3. The magnetic field component of a plane wave in a lossless non magnetic dielectric medium is



given by

Determine
(a)Wavelength and wave velocity
(b)Electric field component and polarization of the wave.

Solution :

(@)

A

Also

A

This is a linearly polarized wave travelling along x.



Questions:

A

Bits:

1. For a uniform plane wave propagating in x-direction E =0 and H =0



|0

17.
18.
19.

Intrinsic impedance of a medium is

Attenuation constant in free space is zero

Phase constant in free space is

Phase velocity of free space is v,=

Attenuation constant in good conductors is

Depth of penetration is
Complex pointing vector is E = H* (yes/no)
In a circular polarization , E,_and E components have the same magnitude

Power density is represented by pointing vector

Unit of propagation constant is m

Horrizontal polarization is said to be linear polarization.

Brewster angle is given by

If the Depth of penetration of a plane wave in a mediam is 2mm,the attenuation constant

is 0.5x103m

If 0.2 rad/m

When an EM wave is incident on a perfect conductor normally , standing waves are

produced

The velocity of EM wave is inversely proportional to

The direction propagation of EM wave is obtained by E = H

Uniform plane wave is transverse in nature

Complex pointing vector P is



