
ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES: : TIRUPATI

 Venkatapuram(Village),Renigunta(Mandal),Tirupati,Chitoor District, Andhra Pradesh-517520.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NAME OF THE FACULTY: A.MRINALINI

REGULATION: B.TECH II-II SEMESTER

SUBJECT: (15A05403) OBJECT ORIENTED PROGRAMMING USING THOUGH JAVA

Unit-2

UNIT II:

Operators:

Arithmetic Operators, The Bitwise Operators, Relational Operators, Boolean Logic operators,

The assignment operator, The ? Operator, Operator Precedence, Using Parentheses.

Control Statements:

Java’s selection Statements, Iteration statements, Jump Statements.

Introducing Classes:

Class Fundamentals, Declaring Objects, Assuming Object reference Variables, Introducing

Methods, Constructors, The this Keyword, Garbage Collection, The Finalize() method, A Stack

class. Overloading Methods, Using Object as Parameter, Argument Passing, Returning Objects,

Recursion, Introducing Access control, Understanding static, Introducing Nested and Inner

classes, Exploring the String class, Using Command line Arguments, Varargs: variable-Length

Arguments.

Operators in java Language

Arithmetic operators

Operator Use Description

+ x + y Adds x and y

-
x - y Subtracts y from x

-x Arithmetically negates x

* x * y Multiplies x by y

/ x / y Divides x by y

% x % y Computes the remainder of dividing x by y

Operator Use Description

++
x++ y = x++; is the same as y = x; x = x + 1;

++x y = ++x; is the same as x = x + 1; y = x;

--
x-- y = x--; is the same as y = x; x = x - 1;

--x y = --x; is the same as x = x - 1; y = x;

Java Example:

public class BasicArithmeticDemo
{

 public static void main(String[] args)
 {
 int number1 = 10;
 int number2 = 5;

 //calculating number1 + number2;
 int sum = number1 + number2;

 //calculating number1 - number2;
 int difference = number1 - number2;

 //calculating number1 * number2;
 int product = number1 * number2;

 //calculating number1 / number2;
 int quot = number1 / number2;

 //calculating number1 % number2;
 int rem = number1 % number2;

 //Displaying the values
 System.out.println("number1 : "+number1);
 System.out.println("number2 : "+number2);
 System.out.println("sum : "+sum);
 System.out.println("difference : "+difference);
 System.out.println("product : "+product);
 System.out.println("quot : "+quot);
 System.out.println("rem : "+rem);
 }

Relational Operators

Operator Use Description

> x > y x is greater than y

>= x >= y x is greater than or equal to y

< x < y x is less than y

<= x <= y x is less than or equal to y

== x == y x is equal to y

!= x != y x is not equal to y

class ComparisonDemo {

 public static void main(String[] args){

 int value1 = 1;

 int value2 = 2;

 if(value1 == value2)

 System.out.println("value1 == value2");

 if(value1 != value2)

 System.out.println("value1 != value2");

 if(value1 > value2)

 System.out.println("value1 > value2");

 if(value1 < value2)

 System.out.println("value1 < value2");

 if(value1 <= value2)

 System.out.println("value1 <= value2");

 }

}

Bitwise Operators

Operator Use Evaluates to true if

~ ~x Bitwise complement of x

& x & y AND all bits of x and y

| x | y OR all bits of x and y

^ x ^ y XOR all bits of x and y

>> x >> y Shift x right by y bits, with sign extension

>>> x >>> y Shift x right by y bits, with 0 fill

<< x << y Shift x left by y bits

public class BitwiseLogicalOpDemo {

public static void main(String[] args) {

//Integer bitwise logical operator

int a = 65; // binary representation 1000001

int b = 33; // binary representation 0100001

System.out.println("a & b= " + (a & b));

System.out.println("a | b= " + (a | b));

System.out.println("a ^ b= " + (a ^ b));

System.out.println("~a= " + ~a);

}}

The Bitwise NOT
Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of its

operand. For example, the number 42, which has the following bit pattern:

00101010

becomes

11010101

after the NOT operator is applied.

The Bitwise AND
The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced

in all other cases. Here is an example:

00101010 42

&00001111 15

00001010 10

The Bitwise OR
The OR operator, |, combines bits such that if either of the bits in the operands is a 1,

then the resultant bit is a 1, as shown here:

00101010 42

|

00001111 15

00101111 47

The Bitwise XOR
The XOR operator, ^, combines bits such that if exactly one operand is 1, then the result is 1.

Otherwise, the result is zero. The following example shows the effect of the ^. This example also

demonstrates a useful attribute of the XOR operation. Notice how the bit pattern of 42 is inverted

wherever the second operand has a 1 bit. Wherever the second operand has a 0 bit, the first

operand is unchanged. You will find this property useful when performing some types of bit

manipulations.

00101010 42

^

00001111 15

00100101 37

The Left Shift
The left shift operator, <<, shifts all of the bits in a value to the left a specified number of times.

It has this general form:

value << num

Here, num specifies the number of positions to left-shift the value in value. That is, the <<

moves all of the bits in the specified value to the left by the number of bit positions specified by

num. For each shift left, the high-order bit is shifted out (and lost), and a zero is brought in on the

right. This means that when a left shift is applied to an int operand,bits are lost once they are

shifted past bit position 31. If the operand is a long, then bits are lost after bit position 63

 Logical Boolean Operators

Operator Use Evaluates to true if

&& x && y Both x and y are true

|| x || y Either x or y are true

! !x x is not true

Eg:-

public class BitwiseLogicalOpDemo {

public static void main(String[] args) {

//Integer bitwise logical operator

int a = 65; // binary representation 1000001

int b = 33; // binary representation 0100001

System.out.println("a && b= " + (a && b));

System.out.println("a | |b= " + (a | |b));

System.out.println("!a= " + !a);

}}

Assignment Operators

Operator Use Shortcut for
= x = y x = y
+= x += y x = x + y
-= x -= y x = x - y
*= x *= y x = x * y
/= x /= y x = x / y
%= x %= y x = x % y

&= x &= y
x = x & y (also works for boolean

values)

|= x |= y
x = x | y (also works for boolean

values)

^= x ^= y
x = x ^ y (also works for boolean

values)
>>= x >>= y x = x >> y

>>>=
x >>>=

y
x = x >>> y

<<= x <<= y x = x << y

class AssignOptrDemo

{

 public static void main(String[] args)

 {

int a = 10, b = 15, c = 15;

System.out.println("Assignment and shortcut assignment operators");

System.out.println(" a = " + (a = 15));

System.out.println(" Addition = " + (a += b));

System.out.println(" Subtraction = " + (c -= b));

System.out.println(" Division = " + (a /= 2));

System.out.println(" Multiplication = " + (a *= 2));

 }

}

 Other Operators

Operator Use Description

() (x + y) * z Require operator precedence

?: z = b ? x : y Equivalent to: if (b) { z = x; } else { z = y; }

[] array[0] Access array element

. str.length() Access object method or field

(type) int x = (int) 1.2; Cast from one type to another

new d = new Date(); Create a new object

instanceof o instanceof String Check for object type, returning boolean

Short-Circuit Logical Operators :

Java provides two interesting Boolean operators not found in some other computer languages.

These are secondary versions of the Boolean AND and OR operators, and are commonly known

as short-circuit logical operators. As you can see from the preceding table, the OR operator

results in true when A is true, no matter what B is. Similarly, the AND operator results in false

when A is false, no matter what B is. If you use the || and && forms, rather than the | and &

forms of these operators.

 if (denom != 0 && num / denom > 10)

Since the short-circuit form of AND (&&) is used, there is no risk of causing a run-time

exception when denom is zero. If this line of code were written using the single & version of

AND, both sides would be evaluated, causing a run-time exception when denom is zero

The ? Operator

The value of a variable often depends on whether a particular boolean expression is or

is not true and on nothing else. For instance one common operation is setting the value

of a variable to the maximum of two quantities. In Java you might write

if (a > b) {

 max = a;

}

else {

 max = b;

}

Setting a single variable to one of two states based on a single condition is such a

common use of if-else that a shortcut has been devised for it, the conditional

operator, ?:. Using the conditional operator you can rewrite the above example in a

single line like this:

max = (a > b) ? a : b;

(a > b) ? a : b; is an expression which returns one of two values, a or b. The

condition, (a > b), is tested. If it is true the first value, a, is returned. If it is false, the

second value, b, is returned. Whichever value is returned is dependent on the

conditional test, a > b. The condition can be any expression which returns a Boolean

value.
class ByteShift {

public static void main(String args[]) {

byte a = 64, b;

int i;

i = a << 2;

b = (byte) (a << 2);

System.out.println("Original value of a: " + a);

System.out.println("i and b: " + i + " " + b);

}

}

The output generated by this program is shown here:

Original value of a: 64

i and b: 256 0

The Right Shift

The right shift operator, >>, shifts all of the bits in a value to the right a specified number of

times. Its general form is shown here:

value >> num

Here, num specifies the number of positions to right-shift the value in value. That is, the >>

moves all of the bits in the specified value to the right the number of bit positions specified

by num.

int a = 35;

a = a >> 2; // a contains 8

Looking at the same operation in binary shows more clearly how this happens:

00100011 35

>> 2

00001000 8

Unsigned right shift Operator >>>

Unsigned right shift operator >>> is effectively same as >> except that it is unsigned, it fills the

left most positions with bit 0 always. (Irrespective the sign of the underlying number)

For example, for positive numbers

1. 11001100 >>> 1 becomes 01100110 (shown in diagram)

2. 10000000 >>> 3 becomes 00010000 in binary

3. 256 >>> 3 becomes 256 / 2^3 = 16.

for Negative numbers -

1. -2 (signed value 4294967294) >>> 30 becomes 3

2. 11111111111111111111111111111110 >>> 30 becomes

00000000000000000000000000000011

Operator Precedence

Highest
++ (postfix) – – (postfix)

++ (prefix) – – (prefix) ~ ! + (unary) – (unary) (type-cast)

* / %

+ –

>> >>> <<

> >= < <= instanceof

== !=

&

^

|

&&

||

?:

−>

= op=

Lowest
Using Parentheses

Parentheses raise the precedence of the operations that are inside them. This is oftennecessary to

obtain the result you desire. For example, consider the following expression:

a >> b + 3

This expression first adds 3 to b and then shifts a right by that result. That is, this expression can

be rewritten using redundant parentheses like this:

a >> (b + 3)

However, if you want to first shift a right by b positions and then add 3 to that result, you

will need to parenthesize the expression like this:

(a >> b) + 3

In addition to altering the normal precedence of an operator, parentheses can sometimes be used

to help clarify the meaning of an expression. For anyone reading your code, a complicated

expression can be difficult to understand. Adding redundant but clarifying parentheses to

complex expressions can help prevent confusion later. For example, which of the following

expressions is easier to read?

a | 4 + c >> b & 7

(a | (((4 + c) >> b) & 7))

One other point: parentheses (redundant or not) do not degrade the performance of your

program. Therefore, adding parentheses to reduce ambiguity does not negatively

affect your program.

unit-2

Control Statements

Java’s program control statements can be put into the following categories: selection, iteration,

and jump. Selection statements allow your program to choose different paths of execution based

upon the outcome of an expression or the state of a variable. Iteration statements enable program

execution to repeat one or more statements (that is, iteration statements form loops). Jump

statements allow your program to execute in a nonlinear fashion.

Java’s Selection Statements

Java supports two selection statements: if and switch

if

 It is examined in detail here. The if statement is Java’s conditional branch statement. It can be

used to route program execution through two different paths. Here is the general form of the if

statement:

if (condition) statement1;

else statement2;

Here, each statement may be a single statement or a compound statement enclosed in curly

braces (that is, a block). The condition is any expression that returns a boolean value. The

else clause is optional.

The if works like this: If the condition is true, then statement1 is executed. Otherwise,

statement2 (if it exists) is executed. In no case will both statements be executed. For example,

consider the following:

int a, b;

//...

if(a < b) a = 0;

else b = 0;

Here, if a is less than b, then a is set to zero. Otherwise, b is set to zero. In no case are they both

set to zero.

Nested ifs
A nested if is an if statement that is the target of another if or else. Nested ifs are very common in

programming. When you nest ifs, the main thing to remember is that an else statement always

refers to the nearest if statement that is within the same block as the else and that is not already

associated with an else. Here is an example:

if(i == 10) {

if(j < 20) a = b;

if(k > 100) c = d; // this if is

else a = c; // associated with this else

}

else a = d; // this else refers to if(i == 10)

The if-else-if Ladder
A common programming construct that is based upon a sequence of nested ifs is the if-elseif

ladder. It looks like this:

if(condition)

statement;

else if(condition)

statement;

else if(condition)

statement;

.

.

.

else

statement;

The if statements are executed from the top down. As soon as one of the conditions controlling

the if is true, the statement associated with that if is executed, and the rest of the ladder is

bypassed. If none of the conditions is true, then the final else statement will be executed. The

final else acts as a default condition; that is, if all other conditional tests fail,then the last else

statement is performed. If there is no final else and all other conditions are false, then no action

will take place.

eg:-

class IfElse {

public static void main(String args[]) {

int month = 4; // April

String season;

if(month == 12 || month == 1 || month == 2)

season = "Winter";

else if(month == 3 || month == 4 || month == 5)

season = "Spring";

else if(month == 6 || month == 7 || month == 8)

season = "Summer";

else if(month == 9 || month == 10 || month == 11)

season = "Autumn";

else

season = "Bogus Month";

System.out.println("April is in the " + season + ".");

}

}

Here is the output produced by the program:

April is in the Spring.

switch
The switch statement is Java’s multiway branch statement. It provides an easy way to

dispatch execution to different parts of your code based on the value of an expression. As

such, it often provides a better alternative than a large series of if-else-if statements. Here is

the general form of a switch statement:

switch (expression) {

case value1:

// statement sequence

break;

case value2:

// statement sequence

break;

.

.

.

case valueN :

// statement sequence

break;

default:

// default statement sequence

}

class SampleSwitch {

public static void main(String args[]) {

for(int i=0; i<6; i++)

switch(i) {

case 0:

System.out.println("i is zero.");

break;

case 1:

System.out.println("i is one.");

break;

case 2:

System.out.println("i is two.");

break;

case 3:

System.out.println("i is three.");

break;

default:

System.out.println("i is greater than 3.");

}

}

}

The output produced by this program is shown here:

i is zero.

i is one.

i is two.

i is three.

i is greater than 3.

i is greater than 3.

The break statement is optional. If you omit the break, execution will continue on into the

next case. It is sometimes desirable to have multiple cases without break statements between

them. For example, consider the following program:

// In a switch, break statements are optional.

class MissingBreak {

public static void main(String args[]) {

for(int i=0; i<12; i++)

switch(i) {

case 0:

case 1:

case 2:

case 3:

case 4:

System.out.println("i is less than 5");

break;

case 5:

case 6:

case 7:

case 8:

case 9:

System.out.println("i is less than 10");

break;

default:

System.out.println("i is 10 or more");

}

}

}

This program generates the following output:

i is less than 5

i is less than 5

i is less than 5

i is less than 5

i is less than 5

i is less than 10

i is less than 10

i is less than 10

i is less than 10

i is less than 10

i is 10 or more

i is 10 or more

Nested switch Statements
You can use a switch as part of the statement sequence of an outer switch. This is called a

nested switch. Since a switch statement defines its own block, no conflicts arise between the

case constants in the inner switch and those in the outer switch. For example, the following

fragment is perfectly valid:

switch(count) {

case 1:

switch(target) { // nested switch

case 0:

System.out.println("target is zero");

break;

case 1: // no conflicts with outer switch

System.out.println("target is one");

break;

}

break;

case 2: // ...

Here, the case 1: statement in the inner switch does not conflict with the case 1: statement

in the outer switch. The count variable is compared only with the list of cases at the outer

level. If count is 1, then target is compared with the inner list cases.

In summary, there are three important features of the switch statement to note:

• The switch differs from the if in that switch can only test for equality, whereas if can

evaluate any type of Boolean expression. That is, the switch looks only for a match

between the value of the expression and one of its case constants.

• No two case constants in the same switch can have identical values. Of course, a

switch statement and an enclosing outer switch can have case constants in common.

• A switch statement is usually more efficient than a set of nested ifs.

Iteration Statements
Java’s iteration statements are for, while, and do-while. These statements create what we

commonly call loops. As you probably know, a loop repeatedly executes the same set of

instructions until a termination condition is met. As you will see, Java has a loop to fit any

programming need.

while
The while loop is Java’s most fundamental loop statement. It repeats a statement or block

while its controlling expression is true. Here is its general form:

while(condition) {

// body of loop

}

The condition can be any Boolean expression. The body of the loop will be executed as long

as the conditional expression is true. When condition becomes false, control passes to the

next line of code immediately following the loop. The curly braces are unnecessary if only a

single statement is being repeated.

Here is a while loop that counts down from 10, printing exactly ten lines of "tick":

// Demonstrate the while loop.

class While {

public static void main(String args[]) {

int n = 10;

while(n > 0) {

System.out.println("tick " + n);

n--;

}

}

}

When you run this program, it will “tick” ten times:

tick 10

tick 9

tick 8

tick 7

tick 6

tick 5

tick 4

tick 3

tick 2

tick 1

do-while

if the conditional expression controlling a while loop is initially false, then the body of the loop

will not be executed at all. However, sometimes it is desirable to execute the body of a loop at

least once, even if the conditional expression is false to begin with. In other words, there are

times when you would like to test the termination expression at the end of the loop rather than at

the beginning. Fortunately, Java supplies a loop that does just that: the do-while. The do-while

loop always executes its body at least once,because its conditional expression is at the bottom of

the loop.

do {

// body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the loop and then evaluates

the conditional expression.

class DoWhile {

public static void main(String args[]) {

int n = 10;

do {

System.out.println("tick " + n);

n--;

} while(n > 0);

}

}

tick 10

tick 9

tick 8

tick 7

tick 6

tick 5

tick 4

tick 3

tick 2

tick 1

tick 0

for
 The first is the traditional form that has been in use since the original version of Java. The

second is the newer “for-each” form.Both types of for loops are discussed here, beginning with

the traditional form.Here is the general form of the traditional for statement:

for(initialization; condition; iteration) {

// body

}

Declaring Loop Control Variables Inside the for Loop
Often the variable that controls a for loop is needed only for the purposes of the loop and

is not used elsewhere. When this is the case, it is possible to declare the variable inside the

initialization portion of the for. For example, here is the preceding program recoded so

that the loop control variable n is declared as an int inside the for:

// Declare a loop control variable inside the for.

class ForTick {

public static void main(String args[]) {

// here, n is declared inside of the for loop

for(int n=10; n>0; n--)

System.out.println("tick " + n);

}

}

Using the Comma
There will be times when you will want to include more than one statement in the

initialization and iteration portions of the for loop. For example, consider the loop in

the following program:

class Sample {

public static void main(String args[]) {

int a, b;

b = 4;

for(a=1; a<b; a++) {

System.out.println("a = " + a);

System.out.println("b = " + b);

b--;

}

}

}

using multiple variable declaration

// Using the comma.

class Comma {

public static void main(String args[]) {

int a, b;

for(a=1, b=4; a<b; a++, b--) {

System.out.println("a = " + a);

System.out.println("b = " + b);

}

}

}

In this example, the initialization portion sets the values of both a and b. The two

commaseparated

statements in the iteration portion are executed each time the loop repeats. The

program generates the following output:

a = 1

b = 4

a = 2

b = 3

for loop without initialization and inc/dec

// Parts of the for loop can be empty.

class ForVar {

public static void main(String args[]) {

int i;

boolean done = false;

i = 0;

for(; !done;) {

System.out.println("i is " + i);

if(i == 10) done = true;

i++;

}

}

The For-Each Version of the for Loop
loop.

The general form of the for-each version of the for is shown here:

for(type itr-var : collection) statement-block

// Use a for-each style for loop.

class ForEach {

public static void main(String args[]) {

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;

// use for-each style for to display and sum the values

for(int x : nums) {

System.out.println("Value is: " + x);

sum += x;

}

System.out.println("Summation: " + sum);

}

}

The output from the program is shown here:

Value is: 1

Value is: 2

Value is: 3

Value is: 4

Value is: 5

Value is: 6

Value is: 7

Value is: 8

Value is: 9

Value is: 10

Summation: 55

Jump Statements

Using break

Using break to Exit a Loop
By using break, you can force immediate termination of a loop, bypassing the conditional

expression and any remaining code in the body of the loop. When a break statement is

encountered inside a loop, the loop is terminated and program control resumes at the next

statement following the loop. Here is a simple example:

// Using break to exit a loop.

class BreakLoop {

public static void main(String args[]) {

for(int i=0; i<100; i++) {

if(i == 10) break; // terminate loop if i is 10

System.out.println("i: " + i);

}

System.out.println("Loop complete.");

}

}

This program generates the following output:

i: 0

i: 1

i: 2

i: 3

i: 4

i: 5

i: 6

i: 7

i: 8

i: 9

Loop complete.

Using break as a Form of Goto

The general form of the labeled break statement is shown here:

break label;

Most often, label is the name of a label that identifies a block of code. This can be a standalone

block of code but it can also be a block that is the target of another statement

class Break {

public static void main(String args[]) {

boolean t = true;

first: {

second: {

third: {

System.out.println("Before the break.");

if(t) break second; // break out of second block

System.out.println("This won't execute");

}

System.out.println("This won't execute");

}

System.out.println("This is after second block.");

}

}

}

Running this program generates the following output:

Before the break.

This is after second block.

Using continue

The continue statement performs such an action. In while and do-while loops, a

continue statement causes control to be transferred directly to the conditional expression

that controls the loop. In a for loop, control goes first to the iteration portion of the for

statement and then to the conditional expression. For all three loops, any intermediate

code is bypassed.

Here is an example program that uses continue to cause two numbers to be printed on

each line:

// Demonstrate continue.

class Continue {

public static void main(String args[]) {

for(int i=0; i<10; i++) {

System.out.print(i + " ");

if (i%2 == 0) continue;

System.out.println("");

}

}

}

This code uses the % operator to check if i is even. If it is, the loop continues without

printing a newline. Here is the output from this program:

0 1

2 3

4 5

6 7

8 9

// Using continue with a label.

class ContinueLabel {

public static void main(String args[]) {

outer: for (int i=0; i<10; i++) {

for(int j=0; j<10; j++) {

if(j > i) {

System.out.println();

continue outer;

}

System.out.print(" " + (i * j));

}

}

System.out.println();

}

}

The continue statement in this example terminates the loop counting j and continues with

the next iteration of the loop counting i. Here is the output of this program:

0

0 1

0 2 4

0 3 6 9

0 4 8 12 16

0 5 10 15 20 25

0 6 12 18 24 30 36

0 7 14 21 28 35 42 49

0 8 16 24 32 40 48 56 64

0 9 18 27 36 45 54 63 72 81

return
The last control statement is return. The return statement is used to explicitly return from a

method. That is, it causes program control to transfer back to the caller of the method. As

such, it is categorized as a jump statement.

// Demonstrate return.

class Return {

public static void main(String args[]) {

boolean t = true;

System.out.println("Before the return.");

if(t) return; // return to caller

System.out.println("This won't execute.");

}

}

The output from this program is shown here:

Before the return.

unit-2

Introducing Classes

The General Form of a Class

A class is declared by use of the class keyword. The classes that have been used up to

this point are actually very limited examples of its complete form. Classes can (and usually

do) get much more complex. A simplified general form of a class definition is shown here:

class classname {

type instance-variable1;

type instance-variable2;

// ...

type instance-variableN;

type methodname1(parameter-list) {

// body of method

}

type methodname2(parameter-list) {

// body of method

}

// ...

type methodnameN(parameter-list) {

// body of method

}

}

A Simple Class

class Box {

double width;

double height;

double depth;

}

// This class declares an object of type Box.

class BoxDemo {

public static void main(String args[]) {

Box mybox = new Box();

double vol;

// assign values to mybox's instance variables

mybox.width = 10;

mybox.height = 20;

mybox.depth = 15;

// compute volume of box

vol = mybox.width * mybox.height * mybox.depth;

System.out.println("Volume is " + vol);

}

}

Volume is 3000.0

Declaring Objects

The new operator dynamically allocates (that is, allocates at run time) memory

for an object and returns a reference to it. This reference is, more or less, the address in

memory of the object allocated by new. This reference is then stored in the variable. Thus,

in Java, all class objects must be dynamically allocated. Let’s look at the details of this

procedure.

In the preceding sample programs, a line similar to the following is used to declare an

object of type Box:

Box mybox = new Box();

This statement combines the two steps just described. It can be rewritten like this to show

each step more clearly:

Box mybox; // declare reference to object

mybox = new Box(); // allocate a Box object

The first line declares mybox as a reference to an object of type Box. At this point, mybox

does not yet refer to an actual object.

Assigning Object Reference Variables

Box b1 = new Box();

Box b2 = b1;

You might think that b2 is being assigned a reference to a copy of the object referred to byb1.

That is, you might think that b1 and b2 refer to separate and distinct objects.

Introducing Methods
This is the general form of a method:

type name(parameter-list) {

// body of method

}

type specifies the type of data returned by the method. This can be any valid type,

including class types that you create. If the method does not return a value, its return type

must be void. The name of the method is specified by name. This can be any legal identifier

other than those already used by other items within the current scope. The parameter-list is a

sequence of type and identifier pairs separated by commas. Parameters are essentially

variables that receive the value of the arguments passed to the method when it is called.

Methods that have a return type other than void return a value to the calling routine

using the following form of the return statement:

return value;

Here, value is the value returned.

Adding a Method to the Box Class
class Box {

double width;

double height;

double depth;

// display volume of a box

void volume() {

System.out.print("Volume is ");

System.out.println(width * height * depth);

}

}

class BoxDemo3 {

public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box();

// assign values to mybox1's instance variables

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

/* assign different values to mybox2's

instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// display volume of first box

mybox1.volume();

// display volume of second box

mybox2.volume();

}

}

This program generates the following output, which is the same as the previous version.

Volume is 3000.0

Volume is 162.0

Look closely at the following two lines of code:

mybox1.volume();

mybox2.volume();

Returning a Value
class Box {

double width;

double height;

double depth;

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo4 {

public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

// assign values to mybox1's instance variables

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

/* assign different values to mybox2's

instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

Adding a Method That Takes Parameters
class Box {

double width;

double height;

double depth;

// compute and return volume

double volume() {

return width * height * depth;

}

// sets dimensions of box

void setDim(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

}

class BoxDemo5 {

public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

// initialize each box

mybox1.setDim(10, 20, 15);

mybox2.setDim(3, 6, 9);

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

As you can see, the setDim() method is used to set the dimensions of each box. For

example, when

mybox1.setDim(10, 20, 15);

is executed, 10 is copied into parameter w, 20 is copied into h, and 15 is copied into d.

Inside setDim() the values of w, h, and d are then assigned to width, height, and depth,

respectively.

Constructors

class in which it resides and is syntactically similar to a method. Once defined, the constructor is

automatically called when the object is created, before the new operator completes. Constructors

look a little strange because they have no return type, not even void. This is because the implicit

return type of a class’ constructor is the class type itself.It is the constructor’s job to initialize the

internal state of an object so that the code creating an instance will have a fully initialized, usable

object immediately.
/* Here, Box uses a constructor to initialize the

dimensions of a box.

*/

class Box {

double width;

double height;

double depth;

// This is the constructor for Box.

Box() {

System.out.println("Constructing Box");

width = 10;

height = 10;

depth = 10;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo6 {

public static void main(String args[]) {

// declare, allocate, and initialize Box objects

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

When this program is run, it generates the following results:

Constructing Box

Constructing Box

Volume is 1000.0

Volume is 1000.0

when you allocate an

object, you use the following general form:

class-var = new classname ();

Now you can understand why the parentheses are needed after the class name. What is

actually happening is that the constructor for the class is being called. Thus, in the line

Box mybox1 = new Box();

Parameterized Constructors
/* Here, Box uses a parameterized constructor to

initialize the dimensions of a box.

*/

class Box {

double width;

double height;

double depth;

// This is the constructor for Box.

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo7 {

public static void main(String args[]) {

// declare, allocate, and initialize Box objects

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box(3, 6, 9);

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

The output from this program is shown here:

Volume is 3000.0

Volume is 162.0

As you can see, each object is initialized as specified in the parameters to its constructor.

For example, in the following line,

Box mybox1 = new Box(10, 20, 15);

the values 10, 20, and 15 are passed to the Box() constructor when new creates the object.

The this Keyword
Sometimes a method will need to refer to the object that invoked it. To allow this, Java

defines the this keyword. this can be used inside any method to refer to the current object.

That is, this is always a reference to the object on which the method was invoked. You can

use this anywhere a reference to an object of the current class’ type is permitted.

To better understand what this refers to, consider the following version of Box():

// A redundant use of this.

Box(double w, double h, double d) {

this.width = w;

this.height = h;

this.depth = d;

}

Instance Variable Hiding:using this
Java to declare two local variables with the same name inside the same or enclosing scopes.

Interestingly, you can have local variables, including formal parameters to methods, which

overlap with the names of the class’ instance variables. However,when a local variable has the

same name as an instance variable, the local variable hides the instance variable. This is why

width, height, and depth were not used as the names of the parameters to the Box() constructor

inside the Box class. If they had been, then width, for example, would have referred to the

formal parameter, hiding the instance variable width.While it is usually easier to simply use

different names, there is another way around this situation. Because this lets you refer directly to

the object, you can use it to resolve any namespace collisions that might occur between instance

variables and local variables. For example, here is another version of Box(), which uses width,

height, and depth for parameter names and then uses this to access the instance variables by the

same name:

// Use this to resolve name-space collisions.

Box(double width, double height, double depth) {

this.width = width;

this.height = height;

this.depth = depth;
}

Garbage Collection
objects are dynamically allocated by using the new operator, you might be wondering how such

objects are destroyed and their memory released for later reallocation. In some languages, such

as C++, dynamically allocated objects must be manually released by use of a delete operator.

Java takes a different approach; it handles deallocation for you automatically.The technique that

accomplishes this is called garbage collection. It works like this: when no references to an object

exist, that object is assumed to be no longer needed, and the memory occupied by the object can

be reclaimed. There is no explicit need to destroy objects as in C++. Garbage collection only

occurs sporadically (if at all) during the execution of your program. It will not occur simply

because one or more objects exist that are no longer used.

The finalize() Method
Sometimes an object will need to perform some action when it is destroyed. For example,

if an object is holding some non-Java resource such as a file handle or character font, then

you might want to make sure these resources are freed before an object is destroyed. To

handle such situations, Java provides a mechanism called finalization. By using finalization,

you can define specific actions that will occur when an object is just about to be reclaimed

by the garbage collector.

The Java run time

calls that method whenever it is about to recycle an object of that class. Inside the finalize()

method, you will specify those actions that must be performed before an object is destroyed

the Java run time calls the finalize() method on the object.

The finalize() method has this general form:

protected void finalize()

{

// finalization code here

}

Here, the keyword protected is a specifier that limits access to finalize().

A Stack Class
Here is a class called Stack that implements a stack for up to ten integers:

// This class defines an integer stack that can hold 10 values

class Stack {

int stck[] = new int[10];

int tos;

// Initialize top-of-stack

Stack() {

tos = -1;

}

// Push an item onto the stack

void push(int item) {

if(tos==9)

System.out.println("Stack is full.");

else

stck[++tos] = item;

}

// Pop an item from the stack

int pop() {

if(tos < 0) {

System.out.println("Stack underflow.");

return 0;

}

else

return stck[tos--];

}

}

class TestStack {

public static void main(String args[]) {

Stack mystack1 = new Stack();

Stack mystack2 = new Stack();

// push some numbers onto the stack

for(int i=0; i<10; i++) mystack1.push(i);

for(int i=10; i<20; i++) mystack2.push(i);

// pop those numbers off the stack

System.out.println("Stack in mystack1:");

for(int i=0; i<10; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<10; i++)

System.out.println(mystack2.pop());

}

}

This program generates the following output:

Stack in mystack1:

9

8

7

6

5

4

3

2

1

0

Stack in mystack2:

19

18

17

16

15

14

13

12

11

10

unit-2

A Closer Look at Methods and Classes

Overloading Methods:
it is possible to define two or more methods within the same class that share the same name, as

long as their parameter declarations are different. When this is the case,the methods are said to

be overloaded, and the process is referred to as method overloading.Method overloading is one

of the ways that Java supports polymorphism.

 When an overloaded method is invoked, Java uses the type and/or number of arguments

as its guide to determine which version of the overloaded method to actually call. Thus,

overloaded methods must differ in the type and/or number of their parameters. While

overloaded methods may have different return types, the return type alone is insufficient to

distinguish two versions of a method. When Java encounters a call to an overloaded method,

it simply executes the version of the method whose parameters match the arguments used in

the call.

class OverloadDemo {

void test() {

System.out.println("No parameters");

}

// Overload test for one integer parameter.

void test(int a) {

System.out.println("a: " + a);

}

// Overload test for two integer parameters.

void test(int a, int b) {

System.out.println("a and b: " + a + " " + b);

}

// Overload test for a double parameter

double test(double a) {

System.out.println("double a: " + a);

return a*a;

}

}

class Overload {

public static void main(String args[]) {

OverloadDemo ob = new OverloadDemo();

double result;

// call all versions of test()

ob.test();

ob.test(10);

ob.test(10, 20);

result = ob.test(123.25);

System.out.println("Result of ob.test(123.25): " + result);

}

}

This program generates the following output:

No parameters

a: 10

a and b: 10 20

double a: 123.25

Result of ob.test(123.25): 15190.5625

eg:-2

class OverloadDemo {

void test() {

System.out.println("No parameters");

}

// Overload test for two integer parameters.

void test(int a, int b) {

System.out.println("a and b: " + a + " " + b);
}

// Overload test for a double parameter

void test(double a) {

System.out.println("Inside test(double) a: " + a);

}

}

class Overload {

public static void main(String args[]) {

OverloadDemo ob = new OverloadDemo();

int i = 88;

ob.test();

ob.test(10, 20);

ob.test(i); // this will invoke test(double)

ob.test(123.2); // this will invoke test(double)

}

}

This program generates the following output:

No parameters

a and b: 10 20

Inside test(double) a: 88

Inside test(double) a: 123.2

Overloading Constructors
In addition to overloading normal methods, you can also overload constructor methods.

class Box {

double width;

double height;

double depth;

// This is the constructor for Box.

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

As you can see, the Box() constructor requires three parameters. This means that all

declarations of Box objects must pass three arguments to the Box() constructor. For

example, the following statement is currently invalid:

Box ob = new Box();

eg:-2
/* Here, Box defines three constructors to initialize

the dimensions of a box various ways.

*/

class Box {

double width;

double height;

double depth;

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class OverloadCons {

public static void main(String args[]) {

// create boxes using the various constructors

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box();

Box mycube = new Box(7);

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);
// get volume of cube

vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);

}

}

The output produced by this program is shown here:

Volume of mybox1 is 3000.0

Volume of mybox2 is -1.0

Volume of mycube is 343.0

Using Objects as Parameters
So far, we have only been using simple types as parameters to methods. However, it is both

correct and common to pass objects to methods.

// Objects may be passed to methods.

class Test {

int a, b;

Test(int i, int j) {

a = i;

b = j;

}

// return true if o is equal to the invoking object

boolean equalTo(Test o) {

if(o.a == a && o.b == b) return true;

else return false;

}

}

class PassOb {

public static void main(String args[]) {

Test ob1 = new Test(100, 22);

Test ob2 = new Test(100, 22);

Test ob3 = new Test(-1, -1);

System.out.println("ob1 == ob2: " + ob1.equalTo(ob2));

System.out.println("ob1 == ob3: " + ob1.equalTo(ob3));

}

}

This program generates the following output:

ob1 == ob2: true

ob1 == ob3: false

One of the most common uses of object parameters involves constructors. Frequently,

you will want to construct a new object so that it is initially the same as some existing object.

To do this, you must define a constructor that takes an object of its class as a parameter. For

example, the following version of Box allows one object to initialize another:

// Here, Box allows one object to initialize another.

class Box {

double width;

double height;

double depth;

// Notice this constructor. It takes an object of type Box.

Box(Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class OverloadCons2 {

public static void main(String args[]) {

// create boxes using the various constructors

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box();

Box mycube = new Box(7);

Box myclone = new Box(mybox1); // create copy of mybox1

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

// get volume of cube

vol = mycube.volume();

System.out.println("Volume of cube is " + vol);

// get volume of clone

vol = myclone.volume();

System.out.println("Volume of clone is " + vol);

}

}

	Relational Operators
	Bitwise Operators
	public class BitwiseLogicalOpDemo {
	public static void main(String[] args) {
	//Integer bitwise logical operator
	int a = 65; // binary representation 1000001
	int b = 33; // binary representation 0100001
	System.out.println("a & b= " + (a & b));
	System.out.println("a | b= " + (a | b));
	System.out.println("a ^ b= " + (a ^ b));
	System.out.println("~a= " + ~a);
	}}
	The Bitwise NOT
	Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of its operand. For example, the number 42, which has the following bit pattern:
	00101010
	becomes
	11010101
	after the NOT operator is applied.
	The Bitwise AND
	The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced in all other cases. Here is an example:
	00101010 42
	&00001111 15

	00001010 10
	The Bitwise OR
	The OR operator, |, combines bits such that if either of the bits in the operands is a 1, then the resultant bit is a 1, as shown here:
	00101010 42 (1)
	|
	00001111 15

	00101111 47
	The Bitwise XOR
	The XOR operator, ^, combines bits such that if exactly one operand is 1, then the result is 1. Otherwise, the result is zero. The following example shows the effect of the ^. This example also demonstrates a useful attribute of the XOR operation. Not...
	00101010 42 (2)
	^
	00001111 15 (1)
	_________ (1)
	00100101 37
	The Left Shift
	The left shift operator, <<, shifts all of the bits in a value to the left a specified number of times. It has this general form:
	value << num
	Here, num specifies the number of positions to left-shift the value in value. That is, the << moves all of the bits in the specified value to the left by the number of bit positions specified by num. For each shift left, the high-order bit is shifted...
	Logical Boolean Operators
	Assignment Operators
	Other Operators

