
UNIT 1 - Basic Structure
of Computers

Functional Units

Functional Units

Figure 1.1. Basic functional units of a computer.

I/O Processor

Output

Memory

Input and
Arithmetic

logic

Control

Information Handled by a
Computer

 Instructions/machine instructions
 Govern the transfer of information within a computer as

well as between the computer and its I/O devices
 Specify the arithmetic and logic operations to be

performed
 Program

 Data
 Used as operands by the instructions
 Source program

 Encoded in binary code – 0 and 1

Memory Unit

 Store programs and data
 Two classes of storage
 Primary storage
 Fast
 Programs must be stored in memory while they are being executed
 Large number of semiconductor storage cells
 Processed in words
 Address
 RAM and memory access time
 Memory hierarchy – cache, main memory
 Secondary storage – larger and cheaper

Arithmetic and Logic Unit
(ALU)

 Most computer operations are executed in
ALU of the processor.

 Load the operands into memory – bring them
to the processor – perform operation in ALU –
store the result back to memory or retain in
the processor.

 Registers
 Fast control of ALU

Control Unit
 All computer operations are controlled by the control

unit.
 The timing signals that govern the I/O transfers are

also generated by the control unit.
 Control unit is usually distributed throughout the

machine instead of standing alone.
 Operations of a computer:
 Accept information in the form of programs and data through an

input unit and store it in the memory
 Fetch the information stored in the memory, under program control,

into an ALU, where the information is processed
 Output the processed information through an output unit
 Control all activities inside the machine through a control unit

The processor : Data Path and
Control

PC
Register

Bank

Data Memory

Address

Instructions Address

Data

Instruction
Memory

A
L
U

Data

Register #

Register #

Register #

Two types of functional units:
elements that operate on data values (combinational)
 elements that contain state (state elements)

Five Execution Steps
Step nameStep name Action for R-type Action for R-type

instructionsinstructions
Action for Memory-Action for Memory-

reference Instructionsreference Instructions
Action for Action for
branchesbranches

Action for Action for
jumpsjumps

Instruction fetch IR = MEM[PC]

PC = PC + 4

Instruction decode/ register
fetch

A = Reg[IR[25-21]]

B = Reg[IR[20-16]]

ALUOut = PC + (sign extend (IR[15-0])<<2)

Execution, address
computation, branch/jump

completion

ALUOut = A op B ALUOut = A+sign
extend(IR[15-0])

IF(A==B) Then
PC=ALUOut

PC=PC[31-28
]||

(IR[25-0]<<2)

Memory access or R-type
completion

Reg[IR[15-11]] =
ALUOut

Load:MDR =Mem[ALUOut]

or

Store:Mem[ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] =
MDR

Basic Operational
Concepts

Review

 Activity in a computer is governed by instructions.
 To perform a task, an appropriate program

consisting of a list of instructions is stored in the
memory.

 Individual instructions are brought from the memory
into the processor, which executes the specified
operations.

 Data to be used as operands are also stored in the
memory.

A Typical Instruction

 Add LOCA, R0
 Add the operand at memory location LOCA to the

operand in a register R0 in the processor.
 Place the sum into register R0.
 The original contents of LOCA are preserved.
 The original contents of R0 is overwritten.
 Instruction is fetched from the memory into the

processor – the operand at LOCA is fetched and
added to the contents of R0 – the resulting sum is
stored in register R0.

Separate Memory Access and
ALU Operation

 Load LOCA, R1
 Add R1, R0
 Whose contents will be overwritten?

Connection Between the
Processor and the Memory

Figure 1.2. Connections between the processor and the memory.

Processor

Memory

PC

IR

MDR

Control

ALU
Rn 1

R1

R0

MAR

n general purpose
registers

Registers

 Instruction register (IR)
 Program counter (PC)
 General-purpose register (R0 – Rn-1)

 Memory address register (MAR)
 Memory data register (MDR)

Typical Operating Steps

 Programs reside in the memory through input
devices

 PC is set to point to the first instruction
 The contents of PC are transferred to MAR
 A Read signal is sent to the memory
 The first instruction is read out and loaded

into MDR
 The contents of MDR are transferred to IR
 Decode and execute the instruction

Typical Operating Steps
(Cont’)

 Get operands for ALU
 General-purpose register
 Memory (address to MAR – Read – MDR to ALU)

 Perform operation in ALU
 Store the result back

 To general-purpose register
 To memory (address to MAR, result to MDR – Write)

 During the execution, PC is
incremented to the next instruction

Interrupt

 Normal execution of programs may be preempted if
some device requires urgent servicing.

 The normal execution of the current program must
be interrupted – the device raises an interrupt
signal.

 Interrupt-service routine
 Current system information backup and restore (PC,

general-purpose registers, control information,
specific information)

Bus Structures

 There are many ways to connect different
parts inside a computer together.

 A group of lines that serves as a connecting
path for several devices is called a bus.

 Address/data/control

Bus Structure

 Single-bus

Figure 1.3. Singlebus structure.

MemoryInput Output Processor

Speed Issue

 Different devices have different
transfer/operate speed.

 If the speed of bus is bounded by the slowest
device connected to it, the efficiency will be
very low.

 How to solve this?
 A common approach – use buffers.

Performance

Performance

 The most important measure of a computer is
how quickly it can execute programs.

 Three factors affect performance:
 Hardware design
 Instruction set
 Compiler

Performance
 Processor time to execute a program depends on the hardware

involved in the execution of individual machine instructions.

Main
memory Processor

Bus

Cache
memory

Figure 1.5. The processor cache.

Performance

 The processor and a relatively small cache
memory can be fabricated on a single
integrated circuit chip.

 Speed
 Cost
 Memory management

Processor Clock

 Clock, clock cycle, and clock rate
 The execution of each instruction is divided

into several steps, each of which completes
in one clock cycle.

 Hertz – cycles per second

Basic Performance Equation
 T – processor time required to execute a program that has been

prepared in high-level language
 N – number of actual machine language instructions needed to

complete the execution (note: loop)
 S – average number of basic steps needed to execute one

machine instruction. Each step completes in one clock cycle
 R – clock rate
 Note: these are not independent to each other

R

SN
T

×=

How to improve T?

Pipeline and Superscalar
Operation

 Instructions are not necessarily executed one after
another.

 The value of S doesn’t have to be the number of
clock cycles to execute one instruction.

 Pipelining – overlapping the execution of successive
instructions.

 Add R1, R2, R3
 Superscalar operation – multiple instruction

pipelines are implemented in the processor.
 Goal – reduce S (could become <1!)

Clock Rate

 Increase clock rate
 Improve the integrated-circuit (IC) technology to make

the circuits faster
 Reduce the amount of processing done in one basic step

(however, this may increase the number of basic steps
needed)

 Increases in R that are entirely caused by
improvements in IC technology affect all
aspects of the processor’s operation equally
except the time to access the main memory.

CISC and RISC

 Tradeoff between N and S
 A key consideration is the use of pipelining
 S is close to 1 even though the number of basic steps

per instruction may be considerably larger
 It is much easier to implement efficient pipelining in

processor with simple instruction sets

 Reduced Instruction Set Computers (RISC)
 Complex Instruction Set Computers (CISC)

Compiler

 A compiler translates a high-level language program
into a sequence of machine instructions.

 To reduce N, we need a suitable machine instruction
set and a compiler that makes good use of it.

 Goal – reduce N×S
 A compiler may not be designed for a specific

processor; however, a high-quality compiler is
usually designed for, and with, a specific processor.

Performance Measurement
 T is difficult to compute.
 Measure computer performance using benchmark programs.
 System Performance Evaluation Corporation (SPEC) selects and

publishes representative application programs for different application
domains, together with test results for many commercially available
computers.

 Compile and run (no simulation)
 Reference computer

∏
=

=

=

n

i

n
iSPECratingSPEC

ratingSPEC

1

1

)(

under testcomputer on the timeRunning

computer reference on the timeRunning

Machine Instructions
and Programs

Objectives

 Machine instructions and program execution,
including branching and subroutine call and return
operations.

 Number representation and addition/subtraction in
the 2’s-complement system.

 Addressing methods for accessing register and
memory operands.

 Assembly language for representing machine
instructions, data, and programs.

 Program-controlled Input/Output operations.

Memory Locations,
Addresses, and

Operations

Memory Location, Addresses,
and Operation

 Memory consists
of many millions of
storage cells,
each of which can
store 1 bit.

 Data is usually
accessed in n-bit
groups. n is called
word length.

second word

first word

Figure 2.5. Memory words.

n bits

last word

i th word

•
•
•

•
•
•

Memory Location, Addresses,
and Operation

 32-bit word length example

(b) Four characters

charactercharactercharacter character

(a) A signed integer

Sign bit: for positive numbers
 for negative numbers

ASCIIASCIIASCIIASCII

32 bits

8 bits 8 bits 8 bits 8 bits

b31 b30 b1 b0

b31 0=
b31 1=

• • •

Memory Location, Addresses,
and Operation

 To retrieve information from memory, either for one
word or one byte (8-bit), addresses for each location
are needed.

 A k-bit address memory has 2k memory locations,
namely 0 – 2k-1, called memory space.

 24-bit memory: 224 = 16,777,216 = 16M (1M=220)
 32-bit memory: 232 = 4G (1G=230)
 1K(kilo)=210

 1T(tera)=240

Memory Location, Addresses,
and Operation

 It is impractical to assign distinct addresses
to individual bit locations in the memory.

 The most practical assignment is to have
successive addresses refer to successive
byte locations in the memory – byte-
addressable memory.

 Byte locations have addresses 0, 1, 2, … If
word length is 32 bits, they successive words
are located at addresses 0, 4, 8,…

Big-Endian and Little-Endian
Assignments

2
k

4 2
k

3 2
k

2 2
k

1 2
k

42
k

4

0 1 2 3

4 5 6 7

0 0

4

2
k

1 2
k

2 2
k

3 2
k

4

3 2 1 0

7 6 5 4

Byte addressByte address

(a) Bigendian assignment (b) Littleendian assignment

4

Word
address

•
•
•

•
•
•

Figure 2.7. Byte and word addressing.

Big-Endian: lower byte addresses are used for the most significant bytes of the word

Little-Endian: opposite ordering. lower byte addresses are used for the less significant
bytes of the word

Memory Location, Addresses,
and Operation

 Address ordering of bytes
 Word alignment

 Words are said to be aligned in memory if they
begin at a byte addr. that is a multiple of the num
of bytes in a word.
 16-bit word: word addresses: 0, 2, 4,….
 32-bit word: word addresses: 0, 4, 8,….
 64-bit word: word addresses: 0, 8,16,….

 Access numbers, characters, and character
strings

Memory Operation

 Load (or Read or Fetch)
 Copy the content. The memory content doesn’t change.
 Address – Load
 Registers can be used

 Store (or Write)
 Overwrite the content in memory
 Address and Data – Store
 Registers can be used

Instruction and
Instruction Sequencing

“Must-Perform” Operations

 Data transfers between the memory and the
processor registers

 Arithmetic and logic operations on data
 Program sequencing and control
 I/O transfers

Register Transfer Notation

 Identify a location by a symbolic name
standing for its hardware binary address
(LOC, R0,…)

 Contents of a location are denoted by placing
square brackets around the name of the
location (R1←[LOC], R3 ←[R1]+[R2])

 Register Transfer Notation (RTN)

Assembly Language Notation

 Represent machine instructions and
programs.

 Move LOC, R1 = R1←[LOC]
 Add R1, R2, R3 = R3 ←[R1]+[R2]

CPU Organization

 Single Accumulator
 Result usually goes to the Accumulator
 Accumulator has to be saved to memory quite

often

 General Register
 Registers hold operands thus reduce memory

traffic
 Register bookkeeping

 Stack
 Operands and result are always in the stack

Instruction Formats

 Three-Address Instructions
 ADD R1, R2, R3 R1 ← R2 + R3

 Two-Address Instructions
 ADD R1, R2 R1 ← R1 + R2

 One-Address Instructions
 ADD M AC ← AC + M[AR]

 Zero-Address Instructions
 ADD TOS ← TOS + (TOS – 1)

 RISC Instructions
 Lots of registers. Memory is restricted to Load & Store

Opcode Operand(s) or Address(es)

Instruction Formats

Example: Evaluate (A+B) ∗ (C+D)
 Three-Address

l ADD R1, A, B ; R1 ← M[A] + M[B]
l ADD R2, C, D ; R2 ← M[C] + M[D]
l MUL X, R1, R2 ; M[X] ← R1 ∗ R2

Instruction Formats
Example: Evaluate (A+B) ∗ (C+D)
 Two-Address

l MOV R1, A ; R1 ← M[A]
l ADD R1, B ; R1 ← R1 + M[B]
l MOV R2, C ; R2 ← M[C]
l ADD R2, D ; R2 ← R2 + M[D]
l MUL R1, R2 ; R1 ← R1 ∗ R2
l MOV X, R1 ; M[X] ← R1

Instruction Formats
Example: Evaluate (A+B) ∗ (C+D)
 One-Address

l LOAD A ; AC ← M[A]
l ADD B ; AC ← AC + M[B]
l STORET ; M[T] ← AC
l LOAD C ; AC ← M[C]
l ADD D ; AC ← AC + M[D]
l MUL T ; AC ← AC ∗ M[T]
l STOREX ; M[X] ← AC

Instruction Formats
Example: Evaluate (A+B) ∗ (C+D)
 Zero-Address

l PUSH A ; TOS ← A
l PUSH B ; TOS ← B
l ADD ; TOS ← (A + B)
l PUSH C ; TOS ← C
l PUSH D ; TOS ← D
l ADD ; TOS ← (C + D)
l MUL ; TOS ←

(C+D)∗(A+B)
l POP X ; M[X] ← TOS

Instruction Formats
Example: Evaluate (A+B) ∗ (C+D)
 RISC

l LOAD R1, A ; R1 ← M[A]
l LOAD R2, B ; R2 ← M[B]
l LOAD R3, C ; R3 ← M[C]
l LOAD R4, D ; R4 ← M[D]
l ADD R1, R1, R2 ; R1 ← R1 + R2
l ADD R3, R3, R4 ; R3 ← R3 + R4
l MUL R1, R1, R3 ; R1 ← R1 ∗ R3
l STOREX, R1 ; M[X] ← R1

Using Registers

 Registers are faster
 Shorter instructions

 The number of registers is smaller (e.g. 32
registers need 5 bits)

 Potential speedup
 Minimize the frequency with which data is

moved back and forth between the memory
and processor registers.

Instruction Execution and
Straight-Line Sequencing

R0,C

B,R0

A,R0

Movei + 8

Begin execution here Movei

ContentsAddress

C

B

A

the program
Data for

segment
program
3instruction

Addi + 4

Figure 2.8. A program for C ← [Α] + [Β].

Assumptions:
- One memory operand
 per instruction
- 32-bit word length
- Memory is byte
 addressable
- Full memory address
 can be directly specified
 in a single-word instruction

Two-phase procedure
-Instruction fetch
-Instruction execute

Page 43

Branching

NUMn

NUM2

NUM1

R0,SUM

NUMn ,R0

NUM3,R0

NUM2,R0

NUM1,R0

Figure 2.9. A straightline program for adding n numbers.

Add

Add

Move

SUM

i

Move

Add

i 4n+

i 4n 4+

i 8+

i 4+

•
•
•

•
•
•

•
•
•

Branching

N,R1Move

NUMn

NUM2

NUM1

R0,SUM

R1

"Next" number to R0

Figure 2.10. Using a loop to add n numbers.

LOOP

Decrement

Move

LOOP

loop
Program

Determine address of
"Next" number and add

N

SUM

n

R0Clear

Branch>0

•
•
•

•
•
•

Branch target

Conditional branch

Condition Codes

 Condition code flags
 Condition code register / status register
 N (negative)
 Z (zero)
 V (overflow)
 C (carry)
 Different instructions affect different flags

Conditional Branch
Instructions

 Example:
 A: 1 1 1 1 0 0 0 0
 B: 0 0 0 1 0 1 0 0

A: 1 1 1 1 0 0 0 0

+(−B): 1 1 1 0 1 1 0 0

 1 1 0 1 1 1 0 0

C = 1

S = 1

V = 0

Z = 0

Status Bits

ALU

V Z S C

Zero Check

Cn

Cn-1

Fn-1

A B

F

Addressing Modes

Generating Memory Addresses

 How to specify the address of branch target?
 Can we give the memory operand address

directly in a single Add instruction in the
loop?

 Use a register to hold the address of NUM1;
then increment by 4 on each pass through
the loop.

Addressing Modes

 Implied
 AC is implied in “ADD M[AR]” in “One-Address”

instr.
 TOS is implied in “ADD” in “Zero-Address” instr.

 Immediate
 The use of a constant in “MOV R1, 5”, i.e. R1 ←

5

 Register
 Indicate which register holds the operand

Opcode Mode ...

Addressing Modes
 Register Indirect

 Indicate the register that holds the number of the
register that holds the operand

MOV R1, (R2)
 Autoincrement / Autodecrement

 Access & update in 1 instr.

 Direct Address
 Use the given address to access a memory

location

R1

R2 = 3

R3 = 5

Addressing Modes
 Indirect Address

 Indicate the memory location that holds the
address of the memory location that holds the
data

AR = 101

100

101

102

103

104

0 1 0 4

1 1 0 A

100

101

102

103

104

0

1

2

Addressing Modes

 Relative Address
 EA = PC + Relative Addr

AR = 100

1 1 0 A

PC = 2

+

Could be Positive
or Negative

(2’s Complement)

Addressing Modes

 Indexed
 EA = Index Register + Relative Addr

100

101

102

103

104

AR = 100

1 1 0 A

XR = 2

+

Could be Positive
or Negative

(2’s Complement)

Useful with
“Autoincrement” or
“Autodecrement”

Addressing Modes
 Base Register

 EA = Base Register + Relative Addr

100

101

102

103

104

BR = 100

0 0 0 A

AR = 2

+

Could be Positive
or Negative

(2’s Complement)

Usually points
to the beginning

of an array

0 0 0 5

0 0 1 2

0 1 0 7

0 0 5 9

Addressing Modes
 The different

ways in which
the location of
an operand is
specified in
an instruction
are referred to
as addressing
modes.

Name Assembler syntax Addressing function

Immediate #Value Operand = Value

Register R i EA = Ri

Absolute(Direct) LOC EA = LOC

Indirect (Ri) EA = [Ri]
(LOC) EA = [LOC]

Index X(R i) EA = [Ri] + X

Basewith index (Ri ,Rj) EA = [Ri] + [Rj]

Basewith index X(R i,Rj) EA = [Ri] + [Rj] + X
andoffset

Relative X(PC) EA = [PC] + X

Autoincrement (Ri)+ EA = [Ri] ;
Increment Ri

Autodecrement (Ri) Decrement R i ;
EA = [Ri]

−

Indexing and Arrays

 Index mode – the effective address of the operand
is generated by adding a constant value to the
contents of a register.

 Index register
 X(Ri): EA = X + [Ri]

 The constant X may be given either as an explicit
number or as a symbolic name representing a
numerical value.

 If X is shorter than a word, sign-extension is
needed.

Indexing and Arrays

 In general, the Index mode facilitates access
to an operand whose location is defined
relative to a reference point within the data
structure in which the operand appears.

 Several variations:
(Ri, Rj): EA = [Ri] + [Rj]
X(Ri, Rj): EA = X + [Ri] + [Rj]

Relative Addressing

 Relative mode – the effective address is determined
by the Index mode using the program counter in
place of the general-purpose register.

 X(PC) – note that X is a signed number
 Branch>0 LOOP
 This location is computed by specifying it as an

offset from the current value of PC.
 Branch target may be either before or after the

branch instruction, the offset is given as a singed
num.

Additional Modes
 Autoincrement mode – the effective address of the operand is

the contents of a register specified in the instruction. After
accessing the operand, the contents of this register are
automatically incremented to point to the next item in a list.

 (Ri)+. The increment is 1 for byte-sized operands, 2 for 16-bit
operands, and 4 for 32-bit operands.

 Autodecrement mode: -(Ri) – decrement first

R0Clear

R0,SUM

R1
(R2)+,R0

Figure 2.16. The Autoincrement addressing mode used in the program of Figure 2.12.

Initialization

Move

LOOP Add
Decrement

LOOP

#NUM1,R2
N,R1Move

Move

Branch>0

Assembly Language

Types of Instructions

 Data Transfer Instructions
Name Mnemonic

Load LD

Store ST

Move MOV

Exchange XCH

Input IN

Output OUT

Push PUSH

Pop POP

Data value is
not modified

Data Transfer Instructions

Mode Assembly Register Transfer

Direct address LD ADR AC ← M[ADR]

Indirect address LD @ADR AC ← M[M[ADR]]

Relative address LD $ADR AC ← M[PC+ADR]

Immediate operand LD #NBR AC ← NBR

Index addressing LD ADR(X) AC ← M[ADR+XR]

Register LD R1 AC ← R1

Register indirect LD (R1) AC ← M[R1]

Autoincrement LD (R1)+ AC ← M[R1], R1 ← R1+1

Data Manipulation Instructions
 Arithmetic
 Logical & Bit Manipulation
 Shift

Name Mnemonic
Increment INC
Decrement DEC

Add ADD
Subtract SUB
Multiply MUL
Divide DIV

Add with carry ADDC
Subtract with borrow SUBB

Negate NEG

Name Mnemonic
Clear CLR

Complement COM
AND AND
OR OR

Exclusive-OR XOR
Clear carry CLRC
Set carry SETC

Complement
carry

COMC
Enable interrupt EI
Disable interrupt DI

Name Mnemonic
Logical shift right SHR
Logical shift left SHL

Arithmetic shift right SHRA
Arithmetic shift left SHLA

Rotate right ROR
Rotate left ROL

Rotate right through
carry

RORC
Rotate left through carry ROLC

Program Control Instructions

Name Mnemonic

Branch BR

Jump JMP

Skip SKP

Call CALL

Return RET

Compare
(Subtract)

CMP

Test (AND) TST

Subtract A – B but
don’t store the result

1 0 1 1 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0
Mask

Conditional Branch
Instructions

Mnemonic Branch Condition Tested Condition

BZ Branch if zero Z = 1

BNZ Branch if not zero Z = 0

BC Branch if carry C = 1

BNC Branch if no carry C = 0

BP Branch if plus S = 0

BM Branch if minus S = 1

BV Branch if overflow V = 1

BNV
Branch if no

overflow
V = 0

Basic Input/Output
Operations

I/O

 The data on which the instructions operate
are not necessarily already stored in memory.

 Data need to be transferred between
processor and outside world (disk, keyboard,
etc.)

 I/O operations are essential, the way they are
performed can have a significant effect on the
performance of the computer.

Program-Controlled I/O
Example

 Read in character input from a keyboard and
produce character output on a display
screen.

 Rate of data transfer (keyboard, display, processor)
 Difference in speed between processor and I/O device

creates the need for mechanisms to synchronize the
transfer of data.

 A solution: on output, the processor sends the first
character and then waits for a signal from the display
that the character has been received. It then sends the
second character. Input is sent from the keyboard in a
similar way.

Program-Controlled I/O
Example

DATAIN DATAOUT

SIN SOUT

Keyboard Display

Bus

Figure 2.19 Bus connection for processor, keyboard, and display.

Processor

- Registers
- Flags
- Device interface

Program-Controlled I/O
Example

 Machine instructions that can check the state
of the status flags and transfer data:
READWAIT Branch to READWAIT if SIN = 0
 Input from DATAIN to R1

WRITEWAIT Branch to WRITEWAIT if SOUT = 0
 Output from R1 to DATAOUT

Program-Controlled I/O
Example

 Memory-Mapped I/O – some memory
address values are used to refer to peripheral
device buffer registers. No special
instructions are needed. Also use device
status registers.

READWAIT Testbit #3, INSTATUS
 Branch=0 READWAIT
 MoveByte DATAIN, R1

Program-Controlled I/O
Example

 Assumption – the initial state of SIN is 0 and the
initial state of SOUT is 1.

 Any drawback of this mechanism in terms of
efficiency?
 Two wait loopsprocessor execution time is wasted

 Alternate solution?
 Interrupt

Stacks

Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS
 LIFO

Last In First Out
0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS
 PUSH

SP ← SP – 1

M[SP] ← DR

If (SP = 0) then (FULL ← 1)

EMPTY ← 0

0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

1 6 9 0

1 6 9 0Current
Top of Stack

TOS

Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS
 POP

DR ← M[SP]

SP ← SP + 1

If (SP = 11) then (EMPTY ← 1)

FULL ← 0

0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

1 6 9 01 6 9 0

Current
Top of Stack

TOS

0

1

2

102

202

201

200

100

101

Stack Organization

 Memory Stack
 PUSH

SP ← SP – 1

M[SP] ← DR
 POP

DR ← M[SP]

SP ← SP + 1

PC

AR

SP

	UNIT 1 - Basic Structure of Computers
	Functional Units
	Slide 3
	Information Handled by a Computer
	Memory Unit
	Arithmetic and Logic Unit (ALU)
	Control Unit
	The processor : Data Path and Control
	Five Execution Steps
	Basic Operational Concepts
	Review
	A Typical Instruction
	Separate Memory Access and ALU Operation
	Connection Between the Processor and the Memory
	Registers
	Typical Operating Steps
	Typical Operating Steps (Cont’)
	Interrupt
	Bus Structures
	Bus Structure
	Speed Issue
	Performance
	Slide 23
	Slide 24
	Slide 25
	Processor Clock
	Basic Performance Equation
	Pipeline and Superscalar Operation
	Clock Rate
	CISC and RISC
	Compiler
	Performance Measurement
	Machine Instructions and Programs
	Objectives
	Memory Locations, Addresses, and Operations
	Memory Location, Addresses, and Operation
	Slide 37
	Slide 38
	Slide 39
	Big-Endian and Little-Endian Assignments
	Slide 41
	Memory Operation
	Instruction and Instruction Sequencing
	“Must-Perform” Operations
	Register Transfer Notation
	Assembly Language Notation
	CPU Organization
	Instruction Formats
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Using Registers
	Instruction Execution and Straight-Line Sequencing
	Branching
	Slide 57
	Condition Codes
	Conditional Branch Instructions
	Status Bits
	Addressing Modes
	Generating Memory Addresses
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Indexing and Arrays
	Slide 71
	Relative Addressing
	Additional Modes
	Assembly Language
	Types of Instructions
	Data Transfer Instructions
	Data Manipulation Instructions
	Program Control Instructions
	Slide 79
	Basic Input/Output Operations
	I/O
	Program-Controlled I/O Example
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Stacks
	Stack Organization
	Slide 89
	Slide 90
	Slide 91

