
UNIT 1 - Basic Structure
of Computers

Functional Units

Functional Units

Figure 1.1. Basic functional units of a computer.

I/O Processor

Output

Memory

Input and
Arithmetic

logic

Control

Information Handled by a
Computer

 Instructions/machine instructions
 Govern the transfer of information within a computer as

well as between the computer and its I/O devices
 Specify the arithmetic and logic operations to be

performed
 Program

 Data
 Used as operands by the instructions
 Source program

 Encoded in binary code – 0 and 1

Memory Unit

 Store programs and data
 Two classes of storage
 Primary storage
 Fast
 Programs must be stored in memory while they are being executed
 Large number of semiconductor storage cells
 Processed in words
 Address
 RAM and memory access time
 Memory hierarchy – cache, main memory
 Secondary storage – larger and cheaper

Arithmetic and Logic Unit
(ALU)

 Most computer operations are executed in
ALU of the processor.

 Load the operands into memory – bring them
to the processor – perform operation in ALU –
store the result back to memory or retain in
the processor.

 Registers
 Fast control of ALU

Control Unit
 All computer operations are controlled by the control

unit.
 The timing signals that govern the I/O transfers are

also generated by the control unit.
 Control unit is usually distributed throughout the

machine instead of standing alone.
 Operations of a computer:
 Accept information in the form of programs and data through an

input unit and store it in the memory
 Fetch the information stored in the memory, under program control,

into an ALU, where the information is processed
 Output the processed information through an output unit
 Control all activities inside the machine through a control unit

The processor : Data Path and
Control

PC
Register

Bank

Data Memory

Address

Instructions Address

Data

Instruction
Memory

A
L
U

Data

Register #

Register #

Register #

Two types of functional units:
elements that operate on data values (combinational)
 elements that contain state (state elements)

Five Execution Steps
Step nameStep name Action for R-type Action for R-type

instructionsinstructions
Action for Memory-Action for Memory-

reference Instructionsreference Instructions
Action for Action for
branchesbranches

Action for Action for
jumpsjumps

Instruction fetch IR = MEM[PC]

PC = PC + 4

Instruction decode/ register
fetch

A = Reg[IR[25-21]]

B = Reg[IR[20-16]]

ALUOut = PC + (sign extend (IR[15-0])<<2)

Execution, address
computation, branch/jump

completion

ALUOut = A op B ALUOut = A+sign
extend(IR[15-0])

IF(A==B) Then
PC=ALUOut

PC=PC[31-28
]||

(IR[25-0]<<2)

Memory access or R-type
completion

Reg[IR[15-11]] =
ALUOut

Load:MDR =Mem[ALUOut]

or

Store:Mem[ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] =
MDR

Basic Operational
Concepts

Review

 Activity in a computer is governed by instructions.
 To perform a task, an appropriate program

consisting of a list of instructions is stored in the
memory.

 Individual instructions are brought from the memory
into the processor, which executes the specified
operations.

 Data to be used as operands are also stored in the
memory.

A Typical Instruction

 Add LOCA, R0
 Add the operand at memory location LOCA to the

operand in a register R0 in the processor.
 Place the sum into register R0.
 The original contents of LOCA are preserved.
 The original contents of R0 is overwritten.
 Instruction is fetched from the memory into the

processor – the operand at LOCA is fetched and
added to the contents of R0 – the resulting sum is
stored in register R0.

Separate Memory Access and
ALU Operation

 Load LOCA, R1
 Add R1, R0
 Whose contents will be overwritten?

Connection Between the
Processor and the Memory

Figure 1.2. Connections between the processor and the memory.

Processor

Memory

PC

IR

MDR

Control

ALU
Rn 1­

R1

R0

MAR

n general purpose
registers

Registers

 Instruction register (IR)
 Program counter (PC)
 General-purpose register (R0 – Rn-1)

 Memory address register (MAR)
 Memory data register (MDR)

Typical Operating Steps

 Programs reside in the memory through input
devices

 PC is set to point to the first instruction
 The contents of PC are transferred to MAR
 A Read signal is sent to the memory
 The first instruction is read out and loaded

into MDR
 The contents of MDR are transferred to IR
 Decode and execute the instruction

Typical Operating Steps
(Cont’)

 Get operands for ALU
 General-purpose register
 Memory (address to MAR – Read – MDR to ALU)

 Perform operation in ALU
 Store the result back

 To general-purpose register
 To memory (address to MAR, result to MDR – Write)

 During the execution, PC is
incremented to the next instruction

Interrupt

 Normal execution of programs may be preempted if
some device requires urgent servicing.

 The normal execution of the current program must
be interrupted – the device raises an interrupt
signal.

 Interrupt-service routine
 Current system information backup and restore (PC,

general-purpose registers, control information,
specific information)

Bus Structures

 There are many ways to connect different
parts inside a computer together.

 A group of lines that serves as a connecting
path for several devices is called a bus.

 Address/data/control

Bus Structure

 Single-bus

Figure 1.3. Single­bus structure.

MemoryInput Output Processor

Speed Issue

 Different devices have different
transfer/operate speed.

 If the speed of bus is bounded by the slowest
device connected to it, the efficiency will be
very low.

 How to solve this?
 A common approach – use buffers.

Performance

Performance

 The most important measure of a computer is
how quickly it can execute programs.

 Three factors affect performance:
 Hardware design
 Instruction set
 Compiler

Performance
 Processor time to execute a program depends on the hardware

involved in the execution of individual machine instructions.

Main
memory Processor

Bus

Cache
memory

Figure 1.5. The processor cache.

Performance

 The processor and a relatively small cache
memory can be fabricated on a single
integrated circuit chip.

 Speed
 Cost
 Memory management

Processor Clock

 Clock, clock cycle, and clock rate
 The execution of each instruction is divided

into several steps, each of which completes
in one clock cycle.

 Hertz – cycles per second

Basic Performance Equation
 T – processor time required to execute a program that has been

prepared in high-level language
 N – number of actual machine language instructions needed to

complete the execution (note: loop)
 S – average number of basic steps needed to execute one

machine instruction. Each step completes in one clock cycle
 R – clock rate
 Note: these are not independent to each other

R

SN
T

×=

How to improve T?

Pipeline and Superscalar
Operation

 Instructions are not necessarily executed one after
another.

 The value of S doesn’t have to be the number of
clock cycles to execute one instruction.

 Pipelining – overlapping the execution of successive
instructions.

 Add R1, R2, R3
 Superscalar operation – multiple instruction

pipelines are implemented in the processor.
 Goal – reduce S (could become <1!)

Clock Rate

 Increase clock rate
 Improve the integrated-circuit (IC) technology to make

the circuits faster
 Reduce the amount of processing done in one basic step

(however, this may increase the number of basic steps
needed)

 Increases in R that are entirely caused by
improvements in IC technology affect all
aspects of the processor’s operation equally
except the time to access the main memory.

CISC and RISC

 Tradeoff between N and S
 A key consideration is the use of pipelining
 S is close to 1 even though the number of basic steps

per instruction may be considerably larger
 It is much easier to implement efficient pipelining in

processor with simple instruction sets

 Reduced Instruction Set Computers (RISC)
 Complex Instruction Set Computers (CISC)

Compiler

 A compiler translates a high-level language program
into a sequence of machine instructions.

 To reduce N, we need a suitable machine instruction
set and a compiler that makes good use of it.

 Goal – reduce N×S
 A compiler may not be designed for a specific

processor; however, a high-quality compiler is
usually designed for, and with, a specific processor.

Performance Measurement
 T is difficult to compute.
 Measure computer performance using benchmark programs.
 System Performance Evaluation Corporation (SPEC) selects and

publishes representative application programs for different application
domains, together with test results for many commercially available
computers.

 Compile and run (no simulation)
 Reference computer

∏
=

=

=

n

i

n
iSPECratingSPEC

ratingSPEC

1

1

)(

under testcomputer on the timeRunning

computer reference on the timeRunning

Machine Instructions
and Programs

Objectives

 Machine instructions and program execution,
including branching and subroutine call and return
operations.

 Number representation and addition/subtraction in
the 2’s-complement system.

 Addressing methods for accessing register and
memory operands.

 Assembly language for representing machine
instructions, data, and programs.

 Program-controlled Input/Output operations.

Memory Locations,
Addresses, and

Operations

Memory Location, Addresses,
and Operation

 Memory consists
of many millions of
storage cells,
each of which can
store 1 bit.

 Data is usually
accessed in n-bit
groups. n is called
word length.

second word

first word

Figure 2.5. Memory words.

n bits

last word

i th word

•
•
•

•
•
•

Memory Location, Addresses,
and Operation

 32-bit word length example

(b) Four characters

charactercharactercharacter character

(a) A signed integer

Sign bit: for positive numbers
 for negative numbers

ASCIIASCIIASCIIASCII

32 bits

8 bits 8 bits 8 bits 8 bits

b31 b30 b1 b0

b31 0=
b31 1=

• • •

Memory Location, Addresses,
and Operation

 To retrieve information from memory, either for one
word or one byte (8-bit), addresses for each location
are needed.

 A k-bit address memory has 2k memory locations,
namely 0 – 2k-1, called memory space.

 24-bit memory: 224 = 16,777,216 = 16M (1M=220)
 32-bit memory: 232 = 4G (1G=230)
 1K(kilo)=210

 1T(tera)=240

Memory Location, Addresses,
and Operation

 It is impractical to assign distinct addresses
to individual bit locations in the memory.

 The most practical assignment is to have
successive addresses refer to successive
byte locations in the memory – byte-
addressable memory.

 Byte locations have addresses 0, 1, 2, … If
word length is 32 bits, they successive words
are located at addresses 0, 4, 8,…

Big-Endian and Little-Endian
Assignments

2
k

4­ 2
k

3­ 2
k

2­ 2
k

1­ 2
k

4­2
k

4­

0 1 2 3

4 5 6 7

0 0

4

2
k

1­ 2
k

2­ 2
k

3­ 2
k

4­

3 2 1 0

7 6 5 4

Byte addressByte address

(a) Big­endian assignment (b) Little­endian assignment

4

Word
address

•
•
•

•
•
•

Figure 2.7. Byte and word addressing.

Big-Endian: lower byte addresses are used for the most significant bytes of the word

Little-Endian: opposite ordering. lower byte addresses are used for the less significant
bytes of the word

Memory Location, Addresses,
and Operation

 Address ordering of bytes
 Word alignment

 Words are said to be aligned in memory if they
begin at a byte addr. that is a multiple of the num
of bytes in a word.
 16-bit word: word addresses: 0, 2, 4,….
 32-bit word: word addresses: 0, 4, 8,….
 64-bit word: word addresses: 0, 8,16,….

 Access numbers, characters, and character
strings

Memory Operation

 Load (or Read or Fetch)
 Copy the content. The memory content doesn’t change.
 Address – Load
 Registers can be used

 Store (or Write)
 Overwrite the content in memory
 Address and Data – Store
 Registers can be used

Instruction and
Instruction Sequencing

“Must-Perform” Operations

 Data transfers between the memory and the
processor registers

 Arithmetic and logic operations on data
 Program sequencing and control
 I/O transfers

Register Transfer Notation

 Identify a location by a symbolic name
standing for its hardware binary address
(LOC, R0,…)

 Contents of a location are denoted by placing
square brackets around the name of the
location (R1←[LOC], R3 ←[R1]+[R2])

 Register Transfer Notation (RTN)

Assembly Language Notation

 Represent machine instructions and
programs.

 Move LOC, R1 = R1←[LOC]
 Add R1, R2, R3 = R3 ←[R1]+[R2]

CPU Organization

 Single Accumulator
 Result usually goes to the Accumulator
 Accumulator has to be saved to memory quite

often

 General Register
 Registers hold operands thus reduce memory

traffic
 Register bookkeeping

 Stack
 Operands and result are always in the stack

Instruction Formats

 Three-Address Instructions
 ADD R1, R2, R3 R1 ← R2 + R3

 Two-Address Instructions
 ADD R1, R2 R1 ← R1 + R2

 One-Address Instructions
 ADD M AC ← AC + M[AR]

 Zero-Address Instructions
 ADD TOS ← TOS + (TOS – 1)

 RISC Instructions
 Lots of registers. Memory is restricted to Load & Store

Opcode Operand(s) or Address(es)

Instruction Formats

Example: Evaluate (A+B) ∗ (C+D)
 Three-Address

l ADD R1, A, B ; R1 ← M[A] + M[B]
l ADD R2, C, D ; R2 ← M[C] + M[D]
l MUL X, R1, R2 ; M[X] ← R1 ∗ R2

Instruction Formats
Example: Evaluate (A+B) ∗ (C+D)
 Two-Address

l MOV R1, A ; R1 ← M[A]
l ADD R1, B ; R1 ← R1 + M[B]
l MOV R2, C ; R2 ← M[C]
l ADD R2, D ; R2 ← R2 + M[D]
l MUL R1, R2 ; R1 ← R1 ∗ R2
l MOV X, R1 ; M[X] ← R1

Instruction Formats
Example: Evaluate (A+B) ∗ (C+D)
 One-Address

l LOAD A ; AC ← M[A]
l ADD B ; AC ← AC + M[B]
l STORET ; M[T] ← AC
l LOAD C ; AC ← M[C]
l ADD D ; AC ← AC + M[D]
l MUL T ; AC ← AC ∗ M[T]
l STOREX ; M[X] ← AC

Instruction Formats
Example: Evaluate (A+B) ∗ (C+D)
 Zero-Address

l PUSH A ; TOS ← A
l PUSH B ; TOS ← B
l ADD ; TOS ← (A + B)
l PUSH C ; TOS ← C
l PUSH D ; TOS ← D
l ADD ; TOS ← (C + D)
l MUL ; TOS ←

(C+D)∗(A+B)
l POP X ; M[X] ← TOS

Instruction Formats
Example: Evaluate (A+B) ∗ (C+D)
 RISC

l LOAD R1, A ; R1 ← M[A]
l LOAD R2, B ; R2 ← M[B]
l LOAD R3, C ; R3 ← M[C]
l LOAD R4, D ; R4 ← M[D]
l ADD R1, R1, R2 ; R1 ← R1 + R2
l ADD R3, R3, R4 ; R3 ← R3 + R4
l MUL R1, R1, R3 ; R1 ← R1 ∗ R3
l STOREX, R1 ; M[X] ← R1

Using Registers

 Registers are faster
 Shorter instructions

 The number of registers is smaller (e.g. 32
registers need 5 bits)

 Potential speedup
 Minimize the frequency with which data is

moved back and forth between the memory
and processor registers.

Instruction Execution and
Straight-Line Sequencing

R0,C

B,R0

A,R0

Movei + 8

Begin execution here Movei

ContentsAddress

C

B

A

the program
Data for

segment
program
3­instruction

Addi + 4

Figure 2.8. A program for C ← [Α] + [Β].

Assumptions:
- One memory operand
 per instruction
- 32-bit word length
- Memory is byte
 addressable
- Full memory address
 can be directly specified
 in a single-word instruction

Two-phase procedure
-Instruction fetch
-Instruction execute

Page 43

Branching

NUMn

NUM2

NUM1

R0,SUM

NUMn ,R0

NUM3,R0

NUM2,R0

NUM1,R0

Figure 2.9. A straight­line program for adding n numbers.

Add

Add

Move

SUM

i

Move

Add

i 4n+

i 4n 4­+

i 8+

i 4+

•
•
•

•
•
•

•
•
•

Branching

N,R1Move

NUMn

NUM2

NUM1

R0,SUM

R1

"Next" number to R0

Figure 2.10. Using a loop to add n numbers.

LOOP

Decrement

Move

LOOP

loop
Program

Determine address of
"Next" number and add

N

SUM

n

R0Clear

Branch>0

•
•
•

•
•
•

Branch target

Conditional branch

Condition Codes

 Condition code flags
 Condition code register / status register
 N (negative)
 Z (zero)
 V (overflow)
 C (carry)
 Different instructions affect different flags

Conditional Branch
Instructions

 Example:
 A: 1 1 1 1 0 0 0 0
 B: 0 0 0 1 0 1 0 0

A: 1 1 1 1 0 0 0 0

+(−B): 1 1 1 0 1 1 0 0

 1 1 0 1 1 1 0 0

C = 1

S = 1

V = 0

Z = 0

Status Bits

ALU

V Z S C

Zero Check

Cn

Cn-1

Fn-1

A B

F

Addressing Modes

Generating Memory Addresses

 How to specify the address of branch target?
 Can we give the memory operand address

directly in a single Add instruction in the
loop?

 Use a register to hold the address of NUM1;
then increment by 4 on each pass through
the loop.

Addressing Modes

 Implied
 AC is implied in “ADD M[AR]” in “One-Address”

instr.
 TOS is implied in “ADD” in “Zero-Address” instr.

 Immediate
 The use of a constant in “MOV R1, 5”, i.e. R1 ←

5

 Register
 Indicate which register holds the operand

Opcode Mode ...

Addressing Modes
 Register Indirect

 Indicate the register that holds the number of the
register that holds the operand

MOV R1, (R2)
 Autoincrement / Autodecrement

 Access & update in 1 instr.

 Direct Address
 Use the given address to access a memory

location

R1

R2 = 3

R3 = 5

Addressing Modes
 Indirect Address

 Indicate the memory location that holds the
address of the memory location that holds the
data

AR = 101

100

101

102

103

104

0 1 0 4

1 1 0 A

100

101

102

103

104

0

1

2

Addressing Modes

 Relative Address
 EA = PC + Relative Addr

AR = 100

1 1 0 A

PC = 2

+

Could be Positive
or Negative

(2’s Complement)

Addressing Modes

 Indexed
 EA = Index Register + Relative Addr

100

101

102

103

104

AR = 100

1 1 0 A

XR = 2

+

Could be Positive
or Negative

(2’s Complement)

Useful with
“Autoincrement” or
“Autodecrement”

Addressing Modes
 Base Register

 EA = Base Register + Relative Addr

100

101

102

103

104

BR = 100

0 0 0 A

AR = 2

+

Could be Positive
or Negative

(2’s Complement)

Usually points
to the beginning

of an array

0 0 0 5

0 0 1 2

0 1 0 7

0 0 5 9

Addressing Modes
 The different

ways in which
the location of
an operand is
specified in
an instruction
are referred to
as addressing
modes.

Name Assembler syntax Addressing function

Immediate #Value Operand = Value

Register R i EA = Ri

Absolute(Direct) LOC EA = LOC

Indirect (Ri) EA = [Ri]
(LOC) EA = [LOC]

Index X(R i) EA = [Ri] + X

Basewith index (Ri ,Rj) EA = [Ri] + [Rj]

Basewith index X(R i,Rj) EA = [Ri] + [Rj] + X
andoffset

Relative X(PC) EA = [PC] + X

Autoincrement (Ri)+ EA = [Ri] ;
Increment Ri

Autodecrement (Ri) Decrement R i ;
EA = [Ri]

−

Indexing and Arrays

 Index mode – the effective address of the operand
is generated by adding a constant value to the
contents of a register.

 Index register
 X(Ri): EA = X + [Ri]

 The constant X may be given either as an explicit
number or as a symbolic name representing a
numerical value.

 If X is shorter than a word, sign-extension is
needed.

Indexing and Arrays

 In general, the Index mode facilitates access
to an operand whose location is defined
relative to a reference point within the data
structure in which the operand appears.

 Several variations:
(Ri, Rj): EA = [Ri] + [Rj]
X(Ri, Rj): EA = X + [Ri] + [Rj]

Relative Addressing

 Relative mode – the effective address is determined
by the Index mode using the program counter in
place of the general-purpose register.

 X(PC) – note that X is a signed number
 Branch>0 LOOP
 This location is computed by specifying it as an

offset from the current value of PC.
 Branch target may be either before or after the

branch instruction, the offset is given as a singed
num.

Additional Modes
 Autoincrement mode – the effective address of the operand is

the contents of a register specified in the instruction. After
accessing the operand, the contents of this register are
automatically incremented to point to the next item in a list.

 (Ri)+. The increment is 1 for byte-sized operands, 2 for 16-bit
operands, and 4 for 32-bit operands.

 Autodecrement mode: -(Ri) – decrement first

R0Clear

R0,SUM

R1
(R2)+,R0

Figure 2.16. The Autoincrement addressing mode used in the program of Figure 2.12.

Initialization

Move

LOOP Add
Decrement

LOOP

#NUM1,R2
N,R1Move

Move

Branch>0

Assembly Language

Types of Instructions

 Data Transfer Instructions
Name Mnemonic

Load LD

Store ST

Move MOV

Exchange XCH

Input IN

Output OUT

Push PUSH

Pop POP

Data value is
not modified

Data Transfer Instructions

Mode Assembly Register Transfer

Direct address LD ADR AC ← M[ADR]

Indirect address LD @ADR AC ← M[M[ADR]]

Relative address LD $ADR AC ← M[PC+ADR]

Immediate operand LD #NBR AC ← NBR

Index addressing LD ADR(X) AC ← M[ADR+XR]

Register LD R1 AC ← R1

Register indirect LD (R1) AC ← M[R1]

Autoincrement LD (R1)+ AC ← M[R1], R1 ← R1+1

Data Manipulation Instructions
 Arithmetic
 Logical & Bit Manipulation
 Shift

Name Mnemonic
Increment INC
Decrement DEC

Add ADD
Subtract SUB
Multiply MUL
Divide DIV

Add with carry ADDC
Subtract with borrow SUBB

Negate NEG

Name Mnemonic
Clear CLR

Complement COM
AND AND
OR OR

Exclusive-OR XOR
Clear carry CLRC
Set carry SETC

Complement
carry

COMC
Enable interrupt EI
Disable interrupt DI

Name Mnemonic
Logical shift right SHR
Logical shift left SHL

Arithmetic shift right SHRA
Arithmetic shift left SHLA

Rotate right ROR
Rotate left ROL

Rotate right through
carry

RORC
Rotate left through carry ROLC

Program Control Instructions

Name Mnemonic

Branch BR

Jump JMP

Skip SKP

Call CALL

Return RET

Compare
(Subtract)

CMP

Test (AND) TST

Subtract A – B but
don’t store the result

1 0 1 1 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0
Mask

Conditional Branch
Instructions

Mnemonic Branch Condition Tested Condition

BZ Branch if zero Z = 1

BNZ Branch if not zero Z = 0

BC Branch if carry C = 1

BNC Branch if no carry C = 0

BP Branch if plus S = 0

BM Branch if minus S = 1

BV Branch if overflow V = 1

BNV
Branch if no

overflow
V = 0

Basic Input/Output
Operations

I/O

 The data on which the instructions operate
are not necessarily already stored in memory.

 Data need to be transferred between
processor and outside world (disk, keyboard,
etc.)

 I/O operations are essential, the way they are
performed can have a significant effect on the
performance of the computer.

Program-Controlled I/O
Example

 Read in character input from a keyboard and
produce character output on a display
screen.

 Rate of data transfer (keyboard, display, processor)
 Difference in speed between processor and I/O device

creates the need for mechanisms to synchronize the
transfer of data.

 A solution: on output, the processor sends the first
character and then waits for a signal from the display
that the character has been received. It then sends the
second character. Input is sent from the keyboard in a
similar way.

Program-Controlled I/O
Example

DATAIN DATAOUT

SIN SOUT

Keyboard Display

Bus

Figure 2.19 Bus connection for processor, keyboard, and display.

Processor

- Registers
- Flags
- Device interface

Program-Controlled I/O
Example

 Machine instructions that can check the state
of the status flags and transfer data:
READWAIT Branch to READWAIT if SIN = 0
 Input from DATAIN to R1

WRITEWAIT Branch to WRITEWAIT if SOUT = 0
 Output from R1 to DATAOUT

Program-Controlled I/O
Example

 Memory-Mapped I/O – some memory
address values are used to refer to peripheral
device buffer registers. No special
instructions are needed. Also use device
status registers.

READWAIT Testbit #3, INSTATUS
 Branch=0 READWAIT
 MoveByte DATAIN, R1

Program-Controlled I/O
Example

 Assumption – the initial state of SIN is 0 and the
initial state of SOUT is 1.

 Any drawback of this mechanism in terms of
efficiency?
 Two wait loopsprocessor execution time is wasted

 Alternate solution?
 Interrupt

Stacks

Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS
 LIFO

Last In First Out
0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS
 PUSH

SP ← SP – 1

M[SP] ← DR

If (SP = 0) then (FULL ← 1)

EMPTY ← 0

0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

1 6 9 0

1 6 9 0Current
Top of Stack

TOS

Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS
 POP

DR ← M[SP]

SP ← SP + 1

If (SP = 11) then (EMPTY ← 1)

FULL ← 0

0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

1 6 9 01 6 9 0

Current
Top of Stack

TOS

0

1

2

102

202

201

200

100

101

Stack Organization

 Memory Stack
 PUSH

SP ← SP – 1

M[SP] ← DR
 POP

DR ← M[SP]

SP ← SP + 1

PC

AR

SP

	UNIT 1 - Basic Structure of Computers
	Functional Units
	Slide 3
	Information Handled by a Computer
	Memory Unit
	Arithmetic and Logic Unit (ALU)
	Control Unit
	The processor : Data Path and Control
	Five Execution Steps
	Basic Operational Concepts
	Review
	A Typical Instruction
	Separate Memory Access and ALU Operation
	Connection Between the Processor and the Memory
	Registers
	Typical Operating Steps
	Typical Operating Steps (Cont’)
	Interrupt
	Bus Structures
	Bus Structure
	Speed Issue
	Performance
	Slide 23
	Slide 24
	Slide 25
	Processor Clock
	Basic Performance Equation
	Pipeline and Superscalar Operation
	Clock Rate
	CISC and RISC
	Compiler
	Performance Measurement
	Machine Instructions and Programs
	Objectives
	Memory Locations, Addresses, and Operations
	Memory Location, Addresses, and Operation
	Slide 37
	Slide 38
	Slide 39
	Big-Endian and Little-Endian Assignments
	Slide 41
	Memory Operation
	Instruction and Instruction Sequencing
	“Must-Perform” Operations
	Register Transfer Notation
	Assembly Language Notation
	CPU Organization
	Instruction Formats
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Using Registers
	Instruction Execution and Straight-Line Sequencing
	Branching
	Slide 57
	Condition Codes
	Conditional Branch Instructions
	Status Bits
	Addressing Modes
	Generating Memory Addresses
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Indexing and Arrays
	Slide 71
	Relative Addressing
	Additional Modes
	Assembly Language
	Types of Instructions
	Data Transfer Instructions
	Data Manipulation Instructions
	Program Control Instructions
	Slide 79
	Basic Input/Output Operations
	I/O
	Program-Controlled I/O Example
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Stacks
	Stack Organization
	Slide 89
	Slide 90
	Slide 91

