
UNIT 2

si =
ci +1 =

13

7
+ Y

1

0
0
0
1
0

1

1

0
0
1
1
0

1
1

0

0
1
1
0
1
0
0
1

0

0

0

0

1

1

1

1

0
0
0
0
1
1
1
1

Example:

1
0= = 0

0
1 1

1
1 1 0 0

1

1 1 10

Legend for stage i

xi yi Carryin ci Sum s i Carryout ci+1

X

Z

+ 6 0+
xi
yi
si

Carryout
ci+1

Carryin
ci

xi yici xiyi ci xi yici xi yici x i yi ci⊕ ⊕=+ + +
yici xici xiyi+ +

At the ith stage:
Input:
ci is the carry-in
Output:
si is the sum
ci+1 carry-out to (i+1)st

state

Full adder
(FA)

cici 1+

s
i

Sum Carry

yixi

c
i

yi

xi
c
i

yi

x
i

xi

ci

yi si c
i 1+

Full Adder (FA): Symbol for the complete circuit
 for a single stage of addition.

•Cascade n full adder (FA) blocks to form a n-bit adder.
•Carries propagate or ripple through this cascade, n-bit ripple carry adder.

FA c0

y1x1

s1

FA

c1

y0x0

s0

FA

cn 1

yn 1xn 1

cn

sn 1

Most significant bit
(MSB) position

Least significant bit
(LSB) position

Carry-in c0 into the LSB position provides a convenient way to
perform subtraction.

K n-bit numbers can be added by cascading k n-bit adders.

nbit c
0

ynxn

s
n

cn

y0xn 1

s
0

ckn

s
k 1()n

x0yn 1y2n 1x2n 1ykn 1

s
n 1

s
2n 1

s
kn 1

xkn 1

adder
nbit
adder

nbit
adder

Each n-bit adder forms a block, so this is cascading of blocks.
Carries ripple or propagate through blocks, Blocked Ripple Carry Adder

FA 1

y1x1

s1

FA

c1

y0x0

s0

FA

cn 1

yn 1xn 1

cn

sn 1

Most significant bit
(MSB) position

Least significant bit
(LSB) position

•Recall X – Y is equivalent to adding 2’s complement of Y to X.
•2’s complement is equivalent to 1’s complement + 1.
•X – Y = X + Y + 1
•2’s complement of positive and negative numbers is computed similarly.

Add/Sub
control

nbit adder

x
n 1

x
1

x
0

c
n

s
n 1 s

1
s

0

c
0

y
n 1

y
1

y
0

•Add/sub control = 0, addition.
•Add/sub control = 1, subtraction.

Detecting overflows
 Overflows can only occur when the sign of the two operands is

the same.
 Overflow occurs if the sign of the result is different from the

sign of the operands.
 Recall that the MSB represents the sign.

 xn-1, yn-1, sn-1 represent the sign of operand x, operand y and result s
respectively.

 Circuit to detect overflow can be implemented by the
following logic expressions:

111111 −−−−−− += nnnnnn syxsyxOverflow

1−⊕= nn ccOverflow

Consider 0 th stage:
x0

y0

c0
c1

s0

FA

•c1 is available after 2 gate delays.
•s1 is available after 1 gate delay.

c
i

yi

xi
c
i

yi

x
i

xi

ci

yi si c
i 1+

Sum Carry

x0
y0

s2

FA

x0 y0x0
y0

s1

FAc2

s0

FAc1c3
c0

x0
y0

s3

FA
c4

Cascade of 4 Full Adders, or a 4-bit adder

•s0 available after 1 gate delays, c1 available after 2 gate delays.
•s1 available after 3 gate delays, c2 available after 4 gate delays.
•s2 available after 5 gate delays, c3 available after 6 gate delays.
•s3 available after 7 gate delays, c4 available after 8 gate delays.

For an n-bit adder, sn-1 is available after 2n-1 gate delays
 cn is available after 2n gate delays.

Recall the equations:

iiiiiii

iiii

cycxyxc

cyxs

++=
⊕⊕=

+1

Second equation can be written as:

iiiiii cyxyxc)(1 ++=+

We can write:

iiiiii

iiii

yxPandyxGwhere

cPGc

+==
+=+1

•Gi is called generate function and Pi is called propagate function
•Gi and Pi are computed only from xi and yi and not ci, thus they can
 be computed in one gate delay after X and Y are applied to the
inputs of an n-bit adder.

ci +1 = Gi + Pici

ci = Gi −1 + Pi −1ci −1

⇒ ci+1 = Gi + Pi(Gi −1 + Pi −1ci −1)

continuing

⇒ ci+1 = Gi + Pi(Gi −1 + Pi −1(Gi − 2 + Pi− 2ci −2))

until

ci+1 = Gi + PiGi −1 + PiPi−1Gi −2 + .. + PiPi −1..P1G0 + PiPi −1...P0c0

•All carries can be obtained 3 gate delays after X, Y and c0 are applied.
 -One gate delay for Pi and Gi

 -Two gate delays in the AND-OR circuit for ci+1

•All sums can be obtained 1 gate delay after the carries are
computed.
•Independent of n, n-bit addition requires only 4 gate delays.
•This is called Carry Lookahead adder.

Carrylookahead logic

B cell B cell B cell B cell

s
3

P3G3

c
3

P2G2

c
2

s
2

G
1

c
1

P
1

s
1

G
0

c
0

P
0

s
0

.
c4

x
1

y
1

x
3

y
3

x
2

y
2 x

0
y

0

G i

c
i

..

.

P i s i

x i
y i

B cell

4-bit
carry-lookahead
adder

B-cell for a single stage

Carry lookahead adder (contd..)
 Performing n-bit addition in 4 gate delays independent of n

is good only theoretically because of fan-in constraints.

 Last AND gate and OR gate require a fan-in of (n+1) for a n-
bit adder.
 For a 4-bit adder (n=4) fan-in of 5 is required.
 Practical limit for most gates.

 In order to add operands longer than 4 bits, we can cascade
4-bit Carry-Lookahead adders. Cascade of Carry-Lookahead
adders is called Blocked Carry-Lookahead adder.

c
i+1 = G

i
+ P

i
G

i −1 + P
i
P

i−1Gi −2 + .. + P
i
P

i −1..P1G0 + P
i
P

i −1...P0c0

c4 = G3 + P3G2 + P3P2G1 + P3P2 P1G0 + P3P2 P1P0c0

Carry-out from a 4-bit block can be given as:

Rewrite this as:

P0
I = P3P2 P1P0

G0
I = G3 + P3G2 + P3P2G1 + P3P2P1G0

Subscript I denotes the blocked carry lookahead and identifies the block.

Cascade 4 4-bit adders, c16 can be expressed as:

c16 = G3
I + P3

IG2
I + P3

I P2
IG1

I + P3
IP2

I P1
0G0

I + P3
I P2

I P1
0P0

0c0

Carrylookahead logic

4bit adder 4bit adder 4bit adder 4bit adder

s1512

P3
IG3

I

c12

P2
IG2

I

c8

s118

G1
I

c4

P1
I

s74

G0
I

c0

P0
I

s30

c16

x1512 y1512 x118 y118 x74 y74 x30 y30

.

After xi, yi and c0 are applied as inputs:
 - Gi and Pi for each stage are available after 1 gate delay.
 - PI is available after 2 and GI after 3 gate delays.
 - All carries are available after 5 gate delays.
 - c16 is available after 5 gate delays.
 - s15 which depends on c12 is available after 8 (5+3)gate delays
 (Recall that for a 4-bit carry lookahead adder, the last sum bit is
 available 3 gate delays after all inputs are available)

Product of 2 n-bit numbers is at most a 2n-bit number.

Unsigned multiplication can be viewed as addition of shifted
versions of the multiplicand.

Multiplication of unsigned
numbers (contd..)

 We added the partial products at end.
 Alternative would be to add the partial products at each stage.

 Rules to implement multiplication are:
 If the ith bit of the multiplier is 1, shift the multiplicand and add the

shifted multiplicand to the current value of the partial product.
 Hand over the partial product to the next stage
 Value of the partial product at the start stage is 0.

ith multiplier bit

carry incarry out

jth multiplicand bit

ith multiplier bit

Bit of incoming partial product (PPi)

Bit of outgoing partial product (PP(i+1))

FA

Typical multiplication cell

M
ult

ipl
ier

Multiplicand

m3 m2 m1 m00 0 0 0

q3

q2

q1

q0
0

p2

p1

p0

0

0

0

p3p4p5p6p7

PP1

PP2

PP3

(PP0)

,

Product is: p7,p6,..p0

Multiplicand is shifted by displacing it through an array of adders.

Combinatorial array multiplier

Combinatorial array multiplier
(contd..)
 Combinatorial array multipliers are:

 Extremely inefficient.
 Have a high gate count for multiplying numbers of practical size such as 32-

bit or 64-bit numbers.
 Perform only one function, namely, unsigned integer product.

 Improve gate efficiency by using a mixture of
combinatorial array techniques and sequential
techniques requiring less combinational logic.

Sequential multiplication
 Recall the rule for generating partial products:

 If the ith bit of the multiplier is 1, add the appropriately shifted multiplicand
to the current partial product.

 Multiplicand has been shifted left when added to the partial product.

 However, adding a left-shifted multiplicand to an
unshifted partial product is equivalent to adding an
unshifted multiplicand to a right-shifted partial
product.

q
n 1

m
n 1

n-bit
Adder

Multiplicand M

Control
sequencer

Multiplier Q

0

C

Shift right

Register A (initially 0)

Add/Noadd
control

a
n 1

a
0

q
0

m
0

0

MUX

1 1 1 1

1 0 1 1

1 1 1 1
1 1 1 0

1 1 1 0
1 1 0 1

1 1 0 1

Initial configuration

Add

M

1 1 0 1

C

First cycle

Second cycle

Third cycle

Fourth cycle

No add

Shift

Shift
Add

Shift

Shift
Add

1 1 1 1

0

0

0

1
0

0
0

1

0

0 0 0 0

0 1 1 0

1 1 0 1

0 0 1 1

1 0 0 1
0 1 0 0

0 0 0 1

1 0 0 0

1 0 0 1

1 0 1 1

QA

Product

Signed Multiplication
 Considering 2’s-complement signed operands, what will happen to

(-13)×(+11) if following the same method of unsigned multiplication?

Sign extension of negative multiplicand.

1

0

11 11 1 1 0 0 1 1

110

110

1

0

1000111011

000000

1100111

00000000

110011111

13()

143()

11+()

Sign extension is
shown in blue

Signed Multiplication
 For a negative multiplier, a straightforward solution is

to form the 2’s-complement of both the multiplier and
the multiplicand and proceed as in the case of a
positive multiplier.

 This is possible because complementation of both
operands does not change the value or the sign of the
product.

 A technique that works equally well for both negative
and positive multipliers – Booth algorithm.

Signed Multiplication
Hardware Implementation

Booth Algorithm
 Consider in a multiplication, the multiplier is positive

0011110, how many appropriately shifted versions of
the multiplicand are added in a standard procedure?

0
0 0

1 0 1 1 0 1
0

0 0 0 0 0 0
1

0
011010
1011010

1011010
1011010

0000000
000000

011000101010

0

00

1+ 1+ 1+ 1+

Booth Algorithm
 Since 0011110 = 0100000 – 0000010, if we use the

expression to the right, what will happen?

0

1

0 1 0 1 1 1
0000

00000000000000
1 1 1 1 1 1 1 0 1 0 0 1

00
0

0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 0

0110001001000 1

2's complement of
the multiplicand

0
0

0
0

1+ 1

0
0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

Booth Algorithm
 In general, in the Booth scheme, -1 times the shifted multiplicand is

selected when moving from 0 to 1, and +1 times the shifted
multiplicand is selected when moving from 1 to 0, as the multiplier
is scanned from right to left.

Booth recoding of a multiplier.

001101011100110100

00000000 1+ 111+11+11+11+

Booth Algorithm

Booth multiplication with a negative multiplier.

01
0

1 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0

00
0110

0 0 0 0 1 1 0
1100111

0 0 0 0 0 0

01000 11111

1

10 1 1 0 1
1 1 0 1 0 6()

13+()
X

78()

+11 1

Booth Algorithm
Multiplier

Bit i Bit i 1

V ersion of multiplicand
selected by biti

0

1

0

0

01

1 1

0 M

1+ M

1− M

0 M

Booth multiplier recoding table.

X

X

X

X

Booth Algorithm
 Best case – a long string of 1’s (skipping over 1s)
 Worst case – 0’s and 1’s are alternating

1

0

1110000111110000

001111011010001

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0

000000000000

00000000

1 1 1 1 1 1 1 1

1 1 1 1

11

1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+

1+

1+1+1+

1+

Worstcase
multiplier

Ordinary
multiplier

Good
multiplier

Booth Algorithm
Flow Chart

Table

Bit-Pair Recoding of Multipliers
 Bit-pair recoding halves the maximum number of

summands (versions of the multiplicand).

1+1−

(a) Example of bitpair recoding derived from Booth recoding

0

000

1 1 0 1 0
Implied 0 to right of LSB

1

0

Sign extension

1

21− −

−

Bit-Pair Recoding of Multipliers

i 1+ i 1

(b) Table of multiplicand selection decisions

selected at position i
MultiplicandMultiplier bitpair

i

0

0

1

1

1

0

1

0

1

1

1

1

0

0

0

1

1

0

0

1

0

0

1

Multiplier bit on the right

0 0 X M

1+

1

1+

0

1

2

2+

−

−

−

−

X M

X M

X M
X M

X M

X M

X M

Bit-Pair Recoding of Multipliers

41

1

0000
1 1 1 1 1 0
0 0 0 0 11
1 1 1 1 10 0
0 0 0 0 0 0

0000 111111

0 1 1 0 1
0

1 010011111
1 1 1 1 0 0 1 1
0 0 0 0 0 0

1 1 1 0 1 1 0 0 1 0

0

1

0 0

1 0

1

0 0

0
0 1

0

0 1

10

0

010
0 1 1 0 1

11

1

6()
13+()

1+

78()

1 2

×

Figure 6.15. Multiplication requiring only n/2 summands.

Carry-Save Addition of Summands
 CSA speeds up the addition process.

42P7 P6 P5 P4 P3 P2 P1 P0

Carry-Save Addition of Summands(Cont.,)

P3 P2 P1 P0P5 P4P7 P6

Carry-Save Addition of
Summands(Cont.,)

 Consider the addition of many summands, we can:
 Group the summands in threes and perform carry-save addition on

each of these groups in parallel to generate a set of S and C vectors in
one full-adder delay

 Group all of the S and C vectors into threes, and perform carry-save
addition on them, generating a further set of S and C vectors in one
more full-adder delay

 Continue with this process until there are only two vectors remaining
 They can be added in a RCA or CLA to produce the desired product

Carry-Save Addition of Summands

Figure 6.17. A multiplication example used to illustrate carrysave addition as shown in Figure 6.18.

100 1 11

100 1 11

100 1 11

11111 1

100 1 11 M

Q

A

B

C

D

E

F

(2,835)

X

(45)

(63)

100 1 11

100 1 11

100 1 11

000 1 11 111 0 00 Product

Figure 6.18. The multiplication example from Figure 6.17 performed using
carrysave addition.

00000101 0 10

10010000 1 11 1

+

1000011 1

10010111 0 10 1

0110 1 10 0

00011010 0 00

10001011 1 0 1

110001 1 0

00111100

00110 1 10

11001 0 01

100 1 11

100 1 11

100 1 11

00110 1 10

11001 0 01

100 1 11

100 1 11

100 1 11

11111 1

100 1 11 M

Q

A

B

C

S
1

C
1

D

E

F

S
2

C
2

S1

C
1

S2

S
3

C3

C2

S4

C
4

Product

x

Manual Division

 Longhand division examples.

1101

1
13
14

26

21
274 100010010

10101

1101

1

1110
1101

10000

13 1101

Longhand Division Steps
 Position the divisor appropriately with respect to the

dividend and performs a subtraction.
 If the remainder is zero or positive, a quotient bit of 1

is determined, the remainder is extended by another
bit of the dividend, the divisor is repositioned, and
another subtraction is performed.

 If the remainder is negative, a quotient bit of 0 is
determined, the dividend is restored by adding back
the divisor, and the divisor is repositioned for another
subtraction.

Circuit Arrangement

Figure 6.21. Circuit arrangement for binary division.

qn1

Divisor M

Control
Sequencer

Dividend Q

Shift left

N+1 bit
adder

q0

Add/Subtract

Quotient
Setting

A

m00 mn1

a0an an1

Binary Division
Hardware Implementation

Restoring Division
 Shift A and Q left one binary position
 Subtract M from A, and place the answer back in A
 If the sign of A is 1, set q0 to 0 and add M back to A

(restore A); otherwise, set q0 to 1

 Repeat these steps n times

Examples

10111

Figure 6.22. A restoringdivision example.

1 1 1 1 1

01111

0

0

0

1

0
0
0

0

0

0
0

0

0
0

0
0

0

1

0
0

0

0
0

1 01

11
1 1

01

0001

Subtract
Shift

Restore

1 0000
1 0000
1 1

Initially

Subtract
Shift

10111
10000
11000
00000

Subtract
Shift

Restore

10111
01000
10000

1 1

QuotientRemainder

Shift
10111

1 0000
Subtract

Second cycle

First cycle

Third cycle

Fourth cycle

0
0

0

0

0
0

1

0
1

10000

1 1
1 0000

11111
Restore

q0Set

q0Set

q0Set

q0Set

Restoring Division
Flow Chart

Nonrestoring Division
Avoid the need for restoring A after an

unsuccessful subtraction.
Any idea?
 Step 1: (Repeat n times)
 If the sign of A is 0, shift A and Q left one bit position and

subtract M from A; otherwise, shift A and Q left and add M
to A.

Now, if the sign of A is 0, set q0 to 1; otherwise, set q0 to 0.

 Step2: If the sign of A is 1, add M to A

Examples

 A nonrestoringdivision example.

Add

Restore
 remainder

Remainder

0 0 0 01

1 1 1 1 1
0 0 0 1 1

1

Quotient

0 0 1 01 1 1 1 1

0 0 0 01 1 1 1 1

Shift 0 0 0
11000
01111

Add

0 0 0 1 1
0 0 0 0 1 0 0 0
1 1 1 0 1

Shift
Subtract

Initially 0 0 0 0 0 1 0 0 0

1 1 1 0 0000

1 1 1 0 0
0 0 0 1 1

0 0 0Shift
Add

0 0 10 0 0 01
1 1 1 0 1

Shift
Subtract

0 0 0 110000

Fourth cycle

Third cycle

Second cycle

First cycle

q0Set

q0Set

q0Set

q0Set

Nonrestoring Division
Flow Chart

If b is a binary vector, then we have seen that it can be interpreted as
an unsigned integer by:

V(b) = b31.231 + b30.230 + bn-3.229 + + b1.21 + b0.20

This vector has an implicit binary point to its immediate right:

b31b30b29....................b1b0. implicit binary point

Suppose if the binary vector is interpreted with the implicit binary point is
just left of the sign bit:

implicit binary point .b31b30b29....................b1b0

The value of b is then given by:

V(b) = b31.2-1 + b30.2-2 + b29.2-3 + + b1.2-31 + b0.2-32

The value of the unsigned binary fraction is:

V(b) = b31.2-1 + b30.2-2 + b29.2-3 + + b1.2-31 + b0.2-32

The range of the numbers represented in this format is:

In general for a n-bit binary fraction (a number with an assumed binary
point at the immediate left of the vector), then the range of values is:

9999999998.021)(0 32 ≈−≤≤ −bV

nbV −−≤≤ 21)(0

•Previous representations have a fixed point. Either the point is to the immediate
right or it is to the immediate left. This is called Fixed point representation.
•Fixed point representation suffers from a drawback that the representation can
only represent a finite range (and quite small) range of numbers.

A more convenient representation is the scientific representation, where
the numbers are represented in the form:

x = m1.m2m3m4 × b±e

Components of these numbers are:

Mantissa (m), implied base (b), and exponent (e)

A number such as the following is said to have 7 significant digits

x = ±0.m1m2m3m4m5m6m7 × b±e

Fractions in the range 0.0 to 0.9999999 need about 24 bits of precision
(in binary). For example the binary fraction with 24 1’s:

111111111111111111111111 = 0.9999999404

Not every real number between 0 and 0.9999999404 can be represented
by a 24-bit fractional number.
The smallest non-zero number that can be represented is:

000000000000000000000001 = 5.96046 x 10-8

Every other non-zero number is constructed in increments of this value.

•In a 32-bit number, suppose we allocate 24 bits to represent a fractional
mantissa.
•Assume that the mantissa is represented in sign and magnitude format,
and we have allocated one bit to represent the sign.
•We allocate 7 bits to represent the exponent, and assume that the
exponent is represented as a 2’s complement integer.
•There are no bits allocated to represent the base, we assume that the
base is implied for now, that is the base is 2.
•Since a 7-bit 2’s complement number can represent values in the range
-64 to 63, the range of numbers that can be represented is:

0.0000001 x 2-64 < = | x | <= 0.9999999 x 263

•In decimal representation this range is:

0.5421 x 10-20 < = | x | <= 9.2237 x 1018

Sign Exponent Fractional mantissa
bit

 1 7 24

•24-bit mantissa with an implied binary point to the immediate left
•7-bit exponent in 2’s complement form, and implied base is 2.

If the number is to be represented using only 7 significant mantissa digits,
 the representation ignoring rounding is:

Consider the number: x = 0.0004056781 x 1012

x = 0.0004056 x 1012

If the number is shifted so that as many significant digits are brought into
7 available slots: x = 0.4056781 x 109 = 0.0004056 x 1012

Exponent of x was decreased by 1 for every left shift of x.

A number which is brought into a form so that all of the available mantissa
digits are optimally used (this is different from all occupied which may
not hold), is called a normalized number.

Same methodology holds in the case of binary mantissas

0001101000(10110) x 28 = 1101000101(10) x 25

•A floating point number is in normalized form if the most significant
1 in the mantissa is in the most significant bit of the mantissa.
•All normalized floating point numbers in this system will be of the form:

0.1xxxxx.......xx

Range of numbers representable in this system, if every number must be
normalized is:

0.5 x 2-64 <= | x | < 1 x 263

The procedure for normalizing a floating point number is:
 Do (until MSB of mantissa = = 1)
 Shift the mantissa left (or right)
 Decrement (increment) the exponent by 1
 end do

Applying the normalization procedure to: .000111001110....0010 x 2-62

gives: .111001110........ x 2-65

But we cannot represent an exponent of –65, in trying to normalize the
number we have underflowed our representation.

Applying the normalization procedure to: 1.00111000............x 263

gives: 0.100111..............x 264

This overflows the representation.

So far we have assumed an implied base of 2, that is our floating point
numbers are of the form:

x = m 2e

If we choose an implied base of 16, then:

x = m 16e

Then:

y = (m.16) .16e-1 (m.24) .16e-1 = m . 16e = x

•Thus, every four left shifts of a binary mantissa results in a decrease of 1
in a base 16 exponent.
•Normalization in this case means shifting the mantissa until there is a 1 in
the first four bits of the mantissa.

•Rather than representing an exponent in 2’s complement form, it turns out to be
more beneficial to represent the exponent in excess notation.
•If 7 bits are allocated to the exponent, exponents can be represented in the range
of -64 to +63, that is:

-64 <= e <= 63

Exponent can also be represented using the following coding called as excess-64:

E’ = Etrue + 64

In general, excess-p coding is represented as:

E’ = Etrue + p

True exponent of -64 is represented as 0
 0 is represented as 64
 63 is represented as 127

This enables efficient comparison of the relative sizes of two floating point numbers.

IEEE Floating Point notation is the standard representation in use. There are two
representations:
 - Single precision.
 - Double precision.
Both have an implied base of 2.
Single precision:
 - 32 bits (23-bit mantissa, 8-bit exponent in excess-127 representation)
Double precision:
 - 64 bits (52-bit mantissa, 11-bit exponent in excess-1023 representation)
Fractional mantissa, with an implied binary point at immediate left.

Sign Exponent Mantissa
1 8 or 11 23 or 52

•Floating point numbers have to be represented in a normalized form to
maximize the use of available mantissa digits.
•In a base-2 representation, this implies that the MSB of the mantissa is
always equal to 1.
•If every number is normalized, then the MSB of the mantissa is always 1.
We can do away without storing the MSB.
•IEEE notation assumes that all numbers are normalized so that the MSB
of the mantissa is a 1 and does not store this bit.
•So the real MSB of a number in the IEEE notation is either a 0 or a 1.
•The values of the numbers represented in the IEEE single precision
notation are of the form:

(+,-) 1.M x 2(E - 127)

•The hidden 1 forms the integer part of the mantissa.
•Note that excess-127 and excess-1023 (not excess-128 or excess-1024) are used
to represent the exponent.

In the IEEE representation, the exponent is in excess-127 (excess-1023)
notation.
The actual exponents represented are:

-126 <= E <= 127 and -1022 <= E <= 1023
not
-127 <= E <= 128 and -1023 <= E <= 1024

This is because the IEEE uses the exponents -127 and 128 (and -1023 and
1024), that is the actual values 0 and 255 to represent special conditions:
 - Exact zero
 - Infinity

Addition:
3.1415 x 108 + 1.19 x 106 = 3.1415 x 108 + 0.0119 x 108 = 3.1534 x 108

Multiplication:

3.1415 x 108 x 1.19 x 106 = (3.1415 x 1.19) x 10(8+6)

Division:
3.1415 x 108 / 1.19 x 106 = (3.1415 / 1.19) x 10(8-6)

Biased exponent problem:
If a true exponent e is represented in excess-p notation, that is as e+p.
Then consider what happens under multiplication:

a. 10(x + p) * b. 10(y + p) = (a.b). 10(x + p + y +p) = (a.b). 10(x +y + 2p)

Representing the result in excess-p notation implies that the exponent
should be x+y+p. Instead it is x+y+2p.
Biases should be handled in floating point arithmetic.

Floating point arithmetic: ADD/SUB
rule
 Choose the number with the smaller exponent.
 Shift its mantissa right until the exponents of both the

numbers are equal.
 Add or subtract the mantissas.
 Determine the sign of the result.
 Normalize the result if necessary and truncate/round

to the number of mantissa bits.

Note: This does not consider the possibility of overflow/underflow.

Floating point arithmetic: MUL rule
 Add the exponents.
 Subtract the bias.
 Multiply the mantissas and determine the sign of the

result.
 Normalize the result (if necessary).
 Truncate/round the mantissa of the result.

Floating point arithmetic: DIV rule
 Subtract the exponents
 Add the bias.
 Divide the mantissas and determine the sign of the

result.
 Normalize the result if necessary.
 Truncate/round the mantissa of the result.

Note: Multiplication and division does not require alignment of the
mantissas the way addition and subtraction does.

While adding two floating point numbers with 24-bit mantissas, we shift
the mantissa of the number with the smaller exponent to the right until
the two exponents are equalized.
This implies that mantissa bits may be lost during the right shift (that is,
bits of precision may be shifted out of the mantissa being shifted).
To prevent this, floating point operations are implemented by keeping
guard bits, that is, extra bits of precision at the least significant end
of the mantissa.
The arithmetic on the mantissas is performed with these extra bits of
precision.
After an arithmetic operation, the guarded mantissas are:
 - Normalized (if necessary)
 - Converted back by a process called truncation/rounding to a 24-bit
 mantissa.

Truncation/rounding
 Straight chopping:

 The guard bits (excess bits of precision) are dropped.

 Von Neumann rounding:
 If the guard bits are all 0, they are dropped.
 However, if any bit of the guard bit is a 1, then the LSB of the retained bit is

set to 1.

 Rounding:
 If there is a 1 in the MSB of the guard bit then a 1 is added to the LSB of the

retained bits.

Rounding
 Rounding is evidently the most accurate truncation

method.
 However,

 Rounding requires an addition operation.
 Rounding may require a renormalization, if the addition operation de-

normalizes the truncated number.

 IEEE uses the rounding method.

0.111111100000 rounds to 0.111111 + 0.000001
=1.000000 which must be renormalized to 0.100000

	Arithmetic
	Addition/subtraction of signed numbers
	Addition logic for a single stage
	n-bit adder
	K n-bit adder
	n-bit subtractor
	n-bit adder/subtractor (contd..)
	Detecting overflows
	Computing the add time
	Computing the add time (contd..)
	Fast addition
	Carry lookahead
	Carry-lookahead adder
	Carry lookahead adder (contd..)
	4-bit carry-lookahead Adder
	Blocked Carry-Lookahead adder
	Slide 17
	Multiplication
	Multiplication of unsigned numbers
	Multiplication of unsigned numbers (contd..)
	Slide 21
	Combinatorial array multiplier
	Combinatorial array multiplier (contd..)
	Sequential multiplication
	Sequential Circuit Multiplier
	Sequential multiplication (contd..)
	Signed Multiplication
	Slide 28
	Slide 29
	Slide 30
	Booth Algorithm
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Fast Multiplication
	Bit-Pair Recoding of Multipliers
	Slide 40
	Slide 41
	Carry-Save Addition of Summands
	Carry-Save Addition of Summands(Cont.,)
	Slide 44
	Slide 45
	PowerPoint Presentation
	Integer Division
	Manual Division
	Longhand Division Steps
	Circuit Arrangement
	Binary Division
	Restoring Division
	Examples
	Slide 54
	Nonrestoring Division
	Slide 56
	Slide 57
	Floating-Point Numbers and Operations
	Fractions
	Range of fractions
	Scientific notation
	Significant digits
	Sign and exponent digits
	A sample representation
	Normalization
	Normalization (contd..)
	Normalization, overflow and underflow
	Changing the implied base
	Excess notation
	IEEE notation
	Peculiarities of IEEE notation
	Exponent field
	Floating point arithmetic
	Floating point arithmetic: ADD/SUB rule
	Floating point arithmetic: MUL rule
	Floating point arithmetic: DIV rule
	Guard bits
	Truncation/rounding
	Rounding

