UNIT 3 - Basic
Processing Unit




Overview

® |nstruction Set Processor (ISP)
® Central Processing Unit (CPU)

® A typical computing task consists of a series
of steps specified by a sequence of machine
instructions that constitute a program.

® An instruction is executed by carrying out a
sequence of more rudimentary operations.



Some Fundamental
Concepts




Fundamental Concepts

® Processor fetches one instruction at a time and
perform the operation specified.

® |nstructions are fetched from successive memory
locations until a branch or a jump instruction is
encountered.

® Processor keeps track of the address of the memory
location containing the next instruction to be fetched
using Program Counter (PC).

® [nstruction Register (IR)



Executing an Instruction

® Fetch the contents of the memory location pointed
to by the PC. The contents of this location are
loaded into the IR (fetch phase).

IR «— [[PC]]

® Assuming that the memory is byte addressable,
increment the contents of the PC by 4 (fetch phase).

PC — [PC]+4

® Carry out the actions specified by the instruction in
the IR (execution phase).



Processor Organization
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Figure v.\. Single-bus organization of the datapath inside a processor.



Executing an Instruction

® Transfer a word of data from one processor
register to another or to the ALU.

® Perform an arithmetic or a logic operation
and store the result in a processor register.

® Fetch the contents of a given memory
location and load them into a processor
reqister.

® Store a word of data from a processor
register into a given memory location.



Register Transfers
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Register Transfers

® All operations and data transfers are controlled by the processor clock.

Bus
D Q E—
\
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Figure 7.3. Input and output gating for one register bit.



Performing an Arithmetic or
Logic Operation

® The ALU is a combinational circuit that has no
internal storage.

® ALU gets the two operands from MUX and bus.
The result is temporarily stored in register Z.

® What is the sequence of operations to add the
contents of register R1 to those of R2 and store the
result in R37
R1out, Yin
R2out, SelectY, Add, Zin
Zout, R3in



Fetching a Word from Memory

® Address into MAR; issue Read operation; data into MDR.

Memory-bus Internal processor
data lines bus
N\ N\
-— X X —
MDR
_ b L
VvV V

Figure 7.4. Connection and control signals for register MDR.



Fetching a Word from Memory

® The response time of each memory access varies
(cache miss, memory-mapped I/O,...).

® To accommodate this, the processor waits until it
receives an indication that the requested operation
has been completed (Memory-Function-Completed,
MFC).

Move (R1), R2

MAR «— [R1]

Start a Read operation on the memory bus
Wait for the MFC response from the memory

Load MDR from the memory bus
R2 — [MDR]

YV V.V VY VY @



o000
o000
o0
i . Step ' \ | Y ' ¥ i ¢
Timing
MAR,, | _| MAR « [R1]
Assume MAR o
is always available A gress X
on the address lines
of the memory bus. Start a Read operation on the memory bus
MR
MDR;,
Data { —
Wait for the MFC response from the memory
MEFC
vor,, Load MDR from the memory bus | _I_
R2 « [MDR]

Figure v.0. Timing of a memory Read operation.



Execution of a Complete
Instruction

* Add (R3), R1
® Fetch the instruction

® Fetch the first operand (the contents of the
memory location pointed to by R3)

® Perform the addition
® | oad the result into R1



Architecture
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Execution of a Complete

Instruction

Add (R3), R1
Step Action
) PCout» MAR;,, Read, Selects Add, Z,
Y Zout, PCin ) Yin, WMF C
¥ MDR oyt 5 IRin
s Rrout y MARin, Read

Ryout , Yin, WMF C
MDR o, SelectY,Add, Z;,
Zout, Ry in End

< 4 o

Figure v.1. Control sequencéor executionof the instruction Add (RY),R).
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Figure v.\. Single-bus organization of the datapath inside a processor.



Execution of Branch
Instructions

® A branch instruction replaces the contents of
PC with the branch target address, which is
usually obtained by adding an offset X given
In the branch instruction.

® The offset X is usually the difference between
the branch target address and the address
immediately following the branch instruction.

® Conditional branch



X X )
- o000
Execution of Branch sece
i o0

Instructions :

Step Action

1 PGu, MAR ., Read, Select4,Add, Zin

2 Zout, PCin, Yin, WMFC

3 MDR,, IR;,

4 Offset-field-of-IRut, Add, Zin

5 Z.ut» PCGn, End

Figure 7.7. Control sequence for an unconditional branch instruction.



Multiple-Bus Organization
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Figure V.A. Three-b us organization of the datapath.




Multiple-Bus Organization

¢ Add R4, R5, R6

Step Action

1 PC.... R=B, MAR,,, Read, IncPC

2 WMFC

3 MDR,,g, R=B, IR,

4 R4outa, R5outs, SelectA, Add, R6in, End

Figure 7.9. Control sequence for the instruction. Add R4,R5,R6,
for the three-bus organization in Figure 7.8.



Quiz

® \What is the control
sequence for
execution of the
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Figure v.1. Single-bus organization of the datapath inside a processor.



Hardwired Control




Overview

® To execute instructions, the processor must
have some means of generating the control
signals needed in the proper sequence.

® Two categories: hardwired control and
microprogrammed control

® Hardwired system can operate at high speed,;
but with little flexibility.



Control Unit Organization
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Detailed Block
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Generating Z,, :

©Z =T, +T,*ADD+T,*BR+...

Branch Add

Figure 7.12. Generation of the Z, control signal for the processor in Figure 7.1.



Generating End

e ENd=T,*ADD + T, *BR+ (T,* N+ T, *N)+BRN +...

Branch<.
Add Branch

N N

=l
Y
[

1.

T

£

End

Figure V.1 Y. Generation of the End control signal.




A Complete

Processor
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Figure V.1 ¢. Block diagram of a complete processor.




Microprogrammed
Control




Overview

® Control signals are generated by a program similar to machine
language programs.
® Control Word (CW); microroutine; microinstruction
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Figure V.10 An example of microinstructions for Figure V..



Overview

Step Action

\ PCout, MAR,, Read, Selects Add, Z;,
Y Zout, PCin, Yin, WMF C

¥ MDR oyt IRin

3 RYout , MARn, Read

0 Ryout, Yin, WMF C

1 MDR .., SelectY,Add, Z;,

v Zout, RVvin, End

Figure v.1. Control sequencéor executionof the instruction Add (RY),R1.
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Figure V.11. Basic organization of a microprogrammed control unit.



Overview

® The previous organization cannot handle the situation when the control
unit is required to check the status of the condition codes or external
inputs to choose between alternative courses of action.

® se conditional branch microinstruction.

Address Microinstruction

0 PC..i » MAR;, , Read, Select4,Add, Z;,

1 Zyit» PCi, Yin , WMFC

2 MDR_ , IR,

3 Branchto startingaddresof appropriatemicroroutine
25 If N=0, then branchto microinstruction0

26 Offset-field-of-IR, ;, SelectY, Add, Z,,

27 Z,,, PCi,, End

Figure 7.17. Microroutine for the instruction Branch<0.



Ove rVi eW <: External

inputs

Starting and

IR :> branch address <: Cocrgggso n
generator

I

Clock ——= HPC

b

Control
store —> CW

Figure 7.18.  Organization of the control unit to allow
conditional branching in the microprogram.



Microinstructions

® A straightforward way to structure
microinstructions is to assign one bit position
to each control signal.

® However, this is very inefficient.

® The length can be reduced: most signals are
not needed simultaneously, and many
signals are mutually exclusive.

® All mutually exclusive signals are placed in
the same group In binary coding.



Partial Format for the
Microinstructions

What is the price paid for

this scheme?

Microinstruction
F Fy Fy Fs Fo
F\ (¢ bits) Fr (¥ bits) FY (¥ bits) Fs (¢ bits) Fo (¥ bits)
+++.:Notransfer ...:No transfer ...: No transfer +...: Add ... No action
-+ PC . -1 PG, -+1: MAR, «+1:Sub .1: Read
.+1.: MDR,; IR, -1.: MDR, . \ .: Write
N B VA 17, -1 : TEMB, y
’\”:R'Oul \”:R'in \”:Yi 111 XOR
VaiRy, 1Ry, v
. Ry V1 ALU
.1 .: Ry, 11 .:RY, functions
Ry, 11 Ry,
\.1.: TEMB,,
V.1 Offseg,,,
F1 Fv FA
F1 (1 bit) Fv () bit) FA (1 bit)
.: SelectY .: No action .: Continue
\: Selects \: WMFEC \: End
Figure v.1a. An example of a partial format for field-encoded microinstructions.



Further Improvement

® Enumerate the patterns of required signals in
all possible microinstructions. Each
meaningful combination of active control
signals can then be assigned a distinct code.

® Vertical organization
® Horizontal organization



Microprogram Sequencing

® |f all microprograms require only straightforward
sequential execution of microinstructions except for
branches, letting a yPC governs the sequencing
would be efficient.

® However, two disadvantages:

> Having a separate microroutine for each machine instruction results
in a large total number of microinstructions and a large control store.

> Longer execution time because it takes more time to carry out the
required branches.

® Example: Add src, Rdst

® Four addressing modes: register, autoincrement,
autodecrement, and indexed (with indirect forms).



000

I MAR « [PC]; Read; Z  [PC) + 4

Microroutinies for other instructions

1ndexed Autodecrement Autoincremant - Register indirect

1 161 I 4l J 121

11

"Z = [Rsrc] + 4

l 162 ' 142 l S

MA::{I[::(]:]il:cad ] ze-[kfmj—4- ] MAR ¢ [Rorc]; Read |_MAR'—[RNC]:Rc|d| |

112

I PC + [Z]; WMFC ”m,mm—[zknudl I_ Rerc [Z] ] [Bmchu'f_u;

16, l 123
Y « PMDR] ﬁmch{ 170, OR}; WMFCI

§|Im

143
I Z  [Y] + [Rete} IIanch{l?0.0R};WMFCJ

165

i |

166
lBranch{lT0,0Rl; ‘WMFC'

[70
IMAR « [MDRJ; Read; WMFC]

1N

Y « [MDR] 102 Register direct 101

Branch( 172} Y « [Rsre)

.

172

Ze[Y] +[Rast]

VFigure 7.20. Flowchart of a microprogram for the Add scc,Rdst instruction.

~ - Bit-ORing
- Wide-Branch Addressing
- WMFC



Contents of IR

Note:

Mode
//
OP code 01 0 Rsrc Rdst
// 11 10 8 7 43

Address Microinstruction
(octal)
000 PC,,» MAR;, , Read, Select, Add, Z,
001 Z,. PC,Y,, WMFC
002 MDR,,,, IR,
003 uBranch f PC ~ 101 (from Instruction decoder);

WPCs, « [IR,ggl; MPC; « [IR ] JIRo] (IRgl}
121 Rsrc,,,, MAR, , Read, Select4, Add, 4,
122 Z,.» Rsrg,
123 MBranch {UPC < 170;uPCy « [IRg]}, WMFC
170 MDR,,, MAR,, , Read, WMFC
171 MDR,,,. Y,
172 Rdst,,, , SelectY Add, Z;,
173 Z,,,Rdst,, End

Figure 7.21. Microinstruction for Add (Rsrc)+,Rdst.

Microinstruction at location 170 is not executed for this addressing mode.




Microinstructions with Next-
Address Field

The microprogram we discussed requires several
branch microinstructions, which perform no useful
operation in the datapath.

A powerful alternative approach is to include an
address field as a part of every microinstruction to
indicate the location of the next microinstruction to
be fetched.

Pros: separate branch microinstructions are virtually
eliminated; few limitations in assigning addresses to
microinstructions.

ﬁ)/%r)\s: additional bits for the address field (around



Microinstructions with Next-
Address Field

IR

External
Inputs

U

Decoding circuits  |=a——

Next address

Figure v.vY.

|
1]
Y

HAR

Control store

Microinstruction decoder

Control signals

Condition
codes

i

MIR

Microinstruction-sequencing organization.




Microinstruction
F. P Fr Fy
F. (A bits) Fy (Y bits) Fr (Y bits) FY (Y bits)

Address of next

. «: No transfer

+++: No transfer

+«+: No transfer

microinstruction ..\: PC,,; -1: PG, .+.1: MAR,
.1.: MDR,,, 1.1 IR, -1.:MDR,
ANV 7, w:7zZ, -11: TEMP,
\..:Rsrg, \..:Rsrg, V.Y
V.1 Rdsg,, «1: Rdst,
\\.: TEMB,,,
Fs Fo F1 Fv
Fs (¢ bits) Fo (Y bits) F1 (1 bit) Fv (1 bit)
..... Add ... No action .. SelectY .. No action
.+.+1:Sub .1: Read \: Selects \: WMFC
: \.: Write
1111 XOR
FA Fa Fr.
FA () bit) Fa (1 bit) F1. ( bit)
.. NextAdrs .. No action .: No action
\: InstDec V: OR,pde V: ORyusre

Figure v.Y¥. Format for microinstructions in the example of Section V.0.Y.



Implementation of the sels
Microroutine :

\ Y Y . \ \ \ \ * o o . \ \ \ * o * o o * @ o+ o * o . \ - . \
\ V . . \ \ \ \ * o \ . \ . * o o * o \ * o o o . \ . \ - . .
\ V \ . \ \ \ \ - \ . . \ . * o o \ L 4 * o o o * o . . - . .
\ V . \ \ \ \ - \ \ \ . \ . \ \ * o o * o o+ o L 4 . . - . .
\ V * o 2 4 4 e+ e o . \ \ \ . \ * o 0 * o o+ o * o . . . . .

Figure V.Y, Implementation of the microroutine of Figure V.Y\ using a
next-microinstruction address field. (See Figure V.YY for encoded signals.)



Ry oin R Oout R. in R'out
anm [ |
Decoder .
Decoder
) ¢ {4
IR I I Rsrc Rdst
{} InstDeg,,,,
External :>
t
1nputs Decoding OR,de
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= ORps
Control store|
Next address | F) Fr L FA L Fa Fy.
Rdst,,; / 5 L

Rdst, | /7 |

\ © Microinstruction

Rs decoder
STCohut (

| | P |
v \J |l

Other control signals

Figure v.Y0. Some details of the control-signal-generating circuitry.



bit-ORINng

IRy IR, IRg

OR,e 'ADC
| ,

WAR,  UAR, AR, . uAR,

Figure 7.26. Control circuitry for bit-ORing

(part of the decéding circuits in Fi gure 7.25).




Prefetching

® One drawback of Micro Programmed control
IS that it leads to slower operating speed
because of the time it takes to fetch
microinstructions from control store

® Faster operation is achieved if the next
microinstruction is prefetched while the
current one is executing

® |n this way execution time is overlapped with
fetch time



Prefetching — Disadvantages

® Sometimes the status flag & the result of the
currently executed microinstructions are
needed to know the next address

® Thus there is a probability of wrong
instructions being prefetched

® |n this case fetch must be repeated with the
correct address



Emulation

® Emulation allows us to replace obsolete
equipment with more up-to-date machines

® |t facilitates transitions to new computer
systems with minimal disruption

® |t is the easiest way when machines with
similar architecture are involved



Pipelining




Overview

® Pipelining is widely used in modern
processors.

® Pipelining improves system performance in
terms of throughput.

® Pipelined organization requires sophisticated
compilation techniques.



Basic Concepts




Making the Execution of
Programs Faster

® Use faster circuit technology to build the
processor and the main memory.

® Arrange the hardware so that more than one
operation can be performed at the same time.

® |n the latter way, the number of operations
performed per second is increased even
though the elapsed time needed to perform
any one operation is not changed.



Traditional Pipeline Concept

¢ aundry Example

®* Ann, Brian, Cathy, Dave
each have one load of clothes

to wash, dry, and fold 5555@555

®\\Vasher takes 30 minutes

® Dryer takes 40 minutes 5
-
®“Folder” takes 20 minutes °

&
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Traditional Pipeline Concept :
6 PM 7 8 9 10 11 Midnight
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| Time
[ e e e o
30 40 20 30 40 20 30 40 20 30 40 20
=/ 1 ° ® Sequential laundry takes 6
- QI';[ hours for 4 loads
=15 * |f they learned pipelining,
LI- how long would laundry
1 take?
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Traditional Pipeline Concept |:
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8 9 10 11 Midnight
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% ek
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Time
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7 ® Pipelined laundry takes

—2 3.5 hours for 4 loads
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® Pipelining doesn'’t help
latency of single task, it
helps throughput of entire
workload

® Pipeline rate limited by
slowest pipeline stage

® Multiple tasks operating
simultaneously using
different resources

® Potential speedup = Number
pipe stages

® Unbalanced lengths of pipe
stages reduces speedup

® Time to “fill” pipeline and
time to “drain” it reduces
speedup

¢ Stall for Dependences



Use the Idea of Pipelining in a

Computer

Fetch + Execution

(a) Sequential execution

Interstage buffer
B1

Instruction

fetch :>

unit

(b) Hardware organization

Execution
—> T

Clock cycle

Instruction

I

1

— Time

1 2 3 4
F1 El
F2 EZ
F E

(c) Pipelined execution

Figure 8.1. Basic idea of instruction pipelining.



Use the Idea of Pipelining ina | ge::

'YX X
o0
Computer | ®
Clock cycle \ Y Y £ 0 1 v
Instruction
I\ F\ D\ E\ W\
Fetch + Decode
+ Execution + Write I, £ D B | W
Iy Fy Dy Ey Wy
I, F, D, E; W,

(a) Instruction execution divided into four steps

Interstage mffers

D : Decode
F: Fetch instruction E: Execute - W : Write
instruction and fetch operation results
operands
B\ By By

(b) Hardware organization

Textbook page: 457

Figure A.Y. A ¢&-stage pipeline.



Role of Cache Memory

Each pipeline stage is expected to complete in one
clock cycle.

The clock period should be long enough to let the
slowest pipeline stage to complete.

Faster stages can only wait for the slowest one to
complete.

Since main memory is very slow compared to the
execution, if each instruction needs to be fetched
from main memory, pipeline is almost useless.

Fortunately, we have cache.



Pipeline Performance

® The potential increase in performance
resulting from pipelining is proportional to the
number of pipeline stages.

® However, this increase would be achieved
only if all pipeline stages require the same

time to complete, and there is no interruption
throughout program execution.

® Unfortunately, this is not true.



Pipeline Performance :

—= Time

Clock gycle 1 Y Y 1 0 1 Vv A Q
Instruction
I F, D, E, W,
Iy Fy D, E, Wy
I, F, D, E; W,
I, F, D, E,

Figure A.Y. Effect of an execution operation taking more than one clock cycle.



Pipeline Performance

The previous pipeline is said to have been stalled for two clock
cycles.

Any condition that causes a pipeline to stall is called a hazard.

Data hazard — any condition in which either the source or the
destination operands of an instruction are not available at the
time expected in the pipeline. So some operation has to be
delayed, and the pipeline stalls.

Instruction (control) hazard — a delay in the availability of an
instruction causes the pipeline to stall.

Structural hazard — the situation when two instructions require
the use of a given hardware resource at the same time.



Pipeline Performance :

—@ Time

Clock cycle Y ¥ £ 0 1 v A A
Instruction Instruction
hazard I, F, D, | B | W,
I, Fy Dy By Wy
I‘~ FY D\~ E\“ WY’

(a) Instruction execution steps in successive clock cycles

— Time

Clock cycle Y Y £ 0 1 v A A

Stage

F:Fetch  F, Fy Fy Fy o B Idle periods —
D: Decode D, Pr Dy stalls (bubbles)
E: Execute E, Ey Ey

W: Write W, Wy o Wy

(b) Function performed by each processor stage in successive clock cycles

Figure A.£. Pipeline stall caused by a cache miss in FY.



Pipeline Performance :

Structural Load X(R1), R2

hazard Clock cycle 1

Instruction

Figure A.0.

—» Time

Y Y 3 0 1 Vv
D, E, W,
F, D, E, M, | W,
F, D, E, W,
F, D, E,
F D

Effect of a Load instruction on pipeline timing.



Pipeline Performance

® Again, pipelining does not result in individual
instructions being executed faster; rather, it is the
throughput that increases.

® Throughput is measured by the rate at which
iInstruction execution is completed.

® Pipeline stall causes degradation in pipeline
performance.

®* \We need to identify all hazards that may cause the
pipeline to stall and to find ways to minimize their
impact.



Data Hazards




Data Hazards

® \We must ensure that the results obtained when instructions are
executed in a pipelined processor are identical to those obtained
when the same instructions are executed sequentially.

® Hazard occurs
A—3+A
B« 4xA

® No hazard
A—5xC
B—20+C

® \When two operations depend on each other, they must be
executed sequentially in the correct order.

® Another example:
Mul R2, R3, R4
Add R5, R4, R6



Data Hazards :

—e lime
Clock cycle ) Y Y 3 0 1 Vv A Q
Instruction
I, Mul) F, D, E, W,
Iy (Add) Fy | Dy Dia | E | W
Iy F. D, E. W,
I F¢ Dy E | Wg

Figure 8.6. Pipeline stalled by data dependency between D, and W .



Operand Forwarding

® |nstead of from the register file, the second
instruction can get data directly from the
output of ALU after the previous instruction is
completed.

® A special arrangement needs to be made to
“forward” the output of ALU to the input of
ALU.



Source \
Source Y ‘
3
\
[ srav | [ sror |
A
Register \ / \ /
file L ‘_’
1]
\/
3
ALU
| RSLT I
Destination y
(a) Datapath
SRC),SRCY RSLT

—

m—

E: Execute
(ALU)

I_ Forwarding path

>

W: Write
(Register file)

(b) Position of the source and result registers in the processor pipeline

Figure A.V. Operand forw arding in a pipelined processor.



Handling Data Hazards in
Software

® | et the compiler detect and handle the
hazard:

11: Mul R2, R3, R4
NOP
NOP

12: Add RS, R4, R6

® The compiler can reorder the instructions to
perform some useful work during the NOP
slots.



Side Effects

® The previous example is explicit and easily detected.

® Sometimes an instruction changes the contents of a register
other than the one named as the destination.

® \When a location other than one explicitly named in an instruction
as a destination operand is affected, the instruction is said to
have a side effect. (Example?)

® Example: conditional code flags:
Add R1, R3
AddWithCarry R2, R4

® [nstructions designed for execution on pipelined hardware should
have few side effects.




Instruction Hazards




Overview

®* \Whenever the stream of instructions supplied
by the instruction fetch unit is interrupted, the
pipeline stalls.

® Cache miss
® Branch



Unconditional Branches :

Clock cycle

Instruction

I,

Iy (Branch)

Ik+ \

— « Time

Y Y £ 0 1
E,
Fy E, li Execution unit idle
Fy X
Fy E;

Fk+ \ Ek+ \

Figure A.A. An idle cycle caused by a branch instruction.



Branch Timing

- Branch penalty

- Reducing the penalty

—— Timq

Clock cycle \ Y Y 3 0 1 v A
I, F, D, E, W,
I, (Branch) Fy Dy Ey
I Fr | De | Ex | Wi
| A Feer | Diwr | B
(a) Branch address computed in Execute stage
—e Time
Clock cycle \ Y Y £ 0 1 v
I, F, D, E, W,
I, (Branch) Fy Dy
I Fe | De | Be | Wk
| P Fior | Dy | Eg

Figure A.q. Branch timing.

(b) Branch address computed in Decode stage



Instruction Queue and

Prefetching e

Instruction fetch unit

Instruction queue

F : Fetch

. . —_— fan
nstruction

l

D : Di h/ .
Delcsggéc . E: Execute ___ W : Write
unit instruction results

Figure 8.10. Use of an instruction queue in the hardware organization of Figure 8.2b.



Conditional Braches

® A conditional branch instruction introduces
the added hazard caused by the dependency
of the branch condition on the result of a
preceding instruction.

® The decision to branch cannot be made until
the execution of that instruction has been
completed.

® Branch instructions represent about 20% of
the dynamic instruction count of most
programs.



Delayed Branch

® The instructions in the delay slots are always
fetched. Therefore, we would like to arrange
for them to be fully executed whether or not
the branch is taken.

® The objective is to place useful instructions in
these slots.

® The effectiveness of the delayed branch
approach depends on how often it is possible
to reorder instructions.




Delayed Branch

LOOP Shift_left R1
Decrement R2
Branch=0 LOOP

NEXT Add R1,R3

(a) Original program loop

LOOP Decrement R2
Branch=0 LOOP
Shift_left R1

NEXT Add R1,R3

(b) Reordered instructions

Figure 8.12. Reordering of instructions for a delayed branch.




Delayed Branch

—— Time

Clock cycle 1 2 3 4 5 6 7 8
Instruction

Decrement F E

Branch F E

F E
Decrement (Branch talen) F E
Branch F E
F E
Add (Branch not taken) F E

Figure 8.13. Execution timing showing the delay slot being filled
during the last two passes through the loop in Figure 8.12.




Branch Prediction

® To predict whether or not a particular branch will be taken.

® Simplest form: assume branch will not take place and continue to
fetch instructions in sequential address order.

® Until the branch is evaluated, instruction execution along the
predicted path must be done on a speculative basis.

® Speculative execution: instructions are executed before the
processor is certain that they are in the correct execution
sequence.

® Need to be careful so that no processor registers or memory
locations are updated until it is confirmed that these instructions
should indeed be executed.



Incorrectly Predicted Branch

Clock cycle
Instruction

I, (Compare)

I, (Branch>0)

Figure 8.14. Timing when a branch decision has been incorrectly predicted

—» Time

1 2 3 4 5 6
F, D, E, | W,
F2 DZ/PZ EZ

Fk Dk

as not taken.




Branch Prediction

® Better performance can be achieved if we arrange
for some branch instructions to be predicted as
taken and others as not taken.

® Use hardware to observe whether the target
address is lower or higher than that of the branch
instruction.

® | et compiler include a branch prediction bit.

® So far the branch prediction decision is always the
same every time a given instruction is executed —
static branch prediction.



Influence on
Instruction Sets




Overview

® Some instructions are much better suited to
pipeline execution than others.

® Addressing modes
® Conditional code flags



Addressing Modes

® Addressing modes include simple ones and
complex ones.

® |n choosing the addressing modes to be
implemented in a pipelined processor, we
must consider the effect of each addressing
mode on instruction flow in the pipeline:

> Side effects

> The extent to which complex addressing modes cause
the pipeline to stall

> Whether a given mode is likely to be used by compilers



Recall s

Load X(R1), R2

—» Time

Clock cycle 1 Y Y 1 0 1 Vv
Instruction
I, F, D, E, W,
I, (Load) Fy Dy E, M, Wy
Iy Fy D, E, W,
I F, D, E;
I, F D

Load (R1), R2 Figure A.0.

Effect of a Load instruction on pipeline timing.



Complex Addressing Mode :

Load (X(R1)), R2

— = Time

Clock cycle 1 2 3 4 5 6 7
Load F D X+[R1] | [X+4[R1]] [[X+[R1]]] w

}rw ar\d\
Next instruction F D E w

(a) Complex addressing mode



Simple Addressing Mode

Add #X, R1, R2
Load (R2), R2
Load (R2), R2

Add F D

Load F

Load

Next instruction

X+[R1] w
\
D [X+[R1]] w
\
F D [[X+[R1]]]
F D

(b) Simple addressing mode

W




Addressing Modes

® |n a pipelined processor, complex addressing
modes do not necessarily lead to faster execution.

® Advantage: reducing the number of instructions /
program space

® Disadvantage: cause pipeline to stall / more
hardware to decode / not convenient for compiler to
work with

® Conclusion: complex addressing modes are not
suitable for pipelined execution.



Addressing Modes

® Good addressing modes should have:

> Access to an operand does not require more than one
access to the memory

> Only load and store instruction access memory operands
> The addressing modes used do not have side effects

® Register, register indirect, index



Conditional Codes

® |f an optimizing compiler attempts to reorder
instruction to avoid stalling the pipeline when
branches or data dependencies between
successive instructions occur, it must ensure
that reordering does not cause a change In
the outcome of a computation.

® The dependency introduced by the condition-
code flags reduces the flexibility available for
the compiler to reorder instructions.




Conditional Codes

Add R1,R2
Compare R3,R4
Branch=0

(a) A program fragment

Compare R3,R4
Add R1,R2
Branch=0

(b) Instructions reordered

Figure 8.17. Instruction reordering.



Conditional Codes

® Two conclusion:

> To provide flexibility in reordering instructions, the
condition-code flags should be affected by as few
Instruction as possible.

> The compiler should be able to specify in which
instructions of a program the condition codes are
affected and in which they are not.



Datapath and Control
Considerations




Original Design

Bus A Bus B

Incrementer

PC

Register
file

Constant &

ALU R

Instruction
decoder

MDR

MAR

Memory bus Address
data lines lines

Bus C

Figure V.A. Three-b us organization of the datapath.




000
, 0000
Ref%ister 0000
He o000
| X J
] [ ™ <
[as)]
Pipelined Design : -
a —
5
- Separate instruction and data caches - . |:|
- PC is connected to IMAR ©
- DMAR &
- Separate MDR - PC
- Buffers for ALU Control signal pipeline
- Instruction queue 1 o Incrementer
- Instruction decoder output
Instruction L =
decoder
[
Instruction
queue
‘ !
MDR/Read

- Reading an instruction from the instruction cache
- Incrementing the PC

- Decoding an instruction
- Reading from or writing into the data cache
- Reading the contents of up to two regs

- Writing into one register in the reg file Figure A.VA.  Datapath modified for pipelined execution, with
- Performin g an ALU operation interstage buffers at the input and output of the ALU.



Superscalar Operation




Overview

® The maximum throughput of a pipelined processor
IS one instruction per clock cycle.

® |f we equip the processor with multiple processing
units to handle several instructions in parallel in
each processing stage, several instructions start
execution in the same clock cycle — multiple-issue.

® Processors are capable of achieving an instruction
execution throughput of more than one instruction
per cycle — superscalar processors.

® Multiple-issue requires a wider path to the cache
and multiple execution units.



Superscalar :

F : Instruction L

fetch unit

N Instruction queue
Floating-
' —— e point —
unit
Dispatch — )
ugit B W : Write
results
Integer _|
- E— . —
unit

Figure A.1Q. A processor with two execution units.



Timing :

Clock cycle 1 2 3 4 5 6 7
I, (Fadd) F, D, En | Ep | Ec W

I, (Add) F, D, E, | W,

I; (Fsub) F, D; E; E; E W
I, (Sub) F, | D, | E | W,

Figure 8.20. An example of instruction execution flow in the processor of Figure 8.19,
assuming no hazards are encountered.



Out-of-Order Execution

® Hazards

® Exceptions

® |Imprecise exceptions
® Precise exceptions

— = Time

Clock cycle 1 2 3 4 5 6 7
I} (Fadd) F, D, SN Eig Eic W,
I, (Add) E, D, E, W,
I (Fsub) Fy Dy Esp Esp Esc W3
I, (Sub) F, D, E, W,

(a) Delayed write



Execution Completion

® |tis de_sirable_ tp used out-of-order exeCt_Jtion, SO that an
exec_utlon unit is freed to execute other instructions as soon as
possible.

® At the same time, instructions must be completed in program
order to allow precise exceptions.

The use of temporary registers
Commitment unit

Clock cycle 1 2 3 4 5 6 7
I} (Fadd) F D, Eia Eip Eic Wy

I, (Add) F, D, E, | TW, W,

I3 (Fsub) F3 D; E;p | Esg | Ec | W;
I, (Sub) F, D, E, | TW, w,

(b) Using temporary registers
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