Annamacharya Institute of Technology and Sciences

(Autonomous)

Tirupati – 517 520

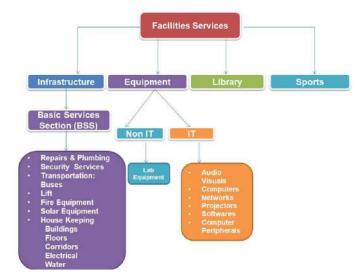
INSTITUTIONAL POLICIES

INDEX

S. NO.	POLICY NAME	PAGE NO.
1.	Maintenance Policy	3
	> Infrastructure	4
	» Equipment	7
	> Library	45
	> Sports	47
2.	Energy Policy	48
3.	IT Policy	52
4.	Fire Safety Policy	55

1. Maintenance Policy and Procedures:: Facilities Maintenance Services Department

Basic Services Section:


Introduction:

AITS Tirupati is situated in renigunta sector of Tirupati city and consisting of many academic buildings, with hostels, food complex, sports complex within beautifully landscaped, secured campus.

There are approximately 2523 students, 229 faculty and 46 technical and 15 maintenance personnel respectively at this institution. There are separate car and two wheelers parking for staff and students and visitors situated far away from the academic premises.

Facilities Maintenance Services Department:

AITS Tirupati developed maintenance procedures for maintaining the infrastructure, equipment and library support facilities mentioned in the policy document of the institute.

Infrastructure:

Basic Services:

Facilities Management includes all activities necessary to operate, maintain and provide services for institute buildings, mechanical equipment and utilities to keep them in good operating condition. All of these services are provided to all the departments. Activities which are classified as building Management, maintenance and services are performed by Facilities Management. These activities include building operational maintenance, custodial servicing, refuse removal and recycling, utilities services and distribution and other services.

For maintenance of lifts, centralized UPS and water coolers/filters annual maintenance contract (AMC) is given.

Basic Services includes:

- Repairing plumbing systems, stopped drains, drinking water system (ROR) etc
- Custodial Services
- Performing cleaning services, Facilities Management is responsible for cleaning offices, classrooms, circulation space, restrooms, laboratories, studios, auditoriums, gyms and conference rooms.
- Providing routine custodial services include cleaning public spaces, pest control, trash removal and recycling.
- Repairing electrical systems, defective lights, interior and exterior doors, windows, roofs, masonry work, general classroom furniture,
- Removing solid waste, recycling and surplus materials

Basic Services Section: Composition:

- 1. G.Suresh Kumar : Site Engineer
- 2. K. Venkateswara Rao: System Admin
- 3. Dr. K. Balaji Nandakumar Reddy: Expert, Electrical Maintenance

4. Campus Electricians:

- a) K. Muni Reddy: Electrician
- b) T. Balaji: Electrician
- c) V. Sankar Reddy: Plumber
- 5. S. Shafi, Senior Assistant, Transport

- 6. K. MuniRaja, Crew Manager, Transport
- 7. G. BhanuMurthy: Supervisor, House Keeping and 25 Regular Maintenance staff works for

housekeeping

Policy Statement/Guidelines:

(Includes e classroom, seminar halls, auditorium and lecture halls)

Maintenance:

The Class schedules are sent to the classroom in-charge well in advance from different departments for making up prior arrangements of the lectures in time. Unscheduled extra classes are also informed to the concerned personnel for making the arrangements. After each session, the hall is cleaned with support from housekeeping department and made ready for next schedule.

In case any equipments in the above mentioned halls are not working properly, the same has to be addressed to the IT section which handles the repair and Maintenance of audio visual equipments.

Guest lectures, Seminars, Workshops etc to be conducted in the lecture hall/seminar hall/auditorium; arrangements are to be done for the programs as per their requirement.

Maintenance report has to be addressed to the HOD of the concerned Department.

Service Requests:

Required to arrange for services which are not included in Basic services. The cost of these services will be charged to the department requesting the service which include Furniture repair, Emergency repair when there is imminent danger of functional loss to the department; emergency repair service may be initiated by calling the facilities.

Repairing departmental equipment (for eg: electric fans, heaters, teaching aids, installing equipment which requires minor changes)

Other special requests:

- ✓ Adding electrical service
- ✓ Building shelves and equipment
- ✓ Painting
- ✓ Carpeting

(Apart from basic services, any emergency repair service or minor replacements can be done through service request from concerned Department HOD.)

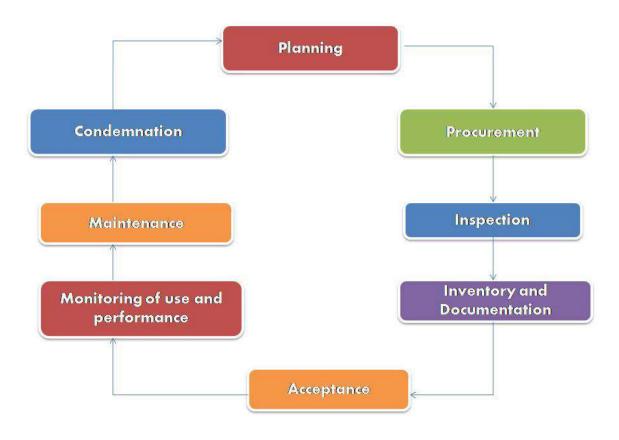
Energy Management:

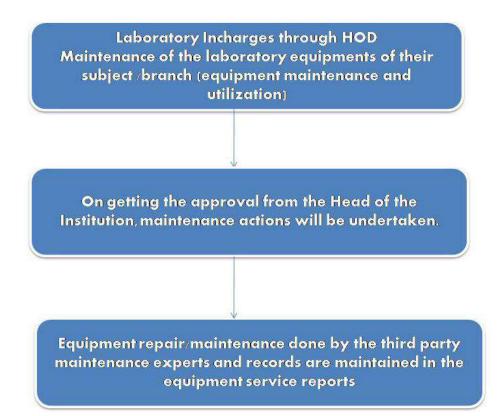
Troubleshooting in energy equipments and routine checkups will be done by campus electrical staff. In addition, preventive care will be taken through AMC's.

Utility Outrages:

When it is necessary to upgrade, modify or repair equipment, such work may require temporary interruptions of utility service to buildings. When unplanned outrages occur, Facilities Management personnel will work to restore service as soon as possible. If a department is working in a special project that involves a utility service, it is necessary to contact the Facilities Management.

Equipment Policy:


Policy Statement/Guidelines:


Safeguarding of all the property will benefit to ensure that the maximum amount of equipment will be readily available. The staff and students are intended to make all possible efforts to insure that all the equipment will be protected from theft/damage as described herewith:

- Annual Maintenance contracts (AMCs) are finalized on the tendering process for major equipment/facility
- All computer/AV equipments should be secured depending on its use
- The physical protection of IT and AV equipment is important both on and off campus
- Equipment used in the Department must be arranged to reduce the risk of the equipment being damaged/stolen/accessed by unauthorized persons.
- All valuable portable/AV equipments should be locked especially overnight
- Heads of the Departments are responsible for maintaining inventories for the equipments and furniture in their respective departments.
- Laboratory Incharge maintains and monitors the record of the equipment, any other material and furniture.
- Laboratory incharges are required to submit a report on laboratory experimental support.
- The workshop facility is also utilized for minor repairs.
- Incase of any replacement, write-off process is to be followed and approval of the management is taken for replacement
- Based on the letters of the laboratory incharge, through the Heads of the Department, Principal/Management reinspects and recommends the write-off of the old and out dated equipment.

Purchase Committee Composition:

- The Equipment Purchase Committee include:
- Chief Operating Officer: Chairman
- Purchase Director: Principal : Member
- Concerned Department HOD: Member
- Concerned Department Lab Incharge: Member

Equipment Maintenance:

Equipments and Machinery are very important for an established academic institution. At times it is more economical to replace the equipment before it completely breaks down. Equipment must be maintained in working order and periodically calibrated for effectiveness and accuracy of the results. Whenever the maintenance of equipment is required, the concerned laboratory incharge issues a maintenance request to the HOD.

Equipments/Machinery replacement can be categorized in the following manner

- a) Equipments which gradually deteriorated to wear and tear
- b) Equipments which fail suddenly without any warning

The Maintenance consists of:

Planned Preventive Maintenance (PPM)

Breakdown Maintenance (BDM)

1. Planned Preventive Maintenance (PPM):

PPM is performed to extend the life of the equipment and prevent its failure. It is scheduled at specific intervals and includes specific maintenance such as calibration, cleaning or replacing parts that are expected to wear or have a finite life.

There are two types of planned preventive maintenance:

i) In-house maintenance done by the Concerned Department with the expertise available with the technical staff and faculty– Half Yearly

ii) Maintained by Manufacturer or external agency – as per their policy

2. Breakdown Maintenance Policy (BDM):

Performed to identify, isolate and rectify the fault so that the out of order equipment, machine or system can be restored to an operational condition. All equipment in use should be free from any fault or defect and all repair work should be carried out to accepted standards by competent repair team.

In case of breakdown:

- 1. Report should be filed by the user Department with Basic Maintenance services section
- 2. Details should be entered in the Breakdown register
- 3. BMSS inspects the equipment, check whether it is repairable, and if not, suggests for Contacting external expertise.

Departmental Labs:

Civil:

Sr.N o		No. of Student s per setup (Batch	Name of the important Equipment	oortant Weekly Utilizati on status (all the	Technical Manpower Support			
		rveyin 3 • Total station 18 Hr/	courses for which the lab	Name of the Technic al Staff	Designa tion	Qualific ation		
1.	Surveyin gLab	3 student s per setup, 30 student s per batch, 2 batches per section	 Total station Automatic Level Digital planimeter Levelling staff 4m Surveying umbrella Measuring chains 30m Fiber tapes 30m Cross staff 100 mm Prismatic compass Plane table Dumpy level Theodolites Plani meter 	18 Hr/ Week	Mr K Sivakum ar	Lab Technici an	Diplom a	
2.	Strength of materials Lab	3 student s per setup, 30 student s per batch, 2 batches per section	 Universal Testing Machnie Brinell Hardness test attachment Double shear attachment Extenso meter Digital control panel Impact testing machine Rockwell cum Brinell hardness test Torsion Testing Machine Spring testing machine Compression testing machine Digital indicator for CTM and sensor Mandrel for conducting 180° bend test. 	18 Hr/ Week	Mr E Chandrac hari	Lab Technici an	ITI	

3.	Geotechn	3	CBR Testing Apparatus	12 Hr/	Mr.B	Lab	ITI
	ical	student	Consolidation Apparatus	Week	Ravishan	Technici	
	Engineeri	s per	• Direct Shear apparatus		kar	an	
	ng lab	setup,	• Shrinkage Limit set				
		30	Sensitive Volume Change				
		student	gauge				
		s per	Liquid Limit Device				
		batch,	 Plastic Limit set 				
		2	Sand Pouring Cylinder				
		batches	apparatus				
		per	 Fine Test sieves 				
		section	• Hydrometer				
			• Permeability apparatus				
			Light Compaction Test				
			apparatus				
			Heavy Compaction Test				
			apparatus				
			Hand Extractor				
			• Measuring Cylinders				
			Electric oven				
			• Core cutter				
			• Soil extractor (Electric cum				
			hand)				
			Unconfined compressive				
			test				
			• Vane shear apparatus				
			 Triaxial test apparatus 				
			 Shrinkage dish 				
			• Hydrometer				
			 Measuring Cylinders 				
			• Electronic balance 30kg				
			• Digital weighing balance -				
			5 kg				
			• Digital weighing balance -				
			10kg				
			• Digital weighing balance -				
			15kg.				
4	Environm	3	Proctor's apparatus	12 Hr/	Mr.T	Lab	Dinlom
4.	ental	3 student	 Jar Test apparatus COD extraction 	12 Hr/ Week	Mr. I Pavan	Lab Technici	Diplom a
	Engineeri	s per	COD extraction Dissolved Ovygen meter	WEEK	1 avall	an	a
	ng Lab	s per setup,	 Dissolved Oxygen meter Micro controllor turbidity 			an	
		30	Micro controller turbidity meter				
		student	 Digital conductivity meter 				
		s per	Digital Conductivity meterDigital PH meter				
		batch,	 Hot air oven				
		2	Muffle furnace				
		batches	BOD incubator				
		per					

		section	• Digital electronic precision balance				
5.	Concrete lab	3 student s per setup, 30 student s per batch, 2 batches per section	 Vicat apparatus Specific gravity bottle Soundness test (Lechatelier Mould) Compaction factor apparatus Slump test apparatus Vee Bee consistometer Longitudinal compressometer Vibrating table 1000 x 1000 mm Cube moulds 15 cm, Rebound hammer apparatus Digital weighing machine 100kg Flexural setup 20cm to 40cm Split tensile setup Two point load setup Cylindrical mould 100 dia and 200mm ht Lechatelier flask Pan Mixer Ultra sonic pulse velocity apparatus 	12 Hrs/ Week	Mr B Akhil Reddy	Lab Technici an	Diplom a
6	Highway Engineeri ng lab	3 student s per setup, 30 student s per batch, 2 batches per section	 Aggregate crushing value apparatus Aggregate impact test Specific gravity and, water abosorption test apparatus Devals Attrition test Los Angels abrasion Flakiness and elongation apparatus Bitumen penetration setup Bitumen ductility setup Ring & Ball apparatus Pensky Martens apparatus 	12 Hrs/ Week	Miss.J Haristha	Lab Technici an	Diplom a
7.	Engineeri ng Geology Lab	3 student s per setup, 30 student	 Hardness collection set of 9 minerals Luster collection set of 10 minerals Cleavage collection set of 	12 Hrs/ Week	Mr.P.Vin odh Kumar	Lab Technici an	ITI

		s per batch, 2 batches per section	 10 minerals Fracture collection set of 6 minerals Tenacity collection set of 4 minerals Streak collection set of 10 minerals Feel collection set of 10 minerals Form & Structure Structural geology models Geological map of India Mineral map of India Tectonic map of India 				
8	CADD lab	3 student s per setup, 30 student s per batch, 2 batches per section	• Intel Core i5 7100/16GB DDR4 RAM	15 hrs/ Week	Mr. T Rajaseka r	Lab Technici an	MCA
9	STAAD lab	3 student s per setup, 30 student s per batch, 2 batches per section	• Intel Core i3 7100/4GB DDR4 RAM	8 hrs/ Week	Mr Annadur ai	Lab Technici an	M Tech

ECE:

the	Name of the Laborat	lee Student Equipment Utilization aborat s per on status ry setup status (all the course for which the late is utilized) Iectron 4 • Cathode Ray 24Hr/	Weekly Utilizati on	Technical	Manpower	Support	
	ory		(all the courses for which the lab	Name of the Technica I Staff	Designa tion	Qualifi cation	
1.	Electron ic Devices and Circuits Lab	4	 Cathode Ray Oscilloscope Function Generators Regulated Power Supply Bread board Trainer System IC Power Supply AC milli Voltmeter Decade Resistance Box Decade Inductance Box Decade Capacitance Box Decade Capacitance Box Digital Multimeters Series Voltage Regulator kit Tuned RF Amplfier kit Class A Power Amplifier kit Class B Power Amplifier kit Class B Pushpull Amplifier kit Clurrent and voltage series feedback amplifier kit Current and voltage series feedback amplifier kit Current and voltage series feedback amplifier kit Analog Ammeters (0- 10mA, 0-50mA, 0- 	24Hr/ Week	Ms.A.Vi mala	Lab Technici an	Diplom a

			•	100mA, 0-100uA, 0- 500uA) Digital Ammeters (0- 100mA, 0-50mA, 0- 100uA)				
			•	Analog Voltmeters(0- 1V, 0-10V) Digital Voltmeters(0-1V, 0-10V)				
			•	Rheostats				
			•	Servo Controlled				
				Voltage stabilizer				
2.	IC	4	٠	Function Generators	36Hr/	Ms.B.Ma	Lab	M.Tech
	Applicat ions Lab		•	Analog IC Tester	Week	dhavi	Technici an	
			•	Analog System Lab Starter Kits			an	
			•	Digital Multimeters				
			•	Cathode Ray				
				Oscilloscope				
			•	Regulated Power				
				Supplies				
			•	DC Power Supplies				
			•	Bread board Trainer				
			•	systems Decode Resistance Box				
			•	Decade Inductance Box				
			•	Decade Capacitance Box				
			•	Digital IC Tester				
			•	Servo Controlled				
				Voltage Stabilizer				
			•	Bistable Multivibrator				
				kit				
			•	Monostable				
3.	Analog	4	•	Multivibrator kit Cathode Ray	18Hr/	Mr.S.Kir	Lab	M.Tech
5.	and	-	•	Oscilloscope	Week	an kumar	Technici	WI. I COII
	Digital		•	Amplitude Modulation			an	
	Commu			and Demodulation				
	nication			Trainer kit				
	8		•	Frequency Modulation				
				and Demodulation				
				Trainer kit				
			•	Study of Pre-emphasis and De-emphasis Trainer				
				kit				
			•	Digital Phase Detector				
				Trainer kit				
			•	Phase Locked Loop				
				Trainer kit				

Synchronous Detector
Trainer kit
SSB System Modulation
and Demodulation
Trainer kit
Squelch Circuit
Frequency Synthesizer
Trainer Kit
Trainer kit
Balanced Modulator and
Demodulator Trainer kit
Mixer Characteristics
Trainer kit
Pulse Modulation and
Demodulation Trainer
kit
Pulse Width Modulation
and Demodulation
Trainer kit
Pulse Position
Modulation and
Demodulation Trainer
kit
Phase shift Keying modulation and
demodulation Trainer kit
Frequency shift keying
modulation and
demodulation trainer kit
Time division
Multiplexing Trainer kit
Sampling Theorem
Trainer kit
Differential Phase shift
Keying Modulation and
Demodulation Trainer
kit
Pulse code Modulation
and Demodulation
Trainer kit
Differential Pulse code
Modulation and
Demodulation Trainer
kit
Delta Modulation and
demodulation trainer kit
QPSK/DQPSK
Modulation and

4.	Microw ave and Optical Commu nication Lab	4	• • • • • • • • • • • • • • • • • • •	Demodulation Trainer kit 3GHz Spectrum Analyzer Servo Controlled Voltage Stabilizer Regulated Power Supply Function Generator Digital Multimeter Cathode Ray Oscilloscope Klystron Power Supply Klystron tubes VSWR Meters Isolators Variable Attenuators Slotted line Matched Termination Frequency Meter Fixed short Movable short AC Axial Fan Waveguide stands Detector Mount Gunn Power Supply Gunn Oscillator Directional Coupler Magic Tee Fixed attenuator	12Hr/ Week	Mr.S.Kir an kumar	Lab Technici an	M.Tech
			•	-				
			•	Tunable Probe				
			•	Fiber optic LED				
			•	characteristic and testing				
			•	Laser Diode				
				Characteristics and				
				testing				
			•	Intensity Modulation of laser output				
			•	Measurement of				
				Numerical Aperture				
			•	Analog fiber optic link				
			_	Transmitter Fiber optic digital link				
			•	Transmitter				
			•	Fiber optic Trainer kit				
				for Glass and plastic				
				fiber				
			•	Basic antenna				

			Measurement TrainerFunction Generator				
5.	Signal Processi ng and Simulati on Lab	1	 Intel Core i3 7100/8GB DDR4 RAM CC Studio MATLAB 2015b Multisim – NI Circuit Design suite D-Link 24 port switch D-link Box IDBox, RJ45 Jack D- Link Switch 24 Port D-Link Rack 6U D-Link DSP Trainer kits Cathode Ray Oscilloscope Function Generators Regulated Power supplies Printer HP Laser Jet IoT kits 	36Hrs/ Week	Mr.C.Gir iprasad	Lab Technici an	B.Tech
6.	VLSI & Embedd ed Systems Lab	1	 TIVA C-Series Launch pack Xilinx 9.2ISE MSP430FR5969 Launch pad Development kit Wifi CC3100 booster pack 	12Hrs/ Week	Mr.U.V. Prasad	Lab Technici an	ITI, BA, PGDC A
7.	Micropr ocessors and Microco ntrollers Lab	1	 Dual DAC kit 8086 Micoprocessor Trainer 8051 Microcontroller Trainer kit Dual DAC Interface Elevator Interface 8279 study card 8259 study card 8253 study card Traffic lights Interface 8255 study card Inter Core2 Duo Processor 	36Hrs/ Week	Ms.M.He mavathi	Lab Technici an	B.Tech
8.	Basic Electron ics Lab	4	AmmetersVoltmetersRheostatsCathode Ray	15Hrs/ Week	Mr.K.Sri nivasulu Reddy	Lab Technici an	ITI

	OscilloscopeRegulated Power supply				
--	---	--	--	--	--

S.No	Name of the Laboratory	ne Student o aboratory s per setup		Name of the important Equipment	Weekly Utilizati on status	Technical Manpower Support				
		(Batch Size)			(all the courses for which the lab is utilized	Name of the Technical Staff	Designati on	Qualificat		
1.	Electrical Machines Lab-I	4		DC Shunt Generator Coupled to DC Shunt Motor D.C Shunt Motor DC Compound Generator Coupled to DC Shunt Motor DC Series Generator Coupled to DC Series Motor DC Series Generator Coupled to DC Series Motor DC Series Generator Coupled to DC Shunt Motor DC Compound Motor. DC Compound Motor. Ammeter –(0- 1/2)A-MC 20 Rheostats-(0- 100Ω/5A)	24Hr/ Week	Mr.R.Subbar aju	Lab Technici an	Diploma		

			Rheostats- $(0-50\Omega/5A)$ Rheostats- $(0-1200\Omega/0.6A)$ Rheostats- $(0-750\Omega/1.2A)$ Rheostats- $(0-110\Omega/1.2A)$ Rheostats- $(0-110\Omega/1.2A)$ ResistiveLoads- singlephase2.5KW,10A/220VResistiveLoads- singlephase2.5KW,10A/220VResistiveLoads- singlephase5KW,20A/230VTachometersVoltmeters- $(0-150/300)V-MC$ Voltmeters- $(0-300/600)V-MC$				
2.	Electrical Machines-II	4	12KVA Transformer12KVA Transformer21 Phase Resistive 	24Hr/ Week	T. Venkata Vishnu	Lab Technici an	Diploma

	Transformers(
	0-470V/20A)		
5	Voltmeter – Moving Iron :(0-150V /300v)		
6	Voltmeter – Moving Iron :75/150V		
7	Voltmeter – Moving Iron :(0- 300V/600V)		
8	Voltmeter – Moving Coil :0-300V		
9	Ammeter - Moving Iron :0-10A/20A		
1	Ammeter - Moving Iron :(0-1A/2A)		
1	Ammeter - Moving coil :(0-1A/2A)		
1	Rheostat :470 Ohms/1.2A		
1	Rheostat :370 Ohms/1.7A		
1	Rheostat :150 Ohms/5A		
1.	Rheostat :50 Ohms/2A		
1	Watt meters :U.P.F :0-		

				600V/10A				
			1	Watt meters :L.P.F :0- 300V				
			13	Clamp Meters :				
			1	Single Pole single Throw Switch :SPST				
			20	Digital Tachometer				
			2	3-φ induction motor				
			22	1-φ induction motor				
			2:	Synchronous motor				
			24	Dc shunt motor coupled with alternator				
			2:	Dc shunt motor coupled with salient pole alternator				
3.	Electrical Measureme nts Lab	4	1.	Calibration and Testing of Single Phase Energy Meter	24Hr/ Week	Mr.R.Subbar aju	Lab Technici an	B.Tech
			2.	Calibration of Dynamometer Power Factor Meter				
			3.	Crompton D.C. Potentiometer				

	Calibration of PMMC Ammeter and PMMC Voltmeter		
4,	Kelvin's Double Bridge – Measurement of Resistance Determination of Tolerance		
5.	Measurement of % Ratio Error and Phase Angle of Given C.T. by Comparison		
6.	Schering Bridge & Anderson Bridge		
7.	Measurement of 3 Phase Reactive Power with Single-Phase Wattmeter		
8.	Measurement of Parameters of a Choke Coil Using 3 Voltmeter and 3 Ammeter Methods		
9.	Calibration LPF Wattmeter by Phantom		

Tes	sting
Cap Picl 1 Cha s ar	'DT and pacitance ekup aracteristic nd libration
1 of 3 Pow Two Met (Ba	easurement 3 Phase wer with vo Watt- eter Method alanced & balanced).
Tes	electric Oil sting Using Γ. Testing
1: Stra - Si Mea and	sistance ain Gauge Strain easurements 1 libration
1. load	P Resistive d, /10A/220V
1: load	P Resistive d, A/415V
1 fact 5/10	Power tor meter, 0A, 0/300/600V
1 tran	Auto nsformer
1 1 Φ	Þ Auto

				transformer				
			19	Regulated power supply(0- 30V),2A				
4.	Power Electronics & Simulation Lab	4	1.	Study of characteristics of SCR, MOSFET, IGBT	24Hr/ Week	T. Venkata Vishnu	Lab Technici an	B.Tech
			2.	Gate firing circuits of SCR's				
			3.	Single Phase AC Voltage Controller With R & RL Loads				
			4.	Single Phase Fully Controlled Bridge Converter With R & RL Loads				
			5.	Forced Commutation Circuits for SCR				
			6	DC Jones Chopper with R & RL Loads				
			7.	Single phase Cyclo Converter R & RL Loads				

8	Single Phase Series Inverter with R & RL Loads		
9	Single Phase Parallel Inverter with R & RL Loads		
10	Single Phase Half Controlled Bridge Converter with R & RL Loads		
1	Three Phase Half Controlled Bridge Converter R & RL Loads		
12	Single Phase Dual Converter Trainer Kit		
1	Rheostats- 50Ω/2A		
14	Rheostats- 150Ω/5A		
1:	Cathode Ray Oscilloscope		
1	5 KVA SERVO STABILIZER		
1′	Illumination control/Fan		

I	I	1						1
				motor control				
				using				
				TRIAC:-				
				Fan motor(230V AC) speed control circuit using Triac- Diac				
			1	Using TPS7A4901 and TPS7A8300,S tudy kit				
			19	Study of DC- DC Buck converter TPS54160 study unit				
			20	Study of Buck regulator LM3475 study unit				
			2	WEBENCH EXPERIMEN TS				
5.	Electrical	4	1.	Digital	24Hr/	T. Venkata	Lab	•
	circuits and			Multimeters	Week	Vishnu	Technici	
	Network		2.	Bread Boards			an	
	Analysis Lab		3. 4. 5. 6.	Regulated power supply(RPS) Dual Milliman's theorem Kit Current locus diagram kit Decade Resistance				
			0.	Box				
			7.	Decade	1			
•	I	1	L	I	1	1	ı 1	I

	1		1	.	1	Γ	[1
				Inductance				
				Box				
				Decade				
			8.	Capacitance				
				Box				
				Decade				
			9.	Resistance				
				Box				
				Decade				
			10.	Inductance				
				Box				
			11.					
				Decade				
				Capacitance				
				Box				
			12.	CRO with				
			12.	probes				
			13.	Function				
			15.	Generator				
			14.	Single phase				
			14.	Variac				
				Analog volt				
			15.	meters,AC				
				600V				
				Analog				
			16.	ammeter, AC				
				10 A				
				UPF watt				
			17.	meter				
				600V/10A				
				LPF watt				
			18.	meter				
			10.	300V/150V,5				
				A/2.5 A				
			19.	Three phase				
			17.	resistive load				
			20.	Three phase				
			20.	Variac				
			21.	Three phase				
			21.	Inductive load				
				Constant K-				
				Low pass &				
			20.	High pass				
				filter Kit				
			ļ					
6.	Power	4	1	Alternators	24Hr/	Mr.R.Subba	Lab	Diploma
	Systems &		2	Motors	Week	raju	Technici	
							an	

	Simulation		3	Rheostat				
	Lab		4	Transformers				
			5	Tachometer				
			6	3 Point Starter				
			7	Transmission Line Model Kit				
			8	Voltmeter				
			9	Wattmeter				
			10	Ac Power Supply Panel				
			11	Ammeter				
7.	Control systems and Simulation Lab	4	1.	Characteristic s of magnetic amplifier	24Hr/ Week	T. Venkata Vishnu	Lab Technici an	B.Tech
			2.	Effect of feedback on AC Servo Motor				
			3.	Characteristic s of Synchros (Synchro Transmitter receiver pair)				
			4.	Effect of P, PI, PID controller on a second order system				
				Linear				
				System				
				Simulato				
			5.	f (Time response of second order system)				

6.	Lead and Lag Compensation of Magnitude and Phase Plot		
	Transfer function of DC Motor		
8.	Temperature controller using PID		
0	5kva Servo Stabilizer		
1	Decade Resistance Box		
1	Decade Inductance Box		
11	Decade Capacitance Box		
1:	Programmable logic controller- study & Verification of truth table of logic gates, Simple Boolean Expression		
1.	Effect of feedback on DC Servo Motor.		

				CRO Dual Trace 30MHZ CRO Probes R Load (50Ω/2A)				
8.	Power Converters Lab (M.Tech- POWER ELECTRONIC S)	4	1.	Speed Measurement and closed loop control using PMDC motor (With Motor)	24Hr/ Week	T. Venkata Vishnu	Lab Technician	B.Tech
			2.	Thyristorised drive for PMDC Motor with speed measurement and closed Loop control.(With Motor)				
			3.	IGBT used single 4 quadrant chopper drive for PMDC motor with speed measurement and closed loop control. (With Motor)				
			4.	Thyristorised drive for 1Hp DC motor				

7.	Cyclo- converter based AC Induction motor control equipment. (0.5 HP AC Induction Motor)		
6.	3-Phase input IGBT, 4 quadrant chopper drive for DC motor with closed Loop control equipment.(1 HP DC Motor with loading arragements)		
5.	3-Phase input, thyristorised drive, 3 Hp DC motor with closed		
	with closed loop control. (1HP DC Motor with loading arragements)		

			8.	Speed control of 3 phase wound rotor Induction motor.				
9.	Power systems Lab <u>(M.Tech-</u> <u>POWER</u> <u>SYSTEMS)</u>	4	1	IDMT over current relay kit (Electromagne tic Type)	24Hr/ Week	Mr.R.Subba raju	Lab Technician	Diploma
			2	Negative sequence relay kit (static type)				
			3	Over voltage relay kit (Electromagne tic kit)				
			4	Over voltage relay kit (Microprocess or Type)				
			5	Percentage biased Differential Relay kit (Static Type)				
			6	Three winding Transformer kit				

Communicative English Lab:

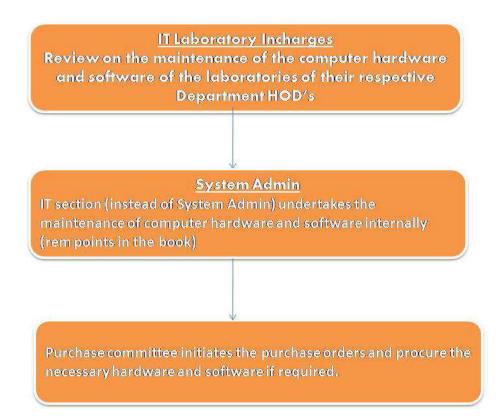
S. No.	Name of the laboratory	No.of Name of the students equipment	Weekly utilization on status	Technical Manpower Support			
		setup (Batch size)	equipment	(all the courses for which the lab is utilized	Name of the technical staff	Designatio n	Qualification
1	Communicati ve English lab	1	Computers- 66 and 1 projector Audio Amplifier-1 Air Conditioners- 4	36Hr/ Week	T. Rajasekhar	Programme r	MCA

Applied Physics and Engineering Physics:

S.No	Name of the Laboratory	No. of Student s per	Name of the important Equipment	Weekly Utilizati on	Technical Manpower Support			
		setup (Batch Size)		status (all the courses for which the lab is utilized)	Name of the Technical Staff	Designa tion	Qualifi cation	
1.	Applied Physics Lab	4	 Microscope Spectrometer Diffraction grating Deflection magnetometer Variable Power Supply. Rheostat. Power supply for Sodium Vapour Lamp. Power supply for Mercury Vapour Lamp B-H curve Kit Cathode Ray Oscilloscope Laser Source Particle slide Hall effect Kit Energy gap of a Semiconductor Kit X-Ray diffraction spectra Four probemethod. Dielectric constant by charging and discharging method Kit. Temperature dependence of resistance of a thermister - Kit 	6Hrs/ Week	Ms. S. Devi	Lab Technici an	Interme diate	
2.	Engineering Physics Lab		 LASER Source Diffraction grating. Particle slide. Spring constant of springs using Coupled Oscillator – Kit. Hall effect – Kit. Dielectric constant of 	6Hrs/ Week	Ms. S. Devi	Lab Technici an	Interme diate	

4	 dielectric material using charging and discharging of capacitor Kit. Deflection magnetometer Variable Power Supply. Rheostat. Power Supply. Torsional pendulum. B-H curve – Kit. Optical Fiber Kit. Magnetic susceptibility by Gouy's method. Ultrasonic velocity in liquid (Acoustic grating) Pressure variation using Strain Guage sensor Temperature change using Strain Guage sensor. Pressure variations using optical fiber sensors. Temperature changes using optical fiber sensors. 		
---	---	--	--

Chemistry Lab and Engineering Chemistry Lab:


S.N o	Name of the	No. of Student	Name of the important Equipment	Weekly Utilizati	Technical	Manpower	Support
	Laborator y	s per setup (Batch Size)		on status (all the courses for which the lab is utilized)	Name of the Technica I Staff	Designa tion	Qualifi cation
1.	Chemistr y Lab	4	 Conductivity meter PH meter Potentiometer Colorimeter Electronic Balance Physical Balance 	24Hr/ Week	Ms. S.Devi	Lab Technici an	Inter
2.	Engineeri ng Chemistr y Lab	4	 Conductivity meter PH meter Redwood Viscometer 1 Redwood Viscometer 2 Colorimeter Electronic Balance Physical Balance 	6Hr/ Week	Ms.S.De vi	Lab Technici an	Inter

Sr. No	Name of the	No. of Student	Name of the important Equipment	Weekly Utilization status (all the	Technical Manpower Support			
	Laborator y	s per setup (Batch Size)		courses for which the lab is utilized)	Name of the Technical Staff	Design ation	Qualific ation	
1.	Fluid Mechanic s & Hydraulic Machiner y Lab	4	 Impact of Jet on Vanes Centrifugal Pump Test Rig(Single Stage) With 1 Hp DC Motopr&Control Centrifugal Pump Test Rig(Multi Stage) With 1 Hp DC Reciprocating Test Rig With DC Motor Venturi & Orifice meter Test Rig Pipe Friction Apparatus Loss of Head due to Contraction Apparatus Pelton Turbine Test Rig Francis Turbine Orifice & Mouth Pieces Setup with all Standard Accessories Notch Apparatus with all Standard Bernoulli's Theorem Setup With all Standard Apparatus Hydraulic Pump Test Apparatus 	12Hr/ Week	Mr.M Meghasai	Lab Techni cian	ITI	
2.	Thermal Engineeri ng Lab	4	 Cut model 2- Stroke Single Cylinder Petrol Engine Test Rig 4-Stroke Slow Speed Diesel Engine Test Rig 2- Stroke Single Cylinder Petrol Engine(Ac Generator Loading) 4-Stroke Three Cylinder Petrol Engine Test Rig 	12Hr/ Week	Mr.S.Prad eep	Lab Techni cian	ITI	

			 Cut Section 4-Stroke Single Cylinder Diesel Engine 2- Stroke Air compression Test Rig 				
3.	Manufact uring Technolog y Laborator y	4	 Sand Rammer(A) Permeability Tester Universal Strength Machine (Hydraulic) Shear Strength Attachment Tensile Strength Attachment Hydraulic Press Die for Hydraulic Press (V- Block) Blow Moulding Machine Die for Blow Moulding Machine Injection Moulding Machine Die for Injection Moulding Machine Spot Welding Machine Combined Machine For Arc & Tig Welding Electronic Balance Sand Tester Sand Shiver Hardness Test Tig Welding Machine Plasma Welding Machine Brazing Machine Press Tool 	12Hr/ Week	Mr.M.Raj kumar	Lab Techni cian	ITI
4.	Heat Transfer Lab	4	 Thermal Conductivity of Insulation Powder Thermal Conductivity of Composite Walls Natural Convection Apparatus Heat Transfer Through Pin- Fin Apparatus Heat Transfer Through Forced Convection Apparatus Emissivity Measurement Apparatus 	12Hr/ Week	Mr.T.Naga raj	Lab Techni cian	Diplom a

Parallel/Counter Flow Heat		
Exchanger		
Stefan – Boltzmann		
Apparatus		
Thermal Conductivity Of		
Metal Rod		
Lagged Pipe Apparatus		

Maintenance of Computers and IT:

		No. of student			Tech	nical Manpower	support
SL	Name of the Laborator y	s per setup (Batch Size)	Name of the Important equipment	Weekly utilization status	Name of the Technical Staff	Designation	Quaification
1.	Grid & Cloud Computing Laboratory (Venue: VINT CERF Lab)	60	Lenovo S500 Desktop Intel H110 chipset, Intel i3 Processor, 4GB DDR4 RAM,1TB HDD,LED 19.5 Monitor	9hrs/Week	Mr.K.Venkatesh wara Rao	System Administrator ,	M.Tech
2.	Mobile Application Developme nt Laboratory (Venue: TIM BERNERS LEE Lab)	60	HP 280G4 Desktop Intel Core i3-8100, 8GB RAM,1TB HDD, 18.5 TFT monitor USB mouse and USB Key Board	9hrs/Week	Mr.T.Rajasekar	Lab Programmer	MCA
3.	Object Oriented Analysis and Design & Software Testing Laboratory (Venue: GOSLING Lab)	60	LENOVO M60 DESKTOP G-41, Chipset, Intel Pentium G630 2.40Ghz processor, 2 GB DDR3 RAM, 250 GB HDD, Keyboard, Optical Mouse, 15.6" LED Monitor.	9hrs/Week	Mr.B.Thulasi Prakash	Lab Programmer	BCA
4.	Operating Systems Laborator y (Venue: JOHN MCCARTH Y Lab)	60	HP280G6 Desktop : Core-i5 -10500,16GB DDR4 RAM,1TB HDD ,18.5 TFT Monitor ,USB mouse and USB Key Board	9hrs/Week	Mr.K.Venkatesh wara Rao	System Administrator ,	M.Tech
5.	AI Lab (Venue: JOHN MCCARTH Y Lab)	60	HP280G6 Desktop : Core-i5 -10500,16GB DDR4 RAM,1TB HDD ,18.5 TFT Monitor ,USB mouse and USB Key Board	9hrs/Week	Mr.T.Rajasekar	Lab Programmer	МСА

6	Compiler Design Lab (Venue: JOHN MCCARTH Y Lab)	60	HP280G6 Desktop : Core-i5 -10500,16GB DDR4 RAM,1TB HDD ,18.5 TFT Monitor ,USB mouse and USB Key Board	9hrs/Week	Mr.B.Thulasi Prakash	Lab Programmer	BCA
7.	Basic Python Programming Lab (Venue: RITCHIE Lab)	60	WIPRO NET POWER Z2501 Intel XEON 1.86GHz Processor, Intel chipset, 1 GB DDR- II RAM, 2*160 GB SATA Disk, DVD Writer, Key Board, Optical Mouse,17" CRT Monitor	24hrs/Week	Mr.K.Venkatesh wara Rao	System Administrator ,	M.Tech
8.	Database Management Systems Lab (Venue: VINT CERF Lab & AHO ULLMAN Lab)	60	Lenovo S500 Desktop Intel H110 chipset, Intel i3 Processor, 4GB DDR4 RAM,1TB HDD,LED 19.5 Monitor & HP 280G4 Desktop Intel Core i3-8100, 8GB RAM,1TB HDD, 18.5 TFT monitor USB mouse and USB Key Board	18hrs/Week	Mr.T.Rajasekar	Lab Programmer	МСА
9.	Design Thinking & Product Innovation Lab (Venue: RITCHIE Lab)	60	WIPRO NET POWER Z2501 Intel XEON 1.86GHz Processor, Intel chipset, 1 GB DDR- II RAM, 2*160 GB SATA Disk, DVD Writer, Key Board, Optical Mouse,17" CRT Monitor	9hrs/Week	Mr.K.Venkatesh wara Rao	System Administrator ,	M.Tech
10.	Computer Organization Lab (Venue: JOHN MCCARTH Y Lab)	60	HP280G6 Desktop : Core-i5 -10500,16GB DDR4 RAM,1TB HDD ,18.5 TFT Monitor ,USB mouse and USB Key Board	9hrs/Week	Mr.T.Rajasekar	Lab Programmer	MCA
11.	Object Oriented Programming through Java Lab (Venue: RITCHIE Lab)	60	WIPRO NET POWER Z2501 Intel XEON 1.86GHz Processor, Intel chipset, 1 GB DDR- II RAM, 2*160 GB SATA Disk, DVD Writer, Key Board, Optical Mouse,17" CRT Monitor	18hrs/Week	Mr.B.Thulasi Prakash	Lab Programmer	BCA

12.	Problem Solving and Programming Lab (Venue: RITCHIE Lab)	60	WIPRO NET POWER Z2501 Intel XEON 1.86GHz Processor, Intel chipset, 1 GB DDR- II RAM, 2*160 GB SATA Disk, DVD Writer, Key Board, Optical Mouse,17" CRT Monitor	24hrs/Week	Mr.K.Venkatesh wara Rao	System Administrator ,	M.Tech
13.	Computer Science and Engineering Workshop Lab (Venue: GOSLING Lab)	60	LENOVO M60 DESKTOP G-41, Chipset, Intel Pentium G630 2.40Ghz processor, 2 GB DDR3 RAM, 250 GB HDD, Keyboard, Optical Mouse, 15.6'' LED Monitor.	9hrs/Week	Mr.T.Rajasekar	Lab Programmer	МСА
14.	Data Structures Lab (Venue: GOSLING Lab)	60	LENOVO M60 DESKTOP G-41, Chipset, Intel Pentium G630 2.40Ghz processor, 2 GB DDR3 RAM, 250 GB HDD, Keyboard, Optical Mouse, 15.6" LED Monitor.	24hrs/Week	Mr.B.Thulasi Prakash	Lab Programmer	BCA
15	Data Warehousing and Data Mining Lab (Venue: <i>AHO</i> <i>ULLMAN</i> Lab)	60	HP 280G4 Desktop Intel Core i3-8100, 8GB RAM,1TB HDD, 18.5 TFT monitor USB mouse and USB Key Board	9hrs/Week	Mr.T.Rajasekar	Lab Programmer	МСА
16	Web and Internet Technologie s (Venue: VINT CERF Lab)	60	Lenovo S500 Desktop Intel H110 chipset, Intel i3 Processor, 4GB DDR4 RAM,1TB HDD,LED 19.5 Monitor	9hrs/Week	Mr.B.Thulasi Prakash	Lab Programmer	BCA
17	Project Lab (Venue: VINT CERF Lab)	60	Lenovo S500 Desktop Intel H110 chipset, Intel i3 Processor, 4GB DDR4 RAM,1TB HDD,LED 19.5 Monitor	24hrs/Week	Mr.B.Rajasekar	Lab Programmer	MCA

Condemnation and Disposal Policy:

- If the equipment is beyond the economical repair, official letter will be given to the purchase director through proper channel describing its status and cost of repair.
- The equipments are then sent to general stores for disposal.
- Chemical waste like acid, base and neutral are collected separately and incineration and disposal in landfills.

Factors for the Replacement of the Equipments:

- Demand for more number of equipments
- Excessive and frequent maintenance
- Advanced Technology
- Decreased Efficiency
- Due to Failure
- To Maintain Symmetry

Group Replacement:

- 1. Certain Category Equipments do not require maintenance services once in a while. through out the life time, they operate and give service more or less to the design service and fall suddenly.
- 2. Eg: Sensors, Detectors, Valves etc

Conclusion:

- > Equipment replacement is a vital decision in the academic institutions
- > The decision of replacement is usually taken by the department in consultation with the purchase director.
- > In case of high value capital items, the final decision will be taken by the management.

Library Maintenance:

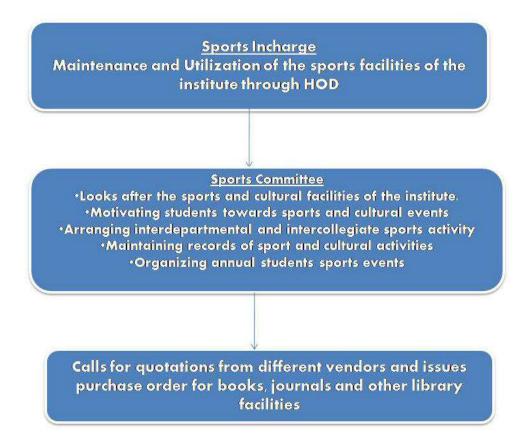
AITS Tirupati library of the college has a rich collection of books, journals and eresources. Library committee of the college holds the responsibility of maintenance of the library.

Maintenance of books in library is done periodically and internally. However, in the case of old books help of external agency is taken for soft/hard binding.

Library Committee:

- 1. Dr. C. Nadhamuni Reddy, Principal Chairman
- 2. Dr. J. Guru Jawahar, Professor in CE Coordinator
- 3. Mr. B. Ramana Reddy, HOD (CSE &CIC) Member
- 4. Dr. K. Navaz, HOD (AI DS&AI ML) Member
- 5. Dr. N. Pushapalatha, HOD ECE- Member
- 6. Dr. R. Murugesan, EEE- Member
- 7. Mr. A. Anil, HOD CSE- Member
- 8. Mr. M. Balaji, HOD ME- Member
- 9. Dr. K. Haritha, HOD MBA- Member
- 10. Dr. P. Lavanya, HOD H &S- Member
- 11. Mr. V. Rajasekhar, Librarian- Member Secretary

Library Committee


Verifies requirement of books & Journals Prepares Library budget Updates and maintains the library setup Maintains e-library Updation on regular basis of the textbooks and journals

Calls for quotations from different vendors and issues purchase order for books, journals and other library facilities

Sports Committee:

College recognizes extra-curricular activities like sports, games and entertainment for holistic development of the students and accordingly plans, schedules and conducts these events at the appropriate time every year and encourages the students to participate in the competitions as intramurals, extramurals like the intercollegiate tournaments, inter university tournaments and national level events.

- 1. Mr. A. Ram Prasad Raju: Physical Director
- 2. Mr. G. Suresh Kumar: Site Engineer
- 3. Mr. T. Ramesh: Attender

2. Energy Policy:

Preamble:

The Energy Policy of AITS, Tirupati is to manage energy in a systematic way so as to minimize its impact on the environment. Energy harvesting and Eco-friendliness are the two crucial elements for developing Sustainable Development Goals (SDGs) for the organization. Increasing energy demand is the factor of significance, hence as the conventional sources alone cannot meet the requirements easily; AITS Tirupati has incorporated the establishment of alternate energy resources in the form of Solar PV generation. Our institute has also taken an efficient energy management and conservation through established procedures specified in the policy. This policy will help us to embed efficiency and environmental awareness into our everyday activities, thus helping us to realize our responsibilities and commitment to conservation of natural resources and to limit its usage. In order to accomplish the energy management goals, this policy implies to explore and use the renewable energy resources to steer for the regulation, involvement and inculcation to lower the usage of the artificial energy sources. AITS Tirupati campus stays committed in maintaining the ecological balance in Tirupati smart city.

Statement:

The Energy Policy of AITS, Tirupati monitor, conserve and manage the demand supply rate of the energy in the institute. The Primary responsibility of the institute is to create awareness on the energy conservation measures to the staff and the students. Effective maintenance of the electric energy in accordance with the renewable energy sources available in the institute.

Objectives:

- ✓ Improvement of the energy efficiency by the reduction of energy consumption and its cost.
- ✓ Eliminate wastages by good house keeping practices
- ✓ Minimize environmental degradation
- \checkmark Minimize the energy consumption by effective usage of day light and natural

ventilation.

Energy Management Principles:

- Produce Energy at low cost
- Use energy at highest possible efficiency
- Use of Renewable energy
- Reduce, Reuse and Recycle

Energy Statistics in AITS Tirupati:

1. Electrical Energy:

- Maximum demand of the institute: 180 KvA
- Average utilization by the institute/ annum: 2,98,416 KvAh/Annum
- Average utilization by the institute/ month :24868 KvAh/month

2. Solar Energy:

- ▶ Installed : 200 Kw solar plant
- Solar generation per annum: 2,78,652 kWh
- Solar generation per month : 23054 kWh

Action Plan:

- Create awareness among the students and staff in Energy conservation and management by conducting training programs.
- Encourage faculty members to obtain Energy Audit certification.
- Provide experts to industry and other organizations in the area of energy management by offering Energy Audit Services.
- To count CO2 emissions generated by our means of transportations- vehicles.
- To reduce local air pollution emissions using environment-friendly vehicles, including

bicycles, public transportation and use of pedestrian-friendly roads.

- To install photovoltaic solar panels for the generation of alternate energy.
- To develop systematic waste management mechanism.
- To develop rain water harvesting unit.
- To undertake tree plantation drive.
- To engage in dialogue with the government agencies, municipal corporation and the affiliating university and actively work with the local organizations in the areas of environment, energy efficiency and sustainable development.
- To Conduct External Energy Audit once in a year and internal energy audit once in six months.
- Maintaining the uninterrupted energy supply needs of the campus with back up power supply.
- Establishment of energy efficient utilization measures.
- Implementation of Sensor-based energy conservation.
- To provide information and training opportunities on energy saving measures.
- To offer opportunities for employees and students to engage in initiatives those contribute to environmental protection.
- To train our employees and students through our Enviro Club to make them 'Go Green Specialists' and partners to plant trees each year.
- Replacement of the existing conventional lighting with the LED lamps in phased manner.
- Expansion of Solar PV System.
- The Institute shall continuously review and update the approved policy and is committed to its implementation and all the updates will be placed in the website.

3. Information Technology (IT) Policy:

Introduction (Need for IT Policy):

- 1. The Purpose of the policy is to present various IT resources and services with respect to their usage, maintenance and security in order to establish the consistency in campus practice and process.
- 2. Basically the AITS, Tirupati IT policy exists to maintain, secure, and ensure legal and appropriate use of Information technology infrastructure established by the college on the campus.
- IT Policy is being documented for fair and transparent academic purpose for the use of various IT resources in the Campus for Students, faculty, Staff, Management and visiting Guests and Research Fellowship Members.
- 4. This policy establishes College-wide strategies and responsibilities for protecting the Confidentiality, Integrity, and availability of the information assets that are accessed, created, managed, and/or controlled by the college.
- Information assets addressed by the policy include data, information systems, computers, network devices, Printers, Servers, WIFI details, Antivirus details, as well as documents and verbally communicated information

Vision:

- To provide state of the art of IT infrastructure and make all the institution content and services of IT enabled.
- To strictly adhere to the norms of the approval and affiliating bodies in maintaining IT infrastructure in the campus to realize the benefits of Outcome Based Education (OBE).

Mission:

- To upload the information technology infrastructure regularly and remain at the cutting edge of technology
- > To confirm to legalized use of software system and applications.
- To provide fail safe and secure IT infrastructure that can provide a platform for all types all type of information, statics and dynamics

Objectives:

- 1. To provide all required IT resources as per the academic programs laid down by AICTE. Also, introduce new IT technologies which will benefit the students and research staff.
- 2. To effectively have an annual plan of introducing new technologies in-line with the Academia.
- 3. Create provision for priority up-gradation of the products
- 4. Create provision for annual maintainance expenses to ensure maximum up time of the products.
- 5. Plan and invest for redundancy at all levels
- 6. To ensure that the products are updated and catered 24x7 in the campus or as per the policies laid down by the college management.
- 7.Leveraging information technology as a tool for the socio-economical development of the Institute.

Applicability:

- 1. Stake holders on campus or off campus
- 2. Students: UG, PG, Research
- 3. Employees (Permanent/ Temporary/ Contractual)
- 4. Faculty
- 5. Administrative Staff (Non-Technical / Technical)
- 6. Higher Authorities and Officers
- 7. Guests

Resources:

- 1. Network Devices wired/ wireless
- 2. Internet Access
- 3. Official Websites, web applications
- 4. Official Email services
- 5. Data Storage
- 6. Mobile/ Desktop / server computing facility

- 7. Documentation facility (Printers/Scanners)
- 8. Multimedia Contents

Composition and Role:

Head of the institute and all the Head of the Departments: for the fair assessment, advice the things to be added, to do the fair assessment and get approval from the governing bodies.

Prohibited Downloads:

The following downloads are specifically not allowed on computers unless approved in writingbyCCF(CollegeComputingFacility).

- 1. Any peer to peer file sharing application: Such applications may be used to utilize bandwidth inappropriately.
- Further, these applications contain third-party applications called adware or spyware, that collect information about a user's Web surfing habits, change system settings, or place unwanted advertising on the local computer.
- 3. Any third party personal antivirus or firewall: Since adequate security has already been provided for on all machines via pre-defined firewall rules, third party firewalls may interfere with these rules thus endangering the network.
- 4. Any Proxy servers, private fire wall, tunnelling software, connectivity sharing software
- 5. Hacking tools of any sort: The use of any such tools on college network is strictly prohibited.
- 6. Games & Movie trailers or previews
- 7. Any other copyrighted content/materials/software which are not appropriate to the user

Hardware Infra structure:

- 1. Computers (900+ NO.'s)
- 2. Servers (3 NO.'s)
- 3. Data Centre
- 4. Projectors (30 NO.'s)
- 5. Printers (25 NO.'s)

Networking Infra structure:

- 1. LAN:1000 nodes
- 2. Wifi network : 25 access points
- 3. Active and passive components for networking
- 4. Core switch
- 5. Firewall security system
- 6. Internet applications

The Institution has campus network and Wi-Fi facility with around 1000 nodes. BSNL, HyFy Giga Fibre Private Ltd optic cables are available for faster and efficient connectivity. Old and outdated Computers are upgraded periodically. They are either replaced or enhanced with respect to configuration. Additional computing facilities are added based on the need arising out of requirements of students, research scholars and faculty.

Available Optical Cables:

- Bandwidth details : 300 Mbps HyFy Giga Fibre Private Ltd internet leased line and 40 Mbps BSNL Broad band conn3ection
- 2. LAN facility details : 1000 nodes LAN with OFC backbone
- 3. Wifi details : Centralised Contoller with 25 access points

4. Fire Safety Policy:

a) Fire Extinguishers of ISI mark of adequate capacity and 210 numbers are provided in eye-

catching spots in the college building.

FIRE EQUIPMENT

S.No	Name	NOs
1.	Fire Extinguishers'	210
2.	Hose Real	25
3.	Down Commer	5
4.	Manually operated Electric fire alarm System	35
5.	Fire pump	900LPM

FIRE FIGHTING EQUIPMENTS

b) First Aid Kits kept in college to meet out any eventuality. A list of items like burnol, hydrogen

Peroxide, pain killer tablets, pain killer sprays, Band aids etc kept in the First Aid Kit

c) Emergency telephone numbers are displayed in the prominent Place and list of persons to be

contacted in case of any eventuality displayed in the prominent places in the college premises.

d) No High Tension Lines run inside or over the premises of a campus.

Extinguisher Operation:

- 1. Pull/remove the locking pin.
- 2. Aim the nozzle at the base of the fire
- 3. Press the lever down.
- 4. Starting from the edge of the fire sweep the nozzle from side to side advancing ahead.