I Mighocion:

* The gair of an amplibier dus defend on the parameters of the derice and ciscuit components, there existy an upper Heroctical limit to the gain obteinable from single itaye.
* The voltage ampletication of power gaie of trapuenig repence Obtamed with a lingle etage of amplification is useally mot culticienf to meet the meeds of either a compeite electorui ciecuit a lond device.
* For Example:

A Speaker represents a heavy load in an andio arupitier eystan, and reveral axplitere tages may be Requiced to "boeit a lignal" originating at a microphone ol magnetectape head to a level recticient to provide a lange amrout of perser to the Speater.

* We hear of pre-auplitiers, pouser amplitiess and output amplitiess, all of which conctitute llages of amplitication in ruch a rystem.
* Il may be exphasized here that a practical amplitien is always a multiitage amplitien that may provide a righer voltage or cursent gein or botle.

CLASSIFICATION OF AMPLIFILRS:

* A circuit that increares the amplitirde of the given i/p rignal is an auplitia.
- Amplitiers can be clacritied as bollonss:

1) Bared on trandietor configuration:
a) Comvion Envitter Amplitier
b) Common collector Amplitier
c) Common Bare Amplitier
2) Bared on the Active device
a) BIT amplitie
b) FET amplitie
3) Baud on the Q-point (operating Condition)
a) Class-A auplitie
b) Class B Amplitia
c) class $A B$ Amplitie
d) Class C Amplitier
4) Beved on the Humber of Steyes
a) Single stage amplitiere
b) Multi stage amplities
5) Bared on the output
a) Voltage Amplitiu
b) Power amplitia
6) Baud on the Frequency ruponce
a) Audio frequency (AF) Amplitier
b) Internceliate frequency (IF) Amplitier
c) Radio trequancy (RF) Amplitiu
7) Bared on the Bandwidlte
a) Hallow band amplitie (normally RF amplitie)
b) Wide band ampliteic (normally Vedio amplitien) TVULTSSTAGE AMPLIFIER:
Definition: An Amplifier that produce Voltage, Current or power gain though the we of two or more stages is called Thultixtaye Amplitie.

* It is to be noted that the output of the finest stage makes the input for the second stage, the output of the lecond stage males the input for third stage and so on.
* A multistage amplifier can be repreuntel by a blocle diagram, as ehoven.

FLG:n-STAGE AMPLFFER
* The signal Voltage V_{S} is applied to the input of $1^{\text {st }}$ stage and final output is available at the output terminal of la ct stage.
* Let $A v_{1}, A v_{2}, A_{v_{3}} \ldots A_{v_{n-1}}, A_{1 / n}$ are Voltere geami of Inclividual itages. As be the ovecall Volterge gain.
* By detinition of Voltage geime

$$
A_{V}=\frac{V_{0}}{V_{1}}, \quad A_{V_{1}}=\frac{V_{01}}{V_{i n 1}} \quad A_{V_{2}}=\frac{V_{02}}{V_{i 2}} \ldots A_{V_{n-1}}=\frac{V_{o n-1}}{V_{i n-1}} A_{V_{n}} \frac{V_{0 n}}{V_{i n}}
$$

How,

$$
\begin{align*}
& A_{V}=\frac{V_{01}}{V_{i 1}} * \frac{V_{02}}{V_{i 2}}+\cdots \frac{V_{0 n-1}}{V_{i n-1}} * \frac{V_{0 n}}{V_{\text {in }}} \\
& A_{11}=A V_{1} * A V_{2} \ldots V_{V_{n-1}} * A_{V_{n}} \tag{1}
\end{align*}
$$

* Hence, Overall voltage gain of n-stage amplitier is the product of volterge gaims of individual staye.

Talcing loggeittus coon both lides bor eq (1)

$$
\begin{aligned}
& 20 \log _{10} A_{11}=20 \log _{10}\left[A v_{1} * A v_{2} \ldots A_{v n-1} * A_{v_{n}}\right] \\
& 20 \log _{10} A_{v}=20 \log _{10} A_{v_{1}}+20 \log _{10} A v_{2} \ldots \ldots{ }_{10} A_{v_{n-1}} * \operatorname{dol}_{10} A_{v n} \\
& A_{v}\left(d_{B}\right)=A v_{1}\left(d_{B}\right)+A v_{2}\left(d_{B}\right)+\cdots+A v_{n-1}\left(d_{B}\right)+A_{v_{n}}\left(d_{B}\right)
\end{aligned}
$$

* Hence, overall Voltege gain in dB of multirtage ampteter is sum of the individual Woltage ugeine indB.
* Similarly $\theta=\theta_{1}+\theta_{2}+\theta_{3}+\cdots \theta_{n-1}+\theta_{n}$. Overall phare shitt introduced by the n-stegge amplitier is sum of the phare shitts introduced by the individual stayes.
* In a multritage amplifier, the output of first stage is Combined to the next stage through a coupling device. The process is known as cascading.
* The process of joining two amplifier stages using a Coupling device is called Cascading.

Need of Coupling:
\rightarrow To transter the AC output of ene stage to the i/p of next sage.
\rightarrow Block the de to pars from one stage to the next stage i.e., to isolate de conditions.
For an ideal coupling network the following lequisments should be fulltilled.
i. The direct currents should not pars through the Coupling \times network. ii. AC Signal waveform should tronuter from one amplifier to next amplifier without distortion.
iii. Some Voltage Lois of Signal Cannot be avoided in Coupling Metwook but this loss should be miximuen just negligible.
iv. Coupling Netwoorle impedance should not be frequency dependent. * Unfortunately, there is no Coupling Netwosle wolvile fulfills all the demands.

TYPES OF COUPLING NETLOORXS:

* There are three types of intentage coupling Netroorts. They are,

1. R-C Coupling
2. Tromibormer Coupling
3. Direct coupling.
4. R-C COUPLING:

* The circuit diagram of $R C$ coupled Amplifier is as shown below.

FIG: R-C COUPLED AMPLIFIER

* In RC Coupling $A C$ output of first stage is given to the input of second stage by a collector revictor and Coupling Capactor.
* Coupling Network Convicts of R and C Components.
* The Coupling Capacitor (C) iolates the DC conditions of one tee from the neat rage.
* The Coupling Capacitor $\left(C_{c}\right)$ isolates the $D \subset$ Conditions of one de acts as shat circuit for $A C$ signals and open circuit for $D C$ Conditions.
* The amplifier using this type of RC Coupling are called RC Coupled Amplitiu.

APPLICATQONS:

1. Uned ir all Audio small signal amplifiers 2. Used in tape recorders, Radio receivers, TV receivers.
2. TRANSFORMER COUPLING:

* The Coupling device in coupling network is a trantioncer.
* In this mettud primary winding of the tranutomer acts as collecter load and Secondary winding tronuters ac output liqpal directly to the bare of mext stage.
* This type of Coupling increase the overall circuit gain and the level of interatage impedance matching.
* This is recticted to power amplities where etticincy and impedance matching are critical requirements.

FM: TRANSFORMER COUPLED AMPLIFIER

* The amplities veins Tranitomer Coupling ar called Transformer Coupled Amplifies.

3. DIRECT COUPLING:

* In this mettied ac olp rignal is directly bed to the input of next it age.
* Here, difficulty is included in the Coupling network, biaring conditions are disturbed to avoid this special de Voltage load, circuits are weed to match the output de loads.
* It is wed where amplifications of low frequency is to be done.
* Coupling devices like capacitors, trantormens are not wed because of their size Complexity.

FIG: DIRECT COUPLED AMPLIFIER

Frequency Response of multistage amplifiers:

* Frequency respence of multistage amplifier is as shown below

* For a single stage CF amplitier Voltage gain at low brequencius and high frequencies are given as,

$$
A_{L}=\frac{A_{m}}{1-j\left(\frac{f_{1}}{f}\right)}, A_{H}=\frac{A_{m}}{1+j\left(\frac{f}{f_{2}}\right)}
$$

\because Where $f_{1} \& f_{2}$ are lower and upper cut-oft frequencies at which Voltage gain falls to $1 / \sqrt{2}$ of its maximum value.

$$
\left|A_{2}\right|=\frac{A_{m}}{\sqrt{1+\left[\frac{f_{1}}{f}\right]^{2}}} \xi\left|A_{H}\right|=\frac{A_{m}}{\sqrt{1+\left[\frac{f}{f_{2}}\right]^{2}}}
$$

OVERALL LOWER CUT-OFF FREQUENCY (f(n)
\Rightarrow For n-stage carcade amplitier

$$
\begin{aligned}
& \left(A_{L}\right)^{n}=\left[\frac{A_{m}}{1-j\left[\frac{f_{1}}{f}\right]}\right]^{n} \\
& \left|\frac{A_{L}}{A_{m}}\right|^{n}=\left[\frac{1}{\sqrt{1+\left[\frac{f_{1}}{f}\right]^{2}}}\right]^{n}
\end{aligned}
$$

At $f=f_{\text {Ln }}$

$$
\left|\frac{A_{L}}{A_{m}}\right|=\left[\frac{1}{\sqrt{2}}\right]^{\rightarrow \rightarrow(2)}
$$

Equating (1) 9 (2)

$$
\begin{aligned}
& {\left[\frac{1}{\sqrt{2}}\right]^{n}=\left[\frac{1}{\sqrt{1+\left[\frac{f_{1}}{f}\right]^{2}}}\right]^{n}} \\
& \frac{1}{\sqrt{1+\left[\frac{f_{1}}{f}\right]^{2}}}=\left[\frac{1}{r_{2}}\right]^{1 / n} \\
& \sqrt{1+\left[\frac{f_{1}}{f}\right]^{2}}=[\sqrt{2}]^{1_{n}}
\end{aligned}
$$

Squaris on both udes

$$
\begin{aligned}
1+\left(\frac{f_{1}}{f_{2 n}}\right)^{2} & =2^{1 / n} \\
\left(\frac{f_{1}}{f_{[n}}\right)^{2} & =2^{1 / n}-1 \\
\frac{f_{1}}{f_{l n}} & =\sqrt{2^{1 / n}-1} \\
f_{l n} & =\frac{f_{1}}{\sqrt{2^{1 / n}-1}}
\end{aligned}
$$

Overall UPper cot-off Frequency fun:

$$
\begin{aligned}
& \left|\frac{A_{H}}{A_{m}}\right|^{n}=\left[\frac{1}{\sqrt{1+\left[\frac{1}{f_{2}}\right]^{2}}}\right]^{n} \rightarrow \text { (1) } \\
& A_{A} H_{2}=f_{H n} \Rightarrow\left|\frac{A_{H}}{A_{m}}\right|^{n}=1 / /_{2} \rightarrow \text { (2) }
\end{aligned}
$$

Equating (1) $\&$ (2)

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}=\left[\frac{1}{\left.\sqrt{1+\left[\frac{t}{f_{2}}\right]}\right]^{2}}\right]^{n} \\
& \frac{1}{\sqrt{1+\left[\frac{t}{f_{2}}\right]^{2}}}=\left[\frac{1}{\sqrt{2}}\right]^{1 / n} \\
& \sqrt{1+\left[\frac{f}{f_{2}}\right]^{2}}=\left[f_{2}\right]^{1 / n}
\end{aligned}
$$

Squariug on both lidy

$$
\begin{aligned}
1+\left[\frac{1}{f_{2}}\right]^{2} & =2^{1 / n} \\
{\left[\frac{1}{f_{2}}\right]^{2} } & =2^{1 / n}-1 \\
{\left[\frac{f_{1 m}}{f_{2}}\right]^{2} } & =\sqrt{2^{1 / n}-1} \\
f_{\text {Hn }} & =\frac{f_{2}}{\sqrt{2^{v n}-1}}
\end{aligned}
$$

ANALYSIS OF CASCADED RC COUPLED AMPLIFIERS:

* The mont popular cascade amplifier is tormed by cascading Several CE amplifier stages.
* The m-stage CF amplitin is as shown below.

Voltage Gain:

* In multistage amplifier the output voltage of first itege acts as the input voltage of relonditege and soon. The Voltage gain of the Complete Cascade amplitin is equal to the product of the Voltage gains of the individual stars.
* The voltage gain of fires stage is $A_{v_{1}}=\frac{V_{07}}{V_{i 1}}$
* The Voltage gain of second stage is $A V_{2}=\frac{V_{o 2}}{V_{i 2}}$

Similarly overall voltage gem $A_{V}=\frac{V_{0}}{V_{i}}$

$$
\begin{aligned}
\frac{V_{0}}{V_{i}} & =\frac{V_{01}}{V_{i 1}} * \frac{V_{02}}{V_{i 2}} \cdots \frac{V_{0 n-1}}{V_{i n-1}} * \frac{V_{0 *}}{V_{i n}} \\
A v & =A V_{1} \times A V_{2} \ldots V_{V_{n-1}} \times A V_{n} \\
\theta & =\theta_{1}+\theta_{2}+\cdots \theta_{n-1}+\theta_{n}
\end{aligned}
$$

* From above exprevions, we can conclude that,
i) The magnitude of the resultant Voltage gain equals to the product of the magnitudes of the voltage gains of the individual stages.
is The phone shits of the resultant voltage gain e equals to the sum of the phase slits of the individual stages.
* The following figure shows a particular stage lay the $k^{\text {th }}$ stage of the stage Cascaded amplitier.
\Rightarrow The voltage gain of the k^{+h} stage is given by,

$$
A_{v k}=\frac{A_{I k} R_{I k}}{R_{I_{k}}}
$$

* Where $R_{L K}$ is the effective load impedance at the collector of the $k^{\text {th }}$ stage and $R_{i k}$ is the inspect impedance of the $k^{\text {ton stage. }}$

HG: K Th STAGE OF A CASCADED AMPLIHEE
\Rightarrow the Current gain

$$
\begin{aligned}
& A_{\text {in }}=\frac{-h_{i e}}{1+h_{o e} R_{L n}} \\
& R_{\text {in }}=h_{i e}+h_{\text {ge }} A_{\text {In }} R_{L n}
\end{aligned}
$$

Where $R_{L n}$ is the effective load impedance for the last stare and equals $R_{C D}$.

Where

$$
\begin{aligned}
& R_{L(n-1)}=\frac{R_{c(n-1)} * R_{\text {in }}}{R_{c}(n-1)+R_{\text {in }}} \\
& A_{I(n-1)}=\frac{-h_{\mathcal{L}}}{1+h_{0 e} R_{L}(n-1)}
\end{aligned}
$$

$R_{i}(n-1)$ Com be found from $R_{i}(n-1)=h_{i e}+h_{r e} A_{I}(n-1) R_{L}(n-1)$

CURRENT GAIN:
$\Rightarrow A_{1}$ is the current gain of the Complete n-stage amplitier

$$
\begin{aligned}
& A_{1}=\frac{I_{0}}{I_{b 1}}=\frac{-I_{c n}}{I_{b 1}} \\
& \frac{-I_{c n}}{I_{b 1}}=\frac{-I_{c 1}}{I_{b 1}} * \frac{I_{c_{2}}}{I_{c 1}} \ldots . . \frac{I_{c n}}{I_{C(n-1)}} \\
& A_{I}=A_{I_{1}} * A_{I_{2}}^{\prime} \ldots . . A_{I_{n}}^{\prime}
\end{aligned}
$$

Where $A_{I 1}$ is the bare to collector current gain $A_{12}^{\prime}, A_{2}{ }^{\prime} 3 .$. are the collecta to collector chest goons

* For $k^{\text {th }}$ stage the collector to collector Cuseect gain is given by,

$$
\begin{aligned}
& A_{I k}^{\prime}=\frac{I_{C k}}{I_{C(k-1)}} \rightarrow(1) \quad A_{2 k}=\frac{I_{C k}}{I_{b k}} \\
& A_{I K}^{\prime}=\frac{I_{1 k}}{I_{b k}} \times I_{C(k \rightarrow 1)}
\end{aligned}
$$

multiply and divide eq (1) by TDR

$$
\begin{aligned}
A_{I k}^{\prime} & =\frac{I_{C k}}{I_{C(k-1)}} * \frac{I_{b k}}{I_{b k}} \\
& =\frac{I_{C k}}{I_{b k}} * \frac{I_{b k}}{I_{C(k-1)}} \\
A_{I k}^{\prime} & =A_{I k} * \frac{I_{b k}}{I_{C(k-1)}}
\end{aligned}
$$

$$
\text { From the figure } I_{b k}=\frac{R_{c}(k-1)}{R_{c}(k-1)+R_{\text {ink }}} * I_{c(k-1)}
$$

$$
\frac{I_{b k}}{I_{c(k-1)}}=\frac{R_{c(k-1)}}{R_{c(k-1)}+R_{\text {ink }}}
$$

$$
A_{I K}^{\prime}=A_{I K} * \frac{R_{C}(k-1)}{R_{C(k-1)}+R_{\text {ink }}}
$$

Power gain:

$$
\begin{aligned}
& A_{p}=\frac{V_{0}}{V_{1}} \cdot \frac{I_{0}}{I_{b 1}}= \\
& A_{P}=A_{V} A_{I} \\
& A_{V}=A_{I} \frac{R_{C n}}{R_{i 1}} \\
& \Lambda_{P}=A_{I}^{2} \frac{R_{(n}}{R_{i 1}}
\end{aligned}
$$

Two Stage RC COUPLED AMPLIHLR:

* The two stage $R-c$ coupled ampliter using common Ervitter Configuration is as shawn.

FL: CIRCUIT DIAGRAM OF TWO STAGE RC COUPLED AMPLIFIER

* The output of the first stage is coupled to the input of second stage through Coupling Capacitor C bellowed by a shew connection of revicta. Therefore the amplifier is *no wo as Reverence Capacitance Coupled Amplitier.
* The resistors R_{1}, R_{2} and R_{e} form the baring and Stabilization Network. * The bypass capacita C_{e} prevents the loss of amplitication.
* The coupling capacitor are also known as Blocking capacitors which blocks $D C$ and allows $A C$ Voltage.

OPERATION:

* AC Signal is applied to the bare of Q_{1}, tramietor, the amplified Signal will develop across the collector of Q, tromistor.
* The amplified signal is connected to the bare pramistor through coupling capacitor 'C'.
* The $2^{\text {nd }}$ stage can be wed for function amplification of the input signal so the Cascaded stages amplifies the ugnal and then the overall gain increases.
* The $1^{\text {st }}$ stage outset is out of phare with the input signal. This out of phase signal is fed to the i / p of the next itege. * Therefore the overall output voltage of $2^{\text {nd }}$ stages is in in chare with the ils lignal with higher amplitude Frequency Response:

FIG: FREQUENCY RESPONSE OF TWO STAGE RC COUPLED AMPUIHER

* It can be seen from the figure i.e., frequency responce curve that the voltage gain is maximum and constant at nixed frequencies.
* The Voltage gain is low at louver and higher frequencies.
* At how frequencies, the reactance of the coupling capacita will increases, so very small of p voltage of the regnal will be trances from one stage to otter stage. Due to large reactance, The Capacitor C_{E} cannot parallel the emitter reciatar $R E$. De to this 2 factors, the voltage gain will decreases at low frequencies.
AT HIGH FREQUENCIES:
* At High frequencies, the reactance of Coupling capacitor will be very small and it behaves as a short circuit bul due to junction Capacitanes the output Voltage will decreales at high frequency. So the gain cam be reduced at high srequencies.

AT mid frequencies:

* At Mid frequencies, the Voltage gain of the amplitire is Constant. The effect of coupling capacitor to maintain the ceriform voltage gain at mid frequencies.
* As frequency increases in this range, the reactance of the capacitor decreases which tends to increase the gain at the lame terce.
* The above two factors almost cancel each ollie revelling a uniform voltage gain at mid trequencies.

Advantages:
\rightarrow It provides a good trequency rexponce
\rightarrow It is lees expensive
\rightarrow It is smallinsize
\rightarrow Lanes Complexity

DISADVANDAGES: It provides poor impedance matelong.
Applications: 1. Radio Receivers
2. Tape Recorders
3. Tv Receives

Analysis:

* In the analyses of RC coupled cmplitier, the following simiplitied alsumptions are made.

1) here is so small that the voltonge louse hie vo can be negledid.
2) I/hoe is so large that it can be considered as an open circuit.
3) The reactance c_{e} for any given input frequency is so small that the parallel Combination of R_{e} and C_{e} cam be effectively comidend as a shot circuit.
4) The bias resistors R_{1} and R_{2} are usparally large as Compared to hie. \Rightarrow With there Assumptions, the simplified circuit is as follows,

FIG: SIMPLIFIED EQUIVALENT CIRCUIT OF $R C$ COUPLED AMPLIFIER
MIDDLE FREQUENCYRANGE:

* The At mid frequencies, the impedance offered by coupling Capacita ' C ' is so small, acts as an effective shot ciecciut.
* Hence at mid trequencies, the effect of coupling Capacitor 'C' Can be neglected.
* The thenerin's cquivalut ciecuit is as bollowes.

FLQ: EQUIUALENT CIRCOIT AT MID FPEQQUENCH RAMGE

CORRENTGAIN:
By detinition, Cureut gain $\left(A_{I}\right)_{m}=\frac{I}{I_{b}}$
form the above figure $?=\frac{-b_{p} I I_{b} R_{L}}{R_{L}+h i e}$
Sub eq(2) is eq (1)

$$
\begin{aligned}
\left(A_{2}\right)_{m} & =\frac{-h_{f e} \mathcal{F}_{B} R_{L}}{R_{L}+h_{i e}} \times \frac{1}{\text { I/b }} \\
A_{2 m} & =\frac{-h_{f e} R_{L}}{R_{L}+h_{i e}}
\end{aligned}
$$

The magnitude of curent gein in given by $\left|A_{I m}\right|=\frac{h_{f e} R_{L}}{R_{L}+h_{i e}}$

Voliage gadna:
By detinition $A_{\mathrm{vm}}=\frac{V_{0}}{V_{1}} \rightarrow$ (1)
The output volteye $V_{0}=h_{i}$ I I

$$
\begin{align*}
& V_{0}=h_{i e} \frac{-h_{P} I_{b} R_{L}}{R_{L}+h_{i} e} \\
& V_{0}=\frac{-h_{i} h_{f e} I_{b} R_{L}}{R_{L}+h_{i}}- \tag{2}
\end{align*}
$$

The Input Voltege $V_{i}=$ hie $_{b} \rightarrow$ (2)
Sub $l q$ (2) $\xi \operatorname{lq}$ (3) is cq (1)

$$
\begin{aligned}
& A_{V_{m}}=\frac{- \text { hiehfe }_{b} R_{L}}{R_{L}+h_{i e}} \times \frac{1}{h_{i e} I_{b}} \\
& A_{v m}=\frac{-h_{f e} R_{L}}{R_{L}+h_{i e}}
\end{aligned}
$$

* The magnitude of Vottage gain at miditrequency is given by,

$$
\left|A_{v m}\right|=\frac{h_{s e} R_{L}}{R_{L}+h_{i e}}
$$

* At niel trequenis, the maguitude of curvent gain cy volteige gain are equal i.e., $\left|A_{\text {am }}\right|=\left|A_{v m}\right|$
Hue negative eiger shoues the phare Angle of 180°.

Low Frequency Rankg:

* In low trequency renge the impedance oftered by coupling capacitar is lage. Hence it largely atfectes curecut amplitication so At is included in the equivalent circuit

FH: EQUIVALENT CIRCUIT

CURRENT GAIN:
By definition, Curent geir $A_{I L}=\frac{I}{I_{b}}$
from the circuit $I=\frac{-h_{\rho e} I_{b} R_{L}}{h_{i e}+R_{L}+\frac{j}{j \omega c}}=\frac{-h_{\rho e} I_{b} R_{L}}{h_{i e}+R_{L}-j / \omega c}$
Cherent gein $A_{I L}=\frac{-h_{p e} F_{b} R_{L}}{h_{i}+R_{L}-\frac{j}{\omega_{0}}} * \frac{1}{I_{b}}$

$$
A_{I L}=\frac{-h_{f e} R_{L}}{h_{i e}+R_{L} \frac{-j}{\omega_{C l}}}
$$

magnilitide of curent gemm $\left|A_{I L}\right|=\frac{h_{P e} R_{L}}{\sqrt{\left(R_{L}+h i e\right)^{2}+\left(\frac{1}{2 \pi f_{C}}\right)^{2}}} \because \omega e=2 \pi f$

Voltage gain:

Input Voltage $V_{i}=$ hie I_{b}

$$
(\because \omega=2 \pi f)
$$

* From the above exprevion it is obvious that as trequeny inverully of the i/p voltage increases, the magnituele of the Voltage gave decreases and riel versa.
HIGH FREQUENCY RANGE:
*. In high frequency range, the reactance offed by Coupling Capacitor ' C ' is very small and hence it can be comidered as sheet circuited. * In a bipolar tramietor, there are two depletion regions alrors two P-N junctions. They behave like a didectuc media and hence give rice to two internal capacitences. At hejh onequeny range the reactance of there copacitances $\left(C_{b e} \xi C_{b c}\right)$ are convidered.

$$
\begin{aligned}
& A_{V L}=\frac{-h_{e} e R_{L}}{R_{L}+h_{i e}-\frac{j}{\omega c}}=\frac{-h_{f e} R_{L}}{R_{L}+h_{i}-\frac{-j}{2 \pi f c}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { By definition, } A_{V L}=\frac{V_{0}}{V_{i}} \\
& \text { output Voltage } V_{0}=\text { hie } \times I \\
& V_{0}=h_{i e} * \frac{-h_{\rho e} I_{b} R_{L}}{R_{L} \text { this }-\frac{j}{\omega C}} \\
& V_{0}=\frac{- \text { hiehpe }_{b} R_{L}}{R_{L}+h_{i e}-\frac{j}{\omega c}}
\end{aligned}
$$

* The $C_{b e}$ and $C_{b c}$ may be replaced with a ringle Capacitema C_{d} acroes the i/p revistance hie of the tramiits.
* The realues of shent capacitence C_{d} in the inpect cieciut of the tiret itage is small becaure it depends an the olp impedance of the firnt tremintor.
* But in the o/p ciecuit of the firnt itage c_{d} is innialed by etray Capacitence of the wising. Thuetore the reactencl $1 / \omega c_{d}$ will have appreciable shentrang effect on R_{2} \& hie.

Flg: EQUIUALENT CIRCUIT AT HIGH FREQUENCIES

FIG: THEVENIN'S EQUIVALEMT CIRCUIT
Current gain:

* By detinition $A_{J H}=\frac{I}{I_{b}}$

$$
\text { trom the above tigere } I=\frac{-h_{p} e_{b} \frac{R_{L} h_{b}}{R_{L}+h_{i e}}}{\frac{R_{L} h i e}{R_{L}+h i e}+\frac{1}{j \omega C_{d}}}
$$

$$
\begin{aligned}
& \partial=\frac{-h_{p e} I_{b} R_{L} \text { hie /(R thie) }}{\text { (Rthie) }\left[R_{l} \text { hie }+\frac{1}{j \omega_{d}}\left(R_{l} \text { thie }\right)\right.} \\
& Z=\frac{-h_{f e} I_{b} R_{L} h_{\text {ie }}}{R_{L} h_{i e}+\frac{1}{j \omega C_{d}}\left(R_{L} \text { thie }\right)} \\
& \text { Curent gain } A_{I H}=\frac{-h_{f e} I_{b} R_{l} \text { hie }}{R_{L} h_{i}+\frac{1}{j \omega r_{d}}\left(R_{l} \text { thie }\right)} * \frac{1}{I_{b}} \\
& A_{\text {IH }}=\frac{- \text { hiehie } R_{L}}{R_{L} \text { hie }+\frac{1}{\rho \omega_{\text {I }}}\left(R_{L} \text { thie }\right)}
\end{aligned}
$$

VOLTAGE GAIN:
By definition, Voltage gaim $A_{4 H}=\frac{V_{0}}{V_{i}}$

$$
\text { Output Voltage } \begin{aligned}
V_{0} & =\frac{h}{j \omega_{0} C_{d}} * I \\
V_{0} & =\frac{1}{j \omega C_{d}} * \frac{-h_{f} \text { ehie } R_{L} I_{b}}{R_{L} h_{i e}+\frac{1}{j \omega C_{d}}\left(R_{L}+h_{i e}\right)} \\
& =\frac{1}{j \omega l_{d}} * \frac{-h_{i e} h_{f e} R_{L} I_{b}}{\frac{R_{c} h_{i e j u C_{d}+\left(R_{L}+h i e\right)}^{j \omega C_{d}}}{j}} \\
V_{0} & =\frac{-h_{i e} h_{f e} I_{b} R_{L}}{j \omega R_{L} h_{i e} C_{d}+\left(R_{L}+h_{i e}\right)}
\end{aligned}
$$

Input vollege $V_{i}=I_{b} * h i e$

$$
A_{V H}=\frac{-h_{f e} h_{i e} I_{b} R_{L}}{\left(R_{L}+h_{i e}\right)+j w_{d} R_{L} h_{i e}} * \frac{1}{I_{b} * h_{i} i_{e}}
$$

$$
\begin{equation*}
A_{v H}=\frac{- \text { hpe } R_{L}}{\left(R_{L} \text { thie }\right)+\text { Jhe Ch RLhie }} \tag{26}
\end{equation*}
$$

The magnitude of Voltage gein is given by,

$$
\left|A_{v_{H}}\right|=\frac{h_{\text {fe }} R_{L}}{\sqrt{\left(R_{L}+h_{i e}\right)^{2}+\left(W C_{d} R_{L} h_{i e}\right)^{2}}}=\frac{h_{\text {pe }} R_{L}}{\sqrt{\left(R_{L}+h_{i e}\right)^{2}+\left(2 \pi f C_{\text {I }} R_{\text {chie }}\right)}}
$$

* From above exprechion it is obvious that as the otrequency 'f' of i/p Voltage increales, the magritude of Voltage gain decreares. LOKIER CUT-OFF FREQUENCY $\left(-f_{1}\right)$:
* The lower cut-off trequency is aletined as the frequemey at lobich the magnitude of the Moltage gain in the lower brequeney range talls to $1 / \delta_{2}$ or 0.707 of the magnitude of the gain in mid trequency range. Thus,

$$
\left|A_{v e}\right|=\frac{\left|A_{v_{m}}\right|}{\sqrt{2}}<\frac{\left|A_{v_{L}}\right|}{\left|A_{v m}\right|}=\frac{1}{\sqrt{2}} \rightarrow \text { (1) }
$$

In R-C coupled amplitiu

$$
\begin{aligned}
& \left|A_{V L}\right|=\frac{\text { hee } R_{L}}{\sqrt{\left(\text { hiet }_{L}\right)^{2}+\left(\frac{1}{2 \pi f c}\right)^{2}}}=\frac{h_{\text {fe }} R_{L}}{\sqrt{\left(h_{i e}+R_{L}\right)^{2}\left[1+\left[\frac{1}{\left.2 \pi f\left(h_{i e}+R_{L}\right)\right]^{2}}\right.\right.}} \\
& =\frac{\text { hfe }_{L}}{\left.\left(\text { hiet } R_{L}\right) \sqrt{1+\left[\frac{1}{2 \pi+(\text { hietRL }}\right)}\right]^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left|A_{\gamma_{m}}\right| \times \frac{1}{\sqrt{1+\left[\frac{1}{2 \pi+c\left(\eta_{i-}+R_{l}\right)}\right]^{2}}}
\end{aligned}
$$

It fo $\left\{\frac{(A v L)}{(A v m)}=\frac{1}{\sqrt{1+\left[\frac{1}{2 \pi f\left(h_{i e}+R_{L}\right)}\right]^{2}}}\right.$
Equating (1) \& (2) and if f_{1} be the bower cut off trequy

$$
\begin{aligned}
\frac{1}{\sqrt{2}} & =\frac{1}{\sqrt{1+\left[\frac{1}{2 \mu_{1}\left(h_{i e}+R_{L}\right)}\right]^{2}}} \\
1_{2} & =\sqrt{1+\left[\frac{1}{2 \pi_{1}\left(h_{i}+R_{L}\right)}\right]^{2}} \\
2 & =1+\left[\frac{1}{2 \pi f_{1}\left(h_{i e}+R_{L}\right)}\right]^{2} \\
{\left[\frac{1}{2 \pi f_{1}\left(h_{i}+R_{L}\right)}\right]^{2} } & =1 \\
\frac{1}{2 \pi f_{1}\left(h_{i e}+R_{L}\right)} & =1 \\
2 \pi f_{1}\left(\left(h_{i e}+R_{L}\right)\right. & =1 \\
f_{1} & =\frac{1}{2 \pi\left(\text { hie } R_{L}\right)}
\end{aligned}
$$

Sub eq (3) in eq(), we get

$$
\left|A_{V_{L}}\right|=\frac{\left|A V_{m}\right|}{\sqrt{1+\left(\frac{f_{1}}{f}\right)^{2}}}
$$

- The upper cut-oft frequency is aletined as the frequency at which the magnitude of the voltage gail is the high frequency range falls to $1 / 2_{2}$ of 0.707 of magnitude of the gain e in the nide frequency range. Thus at $f=f_{2}$

$$
\begin{equation*}
\left|A_{V H}\right|=\frac{\left|A_{V m}\right|}{\sqrt{2}} \Rightarrow \frac{\left|A V_{H}\right|}{\left|A V_{m}\right|}=\frac{1}{\sqrt{2}} \tag{1}
\end{equation*}
$$

Here

$$
\begin{aligned}
& \left|A_{v_{H}}\right|=\frac{h_{\text {fe }} R_{L}}{\sqrt{\left(h_{\text {ie }}+R_{L}\right)^{2}+\left(2 \pi f c_{d} R_{L} \text { hie }\right)^{2}}} \\
& =\frac{h f e R_{L}}{\sqrt{\left(\text { hist } R_{L}\right)^{2}\left[1+\left[\frac{1}{2+4 p \delta_{d} R_{L} h_{i e}\left(h_{i e}+R_{L}\right)}\right]^{2}\right]}} \\
& =\frac{h_{f e} R_{L}}{\left(h_{i e}+R_{L}\right) \sqrt{1+\left[\frac{1}{2 \pi f\left(C_{d}\left(h_{i e}+R_{L}\right) R_{\text {fie }}\right.}\right]^{2}}}
\end{aligned}
$$

$$
\begin{align*}
& \frac{|A V H|}{|A v m|}=\frac{1}{\sqrt{1+\left[\frac{1}{2 \pi f C_{d} R_{L} \text { hie }\left(\text { hist } R_{1}\right)}\right]^{2}}} \tag{2}
\end{align*}
$$

Equator (1) $\mathrm{C}_{9}(2)$ and f_{2} is the upper cut-off trequmy

$$
\begin{aligned}
& \frac{1}{v_{2}}=\frac{1}{\sqrt{1}+\left[\frac{1}{2 \pi f_{2} c_{d}\left(R_{2} \text { hie }\left(R_{1}+h_{i e}\right)\right.}\right]^{2}} \\
& \hat{r}_{2}=\sqrt{1+\left[\frac{1}{2 \pi f_{2} d R_{2} h_{i e}\left(\text { hie } R_{2}\right)}\right]^{2}}
\end{aligned}
$$

$$
\begin{gather*}
2=1+\left[\frac{1}{2 \pi f_{2}\left(d R_{L} \text { hie }\left(\text { hie }+R_{L}\right)\right.}\right]^{2} \\
{\left[\frac{1}{2 \pi L_{2} C_{d} R_{L} \text { hie }\left(\text { hiet } R_{L}\right)}\right]^{2}=1} \\
2 \Pi f_{2} c_{d} R_{L} \text { hie }\left(\text { hiet } R_{L}\right)=1 \\
f_{2}=\frac{1}{2 \pi C_{d} R_{\text {Lhie }}\left(\text { hiet } R_{L}\right)} \tag{3}
\end{gather*}
$$

Sub eq (3) in eq (2)

$$
\begin{aligned}
& \left|A v_{H}\right|=\frac{A v_{m}}{\sqrt{1+\left(\frac{t}{f_{2}}\right)^{2}}} \\
& \theta_{n}=\operatorname{Tan}^{-1}\left(\frac{t}{f_{2}}\right)
\end{aligned}
$$

DARLWGTON PAIR AMPLIFIER:

* A very popular connection of two bipolar junction tremcistors boe operation as one "Superbeta" traniutor is the Daulington Connaition.
* The comporite tramintor acts as a lingle cuict with a curcent gain that is the product of the Cureent geime of the individual trancietors.

F 1G: DARLIMGTON TRANSISTOR CONNE GIION AND SIMGLE DARLINGTON TrAMSISTOR.

* It the two trancistors are matched such that $\beta_{1}=\beta_{2}=\beta,(80)$ the Darlington Connection provides a current gain of

$$
\beta_{D}=\beta^{2}
$$

* When two tramistors having high current gain are connected as a Darlington pair, the Overall gain of the pair becomes very high.

DC ANALYSIS:

* A Darlington tramietor offer reny high current gain, β_{D} is wed.
The bale current is given by, $I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+\beta_{D} R_{E}}$
The Emitter current is given by, $I_{E}=\left(\beta_{D}+1\right) Q_{B}$

$$
=\beta_{D} I_{B}
$$

The de voltages are given by, $V_{E}=I_{E} R_{E}$

$$
V_{B}=V_{E}+V_{B E}
$$

AC ANALYSIS:

* The AC input lignal is applied to the bare of the Darlington tromiitor through Capacitor C_{1}, with the ac output V_{0} Obtained from the emitter though capacita C_{2}.
* The Darlington tromuietor is replaced by an ac equivalent Circuit comprised of an input resistance r_{i} and an output chant source $B_{D} I_{D}$.

FIG: AC EQUIVALENT CIRCUIT OF DARLINGTON EMITTER FOLLOWER
AC InPut Impedance:

* The ac bare current through h_{i} is,

$$
\begin{equation*}
I_{b}=\frac{V_{i}-V_{0}}{R_{i}} \tag{1}
\end{equation*}
$$

But output Voltage is given bey,

$$
V_{0}=\left(I_{b}+\beta_{D} I_{b}\right) R_{E} \rightarrow(2)
$$

$\Rightarrow A C$ Input Impedance $z_{i}=\frac{V_{i}}{I_{b}}$
Substitutive eq(2) in eq(1)

$$
\begin{gathered}
I_{b}=\frac{V_{i}-\left(I_{b} R_{E}+\beta_{D} I_{b} R_{E}\right)}{R_{i}} \\
I_{b}=\frac{V_{i}-I_{b} R_{E}-\beta_{D} I_{b} R_{E}}{R_{i}}
\end{gathered}
$$

$$
\begin{aligned}
I_{b} R_{i} & =V_{i}-I_{b} R_{E}-\beta_{D} I_{b} R_{E} \\
I_{b} r_{i} & +I_{b} R_{E}+\beta_{D} I_{b} R_{E}=V_{i} \\
V_{i} & =I_{b}\left[r_{i}+r_{E}+\beta_{D} \cdot R_{E}\right] \\
V_{i} & =I_{b}\left[r_{i}+r_{E}\left(1+\beta_{D}\right)\right]
\end{aligned}
$$

Since $\beta_{D} \gg 1$

$$
\begin{aligned}
& V_{i}=I_{b}\left(R_{i}+\beta_{D} R_{E}\right) \\
& \frac{V_{i}}{I_{0}}=R_{i}+\beta_{D} R_{E}
\end{aligned}
$$

The ac impedance, looking into the circuit is

$$
\mathbb{Z}_{i}=R_{B} \|\left(R_{i}+\beta_{D} R_{E}\right)
$$

AC CURRENT GAIN:

* The ac output current through R_{E} is given as,

$$
\begin{aligned}
I_{0} & =I_{b}+\beta_{D} I_{b}=\left(1+\beta_{D}\right) \cdot I_{D} \\
& \simeq \beta_{D} I_{b} \quad\left(\because \beta_{D} \gg 1\right)
\end{aligned}
$$

* The tramistor cureut is then

$$
\frac{I_{0}}{I_{b}}=\beta_{D}
$$

* The ac current gain of the circuit is,

$$
\begin{equation*}
A_{i}=\frac{I_{0}}{I_{i}} \tag{1}
\end{equation*}
$$

multiply numerate and denominator of eq(with I_{b}.

$$
\begin{equation*}
A_{i}=\frac{I_{0}}{I_{i}} \times \frac{I_{b}}{I_{b}}=\frac{I_{0}}{I_{b}} * \frac{I_{b}}{I_{i}} \tag{D}
\end{equation*}
$$

Ving the curent divider rule in the ac equivalid ciscint

$$
\begin{align*}
& I_{b}=I_{i} * \frac{R_{B}}{\left(R_{i}+\beta_{D} R_{E}\right)+R_{B}} \\
& \frac{I_{b}}{I_{i}}=\frac{R_{B}}{\left(R_{i}+\beta_{D} R_{E}\right)+R_{B}} \rightarrow \tag{3}
\end{align*}
$$

uning the cutcent dividen cule the the

Subetitutins eq (3) in eq (2)

$$
\begin{aligned}
A_{i} & =\frac{I_{0}}{I_{0}} * \frac{R_{B}}{\left(r_{i}+\beta_{D} R_{E}\right)+R_{B}} \\
& =\beta_{D} * \frac{R_{B}}{\left(r_{i}+\beta_{D} R_{E}\right)+R_{B}} \quad\left(\because \beta_{D}=\frac{I_{0}}{I_{B}}\right) \\
& =\beta_{D} * \frac{R_{B}}{\beta_{D} R_{E}+R_{B}}
\end{aligned}
$$

\therefore The current gain is given by $A_{1}=\beta_{D} R_{B}$ $\beta_{D} R_{E}+R_{B}$

AC OUTPUT IMPEDANCE:

- The circuit for ortput impedonce is as chowon below

(a)
* The output impedance can be Calculated by making $V_{s}=0$ then the equivalent circuit will be

From the above circuit, $F_{0}=\frac{X_{q}}{R_{E}}$ Apply KCL then,

$$
\begin{aligned}
I_{0} & =\frac{V_{0}}{R_{E}}+\frac{V_{0}}{r_{i}}-\beta_{D} I_{b} \quad \text { where } I_{b}=-\frac{V_{0}}{r_{i}} \\
& =\frac{V_{0}}{R_{E}}+\frac{V_{0}}{r_{i}}-\beta_{D}\left(\frac{-V_{0}}{r_{i}}\right) \\
& =\frac{V_{0}}{R_{E}}+\frac{V_{0}}{r_{i}}+\frac{V_{0} \beta_{D}}{r_{i}} \\
& =V_{0}\left[\frac{1}{R_{E}}+\frac{1}{r_{i}}+\frac{\beta_{D}}{r_{i}}\right]
\end{aligned}
$$

$$
\frac{V_{0}}{I_{0}}=\frac{1}{\frac{1}{R E}+\frac{1}{r i}+\frac{\beta_{D}}{r i}}
$$

$$
=R_{E}\left\|r_{i}\right\| \frac{h_{i}}{\beta_{D}}
$$

$$
\approx \frac{r_{i}}{\beta_{D}}
$$

\therefore Output impedance $Z_{0}=\frac{V_{0}}{I_{0}}=\frac{Y_{i}}{\beta_{D}}$

Ac Voltage gain:

* The equivalent circuit to detumine Coltege gaine

Fic: AC equivaleit ciecritit to delennive Ay

From the ciecuit, $V_{0}=\left(I_{b}+\beta_{1}, I_{b}\right) R_{E}$

$$
\begin{aligned}
& =I_{b} R_{E}+\beta_{D} I_{b} R_{E} \\
V_{0} & =I_{b}\left(R_{E}+\beta_{D} R_{E}\right) \\
V_{i} & =I_{b} r_{i}+\left(I_{b}+\beta_{D} I_{D}\right) R_{E} \\
V_{i} & =I_{b}\left[x_{i}+R_{E}+\beta_{D} R_{E}\right]
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Voltege gaim } A_{V} & =\frac{V_{0}}{V_{i}} \\
& =\frac{X_{D}\left(R_{E}+\beta_{D} R_{E}\right)}{P_{b}\left(r_{i}+R_{E}+\beta_{D} R_{E}\right)} \\
& =\frac{R_{E}+\beta_{D} R_{E}}{R_{i}+R_{E}+\beta_{D} R_{E}} \quad\left(\because R_{i}<\alpha R_{E}+\beta_{D} R_{E}\right) \\
& =\frac{R_{E}+\beta_{D} R_{E}}{R_{E}+\beta_{D} R_{E}}=1 \\
A_{V} & =1
\end{aligned}
$$

The circuit diagram of Emitter follower is shown in tigcas.

figcas: Emitter follower (common collector amplifier).
Archit description:
$V_{\text {Ce }} \rightarrow$ Biasing voltage.

$$
R_{1} 8 R_{2} \rightarrow \text { Biasing resistor }
$$

$R_{E} \rightarrow$ Emitter resistor

$$
\begin{aligned}
\mathrm{R}_{3} & \rightarrow \text { source resistor } \\
\mathrm{V}_{3} & \rightarrow \text { source voltage } \\
\mathrm{Q} & \rightarrow \text { mph transistor } \\
B_{1} \in, C & \rightarrow \text { Base, fonitter \& contactor } \\
V_{1} \& V_{0} & \rightarrow \text { input \& output voltage }
\end{aligned}
$$

(3) The input resistance of common collector amplifier (or) emitter follower is high generally.
ie. $R_{i}=h_{i e}+h_{\text {ae }} \cdot \Lambda_{I} R_{I} \Omega$

$$
\begin{aligned}
\simeq h_{i e}+1 \times A_{I} R_{C} & \because h_{i c}=h_{i e} \\
R_{i}=h_{i e}+A_{I} R_{C} & \& h_{r e} \simeq 1
\end{aligned}
$$

But current gain $\left(N_{I}\right) \simeq h_{f e}=1$ hife

$$
R_{i}=h_{i e}+\left(1+h_{f_{0}}\right) R_{e}
$$

But practically Biasing resistors $R_{1} \& R_{2}$ reduces the input resistance as $R_{i}^{\prime}=R_{i} \| R_{b} \Omega$ where

$$
\begin{aligned}
R_{b} & =R_{1} \| R_{2} \Omega \\
& \simeq R_{b} \Omega
\end{aligned}
$$

To overcome the above disadvantage i.e decrease of input resistance due to biasing resistors for emitter follower and additional resistor R_{3} and capacitor C_{B} are connected as shown in fig (b) which is called as Bootstrapped emitter follower.

fig(b): Boot strapped emitter fotower.
strapped.

The top of f_{5} is connected to Base (B) (inputs) and the bottom of R_{3} is connected to emitter (ϵ) coutput) via capacitor CB
the value of capacitor C_{B} is selected such that it acts as short circuit for low frequency of operation

Millers theorem states that if there is an impedence between two nodes can be replaced by two impedance $\frac{x}{1-k} 8 \frac{\pi}{1-\frac{\pi}{k}}$ between input node and ground \&output node and ground, where.

There vatage gain of C_{C} amplifier is A_{v} which is approximately unity ie. $\wedge \simeq 1$.
R_{3} is connected blu input \& output terminals
Now, by millers theorem
effective input resistance $R_{e H}=\frac{R_{3}}{1-A_{V}}$

$$
\begin{aligned}
& A_{s} A_{v} \simeq R_{1} \text { Reff is very high Reffecme po } \$ \\
& \text { for ex: } \frac{R_{3}}{1-0.99} \\
& \text { Now input resistance } R_{i}^{\prime}=R_{i} \| R_{e f f} \cong R_{i}
\end{aligned}
$$

$$
\text { ie. } R_{i}^{\prime} \simeq R_{i}
$$

$>$ The effect of increasing the ils resistance, when Ar approaches unity is catted Boot strapping
\Rightarrow The above term crises from the fact that $A_{V}=\frac{V_{0}}{V_{1}} \simeq 1$

$$
v_{0} \simeq v_{i}
$$

\Rightarrow It means if one end of the resistor R_{3} changes in voltage V_{i} then another end of R_{3} moves through the same change in Voltage $\left(V_{0}\right)$.

Case Code Amplifier:
The circuit diagram of $C \overline{-}-C B$ configuration (casecode config) is shown in figcas. In which it is observed that out pert of stage $1\left(c_{1}\right)$ given to stage \& input. (© 2)

fig(en: Dasecode configuration (ce. followed by $C B$).
Circuit diagram of cascode amplifier is shown in fig (b).

figbi cascode Amplifier.
Circuit Description:
$Q_{1} \& Q_{2} \rightarrow$ npr transistors.
$F_{1} \& Z_{2}, C_{\&} \& C_{2}, B_{1} \& B_{2} \longrightarrow$ Emitter terminals, collector terminals, Base terminals of $Q, 8 Q$ respectively.
$R_{L}, R_{S}, V_{S} \rightarrow$ load resistance, source resistance, source voltage.
$V_{O 1}, V_{O D}, V_{0} \rightarrow$ output voltages of $C, C B \&$ casecode.
$V_{i_{1}}, V_{i 2}, V_{i} \longrightarrow$ input voltages of $C \in, C B \&$ cascade.
from fig $V_{i}=V_{i_{1}}, \forall I_{i}=I_{i 1}$.

$$
\begin{aligned}
& V_{01}=V_{i 2}, I_{01}=I_{12} \\
& V_{01}=V_{01}, I_{02}=I_{0}
\end{aligned}
$$

Analysis:
$>$ Let hes, hoe, hie, hoe are the h parameters of stage, Ct Amplifier
\Rightarrow Let hob, hob, his, hrs are the h paraoneters of stage $\& C B$ Amplifier.
\Rightarrow hiv, hz, h11, his are the h parameters of casecode. Amplifier.
By defination of h parameters

$$
\begin{aligned}
& V_{1}=h_{11} I_{1}+h_{12} V_{2} \\
& I_{2}=h_{21} I_{1}+h_{22} V_{2}
\end{aligned}
$$

from fig:

$$
\begin{array}{ll}
V_{1}=V_{i}, & V_{2}=V_{0} \\
I_{1}=I_{i} & I_{2}=I_{0}
\end{array}
$$

then

$$
\begin{aligned}
& V_{i}=h_{11} I_{i}+h_{12} V_{0} \\
& I_{0}=h_{21} I_{i}+h_{22} V_{0}
\end{aligned}
$$

$h_{21}=\left.\frac{I_{0}}{I_{i}}\right|_{V_{0}=0}$ (short circuit. forward current gain).

$$
\simeq \frac{I_{0 p}}{I_{i 1}}=\frac{I_{02}}{I_{i 1}} \times \frac{I_{01}}{I_{i 1}}
$$

$$
=h_{f b} \text { hie. }
$$

$$
h_{21} \simeq h_{f e}\left(\because h_{f} \simeq 1\right)
$$

Short circuit input substance

$$
\begin{gathered}
h_{\text {QQ }}=h_{11}=\left.\frac{V_{i}}{I_{i}}\right|_{V_{0}=0}(\Omega) \cdot N h_{i e}(\text { stage is (f) } \\
\quad h_{11}=h_{i e} .
\end{gathered}
$$

Open circuit reverse volloge gain his $=\left.\frac{V_{i}}{V_{0}}\right|_{J_{i}=0}$

$$
=\frac{V_{i 1}}{V_{02}}=\frac{V_{i 1}}{V_{01}} \times \frac{V_{i 2}}{V_{02}} .
$$

$$
h_{12}=h_{x \cdot} \cdot h_{x b}
$$

open circuit. output conductance, $h_{2 V}=\left.\frac{I_{0}}{V_{0}}\right|_{I_{i}=0}(v)=h_{0 b}$ (since

$$
h_{22}=h_{0 b}
$$

$$
\text { stage sis }(B) \text {. }
$$

Advantages of case code Amplifier are.
(1) Overall current gain is current gain of single $c \in$ Amplifier
(2) Overall input resistance is input resistance of single ce Arrplifier
(3) Overall reverse voltage gain is product of reverse voltage gain of both CB 8 CE-Amplifiers.
(4) Overall output conductance is same as output conductance of single aB Amplifier.
Applications:
(1) Used in toned. Amplifier designed because of reduction in internal feedback
(2) Has high bandwrith and less noise used as small signal amplifier (3) Used in R_{f} Applications as video Amplifier.

Differential -Amplifier?
Block diagram of a differential. Amplifier is shown in fig(a).

fig(a): Block diagram.

An -Amplifier which Amplifies the difference between two input Voltages is called as differential. Amplition

Voltage gain of differential amplifier is

$$
-A_{d}=\frac{V_{0}}{V_{1}-V_{2}}=\frac{N_{0}}{V_{d}}
$$

Where $V_{1}, V_{2} \rightarrow$ two input voltages
$\mathrm{V}_{0} \longrightarrow$ output voltage.
$V_{1}-V_{2} \rightarrow$ difference voltage.

$$
V_{0}=A_{d}\left(V_{1}-V_{2}\right)
$$

for an ideal differential amplifier $V_{1}=V_{2}$.

$$
V_{0}=O V
$$

But in a pratical amplifier the output voltage also depends upon average signal (ara) common mode signal.

$$
\text { ie. } \quad V_{c}=\frac{V_{1}+V_{2}}{2}
$$

$$
\begin{aligned}
\text { Common mode voltage gain } A_{c} & =\frac{V_{0}}{V_{c}}
\end{aligned}=\frac{V_{0}}{\left(\frac{V_{1}+V_{2}}{2}\right)}
$$

$$
V_{0}=A_{c} V_{c}=A_{c}\left(\frac{V_{1}+V_{2}}{2}\right)
$$

Total output voltage $V_{0}=A_{d} V_{d}+A_{c} V_{c}$.

$$
=A_{d}\left(V_{1}-V_{2}\right)+A_{c}\left(\frac{V_{1}+V_{2}}{2}\right)
$$

CMRR (common mode rejection ratio) is defined as ratio of differential voltage gain (A_{d}) to the common mode voltage gain (A ? $)$

$$
\begin{aligned}
& C M A R=\frac{A_{d}}{A_{c}} \\
& C M P R(d B)=20 \log _{10}\left(\frac{A_{d}}{A C}\right)
\end{aligned}
$$

for an ideal amplifier $A=0 \Rightarrow C M R R=\infty$
Tout in practical cases $A_{c} \lll A_{d}$.
The circuit diagram of differential amplifier by using BJI is shown in fig(b).

fig(b): Emitter coupled differential Amplifier.
Circuit description:
$-\mathrm{Kec}_{1}+\mathrm{Vec}_{\mathrm{cc}} \longrightarrow$ positive biasing. voltage.
$Q_{1} \circlearrowleft Q_{2} \rightarrow$ npr transistors.
$V_{1} \& V_{2} \rightarrow$ input voltages.
$R_{\mathrm{E}} \rightarrow$ Emitter resistance
$B_{1} B B_{2}, C_{1} \& E_{2}, G_{1} \& \in 2 \longrightarrow$ Base, terminals, collector terminals,
Fritter terminals.
$\mathrm{RCl}_{\mathrm{Cl}} \mathrm{RCR} \rightarrow$ collector resistors.
$R_{81} 8 \mathrm{RSP} \rightarrow$ source resistors.
$\mathrm{V}_{31} 8 \mathrm{~V}_{32} \rightarrow$ voltage sources,
Applications:
Used as basic input stage for opamp (operation amplifier). to provide. balanced output.

$$
\begin{aligned}
A_{d} & =\frac{V_{0}}{V_{d}}=\frac{-h_{f e} R_{L}}{R_{3}+h_{i e}} \\
A_{c} & =\frac{V_{0}}{V_{c}}=\frac{-h_{f e} R_{L}}{R_{s}+h_{i e}+\left(1+h_{f e}\right)} 2 R_{e} . \\
C M R R & =\operatorname{Volog}_{10}\left[\frac{A_{d}}{A_{c}}\right]=\operatorname{Rolog}_{10}\left[\frac{R_{3}+h_{i e}+\left(1+h_{f Q}\right) \text { Re }}{R_{s}+h_{l e}}\right]
\end{aligned}
$$

ANALYSIS OF MULTI STAGE AMPLIFIER USING FUT:

* The cirait diagram bor multistage amplitier When tET.

FL: MULTISTAGE TET AMPLHFER

* The overall gain of the multirlege $F \in T$ ampleter is given by the products of individual gains

$$
\text { i.e., } \begin{aligned}
A_{v} & =A_{v_{1}} * A_{V_{2}} \\
& =\left(-g_{m_{1}} P_{D_{1}}\right) *\left(-g_{m_{2}} R_{D_{2}}\right) \\
& =g_{m 1} R_{D_{1}} g_{m_{2}} R D_{2}
\end{aligned}
$$

* The Input impedance Kin $=R_{G}$ I

4 The outset impedance $z_{\text {out }}=R_{D_{2}}$

* The main function of Cascading stages is to adveve the large overall Voltage gain.
(2) Unit -II
$S_{\text {mall }}$ Signal High Frequency Translator
Amplifier Models
Hybrid - T model of a transistor in CE configuration:
Introduction:
\rightarrow The low frequency hemal signal model (Hybrid model) of BJT works for frequencies below 1 M MZ
\rightarrow for frequencies greater than $1 M H Z$, response of the transistor will be limited by internal parasitic capacitances. of Birr i.e,, *the gain decreases at high frequencies
* ON and OFF switching times of BJT will be high.
\rightarrow Hence a model was introduced in 1969 by L.J.Gia colletto called as hybrid- T model (because of it shape) (or) Gid colletto model (because of the inventor)
Hybrid $-\pi$ model (or) tiybrid-pimodel (or) Gid calletto

Hybrid T model of Ci Tramiztor
where
$B, E, C \longrightarrow$ Base, Emitter, Collector
$B^{\prime}: \longrightarrow$ physically inaccessable internal node ines is, $r_{b b} \longrightarrow$ Resistance bin actual base and virtual bale i-e, bulk peristance of base (os) bice sf reading restana r_{b} ($\left.0 x\right) r_{n} \rightarrow$ Resistance b/ p virtual base and emitter.
$I_{b}^{\prime} c(0 s) \pi_{n \eta} \rightarrow$ Resistance bl virtual base and collector
Ice \rightarrow Resistance b/ n collector and emitter $C_{e}(o r) c_{\pi} \rightarrow$ Diffusion. capacitance b / n forwoind biased emitter bare junction
$C_{C}(o r) C_{\mu} \rightarrow$ Transition capacitance bIn severe biased collector base junction
$g_{m} v_{b}^{\prime} e$ voltage dependent current souse. $\mathrm{g}_{m} \longrightarrow$ trans conductance (or) mutual conductance Voe \rightarrow voltage bl virtual base and emitter
$v_{c e} \rightarrow$ voltage bin collector and emitter
$i^{i} \rightarrow$ bale current
${ }^{i}$ c \rightarrow collector current
Assume, that all parameters in this model are independent of frequency and are conetent under given bioued condition. Typical values of seven hybrid parameters at room temperature and $I_{C}=1.3 \mathrm{~mA}$ are al follows

$$
\begin{aligned}
& r_{b b}^{\prime}=100 \Omega \\
& r_{b_{e}^{\prime}}^{\prime}(o r) r_{\pi}=1 \mathrm{k} \Omega \\
& r_{b}^{\prime}(0 \Omega) r_{\mu}=4 M \Omega \\
& r_{c e}=80 \mathrm{k} \Omega \\
& c_{e} \text { (or) } c_{\pi}=100 \mathrm{PF} \\
& c_{c}(o r) c_{\mu}=3 \mathrm{PF}
\end{aligned}
$$

The advantage of Hybrid π model is it is valid for low, medium and high frequencies but it is wed only for high frequencies. Because of complexity in analysis it cart t be wed for low and medium frequencies. H-parameter model (Hybrid model) is used only for how and medium frequencies as it fail at high frequencies.

Derivation of Hybrid- Π parameter in terms of h-parameter:
confider H-parameter model of 'CE transistor r ' as shown in figure (a).

h-parametel model of $C E$ trdnsidtor $K C L$ to output By applying node

$$
\begin{aligned}
& v_{b}=h_{i e} i_{b}+h_{r e} v_{c} \\
& j_{c}=n_{+e} i_{b}+h_{o e} v_{c}
\end{aligned}
$$

$h_{i e}=\left.\frac{v_{b}}{i_{b}}\right|_{V_{c}=0}$ short circuit input impedance

$$
V_{V_{c}}=0
$$

A\& above all four parameters are defined differently, they are called as hybrid parameters differently, they
an h-parameter.
(or) h-parameter.
consider hybrid- π model for $C E$ transistor at low frequencies as shown in fig-b. It is observed at reactance of capacitor is inversely proportional to frequency

$$
\text { ire, } x_{c}=\frac{1}{\hat{\theta} c}=\frac{1}{2 \pi+c}
$$

At low frequencies, as capacitive reactance il vely sigh. Ce\& capacitors are treated as Open circuit in fig -b

Hybrid- π model of CE transistor at low frequency Where seven hybrid -T parameters are

$$
g_{m} \rightarrow \text { Trans conductance }
$$

Ice \rightarrow Relistance between collector and emitter
$r_{b}^{\prime}{ }_{c}(01) r_{\mu} \rightarrow$ Resistance b / n virtual bale and collector
$r_{b}{ }^{\prime}{ }^{(0)} r_{\pi} \rightarrow$ Resistance bl virtual bare and emitter
$N_{b}^{\prime} e \rightarrow$ Voltage b/n virtual bale and emitter
$r_{b b} \rightarrow$ Resistance $b l_{n}$ actual base and virtual base
$V_{b e} \rightarrow V_{0} \rightarrow$ age bin actual base and emitter.
$N \mathrm{Ne} \rightarrow$ voltage b / n collector and emitter $C_{e}(o r) C_{\eta} \rightarrow$ Diffusion capacitance bl forward biased emitter base junction C_{C} (or) $C_{l l} \rightarrow$ Transition capacitance bin revere biased collector bale junction.

Trans conductance (or) frlitud wondyuance gm (v):
By definition

$$
q_{m}=\left.\frac{\partial I_{C}}{\partial v_{B^{\prime} E}}\right|_{V_{C E}}=\text { constant }
$$

For
npr transistor

$$
\begin{aligned}
& I_{C}=\alpha I_{C}+I_{C} \\
& \frac{\partial I_{C}}{\partial V_{B_{B}^{\prime}}}=\alpha \frac{\partial I_{E}}{\partial V_{B_{B}}}+0 \\
& \frac{\partial I_{C}}{\partial V_{B_{B}^{\prime} E}}=\alpha \frac{\partial I_{E}}{\partial V_{B_{B}^{\prime} E}}
\end{aligned}
$$

$$
\frac{\partial I_{C}}{\partial V_{E^{\prime} E}}=\alpha \frac{\partial I_{E}}{\partial V_{E}}
$$

$$
=\frac{\alpha}{\left(\frac{\partial v_{E}}{\partial I_{E}}\right)=\frac{\alpha}{r_{e}} \quad \begin{array}{r}
\text { where re il dyranic } \\
\text { reciatance of } \\
\text { forward bicued } \\
\text { emitter diode. }
\end{array}}
$$

$$
\begin{aligned}
& =\frac{\alpha}{\left(\frac{V_{T}}{I_{\epsilon}}\right)} \\
& =\frac{\alpha I_{E}}{V_{T}} \\
& \simeq \frac{\left|I_{C}\right|}{V_{T}}
\end{aligned}
$$

where $V_{T}=\frac{\mathrm{KT}}{q}=\frac{T}{11600}=26 \mathrm{mV}$ (at room temperature)

$$
g_{m}=\frac{\left|I_{c}\right|}{V_{T}}(v)
$$

directly proportional to $\left(I_{C}\right)$ and
It is observed at thermal volterge (V_{T}) and inversely proportional to
hence temperature (T). Resistance bl virtia circuit forward current gain

Consider short

$$
n_{f}=\left.\frac{i_{c}}{i_{b}}\right|_{v_{c}}=0
$$

From tig-(b) with $V_{c}=0$ most of the current ib flow through robe because re is short circuited and $r_{b} e^{c} \ll r_{b l}$.

Now $v_{b^{\prime} e}=i_{b} b_{b}{ }^{\prime}$ from fig-(b) with short circuit

$$
\begin{aligned}
i_{c} & =g_{m} v_{b}^{\prime} e \\
& =g_{m} i_{b}^{r_{b}}{ }_{e} \\
\frac{i_{c}}{i_{b}} & =g_{m} r_{b_{e}} \\
h_{f e} & =g_{m} r_{b}{ }_{e} \\
r_{b}^{\prime} e & =\frac{h_{f e}}{g_{m}} \Omega
\end{aligned}
$$

- vim,

Resistance between virtual base and collector: -try, consider open circuit revere voltage gain

$$
h_{r_{e}}=\left.\frac{v_{b}}{v_{c}}\right|_{i_{b}=0}
$$

from $\quad \operatorname{sig}(b) \quad i_{b}=0$

$$
v_{b^{\prime} e}=\left[\frac{v_{c}}{r_{b^{\prime} c}+r_{b}{ }^{\prime} e}\right] r_{b^{\prime} e}
$$

$$
\begin{aligned}
& \frac{v_{b} l_{e}}{u_{c}}=\frac{r_{b l}}{r_{b} l_{e}+r_{b} l_{c}} \\
& \frac{v_{b}}{n_{c}}=\frac{r_{b}^{\prime}}{r_{b}^{\prime} c} \\
& \text { More }=\frac{r_{b}^{\prime} e}{r_{b}^{\prime} c} \\
& r_{b}^{\prime} c=\frac{r_{b} l_{e}}{h_{r e}} \Omega
\end{aligned}
$$

Resistance b/n cectual base \& virtual base:-rsb'(n) consider short circuit input impedances

$$
h_{i e}=\left.\frac{v_{h}}{T_{h}}\right|_{v_{c}=0}(\Omega)
$$

with re $=0$, r_{b} e \& x_{a} a ave, in parallel, since xe is short circuit.

Hence

$$
r_{\text {well }} r_{b^{\prime} c}=\frac{r_{b_{c}^{\prime} c} r_{b_{c}^{\prime}}}{r_{b_{c}^{\prime}}+r_{b_{c}^{\prime}}}=r_{b_{c}^{\prime}} \quad\left[\because r_{b^{\prime}} \ll r_{b_{c}^{\prime} c}\right]
$$

Now:

$$
\begin{aligned}
& v_{b}=r_{b}\left(r_{b b}+r_{b} b_{c}\right) \\
& \frac{v_{b}}{r_{b}}=r_{b b}+r_{b^{\prime} c} \\
& h_{i e}=r_{b b^{\prime}}+r_{b_{c}}^{\prime} \\
& r_{b b}{ }^{\prime}=h_{i c}-r_{b_{c}}
\end{aligned}
$$

Relation bl collector and emitter:-ree consider open circuit output conductances

$$
h_{o e}=\left.\frac{i c}{v_{c}}\right|_{i_{b}}=0
$$

from bibl By KCL

$$
\begin{aligned}
& i_{c}=g_{m} v_{b}^{\prime} e^{\prime}+\frac{v_{c}}{r_{c e}}+\frac{v_{c}}{r_{b} b_{e}+r_{b} c_{c}} \\
& \text { ice }=g_{m} v_{b}+\frac{v_{c}}{r_{c e}}+\frac{v_{c}}{r_{b}^{\prime} e f r_{b}^{\prime} c} \\
& \left(\because V_{b}=v_{b} l_{e}\right) \\
& i_{c}=g_{m} h_{r \theta_{c}}+\frac{\bar{v} c}{r_{c e}}+\frac{v_{c}}{r_{b}{ }_{c}} \quad\left(\because h_{r e}=\frac{v_{b}}{v_{c}} \& r_{b l e} \ll r_{b c}\right) \\
& i_{c}=v_{c}\left[g_{m} h_{r e}+\frac{1}{r_{c e}}+\frac{1}{r_{b} c}\right] \\
& \frac{i c}{v_{c}}=g_{m} h_{r e}+g_{c e}+g_{b}{ }_{c} \\
& n_{D e}=\frac{n_{f e}}{r_{b l e}} \times \frac{r_{b e}^{\prime}}{r_{b_{c}^{\prime}}}+g_{c e}+\tilde{g}_{b^{\prime} c} \\
& h_{\text {oe }}=\left.h_{e} g_{b}\right|_{c}+g_{c e}+g_{b} \mid c_{c} \\
& n_{\text {oe }}=\left(1+h_{+e}\right) g_{b^{\prime} c}+g_{c e} \\
& g_{c e}=h_{o c}-(1+h+e) \partial_{b_{c} c}(r) \quad r_{c e}=\frac{1}{g_{c e}} \Omega
\end{aligned}
$$

Transition capacitance: (cc)
It is measured bl, reverse biased collector base junction is c_{b} (common base) configuration and is given by manufacturer over the dat a heat as $c_{o b}$. Therefore c_{c} (orr) $c_{\mu}={ }^{\circ} c_{0 b}$

Diffusion capacitance (Ce):
It is measured b / n forward biased emitter base junction in $C B$ configuration and is given by $C_{e}(o r) C_{\pi}$

$$
c_{e} \text { (or) } c_{\pi}=\frac{g_{m}}{2 \pi f T}
$$

where t_{\uparrow} is the frequencif at which short circuit current gain falls to unity ie., $h_{t e}=1$

Conclusions '.

$$
\begin{aligned}
& \text { 1. } g_{m}=\frac{\left|I_{c}\right|}{v_{T}}(v) \text { where } V_{T}=\frac{T}{11600} \\
& \text { 2. } r_{b}^{\prime} e=\frac{h_{f e}}{g_{m}}(\Omega) \\
& \text { 3. } r_{b}^{\prime} c=\frac{r_{b_{e}}}{h_{r e}} \\
& \text { 4. } r_{b b}=h_{i e}-r_{b_{e}^{\prime}} \\
& \text { 5. } r_{c e}=\frac{1}{g_{c e}} \\
& \text { 6. } c_{c}(o r) c_{\mu}=c_{o b} \\
& \text { 7. } c_{e}(a r) c_{\pi}=\frac{g_{m}}{2 \pi t_{T}}
\end{aligned}
$$

$$
\frac{91}{36}
$$

* The following low frequency parameters for given transistor $I_{C}=5 \mathrm{~mA}, v_{C E}=10 \mathrm{~V}$ at rio om temperature, $h_{i e}=600 \Omega, \quad h_{f e}=100, \quad h_{r_{e}}=10^{-4}, h_{0 e}=20 \mu \Omega$. at the lame operating point $+_{T}=500 \mathrm{mHz}$ $c_{o b}=3 p_{f}$ calculating valued of Hybrid $-\pi$ parameters. Given data
collector current $\left(I_{c}\right)=5 \mathrm{~mA}$
Voltage bl collector and emitter $\left(v_{c e}\right)=10 \mathrm{~V}$
hie short circuit input: impedance $=600 \Omega$
short circuit forward current jain $\left(h_{t e}\right)=100$
open circuit revere e voltage gain (ire) $=10^{-4}$
Open circuit output conductance (hoe) $=20 \mu \Omega$
Frequency at 1200 m temperature $\left(f_{T}\right)=500 \mathrm{mH}$
Traneition capacitance $\left(C_{o b}\right)=3 p+$

$$
\begin{aligned}
g_{m}= & \frac{1 I_{c} 1}{v_{T}} v \\
& =\frac{5 \times 10^{-3}}{2.6 \times 10^{-3}}=0.1923 v=\frac{T}{11600} \\
r_{b^{\prime} e} & =\frac{h_{1 e}}{g m} \Omega
\end{aligned}
$$

$$
001=\frac{100}{\theta .1923}=520 \Omega
$$

$$
r_{b}^{\prime} c=\frac{r_{b}^{\prime} e}{h r e} \Omega
$$

$$
7=97 x=\frac{520}{10^{-4}}
$$

$$
\text { Tepplo } \frac{21 \times 2}{1 \times 2} \cdot \frac{1}{5200000}
$$

$$
=5.2 N \Omega
$$

$$
\begin{aligned}
r_{b b}^{\prime} & =h_{i}-r_{b l e}(\Omega) \\
& =60 b-520=80 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& r_{c e}=\frac{1}{g_{c e}} \\
& g_{c e}=n_{o e}-\left(1+h_{f e}\right) g_{b}^{\prime} c \\
& g_{b}^{\prime} \\
&=\frac{1}{r_{b}^{\prime} c}=\frac{1}{5.2 \times 10^{-6}}=192307.6923 \\
&=-19423076.92 \\
& g_{c e}=\left(20 \times 10^{-6}\right)-(c+100)(92037.6 \\
& x_{c e}=\frac{1}{-0.19418}=-0.19418
\end{aligned}
$$

Transition capacitance $c_{c}(o r) C_{\mu}=C_{o b}$

$$
\Rightarrow C_{c}(0 \lambda) C_{\mu}=3_{p} t
$$

Diffusion capacitance c_{e} (or) $c_{T}=\frac{9 m}{2 \pi+T}$

$$
\begin{aligned}
C_{\pi} & =\frac{0.1923}{2 \times 3.14 \times 100 \times 10^{-6}} \\
C_{\pi} & =\frac{9615}{157}=61.2425
\end{aligned}
$$

* The following low frequency parameters for a given $I_{C}=\Gamma M_{A}$, $V_{C E}=8 \mathrm{~V}$ at temperature $h_{i e}=1 \mathrm{k}, \quad h_{\text {fe }}=100, h_{r_{e}}=10^{-4}$, hoe $=4 \times 10^{-5} \mathrm{~A} / \mathrm{V}$ at the same operating point $f_{T}=10 \mathrm{mHz}, \mathrm{cob}_{0}=2 p+$. Calculate the values of hybrid- π parameter e (or) high frequency parameters.
Given
collector current $\lambda_{c}=5 m A$
voltage $h\left(n\right.$ collector and emitter $v_{c e}=8 \Omega$ short circuit input impedance hie $=1 k \Omega$

Short circuit forward wirreut gain $h_{1}=100$
Open circuit revere voltage gain are $=10^{-4}$
Open circuit output conductance $h_{D e}=4 \times 10^{-5}$

$$
\begin{aligned}
& A_{T}=10 \mathrm{MHz} \\
& C_{O b}=2 p \mathrm{~F}=2 \times 10^{-12} \mathrm{~F}
\end{aligned}
$$

(i) Mane conductance $g_{\mathrm{m}}=\frac{\left|I_{c}\right|}{V_{T}}=\frac{5 \times 10^{-3}}{26 \times 10^{-3}}=0.1923 \mathrm{~T}$
(ii) Resistance bl n virtual base and emitter

$$
r_{b} e=\frac{h_{+c}}{q_{m}}
$$

$$
x_{b^{\prime} e}=\frac{100}{0.1923}=5.20 .02
$$

(i) Resistance 3 b n virtual pase \& collector

$$
\begin{aligned}
20(n)
\end{aligned}
$$

('N) Resistance bIn actual base 4 virtual base

$$
\begin{aligned}
\pi_{b} b^{\prime} & =h_{i} e^{-\pi_{b} e^{\prime}} \\
\pi_{b} b^{\prime} & =1 \times 10^{3}-520.02 \\
& =479.98 .
\end{aligned}
$$

(v) Resistance bl collizctor \&emitter

$$
\begin{aligned}
& r_{c c}=\frac{1}{g_{c e}} \\
& g_{c e}=h_{o e}-\left(1+h_{f e}\right) g_{b^{\prime} c} \\
&=h_{0 e}-\left(1+h_{f e}\right) \frac{1}{r_{b_{c} c}} \\
& g_{c e}=4 \times 10^{-5}-(1+100) \frac{1}{5200200} \\
&=4 \times 10^{-5}-(101) \frac{1}{5200200} \\
& g_{c e}=2.0577 \times 10^{-5} \\
& \Rightarrow r_{c e}=\frac{1}{2.0577 \times 10^{5}}=48597.94
\end{aligned}
$$

(vii) Diffusion capacitance c_{e} (or $\quad g_{\pi}=\frac{9 m}{2 \pi f_{T}}$

$$
\begin{aligned}
& =\frac{0.1923}{2 \times 3.14 \times 10 \times 10^{-3}} \\
& =\frac{1923}{628}
\end{aligned}
$$

$$
=3.0621
$$

4) Common Emitter Amplifier with short circuit load ($R_{L}=0 \Omega$) at high frequencies:
\rightarrow consider a ingle stage CE amplifies with short circuit load (by hort circuiting bin Collector and emitter to make $R_{L}=0 \Omega$) as shown in fig-(a).

CE amplifier high frequencies by wing hybrid -T model at high frequencies is shown in fig. \rightarrow small signal equivalent circuit of $C E$

Approximations +2 a
$\rightarrow R_{\text {ce disappear because it is sllort circuited }}$ $\rightarrow T_{b l}$ \& $r_{b^{\prime} c}$ are in parallel because of short circuit i.e., $r_{b_{e}} \| r_{b_{c}^{\prime}}=\frac{r_{b_{e}} r_{b_{c}^{\prime}}}{r_{b_{e}}+r_{b_{c}^{\prime}}} \simeq r_{b_{e}}\left(\because r_{b}{ }_{e} \ll r_{b c}\right)$ Hence rile disappears.
$\rightarrow c_{e} f C c$ are in parallel because of short , weirculit to $\frac{1}{5}$
abs.

$$
\therefore c_{e}+c_{c}
$$

. b be delivered from input to output
\rightarrow current to be delivered from input to output nodecan be neglected.

With the above four approximations, appsoximate equivalent circuit is blown in fig-(c)

By definition,
short circuit current, gain

$$
\left[1 \ll \frac{1}{1+j\left(\frac{f}{t_{\beta}}\right)} \quad \text { where } f_{\beta}=\frac{1}{2 \pi x_{b} e^{c}}\right.
$$

At $f=f_{\beta}$

$$
\begin{aligned}
\left|A_{I}\right|=\left|\frac{-h_{+e}}{1+j \frac{f_{\beta}}{f_{\beta}}}\right|=\mid & \left.\frac{-h_{+e}}{1+j \mid} \right\rvert\, \quad \text { \& }, N=T^{1} \\
& =\frac{h_{+e}}{\sqrt{2_{2}}} \sum_{g+e}^{\frac{h_{+1}}{\sqrt{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& A_{I}=\frac{-g_{m}}{\left[\frac{r_{b}^{\prime}+\frac{1}{j \omega c}}{r_{b}{ }^{\prime} \frac{1}{j \omega c}}\right]}=\frac{-g_{m} r_{b} l_{e}}{1+j r_{b} r_{e}^{c}} \\
& =\frac{-h+e}{t+j 2 \pi+r_{b l e}} \quad\left[\begin{array}{ll}
A & r_{b l e d}^{\prime}=\frac{h_{+e}}{g_{m}} \\
\& w=2 \pi+
\end{array}\right]
\end{aligned}
$$

Hence t_{β} is the frequenoy at which \&hors circuit ce current gain falle to $\frac{1}{\sqrt{2}}$ of iti maximun value coss dhoxt ce circuit gain falle to bolow 3 dB tine from itt maximum value in $d B$.

At $i=$ very imall

$$
\begin{aligned}
& \left|A_{I}\right| \simeq\left|\frac{-h+e}{1+j(0)}\right| \simeq h_{+c} \\
& A_{I} \text { mar }=h_{t e}
\end{aligned}
$$

Let

$$
\begin{array}{r}
\text { At } t=f_{T}, \quad\left|A_{I}\right|=1 \\
\text { i.e, }\left|\frac{-h_{f e}}{1+j \frac{f_{T}}{+\beta}}\right|=1 \\
\quad \frac{h_{+e}}{\sqrt{1+\left(\frac{+T}{+\beta}\right)^{2}}}=1
\end{array}
$$

squarring on both sides

$$
\begin{align*}
& \frac{h_{f e}^{2}}{1+\frac{f_{T}{ }^{2}}{f_{\beta}^{2}}}=1 \tag{mp}\\
& h_{f e}^{2}=1+\frac{f_{T}^{2}}{f_{\beta}^{2}} \\
& h_{+e}^{2}-1=\frac{t_{T}^{2}}{f_{\beta}^{2}} \\
& h_{+e}^{2} \simeq \frac{f_{T}^{2}}{f_{\beta}^{2}}
\end{align*}
$$

square root on both ides

$$
\begin{aligned}
h_{f e} & =\frac{f_{T}}{f_{\beta}} \\
f_{T} & =h_{+e} f_{\beta} \\
f_{T} & =h_{+e} \frac{1}{2 \pi r_{b}^{\prime} c} \frac{+N}{i+1}
\end{aligned}
$$

$$
-1=1
$$

ant \tan

$$
\begin{array}{rlrl}
f_{7} & =\frac{g_{m}}{2 \pi\left(c_{e}+c_{c}\right)} & \because r_{b_{e}}=\frac{h_{c}}{\partial m} \\
& =\frac{9 m}{2 \pi c_{c}} & {\left[\because c_{e}>c_{c}\right]} \\
-r_{1} & =\frac{7 m}{2 n c_{e}}
\end{array}
$$

Frequency response of ct amplifier with hart circuit load is shown in figure

gain bandwidth product it
$\left|A_{I}\right| \times B W=n+e \cdot f_{r} \beta=t_{T}$

Miller's theorem:
Miller's theorem states that if there it is an and impedance z between two node impedance O lp node can be replaced by two impedances $\frac{l}{1-k}$, $\frac{2}{1-1 / k}$ between input node and ground, output node and ground respectively, where
$k=\frac{v_{2}}{v_{1}}=A V$

4) Common Emitter (.E) Amplifier with selisive loo o (R_{L}) at high frequencies:-
consider a single stage $C E$ ampliter with road resistor R_{L} as known in figure (a)

\rightarrow Small signal equivalent circuit of ace aripifier with resistive load at high frequencies by using hybrid π model as known in $\dot{T} q(b)$

$$
\rightarrow I_{i}=I_{b}
$$

By definition

$$
\text { voltage gain }(f v)=k=\frac{v_{c e}}{v_{b e}}
$$

Miller's theorem:
Millers theorem state that if there is an impedance z between two nodes i-e., ils node and Olp node can be replaced by $\frac{z}{1-k}, \frac{z}{1-y_{k}}$ between input node and ground and output rode and ground respectively wires $k=\frac{v_{2}}{v_{1}}=A_{y}$
where $k=\frac{v_{2}}{v_{1}}=A_{v}$

on application of miller's theorem equivalent fruit of fog (b) is shown in fig (c)

Where $k=\frac{v_{c e}}{v_{b}^{\prime} e}$

- Approximations:

1. At output side $\frac{r^{r} b_{c}^{\prime}}{1-1 / k}$ is approximately $\left.r_{b}^{\prime} c \quad F_{j} ; k \gg 1\right]$

$$
\frac{r^{\prime} b^{\prime} c}{1-!/ k} \simeq r^{r} b^{\prime} c
$$

2. At output side three resistors are in parallel ie., $r_{b c}^{\prime}\left\|r_{c e}\right\| R_{L} \simeq R_{L} \quad\left[\because r_{b} l_{c} \gg r_{c e r} \gg R_{L}\right]$ hence $r_{b} \|_{c}$ and $r_{c e}$ can be neglected
3. At input ide $\left.\frac{1}{2}+9 W^{6}\right]$

$$
r_{b l e} \| \frac{r_{b c}}{1-k} \simeq\left[r_{b l e}\right] \quad\left[r_{b}^{-1} \quad r_{b l} \ll r_{b} c\right]
$$

Hence $\frac{r_{b} \mid c \text { can be }}{1-k} \frac{\text { neglected }}{}$
4. At input side, capacitor k ce and $c_{c}(1-k)$ are in parallel and hence total s, capacitance, $c=c_{e} \| c_{c}(1-k)$

$$
c \simeq \sec +c_{c}(1, k)
$$

5. At output side, $c_{c}(1-1 / k) \cong c_{c} \quad[\because k>1]$
B. As output time constant $\left(\tau_{o l p}=R_{L} \times C_{C}\right)$ is very much less than input time constant $\left(\left.\tau_{i}\right|_{p}=r_{b} l_{e}\left[c_{e}+c_{c}((k))\right]\right.$

$$
\text { i.e., }\left[\tau_{0 \mid p}=R_{L} \times c_{c}\right] \ll\left[\tau_{i \mid p}=r_{b_{e}^{\prime}}\left[c_{e}+c_{c}(1-k)\right]\right]
$$

Hence capacitor c_{c} can be neglected
with above 6 approximatione, approximate equivalent circuit is al follows

from above figure

$$
v_{c e}=\left(-g_{m} v_{b} e_{e}^{-}\right) R_{L}
$$

Voltage gain $\Rightarrow \frac{V_{C e}}{V_{b}^{\prime} e}=-g_{m} R_{L} \Rightarrow A_{V}=k=g_{m} R_{L}$.
[r <ce 'current gain with resistive load $A_{I}=\frac{I_{L}}{I_{i}}=\frac{R_{C i}}{I_{b}}$

$$
\begin{aligned}
& I_{L}=-g_{m} v_{b} l_{e} \\
& I_{1}=\frac{v_{b} l_{e}}{}
\end{aligned}
$$

Ni lollard ai so yratai bell $\frac{1}{j \omega c}$

$$
\begin{aligned}
& \frac{h_{f}}{1.1 j r^{2}\left(x_{c}\left[c_{c}+c_{c}\left(1+q_{m} \rho_{L}\right)\right]\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\lambda k=g_{m} p_{L}\right] \\
& A_{3}=\frac{-h_{1 c}}{1+j\left(\frac{1}{.1+1}\right)} \text { where } \\
& f_{+1}=\frac{1}{2 \pi r_{b} c+\left[C_{c}+C_{c}\left(1+g_{m} p_{L}\right)\right]}
\end{aligned}
$$

from frequency requelly response It $f=0$ on very low frequencies, $\left|r_{1}\right|$

$$
\begin{aligned}
& |A I|=\left|\frac{-h+c}{1+j(0)}\right| \\
& \Rightarrow A_{\text {max }}=h_{1+}
\end{aligned}
$$

At $t=t+1$

$$
\begin{aligned}
& \left|A=++1=\left|\frac{-h+e}{1+j\left(\frac{+}{+H}\right)}\right|=\left|\frac{-h+e}{1+j \mid}\right|,\right. \\
& \left|A_{1}\right|=\left|\frac{-h+e}{\sqrt{2}}\right|=\frac{h+e}{\sqrt{2}}
\end{aligned}
$$

From frequency response, $1 H$ is the frequency at which $C E$ current gain with resistive load falls to $\frac{1}{\sqrt{2}}$ of $i+1$ maximum value (or) fall below $3 d B$ of if t maximum value in d is.

* current gain bandwidth product $A_{I} \times B W=\left|A_{I}\right|_{\text {max }} \times t_{H}$

$$
\begin{aligned}
& =h_{+e} \times \frac{1}{2 \pi r_{b} l_{e}\left[c_{e}+c_{c}\left(1+g_{m} R_{L}\right)\right]} \\
& =\frac{g_{m}}{2 \pi\left[c_{e}+c_{c}\left(1+g_{m} R_{L}\right)\right] \quad \because r_{b}=\frac{h_{l e}}{g_{m}}}
\end{aligned}
$$

Hybrid π model for CS FET:
In low frequency model of J-FET works for frequencies below $1 M H Z$, for frequencies greater than $1 M+z$ the response of JFET will be limited by internal paracetic capacitance of JFET. The hybrid π-model for common source (CS) EET is shown in fig(a).

parameters of hybrid π FET model are'. where G.D.s are gate, drain bounce.

Cos \rightarrow capacitance $b l n$ gate and source
cod \rightarrow capacitance b/n gate $\&$ drain
$C_{d l} \rightarrow$ capacitance bin drain \& source
$\mathrm{gmvgs}_{\mathrm{m}} \rightarrow$ voltage dependent current source
$g_{m} \rightarrow$ trans conductance
$V_{g e} \rightarrow$ voltage $\left.\quad b\right|_{n}$ gate \& source
$r_{d} \rightarrow$ internal drain resistance
$\mu=g_{m} r d \rightarrow$ Amplification factor
The three capacitors $\left[c_{g s}, c_{g d}, c_{d f}\right]$ are indirectly given over the data, sheet of JFET as

$$
\begin{aligned}
& c_{\text {gd }}=c_{\text {iss }}-c_{f s} \\
& c_{\text {gs }}=c_{\text {iss }}-c_{\text {ass }} \\
& c_{\text {de }}=c_{\text {os }}-c_{\text {res }}
\end{aligned}
$$

where iss = common toure input capacitance $C_{f s}=$ forward transfer capacitance
$c_{r s}=$ reverse transfer capacitance
$C_{o s}=O / p$ capacitance
Common source amplifier at high frequencies:
Consider a single stage cs amplifier as shown in fig(a).

small dignali equivalent circuit of cs amplifier at bligh frequencies by suing hybrid π mode is shown G in fig (b)

From figure $k=A V=\frac{v_{0}}{v_{i}}=\frac{v_{d s}}{v_{g s}}$
(a,) voltage gain of $C l$ amplifies. rollers theorem states that if there is impedance (z) bln two nodes. i-e.'. input node \& output node, can be replaced by two impedance s $\frac{z}{1-k}, \frac{z}{1-1 / k} b / n$ ils node and ground; of node and ground respectively as shown below
where $k=$ voltage main.
After applying millers theorem to fig (b). The circuit obtained is G shdeon D in 1 infin ($($).

$$
\begin{aligned}
z_{i l p} & =\frac{1}{j \omega\left[C_{g s}+C_{g d}(1-k)\right]}(\Omega), V_{i / p}=\frac{1}{z l_{p}}(v) \\
Z_{0 \mid p} & =\frac{1}{j \omega\left[c_{d s}+c_{g_{d}}\left(1-\frac{1}{k}\right)\right]} \|\left.\left(\eta_{d} \| R_{d}\right) \quad\right|_{0 / p}=\frac{1}{z_{0} / p}(v) \\
& =\frac{1}{j \omega\left[c_{d s}+c_{g_{d}}\left(1-\frac{1}{k}\right)\right]} \|\left(\frac{r_{d} R_{D}}{r_{d}+R_{D}}\right)
\end{aligned}
$$

It il observed that reactances of the capacitor is inversely proportional to frequency lie,,

$$
x_{c}=\frac{1}{\omega c}=\frac{1}{2 \pi f c}
$$

is Hence at low trequencied liar capacitive reactance very high the three capacitors are Cod, cage, $C_{d e}$ are treated as open circuit, as shown in fig($b)$.

High frequency.
hybrid $-\pi$ model of CEFET at low , frequencies

$$
\begin{aligned}
\quad V_{d s} & =-g_{m} v_{g s}\left(r_{d \|} R_{D}\right) \\
& =\frac{-g_{m} r_{d} R_{D}}{r_{d}+R_{D}} \\
& =\frac{v_{d s}}{v_{g s}}=-g_{m}\left(\frac{r_{d} R_{D}}{r_{d}+R_{D}}\right) \\
& =\frac{\mu R_{D}}{r_{d}+R_{D}} \\
A_{r} & =\frac{\mu}{r_{d}}+1 \\
& \simeq-\mu\left[r_{d} \ll R_{D}\right] .
\end{aligned}
$$

$\therefore R_{D}$ is also glenoted R_{L}.
common drain $[C D]$ amplifier at, lough frequencies (oi) source follower at sigh frequencies:
consider a single stage common drain amplifier as shown in fig (a)

small signal equivalent circuit of $C D$ amplifier [source follower] at high frequencies by using hybrid $-\pi$ model of $F E^{T}$ is shown in fig -(b).

 fig- (b)

Cal. If. Miller's theorem stater that it there is impedance $\left[\frac{1}{2}\right)$ bin two nodes ie, ils node and DIp node can bet replaced by two impedances $\frac{Z}{i-k}, \frac{Z}{i-4 k}$ bin input node and ground, output
node and ground respectively where $K=A V=\frac{V_{2}}{V_{1}}$

Apply miller's theorem to cgs in $\mathrm{tig}_{\mathrm{g}}(b)$ it will gives us fig-(c)

Application of miller's theorem to fig (b)
Input impedance $\quad Z_{1 p}=\frac{1}{j \omega\left[\lg _{d}+\lg (1-k)\right]}(\Omega)$
Input admittance $H_{i / p}=\frac{1}{2_{i / p}}(v)$

$$
=j \omega\left[c_{g d}+c_{g s}(1-k)\right](v)
$$

Output impedance $z \quad l_{p}=\frac{1}{j \omega\left[c_{s d}+c_{g}\left(1-\frac{1}{k}\right)\right]} \|\left(\theta_{d} \| R_{L}\right)$

$$
=\frac{1}{j \omega\left[C_{s d}+C \operatorname{cgs}\left(1-\frac{1}{x}\right)\right]} \frac{r_{d} R_{L}}{r_{d}+R_{L}}
$$

Output admittance $U_{o / p}=\frac{1}{z_{0 / p}}$ (v)

At low frequencies, all the three capacitor are having high reactances, and hence they can be discuppeared in the approximate equivalent circuit $\left[\right.$ le., $x_{c}=\frac{1}{3 w c}=\frac{1}{j 2 \pi+c} \Rightarrow$ capacitors are treated as open eqrecuity $G E$ os x_{S}

Approximate fig (d) equivalent circuit at low frequencies

$$
v_{0}=\left(g_{m} v_{g s}\right)\left(r_{d} \| R_{L}\right)
$$

$$
=g_{m}\left(v_{i}-v_{0}\right)\left(\frac{r_{d} R_{L}}{r_{d}+R_{L}}\right)
$$

$$
=g_{m}\left(v_{i}-v_{0}\right) r_{d} \quad\left(\because r_{d} \angle L R_{L}\right)
$$

$$
v_{0}=\mu\left(v_{i}-v_{0}\right)
$$

$$
v_{0}+\mu v_{0}=\mu v_{i}
$$

$$
\frac{v_{0}}{v_{i}}=\frac{\mu}{1+\mu} \simeq 1
$$

Introduction:

* Any system whetter it is electrical, mechanical, hydraulic or pneumatic may be considered to have atleact one input and one output. If the system is to putosm smoottrly, we must be able to measure or control output.
* For example if the input is 10 mv , gain of the ampletien is 100 , output will be $\mathbb{1 V}$. It the input deviates to 9 mv \& 4 mm , output will be 0.9 V or 1.1 V . So there is no contid over the output.
* But by introducing feedback between the output and input, there can be control over the output. It the input is increased. it can be made earl to increase by having a link between the output and input. So that input can be made to depend om output.
* Some examples for are 1. Temperature of a Fcunace

2. Traffic light
3. Ow human eyes and mind * An amplitie is a device that amplifies the input signal, When we talk about ideal amplifier, there exist come parameltus like Voltage gain, Input impedance, output impedance and Bandwidete

Circuit Diagram:

* This circuit is a Two-port Network and it Represents an Amplifier.

FIG: Equivalent circuit of voltage amplifiers * The voltage ampliter can be deigned with the help of thevenins equivalut circuit on bottrides.

* In the above fig, the amplitier isp resistance R_{i} is large When compared to Source rerietance (R_{s}) i.e., $R_{i}>R_{s}$, So that drop actors R_{s} is very small.

$$
R_{i} \gg R_{s}, \quad V_{i} \simeq V_{s}
$$

* Simelenly load resistance R_{L} is large compared to the OPp resistance R_{0} of the ampliters

$$
\text { It } \begin{aligned}
R_{L} & >R_{0}, \quad V_{0}
\end{aligned}=A_{V} V_{i}, ~ \begin{aligned}
V_{0} & =A_{V} V_{S} \quad \because V_{i}=V_{S}
\end{aligned}
$$

\therefore The output Voltage is proportional to the Input Voltage.
\therefore For Ideal Voltage Ampletece $R_{i}=\infty, R_{0}=0$

$$
\begin{aligned}
& V_{0}=A_{V} V_{i} \\
& A_{V}=\frac{V_{0}}{V_{i}} \text { with } R_{L}=\infty
\end{aligned}
$$

* Av represent the open circuit Voltage gain. For ideal voltage amplitie, output Voltage is proportional to isp Voltage and is independent of $R_{S} \& R_{L}$.
2). CURRENT AMPLIKIER:

Definition: The amplutier one which gives output current proportional to input cusent and the proportionality factor is independent of $R_{S} \xi R_{L}$ then it is called as "Current Amplitsi". * Cuscuet amplitier Can be deigned with the hello of Nortons equivalut circuit on both sides.

CIRCUIT DIAGRAM:

Fly: Norton's equivalent Grcuit of current Amplleter * In the above figure, the amplifier input recistencee R_{i} is lees woven compare to R_{S}. So we get $I_{i}=I_{S}, \because R_{i} \ll R_{S}$

* Curent ampritier intend to amplity inpert Curent Signal and provide output curent lignal.
* If $R_{s} \gg R_{i}$, then $I_{i}=I_{s}$.
* Simulauly it $R_{D} \gg R_{2}$, then $I_{0}=A_{I} I_{i}$.

$$
I_{0}=A_{I} I_{s} \quad \because I_{i}=I_{s}
$$

* For Ideal Curent ampleten, $R_{i}=0, R_{0}=\infty$

$$
\begin{aligned}
& \text { If } R_{i}=0, \quad I_{S} \simeq I_{i} \\
& R_{0}=D \quad I_{L}=I_{0}=A_{I} I_{i}=A_{I} I_{S} \\
& A_{I}=\frac{I_{L}}{I_{i}}
\end{aligned}
$$

* AI reprenentes the short circeit curent amplitication.

3) Transeonduct Ance Amplifier:

DEFINITION: The Amplitie whieh rupplies output curenent Whieh is proportional to input voltage independently of the mapuituate of $R_{S} C_{y} R_{L}$ then luch amplitier is called as "Transconductavce Ampliter". * In Transconductance amptutier, the input lignal is a Voltege Sipnal and olp signal is a cureent signal.

* Transconductance ampliticl can be deigned with the help of. Thevenirs theosers at ip side and Nortons theoren at olp $\bar{\mu}$ is

CIRCUIT DIAGRAM:

FIG: EquIVALENT CIRCUIT fOR Trans Conductance Amplifier.

* In the above fig, the amplitier i / p reiretave R_{i} is ughe compare to R_{s}, So we get $V_{i}=V_{s}$
* Similarly R_{0} is higli conypare to R_{L}, So weget,

$$
\begin{gathered}
I_{0}=g_{m} v_{i} \\
\because v_{i}=v_{s} \quad I_{0}=g_{m} v_{s}
\end{gathered}
$$

* Theretore, the o/p cusent is diectly proportional to i/8 Voltane ${ }^{-1}$ and
tronsesconductance factor $\left(g_{m}\right)$ doeenot dypends on $R_{L} \xi R_{S}$.
* For ideal Trons conductance ampliter $R_{i}=R_{0}=\infty$
$4>$ Trans Resistance Amplifier:
Definition: The amplitier wriek Supplies olp Voltage, whieh is proportional to i/p cureut and independent of $R_{S} C_{Y} R_{L}$ then weh amplitir is called as "Transrecietance ampliteir".
* In Frans reistance ampliten the ilp signal is a cument Signal and olp signal is a Voltage Signad.
\rightarrow Transreiectance amplitier can be derigned with the help of Morton's thebern at ipprete and thevenin's theorenn at opside.

Circuit diagram:

FIG: EqUIVALENT CIRCUIT, FOR TRANES RESISTANICE AMPLIFIER.

* In the above figure, the amplubir ip recirtance R_{i} is veery less Compare to R_{s} So we get $I_{i}=I_{S}$. ($R_{i} \ll R_{s}$)
* Similarly ' R_{0} ' is very less compare to' R_{L} ' So, we get $V_{0}=R_{m} I_{i}$

$$
\left(R_{0} \ll R_{L}\right)
$$

$$
\because I_{i}=I_{S} \quad V_{0}=R_{m} I_{S}
$$

* Therefore, the op Voltage is directly proportional to i/p current anal transreristance factor 'Rm' doesn't depend on $R_{L} \xi R_{S}$.
* For ideal Trans rescitence $R_{0}=R_{i}=0$

FEEDBACK PRINCIPLE:
Definition: The process of Combining a fraction of output energey (Voltage os current) back to the input is known as "Feedback."

* The amplifier which provides feedback is called as Feedback amplifies.
* The feedback creceixy amplitien has two parts 1. Amplitien

2. Feedback Nero sk.

FIG: PRINCIPLE OF FEED BACK AMPLIFIER.

* Let ' A ' be the gain of the amplitier without feedback

$$
A=\frac{V_{0}}{V_{i}}
$$

* The feedback Network extracts a Voltage $V_{f}=\beta V_{0}$ from the olp V_{0} of the amplitie.

$$
\begin{aligned}
& V_{i}=V_{S}+V_{f}=V_{S}+\beta V_{0} \text { (polifive feed back) }\left(\because V_{f}=\beta V_{0}\right. \text {) } \\
& V_{i}=V_{S}-V_{f}=V_{S}-\beta V_{0} \text { (Negative feedback) } \\
& \text { i.e., } V_{i}=V_{S} \pm V_{f}
\end{aligned}
$$

* The quantity $\beta=\frac{V_{f}}{V_{0}}$ is called feedback ratio \& feed back fracten

$$
\begin{aligned}
& A=\frac{V_{0}}{V_{i}} \\
& A=\frac{V_{0}}{V_{S} \pm V_{f}} \\
& V_{0}=A\left(V_{S} \pm V_{f}\right) \\
& V_{0}=A\left(V_{S} \pm \beta V_{0}\right) \\
& V_{0}=A V_{S} \pm \beta A V_{0}
\end{aligned}
$$

$$
\begin{align*}
& V_{0} \mp \beta A V_{0}=A V_{S} \\
& V_{0}(1 \mp \beta A)=A V_{S} \\
& \frac{V_{0}}{V_{S}}=\frac{A}{1 \frac{1}{\mp} \beta A} \rightarrow C \tag{1}\\
& A_{V A}=\frac{A}{1 \mp \beta A}
\end{align*}
$$

Where $A_{\text {pp }}$ is the overall gain (gain with fred back) A is the opentoopgain (gain without feedback) β is the feed rack ratio os feed back factor.
\Rightarrow The ratio of output voltage Vo to the applied signal Voltage V_{s} is called overall gain i.e, gain with feedback A_{f}.

$$
A_{f}=\frac{\text { Output Voltage }}{\text { Input signed Voltage }}=\frac{V_{0}}{V_{s}} \rightarrow \text { (2) }
$$

from $e_{q}(1) \xi(2) \quad A_{f}=\frac{A}{1 \mp \beta A}$
i.e., $A_{f}=\frac{A}{1+A \beta}$ for Negative feed back $A_{f}=\frac{A}{1-A \beta}$ for positive feedback.

* Feed back means the op signal is Coupled to the Input of the rance circuit. This feedback signal provides the control element of the System.

Eg: 1. Temperature of device
2. Human mind \& eyes.

TYPES OF FEEDBACK:

* There are two types of Feedback.

1. Positive feedback
2. Negative Feedback.

POSITIVE FEED BACK:

* If the feedback signal V_{f} is imphare with the input signal Vs, then the net $V_{i}=V_{s}+V_{f}$. Hence, the input Voltage applied to the baric amplifier is increared, thurby increaling the Vo exponentially. This type of freed back is raid to be poritive or legenerative feed bock.
* Gain of the amplifier with positive feedback is,

$$
A_{f}=\frac{A}{1-A \beta}
$$

* Since poitive feedback Caves excescive distortion and instability, it is rarely nd in Amplitier Circuits.
* However, because of its capability of increaling the power of incxading the original signal it is wed in Oscillator circuits.

Negative Feedback:

* If the feedback signal. V_{f} is out of phase with the input signal 1 "s then such feedback is Known as Negative feedback. or Degenerative feedback.
* Then, $V_{i}=V_{S}-V_{f}$, So the input Voltage applied to the barrie amplitie is decreased and correspondingly the $0 / p$ is decrealed.
* Hence the voltage gain is reduced. Gain of the amplifies witt elegative feedback is:

$$
A_{f}=\frac{A}{1+A B}
$$

* The Negative feedback has, various advantages like,
\rightarrow Sapir Stability
\rightarrow Reduction in Hon-linear distortion
\rightarrow Reduction in Toile.
\rightarrow Increare in. Bandwidth or Improvement in e frequency response.
\rightarrow Increare is Input Impedance.
\rightarrow Decrease ie Output Impedance.
* Became of its numerous advantages it is widely used in amplifier circuits.
* The drawback in Negative feedback is it reduces overall gaivo of the amplifier, this problem can be compensated by increasing the number of cages in anplitier ciruits.

CONCEPT OF FEEDBACK:

* The below figure repreluits the block diagram of an anaplitie with feedback.

FIG: BLOCK DIAGRAM OF AN AMPLIFIER WITH FEEDBACK

* The output quantity. (litter Voltage os Current) is Sampled by means of a suitable lampling Network (or Samples) and is bed to the feedback Network.
* The output of feedback network, which has a fraction, of op signal is combined with the extunal (lowe) iegnal through a mixer network and fed into the baric amplifier.
* The different blocks of feedback ampletien are explained belovo.

1. SIGNAL SOVRCE: This block is either a signal voltage V_{S} in series with a revieto R_{s} os a signal current Is in parallel with a Revictor R_{s}.

Transfer Ratio (g) GaIn:

* Thy symbol A in the Bail amplitir Reprecenter the Rato of the output rignal to the input signal.
$*$ The trampler ratio $A_{V}=\frac{V_{0}}{V_{i}}$ refused to as Voltage genre The tronestar ratio $A \dot{i}=\frac{I_{0}}{I_{i}}$ refereed to as culch grim The prompter ratio $G_{m}=\frac{I_{0}}{V_{i}}$ retied to as trans conductance.
The transfer ratio $R_{m}=\frac{V_{0}}{I_{i}}$ referee to as trans reirtancu-
* There are the trankbu gains of the bare amplifier wi tho feedback and is represented by repmbol A.
* Tug symbol A_{f} is defined as the ratio of the olp Signal to the input signal of the amplitiercontiguration.
* Af is the trimeter genre of the amptrtin with feedback.

$$
A V_{f}=\frac{V_{0}}{V_{s}}, A_{I_{f}}=\frac{I_{0}}{I_{s}} \quad R_{m_{f}}=\frac{V_{0}}{I_{s}}, Q_{m_{f}}=\frac{P_{0}}{V_{S}}
$$

GENERAL STRUCTURE OF SINGLE LOOP FEEDBACK AMPLIFIER:

* The below figure reprecents the signal-flow diagram of a feed back amplifier in while quantity " X " represents cither Voltage os Cuseust signals.

FIG: GENERAL STRUCTURE OF SINGLE LOOP FEEDBACK AMPUFIER

* This is because in this care, feedback signal is returned to the input in series to oppose the applied voltage Cawing imper (14) Current to fall and consequently makes the input impedance to increase.

2. SHUNT MIXER:

* The connecting of feedback rignal in parallel with an input current lource is known as "Shunt mixer""
* In care of sheet or parallel connections, the Current drawn from the signal source is increased by an amount equal to feedback Quest If and therefore, input impedance balls.

\rightarrow Voltage $+1 b$ tends to inepece reduce the $0 / p$ impedes \rightarrow Curent flb tends to incense the op impedrest
FH:SHONT MIXER

MIXER: A differential Amplifier, which has two inputs and one oupatt proportional to difference between the signals at the two inputs, is usually reterud as a mixer or comparator.

FIG: CURRENT (OR) LOOP SAMPLING
4. MIXER NETWORK:

* Like sampling, there are two ways of mixing the feedback sIgnal. Mixer is also known as comparator
* Mixer is of two types 1 . Series mixer

2. Sheet mixer

* The connection of feedback rignal in eves with the input

SERIES. MiNER: signal Voltage is known as "Series nixes".

* Series feedback connection fend to increale the input impedance of the amplitien

2. FEEDBACK NETWORK:

* The feedback network is usually in the form of a pareve two-post network and may be formed of: revietors, inductors and Capacitor (mort often of ravietors).
* Its function is to return a function of the op energy (Voltage or cusend) to the input of the amplifier.

3. SAmpling network:

* Sampling Networks are of two types

1. Voltage Sampling
2. Cureut Sampling
3. VOLTAGE SAMPLIAN: The output Voltage is sampled by connecting the feedback Network in sheet across the outpect then such connections at the output is retested to as Voltage or node Sampling.

FIG: VOLTAGE (OR) NODE SAMPLING
2. CURRENT SAMPLIMG: The output current is sampled by connecting the feed back Network in levies across the output. then luck connection of the output is referred to as Current os hoop trampling.

* When the fecolnack signal x_{f} and the input signal x_{i} are ort g phase, then the feedback is called negative feedback.
from the above figure, we have

$$
x_{i}=x_{s}-x_{p}=x_{d}
$$

* Where x_{d} reprecents the difference between the applied input signal λ_{s} and feed bade signal x_{f} and it is called the error signal or Conyaricon lignal.
* The feed back factor $\beta=\frac{x_{f}}{x_{0}}$

Whine x_{0} is the output Voltage / current
$-x$ The traneter gain withotfeedback A is detrid by

$$
A=\frac{x_{0}}{x_{i}}
$$

* The traveler gain with feedback A_{t} is deblieal by,

$$
\begin{array}{rlr}
A_{f}=\frac{x_{0}}{x_{s}} & =\frac{x_{0}}{x_{i}+x_{f}} \quad\left(\because x_{i}=x_{S}-x_{f}\right. \\
\left.x_{s}=x_{i}+x_{f}\right) \\
& =\frac{x_{0}}{x_{i}+\beta x_{0}} \quad\left(\because \beta=\frac{x_{f}}{x_{0}}\right. \\
& =\frac{x_{0}}{x_{i}\left(1+\beta \cdot \frac{x_{0}}{x_{i}}\right)} \\
& =\frac{\left.x_{f}=\beta x_{0}\right)}{x_{i}} * \frac{1}{1+\beta \cdot x_{0} / x_{i}}
\end{array}
$$

$$
\begin{array}{ll}
A_{f}=A \cdot \frac{1}{1+\beta A} & \left(\because A=\frac{x_{0}}{x_{1}}\right) \\
A_{f}=\frac{A}{1+\beta A}
\end{array}
$$

CLASSIFICATION OF FEEDBACK AMPLIFIERS:

* Bared on the type of Sampling at the output side and the type of mixing to the input lide, feedback ampiltives are clavibied into four topologies.

1. Voltage-Series feedback of series shat fled back
2. Cusent-Series fudbacle of series series'ferdback
3. Current-shent freedbade or shalt setter feedbalek.'
4. Volfage-shent feedback

* It the feedback signal is connected in relies with the i/p Signal then it is called ar series feedback ampliteer.
* If the feedback signal is connected in shunt with the i/p Signal then it is called as shunt feedback omplitier.
1 - Voltage series feedback amplifier: -
* If the Feedbacko/p signal is connected in series with the i/p Signal then it is called as Voltage Serin feedback amplifier * If Voltage is sampled, and mixing is ir rices then the type of feedback is t know as Voltage Series feedback.
* The blockdiaglam of Voltage reries feedback amplitin is as shozon below.

FIG: BLOCK DIAGRAM OF VOLTAGE SERIES FEED BACK AMPLIFIER.

* Here Bari ampliten is a Voltage Amplifier
* At Input ride Voltages are nixed by means of seirisferdbalt
$V_{S} \rightarrow$ Source Signal
$v_{i} \rightarrow$ Input Signal
$v_{f} \rightarrow$ feed back e signal
From the figure $V_{i}=V_{S}-V_{f}$

$$
V_{s}=V_{i}+V_{f}
$$

- At output ride Voltage is sampled by uning sheet Semapluy
$V_{0} \rightarrow$ output signal.
* Voltage series feedbacle anplitir is also Knonon as Shunt-Siues feedback amplifier
* The creceit diageam for Voltage-Series feedsack amplitier to (20) derive amptetier preamotu suct as, 1. Input Inpedonece (R_{i})

2. Ouput Inupabonve (R_{0})
3. Voltageg gaine with fuedback (Axp)
4. Bondwictel

* Closed loup Wistage gain (or) Vabtege gaine wille. Poodhach is,

$$
A_{y y}=\frac{V_{0}}{V_{s}} \rightarrow(3)
$$

Pobage gaine whll thebrack:

* The ratio of outpent voltage to somece Voltage is detiond as Voltage gain guith food back.

$$
A_{V_{i}}=\frac{V_{0}}{V_{s}} \rightarrow 0
$$

We know that $V_{S}=V_{i}+V_{f} \rightarrow(2)$
Subetitute e_{j} (8) is as (0)

$$
\begin{aligned}
A_{V_{p}} & =\frac{V_{0}}{V_{i}+V_{p}} \\
& =\frac{V_{0}}{V_{i}+\beta V_{0}} \quad\left(\because V_{-1}=\beta V_{0}\right) \\
& =\frac{V_{0}}{V_{i}\left[1+\beta \cdot V_{0}\right]} \\
& =\frac{V_{0} \mid V_{i}}{1+\beta \cdot \frac{V_{0}}{V_{i}}} \quad \\
& =\frac{A_{v}}{1+A_{y} \beta} \quad\left(\because A v=\frac{V_{0}}{V_{i}}\right)
\end{aligned}
$$

$$
\therefore \text { Volloge gain with feedback } A_{x p}=\frac{A_{v}}{1+A_{V} \beta} \Rightarrow P_{v} \ll A_{y} \text {. }
$$

BANDWIDTH w/tll FEEDBACk:

* It Voltage gain with feedback decroaces, it increases the bandwiselt with feedback.
$*$ This is due to the product of gain 4 Bandwidlu always be a Constant
\therefore Bandwidth wither feedbacle $(B \cdot \omega)_{f}=B \cdot \omega(1+A v \beta) \rightarrow(B \cdot \omega)_{f}>B \cdot \omega$

Input Resistance with FeEdback:
Definition: The ratio of Input Voltage to Input Current is detued as Input revitence without feedback
$\rightarrow I_{\text {neut }}$ reistavce withotfeedbacle $R_{i}=\frac{V_{i}}{I_{i}}$

* Input resistance with feedbacle is debired as the later of Source Voltage to the Input current.

$$
R_{i_{f}}=\frac{V_{s}}{I_{i}}
$$

we know that $V_{S}=V_{i}+V_{f}$

$$
\begin{aligned}
R_{i f} & =\frac{V_{i}+V_{f}}{I_{i}} \\
& =\frac{V_{i}+\beta V_{i}}{I_{i}} \\
& =\frac{V_{i}+\beta\left(A_{V} V_{i}\right)}{I_{i}}
\end{aligned}
$$

$$
\begin{aligned}
\left(\because A_{V}\right. & =\frac{V_{0}}{V_{i}} \\
V_{0} & =A_{V} V_{i}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{V_{i}\left[1+\beta A_{x}\right]}{I_{i}}=\frac{V_{i}}{I_{i}}\left[1+A_{V} \beta\right] \\
& =R_{i}\left[1+A_{V} \beta\right) \quad\left(\because R_{i}=\frac{V_{i}}{I_{i}}\right)
\end{aligned}
$$

\therefore Input Resistance with feedback $R_{i f}=R_{i}(1+A v \beta) \Rightarrow R_{i f}>R_{i}$

* High Input Impedance is always derirable in an anpliteir. Such a derirable characteristic can be achieved with the help of Negative feedback.
OUTPUT RESISTANCE WITH FEEDBACK:
* Jut as High Input Impedance is advantageous to an amplifier, Similarly low output Impedance is devisable.
* With lover output Impedarice, the amplitir is better retted to drive a low impedance load.
* The input terminals are short-ciscuited i.e., $V_{s}=0$

$$
\begin{aligned}
H_{s} & =v_{i}+v_{f} \\
0 & =v_{i}+v_{f} \\
r_{i} & =-v_{f} .
\end{aligned}
$$

* When $V_{s}=0,-V_{f}$ is the only input Voltage to the amplition

$$
\begin{aligned}
& R_{0 f}=\left.\frac{V_{0}}{I_{0}}\right|_{V_{s}=0} \\
& V_{i}=V_{s}-V_{f}=0-\beta V_{0}
\end{aligned}
$$

Apply kVL to the output side,
we have $V_{0}=I_{0} R_{0}+A_{V} V_{i}$

$$
\begin{aligned}
& V_{0}=I_{0} R_{0}+A V\left(-\beta V_{0}\right) \\
& V_{0}+A_{V \beta} V_{0}=I_{0} R_{0} \\
& V_{0}\left(1+A_{V} \beta\right)=I_{0} R_{0} \\
& \frac{V_{0}}{I_{0}}=\frac{R_{0}}{1+A_{Y} \beta} \\
& \therefore R_{0 f}= R_{0}^{1+R_{Y} \beta} \quad\left(R_{0 f} \ll R_{0}\right)
\end{aligned}
$$

* When the AV dricreaces, output impedave decreals and Vice Veres. For Voltage Sevies Feedbacle ampliten

1. Gaine with feedback $A v_{f}=\frac{A v}{1+A v \beta} \quad$ (Decreaes)
2. Band width with feedbacle $(B \cdot \omega)_{f}=B \cdot \omega(1+A v \beta)($ Increares $)$
3. Input reictanue with feed badl $R_{i f}=R_{i}\left(1+A_{y} \beta\right)$ (increales)
4. ontput rirstace with feedbacle $R_{\text {of }}=\frac{R_{0}}{1+A v \beta}$ (deneals.
5. Current shunt feedback Amplifier:

* The Block diagram for Current - shunt feedback ampletien, is as shown below.

BLOCKDIAGRAM OF
FIG: CURRENT SHUNT FEEDBACK AMPLIFIER.

* In Cuekert-sheut feedback ampliter; the feedback signal is in parallel with the Input signal.
* This is also trow as Shent-Sciees Feedback Ampliter
* The curent-shent feedback ampliten works as a true cuseut amplitir as the input signal is a culet and the output signal is a current.

Bailie Amplitin: Current amptitien
\rightarrow At input side curets are mixed by means of ghent fudbaek.
\Rightarrow At input side currents are \Rightarrow At output ride curcuts are sampled by means of belies Sampling
$I_{S} \rightarrow$ Source signal
$I_{i} \rightarrow$ Input Signal
If \rightarrow Feedback Signal.

* The circuit diagram cos cuenent-Shuent feedback ámpilten is as shown below.

FIG: CIRCUIT DIAGRAM FOR CURRENT- SHUNT FEEDBACK AMPLIFER.

* By definition
\rightarrow open loop curent gain (\%) current gain without feedballe

$$
A_{I}=\frac{I_{0}}{T_{i}}
$$

Feedback factor $\beta=\frac{I_{f}}{I_{0}}$
\rightarrow Closed loop curet gain (8) Current gain with feedback

$$
I_{I_{f}}=\frac{I_{0}}{I_{s}}
$$

Current Gain with feedback: $\left(A_{\text {If }}\right)$
Definition: The ratio of output current Io to the Source Cunt Is is called as current gain with feed beck.

$$
A_{I_{f}}=\frac{P_{0}}{I_{S}}
$$

we know that $I_{i}=I_{S}-I_{f}$

$$
I_{S}=I_{i}+I_{f}
$$

$$
\text { then } \begin{aligned}
A_{I_{f}} & =\frac{I_{0}}{I_{i}+I_{f}} \\
& =\frac{I_{0}}{I_{i}+\beta I_{0}} \quad\left(\because I_{f}=\beta I_{0}\right) \\
A & =\frac{I_{0}}{I_{i}+\beta I_{0}} \quad\left(\because A_{I}=\frac{I_{0}}{I_{i}}\right) \\
& =\frac{I_{0}}{I_{i}\left[1+\beta \cdot \frac{I_{0}}{I_{i}}\right]} \quad I_{0}=A_{I} I_{i} \\
& =\frac{I_{0} / I_{i}}{1+\beta \frac{I_{0}}{I_{i}}}=\frac{A_{I}}{1+A_{I} \beta}
\end{aligned}
$$

\therefore Curet gin with feed back $A_{I f}=\frac{A_{I}}{1+\beta A_{I}} \quad A_{I f}<k A_{I}$

* Current gain with fudball demeans.

BANDWIDTH WITH FEEDBACK:

* As curent gem with feedback decrealle, Bandwidth with feedbacle should increase.
* Because grime \times Bandwiclte product must be always contact

Bandwidth with feedbacle $\left(B \cdot w_{p}=B \cdot \omega\left(1+A_{I} \beta\right) \quad B \cdot \omega_{p}>B \cdot \omega\right.$

Input RESIStance with FEEDBACK:

* By definition Input revidavee without feedbade is,

$$
R_{i}=\frac{V_{i}}{I_{i}}
$$

* Input resistance with feedbacle is,

$$
R_{i f}=\frac{V_{i}}{I_{S}}
$$

we know that $I_{S}=I_{i}+I_{f}$

$$
\text { then } \begin{aligned}
R_{i f}=\frac{V_{i}}{I_{i}+I_{f}} & =\frac{V_{i}}{I_{i}+\beta I_{0}} \\
& =\frac{V_{i}}{I_{1}\left[1+\beta I_{0}\right]} \quad \\
& =\frac{V_{i}}{I_{i}\left[+\beta A_{I} I_{i}\right.} \quad\left[\because D_{I}=I_{0}\right. \\
& =\frac{V_{i}}{I_{i}\left[1+\beta A_{I}\right]}=\frac{V_{i} \mid I_{i}}{1+\beta A_{I}}=\frac{I_{i}}{1+\beta A_{I}}
\end{aligned}
$$

$$
\therefore \text { Input resistance with feedback } R_{i f}=\frac{R_{i}}{1+\beta A_{I}} \quad R_{i f}<R_{i}
$$

-* When the negative feedback Signal is fed bale to the input in shunt with the applied signal, the input ruistance is decreaied (29)

OUTPUT RESISTANCE WITH FEEDBACK:

* In current shunt feedballe ampliteir, at the output is side Current sampling is done, it tends to increate the output iriectance with feedback.
* By open circuity the crest Source $I_{S},-\hat{i}_{f}$ is the only ip

$$
\begin{aligned}
& R_{o f}=\left.\frac{V_{0}}{I_{0}}\right|_{\text {with } I_{S}}=0 \\
& I_{i}=I_{S}-I_{f}=0-I_{f}=-\beta I_{0}
\end{aligned}
$$ to the ampliter

Apply KCl to the op loop.

$$
\begin{aligned}
& I_{0}=\frac{V_{0}}{R_{0}}+A_{I} I_{i} \\
& I_{0}=\frac{V_{0}}{R_{0}}+A_{ \pm}\left(-\beta I_{0}\right) \\
& I_{0}+A_{I} \beta I_{0}=\frac{V_{0}}{R_{0}} \\
& I_{0}\left(1+\beta A_{I}\right)=\frac{V_{0}}{R_{0}} \\
& R_{0}=\frac{V_{0}}{I_{0}\left(1+\beta A_{I}\right)} \\
& \frac{V_{0}}{I_{0}}=R_{0}\left(1+\beta I_{I}\right)
\end{aligned}
$$

\therefore output revietance with feed bacle $R_{\text {Ff }}=R_{0}\left(1+A_{I} \beta\right) \Rightarrow R_{01}>R_{0}$
\therefore For Cusent-Shent feed back Ampliter.
\Rightarrow Curet gean with feedback $A_{I_{f}}=\frac{A_{I}}{1+A_{I} \beta} \quad$ (decreases)
\Rightarrow Bandwidth with feedback $(B \cdot \omega)_{p}=B \cdot \omega(A+A I \beta)$ [increares]
\Rightarrow Input revktance with feedback $R_{\text {If }}=\frac{R_{i}}{H A_{I} \beta}$ [decreases]
\Rightarrow Output Relietamce with feed bade $R_{\text {of }}=R_{0}\left[1+A_{I} \beta\right.$] [Increaer]
Voltage-Shunt feedback Amplifier:

* The Block diagRam for Voltage-shent feedback emplitein is as shown below.

* In Voltege-sheut feedback, the feedback signal is in parallel with Input Signal. At the output ride feedbacle signal is in parallel with output Signal.
* It is also called a shunt-derived, shent-bed feedback Connection.
* Here, a fraction of the output voltage is reapplied in parallel with the input voltage through the feedback network.
* The feedback lignal I_{f} is proportional to the output Voltage V_{0}.

1. Baric Amplifier is transreistance Anplitice

* At input, currents are mixed by means of sheet beedbacle.
$I_{S} \rightarrow$ Source Signal.
$I_{i} \rightarrow$ Input signal
$I_{f} \rightarrow$ Feedback Signal
* At output, Voltage is sampled by means of Shenct output Signal V.
* open loop gain transxuintance A_{R} os R_{m} without feedback $3^{(3)}$

$$
A_{R}=\frac{V_{0}}{I_{i}}
$$

Feedback factor $\beta=\frac{I_{f}}{\nabla_{0}}$.

* closed loop transresintance with feedback

$$
A_{R_{f}}=\frac{V_{0}}{I_{S}}
$$

TRANS RESISTANCE WITH feedback:
*By definition Rend/ $A_{R_{f}}=\frac{V_{0}}{I_{S}}$
we know that $I_{s}=I_{i}+I_{f}$

$$
\begin{aligned}
& I_{f}=\beta V_{0} \\
A_{R f} & =\frac{V_{0}}{I_{i}+I_{f}} \\
& =\frac{V_{0}}{I_{i}+\beta V_{0}} \quad\left(\because V_{0}=A_{R} I_{i}\right) \\
& =\frac{V_{0}}{I_{i}+\beta A_{R} I_{i}}=\frac{V_{0}}{I_{i}\left(1+A_{R} \beta\right)} \\
\begin{array}{l}
A_{R f} \\
R_{m f}
\end{array} & =\frac{A_{R}}{1+A_{R} \beta} \quad A_{R f} \ll R_{R}
\end{aligned}
$$

Bandwidth with Feedback:

* As transresistance with feedback decreales bandwidth with feedback should iucreares. The reason is gain bandwidet product should always be content.

$$
\begin{aligned}
& (B \cdot \omega)_{f}=B \cdot \omega\left(1+A_{R} \beta\right) \\
& B \cdot \omega=f_{2}-f_{1} \\
& f_{2 f}=f_{2}\left(1+A_{R} \beta\right) \\
& f_{1 f}=\frac{f_{1}}{1+A_{R} \beta}
\end{aligned}
$$

Input Resistance with feed back:

* Input resistance without feedback $R_{i}=\frac{V_{i}}{I_{i}}$

Input revirtance with feedback $R_{i f}=\frac{V_{i}}{I_{S}}$

$$
\begin{aligned}
R_{i f} & =\frac{V_{i}}{I_{S}} \\
& =\frac{V_{i}}{I_{i}+I_{f}}=\frac{V_{i}}{I_{i}+\beta V_{0}} \\
& =\frac{V_{i}}{I_{i}+\beta A_{R} I_{i}}=\frac{V_{i}}{I_{i}\left(1+A_{R} \beta\right)} \\
R_{i f} & =\frac{R_{i}}{1+A_{R} \beta}
\end{aligned}
$$

Output Resistance with feedback $\left(R_{Y}\right)$:

* By definution,

$$
\begin{aligned}
& R_{0}=\left.\frac{V_{0}}{I_{0}}\right|_{\text {with } I_{S}=0} \\
& V_{i} /=V_{S} /-I_{f} \quad I_{i}=I_{S}-I_{f} \\
& V /=-I_{f} \quad I_{i}=-I_{f} \quad\left(\because I_{s}=0\right.
\end{aligned}
$$

By applying KVL to the olp CKt

$$
\begin{array}{lr}
V_{0}=I_{0} R_{0}+A_{R} I_{i} & \\
V_{0}=I_{0} R_{0}+A_{R}\left(-I_{f}\right) & \left(\because A_{R}=\frac{V_{0}}{I_{i}}\right. \\
V_{0}=I_{0} R_{0}+A_{R} \beta Y_{0} \\
V_{0}+A_{R} \beta V_{0}=I_{0} R_{0} & \left.V_{0}=A_{R} I_{0}\right) \\
V_{0}\left(1+A_{R} \beta\right)=I_{0} R_{0} & \\
\frac{V_{0}}{I_{0}}=\frac{R_{0}}{1+A_{R} \beta} \\
R_{0 f}=\frac{R_{0}}{1+A_{R} \beta}
\end{array}
$$

for Voltage-shent beedback
Tronten Gain, $A_{R s}=\frac{A_{R}}{1+A_{R} \beta} \quad$ (deneaces)
Input seistance $R_{i f}=\frac{R_{i}}{1-1 A_{R} \beta}$ (deveall)
Bandwidth $(3.0)_{f}=B^{\prime} \cdot w\left(1+A_{R} \beta\right)$ Indereass
output suistave $R_{0 f}=\frac{R_{0}}{1+A_{R} \beta}$ (deneers)

Current -Series feedback:

* The blockdiagram for a current vies feedbade is as shove below.

Fig: CORRENT SERIES FEEDBACK AMPLIFIER

* It current is sampled and the mixing is in ceres with the iuput then the type of feedback is know on as current series feedback * Since the current is sampled, the output parameter monitored is Current and mixing is eerier, the parameter affected is the Input Voltage.
* Hence the parameter that is stabilised in current revers feedback is transconductance $G_{m}=\frac{T_{0}}{V_{i}}$.
* The teedbacle factor is the ratio of feedback Voltage to the output Current that is $\beta=\frac{V_{f}}{I_{0}}$

FIG: CIRCUIT DIAGRAM FOR XOXTAR CURRENT SERIES FEEDBACk.
TrANS CONDUCTANCE WITH FEEBBACK:

* The transconductance without feedballe is $G_{m}=\frac{I_{0}}{V_{i}}$

We know that $V_{S}=V_{i}+V_{f}$

$$
\begin{aligned}
G_{m f} & =\frac{I_{0}}{V_{i}+V_{f}} \\
& =\frac{I_{0}}{V_{i}+\beta V_{0}} \\
& \left.=\frac{I_{0}}{V_{i}\left[1+\beta I_{0}\right.} V_{V_{i}}\right] \\
G_{m f} & =\frac{G_{f}}{V_{i}+\beta G_{m}} \\
\therefore G_{m f} & \left.=\frac{G_{m}}{1+\beta G_{m}}\right]
\end{aligned}
$$

Input Impedance:

* The Input impeolance without feedback $R_{i}=\frac{V_{i}}{I_{i}}$

$$
\begin{aligned}
& \text { The input impedance, with feedback } R_{i f}=\frac{V_{s}}{I_{i}} \\
&=\frac{V_{i}+V_{f}}{I_{i}} \\
&=\frac{V_{i}+\beta I_{0}}{I_{i}} \\
&=\frac{V_{i}}{I_{i}}+\beta \cdot \frac{I_{0}}{I_{i}} \quad\left(\because G_{m}=\frac{I_{0}}{V_{i}}\right. \\
&=R_{i}+\beta \cdot G_{m} \frac{V_{i}}{I_{i}} \\
&\left.=R_{i}+\beta V_{i}\right) \\
& R_{i} R_{i} \\
& R_{i f}=R_{i}\left(1+\beta G_{m}\right)
\end{aligned}
$$

OUTPUT IMPEDANCE:

* The output impedance can be/obtained by equating $t_{s}=0$

Apply KCL to op loop $\quad R_{0}=\frac{V_{0}}{I_{0}}$

$$
\begin{array}{ll}
I_{0}+G_{m} V_{i}=\frac{V_{0}}{R_{0}}
\end{array} \begin{cases}R_{0 f}=\left.\frac{V_{0}}{I_{0}}\right|_{V_{s}=0} \\
I_{0}=\frac{V_{0}}{R_{0}}-G_{m} V_{i} & \left(\because V_{s}=0\right. \\
I_{0}=\frac{V_{0}}{R_{0}}-V_{i}=V_{s}-V_{f} \\
V_{i m}\left(-V_{f}\right) & \left.V_{i}=-V_{f}\right)\end{cases}
$$

$$
\begin{aligned}
& I_{0}=\frac{V_{0}}{I_{0}}+q_{m} V_{-1} \\
& I_{0}=R_{0}+G_{m} \beta J_{0}
\end{aligned}
$$

* The cufput Inpedence can be obreinced by equating $V_{S}=0$

$$
\begin{aligned}
& v_{s}=v_{i}+v_{f} \\
& 0=v_{i}+v_{f} \quad v_{i}=-v_{f} \\
& R_{0 f}=\left.\frac{v_{0}}{J_{0}}\right|_{v_{s}=0}
\end{aligned}
$$

By applyis KCl

$$
\begin{aligned}
& I_{0}=\frac{V_{0}}{R_{0}}+G_{m} V_{i} \\
& I_{0}=\frac{V_{0}}{R_{0}}+G_{m}\left(-V_{f}\right) \\
& I_{0}=\frac{V_{0}}{R_{0}}+G_{m} \beta I_{0} \\
& I_{0}+G_{m} \beta I_{0}=\frac{V_{0}}{R_{0}} \\
& I_{0}\left(1+G_{m} \beta\right)=\frac{V_{0}}{R_{0}} \\
& R_{0}\left(1+G_{m} \beta\right)=\frac{V_{0}}{I_{0}} \\
& R_{\text {of }}=R_{0}\left(1+G_{m} \beta\right)
\end{aligned}
$$

For Cusent renis feedback

$$
\begin{aligned}
& A_{G_{m f}}=\frac{G_{m}}{1+G_{m \beta}} \quad(\text { devers } \\
& R_{i f}=R_{i}\left(1+\beta G_{m m}\right) \quad \text { (Increaces) } \\
& R_{0 f}=R_{0}\left(1+A_{A_{p} \beta}\right) \quad \text { (Increares) } \\
& (B \cdot \omega)_{f}=B \cdot \omega\left(1+G_{m} \beta\right) \text { (Incriaces) }
\end{aligned}
$$

PERFORMANCE COMPARISON OF FEEDBACK AmPLIFIERS

General Characteristics of negative feedback amplifier:

* The Negative feedback improves many desirable characteristics. The- neat
Stabilization of Gain mitis negative feedback:
* The variations in temperature, supply voltages, ageing of Components a llariations in tremiutor parameters with Replacement are some of the factors that affect the green of an amplifier and cather it to change.
* However, the overall gain of the amplitin Can be made indlpendut of these variations it negative feedback is used, This is an shove important advantage of negative. feedback.
\Rightarrow The voltage gain with negative feedback is given ar,

$$
A_{f}=\frac{A}{1+A \beta}
$$

if $A \beta \gg 1$ then $A_{f}=\frac{A}{A \beta} \approx \frac{1}{\beta}$

* Thus, gain with feedback is independent of intemalgain of the amplitier and depends on the parive elements luch as resistors i.e., feedback setwoilc.
* The values of Resistors autuly Remain fairly constant becalue They can be chosen very precirely with almost zero temperature coefficient of reviatarce. Thus the gain is stablined.

$$
\begin{equation*}
A_{f}=\frac{A}{1+A \beta} \tag{1}
\end{equation*}
$$

Differenters eq() w.r.t A

$$
\begin{align*}
\frac{d A_{f}}{d A} & =\frac{(1+A \beta)(1)-\frac{d}{d A}(1+A \beta) \cdot A}{(1+A \beta)^{2}} \quad\left(\because \frac{d p}{d v}=\frac{v \cdot \frac{d u}{d x}-u \cdot d v}{v^{2}}\right) \\
& =\frac{(+A \beta-(0+\beta) \cdot A}{(1+A \beta)^{2}}=\frac{1+A \beta-A \beta}{(1+A \beta)^{2}} \\
\frac{d A_{f}}{d A} & =\frac{1}{(1+A \beta)^{2}} \\
d A_{f} & =\frac{d A}{(1+A \beta)^{2}} \rightarrow(2) \tag{2}
\end{align*}
$$

dividing ef(2) by eq(1)

$$
\begin{aligned}
& \frac{d A_{f}}{A_{f}}=\frac{d A}{(1+A B)^{2} / \frac{A}{1+A \beta}} \\
& \frac{d A_{f}}{A_{f}}=\frac{d A}{(1+A \beta)^{\prime}} * \frac{1+A \beta}{A}=\frac{d A}{A} * \frac{1}{1+A \beta}
\end{aligned}
$$

* The tein $\frac{d A_{f}}{A_{f}}$ repreuects the fractional change in ampletier tromuter gain with fuedback and $\frac{d A}{A}$ denotes the fractiond change in Vlltage gain without fudback.
* The term $\frac{1}{1+A \beta}$ is called senciritivity.
\therefore The sensitivity is defined as the ratio of percentage change in Voltage gain with feedback to the percentage change in (6) Nola age gain without feasthack.

$$
\text { Sensitivity }=\frac{\left(\frac{d A_{f}}{A_{f}}\right)}{\left(\frac{d A}{A}\right)}=\frac{1}{1+A \beta}
$$

\therefore The Reciprocal of the tern Sensitivity is called Deremitivity, i.e., Dexemitivity $D=(1+A \beta)$.
2. Increase of Bandwidth:

* The Bandwidth of an amplifier is the difference between the upper cut-otf frequency f_{2} and the lower cut off brequenay. f_{1}.
* Due to the negative feedback in the amplitere, the upper Cut oft frequency $f_{2 f}$ is innealed by the factor $(1+A \beta)$ and the lover cut-off frequency $f_{\text {If }}$ is decreald by the lame factor $(1+A \beta)$.

$$
\begin{aligned}
& f_{2 f}=f_{2}(1+A \beta) \\
& f_{1 f}=f_{1} /(1+A \beta)
\end{aligned}
$$

* As the voltage gain of a feedback amplitier reduces by the factor $\frac{1}{(1+A \beta)}$, its bandwidth would be increaled by $(1+A \beta)$ i.e.,

$$
B \cdot \omega_{f}=B \omega(1+A \beta)
$$

DECREASED DISTORTION:

* Comedic an ampletir with an open loop Voltage gain and a total harmonic distortion D. Then with the introduction of negative feedback with the feedback ratio β, the disclortion will reduce to

$$
D_{f}=\frac{D}{1+A \beta}
$$

DECREASED NOISE:

* There are many louses of noive in an amplitien depending upon the active device wed. with king the negative feedback with the feedback ratio β, the move N, can be reduced ky a
factor of $(1+N)^{\prime}$ in a Emiclae mature to non-liseme distortion Thus the mole with feedback is given by,

$$
N_{f}=\frac{N}{|n|-N \beta}
$$

Increase ta Input impedance:

* Ans conplitier should mane high input impedance to that it will not load the precabling stage or the input Vollange Ponce.
* Such a devisable characteristic can be achieved with the help of negative leices Voltage feedbade. The input impedance with feedback is given by,

$$
z_{i f}=z_{i}(1+A \beta) .
$$

* Thees the input impedance is increaled by a factor of $(1+A \beta)$. DECREASE IN OUTPUT IMPEDANCE:
* An Amplitir with low output impedance is capable of delivering porer to the load without much lois. Such a desirable characterticus is achieved by employery negative envies Voltage feedballe in an amplitin.

$$
z_{o f}=\frac{z_{0}}{1+A \beta}
$$

METHOD OF ANALYSIS OF FEEDBACK AMPLIFIES:

* For analyzing the feedback amplifier, it is mesessong to ge through the following Steps.

Step 1: Identity Topology (type of feedback)
a) To find the type of Sampling Network.
i. By shorting the output it feedback signal bebonses, zens, then it is called "Voltage Sampling".
ii. By opening the output loop it feedback Signal becomes zen, then it is called "Current Sampling"
b) To find the type of mixing Networks.
i. If the feedback signal is subtracted from the externally applied legal as a voltage is the Input loop, it is called "Series mixing".
\therefore ir. If the feedback signal is ubtracted from the externally applied regnal as a curet in the Input loop, it is called as u Shunt mixing.

* Thus, by finding the type of lampling network and mixing network, type of feedback ouppitien can be identetiot Step 2: To bind the Input circuit.
i. For Voltage Sampling, the output Voltage is made zen by shorting the output.
ii. For cussent Sampliy, the output curet is made zens (46) opening the output loop.
Step-3: To find the output circuit.
i. For series mixing, the input current is made zero by opening the inspect loop.
ii. For shunt mixing, the input Voltage is made zero by ehoitug the input loop.
Step-2 \& Step:3: Enure that the feedback is Reduced to sew without altering the loading on the baric amplities.
Step-4: Optional. Replace coach, device by its h-parancieter model at low frequency.

Step-5: find the open loop gain (gain without feedbacle) of the
Step-6: Indicate X_{f} (feedback Voltage os feedback Cuereent) and X_{0} (output Voltage os op Cunt) on the circuit and evaluate $\beta=x_{f} \mid x_{0}$.

Step-7: From $A \& \beta$, find $D, A_{f}, R_{i f}, R_{o f}$ and $R_{o f}$

Problems
The voltage gain of an cmplitier without feedback is 3,000 Calculate the Voltage gain of the amplitin it the Negative feedback is introduced in the circuit. Given that feedback fraction $\beta=0.01$.
Sf Given data Voltage gain without feedback $A_{V}=3,000$ feedback fraction $\beta=0.01$
Find Voltage grin e with $-V$ ferolback $A_{y f}=$?

$$
\text { We know that } \begin{aligned}
A_{y_{f}} & =\frac{A v}{1+A_{v} \beta} \\
& =\frac{3000}{1+3000(0.01)} \\
& =\frac{3000}{31} \\
& =96.774
\end{aligned}
$$

\therefore Voltage gain with -vi feedback $A_{v f}=96.774$
2. Calculate the gain of a - Ye feedback amplifier with an internal gair $A y=75$ and feedback fraction $\beta=\frac{1}{15}$, what will be the gain if Av doubles?

S9 Given data Internal gain $A_{v}=75$

$$
\text { feed back fraction } \beta=\frac{1}{15}
$$

$$
\text { Voltage gain with feedback } \begin{aligned}
A_{v f} & =\frac{A_{v}}{1+A_{v} \beta} \\
& =\frac{75}{1+75^{5} \frac{1}{15}} \\
& =\frac{75}{6} \\
A_{v_{f}} & =12.5
\end{aligned}
$$

When A_{y} doubles i.e., $A_{x}=2(75)$

$$
\begin{aligned}
& A_{v}=150 \\
& A_{v_{f}}=\frac{A_{v}}{1+A_{v} \beta}=\frac{150}{1+158 \times \frac{1}{18}} \\
&=\frac{150}{11} \\
& A_{v f}=13.64
\end{aligned}
$$

3. An amplitir with Ne feedback gives an $0 / \mathrm{p}$ of 12.5% with an x_{0} input of 1.5 V . When feedback, is removed, it requires 0.25 Vi l tor the samiel $0 / p$. find, i) Value of Voltage gain without $f \mid b$, ii) Value of β, it the i $1 p \& 0 / p$, are ing gnarl and β is real.
sf Given that $V_{0}=12.5 \mathrm{~V}$

$$
\begin{aligned}
& V_{S}=1.5 \mathrm{~V} \\
& V_{i}=0.25
\end{aligned}
$$

$$
\text { i. Voltage gain without feedback } \begin{aligned}
& A_{V}=\frac{V_{0}}{V_{i}} \\
&=\frac{12.5}{0.25} \\
& A_{Y}=50
\end{aligned}
$$

$$
\text { Voltage gem with feedback } \begin{aligned}
A_{y} & =\frac{V_{0}}{V_{S}} \\
& =\frac{12.5}{1.5} \\
A v_{p} & =8.333
\end{aligned}
$$

ii) Feedback ratio $\beta=$?

$$
\begin{aligned}
& \text { We know that } \begin{aligned}
A_{y f} & =\frac{A v}{1+\beta A_{y}} \\
(1+\beta A y) A v f & =A v \\
1+\beta A_{v} & =A v y / A y f^{\beta}
\end{aligned} \\
&=\frac{A v / A v y-1}{A_{v}} \\
&=\frac{50 / 8.33-1}{50} \\
& \beta=0.10
\end{aligned}
$$

Introduction:

* As, we know that an amplifier strengthens the input Signal without any change in its waveform and brequency. The additional power required comes from the external de souse. * Thus an amplifier is essentially an energy convectic that drawees energy from a dc supply and converts it into ac energy at signal frequency, the energy Conversion process being controlled by the input Signal.
* On the olterhand an oscillator does not require any extunal Signal either to Start os maintain the process of energey Convession and the energy conversion process is controlled by the oscillator ituelt.
* Oscillators finds wide applications in electionce equipment. In AM, FM super heterodyne receivers," local orcilerli" ore wed to afrit in the reduction of the incoming radio frequency (IF).
* Otter applications include their ur as "clocks" is digital systems meh as microcomputers, it the heep circuits bound in TV rets and oscilloscope.

Oscillator:
DEFINTTION: The electronic circuit which is and to generate a periodic waveform without an AC input signal is called as Oscillator.

* As we. know that an amplifier strenglters the input signal without any change in its, waveform and frequency.
* In an oscillator, the output signal frequency depends on the pareve components employed in the circuit. oscillator may provide fixed of variable frequency.

OPERATION OF OSCILLATOR:

* Io undeutand how an oscillator produces an output signal. without an external input signal, let us conieder the feedback circuit.

* Where V_{i} is the voltage of ac input driving the input terminals bc of am amplitie having Voltage gain A.
* The amplified Voltage is $V_{0}=A V_{i}$.
* This Voltage drives a beedballe circuit that is usually a resonant circuit, as we get maximum feedback at one brequency. The feedback Voltage returning to point a is given by,

$$
V_{f}=A \beta V_{i}
$$

Where β is the geier of feedbacle network.

* Here, the amplitie genuates 180° phase shit.

CONDITION FOR OSCILLATIONS (s) BARKHAUSEN CRITERION:

1. The total phase shift around the loop should be zero degree os 360°.
2. The magnitude of product of the open loop gain of the Ampletien (A) and the buelback factor is unity i.e., $|A \beta|=1$.

FIG: BASIC BLOCK DIAGRAM OF OSCILLATOR CIRCUIT

* For the fecolback network input is "Vo" then the feedback network produces 180° phaie shift
- Thess feedbacle signal is given to the input of the inverters amplitier so that phase shift around, a loop is 0° is 360°.
* Let the input voltage of the feedbacle. network is V_{0} i. . , output voltage of the inverting amplitiu is V_{0} and it is given by,

$$
\begin{aligned}
& A=\frac{V_{0}}{V_{i}} \\
& V_{0}=A U_{i}
\end{aligned}
$$

* Feedback networle provides 180° phare slit and it is given by

$$
\beta=\frac{-V_{f}}{V_{0}} \quad V_{f}=-\beta V_{0}
$$

* Where -We sign indicates the 180° phare shut provided by the feedback Network.

$$
V_{f}=-\beta V_{0} \Rightarrow V_{f}=-\beta A V_{i}
$$

\Rightarrow For the oscillator U_{f} must acts as a input Voltage of Inverters ampliten

$$
\begin{aligned}
& V_{i}=V_{f} \\
& Y_{i}=-A \beta Y_{i} \\
& -A \beta=1 \\
& |A \beta|=1
\end{aligned}
$$

\Rightarrow The above condition is Called Barkhruen criltion.
\rightarrow The inverting amplitin produces 180° phase shits and the bedback network produces 180°. So that phase shits around the Lop is 360°.

* The above two conditions are required to be ratubed by the circuit to work as an oscillator producing luetained oscillations of constant frequency and amplitude.
* Let us re the effect of magnitude of the product of geine and beedbacle factor on the nature of the oscillation.

1. $|A B|>1$

* The total phase shift around, a loop \dot{o}° os 360° and $|A \beta|>1$ then the oscillations are geouringlypne: The amplitude of oscillation goes on invealis

2. $|A B|=1$

* When the total phase shut aroid a loop is 0° os 360° erring positive feedback and $|n \beta|=1$ then the oscillations are with constant frequency and amplitude called Sustained oscillations.

FIG: SUSTAINED OSCILLATIONS.
3. $\left|A_{\beta}\right|<1$

* When total phase shit around a loop is 0° \& 360° but $|A \beta| \alpha \mid$ then the oscillations are of decaying type i.e., the: amplitude deceases exponentially.

FF: EXPONENTIALLY DECAYING OSCILLATIONS.

CLASSIFICATION OF OSCILLATORS:

* Oscillators are clavitiet in the following different cays.

1. According to the INaveforms generated
a. Sinuevoidal oscillator
b. Relaxation oscillator
a. Sinuertidal oscillator generates sinusoidal wave forms.

b. Relaxation oscillator generates Voltages os Curentes which vary abrepeltly one os noose times in a cycle of oscillation.

FIG: Square waveform

FIG: Sawtooth

FIG:T singular
2. According to the fundamental meekaniom involved a. Negative Resistance oscillators
b. Feedback oscillator

* Negative recietence oscillator uses negative reirtance of the amplifying device to neutralise the paritive rerintance of the orcillata.

Wecolback oucillator whes poritive fudback in the feedback 8 amplitier to laterty the Backhamen Cieterion.
3. According to the frequency generated:
a. Audio frequency orcillator (AFO) : up to 20 kHz .
b. Radio frequency oscillator (RFO): 20 kHz to 30 MHz
c. Very high trequency (VHF) orcillator: 30 mHz to 300 MHz .
d. Ultha high frequeny (UHF) ascillator: 300 mHz to 3 GHz .
e. Micnowave frequency oscillater: above $3 G \mathrm{~Hz}$.
4. According to the type of circuid ined, Sine-wave oscillators may be clavitied as,
a. He tumed oscillators
b. Re phace shith orcillater

* RC phase shift oscillator*.
for producing oscillations is an oscillator circuit we need positive. feedback which means that the voltage signal feedback should be in phase with the input signal for providing a position positive feedback at one particular-freovuncy, an inverting amplifier may be used with a feedback network that causes a phase shift of 180° at the desired frequency of oscillations as shown in figure. The 180° phase shift in the feedback signal can be obtained by a suitable network consisting of three $R-C$ sections.

When a phase shift network such as that indicated given below is used in a phase shift oscillator, the R's and C's must be selected so as to produce a phase shift of 180° at the desired frequency of oscillation. The output of the voltage amplifier is fed to the input to the phase shift network. Thus $v_{1}=$ bout . The output resistance of the amplifier designed to be very small in comparison to the input impedance of the shift rietworle. The output voltage of the phase shift network. v_{2} is fed into the input of the amplifier. ire; $v_{2}=v_{\text {in }}$. The amplifiers input impedance must be much Larger -than the output impedance of -tue phase shift networle.

Alternatively, a positive feedback can be 10 obtained by using-two stages of amplifiers each giving a phase shift of 180°. A part of this output is feedback to the input trough a feedback network without causing any further phase shift. wain bridge oscillator operates on this principle.
(i)

Circuit diagram.
(i) Gre of the transistor is usually negligibly small and therefore, here bout is omitted from the circuit.
(ii) hoe of the transistor is very small i.e. $\frac{1}{h_{0} c}$ is much larger than RC. Thus the effect of hoe can be neglected.

fig:- Equivalent circuit of transistor phase-shift oscillator is shown above.
Macing above asumptions and replacing current Source by equivalent voltage source, the simplified equivalent circuit is shown below.

Apply kul to the loop 1 .

$$
\text { - Thfe IbRC+ } I_{1} R C+\frac{1}{\rho_{\omega C}} I_{l}-1 R\left(I_{1}-I_{2}\right)=0
$$

$$
I_{f C} I_{b} R C+I_{1} R C+\frac{1}{9 \omega C_{1}} I_{1}-1-R I_{1}-R I_{2}=0
$$

hfeIbRC+ $I_{1}\left(R C+\frac{1}{9 \omega C_{1}}-1-R\right) \rightarrow R I_{2}=0 \rightarrow$ (1)
Apply kul to thie loop, 2

$$
\begin{aligned}
& R\left(I_{2}-I_{1}\right)+\frac{1}{\rho \omega C} I_{2}+R\left(I_{2}-I_{b}\right)=0 \\
& R I_{2}-R I_{1}+\frac{1}{\jmath \omega C} I_{2}+R I_{2}-R I_{b}=0 \\
& -R I_{1}+I_{2}\left(2 R+\frac{1}{j \omega C}\right)-R I_{b}=0 \rightarrow \text { (2) }
\end{aligned}
$$

Apply kuL to the lood (b)

$$
\begin{align*}
& R\left(I_{b}-I_{2}\right)-\frac{1}{\rho \omega c} I_{b}+R I_{b}=0 \\
& R I_{b}-R I_{2}+\frac{1}{\rho \omega c} I_{b}+R I_{b}=0 \\
& -R I_{2}+I_{b}\left(R+R+\frac{1}{\rho_{\omega c}}\right)=0 \tag{3}
\end{align*}
$$

- where, $\frac{1}{y_{\omega c}}=x_{c}($ or $) j x_{c}$.

Apply cramer's rule from above equations.

$$
\begin{aligned}
& \pm_{1}(R c+R-3 \times c)-R I_{2}-h f e R_{c} I_{b}=0 \rightarrow(1) \\
& \left.-R I_{1}+I 2 R+j X_{c}\right) I_{2}-R I_{b}=0 \rightarrow \text { (2) } \\
& -R I_{2}+(2 R+j \times c) I_{b}=0 \rightarrow \text { (}
\end{aligned}
$$

framer's rule,

$$
\begin{aligned}
& \left|\begin{array}{ccc}
R C+R-j \times c & -R & h f e R C \\
-R & 2 R-j \times c & -R \\
0 & -R & 2 R-j \times C
\end{array}\right|=0 \\
& =R C+R-j x_{c}\left(\left(2 R-j x_{C}\right)^{2}-R^{2}\right)-(-R)\left(-R\left(2 R-j x_{C}\right)-0\right] \\
& +(-h f e R c)\left(R^{2}+0\right)=0 \\
& \left.=R C+R-j x_{C} \cdot\left((2 R)^{2}-2 \cdot 2 R \cdot j x_{C}\right)-x_{C}^{2}-R^{2}\right]+ \\
& R\left(-2 R^{2}+j R x_{C}\right) \text {-h.fe } R C R^{2}=0 \\
& =\left(R C+R-j x_{C}\right)\left(3 R^{2}-j 4 x_{C} R-x_{c}^{2}\right)-2 R^{3}+j R^{2} x_{C} \\
& \text {-hoe } R C R^{2}=0 \\
& =3 R^{2} R C-j 4 \times C R C R-R C x_{C}^{2}+3 R^{3}-j 4 \times C R^{2}-X_{C}^{2} R \\
& -j 3 \times C R^{2}-4 R \times C^{2}+j \times C^{3}-2 R^{3}+j R^{2} \times C-h f e R C R^{2}=0 \\
& =R^{3}+R^{2} R C(3+h f e)-5 R \times C^{2}-R C \times C^{2}-6 Y^{\circ} R^{2} \times c- \\
& j 4 R R C X_{C}+j x_{C}^{3}=0 \text {. }
\end{aligned}
$$

equating the imaginary component of the equal to mazzero.

$$
\begin{array}{r}
6 R^{2} X_{C}+4 R R C X_{C}-X_{C}^{3}=0 \\
x_{C}\left(6 R^{2}+4 R R C-X_{C}^{2}\right)=0 \\
6 R^{2}+4 R R C-X_{C}^{2}=0 \\
6 R^{2}+4 R R C=X_{C}^{2} \\
X_{C}=\sqrt{6 R^{2}+4 R R C}
\end{array}
$$

$$
\begin{aligned}
& \therefore X_{C}=\frac{1}{2 \pi f C} \\
& \frac{1}{2 \pi f_{C}}=\sqrt{6 R^{2}-1-4 R R C} \\
& \frac{1}{2 \pi f c}=\sqrt{R^{2}\left(6+\frac{4 R C}{R}\right.} \\
& \therefore R C=R \\
& \frac{1}{2 \pi f c}=\sqrt{R^{2}\left(6+4 \frac{R}{R}\right)} \\
& \frac{1}{2 \pi f c}=\sqrt{R^{2}(10)} \\
& \frac{1}{2 \pi f c}=\frac{R \sqrt{10}}{1 / f}=\frac{1}{2 \pi R \sqrt{10}}, \\
& \frac{1}{1}=\frac{1}{2 \pi R C \sqrt{10}}
\end{aligned}
$$

\therefore where $\frac{R C}{R}=k$.

$$
\begin{aligned}
& \frac{1}{2 \pi f c}=\sqrt{R^{2}(6+4 k)} \\
& \frac{1}{2 \pi f c}=\sqrt{R^{2}(6+4 k)} \\
& f=\frac{1}{2 \pi R c \sqrt{6+4 k}}
\end{aligned}
$$

Now Cquating real terminto zero. 15

$$
\begin{aligned}
& R^{3}+(3+h f c) R^{2} R C-x_{c}^{2} R_{C}-5 x_{c}^{2} R=0 \\
& R^{3}+3 R^{2} R C+h f c R^{2} R C-x_{C}^{2} R_{C}-5 x_{C}^{2} R=0 \\
& R^{3}+3 R^{2} R C+h f e R^{2} R C-x_{C}^{2}(R C+5 R)=0
\end{aligned}
$$

$\therefore X_{C}{ }^{2}=6 R^{2}-14 R R C$ from imaginary part.

$$
\begin{aligned}
& R^{3}+3 R^{2} R C+h f e R^{2} R C-\left(6 R^{2}+4 R R C\right)(R C+5 R)=0 \\
& R^{3}+3 R^{2} R C+h f e R^{2} R C-6 R^{2} R C-30 R^{3}-4 R R C^{2} \\
& -20 R^{2} R C=0 \\
& -23 R^{2} R C+h \cdot f C R^{2} R C-29 R^{3}-4 R R C^{2}=0 \\
& -29 R^{3}-23 R^{2} R C-4 R R C^{2}+h f e R^{2} R C=0 \\
& -29 R^{3}-23 R^{2} R_{C}-4 R C^{2} R+h f e R^{2} R_{C}=0 \\
& \text { hfeR } R^{2} R C=29 R^{3}+23 R^{2} R C+4 R R C^{2} \text {. } \\
& \text { hfe } R^{2} K C=R^{2} K C\left[\frac{29-R^{S}}{R^{2} R C}+23 \frac{R^{2} R C}{R^{2} R C}+\frac{4 R R C^{2}}{R^{2} R C}\right] \\
& \text { hfe }=29 \cdot \frac{R}{R c}+23+\frac{4 R C}{R} \quad \therefore \text { If } R_{c}=R \\
& A V=29 \\
& \therefore \frac{R c}{R}=k \rightarrow \frac{R}{R c}=\frac{1}{k .} \\
& B=\frac{1}{29} \\
& A B=2 x \cdot \frac{1}{29} \\
& h f e=\frac{29}{k}+23+4 k \\
& A \cdot B=1 \\
& h f e=29+23+4 \\
& h f_{c}=56
\end{aligned}
$$

RC phase shift oscillator using FET:-

Wien Bridge Oscillator:

* It is one of the most popular type of oscillator wed in audio and Sub-audio frequency ranges (20-20kHz).
* The circuit diagram of wien bridge oscillator wing. BJT is shown is the below biglue.

FIG: GIEIN BRIDGE OSCILLATOR USING BIT
OPERATION:

* The circuit is ret in oscillation by any random change in bare Current of tremiestor Q_{1}, that may be due to move influent is the tramistor or variation in voltage of de lupply. \Rightarrow This variation in bare current is anyplitid in collector cucciet of tromistor Q_{1} but with a phase slit of 180°.

The output of tramiator Q_{1} is bed to the bale of Mcond tranists Q_{2} through capacitor C_{4}. Here Q_{1} acts as both oscillator $\&$ ampleten is.

* Now a still button anoplitid and truce phace-reveried signal appears at the collector of the fremietor Q2.
* Having been inverted trice, the output lignal will be in phase with the signal ocetpert input to the bare of tremietor Q_{1}. * A part of the output liepral at tramictor Q_{2} is bed back to the input of the bridge circuit.
* A: pait of this fiedbade signal. is applied to emitter Recite Ry where it produces negative feedback to provide constant op over
* Similarly, a part of fiedbacte signal is applied actors the bare bias revistor R_{2} where it produces positive feedbacle.
\rightarrow The brequeney range of oscillator can be changed by vearjug R_{1}, R_{2} and C_{1}, C_{2} values of reiritors and Capacitors

CONSTRUCTION:

* Weir budge oscillator is estenttally a two-ilage ampletia with ara R-C bridge circuit (weir bridge).
* Here, wire bridge is a lead-lag network $\left(R_{1}-c_{1} \xi R_{2}-C_{2}\right)$. The phase shits across the network lags with inneaing frequevery and leads with deerealing frequency.
* By adding weir bridge feedback network, the oscillator becomes renitive to a signal of only one particular brequeney.
* This particular frequency is that at while wien bridge is balanced and for while the phase slit is 0°.
* By employing wier-bridge feedback network, frequency stobildy is increased.
* In the biedge circuit R_{1} in vies with C_{1}, R_{3}, R_{4} and R_{2} in parallel with c_{2} form the four arms.
* From the analyies of the bridge circuit it is obvious that the bridge will be balanced only when,

$$
\begin{aligned}
& \frac{R_{3}}{R_{4}}=\frac{R_{1}}{R_{2}} \\
& R_{3} R_{2}=R_{1} R_{4} \\
& R_{3}\left(R_{2} / \mid c_{2}\right)=\left(R_{1} \operatorname{sen} \omega c_{2}\right) R_{4} \\
& R_{3}\left[\frac{R_{2} * 1 / j \omega c_{2}}{R_{2}+\frac{1}{j \omega c_{2}}}\right]=\left(R_{1}+\frac{1}{j \omega c_{1}}\right) R_{4} \rightarrow 0 \\
& R_{3}\left[\frac{R_{2} / j \omega C_{2}}{j \omega c_{2} R_{2}+1 / j \omega R_{2}}\right]=\left[R_{1}-\frac{j}{\omega c_{1}}\right] R_{4} \\
& R_{3}\left[\frac{R_{2}}{1+j \omega R_{2} c_{2}}\right]=\left[R_{1}-\frac{j}{\omega c_{1}}\right] R_{4} \\
& R_{2} R_{3}=R_{4}\left(R_{1}-j / \omega c_{1}\right)\left(1+j \omega R_{2} c_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& R_{2} R_{3}=R_{4}\left(R_{1}-\frac{j}{\omega C_{1}}+j \omega C_{2} R_{2} R_{1}-\frac{j^{2} \varphi \theta C_{2} R_{2}}{\omega C_{1}}\right) \\
& R_{2} R_{3}=R_{4}\left(R_{1}-\frac{j}{\omega C_{1}}+j \omega R_{1} R_{2} C_{2}+\frac{C_{2} R_{2}}{C_{1}}\right) \\
& R_{2} R_{3}=R_{1} R_{4}-j \frac{j R_{4}}{\omega C_{1}}+j \omega R_{1} R_{2} C_{2} R_{4}+R_{2} R_{4} \frac{C_{2}}{C_{1}} \\
& R_{2} R_{3}-R_{1} R_{4}-\frac{C_{2}}{C_{1}} R_{2} R_{4}+j\left(\frac{R_{4}}{\omega C_{1}}+R_{1} R_{2} C_{2} R_{4} V_{0}\right]=0
\end{aligned}
$$

Separating real and imaginary tory the hove

$$
\begin{aligned}
& R_{2} R_{3}-R_{1} R_{4}-\frac{C_{2}}{C_{1}} R_{2} R_{4}=0 \\
& \frac{C_{2}}{C_{1}} R_{2} R_{4}=R_{2} R_{3}-R_{1} R_{4} \\
& \frac{C_{2}}{C_{1}} R_{2} R_{u}=R_{2} R_{4}\left[\frac{R_{2} R_{3}}{R_{2} R_{4}}-\frac{R_{1} R_{4}}{R_{2} R_{4}}\right] \\
& \frac{C_{2}}{C_{1}}=\frac{R_{3}}{R_{4}}-\frac{R_{1}}{R_{2}} \quad \frac{C}{C_{2}}=\frac{R_{3}}{R_{4}}
\end{aligned}
$$

Equating imaginary pate to zen $\cdots \frac{R_{3}}{R_{1}}=1$

$$
\begin{aligned}
\frac{R_{4}}{w c_{1}}+R_{1} R_{2} C_{2} R_{4} w & =0 \\
\frac{R_{4}-R_{1} R_{2} C_{2} R_{4} w^{2} c_{1}}{w C_{1}} & =0 \\
R_{4}-R_{1} R_{2} C_{1} C_{2} R_{4} w^{2} & =0 \\
R_{1} R_{2} C_{1} C_{2} R_{4} w^{2} & =R_{4}
\end{aligned}
$$

$$
\omega^{2}=\frac{1}{R_{1} R_{2} C_{1} C_{2}}
$$

$$
C_{1}=c_{2}=c, R_{1}=R_{2}=R \text { them }
$$

eq (1) belongs

$$
\text { equates imaagias part to } 200
$$

$$
2 W R C R U-R_{3} R W C=0
$$

$$
\text { 2WORCRU }=R_{3} \text { WONK }
$$

$$
R_{3}=2 R_{4}
$$

If $C_{1}=c_{2}=C$ and $R_{1}=R_{2}=R$, then $f=\frac{1}{2 \pi C R}$

$$
R_{3}=2 R_{4}
$$

* Thus, we rue that in a bridge circient the output will be ix phase with the input only won en the bridge is balanced ie., at ruonant frequency.
* At all other frequencies the bridge is off-balance i.e, the voltage bed back and output Voltage do not have the correct phase rextationship for sutalued oscillations
* The ampliter Voltage gain, $A=\frac{R_{3}+R_{4}}{R_{4}}=\frac{R_{3}}{R_{u}}+\frac{R_{4}}{R_{4}}=\frac{R_{3}}{R_{4}}+1$

$$
Q_{3}=2 R u \Rightarrow A=\frac{2 B G}{R u}+1 \quad A=3
$$

\rightarrow The above corresponds with the feed lick network allegation of $1 / 3$ Thus in this care, voltage gain neut be equal to os quata them 3 to uetiem oscillations.

LC OSCKLATORS:

* The oscillators which we the elements L and C to produce The oscillations are called LC oscillators.
* The circuit using L and C is called tank circuit os oscillatory Circuit os turned circuit.
* There oscillators are used for high frequency range from 200 kHz to bee mHz .
* Due to high frequency range, there oscillators are used bor lanes of RF (Radio frequency) range.
OPERATION OF LC TANK CIRCUIT:
* The LC tank cirait comints of elements L and C Connected in parallel as shown in the figure.

FIG: LC TANK CIRCUIT

* Let capacitor is mitially changed from a $D C$ vance with the polarities as shown in the figure.
* When the capacity gets charged, the energy gets stored in a capacitor as Electrostatic Enugey.
* Then lech a changed capacitor is connected actors Inductor in a tank circuit, then the capacitor starts discharging through inductor.
* Then the conventional Current Hons due to this the magnetic field gets let up around the inductor $\&$. Thus inductor stores energy in the form of Electromagnetic field.
* When Capacitor is fully dischayet, the maximum Cured flows though the circuit.
* At this instant all the electiantatie energy gets slotted as a magnetec energy in the Inductor L.

* Now, the magnetic field around L stents collapsing. As per Linz's lan. This starts the charging the capacitor with opposite polarity making lower plate positive and upper plate negative as shown in Figure

* Then capacitor again starts discharging through inductor L, but the direction of Cured though the inductor in ' h ' but the direction of Current though the inductor in the ' h ' bet the directions as chron in figure.
* Again Electiartatic evergey convicted to magnetic field when the coyxacitar is bully discharged and aspaiw magnetic field collaples and again the Capacitor gets charging in opposite direction 24 * Thus the Capacitor charges with alternate polaictes and discharging producing altunating cured in the tank circuit.
* This alternating Cusient generate Electronic oscillations. But these oscillations of the Capacitor are damped' because every time tramper ivy of energy from L to C and C to L dixipaty energy in the form of heat in the reintaince of the coil and in the connecting wires in the bors of electromagneter radiation.
* These losses diereace the amplitude of oscillating curet gradually till it ceres. There are Called as exponentially decaying oscillations. os damped oscillations.

GENERAL FORM OF AN L-C OSCILLATOR:

* In general form of an orcillator, the axpletiu lection may be active devices mech as Näcceum tube, BJT, FET os op-any may be and in the amplifier section.
 tank circuit voluile determines the brequeney of oscillations.

Scanned with CamScanner

* Here, z_{1} \& z_{2} reive as an $a c$ Voltage divider for the output roottage and feedback lignal.
* This, the voltage avos z_{2} is the feedback signal. * The equivalent circuit is as shown below.

Fig: General form of an oscillator

* The equivalent circuit is drain with the following tim anvenptions.
i. hare of transistor is negligibly small and therefore, the feedback source hreVout is negligible.
ii. hoe of the tramictor is very small i.e., the output ressitance The is very large and, thereto Voe is omitted. from the equivalent circuit.

* Let us determine the load impedance between output terminals 1 and 2. Here z_{2} and hie are in parallel and the ie reveltant impedance is in reifies with impedance z_{3}.

$$
\begin{equation*}
\text { ie., } z_{3}+\left(z_{2} \| \mathrm{hie}\right) \tag{1}
\end{equation*}
$$

* The equivalad impedance of $e q(1)$ is in parallel with impedance z_{1}.
* Thus laced impedance between e output terminals is given as,

$$
\begin{aligned}
z_{L} & =z_{1} \|\left[z_{3}+\left(z_{2} \| \text { hie }\right)\right] \\
& =z_{1} \|\left[z_{3}+\frac{z_{2} h_{i e}}{z_{2}+h_{i e}}\right] \\
& =z_{1} \|\left[\frac{\left.z_{3}\left(z_{2}+h_{i e}\right)+z_{2} h_{i e}\right]}{z_{2}+h_{i e}}\right] \\
& =\frac{z_{1} *\left[\frac{z_{3}\left(z_{2}+h_{i e}\right)+z_{2} h_{i e}}{z_{2}+h_{i e}}\right]}{z_{1}+\frac{z_{3}\left(z_{2}+h_{i e}\right)+z_{2} h i e}{z_{2}+h_{i e}}} \\
& =\frac{z_{1} z_{3}\left(z_{2}+h_{i e}\right)+z_{1} z_{2} h_{i e} / z_{2}+\text { hie }}{z_{1}\left(z_{2}+h_{i e}\right)+z_{3}\left(z_{2}+h_{i e}\right)+z_{2} \text { hie } / z_{2}+h_{i e}} \\
& =\frac{z_{1} z_{2} z_{3}+z_{1} z_{3} h_{i e}+z_{1} z_{2} h i e}{z_{1} z_{2}+z_{1} h_{i e}+z_{2} z_{3}+z_{3} h_{i e}+z_{2} h i e} \\
& z_{L} \\
& =\frac{z_{1}\left[z_{2} z_{3}+h_{i e}\left(z_{2}+z_{3}\right)\right]}{\text { hie }\left[z_{1}+z_{2}+z_{3}\right]+z_{1} z_{2}+z_{2} z_{3}}
\end{aligned}
$$

* The Voltage gain of a ce ampleten without feroltade is givencas

$$
\begin{aligned}
A & =\frac{-g_{1}}{T_{b}} \frac{+V_{2}}{V_{1}} \\
& =\frac{-h_{c_{c}} X_{b} z_{L}}{h_{i c} I_{b}} \\
A & =\frac{-h_{p c} z_{L}}{h_{i c}}
\end{aligned}
$$

* The output voltage between terminals 1 and 2 is given as,

$$
\begin{aligned}
V_{\text {out }} & =\left[z_{3}+\left(z_{2}\left(l h_{i e}\right)\right] I_{1}\right. \\
& =\left[z_{3}+\frac{z_{2} h_{i e}}{z_{2}+h_{i e}}\right] I_{1} \\
& =\left[\frac{z_{3}\left(z_{2}+h_{i e}\right)+z_{2} h_{i e}}{z_{2}+h_{i e}}\right] g_{1} \\
& =\left[\frac{z_{3} z_{2}+z_{3} h_{i e}+z_{2} h_{i e}}{z_{2}+h_{i e}}\right] I_{1} \\
& =\left[\frac{z_{2} z_{3}+h_{i e}\left(z_{2}+z_{3}\right)}{z_{2}+h_{i e}}\right] I_{1}
\end{aligned}
$$

* The Voltage feedback to the input terminals 2 and 3 is giver as

$$
V_{f}=\frac{z_{2} h_{i e}}{z_{2}+h_{i e}} * I_{1}
$$

So, feedback fraction, $\beta=\frac{V_{f}}{V_{\text {out }}}$

$$
\begin{aligned}
& \beta=\frac{\frac{z_{2} \text { hie }}{z_{2} \text { hie }} \times I_{1}}{\frac{h_{i e}\left(z_{2}+z_{3}\right)+z_{2} z_{3}}{z_{2} \text { hie }} \times P_{1}} \\
& \beta=\frac{z_{2} \text { hie }}{z_{2} z_{3}+h_{i e}\left(z_{2}+z_{3}\right)}
\end{aligned}
$$

* Applying the criction of oscillation 'i.e., $A \beta=1$, we have

$$
\frac{-h p e * z_{2}}{\text { hie }} * \frac{z_{2} \text { hie }}{z_{2} z_{3}+h_{i} e\left(z_{2}+z_{3}\right)}=1
$$

Subilititung the value of Z_{L}, then

$$
\begin{gather*}
\text {-h pe }\left[\frac{z_{1}\left[h_{i e}\left(z_{2}+z_{3}\right)+z_{2} z_{3}\right]}{h_{i e}\left(z_{1}+z_{2}+z_{3}\right)+z_{1} z_{2}+z_{2} z_{3}}\right] * \frac{z_{2}}{z_{2} z_{3}+h_{i e}\left(z_{2}+z_{3}\right)}=1 \\
\frac{h_{f e} z_{1}\left[h_{i e}\left(z_{2}+z_{3}\right)+z_{2} z_{3}\right]}{\text { hie }\left(z_{1}+z_{2}+z_{3}\right)+z_{1} z_{2}+z_{2} z_{3}} *\left[\frac{z_{2}}{z_{2} z_{3}+h_{i e}\left(z_{2}+z_{3}\right)}\right]=-1 \\
\frac{h_{f e} z_{1} z_{2}}{h_{i e}\left(z_{1}+z_{2}+z_{3}\right)+z_{1} z_{2}+z_{2} z_{3}}=-1 \\
h_{f e} z_{1} z_{2}=-\left[h_{i e}\left(z_{1}+z_{2}+z_{3}\right)+z_{1} z_{2}+z_{2} z_{3}\right] \\
h_{f e} z_{1} z_{2} \neq h_{i e}\left(z_{1}+z_{2}+z_{3}\right)+z_{1} z_{2}+z_{2} z_{3}=0 \\
h_{i e}\left(z_{1}+z_{2}+z_{3}\right)+z_{1} z_{2}\left(1+h_{f e}\right)+z_{2} z_{3}=0 \rightarrow \text { 0 }
\end{gather*}
$$

* This equation 2 is the general equation for the oscillator.

Hartley Oscillator:

* The oscillator in which z_{1} and z_{2} are inductors and z_{3} is a Capacitor then it is called Hartley oscillator.
* The following figure represents the Hartley oscillator ming BJT.

FIG: HARTLEY OSCILLATOR USING BIT

* Resistors R_{1}, R_{2} and R_{E} provides the necessary de bias to the tromintor. C_{E} is a bypass Capacitor. $C_{C_{1}}$ and $C_{C_{2}}$ are coreplins Capacitor.
* The feedback netioorle Coveting of inductors L_{1} and. L_{2} and Capacitor c determaices the frequency of the oscillator.
$*$ When the lupply Voltage $+V_{C C}$ is switched $O N$, a tramient Current is produced in the ink Circuit.
* The oscillatory cussent in the tank Circict produces acboltages aciols L_{1} and h_{2}. As terminal 2 is grounded, it is at zero potential
* If terminal 3 is at positive potential with resect to z at any instant, timinal i will be at a negative potential co.r.thin terminal 3 at the rome instant.
* Thus the phase difference between the terminals land 3 is always 180°. In the CE mode, the tromintor provides the plane difference of 180° between the input and outper, There fore, the total phoushist360°.
* Thus at the frequency determined for the tank circuit, the neceuse Condition so sustained oscillations is satietied If the feedback is

Analysis:

* In the Hartley oscillator, z, and z_{2} are inductive reactances and z_{3} is the capacitive reactance. Suppose m is the mutual inductance between the inductors, them,

$$
\begin{aligned}
& z_{1}=j \omega L_{1}+j \omega m \\
& z_{2}=j \omega L_{2}+j \omega m \\
& z_{3}=\frac{1}{j \omega c}=\frac{-j}{\omega c}
\end{aligned}
$$

The general equation for $L C$ occillator is,

$$
\begin{equation*}
\text { hie }\left(z_{1}+z_{2}+z_{3}\right)+z_{1} z_{2}\left(1+h_{1} l\right)+z_{2} z_{3}=0 \tag{1}
\end{equation*}
$$

Subutitutivi z_{1}, z_{2}, z_{3} valies in eq(o)

$$
\begin{aligned}
& h_{i e}\left[j \omega L_{1}+j \omega m+j \omega L_{2}+j \omega m-\frac{j}{\omega c}\right]+\left[j \omega L_{1}+j \omega m\right]\left[j \omega L_{2}+j \omega m\right]\left(i+h_{1}\right) \\
& +\left(j \omega \omega_{2}+j \omega m\right)\left(j \omega \frac{-j}{\omega c}\right)=0 \\
& \text { jhiew }\left[L_{1}+m+L_{2}+m-\frac{1}{\omega^{2} c}\right]+\left[-\omega^{2} L_{1} L_{2}-\omega^{2} L_{1} m-w^{2} L_{2} m-\omega^{2} m^{2}\right] \\
& \left(1+h_{f e}\right)+\frac{1 E L}{t G C}+\frac{\cos \cdot}{t \in C}=0 \\
& +\frac{L y}{w^{2} c}+\frac{m}{w^{2} c} \\
& \text { jwhie }\left[L_{1}+L_{2}+2 m-\frac{1}{w^{2} C}\right]-w^{2}\left[L_{1} L_{2}+L_{1} m+L_{2} m+w^{2} m^{2}\right]\left(1+h_{f e}\right) \\
& \frac{L}{c}+\frac{m}{c} l=\frac{1}{\omega^{2} c}\left[L_{2}+m\right]=0
\end{aligned}
$$

Equating imaginary tarm to zeno

$$
\begin{aligned}
& \text { Whic }\left[L_{1}+L_{2}+2 m-\frac{1}{w^{2} c}\right]=0 \\
& \begin{aligned}
& L_{1}+L_{2}+2 m-\frac{1}{\omega^{2} c}=0 \\
& \frac{1}{\omega^{2} c}=L_{1}+L_{2}+2 m \\
& \omega^{2} c=\frac{1}{L_{1}+L_{2}+2 m} . \\
& \omega^{2} c=\frac{1}{L_{e q}} \\
& \omega^{2}=\frac{1}{L_{e q} c} \\
&(2 \pi f)^{2}=\frac{1}{L_{e q} c}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& f^{2}=\frac{1}{(2 \pi)^{2} \operatorname{Leq} C} \\
& f=\frac{1}{\sqrt{(2 \pi)^{2} L_{q} C}} \\
& f_{0}=\frac{1}{2 \pi \sqrt{\operatorname{Leq} C}} \rightarrow \text { This is the resonant trequemey. }
\end{aligned}
$$

Equating real term to zero.

$$
\begin{aligned}
& -w^{2}\left[L_{1} L_{2}+L_{1} m+L_{2} m+m^{2}\right]\left(1+h_{f e}\right)+\frac{1}{w_{2} c}\left(L_{2}+m\right)=0 \\
& -w^{2}\left(L_{2}+m\right)\left[L_{1}+L_{2}+2 m\left(L_{1}+m\right)\left(1+h_{f e}\right)-\frac{1}{w^{2} c}\right]=0 \\
& \left(L_{1}+m\right)\left(1+h_{f e}\right)-\frac{1}{w^{2} c}=0 \\
& \left.\left(L_{1}+m\right)\left(1+h_{f e}\right)=\frac{1}{w^{2} c} \quad \quad \because \frac{1}{w^{2} c}=L_{1}+L_{2}+2 m\right) \\
& \left(1+h_{f e}\right)=\frac{1}{w^{2} c\left(L_{1}+m\right)} \quad=\frac{L_{1}+L_{2}+2 m}{L_{1}+m} \quad 1+h_{f e}=\frac{\left(L_{1}+m\right)+\left(l_{2}+m\right)}{L_{1}+m}+\frac{l_{2}+m}{L_{1}+m} \\
& 1+h_{f e} \\
& x+h_{f e}=x+\frac{L_{2}+m}{L_{1}+m} \\
& h_{f e}=\frac{L_{2}+m}{L_{1}+m} \quad
\end{aligned}
$$

* As los otter oscillalor ciscuits, the loop gain munt be greatn thom 1 to encene that ciscuit orcillates 33

Fet hartley oscillator:

* colpitts oscillator:-

colpitts oscillator circuit diagram.
* In the colpitt's oscillator shown in above figure, z_{1} and z_{2} are capacitors and z_{3} is an inductor. * The Resistors R_{1}, R_{2} and RE provide the necessary $d \cdot c$ bais to the transistor. $C E$ is a bypass capacitor.
* C_{B} and C_{C} are coupling capacitors. The feedback network consisting of capacitors C_{1} and C_{2} and an inductor L determines the frequency of the oscillator.

When the supply voltage $+v_{c c}$ is switched on, a transient current is produced in the tank circuit and consequently, damped harmonic oscillations are set up in the circuit. The oscillator current in the tank circuit produces ac vo ltages. arrows C_{1} and C_{2}. As terminal 3 is earthed, it will be at zero potential. If terminal 1 is at a positive potential with respect to 3 at any instant, terminal 2 will be at a negative potential with respect with 3 at the same instant. Thus the phase difference between the terminals 1 and 2 is always 180°.

In the CE mode, the transistor provides the phase difference of 180° between the input and output. Therefore the total phase shift is 360°. Thus at the frequency determined for the tank circuit the necessary condition for sustained oscillations is satisfied. If the feedback is adjusted So that the loop gain $A \beta=1$.
Analaysis:-

$$
\begin{aligned}
& z_{1}=\frac{1}{j \omega c_{1}}=\frac{-j}{\omega c_{1}} \\
& z_{2}=\frac{1}{j \omega c_{2}}=\frac{-j}{\omega c_{2}} \\
& z_{3}=j \omega L_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { hie }\left[z_{1}+z_{2}+z_{3}\right]+z_{1} z_{2}(\text { Hhfe })+z_{2} z_{3}=0 \\
& =\text { hie }\left[\frac{-j}{\omega c_{1}}+\left(\frac{-j}{\omega c_{2}}\right)+j \omega L\right]+\left[\frac{-j}{\omega c_{1}} \cdot \frac{j}{\omega c_{2}}\right](1+h f e) \\
& +\left(-\frac{1}{\omega c_{2}}\right)(j \omega L)=0 \\
& =\text { hie }\left[\frac{-j}{\omega c_{1}} \frac{j}{\omega_{c_{2}}}+j \omega L\right]+\left[\frac{-j}{\omega_{c_{1}}}\right]\left[\frac{-j}{\omega_{c_{2}}}\right](1+\text { hf }) \\
& +\left[\frac{-j}{\omega c_{2}}\right](\operatorname{j\omega L})=0 \\
& =- \text { hie }\left[\frac{1}{\omega c_{1}}+\frac{1}{\omega c_{2}}-\omega t\right]-\left[\frac{1}{\omega^{2} c_{1} c_{2}}(1+h f e) \frac{L}{c_{2}}=0\right.
\end{aligned}
$$

equating imaginary term to zero.

$$
\begin{aligned}
&-h f_{e} {\left[\frac{1}{\omega c_{1}}+\frac{1}{\omega c_{2}}-\omega L\right]=0 } \\
& \frac{1}{\omega c_{1}}+\frac{1}{\omega c_{2}}-\omega L_{1}=0 \\
& \omega L=\frac{1}{\omega c_{1}}+\frac{1}{\omega c_{2}} \\
& \omega L=\frac{\omega c_{2}+\omega c_{1}}{\omega c_{1} \omega c_{2}} \\
& \omega L=\frac{\omega_{2}+c_{2}}{\omega^{2} c_{1} c_{2}} \\
& \omega L=\frac{\rho_{1} c_{1}+c_{2}}{\omega^{2} c_{1} c_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{L}=\frac{c_{2}+c_{1}}{\omega c_{1} c_{2}} \\
& \omega^{2} L=\frac{c_{2}+c_{1}}{c_{1} c_{2}} \\
& \omega^{2}=\frac{c_{1}+c_{2}}{\left.c_{1} c_{2}\right) L} \\
& \omega^{2}=\frac{1}{c_{e q} L} \quad \therefore c_{e q}=\frac{c_{1} c_{2}}{c_{1}+c_{2}} \\
& (2 \pi f)^{2}=\frac{1}{c_{e q_{1}}} \\
& f_{0}=\frac{1}{2 \pi \sqrt{c_{e q}}}=\frac{c_{1}+c_{2}}{c_{1} c_{2}}
\end{aligned}
$$

\therefore equating real term equal to zero.

$$
\begin{aligned}
& -\frac{1}{\omega^{2} c_{1} c_{2}}(1+h f e)+\frac{L}{c_{2}}=0 \\
& (1+h f e) \frac{1}{\omega^{2} c_{1} c_{2}}=\frac{L}{c_{2}} \\
& (1+h f e)=\frac{L w^{2} c_{1} c_{2}}{c_{2}} \\
& (1+h f e)=\left[\frac{c_{1}+c_{2}}{c_{1} c_{2}}\right] L c_{1} \\
& (1+h f e)=\frac{c_{1}+c_{2}}{c_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 1+h f_{e}=\frac{c_{1}+c_{2}}{c_{2}} \\
& 1+h f e=\frac{c_{1}}{c_{2}}+\frac{c_{2}}{c_{2}} \\
& 1+h f e=\not+\frac{c_{1}}{c_{2}} \\
& h f c=\frac{c_{1}}{c_{2}}
\end{aligned}
$$

where;

$$
w^{2}=\frac{c_{1}+c_{2}}{c_{1} c_{2} * L} .
$$

Colpitt's oscillator using FET:-

circuit diagram.

* crystal oscillators *.

A crystal oscillators, the usual electrical resonant circuit is placed by a mechanically vibrating crystal.
The crystal (usually quartz) has a high degree of stability in holding constant at whatever frequncy the crystal is originally cut to operate.

A quartz crystal exihibits a very important property known as piezo-slectric effect. When a mechanical pressure is applied across the forces of the crystal, a voltage propotional to the applied mechanical pressure appears across the crystal surfaces the crystal is distorted by an amount propotional to the applied voltage. An alternating voltage applied to a crystal causes. it to vibrate as its natural frequency.

Besides quartz, the other substances that exhibit the piezo- Electric Effect are "Rochelle salt" and "tourmaline":
For use in Electronic oscillators, the crystal is suitably cut and then mounted between two metal plates.

Although the crystal has electromechnical resusance but the crystal action can be represented by an electrical resonance circuit as shown in below figure.

Electrical equivalent circuit of a crystal.
The crystal actually behaves as a series R-L-C circuit in parallel, with C_{M} where C_{M} is the capacitive of the mounting Electrodes.

Because of C_{M}, the crystal has two resonant frequency. One of these is the series resonant frequency f_{s} at which $2 \pi f L=\frac{1}{2 \pi f c}$ and in this case crystal impedance is very low.

$$
f_{s}=\frac{1}{2 \pi \sqrt{L C}}
$$

The other is parallel resonant frequency with is due to parrell resonace of capacitance of and resonance of the series circuit in.
In this case crystal impedance is very high.

$$
f_{p}=\frac{1}{2 \pi} \sqrt{\frac{1+\frac{C}{C M}}{L C}}
$$

* Oscillator with crystal operating in series (4) resonance:-

In this mode of operation the crystal impedance is the smallest and the amount of positive feedback is the largest.
\rightarrow Resistors $R_{1} R_{2}$ and RE provides a voltage divider Stabilized dc bias circuit.
The voltage feedback signal from the collector to the base is maximum when the crystal impedance is minimum (ie; in series resonant mode). The coupling capacitor C_{E} has negligible impedance at this circuit operating frequency but blocks only $d c$ between collector and base.

The circuit is generally called the "pierce crystal".

The resulting circuit frequency of -the (4) crystal. vacations in supply voltage, transistor parameters, etc: have no effect on the circuit operating frequency which is held stabilized by the crystal.
The frequency of vibration is in versly propotional to the thickness of the crystal

$$
f=\frac{P}{2 \lambda} \sqrt{\frac{Y}{\rho}} \quad \begin{aligned}
Y & =\text { young models. } \\
\rho & =\text { density of material. } \\
P & =1,2,3 \ldots .
\end{aligned}
$$

The crystal is suitably cut and polished to vibrate at a certain frequncy and mounted between two metal plates.

* Oscillator with crystal operating in parallel Resonance:-
oscillator circuit with crystal operating in parallel resonance ca modified colpitt's oscillator circuit). Since the parallel-resonant impedance of a crystal is of a maximum value, c_{1} and c_{2} form a capacitive voltage divider which returns a portion of the output voltage divider which returns a pattern of the output voltage divider which returns a portion of the output voltage to the transistor emitter.

Circuit diagram:-

capacitor C_{3} provides an ac short circuit across R_{2} to ensure that the transistor base remains at affixed voltage level. As the output voltage increases positives the emitter voltage also increases and since the base voltage is fixed, the baseemitter voltage is reduced.

The reduction is $V_{B E}$ causes collector current Ic to diminishes and this is torn causes the collector voltage $v c$ to increases positively. Thus, the circuit is applying in our input, and a state of oscillation exists. The crystal in parallel with c_{1} and c_{2} permits maximum voltage feedback from the oscillator to emitter when its impedance is maximum.

* frequency stability of oscillators:-

The frequency stability of an oscillator is a measure of its ability to maintain the required frequency as precisely as possible over as long a time interval as possible.
The accuracy of frequency callibration required may be any where between 10^{-2} and 10^{-10}. The main drawback in transistor oscillators is that the frequency of oscillation is not stable during a longtime operation. The following are the factors which contribute to the change in frequency.

1. Due to change in temperature, the values of the frequency determining compounds, viz, resistors, inductors and capacitors charge.
2. Due to variation in the power supply, unstable transistors, parameters, change in climatic conditions and again.
3. The effective resistance of the tank circuit is changed when the load is completed.
4. Due to variation in biasing conditions and loading
condition. condition.
The varation of frequency with temper atore is given by,

$$
\begin{aligned}
& S_{w}, T=\frac{\Delta w / \omega_{0}}{\Delta T / T_{0}} \text { ppme Carts per million per } \\
& \left.{ }^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Wo and To are the desired frequency of oscillatimon and the rating temperature respectively. in the absence of automatic temperature control, the Effect of temperature on the resonant LC Circuit can be reduced by selecting an inductance " " with positive temperature coefficient and a capacitance " C ". with negative temperature cocfficent.

The loading effect may be minimised if the oscillators is coupled to the Load loosely or by a circuit with high input resistance and low output resistance properties. The frequency stability is defined as.

$$
S \omega=\frac{d \theta}{d \omega}
$$

Where do is the phase shift introduced for a small frequencies change in nominal frequency fo, the circuit giving the largest value of $\frac{d \theta}{d w}$ has the mare stable oscilator frequn cyif du the a is infinite (an ideal inductors withe zero series resistance]. This page changes abroptty from -90° to $+90^{\circ}$.

For toned oscillators, sw is directly promotional to the ' G ' of a toned circuit. A freopncy stability of one part in can be achieved with ' Lc' clit for Lc oscillators, a tuned circuit must be lightly loaded to pressure high a value.

As piszo-electric crystals have high Q valves of the order of 10^{5}, they can be used as parallel resonant circuits in oscillators to get very high frequency stability of "I PPM" Carts per million].

* Amplitude stability of oscillators **.

An oscillators do not require positive feedback for their operation. if the positive resistance of "LC "tank circuit is cancelled by introducing the right amount of negative resistance across the tank circuit, then the steady oscillation can be maintained.
The several devices such as dynatron, tranistron, thermistor UJT and tunnel diode that exhibit a region of negative resistance with in the V-I charaterstics, such devices operated in the negative resistance region are placed across a high a for oscillation to occurs the negative resistance should be numerically less than the dynamic resistance of the toned circuit.

In the case of "RC" circuit oscillators, the amplitude against variations due to fluctuation by aging of the transistant others components can be stabilised by replacing the resistor in bridge by senistors which are temperature dependent resistors. Thus the

Stability in amplitude of the RC oscillators can easily be maintained.

V-I charaterstics of negative resistance oscillators.

Whoduction:- Almost in all practical Amplifiers, Number of stage are Curiaded to Amplify the weak signals to a sufficient level to operate the output device (loud speaker.)
\rightarrow In such -Amplifiers the function of fret few stages only to amplify the voltage but last stages designed to provide maximum power to drive the output device (loud speaker.). This final stage is called power Amplifier estage.

Mult-slage-Amplifies. loud speaker
Voltage Amplifier

Voltage
power
Amplifier
Amplifier
fig:- Public Address System.
\rightarrow Microphone Converts the sound to Electrical signal and loud. speaker Converts Electrical signal to sound Signal again.
\rightarrow when a person speaks in michrophone, it converts sound signal ruto Electrical signal.
\rightarrow A Electrical signal produced is of very low voltage (afelio mill, volts.)
\rightarrow if this signal is fed to the speaker directly, it roll not be the position to drive the speaker.
\rightarrow Therefore voltage level of the signal is the first increases to sufficient level. (afen volts) by pausing it through anumber of stages of voltage Auplffer.
\rightarrow This Amplified voltage signal is then fed to the final stage of multistage Amplifier which is Capable to deliver the requiredpowey -todriue the speaker.
\rightarrow The speaker finally Converts the Electrical signal into sound signal.
\rightarrow so, we Conclude that In final stage, we have to apply thy power Amplifier to transfer maximum power (or) to deliver maximum power to the output device.

* Differences b seen Voltage Amplifier and power Amplifier:-
\rightarrow The main function of avoltage Amplifier is to amplifies the signals unto certain level.
\rightarrow The main function of power Amplifier is to deliver maximum power to the load (lond speaker.)

* Classification of power Amplifier!-

We have different types of power Amplifiers they are:

1. Class - A. power Amplifier.
2. Class - B power Amplifier.
3. Class - C power Amplifier.
4. Class $-A B$ power Aniplifier.
(1.) Class -A power Amplifier:- The power Amplifier in which the operating point is adjusted as the collector current flows during Whole cycle of the input signal is known as clan-A power Amplifies.
\rightarrow The q-point is kept at the centre of the active region.
\rightarrow when an ac input Signal is applied, the Collector Voltage and the Collector current Varies simultaneously.
\rightarrow In clas-A power Amplifier distortion is low because output signal is reproduced during full cycle of the rupert signal
\rightarrow Conduction Angle in class -A power Amplifier 4360°.
\rightarrow Inclaus-A power Amplifier, efficiency is low.

fig:- Graphical Representation of clays-A power Amplifier
(8.) Class-B power Amplifier:-
\rightarrow The power Amplifier in which the operating point is so adiouduction that the collector current flows during the positive half $\mathrm{C}_{y}, 20^{2} \cdots$ the input signal.
\rightarrow Conduction Angle in class-B power Amplifier is 180°.
$\rightarrow \rightarrow$ The operating point ' ϕ ' n fixed hear to x-aus.
S. Le, the cycle of the input signal is in active region and Nega axle of the input signal u in cutoff region.
$\rightarrow \rightarrow$ The Graphical representation of Class -B power Amplifier is shown in figure below.

fig:- Graphical Representation for Class-B power Amplifier.
(3.) claus -c power Amplifier:-
\rightarrow In power Amplifier in which output current Ic flow for less than half cycle of the input signal are known as clam-C power Amplifier.
\rightarrow In this Amplifier the operating point ' ϕ ' u fixed be low the x-axis.
\rightarrow class-c power Amplifiers are used in tuned amplifiers to amplify the narrow band up frequencies.

Conduction angle of Class -C power Amplifier is 180°. Less than $: 180^{\circ}$.

The Graphical representation is shown below.

fig:- The Graphical representation of class-c power Amplifier.
4.) Clan-AB power Amplifier:-
\rightarrow The power Amplifier in which the output Current flows for more than half cycle and less than full cycle of the input signal. \rightarrow The Conduction Angle of Class $A B$ power Amplifier u between class-A and clans - power Anplifiers. Conduction angles ($1 e,\left\langle 360^{\circ}\right.$ \& $>180^{\circ}$) \rightarrow The eqraplical representation is shown in the graph below.

(1.) claus -A power, Amplifier:-

The class-A power Amplifier is clanrfed into too lips
a.) Direct Coupled Clau-A power Arrplifer
(b.) Transformer Coupled class-A power Anplityog.
\rightarrow In direct Coupled clam A power Amplifier, The load ns dross Connected to the collector terminal.
\rightarrow In Transformer Capped claws power Amplifier, the bod in in to the Collector Hegminal using transformer.
(a.) Direct Coupled class-A power Amplifier:-

figs Direct Coupled Claus power truplifey.
DC -Operation:-
\rightarrow The above circuit shows that the direct Coupled clau-A power Amplifier.
\rightarrow Here, the load resistance is directly Connected to the collector terminal. Hence it s called direct Coupled claus-A power twpliffer
\rightarrow This circuit Can handle large signal of the arden of fino volts, Hence power tramutors are wed,
\rightarrow So, the Quepall crroult handles the large power at the range of few volts.
\rightarrow The graphical representation of claus $\rightarrow \rightarrow$ power tuplifers is shown in fique below.

fig:- Graphical representation of Direct Coupled Class - A power Amplifier.
\rightarrow The Collector supply voltage $V_{C L}$ under resistance R_{B}, decides the $D C$ base bias Current.
\rightarrow Apply kirchoff's voltage law to the output circuit. we get,

$$
\begin{gathered}
V_{C C}-I_{C} R_{C}-V_{C E}=0 \\
V_{C C}=I_{C} R_{C}+V_{C E} \\
I_{C}=\frac{V_{C C}-V_{C E}}{R_{C}}
\end{gathered}
$$

\rightarrow The DC input power n provided by the Supply Voltage.
\rightarrow The Collector Current (Ic) drawn the de Current without AC mut signal, Hence the de ruput power is given by.

$$
P_{c c}=V_{c c} \times I_{c}
$$

AC-Operation:-
\rightarrow when an $A C$ input signal is applied, the base Current Varies Sinusoidally, due to this Collector current IC and VCE aho varies Sinusoidally,
\rightarrow The Varying output voltage and output Current delivers an Ac power to the load.
\rightarrow From the graph Varying output voltage and output Current given by.
$V_{\text {min }}=$ minimum value of output voltage.
$v_{\text {max }}=$ maximum value of output voltage.
$v_{p p}=$ peak to peak value of output voltage.

$$
v_{p p}=v_{\text {max }}-v_{\text {min }}
$$

$\rightarrow v_{m}=$ peak of output voltage.

$$
v_{m}=\frac{v_{p p}}{2} .
$$

So, we get

$$
V_{m}=\frac{V_{\text {max }}-V_{\text {min }}}{2} \longrightarrow(1)
$$

\rightarrow Similarly, the output Current Can be guin by. $I_{\text {min }}=$ Minimum Value of output Current.
$I_{\text {max }}=$ Maximum value of output Current.
$I_{P P}=$ Peak to peak value of output current

$$
I_{P P}=I_{\text {max }}-I_{\text {mix }}
$$

$I_{m}=$ peak of Output Current

$$
\begin{aligned}
& I_{m}=\frac{I_{P P}}{2} \\
& I_{m}=\frac{I_{\text {max }}-I_{\text {min }}}{2} \longrightarrow(2)
\end{aligned}
$$

\rightarrow Hence, the RMS Value of Alternating output Voltage and outs Current Can be given as $V_{r m s}=\frac{V_{m}}{\sqrt{2}}$ and $I_{r m s}=\frac{I_{m}}{\sqrt{2}}$.
\therefore The RMS Value of $A C$ power s gwen by.

$$
\begin{aligned}
P_{A C} & =V_{r m s} \times I_{q m s} \\
P_{A C} & =\frac{V_{m}}{\sqrt{2}} \times \frac{I_{m}}{\sqrt{2}} \\
\therefore P_{A C} & =\frac{V_{m}}{2}
\end{aligned}
$$

from equation (1) \& (2)

$$
\begin{aligned}
& P_{A C}=\frac{\frac{\left(V_{\text {max }}-V_{\text {MM }}\right)}{2} \times \frac{\left(I_{\text {max }}-I_{\text {mIM }}\right)}{2}}{2} \\
& \therefore P_{A C}=\frac{\left(V_{\text {max }}-V_{\text {min }}\right)\left(I_{\text {max }}-I_{\text {mix }}\right)}{8}
\end{aligned}
$$

Mail
Efficiency:- Efficiency is defined as the ratio of $A C$ output mower to the $D C$ diffict power.

$$
\begin{aligned}
& \eta=\frac{\left(V_{\text {max }}-V_{\text {min }}\right)\left(I_{\text {max }}-I_{\text {mix }}\right)}{8} .
\end{aligned}
$$

we know that, $\eta=\frac{P_{A C}}{P_{D C}} \times 100$
from the above Graph $v_{\text {max }}=v_{c c}$ and $I_{\text {max }}=2 I_{c}$
Now,

$$
\eta=\frac{\frac{\left(v_{\text {max }}-v_{\text {mix }}\right)\left(I_{\text {max }}-I_{\text {mix }}\right)}{8}}{v_{c c} \times I_{c}} \times 100
$$

4

$$
\begin{aligned}
P_{A C}= & \frac{\frac{\left(V_{\text {max }}-V_{\text {min }}\right)}{2} \times \frac{\left(I_{\text {max }}-I_{\text {min }}\right)}{2}}{2} \\
\therefore P_{A C}= & \frac{\left(\vartheta_{\text {max }}-v_{\min }\right)\left(I_{\max }-I_{\text {min }}\right)}{8}
\end{aligned}
$$

Max 1
Efficiency:- Efficiency is defined as the ratio of $A C$ output power to the DC ofufphit power.

$$
\begin{aligned}
& \text { Anfpet power. } \\
& \text { il } \\
& \eta=\frac{\text { a.c power delivered to the load }}{\text { Total power delivered by doc Supply }} \\
& \eta_{A C} \\
& P_{D C}
\end{aligned}
$$

$$
\eta_{0}=\frac{\frac{P_{A C}}{P_{D C}}}{\eta_{D}}=\frac{\frac{\left(v_{\text {max }}-v_{\text {min }}\right)\left(I_{\text {max }}-I_{\text {min }}\right)}{8}}{V_{C C} I_{C}}
$$

we know that, $\eta=\frac{P_{A C}}{P_{D C}} \times 100$
from the above Graph $v_{\text {max }}=v_{c c}$ and $I_{\text {max }}=2 \cdot I_{c}$
NOM,

$$
\eta=\frac{\frac{\left(v_{\text {max }}-v_{\text {min }}\right)\left(I_{\max }-I_{\text {min }}\right)}{8}}{v_{c c} \times I_{c}} \times 100
$$

$$
\begin{aligned}
& =\frac{\left(V_{c c}-0\right)\left(2 I_{c}-0\right)}{8 V_{c c} \times I_{c}} \times 100 \\
& =\frac{2 V_{c c} I_{c}}{8 \cdot V_{c c} Z_{c}} \times 100 \\
& =\frac{1}{4} \times 100 \\
& =0.25 \times 100 \\
& \therefore \eta=25 \%
\end{aligned}
$$

* Advantages:-
\rightarrow simple to design.
\rightarrow Less number of Components are required.
$\rightarrow \cos t$ u low.
\rightarrow required space is les.
\rightarrow The frequency res ponce is good.
* Dis-advantag, :-
\rightarrow poor impedance matching. \rightarrow poor diexpation be trove the ns hut
\rightarrow low efficiency.
(b.) Transformer Coupled clays-A power A mplifier:-

fig:- Circuit diagram for Transformer Coupled claus-A power Aupitier
\rightarrow If maximum power n tramferred to the load. The mupedance matching is necessary.
\rightarrow Impedance matching is poor in Case of direct Coupled clau-A power Amplifier. because, the loud speaker repustance $(4 \Omega$ to $16-\Omega)$
less than the output impedance of the direct Coupled class -A were Amplifier. To Overcome this problem by using Transformer sulpled Claus - A power Amplifier.
The circuit diagram for Transformer Coupled Class -A power Amplifier Is shown in above figure.
\rightarrow Here the Transformer s directly Coupled to cor) Connected to the collector terminal.
\rightarrow In the above figure we use, step down Transformer, in that Secondary Voltage is less than the primary voltage. So, high voltage side has always high impedance and the low voltage side has always low impedance
\rightarrow So, the secondary binding impedance is less than the primary winding impedance.

* DC -Operation:-
\rightarrow it is assumed that the winding resistance is ' $O \Omega$ '. because, no resistor is connected between Supply voltage and the collector terminal so, no voltage drop across the primary winding of the Transformer.
\rightarrow The slope of the dc load lune is reciprocal of the dcresutance. \rightarrow In this circuit we have zero resistance in the winding. So, the
less than the output impedance of the direct Coupled class $-A$ wee Amplifier. To Overcome this problem by using Transformer julpled Claus -A power Amplifier.
The circuit diagram for Transformer Coupled class - A power Amplifier Is shown in above figure.
\rightarrow Here the Transformer is directly Coupled to (or) Connected to the collector tequinal.
\rightarrow In the above figure we use, step down Transformer, in that Secondary Voltage is less than the primary voltage. So, high voltage side has always high impedance and the low voltage side has alwayslowimpedana
\rightarrow So, the secondary winding impedance is less than the primary winding impedance.
* DC -Operation:-
\rightarrow it n assumed that the winding resistance is ' $O \Omega$ '. because, no resistor us connected between Supply voltage and the collector terminal so, no voltage drop across the primary winding of the Transformer.
\rightarrow The slope of the dc load lune is reciprocal of the dcresutance.
\rightarrow In this circuit we have zero resistance in the winding. So, the
slope of the de load line k ideally ' ∞ '
\rightarrow This tells that de load lie mi deal Condition in a vo straight line.
\rightarrow Apply kirchhoff's voltage law to the output circuit.

$$
\begin{aligned}
& V_{C C}-V_{C E}=0 \\
& V_{C E}=V_{C C}
\end{aligned}
$$

\rightarrow The dc input power is given by.

$$
P_{d c}=V_{c e} \times I_{c}
$$

* AC-Operation :-
\rightarrow when An AC input signal is applied across the base of the transistor, the base current IB varies sinusoidally towards the base terminal.
\rightarrow The output voltage developed across the primary winding of the transformer.
\rightarrow The voltage of primary, transformer. n Coupled to the secondary winding of the transformer through magnetic flux.
\rightarrow Here we get les secondary Voltage Compared to primary Voltage because, step down transformer is used.
\rightarrow The AC power developed is on the primary side of the Transform and this power delivered to the load through Secondary nondrug of the transformer.
\rightarrow The AC power Calculated, is the power developed across the primary wounding the transformer.
\rightarrow Assuming the ideal transformer, the power delivered to the load on the secondary winding us same as that of power dencleped across the primary.
\rightarrow The $A C$ power Δ given by

$$
\therefore P_{A C}=\frac{\left(V_{\text {max }}-V_{\text {min }}\right)\left(I_{\text {max }}-I_{\text {mix }}\right)}{8}
$$

Ste Efficiency:- The efficiency can be defined as the ratio of $A C$ lutput power to the $D C$ pout power.

Input

$$
\therefore \eta=\frac{P_{A C}}{P_{D C}} \times 100
$$

\rightarrow The maximum efficiency can be taken from maximum vary output voltage and output Current is shown in the graph below.

$$
\begin{aligned}
\eta & =\frac{\left(2 V_{c c}-0\right)\left(2 I_{c}-0\right)}{8 V_{c c} \times I_{c}} \times 100 \\
& =\frac{4 \operatorname{Vec} I_{c}}{82 \operatorname{lead}} \times 100 \\
& =0.5 \times 100 \\
\therefore \eta & =50 \%
\end{aligned}
$$

* Advantages:-
\rightarrow Efficiency is high when Compare to direct Coupled claus-A power Amplifier.
\rightarrow Impedance matching is obtained., power dissipation ales
* Du-advantages:-
\rightarrow Difficult to design.
\rightarrow More number of Components are required to design.
\rightarrow cost u high
\rightarrow space required n avo high.
\rightarrow The frequency respome x len.
* Differences between direct coupled class -A power Amp, the and Transformer Coupled class-A power Amplifier:-

Direct Couple clau-A P.A Transformer Coupled claw-tramss
\rightarrow Load Rentance $R_{c} u$ directly \rightarrow Transformer acts as a load wt Connected to the collector terminal us connected to the collector terminal.
\rightarrow Simple to design the circuit \rightarrow Difficult to derigh the circuit
\rightarrow frequency respome u good \rightarrow frequency response u less.
\rightarrow Less number of Components \rightarrow More number of Components are required to design the
circuit.
\rightarrow Obit put u less
\rightarrow Impedance matching ns poor-
\rightarrow Cost is len.
\rightarrow Occupation space is len
\rightarrow power transferred is less to the load.
\rightarrow Here, $V_{\text {max }}=V_{c c}$
C Maximum Voltage is Same as that of Supplied Voltage.)
\rightarrow Here, $I_{\text {max }}=2 I_{C}$.
(Maximum Current n 2 times That of Collector Current.)
are required to design the circuit.
\rightarrow Efficiency us high when Compare to Direct Coupled Claus A. power Amplifier (50%).
\rightarrow Output is high.
\rightarrow Impedance matching s high.
\rightarrow Cost is high.
\rightarrow Occupation space is high.
\rightarrow Maximum power is transferred to the load.
\rightarrow Here, $V_{\text {max }}=2 V_{c c}$
(Maximum Voltage s two times of Supplied Voltage.)
\rightarrow Here, $I_{\text {max }}=2 I_{C}$
(Maximum Current \& times to that of Collector Current.)
clans-B power Amplifier:-

- clau-B poser Amplifier u defined as the output signal flows 'pr the halt Cycle (or) 180° of the input signal.
\rightarrow In class-B power Amplifier, for the Negative half Cycle the transulor, will be in off state. So that output Current should be zero for Negative half Cycle. Sa we get distortion during the Negative half Cycle.
\rightarrow To avoid thess dutortion we go for push-pull class-B Amplified.

fig:- push-pull class -B power Amplifier.
\rightarrow The above figure shows the class-B push pull-Amplifiey.
\rightarrow In this circuit both the transistors $Q_{1} \varepsilon_{1} Q_{2}$ are of $N-P-N$ type.
\rightarrow These both tramstors are in CE Configuration.
\rightarrow It consuls of two transformers $T_{r_{1}}$ and $T_{r_{2}}$ one u input transformer $T_{r_{1}}$ and other is output transformer $T_{r_{2}}$.
\rightarrow input transformer is aho called as driung transformer which drives the circuit.
$\rightarrow R_{1}$ and R_{2} resistors are the biasing resutors which provides the biasing b the tramutors.
\rightarrow The input signal is applied to the primary of the driver tharyformen.
\rightarrow The centre top on the Secondary of the transformer s grounded
\rightarrow The Centre tap on the primary of the d output transit is Connected to the supply voltage $\left(\mathrm{N}_{\text {ce }}\right)$.
\rightarrow with respect to the centretap for a positive half $c y$ of Input signal, the point ' 'X'shown on the secondary the driver transformer will be positive while the point will be Negative.
\rightarrow Similarly, with respect to the centre tap for a Negation halt cycle of ruput signal, the point ' x shown on the secondary of the driver transform of will be Negative while the point. ' y ' will be positive.
\rightarrow Thus the voltages in the two halves of the secondary of the driver transformer will be equal but with opposite in polarities.
\rightarrow Hence the luput signal applied to the base of the tramustors $Q_{1} \varepsilon_{1} Q_{2}$ will be 180° out of phase.
\rightarrow Each transistor output is in the form of half rectified wauntomen
\rightarrow Hence the peak value of the output current of each tramutor "'Ir'. So, the average value (dc value) of output Current of each transutor is ' $\frac{I_{m}}{\pi}$ '. (due to half rectified wave form.)
\rightarrow The two current drawn by the two transistors from the de Supply Voltage. Hence, the total de Current of both tramutors is given by $\quad I_{d c}=\frac{I_{M}}{\pi}+\frac{I_{m}}{\pi}$.

$$
I_{d c}=\frac{2 I_{m}}{\pi}
$$

\rightarrow The de input power is given by $\mathrm{Pac}_{\mathrm{c}}=V_{c c} \times I_{c}$ where $\quad I_{c}=I_{d c}$

$$
P_{d c}=V_{c c} \times \frac{2 I m}{\pi}
$$

fig: Graphical Representation for push-pull Class-8 pooed tmplifee. \rightarrow where Um and V_{m} are the peak values of output current and output Voltage respectively.
\rightarrow The RMS Value of VotHager and Currents are given by

$$
V_{\text {RMS }}=\frac{V_{m}}{\sqrt{2}} . \quad I_{\text {RMS }}=\frac{I_{m}}{\sqrt{2}} .
$$

\rightarrow The $A C$ power s given by.

$$
\begin{aligned}
P_{A C} & =\frac{V_{m}}{\sqrt{2}} \times \frac{I_{m}}{\sqrt{2}} \\
P_{A C} & =\frac{V_{m} I_{m}}{2} .
\end{aligned}
$$

Efficiency:- Efficiency s defined as the ratio of $A C$ output power to the $d c$ input power, a it n denoted by ' η '.

$$
y=\frac{P A C}{P o c} \times 100
$$

\rightarrow The maximum value of', can be taken from maximumvary of output voltage oud output Current and 4 chow in the figure below.

fig: Graphical Representation for push-pull Clans-B power Amplifies.
\rightarrow where In and V_{m} are the peak Values of output current and output Voltage respectively.
\rightarrow The RMS Value of Voltages and Currents are given by

$$
V_{\text {RMS }}=\frac{v_{m}}{\sqrt{2}} . \quad I_{\text {RMS }}=\frac{I_{m}}{\sqrt{2}}
$$

\rightarrow The $A C$ power n given by.

$$
\begin{aligned}
P_{A C} & =\frac{V_{m}}{\sqrt{2}} \times \frac{I_{m}}{\sqrt{2}} \\
P_{A C} & =\frac{V_{m} I_{m}}{2} .
\end{aligned}
$$

Efficiency:- Efficiency is defined as the ratio of $A C$ output power to the $d c$ input power. \& it n denoted by ' η '.

$$
y=\frac{P_{A C}}{P_{D C}} \times 100
$$

\rightarrow The maximum valuegin' \quad can be taken from maximum vary of output voltage and output Current. and is show en in the figure below.
 output voltage

$$
\begin{aligned}
\eta & =\frac{\frac{V_{m} I_{m}}{2}}{\frac{V_{c c} \times 2 I_{m}}{\pi}} \times 100 \\
\eta & =\frac{\frac{V_{m}}{2} \pi}{V_{c c} \times 2} \times 100 \\
\eta & =\frac{V_{m} \pi}{4 V_{c c}} \times 100
\end{aligned}
$$

from graph $V_{m}=V_{c c}$.

$$
\text { Now } \begin{aligned}
\eta & =\frac{\psi \pi}{4} \times \pi \\
\eta & =\pi / 4 \times 100 \\
& =0.785 \times 100 \\
\therefore \eta & =78.5 \%
\end{aligned}
$$

\rightarrow Thus, we Conclude that the efficiency is maximum in Class-B push pull power Amplifier:
\rightarrow So, the distortion may be reduced by using the push-pull operation of trancutors.

Advantages :-
Efficiency is high
\rightarrow power dusipation is low.
4 Impedance matching is good. (ven- ardichig). Hewer the nome
\rightarrow distortion isles.

* Dis-advantages :-
\rightarrow circuit derignz is Complex.
\rightarrow cost u high.
\rightarrow More number of Components is required to design the circuit.
\rightarrow frequency response is low.
\rightarrow Occupation space us more.
* Complimentary Symmetry clas-B power Amplifier:-

fig: D Circuit diagram for Complementary Symmetry Closes power Amplifier.
\rightarrow In claui-8 push-pull amplifier aequires two centre trapped tramformers, due to that cost is high, circuit design is difficult, and occupation space is more. This draw backs can be Overcome by using Complementary Symmetry claus -B power Amplifies.
\rightarrow The above figure shows the Complementary symmetry clan -B power Amplifier.
\rightarrow It has one $N-P-N$ and one $P-N-P$ framsitors Q_{1} and Q_{2} \rightarrow The mut voltage u applied to the base of Q_{1} and q_{2} transutors.
* Operation :-
\rightarrow During positive half cycle of the luput signal, tronulor Q will Conduct and tramutor Q_{2} does not Conduct. So the positive Cycle appear across the load resutance ' R_{L} '.
\rightarrow Similarly, during Negative halt cycle of the input Signal. transutor φ_{1} does not Conduct and transutor ϕ_{2} Conducts So, D, Negative half cycle appear across ' R '.'

fig'-Graphical representation of input and output signals of Complementary Symmetry Clans-B powey-Amplifier.
\rightarrow Tramutor will not Conduct till the input signal Exceeds Cut involtage of the tramutor so, Cross over distortion wall be present in the output signal of Complementary symmetry power Amplifier.
* Advantages:-
\rightarrow The circuit is transformer less I due to thy cost u low and size is small and weight is les.
\rightarrow frequency response is improved.
\rightarrow Die to common collector configuration nopudau mated possible.

SApis-advantages:-
Two power supplies n necessary.
cross overdistortion will be present in the output signal.
Cross over distortion:-

\rightarrow The transutor to be in active region, the base- Emitter junction
is forward biased and Collector-Base junction ss reverse biased.
\rightarrow The transistor will not conduct till the input voltage exceeds the cut in voltage of the transutor. So, we get distortion in the output signal. It is called as cross over distortion. \rightarrow The corresponding waveforms of cross over distortion is shown
\rightarrow To eleminate Crow over distortion $D C$ bias voltage should in the above graph. be provided for base-Emitter junction of Each transistor.
\rightarrow By using phase inverter circuits. we can overcome the cross over distortion in the Clans $-B$ power Amplifier. Phase Invertors:-
\rightarrow By using phase inverter circuit, we can reduce the crass over distortion by providing de voltage across the base of two transutors.

fig(a):-Circuit diagram for phase investor.
\rightarrow Both the transutors $Q_{1} \otimes_{2}$ become forward biased due t the voltage drop across ' R_{2} '.
\rightarrow The phase invertor circuit s shown in the above figure (a).
\rightarrow It Consuls of one $N-P-N$ and one $P-N-P$ tramstors name Q_{1} and Q_{2} respectively.
\rightarrow Collector-base junction of Q_{1} tramstor is in reverse bias du to positive voltage is Connected by supply. to Negative voltage is Connected to the Ground.
\rightarrow Therefore, both Collector-base junctions of tramutors $\phi_{1} \varepsilon_{1} \phi_{2}$ are in reverse bias.
\rightarrow During positive peak Voltage' Q'transstor is turned on and. ' Q_{2} ' tramistor s twined off.' So, the positive voltage appear across the load resistance ' R_{L} '.
\rightarrow During Negative peak voltage " Q_{1} 'tramitor is turned off and ' Q_{2}^{\prime} transistor is turned on. So, the Negative voltage appears across the load resistance ' R_{L} '.

fig(b):- Circuit diagram for modified phase investor.
\rightarrow The modified phase investor circuit is showa in the figure (b).
\rightarrow This circuit is to obtain the two out of phase Signals.
\rightarrow Here ' R_{1} ' and ' R_{2} ' are biasing sesutors, ' R ' is a load resistance of Collector terminal and ' R_{E} ' is a load resistance of Emitter terminal.
\rightarrow when the input is applied to the base terminal, the output is taken at the collector and Emitter terminals $\left(v_{01} \varepsilon_{1} V_{0_{2}}\right)$ will be out of phase by 180°.
\rightarrow The output impedance of the circuit from Collector terminal is that of CE Configuration.
\rightarrow The output impedance of the circuit from Emitter terminal is that of $C C$ Configuration.
\rightarrow when the bypass capacitor across ' R_{E} ' is not present, the voltage $V_{O_{2}}$ actions ' R_{E} ' is inphase to the input signal.
\rightarrow The output voltage V_{01} at the Collector terminal will be 180° out of phase to the input signal-
\rightarrow Therefore V_{01} and $V_{O_{2}}$ voltages are out of phase by 180°.
Thermal Runaway:-
\rightarrow The maximum average power $P_{D}(m a x)$, which a transistor can dusipate depends upon the transutor Construction and may he
in the range from a few willinoath to 0000 As mentioned eqjlies the power dissipated at its collector base. bite in a transistor predominantly the power dusipated. at its collector-base junch. Thus maximum power u limited by the temperature that the Collector-base junction Can withstand for Silicon tramustor, this temperature is in the range of 158 C to $225^{\circ} \mathrm{C}$ and for germanium it s between 60° to $100^{\circ} \mathrm{C}$. The Collector-base junction temperature may arise because of two reasons.

1. Due to rise in the ambient temperature.
2. Due to self heating.

* The self heating Con be Explained as follows:-
\rightarrow The increase lithe collector Current increases the power dissipated at the collector junction. This intern further increase the temperature of the junction and hence increases Collector current: The process of the Cummulative and it is referee to as Self heating. This Excess heat produced at the Collector base junction may even burn and destroy the tramutor. Thus situation is called Thermal Run andy of the transutor.
* Heat Sinks:-
\rightarrow Heat sink is basically a large metallic heat Conducting device which when placed near a transutor cools it is necessary increasing it's effective surface area.
* Requirements of heat sinks:- For transutor operating a high level, the heat sinks must be deigned to remove the heat by metallic conduction (or) forced air cooling.
\rightarrow The purpose of heat sinks if to keep the operating point temperature of the transutors prevent thermal breakdown Scanned by CamScanner

 \pm tivinotay Touns.
 4

- Dow Dowrator Eompetu

 - toee $=1$ Cloun
- H boe roses farestion hoat surdx is yisous IV w the Seque solow.

fig'. Fintype treat sink:
* High power transistor type:-

To-3, To-66 are the twotypes of high power transistors Then Htansutors are of diamond shape and dusipates power in ordy to fly \rightarrow The transutor heat sinks shown in figure below perform cooling by conducting Convection and radiating methods, The thermal resistance pf heat sinks will typically $3^{\circ} \mathrm{C} / 12$.

fig:- power tranustor heat sauk.

DISTORTION:

* In power amplitiers, the input lignal applied is allunating in nature. The baric features of any alternating signals are Amplitude, Frequency and phase.

Frequency distortion:

* The change in gain of the amplifier with respect to the frequency is called
AMPLITUDE DISTORTION:
* A transistor is a perfectly linear device i.e., the dynamic Characteristics of a trampitor is a straight line over the operating ranges.
* But in practical cares the dynamic characturetics is not pertectly linear due to such von-linearity the waveform of OPp Voltage difters from that of the iMp
* Such a distortion is called yon-linear dictortion os signal. Hawnoric distortion (o) Amplitude dretortion

Harmonic Distortion：
＊The presence of the frequency component e in the output wave务m which are not present in the input waveform
＊The frequency Component in the O / P ，whore frequency is came as the i / p signal frequency then it is called as Fundamental frequency．
＊The additional trequency components prelect in the o／p rignal are the integral multiples of fundamental frequency there components are called as Harmonics＂．
Eg：＇f＇H1 is the fundamental trequency If HZ is the second harmonic etc．

fundamental freq（ α ）

$2^{\text {nd }}$ harmonic
 Input signal
\rightarrow It the number of Harmonics increales then the completude

$$
\begin{aligned}
& \rightarrow \text { It the number of } \\
& \text { decrents. } \\
& \text { SECOMD-ORDER HARMONIC DISTORT ION (3-POIMT METHOD) }
\end{aligned}
$$

decrealls.

$$
\begin{aligned}
& \text { decreales. } \\
& \text { SECOMD-ORDER HARMONIC DISTORT }
\end{aligned}
$$

* To analyze Second harmonic diclotion, asvume that the dynamic characteristics are non-linter non-linear in nature (parabolic).

* Due to this collector current swing, the operating point value and relation between I_{C} and I_{B} is non-linear.

$$
i_{b}=I_{B m} \cos \omega t
$$

trathematically it can be expreuld al,

$$
\begin{aligned}
& I_{c}=G_{1}-I_{B}+G_{2} I_{B}^{2} \\
\mathbb{I}_{C} & =G_{1}\left(I_{B m} \cos \omega t\right)+G_{2}\left(I_{B m} \cos \omega t\right)^{2} \\
= & \left.G_{1} I_{B m} \cos \omega t+G_{2} I_{B m}^{2} \cos ^{2} \omega t \quad \quad \because \cos ^{2} \omega t=\frac{1+\cos 2 \omega t}{2}\right] \\
= & G_{1} I_{B m} \cos \omega t+G_{2} I_{B m}^{2}\left[\frac{1+\cos 2 \omega t}{2}\right] \\
= & G_{1} I_{B m} \cos \omega t+\frac{1}{2} G_{2} I_{B}^{2} m+\frac{1}{2} G_{2} I_{B m}^{2} \cos 2 \omega t
\end{aligned}
$$

$$
I_{c}=B_{0}+B_{1} \cos \omega t+B_{2} \cos 2 \omega t
$$

* The total current can be expressed in teens of second harmonic component, D signal component.

$$
\text { i.e., } \quad I_{C}=I_{C Q}+B_{O}+B_{1} \cos \text { uet }+B_{2} \cos 2 a l \rightarrow 0
$$

Where $\left(I_{C Q}+B_{O}\right)=D C$ componet independent of time
$B_{1}=$ Amplitude of tundamental treq.
$B_{2}=$ Ampletude of Second harmonie.

* Let us find. The realue of total collector curent at the rearious instances 1,2 \& 3 .

At point 1, $\omega \mathscr{O}=0$, then eq(i) beconces

$$
I_{C}=I_{C Q}+B_{0}+B_{1}+B_{2} \rightarrow \text { (2) }
$$

At point 2, $\omega t=\frac{\pi}{2}$ then $e q$ (1) becomes

$$
I_{C}=I_{C Q}+B_{0}-B_{2} \rightarrow(3)
$$

At point 3, lat $=\pi$ then eq (1) becones

$$
\begin{equation*}
I_{C}=I_{C Q}+B_{0}-B_{1}+B_{2}- \tag{4}
\end{equation*}
$$

From eq (8) if $I_{C}=I_{C Q}$

$$
B_{0}=B_{2}
$$

From eq (2) \& (4)

$$
\begin{aligned}
& I_{\max }-I_{\min }=I_{C Q}+B_{0}+B_{1}+B_{2}-I C Q-B_{0}+B_{1}-B_{2} \\
& I_{\max }-I_{\min }=2 B_{1} \\
& B_{1}=\frac{I_{\max }-I_{\min }}{2}
\end{aligned}
$$

From lq (0) $\xi \operatorname{lq}(4)$

$$
\begin{aligned}
I_{\max }+I_{\min } & =I_{C Q}+B_{0}+B_{1}+B_{2}+I_{C Q}+B_{0}-B_{1}+B_{2} \\
I_{\max }+I_{\min } & =2 I_{C Q}+2 B_{0}+2 B_{2} \\
I_{\max }+I_{\min } & =2 I_{C Q}+2\left(B_{2}\right)+2 B_{2} \quad\left(\because B_{0}=B_{2}\right) \\
I_{\max }+I_{\min } & =2 I_{C Q}+4 B_{2} \\
4 B_{2} & =I_{\max }+I_{\min }-2 I_{C Q} \\
B_{2} & =\frac{I_{\max }+I_{\min }-2 I_{C Q}}{4}
\end{aligned}
$$

HIGHER ORDER HARMONIC DISTORTION (S POINT MEJHOD):

* As the mon-linearity increared in the dynancic charactecictiy of a tramietor then the narmanic distortion alvo increales.

* $\quad I_{b}=I_{B m} \cos \omega t$
* The mathomatical exprevion tos the collecta curecut due to nigher ovelu harmonics,

$$
\begin{aligned}
& I_{C}=G_{1} I_{B M} \cos \omega t+G_{2} I_{B m}^{2} \cos ^{2} \omega t+G_{3} I_{B m}^{3} \cos ^{3} \omega t+G_{4} I_{B r}^{4} \cos \omega \omega t \cdot\left(\because I_{b}=I_{B m} \cos \omega t\right) \\
& I_{c}=G_{1} I_{b}+G_{2} I_{b}^{2}+G_{3} I_{b}^{3}+G_{4} I_{b}^{4}+\cdots \\
& I_{C}=B_{0}+B_{1} \cos \omega t+B_{2} \cos 2 \omega t+B_{3} \cos 3 \omega t+B_{4} \cos 4 \omega t+\cdots \\
& I_{c}=I_{C Q}+B_{0}+B_{1} \cos \omega t+B_{2} \cos 2 \omega t+B_{3} \cos 3 \omega t+B_{4} \cos 4 \omega t+\cdots
\end{aligned}
$$

Where $\left(P_{Q Q}+B_{0}\right) \Rightarrow$ is $D C$ component independent of tince
B_{1} = Amplitude of findamental trequency
$B_{2}=$ Ampletude of second harmovic
$B_{3}=$ Amplitide of tind harmonie

At point I $w t=0$:
Then equation (1) be conces

$$
\begin{aligned}
& I_{C}=I_{C Q}+B_{0}+B_{1} \cos (0)+B_{2} \cos 2(0)+B_{3} \cos 3(0)+B_{4} \cos 4(0) \\
& I_{C}=I_{C Q}+B_{0}+B_{1}+B_{2}+B_{3}+B_{4} \rightarrow Q_{q}(2)
\end{aligned}
$$

At point 2 wt $=\pi_{3}$
Then equation (1) beconces

$$
\begin{align*}
& I_{C}=I_{C Q}+B_{0}+B_{1} \cos \pi / 3+B_{2} \cos 2\left(\pi_{3}\right)+B_{3} \cos 3\left(\pi_{3}\right)+B_{4} \cos 4\left(\pi_{3}\right) \\
I_{/ 2}= & I_{C}=I_{C Q}+B_{0} I_{C}=I_{1 / 2}=I_{C Q}+B_{0}+\frac{1}{2} B_{1}=\frac{1}{2} B_{2}-B_{3}-\frac{1}{2} B_{4} \rightarrow \tag{3}
\end{align*}
$$

At points wet $=\pi / 2$
Then equation (1) beconces

$$
\begin{aligned}
& \text { Then equation (1) beconces } \\
& \left.\left.I_{c}=I_{C Q}+B_{0}+B_{1} \cos (1)_{2}+B_{2} \cos 2(1)_{2}\right)+B_{3} \cos 3\left(\pi \pi_{2}\right)+B_{4} \cos 4(1)_{2}\right)
\end{aligned}
$$

$$
I_{e}=I_{C Q}+B_{0}-B_{2}+B_{4} \rightarrow e_{q}(4)
$$

At point 4 wt $=2 \pi / 3$

Then e_{q} (1) becomes

$$
\begin{align*}
& I_{C}=I_{C Q}+B_{0}+B_{1} \cos 2 \pi_{3}+B_{2} \cos 2(2 \pi / 3)+B_{3} \cos 3(2 \pi / 3)+B_{4} \cos 4(2 \pi / 3) \\
& I_{C}=I_{C Q}+B_{0}-\$_{1 / 2} B_{1}-1 / 2 B_{2}+B_{3}-1 / 2 B_{4} \rightarrow \text { (5) } \tag{5}
\end{align*}
$$

At point 5 wt $=\pi$
Then eq (1) becones

$$
\begin{align*}
& I_{C}=I_{C Q}+B_{0}+B_{1} \cos \pi+B_{2} \cos 2 \pi+B_{3} \cos 3 \pi+B_{4} \cos 4 \pi \\
& I_{C}=I_{C Q}+B_{0}-B_{1}+B_{2}-B_{3}+B_{4} \rightarrow \text { (6) } \tag{b}
\end{align*}
$$

By lelving above equations

$$
\begin{aligned}
& B_{0}=\frac{1}{6}\left[I_{\max }+2 I_{1 / 2}+2 I_{-1 / 2}+I_{\min }\right] \\
& B_{1}=\frac{1}{3}\left[I_{\max }+2 I_{1 / 2}-2 I_{1 / 2}-I_{\min }\right] \\
& B_{2}=1 / 4\left[I_{\max }-2 I_{\mathrm{CQ}}+I_{\min }\right] \\
& B_{3}=\frac{1}{6}\left[I_{\max }-2 I_{1 / 2}+2 I_{-1 / 2}-I_{\min }\right] \\
& B_{4}=\frac{1}{12}\left[I_{\max }-4 I_{1 / 2}+6 I_{C Q}+4 I_{-1 / 2}+I_{\min }\right]
\end{aligned}
$$

OPERATION OF CLASS AB POWER AMPLIFIER:

* The power amplifier in which the output Current flow's for more than halt cycle and les than bull cycle of i/r signal is Known as Class-AB Power amplifier.
* The Conduction angle of class $A B$ power amplitia is between Class -A and class -B power anplitie i.e., $\left(2360^{\circ}\right.$ \& $\left.>180^{\circ}\right)$.
* As, clak A has the problein of low efficiency and class- B has distortion problem, this class $A B$ is emerged to eliminate these two problems, by utilizing the advantages of both the clares.
* The crass-over distortion is the problem that occurs when both the Haniictos are OFF at the lame instant, durey the tremiction period.
* In order to eliminate this, the condition has to be chosen for more than one halt cycle. Hence tho otter tramintor gets into Conduction, bebore the operating tramicter switches to cut -oft State.
* This is achieved by class-AB power ampleten

* In class $A B$ amplifier design, each of the puh-pull transistors is Conducting bor rightly more than the halt cycle of Conduction in class B, but much leis then the bull cycle of Conduction of Class A.

FIG: GRAPHiCAL REPRESENTATION OF CLASS-AB POWER AMPLIFIER

* The Small bias. Voltage given wing diodes $D_{1} \xi D_{2}$ help the openatug point to be above the cut-off point.
* The crors-oves distortion created by the class-B ampleber is overcome by this class $A B$ as well the inefficienceis of class- A and B don't affect the cireiet.
* So, the clews $A B$ is a good compromise between class- A and class-B in tums of efficiency and linearity having the efficiency reaching about 50% to 60%.

CLASS-D POKER AMPLIFIER:

* A class-D power amplifier is derigned to operate with Digital or pulse type lignals.
* The letter ' D ' stands for "Digital" vince that is the nature of lignals provided to the clare- - amplifier.
* It is necerraly to convent any input lignal into a pulse type Waveform bebore wing it to drive a lane power load and to Convert the signal back to the sixuroidal signal.

* The above figures illuctater the how a sinecvoiolal lignal may be converted ito a pulse type signal.
* Ling some form of Sawtooth \& chopping waveform to be applied.
* The Block diagram of class -D power ampleter is as sharon.

For converting Digital S/L ball to simucoided S/L

FIG: BLOCK DIAGRAM OF CLASS-D POKIER AMPLIFIER

* The Sawtooth \& chopping waveform to be applied with the input into a comparator type op-amp circuit lo that a represent. ative pulse-type regnal is generated.
* The amplitier will amplity the digital ligand and then Convent back to the rinueoiadd type signal employing a low-pays bilta.
* Since the amplitie's tramintor devices use to give the output are barically eittia oft os $O \mathrm{~N}$, they provide current only when they are tuned ON, with little power lois due to their low on-Moltage.
* Thus mort of the power supplied to the amptiten is trametered to the load, the efficiency of the circuit is typically my high.
* Class -D ampliber Con altair efficiencies of 90% and with Caretul component choices can exceed 95% even.
* Power mosfet's devices have been quite popular as the driver devices to s the class D power amplitie.

CLASS-S AMPLIFIER:

* The claes-S amplifier has an input a pulie-width nudulated (PWM) signal to tum Q_{1}, and Q_{2} ON os OFF as rwitelees with a levitcleng frequency much higher than the ligpal frequency. * The circuit deageon to s class-S ampliteer is given by,

FIG: CIRCUIT DIAGRAM FOR CLASSES AMPLIFIER

* It is used bor both amplification and Ampletiole modulation
* It is similar to class except the rectangular PWM Voltage Waveform is applied to a low-pars filter that allows only the Slowly varyir $D C$ of average voltage component to appear accosts the load.

* The L_{0} and c_{0} in the circuit forms a low pars filter that twee the PWM Signal into an analog wave form.
* It only positive outputs are needed, only Q_{1} and D_{2} are required. For negative signals, only D_{1} and Q_{2} are necellaly. * The switching frequency must be rigniticantly lugtrer than the lignal frequency, this technique is not viable for amplification in the GHz trequiny range.

MOSFET POWER AMPLIFIER:

* Power amplitices deigned to ewiteh large currents on and OFF make we of MOSFET devices.
* MOSFET baled clals-D amplifies is commonly wed. oltue applications include line drives bor digital switching circuits, witched mode Voltage regulators.
* Power MOSFET's hove several advantages over bipolar tranuitous for posies amplifier applications.
* One of their moet important advarteges is a transfer charactuirtic which is more linear than that of a BJT.
* This property makes MOSFET power amplifier to have much less output distortion than bipolar circuits.
* Power MOSFET's can readily be operated in parallel to reduce the total channel resistance and increase the output current level.
* The advantage of using MosFET device for Switcliug is that the "tun off" time is not delayed by minority-Casien Storage, as it is que a bipolar tranciles.
* Filter cusses in a MOSFET is due to majority charge Carries only and they are not rubjected to thermal heenawaly. * In addition, rely large input impedance of MOSFET, masses the deign of diver circuity lees complex.
* Though MOSFET amplitier Can be used in class A moele, it is advomitageors to we in class D mode.

$$
\begin{aligned}
& =5+\frac{85 \times 8}{85+8}=5+7.31=12.31^{\circ} \mathrm{C} / \mathrm{W} \\
P_{D} & =\frac{T_{J}-T_{A}}{Q_{J-A}}=\frac{160-40}{12.31}=\frac{120}{12.31}=9.75 \mathrm{~W}
\end{aligned}
$$

Types of heat sinks

Low power transistor type The small signal low power transistors can be mounted directly on the metal chassis to increase the sufficient heat dissipation capability. Care should be taken while doing this because very often the collector of the transistor is connected to the transistor case to increase heat-dissipation capabilities. Hence, some provision for insulating the case from the chassis, which is usually at ground potential, must be provided unless a common collector is being employed.

One method of achieving this is to use a beryllium oxide insulating washer which has a good thermal conductivity, as shown in Fig. 7.14(a). By using a zinc oxide film Silicon compound between the washer and the chassis, heat transfer from the transistor case to the chassis may be improved. An insulated clamp over the top of the transistor may be used to help improve thermal dissipation and increasepressure.

When the transistor is mounted in Teflon (PTFE-Poly Tere Fluoro Ethylene) sockets, it does not provide thermal conduction from transistor case to chassis. Therefore, a press-on fin type of a black anodized heat sink may be used, as shown in Fig. 7.14(b), for mounting transistors that are encased in a metal TO-5 package.

Fig. 7.14 (a) Mounting the transistor case close to the chassis using a berylliumoxide insulating washer (b) using a separate heat sink pressed onto the transistor

Power transistor heat sinks The diamond shaped TO-3 and TO-66 types are the popular mounting packages used for the power transistors which havedissipation in the order of 100 W . These have two leads for emitter and base but the case, or the mounting flange of the case, is the collector terminal. So, it is necessary to insulate the case from the heat sink by the use of an insulating washer. Figure 7.15 shows a typical heat sink that can accommodate a TO-3 power transistor package that provides cooling by conduction, convection and radiation. Although measuring only 11.5 cm

Fig. 7.15 Power transistor heat sink
by 7.8 cm , it has a thermal dissipation equal to that of a flataluminium sheet 25 cm $\times 20 \mathrm{~cm} \times 0.32 \mathrm{~cm}$. The thermal resistance of this heat sink is $3^{\circ} \mathrm{C} / \mathrm{W}$.

Introduction:-

* A audio amplifier amplifies a wide band of frequencies equally well and docenot permit the selection of a Particular desired frequency while rejecting all other forquencirs.
- For instance, radio and television transmission are carried on a specific radiofrequency assigned to the broadcasting station.
* The radio receiver is required to pick up and amplify the radio frequency desired while discriminating all others.
* To achieve this, the simple resistive load is replace by a parallel turned liscerit whore impedance strongly depends upon frequency.
* The ore fore, the use of tunned circuits in conjunction with a transistor makes possible the selection and efficicut amplification of a particular desired radiofrequency.
* Such an amplifier is called a Turned amplifier.

Advantages of Tuned Amplifiers:

* In high foequericy applications, it is generally required to amplify a single frequency, rejecting all other frequencies present.
* For such purposes, tuned amplifiers are used. These amplifiers use tuned parallel circuit as the collector load and offer the following advantages:
i) Small power loss:-
- A turned parallel circuit employs reactive components L and C.
- Consequeutls, the power loss in such a circuit is quite bow.
* On the other hand, if a resistive load is used in the

Collector circuit, there will be considerable loss of powers.

- Therefore tuned amplifiers are highly efficient.
ii) High selectivity :-
* A tuned circuit has the property of selectivity ire it can select the desired fervency for amplification out of a large number of frequencies simultaneously impressed upon it.
* For instance, if a mixture of frequencies simultaneously impsed upon it. for is fed to the input of a tuned * mplifier, then maximum amplification occurs for fo.
* For all other frequencies, the tuned circuit offers very low impedance and hence there are amplified to a little extent and may be thought as rejected by the circuit.
* on the other hand, if we use resistive load in the collector, all the frequencies will be amplified equally well ie the circuit will not have the ability to select the deeired frequency.
iii) Smaller collector supply voltage:-
* Because of little resistance in the parallel tuned circuit. it requires small collector supply voltage VCC.
p on the other hand, if a high load resistance is ugld in the collector for amplifying even one frequency, it wouk mean large voltage drop across it due to eeo signal collector current. Consequently, a higher collector supply will be needed.
Why not tuned circuits for low frequency amplification:-
- The tuned amplifiers are used to select and amplify a specific high frequency or narrow band of frequencies.
- The reader may be inclined to think as to why tuned circuits are not used to amplify low frequencies. This is due to the following reasons:

1) Low frequencies acre never single:

- A tuned amplifier selects and amplifies a single frequency.
- However, the low frequencies found is Practice are the audio frequencies which are a mpoture of frequencies from $20 \mathrm{H}_{2}$ to $20 \mathrm{KHz}_{2}$ and are not single.
- It is desiold that all there forauncies should be equally amplified for proper reprodrection of the signal.
- Consequently, tuned amplifiers cannot be used for the purpose. ii) High values of L and C ?
* The resonant fervency of a parallel tuned circeet is given by;

$$
f_{\gamma}=1 / 2 \pi L C
$$

- For low frequency amplification, we require large values of L and C.
- This will make the tuned circuit bulky and expenerve.
- It is worthwhile to mention here thant $R-C$ and tray former coupled amplifiers. Which are comparatively cheap, can be Conveniently used for low frequency.

Classification:-
Tune d Amplifiers

Small Signal

- To amplify low RF signals
- power output is low
- operated in clues A

- To amplify large RF steals
- power output is more
- operated in class B, classes C or class $A B$ modes.
- Preshpull con figuration used to further reduce harmonic déstootion.

Tuned amplifiers.

- Amplifiers which amplify a specific frequency or narrow band of frequencies are called Tuned amplifiers.
- Tuned amplifiers are mostly used for the amplification of high or radio frequencies.
- It is because radio frequencies are generally single and the tuned circuit permits their selection and efficient amplification.
- However, such amplifiers are not suitable for the amplification of audio frequencies as they are mixture of freavencies from $20 \mathrm{~Hz}_{2}$ to 20 KH and not single.
- Tuned amplifiers are wide used in radio and television circuits where the y are called upon to handle radio frequencies.
- The impedance of this tuned circuit strongly depends upon frequency.
- It offers la very high impedance of this tuned circuit strongly depends upon frequency.
- It offers a very high impedance of this at resonant forevency and very small impedance at all other forquencies.
- If the signal has the same frequency as the resonant frequency of $L C$ circuit, large amplification will result due to high impedance of $L C$ circuit at this forquency.
- when signals of many frequencies are present at the input of tuned amplifier. it will select and strongly amplify the signals of resonant frequency while rejecting all others.
- Therefore, such amplifiers are very useful in radio receivers to select the signal from one particular
broadcasting station when signals of many other frequencies are Present at the receiving aerial.

Distinction between Tuned Amplifiers and other Amplifiers:-

- we have seen that amplifiers (erg., voltage amplifier, power amplifier etc) provide the constant gain over a limited band of frequencies i.e., from lower cut- oft frequency fl to upper cut-off frequency f_{2}.
- Now band width of the amplifier, $B \omega=f_{2}-f_{1}$.
- The reader may wonder, then, what distinguishes atuned amplifier from other amplifiers? The differences is that tuned amplifiers are designed to have specific, usually narrow brand with.
- Th's point is illustrated in Fig 5.2. Note that BWS is the beandwidth of Standard freavency response while BWT is the bandwidth of the tuned amplifies.
- In many applications, the narrower the bandwidth of a tuned amplifier, the better it is.

Analysis of parallel Tuned circuit:

- A parallel tuned circuit consists of a capacitor C and indicator L in parallel.
i) In Practice, some resistance R is always Present with the coil. If an alternating voltage is applied across this parallel circuit, the frequency of oscillations will be that of the pratt applied voltage.
- However, if the frequency of applied voltage is equal to the natural or resonant frequency of $L C$ circuit, then electrical resonance will occur.
- Under such conditions, the impedance of the tuned circuit becomes maximum and the line current is minimum.
- The circuit then draws just enough energy from a.c. supply necessary to overcome the losses in the resistance R.

Parallel resonance :-

- A parallel circuit containing reactive elements (L and C) is resonant when the circuit power factor is unity ie. applied voltage and the supply current are in phase.
- The phersor diagram of the parallel circuit.
ii) The coil current IL has two rectangular components $v i z$ active component IL $\cos \omega L$ and reactive component IL $\sin w h$. This parallel circuit will resonate when

$$
f_{\gamma}=\frac{1}{2 \pi L} \sqrt{\frac{L}{C}-R^{2}}
$$

Resonant frequency for $=\frac{1}{2 \pi} \sqrt{\frac{1}{L C} \frac{-R^{2}}{L^{2}}}$
If coil resistance R is small (as is genially the case),
then,

$$
f_{r}=\frac{1}{2 \pi \sqrt{L C}}
$$

The resonant foremency will be in H_{2} if $R, L \varepsilon_{1} C$ are in ohms, henry and farad respectively.
Characteristics of Parallel Resonant circuit :-
It is now desirable to discuss some important charactensts. of parallel resonant circuit.
i) Impedance of tuned circuit: -

- The impedance offered by the parallel LC circuit is given by the supply voltage divided by the live current $e \cdot e$ VII.
- Since at resonance, live current is minimum, thescfore impedance is maximum at resonant frequency. This fact is shown by the impedance - fer vuency curve.
- It is clear from impedance -frequency curve that impedance rimes to a steep peak at resonant frequency fo
- However, the impedance of the circuit decreases rapidly when the frequency is changed above of below the resonant frequency.
- This characteristic of parallel tuned circuit Provides it the selective properties ie 10 select the resonant frequency and reject all others.

Line currents $I_{I}=I_{L} \cos \phi_{L}$

$$
\frac{V}{z_{r}}=\frac{V}{z_{L}} \times \frac{R}{z_{L}}
$$

$$
\frac{1}{z_{r}}=\frac{R}{z^{2} L}
$$

$$
\frac{1}{z_{r}}=\frac{z^{2} L}{Z_{r}}=\frac{C R}{L}
$$

$\left[Q Z_{L}^{2}=\frac{L}{C}\right.$ from eq $\left.j\right]$
the circuit power factor is unity. This is possible only when the net reactive component of the circuit current is zero ire.

$$
\begin{aligned}
I_{C}-I_{L} \sin \phi_{L} & =0 \\
I_{C} & =I_{L} \sin \phi_{L}
\end{aligned}
$$

- Resonance in parallel circuit can be obtained by changing the supply frequency.
- At some frequency for (called resonant frequency) IC I IL \sin WL and resonance occurs.
Resonant frequency: -
- The frequency at which parallel) resonance occurs (ie, reactic component of circuit current becomes zero) is called the resonant frequency fr.

At parallel resonance, we have,

$$
\begin{aligned}
& I_{C}=I_{L} \sin \phi_{L} \\
& I_{L}=V\left|z_{L} ; \sin \phi_{L}=X_{L}\right| Z_{L} \text { and } I_{C}=V \mid X_{C} \\
& \frac{V}{X_{L}}=\frac{V}{2 L} \times \frac{X_{L}}{2_{L}} \\
& X_{L} X_{L}=z^{2} \\
& \frac{\omega L}{\omega C}=z_{L}^{2}=R^{2}+X_{L}^{2} \\
& \frac{L}{C}=R^{2}+\left(2 \pi f_{r} L\right)^{2} \\
& \left(2 \pi f_{r} L\right)^{2}=\frac{L}{C}-R^{2} \\
& 2 \pi f_{r} L=\sqrt{\frac{L}{C}-R^{2}}
\end{aligned}
$$

$$
\therefore \text { circuit impedance, } Z_{\gamma}=\frac{L}{C R}
$$

- Thus of parallel resonance, the circuit impedance is equal to $L / C R$.
- It may be noted that Z_{r} will be in ohms if $R, L \xi$ C are measured in ohms, henry and farad respectively.
ii) Circuit current:-

At parallel resonance, the circuit or line current is is given by the applied voltage divided by the circuit impedance Zr i.e.,

Line current, $I=\frac{V}{Z_{r}}$ where $Z_{\gamma}=\frac{L}{C R}$

- Becauge Z_{r} is very high, the line current I will be very 3 mall.
iii) Quality factor Q :-
- It is desired that resonance curve of a parallel tuned ciowit should de as sharp as possible in order to provide selectively.
- The sharp resonance curve means that impedance falls rapidly as the frequency is varied from the resonant frequency.
- The smaller the resistance of coil, the nose sharp is the resonance curve. This is due to the fact that a small resistance consumes less power and draws a relatively Small line current.
- The ratio of inductive reactance and resistance of the Coil at resonance, therefore, becomes a measure of the quality of the tuned circuit. This is called quality factor and may be defined as
under:
- The ratio of inductive reactance of the coll celt resonance to pts resistance is known as quality factor Q i.e.,

$$
Q=\frac{X_{L}}{R}=\frac{2 \pi f_{\sigma} L}{R}
$$

- The quality factor Q of a parallel tuned circuit is very important because the sharpress of resonance curve and hence selectivity of the circuit depends upon it.
- The higher the value of (2, the more selective is the tuned circuit.
- It is clear that when the resistance is small, the resonance carve is very sharp.
- However, if the coil has large resistance, the resonance curve is less sharp. It may be emphasised that where high selectivity is desired, the value of Q should te very large.
?

Q factor (on) Quality factor:
It is defined as the ratio of reactance of coil to revistance of the cost.

$$
Q=\frac{\omega L}{R} \text { (x) } \frac{X L}{R}
$$

$$
Q=2 \pi \times \frac{\text { maximum energy stored per cycle }}{\text { power dissipated per cycle }}
$$

[Energy stored in the inductor $=1 / 2 L I^{2}=1 / 2 \mathrm{LIm}^{2}$]
Every stored in the capacitor $=1 / 2 \mathrm{CV}^{2}$
Power dissipation per cycle in inductor

$$
\begin{aligned}
\text { Energy } & =\text { power } \times \text { time } \\
& =\left(\frac{I m}{\sqrt{2}}\right)^{2} \times R \times T \\
& =\frac{I m^{2}}{2} \times R \times T \\
& =\frac{I^{2} m R}{2 f}
\end{aligned}
$$

$$
Q=2 \pi \times \frac{\text { max.energy stored per cycle }}{\text { power dissipation per cycle }}
$$

$$
\begin{aligned}
Q & =2 \pi \times \frac{Y_{2} L I m^{2}}{I^{2} m R} \\
& =\frac{2 \pi L f}{R} \\
& =\frac{2 \pi F L}{R} \\
Q & =\frac{\omega L}{R}
\end{aligned}
$$

This is the Q-factor for inductor.

$$
\text { Q -factor for capacitor }=1 / \omega R C
$$

Frequency Response of Tuned Amplifier.

- The voltage gain of an amplifier depends upon D, input impedance and effective collector bead.
- In a tuned amplifier, tuned circuit is weed in the Collector therefore, voltage gain of such an amplifier
is given by:

$$
\text { voltage gain }=\frac{\beta z_{c}}{2 \text { in }}
$$

where $Z C=$ effective collector load
$z_{\text {in }}=$ input impedance of the amplifier

- The value of $Z C$ and hence gain strongly depends upon frequency in the tuned amplifier.
- As $2 C$ is maximum at respanat frequency, therefore, voltage gain will be maximum at this frequency.
- The value of 2 C and gain decreage as the frequency is varied above and below the resonant frequency.
- It is clear that voltage gain is maximum at resonant frequency and falls off as the frequency is varied in lither direction from resonance.

Band wis th:

- The range of frequencies at which the voltage gain of the tuned amplifier falls to 70.7% of the maximum gain is called its band width.
- The amplifier will amplify nicely andy signal in this frequency range.
- The bandwidth of tuned amplifier depende upon the value of $Q \& L C$ circuit ie. upon the sharpner
of the frequency reeponge.
- The greater the value of \mathcal{Q} of tuned Circuit, the lesser is the bandwidth of the cemplifier and Vice-verss.
- In practice, the value of Q of $L C$ circuit is made such 30 as to permit the amplification of desired narrow band of high frequencies.
- The practical importance of bandwidth of tuned amplifiers is found in communication system.
- In radio and TV transmission, a very high frequency wave, called Carrics wave is used to carry the audio or picture signal.
- In radio traugmission, the audio signal has a frequency range of 10 kHz .
- If the carrier wave frequency is 710 kHz , then the resultant radio wave has a foreuency range between? (710-5) K+1/2 and ($710+5$) KH_{2}.
p Consequently, the tuned amplifier must have a bandwidth of 705 kHz to $715 \mathrm{kH} / 2$ (ire 10 kHz).
- The 2 of the tuned circuit should be such that bandwidth of the amplifier lies in this range.
Relation between 2 \& bandwidth:
- The quality factor 2 of a tuned amplifier is equal to the ratio of resanant frequency ($f r$) to bandwidth (Bu) i.e.,

$$
Q=\frac{f \gamma}{B \omega}
$$

, The 2 of an amplifier is determined by the circuit component values. It may be noted hex that $?$ of a tu ned amplifier is generally greater than 10.

* when this condition is met, the resonant frequency
at parallel resonance is approximately given bp:

$$
f_{r}=\frac{1}{2 \pi \sqrt{L C}}
$$

Single Tuned Amplifiers:

* An amplitir circuit with a single tuner section being at the collector of the amplifier circuit is called as Single tuned amplifier circuit.

CONSTRUCTION:

* A simple tremiictor amplitier circuit convicting of a parallel tuned circuit in its collector load, makes a single tuned amplitien Circuit.
* The Values of Capacitance and inductance of the lured circuit are relected such that its resonant frequency is equal to the frequency to be ampletied
* The following circuit diann shows a ingle lived amplified circuit.

FL: SINGLE TUNED AMPLIFER

* The output Com be obtained from the Coupling Capacitor C_{C} as shown above of from a recondary winding placed at L.

OPERATION:
The high frequency signal that has to be amplified is applied at the input of the amplitier.

* The resonant frequency of the parallel fund circuit is made equal to the trequency of the signal applied by altering the Capacitance realue of the Capacitor C, in the turned circuit. * At this stage, the trued circuit offers high impedance to the signal frequency, which helps to otter high output across the tuned circuit.
* As high impedance is offered only bor the tuned frequency, all the otter frequencies while get lower impedance are rejected by the fumed circuit.
* Hence the tuned amplitier select and amplities the decried frequency ligned. FREQUENCY RESPONSE:
* The parallel resonance occurs at rearonant frequency f_{r} to hen the circuit has a high Q-bacta, the herononit frequency te, is given by,

$$
f_{l}=\frac{1}{2 \pi \sqrt{R c}}
$$

* The following graph shoves the frequency response of a single tuned amplifier circuit.

* At resonant trequeny t_{1}, is the impedance of parallel tuned circuit is very high and is purely revirtive.
* The Voltage across R_{L} is theutore maximum, when the circuit is tuned to resonant trequemey.
* Hence the voltage gain is maximum at resonant trequemey and drops oft above and below resonant frequency. * The higher the Q, the narrower will the Curve.

AnALYSIS:

* The tuned amplities are weed for high frequency lignals to hybrid- π mood is weed for analgies.

FIG: HYBRID OT MODEL FOR SINGLE TUNED AMPLIFIER

* Apply miller's theosem then the circuit will be

* By imaglacting ϵ_{+}, c_{b}
* upon approximations the modified circuit will be,

From the circuit

1. $g_{c e}=\frac{1}{\text { re }}=h_{o e}-g_{m}$ bre $=h_{o e}$

$$
\text { hoe }=\frac{1}{R_{0}}
$$

2. $C_{i n}=C_{b}^{\prime} e+C_{b}^{\prime} C(1-A)$
3. $C_{e q}=C_{b^{\prime} c}\left(\frac{A-1}{A}\right)+C$

Where $C=$ tuned circuit Capacitance
ADMITTANCE:

$$
y=\frac{1}{R+j \omega L}
$$

multiply and divide with ($R-j$ LL $)$

$$
\begin{aligned}
& Y=\frac{R-j \omega L}{(R+j \omega L)(R-j \omega L)} \\
&=\frac{R-j \omega L}{R^{2}-(j \omega L)^{2}} \\
&=\frac{R-j \omega L}{R^{2}+\omega^{2} L^{2}} \\
& y=\frac{R}{R^{2}+\omega^{2} L^{2}}-j * \omega L \\
& R^{2}+\omega^{2} L^{2}
\end{aligned}
$$

divide and multiply the record tum with we

$$
\begin{aligned}
& Y=\frac{R}{R^{2}+\omega^{2} L^{2}}-j \cdot \frac{(\omega L)(\omega L)}{\left(R^{2}+\omega^{2} L^{2}\right) \omega} \\
& y=\frac{R}{R^{2}+\omega^{2} L L}-j \cdot \frac{\omega^{2} L}{\left(R^{2}+\omega^{2} L^{2}\right) \omega} \\
& y=\frac{R}{R^{2}+\omega^{2} L^{2}}+\frac{\omega^{2} L}{j \omega\left(R^{2}+\omega^{2} L^{2}\right)} \quad\left(\because-j=\frac{1}{j}\right) \\
& y=\frac{1}{R P}+\frac{1}{j \omega L P}
\end{aligned}
$$

Where $R_{P}=\frac{R^{2}+\omega^{2} L^{2}}{R}$ and $L_{P}=\frac{R^{2}+\omega^{2} L^{2}}{\omega^{2} L}$

$$
\begin{aligned}
& R_{p}=\frac{R^{2}+\omega^{2} L^{2}}{R}=\frac{R^{2}}{R^{2}}+\frac{\omega^{2} L^{2}}{R}=\frac{\omega^{2} L^{2}}{R} \quad(\because \omega L \gg R) \\
& L_{p}=\frac{R^{2}+\omega^{2} L^{2}}{\omega^{2} L}=\frac{R^{2}}{\omega^{2} L}+\frac{\omega^{2} L^{2}}{\omega^{2} L}=L \quad(\because \omega L \gg
\end{aligned} \quad \begin{aligned}
& \left.\quad \frac{R^{2}}{\omega^{2} L}<L<L\right)
\end{aligned}
$$

* From the oufpet circuit

$$
\frac{1}{R_{t}}=\frac{1}{R_{p}}+\frac{1}{R_{0}}+\frac{1}{R_{i}}
$$

Where R_{t} is the total recirtance.

* The effective Q-bactor of the oufput circuit (loaded Q-bactor) is defined as Qeffective.

$$
\text { Qett }=\frac{\text { Susceptance of inductence }(s) \text { capacitance }}{\text { Conductance of sheut reistance }\left(R_{t}\right)}
$$

Qefs to inducto $L=\frac{R_{t}}{w^{2}} \quad$ Qeft for Capacito $C=W_{0} C R_{t}$

$$
\begin{aligned}
y=\frac{1}{z} & =\frac{1}{R_{t}}+\frac{1}{j \omega L}+j \omega c \\
& =\frac{1}{R_{t}}\left[1+\frac{R_{t}}{j \omega L}+j \omega c R_{t}\right]
\end{aligned}
$$

muttiply mumerata and denomixator by w_{0}

$$
\begin{aligned}
& Y=\frac{\omega_{0}}{R_{t} \omega_{0}}\left[\frac{1}{\lambda t} 1+\frac{R_{t}}{j \omega L}+j \omega C R_{t}\right] \\
& =\frac{1}{R_{t}}\left[1+\frac{\omega_{0} P_{t}}{\omega_{0} j \omega_{L}}+\frac{j \omega \omega_{0} C R_{t}}{\omega_{0}}\right] \\
& =\frac{1}{R_{t}}\left[1+\frac{\text { QeHt } \omega_{0}}{j \omega}+\frac{j Q_{\text {ett }} \omega_{0}}{\omega_{0}}\right] \\
& =\frac{1}{R t}\left[1+j \operatorname{Deft~}^{2}\left[-\frac{\omega_{0}}{\omega}+\frac{\omega_{0}}{\omega_{0}}\right]\right. \\
& y=\frac{1+j Q_{\text {eft }}\left[\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right]}{R_{t}} \\
& z=\frac{1}{y}=\frac{R_{t}}{1+j \operatorname{Seft}\left[\frac{\omega_{0}}{\omega_{0}}-\frac{\omega_{0}}{\omega_{0}}\right]} \\
& {\left[\because \text { Qefffor induclor }=\frac{R_{t}}{\omega_{0} 2}\right.} \\
& \text { Qett for capacito }=\omega_{0}(R)
\end{aligned}
$$

* $\delta($ della $)$ is the tractional change of the revonat treepeney wo.

$$
\begin{aligned}
& \delta=\frac{\omega-\omega_{0}}{\omega_{0}}=\frac{\omega_{0}}{\omega_{0}}-\frac{\omega_{0}}{\omega_{0}}=\frac{\omega}{\omega_{0}}-1 \\
& \delta=\frac{\omega^{0}}{\omega_{0}}-1 \\
& \frac{\omega^{\prime}}{\omega_{0}}=\delta+1 \quad \text { and } \frac{\omega_{0}}{\omega^{2}}=\frac{1}{\delta+1}
\end{aligned}
$$

How, $Z=\frac{R_{t}}{H j Q_{\text {etf }}\left[\delta+1-\frac{1}{\delta+1}\right]}$

$$
\begin{aligned}
& =\frac{P_{t}}{1+j Q_{\text {eff }}\left[\frac{(\delta+1)^{2}-1}{(\delta+1)}\right]} \\
& =\frac{R_{t}}{1+j Q_{\text {eff }}\left[\frac{\delta^{2}+2 \delta+1-1}{\delta+1}\right]} \\
& =\frac{R_{t}}{1+j Q_{\text {eff }}\left[\frac{\delta^{2}+2 \delta}{\delta+1}\right]}=\frac{R_{t}}{1+j Q_{\text {elf } 2 \delta}\left[\frac{\delta / 2+1}{\delta+1}\right]}
\end{aligned}
$$

* At any trequemy, we clove to the resonant frequency $\left(\omega_{0}\right) 4$

$$
\begin{array}{r}
d \ll 1\left(\because \omega-\omega_{0} \ll 1\right) \\
\quad z=\frac{R_{t}}{1+j Q_{\text {eft }} 2 \delta}
\end{array}
$$

* From the circuit output Voltage is given by,

$$
\begin{aligned}
& V_{0}=-g_{m} V_{\text {Be }} * z=-g_{m} V_{b^{\prime} e^{*} * \frac{Q_{t}}{1+j Q_{\text {eft }}{ }^{2} \delta}} \\
& V_{b}^{\prime} e=V_{i} * \frac{r_{b^{\prime} e}}{r_{b}^{\prime} e+r_{b^{\prime} b}} \\
& A=\frac{V_{0}}{V_{i}}=\frac{-g_{m} * X_{i} * l_{b}^{\prime} e}{r_{b}^{\prime} e+r_{b}^{\prime} b} \otimes \frac{R_{t}}{1+j Q_{\text {elf }}{ }^{\prime} \delta} \\
& A=\frac{-g_{m} r_{b} e^{\prime} R_{t}}{\left(r_{b}^{\prime}+r_{b} / b\right)\left(1+j Q_{\text {eth }} \partial \delta\right)}
\end{aligned}
$$

\rightarrow This is the gain without resonance.

* The Voltage gain at resonance is $\delta=0$

$$
\begin{aligned}
& \text { Ares }=\frac{-g_{m} \times r_{b}^{\prime} e R_{t}}{\left.\left(r_{\text {be }}+r_{b b}\right)\left(1+\operatorname{jichef}^{\prime}\right)(0)\right)} \\
& \text { Ares }=\frac{-g_{m} \lambda_{b l e}}{l_{b l e}+l_{b b}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{A}{\text { Ares }}=\frac{1}{1+j \text { fete } 28} \\
& \left.\left|\frac{A}{\text { Ares }}\right|=\frac{1}{\sqrt{1+Q_{e n d}^{2} \delta^{2}}}(\cdot)| | \frac{A}{\text { Ares }} \right\rvert\,=\frac{1}{\sqrt{1+\left(2 \Omega Q_{e H}\right)^{2}}}
\end{aligned}
$$

EFFECT OF CASCADING SINGLE TUNED AMPLIFIER ON BAND WIDTH:

* When two or more stages are cascaded then overall gain will be increaud and band width will be decreacel

$$
Q=\frac{f_{e}}{B \omega}
$$

* We know that $\left|\frac{A}{\text { Ares }}\right|=\frac{1}{\sqrt{1+\left(Q_{S \text { Set }}\right)^{2}}}$
* The relative geum of n-stage Cascaded Ampletir is

$$
\left|\frac{A}{\text { Ares }}\right|^{n}=\left[\frac{1}{\sqrt{1+(2 \Delta \mathrm{Qetf})^{2}}}\right]^{n}
$$

The $3-d_{B}$ trequing for cascaded amplitien is,

$$
\begin{aligned}
& \left|\frac{A}{\text { Ares }}\right|^{n}=\frac{1}{\sqrt{1+2 \delta}} \\
& \left|\frac{A}{\text { Ares }}\right|^{n}=\frac{1}{\sqrt{2}} \\
& {\left[\frac{1}{\sqrt{1+(2 S \text { set })^{2}}}\right]^{n}=\frac{1}{\sqrt{2}}} \\
& {\left[\frac{1}{1+\left(2 \delta(\mathrm{ClH})^{2}\right.}\right]^{n * 1 / 2}=\left(\frac{1}{2}\right)^{1 / 2}} \\
& {\left[\frac{1}{1+(2 \delta Q \mathrm{SH})^{2}}\right]^{n}=\frac{1}{2}} \\
& \left(1+\left(2 \delta Q e L^{2}\right)^{n}=2\right. \\
& 1+\left(2 \delta Q_{\text {eff }}\right)^{2}=2^{1 / n} \\
& (2 s Q e f t)^{2}=2^{1 / n}-1 \\
& 2 \text { SQeff }=\sqrt{2^{1 / n}-1} \\
& S=\frac{\omega-\omega_{0}}{\omega_{0}}(0) \frac{1-f_{0}}{t_{0}}
\end{aligned}
$$

$$
\begin{aligned}
2\left(\frac{f-t_{0}}{f_{0}}\right) Q_{\text {eft }} & = \pm \sqrt{2^{1 / n}-1} \\
Q_{\text {eft }} & = \pm \frac{f_{0}}{f-f_{0}} \\
\left(f-f_{0}\right) & = \pm \frac{f_{0}}{2 Q_{\text {eft }}} \sqrt{2^{1 / n}-1}
\end{aligned}
$$

* Let us assume f_{1} and f_{2} are upper and lower cut-off trequences then

$$
\text { Band widlt }=f_{2}-f_{1}
$$

from the fig, $\left(f_{2}-f_{1}\right)=\left(f_{2}-f_{0}\right)-\left(f_{0}-f_{1}\right)$

$$
\begin{aligned}
& f_{2}-f_{0}=+\frac{f_{0}}{2 \text { sets }} * \sqrt{2^{1 / n}-1} \\
& f_{0}-f_{1}=-\frac{f_{0}}{2 Q \operatorname{Qef}} \sqrt{2^{1 / n}-1} \\
& \therefore f_{2}-f_{1}=\frac{f_{0}}{2 \text { melt }}-\left(-\frac{f_{0}}{2 \text { left }} \sqrt{2^{1 / n}-1}\right) \\
& =\left(\frac{f_{0}}{2 \text { QeHt }}+\frac{f_{0}}{2 \text { QeHt }^{2}}\right) \sqrt{2^{V n}-1} \\
& =\frac{2 / f_{0}}{2 \text { left }} \sqrt{2^{1 / n}-1} \\
& f_{2}-f_{1}=\frac{f_{0}}{Q e f t} \sqrt{2^{v n}-1} \\
& \therefore(B \cdot \omega)_{n}=B \cdot \omega \sqrt{2^{m_{n}}-1} \quad\left(\because B \omega=\frac{f_{0}}{Q_{\text {eH }}}\right)
\end{aligned}
$$

ADVANTAGES:

1. The power loss is less due to the lack of Collector reintance.
2. Selectivity is high
3. Voltage supply of the collector is small due to lack of R_{c}.

LIMITATIONS:

1. This tuned amplitier is required to be high elective. But high reflectivity required a tuned circuit with a high Q-bactor. 2. A high Qbactor circuit will give a high Av but at the lame time, it will give much reduced band codollte.
2. It means that fumed amplitiu with reduced bandwidth may not be able to amplity equally the complete bond of lignals and revels in poos reproduction. This is called "potential instability in tuned amplitici.

DOUBLE TUNED AMPLIFIER:

* An ampletir ciscriet with a double tuned circuits at the collector of the amplitier circuit is Called as Double tuned ampliten Creneit * The problem of potential instability with a lingle tuned amplities overcome in a double furred ampletier conch convict of independently Coupled two tuned circuit.

CONSTRUCTION:

* The circuit diagram for double tuned amplitier is as shown

fiG: DOUBLE TUNED AMPLIFIER
$*$ This circuit concirts of two tuned circuits $L_{1} C_{1}$ and $L_{2} C_{2}$ is the 25 collector erection of the amplitie.
* The signal at the output of the turned circuit $4 C_{1}$ is coupled to the otter tuned circuit $L_{2} C_{2}$ through: mutual inonduetence.

OPERATION:

* The high trequency signal to be amplified is applied. The resonant frequency of tuned circuit $L_{1} C_{1}$ is made equal to the signal frequency. * Consequently large output appeals actors the tuned circuit $L_{1} C_{1}$. The op from this tuned circuit is tronuteved to the second tuned circuit $\mathrm{I}_{2} \mathrm{C}_{2}$ through mutual induction.
* Double tuned circuits are extensively wed bo Coupling the various circuits of radio and telvivion receivers.

FREQUENCY RESPONSE:

* The frequency responce of a double tuned circuit depends upon the deque of coupling i.e., upon the amount of mutual inductance between the two themed circuits.
* When $\operatorname{coil} L_{2}$ is coupled to coil L, a portion of load revietence had been/added is coupled into the primary tank circuit $L_{1} C_{1}$ and affects the primary circuit.
* lohen the coils are spaced apart, all the primacy coil L_{1} flux will net line the recondary coil L_{2}. The coils are laid to have "Lode Coupling" * Under luck conditions, the reristance retected from the load i.e., Secondary circuit is small.
* The resonance curve will be sharp and the circuit Q is high. * When the primary and recondary coils are very close together, then it is called "tight coupling".
* Under such conditions, the retheted revirtancewill be large and the circuit Q is lower.

Coupling

Bandwidth .

* From the frequency responce gog double tuned amplitie, it is clean that bandwidth increaces with the degree of Coupling.
* obviously, the determining factor in a double tuned circuit is not Q-bacta but the coupling. For a given frequency, the fighter the coupling, the quarter is the bandwidth.

$$
B \cdot w=k f_{l}
$$

Here, k is the coefficient of coupling.
Ebtect of Cascading double tuned amplitiers on Bandwidth:

* When a number of identical double tuned ampletiess as Connected in Cascade the overall bandwidth of a system is narrowed.

$$
B \cdot \omega_{n}=B \omega\left(2^{1 / n-1}\right)^{1 / 4}
$$

Advantages:

* Steeper rides in the Curve
* frat top The main advantage of a double-temed amplifier is am amplitiu including a tuned circuit on the ils and Nip.
* It has naveou bandwidth.
* Impedance matchup wing previous place
$\$ 3 d \beta$ Band width is large
* Selectivity is improved.

DISADVANIAGES

* There are net riutable for ampletying audio trequencies.
* St the trequency band increaces, then this deuger becomes complex.
* Fwo LC cireciets tumes uparatily. The aligment is defticult.
* The deugn wes tuning elements like capacitoss and induclors, then the cireud is cotly and bullks.

Stagqer Toned Amplifier:

* Stagger tuned amplitice is a cascaded elage lingle tuned ampleter decigned to inprove the total trequency reppone of the tuned ampliten * The total trequency reupone of this ampleten can be ackieved by adding up the repacate repponce as one.
* When the different tumed circiits revonand trequenies are staggered Otturwine diplaced, then it is thoron as Stergeere timed ampletex WOORKING:

Fig: Stagger tuned amplifier

* In order to increase bandwidth, double tuned amplities are preferred. but alignment of double tuned amplifies is difficult. 28 * In stagger tuned circuits, two single tuned cascade amplifies having a centaur bandwidth are taken.
* The resonant frequencies of the two tuned circuits are so adjusted that they are uparated by an amount equal to the bandwidth of each stage.
* Since the revonard frequencies are displaced os Staggered, they are known as stagger timed circuits.

Frequency responses:

Fig: RESPONSE OF INDIVIDUAL TUNGD AMPLIFHER

FIG: OVERALL RESPONSE OF STAGGER TUNED AMPLFIER.

* The resultant stogqued pair will have a bandwidth i.e., I2 times that of each g the individual single tuned circuits. The overall ulectivity function will be identical in form with that of a lingle sledge double tuned ryclan.
* The relative gere of a single tuncel direct coupled ampleteen is given ky,

$$
\frac{A}{\text { Ares }}=\frac{1}{1+j 2 \delta Q_{\text {eft }}}
$$

Let $\frac{A}{\text { Ares }}=\frac{1}{1+j x}$ where $x=2$ SQeft

* As Bandwidth is $B=\frac{\text { fo }}{\text { Ret }}$ and under $3 d B$ frequency $S=\frac{1}{2 \text { Get }}$, the equation for Bandwidth can be welter as $B=2 \delta f_{0}$.
* Since one stage is tuned to a frequency soto below fo and the oltier seeger is tuned to a drequency do fo above to.
* The corresponding selectivity function of the circuits are

$$
\left(\frac{A}{\text { Avs }}\right)_{1}=\frac{1}{1+j(x-1)} \text { and }\left(\frac{A}{\text { Ares }}\right)_{2}=\frac{1}{1+j(x+1)}
$$

* The overall gain function beconces,

$$
\begin{aligned}
\left(\frac{A}{\text { Ares }}\right)_{\text {pan }} & =\left(\frac{A}{\text { Ares }}\right)_{1} *\left(\frac{A}{\text { Ares }}\right)_{2} \\
& =\left[\frac{1}{1+j(x-1)}\right] *\left[\frac{1}{1+j(x+1)}\right] \\
& =\frac{1}{(1+j(x-1))(1+j(x+1))} \\
& =\frac{1}{1+j(x+1)+j(x-1)+j^{2}(x+1)(x-1)} \\
& =\frac{1}{1+j(x+1+x-1)+1\left(x^{2}-1\right)} \\
& =\frac{1}{1+j 2 x-x^{2}+1} \\
& =\frac{1}{2+j 2 x-x^{2}} \\
& =\frac{1}{\left(-x^{2}+2\right)+j 2 x}
\end{aligned}
$$

The magnitude of the revelting function is,

$$
\begin{aligned}
& \left\lvert\,\left(\frac{A}{\text { Ares paiu }} \left\lvert\,=\frac{1}{\sqrt{\left(2-x^{2}\right)^{2}+(2 x)^{2}}}\right.\right.\right. \\
& =\frac{1}{\sqrt{4+x^{7}+14 x^{2}+46 x^{2}}} \\
& =\frac{1}{\sqrt{4+x^{4}}} \\
& =\frac{1}{\sqrt{4+\left(2 \delta Q_{\text {ett }}\right)^{4}}} \\
& =\frac{1}{\sqrt{4(1+48 Q e P t)^{4}}} \\
& \left\lvert\,\left(\frac{A}{\text { Arespair }}\right)=\frac{1}{2} \frac{1}{\sqrt{1+4 d^{4} Q_{l e r e}^{4}}}\right.
\end{aligned}
$$

A DVANTAGES:

* Inculaled Bondwielth companed to ringle terned amplitier
* High geuir Bandwidter product.
* Enhanced Stability

Stability of Tuned Amplifiers.

$$
\begin{aligned}
& \text { Stability } \rightarrow \text { Frequency Low distortion will occur } \\
& \text { high because of non-linear transistor }
\end{aligned}
$$

Distortion occur in low frequency

1. Non-linear Amplitude harmonic distortion Frequency Harmonic distortion
2. Linear
\Rightarrow we are used $C_{b^{\prime} c}$ in radio frequency Tuned circuit. From this we are provided positive (or) negative feedback. If we provided positive feed back use get instability.
\Rightarrow To Avoid instability, we are connected another component from base to collected. It provides neutralization.
The Neutralization process introduced by L.A. Hazeltine.
The xe are the types of Neutralization.
3. Hazeltine Neutralization.
4. Neutrodyne Neutralization
5. Neutralization with Coil.

8.9 NEUTRALIZATION

The technique used for the elimination of potential oscillations is called neutralization. BJT and FET are potentially unstable over some frequency range due to the feedback parameter $\left(Y_{N}\right)$ present in them. If the feedback can be cancelled by an additional feedback signal that is equal in amplitude and opposite in sign, the transistor becomes unilateral from input to output the oscillations completely stop. This is achieved by Neutralization. The small-signal equivalent circuit of a BJT is shown in Fig. 8.28.

Fig. 8.28 Equivalent circuit of a neutralized transistor
From the definition of admittance parameters,

$$
y_{r e}^{\prime}=\left.\frac{I_{b}}{V_{c e}}\right|_{V_{f e}=0}
$$

and with the input terminal shorted

Therefore,

$$
\begin{aligned}
& I_{b}=y_{r e} V_{c e}-Y_{N} V_{c e} \\
& I_{b}=V_{c e}\left[y_{r e}-Y_{N}\right]
\end{aligned}
$$

i.e.

$$
\frac{I_{b}}{V_{c e}}=y_{r e}-Y_{N}
$$

Comparing the above equations, we get

$$
y_{r e}^{\prime}=y_{r e}-Y_{N}
$$

For perfect neutralization, $y_{r e}^{\prime}=0$. Therefore, $y_{r e}=Y_{N}$. This indicates that oscillation does not exist if the designed circuit element matches $y_{r e}$ for all values of frequency and operating conditions. $y_{r e}$ is a nonlinear parameter which is given by

$$
y_{r e} \approx-j \omega C_{r e}
$$

which implies $C_{r e}$ is a slow varying function of both operating point and frequency. Hence the desired component that is used for neutralization is a negative capacitor. Since the fabrication of capacitor is complex, an inductor with negative susceptance, $B=-j(1 / \omega L)$ is perferred, which has the inverse frequency dependence characteristics. Moreover, the inductor acts as a short circuit at dc condition and need not be considered. One practical approach to this problem is to use a fixed capacitance that is transformer coupled for 180° phase shift to produce neutralization over a limited frequency range. One such circuit is shown in Fig. 8.29. Here, perfect neutralization is not possible and the problems created by limited neutralization may exceed their benefits.
Hazeltine neutralization method This is a neutralization technique employed in tuned RF amplifiers to maintain stability. In the circuit shown in Fig. 8.30, the Undesired effect of the collector to base capacitance of the transistor is neutralized

Fig. 8.29 A tuned amplifier with narrow band neutralization to prevent oscillations
by introducing a signal which cancels the signal coupled through the collector to base capacitance.

The Fig. 8.30 shows that a small variable capacitance C_{N} is connected from the bottom of the coil to the base of the transistor. The neutralization process is achieved by C_{N}. It introduces a signal to the base of the transistor such that is cancels out the signal fed to the base by $C_{b c}$. Generally a variable capacitor is used for neutralization as the value of $C_{b c}$ changes with time. By properly adjusting C_{N}, exact neutralization is achieved.

Fig. 8.30 Tuned RF amplifier with Hazeltine neutralization $\left(C_{N}=\right.$ neutralization capacitance)

In the modified version of Hazeltine neutralization called Neutrodyne neutralization technique, C_{N} is connected to the lower end of the secondary coil of the next stage. Hence it is connected with $V_{C C}$ which ensures that, it is insensitive to any variation in the supply voltage $V_{C C}$ and provides higher stabilization for the tuned amplifier. The circuit for the same is shown in Fig. 8.31.

Fig. 8.31 Modified Hazeltine-neutrodyne neutralization technique

