
MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 1.

UNIT – I

OVERVIEW

 Introduction to microprocessors

 Evolution of microprocessors

 Features of 8085 microprocessor

 Pin Diagram of 8085 microprocessor

 Architecture of 8085

 Addressing modes of 8085

 Timing Diagrams

 Instruction set

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 2.

UNIT-I

INTRODUCTION:

Microprocessor acts as a CPU in a microcomputer. It is present as a single IC chip in a microcomputer.

Microprocessor is the heart of the machine.

A Microprocessor is a device, which is capable of

1. Receiving Input 2 Performing Computations 3. Storing data and instructions

4. Display the results 5. Controlling all the devices that perform the above 4 functions.

The device that performs tasks is called Arithmetic Logic Unit (ALU). A single chip called Microprocessor

performs these tasks together with other tasks.

“A MICROPROCESSOR is a multipurpose programmable logic device that reads binary instructions

from a storage device called memory accepts binary data as input and processes data according to those

instructions and provides results as output.”

Figure shows a programmable machine, which consists of a microprocessor, memory, I/O. All these three

components work together to perform a given task.

EVOLUTION OF MICROPROCESSORS:

The microprocessor age began with the advancement in the IC technology to put all necessary functions of a

CPU into a single chip.

 Intel started marketing its first microprocessor in the name of Intel 4004 in 1971. This was a4-bit

microprocessor having 16-pins in a single chip of PMOS technology. This was called the first generation

microprocessor. The Intel 4004 along with few other devices was used for making calculators. The 4004

instruction set contained only 45 instructions. Later in 1971, INTEL Corporation released the 8008 – an

extended 8-bit version of the 4004 microprocessor. The 8008 addressed an expanded memory size (16KB) and

48 instructions.

Limitations of first generation microprocessors is small memory size, slow speed and instruction set limited its

usefulness.

Second generation microprocessors:

The second generation microprocessor using NMOS technology appeared in the market in the year 1973. The

Intel 8080, an 8-bit microprocessor, of NMOS technology was developed in the year 1974 which required only

two additional devices to design a functional CPU.

The advantages of second generation microprocessors were

 Large chip size (170 x 200 mil) with 40-pins. More chips on decoding circuits.

 Ability to address large memory space (64-K Byte) and I/O ports (256).

 More powerful instruction sets. Dissipate less power.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 3.

 Better interrupt handling facilities. Cycle time reduced to half (1.3 to 9 m sec.)

 Sized 70x200 mil) with 40-pins. Less Support Chips Required

 Used Single Power Supply Faster Operation

The 8080 microprocessor addresses more memory and execute additional instructions, but executes them 10

times faster than 8008.The 8080 has memory of 64 KB whereas for 8008 16 KB only. In 1977, INTEL,

introduced 8085 which was an updated version of 8080 last 8-bit processor.

 The main advantages of 8085 were its internal clock generator, internal system controller and higher

clock frequency.

Third Generation Microprocessor:

In 1978, INTEL released the 8086 microprocessor, a year later it released 8088. Both devices were 16 bit

microprocessors, which executed instructions in less than 400ns.The 8086 and 8088 addresses 1MB of memory

and rich instruction set to 246.16-bit processors were designed using HMOS technology. The Intel 80186 and

80188 were the improved versions of Intel 8086 and8088, respectively. In addition to 16-bit CPU, the 80186

and 80188 had programmable peripheral devices integrated on the same package.

Fourth Generation Microprocessor:

The single chip 32-bit microprocessor was introduced in the year 1981 by Intel as iAPX 432. The other

4thgeneration microprocessors were; Bell Single Chip Bellmac-32, Hewlett-Packard, National NSl 6032, Texas

Instrument99000. Motorola 68020 and 68030. The Intel in the year 1985 announced the 32-bit microprocessor

(80386). The 80486 has already been announced and is also a 32-bit microprocessor.

The 80486 is a combination 386 processor a math coprocessor, and a cache memory controller on a single chip.

 The Pentium is a 64-bit superscalar processor. It can execute more than one instruction at a time and has

a full 64-bit data bus and 32-bit address bus. Its performance is double than 80486.

inition is: ALAB: MOV AX, COUNT

8085 Microprocessor

The salient features of 8085 μp are:

• It is a 8 bit microprocessor.

• It is manufactured with N-MOS technology.

• It has 16-bit address bus and hence can address up to 216 = 65536 bytes (64KB) memory locations through

A0-A15.

• The first 8 lines of address bus and 8 lines of data bus are multiplexed AD0 – AD7.

• Data bus is a group of 8 lines D0 – D7.

• It supports external interrupt request.

• A 16 bit program counter (PC)

• A 16 bit stack pointer (SP)

• Six 8-bit general purpose register arranged in pairs: BC, DE, HL.

• It requires a signal +5V power supply and operates at 3.2 MHZ single phase clock.

• It is enclosed with 40 pins DIP (Dual in line package).

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 4.

A8 - A15 (Output 3 State)

 Address Bus:The most significant 8 bits of the memory address or the 8 bits of the I/0 address,3 stated during

Hold and Halt modes.

AD0 - AD7 (Input/Output 3state)

 Multiplexed Address/Data Bus; Lower 8 bits of the memory address (or I/0 address) appear on the bus

during the first clock cycle of a machine state. It then becomes thedata bus during the second and third clock

cycles. 3 stated during Hold and Halt modes.

ALE (Output)

 Address Latch Enable: It occurs during the first clock cycle of a machine state and enables the address to get

latched into the on chip latch of peripherals. The falling edge of ALE is set to guarantee setup and hold times

for the address information. ALE can also be used to strobe the status information. ALE is never 3stated.

RD (Output 3state)

READ: indicates the selected memory or 1/0 device is to be read and that the Data Bus is available for the data

transfer.

WR (Output 3state)

WRITE: It indicates the data on the Data Bus is to be written into the selected memory or 1/0 location. Data is

set up at the trailing edge of WR. Tri-stated during Hold and Halt modes.

READY (Input)

If Ready is high during a read or write cycle, it indicates that the memory or peripheral is ready to send or

receive data. If Ready is low, the CPU will wait for Ready to go high before completing the read or write cycle.

HOLD (Input)

HOLD:indicates that another Master is requesting the use of the Address and DataBuses. The CPU, upon

receiving the Hold request. will relinquish the use of buses as soon as the completion of the current machine

cycle. Internal processing can continue.The processorcanregain the buses only after the Hold is removed. When

the Hold is acknowledged, the Address, Data, RD, WR, and IO/M lines are 3stated.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 5.

HLDA (Output)

HOLD ACKNOWLEDGE:indicates that the CPU has received the Hold request and that it will relinquish the

buses in the next clock cycle. HLDA goes low after the Hold request is removed. The CPU takes the buses one

half clock cycle after HLDA goes low.

INTR (Input)

INTERRUPT REQUEST is used as a general purpose interrupt. It is sampled onlyduring the next to the last

clock cycle of the instruction. If it is active, the Program Counter (PC) will be inhibited from incrementing and

an INTA will be issued. During this cycle a RESTART or CALL instruction can be inserted to jump to the

interrupt service routine. The INTR is enabled and disabled by software. It is disabled by Reset and immediately

after an interrupt is accepted.

INTA (Output)

INTERRUPT ACKNOWLEDGE: is used instead of (and has the same timing as) RDduring the Instruction

cycle after an INTR is accepted. It can be used to activate the 8259 Interrupt chip or some other interrupt port.

RESTART INTERRUPTS

These three inputs have the same timing as INTR except they cause an internal RESTART to be a utomatically

inserted.

RST 7.5 ~~ Highest Priority RST 6.5

RST 5.5 Lowest Priority

TRAP (Input)

Trap interrupt is a non-maskable restart interrupt. It is recognized at the same time as INTR. It is unaffected by

any mask or Interrupt Enable. It has the highest priority of any interrupt.

RESET IN (Input)

Reset sets the Program Counter to zero and resets the Interrupt Enable and HLDA flip-flops. None of the other

flags or registers (except the instruction register) are affected The CPU is held in the reset condition as long as

Reset is applied.

RESET OUT (Output)

Indicates CPU is being reset. Can be used as a system RESET. The signal is synchronized to the processor

clock.

SO, S1 (Output)

 Data Bus Status. Encoded status of the bus cycle:

 S1 S0 OPERATION

 0 0 HALT

 0 1 WRITE

 1 0 READ

 1 1 FETCH

X1, X2 (Input)

Crystal or R/C network connections to set the internal clock generator X1 can also be

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 6.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 7.

Control Unit

Generates signals within Microprocessor to carry out the instruction, which has been decoded. In reality causes

certain connections between blocks of the uP to be opened or closed, so that data goes where it is required, and

so that ALU operations occur.

Arithmetic Logic Unit

The ALU performs the actual numerical and logic operation such as „add‟, „subtract‟, „AND‟, „OR‟, etc. Uses

data from memory and from Accumulator to perform arithmetic. Always stores result of operation in

Accumulator.

Registers

The 8085/8080A-programming model includes six registers, one accumulator, and

one flag register, as shown in Figure. In addition, it has two 16-bit registers: the stack pointer and the program

counter. The 8085/8080A has six general-purpose registers to store 8-bit data; these are identified as B,C, D, E,

H, and L as shown in the figure. They can be combined as register pairs - BC, DE, and HL - to perform some

16-bit operations. The programmer can use these registers to store or copy data into the registers by using data

copy instructions.

Accumulator

The accumulator is an 8-bit register that is a part of arithmetic/logic unit (ALU). This register is used to store 8-

bit data and to perform arithmetic and logical operations. The result of an operation is stored in the accumulator.

The accumulator is also identified as register A.

Flags

The ALU includes five flip-flops, which are set or reset after an operation according

to data conditions of the result in the accumulator and other registers. They are called Zero (Z), Carry (CY),

Sign (S), Parity (P), and Auxiliary Carry (AC) flags. The most commonly used flags are Zero, Carry, and Sign.

The microprocessor uses these flags to test data conditions.

 For example, after an addition of two numbers, if the sum in the accumulator id larger than eight bits, the

flip-flop uses to indicate a carry -- called the Carry flag (CY) – is set to one. When an arithmetic operation

results in zero, the flip-flop called the Zero (Z) flag is set to one. The first Figure shows an 8-bit register, called

the flag register, adjacent to the accumulator. However, it is not used as a register; five bit positions out of eight

are used to store the outputs of the five flip-flops. The flags are stored in the 8-bit register so that the

programmer can examine these flags (data conditions) by accessing the register through an instruction. These

flags have critical importance in the decision-making process of the microprocessor. The conditions (set or

reset) of the flags are tested through the software instructions. For example, the instruction JC (Jump on Carry)

is implemented to change the sequence of a program when CY flag is set.

Program Counter (PC)

This 16-bit register deals with sequencing the execution of instructions. This register is a memory pointer.

Memory locations have 16-bit addresses, and that is why this is a16-bit register.

The microprocessor uses this register to sequence the execution of the instructions. The function of the program

counter is to point to the memory address from which the next byte is to be fetched. When a byte (machine

code) is being fetched, the program counter is incremented by one to point to the next memory location

Stack Pointer (SP)

The stack pointer is also a 16-bit register used as a memory pointer. It points to a memory location in R/W

memory, called the stack. The beginning of the stack is defined by loading 16-bit address in the stack pointer.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 8.

Instruction Register/Decoder

 Temporary store for the current instruction of a program. Latest instruction sent here from memory prior to

execution. Decoder then takes instruction and decodes or interprets the instruction. Decoded instruction then

passed to next stage.Memory Address Register

Holds address, received from PC, of next program instruction. Feeds the address bus with addresses of location

of the program under execution.

Control Generator

Generates signals within uP to carry out the instruction which has been decoded. In reality causes certain

connections between blocks of the uP to be opened or closed, so that data goes where it is required, and so that

ALU operations occur.

Register Selector

This block controls the use of the register stack in the example. Just a logic circuit which switches between

different registers in the set will receive instructions from Control Unit.

8085 Addressing mode:

 Addressing modes are the manner of specifying effective address. 8085 Addressing mode can be classified

into:

1) Direct addressing mode: the instruction consist of three byte, byte for the op-code of the instruction

followed by two bytes represent the address of the operand Low order bits of the address are in byte 2 High

order bits of the address are in byte 3

 Ex: LDA 2000h; this instruction load the Accumulator is loaded with the 8-bit content of memory

location [2000h]

2) Register addressing mode The instruction specifies the register or register pair in which the data is located

 Ex: MOV A,B ;Here the content of B register is copied to the Accumulator

3) Register indirect addressing mode The instruction specifies a register pair which contains the memory

address where the data is located.

 Ex. MOV M , A ;Here the HL register pair is used as a pointer to memory location. The content of

Accumulator is copied to that location

4) Immediate addressing mode: The instruction contains the data itself. This is either an 8 bit quantity or 16

bit (the LSB first and the MSB is the second)

 Ex: MVI A , 28h LXI H , 2000h ;First instruction loads the Accumulator with the 8-bit immediate

data 28h Second instruction loads the HL register pair with 16-bit immediate data 2000h

5) Implicit addressing mode: Here the operands are implicitly in the instruction itself.

 Ex: CMC –Complement carry

 STC – Set Carry

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 9.

 Timing Diagrams of 8085:

8085 has seven different machine cycles. These are:

(1) Opcode Fetch (2) Memory Read (3) Memory Write (4) I/O Read (5) I/O Write (6) Interrupt

Acknowledge (7) Bus Idle.

Opcode Fetch Machine Cycle:

 The first machine cycle of every instruction is the Opcode Fetch. This indicates the kind of instruction to

be executed by the system. The length of this machine cycle varies between 4T to 6T states—it depends

on the type of instruction. In this, the processor places the contents of the PC on the address lines,

identifies the nature of machine cycle (by IO/M, S0, S1) and activates the ALE signal. All these occur in

T1 state.

 In T2 state, RD signal is activated so that the identified memory location is read from and places the

content on the data bus (D0 – D7).

 In T3, data on the data bus is put into the instruction register (IR) and also raises the RD signal thereby

disabling the memory.

 In T4, the processor takes the decision, on the basis of decoding the IR, whether to enter into T5 and T6

or to enter T1 of the next machine cycle.

One byte instructions that operate on eight bit data are executed in T4. Examples are ADD B, MOV C,

B, RRC, DCR C, etc.

OPCODE FETCH TIMING DIAGRAM FOR 8085

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 10.

 Memory Read and Write Machine cycles:

Both the Memory Read and Memory Write machine cycles are 3T states in length. In Memory Read the

contents of R/W memory (including stack also) or ROM are read while in Memory Write, it stores data into

data memory (including stack memory).

During T2 and T3 states data from either memory or CPU are made available in Memory Read or

Memory Write machine cycles respectively. The status signal (IO/ M, S0, S1) states are complementary in

nature in Memory Read and Memory Write cycles. Reading or writing operations are performed in T2.

In T3 of Memory Read, data from data bus are placed into the specified register (A, B, C, etc.) and raises RD so

that memory is disabled while in T3 of Memory Write WR signal is raised which disables the memory.

 IO Read and Write Machine cycles:

I/O Read and Write machine cycles are almost similar to Memory Read and Write machine cycles

respectively. The difference here is in the IO/ M signal status which remains 1 indicating that these machine

cycles are related to I/O operations. These machine cycles take 3T states. In I/O read, data are available in T2

and T3 states, while during the same time (T2 and T3) data from CPU are made available in I/O write.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 11.

 Instruction Set

An instruction is a command given to the microcomputer to perform a specific task or function on a given data.

An instruction comprises of an operation code (called ‘opcode’) and the address of the data (called ‘operand’),

on which the opcode operates. This is the structure on which an instruction is based. The opcode specifies the

nature of the task to be performed by an instruction. Symbolically, an instruction looks like

Operation code Address of data

opcode operand

An instruction set is a collection of instructions that the microprocessor is designed to perform.

Functionally, the instructions can be classified into five groups:

 Data transfer (copy) group

 Arithmetic group

 Logical group

 Branch group

 Stack, I/O and machine control group.

Data transfer (copy) group

The different types of data transfer operations possible are cited below:

 Between two registers.

 Between a register and a memory location.

 A data byte can be transferred between a register and a memory location.

 Between an I/O device and the accumulator.

 Between a register pair and the stack.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

1

UNIT – II

OVERVIEW

 Introduction to 8086 microprocessors

 Architecture of 8086 processors

 Register Organization of 8086

 Memory Segmentation of 8086

 Pin Diagram of 8086

 Timing Diagrams for 8086

 Interrupts of 8086

 MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

DEPARTMENT OF ECE

2

UNIT-II
Features of 8086:

•It is a 16-bit μp.

•8086 has a 20 bit address bus can access up to 2^20 memory locations (1 MB).

•It can support up to 64K I/O ports.

•It provides 14, 16 -bit registers.

•It has multiplexed address and data bus AD0- AD15 and A16 – A19.

•It requires single phase clock with 33% duty cycle to provide internal timing.

•8086 is designed to operate in two modes, Minimum and Maximum.

•It can pre- fetches up to 6 instruction bytes from memory and queues them in order to speed up instruction

execution.

•It requires +5V power supply.

•A 40 pin dual in line package.

Architecture of 8086:

 8086 has two blocks BIU and EU.

 The BIU performs all bus operations such as instruction fetching, reading and writing operands for memory and

calculating the addresses of the memory operands. The instruction bytes are transferred to the instruction queue.

 EU executes instructions from the instruction byte queue.

 Both units operate asynchronously to give the 8086 an overlapping instruction fetch and execution mechanism

which is called as Pipelining. This results in efficient use of the system bus and system performance.

 BIU contains Instruction queue, Segment registers, IP, address adder.

 EU contains control circuitry, Instruction decoder, ALU, Flag register.

Bus Interface Unit:

 It provides full 16 bit bidirectional data bus and 20 bit address bus.

 The BIU is responsible for performing all external bus operations.

Specifically it has the following functions:

 Instructions fetch Instruction queuing, Operand fetch and storage, Address relocation and Bus control.

 The BIU uses a mechanism known as an instruction stream queue to implement pipeline architecture.

 This queue permits pre- fetch of up to six bytes of instruction code. Whenever the queue of the BIU is not full, it

has room for at least two more bytes and at the same time the EU is not requesting it to read or write operands from

memory, the BIU is free to look ahead in the program by pre- fetching the next sequential instruction.

 These pre-fetching instructions are held in its FIFO queue. With its 16 bit data bus, the BIU fetches two

instruction bytes in a single memory cycle.

 After a byte is loaded at the input end of the queue, it automatically shifts up through the FIFO to the empty

location nearest the output.

 The EU accesses the queue from the output end. It reads one instruction byte after the other from the output of the

queue. If the queue is full and the EU is not requesting access to operand in memory.

 These intervals of no bus activity, which may occur between bus cycles, are known as idle state.

 MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

DEPARTMENT OF ECE

2

 If the bus is already in the process of fetching an instruction when the EU request it to read or write operands

from memory or I/O, the BIU first completes the instruction fetch bus cycle before initiating the operand read /

write cycle.

 The BIU also contains a dedicated adder which is used to generate the 20 bit physical address that is output on

the address bus. This address is formed by adding an appended 16 bit segment address and a 16 bit offset address.

Physical address generation

Thus, Physical Address = Segment Register content 16 D + Offset

 MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

DEPARTMENT OF ECE

2

 For example: The physical address of the next instruction to be fetched is formed by combining the current

contents of the code segment CS register and the current contents of the instruction pointer IP register.

 The BIU is also responsible for generating bus control signals such as those for memory read or write and I/O

read or write.

Execution Unit:

 The EU extracts instructions from top of the queue in the BIU, decodes them, generates operands if necessary,

passes them to the BIU and requests it to perform the read or write bus cycles to memory or I/O and perform the

operation specified by the instruction on the operands.

 During the execution of the instruction, the EU tests the status and contro l flags and updates them based on the

results of executing the instruction.

 If the queue is empty, the EU waits for the next instruction byte to be fetched and shifted to top of the queue.

 When the EU executes a branch or jump instruction, it transfers control to a location corresponding to another set

of sequential instructions.

 Whenever this happens, the BIU automatically resets the queue and then begins to fetch instructions from this

new location to refill the queue.

Register organization of 8086:
The 8086 has four groups of the user accessible internal registers. They are the instruction pointer, four data

registers, four pointer and index register, four segment registers. The 8086 has a total of fourteen 16-bit registers

including a 16 bit register called the status register, with 9 of bits implemented for status and control flags.

There are four different 64 KB segments for instructions, stack, data and extra data. To specify where in 1

MB of processor memory these 4 segments are located the processor uses four segment registers:

•Code segment (CS) is a 16-bit register containing address of 64 KB segment with processor instructions. The

processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. CS

register cannot be changed directly. The CS register is automatically updated during far jump, far call and far

return instructions.

•Stack segment (SS) is a 16-bit register containing address of 64KB segment with program stack. By default, the

processor assumes that all data referenced by the stack pointer (SP) and base pointer (BP) registers is located in

the stack segment. SS register can be changed directly using POP instruction.

•Data segment (DS) is a 16-bit register containing address of 64KB segment with program data. By default, the

processor assumes that all data referenced by general registers (AX, BX, CX, DX) and index register (SI, DI) is

located in the data segment.DS register can be changed directly using POP and LDS instructions.

•Accumulator register consists of two 8-bit registers AL and AH, which can be combined together and used as a

16-bit register AX. AL in this case contains the low order byte of the word, and AH contains the high-order byte.

Accumulator can be used for I/O operations and string manipulation.

•Base register consists of two 8-bit registers BL and BH, which can be combined together and used as a 16-bit

register BX. BL in this case contains the low-order byte of the word, and BH contains the high-order byte. BX

register usually contains a data pointer used for based, based indexed or register indirect addressing.

•Count register consists of two 8-bit registers CL and CH, which can be combined together and used as a 16-bit

register CX. When combined, CL register contains the low order byte of the word, and CH contains the high-

order byte. Count register can be used in Loop, shift/rotate instructions and as a counter in string manipulation,.

•Data register consists of two 8-bit registers DL and DH, which can be combined together and used as a 16-bit

register DX. When combined, DL register contains the low order byte of the word, and DH contains the high-

order byte. Data register can be used as a port number in I/O operations. In integer 32-bit multiply and divide

instruction the DX register contains high-order word of the initial or resulting number.

•The following registers are both general and index registers:

•Stack Pointer (SP) is a 16-bit register pointing to program stack.

 MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

DEPARTMENT OF ECE

2

•Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP register is usually used for based,

based indexed or register indirect addressing.

•Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register indirect addressing, as

well as a source data addresses in string manipulation instructions.

•Destination Index (DI) is a 16-bit register. DI is used for indexed, based indexed and register indirect

addressing, as well as a destination data addresses in string manipulation instructions.

Instruction Pointer (IP) register acts as a program counter for 8086. It points to the address of the next

instruction to be executed. Its content is automatically incremented when the program execution of a program

proceeds further. The contents of IP and CS register are used to compute the memory address of the instruction

code to be fetched.

Flag register of 8086: It is a 16-bit register, also called flag register or Program Status Word (PSW). Seven

bits remain unused while the rest nine are used to indicate the conditions of fla gs. The status flags of the

register are shown below in Fig.

Status flags of Intel 8086

 Out of nine flags, six are condition flags and three are control flags. The control flags

 are TF (Trap), IF (Interrupt) and DF (Direction) flags, which can be set/reset by the

 programmer, while the condition flags [OF (Overflow), SF (Sign), ZF (Zero), AF (Auxiliary

 Carry), PF (Parity) and CF (Carry)] are set/reset depending on the results of some arithmetic or logical

operations during program execution.

 CF is set if there is a carry out of the MSB position resulting from an addition operation or if a borrow is

needed out of the MSB position during subtraction.

 PF is set if the lower 8-bits of the result of an operation contains an even number of 1’s. AF is set if there is

a carry out of bit 3 resulting from an addition operation or borrow required from bit 4 into bit 3 during

subtraction operation.

 ZF is set if the result of an arithmetic or logical operation is zero.

 MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

DEPARTMENT OF ECE

2

 SF is set if the MSB of the result of an operation is 1. SF is used with unsigned numbers.

 OF is used only for signed arithmetic operation and is set if the result is too large to be fitted in the number

of bits available to accommodate it.

The three control flags of 8086 are TF, IF and DF. These three flags are programmable, i.e., can be

set/reset by the programmer so as to control the operation of the processor.

 When TF (trap flag) is set (=1), the processor operates in single stepping mode—i.e., pausing after each

instruction is executed. This mode is very useful during program development or program debugging.

 When an interrupt is recognized, TF flag is cleared. When the CPU returns to the main program from ISS

(interrupt service subroutine), by execution of IRET in the last line of ISS, TF flag is restored to its value

that it had before interruption.

 TF cannot be directly set or reset. So indirectly it is done by pushing the flag register on the stack, changing

TF as desired and then popping the flag register from the stack.

 When IF (interrupt flag) is set, the maskable interrupt INTR is enabled otherwise disabled (i.e., when IF =

0).

 IF can be set by executing STI instruction and cleared by CLI instruction. Like TF flag, when an

interrupt is recognized, IF flag is cleared, so that INTR is disabled. In the last line of ISS when IRET is

encountered, IF is restored to its original value. When 8086 is reset, IF is cleared, i.e., resetted.

 DF (direction flag) is used in string (also known as block move) operations. It can be set by STD

instruction and cleared by CLD. If DF is set to 1 and MOVS instruction is executed, the contents of the

index registers DI and SI are automatically decremented to access the string from the highest memory

location down to the lowest memory location.

PIN DIAGRAM OF 8086

The 8086 is internally a 16-bit MPU and externally it has a 16-bit data bus. It has the ability to address up to 1

MB of memory via its 20-bit address bus. In addition, it can address up to 64K of byte-wide input/output

ports.

• It is manufactured using high-performance metal-oxide semiconductor (HMOS) technology, and the

circuitry on its chip is equivalent to approximately 29,000 transistors.

• The 8086 is housed in a 40-pin dual in-line package. The signals pinned out to each lead are shown in figure.

The address bus lines A0 through A15 and data bus lines D0 through D15 are multiplexed. For this reason, these leads are

labeled AD0 through AD15. By multiplexed we mean that the same physical pin carries an address bit at one time and the

data bits at another time.

• The 8086 can be configured to work in either of two modes:

• The minimum mode is selected by applying logic 1 to the MN/MX input lead. It is typically used for smaller

single microprocessor systems.

• The maximum mode is selected by applying logic 0 to the MN/MX input lead. It is typically used for larger

multiple microprocessor systems.

 MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

DEPARTMENT OF ECE

2

• Depending on the mode of operation selected, the assignments for a number of the pins on the microprocessor

package are changed. The pin functions specified in parentheses pertain to the maximum-mode.

• In minimum mode, the 8086 itself provides all the control signals needed to implement the memory and I/O

interfaces. In maximum-mode, a separate chip (the 8288 Bus Controller) is used to help in sending control

signals over the shared bus shown in figure.

 MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

DEPARTMENT OF ECE

2

MINIMUM MODE OF 8086

MAXIMUM MODE OF 8086

• Address/Data Bus: The address bus is 20 bits long and consists of signal lines A0 (LSB) through A19 (MSB).

However, only address lines A0 through A15 are used when accessing I/O.

• The data bus lines are multiplexed with address lines. For this reason, they are denoted as AD0 through AD15.

Data line D0 is the LSB.

• Status Signals: The four most significant address lines A16 through A19 of the 8086 are multiplexed with

status signals S3 through S6. These status bits are output on the bus at the same time that data are transferred

over the other bus lines.

The status of the Interrupt Enable Flag (IF) bit (displayed on S5) is updated at the beginning of each clock cycle.

S4, S3: together indicates which segment register is presently being used for memory access. These lines float at

tristate off during the local bus hold acknowledge.

 MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

DEPARTMENT OF ECE

2

S6: It is always low.

BHE/S7-Bus High Enable/Status : The bus high enable signal is used to indicate the transfer of data over the

higher order (D15-D8) data bus. It goes low for the data transfers over D15-D8 and is used to derive chip selects

of odd address memory bank or peripherals. BHE is low during T1 for read, write and interrupt acknowledge

cycles, when- ever a byte is to be transferred on the higher byte of the data bus.

TEST: This input is examined by a 'WAIT' instruction. If the TEST input goes low, execution will continue, else,

the processor remains in an idle state. The input is synchronized internally during each clock cycle on leading

edge of clock.

RESET: This input causes the processor to terminate the current activity and start execution from FFFF0H. The

signal is active high and must be active for at least four clock cycles. It restarts execution when the RESET

returns low. RESET is also internally synchronized.

VCC: +5V power supply for the operation of the internal circuit. GND ground for the internal circuit.

• Control Signals:

• When Address latch enable (ALE) is logic 1 it signals that a valid address is on the bus. This address can be

latched in external circuitry on the 1-to-0 edge of the pulse at ALE.

• M/IO (memory/IO) tells external circuitry whether a memory or I/O transfer is taking place over the bus. Logic

1 signals a memory operation and logic 0 signals an I/O operation.

• DT/R (data transmit/receive) signals the direction of data transfer over the bus. Logic 1 indicates that the bus

is in the transmit mode (i.e., data are either written into memory or to an I/O device). Logic 0 signals that the

bus is in the receive mode (i.e., reading data from memory or from an input port).

• The bank high enable (BHE) signal is used as a memory enable signal for the most significant byte half of

the data bus, D8 through D15.

 MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

DEPARTMENT OF ECE

2

• WR (write) is switched to logic 0 to signal external devices that valid output data are on the bus.

• RD (read) indicates that the MPU is performing a read of data off the bus. During read operations, one other

control signal, DEN (data enable), is also supplied. It enables external devices to supply data to the

microprocessor.

• The READY signal can be used to insert wait states into the bus cycle so that it is extended by a number of

clock periods. This signal is supplied by a slow memory or I/O subsystem to signal the MPU when it is ready to

permit the data transfer to be completed.

• Interrupt Signals:

• Interrupt request (INTR) is an input to the 8086 that can be used by an external device to signal that it needs

to be serviced. Logic 1 at INTR represents an active interrupt request.

• When the MPU recognizes an interrupt request, it indicates this fact to external circuits with logic 0 at the

interrupt acknowledge (INTA) output.

• On the 0-to-1 transition of non maskable interrupt (NMI), control is passed to a non maskable interrupt

service routine at completion of execution of the current instruction. NMI is the interrupt request with highest

priority and cannot be masked by software.

• The RESET input is used to provide a hardware reset for the MPU. Switching RESET to logic 0 initializes the

internal registers of the MPU and initiates a reset service routine.

• DMA Interface Signals:

• When an external device wants to take control of the system bus, it signals this fact to the MPU by switching

HOLD to the logic level 1.

• When in the hold state, lines AD0 through AD15, A16/S3 through A19/S6, BHE, M/IO, DT/R, WR, RD,

DEN and INTR are all put in the high-Z state. The MPU signals external devices that it is in this state by

switching HLDA to 1.

SYSTEM CLOCK:

• To synchronize the internal and external operations of the microprocessor a clock (CLK) input signal is used.

The CLK can be generated by the 8284 clock generator IC.

• The 8086 is manufactured in three speeds: 5 MHz, 8 MHz and 10 MHz.

MAXIMUM MODE SIGNALS:

S2, S1, S0 (Status lines): These are the status lines which reflect the type of operation, being carried out by the
processor. These lines active during T4 of the previous cycle & remain active during T1 & T2 of the current bus

cycle.

 MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

DEPARTMENT OF ECE

2

LOCK:

· This output pin indicates that other system bus masters will be prevented from gaining the system bus, while the

LOCK=0.

· The LOCK signal is activated by the LOCK prefix instruction and remains active until the completion of the

next instruction.

· This floats to tri-state off during ‘hold acknowledge’.

QS1, QS0 (Queue status):

· These lines give information about the status of the code-prefetch queue.

· These are active during the CLK cycle after which the queue operation is performed.

· The 8086 architecture has a 6-byte instruction pre-fetch queue.

After decoding the first byte, the decoding circuit decides whether the instruction is of single opcode byte or

double opcode byte. If it is single opcode byte, the next bytes are treated as data byte depending upon the

decoded instruction length; otherwise, the next byte in the queue is treated as the second byte of the instruction

opcode. The second byte is then decoded in continuation with the first byte to decide the instruction length and

the number of subsequent bytes to be treated as instruction data. The queue is updated after every byte is read

from the queue but the fetch cycle is initiated by BIU only if at least, two bytes of the queue are empty and the

EU may be concurrently executing the fetched instructions.

 MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

DEPARTMENT OF ECE

2

RQ/GT0, RQ/GT1 (Request/Grant):

These pins are used by other local bus masters, in maximum mode, to force the processor to release the local bus

at the end of the processor’s current bus cycle. Each of the pins is bidirectional with RQ0/GT0 having higher

priority than RQ1/GT1.

Minimum Mode 8086 System

•In a minimum mode 8086 system, the microprocessor 8086 is operated in minimum mode by strapping its

MN/MX pin to logic 1.

•In this mode, all the control signals are given out by the microprocessor chip itself. There is a single

microprocessor in the minimum mode system.

•The remaining components in the system are latches, transreceivers, clock generator, memory and I/O devices.

Some type of chip selection logic may be required for selecting memory or I/O devices, depending upon the

address map of the system.

•Latches are generally buffered output D-type flip-flops like 74LS373 or 8282. They are used for separating the

valid address from the multiplexed address/data signals and are controlled by the ALE signal generated by 8086.

•Transreceivers are the bidirectional buffers and sometimes they are called as data amplifiers. They are required

to separate the valid data from the time multiplexed address/data signals.

•They are controlled by two signals namely, DEN and DT/R.

•The DEN signal indicates the direction of data, i.e. from or to the processor. The system contains memory for

the monitor and users program storage.

 MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

DEPARTMENT OF ECE

2

MINIMUM MODE SYSTEM

•Usually, EPROMs are used for monitor storage, while RAM for users program storage. A system may contain

I/O devices.

•The opcode fetch and read cycles are similar. Hence the timing diagram can be categorized in two parts, the first

is the timing diagram for read cycle and the second is the timing diagram for write cycle.

•The read cycle begins in T1 with the assertion of address latch enable (ALE) signal and also M / IO signal.

During the negative going edge of this signal, the valid address is latched on the local bus.

•The BHE and A0 signals address low, high or both bytes. From T1 to T4, the M/IO signal indicates a memory or

I/O operation.

•At T2, the address is removed from the local bus and is sent to the output. The bus is then tristated. The read

(RD) control signal is also activated in T2.

•The read (RD) signal causes the address device to enable its data bus drivers. After RD goes low, the valid data

is available on the data bus.

•The addressed device will drive the READY line high. When the processor returns the read signal to high level,

the addressed device will again tristate its bus drivers.

•A write cycle also begins with the assertion of ALE and the emission of the address. The M/IO signal is again

asserted to indicate a memory or I/O operation. In T2, after sending the address in T1, the processor se nds the

data to be written to the addressed location.

•The data remains on the bus until middle of T4 state. The WR becomes active at the beginning of T2 (unlike RD

is somewhat delayed in T2 to provide time for floating).

•The BHE and A0 signals are used to select the proper byte or bytes of memory or I/O word to be read or write.

 MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

DEPARTMENT OF ECE

2

Maximum Mode 8086 System

•In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.

In this mode, the processor derives the status signal S2, S1, S0. Another chip called bus controller derives the

control signal using this status information.

•In the maximum mode, there may be more than one microprocessor in the system configuration.

•The components in the system are same as in the minimum mode system.

•The basic function of the bus controller chip IC8288, is to derive control signals like RD and WR (for memory

and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.

•The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.

•It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB

and CEN pins are specially useful for multiprocessor systems.

•AEN and IOB are generally grounded. CEN pin is usually tied to +5V. The significance of the MCE/PDEN

output depends upon the status of the IOB pin.

•If IOB is grounded, it acts as master cascade enable to control cascade 8259A, else it acts as peripheral data

enable used in the multiple bus configurations.

 MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

DEPARTMENT OF ECE

2

•INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.

•IORC, IOWC are I/O read command and I/O write command signals respectively.

These signals enable an IO interface to read or write the data from or to the address port.

•The MRDC, MWTC are memory read command and memory write command signals respectively and may be

used as memory read or write signals.

•All these command signals instructs the memory to accept or send data from or to the bus.

•For both of these write command signals, the advanced signals namely AIOWC and AMWTC are available.

•Here the only difference between in timing diagram between minimum mode and maximum mode is the status

signals used and the available control and advanced command signals.

•R0, S1, S2 are set at the beginning of bus cycle.8288 bus controller will output a pulse as on the ALE and apply

a required signal to its DT / R pin during T1.

•In T2, 8288 will set DEN=1 thus enabling transceivers, and for an input it will activate MRDC or IORC. These

signals are activated until T4. For an output, the AMWC or

AIOWC is activated from T2 to T4 and MWTC or IOWC is activated from T3 to T4.

•The status bit S0 to S2 remains active until T3 and become passive during T3 and T4.

•If reader input is not activated before T3, wait state will be inserted between T3 and T4.

TIMING DIAGRAMS FOR 8086 IN MINIMUM MODE

BUS CYCLE AND TIME STATES

• A bus cycle or machine cycle defines the sequence of events when the MPU communicates with an external

device, which starts with an address being output on the system bus followed by a read or write data transfer.

• Types of bus cycles:

Memory Read Bus Cycle Memory Write Bus Cycle

Input/output Read Bus Cycle Input/output Write Bus Cycle

One cycle of clock is called a state or t-state. The bus cycle of the 8086 microprocessor consists of at least four

clock periods. These four time states are called T1, T2, T3 and T4. This group of states is called a MACHINE

CYCLE.

The total time required to fetch and execute an instruction is called an instruction cycle. An instruction cycle

consists of one or more machine cycle.

 MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

DEPARTMENT OF ECE

2

The following figure shows a memory read cycle of the 8086:

• During period T1,

o The 8086 outputs the 20-bit address of the memory location to be accessed on its multiplexed

address/data bus. BHE is also output along with the address during T1.

o At the same time a pulse is also produced at ALE. The trailing edge or the high level of this pulse is used

to latch the address in external circuitry.

o Signal M/IO is set to logic 1 and signal DT/R is set to the 0 logic level and both are maintained

throughout all four periods of the bus cycle.

• Beginning with period T2,

o Status bits S3 through S6 are output on the upper four address bus lines. This status information is

maintained through periods T3 and T4.

o On the other hand, address/data bus lines AD0 through AD7 are put in the high-Z state during T2.

o Late in period T2, RD is switched to logic 0. This indicates to the memory subsystem that a read cycle is

in progress. DEN is switched to logic 0 to enable external circuitry to allow the data to move from

memory onto the microprocessor's data bus.

• During period T3,

o The memory must provide valid data during T3 and maintain it until after the processor terminates the

read operation. The data read by the 8086 microprocessor can be carried over all 16 data bus lines.

• During T4,

o The 8086 switches RD to the inactive 1 logic level to terminate the read operation. DEN returns to its

inactive logic level late during T4 to disable the external circuitry.

 MEMORY READ CYCLE FOR 8086 IN MINIMUM MODE

 MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

DEPARTMENT OF ECE

2

The following figure shows a memory write cycle of the 8086:

• During period T1,

o The address along with BHE is output and latched with the ALE pulse.

o M/IO is set to logic 1 to indicate a memory cycle.

o However, this time DT/R is switched to logic 1. This signals external circuits that the 8086 is going to

transmit data over the bus.

• Beginning with period T2,

o WR is switched to logic 0 telling the memory subsystem that a write operation is to follow.

o The 8086 puts the data on the bus late in T2 and maintains the data valid through T4. Data will be carried

over all 16 data bus lines.

o DEN enables the external circuitry to provide a path for data from the processor to the memory.

MAXIMUM MODE TIMING DIGRAMS

 MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

DEPARTMENT OF ECE

2

WRITE CYCLE TIMING DIAGRAM FOR 8086

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 1

UNIT – III

OVERVIEW:

 Addressing Modes of 8086

 Assembler Directives

 Procedures and Macros

 Instruction Set of 8086

 Data Transfer Group

 Arithmetic Group

 Logical Instructions

 Rotate and Shift instructions

 Loop Instructions

 Conditional and Unconditional instructions

 Machine Control and Flag Manipulation instructions

 Programming on 8086

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 2

UNIT III

ADDRESSING MODES OF 8086:

Addressing modes indicates way of locating data or operands. Depending upon the data types used

in the instruction and the memory addressing modes, any instruction may belong to one or more

addressing modes. Thus the addressing modes describe the types of operands and the way they are

accessed for executing an instruction.

According to the flow of instruction execution, the instruction may be categorized as:

Sequential Control flow instructions Control Transfer instructions

 Sequential Control flow instructions: In this type of instruction after execution control can be

transferred to the next immediately appearing instruction in the program.

The addressing modes for sequential control transfer instructions are as follows:

 Immediate addressing mode: In this mode, immediate is a part of instruction and appears in the

form of successive byte or bytes.

Example: MOV CX, 0007H; Here 0007 is the immediate data

 Direct Addressing mode: In this mode, the instruction operand specifies the memory address

where data is located.

Example: MOV AX, [5000H]; Data is available in 5000H memory location

Effective Address (EA) is computed using 5000H as offset

address and content of DS as segment address.

EA=10H * DS + 5000H

 Register Addressing mode: In this mode, the data is stored in a register and it is referred using

particular register. All the registers except IP may be used in this mode.

Example: MOV AX, BX;

 Register Indirect addressing mode: In this mode, instruction specifies a register containing an

address, where data is located. This addressing mode works with SI, DI, BX and BP registers.

Example: MOV AX, [BX]; EA=10H * DS + [BX]

 Indexed Addressing mode: 8-bit or 16-bit instruction operand is added to the contents of an index

register (SI or DI), the resulting value is a pointer to location where data resides. DS and ES are

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 3

default segments for index registers SI and DI. DS=0800H, SI=2000H, MOV DL, [SI]

Example: MOV AX, [SI]; EA=10H * DS + [SI]

 Register Relative Addressing mode: In this mode, the data is available at an effective address

formed by adding an 8-bit or 16-bit displacement with the content of any one of the registers BX,

BP, SI, DI in the default segments.

Example: MOV AX, 50H [BX]; EA=10H * DS + 50H + [BX]

 Based Indexed Addressing mode: In this mode, the contents of a base register (BX or BP) is added

to the contents of an index register (SI or DI), the resulting value is a pointer to location where data

resides.

Example: MOV AX, [BX] [SI]; EA=10H * DS + [BX] + [SI]

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 4

 Relative Based Indexed Addressing mode: In this mode, 8-bit or 16-bit instruction operand is

added to the contents of a base register (BX or BP) and index register (SI or DI), the resulting value

is a pointer to location where data resides.

Example: MOV AX, 50H [BX] [SI]; EA=10H * DS + 50H + [BX] + [SI]

 Control Transfer Instructions: In control transfer instruction, the control can be transferred to

some predefined address or the address somehow specified in the instruction after their execution.

For the control transfer instructions, the addressing modes depend upon whether the destination

location is within the segment or different segments. It also depends upon the method of passing the

destination address to the processor. Depending on this control transfer instructions are categorized

as follows:

 Intra segment Direct mode: In this mode, the address to which control is to be transferred lies in

the same segment in which control transfer instruction lies and appears directly in the instruction as

an immediate displacement value.

 Intra segment Indirect mode: In this mode, the address to which control is to be transferred lies in

the same segment in which control transfer instruction lies but it is passed to the instruction

indirectly.

 Inter segment Direct mode: In this mode, the address to which control is to be transferred lies in a

different segment in which control transfer instruction lies and appears directly in the instruction as

an immediate displacement value.

 Inter segment Indirect mode: In this mode, the address to which control is to be transferred lies in

a different segment in which control transfer instruction lies but it is passed to the instruction

indirectly.

Memory Segmentation for 8086:

8086, via its 20-bit address bus, can address 220 = 1,048,576 or 1 MB of different memory locations.

Thus the memory space of 8086 can be thought of as consisting of 1,048,576 bytes or 524,288 words. The

memory map of 8086 is shown in Figure where the whole memory space starting from 00000 H to FFFFF

H is divided into 16 blocks—each one consisting of 64KB.

 1 MB memory of 8086 is partitioned into 16 segments—each segment is of 64 KB length. Out of

these 16 segments, only 4 segments can be active at any given instant of time— these are code segment,

stack segment, data segment and extra segment. The four memory segments that the CPU works with at

any time are called currently active segments. Corresponding to these four segments, the registers used

are Code Segment Register (CS), Data Segment Register (DS), Stack Segment Register (SS) and Extra

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 5

Segment Register (ES) respectively. Each of these four registers is 16-bits wide and user accessible—i.e.,

their contents can be changed by software.

 The code segment contains the instruction codes of a program, while data, variables and constants

are held in data segment. The stack segment is used to store interrupt and subroutine return addresses. The

extra segment contains the destination of data for certain string instructions. Thus 64 KB are available for

program storage (in CS) as well as for stack (in SS) while128 KB of space can be utilized for data storage

(in DS and ES).One restriction on the base address (starting address) of a segment is that it must reside on

a 16-byte address memory—examples being 00000 H, 00010 H or 00020 H, etc.

Non overlapping segments overlapping segments

Memory segmentation of 8086

Memory segmentation, as implemented for 8086, gives rise to the following advantages:

 Although the address bus is 20-bits in width, memory segmentation allows one to work with

registers having width 16-bits only.

 It allows instruction code, data, stack and portion of program to be more than 64 KB long by

using more than one code, data, extra segment and stack segment.

 In a time-shared multitasking environment when the program moves over from one user’s

program to another, the CPU will simply have to reload the four segment registers with the

segment starting addresses assigned to the current user’s program.

 User’s program (code) and data can be stored separately.

 Because the logical address range is from 0000 H to FFFF H, the same can be loaded at any place

in the memory.

Instruction Set of 8086:

There are 117 basic instructions in the instruction set of 8086.The instruction set of 8086 can be divided

into the following number of groups, namely:

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 6

1. Data copy / Transfer instructions 2. Arithmetic and Logical instructions

3. Branch instructions 4. Loop instructions

5. Machine control instructions 6. Flag Manipulation instructions

7. Shift and Rotate instructions 8. String instructions

Data copy / Transfer instructions: The data movement instructions copy values from one location to

another. These instructions include MOV, XCHG, LDS, LEA, LES, PUSH, PUSHF, PUSHFD, POP,

POPF, LAHF, AND SAHF.

MOV The MOV instruction copies a word or a byte of data from source to a destination. The destination

can be a register or a memory location. The source can be a register, or memory location or immediate

data. MOV instruction does not affect any flags.The mov instruction takes several different forms:

Mov reg, reg1; mov mem, reg; mov reg, mem; mov mem, immediate data; mov reg, immediate data;

mov ax/al, mem; mov mem, ax/al; mov segreg, mem16; mov segreg, reg16; mov mem16, segreg; mov

reg16, segreg

The MOV instruction cannot:

1. Set the value of the CS and IP registers.

2. Copy value of one segment register to another segment register (should copy to general register

first). MOV CS, DS (Invalid)

3. Copy immediate value to segment register (should copy to general register first). MOV CS, 2000H

(Invalid)

Example:

ORG 100h

MOV AX, 0B800h; set AX = B800h

MOV DS, AX; copy value of AX to DS.

MOV CL, 'A'; CL = 41h (ASCII code).

The XCHG Instruction: Exchange This instruction exchanges the contents of the specified source and

destination operands, which may be registers or one of them, may be a memory location. However,

exchange of data contents of two memory locations is not permitted.

Example: MOV AL, 5; AL = 5

 MOV BL, 2; BL = 2

XCHG AL, BL; AL = 2, BL = 5

PUSH: Push to stack; this instruction pushes the contents of the specified register/memory location on to

the stack. The stack pointer is decremented by 2, after each execution of the instruction. The actual

current stack-top is always occupied by the previously pushed data. Hence, the push operation decrements

SP by two and then stores the two byte contents of the operand onto the stack. The higher b yte is pushed

first and then the lower byte. Thus out of the two decremented stack addresses the higher byte occupies

the higher address and the lower byte occupies the lower address.

1. PUSH AX

2. PUSH DS

3. PUSH [500OH] ; Content of location 5000H and 5001 H in DS are pushed onto the stack.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 7

POP: Pop from Stack this instruction when executed loads the specified register/memory location with

the contents of the memory location of which the address is formed using the current stack segment and

stack pointer as usual. The stack pointer is incremented by 2. The POP instruction serves exactly opposite

to the PUSH instruction.

1. POP BX

2. POP DS

3. POP [5000H]

PUSHF: Push Flags to Stack The push flag instruction pushes the flag register on to the stack; first the

upper byte and then the lower byte will be pushed on to the stack. The SP is decremented by 2, for each

push operation. The general operation of this instruction is similar to the PUSH operation.

POPF: Pop Flags from Stack The pop flags instruction loads the flag register completely (both bytes)

from the word contents of the memory location currently addressed by SP and SS. The SP is incremented

by 2for each pop operation.

LAHF: Load AH from Lower Byte of Flag This instruction loads the AH register with the lower byte of

the flag register. This instruction may be used to observe the status of all the condition code flags (except

overflow) at a time.

SAHF: Store AH to Lower Byte of Flag Register This instruction sets or resets the condition code flags

(except overflow) in the lower byte of the flag register depending upon the corresponding bit positions in

AH. If a bit in AH is 1, the flag corresponding to the bit position is set, else it is reset.

LEA: Load Effective Address The load effective address instruction loads the offset of an operand in the

specified register. This instruction is similar to MOV, MOV is faster than LEA.

LEA cx, [bx+si]; CX (BX+SI) mod 64K If bx=2f00 H; si=10d0H cx = 3fd0H

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 8

The LDS AND LES instructions:

• LDS and LES load a 16-bit register with offset address retrieved from a memory location then load

either DS or ES with a segment address retrieved from memory.

This instruction transfers the 32-bit number, addressed by DI in the data segment, into the BX and DS

registers.

• LDS and LES instructions obtain a new far address from memory.

– Offset address appears first, followed by the segment address

• This format is used for storing all 32-bit memory addresses.

• A far address can be stored in memory by the assembler.

LDS BX, DWORD PTR[SI]

BL [SI];

BH [SI+1]

DS [SI+3: SI+2]; in the data segment

LES BX, DWORD PTR[SI]

BL [SI];

BH [SI+1]

ES [SI+3: SI+2]; in the extra segment

I/O Instructions: The 80x86 supports two I/O instructions: in and out15. They take the forms:

In ax, port

in ax, dx

out port, ax

out dx, ax

port is a value between 0 and 255.

The in instruction reads the data at the specified I/O port and copies it into the accumulator. The

out instruction writes the value in the accumulator to the specified I/O port.

Arithmetic instructions: These instructions usually perform the arithmetic operations, like addition, subtraction,

multiplication and division along with the respective ASCII and decimal adjust instructions. The increment and

decrement operations also belong to this type of instructions.

The ADD and ADC instructions: The add instruction adds the contents of the source operand to the

destination operand. For example, add ax, bx adds bx to ax leaving the sum in the ax register. Add

computes dest: = dest + source while adc computes dest: = dest + source + C where C represents the

value in the carry flag. Therefore, if the carry flag is clear before execution, adc behaves exactly like the

add instruction.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 9

Example:

 CF=1

BX=25 AX=98

DX=78 CX=94

BX=9E AX=2C

Both instructions affect the flags identically. They set the flags as follows:

• The overflow flag denotes a signed arithmetic overflow.

• The carry flag denotes an unsigned arithmetic overflow.

• The sign flag denotes a negative result (i.e., the H.O. bit of the result is one).

• The zero flag is set if the result of the addition is zero.

• The auxiliary carry flag contains one if a BCD overflow out of the L.O. nibble occurs.

• The parity flag is set or cleared depending on the parity of the L.O. e ight bits of the result. If there is

even number of one bits in the result, the ADD instructions will set the parity flag to one (to denote even

parity). If there is an odd number of one bits in the result, the ADD instructions clear the parity flag (to

denote odd parity).

The INC instruction: The increment instruction adds one to its operand. Except for carry flag, inc sets

the flags the same way as Add ax, 1 same as inc ax. The inc operand may be an eight bit, sixteen bit. The

inc instruction is more compact and often faster than the comparable add reg, 1 or add mem, 1 instruction.

The AAA and DAA Instructions

The aaa (ASCII adjust after addition) and daa (decimal adjust for addition) instructions support

BCD arithmetic. BCD values are decimal integer coded in binary form with one decimal digit (0...9) per

nibble. ASCII (numeric) values contain a single decimal digit per byte, the H.O. nibble of the byte should

contain zero (30 ….39).

The aaa and daa instructions modify the result of a binary addition to co rrect it for ASCII

or decimal arithmetic. For example, to add two BCD values, you would add the mas though they were

binary numbers and then execute the daa instruction afterwards to correct the results.

Note: These two instructions assume that the add operands were proper decimal or ASCII values. If you

add binary (non-decimal or non-ASCII) values together and try to adjust them with these instructions, you

will not produce correct results.

Aaa (which you generally execute after an add, adc, or xadd instruction) checks the value in al for BCD

overflow. It works according to the following basic algorithm:

if ((al and 0Fh) > 9 or (AuxC =1)) then add al=08 +06; al=0E > 9

al := al + 6 al=0E + 06=04

else

ax := ax + 6

end if

ah := ah + 1 ah=00+01=01

AuxC := 1 ;Set auxilliary carry

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 10

Carry := 1 ; and carry flags.

Else al=04+03=08, now al<9, so only clear

AuxC := 0 ;Clear auxilliary carry ah=0

Carry := 0 ; and carry flags.

endif

al := al and 0Fh

The aaa instruction is mainly useful for adding strings of digits where there is exactly one decimal digit

per byte in a string of numbers.

 The daa instruction functions like aaa except it handles packed BCD values rather than the one

digit per byte unpacked values aaa handles. As for aaa, daa’s main purpose is to add strings of BCD digits

(with two digits per byte). The algorithm for daa is

if ((AL and 0Fh) > 9 or (AuxC = 1)) then al=24+77=9B, as B>9 add 6 to al

al := al + 6 al=9B+06=A1, as higher nibble A>9, add 60

AuxC: = 1 ; Set Auxilliary carry. to al, al=A1+60=101

End if Note: if higher or lower nibble of AL <9 then

if ((al > 9Fh) or (Carry = 1)) then no need to add 6 to AL

al := al + 60h

Carry: = 1; Set carry flag.

End if

EXAMPLE:

Assume AL = 0 0 1 1 0 1 0 1, ASCII 5

BL = 0 0 1 1 1 0 0 1, ASCII 9

ADD AL, BL Result: AL= 0 1 1 0 1 1 1 0 = 6EH, which is incorrect BCD

AAA Now AL = 00000100, unpacked BCD 4.

CF = 1 indicates answer is 14 decimal

NOTE: OR AL with 30H to get 34H, the ASCII code for 4. The AAA instruction works only on the AL

register. The AAA instruction updates AF and CF, but OF, PF, SF, and ZF are left undefined.

EXAMPLES:

AL = 0101 1001 = 59 BCD; BL = 0011 0101 = 35 BCD

ADD AL, BL AL = 1000 1110 = 8EH

DAA Add 01 10 because 1110 > 9 AL = 1001 0100 = 94 BCD

AL = 1000 1000 = 88 BCD BL = 0100 1001 = 49 BCD

ADD AL, BL AL = 1101 0001, AF=1

DAA Add 0110 because AF =1, AL = 11101 0111 = D7H

1101 > 9 so add 0110 0000

AL = 0011 0111= 37 BCD, CF =1

The DAA instruction updates AF, CF, PF, and ZF. OF is undefined after a DAA instruction.

The SUBTRACTION instructions: SUB, SBB, DEC, AAS, and DAS

The sub instruction computes the value dest: =dest - src. The sbb instruction computes dest: =dest

- src - C.

The sub, sbb, and dec instructions affect the flags as follows:

• They set the zero flag if the result is zero. This occurs only if the operands are equal for sub and sbb.

The dec instruction sets the zero flag only when it decrements the value one.

• These instructions set the sign flag if the result is negative.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 11

• These instructions set the overflow flag if signed overflow/under flow occurs.

• They set the auxiliary carry flag as necessary for BCD/ASCII arithmetic.

• They set the parity flag according to the number of one bits appearing in the result value.

• The sub and sbb instructions set the carry flag if an unsigned overflow occurs. Note that the dec

instruction does not affect the carry flag.

The aas instruction, like its aaa counterpart, lets you operate on strings of ASCII numbers with one

decimal digit (in the range 0...9) per byte. This instruction uses the following algorithm:

if ((al and 0Fh) > 9 or AuxC = 1) then

al := al - 6

ah := ah - 1

AuxC: = 1; Set auxilliary carry

Carry: = 1; and carry flags.

else

AuxC: = 0; Clear Auxilliary carry

Carry: = 0; and carry flags.

End if

al := al and 0Fh

The das instruction handles the same operation for BCD values, it uses the following

Algorithm:

if ((al and 0Fh) > 9 or (AuxC = 1)) then

al := al -6

AuxC = 1

End if

if (al > 9Fh or Carry = 1) then

al := al - 60h

Carry: = 1; Set the Carry flag.

End if

EXAMPLE:

ASCII 9-ASCII 5 (9-5)

AL = 00111001 = 39H = ASCII 9

BL = 001 10101 = 35H = ASCII 5

SUB AL, BL Result: AL = 00000100 = BCD 04 and CF = 0

AAS Result: AL = 00000100 = BCD 04 and CF = 0

no borrow required

ASCII 5-ASCII 9 (5-9)

Assume AL = 00110101 = 35H ASCII 5

and BL = 0011 1001 = 39H = ASCII 9

SUB AL, BL Result: AL = 11111100 = - 4 in 2s complement and CF =1

AAS Result: AL = 00000100 = BCD 04 and CF = 1, borrow needed

EXAMPLES:

AL 1000 0110 86 BCD ; BH 0101 0111 57 BCD

Chapter 2

SUB AL,BH AL 0010 1111 2FH, CF = 0

DAS Lower nibble of result is 1111, so DAS automatically

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 12

Subtracts 0000 0110 to give AL = 00101001 29 BCD

AL 0100 1001 49 BCD BH 0111 0010 72 BCD

SUB AL, BH AL 1101 0111 D7H, CF = 1

DAS Subtracts 0110 0000 (- 60H) because 1101 in upper nibble > 9

AL = 01110111= 77 BCD, CF=1 CF =1 means borrow was needed

The CMP Instruction: The cmp (compare) instruction is identical to the sub instruction with one crucial

difference– it does not store the difference back into the destination operand. The syntax for the cmp

instruction is very similar to sub; the generic form is cmpdest, src

Consider the following cmp instruction: cmp ax, bx

This instruction performs the computation ax-bx and sets the flags depending up on the result of the

computation. The flags are set as follows:

Z: The zero flag is set if and only if ax = bx. This is the only time ax-bx produces a zero result. Hence,

you can use the zero flag to test for equality or inequality.

S: The sign flag is set to one if the result is negative.

O: The overflow flag is set after a cmp operation if the difference of ax and bx produced an overflows or

underflow.

C: The carry flag is set after a cmp operation if subtracting bx from ax requires a borrow.This occurs only

when ax is less than bx where ax and bx are both unsigned values.

The Multiplication Instructions: MUL, IMUL, and AAM: This instruction multiplies an unsigned byte

or word by the contents of AL. The unsigned byte or word may be in any one of the general-purpose

registers or memory locations. The most significant word of the result is stored in DX, while the least

significant word of the result is stored in AX.

The mul instruction, with an eight bit operand, multiplies the al register by the operand and stores the

16 bit result in ax. So

mul operand (Unsigned) MUL BL i.e. AL * BL; Al=25 * BL=04; AX=00 (AH) 64 (AL)

imul operand (Signed) IMUL BL i.e. AL * BL; AL=09 * BL=-2; AL * 2’s comp(BL)

 AL=09 * BL (0EH) =7E; 2’s comp (7e) =-82

The aam (ASCII Adjust after Multiplication) instruction, adjust an unpacked decimal value after

multiplication. This instruction operates directly on the ax register. It assumes that you’ve multiplied two

eight bit values in the range 0..9 together and the result is sitting in ax (actually, the result will be sitting

in al since 9*9 is 81,the largest possible value; ah must contain zero). This instruction divides ax by 10

and leaves the quotient in ah and the remainder in al: mul bl; al=9, bl=9 al*bl=9*9=51H; AX=00(AH)

51(AL); AAM ; first hexadecimal value is converted to decimal value i.e. 51 to 81; al=81D; second

convert packed BCD to unpacked BCD, divide AL content by 10 i.e. 81/10 then AL=01, AH =08; AX =

0801

EXAMPLE:

AL 00000101 unpacked BCD 5

BH 00001001 unpacked BCD 9

MUL BH AL x BH; result in AX

AX = 00000000 00101101 = 002DH

AAM AX = 00000100 00000101 = 0405H, which is unpacked BCD for 45.

If ASCII codes for the result are desired, use next instruction OR AX, 3030H Put 3 in upper nibble of

each byte.

AX = 0011 0100 0011 0101 = 3435H, which is ASCII code for 45

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 13

The Division Instructions: DIV, IDIV, and AAD

The 80x86 divide instructions perform a 64/32 division (80386 and later only), a 32/16division or a 16/8

division. These instructions take the form:

Div reg For unsigned division

Div mem

Idiv reg For signed division

Idiv mem

The div instruction computes an unsigned division. If the operand is an eight bit operand, div divides the

ax register by the operand leaving the quotient in al and the remainder (modulo) in ah. If the operand is a

16 bit quantity, then the div instruction divides the 32 bit quantity in dx:ax by the operand leaving the

quotient in ax and the remainder in .

Note: If an overflow occurs (or you attempt a division by zero) then the80x86 executes an INT 0

(interrupt zero).

The aad (ASCII Adjust before Division) instruction is another unpacked decimal operation.It splits apart

unpacked binary coded decimal values before an ASCII division operation. The aad instruction is useful

forother operations. The algorithm that describes this instruction is

al := ah*10 + al AX=0905H; BL=06; AAD; AX=AH*10+AL=09*10+05=95D;

convert decimal to hexadecimal; 95D=5FH; al=5f;

 DIV BL; AL/BL=5F/06; AX=05(AH) 0F (AL)

ah := 0

EXAMPLE:

AX = 0607H unpacked BCD for 67 decimal CH = 09H, now adjust to binary

AAD Result: AX = 0043 = 43H = 67 decimal

DIV CH Divide AX by unpacked BCD in CH

Quotient: AL = 07 unpacked BCD Remainder:

AH = 04 unpacked BCD Flags undefined after DIV

NOTE: If an attempt is made to divide by 0, the 8086 will do a type 0 interrupt.

CBW-Convert Signed Byte to Signed Word: This instruction copies the sign of a byte in AL to all the

bits in AH. AH is then said to be the sign extension of AL. The CBW operation must be done beforea

signed byte in AL can be divided by another signed byte with the IDIV instruction. CBW affects no flags.

EXAMPLE:

AX = 00000000 10011011 155 decimal

CBW Convert signed byte in AL to signed word in AX

Result: AX = 11111111 10011011 155 decimal

CWD-Convert Signed Word to Signed Double word: CWD copies the sign bit of a word in AX to all

the bits of the DX register. In other words it extends the sign of AX into all of DX. The CWD operation

must be done before a signed word in AX can be divided by another signed word with the IDIV

instruction. CWD affects no flags.

EXAMPLE:

DX = 00000000 00000000

AX = 11110000 11000111 3897 decimal

CWD Convert signed word in AX to signed doubleword in DX:AX

Result DX = 11111111 11111111

AX = 11110000 11000111 3897 decimal

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 14

Logical, Shift, Rotate and Bit Instructions: The 80x86 family provides five logical instructions, four

rotate instructions, and three shift instructions. The logical instructions are and, or, xor, test, and not; the

rotates are ror,rol, rcr, and rcl; the shift instructions are shl/sal, shr, and sar.

The Logical Instructions: AND, OR, XOR, and NOT:The 80x86 logical instructions operate on a bit-

by-bit basis. Except not, these instructions affect the flags as follows:

• They clear the carry flag.

• They clear the overflow flag.

• They set the zero flag if the result is zero, they clear it otherwise.

• They copy the H.O. bit of the result into the sign flag.

• They set the parity flag according to the parity (number of one bits) in the result.

• They scramble the auxiliary carry flag.

The not instruction does not affect any flags.

The AND instruction sets the zero flag if the two operands do not have any ones in corresponding bit

positions. AND AX, BX

The OR instruction will only set the zero flag if both operands contain zero. OR AX, BX

The XOR instruction will set the zero flag only if both operands are equal. Notice that the xor

operation will produce a zero result if and only if the two operands are equal. Many programmers

commonly use this fact to clear a sixteen bit register to zero since an instruction of the form xor reg16,

reg16; XOR AX, AX is shorter than the comparable mov reg, 0 instruction.

You can use the and instruction to set selected bits to zero in the destination operand. This is known as

masking out data; Likewise, you can use the or instruction to force certain bits to one in the destination

operand;

The Shift Instructions: SHL/SAL, SHR, SAR: The 80x86 supports three different shift instructions (shl

and sal are the same instruction): shl (shift left), sal (shift arithmetic left), shr (shift right), and sar (shift

arithmetic right). The general format for a shift instruction is

Shl dest, count sal dest, count shr dest, count sar dest, count

SHL/SAL: These instructions move each bit in the destination operand one bit position to the left the

number of times specified by the count operand. Zeros fill vacated positions at the L.O. bit; the H.O. bit

shifts into the carry flag.

The shl/sal instruction sets the condition code bits as follows:

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 15

• If the shift count is zero, the shl instruction doesn’t affect any flags.

• The carry flag contains the last bit shifted out of the H.O. bit of the operand.

• The overflow flag will contain one if the two H.O. bits were different prior to a single bit shift. The

overflow flag is undefined if the shift count is not one.

• The zero flag will be one if the shift produces a zero result.

• The sign flag will contain the H.O. bit of the result.

• The parity flag will contain one if there are an even number of one bits in the L.O. byte of the result.

• The A flag is always undefined after the shl/sal instruction.

The shift left instruction is especially useful for packing data. For example, suppose you have two

nibbles in al and ah that you want to combine. You could use the following code to do this:

shl ah, 4 ;

or al, ah ; Merge in H.O. four bits.

Of course, al must contain a value in the range 0..F for this code to work properly (the shift left operation

automatically clears the L.O. four bits of ah before the or instruction).

SHL OPERATION

H.O. four bits of al are not zero before this operation, you can easily clear them with an and instruction:

shl ah, 4 ;Move L.O. bits to H.O. position.

and al, 0Fh ;Clear H.O. four bits.

or al, ah ;Merge the bits.

Since shifting an integer value to the left one position is equivalent to multiplying that value by two, you

can also use the shift left instruction for multiplication by powers of two:

shl ax, 1 ;Equivalent to AX*2

shl ax, 2 ;Equivalent to AX*4

shl ax, 3 ;Equivalent to AX*8

SAR:Thesar instruction shifts all the bits in the destination operand to the right one bit, replicating the

H.O. bit.

The sar instruction’s main purpose is to perform a signed division by some power of two. Each shift to the

right divides the value by two. Multiple right shifts divide the previous shifted result by two, so multiple

shifts produce the following results:

SAR OPERATION

sar ax, 1 ;Signed division by 2

sar ax, 2 ;Signed division by 4

sar ax, 3 ;Signed division by 8

sar ax, 4 ;Signed division by 16

sar ax, 5 ;Signed division by 32

sar ax, 6 ;Signed division by 64

sar ax, 7 ;Signed division by 128

sar ax, 8 ;Signed division by 256

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 16

There is a very important difference between the sar and idiv instructions. The idiv instruction always

truncates towards zero while sar truncates results toward the smaller result. For positive results, an

arithmetic shift right by one position produces the same result as an integer division by two. However, if

the quotient is negative, idiv truncates towards zero while sar truncates towards negative infinity.

SHR: The shr instruction shifts all the bits in the destination operand to the right one bit shifting a zero

into the H.O. bit

SHR OPERATION

The shift right instruction is especially useful for unpacking data. shifting an unsigned integer value to the

right one position is equivalent to dividing that value by two, you can also use the shift right instruction

for division by powers of two:

shr ax, 1 ;Equivalent to AX/2

shr ax, 2 ;Equivalent to AX/4

shr ax, 3 ;Equivalent to AX/8

shr ax, 4 ;Equivalent to AX/16

The Rotate Instructions: RCL, RCR, ROL, and ROR

The rotate instructions shift the bits around, just like the shift instructions, except the bits shifted out of the operand by the rotate

instructions recirculate through the operand. They include rcl (rotate through carry left), rcr(rotate through carry right), rol(rotate left),

And ror (rotate right). These instructions all take the forms:
rcl dest, count rol dest, count rcr dest, count ror dest, count

RCL: The rcl (rotate through carry left), as its name implies, rotates bits to the left, through the carry flag, and back into bit zero on

the right. The rcl instruction sets the flag bits as follows:
• The carry flag contains the last bit shifted out of the H.O. bit of the operand.

• If the shift count is one, rcl sets the overflow flag if the sign changes as a result of the rotate. If the count is not one, the overflow

flag is undefined.

• The rcl instruction does not modify the zero, sign, parity, or auxiliary carry flags.

RCL OPERATION

RCR: The rcr (rotate through carry right) instruction is the complement to the rcl instruction. It shifts its

bits right through the carry flag and back into the H.O. bit. This instruction sets the flags in a manner

analogous to rcl:

• The carry flag contains the last bit shifted out of the L.O. bit of the operand.

• The rcr instruction does not affect the zero, sign, parity, or auxiliary carry flags.

RCR OPERATION

ROL: The rol instruction is similar to the rcl instruction in that it rotates its operand to the left the

specified number of bits. The major difference is that rol shifts its operand’s H.O. bit, rather than the

carry, into bit zero. Rol also copies the output of the H.O. bit into the carry flag. The rol instruction sets

the flags identically to rcl. Other than the source of the value shifted into bit zero, this instruction behaves

exactly like the rcl instruction.

Like shl, the rol instruction is often useful for packing and unpacking data.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 17

ROL OPERATION

ROR: The ror instruction relates to the rcr instruction in much the same way that the rol instruction

relates to rcl. That is, it is almost the same operation other than the source of the input bit to the operand.

Rather than shifting the previous carry flag into the H.O. bit of the destination operation, ror shifts bit zero

into the H.O. bit.

ROR OPERATION

String Instructions: A string is a collection of objects stored in contiguous memory locations. Strings are

usually arrays of bytes or words on 8086.All members of the 80x 86 families support five different

string instructions: MOVS, CMPS, SCAS, LODS, AND STOS.

The string instructions operate on blocks (contiguous linear arrays) of memory. For example, the movs

instruction moves a sequence of bytes from one memory location to another. The cmps instruction

compares two blocks of memory. The scas instruction scans a block of memory for a particular value.

These string instructions often require three operands, a destination block address, a source block address,

and (optionally) an element count. For example, when using the movs instruction to copy a string, we

need a source address, a destination address, and a count (the number of string elements to move). The

operands for the string instructions include:

• the SI (source index) register, • the DI (destination index) register, • the CX (count) register,

• the AX register, and • the direction flag in the FLAGS register.

The REP/REPE/REPZ and REPNZ/REPNE Prefixes: The repeat prefixes tell the 80x86 to do a multi-

byte string operation. The syntax for the repeat prefix is:

Field:

Label repeat mnemonic operand; comment

For MOVS:

Rep movs {operands}

For CMPS:

Repe cmps {operands} repz cmps {operands} repne cmps {operands} repnz

cmps {operands}

For SCAS:

Repe scas {operands} repz scas {operands} repnescas {operands} repnzscas {operands}

For STOS:

Rep stos {operands}

When specifying the repeat prefix before a string instruction, the string instruction repeats cx

times. Without the repeat prefix, the instruction operates only on a single byte,word, or double word.

If the direction flag is clear, the CPU increments si and di after operating upon each string

element. If the direction flag is set, then the 80x86 decrements si and di after processing each string

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 18

element. The direction flag may be set or cleared using the cld (clear direction flag) and std (setdirection

flag) instructions.

The MOVS Instruction: The movsb (move string, bytes) instruction fetches the byte at address ds:si,

stores it at address es :di, and then increments or decrements the si and di registers by one. If the rep

prefix is present, the CPU checks cx to see if it contains zero. If not, then it moves the byte from ds: si to

es: di and decrements the cx register. This process repeats until cx becomes zero. The syntax is:

{REP} MOVSB {REP} MOVSW

The CMPS Instruction: The cmps instruction compares two strings. The CPU compares the string

referenced by es: di to the string pointed at by ds: si. CX contains the length of the two strings (when

using the rep prefix). The syntax is: {REPE} CMPSB {REPE} CMPSW

To compare two strings to see if they are equal or not equal, you must compare corresponding

elements in a string until they don’t match or length of the string cx=0.The repe prefix accomplishes

this operation. It will compare successive elements in a string as long as they are equal and cx is greater

than zero.

The SCAS Instruction: The scas instruction, by itself, compares the value in the accumulator (al or ax)

against the value pointed at by es:di and then increments (or decrements) di by one or two. The CPU sets

the flags according to the result of the comparison. When using the repne prefix (repeat while not equal),

scas scans the string searching for the first string element which is equal to the value in the accumulator.

The scas instruction takes the following forms: {REPNE} SCASB {REPNE} SCASW

The STOS Instruction: The stos instruction stores the value in the accumulator at the location specified

by es: di. After storing the value, the CPU increments or decrements di depending upon the state of the

direction flag. Its primary use is to initialize arrays and strings to a constant value. {REP} STOSB

{REP} STOSW

The LODS Instruction: The lods instruction copies the byte or word pointed at by ds:si into the al or ax

register, after which it increments or decrements the si register by one or two.{REP} LODSB

 {REP} LODSW

Flag Manipulation and Processor Control Instructions: These instructions control the functioning of

the available hardware inside the processor chip. These are categorized into two types; (a) flag

manipulation instructions and (b) machine control instructions.

The flag manipulation instructions directly modify some of the flags of 8086. The machine control

instructions control the bus usage and execution. The flag manipulation instructions and their functions

are as follows:

CLC - Clear carry flag CMC - Complement carry flag STC - Set carry flag

CLD - Clear direction flag STD - Set direction flag CLI - Clear interrupt flag

STI - Set interrupt flag

These instructions modify the carry (CF), direction (DF) and interrupt (IF) flags directly. The DF and IF,

which may be modified using the flag manipulation instructions, further control the processor operation;

like interrupt responses and auto increment or auto decrement modes.

The machine control instructions supported by 8086 and 8088 are listed as follows along with

their functions. These machine control instructions do not require any operand.

WAIT - Wait for Test input pin to go low HLT - Halt the processor NOP - No

operation ESC - Escape to external device like NDP (numeric co-processor) LOCK - Bus

lock instruction prefix.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 19

After executing the HLT instruction, the processor enters the halt state. The two ways to pull it out of the

halt state are to reset the processor or to interrupt it.

When NOP instruction is executed, the processor does not perform any operation till 4 clock

cycles, except incrementing the IP byone. It then continues with further execution after 4 clock cycles.

ESC instruction when executed, frees the bus for an external master like a coprocessor or

peripheral devices.

The LOCK prefix may appear with another instruction. When it is executed, the bus access is not

allowed for another master till the lock prefixed instruction is executed completely. This instruction is

used in case of programming for multiprocessor systems.

The WAIT instruction when executed holds the operation of processor with the current status till

the logic level on the TEST pin goes low. The processor goes on inserting WAIT states in the instruction

cycle, till the TEST pin goes low. Once the TEST pin goes low, it continues further execution.

Program Flow Control Instructions: The control transfer instructions are used to transfer the control

from one memory location to another memory location. In 8086 program control instructions belong to

three groups: unconditional transfers, conditional transfers, and subroutine call and return instructions.

Unconditional Jumps: The jmp (jump) instruction unconditionally transfers control to another point in

the program. Intra segment jumps are always between statements in the same code segment. Intersegment

jumps can transfer control to a statement in a different code segment.

JMP Address

Unconditional jump Conditional jump

Conditional Jump: The conditional jump instructions are the basic tool for creating loops and other

conditionally executable statements like the if…..then statement. The conditional jumps test one or more

bits in the status register to see if they match some particular pattern. If the pattern matches, control

transfers to the target location. If the condition fails, the CPU ignores the conditional jump and execution

continues with the next instruction. Some instructions, for example, test the conditio ns of the sign, carry,

overflow and zero flags.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 20

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 21

Loop Instruction:

• These instructions are used to repeat a set of instructions several times.

• Format: LOOP Short-Label

• Operation: (CX) (CX)-1

• Jump is initialized to location defined by short label if CX≠0. Otherwise, execute next

sequential instruction.

• Instruction LOOP works with respect to contents of CX. CX must be preloaded with a count

that represents the number of times the loop is to be repeat.

• Whenever the loop is executed, contents at CX are first decremented then checked to

determine if they are equal to zero.

• If CX=0, loop is complete and the instruction following loop is executed.

• If CX ≠ 0, content return to the instruction at the label specified in the loop instruction.

• LOOP AGAIN is almost same as: DEC CX, JNZ AGAIN

SUBROUTINE & SUBROUTINE HANDILING INSTRUCTIONS: CALL, RET

 A subroutine is a special segment of program that can be called for execution from any point in

a program.

 An assembly language subroutine is also referred to as a “procedure”.

 Whenever we need the subroutine, a single instruction is inserted in to the main body of the

program to call subroutine.

 Transfers the flow of the program to the procedure.

 CALL instruction differs from the jump instruction because a CALL saves a return address on

the stack.

 The return address returns control to the instruction that immediately follows the

CALL in a program when a RET instruction executes.

 To branch a subroutine the value in the IP or CS and IP must be modified.

 After execution, we want to return the control to the instruction that immediately follows the

one called the subroutine i.e., the original value of IP or CS and IP must be preserved.

 Execution of the instruction causes the contents of IP to be saved on the stack. (this time (SP)

 (SP) -2)

 A new 16-bit (near-proc, mem16, reg16 i.e., Intra Segment) value which is specified by the

instructions operand is loaded into IP.

 Examples: CALL 1234H

CALL BX

CALL [BX]

Return Instruction: RET instruction removes an address from the stack so the program returns to the

instruction following the CALL

• Every subroutine must end by executing an instruction that returns control to the main

program. This is the return (RET) instruction.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 22

• By execution the value of IP or IP and CS that were saved in the stack to be returned back to

their corresponding registers. (this time (SP) (SP)+2)

MACROS: The macro directive allows the programmer to write a named block of source statements,

then use that name in the source file to represent the group of statements. During the assembly phase,

the assembler automatically replaces each occurrence of the macro name with the statements in the

macro definition.

Macros are expanded on every occurrence of the macro name, so they can increase the length

of the executable file if used repeatably. Procedures or subroutines take up less space, but the

increased overhead of saving and restoring addresses and parameters can make them slower. In

summary, the advantages and disadvantages of macros are,

Advantages

 Repeated small groups of instructions replaced by one macro

 Errors in macros are fixed only once, in the definition

 Duplication of effort is reduced

 In effect, new higher level instructions can be created

 Programming is made easier, less error prone

 Generally quicker in execution than subroutines

Disadvantages

In large programs, produce greater code size than procedures

When to use Macros

 To replace small groups of instructions not worthy of subroutines

 To create a higher instruction set for specific applications

 To create compatibility with other computers

 To replace code portions which are repeated often throughout the program

Modular Programming: Instead of writing a large program in a single unit, it is better to write

small programs—which are parts of the large program. Such small programs are called program

modules or simply modules. Each such module can be separately written, tested and debugged. Once

the debugging of the small programs is over, they can be linked together. Such methodology of

developing a large program by linking the modules is called modular programming.

Assembler Directives:

Assembler directives are special instructions that provide information to the assembler but do not

generate any code. Examples include the segment directive, equ, assume and end. These mnemonics

are not valid 80x86 instructions. They are messages to the assembler, to generate address.

A pseudo-opcode is a message to the assembler, just like an assembler directive, however a

pseudo-opcode will emit object code bytes. Examples of pseudo-opcodes include byte, word, dword,

qword, and byte. These instructions emit the bytes of data specified by their operands but they are not

true 80X86 machine instructions.

ASSUME: The ASSUME directive tell the assembler the name of the logical segment it should use

for a specified segment. Ex: ASSUME CS: Code, DS: Data, SS: Stack; or ASSUME CS: Code

Data Directives: The directives DB, DW, DD, DR and DT are used to (a) define different types of

variables or (b) to set aside one or more storage locations in memory-depending on the data type:

DB — Define Byte DW — Define Word DD — Define Double word

DQ — Define Quad word DT — Define Ten Bytes

The DB directive is used to declare a byte-type variable or to set aside one or more storage locations

of type byte in memory (Define Byte)

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 23

Example: Temp DB 42H; Temp is a variable allotted 1byte of memory location assigned with data

42H

The DW directive is used to declare a variable of type word or to reserve memory locations which can

be accessed as type double word (Define word)

Example: N2 DW 427AH; N2 variable is initialized with value 427AH when it is loaded into memory

to run.

The DD directive is used to declare a variable of type double word or to reserve memory locations

which can be accessed as type double word (Define double word)

Example: Big DD 2456756CH; Big variable is initialized with 4 bytes

The DQ directive is used to tell the assembler to declare a variable 4 words in length or to reverse 4

words of storage in memory (Define Quad word)

Example: Big DQ 2456756C88464567H; Big variable is initialized with 4 words (8 bytes)

The DT directive is used to tell the assembler to declare a variable 10 bytes in length or to reverse

10bytes of storage in memory (Define Ten bytes)

Example: Packed BCD DT 11223344556677889900H; 10 byte data is initialized to variable packed

BCD

DUP: This directive operator is used to initialize several locations and to assign values to these

locations. Its format is: Name Data-Type Num DUP (value)

Example: TABLE DB 20 DUP (0); Reserve an array of 20 bytes of memory and initialize all 20 bytes

with 0. Array is named TABLE

END: The END directive is placed after the last statement of a program to tell the assembler that this

is the end of the program module. The assembler will ignore any statement after an end directive.

The ENDP directive is used with the name of the procedure to indicate the end of a procedure to the

assembler.

SQUARE NUM PROC

….

….

SQUARE NUM ENDP

The ENDS directive is used with the name of the segment to indicate the end of a segment to the

assembler.

CODE SEGMENT

…

…

CODE ENDS

EQU: The EQU directive is used to give a name to some value or to a symbol. Each time assembler

finds the name in the program it will replace the name with the value.

FACTOR EQU 03H; This statement should be written at the start

ADD AL, FACTOR; The assembler converts this instruction as ADD AL, 03H

EVEN: The EVEN directive instructs the assembler to increment the location of the counter to the

next even address if it is not already in the even address. If the word starts at an odd address, 8086 will

take 2 bus cycles to get the 2 byte of the word. “A series of words can read much more quickly if they

are at even address”.

DATA HERE SEGMENT ; Location counter will point to 0009H after assembler reads next

statement

SALES DB 9 DUP (?) ; Declare an array of 9 bytes

EVEN ; Increment location counter to 000AH

RECORD DW 100 DUP (?) ; Array of 100 words starting on even address for quicker read

DATA HERE ENDS ;

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 24

GLOBAL: This GLOBAL directive can be used in place of PUBLIC directive or in place of an

EXTRN directive. The GOLBAL directive is used to make the symbol available to other modules.

PUBLIC: The PUBLIC directive is used along with the EXTRN directive. This informs the

assembler that the labels, variables, constants, or procedures declared PUBLIC may be accessed by

other assembly modules to form their codes, but while using the PUBLIC declared labels, variables,

constants or procedures the user must declare them externals using the EXTRN directive.

EXTRN: This EXTRN directive is used to tell the assembler that the names or labels following the

directive are in some other assembly module.

GROUP: This GROUP directive is used to tell the assembler to group the logical segments named

after the directive into one logical group segment.

Example: SMALL SYSTEM GROUP CODE, DATA, STACK

 ASSUME CS: SMALL SYSTEM, DS: SMALL SYSTEM, SS: SMALL SYSTEM

OFFSET—Is an operator which tells the assembler to determine the offset or the displacement of a

named data item (variable) or procedure from start of the segment which contains it. This operator is

used to load the offset of a variable into a register so that the variable can be accessed with one of the

indexed addressing modes. MOV AL, OFFSET N1

ORG – This ORG directive allows to set the location counter to a desired value at any point in the

program. The statement ORG 100H tells the assembler to set the location counter to 0100H.

PROCEDURE: A PROC directive is used to define a label and to delineate a sequence of instructions

that are usually interpreted to be a subroutine, that is, CALLed either from within the same physical

segment (near) or from another physical segment (far).

Syntax:

name PROC [type] P1 PROC NEAR

MOV AX, 1 5

ADD OX, AX

….. ENDP

name ENDP

Labels: A label, a symbolic name for a particular location in an instruction sequence, maybe defined

in one of three ways. The first way is the most common. The format is shown below: label:

[instruction]

where "label" is a unique ASM86 identifier and "instruction" is an8086/8087/8088 instruction. This

label will have the following attributes:

1. Segment-the current segment being assembled.

2. Offset-the current value of the location counter.

3. Type-will be NEAR.

An example of this form of label definition is: ALAB: MOV AX, COUNT

PROGRAM: 8 – BIT ADDITION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,

DS:DATA

 DATA SEGMENT
ORG 3000H
N1 DB 00H

N2 DB 00H

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 25

RES DB 00H

DATA ENDS

 CODE SEGMENT
ORG 4000H

START: MOV AX, DATA Initialize the data

segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV AL, N1 Copy the content of
data from N1 memory

location

 MOV BL, N2 Copy the content of
data from N2 memory

location

 ADD AL, BL Perform addition on
AL and BL registers

and store result in AL

 MOV RES, AL Copy the content of
accumulator to RES
memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

25

34

3002

59

PROGRAM: 8 – BIT SUBTRACTION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT
ORG 3000H
N1 DB 00H

N2 DB 00H
RES DB 00H

DATA ENDS

 CODE SEGMENT
ORG 4000H

START: MOV AX, DATA Initialize the data
segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV AL, N1 Copy the content of
data from N1 memory
location

 MOV BL, N2 Copy the content of

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 26

data from N2 memory

location

 SUB AL, BL Perform subtraction
on AL and BL

registers and store
result in AL

 MOV RES, AL Copy the content of

accumulator to RES
memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

35

14

3002

21

PROGRAM: 8 – BIT MULTIPLICATION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT

ORG 3000H
N1 DB 00H

N2 DB 00H
RES1 DB 00H
RES2 DB 00H

DATA ENDS

 CODE SEGMENT
ORG 4000H

START: MOV AX, DATA Initialize the data

segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV AL, N1 Copy the content of
data from N1 memory

location

 MOV BL, N2 Copy the content of
data from N2 memory

location

 MUL BL Perform
multiplication on AL
and BL registers and

store result in AL and
AH

 MOV RES1, AL Copy the content of

AL to RES1 memory
location

 MOV RES2, AH Copy the content of

AH to RES2 memory

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 27

location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

98

C5

3002

3003

F8

74

PROGRAM: 8 – BIT DIVISION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT
ORG 3000H
N1 DB 00H

N2 DB 00H
RES1 DB 00H
RES2 DB 00H

DATA ENDS

 CODE SEGMENT
ORG 4000H

START: MOV AX, DATA Initialize the data

segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV AL, N1 Copy the content of
data from N1 memory

location

 MOV BL, N2 Copy the content of
data from N2 memory

location

 DIV BL Perform division on
AL and BL registers

and store quotient in
AL and remainder in
AH

 MOV RES1, AL Copy the content of

AL to RES1 memory
location

 MOV RES2, AH Copy the content of

AH to RES2 memory

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 28

location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

98

15

3002

3003

07

05

PROGRAM: 16 – BIT ADDITION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT
ORG 3000H

N1 DW 00H
N2 DW 00H

RES1 DW 00H
RES2 DW 00H
DATA ENDS

 CODE SEGMENT
ORG 4000H

START: MOV AX, DATA Initialize the data
segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV CX, 0000 Clear CX register

 MOV AX, N1 Copy the content of
data from N1 memory
location

 MOV BX, N2 Copy the content of
data from N2 memory
location

 ADD AX, BX Perform addition on

AX and BX registers
and store result in AX

 JNC L1 Jump if CF is not zero

to L1

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 29

 INC CX Increment count

L1: MOV RES1, AX Copy the content of
AX to RES1 memory
location

 MOV RES2, CX Copy the content of

AX to RES2 memory
location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

WITH CARRY

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

3002

3003

98

C5

78

5D

3004

3005

3006

3007

10

23

00

01

WITH OUT CARRY

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

3002

3003

98

C5

A6

12

3004

3005

3006

3007

3E

D8

00

00

PROGRAM: 16 – BIT SUBTRACTION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT

ORG 3000H
N1 DW 00H
N2 DW 00H

RES1 DW 00H
RES2 DW 00H

DATA ENDS

 CODE SEGMENT
ORG 4000H

START: MOV AX, DATA Initialize the data

segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV CX, 0000 Clear CX register

 MOV AX, N1 Copy the content of
data from N1 memory

location

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 30

 MOV BX, N2 Copy the content of

data from N2 memory
location

 SUB AX, BX Perform subtraction

on AX and BX
registers and store

result in AX

 JNC L1 Jump if CF is not zero
to L1

 INC CX Increment count

L1: MOV RES1, AX Copy the content of

AX to RES1 memory
location

 MOV RES2, CX Copy the content of
AX to RES2 memory

location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

WITH BORROW

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

3002

3003

98

C5

78

DD

3004

3005

3006

3007

20

E8

00

01

WITH OUT BORROW

MEMORY

LOCATION

DATA

VALUE

MEMORY

LOCATION

DATA

VALUE

 3000

3001

3002

3003

98

C5

78

5D

3004

3005

3006

3007

20

68

00

00

PROGRAM: 16 – BIT MULTIPLICATION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT
ORG 3000H

N1 DW 00H
N2 DW 00H

RES1 DW 00H
RES2 DW 00H
DATA ENDS

 CODE SEGMENT

ORG 4000H

START: MOV AX, DATA Initialize the data

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 31

segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV AX, N1 Copy the content of
data from N1 memory
location

 MOV BX, N2 Copy the content of
data from N2 memory
location

 MUL BX Perform

multiplication on AX
and BX registers and

store lower word in
AX and higher word
in DX

 MOV RES1, AX Copy the content of

AX to RES1 memory
location

 MOV RES2, DX Copy the content of

DX to RES2 memory
location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATION

INPUT OUTPUT

MEMORY

LOCATION

DATA

VALUE

MEMORY

LOCATION

DATA

VALUE

 3000

3001

3002

3003

98

C5

78

5D

3004

3005

3006

3007

40

D7

24

48

PROGRAM: 2H 16 – BIT DIVISION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT

ORG 3000H
N1 DW 00H
N2 DW 00H

N3 DW 00H
RES1 DW 00H

RES2 DW 00H
DATA ENDS

 CODE SEGMENT
ORG 4000H

START: MOV AX, DATA Initialize the data segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 32

 MOV AX, N1 Copy the content of data from

N1 memory location to AX

 MOV DX, N2 Copy the content of data from
N2 memory location to DX

 MOV BX, N3 Copy the content of data from

N3 memory location to BX

 DIV BX Perform division on AX DX by
BX registers and store quotient

in AX and remainder in DX

 MOV RES1, AX Copy the content of AX to
RES1 memory location

 MOV RES2, DX Copy the content of DX to

RES2 memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATION

INPUT OUTPUT

MEMORY

LOCATION

DATA

VALUE

MEMORY

LOCATION

DATA

VALUE

 3000

3001

3002

3003

3004

3005

98

C5

78

5D

78

98

3006

3007

3008

3009

F1

9C

A0

1C

PROGRAM: MULTI BYTE ADDITION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,

DS:DATA

 DATA SEGMENT
ORG 3000H

IP1 DD 1223445566H
IP2 DD 7788557733H
RES DD 0000000000H

DATA ENDS

 CODE SEGMENT
ORG 4000H

START: MOV AX, DATA Initialize the data segment

 MOV DS, AX

 SUB AX, AX Clear garbage value

 MOV SI, OFFSET IP1 Copy address of IP1 in to SI

 MOV DI, OFFSET IP2 Copy address of IP2 in to DI

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 33

 MOV BX, OFFSET RES Copy address of RES in to BX

 MOV CX, 03H Copy data 03H TO CX register

 MOV AL, [SI] Copy the content of memory
location of SI to AL register

 MOV DL, [DI] Copy the content of memory
location of DI to DL register

 ADD AL, DL Perform addition on AL and DL
register

 MOV [BX], AL Copy AL register content to
memory location of BX register

BACK: INC SI Increment SI register

 INC DI Increment DI register

 INC BX Increment BX register

 MOV AL, [SI] Copy the content of memory
location of SI to AL register

 MOV DL, [DI] Copy the content of memory

location of DI to DL register

 ADC AL, DL Perform addition with carry on
AL and DL register

 MOV [BX], AL Copy AL register content to
memory location of BX register

 LOOP BACK Decrement CX register, jump if
CL is not zero to BACK

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATION

INPUT OUTPUT

MEMORY

LOCATION

DATA

VALUE

MEMORY

LOCATION

DATA

VALUE

 3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

66

55

44

23

12

33

77

55

88

77

300A

300B

300C

300D

300E

99

CC

99

AB

89

PROGRAM: MULTI BYTE SUBTRACTION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT
ORG 3000H
IP1 DD 7788557733H

IP2 DD 1223445566H

RES DD 0000000000H
DATA ENDS

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 34

 CODE SEGMENT

ORG 4000H

START: MOV AX, DATA Initialize the data segment

 MOV DS, AX

 SUB AX, AX Clear garbage value

 MOV SI, OFFSET IP1 Copy address of IP1 in to SI

 MOV DI, OFFSET IP2 Copy address of IP2 in to DI

 MOV BX, OFFSET RES Copy address of RES in to BX

 MOV CX, 03H Copy data 03H TO CX register

 MOV AL, [SI] Copy the content of memory

location of SI to AL register

 MOV DL, [DI] Copy the content of memory
location of DI to DL register

 SUB AL, DL Perform subtraction on AL and

DL register

 MOV [BX], AL Copy AL register content to
memory location of BX register

BACK: INC SI Increment SI register

 INC DI Increment DI register

 INC BX Increment BX register

 MOV AL, [SI] Copy the content of memory

location of SI to AL register

 MOV DL, [DI] Copy the content of memory
location of DI to DL register

 SUBB AL, DL Perform subtract with borrow on

AL and DL register

 MOV [BX], AL Copy AL register content to
memory location of BX register

 LOOP BACK Decrement CX register, jump if

CL is not zero to BACK

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATION

INPUT OUTPUT

MEMORY

LOCATION

DATA

VALUE

MEMORY

LOCATION

DATA

VALUE

 3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

33

77

55

88

77

66

55

44

23

12

300A

300B

300C

300D

300E

CD

21

11

65

65

ASCII ARITHMETIC OPERATIONS

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 35

PROGRAM: ASCII ADDITION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,

DS:DATA

 DATA SEGMENT
ORG 3000H

ASC1 DB 00H
ASC2 DB 00H
RES DW 0000H

DATA ENDS

 CODE SEGMENT
ORG 4000H

START: MOV AX, DATA Initialize the data

segment

 MOV DS, AX

 XOR AX, AX Clear the garbage

 MOV AL, ASC1 Copy the content of
data from N1 memory

location

 MOV BL, ASC2 Copy the content of
data from N2 memory

location

 ADD AL, BL

Perform addition on
AL and BL registers
and store result in AL

 AAA Perform ASCII

adjustment after
addition

 OR AX, 3030H

 MOV RES, AX Copy the content of

accumulator to RES
memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

34

38

3002

3003

31H

32H

PROGRAM: ASCII SUBTRACTION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,

DS:DATA

 DATA SEGMENT
ORG 3000H

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 36

ASC1 DB 00H

ASC2 DB 00H
RES DW 0000H

DATA ENDS

 CODE SEGMENT
ORG 4000H

START: MOV AX, DATA Initialize the data

segment

 MOV DS, AX

 XOR AX, AX Clear the garbage

 MOV AL, ASC1 Copy the content of
data from N1 memory

location

 MOV BL, ASC2 Copy the content of
data from N2 memory
location

 SUB AL, BL

Perform subtraction
on AL and BL
registers and store

result in AL

 AAS Perform ASCII
adjustment after

subtraction

 OR AX, 3030H

 MOV RES, AX Copy the content of
accumulator to RES
memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

39

34

3002

3003

30H

35H

PROGRAM: ASCII MULTIPLICATION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT
ORG 3000H

ASC1 DB 00H
ASC2 DB 00H

RES DW 0000H
DATA ENDS

 CODE SEGMENT

ORG 4000H

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 37

START: MOV AX, DATA Initialize the data

segment

 MOV DS, AX

 XOR AX, AX Clear the garbage

 MOV AL, ASC1 Copy the content of
data from N1 memory

location

 MOV BL, ASC2 Copy the content of
data from N2 memory

location

 MUL BL

Perform
multiplication on AL

and BL registers and
store result in AL

 AAM Perform ASCII
adjustment after

addition

 OR AX, 3030H

 MOV RES, AX Copy the content of
accumulator to RES

memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY

LOCATION

DATA

VALUE

MEMORY

LOCATION

DATA

VALUE

 3000

3001

06

02

3002

3003

31H

32H

PROGRAM: ASCII DIVISION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,

DS:DATA

 DATA SEGMENT
ORG 3000H

ASC1 DW 00H
ASC2 DB 00H
RES DW 0000H

DATA ENDS

 CODE SEGMENT
ORG 4000H

START: MOV AX, DATA Initialize the data

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 38

segment

 MOV DS, AX

 XOR AX, AX Clear the garbage

 MOV AX, ASC1 Copy the content of
data from N1 memory
location

 MOV BL, ASC2 Copy the content of
data from N2 memory
location

 AAD Perform ASCII

adjustment before
division

 DIV BL

Perform division on

AX and BL registers
and store result in AX

 OR AX, 3030H

 MOV RES, AX Copy the content of

accumulator to RES
memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY

LOCATION

DATA

VALUE

MEMORY

LOCATION

DATA

VALUE

 3000

3001

3002

06

03

05

3002

3003

37H

31H

LOGICAL OPERATIONS

PROGRAM: LOGICAL AND OPERATION

OFFSET

ADDRESS

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 39

ORG 3000H

OP1 DB 00H
OP2 DB 00H

RES DB 00H
DATA ENDS

 CODE SEGMENT

ORG 4000H

 START: MOV AX, DATA Initialize the data
segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV AL, OP1 Copy the content of

data from OP1
memory location

 MOV BL, OP2 Copy the content of
data from OP2

memory location

 AND AL, BL Perform AND on AL
and BL registers and

store result in AL

 MOV RES, AL Copy the content of
accumulator to RES

memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

35

0F

3002

05

PROGRAM: LOGICAL OR OPERATION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT
ORG 3000H

OP1 DB 00H
OP2 DB 00H

RES DB 00H
DATA ENDS

 CODE SEGMENT
ORG 4000H

START: MOV AX, DATA Initialize the data
segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV AL, OP1 Copy the content of

data from OP1
memory location

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 40

 MOV BL, OP2 Copy the content of

data from OP2
memory location

 OR AL, BL Perform OR on AL

and BL registers and
store result in AL

 MOV RES, AL Copy the content of

accumulator to RES
memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

25

46

3002

67

PROGRAM: LOGICAL XOR OPERATION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT

ORG 3000H
OP1 DB 00H

OP2 DB 00H
RES DB 00H
DATA ENDS

 CODE SEGMENT

ORG 4000H

START: MOV AX, DATA Initialize the data
segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV AL, OP1 Copy the content of
data from OP1
memory location

 MOV BL, OP2 Copy the content of

data from OP2
memory location

 XOR AL, BL Perform XOR on AL

and BL registers and
store result in AL

 MOV RES, AL Copy the content of

accumulator to RES
memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 41

INPUT OUTPUT

MEMORY

LOCATION

DATA

VALUE

MEMORY

LOCATION

DATA

VALUE

 3000

3001

25

25

3002

00

PROGRAM: SHIFT ARITHMETIC LEFT OPERATION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT

ORG 3000H
OP1 DB 00H
COUNT DB 00H

RES DB 00H
DATA ENDS

 CODE SEGMENT

ORG 4000H

START: MOV AX, DATA Initialize the data
segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV AL, OP1 Copy the content of

data from OP1
memory location

 MOV CL, COUNT Copy the content of

data from count
memory location

 SAL AL, CL Perform shift
arithmetic left AL and

BL registers and store
result in AL

 MOV RES, AL Copy the content of

accumulator to RES
memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

34

04

3002

40

PROGRAM: SHIFT ARITHMETIC RIGHT OPERATION

OFFSET

ADDRESS

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,

DS:DATA

 DATA SEGMENT

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 42

ORG 3000H

OP1 DB 00H
COUNT DB 00H

RES DB 00H
DATA ENDS

 CODE SEGMENT

ORG 4000H

 START: MOV AX, DATA Initialize the data
segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV AL, OP1 Copy the content of

data from OP1
memory location

 MOV CL, COUNT Copy the content of
data from count

memory location

 SAR AL, CL Perform shift
arithmetic right AL

and BL registers and
store result in AL

 MOV RES, AL Copy the content of

accumulator to RES
memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY

LOCATION

DATA

VALUE

MEMORY

LOCATION

DATA

VALUE

 3000

3001

34

04

3002

03

PROGRAM: SHIFT LOGICAL LEFT OPERATION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT
ORG 3000H

OP1 DB 00H
COUNT DB 00H

RES DB 00H
DATA ENDS

 CODE SEGMENT
ORG 4000H

START: MOV AX, DATA Initialize the data
segment

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 43

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV AL, OP1 Copy the content of data
from OP1 memory
location

 MOV CL, COUNT Copy the content of data
from count memory
location to CL

 SHL AL, CL Perform shift arithmetic
left AL and BL registers
and store result in AL

 MOV RES, AL Copy the content of
accumulator to RES
memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY

LOCATION

DATA

VALUE

MEMORY

LOCATION

DATA

VALUE

 3000

3001

34

04

3002

40

PROGRAM: SHIFT LOGICAL RIGHT OPERATIONS

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT
ORG 3000H

OP1 DB 00H
COUNT DB 00H

RES DB 00H
DATA ENDS

 CODE SEGMENT
ORG 4000H

START: MOV AX, DATA Initialize the data
segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV AL, OP1 Copy the content of

data from OP1
memory location

 MOV CL, COUNT Copy the content of
data from count

memory location to
CL

 SHR AL, CL Perform shift logical

right AL and BL
registers and store
result in AL

 MOV RES, AL Copy the content of
accumulator to RES

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 44

memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

35

04

3002

03

PROGRAM: ROTATE LEFT WITHOUT CARRY OPERATION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,

DS:DATA

 DATA SEGMENT
ORG 3000H

OP1 DB 00H
COUNT DB 00H

RES DB 00H
DATA ENDS

 CODE SEGMENT
ORG 4000H

START: MOV AX, DATA Initialize the data

segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV AL, OP1 Copy the content of
data from OP1

memory location

 MOV CL, COUNT Copy the content of
data from count

memory location to
CL

 ROL AL, CL Perform rotate left

without carry AL and
BL registers and store
result in AL

 MOV RES, AL Copy the content of

accumulator to RES
memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

23

04

3002

32

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 45

PROGRAM: ROTATE RIGHT WITHOUT CARRY OPERATION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,

DS:DATA

 DATA SEGMENT
ORG 3000H

OP1 DB 00H
COUNT DB 00H
RES DB 00H

DATA ENDS

 CODE SEGMENT
ORG 4000H

START: MOV AX, DATA Initialize the data

segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV AL, OP1 Copy the content of
data from OP1

memory location

 MOV CL, COUNT Copy the content of
data from count

memory location to
CL

 ROR AL, CL Perform rotate right
without carry AL and

BL registers and store
result in AL

 MOV RES, AL Copy the content of

accumulator to RES
memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

23

04

3002

32

PROGRAM: ROTATE LEFT WITH CARRY OPERATION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT
ORG 3000H
OP1 DB 00H

COUNT DB 00H
RES DB 00H

DATA ENDS

 CODE SEGMENT

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 46

ORG 4000H

START: MOV AX, DATA Initialize the data
segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV AL, OP1 Copy the content of

data from OP1
memory location

 MOV CL, COUNT Copy the content of
data from count

memory location to
CL

 RCL AL, CL Perform rotate left

with carry AL and BL
registers and store
result in AL

 MOV RES, AL Copy the content of
accumulator to RES
memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

23

04

3002

32

PROGRAM: ROTATE RIGHT WITH CARRY OPERATION

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT
ORG 3000H
OP1 DB 00H

COUNT DB 00H
RES DB 00H

DATA ENDS

 CODE SEGMENT
ORG 4000H

START: MOV AX, DATA Initialize the data
segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV AL, OP1 Copy the content of
data from OP1
memory location

 MOV CL, COUNT Copy the content of
data from count

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 47

memory location to

CL

 RCR AL, CL Perform rotate right
with carry AL and BL

registers and store
result in AL

 MOV RES, AL Copy the content of

accumulator to RES
memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

35

04

3002

46

PACKED AND UNPACKED BCD NUMBERS

PROGRAM: PACKED TO UNPACKED BCD NUMBERS

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT

ORG 3000H
IP1 DB 00H
COUNT DB 00H

RES DW 00H
DATA ENDS

 CODE SEGMENT

ORG 4000H

START: MOV AX, DATA Initialize the data
segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV AL, IP1 Copy the content of

data from IP1
memory location

 MOV DL, AL Move data from AL to

DL register

 MOV CL, COUNT Copy the content of
data from count

memory location to
CL

 AND AL, 0F0H Perform AND
operation to hide the

data of higher nibble

 ROR AL, CL Perform rotate right
without carry AL by

CL registers and store

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 48

result in AL

 MOV BH, AL Copy AL register
content to BH register

 AND DL, 0F Mask the lower nibble
of DL register using

AND

 MOV BL, DL Copy DL register to
BL register

 MOV RES, DX Copy the content of

accumulator to RES
memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY

LOCATION

DATA

VALUE

MEMORY

LOCATION

DATA

VALUE

 3000

3001

56

04

3002

3003

06

05

PROGRAM: UNPACKED TO PACKED BCD NUMBERS

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,

DS:DATA

 DATA SEGMENT
ORG 3000H

IP1 DB 00H
IP2 DB 00H
COUNT DB 00H

RES DW 00H
DATA ENDS

 CODE SEGMENT

ORG 4000H

START: MOV AX, DATA Initialize the data
segment

 MOV DS, AX

 MOV AX, 0000 Clear the accumulator

 MOV AL, IP1 Copy the content of

data from IP1
memory location to
AL

 MOV BL, IP2 Copy the content of data
from IP1 memory
location to BL

 MOV CL, COUNT Copy the content of data
from count memory
location to CL

 AND AL, 0F0H Perform AND operation to

hide the data of higher

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 49

nibble
 ROR AL, CL Perform rotate right

without carry AL by CL

registers and store result in

AL
 AND BL, 0F Mask the lower nibble of

DL register using AND
 OR AL,BL Perform OR operation

on AL and BL registers

 MOV RES, AX Copy the content of

accumulator to RES
memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

06

04

3002

3003

64

 SORTING THE GIVEN NUMBERS

PROGRAM: ASCENDING ORDER

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,

DS:DATA

 DATA SEGMENT
ORG 3000H
COUNT EQU 04H

LIST DB
00H,00H,00H

DATA ENDS

 CODE SEGMENT
ORG 4000H

START: MOV AX, DATA Initialize the data

segment

 MOV DS, AX

 XOR AX, AX Clear the garbage data

 MOV CX, COUNT-1 Decremented count is
loaded to CX register

 MOV SI, OFFSET

LIST

LIST address is

copied to SI

L3: MOV AL, [SI] SI register address
content is copied to

AL register

 MOV DX, CX CX register is loaded
to DX register

L2: INC SI Increment SI register

 MOV BL, [SI] Move SI register

memory location

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 50

content to BL register

 CMP AL, BL Perform comparison
on AL and BL

 JB L1 If CF is zero, jump to
L1

 XCHG AL, [SI] Exchange the contents

of AL and SI register
address contents

L1: LOOP L2 Decrement CX

register and check CX
is zero or not, if CX ≠

0, jump to L2

 SUB SI, DX Perform subtract on
SI and DX registers

 INC SI Increment SI register

 MOV CX, DX DX register is loaded

to CX register

 LOOP L3 Decrement CX
register and check CX
is zero or not, if CX ≠

0, jump to L3

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY

LOCATION

DATA

VALUE

MEMORY

LOCATION

DATA

VALUE

 3000

3001

3002

3003

06

04

25

12

3000

3001

3002

3003

04

06

12

25

PROGRAM: DESCENDING ORDER

OFFSET

ADDRESS

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,

DS:DATA

 DATA SEGMENT
ORG 3000H

COUNT EQU 04H
LIST DB
00H,00H,00H

DATA ENDS

 CODE SEGMENT
ORG 4000H

 START: MOV AX, DATA Initialize the data

segment

 MOV DS, AX

 XOR AX, AX Clear the garbage data

 MOV CX, COUNT-1 Decremented count is

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 51

loaded to CX register

 MOV SI, OFFSET
LIST

LIST address is
copied to SI

 L3: MOV AL, [SI] SI register address
content is copied to

AL register

 MOV DX, CX CX register is loaded
to DX register

 L2: INC SI Increment SI register

 MOV BL, [SI] Move SI register

memory location
content to BL register

 CMP AL, BL Perform comparison

on AL and BL

 JNB L1 If CF is not zero,
jump to L1

 XCHG AL, [SI] Exchange the contents

of AL and SI register
address contents

 L1: LOOP L2 Decrement CX
register and check CX

is zero or not, if CX ≠
0, jump to L2

 SUB SI, DX Perform subtract on

SI and DX registers

 INC SI Increment SI register

 MOV CX, DX DX register is loaded
to CX register

 LOOP L3 Decrement CX

register and check CX
is zero or not, if CX ≠
0, jump to L3

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

06

88

3000

3001

88

25

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 52

3002

3003

25

12

3002

3003

12

06

 STRING OPERATIONS

PROGRAM: LENGTH OF THE STRING

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT

ORG 3000H
 STRING1 DB
‘EMPTY VESSELS

$’
STRLEN EQU ($-

STRING1)
DATA ENDS

 CODE SEGMENT
ORG 4000H

START: MOV AX, DATA Initialize the data
segment

 MOV DS, AX

 SUB CL, CL Clear the CL register

 MOV BL, STRLEN Copy the string length
to BL

 MOV SI, OFFSET
STRING1

STRING1 offset
address is copied to
SI register

BACK: LODSB Load string byte

 INC CL Increment CL

 CMP AL, ‘$’ Compare AL with ‘$’

 JNE BACK Jump if AL ≠ ‘$’, to
BACK

 MOV RES, CL Copy CL to RES
memory location

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

3001

3002

3003

3004

3005

3006

3007

3008

45

4D

50

54

59

20

56

45

53

300E 0E

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 53

3009

300A

300B

300C

300D

53

45

4C

53

20

PROGRAM: MOVING A STRING

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT

ORG 1000H
S1 DB ‘MSGRCVE’
ORG 2000H

S2 DB 07 DUP (0)
DATA ENDS

 CODE SEGMENT

ORG 3000H

START: MOV AX, DATA Initialize the data,
extra and code
segment

 MOV DS, AX

 MOV ES, AX

 MOV CL, 07H Copy data 07H to CL

 LEA SI, S1 Load effective address
of S1 to SI

 LEA DI, S2 Load effective address

of S2 to DI

 CLD Clear the direction
flag i.e. DF=0

REP: MOVSB Repeat the copy of
data byte by byte from

SI to DI registers

 NOP Perform no operation

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY

LOCATION

DATA

VALUE

MEMORY

LOCATION

DATA

VALUE

 3000

3001

3002

3003

3004

3005

3006

4D

56

47

52

43

53

45

2000

2001

2002

2003

2004

2005

2006

4D

56

47

52

43

53

45

PROGRAM: REVERSING A STRING

LABEL MNEMONICS COMMENTS

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 54

 ASSUME CS:CODE,

DS:DATA

 DATA SEGMENT
ORG 2000H

STR1 DB ‘EMPTY $’
STRLEN EQU ($-

STR1)
ORG 3000H
STR2 DB 05H

DATA ENDS

 CODE SEGMENT

ORG 3000H

START: MOV AX, DATA Initialize the data
segment

 MOV DS, AX

 MOV SI, OFFSET

STR1

Move address of str1

to SI register

 MOV CX, STRLEN Copy the length of the
string1

 MOV DI, OFFSET

STR2

Copy STR2 offset to

DI register

 ADD DI, 06 Addition of DI to 05H

 MOV CX, STRLEN Move strlen data to cx

L1: LODSB Load data byte from
SI to AL and
increment SI

 MOV [DI], AL Copy data of AL to
extra segment address
in DI register

 DEC DI Decrement DI

 LOOP L1 Decrement CX, check

CX≠0

 NOP Repeat copying of data
from SI to DI in extra
register

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

2000

2001

2002

2003

2004

2005

45

4D

50

54

59

24

3000

3001

3002

3003

3004

3005

24

59

54

50

4D

45

PROGRAM: COMPARING TWO STRINGS

LABEL MNEMONICS COMMENTS

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 55

 ASSUME CS:CODE,

DS:DATA

 DATA SEGMENT
ORG 3000H

STR1 DB ‘EMPTY1
$’

STRLEN EQU ($-
STR1)
ORG 2000H

RES DB 00H
ORG 1500H

STR2 DB ‘EMPTY $’
DATA ENDS

 CODE SEGMENT
ORG 3000H

START: MOV AX, DATA Initialize the data, extra
and code segment

 MOV DS, AX

 MOV ES, AX

 MOV BX, OFFSET
STR1

Copy STR1 offset to
BX register

 MOV SI, OFFSET

STR1
Copy STR1 offset to

SI register

 MOV DI, OFFSET
STR2

Copy STR2 offset to
DI register

 CLD Clear the direction

flag i.e. DF=0

 MOV CX, STRLEN Move strlen data to
CX

REPNE: CMPSB Compare every byte

of a string

 JZ NEXT If ZF=0, jump to
NEXT

 MOV AH, 09H Copy 09 to AH

register

 MOV DX, ‘A’ Copy ‘A’ to DX
register

 INT 21H Interrupt 21H to run

function from DOS

 JMP EXIT

NEXT: MOV AH, 09H Copy 09 to AH
register

 MOV DX, ‘E’ Copy ‘E’ to DX

register

 INT 21H Interrupt 21H to run
function from DOS

EXIT: NOP No operation

 MOV RES, DL Copy DL to res, 4CH

to AH

 MOV AH, 4CH

 INT 21H Return control to OS

 CODE ENDS

 END START

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 56

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

2100

2101

2102

2103

2104

2105

45

4D

50

54

59

24

2000 65H

 READING DATA FROM KEYBOARD USING DOS

PROGRAM: READING CHARACTER WITHOUT ECHO

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT

MSG DB ‘ENTER
CHARACTERS

FROM
KEYBOARD:’, ‘$’
DATA ENDS

 CODE SEGMENT

ORG 3000H

START: MOV AX, DATA Initialize the data, and
code segment

 MOV AH, 09H Copy 09 to AH

register

 MOV DX, OFFSET
MSG

Offset MSG to DX
register

 INT 21H Interrupt 21H to run

function from DOS

NEXT: MOV AH, 08H Copy 08 to AH
register

 INT 21H Interrupt 21H to run

function from DOS

 CMP AL, ‘#’ Compare AL with ‘#’

 JNE NEXT Jump to Next if not
equal i.e. ZF≠0

 MOV AH, 4CH Copy 4C to AH

register

 MOV AL, 00H Copy 00H to AL
register

 INT 21H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

Enter character from keyboard: H (ZF ≠ 1)

Enter character from keyboard: H (ZF = 1)

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 57

PROGRAM: READING CHARACTER WITH ECHO

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,

DS:DATA

 DATA SEGMENT
MSG DB ‘ENTER

CHARACTERS
FROM
KEYBOARD:’, ‘$’

DATA ENDS

 CODE SEGMENT
ORG 3000H

START: MOV AX, DATA Initialize the data, and
code segment

 MOV AH, 09H Copy 09 to AH
register

 MOV DX, OFFSET

MSG

Offset MSG to DX

register

 INT 21H Interrupt 21H to run
function from DOS

NEXT: MOV AH, 08H Copy 08 to AH

register

 INT 21H Interrupt 21H to run
function from DOS

 MOV AH, 02H Copy 02H to AH
register

 MOV DL, AL Copy AL to DL

register

 INT 21H Interrupt 21H to run
function from DOS

 CMP AL, ‘#’ Compare AL with ‘#’

 JNE NEXT Jump to Next if not

equal i.e. ZF≠0

 MOV AH, 4CH Copy 4C to AH
register

 MOV AL, 00H Copy 00H to AL

register

 INT 21H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

Enter character from keyboard: H (ZF ≠ 1)

Enter character from keyboard: H (ZF = 1)

PROGRAM: DISPLAYING A MESSAGE ON SCREEN

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT

MSG DB ‘SV

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 58

COLLEGE OF

ENGINEERING’, ‘$’
DATA ENDS

 CODE SEGMENT

ORG 3000H

START: MOV AX, DATA Initialize the data, and
code segment

 MOV AH, 09H Copy 09 to AH

register

 MOV DX, OFFSET
MSG

Offset MSG to DX
register

 INT 21H Interrupt 21H to run

function from DOS

 MOV AH, 08H Copy 08 to AH
register

 INT 21H Interrupt 21H to run

function from DOS

 MOV AH, 4CH Copy 4C to AH
register

 MOV AL, 00H Copy 00H to AL
register

 INT 21H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

Displaying message: “SV COLLEGE OF ENGINEERING”

Program: Fibonacci series

OFFSET

ADDRESS

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT

ORG 3000H
CNT DB 00H
LIST DB 00H

DATA ENDS

 CODE SEGMENT
ORG 4000H

 START: MOV AX, DATA Initialize the data

segment

 MOV DS, AX

 XOR AX, AX Clear the garbage data

 MOV CL, CNT Count is loaded to CL
register

 MOV SI, OFFSET

LIST

LIST address is

copied to SI

 MOV AL, 00H Copy 00H to AL

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 59

register

 MOV BL, 01H Copy 01H to AL
register

 MOV [SI], AL AL register content is
copied to address of

SI register

 BACK: INC SI Increment SI register

 MOV [SI], BL BL register content is
copied to address of

SI register

 ADD AL, BL Perform addition on
AL and BL

 XCHG AL, BL Exchange the contents

of AL and BL register

 LOOP BACK Decrement CL
register and check CX

is zero or not, if CL ≠
0, jump to BACK

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS

INPUT OUTPUT

MEMORY

LOCATION

DATA

VALUE

MEMORY

LOCATION

DATA

VALUE

 3000

08H

3001

3002

3003

3004

3005

3006

3007

3008

3009

00

01

01

02

03

05

08

0D

15

PROGRAM: FACTORIAL OF A NUMBER

OFFSET

ADDRESS

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT
ORG 3000H
N1 DB 00H

RES DW 00H
DATA ENDS

 CODE SEGMENT

ORG 4000H

 START: MOV AX, DATA Initialize the data
segment

 MOV DS, AX

 XOR AX, AX Clear the garbage data

 MOV CL, N1 N1 is loaded to CL

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 60

register

 MOV AX, 01H Copy 01H to AX
register

 L1: MUL CL Perform
multiplication on CL

and AL

 LOOP L1 Decrement CL
register and check CL

is zero or not, if CL ≠
0, jump to BACK

 MOV RES, AX Copy the data of AX

to RES address

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

05H

3001

3002

00

78

PROGRAM: SUM OF ‘N’ NUMBERS

OFFSET

ADDRESS

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT
ORG 3000H
CNT DB 00H

LIST DB 00H
RES DW 00H

DATA ENDS

 CODE SEGMENT
ORG 4000H

 START: MOV AX, DATA Initialize the data
segment

 MOV DS, AX

 MOV AX, 00H Copy 00H to AX
register

 MOV BX, 00H Copy 00H to BX
register

 MOV CL, CNT CNT is loaded to CL
register

 MOV SI, OFFSET
LIST

Copy address of LIST
to SI address

 L1: MOV AL, [SI] Copy content of SI to

AL register

 ADD BX, AX Perform addition of

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 61

AX and BX register

 INC SI Increment SI register

 LOOP L1 Decrement CL
register and check CL
is zero or not, if CL ≠

0, jump to BACK

 MOV RES, BX Copy the data of BX
to RES address

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

 3001

 3002

 3003

 3004

04

05

09

08

03

3005

3006

19

00

PROGRAM: SUM OF SQUARES FOR ‘N’ NUMBERS

OFFSET

ADDRESS

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT

ORG 3000H
CNT DB 00H
LIST DB 00H

RES DW 00H
DATA ENDS

 CODE SEGMENT

ORG 4000H

 START: MOV AX, DATA Initialize the data
segment

 MOV DS, AX

 MOV AX, 00H Copy 00H to AX

register

 MOV BX, 00H Copy 00H to BX
register

 MOV CL, CNT CNT is loaded to CL

register

 MOV SI, OFFSET
LIST

Copy address of LIST
to SI address

 L1: MOV AL, [SI] Copy content of SI to

AL register

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 62

 MUL AL Perform

multiplication on AL
and AL

 ADD BX, AX Perform addition of

AX and BX register

 INC SI Increment SI register

 LOOP L1 Decrement CL
register and check CL

is zero or not, if CL ≠
0, jump to BACK

 MOV RES, BX Copy the data of BX

to RES address

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

 3001

 3002

 3003

 3004

04

05

09

08

03

3005

3006

0B3

00

PROGRAM: SUM OF CUBES FOR ‘N’ NUMBERS

OFFSET

ADDRESS

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT
ORG 3000H
CNT DB 00H

LIST DB 00H
RES DW 00H

DATA ENDS

 CODE SEGMENT
ORG 4000H

 START: MOV AX, DATA Initialize the data
segment

 MOV DS, AX

 MOV AX, 00H Copy 00H to AX
register

 MOV BX, 00H Copy 00H to BX
register

 MOV CL, CNT CNT is loaded to CL
register

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 63

 MOV SI, OFFSET

LIST

Copy address of LIST

to SI address

 L1: MOV AL, [SI] Copy content of SI to
AL register

 MOV DL, AL

 MUL AL Perform

multiplication on AL
and AL

 MUL DL Perform

multiplication on DL
and AL

 ADD BX, AX Perform addition of

AX and BX register

 INC SI Increment SI register

 LOOP L1 Decrement CL
register and check CL

is zero or not, if CL ≠
0, jump to BACK

 MOV RES, BX Copy the data of BX
to RES address

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

 3001

 3002

 3003

 3004

04

05

09

08

03

3005

3006

00

02

PROGRAM: TO FIND EVEN OR ODD NUMBER (DL=00 ‘EVEN’, DL=01

‘ODD’)

OFFSET

ADDRESS

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT
ORG 3000H

N1 DB 00H
RES DB 00H

DATA ENDS

 CODE SEGMENT
ORG 4000H

 START: MOV AX, DATA Initialize the data

segment

 MOV DS, AX

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 64

 MOV AX, 00H Copy 00H to AX

register

 MOV DL, 00H Copy 00H to DL
register

 MOV CL, 01 01H is loaded to CL

register

 L1: MOV AL, N1 Copy content of N1 to
AL register

 ROR AL, CL Perform RIGHT

rotation by CL times
i.e. CF=LSB

 JNC L1 Perform addition of

AX and BX register

 INC DL Increment DL register

 MOV RES, DL Copy DL to RES
address

 JMP L2 Jump to label L2

 L1: MOV RES, DL Copy the data of DL

to RES address

 L2: INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

 3001

47

86

3001

3001

01 (ODD DL)

00 (EVEN

DL)

PROGRAM: TO FIND POSITVE OR NEGATIVE NUMBER (DL=00

‘POSITIVE’, DL=01 ‘NEGATIVE’)

OFFSET

ADDRESS

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT

ORG 3000H
N1 DB 00H

RES DB 00H
DATA ENDS

 CODE SEGMENT
ORG 4000H

 START: MOV AX, DATA Initialize the data

segment

 MOV DS, AX

 MOV AX, 00H Copy 00H to AX

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 65

register

 MOV DL, 00H Copy 00H to DL
register

 MOV CL, 01 01H is loaded to CL
register

 L1: MOV AL, N1 Copy content of N1 to

AL register

 ROL AL, CL Perform LEFT
rotation by CL times

i.e. CF=LSB

 JNC L1 Perform addition of
AX and BX register

 INC DL Increment DL register

 MOV RES, DL Copy DL to RES

address

 JMP L2 Jump to label L2

 L1: MOV RES, DL Copy the data of DL
to RES address

 L2: INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

 3001

95

28

3001

3001

01

(NEGATIVE

DL)

00

(POSITIVE

DL)

PROGRAM: GCD OF TW0 16-BIT NUMBERS

OFFSET

ADDRESS

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,

DS:DATA

 DATA SEGMENT
ORG 3000H
N1 DW 00H

N2 DW 00H
RES DW 00H

DATA ENDS

 CODE SEGMENT
ORG 4000H

 START: MOV AX, DATA Initialize the data

segment

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 66

 MOV DS, AX

 MOV AX, N1 Copy N1 to AX
register

 MOV BX, N2 Copy N2 to BX
register

 AGAIN: CMP AX, BX Perform comparison

on AX and BX

 JE EXIT

 JB BIG Jump if below to label
Big

 ABOVE: MOV DX, 00H Copy 00H to DX

register

 DIV BX Perform division with
BX register

 CMP DX, 00H Compare DX with

00H

 JE EXIT Jump if equal i.e.
ZF=1 to label Exit

 MOV AX, DX Copy the contents of

DX to AX register

 JMP AGAIN Jump to the label
again

 BIG: XCHG AX, BX Exchange the contents

of AX and BX

 JMP ABOVE Jump to the label
above

 EXIT: MOV RES, BX Copy BX data to RES

address

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY
LOCATION

DATA

VALUE

MEMORY
LOCATION

DATA

VALUE

 3000

 3001

3002

3003

88

00

24

00

3004

3005

04

00

PROGRAM: FINDING THE 16 - BIT PRIME NUMBER

OFFSET

ADDRESS

LABEL MNEMONICS COMMENTS

 ASSUME CS:CODE,
DS:DATA

 DATA SEGMENT

ORG 3000H

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 67

N1 DW 00H

N2 DW 00H
RES DW 00H

DATA ENDS

 CODE SEGMENT
ORG 4000H

 START: MOV AX, DATA Initialize the data

segment

 MOV DS, AX

 MOV AX, N1 Copy N1 to AX
register

 MOV BX, AX Copy AX to BX

register

 AGAIN: MOV AX, N1 Copy N1 to AX
register

 DEC BX Decrement DX

register

 XOR DX, DX Clear DX register

 XOR CX, CX Clear CX register

 DIV BX Perform comparison
on AX by BX

 CMP DX, 00H Perform comparison

on DX and 00 (check
remainder is 0 or data)

 JZ EXIT Jump to label Exit if
ZF=1

 CMP BX, 0002H Perform comparison

on BX and 02

 JNZ AGAIN Jump to label Again if
ZF is not 1

 INC CX Increment CX

 EXIT: MOV RES, CX Copy CX data to RES

address

 INT 03H Return control to OS

 CODE ENDS

 END START

OBSERVATIONS:

INPUT OUTPUT

MEMORY

LOCATION

DATA

VALUE

MEMORY

LOCATION

DATA

VALUE

 3000

 3001

 3000

 3001

07

00

08

00

3002

3003

3002

3003

01 (cx=1;

00prime)

00

00 (cx=0; not

prime)

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 DEPARTMENT OF ECE 68

UNIT – IV

Low Power RISC MSP430:

Features:

 It is introduced in the late 1990s by Texas Instruments

 It is a 16-bit RISC Based Microcontroller with Von-Neumann Architecture

 It is Low cost and Low power consumption

 It is suitable for low-power and portable applications

 Its CPU is small and efficient, with a large number of registers

 It has set of intelligent peripherals like I/O Ports, Timers, ADC, DAC, Flexible

Clock and USCI-I2C, SPI, UART

 It has 16-bit Data bus and 16-bit Address bus

 It can address 64 KB memory with Flash ROM and RAM

 It has 16 Registers in its CPU and each register is 16-bits wide can be used for

either data or address

 It has only 27 Instructions

 It has 7 addressing modes

 Its CPU can run at16 MHz

 It has several low-power modes of operation

 It operates at Low voltage i.e. from 1.8V to 3.6V

 It is extremely easy to put the device into a low-power mode. No special

instruction is needed: The mode is controlled by bits in the status register.

TheMSP430 is awakened by an interrupt and returns automatically to its low-

power mode after handling the interrupt.

 It can wake from a standby mode rapidly, perform its tasks, and return to a

low-power mode.

 A wide range of peripherals is available, many of which can run

autonomously without the CPU for most of the time.

 Many portable devices include liquid crystal displays, which the MSP430 can

drive directly.

 It has Prioritized nested interrupts

 Ultralow-power optimization extends battery life

– 0.1 μA for RAM Data Retention

– 0.8 μA for RTC mode

– 250 μA/MIPS for active mode

 Zero-power Brown-Out -Reset (BOR)

 The order of storing the bytes in memory is little endian

Pin Diagram of MSP430F2003 and F2013:

 VCC and VSS are the power supply voltage and ground pins for the whole

device

 P1.0–P1.7, P2.6, and P2.7 are for digital input and output, grouped into ports

P1and P2.

 TACLK, TA0, and TA1 are associated with Timer_A; TACLK can be used as the

clock input to the timer, while TA0 and TA1 can be either inputs or outputs.

These can be used on several pins because of the importance of the timer.

 A0−, A0+, and so on, up to A4±, are inputs to the analog-to-digital converter.

It has four differential channels, each of which has negative and positive

inputs. VREF is the reference voltage for the converter.

 ACLK and SMCLK are outputs for the microcontroller’s clock signals. These

can be used to supply a clock to external components or for diagnostic

purposes.

 SCLK, SDO, and SCL are used for the universal serial interface, which

communicates with external devices using the serial peripheral interface (SPI)

or inter-integrated circuit (I2C) bus.

 XIN and XOUT are the connections for a crystal, which can be used to provide

an accurate, stable clock frequency.

 RST is an active low reset signal. Active low means that it remains high near

VCC for normal operation and is brought low near VSS to reset the chip.

 NMI is the non-maskable interrupt input, which allows an external signal to

interrupt the normal operation of the program.

 TCK, TMS, TCLK, TDI, TDO, and TEST form the full JTAG interface, used to

program and debug the device.

 SBWTDIO and SBWTCK provide the Spy-Bi-Wire interface, an alternative to

theusual JTAG connection that saves pins.

General Block Diagram of MSP430:

Architecture of MSP430F2003 and F2013:

The Architecture of MSP430F2003 and F2013 in shown below:

 On the left are the CPU and its supporting hardware, including the clock

generator. The emulation, JTAG interface and Spy-Bi-Wire are used to

communicate with a desktop computer when downloading a program and for

debugging.

 The main blocks are linked by the memory address bus (MAB) and memory

data bus (MDB).

 These devices have flash memory, 1KB in the F2003 or 2KB in the F2013,

and128 bytes of RAM.

 The brownout protection comes into action if the supply voltage drops to a

dangerous level.

 There are ground and power supply connections. Ground is labeled VSS and is

taken to define 0V. The supply connection is VCC.A range of 1.8–3.6V is

specified for the F2013.

 Six blocks are shown for peripheral functions (there are many more in larger

devices). All MSP430s include input/output ports, Timer_A, and a watchdog

timer. The universal serial interface (USI) and sigma–delta analog-to-digital

converter (SD16_A) are particular features of this device.

Memory Organization:

 MSP430 consists of 64K memory which includes Flash/ROM and RAM

 The memory data bus is 16 bits wide and can transfer either a word of 16 bits

or a byte of 8 bits.

 Memory Addresses are 16-bit

 Bytes may be accessed at any address but words need more care.

 Even Address access for word

 The address of a word is defined to be the address of the byte with the lower

address, which must be even. Thus the two bytes at 0x0200 and 0x0201 can

be considered as a valid word with address 0x0200, which may be fetched in

a single cycle of the bus.

 On the other hand, it is not possible to treat the two bytes at 0x0201 and

0x0202 as a single word because their address would be 0x0201, which is odd

and therefore invalid. These two bytes straddle the boundary of two words.

Figure: Ordering of bits, bytes, and words in Memory

Little-endian ordering may appear more logical but has one awkward

outcome. A debugger usually displays the contents of memory by showing the value

of each byte by default. Addresses increase from left to right across each line. This

means that the low-order byte is displayed first, followed by the high-order byte.

Thus our value of 0x1234 is displayed as 34 12. It is easy to be puzzled by this. A

simple solution is to display the contents of memory in words instead.

The following figure shows the Memory Map of the F2013:

Figure: Memory map of the MSP430F2013

Here is a brief description of each region:

 Special function registers: Mostly concerned with enabling functions of some

modules and enabling and signaling interrupts from peripherals.

 Peripheral registers with byte access and Peripheral registers with word access:

Provide the main communication between the CPU and peripherals. Some must

be accessed as words and others as bytes. They are grouped in this way to avoid

wasting addresses

 Random access memory: Used for variables. This always starts at address 0x0200

and the upper limit depends on the size of the RAM. The F2013 has 128 B.

 Bootstrap loader: Contains a program to communicate using a standard serial

protocol, often with the COM port of a PC. This can be used to program the chip.

All MSP430s had a bootstrap loader until the F20xx.

 Information memory: A 256B block of flash memory that is intended for storage

of nonvolatile data. This might include serial numbers to identify equipment—an

address for a network, for instance—or variables that should be retained even

when power is removed.

 Flash Code memory: Holds the program, including the executable code itself and

any constant data. The F2013 has 2KB but the F2003 only 1KB.

 Interrupt and reset vectors: Used to handle “exceptions,” when normal

operation of the processor is interrupted or when the device is reset. This table

was smaller and started at 0xFFE0

Central Processing Unit:

The central processing unit (CPU) executes the instructions stored in

memory. It steps through the instructions in the sequence in which they are stored

in memory until it encounters a branch or when an exception occurs (interrupt or

reset). It includes the arithmetic logic unit (ALU), which performs computation, a set

of 16 registers designated R0–R15 and the logic needed to decode the instructions

and implement them. The CPU can run at a maximum clock frequency fMCLK of

16MHz in the MSP430F2xx family.

Registers of MSP430 CPU:

The CPU of MSP 430 includes a 16-bit ALU and a set of 16 Registers R0 – R15.

In these registers four are special Purpose and 12 are general purpose registers. All

the registers can be addressed in the same way.

The special Purpose Registers are:

PC (Program Counter), SP (Stack Pointer), SR (Status Register), CGx (Constant

Generator)

The MSP430 CPU includes an arithmetic logic unit (ALU) that handles

addition, subtraction, comparison and logical (AND, XOR) operations. ALU operations

can affect the overflow, zero, negative, and carry flags in the status register.

The following figure shows the register organization of MSP430 CPU.

R0: Program Counter (PC):

This contains the address of the next instruction to be executed. The Program

counter is incremented by 2. It is important to note that the PC is aligned at even

addresses, because the instructions are 1-3 words.

Subroutines and interrupts also modify the PC but in these cases the previous

value (Next line of current instruction which is executing) is saved on the stack and

restored later.

R1: Stack Pointer (SP):

 The Stack Pointer (SP/R1) is located in R1.

 The Stack Pointer holds the address of the top of the stack

 Stack can be used by user to store data for later use(instructions: store by

PUSH, retrieve by POP)

 The stack pointer is used by the CPU to store the return addresses of

subroutine calls and interrupts. It uses a pre-decrement, post-increment

scheme.

 The stack is allocated at top of RAM and grows down towards the low

address. SP holds the address of top of the stack.

 The stack pointer holds the address of the most recently added word

 Stack can be used by subroutine calls to store the program counter value for

return at subroutine's end (RET)

 Used by interrupt - system stores the actual PC value first, then the actual

status register content (on top of stack) on return from interrupt (RETI) the

system get the same status as just before the interrupt happened (as long as

none has changed the value on TOS) and the same program counter value

from stack.

The operation of the stack is illustrated in below Figure.

Note: For programs written in C, the compiler initializes the stack automatically as

part of the startup code, which runs silently before the program starts, but you must

initialize SP yourself in assembly language.

R2: Status Register (SR):

The Status Register (SR/R2) is a 16 bit register, and it stores the state and

control bits. The system flags are changed automatically by the CPU depending on

the result of an operation in a register. The reserved bits are not used in the

MSP430.

 The Carry flag C is set when the result of an arithmetic operation is too large

to fit in the space allocated. In other words, an overflow occurred.

 The Zero flag Z is set when the result of an operation is 0.

 The Negative flag N is made equal to the msb of the result, which indicates a

negative number if the values are signed.

 The Signed Over Flow flag V is set when the result of a signed operation has

overflowed, even though a carry may not be generated

 Remember that a byte can hold the values 0 to 0xFF if it is unsigned or −0x80

to 0x7F if it is signed.

 Enable Interrupts: Setting the General Interrupt Enable‒GIE bit enables

maskable interrupts, provided that the individual sources of interrupts have

themselves been enabled. Clearing the bit disables all maskable interrupts.

There are also non-maskable interrupts, which cannot be disabled with GIE.

 Control of Low-Power Modes: The CPUOFF, OSCOFF, SCG0 (System Clock

Generator), and SCG1 bits control the mode of operation of the MCU. All

systems are fully operational when all bits are clear. Setting combinations of

these bits puts the device into one of its low-power modes

R2/R3: Constant Generator Registers (CG1/CG2):

This provides the six most frequently used values so that they need not be

fetched from memory whenever they are needed. It uses both R2 and R3 to provide

a range of useful values by using the CPU’s addressing modes.

R4 - R15: General–Purpose Registers:

The remaining 12 registers R4–R15 have no dedicated purpose and may be

used as general working registers. They may be used for either data or addresses

because both are 16-bit values, which simplify the operation significantly.

The following figure shows the MSP430 CPU Block Diagram.

The CPU features include:

 RISC architecture with 27

instructions and 7 addressing

modes.

 Orthogonal architecture with

every instruction usable with

every addressing mode.

 Full register access including

program counter, status

registers, and stack pointer.

 Single-cycle registers operations.

 Large 16-bit register file reduces

fetches to memory.

 16-bit address bus allows direct

access and branching throughout

entire memory range.

 16-bit data bus allows direct

manipulation of word-wide

arguments.

 Constant generator provides six

most used immediate values and

reduces code size.

 Direct memory-to-memory

transfers without intermediate

register holding.

 Word and byte addressing and

instruction formats.

 An orthogonal instruction set is

an instruction set architecture

where all instruction types can

use all addressing modes. It is

"orthogonal" in the sense that

the instruction type and the

addressing mode vary

independently.

Addressing modes:

The MSP430 supports seven addressing modes. They are:

1) Register mode

2) Indexed mode

3) Symbolic mode

4) Absolute mode

5) Indirect register mode

6) Indirect auto increment mode

7) Immediate mode

1) Register Mode:

Register mode operations work directly on the processor registers, R4

through R15, or on special function registers, such as the program counter or status

register. They are very efficient in terms of both instruction speed and code space.

Ex: MOV.b R4, R5 ; move (copy) byte from R5 to R6

MOV.w R4, R5 ; move (copy) word from R5 to R6

Operation:Move (copy) the contents of source (register R4) to destination

(register R5), Register R4 is not affected. .b → for byte operation& .w → for word

operation

2) Indexed mode:

The Indexed mode commands are formatted as X(Rn), where X is a constant

and Rn is one of the CPU registers. The absolute memory location X+Rn is addressed.

Indexed mode addressing is useful for applications such as lookup tables

Ex: MOV.b 4(R5), 6(R6) ; move data from address 4 + (R5)

; to address 6 + (R6)

Operation: Move the contents of the source address (contents of R5 + 4) to

the destination address (contents of R6 + 6). Thesource and destination registers (R5

and R6) are not affected.

3) Symbolic mode(PC Relative):

Symbolic mode allows the assignment of labels to fixed memory locations, so

that those locations can be addressed. This is useful for the development of

embedded programs.

In this case the program counter PC is used as the base address, so the

constant is the offset to the data from the PC. TI calls this the symbolic mode

although it is usually described as PC-relative addressing. It is used by writing the

symbol for a memory location without any prefix.

Ex: MOV.w TX, RX ; move data from src address TX

; to dst address RX

The assembler replaces the above instruction by the indexed form

MOV X(PC),Y(PC) ; where X=TX-PC 🢡 TX=PC+X &

; Y=RX-PC 🢡 RX=PC+Y

Operation: Move the contents of the source address TX (contents of PC + X) to the

destination address RX (contents of PC + Y). The words after the instruction contains

the differences between the PC and the source address i.e. X or destination address

i.e. Y. The assembler computes and inserts offsets X and Y automatically.

Ex: MOV.wTX, RX ; Src. address TX = 0F016h
;Dst. address RX = 01114h

4) Absolute mode:

Similar to Symbolic mode, with the difference that the label is preceded by

“&”. This mode is used for special function and peripheral registers, whose addresses

are fixed in the memory map.

Ex: MOV.w &TX, &RX ; move data from src address TX

; to dst address RX

The assembler replaces the above instruction by the indexed form

MOV X(SR),Y(SR)🢡 MOV X(0),Y(0)

; Where X=TX-0🢡 TX=X 🢡 Absolute Address&

; Y=RX-0🢡 RX=Y🢡 Absolute Address

Operation: Move the contents of the source address TX to the destination address

RX. The words after the instruction contain the absolute address of the source and

destination addresses.

Ex: MOV.w&TX, &RX ; Src. address TX = 0F016h

;Dst. addressRX = 01114h

Indirect register mode:

This is available only for the source and is shown by the symbol @ in front of

a register,such as @R5. It means that the contents of R5 are used as the address of

the operand. In other words, R5 holds a pointer rather than a value.

Indirect addressing cannot be used for the destination so indexed addressing

must be used instead Indirect addressing i.e. the substitute for destination operand

is 0(Rd).

Ex: MOV.w @R10, 0(R11)

Operation: Move the contents of the source address (contents of R10) to the

destination address (contents of R11). The registers are not modified.

6) Indirect Autoincrement Mode:

Again this is available only for the source and is shown by the symbol @ in

front of a register with a + sign after it, such as @Rn+. It uses the value in Rn as a

pointer and automatically increments it afterward by 1 for a byte operation or by 2

for a word operation after the fetch.

Ex: MOV.w @R10+, 0(R11)

Operation: Move the contents of the source address (contents of R10) to the

destination address (contents of R11). After that R10 is incremented by 1 for a byte

operation, or 2 for a word operation.

7) Immediate Mode:

Immediate mode is used to assign constant values to registers or memory

locations.

Ex: MOV.b #45h, R5

Operation: Move the immediate constant 45h to the destination (register

R5).

Instruction Set:

 The complete MSP430 instruction set consists of 27 core instructions and 24

emulated instructions.

 The core instructions are instructions that have unique op-codes decoded by

the CPU. The emulated instructions are instructions that make code easier to

write and read, but do not have op-codes themselves; instead they are

replaced automatically by the assembler with an equivalent core instruction.

There is no code or performance penalty for using emulated instruction.

 The instruction set is orthogonal withfew exceptions, meaning that all

addressing modes can be used with all instructions andregisters.

Movement Instructions:

There is only the one “mov” instruction to move data. It can address all of

memory as either source or destination, including both registers in the CPU and the

whole memory map.

mov.wsrc, dst ; move (copy) dst = src

Stack Operations

These instructions either push data onto the stack or pop them off.

push.wsrc ; push data onto stack--SP = src

pop.w dst ; pop data off stack. dst = SP++ emulated

The pop operation is emulated using post-increment addressing but push

requires a special instruction because pre-decrement addressing is not available.

1) Arithmetic and Logic Instructions:

Arithmetic Instructions with Two Operands

add.w src ,dst ; add dst += src

addc.w src ,dst ; add with carry dst += (src + C)

adc.w dst ; add carry bit dst += C emulated

sub.w src ,dst ; subtract dst -= src

subc.wsrc ,dst ; subtract with borrow dst -= (src + ~C)

sbc.w dst ; subtract borrow bit dst -= ~C emulated

cmp.w src ,dst ; compare, set flags only (dst - src)

Note: The compare operation “cmp” is the same as subtraction except that only

the bits in SR are affected; the result is not written back to the destination.

Arithmetic Instructions with One Operand

All these are emulated, which means that the operand is always a destination:

clr.wdst ; clear dst = 0 emulated

dec.wdst ; decrement dst -- emulated

decd.wdst ; double decrement dst -= 2 emulated

inc.wdst ; increment dst++ emulated

incd.wdst ; double increment dst += 2 emulated

tst.wdst ; test (compare with 0) (dst - 0) emulated

Decimal Arithmetic

These instructions are used when operands are binary-coded decimal (BCD)

rather than ordinary binary values.

dadd.w src ,dst ; decimal add with carry dst += src + C

dadc.w dst ; decimal add carry bit dst += C emulated

Logic Instructions with Two Operands

and.w src ,dst ; bitwise and dst &= src

xor.w src ,dst ; bitwise xor dst ˆ= src

bit.w src ,dst ; bitwise test, set flags only (dst & src)

bis.w src ,dst ; bit set dst |= src

bic.w src ,dst ; bit clear dst &= ˜src

Note: The and &bitwise test operations are identical except that bit is only a test

and does not change its destination.

Logic Instructions with One Operand

There is only one of these, the invert “inv” instruction, also known as ones

complement, which changes all bits of 0 to 1 and those of 1 to 0:

inv.w dst ; invert bits dst = ˜dst emulated

Byte Manipulation

These instructions do not need a suffix because the size of the operands is

fixed:

swpb src ; swap upper and lower bytes (word only)

sxt src ; extend sign of lower byte (word only)

 The swap bytes instruction “swpb” swaps the two bytes in a word.

 The sign extend instruction “sxt” is used to convert a signed byte into a

signed word.

Operations on Bits in Status Register

There is a set of emulated instructions to set or clear the four lowest bits in

the status register, those that can be masked using the constant generator:

clrc ; clear carry bit c = 0 emulated

clrn ; clear negative bit n = 0 emulated

clrz ; clear zero bit z = 0 emulated

setc ; set carry bit c = 1 emulated

setn ; set negative bit n = 1 emulated

setz ; set zero bit z = 1 emulated

dint ; disable general interrupts GIE=0 emulated

eint ; enable general interrupts GIE =1 emulated

2) Shift and Rotate Instructions:

There are three types of shifts

(i) logicalshift (ii) arithmetic shift (iii) rotation.

 Logical shift inserts zeroes for both right and left shifts.

 Arithmetic shift inserts zero for left shifts at lsbbut for the right shifts the

msb is replicated.

 Rotation does not introduce or lose any bits; bits that are moved out of one

end ofthe register are passed around to the other.

 The MSP430 has arithmetic shifts and rotations, all of which use the carry bit.

The right-shifts are native instructions but the left shifts are emulated

rla dst ; arithmetic shift left emulated

rra src ; arithmetic shift right

rlc dst ; rotate left through carry emulated

rrc src ; rotate right through carry

3) Flow of Control:

Subroutines, Interrupts, and Branches

brdst ; branch (go to) PC = dst emulated

call src ; call subroutine

ret ; return from subroutine emulated

reti ; return from interrupt

nop ; no operation (consumes single cycle)emulated

Jumps 🢡Unconditional and Conditional

 The unconditional jump instruction is

jmp label ; unconditional jump

 jmp fits in a single word, including the offset, but its range is limited to

about±1KB from the current location.

 br can go anywhere in the address space and use any addressing mode but

isslower and requires an extra word of program storage.

 The conditional jumps are the “decision-making” instructions and test certain

bits or combinations in the status register.

jc label ; jump if carry set, C = 1 same as jhs

jnc label ; jump if carry not set,C = 0 same as jlo

jn label ; jump if negative, N = 1

jz label ; jump if zero, Z = 1 same as jeq

jnz label ; jump if nonzero, Z = 0 same as jne

jeq label ; jump if equal, dst = src same as jz

jne label ; jump if not equal, dst!= src same as jnz

jhs label ; jump if higher or same, dst>= src same as jc

jlo label ; jump if lower, dst < src same as jnc

jge label ; jump if greater or equal, dst >= src signed values

jl(t) label ; jump if less than, dst < src signed values

Many branches have two names to reflect different usage. For example, it is

clearer to usejc if the carry bit is used explicitly—after a rotation, for instance—

but jhs is more appropriate after a comparison.

Assume that the “comparison” jumps follow cmp.wsrc,dst, which sets the

flags according to the difference dst-src. Alternatively, tst.wdst sets the flags for

dst – 0.

Both mnemonics jl and jlt are used. It is up to the programmer to select the

correct instruction. For example, suppose that two bytes contain 0x99 and 0x01.

They are related by 0x99 > 0x01 if the values are unsigned but 0x99 < 0x01 if they

are signed, twos complement numbers because 0x99 is the representation of

−0x67.

The following table shows the list of 27 core instructions of MSP430:

S.No. Mnemonic
S-Reg,
D- Reg

Operation
Status Bits

V N Z C

1 MOV src,dst src → dst - - - -

2 ADD src,dst src + dst → dst * * * *

3 ADDC src,dst src + dst + C → dst * * * *

4 SUB src,dst dst + .not.src + 1 → dst * * * *

5 SUBC src,dst dst + .not.src + C → dst * * * *

6 CMP src,dst dst → src * * * *

7 DADD src,dst
src + dst + C → dst
(decimally)

* * * *

8 BIT src,dst src .and. dst 0 * * Z

9 BIC src,dst not src .and. dst → dst - - - -

10 BIS src,dst src .or. dst → dst - - - -

11 XOR src,dst src .xor. dst → dst * * * Z

12 AND src,dst src .and. dst → dst 0 * * Z

13 RRC dst C → MSB → LSB → C * * * *

14 RRA dst MSB → MSB → ... LSB → C 0 * * *

15 PUSH src SP - 2 → SP, src → SP – – – –

16 SWPB dst bit 15...bit 8 ↔ bit 7...bit 0 – – – –

17 CALL dst Call subroutine in lower 64KB – – – –

18 RETI
 TOS → SR, SP + 2 → SP

TOS → PC, SP + 2 → SP
* * * *

19

SXT

dst

Register mode: bit 7 → bit
8...bit 19
Other modes: bit 7 → bit
8...bit 15

0

*

*

Z

20 JEQ/JZ Label Jump to label if zero bit is set

Status bits are not
affected

21 JNE/JNZ Label
Jump to label if zero bit is
reset

22 JC Label
Jump to label if carry bit is
set

23 JNC Label
Jump to label if carry bit is
reset

24 JN Label
Jump to label if negative bit
is set

25 JGE Label
Jump to label if (N .XOR. V) =
0

26 JL Label
Jump to label if (N .XOR. V) =
1

27 JMP Label Jump to label unconditionally

Note:

*=Statusbitisaffected.

–=Statusbitisnotaffected.

0=Statusbitiscleared.

1=Statusbitisset.

The following table shows the list of 24 Emulated Instructions:

Emulated instructions are instructions that make code easier to write and

read, but do not have op-codes themselves. Instead, they are replaced automatically

by the assembler with a core instruction. There is no code or performance penalty

for using emulated instructions.

S.No. Instruction Explanation Emulation
Status Bits

V N Z C

1 ADC dst Add Carry to dst ADDC #0,dst * * * *

2 BR dst Branch indirectly dst MOV dst,PC – – – –

3 CLR dst Clear dst MOV #0,dst – – – –

4 CLRC Clear Carry bit BIC #1,SR – – – 0

5 CLRN Clear Negative bit BIC #4,SR – 0 – –

6 CLRZ Clear Zero bit BIC #2,SR – – 0 –

7 DADC dst Add Carry to dst decimally DADD #0,dst * * * *

8 DEC dst Decrement dst by 1 SUB #1,dst * * * *

9 DECD dst Decrement dst by 2 SUB #2,dst * * * *

10 DINT Disable interrupt BIC #8,SR – – – –

11 EINT Enable interrupt BIS #8,SR – – – –

12 INC dst Increment dst by 1 ADD #1,dst * * * *

13 INCD dst Increment dst by 2 ADD #2,dst * * * *

14 INV dst Invert dst XOR #–1,dst * * * *

15 NOP No operation MOV R3,R3 – – – –

16 POP dst Pop operand from stack MOV @SP+,dst – – – –

17 RET Return from subroutine MOV @SP+,PC – – – –

18 RLA dst Shift left dst arithmetically ADD dst,dst * * * *

19 RLC dst
Shift left dst logically through
Carry

ADDC dst,dst * * * *

20 SBC dst Subtract Carry from dst SUBC #0,dst * * * *

21 SETC Set Carry bit BIS #1,SR – – – 1

22 SETN Set Negative bit BIS #4,SR – 1 – –

23 SETZ Set Zero bit BIS #2,SR – – 1 –

24 TST dst Test dst (compare with 0) CMP #0,dst 0 * * 1

Note:

*=Statusbitisaffected.

–=Statusbitisnotaffected.

0=Statusbitiscleared.

1=Statusbitisset.

Instruction Formats:

There are three core-instruction formats:

1) Double operand (Format I)

2) Single operand (Format II)

3) Jump (Format III)

Note: The Instruction Formats can be used to find the Machine codes manually for

assembly language instructions

 opcode- is the operation code

 src-The source operand defined by As and S-Reg

 dst- The destination operand defined by Ad and D-Reg

 As (2 bits-addressing bits) gives the mode of addressing for the source, which

has four basic modes.

 Ad (1 bit-addressing bits) similarly gives mode of addressing for the

destination, which has only two basic modes.

 S-Reg and D-Reg specify the CPU registers associated with the source and

destination, the registers either contain the data or addresses.

 B/W (1 bit) Byte or Word operation:

 0: word operation, 1: byte operation

As Bits Addressing Mode

Ad Bit Addressing Mode
0 0 Register

0 Register 0 1 Indexed

1 0 Indirect Reg.

1

Indexed

1

1
Indirect Auto-Increment

/Immediate

Double-Operand (Format I) Instructions:

Single-Operand (Format II) Instructions:

Jump Instruction Format:

Here is an example of a move from register to register with the resulting machine

code:

MOV.w R5, R6 ; 4506

The instruction can be broken into its fields of opcode = 4, S-reg = 5, Ad = 0,
B/W = 0,As= 0, D-reg = 6. What do these mean?

🢡 The opcode of 4 represents a move.

🢡 The bit B/W = 0 shows that the operand is a word.

🢡 The addressing mode for the source is As = 0, which is register. The register is S-

reg = 5, which is R5 as expected.

🢡 Similarly, the addressing mode for the destination is Ad = 0, which again

means register. The register is D-reg = 6 = R6.

Here is another example addition rather than a move:

ADD.w R5, R6 ; 5506

The machine code is identical except for the opcode which is 5 rather than 4.
The specification of the operands is unchanged. This is because of the orthogonality:
All instructions use the same addressing modes.

Let us move an immediate value instead of a register:

MOV.w #5, R6 ; 4036 0005

Now there are two words. The fields of the instruction are opcode = 4, S-reg =

0, Ad = 0, B/W = 0, As = 3 = 11b, D-reg = 6. The difference is in the specification of

the source, which means immediate operand. The register is S-Reg = 0. The value

itself is contained in the second word in the machine code.

The following table shows the opcodes for core instructions:

OPCODE
(HEX)

CORE
INSTRUCTION

4 MOV

5 ADD

6 ADDC

7 SUB

8 SUBC

9 CMP

A DADD

B BIT

C BIC

D BIS

E XOR

F AND

 OPCODE
(BINARY)

CORE
INSTRUCTION

000100000 RRC

000100001 SWPB

000100010 RRA

000100011 SXT

000100100 PUSH

000100101 CALL

000100110 RETI

OPCOD
E

(BINAR
Y)

CONDITIO
N

(C)
(BINARY)

CORE
INSTRU
CTION

001 000 JNE/JNZ

001 001 JEQ/JZ

001 010 JNC/JLO

001 011 JC/JHS

001 100 JN

001 101 JGE

001 110 JL

001 111 JMP

Instruction Timing:

 It takes one cycle to fetch the instruction word itself. This is all if both source and

destination are in CPU registers.

 One more cycle is needed to fetch the source if it is given indirectly as @Rn or

@Rn+, in which case the address is already in the CPU. This includes immediate

data.

 Alternatively, two more cycles are needed if one of the indexed modes is used.

The first is to fetch the base address, which is added to the value in a CPU

register to get the address of the source. A second cycle is necessary to fetch the

operand itself. This includes absolute and symbolic modes.

 Two more cycles are needed to fetch the destination in the same way if it is

indexed.

 A final cycle is needed to write the destination back to memory if required; no

allowance is needed for a register in the CPU.

Table: Number of MCLK cycles required for typical instructions. It applies only to

logical and arithmetic instructions and when the destination is not PC.

Variants of the MSP430 Family:

MSP430x1xx:

 Provides a wide range of general purpose devices from simple versions to

complete systems for processing signals

 There is a broad selection of peripherals and some include a hardware

multiplier, which can be used as rudimentary digital signal processor

 Packages have 20–64 pins

MSP430x2xx:

 Introduced in 2005.

 CPU can run at 16 MHz, double the speed of earlier devices, while consuming

only half the current at the same speed.

 14 pin PDIP package.

 Pull-up or pull-down resistors are provided on the inputs to reduce the

number of external components needed.

 Even the smallest,14-pin devices offer a 16-bit sigma–delta ADC

MSP430x3xx:

 The original family, which includes drivers for LCDs. It is now obsolescent.

MSP430x4xx:

 Can drive LCDs with up to 160 segments. Many of them are ASSPs

(application-specific standard product), but there are general-purpose

devices as well. Their packages have 48–113 pins, many of which are needed

for the LCD.

MSP430x5xx:

 It is Next Generation of MSP430 Family

 Advanced Ultra Low Power features

 Increased Performance, Functionality and ease-of-use

 Significantly longer battery life

 It contains almost all Peripherals like PORTS (P1-P8), ADC, DAC, TIMER_A0-2

& B0, DMA, COMPARATOR, USCI: UART, SPI, I2C IRDA, USB etc.

 Lowest Active Current/MHz:

 <200uA/MHz

MSP430x5xx Series Block Diagram:

CPUX:

The MSP430X CPU is RISC architecture with 51 instructions and 7 addressing

modes. It is integrated with 16 registers (each 20-bit wide except SR) that provide

reduced instruction execution time. The register-to-register operation execution

time is one cycle of the CPU clock. Peripherals are connected to the CPU using data,

address, and control buses, and can be handled with all instructions. It has 20-bit

address bus allows direct access and branching throughout the entire memory range

without paging.

JTAG (Joint Test Action Group):

The MSP430 family supports the standard JTAG interface which requires four

signals for sending and receiving data. The JTAG signals are shared with general-

purpose I/O. It is used to program and debug the device.

SBW (Spy-Bi-Wire) Interface:

In addition to the standard JTAG interface, the MSP430 family supports the

two wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430

development tools and device programmers.

Flash Memory:

The flash memory can be programmed through the JTAG port, Spy-Bi-Wire

(SBW), the BSL, or in-system by the CPU. The CPU can perform single-byte, single-

word, and long-word writes to the flash memory.

The RAM is made up of n sectors. Each sector can be completely powered

down to save leakage; however; all data is lost.

RAM has 5 sectors. The size of a each sector is 2KB. In that 5 sectors one is for

USB & RAM (Both) and remaining 4 sectors only for RAM.

Peripherals:

Peripherals are connected to the CPUX through data, address, and control

buses. Peripherals can be handled using all instructions.

On-Chip Peripherals (Analog and Digital):

 Digital I/O PORTs (GPIO)

 Port Mapping Controller

 Power Management Module (PMM)

 Hardware Multiplier (MPY32)

 Real-Time Clock (RTC_A)

 Watchdog Timer (WDT_A)

 System Module (SYS)

 DMA Controller

 Universal Serial Communication Interface (USCI: UART Mode, SPI Mode, I2C

Mode)

 Timers (TA0, TA1, TA2, TB0)

 Comparator_B

 Analog to Digital Convertor (ADC12_A)

 Cyclic Redundancy Check (CRC16)

 Universal Serial Bus (USB)

 Embedded Emulation Module (EEM)

Digital I/O PORTs:

 There are up to eight 8-I/O ports P1- P8 each Port is 8 bit wide

 All individual I/O bits are independently programmable.

 Any combination of input, output, and interrupt conditions is possible.

 Pull-up or Pull-down on all ports is programmable.

 Read and write access to port-control registers is supported by all

instructions.

 Ports can be accessed byte-wise (P1 through P8) or word-wise in pairs (PA

through PD).

 Independent input and output data registers

Port Mapping Controller:

The port mapping controller allows the flexible and reconfigurable mapping

of digital functions to port P4.

Power Management Module (PMM):

 The PMM includes an integrated voltage regulator that supplies the core

voltage to the device and contains programmable output levels to provide for

power optimization.

 The PMM also includes supply voltage supervisor (SVS) and supply voltage

monitoring (SVM) circuitry, as well as brownout protection.

 The brownout circuit is implemented to provide the proper internal reset

signal to the device during power on and power off.

 The SVS and SVM circuitry detects if the supply voltage drops below a user-

selectable level and supports both supply voltage supervision (SVS) (the

device is automatically reset) and supply voltage monitoring (SVM) (the

device is not automatically reset).

Hardware Multiplier:

 The multiplication operation is supported by a dedicated peripheral module.

The module performs operations with 32-, 24-, 16-, and 8-bit operands. The

module supports signed and unsigned multiplication as well as signed and

unsigned multiply-and-accumulate operations.

Real-Time Clock (RTC_A):

 The RTC_A module can be used as a general-purpose 32-bit counter (counter

mode) or as an integrated real-time clock (RTC) (calendar mode).

 In counter mode, the RTC_A also includes two independent 8-bit timers that

can be cascaded to form a 16-bit timer/counter. Both timers can be read and

written by software.

 Calendar mode integrates an internal calendar which compensates for

months with less than 31 days and includes leap year correction. The RTC_A

also supports flexible alarm functions and offset calibration hardware.

Watchdog Timer (WDT_A):

The primary function of the WDT_A module is to perform a controlled system

restart after a software problem occurs. If the selected time interval expires, a

system reset is generated. If the watchdog function is not needed in an application,

the module can be configured as an interval timer and can generate interrupts at

selected time intervals.

System Module (SYS):

The SYS module handles many of the system functions within the device.

These include power-on reset and power-up clear handling, NMI source

selection and management, reset interrupt vector generators, bootstrap loader

entry mechanisms, and configuration management.

DMA Controller:

The DMA controller allows movement of data from one memory address to

another without CPU intervention.

Universal Serial Communication Interface (USCI: UART Mode, SPI Mode, I2C

Mode):

The USCI modules are used for serial data communication. The USCI module

supports synchronous communication protocols such as SPI (3-pin or 4-pin) and I2C,

and asynchronous communication protocols such as UART, enhanced UART with

automatic baud rate detection, and IrDA.

Timers (TA0, TA1, TA2, TB0):

Timers are 16-bit timer and counter (Timer_A/B type) with 5/3/3/7

capture/compare registers. It can support multiple capture/compare registers, PWM

outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts

may be generated from the counter on overflow conditions and from each of the

capture/compare registers.

Comparator_B:

The primary function of the Comparator_B module is to support precision

slope analog-to-digital conversions, battery voltage supervision, and monitoring of

external analog signals.

ADC12_A:

The ADC12_A module supports fast 12-bit analog-to-digital conversions. It

has 16 independent channels to be convert and store without any CPU intervention.

CRC16:

A Cyclic Redundancy Check (CRC) is an error-detecting code commonly used

in digital networks and storage devices for data errors checking purpose

REF Voltage Reference:

The REF voltage module generates the Reference Voltage which is used by

ADC as a reference mark or point to convert analog voltage from 0v to REF voltage.

Universal Serial Bus (USB):

The USB module is a fully integrated USB interface that is compliant with the

USB 2.0 specification. The module supports full-speed operation of control,

interrupt, and bulk transfers. The module includes an integrated LDO, PHY, and PLL.

Embedded Emulation Module (EEM):

The EEM supports real-time in-system debugging.

Features of EEM:

 Eight hardware triggers or breakpoints on memory access

 Two hardware triggers or breakpoints on CPU register write access

 Up to 10 hardware triggers can be combined to form complex triggers or

breakpoints

 Two cycle counters

 Sequencer

 State storage

 Clock control on module level

MSP430X CPU (CPUX) ‒ Features:

The MSP430X CPU features include:

 RISC architecture

 Orthogonal architecture

 Full register access including

program counter, status register

and stack pointer

 Single-cycle register operations

 Large register file reduces

fetches to memory

 It has 51 instructions

 20-bit address bus allows direct

access and branching throughout

the entire memory range

without paging

 16-bit data bus allows direct

manipulation of word-wide

arguments

 Constant generator provides the

six most often used immediate

values and reduces code size

 Direct memory-to-memory

transfers without intermediate register holding

 Byte, word, and 20-bit address-word addressing.

 An orthogonal instruction set is an instruction set architecture where all

instruction types can use all addressing modes. It is "orthogonal" in the sense

that the instruction type and the addressing mode vary independently.

Registers of MSP430 CPUX:

The CPUX of MSP 430 includes a 16/20-bit ALU and a set of 16 Registers R0 –

R15. In these registers four are special Purpose and 12 are general purpose registers.

All the registers can be addressed in the same way.

The special Purpose Registers are:

PC (Program Counter), SP (Stack Pointer), SR (Status Register), CGx (Constant

Generator)

The MSP430 CPU includes an arithmetic logic unit (ALU) that handles

addition, subtraction, comparison and logical (AND, XOR) operations. ALU operations

can affect the overflow, zero, negative, and carry flags in the status register.

The following figure shows the register organization of MSP430 CPUX.

Figure: Registers in the CPUX of MSP430x5xx

R0: Program Counter (PC):

The 20-bit PC (PC/R0) points to the next instruction to be executed. Each

instruction uses an evennumber of bytes (2, 4, 6, or 8 bytes), and the PC is

incremented accordingly. Instruction accesses areperformed on word boundaries,

and the PC is aligned to even addresses.Following Figure shows the PC structure.

Subroutines and interrupts also modify the PC but in these cases the previous

value (Next line of current instruction which is executing) is saved on the stack and

restored later.

Figure: Program Counter

The PC is automatically stored on the stack with CALL (or CALLA) instructions and

during an interruptservice routine. Following Figure shows the storage of the PC with

the return address after a CALLA instruction.A CALL instruction stores only bits 15:0

of the PC.

Figure: PC Storage on the Stack for CALLA

The RETA instruction restores bits 19:0 of the PC and adds 4 to the stack pointer (SP).

The RET instruction restores bits 15:0 to the PC and adds 2 to the SP.

R1: Stack Pointer (SP):

The 20-bit SP (SP/R1) is used by the CPU to store the return addresses of

subroutine calls and interrupts. It uses a predecrement, postincrement scheme. In

addition, the SP can be used by software with all instructions and addressing modes.

Following Figure shows the SP. The SP is initialized into RAM by the user,and is

always aligned to even addresses.

Figure: Stack Pointer

The Following Figure shows the stack usage.
PUSH #0123h ; Put 0123h on stack

POP R8 ; R8 = 0123h

Figure: Stack Usage

The following Figure shows the stack usage when 20-bit address words arepushed.

Figure: PUSHX.A Format on the Stack

Note:For programs written in C, the compiler initializes the stack automatically as

part of the startup code, which runs silently before the program starts, but you must

initialize SP yourself in assembly language.

R2: Status Register (SR):

The 16-bit SR (SR/R2), used as a source or destination register, can only be

used in register modeaddressed with word instructions. The remaining combinations

of addressing modes are used to supportthe constant generator. Figure 4-9 shows

the SR bits. Do not write 20-bit values to the SR. Unpredictable operation can result.

The reserved bits are not used in the MSP430.

Table: SR Bit Description

Bit Description

Reserved Reserved

V

Overflow.Thisbitissetwhentheresultofanarithmeticoperationoverflowsthesigned-
variablerange.

ADD(.B), ADDX(.B,.A), ADDC(.B), ADDCX(.B.A),
ADDA

Set when:
positive+ positive=negative
negative+ negative=positive
otherwise reset

SUB(.B), SUBX(.B,.A), SUBC(.B), SUBCX(.B,.A),
SUBA, CMP(.B), CMPX(.B,.A), CMPA

Set when: positive–
negative=negative
negative–positive=positive
otherwise reset

SCG1

Systemclockgenerator1.Thisbitmaybetoenable/disablefunctionsintheclocksystemdep
endingonthedevice family; for example, DCO bias enable/disable

SCG0

Systemclockgenerator0.Thisbitmaybeusedtoenable/disablefunctionsintheclocksystem
dependingonthe device family; for example, FLL disable/enable

OSCOFF
Oscillator off. This bit, when set, turns off the LFXT1 crystal oscillator when LFXT1CLK
is not used for MCLK or SMCLK.

CPUOFF CPU off. This bit, when set, turns off the CPU.

GIE
General interrupt enable. This bit, when set, enables maskable interrupts. When
reset, all maskable interrupts are disabled.

N
Negative.Thisbitissetwhentheresultofanoperationisnegativeandclearedwhentheresult
ispositive.

CG

Z

Zero.Thisbitissetwhentheresultofanoperationis0andclearedwhentheresultisnot0.

C
Carry.Thisbitissetwhentheresultofanoperationproducedacarryandclearedwhennocarr
yoccurred.

R2/R3: Constant Generator Registers (CG1/CG2):

t generator registers R2
Table:

Constant

Generators CG1, CG2

Values of

4314 mov.w #0002h, R4 ; With CG

4034 1234 mov.w #1234h, R4 ; Without

 Constant (Immediate) values -1,0,1,2,4,8 generated in hardware

The constant generator advantages are:

 No special instructions required

 No additional code word for the six constants

 No code memory access required to retrieve the constant

 Reduces code size and cycles

 Completely Automatic

RegSiisxtecor mmAson ly-usedCcoonnsstatannt ts are ge neratedRewmitahrktshe constan

R2 00 – Register mode

R2 01 (0) Absolute address mode

R2 10 00004h +4,bitprocessing

R2 11 00008h +8,bitprocessing

R3 00 00000h 0,wordprocessing

R3 01 00001h +1

R3 10 00002h +2,bitprocessing

R3 11 FFh,FFFFh,FFFFFh –1,wordprocessing

R4 - R15: General–Purpose Registers:

The remaining 12 registers R4–R15 have no dedicated purpose and may be

used as general working registers. They may be used for either data or addresses

because both are 16-bit values, which simplify the operation significantly.

Address Space (Memory Organization):

F5529
0x243FF

0xFFFF

0xFF80

81KB

128 B

0x4400

0x2400

0x1C00

0x1A00

0x1800

0x0000

47KB

8KB

2KB

512 B

128 B

128 B

128 B

128 B

2KB

4KB

1MB

 Info – Information Memory (flash)

 TLV – Contents of the Device Descriptor Tag Length Value (TLV)

 BSL– Bootstrap Loader Memory (flash)

MEMORY TYPE

MSP430F5529

MSP430F5528
MSP430F5519

Unused Memory 0FFFFFh–024400h

Interrupt Vector Size
128 B

00FFFFh–00FF80h

Flash (code) Memory

Total Size 128KB

Bank D
32KB

0243FFh–01C400h

Bank C
32KB

01C3FFh–014400h

Bank B
32KB

0143FFh–00C400h

Bank A
32KB

00C3FFh–004400h

RAM

Sector 3
2KB

0043FFh–003C00h

Sector 2
2KB

003BFFh–003400h

Sector 1
2KB

0033FFh–002C00h

Sector 0
2KB

002BFFh–002400h

USB RAM # Sector 7
2KB

0023FFh–001C00h

Information Memory
(flash)

Info A
128 B

0019FFh–001980h

Info B
128 B

00197Fh–001900h

Info C
128 B

0018FFh–001880h

Info D
128 B

00187Fh–001800h

Bootstrap loader (BSL)
memory (flash)

BSL 3
512 B

0017FFh–001600h

BSL 2
512 B

0015FFh–001400h

BSL 1
512 B

0013FFh–001200h

BSL 0
512 B

0011FFh–001000h

Peripherals
Size

4KB
000FFFh–0h

Flash
(code)
Memory
INT Vectors

Flash
(code)

Memory
RAM

USB RAM

TLV

Info A

Info B

Info C

Info D

BSL

Peripherals

Sample Embedded System onMSP430 Microcontroller:

Fig: Weighing Machine with a liquid crystal display, broken down intoindividual
functions.
Vout = A(V+ − V−), where A is the gain

Figure: Electronic Dice built using (top) JK flip-flops and gates and (bottom) an

eight-pin microcontroller.

INTRODUCTION to MSP430 MICROCONTROLLER

Features of MSP430

These are some features of MSP430.

It is available in a 20 pin plastic small outline widebody package.

Its operating voltage range is 2.5v to 5.5 v. Its active mode is 330 µA at 1 MHz, 3 V.

Its stands by mode are 1.5 µA. It's off mode (Ram Retention) is 0.1 µA.

It has serial onboard programming.

Applications of MSP430

These are some applications of MSP430.

It is used in Factory Control & Automation Applications.

It is used in Buildings & Home Automation systems.

It is used in Grid Infrastructure & Metering networks.

It is used in Portable Test & Measurement Equipment.

It is used in Health, Medical & Fitness Applications.

It also used in Consumer Electronics.

So, friends that were all about MSP430, if you have any question about it please ask in comments. I will resolve your

problems. Will meet you guys in the next tutorial. Till then take care and have fun.

Basics of MSP430

This module provides features of 16-bit registers, 16-bit RISC CPU and constant generators.

This module has five low power modes which enhance battery life in portable measurement applications.

This module changes its state from low power mode to active mode within 6us, by a digitally controlled oscillator

(DCO).

The MSP430x11x series consists of a 16-bit timer and fourteen input and output pinouts.

Now let's have a look at MSP430 Pinout.

Pin diagram of the MSP430F2003 and F2013

1. VCC and VSS are the supply voltage and ground for the whole device (the analog and digital supplies
are separate in the 16-pin package).

2. P1.0–P1.7, P2.6, and P2.7 are for digital input and output, grouped into ports P1 and P2.
3. TACLK, TA0, and TA1 are associated with Timer_A; TACLK can be used as the clock input to the timer,

while TA0 and TA1 can be either inputs or outputs. These can be used on several pins because of the
importance of the timer.

4. A0−, A0+, and so on, up to A4±, are inputs to the analog-to-digital converter. It has four differential
channels, each of which has negative and positive inputs. VREF is the reference voltage for the

converter.
5. ACLK and SMCLK are outputs for the microcontroller’s clock signals. These can be used to supply a

clock to external components or for diagnostic purposes.
6. SCLK, SDO, and SCL are used for the universal serial interface, which communicates with external

devices using the serial peripheral interface (SPI) or inter-integrated circuit (I2C) bus.
7. XIN and XOUT are the connections for a crystal, which can be used to provide an accurate, stable

clock frequency.
8. RST is an active low reset signal. Active low means that it remains high near VCC for normal operation

and is brought low near VSS to reset the chip. Alternative notations to show the active low nature are
_RST and /RST.

9. NMI is the non-maskable interrupt input, which allows an external signal to interrupt the normal
operation of the program.

10. TCK, TMS, TCLK, TDI, TDO, and TEST form the full JTAG interface, used to program and debug the
device.

11. SBWTDIO and SBWTCK provide the Spy-Bi-Wire interface, an alternative to the usual JTAG
connection that saves pins.

MSP430 Pinout
 There are main twenty pinouts of MSP430, which are described below.

Pin# Type Parameters

Pin#13 P1.0/TACLK It is general-purpose digital I/O pin/Timer_A, clock signal TACLK input.

Pin#14 P1.1/TA0

It is general-purpose digital I/O pin/Timer_A, Capture: CCI0A input,

Compare: Out0 output.

Pin#15 P1.2/TA1

It is general-purpose digital I/O pin/Timer_A, Capture: CCI1A input,

Compare: Out1 output.

Pin#16 P1.3/TA2

It is general-purpose digital I/O pin/Timer_A, Capture: CCI2A input,

Compare: Out2 output.

Pin#17 P1.4/SMCLK/TCK

It is general-purpose digital I/O pin/SMCLK signal output/Test clock, an

input terminal for device programming and test.

Pin#18 P1.5/TA0/TMS

It is general-purpose digital I/O pin/Timer_A, Compare: Out0 output/test

mode select, an input terminal for device programming and test.

Pin#19 P1.6/TA1/TDI

It is general-purpose digital I/O pin/Timer_A, Compare: Out1 output/test data

input terminal.

Pin#20 P1.7/TA2/TDO/TDI

It is general-purpose digital I/O pin/Timer_A, Compare: Out2 output/test data

output terminal or data input during programming.

Pin#8 P2.0/ACLK It is general-purpose digital I/O pin/ACLK output.

Pin#9 P2.1/INCLK It is general-purpose digital I/O pin/Timer_A, a clock signal at INCLK.

Pin#10 P2.2/TA0

It is general-purpose digital I/O pin/Timer_A, Capture: CCI0B input,

Compare: Out0 output.

Pin#11 P2.3/TA1

It is general-purpose digital I/O pin/Timer_A, Capture: CCI1B input,

Compare: Out1 output.

Pin#12 P2.4/TA2 It is general-purpose digital I/O pin/Timer_A, Compare Out2 output.

Pin#3 P2.5/ROSC

It is general-purpose digital I/O pin/Input for an external resistor that defines

the DCO nominal frequency.

Pin#7 RST/NMI It is Reset or non-maskable interrupt input.

Pin#1 TEST/VPP

It is selected test mode for JTAG pins on Port1/programming voltage input

during EPROM programming.

Pin#2 VCC It is a Supply voltage.

Pin#4 VSS It is Ground reference.

Pin#6 XIN It is an Input terminal of the crystal oscillator.

Pin#5 XOUT/TCLK The output terminal of a crystal oscillator or test clock input.

Architecture of MSP 430

Block diagram of the MSP430F2003 and F2013, taken from data sheet.

The main features of the MSP RISC CPU architecture are,

1. On the left is the CPU and its supporting hardware, including the clock generator. The emulation,

JTAG interface and Spy-Bi-Wire are used to communicate with a desktop computer when

downloading a program and for debugging

2. Clock generator generates up to three different clocks (MCLK, ACLK & SMCLK) using four different

sources (VCO, DCO, LFXT1 and XT2).

3. The main blocks are linked by the memory address bus (MAB) and memory data bus (MDB).

4. These devices have flash memory, 1KB in the F2003 or 2KB in the F2013, and 128 bytes of RAM.

5. Six blocks are shown for peripheral functions (there are many more in larger devices).

a. Input/output ports,

b. Timer_A,

c. Watchdog timer (resets the processor if program becomes stuck in the infinite loop).

d. The universal serial interface (USI) (SPI, I2C, RS232, USB, CAN etc…)

e. Sigma–delta analog-to-digital converter (SD16_A)

6. The brownout protection comes into action if the supply voltage drops to a dangerous level. Most
devices include this but not some of the MSP430x1xx family.

7. There are ground and power supply connections. Ground is labeled VSS and is taken to define 0V.
The supply connection is VCC which is mostly in the range of 1.8–3.6V.

REGISTERS OF MSP 430

MSP 430 has sixteen 16-bit registers. These registers do not have address in the main memory map.
First four registers have dedicated alternate functions and the remaining 12 registers are used as working
registers for general purposes.

Program counter, PC: This contains the address of the next instruction to be executed

Stack pointer, SP: MSP430 uses the top (high addresses) of the main RAM as stack memory. The stack
pointer holds the address of the most recently added word and is automatically adjusted as the stack grows
downward in memory or shrinks upward.

Status register, SR: This contains a set of flags (single bits), whose functions fall into three categories.
The most commonly used flags are C, Z, N, and V, which give information about the result of the last
arithmetic or logical operation. The Z flag is set if the result was zero and cleared if it was nonzero, for
instance. Setting the GIE bit enables maskable interrupts. The final group of bits is CPUOFF, OSCOFF, SCG0,
and SCG1, which control the mode of operation of the MCU. All systems are active when all bits are clear.

Constant generator: This provides the six most frequently used values so that they need not be fetched from
memory whenever they are needed. It uses both R2 and R3 to provide a range of useful values by exploiting
the CPU’s addressing modes.

General purpose registers: The remaining 12 registers, R4–R15, are general working registers. They may be
used for either data or addresses because both are 16-bit values, which simplify the operation significantly.

COMPILER FRIENDLY FEATURES

MSP430 stems from its recent introduction is that it is designed with compilers in mind. Most small
microcontrollers are now programmed in C, and it is important that a compiler can produce compact, efficient
code. The MSP430 has 16 registers in its CPU, which enhances efficiency because they can be used for local
variables, parameters passed to subroutines, and either addresses or data. This is a typical feature of a RISC,
but unlike a “pure” RISC, it can perform arithmetic directly on values in main memory. Microcontrollers
typically spend much of their time on such operations.

MEMORY ADDRESS SPACE

R8 (GENERAL PURPOSE)
R9 (GENERAL PURPOSE)

R10 (GENERAL PURPOSE)
R11 (GENERAL PURPOSE)
R12 (GENERAL PURPOSE)
R13 (GENERAL PURPOSE)
R14 (GENERAL PURPOSE)
R15 (GENERAL PURPOSE)

R0/PC (PROGRAM COUNTER)
R1/SP (STACK POINTER)
R2/SR (STATUS REGISTER)
R3/CG (CONSTANT GENERATOR)

R4 (GENERAL PURPOSE)
R5 (GENERAL PURPOSE)
R6 (GENERAL PURPOSE)
R7 (GENERAL PURPOSE)

 The MSP430 von Neumann architecture has one address space shared with

o special function registers (SFRs),
o peripherals,
o RAM, and
o Flash/ROM memory

 Code access are always performed on even addresses.

 Data can be accessed as bytes or words.
 The addressable memory space is 64 KB

Flash/ROM
• The start address depends on the amount of Flash/ROM present and varies by device.
• The end address is 0FFFFh for devices with less than 60kB of Flash/ROM; otherwise, it is device

dependent.
• Flash can be used for both code and data.
• Word or byte tables can be stored and used without the need to copy the tables to RAM before using

them.
• The interrupt vector table is mapped into the upper 16 words of address space, with the highest

priority interrupt vector at address (0FFFEh).
RAM

• RAM starts at 0200h.
• End address depends on the amount of RAM present and varies by device.
• RAM can be used for both code and data.

Peripheral Modules
• 0100 to 01FFh is reserved for 16-bit peripheral modules.
• Accessed with word instructions.
• If Byte instructions are used ,then high byte of the result is always 0.
• 010h to 0FFh is reserved for 8-bit peripheral modules.
• These modules should be accessed with byte instructions.
• Accessed using word instructions results in unpredictable data in the high byte.
• If word data is written to a byte module only the low byte is written into the peripheral register,

ignoring the high byte.
SFRs

• Peripheral functions are configured in the SFRs.
• Located in the lower 16 bytes of the address space and are organized by byte.
• SFRs must be accessed using byte instructions only

ADDRESSING MODES

1. Register addressing mode. The address is formed by adding a constant base address to the
contents of a CPU register; the value in the register is not changed.
Eg: MOV R10, R11

Length: One or two words
Operation: Move the content of R10 to R11. R10 is not affected.

Before: After:
R10 - 0A023h R10 - 0A023h
R11 - 0FA15h R11 - 0A023h
PC - PC old PC - PC old + 2

2. Indexed addressing mode. In this case the program counter PC is used as the base address, so the

constant is the offset to the data from the PC.
Eg: MOV 2(R5),6(R6)

Length: 2 or 3 words
Operation: Move the contents of the source address (contents of R5 + 2) to the destination
address (contents of R6 + 6).

3. Symbolic Mode (PC Relative)
In this case the program counter PC is used as the base address, so the constant is the offset to the
data from the PC
Eg: MOV EDE,TONI

Length: Two or three words

Operation: Move the contents of the source address EDE (contents of PC + X) to the

destination address TONI (contents of PC + Y).

4. Absolute Mode: The constant in this form of indexed addressing is the absolute address of the data.
This is already the complete address required so it should be added to a register that contains 0.
Absolute addressing is shown by the prefix & and should be used for special function and peripheral
registers, whose addresses are fixed in the memory map.
Eg: mov.b &P1IN ,R6 ; copies the port 1 input register into register R6

5. Indirect Register Mode:

Eg: MOV @R10,0(R11)
Operation: Move the contents of the source whose address is in (R10) to the destination

address (R11). Indirect addressing cannot be used for the destination.
6. Indirect Auto increment Mode: This is available only for the source and is shown by the

symbol @ in front of a register with a + sign after it, such as @R5+. It uses the value in R5 as a pointer
and automatically increments it afterward by 1 if a byte has been fetched or by 2 for a word.
Eg: MOV @R10+,0(R11)

7. Immediate Mode

Eg: MOV #45h,TONI: Operation: Move the immediate constant 45h, which is contained in the

word following the instruction, to destination address TONI. When fetching the source, the program

counter points to the word following the instruction and moves the contents to the destination.

CLOCK SYSTEM

Figure below shows a simplified diagram of the Basic Clock Module+ (BCM+) for the MSP430F2xx

family. The clock module provides three outputs:

• Master clock, MCLK is used by the CPU and a few peripherals.
• Sub-system master clock, SMCLK is distributed to peripherals.

• Auxiliary clock, ACLK is also distributed to peripherals.

Most peripherals can choose either SMCLK, which is often the same as MCLK and in the megahertz

range, or ACLK, which is typically much slower and usually 32 KHz. A few peripherals, such as

analog-to-digital converters, can also use MCLK and some, such as timers, have their own clock

inputs. The frequencies of all three clocks can be divided in the BCM+ as shown in figure.

SMCLK

Clock

ACLK

WDT SSEL

WDT CNTCL

(clear)

WDT CTL

WDT CNT

(16 bit)

up counter

Up to four sources are available for the clock, depending on the family and variant:

Low- or high-frequency crystal oscillator, LFXT1: Available in all devices. It is usually used with a

low-frequency crystal (32 KHz) but can also run with a high-frequency crystal (typically a few MHz)

in most devices. An external clock signal can be used instead of a crystal if it is important to

synchronize the MSP430 with other devices in the system.

High-frequency crystal oscillator, XT2: Similar to LFXT1 except that it is restricted to high

frequencies. It is available in only a few devices and LFXT1 (or VLO) is used instead if XT2 is missing.

Internal very low-power, low-frequency oscillator, VLO: Available in only the more recent

MSP430F2xx devices. It provides an alternative to LFXT1 when the accuracy of a crystal is not

needed.

Digitally controlled oscillator, DCO: Available in all devices and one of the highlights of the

MSP430. It is basically a highly controllable RC oscillator that starts in less than 1µs in newer devices.

WATCH DOG TIMERS.

The main purpose of the watchdog timer is to protect the system against failure of the software, such

as the program becoming trapped in an unintended, infinite loop. Watchdog counts up and resets the

MSP430 when it reaches its limit. The code must therefore keep clearing the counter before the limit

is reached to prevent a reset. The operation of the watchdog is controlled by the 16-bit register

WDTCTL

Mode selection

WDT TMSEL

WDTIE & GIE =1

Control Register

PUC

WDT IFG

The watchdog counter is a 16-bit register WDTCNT, which is not visible to the user. It is clocked from

either SMCLK (default) or ACLK, according to the WDTSSEL bit. The watchdog is always active after

the MSP430 has been reset. By default the clock is SMCLK, which is in turn derived from the DCO at

about 1 MHz. The default period of the watchdog is the maximum value of 32,768 counts, which is

therefore around 32 ms. We must clear, stop, or reconfigure the watchdog before this time has

elapsed. If the watchdog is left running, the counter must be repeatedly cleared to prevent it counting

up as far as its limit. This is done by setting the WDTCNTCL bit in WDTCTL. The watchdog timer sets

the WDTIFG flag in the special function register IFG1. This is cleared by a power-on reset but its

value is preserved during a PUC. Thus a program can check this bit to find out whether a reset arose

from the watchdog.

BASIC TIMER.

Basic Timer1 is present in all MSP430xF4xx devices. It provides the clock for the LCD module and

generates periodic interrupts. A simplified block diagram of basic timer is shown in figure below.

Newer devices contain a real-time clock driven by a signal at 1Hz from Basic Timer1. The register

BTCTL controls most of the functions of Basic Timer1 but there are also bits in the special function

registers IFG2 and IE2 for interrupts.

REAL TIME CLOCK.

ADC10 SAR PERIPHERAL MODULE

Figure below shows a simplified block diagram of the ADC10 in the F20x2; there are more inputs in

larger devices.

The ADC10 module of the MSP430F2274 supports fast 10 bit analogue-to-digital conversions;

The module contains:

– 10-bit SAR core; The ADC10ON bit enables the core and a flag ADC10BUSY is set while

sampling and conversion is in progress. The result is written to ADC10MEM in a choice
of two formats, selected with the ADC10DF bit.

– Clock; This can be taken from MCLK, SMCLK, ACLK, or the module’s internal oscillator
ADC10OSC, selected with the ADC10SSELx bits.

– Sample-and-Hold Unit: This is shown separately in the block diagram. The time is

chosen with the ADC10SHTx bits, which allow 4, 8, 16, or 64 cycles of ADC10CLK.

– Input Selection: A multiplexer selects the input from eight external pins A0–A7 (more
in larger MSP430s) and four internal connections.

– Conversion Trigger; A conversion can be triggered in two ways provided that the ENC

bit is set. The first is by setting the ADC10SC bit from software (it clears again

automatically).

DIGITAL I/O PORTS

There are 10 to 80 input/output pins on different devices in the current portfolio of

MSP430s; the F20xx has one complete 8-pin port and 2 pins on a second port, while the

largest devices have ten full ports. Almost all pins can be used either for digital input/output

or for other functions and their operation must be configured when the device starts up.

Up to eight registers are associated with the digital input/output functions for each pin. Here

are the registers for port P1 on a MSP430F2xx, which has the maximum number. Each pin

can be configured and controlled individually; thus some pins can be digital inputs, some

outputs, some used for analog functions, and so on.

– Port P1 input, P1IN: reading returns the logical values on the inputs if they are

configured for digital input/output. This register is read-only and volatile. It does not
need to be initialized because its contents are determined by the external signals.

– Port P1 output, P1OUT: writing sends the value to be driven to each pin if it is

configured as a digital output. If the pin is not currently an output, the value is stored in

a buffer and appears on the pin if it is later switched to be an output. This register is not
initialized and you should therefore write to P1OUT before configuring the pin for

output.

– Port P1 direction, P1DIR: clearing a bit to 0 configures a pin as an input, which is the

default in most cases. Writing a 1 switches the pin to become an output. This is for

digital input and output; the register works differently if other functions are selected
using P1SEL.

– Port P1 resistor enable, P1REN: setting a bit to 1 activates a pull-up or pull-down

resistor on a pin. Pull-ups are often used to connect a switch to an input as in the section
“Read Input from a Switch” on page 80. The resistors are inactive by default (0). When

the resistor is enabled (1), the corresponding bit of the P1OUT register selects whether

the resistor pulls the input up to VCC (1) or down to VSS (0).

– Port P1 selection, P1SEL: selects either digital input/output (0, default) or an
alternative function (1). Further registers may be needed to choose the particular

function.

– Port P1 interrupt enable, P1IE: enables interrupts when the value on an input pin
changes. This feature is activated by setting appropriate bits of P1IE to 1. Interrupts are

off (0) by default. The whole port shares a single interrupt vector although pins can be

enabled individually.

– Port P1 interrupt edge select, P1IES: can generate interrupts either on a positive edge
(0), when the input goes from low to high, or on a negative edge from high to low (1). It

is not possible to select interrupts on both edges simultaneously but this is not a

problem because the direction can be reversed after each transition. Care is needed if
the direction is changed while interrupts are enabled because a spurious interrupt may

be generated. This register is not initialized and should therefore be set up before

interrupts are enabled.

– Port P1 interrupt flag, P1IFG: a bit is set when the selected transition has been detected on the input. In

addition, an interrupt is requested if it has been enabled. These bits can also be set by software, which

provides a mechanism for generating a software interrupt (SWI).

	Low Power RISC MSP430:
	Pin Diagram of MSP430F2003 and F2013:
	General Block Diagram of MSP430:
	Memory Organization:
	Figure: Ordering of bits, bytes, and words in Memory
	Figure: Memory map of the MSP430F2013
	Central Processing Unit:
	Registers of MSP430 CPU:
	The special Purpose Registers are:
	R0: Program Counter (PC):
	R1: Stack Pointer (SP):
	R2: Status Register (SR):
	R2/R3: Constant Generator Registers (CG1/CG2):
	R4 - R15: General–Purpose Registers:
	The CPU features include:
	Addressing modes:
	1) Register Mode:
	2) Indexed mode:
	3) Symbolic mode(PC Relative):
	4) Absolute mode:
	Indirect register mode:
	6) Indirect Autoincrement Mode:
	7) Immediate Mode:
	Instruction Set:
	Movement Instructions:
	Stack Operations
	1) Arithmetic and Logic Instructions:
	Arithmetic Instructions with One Operand
	Decimal Arithmetic
	Logic Instructions with Two Operands
	Logic Instructions with One Operand
	Byte Manipulation
	Operations on Bits in Status Register
	2) Shift and Rotate Instructions:
	Jumps 🢡Unconditional and Conditional
	Note:
	Note: (1)
	Instruction Formats:
	Double-Operand (Format I) Instructions:
	Jump Instruction Format:
	Instruction Timing:
	Variants of the MSP430 Family:
	MSP430x2xx:
	MSP430x3xx:
	MSP430x4xx:
	MSP430x5xx:
	CPUX:
	JTAG (Joint Test Action Group):
	SBW (Spy-Bi-Wire) Interface:
	Flash Memory:
	Peripherals:
	On-Chip Peripherals (Analog and Digital):
	Digital I/O PORTs:
	Port Mapping Controller:
	Power Management Module (PMM):
	Hardware Multiplier:
	Real-Time Clock (RTC_A):
	Watchdog Timer (WDT_A):
	System Module (SYS):
	DMA Controller:
	Universal Serial Communication Interface (USCI: UART Mode, SPI Mode, I2C Mode):
	Timers (TA0, TA1, TA2, TB0):
	Comparator_B:
	ADC12_A:
	REF Voltage Reference:
	Universal Serial Bus (USB):
	Embedded Emulation Module (EEM):

	MSP430X CPU (CPUX) ‒ Features:
	The MSP430X CPU features include:

	Registers of MSP430 CPUX:
	The special Purpose Registers are:
	R0: Program Counter (PC):
	R1: Stack Pointer (SP):
	R2: Status Register (SR):
	R2/R3: Constant Generator Registers (CG1/CG2):
	The constant generator advantages are:
	R4 - R15: General–Purpose Registers:

	Address Space (Memory Organization):
	Sample Embedded System onMSP430 Microcontroller:
	Figure: Electronic Dice built using (top) JK flip-flops and gates and (bottom) an eight-pin microcontroller.

	Features of MSP430
	These are some features of MSP430.
	It is available in a 20 pin plastic small outline widebody package.
	Its operating voltage range is 2.5v to 5.5 v. Its active mode is 330 µA at 1 MHz, 3 V.
	Its stands by mode are 1.5 µA. It's off mode (Ram Retention) is 0.1 µA.
	It has serial onboard programming.
	Applications of MSP430
	These are some applications of MSP430.
	It is used in Factory Control & Automation Applications.
	It is used in Buildings & Home Automation systems.
	It is used in Grid Infrastructure & Metering networks.
	It is used in Portable Test & Measurement Equipment.
	It is used in Health, Medical & Fitness Applications.
	It also used in Consumer Electronics.
	So, friends that were all about MSP430, if you have any question about it please ask in comments. I will resolve your problems. Will meet you guys in the next tutorial. Till then take care and have fun.
	Basics of MSP430
	This module provides features of 16-bit registers, 16-bit RISC CPU and constant generators.
	This module has five low power modes which enhance battery life in portable measurement applications.
	This module changes its state from low power mode to active mode within 6us, by a digitally controlled oscillator (DCO).
	The MSP430x11x series consists of a 16-bit timer and fourteen input and output pinouts.
	Now let's have a look at MSP430 Pinout.
	MSP430 Pinout

