

B.Tech II Year IV sem

Basic of Python
Programming

Prepared by S.VENKATA LAKSHMI .,M.TECH

Course Code:20AES0509

PYTHON PROGRAMMING

Unit – I

Introduction: What is a program, Running python, Arithmetic operators, Value and Types. Variables, Assignments

and Statements: Assignment statements, Script mode, Order of operations, string operations, comments. Functions:

Function calls, Math functions, Composition, Adding new Functions, Definitions and Uses, Flow of Execution,

Parameters and Arguments, Variables and Parameters are local, Stack diagrams, Fruitful Functions and Void

Functions, Why Functions.

Unit – II

Case study: The turtle module, Simple Repetition, Encapsulation, Generalization, Interface design, Refactoring,

docstring. Conditionals and Recursion: floor division and modulus, Boolean expressions, Logical operators,

Conditional execution, Alternative execution, Chained conditionals, Nested conditionals, Recursion, Infinite

Recursion, Keyboard input. Fruitful Functions: Return values, Incremental development, Composition, Boolean

functions, More recursion, Leap of Faith, Checking types.

Unit – III

Iteration: Reassignment, Updating variables, The while statement, Break, Square roots, Algorithms. Strings: A string

is a sequence, len, Traversal with a for loop, String slices, Strings are immutable, Searching, Looping and Counting,

String methods, The in operator, String comparison. Case Study: Reading word lists, Search, Looping with indices.

Lists: List is a sequence, Lists are mutable, Traversing a list, List operations, List slices, List methods, Map filter and

reduce, Deleting elements, Lists and Strings, Objects and values, Aliasing, List arguments.

Unit – IV

Dictionaries: A dictionary is a mapping, Dictionary as a collection of counters, Looping and dictionaries, Reverse

Lookup, Dictionaries and lists, Memos, Global Variables. Tuples: Tuples are immutable, Tuple Assignment, Tuple as

Return values, Variable-length argument tuples, Lists and tuples, Dictionaries and tuples, Sequences of sequences.

Files: Persistence, Reading and writing, Format operator, Filename and paths, Catching exceptions, Databases,

Pickling, Pipes, Writing modules. Classes and Objects: Programmer-defined types, Attributes, Instances as Return

values, Objects are mutable, Copying.

Unit – V

Classes and Functions: Time, Pure functions, Modifiers, Prototyping versus Planning Classes and Methods: Object

oriented features, Printing objects, The init method, The str method, Operator overloading, Type-based Dispatch,

Polymorphism, Interface and Implementation Inheritance: Card objects, Class attributes, Comparing cards, decks,

Printing the Deck, Add Remove shuffle and sort, Inheritance, Class diagrams, Data encapsulation. The Goodies:

Conditional expressions, List comprehensions, Generator expressions, any and all, Sets, Counters, defaultdict, Named

tuples, Gathering keyword Args,

Unit 1

Chapter-1

INTRODUCTION

What Is a Program

A program is a sequence of instructions that specifies how to perform a computation.

The computation might be something mathematical, such as solving a system of equations or finding the roots of a

polynomial, but it can also be a symbolic computation, such as searching and replacing text in a document or

something graphical, like processing an image or playing a video.

few basic instructions appear in just about every language:

input:

Get data from the keyboard, a file, the network, or some other device.

output:

Display data on the screen, save it in a file, send it over the network, etc.

math:

Perform basic mathematical operations like addition and multiplication.

conditional execution:

Check for certain conditions and run the appropriate code.

repetition:

Perform some action repeatedly, usually with some variation.

Install and Run Python:

Installing Python

Download the latest version of Python.

Run the installer file and follow the steps to install Python During the

install process, check Add Python to environment variables. This will add Python to environment

variables, and you can run Python from any part of the computer. Also, you can choose the path

where Python is installed.

Installing Python on the computer

Once you finish the installation process, you can run Python.

1. Run Python in Immediate mode

Once Python is installed, typing python in the command line will invoke the interpreter in

immediate mode. We can directly type in Python code, and press Enter to get the output.

Try typing in 1 + 1 and press enter. We get 2 as the output. This prompt can be used as a

https://www.python.org/downloads/

calculator. To exit this mode, type quit() and press enter.

Running Python on the Command Line

2. Run Python in the Integrated Development Environment (IDE)

IDE is a piece of software that provides useful features like code hinting, syntax highlighting

and checking, file explorers, etc. to the programmer for application development.

By the way, when you install Python, an IDE named IDLE is also installed. You can use it to

run Python on your computer. It's a decent IDE for beginners.

When you open IDLE, an interactive Python Shell is opened.

Python IDLE

Now you can create a new file and save it with .py extension.

For example, hello.py

Write Python code in the file and save it.

To run the file, go to Run > Run Module or simply click F5.

Running a Python program in IDLE

The First Program:

>>> print('Hello, World!')

This is an example of a print statement

the result is the words Hello, World!

The quotation marks in the program mark the beginning and end of the text to be

displayed; they don’t appear in the result.

The parentheses indicate that print is a function.

Operators:

Python language supports the following types of operators.

Arithmetic Operators

Comparison (Relational) Operators

Assignment Operators

Logical Operators

Bitwise Operators

Membership Operators

Identity Operators

Let us have a look on all operators one by one.

Python Arithmetic Operators

Assume variable a holds 10 and variable b holds 20, then –

Operator Description Example

+ Addition Adds values on either side of the operator. a + b = 30

- Subtraction Subtracts right hand operand from left hand operand. a – b = -10

* Multiplication Multiplies values on either side of the operator a * b = 200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand and

returns remainder

b % a = 0

** Exponent Performs exponential (power) calculation on operators a**b =10 to the power

20

// Floor Division - The division of operands where the

result is the quotient in which the digits after the

decimal point are removed. But if one of the operands

is negative, the result is floored, i.e., rounded away

from zero (towards negative infinity) −

9//2 = 4 and

9.0//2.0 =

4.0,

-11//3 = -4,

-11.0//3 = -4.0

Values and Types

A value is one of the basic things a program works with, like a letter or a number.

Some values we have seen so far are 2, 42.0, and 'Hello, World!'

These values belong to different types: 2 is an integer, 42.0 is a floating-point number

and 'Hello, World!' is a string

If you are not sure what type a value has, the interpreter can tell you:

>>> type(2)

<class 'int'>

>>> type(42.0)

<class 'float'>

>>> type('Hello, World!')

<class 'str'>

In these results, the word “class” is used in the sense of a category; a type is a category

of values.

What about values like '2' and '42.0'? They look like numbers, but they are in quotation

marks like strings:

>>> type('2')

<class 'str'>

>>> type('42.0')

<class 'str'>

Therefore they’re strings.

Chapter-2

Variables, Assignments and Statements

1.An assignment statement creates a new variable and gives it a value:

>>> message = 'And now for something completely different'

>>> n = 17

>>> pi = 3.141592653589793

This example makes three assignments.

The first assigns a string to a new variable named message; the second gives the integer 17 to n;

the third assigns the (approximate) value of π to pi

Variable Names

Programmers generally choose names for their variables that are meaningful Variable names can be as

long as you like.

Rules for naming :

They can contain both letters and numbers,but they can’t begin with a number. Can use both lower

and uppercase letters.The underscore character, _, can appear in a name. Keywords should not use as a

variable name.

Note: If you give a variable an illegal name, you get a syntax error:

>>> 76trombones = 'big parade'

SyntaxError: invalid syntax b’ coz it begins with a number

>>> more@ = 1000000

SyntaxError: invalid syntax b’ coz it contains illegal character @.

>>> class = 'Adanced Theoretical Zymurgy'

Keywords in Python:

False, class, finally, is, return, None, continue, for, lambda, try, True, def, from, nonlocal, while, and,

del, global, not, with, as, elif, if, or, yield, assert, else, import, pass, break, except, in, raise.

Expressions and Statements:

An expression is a combination of values, variables, and operators. A value all by itself is considered an

expression, and so is a variable, so the following are all legal expressions:

>> 42

42

>>> n

17

>>> n + 25

42

When you type an expression at the prompt, the interpreter evaluates it, which

means that it finds the value of the expression. In this example, n has the value 17 and

n + 25 has the value 42.

A statement is a unit of code that has an effect, like creating a variable or displaying a

value.

>>> n = 17

>>> print(n)

The first line is an assignment statement that gives a value to n. The second line is a print statement

that displays the value of n.

2. Script Mode:

Inscript mode type code in a file called a script and savefile with .py extention. script mode to execute

the script. By convention, Python scripts have names that end with .py.

for ex: if you type the following code into a script and run it, you get no output at all. Why because but it

doesn’t display the value unless you tell it to. But it displays in interactive mode.

miles = 26.2

miles * 1.61

Sol is:

miles = 26.2

print(miles * 1.61)

3. Order of perations:

When an expression contains more than one operator, the order of evaluation depends on the order of

operations.For mathematical operators, Python follows order PEMDAS.

P-parentheses,

E- Exponentiation,

M- Multiplication

D-Division

A-Addition,

S- Substraction

• Parentheses have the highest precedence.

For ex in the following expressions in parentheses are evaluated first,

Ex:1. 2 * (3-1) is 4, and

Ex: 2. (1+1)**(5-2) is 8.
• Exponentiation has the next highest precedence,

For ex: 1 + 2**3 is 9, not 27, and

2 * 3**2 is 18, not 36.

• Multiplication and Division have higher precedence than Addition and Subtraction.

For ex: 2*3-1 is 5, not 4, and 6+4/2 is 8, not 5.

Note: Operators with the same precedence are evaluated from left to right (except

exponentiation). So in the expression degrees / 2 * pi, the division happens first and the result is

multiplied by pi.

4. Operations on strings:

Note : Mathematical operations on strings are not allowed so the following are illegal:

'2'-'1' 'eggs'/'easy' 'third'*'a charm'

How to Create Strings in Python?

Creating strings is easy as you only need to enclose the characters either in single or double-quotes.

In the following example, we are providing different ways to initialize strings.To share an important note

that you can also use triple quotes to create strings. However, programmers use them to mark multi-line

strings and docstrings.

Python string examples - all assignments are identical.

String_var = 'Python'

String_var = "Python"

String_var =

"""Python"""

with Triple quotes Strings can extend to multiple lines

String_var = """ This document will help you to explore all the concepts of Python

Strings!!! """

Replace "document" with "tutorial" and store in another variable

substr_var = String_var.replace("document", "tutorial")

print (substr_var)

String Operators in Python

Concatenation (+):It combines two strings into

one.

example

var1 = 'Python'

var2 = 'String'

print (var1+var2) # PythonString Repetition (*):This operator creates a new string by repeating

it a given number of times.

example

var1 = 'Python'

print (var1*3)

PythonPythonPython

Slicing []:The slice operator prints the character at a given index.

example

var1 = 'Python'

print (var1[2]) # t

Range Slicing [x:y]

It prints the characters present in the given range.

example

var1 = 'Python'

print (var1[2:5]) # tho

Membership (in):This operator returns ‘True’ value if the character is present in the given String.

example

var1 = 'Python'

print ('n' in var1) # True

Membership (not in):

:

It returns ‘True’ value if the character is not present in the given String.

example

var1 = 'Python'

print ('N' not in var1)

True

Iterating (for): With this operator, we can iterate through all the characters of a string.

example

for var in var1: print (var, end ="") # Python

Raw String (r/R):We can use it to ignore the actual meaning of Escape characters inside a string.

For this, we add ‘r’ or ‘R’ in front of the String.

example

print (r'\n') # \n

print (R'\n') # \n

Unicode String support in Python

Regular Strings stores as the 8-bit ASCII value, whereas Unicode String follows the 16-bit

ASCII standard. This extension allows the strings to include characters from the different

languages of the world. In Python, the letter ‘u’ works as a prefix to distinguish between

Unicode and usual strings.

print (u' Hello Python!!')

OUTPUT:

#Hello Python

Python has a set of built-in methods that you can use on strings.

Note: All string methods returns new values. They do not change the original string.

Method

Description

capitalize()

Converts the first character to upper case

casefold()

Converts string into lower case

https://www.w3schools.com/python/ref_string_capitalize.asp
https://www.w3schools.com/python/ref_string_casefold.asp

center()

Returns a centered string

count()

Returns the number of times a specified value occurs in a string

encode()

Returns an encoded version of the string

endswith()

Returns true if the string ends with the specified value

expandtabs()

Sets the tab size of the string

find()

Searches the string for a specified value and returns the position of where it was found

format()

Formats specified values in a string

format_map()

Formats specified values in a string

index()

Searches the string for a specified value and returns the position of where it was found

isalnum()

Returns True if all characters in the string are alphanumeric

isalpha()

Returns True if all characters in the string are in the alphabet

https://www.w3schools.com/python/ref_string_center.asp
https://www.w3schools.com/python/ref_string_count.asp
https://www.w3schools.com/python/ref_string_encode.asp
https://www.w3schools.com/python/ref_string_endswith.asp
https://www.w3schools.com/python/ref_string_expandtabs.asp
https://www.w3schools.com/python/ref_string_find.asp
https://www.w3schools.com/python/ref_string_format.asp
https://www.w3schools.com/python/ref_string_index.asp
https://www.w3schools.com/python/ref_string_isalnum.asp
https://www.w3schools.com/python/ref_string_isalpha.asp

isdecimal()

Returns True if all characters in the string are decimals

isdigit()

Returns True if all characters in the string are digits

isidentifier()

Returns True if the string is an identifier

islower()

Returns True if all characters in the string are lower case

isnumeric()

Returns True if all characters in the string are numeric

isprintable()

Returns True if all characters in the string are printable

isspace()

Returns True if all characters in the string are whitespaces

istitle()

Returns True if the string follows the rules of a title

isupper()

Returns True if all characters in the string are upper case

join()

Joins the elements of an iterable to the end of the string

ljust()

Returns a left justified version of the string

https://www.w3schools.com/python/ref_string_isdecimal.asp
https://www.w3schools.com/python/ref_string_isdigit.asp
https://www.w3schools.com/python/ref_string_isidentifier.asp
https://www.w3schools.com/python/ref_string_islower.asp
https://www.w3schools.com/python/ref_string_isnumeric.asp
https://www.w3schools.com/python/ref_string_isprintable.asp
https://www.w3schools.com/python/ref_string_isspace.asp
https://www.w3schools.com/python/ref_string_istitle.asp
https://www.w3schools.com/python/ref_string_isupper.asp
https://www.w3schools.com/python/ref_string_join.asp
https://www.w3schools.com/python/ref_string_ljust.asp

lower()

Converts a string into lower case

lstrip()

Returns a left trim version of the string

maketrans()

Returns a translation table to be used in translations

partition()

Returns a tuple where the string is parted into three parts

replace()

Returns a string where a specified value is replaced with a specified value

rfind()

Searches the string for a specified value and returns the last position of where it was

found

rindex()

Searches the string for a specified value and returns the last position of where it was

found

rjust()

Returns a right justified version of the string

rpartition()

Returns a tuple where the string is parted into three parts

rsplit()

Splits the string at the specified separator, and returns a list

rstrip()

Returns a right trim version of the string

https://www.w3schools.com/python/ref_string_lower.asp
https://www.w3schools.com/python/ref_string_lstrip.asp
https://www.w3schools.com/python/ref_string_maketrans.asp
https://www.w3schools.com/python/ref_string_partition.asp
https://www.w3schools.com/python/ref_string_replace.asp
https://www.w3schools.com/python/ref_string_rfind.asp
https://www.w3schools.com/python/ref_string_rindex.asp
https://www.w3schools.com/python/ref_string_rjust.asp
https://www.w3schools.com/python/ref_string_rpartition.asp
https://www.w3schools.com/python/ref_string_rsplit.asp
https://www.w3schools.com/python/ref_string_rstrip.asp

split()

Splits the string at the specified separator, and returns a list

splitlines()

Splits the string at line breaks and returns a list

startswith()

Returns true if the string starts with the specified value

strip()

Returns a trimmed version of the string

swapcase()

Swaps cases, lower case becomes upper case and vice versa

title()

Converts the first character of each word to upper case

translate()

Returns a translated string

upper()

Converts a string into upper case

zfill()

Fills the string with a specified number of 0 values at the beginning

But there are two exceptions, + and *.

The + operator performs string concatenation,

For example:

>>> first = 'throat'

>>> second = 'warbler'

>>> first + second

throatwarbler

The * operator also works on strings; it performs repetition.

For example, 'Spam'*3 is 'SpamSpamSpam'.

EXAMPLE1:

https://www.w3schools.com/python/ref_string_split.asp
https://www.w3schools.com/python/ref_string_splitlines.asp
https://www.w3schools.com/python/ref_string_startswith.asp
https://www.w3schools.com/python/ref_string_strip.asp
https://www.w3schools.com/python/ref_string_swapcase.asp
https://www.w3schools.com/python/ref_string_title.asp
https://www.w3schools.com/python/ref_string_translate.asp
https://www.w3schools.com/python/ref_string_upper.asp
https://www.w3schools.com/python/ref_string_zfill.asp

var1 = 'Hello World!'

var2 = "Python Programming"

print "var1[0]: ", var1[0]

print "var2[1:5]: ", var2[1:5]

When the above code is executed, it produces the following result −

var1[0]: H

var2[1:5]: ytho

EXAMPLE2:

var1 = 'Hello World!'

print "Updated String :- ", var1[:6] + 'Python'

When the above code is executed, it produces the following result −

Updated String :- Hello Python

5. Comments:

Comments are of two types .

Single-line comments

Multi line Comments

Single-line comments are created simply by beginning a line with the hash (#) character,

and they are automatically terminated by the end of line.

For Ex: #This would be a comment in Python

Multi Line Comments that span multiple lines and are created by adding a delimiter (“””) on

each end of the comment

For Ex:

"""

This would be a multiline comment in Python that spans several lines and describes your code,

your day, or anything you want it to """

Chapter-3

Functions

What is a Function in Python?

A Function in Python is used to utilize the code in more than one place in a program. It is

also called method or procedures. Python provides you many inbuilt functions like print(),

but it also gives freedom to create your own functions.

Functions:

A function is a named sequence of statements that performs a computation.

How to define and call a function in Python

Function in Python is defined by the "def " statement followed by the function name and

parentheses (())

Example:

Let us define a function by using the command " def func1():" and call the function. The

output of the function will be "I am learning Python function"

The function print func1() calls our def func1(): and print the command " I am learning

Python function None."There are set of rules in Python to define a function.Any args or input

parameters should be placed within these parentheses.The function first statement can be an

optional statement- docstring or the documentation string of the function The code within

every function starts with a colon (:) and should be indented (space) The statement return

(expression) exits a function, optionally passing back a value to the caller. A return statement

with no args is the same as return None.

Significance of Indentation (Space) in Python:

Before we get familiarize with Python functions, it is important that we understand the

indentation rule to declare Python functions and these rules are applicable to other elements

of Python as well like declaring conditions, loops or variable.

Python follows a particular style of indentation to define the code, since Python functions

don't have any explicit begin or end like curly braces to indicate the start and stop for the

function, they have to rely on this indentation. Here we take a simple example with "print"

command. When we write "print" function right below the def func 1 (): It will show an

"indentation error: expected an indented block".

Now, when you add the indent (space) in front of "print" function, it should print as expected.

How Function Return Value?

Return command in Python specifies what value to give back to the caller of the function.

Let's understand this with the following example

Step 1) Here - we see when function is not "return". For example, we want the square of 4,

and it should give answer "16" when the code is executed. Which it gives when we simply

use "print x*x" code, but when you call function "print square" it gives "None" as an output.

This is because when you call the function, recursion does not happen and fall off the end of

the function. Python returns "None" for failing off the end of the function.

Step 2) To make this clearer we replace the print command with assignment command. Let's

check the output.

When you run the command "print square (4)" it actually returns the value of the object since

we don't have any specific function to run over here it returns "None".

Step 3) Now, here we will see how to retrieve the output using "return" command. When you

use the "return" function and execute the code, it will give the output "16."

Step 4) Functions in Python are themselves an object, and an object has some value. We will

here see how Python treats an object. When you run the command "print square" it returns

the value of the object. Since we have not passed any argument, we don't have any specific

function to run over here it returns a default value (0x021B2D30) which is the location of the

object. In practical Python program, you probably won't ever need to do this.

Arguments in Functions

The argument is a value that is passed to the function when it's called.In other words on the calling side,

it is an argument and on the function side it is a parameter. Let see how Python Args works -

Step 1) Arguments are declared in the function definition. While calling the function, you can

pass the values for that args as shown below

Step 2) To declare a default value of an argument, assign it a value at function definition.

Example: x has no default values. Default values of y=0. When we supply only one argument

while calling multiply function, Python assigns the supplied value to x while keeping the

value of y=0. Hence the multiply of x*y=0

Step 3) This time we will change the value to y=2 instead of the default value y=0, and it will

return the output as (4x2)=8.

Step 4) You can also change the order in which the arguments can be passed in Python. Here

we have reversed the order of the value x and y to x=4 and y=2.

Step 5) Multiple Arguments can also be passed as an array. Here in the example we call the

multiple args (1,2,3,4,5) by calling the (*args) function.

Example: We declared multiple args as number (1,2,3,4,5) when we call the (*args) function;

it prints out the output as (1,2,3,4,5)

Rules to define a function in Python.

Function blocks begin with the keyword def followed by the function name and parentheses (

()).Any input parameters or arguments should be placed within these parentheses. You can

also define parameters inside these parentheses.The code block within every function starts

with a colon (:) and is indented. The statement return [expression] exits a function, but it is

optional

Syntax:

def functionname(parameters):

function_suite

return [expression]

Creating a Function

In Python a function is defined using the def keyword:

Example

def my_function():

print("Hello from a function")

Calling a Function

To call a function, use the function name followed by parenthesis:

Example

def my_function():

print("Hello from a function")

my_function() #calling function

Scope and Lifetime of variables

Scope of a variable is the portion of a program where the variable is recognized. Parameters

and variables defined inside a function are not visible from outside the function. Hence, they

have a local scope.

The lifetime of a variable is the period throughout which the variable exits in the memory.

The lifetime of variables inside a function is as long as the function executes.They are

destroyed once we return from the function. Hence, a function does not remember the value

of a variable from its previous calls.Here is an example to illustrate the scope of a variable

inside a function.

def my_func():

x = 10

print("Value inside function:",x)

x = 20

my_func()

print("Value outside function:",x)

Output

Value inside function: 10

Value outside function: 20

2. Math Functions:

Python has a math module that provides mathematical functions. A module is a file that

contains a collection of related functions.Before we can use the functions in a module, we

have to import it with an import statement:

>>> import math

Note: The module object contains the functions and variables defined in the module. To

access one of the functions, you have to specify the name of the module and the name

of the function, separated by a dot (also known as a period). This format is called dot

notation.

For ex:
>>> ratio = signal_power / noise_power

>>> decibels = 10 * math.log10(ratio)

>>> radians = 0.7

>>> height = math.sin(radians)

Some Constants

These constants are used to put them into our calculations.

Sr.No. Constants & Description

1 pi - Return the value of pi: 3.141592

4 inf - Returns the infinite

5 nan - Not a number type.

Numbers and Numeric Representation

These functions are used to represent numbers in different forms. The methods are like below

−

Sr.No. Function & Description

1 ceil(x)

Return the Ceiling value. It is the smallest integer, greater or equal to the number

x.

3 fabs(x)

Returns the absolute value of x.

4 factorial(x)

Returns factorial of x. where x ≥ 0

5 floor(x)

Return the Floor value. It is the largest integer, less or equal to the number x.

6 fsum(iterable)

Find sum of the elements in an iterable object

7 gcd(x, y)

Returns the Greatest Common Divisor of x and y

8 isfinite(x)

Checks whether x is neither an infinity nor nan.

9 isinf(x)

Checks whether x is infinity

10 isnan(x)

Checks whether x is not a number.

11 remainder(x, y)

Find remainder after dividing x by y

Example program:

import math

print(math.ceil(23.56))

my_list = [12, 4.25, 89, 3.02, -65.23, -7.2, 6.3]

print(math.fsum(my_list))

print('The GCD of 24 and 56 : ' + str(math.gcd(24, 56)))

x = float('nan')

if math.isnan(x):

print('It is not a number')

x = float('inf')

y = 45

if math.isinf(x):

print('It is Infinity')

print(math.isfinite(x)) #x is not a finite number

print(math.isfinite(y)) #y is a finite number

O/P:

24

42.13999999999999

The GCD of 24 and 56 : 8

It is not a number

It is Infinity

False

True

>>>

Power and Logarithmic Functions

These functions are used to calculate different power related and logarithmic related tasks.

Sr.No. Function & Description

1 pow(x, y)

Return the x to the power y value.

2 sqrt(x)

Finds the square root of x

3 exp(x)

Finds xe, where e = 2.718281

4 log(x[, base])

Returns the Log of x, where base is given. The default base is e

5 log2(x)

Returns the Log of x, where base is 2

6 log10(x)

Returns the Log of x, where base is 10

Example Code

import math

print('The value of 5^8: ' + str(math.pow(5, 8)))

print('Square root of 400: ' + str(math.sqrt(400)))

print('The value of 5^e: ' + str(math.exp(5)))

print('The value of Log(625), base 5: ' + str(math.log(625, 5)))

print('The value of Log(1024), base 2: ' + str(math.log2(1024)))

print('The value of Log(1024), base 10: ' + str(math.log10(1024)))

Output

The value of 5^8: 390625.0

Square root of 400: 20.0

The value of 5^e: 148.4131591025766

The value of Log(625), base 5: 4.0

The value of Log(1024), base 2: 10.0

The value of Log(1024), base 10: 3.010299956639812

Trigonometric & Angular Conversion Functions

These functions are used to calculate different trigonometric operations.

Sr.No. Function & Description

1 sin(x)

Return the sine of x in radians

2 cos(x)

Return the cosine of x in radians

3 tan(x)

Return the tangent of x in radians

4 asin(x)

This is the inverse operation of the sine, there are acos, atan

also.

5 degrees(x)

Convert angle x from radian to degrees

6 radians(x)

Convert angle x from degrees to radian

Example Code

import math

print('The value of Sin(60 degree): ' + str(math.sin(math.radians(60))))

print('The value of cos(pi): ' + str(math.cos(math.pi)))

print('The value of tan(90 degree): ' + str(math.tan(math.pi/2)))

print('The angle of sin(0.8660254037844386): ' +

str(math.degrees(math.asin(0.8660254037844386))))

Output

The value of Sin(60 degree): 0.8660254037844386

The value of cos(pi): -1.0

The value of tan(90 degree): 1.633123935319537e+16

The angle of sin(0.8660254037844386): 59.99999999999999

3. Composition:

So far, we have looked at the elements of a program—variables, expressions, and statements—in

isolation, without talking about how to combine(Composition) them.For example, the argument of a

function can be any kind of expression, including arithmetic operators:

x = math.sin(degrees / 360.0 * 2 * math.pi)

And even function calls:

x = math.exp(math.log(x+1))

4. Adding new functions:

Pass by reference vs value:All parameters (arguments) in the Python language are passed by reference. It

means if you change what a parameter refers to within a function, the change also reflects back in the calling

function. For example −

#!/usr/bin/python

Function definition is here

def changeme(mylist):

"This changes a passed list into this function"

mylist.append([1,2,3,4]);

print "Values inside the function: ", mylist

return

Now you can call changeme function

mylist = [10,20,30];

changeme(mylist);

print "Values outside the function: ", mylist

Here, we are maintaining reference of the passed object and appending values in the same

object. So, this would produce the following result −

Values inside the function: [10, 20, 30, [1, 2, 3, 4]]

Values outside the function: [10, 20, 30, [1, 2, 3, 4]]

Scope of Variables:All variables in a program may not be accessible at all locations in that

program. This depends on where you have declared a variable.The scope of a variable

determines the portion of the program where you can access a particular identifier. There

are two basic scopes of variables in Python −

Global variables

Local variables

Global vs. Local variables:Variables that are defined inside a function body have a local scope,

and those defined outside have a global scope.This means that local variables can be accessed

only inside the function in which they are declared, whereas global variables can be accessed

throughout the program body by all functions. When you call a function, the variables declared

inside it are brought into scope. Following is a simple example −

#!/usr/bin/python

total = 0; # This is global variable.

Function definition is here

def sum(arg1, arg2):

Add both the parameters and return them."

total = arg1 + arg2; # Here total is local variable.

print "Inside the function local total : ", total

return total;

Now you can call sum function

sum(10, 20);

print "Outside the function global total : ", total

When the above code is executed, it produces the following result −

Inside the function local total : 30

Outside the function global total : 0

The import Statement

You can use any Python source file as a module by executing an import statement in some

other Python source file. The import has the following syntax −

import module1[, module2[,... moduleN]

When the interpreter encounters an import statement, it imports the module if the module is

present in the search path. A search path is a list of directories that the interpreter searches

before importing a module. For example, to import the module support.py, you need to put

the following command at the top of the script −

#!/usr/bin/python

Import module support

import support

Now you can call defined function that module as follows

support.print_func("Zara")

When the above code is executed, it produces the following result −

Hello : Zara

5. Flow of Execution

The order in which statements are executed is called the flow of execution

Execution always begins at the first statement of the program.

Statements are executed one at a time, in order, from top to bottom.

Function definitions do not alter the flow of execution of the program, but remember that

statements inside the function are not executed until the function is called.

Function calls are like a bypass in the flow of execution. Instead of going to the next

statement, the flow jumps to the first line of the called function, executes all the statements

there, and then comes back to pick up where it left off.

6. Parameters and Arguments:

Parameter: The terms parameter and argument can be used for the same thing: information

that are passed into a function.From a function's perspective:

A parameter is the variable listed inside the parentheses in the function definition.

An argument is the value that is sent to the function when it is called. Arguments

You can call a function by using the following types of formal arguments –

1.Required arguments

2.Keyword arguments

3.Default arguments

4.Variable-length

arguments

Required arguments

Required arguments are the arguments passed to a function in correct positional order. Here,

the number of arguments in the function call should match exactly with the function

definition.

To call the function printme(), you definitely need to pass one argument, otherwise it gives a

syntax error as follows −

#!/usr/bin/python

Function definition is here

def printme(str):

"This prints a passed string into this function"

print str

return;

Now you can call printme function

printme()

When the above code is executed, it produces the following result −

Traceback (most recent call last):

File "test.py", line 11, in <module>

printme();

TypeError: printme() takes exactly 1 argument (0 given)

Keyword arguments

Keyword arguments are related to the function calls. When you use keyword arguments in a

function call, the caller identifies the arguments by the parameter name.

This allows you to skip arguments or place them out of order because the Python interpreter

is able to use the keywords provided to match the values with parameters. You can also make

keyword calls to the printme() function in the following ways −

#!/usr/bin/python

Function definition is here

def printme(str):

"This prints a passed string into this function"

print str

return;

Now you can call printme function

printme(str = "My string")

When the above code is executed, it produces the following result −

My string

The following example gives more clear picture. Note that the order of parameters does not

matter.

#!/usr/bin/python

Function definition is here

def printinfo(name, age):

"This prints a passed info into this function"

print "Name: ", name

print "Age ", age

return;

Now you can call printinfo function

printinfo(age=50, name="miki")

When the above code is executed, it produces the following result −

Name: miki

Age 50

Default arguments

A default argument is an argument that assumes a default value if a value is not provided in

the function call for that argument. The following example gives an idea on default

arguments, it prints default age if it is not passed −

#!/usr/bin/python

Function definition is here

def printinfo(name, age = 35):

"This prints a passed info into this function"

print "Name: ", name

print "Age ", age

return;

Now you can call printinfo function

printinfo(age=50, name="miki")

printinfo(name="miki")

When the above code is executed, it produces the following result −

Name: miki

Age 50

Name: miki

Age 35

Variable-length arguments

You may need to process a function for more arguments than you specified while defining

the function. These arguments are called variable-length arguments and are not named in the

function definition, unlike required and default arguments.Syntax for a function with non-

keyword variable arguments is this − def functionname([formal_args,] *var_args_tuple):

"function_docstring"

function_suite

return [expression]

An asterisk (*) is placed before the variable name that holds the values of all nonkeyword

variable arguments. This tuple remains empty if no additional arguments are specified during

the function call. Following is a simple example −

#!/usr/bin/python

Function definition is here

def printinfo(arg1, *vartuple):

"This prints a variable passed arguments"

print "Output is: "

print arg1

for var in vartuple:

print var

return;

Now you can call printinfo function

printinfo(10)

printinfo(70, 60, 50)

When the above code is executed, it produces the following result −

Output is:

10

Output is:

70

60

50

Example

def my_function(fname):

print(fname + " krishna")

my_function("Rama")

my_function("Siva")

my_function("Hari")

o/p: Ramakrishna

Sivakrishna

Harikrishna.

Parameters Vs Arguments

A parameter is the variable listed inside the parentheses in the function definition.

An argument is the value that is sent to the function when it is called.

Number of Arguments

A function must be called with the correct number of arguments. Meaning that if your

function expects 2 arguments, you have to call the function with 2 arguments, not more, and

not less.

Example

This function expects 2 arguments, and gets 2 arguments:

def my_function(fname, lname):
print(fname + " " + lname)

my_function("Srinu", "vasulu")

Arbitrary Arguments(*args)

If you do not know how many arguments that will be passed into your function, add

a * before the parameter name in the function definition.

This way the function will receive a tuple of arguments, and can access the items

accordingly:

Example

If the number of arguments is unknown, add a * before the parameter name:

def my_function(*kids):

print("The youngest child is " + kids[2])

my_function("raju", "somu", "vijay)

O/p: vijay

Default Parameter Value:

When we call the function without argument, it uses the default value:

Example

def my_function(country = "Norway"): #default value is Norway
print("I am from " + country)

my_function("Sweden")

my_function("India")

my_function() #o/p: Norway
my_function("Brazil")

Passing a List as an Argument:

You can send any data types of argument to a function (string, number, list, dictionary etc.)

E.g. if you send a List as an argument, it will still be a List when it reaches the function:

Example

def my_function(food):

for x in food:

print(x)

fruits = ["apple", "banana", "cherry"]

my_function(fruits)

Return Values:

To return a value, we use the return statement:

Example

def my_function(x):

return 5 * x

print(my_function(3)) # o/p: 15

print(my_function(5)) # o/p: 25
print(my_function(9)) # o/p: 45

The pass Statement

function definitions cannot be empty, but if you for some reason have a function definition

with no content, put in the pass statement to avoid getting an error.

Example

def myfunction():

pass

7. Variables and Parameters Are Local

When you create a variable inside a function, it is local, which means that it only

exists inside the function.

For example:

def cat_twice(part1, part2):

cat = part1 + part2

print_twice(cat)

line1 = 'Bing tiddle '

line2 = 'tiddle bang.'

cat_twice(line1, line2)

print(cat) #error

here cat_twice terminates, the variable cat is destroyed. If we try to print it, we get

an exception:

>>> NameError: name 'cat' is not defined

8. Stack Diagrams:

Stack diagram used to keep track of which variables can be used which function.

For ex, consider the following code:

def cat_twice(part1, part2):

cat = part1 + part2

print_twice(cat)

line1 = 'Bing tiddle '

line2 = 'tiddle bang.'

cat_twice(line1, line2)

Stack diagram for above code is:

Here each function is represented by a frame. A frame is a box with the name of a function

beside it and the parameters and variables of the function inside it.

The frames are arranged in a stack that indicates which function called which, and so on. In

this example, print_twice was called by cat_twice, and cat_twice was called by main ,

which is a special name for the topmost frame. When you create a variable outside of any

function, it belongs to main .

9. Fruitful Functions and Void Functions

The function that returns a value is called fruitful function.

The function that does not returns any value is called void function.

Fruitful Functions:

Ex :def add(x,y):

return (x+y)

Z

=

a

d

d

(

1

,

2

)

p

r

i

n

t

(

z

)

void Functions:

Ex : def add(x,y):

print(x+y)

add(1,2)

10. Why Functions?

There are several reasons for why functions:

• improves readability: Creating a new function gives you an opportunity

to name a group of statements, which makes your program easier to read

and debug.

• debugging easy : Functions can make a program smaller by eliminating

repetitive code. Later, if you make a change, you only have to make it in

one place.

• modularity: Dividing a long program into functions allows you to

debug the parts one at a time and then assemble them into a working

whole.

• reusability : Well-designed functions are often useful for many

programs. Once you write and debug one, you can reuse it.

Unit-2

Chapter-1

Case Study

1. Turtle Module: in python turtle is a module, which allows you to create images using

turtle graphics

How to use turtle module:

To work with turtle we follow the

below steps Import the turtle module

Create a turtle to control.

Draw around using the turtle

methods. Run

Import the turtle module:

To make use of the turtle methods and functionalities, we need to

import turtle. from turtle import *

or

import turtle

Create a turtle to control:

After importing the turtle library and making all the turtle functionalities available to

us, we need to create a new drawing board(window) and a turtle. Let’s call the

window as wn and the turtle as skk. So we code as:

wn =

turtle.Screen()

wn.bgcolor("light

green")

wn.title("Turtle")

skk = turtle.Turtle()

Draw around using the turtle methods:

METHOD PARAMETER DESCRIPTION

Turtle() None It creates and returns a new turtle object

forward() Amount It moves the turtle forward by the specified amount

backward() Amount It moves the turtle backward by the specified amount

right() Angle It turns the turtle clockwise

left() Angle It turns the turtle counter clockwise

penup() None It picks up the turtle’s Pen

pendown() None Puts down the turtle’s Pen

up() None Picks up the turtle’s Pen

down() None Puts down the turtle’s Pen

color() Color name Changes the color of the turtle’s pen

fillcolor() Color name Changes the color of the turtle will use to fill a polygon

heading() None It returns the current heading

position() None It returns the current position

goto() x, y It moves the turtle to position x,y

begin_fill() None Remember the starting point for a filled polygon

end_fill() None It closes the polygon and fills with the current fill color

dot() None Leaves the dot at the current position

stamp() None Leaves an impression of a turtle shape at the current location

shape() shapename Should be ‘arrow’, ‘classic’, ‘turtle’ or ‘circle’

Example code

import turtle

library import turtle

my_window =

turtle.Screen()

my_window.bgcolor("blue") # creates a graphics

window my_pen = turtle.Turtle()

my_pen.forward(150)

my_pen.left(90)

my_pen.forward(75)

my_pen.color("white")

my_pen.pensize(12)

Output

Run :

To run the turtle we call the method turtle.done().

2. Simple Repetition:

Performing the same action repeatedly is called simple repetition.

For ex let’s consider a square or rectangle to draw. The following steps to be performed

repeatedly.

bob.fd(100)

bob.lt(90)

bob.fd(100)

bob.lt(90)

bob.fd(100)

bob.lt(90)

bob.fd(100)

the above steps can be reduced using simple repetition statement for as follows.

for i in range(4):

bob.fd(100)

bob.lt(90)

3. Encapsulation :

Wrapping a piece of code up in a function is called encapsulation. The benefits of

encapsulation are,it attaches a name to the code.We can reuse the code, (i.e we can

call a function instead of copy and paste the body)

For ex: code to drawing the square

def square(t):

for i in range(4):

t.fd(100)

t.lt(90)

bob = turtle.Turtle()

square(bob)

4. Generalization:

Adding a parameter to a function is called generalization. because it makes the

function more general: in the previous version, the square is always the same size; in

this version it can be any size.

def square(t, length):

for i in range(4):

t.fd(length)
t.lt(90)

bob = turtle.Turtle()

square(bob, 100)

the following one also a generalization. Instead of drawing squares, polygon draws

regular polygons with any number of sides.

Here is a solution:

def polygon(t, n, length):

angle = 360 / n

for i in

range(n):

t.fd(length)

t.lt(angle)

bob = turtle.Turtle()

polygon(bob, 7, 70)

5. Interface Design:

The interface of a function is a summary of how it is used: what are the parameters?

What does the function do? And what is the return value? An interface is “clean” if it

allows the caller to do what they want without dealing with unnecessary details.

For ex: write circle, which takes a radius, r, as a parameter.

Here is a simple solution that uses polygon to draw a 50-sided

polygon: import math

def circle(t, r):

circumference = 2 * math.pi * r

n = 50

length = circumference / n

polygon(t, n, length)

The first line computes the circumference of a circle with radius r using the

formula 2πr. n is the number of line segments in our approximation of a circle, so

length is the length of each segment. Thus, polygon draws a 50-sided polygon

that approximates a circle with radius r.

One limitation of this solution is that n is a constant, which means that for very big

circles, the line segments are too long, and for small circles, we waste time drawing

very small segments. One solution would be to generalize the function by taking n as a

parameter.

def circle(t, r):

circumference = 2 * math.pi * r

n = int(circumference / 3) + 1

length = circumference / n

polygon(t, n, length)

6. Refactoring:

process of rearranging a program to improve interfaces and facilitate code reuse is called

refactoring for ex: Lets take above discussion , When we write circle, we can able to reuse polygon

because a many-sided polygon is a good approximation of a circle. But arc is not as cooperative; we
can’t use polygon or circle to draw an arc.One alternative is to start with a copy of polygon and

transform it into arc. The result might look like this:

def polygon(t, n, length):

angle = 360.0 / n

polyline(t, n,

length, angle)

def arc(t, r, angle):

arc_length = 2 * math.pi * r *

angle / 360 n = int(arc_length / 3)

+ 1

step_length = arc_length / n

step_angle = float(angle) / n

polyline(t, n, step_length,

step_angle)

Finally, we can rewrite circle to use arc:

def circle(t, r):

arc(t, r, 360)

7. Docstring:

docstring is a string at the beginning of a function that explains the interface

(“doc”is short for “documentation”).

Here is an example:

def polyline(t, n, length, angle):

"""Draws n line segments with the given length and angle (in degrees) between

them. t is a turtle.

"""

for i in range(n):

t.fd(length)

t.lt(angle)

By convention, all docstrings are triple-quoted strings, also known as multiline

strings because the triple quotes allow the string to span more than one line.

Chapter-2

Conditionals and Recursion

1. floor division and modulus:

The floor division operator ’ //’ divides two numbers and rounds down to an

integer. For example:

Conventional division returns a floating-point number as follows

>>> minutes = 105

>>>

minutes /

60 1.75

But Floor division returns the integer number of hours, dropping the fraction part:

>>> minutes = 105

>>> hours = minutes // 60

>>

>

ho

urs

1

modulus operator, %, which divides two numbers and returns the remainder:

>>> remainder = minutes % 60

>>>

remain

der 45

2. Boolean Expressions:

A boolean expression is an expression that is either true or false.The following

examples use the operator ==, which compares two operands and produces True if they

are equal and False otherwise:

>>> 5 == 5

True

>>> 5 == 6

False

True and False are special values that belong to the type bool; they are not strings:

>>> type(True)

<class 'bool'>

>>> type(False)

<class 'bool'>

The == operator is one of the relational operators; the others are:

x != y # x is not

equal to y x > y # x

is greater than y x

< y # x is less than

y

x >= y # x is greater than or

equal to y x <= y # x is less

than or equal to y

3. Logical Operators:

There are three logical operators: and, or, and not. The semantics (meaning) of these

operators is similar to their meaning in English.

For example:

x > 0 and x < 10 is true only if x is greater than 0 and less than 10.

n%2 == 0 or n%3 == 0 is true if either or both of the conditions is true, that is, if the

number is divisible by 2 or 3.

not : operator negates a boolean expression,

not (x > y) is true ,if x > y is false, that is, if x is less than or equal to y. In Python, Any

nonzero number is interpreted as True:

>>> 42

and True

True

4. Conditional Execution:

In order to write useful programs, we almost always need the ability to check conditions

and change the behavior of the program accordingly.Conditional statements give us this

ability. if statement:

if test expression:

statement(s)

Here, the program test expression

evaluates the expression

is True.

and will execute statement(s) only if

the test

If the test expression is False, the statement(s) is not executed.

F

o

r

e

x

:

n

u

m

=
3

T

else

if num > 0:

 print(num, "is a positive

number.") print("This is

always printed.")

5. Alternative Execution:

A second form of the if statement is “alternative execution”, in which there are two

possibilities and the condition determines which one runs. The syntax looks like

this:

Syntax of

if...else if

test

expression

:

Bo

dy of

if

else:

Body of else

h

e

test

statement

evaluates

and will execute the

body of

only when the

conditio

n is If

the

condition

blocks.

For ex:

, the body of is executed. Indentation is used to separate
the

num = 3

if num >= 0:

 print("Positive or Zero")

else:

 print("Negative number")

6. Chained Conditionals

Sometimes there are more than two possibilities and we need more than two

branches. One way to express a computation like that is a chained conditional:

to implement chained conditional we use keyword “elif”.

Syntax of

if...elif...else if

test expression:

Body of if

elif test expression:
Bod

y of

elif

else:

Body of else

 elif

if..else if test expression

True .

is False

False

False If the condiitfion

for is ,

, it checks the condition of

the next block and so on.

If all the conditions are the body of else is executed.

For Ex:

x

=

1

0

y

=

2

0

if x < y:

print('x is less than y')

elif x > y:

print('x is greater than y')

else:

print('x and y are equal')

7. Nested Conditionals

One conditional can also be nested within another. For ex:

if x == y:

print('x and y are equal')

else:

if x < y:

print('x is less than y') else:

print('x is greater than y')

8. Recursion

Recursion means a function to call itself. For example:

def countdown(n):

if n <= 0:

print('Bl

astoff!')

else:

print(n)

countdo

wn(n-1)

countdown(3)

The output looks like this:

3

2

1

Blastoff!

9. Infinite Recursion:

If a recursion never reaches a base case, it goes on making recursive calls forever, and

the program never terminates. This is known as infinite recursion.Here is a minimal

program with an infinite recursion:

def recurse():

recurse()

10. Keyboard Input:

Python provides a built-in function called input() to read a value from key

board. For ex

print('Enter

x

print('Hello, ' + x)

Definition and Usage

The input() function allows user input.

Syntax input(prompt) Parameter Values

Parameter Description

prompt A String, representing a default message before the input.

Example

Use the prompt parameter to write a message before the input:

x= input('Enter your name:')

print('Hello, ' + x)

Note: input() function always reads string input. There to read int or float input

values we should convert string input to the respective types using functions int(),

float() ect..

For ex:

str_a = input(enter value)'

b = 10

c = int(str_a) + b

print ("The value of c = ",c)

Your

o/p:

enter value:

42

The value of c =52

Chapter-3

Fruitful Functions

1. Return values:

The return keyword is to exit a function and return a value.

Syntax:

Return or return value:

For ex :

def myfunction():

return 3+3

print("Hello, World!")

print(myfun

ction())

output:

6.

2. Incremental Development:

incremental development is to avoid long debugging sessions by adding and

testing only a small amount of code at a time(i.e. develop complex programs step

by step).

For ex develop a program to find distance between two points

In Step1 we just define function with empty body as

follows def distance(x1, y1, x2, y2):

return 0.0

To test the new function, call it with sample arguments:

>>> distance(1, 2, 4, 6)

The output is 0.0 as there is no code to compute distance.

At this point we have confirmed that the function is syntactically correct, and we

can start adding code to the body.

So in step 2 it is to find the differences x2 − x1 and y2 − y1. The next version

stores those values in temporary variables and prints them:

def distance(x1, y1, x2, y2):

dx = x2 - x1

dy = y2 - y1

print('dx is', dx)

print('dy

is', dy)

return

0.0

in step 3 we compute the sum of squares of dx and dy:

def distance(x1, y1, x2, y2):

dx =

x2 -

x1

dy =

y2 -

y1

dsquared = dx**2 +

dy**2 print('dsquared

is: ', dsquared) return

0.0

Again, you would run the program at this stage and check the output (which

should be 25).

Finally in step 4, you can use math.sqrt to compute and return

the result: def distance(x1, y1, x2, y2):

dx =

x2 -

x1 dy

= y2

- y1

dsquared = dx**2 +

dy**2 result =

math.sqrt(dsquared)

return result

The key aspects of the process are:

1. Start with a working program and make small incremental changes. At any point, if there is

an error, you should have a good idea where it is.

2. Use variables to hold intermediate values so you can display and check them.

3. Once the program is working, you might want to remove some of the scaffolding or

consolidate multiple statements into compound expressions, but only if it does not make the

program difficult to read.

3. Composition:

A complex program developed in small functions separately and write function calls to them in

proper sequence to achieve the functionality of complex program is called composition.

For ex: we want a function to compute the area of the circle.

Assume that the center point is stored in the variables xc and yc, and the perimeter point is in xp

and yp.

The first step is to find the radius of the circle, which is the distance between the two points.

We just wrote a function, distance, that does that:

radius = distance(xc, yc, xp, yp)

The next step is to find the area of a circle with that radius; we just wrote that, too:

result = area(radius)

Encapsulating these steps in a function, we get:

def circle_area(xc, yc, xp, yp):

radius = distance(xc, yc,

xp, yp) result =

area(radius)

return result

The temporary variables radius and result are useful for development and debugging,

but once the program is working, we can make it more concise by composing the

function calls:

def circle_area(xc, yc, xp, yp):

return area(distance(xc, yc,

xp, yp))

4. Boolean Functions

Functions can return Booleans. For example:

def is_divisible(x, y):

if x % y == 0:

return

True

else:

return False

>>>

is_divisible(6,

4) False

>>>

is_divisible(6,

3) True

5. More Recursion:

The function calls it self is called recursion . For ex consider factorial of a number.

The definition of factorial says that the factorial of 0 is 1, and the factorial of any other

value n is, n multiplied by the factorial of n-1.

def factorial(n):

if n == 0:

r

e

t

u

r

n

1

e

l

s

e

:

recurse =

factorial(n-1)

result = n *

recurse return

result

6. Leap of Faith:

Leap of Faith means when you come to a function call, instead of following the

flow of execution, you assume that the function works correctly and returns the

right result.

For example built in functions .i.e. When you call math.cos or math.exp, you don’t

examine the bodies of those functions.

7. Checking Types

What happens if we call factorial and give it 1.5 as an argument?

>>> factorial(1.5)

RuntimeError: Maximum recursion depth exceeded Why because In the first recursive

call, the value of n is 0.5. In the next, it is -0.5. From there, it gets smaller (more

negative), but it will never be 0.

To avoid this situation we have to check input type.using the built-in function isinstance

to verify the type of the argument.

For ex:

def factorial (n):

if not isinstance(n, int):

print('Factorial is only defined for

integers.') return None

elif n < 0:

print('Factorial is not defined for negative

integers.') return None

elif n == 0:

r

e

t

u

r

n

1

e

l

s

e

:

return n * factorial(n-1)

The first base case handles nonintegers; the second handles negative integers. In both

cases, the program prints an error message and returns None to indicate that

something went wrong: Checking Types | 69

>>> factorial('fred')

Factorial is only defined for integers. None

>>> factorial(-2)

Factorial is not defined for negative integers. None

If we get past both checks, we know that n is positive or zero, so we can prove

that the recursion terminates.This program demonstrates a pattern sometimes

called a guardian. The first two conditionals act as guardians, protecting the code

that follows from values that might cause an error. The guardians make it

possible to prove the correctness of the code.

UNIT 3

Chapter-1

Iteration

1. Re Assignment:

In python it is legal to make more than one assignment to the same variable.

A new assignment makes an existing variable refer to a new value (and stop referring

to the old value).

>>> x = 5

>

>

>

x

5

>>> x = 7
>

>

>

x

7

The first time we display x, its value is 5; the second time, its

value is 7. Figure 7-1 shows what reassignment looks like in a

state diagram.

2. Updating Variables:

A common kind of reassignment is an update, where the new value of the

variable depends on the old.

>>> x = x + 1

This means “get the current value of x, add one, and then update x with

the new value.” If you try to update a variable that doesn’t exist, you get

an error, because Python evaluates the right side before it assigns a value

to x:

>>> x = x + 1

NameError: name 'x' is not defined

Before you can update a variable, you have to initialize it, usually with a

simple assignment:

>>> x = 0

>>> x = x + 1

Updating a variable by adding 1 is called an increment; subtracting 1 is

called a decrement.

3. The While Statement:

A while loop statement in Python programming language repeatedly executes a target statement

as long as a given condition is true.

Syntax

The syntax of a while loop in Python programming language is − while expression:

statement(s)

Here, statement(s) may be a single statement or a block of statements.

The condition may be any expression, and true is any non-zero value. The loop iterates while the

condition is true.

When the condition becomes false, program control passes to the line immediately following the

loop.

For Ex:

count = 0

while (count < 9):

print 'The count is:',

count count = count + 1

print "Good bye!"

When the above code is executed, it produces the following

result − The count is: 0

The count is: 1

The count is: 2

The count is: 3

The count is: 4

The count is: 5

The count is: 6

The count is: 7

The count is: 8

Good bye!

Using else Statement with While Loop

Python supports to have an else statement associated with a loop statement.

If the else statement is used with a while loop, the else statement is executed when the condition

becomes false.

The following example illustrates the combination of an else statement with a while statement

that prints a number as long as it is less than 5, otherwise else statement gets executed.

count = 0

while count < 5:

print count, " is less than 5"

count = count + 1

else:
print count, " is not less than 5"

When the above code is executed, it produces the following result − 0 is less than 5

1 is less than 5

2 is less than 5

3 is less than 5

4 is less than 5

5 is not less than 5

3. Break :

It terminates the current loop and resumes execution at the next statement, just like the

traditional break statement in C.

Syntax

The syntax for a break statement in Python is as

follows − break

Note: If you we use nested loops, the break statement stops the execution of the

innermost loop and start executing the next line of code after the block.

For ex:

for letter in 'Python': # First Example

if letter == 'h':

break
print 'Current Letter :', letter

var = 10 # Second Example

while var > 0:

print 'Current variable value :',

var var = var -1

if var == 5:

break

print "Good bye!"

When the above code is executed, it produces the following result –

Current Letter : P

Current Letter : y

Current Letter : t

Current variable value : 10

Current variable value : 9

Current variable value : 8

Current variable value : 7

Current variable value : 6

Good bye!

4. Square Roots:

Python number method sqrt() returns the square root of x

for x > 0. Syntax

Following is the syntax for sqrt()

method − import math

math.sqrt(x)

Note − This function is not accessible directly, so we need to import math module and

then we need to call this function using math static object.

Parameters

x − This is a numeric expression.

Return Value

This method returns square root of x for x > 0.

Example

The following example shows the usage of sqrt() method.

#!/usr/bin/python

import math # This will import math module

print "math.sqrt(100) : ",

math.sqrt(100) print

"math.sqrt(7) : ", math.sqrt(7)

print "math.sqrt(math.pi) : ", math.sqrt(math.pi)

When we run above program, it produces following result −

math.sqrt(100) : 10.0

math.sqrt(7) : 2.64575131106

math.sqrt(math.pi) :

1.77245385091

Algorithms

Newton’s method is an example of an algorithm: it is a mechanical process for

solving a category of problems (in this case, computing square roots).Some kinds of

knowledge are not algorithmic. For example, learning dates from history or your

multiplication tables involves memorization of specific solutions.But the techniques you

learned for addition with carrying, subtraction with borrowing, and long division are all

algorithms. Or if you are an avid Sudoku puzzle solver, you might have some specific

set of steps that you alwaysfollow.

One of the characteristics of algorithms is that they do not require any intelligence to

carry out. They are mechanical processes in which each step follows from the last

according to a simple set of rules. And they’re designed to solve a general class or

category of problems, not just a single problem.Understanding that hard problems can

be solved by step-by-step algorithmic processes (and having technology to execute these

algorithms for us) is one of the major breakthroughs that has had enormous benefits. So

while the execution of the algorithm may be boring and may require no intelligence,

algorithmic or computational thinking — i.e. using algorithms and automation as the

basis for approaching problems — is rapidly transforming our society. Some claim that

this shift towards algorithmic thinking and processes is going to have even more impact

on our society than the invention of the printing press. And the process of designing

algorithms is interesting, intellectually challenging, and a central part of what we call

programming.

Some of the things that people do naturally, without difficulty or conscious thought, are

the hardest to express algorithmically. Understanding natural language is a good

example. We all do it, but so far no one has been able to explain how we do it, at least

not in the form of astep- by-step mechanical algorithm.

Chapter-2

Strings

A string is a sequence

A string is a sequence of characters. You can access the characters one at a time with

the bracket operator:

>>> fruit = 'banana'

>>> letter = fruit[1]

The second statement selects character number 1 from fruit and assigns it to

letter.The expression in brackets is called an index. The index indicates which

character in the sequence you want len.

len is a built-in function that returns the number of characters in a string:

>>> fruit = 'banana'

>>>

len(fruit)

6

To get the last letter of a string, you might be tempted to try something like this:

>>> length = len(fruit)

>>> last = fruit[length]

IndexError: string index out of range

The reason for the IndexError is that there is no letter in 'banana' with the index 6.

Since we started counting at zero, the six letters are numbered 0 to 5. To get the last

character, you have to subtract 1 from length:

>>> last = fruit[length-1]

>

>

>

la

st

'a

'

Or you can use negative indices, which count backward from the end of the string.

The expression fruit[-1] yields the last letter, fruit[-2] yields the second to last,and so on.

2. Traversal With A For Loop:

Traversal : visiting each character in the string is called string traversal. We can do

string traversing with either while or for statements.

For ex:

for letter in 'Python': # First Example print

'Current Letter :', letter

out put:

P

Y

T

H

O

n

3. String Slicing In Python:

Python slicing is about obtaining a sub-string from the given string by slicing it

respectively from start to end.

Python slicing can be done in two ways.

slice()

Constructor

Extending

Indexing

slice()

Constructor

The slice() constructor creates a slice object representing the set of indices specified by

range(start, stop, step).

Syntax:

slice(stop)

slice(start, stop, step)

Parameters:

start: Starting index where the slicing of object starts.

stop: Ending index where the slicing of object stops.

step: It is an optional argument that determines the increment between each index for slicing.

Return Type: Returns a sliced object containing elements in the given range only.

Example

Python program to demonstrate

string slicing

String slicing String ='ASTRING'

Using slice constructor

s1 =slice(3)
s2 = slice(1, 5, 2)

s3 = slice(-1, -12, -2)

print("String slicing")

print(String[s1])

print(String[s2])

print(String[s3])

Output:

String

slicing

AST

S

R

G

I

T

A

Extending indexing

In Python, indexing syntax can be used as a substitute for the slice object. This is an easy

and convenient way to slice a string both syntax wise and execution wise.

Syntax

string[start:end:step]

start, end and step have the same mechanism as slice() constructor.

Example

Python program to demonstratestring

slicing String ='ASTRING'

Using indexing sequence

https://www.geeksforgeeks.org/python-strings/
https://www.geeksforgeeks.org/python-slice-function/

print(String[:3])

print(String[1:5:2])

print(String[-1:-12:-2])

Prints string in reverse

print("\nReverse String")

print(String[::-1])

Output:

A

S

T

S

R

G

I

T

A

Reverse

String

GNIRT

SA

4. Strings Are Immutable :

In python, the string data types are immutable. Which means a string value cannot be

updated. We can verify this by trying to update a part of the string which will led us to

an error.

Can not

reassign t=

"Tutorialsp

oint" print

type(t)

t[0] = "M"

When we run the above program, we get the following output −

t[0] = "M"

TypeError: 'str' object does not support item assignment

5. Searching: Traversing in sequence and returning a character when we find what we are looking

for—is called a search.
For ex:

def find(word, letter):

index = 0

while index < len(word):

if word[index] == letter:

return

index

index =

index + 1

return -1

String functions for searching:

find():

The find() method finds the first occurrence of the specified value. The find()

method returns -1 if the value is not found.

Syntax

string.find(value, start, end)

Parameter Values

Parameter Description

Value Required. The value to search for

Start Optional. Where to start the search.

Default is 0

End Optional. Where to end the search.

Default is to the end of the string

More Examples

Example

Where in the text is the first occurrence of the letter "e"?:

txt = "Hello, welcome to my world."

x = txt.find("e")

pr

in

t(

x)

E

xa

m

pl

e

Where in the text is the first occurrence of the letter "e" when you only search

between position 5 and 10?:

txt = "Hello, welcome to my world."

x = txt.find("e", 5, 10)

print(x)

7. Looping And Counting

The following program counts the number of times the letter a appears in a

string: word = 'banana'

count = 0

for letter in word:

if letter == 'a':

count = count + 1

print(count)

This program demonstrates another pattern of computation called a counter. The

variable count is initialized to 0 and then incremented each time an a is found. When the

loop exits, count contains the result—the total number of a’s.

8. String Methods

Python has a set of built-in methods that you can use on strings.

Note: All string methods returns new values. They do not change the original string.

Method Description

capitalize() Converts the first character to upper case

casefold() Converts string into lower case

center() Returns a centered string

count() Returns the number of times a specified value occurs in a string

encode() Returns an encoded version of the string

endswith() Returns true if the string ends with the specified value

expandtabs() Sets the tab size of the string

find() Searches the string for a specified value and returns the position of

where it was found

format() Formats specified values in a string

format_map() Formats specified values in a string

index() Searches the string for a specified value and returns the position of

where it was found

isalnum() Returns True if all characters in the string are alphanumeric

isalpha() Returns True if all characters in the string are in the alphabet

isdecimal() Returns True if all characters in the string are decimals

isdigit() Returns True if all characters in the string are digits

isidentifier() Returns True if the string is an identifier

islower() Returns True if all characters in the string are lower case

isnumeric() Returns True if all characters in the string are numeric

https://www.w3schools.com/python/ref_string_capitalize.asp
https://www.w3schools.com/python/ref_string_casefold.asp
https://www.w3schools.com/python/ref_string_center.asp
https://www.w3schools.com/python/ref_string_count.asp
https://www.w3schools.com/python/ref_string_encode.asp
https://www.w3schools.com/python/ref_string_endswith.asp
https://www.w3schools.com/python/ref_string_expandtabs.asp
https://www.w3schools.com/python/ref_string_find.asp
https://www.w3schools.com/python/ref_string_format.asp
https://www.w3schools.com/python/ref_string_index.asp
https://www.w3schools.com/python/ref_string_isalnum.asp
https://www.w3schools.com/python/ref_string_isalpha.asp
https://www.w3schools.com/python/ref_string_isdecimal.asp
https://www.w3schools.com/python/ref_string_isdigit.asp
https://www.w3schools.com/python/ref_string_isidentifier.asp
https://www.w3schools.com/python/ref_string_islower.asp
https://www.w3schools.com/python/ref_string_isnumeric.asp

isprintable() Returns True if all characters in the string are printable

isspace() Returns True if all characters in the string are whitespaces

istitle() Returns True if the string follows the rules of a title

isupper() Returns True if all characters in the string are upper case

join() Joins the elements of an iterable to the end of the string

ljust() Returns a left justified version of the string

lower() Converts a string into lower case

lstrip() Returns a left trim version of the string

maketrans() Returns a translation table to be used in translations

partition() Returns a tuple where the string is parted into three parts

replace() Returns a string where a specified value is replaced with a specified

value

rfind() Searches the string for a specified value and returns the last position

of where it was found

rindex() Searches the string for a specified value and returns the last position

of where it was found

rjust() Returns a right justified version of the string

rpartition() Returns a tuple where the string is parted into three parts

rsplit() Splits the string at the specified separator, and returns a list

rstrip() Returns a right trim version of the string

split() Splits the string at the specified separator, and returns a list

splitlines() Splits the string at line breaks and returns a list

startswith() Returns true if the string starts with the specified value

strip() Returns a trimmed version of the string

swapcase() Swaps cases, lower case becomes upper case and vice versa

title() Converts the first character of each word to upper case

translate() Returns a translated string

https://www.w3schools.com/python/ref_string_isprintable.asp
https://www.w3schools.com/python/ref_string_isspace.asp
https://www.w3schools.com/python/ref_string_istitle.asp
https://www.w3schools.com/python/ref_string_isupper.asp
https://www.w3schools.com/python/ref_string_join.asp
https://www.w3schools.com/python/ref_string_ljust.asp
https://www.w3schools.com/python/ref_string_lower.asp
https://www.w3schools.com/python/ref_string_lstrip.asp
https://www.w3schools.com/python/ref_string_maketrans.asp
https://www.w3schools.com/python/ref_string_partition.asp
https://www.w3schools.com/python/ref_string_replace.asp
https://www.w3schools.com/python/ref_string_rfind.asp
https://www.w3schools.com/python/ref_string_rindex.asp
https://www.w3schools.com/python/ref_string_rjust.asp
https://www.w3schools.com/python/ref_string_rpartition.asp
https://www.w3schools.com/python/ref_string_rsplit.asp
https://www.w3schools.com/python/ref_string_rstrip.asp
https://www.w3schools.com/python/ref_string_split.asp
https://www.w3schools.com/python/ref_string_splitlines.asp
https://www.w3schools.com/python/ref_string_startswith.asp
https://www.w3schools.com/python/ref_string_strip.asp
https://www.w3schools.com/python/ref_string_swapcase.asp
https://www.w3schools.com/python/ref_string_title.asp
https://www.w3schools.com/python/ref_string_translate.asp

upper() Converts a string into upper case

zfill() Fills the string with a specified number of 0 values at the beginning

9. The In Operator:

The word in is a boolean operator that takes two strings and returns True if the first

appears as a substring in the second:

>>> 'a' in

'banana'

True

>>> 'seed' in

'banana' False

10. STRING COMPARISON

The relational operators work on strings. To see if two strings are equal:

if word == 'banana':

print('All right, bananas.')

Other relational operations are useful for putting words in alphabetical order:

if word < 'banana':

print('Your word, ' + word + ', comes before banana.')

elif word > 'banana':

print('Your word, ' + word + ', comes after banana.')

else:

print('All right, bananas.')

Python does not handle uppercase and lowercase letters the same way people do.

All the uppercase letters come before all the lowercase letters, so:

Your word, Pineapple, comes before banana.

1. Reading word lists:

Chapter-3

Case study

There are lots of word lists available on the Web, but the one most suitable for our

purpose is one of the word lists collected and contributed to the public domain by

Grady Ward as part of the Moby lexicon project1. It is a list of 113,809 official

crosswords; that is, words that are considered valid in crossword puzzles and other

word games.

In the Moby collection, the filename is 113809of.fic; I include a copy of this file, with

the simpler name words.txt, along with Swampy.

This file is in plain text, so you can open it with a text editor, but you can also read it

from Python. The built-in function open takes the name of the file as a parameter and

returns a file object you can use to read the file.

>>> fin = open('words.txt')

>>> print fin

<open file 'words.txt', mode 'r' at 0xb7f4b380>

https://www.w3schools.com/python/ref_string_upper.asp
https://www.w3schools.com/python/ref_string_zfill.asp
https://www2.cs.sfu.ca/CourseCentral/165/common/ref/thinkpy/html/book010.html#note16

fin is a common name for a file object used for input. Mode 'r' indicates that this file is

open for reading (as opposed to 'w' for writing).

The file object provides several methods for reading, including readline, which reads

characters from the file until it gets to a newline and returns the result as a string:

>>>

fin.readline

() 'aa\r\n'

The first word in this particular list is “aa,” which is a kind of lava. The

sequence \r\n represents two whitespace characters, a carriage return and a newline,

that separate this word from the next.

The file object keeps track of where it is in the file, so if you call readline again, you

get the next word:

>>>

fin.readlin

e() 'aah\r\n'

The next word is “aah,” which is a perfectly legitimate word, so stop looking at me

like that. Or, if it’s the whitespace that’s bothering you, we can get rid of it with

the string method strip:

>>> line = fin.readline()

>>> word = line.strip()

>>> print word

aahed

You can also use a file object as part of a for loop. This program reads words.txt and

prints each word, one per line:

fin = open('words.txt') for

line in fin:

word = line.strip()

print word

2. Search

All of the exercises in the previous section have something in common; The simplest

example is:

def has_no_e(word):

for letter in word:

if letter == 'e':

return False

return True

The for loop traverses the characters in word. If we find the letter “e”, we can

immediately return False; otherwise we have to go to the next letter. If we exit the loop

normally, that means we didn’t find an “e”, so we return True.

You can write this function more concisely using the in operator, but I started with this

version because it demonstrates the logic of the search pattern.

avoids is a more general version of has_no_e but it has the same

structure: def avoids(word, forbidden):

for letter in word:

if letter in forbidden:

return False

return True

We can return False as soon as we find a forbidden letter; if we get to the end of the loop,

we return True.

uses_only is similar except that the sense of the condition is

reversed: def uses_only(word, available):

for letter in word:

if letter not in

available: return

False

return True

Instead of a list of forbidden words, we have a list of available words. If we find a

letter in word that is not in available, we can return False.uses_all is similar except

that we reverse the role of the word and the string of letters:

def uses_all(word, required):

for letter in

required: if letter

not in word:

return False

return True

Instead of traversing the letters in word, the loop traverses the required letters. If any of

the required letters do not appear in the word, we can return False.

If you were really thinking like a computer scientist, you would have

recognized that uses_all was an instance of a previously-solved problem, and you

would have written:

def uses_all(word, required):

return uses_only(required, word)

This is an example of a program development method called problem recognition,

which means that you recognize the problem you are working on as an instance of a p

reviously- solved problem, and apply a previously-developed solution.

3. Looping with indices

I wrote the functions in the previous section with for loops because I only needed the

characters in the strings; I didn’t have to do anything with the indices.For

is_abecedarian we have to compare adjacent letters, which is a little tricky with

a for loop:

Def is_abecedarian(word):

previous = word[0]

for c in word:

if c < previous:

return False

previous = c

return True

An alternative is to use recursion:

def is_abecedarian(word):

if len(word) <= 1:

return True

if word[0] > word[1]:

return False

return is_abecedarian(word[1:])

Another option is to use a while loop:

def is_abecedarian(word):

i = 0

while i < len(word)-1:

if word[i+1] < word[i]:

return False

i = i+1

return True

The loop starts at i=0 and ends when i=len(word)-1. Each time through the loop, it compares the

ith character (which you can think of as the current character) to the i+1th character (which you

can think of as the next).

If the next character is less than (alphabetically before) the current one, then we have discovered

a break in the abecedarian trend, and we return False.

If we get to the end of the loop without finding a fault, then the word passes the test. To convince

yourself that the loop ends correctly, consider an example like 'flossy'. The length of the word is

6, so the last time the loop runs is when i is 4, which is the index of the second- to-last character.

On the last iteration, it compares the second-to-last character to the last, which is what we want.

Here is a version of is_palindrome (see Exercise 6.6) that uses two indices; one starts at the

beginning and goes up; the other starts at the end and goes down.

def is_palindrome(word):

i = 0

j = len(word)-1

while i<j:

if word[i] != word[j]:

return False

i = i+1

j = j-1

return True

Or, if you noticed that this is an instance of a previously-solved problem, you might have written:

def is_palindrome(word):

return is_reverse(word, word)

Chapter-4

LIST

Python offers a range of compound datatypes often referred to as sequences. List is one of the most

frequently used and very versatile datatype used in Python.

How to create a list?

In Python programming, a list is created by placing all the items (elements) inside a square bracket [

], separated by commas.It can have any number of items and they may be of different types (integer,

float, string etc.).

empty list

my_list = []

list of integers

my_list = [1, 2, 3]

list with mixed datatypes

my_list = [1, "Hello", 3.4]

Also, a list can even have another list as an item. This is called nested list. #

nested list

my_list = ["mouse", [8, 4, 6], ['a']]

https://www2.cs.sfu.ca/CourseCentral/165/common/ref/thinkpy/html/book007.html#palindrome

How to access elements from a list?

There are various ways in which we can access the elements of a list.

List Index

We can use the index operator [] to access an item in a list. Index starts from 0. So, a list having

5 elements will have index from 0 to 4.

Trying to access an element other that this will raise an IndexError. The index must be an integer.

We can't use float or other types, this will result into TypeError.

Nested list are accessed using nested indexing.

Negative indexing

Python allows negative indexing for its sequences. The index of -1 refers to the last item, -2 to

the second last item and so on.

4. List Slices:

How to slice lists in Python?

We can access a range of items in a list by using the slicing operator (colon).

my_list = ['p','r','o','g','r','a','m','i','z']

elements 3rd to 5th

print(my_list[2:5])

my_list = ['p','r','o','b','e']

Output: e

print(my_list[-1])

Output: p

print(my_list[-5])

my_list = ['p','r','o','b','e']

Output: p

print(my_list[0])

Output: o

print(my_list[2])

Output: e

print(my_list[4])

Error! Only integer can be used for indexing

my_list[4.0]

Nested List

n_list = ["Happy", [2,0,1,5]]

Nested indexing

Output: a

print(n_list[0][1])

Output: 5

print(n_list[1][3])

Slicing can be best visualized by considering the index to be between the elements as shown

below. So if we want to access a range, we need two index that will slice that portion from the

list.

1.List is a sequence:

The most basic data structure in Python is the sequence. Each element of a sequence is assigned a

number - its position or index. The first index is zero, the second index is one, and so forth.

Python has six built-in types of sequences, but the most common ones are lists and tuples, which

we would see in this tutorial.

There are certain things you can do with all sequence types. These operations include indexing,

slicing, adding, multiplying, and checking for membership. In addition, Python has built-in

functions for finding the length of a sequence and for finding its largest and smallest elements.

Python Lists

The list is a most versatile datatype available in Python which can be written as a list of comma-

separated values (items) between square brackets. Important thing about a list is that items in a

list need not be of the same type.

Creating a list is as simple as putting different comma-separated values between square brackets.

For example −

list1 = ['physics', 'chemistry', 1997, 2000];

list2 = [1, 2, 3, 4, 5];

list3 = ["a", "b", "c", "d"]

Similar to string indices, list indices start at 0, and lists can be sliced, concatenated and so on.

Accessing Values in Lists

To access values in lists, use the square brackets for slicing along with the index or indices to

obtain value available at that index. For example −

#!/usr/bin/python

list1 = ['physics', 'chemistry', 1997, 2000];

list2 = [1, 2, 3, 4, 5, 6, 7];

print "list1[0]: ", list1[0]

print "list2[1:5]: ", list2[1:5]

elements beginning to 4th

print(my_list[:-5])

elements 6th to end

print(my_list[5:])

elements beginning to end

print(my_list[:])

When the above code is executed, it produces the following result −

list1[0]: physics

list2[1:5]: [2, 3, 4, 5]

Updating Lists

You can update single or multiple elements of lists by giving the slice on the left-hand

side of the assignment operator, and you can add to elements in a list with the append()

method. For example −

#!/usr/bin/python

list = ['physics', 'chemistry', 1997, 2000];

print "Value available at index 2 : "

print list[2] list[2] = 2001;

print "New value available at index 2 : "

print list[2]

Note − append() method is discussed in subsequent section.

When the above code is executed, it produces the following result −

Value available at index 2 :1997

New value available at index 2 :2001

Lists are Mutable

Unlike strings, lists are mutable. This means we can change an item in a list by

accessing it directly as part of the assignment statement. Using the indexing operator

(square brackets) on the left side of an assignment, we can update one of the list items.

fruit = ["banana", "apple", "cherry"]

print(fruit)

fruit[0] = "pear"

fruit[-1] = "orange"

print(fruit)

output:

['banana', 'apple', 'cherry']

['pear', 'apple', 'orange']

An assignment to an element of a list is called item assignment. Item assignment

does not work for strings. Recall that strings are immutable.

Here is the same example in codelens so that you can step through the statements and see

the changes to the list elements.

By combining assignment with the slice operator we can update several elements

at once. alist = ['a', 'b', 'c', 'd', 'e', 'f']

alist[1:3] = ['x', 'y']

print(alist)

output:

['a', 'x', 'y', 'd', 'e', 'f']

We can also remove elements from a list by assigning the empty list to them.

alist = ['a', 'b', 'c', 'd', 'e', 'f']

alist[1:3] = []

print(alist)

output:

['a', 'd', 'e', 'f']

6.map(), filter(), and reduce() in Python

Introduction

The map(), filter() and reduce() functions bring a bit of functional programming to

Python. All three of these are convenience functions that can be replaced with List

Comprehensions or loops, but provide a more elegant and short-hand approach to some

problems.

Before continuing, we'll go over a few things you should be familiar with before

reading about the aforementioned methods:

What is an anonymous function/method or lambda?

An anonymous method is a method without a name, i.e. not bound to an identifier like

when we define a method using def method:.

Note: Though most people use the terms "anonymous function" and "lambda

function" interchangeably - they're not the same. This mistake happens because in most

programming languages lambdas are anonymous and all anonymous functions are

lambdas. This is also the case in Python. Thus, we won't go into this distinction further

in this article.

What is the syntax of a lambda function (or lambda operator)?

lambda arguments: expression

Think of lambdas as one-line methods without a name. They work practically the same

as any other method in Python, for example:

def add(x,y):

 return x + y

Can be translated to:

lambda x, y: x + y

Lambdas differ from normal Python methods because they can have only one

expression, can't contain any statements and their return type is a function object. So

the line of code above doesn't exactly return the value x + y but the function that

calculates x + y.

Why are lambdas relevant to map(), filter() and reduce()?

All three of these methods expect a function object as the first argument. This function

object can be a pre-defined method with a name (like def add(x,y)).Though, more

often than not, functions passed to map(), filter(), and reduce() are the ones you'd use

only once, so there's often no point in defining a referenceable function.

To avoid defining a new function for your different map()/filter()/reduce() needs - a

more elegant solution would be to use a short, disposable, anonymous function that

you will only use once and never again - a lambda.

The map() Function

The map() function iterates through all items in the given iterable and

executes the function we passed as an argument on each of them.

The syntax is:

map(function, iterable(s))

We can pass as many iterable objects as we want after passing the function we want to

use:

Without using lambdas

def starts_with_A(s):

https://stackabuse.com/list-comprehensions-in-python/
https://stackabuse.com/list-comprehensions-in-python/

 return s[0] == "A"

fruit = ["Apple", "Banana", "Pear", "Apricot",

"Orange"] map_object = map(starts_with_A,

fruit)

print(list(map_o

bject))

This code will result in:

[True, False, False, True, False]

As we can see, we ended up with a new list where the function starts_with_A() was

evaluated for each of the elements in the list fruit. The results of this function were

added to the list sequentially.

A prettier way to do this exact same thing is by using lambdas:

fruit = ["Apple", "Banana", "Pear", "Apricot", "Orange"]

map_object = map(lambda s: s[0] == "A", fruit)

print(list(map_ob

ject))

We get the same output:

[True, False, False, True, False]

Note: You may have noticed that we've cast map_object to a list to print each

element's value. We did this because calling print() on a list will print the actual values

of the elements. Calling print() on map_object would print the memory addresses of

the values instead.

The map() function returns the map_object type, which is an iterable and we could

have printed the results like this as well:

for value in map_object:

 print(value)

If you'd like the map() function to return a list instead, you can just cast it when calling

the function:

result_list = list(map(lambda s: s[0] == "A",

fruit)) The filter() Function

Similar to map(), filter() takes a function object and an iterable and creates a new list.

As the name suggests, filter() forms a new list that contains only elements that satisfy

a certain condition, i.e. the function we passed returns True.

The syntax is:

filter(function, iterable(s))

Using the previous example, we can see that the new list will only contain elements for

which the starts_with_A() function returns True:

Without using lambdas

def starts_with_A(s):

 return s[0] == "A"

fruit = ["Apple", "Banana", "Pear", "Apricot",

"Orange"] filter_object = filter(starts_with_A,

fruit)

print(list(filter_object))

Running this code will result in a shorter list:

['Apple', 'Apricot']

Or, rewritten using a lambda:

fruit = ["Apple", "Banana", "Pear", "Apricot",

"Orange"] filter_object = filter(lambda s: s[0] ==

"A", fruit)

print(list(filter_object))

Printing gives us the same

output: ['Apple', 'Apricot']

The reduce() Function

reduce() works differently than map() and filter(). It does not return a new list based

on the function and iterable we've passed. Instead, it returns a single value.Also, in

Python reduce() isn't a built-in function anymore, and it can be found in the

functools module.

The syntax is:

reduce(function, sequence[, initial])

reduce() works by calling the function we passed for the first two items in the

sequence. The result returned by the function is used in another call to function

alongside with the next (third in this case), element.

This process repeats until we've gone through all the elements in the sequence.

The optional argument initial is used, when present, at the beginning of this "loop"

with the first element in the first call to function. In a way, the initial element is the 0th

element, before the first one, when provided.

reduce() is a bit harder to understand than map() and filter(), so let's look at a step by

step example:

We start with a list [2, 4, 7, 3] and pass the add(x, y) function to reduce() alongside this

list, without an initial value

reduce() calls add(2, 4), and add() returns 6

reduce() calls add(6, 7) (result of the previous call to add() and the next element in the

list as parameters), and add() returns 13

reduce() calls add(13, 3), and add() returns 16

Since no more elements are left in the sequence, reduce() returns 16

The only difference, if we had given an initial value would have been an additional step -

1.5. where reduce() would call add(initial, 2) and use that return value in

step 2. Let's go ahead and use the reduce() function:

from functools import reduce

def add(x, y):

 return x + y

list = [2, 4, 7, 3]

print(reduce(add, list))

Running this code would yield: 16

Again, this could be written using lambdas:

from functools import reduce

list = [2, 4, 7, 3]

print(reduce(lambda x, y: x + y, list))

print("With an initial value: " + str(reduce(lambda x, y: x + y,

list, 10)))

And the code would result in:16

With an initial value: 26

Delete List Elements

To remove a list element, you can use either the del statement if you know exactly which

element(s) you are deleting or the remove() method if you do not know. For example −

#!/usr/bin/python
list1 = ['physics', 'chemistry', 1997, 2000]; print list1
del list1[2];

print "After deleting value at index 2 : "

print list1

When the above code is executed, it produces following result −

['physics', 'chemistry', 1997, 2000]

After deleting value at index 2 :

['physics', 'chemistry', 2000]

Note − remove() method is discussed in subsequent section.

4. Basic List Operations

Lists respond to the + and * operators much like strings; they mean concatenation and

repetition here too, except that the result is a new list, not a string.

In fact, lists respond to all of the general sequence operations we used on strings in the

prior chapter.

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1, 2, 3]: print x, 1 2 3 Iteration

List Operations:

How to change or add elements to a list?

List are mutable, meaning, their elements can be changed unlike string or tuple.

We can use assignment operator (=) to change an item or a range of items.

We can add one item to a list using append() method or

add several items using extend()method. odd = [1, 3, 5]

mistake values

odd = [2, 4, 6, 8]

change the 1st item
odd[0] = 1

Output: [1, 4, 6, 8]

print(odd)

change 2nd to 4th items

odd[1:4] = [3, 5, 7]

Output: [1, 3, 5, 7]

print(odd)

https://www.programiz.com/python-programming/string
https://www.programiz.com/python-programming/tuple

odd.append(7)

Output: [1, 3, 5, 7]

print(odd)

odd.extend([9,

11, 13])

Output: [1, 3, 5, 7, 9, 11, 13]

print(odd)

We can also use + operator to combine two lists. This is also called

concatenation. The * operator repeats a list for the given number of times.

Furthermore, we can insert one item at a desired location by using the method insert() or insert
multiple items by squeezing it into an empty slice of a list.

How to delete or remove elements from a list?

We can delete one or more items from a list using the keyword del. It can even delete the list

entirely.

my_list = ['p','r','o','b','l','e','m']

delete one item

del my_list[2]

Output: ['p', 'r', 'b', 'l', 'e', 'm']

print(my_list)

delete multiple items

del my_list[1:5]

Output: ['p', 'm']

print(my_list)

delete entire list

del my_list

odd = [1, 3, 5]

Output: [1, 3, 5, 9, 7, 5]

print(odd + [9, 7, 5])

#Output: ["re", "re", "re"]

print(["re"] * 3)

odd = [1, 9]

odd.insert(1,3)

Output: [1, 3, 9]

print(odd)

odd[2:2] = [5, 7]

Output: [1, 3, 5, 7, 9]

print(odd)

We can use remove() method to remove the given item or pop() method to remove an item at
the given index. The pop() method removes and returns the last item if index is not provided. This

helps us implement lists as stacks (first in, last out data structure).

We can also use the clear() method to empty a list.

Finally, we can also delete items in a list by assigning an empty list to a slice of elements.

5. Indexing, Slicing, and Matrixes

Because lists are sequences, indexing and slicing work the same way for lists as they do for strings.

Assuming following input − L = ['spam', 'Spam', 'SPAM!']

Python Expression Results Description

L[2] SPAM! Offsets start at zero

my_list = ['p','r','o','b','l','e','m']

my_list.remove('p')

Output: ['r', 'o', 'b', 'l', 'e', 'm']

print(my_list)

Output: 'o'

print(my_list.pop(1))

Output: ['r', 'b', 'l', 'e', 'm']

print(my_list)

Output: 'm'

print(my_list.pop())

Output: ['r', 'b', 'l', 'e']

print(my_list)

my_list.clear()

Output: []

print(my_list)

Error: List not defined

print(my_list)

>>> my_list = ['p','r','o','b','l','e','m']

>>> my_list[2:3] = []

>>> my_list

['p', 'r', 'b', 'l', 'e', 'm']

>>> my_list[2:5] = []

>>> my_list

['p', 'r', 'm']

L[-2] Spam Negative: count from the right

L[1:] ['Spam', 'SPAM!'] Slicing fetches sections

6. Python List Methods

Methods that are available with list object in Python programming are tabulated below.They are

accessed as list.method(). Some of the methods have already been used above.

Python List Methods

append() - Add an element to the end of the list

extend() - Add all elements of a list to the another list

insert() - Insert an item at the defined index

remove() - Removes an item from the list

pop() - Removes and returns an element at the given index

clear() - Removes all items from the list

index() - Returns the index of the first matched item

count() - Returns the count of number of items passed as an argument

sort() - Sort items in a list in ascending order

reverse() - Reverse the order of items in the list

copy() - Returns a shallow copy of the list

Some examples of Python list methods:

my_list = [3, 8, 1, 6, 0, 8, 4]

Output: 1

print(my_list.index(8))

Output: 2

print(my_list.count(8))

my_list.sort()

Output: [0, 1, 3, 4, 6, 8, 8]

print(my_list)

https://www.programiz.com/python-programming/methods/list
https://www.programiz.com/python-programming/methods/list/append
https://www.programiz.com/python-programming/methods/list/extend
https://www.programiz.com/python-programming/methods/list/insert
https://www.programiz.com/python-programming/methods/list/remove
https://www.programiz.com/python-programming/methods/list/pop
https://www.programiz.com/python-programming/methods/list/clear
https://www.programiz.com/python-programming/methods/list/index
https://www.programiz.com/python-programming/methods/list/count
https://www.programiz.com/python-programming/methods/list/sort
https://www.programiz.com/python-programming/methods/list/reverse
https://www.programiz.com/python-programming/methods/list/copy

Built-in Functions with List

Built-in functions like all(), any(), enumerate(), len(), max(), min(), list(), sorted() etc. are

commonly used with list to perform different tasks.

Built-in Functions with List

Function

Description

all() Return True if all elements of the list are true (or if the list is empty).

any() Return True if any element of the list is true. If the list is empty, return False.

enumerate()
Return an enumerate object. It contains the index and value of all the items of

list as a tuple.

len() Return the length (the number of items) in the list.

list() Convert an iterable (tuple, string, set, dictionary) to a list.

max() Return the largest item in the list.

min() Return the smallest item in the list

sorted() Return a new sorted list (does not sort the list itself).

sum() Return the sum of all elements in the list.

Strings in Python A string is a sequence of characters. It can be declared in python by using

double-quotes. Strings are immutable, i.e., they cannot be changed.

Assigning string to a variable a = "This is a string"

print (a)

Lists in Python Lists are one of the most powerful tools in python. They are just like the arrays

declared in other languages. But the most powerful thing is that list need not be always

homogeneous. A single list can contain strings, integers, as well as objects. Lists can also be used

for implementing stacks and queues. Lists are mutable, i.e., they can be altered once declared.

Declaring a list

L = [1, "a" , "string" , 1+2]

my_list.reverse()

Output: [8, 8, 6, 4, 3, 1, 0]

print(my_list)

https://www.programiz.com/python-programming/methods/built-in/all
https://www.programiz.com/python-programming/methods/built-in/any
https://www.programiz.com/python-programming/methods/built-in/enumerate
https://www.programiz.com/python-programming/methods/built-in/len
https://www.programiz.com/python-programming/methods/built-in/list
https://www.programiz.com/python-programming/methods/built-in/max
https://www.programiz.com/python-programming/methods/built-in/min
https://www.programiz.com/python-programming/methods/built-in/sorted
https://www.programiz.com/python-programming/methods/built-in/sum

print L

L.append(6) print

L L.pop() print L

print L[1]

The output is :

[1, 'a', 'string', 3]

[1, 'a', 'string', 3, 6]

[1, 'a', 'string', 3] a

Objects and values

Objects are Python's abstraction for data. All data in a Python program is represented by objects or by

relations between objects. (In a sense, and in conformance to Von Neumann's model of a ``stored program

computer,'' code is also represented by objects.)

Every object has an identity, a type and a value. An object's identity never changes once it has been created;

you may think of it as the object's address in memory. The `is' operator compares the identity of two objects;

the id() function returns an integer representing its identity (currently implemented as its address). An object's

type is also unchangeable. It determines the operations that an object supports (e.g., ``does it have a length?'')

and also defines the possible values for objects of that type. The type() function returns an object's type (which

is an object itself). The value of some objects can change. Objects whose value can change are said to be

mutable; objects whose value is unchangeable once they are created are called immutable. (The value of an

immutable container object that contains a reference to a mutable object can change when the latter's value is

changed; however the container is still considered immutable, because the collection of objects it contains

cannot be changed. So, immutability is not strictly the same as having an unchangeable value, it is more

subtle.) An object's mutability is determined by its type; for instance, numbers, strings and tuples are

immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-

collected. An implementation is allowed to postpone garbage collection or omit it altogether -- it is a matter of

implementation quality how garbage collection is implemented, as long as no objects are collected that are still

reachable. (Implementation note: the current implementation uses a reference-counting scheme which collects

most objects as soon as they become unreachable, but never collects garbage containing circular references.)

Note that the use of the implementation's tracing or debugging facilities may keep objects alive that would

normally be collectable. Also note that catching an exception with a try...except' statement may keep objects

alive.

Some objects contain references to ``external'' resources such as open files or windows. It is understood that

these resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed

to happen, such objects also provide an explicit way to release the external resource, usually a close() method.

Programs are strongly recommended to explicitly close such objects. The `try...finally' statement provides a

convenient way to do this.

Some objects contain references to other objects; these are called containers. Examples of containers are

tuples, lists and dictionaries. The references are part of a container's value. In most cases, when we talk about

the value of a container, we imply the values, not the identities of the contained objects; however, when we

talk about the mutability of a container, only the identities of the immediately contained objects are implied.

So, if an immutable container (like a tuple) contains a reference to a mutable object, its value changes if that

mutable object is changed.

Aliasing

Since variables refer to objects, if we assign one variable to another, both variables refer to the same object:

a = [81, 82, 83]

b = a print(a is b)

output:

True

In this case, the reference diagram looks like this:

Because the same list has two different names, a and b, we say that it is aliased. Changes made with one

alias affect the other. In the codelens example below, you can see that a and b refer to the same list

after executing the assignment statement b = a.

1 a = [81, 82, 83]

2 b = [81, 82, 83]

4 print(a == b)

5 print(a is b)

7 b = a

8 print(a == b)

9 print(a is b)

b[0] = 5

12 print(a)

Using Lists as Parameters

Functions which take lists as arguments and change them during execution are called modifiers and

the changes they make are called side effects. Passing a list as an argument actually passes a reference to the

list, not a copy of the list. Since lists are mutable, changes made to the elements referenced by the parameter

change the same list that the argument is referencing. For example, the function below takes a list as an

argument and multiplies each element in the list by 2:

def doubleStuff(aList):

""" Overwrite each element in aList with double its value. """

for position in range(len(aList)): aList[position] = 2 *

aList[position]

things = [2, 5, 9]

print(things)

doubleStuff(things)

print(things)

output:

[2,5,9]

[4, 10, 18]

The parameter aList and the variable things are aliases for the same object.

Since the list object is shared by two references, there is only one copy. If a function modifies the

elements of a list parameter, the caller sees the change since the change is occurring to the original.

This can be easily seen in codelens. Note that after the call to doubleStuff, the formal parameter

aList refers to the same object as the actual parameter things. There is only one copy of the list

object itself.

UNIT-IV

Chapter-1

Dictionaries

1. Dictionary in mapping:

Dictionary in Python is an unordered collection of data values, used to store data values like a map, which unlike

other Data Types that hold only single value as an element, Dictionary holds key:value pair. Key value is

provided in the dictionary to make it more optimized.

2. Dictionary as a Counter:

Suppose you are given a string and you want to count how many times each letter appears. There are several

ways you could do it:

You could create 26 variables, one for each letter of the alphabet. Then you could traverse the string and, for

each character, increment the corresponding counter, probably using a chained conditional.

You could create a list with 26 elements. Then you could convert each character to a number (using the built-in

function ord), use the number as an index into the list, and increment the appropriate counter.

You could create a dictionary with characters as keys and counters as the corresponding values. The first time

you see a character, you would add an item to the dictionary. After that you would increment the value of a

existing item.

Each of these options performs the same computation, but each of them implements that computation in a

different way.

An implementation is a way of performing a computation; some implementations are better than others. For

example, an advantage of the dictionary implementation is that we don’t have to know ahead of time which

letters appear in the string and we only have to make room for the letters that do appear.

Here is what the code might look like:

word = 'brontosaurus'd = dict()for c in word: if c not in d: d[c] = 1 else: d[c] = d[c] + 1print d

We are effectively computing a histogram, which is a statistical term for a set of counters (or frequencies).

The for loop traverses the string. Each time through the loop, if the character c is not in the dictionary, we create

a new item with key c and the initial value 1 (since we have seen this letter once). If c is already in the dictionary

we increment d[c].

Here’s the output of the program:

{'a': 1, 'b': 1, 'o': 2, 'n': 1, 's': 2, 'r': 2, 'u': 2, 't': 1}

The histogram indicates that the letters ’a’ and 'b' appear once; 'o' appears twice, and so on.

Dictionaries have a method called get that takes a key and a default value. If the key appears in the dictionary,

get returns the corresponding value; otherwise it returns the default value. For example:

>>> counts = { 'chuck' : 1 , 'annie' : 42, 'jan': 100}>>> print counts.get('jan', 0)100>>> print counts.get('tim', 0)0

We can use get to write our histogram loop more concisely. Because the get method automatically handles the

case where a key is not in a dictionary, we can reduce four lines down to one and eliminate the if statement.

word = 'brontosaurus'd = dict()for c in word: d[c] = d.get(c,0) + 1print d

The use of the get method to simplify this counting loop ends up being a very commonly used “idiom” in Python

and we will use it many times the rest of the book. So you should take a moment and compare the loop using

the if statement and in operator with the loop using the get method. They do exactly the same thing, but one is

more succinct.

3. Looping and Dictionary:

If you use a dictionary as the sequence in a for statement, it traverses the keys of the dictionary. This loop prints

each key and the corresponding value:

counts = { 'chuck' : 1 , 'annie' : 42, 'jan': 100}for key in counts: print key, counts[key]

Here’s what the output looks like:

jan 100chuck 1annie 42

Again, the keys are in no particular order.

We can use this pattern to implement the various loop idioms that we have described earlier. For example if we

wanted to find all the entries in a dictionary with a value above ten, we could write the following code:

counts = { 'chuck' : 1 , 'annie' : 42, 'jan': 100}for key in counts: if counts[key] > 10 : print key, counts[key]

The for loop iterates through the keys of the dictionary, so we must use the index operator to retrieve the

corresponding value for each key. Here’s what the output looks like:

jan 100annie 42

We see only the entries with a value above 10.

If you want to print the keys in alphabetical order, you first make a list of the keys in the dictionary using the

keys method available in dictionary objects, and then sort that list and loop through the sorted list, looking up

each key printing out key/value pairs in sorted order as follows as follows:

counts = { 'chuck' : 1 , 'annie' : 42, 'jan': 100}lst = counts.keys()print lstlst.sort()for key in lst: print key,

counts[key]

Here’s what the output looks like:

['jan', 'chuck', 'annie']annie 42chuck 1jan 100

First you see the list of keys in unsorted order that we get from the keys method.

Then we see the key/value pairs in order from the for loop.

4. Reverse dictionary lookup in Python

Doing a reverse dictionary lookup returns a list containing each key in the dictionary that maps to a

specified value.

U S E dict.items() T O D O A R E V E R S E D I C T I O N A R Y L O O K U P

Use the syntax for key, value in dict.items() to iterate over each key, value pair in the dictionary dict. At each

iteration, if value is the lookup value, add key to an initially empty list.

print(a_dictionary)

O U T P U T

{'a': 1, 'b': 3, 'c': 1, 'd': 2}

lookup_value = 1

all_keys = []

for key, value ina_dictionary.items():

if(value == lookup_value):

all_keys.append(key)

print(all_keys)

O U T P U T

['a', 'c']

Use a dictionary comprehension for a more compact implementation. all_keys

= [key for key, value ina_dictionary.items() if value == lookup_value]

print(all_keys)

O U T P U T

['a', 'c']

5. Dictionaries and Lists:

https://kite.com/python/docs/builtins.dict.items
https://kite.com/python/docs/builtins.dict.items

Lists are just like the arrays, declared in other languages. Lists need not be homogeneous always which makes it

a most powerful tool in Python. A single list may contain DataTypes like Integers, Strings, as well as Objects.

Lists are mutable, and hence, they can be altered even after their creation.

Example:

Python program to demonstrate

Lists

Creating a List with

the use of multiple values

List=["Geeks", "For", "Geeks"]

print("List containing multiple values: ")

print(List[0])

print(List[2])

Creating a Multi-Dimensional List

(By Nesting a list inside a List)

List=[['Geeks', 'For'] , ['Geeks']]

print("\nMulti-Dimensional List: ")

print(List)

Output:

List containing multiple values:

Geeks

Geeks

Multi-Dimensional List:

[['Geeks', 'For'], ['Geeks']]

Dictionary in Python on the other hand is an unordered collection of data values, used to store data values like a

map, which unlike other Data Types that hold only single value as an element, Dictionary holds key:value pair.

Key-value is provided in the dictionary to make it more optimized. Each key-value pair in a Dictionary is

separated by a colon :, whereas each key is separated by a ‘comma’.

Example:

Python program to demonstrate

dictionary

Creating a Dictionary

with Integer Keys

Dict={1: 'Geeks', 2: 'For', 3: 'Geeks'}

print("Dictionary with the use of Integer Keys: ")

print(Dict)

Creating a Dictionary

with Mixed keys

Dict={'Name': 'Geeks', 1: [1, 2, 3, 4]}

print("\nDictionary with the use of Mixed Keys: ")

print(Dict)

Output:

Dictionary with the use of Integer Keys:

{1: 'Geeks', 2: 'For', 3: 'Geeks'}

Dictionary with the use of Mixed Keys:

{1: [1, 2, 3, 4], 'Name': 'Geeks'}

Difference between List and Dictionary:

LIST DICTIONARY

List is a collection of index values pairs Dictionary is a hashed structure of key and value pairs.

https://www.geeksforgeeks.org/python-list/
https://www.geeksforgeeks.org/python-dictionary/

instancememo

memo

LIST DICTIONARY

as that of array in c++.

List is created by placing elements in [

] seperated by commas “, “

Dictionary is created by placing elements in { } as “key”:”value”,

each key value pair is seperated by commas “, ”

The indices of list are integers starting

from 0.

The keys of dictionary can be of any data type.

The elements are accessed via indices. The elements are accessed via key-values.

The order of the elements entered are

maintained.

There is no guarantee for maintaining order.

6. MEMO:

memoize and keyed-memoize decorators.

memo: The classical memoize decorator. It keeps a cache

same computations.

so you don’t continue to perform the

keymemo(key): This decorator factory act as but it permits to specify a key function that takes the args of

the decorated function and computes a key value to use as key in the cache dictionary. This way you can for

example use a single value of a dictionary as key of the cache, or apply a function before passing something to

the cache.

: The classical memoize decorator that can be applied to class functions. It keeps a cache

tinue to perform the same computations. The cache is kept in the class namespace.

: This decorator factory works like a combination of and keymemo, so it

allows to specify a function that generate the cache key based on the function arguments and can be applied to

class functions.

Usage

From memo import memo

@memo

deffibonacci(n):

ifn<=2:

return1

returnfibonacci(n-1) +fibonacci(n-2)

frommemoimportkeymemo

@keymemo(lambdatup: tup[0])

deffunction(tup):

build a cache based on the first value of a tuple

...

The package has been uploaded to PyPI, so you can install it with pip:

pip install python-memo

7. Python Global Variables

In this tutorial, you’ll learn about Python Global variables, Local variables, Nonlocal variables and where

to use them.

Global Variables

In Python, a variable declared outside of the function or in global scope is known as a global variable. This

means that a global variable can be accessed inside or outside of the function.

Let's see an example of how a global variable is created in Python.

Example 1: Create a Global Variable

x = "global"

deffoo():

print("x inside:", x)

args -

args -> result

instancememo

> result so you don’t con

instancekeymemo(key)

https://pypi.python.org/pypi/python-memo

mytuple

foo()

print("x outside:", x)

Chapter-2

Tuples

1. Tuples are lists that are immutable.

I like Al Sweigart's characterization of a tuple as being the "cousin" of the list. The tuple is so similar to the list

that I am tempted to just skip covering it, especially since it's an object that other popular languages – such as

Ruby, Java, and JavaScript – get by just fine without having. However, the tuple is an object that is frequently

used in Python programming, so it's important to at least be able to recognize its usage, even if you don't use it

much yourself.

Syntax for declaring a tuple

Like a list, a tuple is a collection of other objects. The main visual difference, in terms of syntax, is that instead of

enclosing the values in we use parentheses, not square brackets, to enclose the values of a tuple:

List

Tuple

[1, 2, "hello"] (1, 2, "hello")

Otherwise, the process of iterating through a tuple, and using square bracket notation to access or slice a tuple's

contents is the same as it is for lists (and pretty much for every other Python sequence object, such

as range…but we'll gloss over that detail for now).

Word of warning: if you're relatively new to programming and reading code, the use of parentheses as

delimiters might seem like a potential syntactic clusterf—, as parentheses are already used in various other

contexts, such as function calls. What differentiates a tuple declaration, e.g.

mytuple=("hello","world")

– from the parentheses-enclosed values of a function call, e.g.

print("hello","world")

Well, that's easy – the latter set of parentheses-enclosed objects immediately follows a function name, i.e. print .

The potential confusion from the similar notation isn't too terrible, in practice.

One strange thing you might come across is this:
>>>mytuple=("hello",)

>>>type(mytuple)

tuple

>>>len(mytuple)

1

Having a trailing comma is the only way to denote a tuple of length 1. Without that trailing

comma, would be pointing to a plain string object that happens to be enclosed in parentheses:

>>>mytuple=("hello")

>>>type(mytuple)

str

2. Tuples are immutable

Besides the different kind of brackets used to delimit them, the main difference between a tuple and a list is that

the tuple object is immutable. Once we've declared the contents of a tuple, we can't modify the contents of that

tuple.

For example, here's how we modify the 0th member of a list:

https://automatetheboringstuff.com/chapter4/

to “berries”. “apples”

>>>mylist=[1,2,3]

>>>mylist[0]=999

print(mylist)

[999,2,3]

That will not work with a tuple:

>>>mytuple=(1,2,3)

>>>mytuple[0]=999

TypeError:'tuple'objectdoesnotsupportitemassignment

And while the list object has several methods for adding new members, the tuple has no such methods.

In other words, "immutability" == "never-changing".

Similarly, when a program alters the contents of a mutable object, it's often described as "mutating" that object.

3. Tuple Assignment

Python has a very powerful tuple assignment feature that allows a tuple of variables on the left of an assignment

to be assigned values from a tuple on the right of the assignment.

(name, surname, birth_year, movie, movie_year, profession, birth_place) =julia

This does the equivalent of seven assignment statements, all on one easy line. One requirement is that the number

of variables on the left must match the number of elements in the tuple.

Once in a while, it is useful to swap the values of two variables. With conventional assignment statements, we

have to use a temporary variable. For example, to swap a and b:

temp=a

a=b

b=temp

Tuple assignment solves this problem neatly:

(a, b) = (b, a)

The left side is a tuple of variables; the right side is a tuple of values. Each value is assigned to its respective

variable. All the expressions on the right side are evaluated before any of the assignments. This feature makes

tuple assignment quite versatile.

Naturally, the number of variables on the left and the number of values on the right have to be the same.

>>>(a, b, c, d) = (1, 2, 3)

ValueError: need more than 3 values to unpack.

4. Tuples as Return Values

Functions can return tuples as return values. This is very useful — we often want to know some batsman’s

highest and lowest score, or we want to find the mean and the standard deviation, or we want to know the year,

the month, and the day, or if we’re doing some ecological modeling we may want to know the number of rabbits

and the number of wolves on an island at a given time. In each case, a function (which can only return a single

value), can create a single tuple holding multiple elements.

For example, we could write a function that returns both the area and the circumference of a circle of radius r.

def circleInfo(r):

""" Return (circumference, area) of a circle of radius r """

c = 2 * 3.14159 * r

a = 3.14159 * r * r

return (c, a)

print(circleInfo(10))

5. List and Tuple

The main difference between lists and tuples is the fact that lists are mutable whereas tuples are immutable.

What does that even mean, you say?

A mutable data type means that a python object of this type can be modified.

An immutable object can’t.

Let’s create a list and assign it to a variable.

>>> a =["apples","bananas","oranges"]

Now let’s see what happens when we try to modify the first item of the list.

Let’s change

>>>a[0]="berries"

>>> a

['berries','bananas','oranges']

Perfect! the first item of a has changed.

Now, what if we want to try the same thing with a tuple instead of a list? Let’s see.

>>> a =("apples","bananas","oranges")

>>>a[0]="berries"

Traceback(most recent call last):

File"", line 1,in

TypeError:'tuple'object does not support item assignment

We get an error saying that a tuple object doesn’t support item assignment.

The reason we get this error is because tuple objects, unlike lists, are immutable which means you can’t modify a

tuple object after it’s created.

But you might be thinking, Karim, my man, I know you say you can’t do assignments the way you wrote it but

how about this, doesn’t the following code modify a?

>>> a =("apples","bananas","oranges")

>>> a =("berries","bananas","oranges")

>>> a

('berries','bananas','oranges')

Fair question!

Let’s see, are we actually modifying the first item in tuple a with the code above?

The answer is No, absolutely not.

6. Variable-length argument tuples:

To understand why, you first have to understand the difference between a variable and a python object.

Syntax

Syntax for a function with non-keyword variable arguments is this −

def functionname([formal_args,] *var_args_tuple):

"function_docstring"

function_suite

return [expression]

An asterisk (*) is placed before the variable name that holds the values of all nonkeyword variable arguments.

This tuple remains empty if no additional arguments are specified during the function call.

Example

#!/usr/bin/python

Function definition is here

defprintinfo(arg1,*vartuple):

"This prints a variable passed arguments"

print"Output is: "

print arg1

forvarinvartuple:

printvar

return;

Now you can call printinfo function

printinfo(10)

printinfo(70,60,50)

Output

When the above code is executed, it produces the following result −

Output is:

10

Output is:

70

60

50

7. Dictionaries and Tuples

Besides lists, Python has two additional data structures that can store multiple objects. These data structures

are dictionaries and tuples. Tuples will be discussed first.

Tuples

Tuples are immutable lists. Elements of a list can be modified, but elements in a tuple can only be accessed, not

modified. The name tuple does not mean that only two values can be stored in this data structure.

Tuples are defined in Python by enclosing elements in parenthesis () and separating elements with commas. The

command below creates a tuple containing the numbers 3, 4, and 5.

>>>t_var = (3,4,5)

>>>t_var

(3, 4, 5)

Note how the elements of a list can be modified:

>>>l_var = [3,4,5] # a list

>>>l_var[0]= 8

>>>l_var

[8, 4, 5]

The elements of a tuple can not be modified. If you try to assign a new value to one of the elements in a tuple, an

error is returned.

>>>t_var = (3,4,5) # a tuple

>>>t_var[0]= 8

>>>t_var

TypeError: 'tuple' object does not support item assignment

To create a tuple that just contains one numerical value, the number must be followed by a comma. Without a

comma, the variable is defined as a number.

>>>num = (5)

>>> type(num)

int

When a comma is included after the number, the variable is defined as a tuple.

>>>t_var = (5,)

>>> type(t_var)

tuple

Dictionaries

Dictionaries are made up of key: value pairs. In Python, lists and tuples are organized and accessed based on

position. Dictionaries in Python are organized and accessed using keys and values. The location of a pair of keys

and values stored in a Python dictionary is irrelevant.

Dictionaries are defined in Python with curly braces { }. Commas separate the key-value pairs that make up the

dictionary. Each key-value pair is related by a colon :.

Let's store the ages of two people in a dictionary. The two people

are Gabby and Maelle. Gabby is 8 and Maelle is 5. Note the name Gabby is a string and the age 8 is an integer.

>>>age_dict = {"Gabby": 8 , "Maelle": 5}

>>> type(age_dict)

dict

The values stored in a dictionary are called and assigned using the following syntax:

dict_name[key] = value

>>>age_dict = {"Gabby": 8 , "Maelle": 5}

>>>age_dict["Gabby"]

8

We can add a new person to our age_dict with the following command:

>>>age_dict = {"Gabby": 8 , "Maelle": 5}

>>>age_dict["Peter"]= 40

>>>age_dict

{'Gabby': 8, 'Maelle': 5, 'Peter': 40}

Dictionaries can be converted to lists by calling the .items(), .keys(), and .values() methods.

>>>age_dict = {"Gabby": 8 , "Maelle": 5}

>>>whole_list = list(age_dict.items())

>>>whole_list

[('Gabby', 8), ('Maelle', 5)]

>>>name_list = list(age_dict.keys())

>>>name_list

['Gabby', 'Maelle']

>>>age_list = list(age_dict.values())

>>>age_list

[8, 5]

Items can be removed from dictionaries by calling the .pop() method. The dictionary key (and that key's

associated value) supplied to the .pop() method is removed from the dictionary.

>>>age_dict = {"Gabby": 8 , "Maelle": 5}

>>>age_dict.pop("Gabby")

>>>age_dict

{'Maelle': 5}

8. Sequences of Sequences:

Some basic sequence type classes in python are, list, tuple, range. There are some additional sequence type

objects, these are binary data and text string.

Some common operations for the sequence type object can work on both mutable and immutable sequences.

Some of the operations are as follows −

Sr.No. Operation/Functions & Description

1 x in seq

True, when x is found in the sequence seq, otherwise False

2 x not in seq

False, when x is found in the sequence seq, otherwise True

3 x + y

Concatenate two sequences x and y

4 x * n or n * x

Add sequence x with itself n times

5 seq[i]

ith item of the sequence.

6 seq[i:j]

Slice sequence from index i to j

7 seq[i:j:k]

Slice sequence from index i to j with step k

8 len(seq)

Length or number of elements in the sequence

9 min(seq)

Minimum element in the sequence

10 max(seq)

Maximum element in the sequence

11 seq.index(x[, i[, j]])

Index of the first occurrence of x (in the index range i and j)

12 seq.count(x)

Count total number of elements in the sequence

13 seq.append(x)

Add x at the end of the sequence

14 seq.clear()

Clear the contents of the sequence

15 seq.insert(i, x)

Insert x at the position i

16 seq.pop([i])

Return the item at position i, and also remove it from sequence.

Default is last element.

17 seq.remove(x)

Remove first occurrence of item x

18 seq.reverse()

Reverse the list

Example Code
myList1 =[10,20,30,40,50]

myList2 =[56,42,79,42,85,96,23]

if30in myList1:

print('30 is present')

if120notin myList1:

print('120 is not present')

print(myList1 + myList2)#Concatinate lists

print(myList1 *3)#Add myList1 three times with itself

print(max(myList2))

print(myList2.count(42))#42 has two times in the list

print(myList2[2:7])

print(myList2[2:7:2])

myList1.append(60)

print(myList1)

myList2.insert(5,17)

print(myList2)

myList2.pop(3)

print(myList2)

myList1.reverse()

print(myList1)

myList1.clear()

print(myList1)

Output

30 is present

120 is not present

[10, 20, 30, 40, 50, 56, 42, 79, 42, 85, 96, 23]

[10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 10, 20, 30, 40, 50]

96

2

[79, 42, 85, 96, 23]

[79, 85, 23]

[10, 20, 30, 40, 50, 60]

[56, 42, 79, 42, 85, 17, 96, 23]

[56, 42, 79, 85, 17, 96, 23]

[60, 50, 40, 30, 20, 10]

[]

1. Persistence

Chapter-3

Files

During the course of using any software application, user provides some data to be processed. The data may be

input, using a standard input device (keyboard) or other devices such as disk file, scanner, camera, network cable,

WiFi connection, etc.

Data so received, is stored in computer’s main memory (RAM) in the form of various data structures such as,

variables and objects until the application is running. Thereafter, memory contents from RAM are erased.

However, more often than not, it is desired that the values of variables and/or objects be stored in such a manner,

that it can be retrieved whenever required, instead of again inputting the same data.

The word ‘persistence’ means "the continuance of an effect after its cause is removed". The term data persistence

means it continues to exist even after the application has ended. Thus, data stored in a non-volatile storage

medium such as, a disk file is a persistent data storage.

In this tutorial, we will explore various built-in and third party Python modules to store and retrieve data to/from

various formats such as text file, CSV, JSON and XML files as well as relational and non-relational databases.

Using Python’s built-in File object, it is possible to write string data to a disk file and read from it. Python’s

standard library, provides modules to store and retrieve serialized data in various data structures such as JSON

and XML.

Python’s DB-API provides a standard way of interacting with relational databases. Other third party Python

packages, present interfacing functionality with NOSQL databases such as MongoDB and Cassandra.

This tutorial also introduces, ZODB database which is a persistence API for Python objects. Microsoft Excel

format is a very popular data file format. In this tutorial, we will learn how to handle .xlsx file through Python.

2. Reading and Writing to text files in Python

Python provides inbuilt functions for creating, writing and reading files. There are two types of files that can be

handled in python, normal text files and binary files (written in binary language,0s and 1s).

Text files: In this type of file, Each line of text is terminated with a special character called EOL (End of Line),

which is the new line character (‘\n’) in python by default.

Binary files: In this type of file, there is no terminator for a line and the data is stored after converting it into

machine understandable binary language.

In this article, we will be focusing on opening, closing, reading and writing data in a text file.

File Access Modes

Access modes govern the type of operations possible in the opened file. It refers to how the file will be used once

its opened. These modes also define the location of the File Handle in the file. File handle is like a cursor, which

defines from where the data has to be read or written in the file. There are 6 access modes in python.

Read Only (‘r’) : Open text file for reading. The handle is positioned at the beginning of the file. If the file does

not exists, raises I/O error. This is also the default mode in which file is opened.

Read and Write (‘r+’) : Open the file for reading and writing. The handle is positioned at the beginning of the

file. Raises I/O error if the file does not exists.

Write Only (‘w’) : Open the file for writing. For existing file, the data is truncated and over-written. The handle

is positioned at the beginning of the file. Creates the file if the file does not exists.

Write and Read (‘w+’) : Open the file for reading and writing. For existing file, data is truncated and over-

written. The handle is positioned at the beginning of the file.

Append Only (‘a’) : Open the file for writing. The file is created if it does not exist. The handle is positioned at

the end of the file. The data being written will be inserted at the end, after the existing data.

Append and Read (‘a+’) : Open the file for reading and writing. The file is created if it does not exist. The

handle is positioned at the end of the file. The data being written will be inserted at the end, after the existing

data.

Opening a File

It is done using the open() function. No module is required to be imported for this function.

File_object = open(r"File_Name","Access_Mode")

The file should exist in the same directory as the python program file else, full address of the file should be

written on place of filename.

Note: The r is placed before filename to prevent the characters in filename string to be treated as special

character. For example, if there is \temp in the file address, then \t is treated as the tab character and error is

raised of invalid address. The r makes the string raw, that is, it tells that the string is without any special

characters. The r can be ignored if the file is in same directory and address is not being placed.

Open function to open the file "MyFile1.txt"

(same directory) in append mode and

file1 =open("MyFile.txt","a")

store its reference in the variable file1

and "MyFile2.txt" in D:\Text in file2

file2 =open(r"D:\Text\MyFile2.txt","w+")

Here, file1 is created as object for MyFile1 and file2 as object for MyFile2

Closing a file

close() function closes the file and frees the memory space acquired by that file. It is used at the time when the

file is no longer needed or if it is to be opened in a different file mode.

File_object.close()

Opening and Closing a file "MyFile.txt"

for object name file1.

file1 =open("MyFile.txt","a")

file1.close()

Writing to a file

There are two ways to write in a file.

write() : Inserts the string str1 in a single line in the text file.

File_object.write(str1)

writelines() : For a list of string elements, each string is inserted in the text file.Used to insert multiple strings at

a single time.

File_object.writelines(L) for L = [str1, str2, str3]

Reading from a file

There are three ways to read data from a text file.

read() : Returns the read bytes in form of a string. Reads n bytes, if no n specified, reads the entire file.

File_object.read([n])

readline() : Reads a line of the file and returns in form of a string.For specified n, reads at most n bytes.

However, does not reads more than one line, even if n exceeds the length of the line.

File_object.readline([n])
readlines() : Reads all the lines and return them as each line a string element in a list.

File_object.readlines()

Note: ‘\n’ is treated as a special character of two bytes

filter_none

edit

play_arrow

brightness_4

Program to show various ways to read and

write data in a file.

file1 =open("myfile.txt","w")

L =["This is Delhi \n","This is Paris \n","This is London \n"]

\n is placed to indicate EOL (End of Line)

file1.write("Hello \n")

file1.writelines(L)

file1.close() #to change file access modes

file1 =open("myfile.txt","r+")

print"Output of Read function is "

printfile1.read()

print

seek(n) takes the file handle to the nth

bite from the beginning.

file1.seek(0)

print"Output of Readline function is "

printfile1.readline()

print

file1.seek(0)

To show difference between read and readline

print"Output of Read(9) function is "

printfile1.read(9)

print

file1.seek(0)

print"Output of Readline(9) function is "

printfile1.readline(9)

file1.seek(0)

readlines function

print"Output of Readlines function is "

printfile1.readlines()

print

file1.close()

Output:

Output of Read function is

Hello

This is Delhi

This is Paris

This is London

Output of Readline function is

Hello

Output of Read(9) function is

Hello

Th

Output of Readline(9) function is

Hello

Output of Readlines function is

['Hello \n', 'This is Delhi \n', 'This is Paris \n', 'This is London \n']

Appending to a file

filter_none

edit

play_arrow

brightness_4

Python program to illustrate

Append vs write mode

file1 =open("myfile.txt","w")

L =["This is Delhi \n","This is Paris \n","This is London \n"]

file1.close()

Append-adds at last

file1 =open("myfile.txt","a")#append mode

file1.write("Today \n")

file1.close()

file1 =open("myfile.txt","r")

print"Output of Readlines after appending"

printfile1.readlines()

print

file1.close()

Write-Overwrites

file1 =open("myfile.txt","w")#write mode

file1.write("Tomorrow \n")

file1.close()

file1 =open("myfile.txt","r")

print"Output of Readlines after writing"

printfile1.readlines()

print

file1.close()

Output:

Output of Readlines after appending

['This is Delhi \n', 'This is Paris \n', 'This is London \n', 'Today \n']

Output of Readlines after writing

['Tomorrow \n']

Data Persistence and Exchange

Python provides several modules for storing data. There are basically two aspects to persistence: converting the

in-memory object back and forth into a format for saving it, and working with the storage of the converted data.

Serializing Objects

Python includes two modules capable of converting objects into a transmittable or storable format

(serializing): pickle and json. It is most common to use pickle, since there is a fast C implementation and it is

integrated with some of the other standard library modules that actually store the serialized data, such as shelve.

Web-based applications may want to examine json, however, since it integrates better with some of the existing

web service storage applications.

Storing Serialized Objects

https://pymotw.com/2/pickle/index.html#module-pickle
https://pymotw.com/2/json/index.html#module-json
https://pymotw.com/2/pickle/index.html#module-pickle
https://pymotw.com/2/shelve/index.html#module-shelve
https://pymotw.com/2/json/index.html#module-json

A

Once the in-memory object is converted to a storable format, the next step is to decide how to store the data. A

simple flat-file with serialized objects written one after the other works for data that does not need to be indexed

in any way. But Python includes a collection of modules for storing key-value pairs in a simple database using

one of the DBM format variants.

The simplest interface to take advantage of the DBM format is provided by shelve. Simply open the shelve file,

and access it through a dictionary-like API. Objects saved to the shelve are automatically pickled and saved

without any extra work on your part.

One drawback of shelve is that with the default interface you can’t guarantee which DBM format will be used.

That won’t matter if your application doesn’t need to share the database files between hosts with different

libraries, but if that is needed you can use one of the classes in the module to ensure a specific format is selected

(Specific Shelf Types).

If you’re going to be passing a lot of data around via JSON anyway, using json and anydbm can provide another

persistence mechanism. Since the DBM database keys and values must be strings, however, the objects won’t be

automatically re-created when you access the value in the database.

Relational Databases

The excellent sqlite3 in-process relational database is available with most Python distributions. It stores its

database in memory or in a local file, and all access is from within the same process, so there is no network lag.

The compact nature of sqlite3 makes it especially well suited for embedding in desktop applications or

development versions of web apps.

All access to the database is through the Python DBI 2.0 API, by default, as no object relational mapper (ORM)

is included. The most popular general purpose ORM is SQLAlchemy, but others such as Django’s native ORM

layer also support SQLite. SQLAlchemy is easy to install and set up, but if your objects aren’t very complicated

and you are worried about overhead, you may want to use the DBI interface directly.

Data Exchange Through Standard Formats

Although not usually considered a true persistence format csv, or comma-separated-value, files can be an

effective way to migrate data between applications. Most spreadsheet programs and databases support both

export and import using CSV, so dumping data to a CSV file is frequently the simplest way to move data out of

your application and into an analysis tool.

Python Exception Handling Using try, except and finally statement Python has many built-in exceptions that are

raised when your program encounters an error (something in the program goes wrong).

When these exceptions occur, the Python interpreter stops the current process and passes it to the calling process

until it is handled. If not handled, the program will crash.

For example, let us consider a program where we have a function that calls function B, which in turn calls

function C. If an exception occurs in function

to A.

but is not handled in C, the exception passes to and then

If never handled, an error message is displayed and our program comes to a sudden unexpected halt.

3. Formatting Operator in Python

One of Python's coolest features is the string format operator %. This operator is unique to strings and makes up

for the pack of having functions from C's printf() family. Following is a simple example −

Example

#!/usr/bin/python

print "My name is %s and weight is %d kg!" % ('Zara', 21)

Output

When the above code is executed, it produces the following result −

My name is Zara and weight is 21 kg!

Here is the list of complete set of symbols which can be used along with % −

Sr.No Format Symbol & Conversion

B C

https://pymotw.com/2/shelve/index.html#module-shelve
https://pymotw.com/2/shelve/index.html#shelve-shelf-types
https://pymotw.com/2/json/index.html#module-json
https://pymotw.com/2/anydbm/index.html#module-anydbm
https://pymotw.com/2/sqlite3/index.html#module-sqlite3
https://pymotw.com/2/sqlite3/index.html#module-sqlite3
http://www.sqlalchemy.org/
https://pymotw.com/2/csv/index.html#module-csv
https://www.programiz.com/python-programming/exceptions
https://www.programiz.com/python-programming/function

Sr.No Format Symbol & Conversion

1 %c

character

2 %s

string conversion via str() prior to formatting

3 %i

signed decimal integer

4 %d

signed decimal integer

5 %u

unsigned decimal integer

6 %o

octal integer

7 %x

hexadecimal integer (lowercase letters)

8 %X

hexadecimal integer (UPPERcase letters)

9 %e

exponential notation (with lowercase 'e')

10 %E

exponential notation (with UPPERcase 'E')

11 %f

floating point real number

12 %g

the shorter of %f and %e

13 %G

the shorter of %f and %E

Other supported symbols and functionality are listed in the following table –

Sr.No Symbol & Functionality

1 *

argument specifies width or precision

2 -

left justification

3 +

display the sign

4 <sp>

leave a blank space before a positive number

5 #

add the octal leading zero ('0') or hexadecimal leading '0x' or '0X', depending on whether

except

Sr.No Symbol & Functionality

'x' or 'X' were used.

6 0

pad from left with zeros (instead of spaces)

7 %

'%%' leaves you with a single literal '%'

8 (var)

mapping variable (dictionary arguments)

9 m.n.

m is the minimum total width and n is the number of digits to display after the decimal

point (if appl.)

4. Filenames and file paths in Python

Test your paths

def check_path(out_fc):

"""Check for a filegeodatabase and a filename"""

msg = dedent(check_path. doc)

punc = '!"#$%&\'()*+,-;<=>?@[]^`~}{ '

flotsam = " ".join([i for i in _punc_]) # " ... plus the `space`"

fail = False

if (".gdb" not in fc) or np.any([i in fc for i in flotsam]):

fail = True

pth = fc.replace("\\", "/").split("/")

name = pth[-1]

if (len(pth) == 1) or (name[-4:] == ".gdb"):

fail = True

if fail:

tweet(msg)

return (None, None)

gdb = "/".join(pth[:-1])

return gdb, name

pth = "C:\Users\dan_p\AppData\Local\ESRI\ArcGISPro"

File "<ipython-input-66-5b37dd76b72d>", line 1

pth = "C:\Users\dan_p\AppData\Local\ESRI\ArcGISPro"

^

SyntaxError: (unicode error) 'unicodeescape' codec can't decode bytes in position 2-3: truncated \UXXXXXXXX

escape

the fix is still raw encoding

pth = r"C:\Users\dan_p\AppData\Local\ESRI\ArcGISPro"

pth

'C:\\Users\\dan_p\\AppData\\Local\\ESRI\\ArcGISPro'

5.Catching Exceptions in Python

In Python, exceptions can be handled using a try

The critical operation which can raise an exception is placed inside the

clause. The code that handles the

exceptions is written in the clause.

try

except

except

We can thus choose what operations to perform once we have caught the exception. Here is a simple example.

import module sys to get the type of exception

import sys

randomList = ['a', 0, 2]

for entry inrandomList:

try:

print("The entry is", entry)

 r = 1/int(entry)

break

except:

print("Oops!", sys.exc_info()[0], "occurred.")

print("Next entry.")

print()

print("The reciprocal of", entry, "is", r)

Run Code

Output

The entry is a

Oops! <class 'ValueError'> occurred.

Next entry.

The entry is 0

Oops! <class 'ZeroDivisionError'>occured.

Next entry.

The entry is 2

The reciprocal of 2 is 0.5

In this program, we loop through the values of the

cause an exception is placed inside the try block.

In this program, we loop through the values of the

cause an exception is placed inside the try block.

list. As previously mentioned, the portion that can

list. As previously mentioned, the portion that can

If no exception occurs, the

exception occurs, it is caught by the

block is skipped and normal flow continues(for last value). But if any

block (first and second values).

Here, we print the name of the exception using the function inside module. We can see

that causes and causes ZeroDivisionError.

6. Database

In previous guides, we have explained how to import data from Excel spreadsheets, tab-delimited files, and

online APIs. As helpful as those resources are, if the data we need to handle is large in size or becomes too

complex, a database (relational or otherwise) may be a better solution. Regardless of the flavor you choose, there

are general principles and basic tools that we can use to query a database and manipulate the results using

Python.

Prerequisites

To begin, we need to install the appropriate connector (also known as driver) for the database system that we are

using. This utility comes in the form of a module that is at one's disposal either from the standard library (such

as sqlite3) or a third-party package like mysql-connector-python and psycopg2-binary for Mysql / MariaDB

and PostgreSQL, respectively. In any event, the Python Package Index is our go-to place to search for available

adapters.

In this guide, we will use PostgreSQL, since it provides a function called ROW_TO_JSON out of the box. As its

name suggests, this function returns each row in the result set as a JSON object. Since we have already learned

how to work with JSON data, we will be able to manipulate the result of a query very easily.

If we use a different database system, we can iterate over the results and create a list of dictionaries where each

element is a record in the result set.

sys

0 ValueError a

exc_info()

randomList

randomList

https://pypi.org/

That being said, we will need to install psycopg2-binary, preferably inside a virtual environment before we

proceed:

1

pip install psycopg2-binary bash

Now let's examine the PostgreSQL database we will work with, which is called nba. Figs. 1 through 3 show the

structure of the coaches, players, and teams tables.

coaches stores the following data, where coach_id acts as the primary key. Besides the coach's first and last

names, there's also a team_id which is a foreign key that references the homonymous field in the teams table.

players, besides the player_id (primary key) and team_id (foreign key, which indicates the team he is currently

playing for), also holds the first and last names, the jersey number, the height in meters, the weight in kilograms,

and the country of origin.

Finally, teams are described by their name, conference, current conference rank, home wins and losses, and

away wins and losses. Of course, it also has the team_id primary key that is referenced in the other two tables.

https://www.pluralsight.com/courses/python-developers-toolkit

The next step consists in writing a SQL query to retrieve the list of teams ordered by conference and rank, along

with the number of players in each team and the name of its coach. And while we're at it, we can also add the

number of home and away wins:

SELECT

t.name,

t.city,

t.conference,

t.conference_rank,

COUNT(p.player_id) AS number_of_players,

CONCAT(c.first_name, ' ', c.last_name) AS coach,

t.home_wins,

t.away_wins

FROM players p, teams t, coaches c

WHERE p.team_id = t.team_id

AND c.team_id = t.team_id

GROUP BY t.name, c.first_name, c.last_name, t.city, t.conference, t.conference_rank, t.home_wins,

t.away_wins

ORDER BY t.conference, t.conference_rank

sql

We will then wrap the query inside the ROW_TO_JSON function for our convenience and save it to a file

named query.sql in the current directory:

SELECT ROW_TO_JSON(team_info) FROM (

SELECT

t.name,

t.city,

t.conference,

t.conference_rank,

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1
2

3

4

5

6

7

8

9

10

11

12

13

14

COUNT(p.player_id) AS number_of_players,

CONCAT(c.first_name, ' ', c.last_name) AS coach,

t.home_wins,

t.away_wins

FROM players p, teams t, coaches c

WHERE p.team_id = t.team_id

AND c.team_id = t.team_id

GROUP BY t.name, c.first_name, c.last_name, t.city, t.conference, t.conference_rank,

t.home_wins, t.away_wins

ORDER BY t.conference, t.conference_rank

) AS team_info

sql

Fig. 4 shows the first records of the above query. Note that each row has the structure of a Python dictionary

where the names of the fields returned by the query are the keys.

Last, but not least, a word of caution. To connect to a database, we need a username and a

password. It is best practice to use environment variables instead of exposing them in plain sight as part of the

connection string. This is particularly important if you push your code to a version control system that other

people can access. In Unix-like environments, this can be done by appending the following two lines at the end

of your shell's initialization file. To apply changes, you will need to log out and log back in or source the file in

the current session.

1

2

bash

export DB_USER="your_PostgreSQL_username_here_inside_quotes"

export DB_PASS="your_password_inside_quotes"

In Windows, go to Control Panel / System / Advanced system settings. Select the Advanced tab and click

on Environment Variables to add them:

We are now ready to start writing Python code!

Querying the Database and Manipulating Results

At the top of our program we will import the necessary modules and one function to handle errors:

1

2

3

import os

import psycopg2 as p

from psycopg2 import Error python

Next, we will load the contents of query.sql into query and instantiate the connection. You can also use

environment variables for host, port, and database just like we did for user and password, although it is not

strictly necessary to do so.

1

2

3

4

5

6

7

8

9

10

with open('query.sql') as sql:

query = sql.read()

conn = p.connect(

user = os.environ['DB_USER'],

password = os.environ['DB_PASS'],

host = 'localhost',

port = '5432',

database = 'nba'

)

python

Once we have successfully connected to the database, it is time to execute the query. To do so, a control structure

associated with the connection and known as cursor is used. If everything went as expected, the variable

called result contains a list of one-element tuples where each element is a dictionary.

1

2

3

python

cursor = conn.cursor()

cursor.execute(query)

result = cursor.fetchall()

At this point, we can iterate over result and manipulate its contents as desired. For example, we may insert them

into a spreadsheet (as illustrated in Fig. 5), as we learned in Importing Data from Microsoft Excel Files with

Python, or use them to feed an HTML table via a web application.

To catch errors, if they occur, it is necessary to wrap our code inside a try-except block. And while we are at it,

adding a finally sentence allows us to clean up the connection when we are done using it:

1

2

3

4

5

6

7

8

9

10

11

https://www.pluralsight.com/guides/importing-data-from-excel-with-python
https://www.pluralsight.com/guides/importing-data-from-excel-with-python

12
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

 try:
 # Instantiate the connection
 conn = p.connect(

user = os.environ['DB_USER'],

password = os.environ['DB_PASS'],

host = 'localhost',

port = '5432',

database = 'nba'

)

Create cursor, execute the query, and fetch results

cursor = conn.cursor()

cursor.execute(query)

result = cursor.fetchall()

Create workbook and select active sheet

wb = Workbook()

ws = wb.active

Rename active sheet

ws.title = 'Teams'

Column headings

column_headings = [

]

ws.append(column_headings)

Add players

for team in result:

ws.append(list(team[0].values()))

'Name',

'City',

'Conference',

'Rank',

'Players',

'Coach',

'Home wins',

'Away wins'

Get coordinates of last cell

last_cell = ws.cell(row = ws.max_row, column = ws.max_column).coordinate

Create table

team_table = Table(displayName = 'TeamTable', ref = 'A1:{}'.format(last_cell))

Add 'Table Style Medium 6' style

style = TableStyleInfo(name = 'TableStyleMedium6', showRowStripes = True)

Apply style to table

team_table.tableStyleInfo = style

Add table to spreadsheet

ws.add_table(team_table)

Save spreadsheet
wb.save('teams.xlsx')

except p.Error as error:

print('There was an error with the database operation: {}'.format(error))

except:

print('There was an unexpected error of type {}'.format(sys.exc_info()[0]))

finally:

python

if conn:

cursor.close()

conn.close()

Both the script and the SQL file are available in Github. Feel free to use and modify them as you need.

7. Understanding Python Pickling with example

Prerequisite: Pickle Module

Python pickle module is used for serializing and de-serializing a Python object structure. Any object in Python

can be pickled so that it can be saved on disk. What pickle does is that it “serializes” the object first before

writing it to file. Pickling is a way to convert a python object (list, dict, etc.) into a character stream. The idea is

that this character stream contains all the information necessary to reconstruct the object in another python script.

Python3 program to illustrate store

efficiently using pickle module

Module translates an in-memory Python object

into a serialized byte stream—a string of

bytes that can be written to any file-like object.

importpickle

defstoreData():

initializing data to be stored in db

Omkar ={'key': 'Omkar', 'name': 'Omkar Pathak',

'age': 21, 'pay': 40000}

Jagdish ={'key': 'Jagdish', 'name': 'Jagdish Pathak',

'age': 50, 'pay': 50000}

database

db ={}

db['Omkar'] =Omkar

db['Jagdish'] =Jagdish

Its important to use binary mode

dbfile =open('examplePickle', 'ab')

source, destination

pickle.dump(db, dbfile)

dbfile.close()

defloadData():

for reading also binary mode is important

dbfile =open('examplePickle', 'rb')

db =pickle.load(dbfile)

forkeys indb:

print(keys, '=>', db[keys])

dbfile.close()

if name ==' main ':

storeData()

loadData()

Output:

omkarpathak-Inspiron-3542:~/Documents/Python-Programs$ python P60_PickleModule.py

Omkar => {'age': 21, 'name': 'Omkar Pathak', 'key': 'Omkar', 'pay': 40000}

Jagdish => {'age': 50, 'name': 'Jagdish Pathak', 'key': 'Jagdish', 'pay': 50000}

https://github.com/gacanepa/pluralsight/tree/master/01%20-%20Importing%20Data%20with%20Python
https://www.geeksforgeeks.org/pickle-python-object-serialization/

8. Pipes in Python

Pipe

Unix or Linux without pipes is unthinkable, or at least, pipelines are a very important part of Unix and Linux

applications. Small elements are put together by using pipes. Processes are chained together by their standard

streams, i.e. the output of one process is used as the input of another process. To chain processes like this, so-

called anonomymous pipes are used.

The concept of pipes and pipelines was introduced by Douglas McIlroy, one of the authors of the early command

shells, after he noticed that much of the time they were processing the output of one program as the input to

another. Ken Thompson added the concept of pipes to the UNIX operating system in 1973. Pipelines have later

been ported to other operating systems like DOS, OS/2 and Microsoft Windows as well.

Generally there are two kinds of pipes:

1.anonymous pipes

2.named pipes

Anonymous pipes exist solely within processes and are usually used in combination with forks.

Beer Pipe in Python

"99 Bottles of Beer" is a traditional song in the United States and Canada. The song is derived from the English

"Ten Green Bottles". The song consists of 100 verses, which are very similar. Just the number of bottles varies.

Only one, i.e. the hundredth verse is slightly different. This song is often sung on long trips, because it is easy to

memorize, especially when drunken, and it can take a long time to sing.

Here are the lyrics of this song:

Ninety-nine bottles of beer on the wall, Ninety-nine bottles of beer. Take one down, pass it around, Ninety-eight

bottles of beer on the wall.

The next verse is the same starting with 98 bottles of beer. So the general rule is, each verse one bottle less, until

there in none left. The song normally ends here. But we want to implement the Aleph-Null (i.e. the infinite)

version of this song with an additional verse:

No more bottles of beer on the wall, no more bottles of beer. Go to the store and buy some more, Ninety-nine

bottles of beer on the wall.

This song has been implemented in all conceivable computer languages like "Whitespace" or "Brainfuck". You

find the collection at http://99-bottles-of-beer.net

http://99-bottles-of-beer.net/

We program the Aleph-Null variant of the song with a fork and a pipe:

import os

def child(pipeout):

bottles = 99

while True:

bob = "bottles of beer"

otw = "on the wall"

take1 = "Take one down and pass it around"

store = "Go to the store and buy some more"

if bottles > 0:

values = (bottles, bob, otw, bottles, bob, take1, bottles - 1,bob,otw)

verse = "%2d %s %s,\n%2d %s.\n%s,\n%2d %s %s." % values

os.write(pipeout, verse)

bottles -= 1

else:

bottles = 99

values = (bob, otw, bob, store, bottles, bob,otw)

verse = "No more %s %s,\nno more %s.\n%s,\n%2d %s %s." % values

os.write(pipeout, verse)

def parent():

pipein, pipeout = os.pipe()

if os.fork() == 0:

child(pipeout)

else:

counter = 1

while True:

if counter % 100:

verse = os.read(pipein, 117)

else:

verse = os.read(pipein, 128)

print 'verse %d\n%s\n' % (counter, verse)

counter += 1

parent()

The problem in the code above is that we or better the parent process have to know exactly how many bytes the

child will send each time. For the first 99 verses it will be 117 Bytes (verse = os.read(pipein, 117)) and for the

Aleph-Null verse it will be 128 bytes (verse = os.read(pipein, 128)

We fixed this in the following implementation, in which we read complete lines:

import os

def child(pipeout):

bottles = 99

while True:

bob = "bottles of beer"

otw = "on the wall"

take1 = "Take one down and pass it around"

store = "Go to the store and buy some more"

if bottles > 0:

values = (bottles, bob, otw, bottles, bob, take1, bottles - 1,bob,otw)

verse = "%2d %s %s,\n%2d %s.\n%s,\n%2d %s %s.\n" % values

os.write(pipeout, verse)

bottles -= 1

else:

bottles = 99

values = (bob, otw, bob, store, bottles, bob,otw)

verse = "No more %s %s,\nno more %s.\n%s,\n%2d %s %s.\n" % values

os.write(pipeout, verse)

def parent():

pipein, pipeout = os.pipe()

if os.fork() == 0:

os.close(pipein)

child(pipeout)

else:

os.close(pipeout)

counter = 1

pipein = os.fdopen(pipein)

while True:

print 'verse %d' % (counter)

for i in range(4):

verse = pipein.readline()[:-1]

print '%s' % (verse)

counter += 1

print

parent()

Bidirectional Pipes

Now we come to something completely non-alcoholic. It's a simple guessing game, which small children often

play. We want to implement this game with bidirectional Pipes. There is an explanation of this game in our

tutorial in the chapter about loops. The following diagram explains both the rules of the game and the way we

implemented it:

The deviser, the one who devises the number, has to imagine a number between a range of 1 to n. The Guesser

inputs his guess. The deviser informs the player, if this number is larger, smaller or equal to the secret number,

i.e. the number which the deviser has randomly created. Both the deviser and the guesser write their results into

log files, i.e. deviser.log and guesser.log respectively.

This is the complete implementation:

import os, sys, random

def deviser(max):

fh = open("deviser.log","w")

to_be_guessed = int(max * random.random()) + 1

https://www.python-course.eu/loops.php

guess = 0

while guess != to_be_guessed:

guess = int(raw_input())

fh.write(str(guess) + " ")

if guess > 0:

if guess > to_be_guessed:

print 1

elif guess < to_be_guessed:

print -1

else:

print 0

sys.stdout.flush()

else:

break

fh.close()

def guesser(max):

fh = open("guesser.log","w")

bottom = 0

top = max

fuzzy = 10

res = 1

while res != 0:

guess = (bottom + top) / 2

print guess

sys.stdout.flush()

fh.write(str(guess) + " ")

res = int(raw_input())

if res == -1: # number is higher

bottom = guess

elif res == 1:

top = guess

elif res == 0:

message = "Wanted number is %d" % guess

fh.write(message)

else: # this case shouldn't occur

print "input not correct"

fh.write("Something's wrong")

n = 100

stdin = sys.stdin.fileno() # usually 0

stdout = sys.stdout.fileno() # usually 1

parentStdin, childStdout = os.pipe()

childStdin, parentStdout = os.pipe()

pid = os.fork()

if pid:

parent process

os.close(childStdout)

os.close(childStdin)

os.dup2(parentStdin, stdin)

os.dup2(parentStdout, stdout)

deviser(n)

else:
child process

os.close(parentStdin)

os.close(parentStdout)

os.dup2(childStdin, stdin)

os.dup2(childStdout, stdout)

guesser(n)

Named Pipes, Fifos

Under Unix as well as under Linux it's possible to create Pipes, which are implemented as files.

These Pipes are called "named pipes" or sometimes Fifos (First In First Out).

A process reads from and writes to such a pipe as if it were a regular file. Sometimes more than one process write

to such a pipe but only one process reads from it.

The following example illustrates the case, in which one process (child process) writes to the pipe and another

process (the parent process) reads from this pipe.

import os, time, sys

pipe_name = 'pipe_test'

def child():

pipeout = os.open(pipe_name, os.O_WRONLY)

counter = 0

while True:

time.sleep(1)

os.write(pipeout, 'Number %03d\n' % counter)

counter = (counter+1) % 5

def parent():

pipein = open(pipe_name, 'r')

while True:

line = pipein.readline()[:-1]

print 'Parent %d got "%s" at %s' % (os.getpid(), line, time.time())

if not os.path.exists(pipe_name):

os.mkfifo(pipe_name)

pid = os.fork()

if pid != 0:

parent()

else:

child()

9.Modules

If you quit from the Python interpreter and enter it again, the definitions you have made (functions and variables)

are lost. Therefore, if you want to write a somewhat longer program, you are better off using a text editor to

prepare the input for the interpreter and running it with that file as input instead. This is known as creating

a script. As your program gets longer, you may want to split it into several files for easier maintenance. You may

also want to use a handy function that you’ve written in several programs without copying its definition into each

program.

To support this, Python has a way to put definitions in a file and use them in a script or in an interactive instance

of the interpreter. Such a file is called a module; definitions from a module can be imported into other modules or

into the main module (the collection of variables that you have access to in a script executed at the top level and

in calculator mode).

A module is a file containing Python definitions and statements. The file name is the module name with the

suffix .py appended. Within a module, the module’s name (as a string) is available as the value of the global

variable name . For instance, use your favorite text editor to create a file called fibo.py in the current

directory with the following contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n

a, b = 0, 1

while a < n:

print(a, end=' ')

a, b = b, a+b

print()

def fib2(n): # return Fibonacci series up to n

result = []

a, b = 0, 1

while a < n:

result.append(a)

a, b = b, a+b

return result

Now enter the Python interpreter and import this module with the following command:

>>> import fibo
This does not enter the names of the functions defined in fibo directly in the current symbol table; it only enters

the module name fibo there. Using the module name you can access the functions:

>>> fibo.fib(1000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

>>> fibo.fib2(100)

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>> fibo. name

'fibo'

If you intend to use a function often you can assign it to a local name:

>>> fib = fibo.fib
>>> fib(500)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

More on Modules

A module can contain executable statements as well as function definitions. These statements are intended to

initialize the module. They are executed only the first time the module name is encountered in an import

statement. 1 (They are also run if the file is executed as a script.)

Each module has its own private symbol table, which is used as the global symbol table by all functions defined

in the module. Thus, the author of a module can use global variables in the module without worrying about

accidental clashes with a user’s global variables. On the other hand, if you know what you are doing you can

touch a module’s global variables with the same notation used to refer to its functions, modname.itemname.

>>>

>>>

>>>

https://docs.python.org/3/tutorial/modules.html#id2

Modules can import other modules. It is customary but not required to place all import statements at the

beginning of a module (or script, for that matter). The imported module names are placed in the importing

module’s global symbol table.

There is a variant of the import statement that imports names from a module directly into the importing module’s

symbol table. For example:

>>> from fibo import fib, fib2
>>> fib(500)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local symbol table (so in the

example, fibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *
>>> fib(500)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_). In most cases Python programmers do not

use this facility since it introduces an unknown set of names into the interpreter, possibly hiding some things you

have already defined.

Note that in general the practice of importing * from a module or package is frowned upon, since it often causes

poorly readable code. However, it is okay to use it to save typing in interactive sessions.

If the module name is followed by as, then the name following as is bound directly to the imported module.

>>> import fibo as fib
>>> fib.fib(500)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

This is effectively importing the module in the same way that import fibo will do, with the only difference of it

being available as fib.

It can also be used when utilising from with similar effects:

>>> from fibo import fib as fibonacci
>>> fibonacci(500)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

Note

For efficiency reasons, each module is only imported once per interpreter session. Therefore, if you change your

modules, you must restart the interpreter – or, if it’s just one module you want to test interactively,

use importlib.reload(), e.g. import importlib; importlib.reload(modulename).

Executing modules as scripts

When you run a Python module with

python fibo.py <arguments>

the code in the module will be executed, just as if you imported it, but with the name set to " main ".

That means that by adding this code at the end of your module:

if name == " main ":

import sys

fib(int(sys.argv[1]))

you can make the file usable as a script as well as an importable module, because the code that parses the

command line only runs if the module is executed as the “main” file:

$ python fibo.py 50

0 1 1 2 3 5 8 13 21 34

If the module is imported, the code is not run:

>>> import fibo
>>>

>>>

>>>

>>>

>>>

>>>

https://docs.python.org/3/reference/simple_stmts.html#import
https://docs.python.org/3/reference/simple_stmts.html#import
https://docs.python.org/3/reference/simple_stmts.html#from
https://docs.python.org/3/library/importlib.html#importlib.reload

This is often used either to provide a convenient user interface to a module, or for testing purposes (running the

module as a script executes a test suite).

The Module Search Path

When a module named spam is imported, the interpreter first searches for a built-in module with that name. If not

found, it then searches for a file named spam.py in a list of directories given by the variable sys.path. sys.path is

initialized from these locations:

The directory containing the input script (or the current directory when no file is specified).

PYTHONPATH (a list of directory names, with the same syntax as the shell variable PATH).

The installation-dependent default.

Note

On file systems which support symlinks, the directory containing the input script is calculated after the symlink is

followed. In other words the directory containing the symlink is not added to the module search path.

After initialization, Python programs can modify sys.path. The directory containing the script being run is placed

at the beginning of the search path, ahead of the standard library path. This means that scripts in that directory

will be loaded instead of modules of the same name in the library directory. This is an error unless the

replacement is intended. See section Standard Modules for more information.

“Compiled” Python files

To speed up loading modules, Python caches the compiled version of each module in the pycache directory

under the name module.version.pyc, where the version encodes the format of the compiled file; it generally

contains the Python version number. For example, in CPython release 3.3 the compiled version of spam.py

would be cached as pycache /spam.cpython-33.pyc. This naming convention allows compiled modules from

different releases and different versions of Python to coexist.

Python checks the modification date of the source against the compiled version to see if it’s out of date and needs

to be recompiled. This is a completely automatic process. Also, the compiled modules are platform-independent,

so the same library can be shared among systems with different architectures.

Python does not check the cache in two circumstances. First, it always recompiles and does not store the result

for the module that’s loaded directly from the command line. Second, it does not check the cache if there is no

source module. To support a non-source (compiled only) distribution, the compiled module must be in the source

directory, and there must not be a source module.

Some tips for experts:

You can use the -O or -OO switches on the Python command to reduce the size of a compiled module. The -

O switch removes assert statements, the -OO switch removes both assert statements and doc strings. Since

some programs may rely on having these available, you should only use this option if you know what you’re

doing. “Optimized” modules have an opt- tag and are usually smaller. Future releases may change the effects of

optimization.

A program doesn’t run any faster when it is read from a .pyc file than when it is read from a .py file; the only

thing that’s faster about .pyc files is the speed with which they are loaded.

The module compileall can create .pyc files for all modules in a directory.

There is more detail on this process, including a flow chart of the decisions, in PEP 3147.

Standard Modules

Python comes with a library of standard modules, described in a separate document, the Python Library

Reference (“Library Reference” hereafter). Some modules are built into the interpreter; these provide access to

operations that are not part of the core of the language but are nevertheless built in, either for efficiency or to

provide access to operating system primitives such as system calls. The set of such modules is a configuration

option which also depends on the underlying platform. For example, the winreg module is only provided on

Windows systems. One particular module deserves some attention: sys, which is built into every Python

interpreter. The variables sys.ps1 and sys.ps2 define the strings used as primary and secondary prompts:

>>> import sys

>>>

https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/tutorial/modules.html#tut-standardmodules
https://docs.python.org/3/using/cmdline.html#cmdoption-o
https://docs.python.org/3/using/cmdline.html#cmdoption-oo
https://docs.python.org/3/library/compileall.html#module-compileall
https://www.python.org/dev/peps/pep-3147
https://docs.python.org/3/library/winreg.html#module-winreg
https://docs.python.org/3/library/sys.html#module-sys

>>> sys.ps1

'>>> '

>>> sys.ps2

'... '

>>> sys.ps1 = 'C> '

C> print('Yuck!')

Yuck!

C>

These two variables are only defined if the interpreter is in interactive mode.

The variable sys.path is a list of strings that determines the interpreter’s search path for modules. It is initialized

to a default path taken from the environment variable PYTHONPATH, or from a built-in default

if PYTHONPATH is not set. You can modify it using standard list operations:

>>> import sys
>>> sys.path.append('/ufs/guido/lib/python')

The dir() Function

The built-in function dir() is used to find out which names a module defines. It returns a sorted list of strings:

>>> import fibo, sys
>>> dir(fibo)

[' name ', 'fib', 'fib2']

>>> dir(sys)

[' breakpointhook ', '__displayhook ', ' doc ', ' excepthook ',

' interactivehook ', '__loader ', ' name ', ' package ', ' spec ',

' stderr ', ' stdin ', ' stdout ', ' unraisablehook ',

'_clear_type_cache', '_current_frames', '_debugmallocstats', '_framework',

'_getframe', '_git', '_home', '_xoptions', 'abiflags', 'addaudithook',

'api_version', 'argv', 'audit', 'base_exec_prefix', 'base_prefix',

'breakpointhook', 'builtin_module_names', 'byteorder', 'call_tracing',

'callstats', 'copyright', 'displayhook', 'dont_write_bytecode', 'exc_info',

'excepthook', 'exec_prefix', 'executable', 'exit', 'flags', 'float_info',

'float_repr_style', 'get_asyncgen_hooks', 'get_coroutine_origin_tracking_depth',

'getallocatedblocks', 'getdefaultencoding', 'getdlopenflags',

'getfilesystemencodeerrors', 'getfilesystemencoding', 'getprofile',

'getrecursionlimit', 'getrefcount', 'getsizeof', 'getswitchinterval',

'gettrace', 'hash_info', 'hexversion', 'implementation', 'int_info',

'intern', 'is_finalizing', 'last_traceback', 'last_type', 'last_value',

'maxsize', 'maxunicode', 'meta_path', 'modules', 'path', 'path_hooks',

'path_importer_cache', 'platform', 'prefix', 'ps1', 'ps2', 'pycache_prefix',

'set_asyncgen_hooks', 'set_coroutine_origin_tracking_depth', 'setdlopenflags',

'setprofile', 'setrecursionlimit', 'setswitchinterval', 'settrace', 'stderr',

'stdin', 'stdout', 'thread_info', 'unraisablehook', 'version', 'version_info',

'warnoptions']

Without arguments, dir() lists the names you have defined currently:

>>> a = [1, 2, 3, 4, 5]
>>> import fibo

>>> fib = fibo.fib

>>> dir()

[' builtins ', ' name ', 'a', 'fib', 'fibo', 'sys']

Note that it lists all types of names: variables, modules, functions, etc.

dir() does not list the names of built-in functions and variables. If you want a list of those, they are defined in the

standard module builtins:

>>> import builtins
>>>

>>>

>>>

>>>

https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://docs.python.org/3/library/functions.html#dir
https://docs.python.org/3/library/functions.html#dir
https://docs.python.org/3/library/functions.html#dir
https://docs.python.org/3/library/functions.html#dir
https://docs.python.org/3/library/builtins.html#module-builtins

>>> dir(builtins)

['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',

'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning',

'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError',

'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning',

'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False',

'FileExistsError', 'FileNotFoundError', 'FloatingPointError',

'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError',

'ImportWarning', 'IndentationError', 'IndexError', 'InterruptedError',

'IsADirectoryError', 'KeyError', 'KeyboardInterrupt', 'LookupError',

'MemoryError', 'NameError', 'None', 'NotADirectoryError', 'NotImplemented',

'NotImplementedError', 'OSError', 'OverflowError',

'PendingDeprecationWarning', 'PermissionError', 'ProcessLookupError',

'ReferenceError', 'ResourceWarning', 'RuntimeError', 'RuntimeWarning',

'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError',

'SystemExit', 'TabError', 'TimeoutError', 'True', 'TypeError',

'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError',

'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning',

'ValueError', 'Warning', 'ZeroDivisionError', '_', '__build_class ',

' debug ', ' doc ', ' import ', ' name ', ' package ', 'abs',

'all', 'any', 'ascii', 'bin', 'bool', 'bytearray', 'bytes', 'callable',

'chr', 'classmethod', 'compile', 'complex', 'copyright', 'credits',

'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval', 'exec', 'exit',

'filter', 'float', 'format', 'frozenset', 'getattr', 'globals', 'hasattr',

'hash', 'help', 'hex', 'id', 'input', 'int', 'isinstance', 'issubclass',

'iter', 'len', 'license', 'list', 'locals', 'map', 'max', 'memoryview',

'min', 'next', 'object', 'oct', 'open', 'ord', 'pow', 'print', 'property',

'quit', 'range', 'repr', 'reversed', 'round', 'set', 'setattr', 'slice',

'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'vars',

'zip']

Packages

Packages are a way of structuring Python’s module namespace by using “dotted module names”. For example,

the module name A.B designates a submodule named B in a package named A. Just like the use of modules saves

the authors of different modules from having to worry about each other’s global variable names, the use of dotted

module names saves the authors of multi-module packages like NumPy or Pillow from having to worry about

each other’s module names.

Suppose you want to design a collection of modules (a “package”) for the uniform handling of sound files and

sound data. There are many different sound file formats (usually recognized by their extension, for

example: .wav, .aiff, .au), so you may need to create and maintain a growing collection of modules for the

conversion between the various file formats. There are also many different operations you might want to perform

on sound data (such as mixing, adding echo, applying an equalizer function, creating an artificial stereo effect),

so in addition you will be writing a never-ending stream of modules to perform these operations. Here’s a

possible structure for your package (expressed in terms of a hierarchical filesystem):

sound/ Top-level package

 init .py Initialize the sound package

formats/ Subpackage for file format conversions

 init .py

wavread.py

wavwrite.py

aiffread.py

aiffwrite.py

auread.py

auwrite.py

...
effects/ Subpackage for sound effects

 init .py

echo.py

surround.py

reverse.py

...

filters/ Subpackage for filters

 init .py

equalizer.py

vocoder.py

karaoke.py

...

When importing the package, Python searches through the directories on sys.path looking for the package

subdirectory.

The init .py files are required to make Python treat directories containing the file as packages. This prevents

directories with a common name, such as string, unintentionally hiding valid modules that occur later on the

module search path. In the simplest case, init .py can just be an empty file, but it can also execute

initialization code for the package or set the all variable, described later.

Users of the package can import individual modules from the package, for example:

import sound.effects.echo

This loads the submodule sound.effects.echo. It must be referenced with its full name.

sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

from sound.effects import echo

This also loads the submodule echo, and makes it available without its package prefix, so it can be used as

follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

from sound.effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function echofilter() directly available:

echofilter(input, output, delay=0.7, atten=4)

Note that when using from package import item, the item can be either a submodule (or subpackage) of the

package, or some other name defined in the package, like a function, class or variable. The import statement first

tests whether the item is defined in the package; if not, it assumes it is a module and attempts to load it. If it fails

to find it, an ImportError exception is raised.

Contrarily, when using syntax like import item.subitem.subsubitem, each item except for the last must be a

package; the last item can be a module or a package but can’t be a class or function or variable defined in the

previous item.

Importing * From a Package

Now what happens when the user writes from sound.effects import *? Ideally, one would hope that this somehow

goes out to the filesystem, finds which submodules are present in the package, and imports them all. This could

take a long time and importing sub-modules might have unwanted side-effects that should only happen when the

sub-module is explicitly imported.

The only solution is for the package author to provide an explicit index of the package. The import statement

uses the following convention: if a package’s init .py code defines a list named all , it is taken to be the

list of module names that should be imported when from package import * is encountered. It is up to the package

author to keep this list up-to-date when a new version of the package is released. Package authors may also

decide not to support it, if they don’t see a use for importing * from their package. For example, the

file sound/effects/ init .py could contain the following code:

 all = ["echo", "surround", "reverse"]

This would mean that from sound.effects import * would import the three named submodules of

the sound package.

https://docs.python.org/3/library/exceptions.html#ImportError
https://docs.python.org/3/reference/simple_stmts.html#import

If all is not defined, the statement from sound.effects import * does not import all submodules from the

package sound.effects into the current namespace; it only ensures that the package sound.effects has been

imported (possibly running any initialization code in init .py) and then imports whatever names are defined

in the package. This includes any names defined (and submodules explicitly loaded) by init .py. It also

includes any submodules of the package that were explicitly loaded by previous import statements. Consider this

code:

import sound.effects.echo

import sound.effects.surround

from sound.effects import *

In this example, the echo and surround modules are imported in the current namespace because they are defined

in the sound.effects package when the from...import statement is executed. (This also works when all is

defined.)

Although certain modules are designed to export only names that follow certain patterns when you use import *,

it is still considered bad practice in production code.

Remember, there is nothing wrong with using from package import specific_submodule! In fact, this is the

recommended notation unless the importing module needs to use submodules with the same name from different

packages.

Intra-package References

When packages are structured into subpackages (as with the sound package in the example), you can use absolute

imports to refer to submodules of siblings packages. For example, if the module sound.filters.vocoder needs to

use the echo module in the sound.effects package, it can use from sound.effects import echo.

You can also write relative imports, with the from module import name form of import statement. These imports

use leading dots to indicate the current and parent packages involved in the relative import. From

the surround module for example, you might use:

from . import echo

from .. import formats

from ..filters import equalizer

Note that relative imports are based on the name of the current module. Since the name of the main module is

always " main ", modules intended for use as the main module of a Python application must always use

absolute imports.

Packages in Multiple Directories

Packages support one more special attribute, path . This is initialized to be a list containing the name of the

directory holding the package’s init .py before the code in that file is executed. This variable can be

modified; doing so affects future searches for modules and subpackages contained in the package.

While this feature is not often needed, it can be used to extend the set of modules found in a package.

Chapter-4

Classes and Objects

A class is a user-defined blueprint or prototype from which objects are created. Classes provide a means of

bundling data and functionality together. Creating a new class creates a new type of object, allowing new instances

https://docs.python.org/3/reference/simple_stmts.html#import
https://docs.python.org/3/reference/import.html#__path__

of that type to be made. Each class instance can have attributes attached to it for maintaining its state. Class

instances can also have methods (defined by its class) for modifying its state.

To understand the need for creating a class let’s consider an example, let’s say you wanted to track the number of

dogs which may have different attributes like breed, age. If a list is used, the first element could be the dog’s breed

while the second element could represent its age. Let’s suppose there are 100 different dogs, then how would you

know which element is supposed to be which? What if you wanted to add other properties to these dogs? This lacks

organization and it’s the exact need for classes.

Class creates a user-defined data structure, which holds its own data members and member functions, which can be

accessed and used by creating an instance of that class. A class is like a blueprint for an object.

Some points on Python class:

Classes are created by keyword class.

Attributes are the variables that belong to class.

Attributes are always public and can be accessed using dot (.) operator. Eg.: Myclass.Myattribute

Class Definition Syntax:

class ClassName:

Statement-1

.

.

.

Statement-N

Defining a class –

Python program to

demonstrate defining

a class

class Dog:

pass

In the above example, class keyword indicates that you are creating a class followed by the name of the class (Dog

in this case).

Class Objects

An Object is an instance of a Class. A class is like a blueprint while an instance is a copy of the class with actual

values. It’s not an idea anymore, it’s an actual dog, like a dog of breed pug who’s seven years old. You can have

many dogs to create many different instances, but without the class as a guide, you would be lost, not knowing

what information is required.

An object consists of :

State : It is represented by attributes of an object. It also reflects the properties of an object.

Behavior : It is represented by methods of an object. It also reflects the response of an object with other objects.

Identity : It gives a unique name to an object and enables one object to interact with other objects.

Declaring Objects (Also called instantiating a class)

When an object of a class is created, the class is said to be instantiated. All the instances share the attributes and the

behavior of the class. But the values of those attributes, i.e. the state are unique for each object. A single class may

have any number of instances.

Example:

Declaring an object –

Python program to

demonstrate instantiating

a class

class Dog:

A simple class

attribute

attr1 = "mamal"

attr2 = "dog"

A sample method

def fun(self):

print("I'm a", self.attr1)

print("I'm a", self.attr2)

Driver code

Object instantiation

Rodger = Dog()

Accessing class attributes

and method through objects

print(Rodger.attr1)

Rodger.fun()

Output:

mamal

I'm a mamal

I'm a dog

In the above example, an object is created which is basically a dog named Rodger. This class only has two class

attributes that tell us that Rodger is a dog and a mammal.

The self Class methods must have an extra first parameter in method definition. We do not give a value for this

parameter when we call the method, Python provides it. If we have a method which takes no arguments, then we

still have to have one argument.This is similar to this pointer in C++ and this reference in Java.When we call a

method of this object as myobject.method(arg1, arg2), this is automatically converted by Python

into MyClass.method(myobject, arg1, arg2) – this is all the special self is about.

 init method

The init method is similar to constructors in C++ and Java. Constructors are used to initialize the object’s

state. Like methods, a constructor also contains a collection of statements(i.e. instructions) that are executed at

the time of Object creation. It is run as soon as an object of a class is instantiated. The method is useful to do any

initialization you want to do with your object.

filter_none

edit

play_arrow

brightness_4

A Sample class with init method

class Person:

init method or constructor

def init (self, name):

self.name = name

Sample Method

def say_hi(self):

print('Hello, my name is', self.name)

p = Person('Nikhil')

p.say_hi()

Output:

Hello, my name is Nikhil

Class and Instance Variables

Instance variables are for data unique to each instance and class variables are for attributes and methods shared

by all instances of the class. Instance variables are variables whose value is assigned inside a constructor or

method with self whereas class variables are variables whose value is assigned in the class.

Defining instance varibale using constructor.

filter_none

edit

play_arrow

brightness_4

Python program to show that the variables with a value

assigned in the class declaration, are class variables and

variables inside methods and constructors are instance

variables.

Class for Dog

class Dog:

Class Variable

animal = 'dog'

The init method or constructor

def init (self, breed, color):

Instance Variable

self.breed = breed

self.color = color

Objects of Dog class

Rodger = Dog("Pug", "brown")

Buzo = Dog("Bulldog", "black")

print('Rodger details:')

print('Rodger is a', Rodger.animal)

print('Breed: ', Rodger.breed)

print('Color: ', Rodger.color)

print('\nBuzo details:')

print('Buzo is a', Buzo.animal)

print('Breed: ', Buzo.breed)

print('Color: ', Buzo.color)

Class variables can be accessed using class

name also

print("\nAccessing class variable using class name")

print(Dog.animal)

Output:

Rodger details:

Rodger is a dog

Breed: Pug

Color: brown

Buzo details:

Buzo is a dog

Breed: Bulldog

Color: black

Accessing class variable using class name

dog

Defining instance variable using the normal method.

filter_none

edit

play_arrow

brightness_4

Python program to show that we can create

instance variables inside methods

Class for Dog

class Dog:

Class Variable

animal = 'dog'

The init method or constructor

def init (self, breed):

Instance Variable

self.breed = breed

Adds an instance variable

def setColor(self, color):

self.color = color

Retrieves instance variable

def getColor(self):

return self.color

Driver Code

Rodger = Dog("pug")

Rodger.setColor("brown")

print(Rodger.getColor())

Output:

class_var = 1

class MyClass(object):

bar = MyClass(3)

foo = MyClass(2)

[]

data

brown

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the

basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

Attributes:

Python Class Attributes

My interviewer was wrong in that the above code is syntactically valid.

I too was wrong in that it isn’t setting a “default value” for the instance attribute. Instead, it’s defining as

a class attribute with value .

In my experience, Python class attributes are a topic that many people know something about, but few understand

completely.

Python Class Variable vs. Instance Variable: What’s the Difference?

A Python class attribute is an attribute of the class (circular, I know), rather than an attribute of an instance of a

class.

Let’s use a Python class example to illustrate the difference. Here,

instance attribute:

is a class attribute, and is an

Note that all instances of the class have access to

the class itself:

, and that it can also be accessed as a property of

foo.class_var, foo.i_var

1, 2

bar.class_var, bar.i_var

1, 3

MyClass.class_var ## <— This is key

1

For Java or C++ programmers, the class attribute is similar—but not identical—to the static member. We’ll see

how they differ later.

Class vs. Instance Namespaces

To understand what’s happening here, let’s talk briefly about Python namespaces.

A namespace is a mapping from names to objects, with the property that there is zero relation between names in

different namespaces. They’re usually implemented as Python dictionaries, although this is abstracted away.

Depending on the context, you may need to access a namespace using dot syntax

(e.g.,

concrete example:

) or as a local variable (e.g.,). As a

No need for dot syntax

class MyClass(object):

self.i_var = i_var

def init (self, i_var):

object_from_namespace object.name_from_objects_namespace

class_var

i_var class_var

https://practice.geeksforgeeks.org/courses/Python-Foundation?utm_source=geeksforgeeks&utm_medium=article&utm_campaign=GFG_Article_Bottom_Python_Foundation
https://practice.geeksforgeeks.org/courses/Data-Structures-With-Python?utm_source=geeksforgeeks&utm_medium=article&utm_campaign=GFG_Article_Bottom_Python_DS
http://docs.python.org/2/tutorial/classes.html

Need dot syntax as we've left scope of class namespace

MyClass.class_var

1

Python classes and instances of classes each have their own distinct namespaces represented by pre-defined

attributes and instance_of_MyClass. dict , respectively.

When you try to access an attribute from an instance of a class, it first looks at its instance namespace. If it finds

the attribute, it returns the associated value. If not, it then looks in the class namespace and returns the attribute

(if it’s present, throwing an error otherwise). For example:

Finds i_var in foo's instance namespace

foo.i_var

2

Doesn't find class_var in instance namespace…

So look's in class namespace (MyClass. dict)

foo.class_var

1

The instance namespace takes supremacy over the class namespace: if there is an attribute with the same name in

both, the instance namespace will be checked first and its value returned. Here’s a simplified version of the code

(source) for attribute lookup:

def instlookup(inst, name):

simplified algorithm...

if inst. dict .has_key(name):

return inst. dict [name]

else:

return inst. class__. dict [name]

And, in visual form:

foo = MyClass(2)

class_var = 1

MyClass. dict

self.i_var = i_var

def init (self, i_var):

http://www2.lib.uchicago.edu/keith/courses/python/class/5/#%23classinst
http://www2.lib.uchicago.edu/keith/courses/python/class/5/#%23classinst
http://www2.lib.uchicago.edu/keith/courses/python/class/5/#%23classinst

class_var foo.class_var

How Class Attributes Handle Assignment

With this in mind, we can make sense of how Python class attributes handle assignment:

If a class attribute is set by accessing the class, it will override the value for all instances. For example:

foo = MyClass(2)

foo.class_var

1

MyClass.class_var = 2

foo.class_var

2

At the namespace level… we’re setting

code (which would be

. (Note: this isn’t the exact

returns a dictproxy, an immutable wrapper

that prevents direct assignment, but it helps for demonstration’s sake). Then, when we

access , has a new value in the class namespace and thus 2 is returned.

If a Paython class variable is set by accessing an instance, it will override the value only for that instance. This

essentially overrides the class variable and turns it into an instance variable available, intuitively, only for that

instance. For example:

foo = MyClass(2)

foo.class_var

1

foo.class_var = 2

foo.class_var

2

MyClass.class_var

1

 MyClass. dict ['class_var'] = 2

setattr(MyClass, 'class_var', 2)) as dict

http://stackoverflow.com/questions/432786/how-can-i-assign-a-new-class-attribute-via-dict-in-python
http://stackoverflow.com/questions/432786/how-can-i-assign-a-new-class-attribute-via-dict-in-python
http://me.veekun.com/blog/2013/08/05/dictproxyhack-or-activestate-code-considered-harmful/#%23dictproxy

data = []

class Service(object):

data

Service

MyClass. dict

Service. dict

Service

class_var

At the namespace level… we’re adding the attribute to , so when we

lookup , we return 2. Meanwhile, other instances of will not have in their

instance namespaces, so they continue to find in and thus return 1.

Mutability

Quiz question: What if your class attribute has a mutable type? You can manipulate (mutilate?) the class

attribute by accessing it through a particular instance and, in turn, end up manipulating the referenced object that

all instances are accessing (as pointed out by Timothy Wiseman).

This is best demonstrated by example. Let’s go back to the

class variable could have led to problems down the road.

I defined earlier and see how my use of a

def init (self, other_data):

self.other_data = other_data

...

My goal was to have the empty list () as the default value for , and for each instance of to

have its own data that would be altered over time on an instance-by-instance basis. But in this case, we get the

following behavior (recall that takes some argument , which is arbitrary in this example):

s1.data

[1]

s2.data

[1]

s1.data

[1, 2]

s2.data

[1, 2]

This is no good—altering the class variable via one instance alters it for all the others!

At the namespace level… all instances of are accessing and modifying the same list

in without making their own attributes in their instance namespaces.

We could get around this using assignment; that is, instead of exploiting the list’s mutability, we could assign

objects to have their own lists, as follows:

s2 = Service(['c', 'd'])

s1 = Service(['a', 'b'])

class_var MyClass

foo. dict

other_data Service

data []

Service

foo.class_var

class_var

our Service

s1 = Service(['a', 'b'])

s1.data.append(1)

s2.data.append(2)

http://timothyawiseman.wordpress.com/2012/10/06/class-and-instance-variables-in-python-2-7/

Service

None

Service.data

Service

s1.data

[1]

s2.data

[2]

In this case, we’re adding , so the original remains unchanged.

Unfortunately, this requires that users have intimate knowledge of its variables, and is certainly prone

to mistakes. In a sense, we’d be addressing the symptoms rather than the cause. We’d prefer something that was

correct by construction.

My personal solution: if you’re just using a class variable to assign a default value to a would-be Python instance

variable, don’t use mutable values. In this case, every instance of was going to

override with its own instance attribute eventually, so using an empty list as the default led to a

tiny bug that was easily overlooked. Instead of the above, we could’ve either:

Stuck to instance attributes entirely, as demonstrated in the introduction.

Avoided using the empty list (a mutable value) as our “default”:

def init (self, other_data):

self.other_data = other_data

...

Of course, we’d have to handle the case appropriately, but that’s a small price to pay.

So When Should you Use Python Class Attributes?

Class attributes are tricky, but let’s look at a few cases when they would come in handy:

Storing constants. As class attributes can be accessed as attributes of the class itself, it’s often nice to use them

for storing Class-wide, Class-specific constants. For example:

pi = 3.14159

class Circle(object):

data = None

class Service(object):

s2 = Service(['c', 'd'])

s1. dict ['data'] = [1] Service. dict ['data']

s2.data = [2]

s1.data = [1]

self.radius = radius

def init (self, radius):

return Circle.pi * self.radius * self.radius

def area(self):

3.14159

Circle.pi

c = Circle(10)

limit

MyClass

limit

c.pi

3.14159

c.area()

314.159

Defining default values. As a trivial example, we might create a bounded list (i.e., a list that can only hold a

certain number of elements or fewer) and choose to have a default cap of 10 items:

def add(self, e):

if len(self.data) >= self.limit:

raise Exception("Too many elements")

self.data.append(e)

We could then create instances with their own specific limits, too, by assigning to the instance’s attribute.

This only makes sense if you will want your typical instance of

you’re giving all of your instances different limits, then

though: take care when using mutable values as your defaults.)

to hold just 10 elements or fewer—if

should be an instance variable. (Remember,

Tracking all data across all instances of a given class. This is sort of specific, but I could see a scenario in which

you might want to access a piece of data related to every existing instance of a given class.

To make the scenario more concrete, let’s say we have a class, and every person has a . We want

to keep track of all the names that have been used. One approach might be to iterate over the garbage collector’s

list of objects, but it’s simpler to use class variables.

will only be accessed as a class variable, so the mutable default is acceptable.

def init (self, name):

self.name = name

Person.all_names.append(name)

foo can now hold 50 elements—other instances can hold 10

foo = MyClass()

limit = 10

class MyClass(object):

name Person

Note that, in this case, names

class Person(object):

all_names = []

self.data = []

def init (self):

return self.data[i]

def item(self, i):

10

MyClass.limit

foo.limit = 50

http://stackoverflow.com/questions/328851/printing-all-instances-of-a-class
http://stackoverflow.com/questions/328851/printing-all-instances-of-a-class

joe = Person('Joe')

bob = Person('Bob')

print Person.all_names

['Joe', 'Bob']

We could even use this design pattern to track all existing instances of a given class, rather than just some

associated data.

def init (self, name):

self.name = name

Person.all_people.append(self)

joe = Person('Joe')

bob = Person('Bob')

print Person.all_people

[< main .Person object at 0x10e428c50>, < main .Person object at 0x10e428c90>]

Under-the-hood

Note: If you’re worrying about performance at this level, you might not want to be use Python in the first place,

as the differences will be on the order of tenths of a millisecond—but it’s still fun to poke around a bit, and helps

for illustration’s sake.

Recall that a class’s namespace is created and filled in at the time of the class’s definition. That means that we do

just one assignment—ever—for a given class variable, while instance variables must be assigned every time a

new instance is created. Let’s take an example.

def called_class():

print "Class assignment"

return 2

def called_instance():

print "Instance assignment"

return 2

all_people = []

class Person(object):

y = called_class()

class Bar(object):

self.x = x

def init (self, x):

"Class assignment"

def init (self, x):

class Foo(object):

just once, but

As further evidence, let’s use the Python disassembler:

on every call to init .

class Foo(object):

def init (self, x):

self.y = 2

self.x = x

dis.dis(Foo)

Disassembly of init :

11 0 LOAD_CONST 1 (2)

3 LOAD_FAST 0 (self)

6 STORE_ATTR 0 (y)

12 9 LOAD_FAST 1 (x)

12 LOAD_FAST 0 (self)

import dis

self.x = x

self.y = called_instance()

instance_of_Foo.y

Bar(1)

Bar(2)

Foo(1)

"Instance assignment"

Foo(2)

"Instance assignment"

We assign to Bar.y

y = 2

class Bar(object):

self.x = x

def init (self, x):

12 RETURN_VALUE

Disassembly of init :

dis.dis(Bar)

9 LOAD_CONST 0 (None)

6 STORE_ATTR 0 (x)

3 LOAD_FAST 0 (self)

7 0 LOAD_FAST 1 (x)

http://docs.python.org/library/dis.html

Bar(2).y

Bar

Bar. init

Foo. init

15 STORE_ATTR 1 (x)

18 LOAD_CONST 0 (None)

21 RETURN_VALUE

When we look at the byte code, it’s again obvious that has to do two assignments,

while does just one.

In practice, what does this gain really look like? I’ll be the first to admit that timing tests are highly dependent on

often uncontrollable factors and the differences between them are often hard to explain accurately.

However, I think these small snippets (run with the Python timeit module) help to illustrate the differences

between class and instance variables, so I’ve included them anyway.

Note: I’m on a MacBook Pro with OS X 10.8.5 and Python 2.7.2.

Initialization

The initializations of

significant.

are faster by over a second, so the difference here does appear to be statistically

So why is this the case? One speculative explanation: we do two assignments in Foo. init , but just one

Assignment

10000000 calls to `Bar(2).y = 15`: 6.232s

10000000 calls to `Foo(2).y = 15`: 6.855s

10000000 `Bar` assignments: 6.232s - 4.940s = 1.292s

10000000 `Foo` assignments: 6.855s - 6.043s = 0.812s

Note: There’s no way to re-run your setup code on each trial with timeit, so we have to reinitialize our variable

on our trial. The second line of times represents the above times with the previously calculated initialization

times deducted.

From the above, it looks like only takes about 60% as long as to handle assignments.

Why is this the case? One speculative explanation: when we assign to , we first look in the instance

namespace (), fail to find , and then look in the class namespace (), then

making the proper assignment. When we assign to

assign to the instance namespace (

, we do half as many lookups, as we immediately

In summary, though these performance gains won’t matter in reality, these tests are interesting at the conceptual

level. If anything, I hope these differences help illustrate the mechanical distinctions between class and instance

variables.

Instances as Return Values

Functions and methods can return objects. This is actually nothing new since everything in Python is an object

and we have been returning values for quite some time. The difference here is that we want to have the method

create an object using the constructor and then return it as the value of the method.

Suppose you have a point object and wish to find the midpoint halfway between it and some other target point.

We would like to write a method, call it halfway that takes another Point as a parameter and returns the Point that

is halfway between the point and the target.

class Point:

def init (self, initX, initY):

""" Create a new point at the given coordinates. """

self.x = initX

self.y = initY

Foo

Bar. dict [y] y Bar(2). dict [y]

10000000 calls to `Bar(2)`: 4.940s

10000000 calls to `Foo(2)`: 6.043s

 Bar

 Foo(2).y

Foo(2). dict__[y]).

in Bar. init .

http://docs.python.org/library/timeit.html
http://docs.python.org/library/timeit.html

def getX(self):

return self.x

def getY(self):

return self.y

def distanceFromOrigin(self):

return ((self.x ** 2) + (self.y ** 2)) ** 0.5

def str (self):

return "x=" + str(self.x) + ", y=" + str(self.y)

def halfway(self, target):

mx = (self.x + target.x) / 2

my = (self.y + target.y) / 2

return Point(mx, my)

p = Point(3, 4)

q = Point(5, 12)

mid = p.halfway(q)

print(mid)

print(mid.getX())

print(mid.getY())

output:

x=4.0, y=8.0

4.0

8.0

The resulting Point, mid, has an x value of 4 and a y value of 8. We can also use any other methods since mid is

a Point object.

In the definition of the method halfway see how the requirement to always use dot notation with attributes

disambiguates the meaning of the attributes x and y: We can always see whether the coordinates of

Point self or target are being referred to.

Copying Mutable Objects by Reference

Let’s see what happens if we give two names of the same object for a mutable data types.

Output:

2450343166664

2450343166664

True

[4, 5, 6, 7]

[4, 5, 6, 7]

We can see that the variable names have the same identity meaning that they are referencing to the same

object in computer memory. Reminder: the is operator compares the identity of two objects.

So, when we have changed the values of the second variable, the values of the first one are also changed. This

happens only with the mutable objects. You can see how you can prevent this in one of my previous blog posts.

Copying Immutable Objects

Let’s try to do a similar example with an immutable object. We can try to copy two strings and change the value in

any of them.

text = "Python"

text2 = text

print(id(text))

print(id(text2))

print(text is text2)

print()

https://docs.python.org/3/reference/expressions.html#is
https://towardsdatascience.com/python-basics-for-data-science-6a6c987f2755

text += " is awesome"

print(id(text))

print(id(text2))

print(text is text2)

print()

print(text)

print(text2)

Output:

3063511450488

3063511450488

True

3063551623648

3063511450488

False

Python is awesome

Python

Mutable objects:

list, dict, set, byte array

A practical example to find out the mutability of object types

x = 10x = y

classes and functions:

Classes

Classes provide a means of bundling data and functionality together. Creating a new class creates a new type of

object, allowing new instances of that type to be made. Each class instance can have attributes attached to it for

maintaining its state. Class instances can also have methods (defined by its class) for modifying its state.

Compared with other programming languages, Python’s class mechanism adds classes with a minimum of new

syntax and semantics. It is a mixture of the class mechanisms found in C++ and Modula-3. Python classes

provide all the standard features of Object Oriented Programming: the class inheritance mechanism allows

multiple base classes, a derived class can override any methods of its base class or classes, and a method can call

the method of a base class with the same name. Objects can contain arbitrary amounts and kinds of data. As is

true for modules, classes partake of the dynamic nature of Python: they are created at runtime, and can be

modified further after creation.

In C++ terminology, normally class members (including the data members) are public (except see below Private

Variables), and all member functions are virtual. As in Modula-3, there are no shorthands for referencing the

object’s members from its methods: the method function is declared with an explicit first argument representing

the object, which is provided implicitly by the call. As in Smalltalk, classes themselves are objects. This provides

semantics for importing and renaming. Unlike C++ and Modula-3, built-in types can be used as base classes for

extension by the user. Also, like in C++, most built-in operators with special syntax (arithmetic operators,

subscripting etc.) can be redefined for class instances.

(Lacking universally accepted terminology to talk about classes, I will make occasional use of Smalltalk and C++

terms. I would use Modula-3 terms, since its object-oriented semantics are closer to those of Python than C++,

but I expect that few readers have heard of it.)

A Word About Names and Objects

Objects have individuality, and multiple names (in multiple scopes) can be bound to the same object. This is

known as aliasing in other languages. This is usually not appreciated on a first glance at Python, and can be

safely ignored when dealing with immutable basic types (numbers, strings, tuples). However, aliasing has a

possibly surprising effect on the semantics of Python code involving mutable objects such as lists, dictionaries,

and most other types. This is usually used to the benefit of the program, since aliases behave like pointers in

some respects. For example, passing an object is cheap since only a pointer is passed by the implementation; and

https://docs.python.org/3/tutorial/classes.html#tut-private
https://docs.python.org/3/tutorial/classes.html#tut-private

if a function modifies an object passed as an argument, the caller will see the change — this eliminates the need

for two different argument passing mechanisms as in Pascal.

Python Scopes and Namespaces

Before introducing classes, I first have to tell you something about Python’s scope rules. Class definitions play

some neat tricks with namespaces, and you need to know how scopes and namespaces work to fully understand

what’s going on. Incidentally, knowledge about this subject is useful for any advanced Python programmer.

Let’s begin with some definitions.

A namespace is a mapping from names to objects. Most namespaces are currently implemented as Python

dictionaries, but that’s normally not noticeable in any way (except for performance), and it may change in the

future. Examples of namespaces are: the set of built-in names (containing functions such as abs(), and built-in

exception names); the global names in a module; and the local names in a function invocation. In a sense the set

of attributes of an object also form a namespace. The important thing to know about namespaces is that there is

absolutely no relation between names in different namespaces; for instance, two different modules may both

define a function maximize without confusion — users of the modules must prefix it with the module name.

By the way, I use the word attribute for any name following a dot — for example, in the expression z.real, real is

an attribute of the object z. Strictly speaking, references to names in modules are attribute references: in the

expression modname.funcname, modname is a module object and funcname is an attribute of it. In this case there

happens to be a straightforward mapping between the module’s attributes and the global names defined in the

module: they share the same namespace!

Attributes may be read-only or writable. In the latter case, assignment to attributes is possible. Module attributes

are writable: you can write modname.the_answer = 42. Writable attributes may also be deleted with

the del statement. For example, del modname.the_answer will remove the attribute the_answer from the object

named by modname.

Namespaces are created at different moments and have different lifetimes. The namespace containing the built-in

names is created when the Python interpreter starts up, and is never deleted. The global namespace for a module

is created when the module definition is read in; normally, module namespaces also last until the interpreter

quits. The statements executed by the top-level invocation of the interpreter, either read from a script file or

interactively, are considered part of a module called main , so they have their own global namespace. (The built-

in names actually also live in a module; this is called builtins.)

The local namespace for a function is created when the function is called, and deleted when the function returns

or raises an exception that is not handled within the function. (Actually, forgetting would be a better way to

describe what actually happens.) Of course, recursive invocations each have their own local namespace.

A scope is a textual region of a Python program where a namespace is directly accessible. “Directly accessible”

here means that an unqualified reference to a name attempts to find the name in the namespace.

Although scopes are determined statically, they are used dynamically. At any time during execution, there are 3

or 4 nested scopes whose namespaces are directly accessible:

the innermost scope, which is searched first, contains the local names

the scopes of any enclosing functions, which are searched starting with the nearest enclosing scope, contains non-

local, but also non-global names

the next-to-last scope contains the current module’s global names

the outermost scope (searched last) is the namespace containing built-in names

If a name is declared global, then all references and assignments go directly to the middle scope containing the

module’s global names. To rebind variables found outside of the innermost scope, the nonlocal statement can be

used; if not declared nonlocal, those variables are read-only (an attempt to write to such a variable will simply

create a new local variable in the innermost scope, leaving the identically named outer variable unchanged).

Usually, the local scope references the local names of the (textually) current function. Outside functions, the

local scope references the same namespace as the global scope: the module’s namespace. Class definit ions place

yet another namespace in the local scope.

It is important to realize that scopes are determined textually: the global scope of a function defined in a module

is that module’s namespace, no matter from where or by what alias the function is called. On the other hand, the

actual search for names is done dynamically, at run time — however, the language definition is evolving towards

https://docs.python.org/3/library/functions.html#abs
https://docs.python.org/3/reference/simple_stmts.html#del
https://docs.python.org/3/library/__main__.html#module-__main__
https://docs.python.org/3/library/builtins.html#module-builtins
https://docs.python.org/3/reference/simple_stmts.html#nonlocal

static name resolution, at “compile” time, so don’t rely on dynamic name resolution! (In fact, local variables are

already determined statically.)

A special quirk of Python is that – if no global or nonlocal statement is in effect – assignments to names always

go into the innermost scope. Assignments do not copy data — they just bind names to objects. The same is true

for deletions: the statement del x removes the binding of x from the namespace referenced by the local scope. In

fact, all operations that introduce new names use the local scope: in particular, import statements and function

definitions bind the module or function name in the local scope.

The global statement can be used to indicate that particular variables live in the global scope and should be

rebound there; the nonlocal statement indicates that particular variables live in an enclosing scope and should be

rebound there.

Scopes and Namespaces Example

This is an example demonstrating how to reference the different scopes and namespaces, and

how global and nonlocal affect variable binding:

def scope_test():

def do_local():

spam = "local spam"

def do_nonlocal():

nonlocal spam

spam = "nonlocal spam"

def do_global():

global spam

spam = "global spam"

spam = "test spam"

do_local()

print("After local assignment:", spam)

do_nonlocal()

print("After nonlocal assignment:", spam)

do_global()

print("After global assignment:", spam)

scope_test()

print("In global scope:", spam)

The output of the example code is:

After local assignment: test spam

After nonlocal assignment: nonlocal spam

After global assignment: nonlocal spam

In global scope: global spam

Note how the local assignment (which is default) didn’t change scope_test’s binding of spam.

The nonlocal assignment changed scope_test’s binding of spam, and the global assignment changed the module-

level binding.

You can also see that there was no previous binding for spam before the global assignment.

A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and some new semantics.

Class Definition Syntax

The simplest form of class definition looks like this:

class ClassName:

<statement-1>

.

.

.

<statement-N>

https://docs.python.org/3/reference/simple_stmts.html#global
https://docs.python.org/3/reference/simple_stmts.html#nonlocal
https://docs.python.org/3/reference/simple_stmts.html#import
https://docs.python.org/3/reference/simple_stmts.html#global
https://docs.python.org/3/reference/simple_stmts.html#nonlocal
https://docs.python.org/3/reference/simple_stmts.html#global
https://docs.python.org/3/reference/simple_stmts.html#nonlocal
https://docs.python.org/3/reference/simple_stmts.html#nonlocal
https://docs.python.org/3/reference/simple_stmts.html#global
https://docs.python.org/3/reference/simple_stmts.html#global

Class definitions, like function definitions (def statements) must be executed before they have any effect. (You

could conceivably place a class definition in a branch of an if statement, or inside a function.)

In practice, the statements inside a class definition will usually be function definitions, but other statements are

allowed, and sometimes useful — we’ll come back to this later. The function definitions inside a class normally

have a peculiar form of argument list, dictated by the calling conventions for methods — again, this is explained

later.

When a class definition is entered, a new namespace is created, and used as the local scope — thus, all

assignments to local variables go into this new namespace. In particular, function definitions bind the name of

the new function here.

When a class definition is left normally (via the end), a class object is created. This is basically a wrapper around

the contents of the namespace created by the class definition; we’ll learn more about class objects in the next

section. The original local scope (the one in effect just before the class definition was entered) is reinstated, and

the class object is bound here to the class name given in the class definition header (ClassName in the example).

Class Objects

Class objects support two kinds of operations: attribute references and instantiation.

Attribute references use the standard syntax used for all attribute references in Python: obj.name. Valid attribute

names are all the names that were in the class’s namespace when the class object was created. So, if the class

definition looked like this:

class MyClass:

"""A simple example class"""

i = 12345

def f(self):

return 'hello world'

then MyClass.i and MyClass.f are valid attribute references, returning an integer and a function object,

respectively. Class attributes can also be assigned to, so you can change the value of MyClass.i by

assignment. doc is also a valid attribute, returning the docstring belonging to the

class: "A simple example class".

Class instantiation uses function notation. Just pretend that the class object is a parameterless function that

returns a new instance of the class. For example (assuming the above class):

x = MyClass()

creates a new instance of the class and assigns this object to the local variable x.

The instantiation operation (“calling” a class object) creates an empty object. Many classes like to create objects

with instances customized to a specific initial state. Therefore a class may define a special method

named init (), like this:

def init (self):

self.data = []

When a class defines an init () method, class instantiation automatically invokes init () for the newly-

created class instance. So in this example, a new, initialized instance can be obtained by:

x = MyClass()

Of course, the init () method may have arguments for greater flexibility. In that case, arguments given to the

class instantiation operator are passed on to init (). For example,

>>> class Complex:
... def init (self, realpart, imagpart):

... self.r = realpart

... self.i = imagpart

...

>>> x = Complex(3.0, -4.5)

>>> x.r, x.i

(3.0, -4.5)

>>>

https://docs.python.org/3/reference/compound_stmts.html#def
https://docs.python.org/3/reference/compound_stmts.html#if
https://docs.python.org/3/reference/datamodel.html#object.__init__
https://docs.python.org/3/reference/datamodel.html#object.__init__
https://docs.python.org/3/reference/datamodel.html#object.__init__
https://docs.python.org/3/reference/datamodel.html#object.__init__
https://docs.python.org/3/reference/datamodel.html#object.__init__

Instance Objects

Now what can we do with instance objects? The only operations understood by instance objects are attribute

references. There are two kinds of valid attribute names: data attributes and methods.

data attributes correspond to “instance variables” in Smalltalk, and to “data members” in C++. Data attributes

need not be declared; like local variables, they spring into existence when they are first assigned to. For example,

if x is the instance of MyClass created above, the following piece of code will print the value 16, without leaving

a trace:

x.counter = 1

while x.counter < 10:

x.counter = x.counter * 2

print(x.counter)

del x.counter

The other kind of instance attribute reference is a method. A method is a function that “belongs to” an object. (In

Python, the term method is not unique to class instances: other object types can have methods as well. For

example, list objects have methods called append, insert, remove, sort, and so on. However, in the following

discussion, we’ll use the term method exclusively to mean methods of class instance objects, unless explicitly

stated otherwise.)

Valid method names of an instance object depend on its class. By definition, all attributes of a class that are

function objects define corresponding methods of its instances. So in our example, x.f is a valid method

reference, since MyClass.f is a function, but x.i is not, since MyClass.i is not. But x.f is not the same thing

as MyClass.f — it is a method object, not a function object.

Method Objects

Usually, a method is called right after it is bound:

x.f()

In the MyClass example, this will return the string 'hello world'. However, it is not necessary to call a method

right away: x.f is a method object, and can be stored away and called at a later time. For example:

xf = x.f

while True:

print(xf())

will continue to print hello world until the end of time.

What exactly happens when a method is called? You may have noticed that x.f() was called without an argument

above, even though the function definition for f() specified an argument. What happened to the argument? Surely

Python raises an exception when a function that requires an argument is called without any — even if the

argument isn’t actually used…

Actually, you may have guessed the answer: the special thing about methods is that the instance object is passed

as the first argument of the function. In our example, the call x.f() is exactly equivalent to MyClass.f(x). In

general, calling a method with a list of n arguments is equivalent to calling the corresponding function with an

argument list that is created by inserting the method’s instance object before the first argument.

If you still don’t understand how methods work, a look at the implementation can perhaps clarify matters. When

a non-data attribute of an instance is referenced, the instance’s class is searched. If the name denotes a valid class

attribute that is a function object, a method object is created by packing (pointers to) the instance object and the

function object just found together in an abstract object: this is the method object. When the method object is

called with an argument list, a new argument list is constructed from the instance object and the argument list,

and the function object is called with this new argument list.

Class and Instance Variables

Generally speaking, instance variables are for data unique to each instance and class variables are for attributes

and methods shared by all instances of the class:

class Dog:

kind = 'canine' # class variable shared by all instances

def init (self, name):

self.name = name # instance variable unique to each instance

>>> d = Dog('Fido')

>>> e = Dog('Buddy')

>>> d.kind # shared by all dogs

'canine'

>>> e.kind # shared by all dogs

'canine'

>>> d.name # unique to d

'Fido'

>>> e.name # unique to e

'Buddy'

As discussed in A Word About Names and Objects, shared data can have possibly surprising effects with

involving mutable objects such as lists and dictionaries. For example, the tricks list in the following code should

not be used as a class variable because just a single list would be shared by all Dog instances:

class Dog:

tricks = [] # mistaken use of a class variable

def init (self, name):

self.name = name

def add_trick(self, trick):

self.tricks.append(trick)

>>> d = Dog('Fido')

>>> e = Dog('Buddy')

>>> d.add_trick('roll over')

>>> e.add_trick('play dead')

>>> d.tricks # unexpectedly shared by all dogs

['roll over', 'play dead']

Correct design of the class should use an instance variable instead:

class Dog:

def init (self, name):

self.name = name

self.tricks = [] # creates a new empty list for each dog

def add_trick(self, trick):

self.tricks.append(trick)

>>> d = Dog('Fido')

>>> e = Dog('Buddy')

>>> d.add_trick('roll over')

>>> e.add_trick('play dead')

>>> d.tricks

['roll over']

>>> e.tricks

['play dead']

Random Remarks

If the same attribute name occurs in both an instance and in a class, then attribute lookup prioritizes the instance:

>>> class Warehouse:

purpose = 'storage'

>>>

https://docs.python.org/3/tutorial/classes.html#tut-object
https://docs.python.org/3/glossary.html#term-mutable

region = 'west'

>>> w1 = Warehouse()

>>> print(w1.purpose, w1.region)

storage west

>>> w2 = Warehouse()

>>> w2.region = 'east'

>>> print(w2.purpose, w2.region)

storage east

Data attributes may be referenced by methods as well as by ordinary users (“clients”) of an object . In other

words, classes are not usable to implement pure abstract data types. In fact, nothing in Python makes it possible

to enforce data hiding — it is all based upon convention. (On the other hand, the Python implementation, written

in C, can completely hide implementation details and control access to an object if necessary; this can be used by

extensions to Python written in C.)

Clients should use data attributes with care — clients may mess up invariants maintained by the methods by

stamping on their data attributes. Note that clients may add data attributes of their own to an instance object

without affecting the validity of the methods, as long as name conflicts are avoided — again, a naming

convention can save a lot of headaches here.

There is no shorthand for referencing data attributes (or other methods!) from within methods. I find that this

actually increases the readability of methods: there is no chance of confusing local variables and instance

variables when glancing through a method.

Often, the first argument of a method is called self. This is nothing more than a convention: the name self has

absolutely no special meaning to Python. Note, however, that by not following the convention your code may be

less readable to other Python programmers, and it is also conceivable that a class browser program might be

written that relies upon such a convention.

Any function object that is a class attribute defines a method for instances of that class. It is not necessary that the

function definition is textually enclosed in the class definition: assigning a function object to a local variable in

the class is also ok. For example:

Function defined outside the class

def f1(self, x, y):

return min(x, x+y)

class C:

f = f1

def g(self):

return 'hello world'

h = g

Now f, g and h are all attributes of class C that refer to function objects, and consequently they are all methods of

instances of C — h being exactly equivalent to g. Note that this practice usually only serves to confuse the reader

of a program.

Methods may call other methods by using method attributes of the self argument:

class Bag:

def init (self):

self.data = []

def add(self, x):

self.data.append(x)

def addtwice(self, x):

self.add(x)

self.add(x)

Methods may reference global names in the same way as ordinary functions. The global scope associated with a

method is the module containing its definition. (A class is never used as a global scope.) While one rarely

encounters a good reason for using global data in a method, there are many legitimate uses of the global scope:

for one thing, functions and modules imported into the global scope can be used by methods, as well as functions

and classes defined in it. Usually, the class containing the method is itself defined in this global scope, and in the

next section we’ll find some good reasons why a method would want to reference its own class.

Each value is an object, and therefore has a class (also called its type). It is stored as object. class .

Inheritance

Of course, a language feature would not be worthy of the name “class” without supporting inheritance. The

syntax for a derived class definition looks like this:

class DerivedClassName(BaseClassName):

<statement-1>

.

.

.

<statement-N>

The name BaseClassName must be defined in a scope containing the derived class definition. In place of a base

class name, other arbitrary expressions are also allowed. This can be useful, for example, when the base class is

defined in another module:

class DerivedClassName(modname.BaseClassName):

Execution of a derived class definition proceeds the same as for a base class. When the class object is

constructed, the base class is remembered. This is used for resolving attribute references: if a requested attribute

is not found in the class, the search proceeds to look in the base class. This rule is applied recursively if the base

class itself is derived from some other class.

There’s nothing special about instantiation of derived classes: DerivedClassName() creates a new instance of the

class. Method references are resolved as follows: the corresponding class attribute is searched, descending down

the chain of base classes if necessary, and the method reference is valid if this yields a function object.

Derived classes may override methods of their base classes. Because methods have no special privileges when

calling other methods of the same object, a method of a base class that calls another method defined in the same

base class may end up calling a method of a derived class that overrides it. (For C++ programmers: all methods

in Python are effectively virtual.)

An overriding method in a derived class may in fact want to extend rather than simply replace the base class

method of the same name. There is a simple way to call the base class method directly: just

call BaseClassName.methodname(self, arguments). This is occasionally useful to clients as well. (Note that this

only works if the base class is accessible as BaseClassName in the global scope.)

Python has two built-in functions that work with inheritance:

Use isinstance() to check an instance’s type: isinstance(obj, int) will be True only if obj. class is int or some

class derived from int.

Use issubclass() to check class inheritance: issubclass(bool, int) is True since bool is a subclass of int.

However, issubclass(float, int) is False since float is not a subclass of int.

Multiple Inheritance

Python supports a form of multiple inheritance as well. A class definition with multiple base classes looks like

this:

class DerivedClassName(Base1, Base2, Base3):

<statement-1>

.

.

.

<statement-N>

https://docs.python.org/3/library/functions.html#isinstance
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#issubclass
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

For most purposes, in the simplest cases, you can think of the search for attributes inherited from a parent class as

depth-first, left-to-right, not searching twice in the same class where there is an overlap in the hierarchy. Thus, if

an attribute is not found in DerivedClassName, it is searched for in Base1, then (recursively) in the base classes

of Base1, and if it was not found there, it was searched for in Base2, and so on.

In fact, it is slightly more complex than that; the method resolution order changes dynamically to support

cooperative calls to super(). This approach is known in some other multiple-inheritance languages as call-next-

method and is more powerful than the super call found in single-inheritance languages.

Dynamic ordering is necessary because all cases of multiple inheritance exhibit one or more diamond

relationships (where at least one of the parent classes can be accessed through multiple paths from the

bottommost class). For example, all classes inherit from object, so any case of multiple inheritance provides

more than one path to reach object. To keep the base classes from being accessed more than once, the dynamic

algorithm linearizes the search order in a way that preserves the left-to-right ordering specified in each class, that

calls each parent only once, and that is monotonic (meaning that a class can be subclassed without affecting the

precedence order of its parents). Taken together, these properties make it possible to design reliable and

extensible classes with multiple inheritance.

Private Variables

“Private” instance variables that cannot be accessed except from inside an object don’t exist in Python. However,

there is a convention that is followed by most Python code: a name prefixed with an underscore (e.g. _spam)

should be treated as a non-public part of the API (whether it is a function, a method or a data member). It should

be considered an implementation detail and subject to change without notice.

Since there is a valid use-case for class-private members (namely to avoid name clashes of names with names

defined by subclasses), there is limited support for such a mechanism, called name mangling. Any identifier of

the form spam (at least two leading underscores, at most one trailing underscore) is textually replaced

with _classname spam, where classname is the current class name with leading underscore(s) stripped. This

mangling is done without regard to the syntactic position of the identifier, as long as it occurs within the

definition of a class.

Name mangling is helpful for letting subclasses override methods without breaking intraclass method calls. For

example:

class Mapping:

def init (self, iterable):

self.items_list = []

self. update(iterable)

def update(self, iterable):

for item in iterable:

self.items_list.append(item)

 update = update # private copy of original update() method

class MappingSubclass(Mapping):

def update(self, keys, values):

provides new signature for update()

but does not break init ()

for item in zip(keys, values):

self.items_list.append(item)

The above example would work even if MappingSubclass were to introduce a update identifier since it is

replaced with _Mapping update in the Mapping class and _MappingSubclass update in

the MappingSubclass class respectively.

Note that the mangling rules are designed mostly to avoid accidents; it still is possible to access or modify a

variable that is considered private. This can even be useful in special circumstances, such as in the debugger.

https://docs.python.org/3/library/functions.html#super
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Notice that code passed to exec() or eval() does not consider the classname of the invoking class to be the current

class; this is similar to the effect of the global statement, the effect of which is likewise restricted to code that is

byte-compiled together. The same restriction applies to getattr(), setattr() and delattr(), as well as when

referencing dict directly.

Odds and Ends

Sometimes it is useful to have a data type similar to the Pascal “record” or C “struct”, bundling together a few

named data items. An empty class definition will do nicely:

class Employee:

pass

john = Employee() # Create an empty employee record

Fill the fields of the record

john.name = 'John Doe'

john.dept = 'computer lab'

john.salary = 1000

A piece of Python code that expects a particular abstract data type can often be passed a class that emulates the

methods of that data type instead. For instance, if you have a function that formats some data from a file object,

you can define a class with methods read() and readline() that get the data from a string buffer instead, and pass it

as an argument.

Instance method objects have attributes, too: m. self is the instance object with the method m(),

and m. func is the function object corresponding to the method.

Iterators

By now you have probably noticed that most container objects can be looped over using a for statement:

for element in [1, 2, 3]:

print(element)

for element in (1, 2, 3):

print(element)

for key in {'one':1, 'two':2}:

print(key)

for char in "123":

print(char)

for line in open("myfile.txt"):

print(line, end='')

This style of access is clear, concise, and convenient. The use of iterators pervades and unifies Python. Behind

the scenes, the for statement calls iter() on the container object. The function returns an iterator object that

defines the method next () which accesses elements in the container one at a time. When there are no more

elements, next () raises a StopIteration exception which tells the for loop to terminate. You can call

the next () method using the next() built-in function; this example shows how it all works:

>>> s = 'abc'
>>> it = iter(s)

>>> it

<iterator object at 0x00A1DB50>

>>> next(it)

'a'

>>> next(it)

'b'

>>> next(it)

'c'

>>> next(it)

Traceback (most recent call last):

>>>

https://docs.python.org/3/reference/compound_stmts.html#for
https://docs.python.org/3/reference/compound_stmts.html#for
https://docs.python.org/3/library/functions.html#iter
https://docs.python.org/3/library/stdtypes.html#iterator.__next__
https://docs.python.org/3/library/stdtypes.html#iterator.__next__
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/stdtypes.html#iterator.__next__
https://docs.python.org/3/library/functions.html#next

File "<stdin>", line 1, in <module>

next(it)

StopIteration

Having seen the mechanics behind the iterator protocol, it is easy to add iterator behavior to your classes. Define

an iter () method which returns an object with a next () method. If the class defines next (),

then iter () can just return self:

class Reverse:

"""Iterator for looping over a sequence backwards."""

def init (self, data):

self.data = data

self.index = len(data)

def iter (self):

return self

def next (self):

if self.index == 0:

raise StopIteration

self.index = self.index - 1

return self.data[self.index]

>>> rev = Reverse('spam')
>>> iter(rev)

< main .Reverse object at 0x00A1DB50>

>>> for char in rev:

... print(char)

...

m

a

p

s

Generators

Generators are a simple and powerful tool for creating iterators. They are written like regular functions but use

the yield statement whenever they want to return data. Each time next() is called on it, the generator resumes

where it left off (it remembers all the data values and which statement was last executed). An example shows that

generators can be trivially easy to create:

def reverse(data):

for index in range(len(data)-1, -1, -1):

yield data[index]

>>> for char in reverse('golf'):
... print(char)

...

f

l

o

g

Anything that can be done with generators can also be done with class-based iterators as described in the

previous section. What makes generators so compact is that the iter () and next () methods are created

automatically.

>>>

>>>

https://docs.python.org/3/reference/datamodel.html#object.__iter__
https://docs.python.org/3/library/stdtypes.html#iterator.__next__
https://docs.python.org/3/reference/datamodel.html#object.__iter__
https://docs.python.org/3/glossary.html#term-generator
https://docs.python.org/3/reference/simple_stmts.html#yield
https://docs.python.org/3/library/functions.html#next
https://docs.python.org/3/reference/datamodel.html#object.__iter__
https://docs.python.org/3/reference/expressions.html#generator.__next__

Another key feature is that the local variables and execution state are automatically saved between calls. This

made the function easier to write and much more clear than an approach using instance variables

like self.index and self.data.

In addition to automatic method creation and saving program state, when generators terminate, they

automatically raise StopIteration. In combination, these features make it easy to create iterators with no more

effort than writing a regular function.

Generator Expressions

Some simple generators can be coded succinctly as expressions using a syntax similar to list comprehensions but

with parentheses instead of square brackets. These expressions are designed for situations where the generator is

used right away by an enclosing function. Generator expressions are more compact but less versatile than full

generator definitions and tend to be more memory friendly than equivalent list comprehensions.

Examples:

>>> sum(i*i for i in range(10)) # sum of squares
285

>>> xvec = [10, 20, 30]

>>> yvec = [7, 5, 3]

>>> sum(x*y for x,y in zip(xvec, yvec)) # dot product

260

>>> unique_words = set(word for line in page for word in line.split())

>>> valedictorian = max((student.gpa, student.name) for student in graduates)

>>> data = 'golf'

>>> list(data[i] for i in range(len(data)-1, -1, -1))

['f', 'l', 'o', 'g']

Python - Functions

A function is a set of statements that take inputs, do some specific computation and produces output. The idea is to

put some commonly or repeatedly done task together and make a function, so that instead of writing the same code

again and again for different inputs, we can call the function.

Python provides built-in functions like print(), etc. but we can also create your own functions. These functions are

called user-defined functions.

A simple Python function to check

whether x is even or odd

def evenOdd(x):

if (x % 2 == 0):

print "even"

else:

print "odd"

Driver code

evenOdd(2)

evenOdd(3)

Output:

even

odd

>>>

https://docs.python.org/3/library/exceptions.html#StopIteration

Atom

type

Pass by Reference or pass by value
One important thing to note is, in Python every variable name is a reference. When we pass a variable to a function, a
new reference to the object is created. Parameter passing in Python is same as reference passing in Java.

filter_none

edit

play_arrow

brightness_4

Here x is a new reference to same list lst

def myFun(x):

x[0] = 20

Driver Code (Note that lst is modified

after function call.

lst = [10, 11, 12, 13, 14, 15]

myFun(lst);

print(lst)

Output:

[20, 11, 12, 13, 14, 15]

When we pass a reference and change the received reference to something else, the connection between passed and

received parameter is broken. For example, consider below program.

Chapter-4

Classes and Objects

1.Classes

We have already seen how we can use a dictionary to group related data together, and how we can use functions

to create shortcuts for commonly used groups of statements. A function performs an action using some set of

input parameters. Not all functions are applicable to all kinds of data. Classes are a way of grouping together

related data and functions which act upon that data.

A class is a kind of data type, just like a string, integer or list. When we create an object of that data type, we call

it an instance of a class.

As we have already mentioned, in some other languages some entities are objects and some are not. In Python,

everything is an object – everything is an instance of some class. In earlier versions of Python a distinction was

made between built-in types and user-defined classes, but these are now completely indistinguishable. Classes

and types are themselves objects, and they are of type type . You can find out the type of any object using

the function:

type(any_object)

The data values which we store inside an object are called attributes, and the functions which are associated with

the object are called methods. We have already used the methods of some built-in objects, like strings and lists.

When we design our own objects, we have to decide how we are going to group things together, and what our

objects are going to represent.

Sometimes we write objects which map very intuitively onto things in the real world. For example, if we are

writing code to simulate chemical reactions, we might have objects which we can combine to make

 init

class

Molecule a object. However, it isn’t always necessary, desirable or even possible to make all code objects

perfectly analogous to their real-world counterparts.

Sometimes we may create objects which don’t have any kind of real-world equivalent, just because it’s useful to

group certain functions together.

Defining and using a class

Here is an example of a simple custom class which stores information about a person:

import datetime # we will use this for date objects

class Person:

def init (self, name, surname, birthdate, address, telephone, email):

self.name = name

self.surname = surname

self.birthdate = birthdate

self.address = address

self.telephone = telephone

self.email = email

def age(self):

today = datetime.date.today()

age = today.year - self.birthdate.year

if today <datetime.date(today.year, self.birthdate.month, self.birthdate.day):

age -= 1

return age

person = Person(

"Jane",

"Doe",

datetime.date(1992, 3, 12), # year, month, day

"No. 12 Short Street, Greenville",

"555 456 0987",

"jane.doe@example.com"

)

print(person.name)

print(person.email)

print(person.age())

We start the class definition with the keyword, followed by the class name and a colon. We would list any

parent classes in between round brackets before the colon, but this class doesn’t have any, so we can leave them

out.

Inside the class body, we define two functions – these are our object’s methods. The first is called init ,

which is a special method. When we call the class object, a new instance of the class is created, and

the method on this new object is immediately executed with all the parameters that we passed to the

class object. The purpose of this method is thus to set up a new object using data that we have provided.

The second method is a custom method which calculates the age of our person using the birthdate and the current

date.

Note

mailto:jane.doe@example.com
mailto:jane.doe@example.com

datetime

 init

__new

 init is sometimes called the object’s constructor, because it is used similarly to the way that constructors

are used in other languages, but that is not technically correct – it’s better to call it the initialiser. There is a

different method called which is more analogous to a constructor, but it is hardly ever used.

You may have noticed that both of these method definitions have self as the first parameter, and we use this

variable inside the method bodies – but we don’t appear to pass this parameter in. This is because whenever we

call a method on an object, the object itself is automatically passed in as the first parameter. This gives us a way

to access the object’s properties from inside the object’s methods.

In some languages this parameter is implicit – that is, it is not visible in the function signature – and we access it

with a special keyword. In Python it is explicitly exposed. It doesn’t have to be called self , but this is a very

strongly followed convention.

Now you should be able to see that our function creates attributes on the object and sets them to the

values we have passed in as parameters. We use the same names for the attributes and the parameters, but this is

not compulsory.

The function doesn’t take any parameters except – it only uses information stored in the object’s

attributes, and the current date (which it retrieves using the module).

Note that the attribute is itself an object. The class is defined in the module, and we

create a new instance of this class to use as the birthdate parameter when we create an instance of

the

to

class. We don’t have to assign it to an intermediate variable before using it as a parameter

; we can just create it when we call Person , just like we create the string literals for the other

parameters.

3. Instances as Return Values

Functions and methods can return objects. This is actually nothing new since everything in Python is an object

and we have been returning values for quite some time. The difference here is that we want to have the method

create an object using the constructor and then return it as the value of the method.

Suppose you have a point object and wish to find the midpoint halfway between it and some other target point.

We would like to write a method, call it halfway that takes another Point as a parameter and returns the Point that

is halfway between the point and the target.

RunLoadHistoryShow CodeLens

int:

def init (self, initX, initY):

""" Create a new point at the given coordinates. """

self.x = initX

self.y = initY

def getX(self):

return self.x

def getY(self):

return self.y

def distanceFromOrigin(self):

return ((self.x ** 2) + (self.y ** 2)) ** 0.5

def str (self):

return "x=" + str(self.x) + ", y=" + str(self.y)

def halfway(self, target):

age

Person

Person

self

datetime date birthdate

mx = (self.x + target.x) / 2

my = (self.y + target.y) / 2

return Point(mx, my)

p = Point(3, 4)

q = Point(5, 12)

mid = p.halfway(q)

print(mid)

print(mid.getX())

print(mid.getY())

The resulting Point, mid, has an x value of 4 and a y value of 8. We can also use any other methods since mid is

a Point object.

In the definition of the method halfway see how the requirement to always use dot notation with attributes

disambiguates the meaning of the attributes x and y: We can always see whether the coordinates of

Point self or target are being referred to.

Mutable vs Immutable Objects in Python

Every variable in python holds an instance of an object. There are two types of objects in python

i.e. Mutable and Immutable objects. Whenever an object is instantiated, it is assigned a unique object id. The

type of the object is defined at the runtime and it can’t be changed afterwards. However, it’s state can be changed

if it is a mutable object.

To summarise the difference, mutable objects can change their state or contents and immutable objects can’t

change their state or content.

Immutable Objects : These are of in-built types like int, float, bool, string, unicode, tuple. In simple words, an

immutable object can’t be changed after it is created.

filter_none

edit

play_arrow

brightness_4

Python code to test that

tuples are immutable

tuple1 =(0, 1, 2, 3)

tuple1[0] =4

print(tuple1)

Error :

Traceback (most recent call last):

File "e0eaddff843a8695575daec34506f126.py", line 3, in

tuple1[0]=4

TypeError: 'tuple' object does not support item assignment

filter_none

edit

play_arrow

brightness_4

Python code to test that

strings are immutable

message ="Welcome to GeeksforGeeks"

message[0] ='p'

print(message)

Error :

Traceback (most recent call last):

File "/home/ff856d3c5411909530c4d328eeca165b.py", line 3, in

message[0] = 'p'

TypeError: 'str' object does not support item assignment

Mutable Objects : These are of type list, dict, set . Custom classes are generally mutable.

Python code to test that

lists are mutable

color =["red", "blue", "green"]

print(color)

color[0] ="pink"

color[-1] ="orange"

print(color)

Output:['red', 'blue', 'green']

['pink', 'blue', 'orange']

Python Classes/Objects

Python is an object oriented programming language.

Almost everything in Python is an object, with its properties and methods.

A Class is like an object constructor, or a "blueprint" for creating objects.

Create a Class

To create a class, use the keyword class:

Example

Create a class named MyClass, with a property named x:

class MyClass:

x = 5

Create Object

Now we can use the class named MyClass to create objects:

Example

Create an object named p1, and print the value of x:

p1=MyClass()

print(p1.x)

The init () Function

The examples above are classes and objects in their simplest form, and are not really useful in real life

applications.

To understand the meaning of classes we have to understand the built-in init () function.

All classes have a function called init (), which is always executed when the class is being initiated.

Use the init () function to assign values to object properties, or other operations that are necessary to do

when the object is being created:

Example

Create a class named Person, use the init () function to assign values for name and age:

class Person:

def init (self,name,age):

self.name=name

self.age=age

p1=Person("John", 36)

print(p1.name)

print(p1.age)

Object Methods

Objects can also contain methods. Methods in objects are functions that belong to the object.

Let us create a method in the Person class:

Example

Insert a function that prints a greeting, and execute it on the p1 object:

https://www.geeksforgeeks.org/python-list/
https://www.geeksforgeeks.org/python-list/
https://www.geeksforgeeks.org/sets-in-python/

class Person:

def init (self,name,age):

self.name=name

self.age=age

def myfunc(self):

print("Hellomynameis" +self.name)

p1=Person("John", 36)

p1.myfunc()

UNIT-V

Chapter-1

Classes and Functions:

Python provides library to read, represent and reset the time information in many ways by using “time” module.

Date, time and date time are an object in Python, so whenever we do any operation on them, we actually

manipulate objects not strings or timestamps.

a.Time:

In this section we’re going to discuss the “time” module which allows us to handle various operations on time.

The time module follows the “EPOCH” convention which refers to the point where the time starts. In Unix

system “EPOCH” time started from 1 January, 12:00 am, 1970 to year 2038.

To determine the EPOCH time value on your system, just type below code -

>>>import time

>>>time.gmtime(0)

Output

time.struct_time(tm_year=1970, tm_mon=1, tm_mday=1, tm_hour=0,

tm_min=0, tm_sec=0, tm_wday=3, tm_yday=1, tm_isdst=0)

Tick in python?

A tick refers to a time interval which is a floating-point number measured as units of seconds. Sometime we get

time as Daylight Saving Time(DST), where the clock moves 1 hour forward during the summer time, and back

again in the fall.

Most common functions in Python Time Module -

1.time.time() function

The time() is the main function of the time module. It measures the number of seconds since the epoch as a

floating point value.

Syntax

time.time()

Program to demonstrate above function:

import time

print("Number of seconds elapsed since the epoch are : ", time.time())

Output

Number of seconds elapsed since the epoch are : 1553262407.0398576

We can use python time function to calculate the elapsed Wall-clock time between two points.

Below is the program to calculate Wall clock time:

import time

start =time.time()

print("Time elapsed on working...")

time.sleep(0.9)

end=time.time()

print("Time consumed in working: ",end- start)

Output

Time elapsed on working...

Time consumed in working: 0.9219651222229004

2. time.clock() function

The time.clock() function return the processor time. It is used for performance testing/benchmarking.

Syntax

time.clock()

The clock() function returns the right time taken by the program and it more accurate than its counterpart.

Let’s write a program using above two time functions (discussed above) to differentiate:

import time

template = 'time()# {:0.2f}, clock()# {:0.2f}'

print(template.format(time.time(), time.clock()))

for i in range(5, 0, -1):

print('---Sleeping for: ', i, 'sec.')

time.sleep(i)

print(template.format(time.time(), time.clock()))

Output

time()# 1553263728.08, clock()# 0.00

---Sleeping for: 5 sec.

time()# 1553263733.14, clock()# 5.06

---Sleeping for: 4 sec.

time()# 1553263737.25, clock()# 9.17

---Sleeping for: 3 sec.

time()# 1553263740.30, clock()# 12.22

---Sleeping for: 2 sec.

time()# 1553263742.36, clock()# 14.28

---Sleeping for: 1 sec.

time()# 1553263743.42, clock()# 15.34

3. time.ctime() function

time.time() function takes the time in “seconds since the epoch” as input and translates into a human readable

string value as per the local time. If no argument is passed, it returns the current time.

import time

print('The current local time is :', time.ctime())

newtime = time.time() + 60

print('60 secs from now :', time.ctime(newtime))

Output

The current local time is : Fri Mar 22 19:43:11 2019

60 secs from now : Fri Mar 22 19:44:11 2019

4. time.sleep() function

time.sleep() function halts the execution of the current thread for the specified number of seconds. Pass a floating

point value as input to get more precise sleep time.

The sleep() function can be used in situation where we need to wait for a file to finish closing or let a database

commit to happen.

import time

using ctime() to display present time

print("Time starts from : ",end="")

print(time.ctime())

using sleep() to suspend execution

print('Waiting for 5 sec.')

time.sleep(5)

using ctime() to show present time

print("Time ends at : ",end="")

print(time.ctime())

Output

Time starts from : Fri Mar 22 20:00:00 2019

Waiting for 5 sec.

Time ends at : Fri Mar 22 20:00:05 2019

5. time.struct_time class

The time.struct_time is the only data structure present in the time module. It has a named tuple interface and is

accessible via index or the attribute name.

Syntax

time.struct_time

This class is useful when you need to access the specific field of a date.

This class provides number of functions like localtime(), gmtime() and return the struct_time objects.

import time

print(' Current local time:', time.ctime())

t = time.localtime()

print('Day of month:', t.tm_mday)

print('Day of week :', t.tm_wday)

print('Day of year :', t.tm_yday)

Output

Current local time: Fri Mar 22 20:10:25 2019

Day of month: 22

Day of week : 4

Day of year : 81

6. time.strftime() function

This function takes a tuple or struct_time in the second argument and converts to a string as per the format

specified in the first argument.

Syntax

time.strftime()

Below is the program to implement time.strftime() function -

import time

now = time.localtime(time.time())

print("Current date time is: ",time.asctime(now))

print(time.strftime("%y/%m/%d %H:%M", now))

print(time.strftime("%a %b %d", now))

print(time.strftime("%c", now))

print(time.strftime("%I %p", now))

print(time.strftime("%Y-%m-%d %H:%M:%S %Z", now))

Output

Current date time is: Fri Mar 22 20:13:43 2019

19/03/22 20:13

Fri Mar 22

Fri Mar 22 20:13:43 2019

08 PM

2019-03-22 20:13:43 India Standard Time

Check timezone in python

There are two time-properties which give you the timezone info -

1. time.timezone

It returns the offset of the local (non-DST) timezone in UTC format.

>>>time.timezone

-19800

2. time.tzname – It returns a tuple containing the local non-DST and DST time zones.

>>>time.tzname

('India Standard Time', 'India Daylight Time')

b.Pure Functions

A function is called pure function if it always returns the same result for same argument values and it has no side

effects like modifying an argument (or global variable) or outputting something. The only result of calling a pure

function is the return value. Examples of pure functions are strlen(), pow(), sqrt() etc. Examples of impure

functions are printf(), rand(), time(), etc.

If a function is known as pure to compiler then Loop optimization and subexpression elimination can be applied

to it. In GCC, we can mark functions as pure using the “pure” attribute.

 attribute ((pure)) return-type fun-name(arguments1, …)

{

/* function body */

}

Following is an example pure function that returns square of a passed integer.

 attribute _((pure)) intmy_square(intval)

{

returnval*val;

}

Consider the below example

filter_none

edit

play_arrow

brightness_4

for(len = 0; len<strlen(str); ++len)

printf("%c", toupper(str[len]));

If “strlen()” function is not marked as pure function then compiler will invoke the “strlen()” function with each

iteration of the loop, and if function is marked as pure function then compiler knows that value of “strlen()”

function will be same for each call, that’s why compiler optimizes the for loop and generates code like following.

intlen = strlen(str);

for(i = 0; i<len; ++i)

printf("%c", toupper((str[i]));

Let us write our own pure function to calculate string length.

 attribute ((pure)) size_tmy_strlen(constchar*str)

{

constchar*ptr = str;

while(*ptr)

++ptr;

return(ptr – str);

}

Marking function as pure says that the hypothetical function “my_strlen()” is safe to call fewer times than the

program says.

c.Modifiers:

Python - public, private and protected

Classical object-oriented languages, such as C++ and Java, control the access to class resources by public,

private and protected keywords. Private members of a class are denied access from the environment outside

the class. They can be handled only from within the class.

http://en.wikipedia.org/wiki/Pure_function
http://en.wikipedia.org/wiki/Loop_optimization
http://en.wikipedia.org/wiki/Common_subexpression_elimination

Public members (generally methods declared in a class) are accessible from outside the class. The object of

the same class is required to invoke a public method. This arrangement of private instance variables and

public methods ensures the principle of data encapsulation.

Protected members of a class are accessible from within the class and are also available to its sub-classes. No

other environment is permitted access to it. This enables specific resources of the parent class to be inherited

by the child class.

Python doesn't have any mechanism that effectively restricts access to any instance variable or method.

Python prescribes a convention of prefixing the name of the variable/method with single or double underscore

to emulate the behaviour of protected and private access specifiers.

All members in a Python class are public by default. Any member can be accessed from outside the class

environment.

Example: Public Attributes

Copy

class employee:

def init (self, name, sal):

self.name=name

self.salary=sal

You can access employee class's attributes and also modify their values, as shown below.

>>> e1=employee("Kiran",10000)

>>> e1.salary

10000

>>> e1.salary=20000

>>> e1.salary

20000

Python's convention to make an instance variable protected is to add a prefix _ (single underscore) to it. This

effectively prevents it to be accessed, unless it is from within a sub-class.

Example: Protected Attributes

Copy

class employee:

def init (self, name, sal):

self._name=name # protected attribute

self._salary=sal# protected attribute

In fact, this doesn't prevent instance variables from accessing or modifyingthe instance. You can still perform

the following operations:

>>> e1=employee("Swati", 10000)

>>> e1._salary

10000

Hence, the responsible programmer would refrain from accessing and modifying instance variables prefixed
with _ from outside its class.

Similarly, a double underscore __ prefixed to a variable makes it private. It gives a strong suggestion not to

touch it from outside the class. Any attempt to do so will result in an AttributeError:

Example: Private Attributes

Copy

class employee:

def init (self, name, sal):

self. name=name # private attribute

self. salary=sal# private attribute

>>> e1=employee("Bill",10000)

>>> e1. salary

AttributeError: 'employee' object has no attribute ' salary'

Python performs name mangling of private variables. Every member with double underscore will be changed

to _object._class__variable. If so required, it can still be accessed from outside the class, but the practice

should be refrained.

>>> e1=employee("Bill",10000)

>>> e1._employee salary

10000

>>> e1._employee salary=20000

>>> e1._employee salary

2000

d.Prototyping Versus Planning:

The development plan I am demonstrating is called “prototype and patch.” For each function, I wrote a prototype

that performed the basic calculation and then tested it, patching errors along the way.

This approach can be effective, especially if you don’t yet have a deep understanding of the problem. But

incremental corrections can generate code that is unnecessarily complicated—since it deals with many special

cases—and unreliable—since it is hard to know if you have found all the errors.

An alternative is planned development, in which high-level insight into the problem can make the programming

much easier. In this case, the insight is that a Time object is really a three-digit number in base 60

(see http://en.wikipedia.org/wiki/Sexagesimal.)! The second attribute is the “ones column,” the minute attribute

is the “sixties column,” and the hour attribute is the “thirty-six hundreds column.”

20000

>>> e1._salary

>>> e1._salary=20000

http://en.wikipedia.org/wiki/Sexagesimal

When we wrote add_time and increment, we were effectively doing addition in base 60, which is why we had to

carry from one column to the next.

This observation suggests another approach to the whole problem—we can convert Time objects to integers and

take advantage of the fact that the computer knows how to do integer arithmetic.

Here is a function that converts Times to integers:

def time_to_int(time):minutes = time.hour * 60 + time.minuteseconds = minutes * 60 + time.secondreturn

seconds

And here is the function that converts integers to Times (recall that divmod divides the first argument by the

second and returns the quotient and remainder as a tuple).

def int_to_time(seconds):time = Time()minutes, time.second = divmod(seconds, 60)time.hour, time.minute =

divmod(minutes, 60)return time

You might have to think a bit, and run some tests, to convince yourself that these functions are correct. One way

to test them is to check that time_to_int(int_to_time(x)) == x for many values of x. This is an example of a

consistency check.

Once you are convinced they are correct, you can use them to rewrite add_time:

def add_time(t1, t2):

seconds = time_to_int(t1) + time_to_int(t2)return int_to_time(seconds)

This version is shorter than the original, and easier to verify.

Chapter-2

Classes and Methods

1. Object oriented Features:

Major OOP (object-oriented programming) concepts in Python include Class, Object, Method, Inheritance,

Polymorphism, Data Abstraction, and Encapsulation.

Classes and Objects:

Classes:

A class is a collection of objects or you can say it is a blueprint of objects defining the common attributes and

behavior. Now the question arises, how do you do that?

Well, it logically groups the data in such a way that code reusability becomes easy. I can give you a real-life

example- think of an office going ’employee’ as a class and all the attributes related to it like ’emp_name’,

’emp_age’, ’emp_salary’, ’emp_id’ as the objects in Python. Let us see from the coding perspective that how do

you instantiate a class and an object.

Class is defined under a “Class” Keyword.

Example:
1 class class1(): // class 1 is the name of the class

Note: Python is not case-sensitive.

Objects:

Objects are an instance of a class. It is an entity that has state and behavior. In a nutshell, it is an instance of a

class that can access the data.

Syntax: obj = class1()

Here obj is the “object “ of class1.

Inheritance:

Ever heard of this dialogue from relatives “you look exactly like your father/mother” the reason behind this is

called ‘inheritance’. From the Programming aspect, It generally means “inheriting or transfer of characteristics

from parent to child class without any modification”. The new class is called the derived/child class and the one

from which it is derived is called a parent/base class.

https://www.edureka.co/blog/python-programming-language
https://www.edureka.co/blog/python-class/#Inheritance

Polymorphism:

You all must have used GPS for navigating the route, Isn’t it amazing how many different routes you come

across for the same destination depending on the traffic, from a programming point of view this is called

‘polymorphism’. It is one such OOP methodology where one task can be performed in several different ways. To

put it in simple words, it is a property of an object which allows it to take multiple forms.

Encapsulation:

In a raw form, encapsulation basically means binding up of data in a single class. Python does not have any

private keyword, unlike Java. A class shouldn’t be directly accessed but be prefixed in an underscore.

Abstraction:

Suppose you booked a movie ticket from bookmyshow using net banking or any other process. You don’t know

the procedure of how the pin is generated or how the verification is done. This is called ‘abstraction’ from the

programming aspect, it basically means you only show the implementation details of a particular process and

hide the details from the user. It is used to simplify complex problems by modeling classes appropriate to the

problem.

2. Print objects of a class in Python

An Object is an instance of a Class. A class is like a blueprint while an instance is a copy of the class with actual

values. When an object of a class is created, the class is said to be instantiated. All the instances share the

attributes and the behavior of the class. But the values of those attributes, i.e. the state are unique for each object.

A single class may have any number of instances.

Refer to the below articles to get the idea about classes and objects in Python.

Python Classes and Objects

Printing objects give us information about the objects we are working with. In C++, we can do this by adding a

friend ostream& operator << (ostream&, constFoobar&) method for the class. In Java, we use toString() method.

In Python, this can be achieved by using repr or str methods. repr is used if we need a detailed

information for debugging while str is used to print a string version for the users.

Example:

filter_none

edit

play_arrow

brightness_4

Python program to demonstrate

object printing

Defining a class

https://www.edureka.co/blog/access-modifiers-in-java/
https://www.geeksforgeeks.org/python-classes-and-objects/
https://www.geeksforgeeks.org/python-classes-and-objects/

classTest:

def init (self, a, b):

self.a =a

self.b =b

def repr (self):

return"Test a:% s b:% s"%(self.a, self.b)

def str (self):

return"From str method of Test: a is % s, "\

"b is % s"%(self.a, self.b)

Driver Code

t =Test(1234, 5678)

This calls str ()

print(t)

This calls repr ()

print([t])

Python is an object-oriented programming language. What this means is we can solve a problem in Python by

creating objects in our programs. In this guide, we will discuss OOPs terms such as class, objects, methods etc.

along with the Object oriented programming features such

as inheritance, polymorphism, abstraction, encapsulation.

Object

An object is an entity that has attributes and behaviour. For example, Ram is an object who has attributes such as

height, weight, color etc. and has certain behaviours such as walking, talking, eating etc.

Class

A class is a blueprint for the objects. For example, Ram, Shyam, Steve, Rick are all objects so we can define a

template (blueprint) class Human for these objects. The class can define the common attributes and behaviours of

all the objects.

Methods

As we discussed above, an object has attributes and behaviours. These behaviours are called methods in

programming.

Example of Class and Objects

In this example, we have two objects Ram and Steve that belong to the class Human

Object attributes: name, height, weight

Object behaviour: eating()

.

Source code

classHuman:

instance attributes

def init (self, name, height, weight):

self.name = name

self.height= height

self.weight= weight

instance methods (behaviours)

defeating(self, food):

return"{} is eating {}".format(self.name, food)

creating objects of class Human

ram =Human("Ram",6,60)

steve=Human("Steve",5.9,56)

accessing object information

print("Height of {} is {}".format(ram.name,ram.height))

print("Weight of {} is {}".format(ram.name,ram.weight))

print(ram.eating("Pizza"))

print("Weight of {} is {}".format(steve.name,steve.height))

print("Weight of {} is {}".format(steve.name,steve.weight))

print(steve.eating("Big Kahuna Burger"))

Output:

Height of Ramis6

Weight of Ramis60

Ramis eating Pizza

Weight of Steveis5.9

Weight of Steveis56

Steveis eating BigKahunaBurger

From str method of Test: a is 1234, b is 5678

[Test a:1234 b:5678]

Important Points about Printing:

Python uses repr method if there is no str method.

Example:

classTest:

def init (self, a, b):

self.a =a

self.b =b

def repr (self):

return"Test a:% s b:% s"%(self.a, self.b)

Driver Code

t =Test(1234, 5678)

print(t)

Output:

Test a:1234 b:5678

If no repr method is defined then the default is used.

Example:

classTest:

def init (self, a, b):

self.a =a

self.b =b

Driver Code

t =Test(1234, 5678)

print(t)

Output:

< main .Test object at 0x7f9b5738c550>

3.INIT:

self :

self represents the instance of the class. By using the "self" keyword we can access the attributes and methods of

the class in python.

 init :

" init " is a reseved method in python classes. It is known as a constructor in object oriented concepts. This

method called when an object is created from the class and it allow the class to initialize the attributes of a class.

How can we use " init " ?

Let's consider that you are creating a NFS game. for that we should have a car. Car can have attributes like

"color", "company", "speed_limit" etc. and methods like "change_gear", "start", "accelarate", "move" etc.

classCar(object):

"""

blueprint for car

"""

def init (self, model,color, company,speed_limit):

self.color=color

self.company= company

self.speed_limit=speed_limit

self.model= model

def start(self):

print("started")

def stop(self):

print("stopped")

defaccelarate(self):

print("accelarating...")

"accelarator functionality here"

defchange_gear(self,gear_type):

print("gear changed")

" gear related functionality here"

Lets try to create different types of cars

maruthi_suzuki=Car("ertiga","black","suzuki",60)

audi=Car("A6","red","audi",80)

We have created two different types of car objects with the same class. while creating the car object we passed

arguments "ertiga", "black", "suzuki", 60 these arguments will pass to " init " method to initialize the

object.

Here, the magic keyword "self" represents the instance of the class. It binds the attributes with the given

arguments.

Usage of "self" in class to access the methods and attributes

Case: Find out the cost of a rectangular field with breadth(b=120), length(l=160). It costs x (2000) rupees per 1

square unit

classRectangle:

def init (self, length, breadth,unit_cost=0):

self.length= length

self.breadth= breadth

self.unit_cost=unit_cost

defget_perimeter(self):

return2*(self.length+self.breadth)

defget_area(self):

returnself.length*self.breadth

defcalculate_cost(self):

area =self.get_area()

return area *self.unit_cost

breadth = 120 cm, length = 160 cm, 1 cm^2 = Rs 2000

r =Rectangle(160,120,2000)

print("Area of Rectangle: %s cm^2"%(r.get_area()))

print("Cost of rectangular field: Rs. %s "%(r.calculate_cost()))

As we already discussed "self" represents the same object or instance of the class. If you see, inside the

method "get_area" we have used "self.length" to get the value of the attribute "length". attribute "length" is

bind to the object(instance of the class) at the time of object creation. "self" represents the object inside the class.

"self" works just like "r" in the statement "r = Rectangle(160, 120, 2000)". If you see the method structure

"def get_area(self): " we have used "self" as a parameter in the method because whenever we call the method

the object (instance of class) automatically passes as a first argument along with other argumets of the method.If

no other arguments are provided only "self" is passed to the method. That's the reason we use "self" to call the

method inside the class("self.get_area()"). we use object(instance of class) to call the method outside of the

class definition("r.get_area()"). "r" is the instance of the class, when we call method "r.get_area()" the

instance "r" is passed as as first argument in the place of self.

r=Rectangle(160,120,2000)

Note:"r"is the representation of the object outside of the classand"self" is the representation of the object inside

the class.

4. Python str ()

This method returns the string representation of the object. This method is called when print() or str() function is

invoked on an object.

Advertisement: 0:13

This method must return the String object. If we don’t implement str () function for a class, then built-in

object implementation is used that actually calls repr () function.

Python repr ()

Python repr () function returns the object representation. It could be any valid python expression such

as tuple, dictionary, string etc.

This method is called when repr() function is invoked on the object, in that case, repr () function must return

a String otherwise error will be thrown.

Python str and repr example

Both of these functions are used in debugging, let’s see what happens if we don’t define these functions for an

object.

class Person:

 name = ""

 age = 0

def init (self, personName, personAge):

self.name = personName

self.age = personAge

p = Person('Pankaj', 34)

print(p. str ())

print(p. repr ())

Output:

< main .Person object at 0x10ff22470>

< main .Person object at 0x10ff22470>

5. Operator Overloading in Python

Operator Overloading means giving extended meaning beyond their predefined operational meaning. For

example operator + is used to add two integers as well as join two strings and merge two lists. It is achievable

because ‘+’ operator is overloaded by int class and str class. You might have noticed that the same built-in

operator or function shows different behavior for objects of different classes, this is called Operator

Overloading.

filter_none

edit

play_arrow

brightness_4

https://www.journaldev.com/14385/python-string
https://www.journaldev.com/15182/python-print
https://www.journaldev.com/14362/python-tuple
https://www.journaldev.com/14401/python-dictionary

Python program to show use of

+ operator for different purposes.

print(1+2)

concatenate two strings

print("Geeks"+"For")

Product two numbers

print(3*4)

Repeat the String

print("Geeks"*4)

Output:

3

GeeksFor

12

GeeksGeeksGeeksGeeks

How to overload the operators in Python?

Consider that we have two objects which are a physical representation of a class (user-defined data type) and we

have to add two objects with binary ‘+’ operator it throws an error, because compiler don’t know how to add two

objects. So we define a method for an operator and that process is called operator overloading. We can overload

all existing operators but we can’t create a new operator. To perform operator overloading, Python provides some

special function or magic function that is automatically invoked when it is associated with that particular

operator. For example, when we use + operator, the magic method add is automatically invoked in which

the operation for + operator is defined.

Overloading binary + operator in Python :

When we use an operator on user defined data types then automatically a special function or magic function

associated with that operator is invoked. Changing the behavior of operator is as simple as changing the behavior

of method or function. You define methods in your class and operators work according to that behavior defined

in methods. When we use + operator, the magic method add is automatically invoked in which the operation

for + operator is defined. There by changing this magic method’s code, we can give extra meaning to the +

operator.

Code 1:

filter_none

edit

play_arrow

brightness_4

Python Program illustrate how

to overload an binary + operator

classA:

def init (self, a):

self.a =a

adding two objects

def add (self, o):

returnself.a +o.a

ob1 =A(1)

ob2 =A(2)

ob3 =A("Geeks")

ob4 =A("For")

print(ob1 +ob2)

print(ob3 +ob4)

Output :

3

GeeksFor

Code 2:

filter_none

edit

play_arrow

brightness_4

Python Program to perform addition

of two complex numbers using binary

+ operator overloading.

classcomplex:

def init (self, a, b):

self.a =a

self.b =b

adding two objects

def add (self, other):

returnself.a +other.a, self.b +other.b

def str (self):

returnself.a, self.b

Ob1 =complex(1, 2)

Ob2 =complex(2, 3)

Ob3 =Ob1 +Ob2

print(Ob3)

Output :

(3, 5)

Overloading comparison operators in Python :

filter_none

edit

play_arrow

brightness_4

Python program to overload

a comparison operators

classA:

def init (self, a):

self.a =a

def gt (self, other):

if(self.a>other.a):

returnTrue

else:

returnFalse

ob1 =A(2)

ob2 =A(3)

if(ob1>ob2):
print("ob1 is greater than ob2")

else:

print("ob2 is greater than ob1")

Output :

ob2 is greater than ob1

Overloading equality and less than operators :

OPERATOR MAGIC METHOD

< lt (self, other)

> gt (self, other)

<= le (self, other)

>= ge (self, other)

== eq (self, other)

!= ne (self, other)

filter_none

edit

play_arrow

brightness_4

Python program to overload equality

and less than operators

classA:

def init (self, a):

self.a =a

def lt (self, other):

if(self.a<other.a):

return"ob1 is lessthan ob2"

else:

return"ob2 is less than ob1"

def eq (self, other):

if(self.a ==other.a):

return"Both are equal"

else:

return"Not equal"

ob1 =A(2)

ob2 =A(3)

print(ob1 < ob2)

ob3 =A(4)

ob4 =A(4)

print(ob1 ==ob2)

Output :

ob1 is lessthan ob2

Not equal

Python magic methods or special functions for operator overloading

Binary Operators:

OPERATOR MAGIC METHOD

+ add (self, other)

– sub (self, other)

* mul (self, other)

https://www.geeksforgeeks.org/basic-operators-python/

/ truediv (self, other)

% mod (self, other)

** pow (self, other)

Unary Operators :

In the previous section we added two Time objects, but you also might want to add an integer to a Time object.

The following is a version of add that checks the type of other and invokes either add_time or increment:

inside class Time:

def add (self, other):

if isinstance(other, Time):

return self.add_time(other)else:

return self.increment(other)

def add_time(self, other):

seconds = self.time_to_int() + other.time_to_int()

return int_to_time(seconds)

def increment(self, seconds):

seconds += self.time_to_int()

return int_to_time(seconds)

The built-in function isinstance takes a value and a class object, and returns True if the value is an instance of the

class.

If other is a Time object, add invokes add_time. Otherwise it assumes that the parameter is a number and

invokes increment. This operation is called a type-based dispatch because it dispatches the computation to

different methods based on the type of the arguments.

Here are examples that use the + operator with different types:

>>> start = Time(9, 45)>>> duration = Time(1, 35)>>> print start + duration11:20:00>>> print start +

133710:07:17

Unfortunately, this implementation of addition is not commutative. If the integer is the first operand, you get

>>> print 1337 + startTypeError: unsupported operand type(s) for +: 'int' and 'instance'

The problem is, instead of asking the Time object to add an integer, Python is asking an integer to add a Time

object, and it doesn’t know how to do that. But there is a clever solution for this problem: the special

method radd , which stands for “right-side add.” This method is invoked when a Time object appears on the

right side of the + operator. Here’s the definition:

inside class Time:

def radd (self, other):

return self. add (other)

And here’s how it’s used:

>>> print 1337 + start10:07:17

7. Polymorphism in Python

What is Polymorphism?

The literal meaning of polymorphism is the condition of occurrence in different forms.

len()

Polymorphism is a very important concept in programming. It refers to the use of a single type entity (method,

operator or object) to represent different types in different scenarios.

Let's take an example:

Example 1: Polymorphism in addition operator

We know that the + operator is used extensively in Python programs. But, it does not have a single usage.

For integer data types, + operator is used to perform arithmetic addition operation.

num1 = 1

num2 = 2

print(num1+num2)

Run Code

Hence, the above program outputs 3.

Similarly, for string data types,

str1 = "Python"

str2 = "Programming"
print(str1+" "+str2)

Run Code

operator is used to perform concatenation.

As a result, the above program outputs

Here, we can see that a single operator

.

has been used to carry out different operations for distinct data types.

This is one of the most simple occurrences of polymorphism in Python.

Function Polymorphism in Python

There are some functions in Python which are compatible to run with multiple data types.

One such function is the

use cases of the function.

function. It can run with many data types in Python. Let's look at some example

Example 2: Polymorphic len() function

print(len("Programiz"))

print(len(["Python", "Java", "C"]))

print(len({"Name": "John", "Address": "Nepal"}))

Run Code

Output

9

3

2

Here, we can see that many data types such as string, list, tuple, set, and dictionary can work with

the function. However, we can see that it returns specific information about specific data types.

Polymorphism in len() function in Python

Class Polymorphism in Python

Polymorphism is a very important concept in Object-Oriented Programming.

To learn more about OOP in Python,

We can use the concept of polymorphism while creating class methods as Python allows different classes to have

methods with the same name.

We can then later generalize calling these methods by disregarding the object we are working with. Let's look at

an example:

Example 3: Polymorphism in Class Methods

classCat:

+

Python Programming

len()

+

Cat

info()

def init (self, name, age):

 self.name = name

self.age = age

definfo(self):

print(f"I am a cat. My name is {self.name}. I am {self.age} years old.")

defmake_sound(self):

print("Meow")

classDog:

def init (self, name, age):

 self.name = name

self.age = age

definfo(self):

print(f"I am a dog. My name is {self.name}. I am {self.age} years old.")

defmake_sound(self):

print("Bark")

cat1 = Cat("Kitty", 2.5)

dog1 = Dog("Fluffy", 4)

for animal in (cat1, dog1):

animal.make_sound()

animal.info()

animal.make_sound()

Run Code

Output

Meow

I am a cat. My name is Kitty. I am 2.5 years old.

Meow

Bark

I am a dog. My name is Fluffy. I am 4 years old.

Bark

Here, we have created two classes and Dog. They share a similar structure and have the same method

names and make_sound().

However, notice that we have not created a common superclass or linked the classes together in any way. Even

then, we can pack these two different objects into a tuple and iterate through it using a common

It is possible due to polymorphism.

variable.

Polymorphism and Inheritance

Like in other programming languages, the child classes in Python also inherit methods and attributes from the

parent class. We can redefine certain methods and attributes specifically to fit the child class, which is known

as Method Overriding.

Polymorphism allows us to access these overridden methods and attributes that have the same name as the parent

class.

Let's look at an example:

Example 4: Method Overriding

from math import pi

animal

classShape:

def init (self, name):

 self.name = name

defarea(self):

pass

deffact(self):

return"I am a two-dimensional shape."

def str (self):

return self.name

classSquare(Shape):

def init (self, length):

 super(). init ("Square")

self.length = length

defarea(self):

returnself.length**2

deffact(self):

return"Squares have each angle equal to 90 degrees."

classCircle(Shape):

def init (self, radius):

 super(). init ("Circle")

self.radius = radius

defarea(self):

return pi*self.radius**2

a = Square(4)

b = Circle(7)

print(b)

print(b.fact())

print(a.fact())

print(b.area())

Run Code

Output

Circle

I am a two-dimensional shape.

Squares have each angle equal to 90 degrees.

153.93804002589985

Here, we can see that the methods such as str (), which have not been overridden in the child classes, are

used from the parent class.

Due to polymorphism, the Python interpreter automatically recognizes that the

object a(Square class) is overridden. So, it uses the one defined in the child class.

method for

On the other hand, since the method for object isn't overridden, it is used from the Parent class. Shape b fact()

fact()

Polymorphism in parent and child classes in Python

8. Python-interface module

In object-oriented languages like Python, the interface is a collection of method signatures that should be

provided by the implementing class. Implementing an interface is a way of writing an organized code and

achieve abstraction.

The package zope.interface provides an implementation of “object interfaces” for Python. It is maintained by the

Zope Toolkit project. The package exports two objects, ‘Interface’ and ‘Attribute’ directly. It also exports several

helper methods. It aims to provide stricter semantics and better error messages than Python’s built-in abc module.

Declaring interface

In python, interface is defined using python class statements and is a subclass of interface.Interface which is the

parent interface for all interfaces.

Syntax :

class IMyInterface(zope.interface.Interface):

methods and attributes

Example

filter_none

brightness_4

importzope.interface

classMyInterface(zope.interface.Interface):

x =zope.interface.Attribute("foo")

defmethod1(self, x):

pass

defmethod2(self):

pass

print(type(MyInterface))

print(MyInterface. module)

print(MyInterface. name)

get attribute

x =MyInterface['x']

print(x)

print(type(x))

Output :

<class zope.interface.interface.InterfaceClass>

 main

MyInterface

<zope.interface.interface.Attribute object at 0x00000270A8C74358>

<class 'zope.interface.interface.Attribute'>

Implementing interface

Interface acts as a blueprint for designing classes, so interfaces are implemented using implementer decorator on

class. If a class implements an interface, then the instances of the class provide the interface. Objects can provide

interfaces directly, in addition to what their classes implement.

Syntax :

@zope.interface.implementer(*interfaces)

class Class_name:

methods

Example

filter_none

brightness_4

importzope.interface

classMyInterface(zope.interface.Interface):

x =zope.interface.Attribute("foo")

defmethod1(self, x):

pass

defmethod2(self):

pass

@zope.interface.implementer(MyInterface)

classMyClass:

defmethod1(self, x):

returnx**2

defmethod2(self):

return"foo"

We declared that MyClass implements MyInterface. This means that instances of MyClass provide MyInterface.

Methods

implementedBy(class) – returns a boolean value, True if class implements the interface else False

providedBy(object) – returns a boolean value, True if object provides the interface else False

providedBy(class) – returns False as class does not provide interface but implements it

list(zope.interface.implementedBy(class)) – returns the list of interfaces implemented by a class

list(zope.interface.providedBy(object)) – returns the list of interfaces provided by an object.

list(zope.interface.providedBy(class)) – returns empty list as class does not provide interface but

implements it.

filter_none

brightness_4

importzope.interface

classMyInterface(zope.interface.Interface):

x =zope.interface.Attribute('foo')

defmethod1(self, x, y, z):

pass

defmethod2(self):

pass

@zope.interface.implementer(MyInterface)

classMyClass:

defmethod1(self, x):

returnx**2

defmethod2(self):

return"foo"

obj =MyClass()

ask an interface whether it

is implemented by a class:

print(MyInterface.implementedBy(MyClass))

MyClass does not provide

MyInterface but implements it:

print(MyInterface.providedBy(MyClass))

ask whether an interface

is provided by an object:

print(MyInterface.providedBy(obj))

ask what interfaces are

implemented by a class:

print(list(zope.interface.implementedBy(MyClass)))

ask what interfaces are

provided by an object:

print(list(zope.interface.providedBy(obj)))

class does not provide interface

print(list(zope.interface.providedBy(MyClass)))

Output :

True

False

True

[<InterfaceClass main .MyInterface>]

[<InterfaceClass main .MyInterface>]

[]

Interface Inheritance

Interfaces can extend other interfaces by listing the other interfaces as base interfaces.

Functions

extends(interface) – returns boolean value, whether one interface extends another.

isOrExtends(interface) – returns boolean value, whether interfaces are same or one extends another.

isEqualOrExtendedBy(interface) – returns boolean value, whether interfaces are same or one is extended by

another.

filter_none

brightness_4

Import zope.interface

classBaseI(zope.interface.Interface):

defm1(self, x):

pass

defm2(self):

pass

classDerivedI(BaseI):

defm3(self, x, y):

pass

@zope.interface.implementer(DerivedI)

classcls:

defm1(self, z):

returnz**3

defm2(self):

return'foo'

defm3(self, x, y):

returnx ^ y

Get base interfaces

print(DerivedI. bases)

Ask whether baseI extends

DerivedI

print(BaseI.extends(DerivedI))

Ask whether baseI is equal to

or is extended by DerivedI

print(BaseI.isEqualOrExtendedBy(DerivedI))

Ask whether baseI is equal to

or extends DerivedI

print(BaseI.isOrExtends(DerivedI))

Ask whether DerivedI is equal

to or extends BaseI

print(DerivedI.isOrExtends(DerivedI))

Output :

(<InterfaceClass main .BaseI>,)

False

True

False

True

Type-based dispatch

In the previous section we added two Time objects, but you also might want to add an integer to a Time object.

The following is a version of add that checks the type of other and invokes either add_time or increment:

inside class Time:

def add (self, other):

if isinstance(other, Time):

return self.add_time(other)else:

return self.increment(other)

def add_time(self, other):

seconds = self.time_to_int() + other.time_to_int()

return int_to_time(seconds)

def increment(self, seconds):

seconds += self.time_to_int()

return int_to_time(seconds)

The built-in function isinstance takes a value and a class object, and returns True if the value is an instance of the

class.

If other is a Time object, add invokes add_time. Otherwise it assumes that the parameter is a number and

invokes increment. This operation is called a type-based dispatch because it dispatches the computation to

different methods based on the type of the arguments.

Here are examples that use the + operator with different types:

>>> start = Time(9, 45)>>> duration = Time(1, 35)>>> print start + duration11:20:00>>> print start +

133710:07:17

Unfortunately, this implementation of addition is not commutative. If the integer is the first operand, you get

>>> print 1337 + startTypeError: unsupported operand type(s) for +: 'int' and 'instance'

The problem is, instead of asking the Time object to add an integer, Python is asking an integer to add a Time

object, and it doesn’t know how to do that. But there is a clever solution for this problem: the special

method radd , which stands for “right-side add.” This method is invoked when a Time object appears on the

right side of the + operator. Here’s the definition:

inside class Time:

def radd (self, other):

return self. add (other)

And here’s how it’s used:

>>> print 1337 + start10:07:17

Chapter-3

Inheritance

In this chapter we look at a larger example using object oriented programming and learn about the very useful

OOP feature of inheritance.

Composition

By now, you have seen several examples of composition. One of the first examples was using a method

invocation as part of an expression. Another example is the nested structure of statements; you can put

an if statement within a while loop, within another if statement, and so on.

Having seen this pattern, and having learned about lists and objects, you should not be surprised to learn that you

can create lists of objects. You can also create objects that contain lists (as attributes); you can create lists that

contain lists; you can create objects that contain objects; and so on.

In this chapter we will look at some examples of these combinations, using Card objects as an example.

1. Card objects

If you are not familiar with common playing cards, now would be a good time to get a deck, or else this chapter

might not make much sense. There are fifty-two cards in a deck, each of which belongs to one of four suits and

one of thirteen ranks. The suits are Spades, Hearts, Diamonds, and Clubs (in descending order in bridge). The

ranks are Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King. Depending on the game that you are playing, the

rank of Ace may be higher than King or lower than 2.

If we want to define a new object to represent a playing card, it is obvious what the attributes should

be: rank and suit. It is not as obvious what type the attributes should be. One possibility is to use strings

containing words like "Spade" for suits and "Queen" for ranks. One problem with this implementation is that it

would not be easy to compare cards to see which had a higher rank or suit.

An alternative is to use integers to encode the ranks and suits. By encode, we do not mean what some people

think, which is to encrypt or translate into a secret code. What a computer scientist means by encode is to define

a mapping between a sequence of numbers and the items I want to represent. For example:

Spades-->3

Hearts-->2

Diamonds-->1

Clubs-->0

An obvious feature of this mapping is that the suits map to integers in order, so we can compare suits by

comparing integers. The mapping for ranks is fairly obvious; each of the numerical ranks maps to the

corresponding integer, and for face cards:

Jack-->11

Queen-->12

King-->13

The reason we are using mathematical notation for these mappings is that they are not part of the Python

program. They are part of the program design, but they never appear explicitly in the code. The class definition

for the Card type looks like this:

classCard:

def__init__(self, suit=0, rank=0):

self.suit=suit

self.rank=rank

As usual, we provide an initialization method that takes an optional parameter for each attribute.

To create an object that represents the 3 of Clubs, use this command:

three_of_clubs=Card(0, 3)
The first argument, 0, represents the suit Clubs.

2.Class attributes and the __str__ method

In order to print Card objects in a way that people can easily read, we want to map the integer codes onto words.

A natural way to do that is with lists of strings. We assign these lists to class attributes at the top of the class

definition:

http://en.wikipedia.org/wiki/Inheritance_%28object-oriented_programming%29

classCard:

SUITS= ('Clubs', 'Diamonds', 'Hearts', 'Spades')

RANKS= ('narf', 'Ace', '2', '3', '4', '5', '6', '7',

'8', '9', '10', 'Jack', 'Queen', 'King']

def__init__(self, suit=0, rank=0):

self.suit=suit

self.rank=rank

def__str__(self):

"""

>>>print(Card(2, 11))

Queen of Hearts

"""

return'{0} of {1}'.format(Card.RANKS[self.rank],

Card.SUITS[self.suit])

if__name__=='__main__':

importdoctest

doctest.testmod()

Class attributes like Card.SUITS and Card.RANKS are defined outside of any method, and can be accessed from

any of the methods in the class.

Inside __str__, we can use SUITS and RANKS to map the numerical values of suit and rank to strings. For

example, the expression Card.SUITS[self.suit] means use the attribute suit from the object self as an index into

the class attribute named SUITS, and select the appropriate string.

The reason for the "narf" in the first element in ranks is to act as a place keeper for the zero-eth element of the

list, which will never be used. The only valid ranks are 1 to 13. This wasted item is not entirely necessary. We

could have started at 0, as usual, but it is less confusing to encode 2 as 2, 3 as 3, and so on.

We have a doctest in the __str__ method to confirm that Card(2, 11) will display as “Queen of Hearts”.

3. Comparing cards

For primitive types, there are conditional operators (<, >, ==, etc.) that compare values and determine when one

is greater than, less than, or equal to another. For user-defined types, we can override the behavior of the built-in

operators by providing a method named __cmp__. By convention, __cmp__ takes two

parameters, self and other, and returns 1 if the first object is greater, -1 if the second object is greater, and 0 if

they are equal to each other.

Some types are completely ordered, which means that you can compare any two elements and tell which is

bigger. For example, the integers and the floating-point numbers are completely ordered. Some sets are

unordered, which means that there is no meaningful way to say that one element is bigger than another. For

example, the fruits are unordered, which is why you cannot compare apples and oranges.

The set of playing cards is partially ordered, which means that sometimes you can compare cards and sometimes

not. For example, you know that the 3 of Clubs is higher than the 2 of Clubs, and the 3 of Diamonds is higher

than the 3 of Clubs. But which is better, the 3 of Clubs or the 2 of Diamonds? One has a higher rank, but the

other has a higher suit.

In order to make cards comparable, you have to decide which is more important, rank or suit. To be honest, the

choice is arbitrary. For the sake of choosing, we will say that suit is more important, because a new deck of cards

comes sorted with all the Clubs together, followed by all the Diamonds, and so on.

With that decided, we can write __cmp__:

def__cmp__(self, other):

check the suits

ifself.suit>other.suit: return1

ifself.suit<other.suit: return-1

suits are the same... check ranks

ifself.rank>other.rank: return1

ifself.rank<other.rank: return-1

ranks are the same... it's a tie

return0

In this ordering, Aces appear lower than Deuces (2s).

4. Decks:

Now that we have objects to represent Cards, the next logical step is to define a class to represent a Deck. Of

course, a deck is made up of cards, so each Deck object will contain a list of cards as an attribute.

The following is a class definition for the Deck class. The initialization method creates the attribute cards and

generates the standard set of fifty-two cards:

classDeck:

def__init__(self):

self.cards= []

forsuitinrange(4):

forrankinrange(1, 14):

self.cards.append(Card(suit, rank))

The easiest way to populate the deck is with a nested loop. The outer loop enumerates the suits from 0 to 3. The

inner loop enumerates the ranks from 1 to 13. Since the outer loop iterates four times, and the inner loop iterates

thirteen times, the total number of times the body is executed is fifty-two (thirteen times four). Each iteration

creates a new instance of Card with the current suit and rank, and appends that card to the cards list.

The append method works on lists but not, of course, tuples.

5. Printing the deck

As usual, when we define a new type of object we want a method that prints the contents of an object. To print

a Deck, we traverse the list and print each Card:

classDeck:

...

defprint_deck(self):

forcardinself.cards:

print(card)

Here, and from now on, the ellipsis (...) indicates that we have omitted the other methods in the class.

As an alternative to print_deck, we could write a __str__ method for the Deck class. The advantage of __str__ is

that it is more flexible. Rather than just printing the contents of the object, it generates a string representation that

other parts of the program can manipulate before printing, or store for later use.

Here is a version of __str that returns a string representation of a Deck. To add a bit of pizzazz, it arranges the

cards in a cascade where each card is indented one space more than the previous card:

classDeck:

...

def__str__(self):

s=""

foriinrange(len(self.cards)):

s+=" "*i+str(self.cards[i]) +"\n"

returns

This example demonstrates several features. First, instead of traversing self.cards and assigning each card to a

variable, we are using i as a loop variable and an index into the list of cards.

Second, we are using the string multiplication operator to indent each card by one more space than the last. The

expression " " * i yields a number of spaces equal to the current value of i.

Third, instead of using the print function to print the cards, we use the str function. Passing an object as an

argument to str is equivalent to invoking the __str method on the object.

Finally, we are using the variable s as an accumulator. Initially, s is the empty string. Each time through the

loop, a new string is generated and concatenated with the old value of s to get the new value. When the loop

ends, s contains the complete string representation of the Deck, which looks like this:

>>>deck=Deck()

>>>print(deck)

Ace of Clubs

2 of Clubs

3 of Clubs

4 of Clubs

5 of Clubs

6 of Clubs

7 of Clubs

8 of Clubs

9 of Clubs

10 of Clubs

Jack of Clubs

Queen of Clubs

King of Clubs

Ace of Diamonds

And so on. Even though the result appears on 52 lines, it is one long string that contains newlines.

5.Shuffling the deck

If a deck is perfectly shuffled, then any card is equally likely to appear anywhere in the deck, and any location in

the deck is equally likely to contain any card.

To shuffle the deck, we will use the randrange function from the random module. With two integer

arguments, a and b, randrange chooses a random integer in the range a <= x < b. Since the upper bound is strictly

less than b, we can use the length of a list as the second parameter, and we are guaranteed to get a legal index.

For example, this expression chooses the index of a random card in a deck:

random.randrange(0, len(self.cards))

An easy way to shuffle the deck is by traversing the cards and swapping each card with a randomly chosen one.

It is possible that the card will be swapped with itself, but that is fine. In fact, if we precluded that possibility, the

order of the cards would be less than entirely random:

classDeck:

...

defshuffle(self):

importrandom

num_cards=len(self.cards)

foriinrange(num_cards):

j=random.randrange(i, num_cards)

self.cards[i], self.cards[j] =self.cards[j], self.cards[i]

Rather than assume that there are fifty-two cards in the deck, we get the actual length of the list and store it

in num_cards.

For each card in the deck, we choose a random card from among the cards that haven’t been shuffled yet. Then

we swap the current card (i) with the selected card (j). To swap the cards we use a tuple assignment:

self.cards[i], self.cards[j] =self.cards[j], self.cards[i].

Removing and dealing cards

Another method that would be useful for the Deck class is remove, which takes a card as a parameter, removes it,

and returns True if the card was in the deck and False otherwise:

classDeck:

...

defremove(self, card):

ifcardinself.cards:

self.cards.remove(card)

returnTrue

else:

returnFalse

The in operator returns True if the first operand is in the second, which must be a list or a tuple. If the first

operand is an object, Python uses the object’s __cmp__ method to determine equality with items in the list. Since

the __cmp__ in the Card class checks for deep equality, the remove method checks for deep equality.

To deal cards, we want to remove and return the top card. The list method pop provides a convenient way to do

that:

classDeck:

...

defpop(self):

returnself.cards.pop()

Actually, pop removes the last card in the list, so we are in effect dealing from the bottom of the deck.

One more operation that we are likely to want is the boolean function is_empty, which returns true if the deck

contains no cards:

classDeck:

...

defis_empty(self):

return (len(self.cards) ==0)

Add:

To add a card, we can use the list method append:

#inside class Deck:

def add_card(self, card):

self.cards.append(card)

7.Inheritance

The language feature most often associated with object-oriented programming is inheritance. Inheritance is the

ability to define a new class that is a modified version of an existing class.

The primary advantage of this feature is that you can add new methods to a class without modifying the existing

class. It is called inheritance because the new class inherits all of the methods of the existing class. Extending this

metaphor, the existing class is sometimes called the parent class. The new class may be called the child class or

sometimes subclass.

Inheritance is a powerful feature. Some programs that would be complicated without inheritance can be written

concisely and simply with it. Also, inheritance can facilitate code reuse, since you can customize the behavior of

parent classes without having to modify them. In some cases, the inheritance structure reflects the natural

structure of the problem, which makes the program easier to understand.

On the other hand, inheritance can make programs difficult to read. When a method is invoked, it is sometimes

not clear where to find its definition. The relevant code may be scattered among several modules. Also, many of

the things that can be done using inheritance can be done as elegantly (or more so) without it. If the natural

structure of the problem does not lend itself to inheritance, this style of programming can do more harm than

good.

Inheritance in Python

Last Updated: 14-09-2020

Inheritance is the capability of one class to derive or inherit the properties from another class. The benefits of

inheritanceare:

It represents real-world relationships well.

It provides reusability of a code. We don’t have to write the same code again and again. Also, it allows us to add

more features to a class without modifying it.

It is transitive in nature, which means that if class B inherits from another class A, then all the subclasses of B

would automatically inherit from class A.

Below is a simple example of inheritance in Python

Python

filter_none

edit

play_arrow

brightness_4

A Python program to demonstrate inheritance

Base or Super class. Note object in bracket.

(Generally, object is made ancestor of all classes)

In Python 3.x "class Person" is

equivalent to "class Person(object)"

class Person(object):

Constructor

def init (self, name):

self.name = name

To get name

def getName(self):

return self.name

To check if this person is an employee

def isEmployee(self):

return False

Inherited or Subclass (Note Person in bracket)

class Employee(Person):

Here we return true

def isEmployee(self):

return True

Driver code

emp = Person("Geek1") # An Object of Person

print(emp.getName(), emp.isEmployee())

emp = Employee("Geek2") # An Object of Employee

print(emp.getName(), emp.isEmployee())

Output:

Geek1 False

Geek2 True

What is object class?

Like Java Object class, in Python (from version 3.x), object is root of all classes.

In Python 3.x, “class Test(object)” and “class Test” are same.

In Python 2.x, “class Test(object)” creates a class with object as parent (called new style class) and “class Test”

creates old style class (without object parent). Refer this for more details.

Subclassing (Calling constructor of parent class)

A child class needs to identify which class is its parent class. This can be done by mentioning the parent class name

in the definition of the child class.
Eg: class subclass_name (superclass_name):

_ _ _
_ _ _

Python

filter_none

edit

play_arrow

brightness_4

Python code to demonstrate how parent constructors

are called.

parent class

class Person(object):

https://www.geeksforgeeks.org/object-class-in-java/
https://docs.python.org/release/2.2.3/whatsnew/sect-rellinks.html

init is known as the constructor

def init (self, name, idnumber):

self.name = name

self.idnumber = idnumber

def display(self):

print(self.name)

print(self.idnumber)

child class

class Employee(Person):

def init (self, name, idnumber, salary, post):

self.salary = salary

self.post = post

invoking the init of the parent class

Person. init (self, name, idnumber)

creation of an object variable or an instance

a = Employee('Rahul', 886012, 200000, "Intern")

calling a function of the class Person using its instance

a.display()

Output:

Rahul

886012

‘a’ is the instance created for the class Person. It invokes the init () of the referred class. You can see ‘object’

written in the declaration of the class Person. In Python, every class inherits from a built-in basic class called

‘object’. The constructor i.e. the ‘ init ’ function of a class is invoked when we create an object variable or an

instance of the class.

The variables defined within init () are called as the instance variables or objects. Hence, ‘name’ and

‘idnumber’ are the objects of the class Person. Similarly, ‘salary’ and ‘post’ are the objects of the class Employee.

Since the class Employee inherits from class Person, ‘name’ and ‘idnumber’ are also the objects of class Employee.

If you forget to invoke the init () of the parent class then its instance variables would not be available to the

child class.

The following code produces an error for the same reason.

Python

filter_none

edit

play_arrow

brightness_4

Python program to demonstrate error if we

forget to invoke init () of the parent.

class A:

def init (self, n = 'Rahul'):

self.name = n

class B(A):

def init (self, roll):

self.roll = roll

object = B(23)

print (object.name)

Output :

Traceback (most recent call last):

File "/home/de4570cca20263ac2c4149f435dba22c.py", line 12, in

print (object.name)

AttributeError: 'B' object has no attribute 'name'

Different forms of Inheritance:

1. Single inheritance: When a child class inherits from only one parent class, it is called single inheritance. We

saw an example above.

2. Multiple inheritance: When a child class inherits from multiple parent classes, it is called multiple inheritance.

Unlike Java and like C++, Python supports multiple inheritance. We specify all parent classes as a comma-

separated list in the bracket.

Python

filter_none

edit

play_arrow

brightness_4

Python example to show the working of multiple

inheritance

class Base1(object):

def init (self):

self.str1 = "Geek1"

print("Base1")

class Base2(object):

def init (self):

self.str2 = "Geek2"

print("Base2")

class Derived(Base1, Base2):

def init (self):

Calling constructors of Base1

and Base2 classes

Base1. init (self)

Base2. init (self)

print("Derived")

def printStrs(self):

print(self.str1, self.str2)

ob = Derived()

ob.printStrs()

Output:

Base1

Base2

Derived

Geek1 Geek2

3. Multilevel inheritance: When we have a child and grandchild relationship.

Python

filter_none

edit

play_arrow

brightness_4

A Python program to demonstrate inheritance

Base or Super class. Note object in bracket.

(Generally, object is made ancestor of all classes)

In Python 3.x "class Person" is

equivalent to "class Person(object)"

class Base(object):

Constructor

def init (self, name):

self.name = name

To get name

def getName(self):

return self.name

Inherited or Sub class (Note Person in bracket)

class Child(Base):

Constructor

def init (self, name, age):

Base. init (self, name)

self.age = age

To get name

def getAge(self):

return self.age

Inherited or Sub class (Note Person in bracket)

class GrandChild(Child):

Constructor

def init (self, name, age, address):

Child. init (self, name, age)

self.address = address

To get address

def getAddress(self):

return self.address

Driver code

g = GrandChild("Geek1", 23, "Noida")

print(g.getName(), g.getAge(), g.getAddress())

Output:

Geek1 23 Noida

4. Hierarchical inheritance More than one derived classes are created from a single base.

5. Hybrid inheritance: This form combines more than one form of inheritance. Basically, it is a blend of more than

one type of inheritance.

Private members of parent class

We don’t always want the instance variables of the parent class to be inherited by the child class i.e. we can make

some of the instance variables of the parent class private, which won’t be available to the child class.

We can make an instance variable by adding double underscores before its name. For example,

Python

filter_none

edit

play_arrow

brightness_4

Python program to demonstrate private members

of the parent class

class C(object):

def init (self):

self.c = 21

d is private instance variable

self. d = 42

class D(C):

def init (self):

self.e = 84

C. init (self)

object1 = D()

produces an error as d is private instance variable

print(object1.d)

Output :

File "/home/993bb61c3e76cda5bb67bd9ea05956a1.py", line 16, in

print (object1.d)

AttributeError: type object 'D' has no attribute 'd'

Since ‘d’ is made private by those underscores, it is not available to the child class ‘D’ and hence the error.

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the

basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

.

Encapsulation in Python

Encapsulation is one of the fundamental concepts in object-oriented programming (OOP). It describes the idea of

wrapping data and the methods that work on data within one unit. This puts restrictions on accessing variables

and methods directly and can prevent the accidental modification of data. To prevent accidental change, an

object’s variable can only be changed by an object’s method. Those type of variables are known as private

variable.

A class is an example of encapsulation as it encapsulates all the data that is member functions, variables, etc.

Consider a real-life example of encapsulation, in a company, there are different sections like the accounts

section, finance section, sales section etc. The finance section handles all the financial transactions and keeps

records of all the data related to finance. Similarly, the sales section handles all the sales-related activities and

keeps records of all the sales. Now there may arise a situation when for some reason an official from the finance

section needs all the data about sales in a particular month. In this case, he is not allowed to directly access the

data of the sales section. He will first have to contact some other officer in the sales section and then request him

to give the particular data. This is what encapsulation is. Here the data of the sales section and the employees that

can manipulate them are wrapped under a single name “sales section”. As using encapsulation also hides the

data. In this example, the data of any of the sections like sales, finance or accounts are hidden from any other

section.

https://practice.geeksforgeeks.org/courses/Python-Foundation?utm_source=geeksforgeeks&utm_medium=article&utm_campaign=GFG_Article_Bottom_Python_Foundation
https://practice.geeksforgeeks.org/courses/Data-Structures-With-Python?utm_source=geeksforgeeks&utm_medium=article&utm_campaign=GFG_Article_Bottom_Python_DS

Protected members

Protected members (in C++ and JAVA) are those members of the class which cannot be accessed outside the

class but can be accessed from within the class and it’s subclasses. To accomplish this in Python, just follow the

convention by prefixing the name of the member by a single underscore “_”.

Note: The init method is a constructor and runs as soon as an object of a class is instantiated.

Python program to

demonstrate protected members

Creating a base class

classBase:

def init (self):

Protected member

self._a =2

Creating a derived class

classDerived(Base):

def init (self):

Calling constructor of

Base class

Base. init (self)

print("Calling protected member of base class: ")

print(self._a)

obj1 =Derived()

obj2 =Base()

Calling protected member

Outside class will result in

AttributeError

print(obj2.a)

Output:

Calling protected member of base class:

2

Traceback (most recent call last):

File "/home/6fb1b95dfba0e198298f9dd02469eb4a.py", line 25, in

print(obj1.a)

AttributeError: 'Base' object has no attribute 'a'

Private members

Private members are similar to protected members, the difference is that the class members declared private

should neither be accessed outside the class nor by any base class. In Python, there is no existence

of Private instance variables that cannot be accessed except inside a class. However, to define a private member

prefix the member name with double underscore “ ”.

Note: Python’s private and protect member can be accessed outside the class through python name mangling.

Python program to

demonstrate private members

https://www.geeksforgeeks.org/private-variables-python/

Creating a Base class

classBase:

def init (self):

self.a ="GeeksforGeeks"

self. c ="GeeksforGeeks"

Creating a derived class

classDerived(Base):

def init (self):

Calling constructor of

Base class

Base. init (self)

print("Calling private member of base class: ")

print(self. a)

Driver code

obj1 =Base()

print(obj1.a)

Uncommenting print(obj1.c) will

raise an AttributeError

Uncommenting obj2 = Derived() will

also raise an AtrributeError as

private member of base class

is called inside derived class

Output:

Traceback (most recent call last):

File "/home/ee6c98f658e288878c9c206332568d9a.py", line 24, in

print(obj. c)

AttributeError: 'Test' object has no attribute ' c'

Traceback (most recent call last):

File "/home/abbc7bf34551e0ebfc889c55f079dbc7.py", line 26, in

obj2 = Derived()

File "/home/abbc7bf34551e0ebfc889c55f079dbc7.py", line 18, in init

print(self. c)

Class diagrams

To represent inheritance between classes, you can use a class diagram showing which classes inherit from which

other classes. This may make the terms ‘superclass’ and ‘subclass’ easier to remember, as super- indicates the

class above, while sub- indicates the class below. Some people like to compare these diagrams to family trees.

In the diagram, each class is represented by a rectangle. An arrow points towards the class from which something

is inherited.

Looking at a class diagram can also help us to understand polymorphism. If a class inherits from another class, it

can also be considered to be an object of that class. For example, Enemy inherits from Character, so Enemy is

a Character.

In week one, you used the gpiozero library to create an LED object in code to represent a physical LED.

You can see in the diagram below that the class LED is a subclass of OutputDevice. This means that LED is

an OutputDevice: it inherits the properties of a generic OutputDevice and adds some specialised methods of its

own.

Buzzer is also a subclass of OutputDevice, but it has different functionality. If you look into the documentation,

you will find that LED has a blink() method, whereas Buzzer has a beep() method. Both LED and Buzzer inherit

the same on() and off() methods from OutputDevice.

Chapter-4

The Goodies

One of my goals for this book has been to teach you as little Python as possible. When there were two ways to do

something, I picked one and avoided mentioning the other. Or sometimes I put the second one into an exercise.

Now I want to go back for some of the good bits that got left behind. Python provides a number of features that

are not really necessary—you can write good code without them—but with them you can sometimes write code

that’s more concise, readable or efficient, and sometimes all three.

1. Conditional expressions

Conditional statements are often used to choose one of two values; for example:

if x > 0:

y = math.log(x)

else:

y = float('nan')

This statement checks whether x is positive. If so, it computes math.log. If not, math.log would raise a

ValueError. To avoid stopping the program, we generate a “NaN”, which is a special floating-point value that

represents “Not a Number”.

We can write this statement more concisely using a conditional expression:

y = math.log(x) if x > 0 else float('nan')

You can almost read this line like English: “y gets log-x if x is greater than 0; otherwise it gets NaN”.

Recursive functions can sometimes be rewritten using conditional expressions. For example, here is a recursive

version of factorial:

def factorial(n):

if n == 0:

return 1

else:

return n * factorial(n-1)

We can rewrite it like this:

def factorial(n):

return 1 if n == 0 else n * factorial(n-1)

Another use of conditional expressions is handling optional arguments. For example, here is the init method

from GoodKangaroo

def init (self, name, contents=None):

self.name = name

if contents == None:

contents = []

self.pouch_contents = contents

We can rewrite this one like this:

def init (self, name, contents=None):

self.name = name

self.pouch_contents = [] if contents == None else contents

In general, you can replace a conditional statement with a conditional expression if both branches contain simple

expressions that are either returned or assigned to the same variable.

2. List comprehensions

In we saw the map and filter patterns. For example, this function takes a list of strings, maps the string

method capitalize to the elements, and returns a new list of strings:

def capitalize_all(t):

res = []

for s in t:

res.append(s.capitalize())

return res

We can write this more concisely using a list comprehension:

def capitalize_all(t):

return [s.capitalize() for s in t]

The bracket operators indicate that we are constructing a new list. The expression inside the brackets specifies

the elements of the list, and the for clause indicates what sequence we are traversing.

The syntax of a list comprehension is a little awkward because the loop variable, s in this example, appears in the

expression before we get to the definition.

List comprehensions can also be used for filtering. For example, this function selects only the elements of t that

are upper case, and returns a new list:

def only_upper(t):

res = []

for s in t:

if s.isupper():

res.append(s)

return res

We can rewrite it using a list comprehension

def only_upper(t):

return [s for s in t if s.isupper()]

List comprehensions are concise and easy to read, at least for simple expressions. And they are usually faster

than the equivalent for loops, sometimes much faster. So if you are mad at me for not mentioning them earlier, I

understand.

But, in my defense, list comprehensions are harder to debug because you can’t put a print statement inside the

loop. I suggest that you use them only if the computation is simple enough that you are likely to get it right the

first time. And for beginners that means never.

3. Generator expressions

Generator expressions are similar to list comprehensions, but with parentheses instead of square brackets:

>>> g = (x**2 for x in range(5))

>>> g

<generator object <genexpr> at 0x7f4c45a786c0>

The result is a generator object that knows how to iterate through a sequence of values. But unlike a list

comprehension, it does not compute the values all at once; it waits to be asked. The built-in function next gets the

next value from the generator:

>>> next(g)

0

>>> next(g)

1

When you get to the end of the sequence, next raises a StopIteration exception. You can also use a for loop to

iterate through the values:

>>> for val in g:

... print(val)

4

9

16

The generator object keeps track of where it is in the sequence, so the for loop picks up where next left off. Once

the generator is exhausted, it continues to raise StopIteration:

>>> next(g)

StopIteration

Generator expressions are often used with functions like sum, max, and min:

>>>sum(x**2 for x in range(5))

30

4. any and all

Python provides a built-in function, any, that takes a sequence of boolean values and returns True if any of the

values are True. It works on lists:

>>>any([False, False, True])

True

But it is often used with generator expressions:

>>>any(letter == 't' for letter in 'monty')

True

That example isn’t very useful because it does the same thing as the in operator. But we could use any to rewrite

some of the search functions we wrote in Section 9.3. For example, we could write avoids like this:

def avoids(word, forbidden):

return not any(letter in forbidden for letter in word)

The function almost reads like English, “word avoids forbidden if there are not any forbidden letters in word.”

http://www.greenteapress.com/thinkpython2/html/thinkpython2010.html#search

Using any with a generator expression is efficient because it stops immediately if it finds a True value, so it

doesn’t have to evaluate the whole sequence.

Python provides another built-in function, all, that returns True if every element of the sequence is True. As an

exercise, use all to re-write uses_all

5. Sets

I use dictionaries to find the words that appear in a document but not in a word list. The function I wrote

takes d1, which contains the words from the document as keys, and d2, which contains the list of words. It

returns a dictionary that contains the keys from d1 that are not in d2.

def subtract(d1, d2):

res = dict()

for key in d1:

if key not in d2:

res[key] = None

return res

In all of these dictionaries, the values are None because we never use them. As a result, we waste some storage

space.

Python provides another built-in type, called a set, that behaves like a collection of dictionary keys with no

values. Adding elements to a set is fast; so is checking membership. And sets provide methods and operators to

compute common set operations.

For example, set subtraction is available as a method called difference or as an operator, -. So we can

rewrite subtract like this:

def subtract(d1, d2):

return set(d1) - set(d2)

The result is a set instead of a dictionary, but for operations like iteration, the behavior is the same.

Some of the exercises in this book can be done concisely and efficiently with sets. For example, here is a solution

to has_duplicates, that uses a dictionary:

def has_duplicates(t):

d = {}

for x in t:

if x in d:

return True

d[x] = True

return False

When an element appears for the first time, it is added to the dictionary. If the same element appears again, the

function returns True.

Using sets, we can write the same function like this:

def has_duplicates(t):

return len(set(t)) <len(t)

An element can only appear in a set once, so if an element in t appears more than once, the set will be smaller

than t. If there are no duplicates, the set will be the same size as t.

For example, here’s a version of uses_only with a loop:

def uses_only(word, available):

for letter in word:

if letter not in available:

return False

return True

uses_only checks whether all letters in word are in available. We can rewrite it like this:

def uses_only(word, available):

return set(word) <= set(available)

The <= operator checks whether one set is a subset of another, including the possibility that they are equal, which

is true if all the letters in word appear in available.

As an exercise, rewrite avoids using sets.

6. Counters

A Counter is like a set, except that if an element appears more than once, the Counter keeps track of how many

times it appears. If you are familiar with the mathematical idea of a multiset, a Counter is a natural way to

represent a multiset.

Counter is defined in a standard module called collections, so you have to import it. You can initialize a Counter

with a string, list, or anything else that supports iteration:

>>> from collections import Counter

>>> count = Counter('parrot')

>>> count

Counter({'r': 2, 't': 1, 'o': 1, 'p': 1, 'a': 1})

Counters behave like dictionaries in many ways; they map from each key to the number of times it appears. As in

dictionaries, the keys have to be hashable.

Unlike dictionaries, Counters don’t raise an exception if you access an element that doesn’t appear. Instead, they

return 0:

>>> count['d']

0

We can use Counters to rewrite is_anagram :

def is_anagram(word1, word2):

return Counter(word1) == Counter(word2)

If two words are anagrams, they contain the same letters with the same counts, so their Counters are equivalent.

Counters provide methods and operators to perform set-like operations, including addition, subtraction, union

and intersection. And they provide an often-useful method, most_common, which returns a list of value-

frequency pairs, sorted from most common to least:

>>> count = Counter('parrot')

>>> for val, freq in count.most_common(3):

... print(val, freq)

r 2

p 1

a 1

7. defaultdict

The collections module also provides defaultdict, which is like a dictionary except that if you access a key that

doesn’t exist, it can generate a new value on the fly.

When you create a defaultdict, you provide a function that’s used to create new values. A function used to create

objects is sometimes called a factory. The built-in functions that create lists, sets, and other types can be used as

factories:

>>> from collections import defaultdict

>>> d = defaultdict(list)

Notice that the argument is list, which is a class object, not list(), which is a new list. The function you provide

doesn’t get called unless you access a key that doesn’t exist.

>>> t = d['new key']

>>> t

[]

The new list, which we’re calling t, is also added to the dictionary. So if we modify t, the change appears in d:

>>>t.append('new value')

>>> d

defaultdict(<class 'list'>, {'new key': ['new value']})

If you are making a dictionary of lists, you can often write simpler code using defaultdict. In my solution to,

which you can get from http://thinkpython2.com/code/anagram_sets.py, I make a dictionary that maps from a

sorted string of letters to the list of words that can be spelled with those letters. For example, ’opst’ maps to the

list [’opts’, ’post’, ’pots’, ’spot’, ’stop’, ’tops’].

Here’s the original code:

def all_anagrams(filename):

d = {}

for line in open(filename):

word = line.strip().lower()

t = signature(word)

if t not in d:

d[t] = [word]

http://thinkpython2.com/code/anagram_sets.py

else:

d[t].append(word)

return d

This can be simplified using setdefault, which you might have used in Exercise 2:

def all_anagrams(filename):

d = {}

for line in open(filename):

word = line.strip().lower()

t = signature(word)

d.setdefault(t, []).append(word)

return d

This solution has the drawback that it makes a new list every time, regardless of whether it is needed. For lists,

that’s no big deal, but if the factory function is complicated, it might be.

We can avoid this problem and simplify the code using a defaultdict:

def all_anagrams(filename):

d = defaultdict(list)

for line in open(filename):

word = line.strip().lower()

t = signature(word)

d[t].append(word)

return d

My solution to, which you can download from http://thinkpython2.com/code/PokerHandSoln.py,

uses setdefault in the function has_straightflush. This solution has the drawback of creating a Hand object every

time through the loop, whether it is needed or not. As an exercise, rewrite it using a defaultdict.

8. Named tuples

Many simple objects are basically collections of related values. For example, the Point object defined in contains

two numbers, x and y. When you define a class like this, you usually start with an init method and a str method:

class Point:

def init (self, x=0, y=0):

self.x = x

self.y = y

def str (self):

return '(%g, %g)' % (self.x, self.y)

This is a lot of code to convey a small amount of information. Python provides a more concise way to say the

same thing:

from collections import namedtuple

Point = namedtuple('Point', ['x', 'y'])

The first argument is the name of the class you want to create. The second is a list of the attributes Point objects

should have, as strings. The return value from namedtuple is a class object:

>>> Point

<class ' main .Point'>

Point automatically provides methods like init and str so you don’t have to write them.

To create a Point object, you use the Point class as a function:

>>> p = Point(1, 2)

>>> p

Point(x=1, y=2)

The init method assigns the arguments to attributes using the names you provided. The str method prints a

representation of the Point object and its attributes.

You can access the elements of the named tuple by name:

>>>p.x, p.y

(1, 2)

But you can also treat a named tuple as a tuple:

>>>p[0], p[1]

(1, 2)

>>> x, y = p

http://www.greenteapress.com/thinkpython2/html/thinkpython2012.html#setdefault
http://thinkpython2.com/code/PokerHandSoln.py

>>> x, y

(1, 2)

Named tuples provide a quick way to define simple classes. The drawback is that simple classes don’t always

stay simple. You might decide later that you want to add methods to a named tuple. In that case, you could define

a new class that inherits from the named tuple:

class Pointier(Point):

add more methods here

Or you could switch to a conventional class definition.

9.Gathering keyword args

we saw how to write a function that gathers its arguments into a tuple:

def printall(*args):

print(args)

You can call this function with any number of positional arguments (that is, arguments that don’t have

keywords):

>>>printall(1, 2.0, '3')

(1, 2.0, '3')

But the * operator doesn’t gather keyword arguments:

>>>printall(1, 2.0, third='3')

TypeError: printall() got an unexpected keyword argument 'third'

To gather keyword arguments, you can use the ** operator:

def printall(*args, **kwargs):

print(args, kwargs)

You can call the keyword gathering parameter anything you want, but kwargs is a common choice. The result is

a dictionary that maps keywords to values:

>>>printall(1, 2.0, third='3')

(1, 2.0) {'third': '3'}

If you have a dictionary of keywords and values, you can use the scatter operator, ** to call a function:

>>> d = dict(x=1, y=2)

>>> Point(**d)

Point(x=1, y=2)

Without the scatter operator, the function would treat d as a single positional argument, so it would

assign d to x and complain because there’s nothing to assign to y:

>>> d = dict(x=1, y=2)

>>> Point(d)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: new () missing 1 required positional argument: 'y'

When you are working with functions that have a large number of parameters, it is often useful to create and pass

around dictionaries that specify frequently used options.

	Unit – I
	Unit – II
	Unit – III
	Unit – IV
	Unit – V
	Unit 1 Chapter-1
	What Is a Program
	Install and Run Python:
	Python IDLE
	The First Program:
	Operators:
	Values and Types
	Chapter-2
	Variable Names
	Rules for naming :

	Note: If you give a variable an illegal name, you get a syntax error:
	Keywords in Python:
	Expressions and Statements:
	2. Script Mode:
	3. Order of perations:
	P-parentheses,
	4. Operations on strings:
	Unicode String support in Python
	5. Comments:
	Chapter-3 Functions
	Arguments in Functions
	Rules to define a function in Python.
	Creating a Function
	Calling a Function
	2. Math Functions:
	Some Constants
	Numbers and Numeric Representation
	Power and Logarithmic Functions
	Trigonometric & Angular Conversion Functions
	3. Composition:
	4. Adding new functions:
	5. Flow of Execution
	6. Parameters and Arguments:
	Required arguments
	Keyword arguments
	Default arguments
	Variable-length arguments
	Parameters Vs Arguments
	Number of Arguments
	Default Parameter Value:
	Passing a List as an Argument:
	Return Values:
	The pass Statement
	7. Variables and Parameters Are Local
	8. Stack Diagrams:
	9. Fruitful Functions and Void Functions
	void Functions:
	10. Why Functions?
	Unit-2
	How to use turtle module:
	Import the turtle module:
	Create a turtle to control:
	Draw around using the turtle methods:
	Run :
	2. Simple Repetition:
	3. Encapsulation :
	For ex: code to drawing the square
	4. Generalization:
	5. Interface Design:
	6. Refactoring:
	7. Docstring:
	Chapter-2 Conditionals and Recursion
	2. Boolean Expressions:
	3. Logical Operators:
	4. Conditional Execution:
	5. Alternative Execution:
	6. Chained Conditionals
	7. Nested Conditionals
	8. Recursion
	9. Infinite Recursion:
	10. Keyboard Input:
	Chapter-3 Fruitful Functions
	2. Incremental Development:
	3. Composition: (1)
	4. Boolean Functions
	5. More Recursion:
	6. Leap of Faith:
	7. Checking Types
	UNIT 3
	2. Updating Variables:
	3. The While Statement:
	Using else Statement with While Loop

	3. Break :
	4. Square Roots:
	Algorithms
	Chapter-2 Strings
	2. Traversal With A For Loop:
	3. String Slicing In Python:
	Syntax:

	4. Strings Are Immutable :
	String functions for searching:
	More Examples
	7. Looping And Counting
	8. String Methods
	9. The In Operator:
	10. STRING COMPARISON
	1. Reading word lists:
	2. Search
	3. Looping with indices
	Chapter-4 LIST
	How to create a list?
	How to access elements from a list?
	List Index
	Negative indexing
	4. List Slices:
	1.List is a sequence:
	Python Lists
	Updating Lists
	Lists are Mutable

	Delete List Elements
	4. Basic List Operations
	List Operations:
	How to delete or remove elements from a list?
	5. Indexing, Slicing, and Matrixes
	6. Python List Methods
	Built-in Functions with List
	Objects and values

	Aliasing
	Using Lists as Parameters

	output:
	UNIT-IV
	2. Dictionary as a Counter:
	3. Looping and Dictionary:
	4. Reverse dictionary lookup in Python
	5. Dictionaries and Lists:
	Multi-Dimensional List:

	Output:
	Difference between List and Dictionary:

	7. Python Global Variables
	Chapter-2 Tuples
	2. Tuples are immutable
	3. Tuple Assignment
	4. Tuples as Return Values
	5. List and Tuple
	6. Variable-length argument tuples:
	Syntax
	Example
	Output
	7. Dictionaries and Tuples
	Tuples
	Dictionaries
	8. Sequences of Sequences:
	1. Persistence
	2. Reading and Writing to text files in Python
	File Access Modes
	Opening a File
	Closing a file
	Writing to a file
	Reading from a file
	Appending to a file
	Data Persistence and Exchange
	Relational Databases
	Data Exchange Through Standard Formats

	3. Formatting Operator in Python
	4. Filenames and file paths in Python
	Output (1)
	6. Database
	Prerequisites
	7. Understanding Python Pickling with example
	Output: (1)
	8. Pipes in Python
	9.Modules
	More on Modules
	Note
	The Module Search Path
	Note (1)
	“Compiled” Python files
	Some tips for experts:
	Standard Modules

	The dir() Function
	Packages
	Importing * From a Package
	Intra-package References
	Packages in Multiple Directories
	Chapter-4 Classes and Objects
	Some points on Python class:
	Class Definition Syntax:
	Defining a class –
	Class Objects
	Declaring an object –
	Class and Instance Variables
	Attributes:
	Class vs. Instance Namespaces
	How Class Attributes Handle Assignment
	Mutability

	Under-the-hood
	Initialization
	Assignment
	Instances as Return Values
	Copying Mutable Objects by Reference
	Copying Immutable Objects
	Mutable objects:
	classes and functions:

	A Word About Names and Objects
	Python Scopes and Namespaces
	Scopes and Namespaces Example
	A First Look at Classes
	Class Definition Syntax
	class ClassName:
	Class Objects (1)
	class MyClass:
	>>> class Complex:
	...
	Instance Objects
	Method Objects
	Class and Instance Variables (1)
	class Dog:
	class Dog: (1)
	class Dog: (2)
	Random Remarks
	>>> class Warehouse:
	class C:
	class Bag:
	Inheritance
	Multiple Inheritance
	Private Variables
	class Mapping:
	Odds and Ends
	class Employee: pass
	Iterators
	class Reverse:
	... (1)
	Generators
	... (2)
	Generator Expressions
	Python - Functions
	Pass by Reference or pass by value
	Chapter-4 Classes and Objects (1)
	Defining and using a class
	Note (2)
	3. Instances as Return Values
	Mutable vs Immutable Objects in Python
	Error :
	Python Classes/Objects
	Create a Class
	Example (1)
	Example (2)
	Example (3)
	Example (4)
	UNIT-V
	Classes and Functions:
	b.Pure Functions
	c.Modifiers:

	Chapter-2 Classes and Methods
	Example:
	Output: (2)
	3.INIT:

	4. Python str ()
	5. Operator Overloading in Python
	Output: (3)
	How to overload the operators in Python?
	Overloading binary + operator in Python :
	Code 1:
	Code 2:
	Output :
	Overloading comparison operators in Python :
	Output : (1)
	Overloading equality and less than operators :
	Output : (2)
	Output (2)
	Output (3)
	8. Python-interface module
	Declaring interface
	Syntax :
	Syntax : (1)
	Output : (3)
	Type-based dispatch
	Chapter-3 Inheritance
	1. Card objects
	classCard:
	classCard: (1)
	importdoctest
	3. Comparing cards
	return0
	4. Decks:
	classDeck:
	5. Printing the deck
	classDeck: (1)
	classDeck: (2)
	returns
	5.Shuffling the deck
	classDeck: (3)
	Removing and dealing cards

	classDeck: (4)
	classDeck: (5)
	classDeck: (6)
	7.Inheritance
	Inheritance in Python
	Output: (4)
	What is object class?
	Output: (5)
	Different forms of Inheritance:
	variable.
	Protected members
	Output: (6)
	Private members
	Output: (7)
	Class diagrams
	Chapter-4
	2. List comprehensions
	3. Generator expressions
	4. any and all
	5. Sets
	6. Counters
	7. defaultdict

