FLAT Notes

UNIT-1

After going through this chapter, you should be abie 10 unersiana :

o Aiphabets, Sirings and Languages
o Mathemafical Induction

o Finite Automata

« Equivalence of NFAand DFA

o NFAwilh ¢ - moves

11 ALPHABETS, STRINGS & LANGUAGES

Alphabet

Analphabet, denoted by 3 ,isa inife and nonempty setof symbols.

Example:

1. | is an alphabet contaning ll the 26 characters sed in English language, then

y is finite and nonemptyset,and £ = fa,b,6,.....,3}.

2 X ={0,1} isanalphabet.
3, ¥ ={1,23,.} isnotanalphabotbecauseitisinfinite.

4, 7 =|) isnotanalphabetbecauseitisempty.

String

A string is a finite sequence of symbols from some alphabet.
Example :

"y isastring over an alphabet I ={a,b,c, .., 2} . Theempty stringor null siring is
denoted by ¢.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 2

Length of a string

The length of a string is the number of symbols in that string. If isa string then its length
isdenoted by | w|.

Example :

I w=abed , then length of w is | w|= 4
2. n=010 isastring then|n|= 3
3. e isthe empty string and has length zero.

The set of strings of length K (K > 1)

Let ¥ beanalphabetand £ = {a, b} ,thenall strings of length K (K > 1) isdenoted by vk,
2K =fw:w isastring of length K, K > 1}

Example:

l. Z={apb},then
' ={a,b},
2% ={aa,ab, ba,bb},
%* = {aaa,aab,aba,abb baa, bab,bba,bbb}
|Z'= 2 = 2' (Number of strings of length one),
| 2%|= 4 = 27 (Number of strings of length two), and
|2°|= 8 = 2° (Number of strings of length three)
2. §={0,1,2} ,then §? = {00,01,02,11, 10,12,22,20,21} ,and | §?| = 9 = 3?

Concatenation of strings

If w, and w, are two strings then concatenation of w, with w, isa string and it is denoted by
ww, . In other words, we can say that w, is followed by w, and | wyw,| = [w;| + | wy).

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 3

Prefix of a string

A string obtained by removing zero or more trailing symbols is called prefix. For example, if'a
string w = abe ,then o,ab b areprefixesof w.

Suffix of a string

Astringobtained by removing zero or more leading symbols s called suffx. For example, ifa
String w = abe ;then ¢, b, abe aresuffixesof w.
Astring « isaproper prefix or suffix ofa string w ifandonlyif o # w.

Substrings of a string

A string obtained by removing & prefix and a suffix from string s called substring of w . For
example, ifastring w = abe ythen » isasubstringof w. Every prefix and suffix of string w is
asubstring of w, but not every substringof w is a prefix orsuffix of . For every string w, both
wand g areprefixes, suffixes, and substringsof .

Substring of w =w~(one prefix)-(one suffix).

Language

A Language L over 3, is a subset of y*, i. e, it is a collection of strings over the
alphabe ¥. ¢ ,and (¢} are languages. The language ¢ isundefined as similar to infinity and
{¢} is similar to an empty box i.¢, a Janguage without any string,

Example:

1. L, ={01,0011,000111 } isalanguage overalphabet {0,1}
2. L, ={&,0,00,000,.} isalanguageoveralphabet {0}
3. L, ={0"1"2" ;n 21} isalanguage.

Kleene Closure of a Language

Let 7 bea language over some alphabet 3 , Then Kleene closureof 7, isdenoted by £, « and
it s also known as reflexive transitive closure, and defined as follows :

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 4

L* = {Set of all words over L}
= {word of length zero, words of length one, words of length two,}

EY =2 Ul VP
0

Y

Example:

l. £={a,b} andalanguage J over 3 .Then
PaBul ...
L' = {g
L' ={a,b},
I* = {aa,ab,ba,bb} andsoon.
So, L*={e,a,b,aa,ab,ba,bb...}
2. §={0}, then S* = {€,0,00,000,0000 ,00000}

Positive Closure

If 5, isan alphabet then positive closure of 5 is denoted by 5+ and defined as follows :

£t = 3" - (g = {Set of all words over ¥ excluding empty string €}
Example :
if £ = {0},then £* = {0,00,000,0000 ,00000 ,..}

1.2 MATHEMATICAL INDUCTION

Based on general observations specific truths can be identified by reasoning, This principle is
called mathematical induction. The proof by mathematical induction involves four steps.

Basis : Thisisthestarting point foraninduction. Here, prove that the resultis trueforsomen=0or 1.
Induction Hypothesis : Here, assume that the result is true forn =k .
Induction step : Prove that the result is true for somen=k+1.

Proof of induction step : Actual proof.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 5

1.3 FINITE AUTOMATA (FA)

A finite automata consists of a finite memory called input tape, a finite - nonempty set of states, an
input alphabet, aread - only head , a transition function which defines the change of configuration,
an initial state, and a finite - non empty set of final states.

A model of finite automata is shown in figure 1.1.

: § f+— Input Tape

ft—- Reading Head

Finite Control

FIGURE 1.1 : Model of Finite Automata

The input tape is divided into cells and each cell contains one symbol from the input alphabet.
The symbol "' is used at the leftmost cell and the symbol '$'is used at the rightmost cell to
indicate the beginning and end of the input tape. The head reads one symbol on the input tape
and finite control controls the next configuration. The head can read either from left - to - right or
right - to -left one cell at a time. The head can't write and can't move backward. So,, FA can't
remember ts previous read symbols. This is the major limitation of FA.

Deterministic Finite Automata (DFA)

A deterministic finite automata M can be described by 5-tuple (Q, £, 3, q,, F) , where

1.
2.

3,

Qis finite, nonempty set of states,

y isaninput alphabet,

§ is transition function whichmaps Qx£ — Q i.e. thehead reads a symbolinits present
state and moves into next state.

q, €Q,knownasinitial state

F cQ, knownas set of final states.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 6

Non - deterministic Finite Automata (NFA)

A non - deterministic finite automata M can be described by 5 - tuple (Q, £, 8, q,, F), where

1 Qis finite, nonempty set of states,

2.y isaninputalphabet,

3. § istransition function whichmaps Q xZ-» 2° i.e., the head readsa symbol inits present
state and moves into the set of next state (s) . 22 is power set of Q,

4. q, €Q,knownasinitial state , and

5. FcQ,known as set of final states.

The difference between a DFA and a NFA is only in transition function. In DFA, transition
function maps on at most one state and in NFA transition function maps on at least one state for
avalid input symbol.

States of the FA

FAhas following states :

1. Initial state : Initial state is an unique state ; from this state the processing starts.

2. Final states : These are special states in which if execution of input string is ended then
execution is known as successful otherwise unsuccessful.

3. Non-final states : All states except final states are known as non - final states.

4. Hang-states : These are the states, which are not included into Q, and after reaching these
states FA sits in idle situation. These have no outgoing edge. These states are generally

denoted by ¢ . For example, consider a FA shown in figurel.2.

FIGURE 1.2 : Finite Automata

g, istheinitial state, q,, g, are final states, and ¢ is the hang state.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 7

Notations used for representing FA

We represent a FA by describing all the five - terms (Q, £, §, q,, F). By using diagram to
represent FA make things much clearer and readable. We use following notations for representing
theFA:

I. Theinitial state is represented by a state within a circle and an arrow entering into circle as

shown below :
(Iniial state g,)

2, Final state is represented by final state within double circles :
(Final state g,)

3. Thehang state is represented by the symbol '¢" withina circle as follows :

4, Other states are represented by the state name within a circle.
5. Adirected edge with label shows the transition (or move). Suppose p is the present state
and q is the next state on input - symbol ‘a', then this is represented by

6. A directed edge with more than one label shows the transitions (or moves). Suppose pis the
present state and q is the next state on input - symbols 'a,' or ‘a," or...or 'a," thenthisis

represented by (P)—a=te 7

Transition Functions
We have two types of transition functions depending on the number of arguments.

Transition Function

Direct Indirect
(Represented by §) (Represented by §')

Direct transition Function (5)

When the input is a symbol, transition function is known as direct transition function.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 8

Example : §(p,a) = q (Where p s present state and q is the next state).
Itis also known as one step transition.

Indirect transition function (3')
When the input is a string, then transition function is known as indirect transition function.
Example : 6'(p,w)=¢q, where p is the present state and q is the next state after | w |

transitions. It is also known as one step or more than one step transition.
Properties of Transition Functions

1. Ifé(p,a)=q,then § (p, ax)=5(q x) andif &' (p, X) =q,then &' (p, xa) =8'(q, a)
2. Fortwostringsxandy; 6(p,xy) =6(6(p,x),y) ,and 8'(p,xy) =6'(8'(p,x),y)
Example :1. ADFA M = ({g0,9,,4,.9,},{0,1},6,9,.{q,}) isshowninfigurel.3.

FIGURE 1.3 : Deterministic finite automata

Where § is defined as follows :
0 1
> G G Q
q % G
4, O %
ql q2 Q1

2. ANFAM | =({9¢.91,92:9 s}, {0,1},6,9,,8q ;}) isshownin figurel 4.

0,1

*
O--O—O—0

FIGURE 1.4 : Non - deterministic finite automata

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 9

3. Transition sequence for the string "011011" is as follows :

One execution ends in hang state ¢ , second ends in non - final state g, , and third ends in final

state g, hence string "011011" is accepted by third execution.

Difference between DFA and NFA

Strictly speaking the difference between DFA and NFA lies only in the definition of § . Using this
difference some more points can be derived and can be written as shown :

DFA

NFA

1. The DFAIs 5 - tuple or quintuple
M =(Q,%,8,q,,F) where
Q s set of finite states
s, is set of input alphabets
§:0xZto Q
g, istheinitial state
Fc Q issetoffinal states

The NFA is same as DFA except in the
definition of §. Here, § is defined as follows :

5:0x(XUe) tosubset of 20

2. There can be zero or one transition
from a state on an input symbol

There can be zero, one or more transitions
from a state on an input symbol

3, No e- transitions exist i.e., there
should not be any transition ora
transition if exist it should be onan
input symbol

¢ - transitions can exist i. e., without any input
there can be transition from one state to
another state.

4. Difficult to construct

Easy to construct

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 10

The NFA accepts strings a, ab, abbb etc. by using ¢ path between ¢, and g, we canmove
from g, stateto g, without reading any input symbol. To accept ab first we are moving from ¢,

to g, reading aand we canjumpto g, state without reading any symbol there we accept band
we are ending with final state so it is accepted.

Equivalence of NFA with < - Transitions and NFA without ¢ Transitions

Theorem :Ifthe language L is accepted by an NFAwith ¢ transitions, then the language L,
is accepted by an NFAwithout e - transitions.

Proof : Consider an NFA 'N'with ¢ - transitions where N =(Q, Z, 8, ¢,, F)
ConstructanNFA N, without ¢ transitions N, =(Q,, £, 3, g, F})
where 0, =(Q and

i = Fu {qo} if €~ closure(q,) contains a stateof F
"|F otherwise

and 8, (g,a) is 8 (g,a) forqinQandain 5.

Consider anon - empty string . To show by induction || that §,(q,,) = (,,0)
For @ =¢, the above statement is not true, Because
0,(90,€)={q0} »

while 3(‘10»5)* ~closure (q,)

Basis :

Start induction with string length one .

i.e, lo|=1

Then wis asymbol a, and &, (¢, ,a)=5h(qo ,a) by definitionof §,.
Induction : lo|>1
Let ® = xy forsymbolain 3.
Then 0,(99,xy)=0,(8,(405%)7)

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 11

Calculation of < -closure :

€~ closure of state (e-closure (q)) defined as it is a set of all vertices p such that there is a
path fromq to p labelled ¢ (including itself).

Example :
Consider the NFA with ¢ - moves

B8-8-6

e - closure (¢,)= { 4o, 9, 45> 4, }
e~ closure (¢,)={ g,, 4., ¢; }

e - closure (¢,)= {g,, ¢, }

e closure (¢,)= {¢, }

Procedure to convert NFA with - moves to NFA without - moves

Let N =(Q, £,5,q,, F) isaNFAwith ¢ movesthen thereexists N'=(0,,5,g,,F") without
e Moves

1. Firstfind e - closure of all states in the design.
2. Calculate extended transition function using following conversion formulae.
0 5(g, x)=e- closure (35 (g,), x))

(1) é:(q,e)=e ~ closure(q)
3. F'isasetofall states whose e closure contains a final state in F.

Example 1 : Convert following NFAwith e moves to NFAwithout moves.

o0

Solution : Transition table for given NFAs

S a b
-4, 9 0
4, ¢ () 4

0 2 ¢

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 12

(i) Finding < closure :
e~—closure (g,) = {g,}

e- closure (g,) = {q,, ¢,}
e— closure (¢,) = {g,}

(i) Extended Transition function :
5 a b

—> 4, {21,9.2} ¢

o {9,}
¢ {9}

8 (go» @) =e ~closure (5 (8(44,€),)

= e—closure (8 (e—closure (q,) , a))

= e—closure (8 (q,, a))
= e—closure (g,)

={41,92 }

8 (g0, b) =e —closure (6 (5‘ (94€),b))
=e— closure(5(e- closure (q,), b))
=&~ closure(d (q,, b))
=&~ closure(¢)

=4

8 (g,, a) = e~ closure(5(5 (q,, €), @)
=e~ closure(d (- closure(q,), a))
=&~ closure(d ((q,s 4,), @)
=e— closure(d (q,, a) V(q,, a))
=e~— closure ()

=4

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 13

8 (g,,b) = €— closure (& (S (g,, €), b))
= €— closure (8 (€— closure(q,), b))
= e closure (8 (g, 4,), b))
= €~— closure (3 (g,,b) U & (q,,b))
= e~ closure (q,)

={q,}

§ (g,,a) = €~ closure (S(S(q,, €), a))
= €~ closure (8(€-closure(q,), a))
=€ —closure (6(q,,a))
= €~ closure (¢)
=¢
8 (g,, b) = e~ closure (5 (5 (g,,), b))
= €~ closure (5 (e—closure (q,), b))
= e~ closure (6 (q,, b))
= €~ closure (q,)

={q,}

(iii) Final states are g,, g¢,, because
€— closure (gq,) contains final state
€ - closure (g,) contains final state

(iv) NFA without € movesis

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 14

21 FINITE STATE MACHINES (FSMs)
amm.ﬁm@mmmmmm-wdm
Amodel of inite stite machine is shown in below figure

Pinits comtra]

A Output tage
FIGURE : Model of FSM |
2.4.1 Description of FSM

A finite state machine is represented by 6~ tuple (0,,4,5,4,4,) , whete

. Qisfinite and non - empty set of states,
2.y isinputalphabet,
3. 4 isoutputalphabet,

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 15

4. § istransition finction which maps present state and input symbol on to the next state or
OxZ-0,

5. . is the output function, and

6. g, isthe inifial state .

2.1.2 Representation of FSM

We represent a finite state machine in two ways ; one is by transition table, and another is by
transition diagram . In transition diagram , edges ane labeled with Input / output.

Suppose , in transition table the entry is defined by a function F, so for input a, and state g,
Fig,.a)= (8{(g,, a), Mg,.a)) {m & is tramsition finction, 3 Emm}

1 Consider a finite state maching, which changes 1's into s and O'sinto 1's
{ 1's complement) as shown in below figure .

Transition diagram :
°
FIGURE : Finite state machine
Transition table :
Inputs
0 1
Present MNext State (N5) | Output Wext State (NS) Output
State(P5)
q q 1 q]

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 16

Example 2 : Consider the finite state machine shown in below figure, which outputs the 2's
complement of input binary number reading from least significant bit (LSB).

FIGURE : Finite State machine
Suppose, input is 10100. What is the output ?

Solution : The finite state machine reads the input from right side (LSB).
Transition sequence for input 10100 :

Inputs
OO+

Outputs

So, the output is 01100.

2.2 MOORE MACHINE
If the outpur of finite state machine is dependent on present state only, then this model of
finite state machine is known as Moore machine.

A Moore machine is represented by 6-tuple (0, £,A,4, 4,4,), where

Q is finite and non-empty set of states,
£ isinput alphabet,

A isoutput alphabet,

$ is transition function which maps present state and input symbol on to the next state or
OxL -0,

» is the output function whichmaps Q — A, (Present state —» Output), and

g, & Q,isthe initial state .

If Z (1), ¢ () are output and present state respectively at time # then
Z(t) = Mg ().
Forinput ¢ (null string), Z () = A (initial state)

B LB -

o\ W

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 17

Consider three LSBs of Input
000 (X)
001 (X)
010 (X)
011 (X)
..100 (X)

101
J10
sl LX)

. 110/B
do

S

£
=3

QO Wwh OGO O O

Transition diagram :

xjc

& ©

FIGURE : Moore Machine

24 EQUIVALENCE OF MOORE AND MEALY MACHINES

We can construet equivalent Mealy machine for a Moore machine and vice-versa. Let M, and
M, be equivalent Moore and Mealy machines respectively. The two outputs 7, (w) and 7, (w)
are produced by the machines M, and M, respectively for input string w . Then the length of

1, (w) is one greater than the length of 7,(w), Le.

HOIEINIGIER!

The additional length is due to the output produced by initial state of Moore machine. Let output
symbol x is the additional output produced by the initial state of Moore machine, then -
Ty(w) = xT,(w). |

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 18

It means that if we neglect the one initial output produced by the initial state of Moore machine,
then outputs produced by both machines are equivalent. The additional output is produced by
the initial state of (for input ¢) Moore machine without reading the input. ’

Conversion of Moore Machine to Mealy Machine
Theorem :If i, =(Q,Z,A,6,4,4,) isaMoore machine then there exists a Mealy machine
M, equivalentto M. }
Proof : We will discuss proof in two steps.
Step 1 : Construction of equivalent Mealy machine A, ,and
Step 2 : Outputs produced by both machines are equivalent.
Step 1(Construction of equivalent Mealy machine M,)
Let M, =(Q,%,A,8,4',q,) whereallterms 0, %, A, 8, ¢, are same as for Moore machine and
A’ is defined as following :
A (g,a) = A(8(q,0) forallg e Qand 4 ¢ ¥

The first output produced by initial state of Moore machine is neglected and transition
sequences remain unchanged.
Step 2 : If x is the output symbol produced by initial state of Moore machine ,, and
T;(w), T, (w) are outputs produced by Moore machine A/, and equivalent Mealy machine 3,
respectively for input string w, then

T,(w) = xTy(w)
Or Output of Moore machine = x| | Output of Mealy machine _
(The notation | | represents concatenation).

If we delete the output symbol.x from 7, (w) and supposeitis 7y (w) whichis equivalentto

the output of Mealy machine. So we have,
5 (w) = Bw)
Hence, Moore machine #, and Mealy machine M, are equivalent.

Example 1: Constructa Mealy machine equivalent to Moore machine A/, givenin following
fransition table.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 19

3. A remains unchanged,
4. 3 isdefined as follows :
8" (lg, b]. a) = [8 (g, a), A (g, a)], where § and), are transition function and output
function of Mealy machine.
5. isthe oufput function of equivalent Moore machine which is dependent on present state
only and defined as follows :
M([g,6]) = b
6. o, istheinitial state and defined as [g,,5], where ¢, isthe initial state of Mealy machine and
b, is any arbitrary symbol selected from output alphabet A .
Step 2 : Outputs of Mealy and Moore Machines
Suppose, Mealy machine M, enters states g, g, ¢5,...9, On input a,, a,, a,,....q, and
produces outputs b,, b,, by, ... b,, then M, entersthe states [g,, 4,1, [¢;, bl 5] . .14, 8]
and produces outputs &y, b,, b,, ... b, asdiscussed in Step 1. Hence, outputs produced by both
machines are equivalent.
Therefore, Mealy machine M, and Moore machine M, are equivalent.

Example 1 : Consider the Mealy machine shown in below figure. Construct an equivalent
Moore machine. '

FIGURE : Mealy Machine
Solution : Let M,=(Q,2A0,1,4,) is a given Mealy machine and
M,=(0"2,A8"4",q,") betheequivalent Moore machine,
where

L. Q' c{l9¢,7)[40. 1,141, 71,[¢1,),[9257).[4,.]} (Since, @' < O x A)
2. T=4{0,1

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 20

3. A={myh
4. g,'=[g,,¥]» Where g, is theinitial stateand y isthe output symbol of Mealy machine,
5. & isdefinedas following : :

For initial state[g,,] :
5'([q0’y]>0) - [5(q0 ’0),/1(q0 >0)] = [qhn]
5'([‘10’ y]?l) = |5(40J),/1(%)])] = [‘12’"]
For state [¢,, 7] :
8 ([gy 7, 0) = [8(q1,0), 2 (9, 0 = [, V]
8'([ql.’n]:l) = [S(ql ,1),).((]1 A)]={q2 ,n]
For state [g,, 1] :
&’ ([‘b’ n]s 0) = [6 (42’ 0): A (‘12, 0)} & [qls n]
8 (lgpn), 1) =[3(g2: 1), A (2. D) = 19,
For state [g;, y] :
5 ([g, ¥ 0) = [8 (915 0 M (9 O] = [g1,]
8 (19, ¥ D) = [8 (g1 s A (91, D1 = [425 1)
For state [g,, y]
o' ([42» ¥, 0) = [8 (427 0, A (‘11 0] = [41; "]
&' ([%, L) = (8 (an 1), A (425 D] = [4, ¥l

(Note : We have considered only those states, which are reachable from initial state)

6. 3 isdefined as follows:
Algos¥1=¥
A g, n] = n
Ngy,n] = n
Mgyl =y
Nigyyl=y

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 21

2.5 EQUIVALENCE OF FSMs

"Two finite machines are said to be equivalent if and only if every input sequence yields identical
output sequence.

Example :
Consider the FSM M, shown in figure (2) and FSM M, shown in figure (b).

W (A

Figure (b)

Arethese two FSMs equivalent ?
Solution :
We check this. Consider the input strings and corresponding outputs as given following :

input string Output by ¥, Output by A,
(1) 01 00 00

{2) 010 001 001
(3)0101 0011 0011
{4) 1000 - 0111 0111
(5) 10001 01111 01111

Now, we come to this conclusion that for each input sequence, outputs produced by both machines
are identical. So, these machines are equivalent. In other words, both machines do the same

task. But, M, hastwo states and 7, has four states. So, some states of M, are doing the same

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 22

taski. e., producing identical outputs on certaininput. Such states are known as equivalent states
and require extra resources when implemented.
Thus, our goal is to find the simplest and equivalent FSM with minimum number of states.

251 FSM Minimization

We minimize a FSM using the following method, which finds the equivalent states, and merges
these into one state and finally construct the equivalent FSM by minimizing the number of states.

Method : Initially we assume that all pairs (g,,¢,) over states are non - equivalent states
Step 1 : Construct the transition table.

Step 2 : Repeat for each pair of non - equivalent states (gq,,) *
(@ Do g, and g, produce same output ?
() Do g, and g, reach the same states for each input ¢ €27
(¢) Ifanswers of (a) and (b) are YES, then ¢, and g,are equivalent states and
merge these two states into one state [g,,¢,] and replace the all occurrences of
g, and g, by [q,.¢;] and mark these equivalent states.

Step 3 : Check the all - present states, if any redundancy is found, remove that.

Step 4 : Exit.
Example 1 : Consider the following transition table for FSM. Construct minimum state FSM.
Inputs
: 0 1
Present Next State Next State
State(PS) (NS) (NS) Output
9 9 4, 0
4, 4 4, 1
qz ql qo 1
gs a, % 1

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 23

After going through this chapter, you should be able to understand :

o Regular sets and Regular Expressions -

o Identty Rules | Unit-11 '
o Constructing FAfor agiven RES

o Conversionof FAto RES

o Pumping Lemma of Regular sets

o Closure properties of Regular sets

3.1 REGULAR SETS

A special class of sets of words over S, called regular sets, is defined recursively as follows,
(Kleene proves that any set recognized by an FSM is regular. Conversely, every regular set can
be recognized by some FSM.)

L. Everyfinite set of words over § (including ¢, the empty set) is a regular et

2. If Aand B are regular sets over §, then 4., p and AB are also regular,

3. IfSisaregularsetoverS, then so is ts closure §*,

4. Nosetisregularunless it is obtained by a finite number of applications of definitions (1)to (3).

1,6, the class of regular sets over § is the smallest class containing all finite sets of words over §
and closed under union, concatenation and star operation.

Examples:

) Let £={a,b}then the set of strings that contain both odd number of a's and b's is a
regular set.

ii) Let £ = {0,1) thenthe setof strings {01,10 } isaregular set,

]
FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 28

3.2 REGULAR EXPRESSIONS

The languages accepted by FA are regular languages and these languages are easily described
by simple expressions called regular expressions. We have some algebraic notations to represent
the regular expressions.

Regular expressions are means to represent certain sets of strings in some algebraic
manner and regular expressions describe the language accepted by FA.

If § isanalphabet then regular expression(s) over this can be described by following rules.
. Any symbol from £ and ¢ areregular expressions.
If , and r, are two regular expressions then union of these represented as r, U r, or

n + r, isalsoaregular expression
If , and r, are two regular expressions then concatenation of these represented as rr, is
also a regular expression.
. The Kleene closure of a regular expression r isdenoted by + is also a regular expression.
. Ifrisaregular expression then (r) isalsoa regular expression.
. The regular expressions obtained by applying rules 1 to 5 once or more than once are also
regular expressions.

Examples :

(1) If £ = {a, b} ,then

(a) aisaregularexpression (Usingrule 1)
(b) bisaregularexpression (Usingrule 1)
(¢) a + b isaregular expression (Using rule 2)
(d) 5+ isaregularexpression (Using rule 4)
(€) ab isaregular expression (Using rule 3)
() ab + b+ isaregularexpression (Using rule 6)
(2) Find regular expression for the following

(a) A language consists of all the words over {a, b} endingin p .

(b) A language consists of all the words over {a, b} endingin pp.

(c) A language consists of all the words over {a, b} starting with aand ending in .

(d) A language consists ofall the words over {a, b} having p5 asasubstring.

(¢) A language consists ofall the words over {a, b} ending in aab.

Solution :let £={a,b}, and

Allthe wordsover £ = {e a, b, aa, bb, ab, ba, aaa, }=St*or(@a+b)*or(avb)*

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 29

=({ga,b,aa,bb,...})*

= {& a,b, aa, bb, ab, ba, aaa, bbb, abb, baa, aabb, ...}
= {All the words over {a, b} }

w(a+bh)?

So,(@a*+b*)* =(a+b)*

3.3 IDENTITIES FOR REs

The two regular expressions P and Q are equivalent (denoted as P = Q) if and only if P
represents the same set of strings as Q does. For showing this equivalence of regular expressions
we need to show some identities of regular expressions.

Let P, Q and R are regular expressions then the identity rules are as given below
L. €R=Re=R

€'=¢ eisnull string

(#) =¢ ¢ is empty string.

0R=Rp=4

d+=R=R

R+R=R

RR*=R*R=R'

(R) =K

e+RR' =K'

(P+Q)R=PR+0OR

(P+Q) =(P'Q)=(P'+Q)

R'(e+R)=(e +R)R' = R’

2.
:
4,
5.
6.
7.
8.
9.

g D ik P
T o o —

(R+e) =R
et+R' =R’
(PQ) P=P(QP)
RR+R=RR

._.
&~

P
SN W

3.3.1 Equivalence of two REs

Let us see one important theorem named Arden's Theorem which helps in checking the
equivalence of two regular expressions.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 30

Arden's Theorem : Let P and Q be the two regular expressions over the input set 3. The
regular expression R is given as

R=0Q+RP
Which has a unique solutionas R = QP"

Proof : Let, P and Q are two regular expressions over the input string ¥. .
IfP does not contain e then there exists R such that
R=Q+RP (1)
We will replace R by QP* in equation 1.
Consider R. H. S. of equation 1.
=0+QP'P
=0(e +P"P)
=QP’ v e+ R'R=R'
Thus R=QF
isproved. To prove that R = QP"isa unique solution, we will now replace L.H.S. of equation 1
by Q + RP. Then it becomes
Q+RP
But agachanbereplaced byQ+RP.
Q+RP=Q+(Q+RP)P
=(0+QP+ RP*
Again replace R by Q + RP.
=0+0P+(Q+RP)P
=0+0P+0QP +RP
Thus if we go on replacing R by Q + RP then we get,
Q+RP=0Q+QP+QP +....+0P' + RP"™
=Q(€+P+P* +...P'")+ RP""
From equation 1,
R=0(e+P+ P +...+P')+ RP™
Where i>0
Consider equation 2,

R=Q(e+P+P* ...+ P')+ RP™

»”

R=QP +RP"
Letwbeastnngoflengthl

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 31

={e,0,00,1,11,111,01,10, }
= { e,any combination of0's, any combination of 1's, any combination of
Oand 1 }
Hence, L.H.S.=R. H.S. is proved,

3.4 RELATIONSHIP BETWEEN FA AND RE

There isa close relationship between a finite automata and the regular expression we can show
thisrelation in below figure.

Canbe Regular Canbe
Converted 7 expression converted to

NFA with
& moves

Can be Canbe
converted converted to
NFA without
e moves

FIGURE : Relationship between FAand regular expression
The above figure shows that it is convenient to convert the regular expression to NFAwith e
moves. Let us see the theorem based on this conversion.

3.5 CONSTRUCTING FA FOR A GIVEN REs
Theorem :If » bearegular expression then there exists a NFAWIt ¢ -moves, which accepts L(r).
Proof : First we will discuss the construction of NFA with & - moves for regular expression
r and then we prove that L(M) = L(r).

Let » be the regular expression over the alphabet 5 .

Construction of NFA with ¢ - moves
Case1:

@ r=¢

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 32

NFA M= ({S! f}v { }ﬁ’ 5, V}) aSShowninFigurCI (a)
(No path from initial state s to
§
reach the final state f)

Figure 1 (a)

i) r=¢€

NFA M = ({s}, { }.8, s {s}) asshownin Figure I (b)

< > (The initial state s is the final state)
Figure 1 (b)
(i) » = aq,foralla €2,
NFA M = ({s, /},£,8,5 {f})
C a @ (One path is there from initial state s
to reach the final state fwith label a.)
Figure 1(c)

Case2: |r|21

Let , and r, be the two regular expressions over £,, £, and N, and N, are two NFA for
r, and r, respectively as shown in Figure 2 (a).

Figure 2 (a) NFAfor regular expression » and r,

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 33

Now let us compute for final state, which denotes the regular expression.
r willbeoomputcd,bccausethereaxetotal2statesandﬁnalsmeis g, whose start state is g,.
= ek P o)
=0(e)*(€)+ 0
=0+0
r} = 0 which isa final regular expression.

3.6.1 Arden's Method for Converting DFA to RE

As we have seen the Arden's theorem is useful for checking the equivalence of two regular
expressions, we will also sec its use in conversion of DFA to RE.

Following algorithm is used to build the . ¢. from given DFA.

1. Let g, betheinitial state.
2. Thereareq,, ¢,43,94+-Qx number of states. The final state may be some ¢, where j <n
3. Let ., represents the transition from g, 10 g,.
4. Calculate g, such that
q=a,4,
If g, isastart state

q,=a;4q,*+€

5. Similarly compute the final state which ultimately gives the regular expressionr.

Example 1 : Construct RE for the given DFA.

Solution :

Since there is only one state in the finite automata let us solve for g, only.

Qo =900+ gol+€
Go=qo(0+1)+e

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 34

Example 3 : Construct RE for the DFA given in below figure.

Solution : Letus see the equations
G =q1+g,0+€
q; =g,0
g =4l
g, =q,0+ 4,1 +45(0+1)

Letus solve g, first,
go = g1 + q,0+€
g = q;01+q,l0+€
Go = q5(01+10)+ € ~*R=Q+RP
g, =€{01+10)* = QP* where
go <(01+10)* R=g,0=¢,P=(01+10)

Thus the regular expression will be
r=(01+10)*

Since g, isa final state, we are interested in g, only.

Example 4 : Find out the regular expression from given DFA.
0

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 35

Example 8 : Show that the language L ={a' b"|i>0} is not regular.

Solution : The set of strings accepted by language L is,
L = {abb, aabbbb, aaabbbbbb, aaaabbbbbbbb...}

Applying Pumping lemma for any of the strings above.

Take the string abb.

It is of the form uvw.

Where, |wv |<i|v]2]
To find i such that w'we L
Take i =2 here, then
w'w = a(bb)b
=abbb
Hence uv'w=abbb £ L

Since abbb is not present in the strings of L.
- Lisnot regular.

Example 9 : Show that L = {0"|n is a perfect square } is not regular.

Solution :
Step 1 : Let L is regular by Pumping lemma. Let n be number of states of FA accepting L.

Step2: Let ; = 0* then |z|=n22.
Therefore, we can write z=uvw ; Where |wvisnjvi1.
Take any string of the language L= { 00, 0000, 000000 }
Take 0000 as string, here u= 0, v=0, w=001o find i such that w'we L.
Take i =2 here, then
w'w= 0(0)%00

= 00000
This string 00000 is not present in strings of language L. S0 uv'we L.

-, Itis a contradiction.

3.9 PROPERTIES OF REGULAR SETS
Regular sets are closed under following properties.

1. Union
2. Concatenation

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 36

Kleene Closure
Complementation
Transpose
Intersection

Union : If R and R, are two regular sets, then union of these denoted by R, + R, or
R, R, isalso aregular set.

Proof : Let R and R, be recognized by NFA N, and N, respectively as shown in
Figurel(a)and Figurel(b).

FIGURE 1(b) NFA for regular set R,
We construct a new NFA N based on union of N, and N, as shown in Figure 1 (¢)

FIGURE 1(c) NFAfor N, + N,
Now,

L(N) = e L(N)) € + e I(N,) €
=€ R + eR,e

=R|+R2

Since, Nis FA, hence L(N) isaregular set (language). Therefore, R, + R, isaregular set.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 37

2. Concatenation: If R and R, are two regular sets, then concatenation of these denoted
by R,R, isalsoaregular set.
Proof : Let R and R, be recognized by NFA N, and N, respectively as shown in
Figure 2(a) and Figure 2(b).

FIGURE 2({b) NFA for regular set R,
We construct anew NFA N based on concatenation of N, and N, asshownin Figure2(c).

FIGURE 2(c) NFA for regular set R,R,
Now,

L(N) = Regular setaccepted by N, followed by regular set accepted by N, = R,R;
Since, L(N) isaregular set, hence R|R, is also a regular set.

Kleene Closure : If R isa regular set, then Kleene closure of this denoted by R*isalso
aregular set.

Proof : Let R isaccepted by NFA y shown in Figure 3(a).

FIGURE 3(a) NFA for regular set R

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 38

We construct a new NFA based on NFA N as shown in Figure 3(b).

FIGURE 3(b) NFA for regular expression for R
Now,

L(N)={¢,R,RR,RRR,.}
=L’
Since, L(N) is aregular set, therefore R* is a regular set.

. Complement : If g is a regular set on some alphabet 5, then complement of 2 is

denoted by £° - R or f isalsoa regular set.
Proof : Let g be accepted by NFA N = (Q,2,5,s5,F) . It means, L(N)=R.
N is shown in Figure 4(a).

FIGURE 4(a) NFA for regular set R
We construct anew NFA ' based on y as follows :
(a) Change all final states to non-final states.

(b) Change all non-final states to final states.
N 'is shown in Figure 4(b)

FIGURE 4 (b) NFA

—_—
FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 39

Now,

L(N")= {All the words whichare not accepted by NFA N}

= { All the rejected words by NFA N}

=2 -R

Since, L(N') isaregular set, therefore (£ — R) isaregular set.

. Transpose : If Risarcgular set, then the transpose denoted by g7, isalsoa regular set.
Proof : Let g beaccepted by NFA N = (Q.2,6 ,5,F) asshown in Figure 5(a).

FIGURE 5 (a) NFA N for regular set R

If w isawordin g, then transpose (reverse) is denoted by 7 .
Let w = a,4,...a,
Then w” =aq,a,_,...a,

We construct anew A" based on y using following rules :

(a) Change the all final states into non-final states and merge all these into one state and make it

(b) Change initial state to final state.
(c) Reverse the direction of all edges.
A" is shown in FigureS (b)

FIGURE 5(b) NFA N'for regular set p’

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 40

Let w = aya,...a, beawordin p,then itis recognized by a7 and

w' =a,a,_,..a, isrecognizedby N+ asshown in Figure5 (b)

In general, we say that if a word » in R is accepted by n,and then p» accepts ,,7 .
Since, L(N") is aregular set containing all w? ;itmeans, L(N')= R".

Thus, R" isaregular set.

Intersection : if R and R, are two regular sets over 3, then intersection of these
denoted by R, N R, isalso aregular set.

Proof : By De Morgan's law for two sets 4 and B over R,
ANB=R*~((R*-4)U (R*-B))

SO, R N Ry =Z*—((£*-R))U(E*-R,))

Let R, = (Z*-R,) and R, =(Z*-R,)

So, R; and R, are regular sets as these are complement of R and R,.

Let R, =R, UR,

So, Ry isaregular set because it is the union of two regular sets R, and R,.
Let R, =Z*-R,

So, R isaregular set because it is the complement of regular set R;.
Therefore, intersection of two regular sets is also regular set.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 41

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 42

REGULAR GRAMMARS

e T TR e A g R e

After going through this chapter, you should be able to understand :

o Regular Grammar
o Equivalence between Regular Grammar and FA
¢ [nterconversion

4.1 REGULAR GRAMMAR

Definition : The grammar G=(V, T. P, S is said to be regular grammar iff the grammar is
right linear or left linear.
A grammar G is said to be right linear if all the productions are of the form
A->wB and/or A »>w where 4, BeV and 1y c7°.

A grammar G is said to be left linear if all the productions are of the form
A—>Bw and/or A >w where 4, BeV and 7.

Example 1: The grammar

S > aaB |bbA | ¢

A - aAlb

B - bBlaje
isaright linear grammar. Note that < and string of terminals can appear on RHS of any production
and if non - terminal is present on R. H. S of any production, only one non - tetminal should be
present and it has to be the right most symbolonR. H. S.
Example 2 :

The grammar

S — Baa|Abb| ¢

A - Aalb

B - Bbla]e
isaleft linear grammar. Note that e and string of terminals can appear on RHS of any production
and if non - terminal is present on L. H. S of any production, only one non - terminal should be
present and it has to be the left mostsymbol onL. H. S.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 43

Example 3:
Consider the grammar
S - aA
A - aB|b
B - Abla

Inthis grammar, each production s either left linear or right linear. But, the grammar is not either
Jeft linear or right linear. Such type of grammar is called linear grammar. So, a grammar which has
at most one non terminal on the right side of any production without restriction on the position of
this non - terminal (note the non - terminal can be leftmost or right most) is called linear
grammar.

Note that the language generated from the regular grammar is called regular language. So, there
should be some relation between the regular grammar and the FA, since, the language accepted
by FAis also regular language. So, we can constructa finite automaton given aregular grammar.

4.2 FAFROM REGULAR GRAMMAR

Theorem : LetG=(V, T, P,S)be a right linear grammar. Then there exists a language L(G)
which is accepted by a FA. i e., the language generated from the regular grammar
is regular language.

Proof :Let ¥ =(q,, g,.....) bethe variables and the start state §=¢, Let the productions in
the grammar be
9 = X%
q, > X4

G > H9%

dn > Xpqn

Assume that the language 1(G) generated from these productions isw. Corresponding to each
production in the grammar we can have a equivalent transitions in the FA to accept the string w.
After accepting the string w, the FAwill be in the final state. The procedure to obtain FA from
these productions is given below :

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 44

Step 1: g, whichis the start symbol in the grammar is the start state of FA.

Step 2: For each production of the form

q; s wyg 7
the corresponding transition defined will be
S g w)=4,3
Step 3 : For each production of the form ¢, — w

the corresponding transition defined will be &' (g,, w) =g, ,where g, is the final state,

As the string w € Z(G) is also accepted by FA, by applying the transitions obtained from
stepl through step3, the language is regular. So, the theorem is proved.

Example 1 : Constructa DFAto accept the language generated by the following grammar

S - 014
A - 10B
B - 04|11

Solution :

Note that for each production of the form A wB, the corresponding transition will be
3(4, w) = B.Also,, for each production 4 - w , we can introduce the transition 8(4,w) =g,

where ¢, isthe final state. The transitions obtained from grammar G is shown using the following
table :

Productions Transitions

S . 8(S, 01)=4
A 8(4, 10)=B
B 8B, 0)=4
B ‘ 5B, 11)=¢,

The FA corresponding to the transitions obtained is shown below :

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 45

So,the DFA M =(0.%, 8, 4,. 4) where
0=1{58,4,8,9, 4 99} , Z={01}
g =5, A={a,}
& is as obtained from the above table.
The additional vertices introduced are ¢,,g,, ¢

Example 2 : Constructa DFAto accept the language generated by the following grammar .
S oy aA| e
A - aAlbB| e
B — bB| e

Solution :

Note that for each production of the form 4> wB , the corresponding transition will be

8(4,w) = B.Also, for each production 4 —» w , We can introduce the transition 8(4,w) =¢,

where ¢, isthe final state. The transitions obtained from grammar G is shown using the following
table :

Productions Transitions
8(S,a)= 4
S isthe final state
8(A,a)= A
5(A,b)=B
A isthe final state
5(B,b) =B
Bis the final state.

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 46

Note : For cach transition of the form 4 —y¢, make A as the final state.
The FA corresponding to the transitions obtained is shown below :

So,the DFA M =(Q.%, 8, g,, 4) where
Q={S,4,B} , Z={a,b}
g,=8 , A=1{S, 4, B}
§is as obtained from the above table .

4.3 REGULAR GRAMMAR FROM FA

Theorem : Let M =(0,%,5,9,,4) beafinite automaton. If Lis the regular language accepted
by FA, then there exists a right linear grammar G = (V, T, P, §) so that L = L(G).

Proof ; Let M =(0,2,6,9,,4) beafinite automata accepting L where
Q = {‘70 Wy >""Qn}
I = {a;.a;.,...a,}
Aregular grammar G = (V, T, P, §) can be constructed where
V = { qD! q}’ “"qu}
=X
S=g,
The productions P from the transitions can be obtained as shown below ;
Step 1 : For each transition of the form 8(g,, @) =¢,

the corresponding production defined will be ¢, — ag,

Step 2: If ¢ ¢ 4 i.e., if q is the final state in FA, then introduce the production
q—e

Asthese productions are obtained from the transitions defined for FA, the language accepted by
FAis also accepted by the grammar,

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 47

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 48

REGULAR GRAMMARS
m
After going through this chapter, you should be able to understand :

o Regular Grammar
o Equivalence between Regular Grammar and FA
o Interconversion

41 REGULAR GRAMMAR

Definition : The grammar G=(V,T,P, S) is said to be regular grammar iff the grammar is
right inear or left linear.
A grammar G is said to be right linear if all the productions are of the form

A->wB and/or A ->w where 4, BeV and 1y 7"

A grammar G is said to be left linear if all the productions are of the form
A—Bw and/or A »w where 4, BeV and 7.

Example 1: The grammar

S - B |bbA| ¢

A o aAlb

B s bB ; a{ &
is aright linear grammar, Note that ¢ and string of terminals can appear on RHS of any production
and ifnon - terminal is present on R, H. S of any production, only one non - terminal should be
present and it has to be the right most symbol on R. H. S.
Example 2:

The grammar

S — Baa | Abb | ¢

A - Aalb

B - Bbla]e
isaleft linear grammar. Note that « and string of terminals can appear on RHS of any production
and ifnon - terminal is present on L. H. S of any production, only one non - terminal should be
present and it has to be the left most symbolonL. H. S.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 49

Note : For cach transition of the form 4 —y¢, make A as the final state.
The FA corresponding to the transitions obtained is shown below :

So, the DFA M =(0.3, 8, g,, 4) where
O0={S,4,B} ,2={a,b}
g =8, 4={S, 4, B}
§isas obtained from the above table .

4.3 REGULAR GRAMMAR FROM FA

Theorem: Let i = (Q,Z,5,9,4,4) beafinite automaton. If L is the regular language accepted
by FA, then there exists a right linear grammar G = (V, T, P, $) so that L = L(G).

Proof : Let 4 =(0,2,6,9,,4) beafinite automata accepting L where
O ={q0:q1>q4}

z={a,.a;,..a,}
Aregular grammar G=(V, T, P, S) can be constructed where
V=149 4,}
I=X
S=¢,
The productions P from the transitions can be obtained as shown below :
Step 1 : For each transition of the form 8(g,, @) =¢ Yy

the corresponding production defined will be ¢, = ag,

Step 2: If ¢ €4 i.e,, if g is the final state in FA, then introduce the production
g —e

As these productions are obtained from the transitions defined for FA, the language accepted by
FAis also accepted by the grammar.

_—
FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 50

CONTEXT FREE GRAMMARS

After going through this chapter, you should be able to understand :

Context free grammars

Left most and Rightmost derivation of strings
Derivation Trees

Ambiguity in CFGs

Minimization of CFGs

Normal Forms (CNF & GNF)

Pumping Lemma for CFLs

Enumeration properties of CFLs

5.1 CONTEXT FREE GRAMMARS

A grammar G = (V, T, P, S) issaid to be a CFG if the productions of G are of the form :
A—>a whereae(VuT)*
The right hand side of a CFG is not restricted and it may be null or a combination of variables and

terminals. The possible length of right hand sentential form ranges from Oto o ie., 0 < | o | <.

As we know that a CFG has no context neither left nor right. This is why, it is known as
CONTEXT - FREE. Many programming languages have recursive structure that can be
defined by CFG's.

Example 1 : Considerthe grammar G = (¥, T, P, S) having productions :
S — aSa | bSh| €. Check the productions and find the language generated.

Solution :
Let P, :S — aSa (RHSisterminal variable terminal)
P, : § - bSh (RHSisterminal variable terminal)
P,: S - e (RHSisnullstring)
Since, all productions are of the form A4 — o, where @ e(V U T') * ,hence G isaCFG

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 51

So, the final grammar to generate the language L= {w|n,(w)=n, (w)} sG=(V,T,P,S)
where
{8} , T ={ab}
{ S>> €
S— aSh
S bSa
S— 5§
} S isthe start symbol

5.2 LEFTMOST AND RIGHTMOST DERIVATIONS

Leftmost derivation :

IfG=W,T,P,S) isaCFGand w € L(G) then a derivation S =>w is called leftmost

derivation if and only if all steps involved in derivation have leftmost variable replacement only.

Rightmost derivation :
IfG=,T, P,S) isaCFGand w € L(G),thenaderivation § 2w is called rightmost
derivation if and only if all steps involved in derivation have rightmost variable replacement only.

Example 1 : Consider the grammar § — S + §] S * S| 4| b. Find leftmost and rightmost
derivations forstring w = g * g + b-

Solution :

Leftmostderivation fory = g* 4+ 5
§=8*§ (Usings — §*5§)
2a*s (The first left hand symbol isa, sousing § — a)
:L:~a‘s+s (Using § —» § + §,inordertoget 4 + 5)
:L:a‘a+S (Second symbol from the leftisa, sousing § — a)

=a*a+b (The last symbol from the lefiis b, sousing § — »)

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 52

Rightmost derivation for y = g * g + b
B (Using s — §* §)

28*S5+5 (Since,intheabove sentential form second symbol from the right is * so,

we cannot use § — alb. Therefore, weuse § — S+ §)
?S“S+b (Using § — 5)
?S*aob (Using § -» a)

Ta%a+d (Usings - a)
Example 2 : ConsideraCFG S — bA|aB, 4 — aS|addja, B —» bS|aBB}b . Find
leftmost and rightmost derivations for v = ggabbabbba -
Solution :
Leftmost derivation for v - gaabbabbba :
S = aB (Using § — aB to generate first symbol of w)
= aaBB (Since, second symbol is a,soweuse B —» aBB)
= aaaBBB (Since, third symbol is a.soweuse B —» aBB)
= aaabBB (Since fourth symbol is b, soweuse B — b)
= aaabbB (Since, fifthsymbolis b,soweuse B —» b)
=> aaabbaBB (Since, sixth symbol is a, soweuse B — aBB)
= aaabbabB (Since, seventh symbol is b, soweuse B — b)
= aaabbabbS (Since, eighth symbol is b, soweuse B — bS)
= aaabbabbbA (Since, ninth symbol is b,soweuse § — h4)
= aaabbabbba (Since, the tenth symbolisa,sousing 4 — a)
Rightmost derivation for v = gaabbabbba
S = aB (Using § — B to generate first symbol of w)
— aaBB(We need a as the rightmost symbol and second symbol from the left side, so we
use B — aBB)
— aaBbS (Weneed a as rightmost symbol and this is obtained from Aonly, weuse B — 5S)
= aaBbbA (Using § — b4)
=> aaBbba (Using 4 — a)
= aaaBBbba (We need b as the fourth symbol from the right)
= aaaBbbba (Using B - b)

= aaabSbbba (Using B —» bS)

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 53

Figure (c) Parse tree for w = ab Figure (d) Parse tree for w = ab
So, the given grammar is ambiguous.

541 Removal of Ambiguity

5.4.1.1 Left Recursion

A grammar can be changed from one form to another accepting the same language. Ifa grammar
has left recursive property, it is undesirable and left recursion should be eliminated. The left
recursion is defined as follows.

Definition :A grammar G is said to be left recursive if there is some non terminal A such that
A =* Aa.Inotherwords, in the derivation process starting from any non - terminal A, if a sentential
form starts with the same non - terminal A, then we say that the grammar is having left recursion.

Elimination of Left Recursion
The left recursion in a grammar G can be eliminated as shown below. Consider the A - production

of the form A—Aa|Aaylday Aa, BB, | By B
where ,'s do not start with A. Then the A productions can be replaced by
A A B A |BA oy A
A sa 4| A" a4 | @, A' | €
Note that ,'s do not start with 4!.
Example 1 : Eliminate left recursion from the following grammar
E—- E+T|T
T—T*F|F
F—>(E) |id

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 54

5.5 MINIMIZATION OF CFGs

As we have seen various languages can effectively be represented by context free grammar. All
the grammars are not always optimized. That means grammar may consists of some extra symbols
(non - terminals). Having extra symbols unnecessary increases the length of grammar.
Simplification of grammar means reduction of grammar by removing useless symbols. The
properties of reduced grammar are given below :

1. Eachvariable (i. e. non - terminal) and each terminal of G appears in the derivation of some
word in L.

2. There should not be any production as x —» ¥ where X and Y are non - terminals.

3. If e isnotinthe language L then there need not be the production x —»e.

We see the reduction of grammar as shown below :

Reduced grammar

useless symbols & productions unit productions

Removal of Elimination of J Removal of

5.5.1 Removal of useless symbols

Definition : A symbol X is useful if there is a derivation of the form
S=>'aXp="w
Otherwise, the symbol X is useless. Note that in a derivation, finally we should get string of

terminals and all these symbols must be reachable from the start symbol S. Those symbols and
productions which are not at all used in the derivation are useless.

Theorem 5.51 :letG=(V, TP S)be aCFG We can find an equivalent grammar
G, = (V,,1},P,,S) suchthatforeachAin (;UT,) there exists o and g in (UT))* and x in
T* forwhich § =' a4 =" x.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 55

P Ty

S » a|Bb|Aa a,b
A aB a,b
B alAa ab

Theresulting grammar G, =(V,, T,P,,S) where
{S,A,B}
{ab}

{
S - a|BbjaA
A - aB
B - a|Aa

} S isthe start symbol

such that each symbol Xin (V,w 7}) hasaderivation ofthe form §=" axp =" w.
5.5.2 Eliminating ¢ - productions

Aproduction of the form 4 — e is undesirable ina CFG unless an empty string is derived from
the start symbol. Suppose, the language generated from a grammar G does not derive any
empty string and the grammar consists of - productions. Such e - productions can be removed.
An ¢ - production is defined as follows :

Definition1: LetG=(V,T,P,S)beaCFG A production in P of the form
A e

iscalledan e - production or NULL production. After applying the production the variable A is
erased. For each Ain V, if there is a derivation of the form

A=" e
then A is a nullable variable.
Example : Consider the grammar
S -
A -»
B

-» ble

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 56

Step 2 : Construction of productions P, .Addanon e- productionin Pto 7, . Takeall the
combinations of nullable variables in a production, delete subset of nullable variables one by one
and add the resulting productionsto P, .

Productions Resulting productions (7,)

S BAAB S -» BAAB|AAB | BAB|BAA|
AB|BB|BA|AA|A|B
A 0A2 A - 0A2[02

2A0 A - 2A0]20

B AB B » AB[B|A

’_LB 1B B 1Bl

We can delete the productions of the form A —» A.In P, , the production B -» B canbe
deleted and the final grammar obtained after eliminating e -productions is shown below.
The grammar G, = (V,,T;,F,,S) where
v, - {S,A,B,C,D}
13 u {a,b,c,d}
P, = {S - BAAB|AAB|BAB |BAA|AB|BB|BA|AA|A|B
A - 0A2|02|2A0]20
B 5 AB|A|1B|1
} S isthe start symbol

5.5.3 Eliminating unit productions
Consider the production 4 — 8. The left hand side of the production and right hand side of the
production contains only one variable. Such productions are called unit productions. Formally,a
unit production is defined as follows.
Definition : Let G=(V,T,P.S)beaCFG Any production in G of the form

A—> B
where A, p ey isaunit production.

In any grammar, the unit productions are undesirable. This is because one variable is simply
replaced by another variable.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 57

In a CFG, there is no restriction on the right hand side of a production. The restrictions are
imposed on the right hand side of productions ina CFG resulting in normal forms. The different
normal formsare :

1. Chomsky Normal Form (CNF)
2. Greiback Normal Form (GNF)

5.6.1 Chomsky Normal Form (CNF)

Chomsky normal form can be defined as follows.

Non - terminal —s Non - terminal.Non - terminal
Non - terminal -» terminal

The given CFG should be converted in the above format then we can say that the grammar is in
CNF. Before converting the grammar into CNF it should be in reduced form. That means
remove all the useless symbols, e productions and unit productions from it. Thus this reduced
grammar can be then converted to CNF.

Definition :
LetG= (V, T,P,S)beaCFG The grammar G is said to be in CNF if all productions are
of the form
A - BC
or
A > a
where A,Band CeV andaeT.
Note that if a grammar is in CNF, the right hand side of the production should contain two
symbols or one symbol. If there are two symbols on the right hand side those two symbols must
be non - terminals and if there is only one symbol, that symbol must be a terminal.

Theorem 5.6.1 : Let G=(V, T, P, S) be a CFG which generates context free language
without . We can find an equivalent context free grammar G, =(V,,T',F; ,S) in CNF such that

L(G)=L(G,) i.e., all productionsin G, are of the form

A - BC
or
A -

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 58

Thus, from (7), (8) and (9), the resultant grammar becomes :
SV, S|VVY,lalb
V- -
V,>|
vi-sv, . (©)
Voos S,
v,-1
Vi]
Now, in the resultant grammar (C), following is the production which is not in the form of CNF:
SV V¥,
We can write this production as :
Savy, (10)
V¥ (11)
Thus, from (10) and (11), the resultant grammar becomes :
SV, SV, | ab
b -
V,—|[
vw-vy, (D)
v, 8V,
Vs > SV,
v,-> 1
V.-]
Thus, the resultant grammar (D) is in the form of CN F, which is the required solution.

5.6.2 Greibach Normal form (GNF)

Greibach normal form can be defined as follows :

Non - terminal —» one terminal. Any number of non - tc:iunals l

Example :
S—ad isinGNF
S—a isin GNF

PAGE 59

FORMAL LANGUAGES AND AUTOMATA THEORY

From the subtree shown in figure (b) , we get s; aS'e ‘or s 2, § z, andconsidering

the subtree shown in ﬁgure(c),' we get S:‘s a O § a P

The subtree shown in figure (b) can be added as many times as we like in the parse tree
shown in figure (a). So, 5- 25 8'% - 232224

Therefore, string z can be written as uzyz,z,y for some uand y substrings of z. The substrings
z, and z, can be pumped as many times as we like. Replacing z;, z, and z, by v, wand x

respectively, we getz=uvwxy and g :, w'wx'y forsomei=0,1,2,
Hence , the statement of theorem is proved.

Application of Pumping Lemma for CFLs

We use the pumping lemma to prove certain languages are not CFL. We proceed as we have
seen in application of pumping lemma for regular sets and get contradiction. The result of this
lemma is always negative.

Procedure for Proving Language is not Context - free

The following steps are considered to show a given language is not context - free.

Step1:

Supposc that £ iscontext - free. Let 1 be the natural number obtained by using pumping lemma.
Step2:

Chooseastring xe L suchthat |x| =1 using pumping lemma principle write z=uvwxy.

Step 3:

Find suitable i so that w 'wx ‘ye & . Thisisacontradiction. So L isnot context - free.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 60

Case 2:

vea* and xc.*. Let ,_,» and pg=n!. Pumping v and x, (¢+1) times, we get :
2=yt

InZ',no.ofa’s willbe n-p+nt+ p=ntyn,

No.of b's in ' will remain n! +n. Hence, no. of a's=no. of b's in Z'.

Similarly, in other cases, we can arrive at strings not as per specification of L.
Hence, L is not context free.

5.8 CLOSURE PROPERTIES OF CFLs

The closure properties that hold for regular languages do not always hold for context free languages.
Consider those operations which preserve CFL.

The purpose of these operations are to prove certain languages are CFL and certain languages
are not CFL.

Context-free languages are closed under following properties.

1. Union

2. Concatenationand

3. Kleene Closure (Context-free languages may or may not close under following properties)

4. Intersection

5. Complementation

Theorem 5.8.1 : If /, and L, aretwo CFLs, then union of Z, and L, denoted by Z; + L,
or L U L, isalsoa CFL.

Proof :

Let CFG G, = (¥,,T,,P,S) generates L; and CFG G, = (V,,T,,P,S) generates L,

and G=(V,T, P,S) generates L = L; + L,.

We construct G as follows :

Step 1 : Rename the variables of CFG G,

Ifv, = {S,4,B,.., X} ,thentherenamed variables are {S;, 4;, B,,...X;} . Thismodification
should be reflected in productions also.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 61

Step 2 : Rename the variables of CFG G,

If ¥, ={S,4,B,..X}, then the renamed variables are {S, 4, B;....X5}. This
modification should be reflected in production also.

Step 3 : We get of the productions of G; and G, to get productions of G as follows :

S — 5y |S,,where S; and §, are starting symbols of grammars G, and G, respectively and
S -productions and §; - productions remain unchanged.

T="TuvT,,
V =S, 4y, By X1 3 V{835 43, B3 0 X 3}
Since, all productions of G, and G, including S — S; | S, are in context-free form, so
GisaCFG
Language generated by G :
L(G) = Language generated from (S} or S;)
=Language generated from S; or language generated from S,
= I(Gy) or L(Gy) (Since, §; and §, are starting symbols of G and G, respectively.)
= I; or L, (Since, G, produces L, and G, produces L, .)
=L+ 1
Hence, statement of the theorem is proved.

Example : Considerthe CFGs § — aSh|ab and § —» cSdd | cdd , which generate
languages I; and L, respectively. Construct grammar for L = Ly + L;.

Solution :

Let G, generates /; and G, generates L, and G = (V,T,P,S) generates L = Iy + L.

Renaming the variables of G, and G,, we get

v, ={S,} and ¥V, ={(S,}, where §; - productions are §, — aSb | ab, and
S, -productions are Sy —> cSydd | cdd

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 62

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 63

PUSH DOWN AUTOMATA

After going through this chapter, you should be able to understand :

Push down automata

Acceptance by final state and by empty stack
Equivalence of CFL and PDA

Interconversion

Introduction to DCFL and DPDA

6.1 INTRODUCTION

APDA is an enhancement of finite automata (FA). Finite automata with a stack memory can be
viewed as pushdown automata. Addition of stack memory enhances the capability of Pushdown
automata as compared to finite automata. The stack memory is potentially infinite and it is a data
structure. Its operation is based on last - in - first - out (LIFO). It means, the last object pushed
on the stack is popped first for operation. We assume a stack is long enough and linearly arranged.
We add or remove objects at the left end.

6.1.1 Model of Pushdown Automata (PDA)

A model of pushdown automata is shown in below figure. It consists of a finite tape, areading
head, which reads from the tape, a stack memory operating in LIFO fashion.

Input Tape

Finite State Control

FIGURE : Model of Pushdown Automata

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 64

There are two alphabets ; one for input tape and another for stack. The stack alphabet is denoted
by r and input alphabet is denoted by 5 . PDA reads from both the alphabets ; one symbol
from the input and one symbol from the stack.

6.1.2 Mathematical Description of PDA
A pushdown automata is described by 7 - tuple (Q,2,I',6, 4¢.Z4.F) » where
1. Q isfinite and nonempty set of states,
2. 3 isinputalphabet,
3. T isfinite and nonempty set of pushdown symbols,
4, g isthe transition function which maps
From Q x (T U {&}) x I to (finite subset of) O x I'*,
5. g, € Q,isthestarting state,
6. Z, e I',isthe starting (top most or initial) stack symbol, and
7. F ¢ Q,isthesetoffinal states.

6.1.3 Moves of PDA
‘The move of PDA means that what are the options to proceed further after reading inputs in

some state and writing some string on the stack. As we have discussed earlier that PDA is

nondeterministic device having some finite number of choices of moves in each situation.
The move will be of two types :

1. Tnthe firsttype of move, an input symbol is read from the tape, it means, the head is advanced
and depending upon the topmost symbol on the stack and present state, PDA has number of
choices to proceed further.

In the second type of move, the input symbol is not read from the tape, it means, head is not
advanced and the topmost symbol of stack is used. The topmost of stack is modified without
reading the input symbol. Itis also known asan ¢ -move.

Mathematically first type of move is defined as follows.

8(q,a,Z)={(py, 0)(P2:Q3)5 Py)} 5 where for 1 < i < n,q, p, are states in

Q,ack, Zeland a,Eel*.
PDA reads an input symbol a and one stack symbol Z in present state g and for any value(s) of
i, enters state p, , replaces stack symbol Z by string «, eT" * , and head is advanced one cell on
the tape. Now, the leftmost symbol of string is assumed as the topmost symbol on the stack.
Mathematically second type of move is defined as follows.

5(q,€,2) = {(P, @ P2+ @2) p o)} » Where for 1 < i < m,q, p, are states in

Q,aecl, Zel,and a, el *.

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 65

PDA does not read input symbol but it reads stack symbol Z in present state g and for any
value(s) of 7, enters state p, , replaces stack symbol Z by string a, € I' *, and head is not
advanced on the tape. Now, the leftmost symbol of string ¢, is assumed as the topmost symbol
on the stack.
The string «, be any one of the following :
1. «, =e inthis case the topmost stack symbol Z,,, is erased and second topmost symbol
becomes the topmost symbol in the next move. It is shown in figure (a).

£

FIGURE(a): Move of PDA
2. a, = c,c e T ,inthis case the topmost stack symbol Z,,, is replaced by symbol c. Itis

shown in figure(b)

)

FIGURE(b): Move of PDA
3. a, = ¢,cy...c,, ,inthis case the topmost stack symbol Z,,, isreplaced by string c,c;. .. c,-
Itis shown in figure(c).

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 66

FIGURE(c): Move of PDA

6.1.4 Instantaneous Description (ID) of PDA

LetPDA M = (Q,2.1',8,90,Zy,F) , theniits configuration ata given instant can be defined by
instantaneous description (ID). An ID includes state, remaining input string, and remaining stack
string (symbols). So,anID is (¢,x,a) ,where ge Q,xe Z¥*,a e I'*.

The relation between two consecutive IDs is represented by the sign |——— ;

We say (g,ax,Zp3) lw(p.X.aﬂ) if 8 (g, a, Z) contains (p,a), where Z,B,0eT'*,a
maybenullora €Z, p,g €Q forM

The reflexive and transitive closure of the relation |57 is denoted by 1—,;,'-
Properties :
1. If (q.«r.a)lﬁ(p,e,a),where ael*xeXl*, and p,gq €Q,thenforall y €X *.

(g%,)|57(p: y,@),
2. If (q.xy,a)|—,:7(p,y,a), where @ eT'*x,yeZ*, and p,q €Q, then

(g.x.@){p.ea), and

3 AE (q,x,a){%(p.e,ﬂ), where a, Bel*xei*, and p,geQ, then

(g, % 7’)]1:4(17,6,[37), where y eI *

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 67

6.1.5 Acceptance by PDA

Let Mbe a PDA, the accepted language is represented by N(M). We defined the acceptance by
PDA in two ways.

1. Let M =(Q.ZT,3, qy,2,,F) ,then N(M) is accepted by final state such that

N (M)={W5(qo,W,Zo)|ﬁ(¢1/,E,ﬂ) , where ¢ e 0, weZ* Z,,fel'*, and

q; €F}

It is similar to the acceptance by FA discussed earlier. We define some final states and
the accepted language N(M) is the set of all input strings for which some choice of moves
leads to some final state.

Let M =(Q.X2,I.0,9,.Z,.¢) , then N(M) is accepted by empty stack or null stack such
thﬂt N (M) = {Wi(qu sW,Zo)'j;‘(P»EsE), thl'c D € Q, weE Z‘}
The language N(M) is the set of all input strings for which some sequence of moves

causes the PDA to empty its stack.

Note : Ifacceptance is defined by empty stack then there is no meaning of final state and it is
represented by ¢ .

Examp'e . conSider a PDA M= ({qo"h s‘h }!{ai C}s{OZo },6, qthzo 1(q2}) ShOWﬂ in
below figure. Check the acceptability of string aacaa.

a, Zy, aZ, a,a, €

Q ¢, a,a Q Zy, Z,
9, ©€o o_@

a,a,aa
FIGURE : PDA accepting {a"ca" :n=>1}

Note : Edges are labeled with Input symbol, stack symbol, written symbol on the stack.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 68

Solution :
The transition function § isdefined as follows:

8(q0:a,Z4) = {(q0,0Z,)} »
8(qq,a,a) ={(q,,aa)},
8(qq,¢,a) = {(g),a)} 5
8(q,,a,a) ={(g,€)}, and

3(q1.6,25) = {(92,Z,)}
Following moves are carried out in order to check acceptability of string aacaa :

(gq,aacaa ,Zo)|-(qo,acaa LazZgy)

I—(qo,caa,aalo)

|—(q|.aa,aaZo)

|Ha1,a,az)

Ha1.e.20)

I_(qz»e»zo)

Hence, (q,.aacaa ,Zo){ﬁ(qz,e,zo) 3
Therefore, the string aacaa is accepted by 7.

6.2 CONSTRUCTION OF PDA

In this section, we shall see how PDA's can be constructed.

Example 1 : Obtain a PDA to accept the language L(M) = { wCw"| w e (a+b)*} where

" isreverse of W.
Solution:

Itis clear from the language L(M) = { wCw®} thatif v =apb

then reverse of w denoted by & will be % _ pp, and the language L willbe 1,07
i.¢., abbCbba which is a string of palindrome.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 69

To accept the string :
The sequence of moves made by the PDA for the string aabCbaa is shown below.
Initial ID
(90, aabChaa, Z;) = (g9, abChaa, aZ;)
- (9, bCbaa, aaZ;)
= (g0, Cbaa, baaZ,)
|- (g,,baa,baaZ,)
= (91,aa,aaZ;)
3 (91,a,aZ,)
|- (g1,8.2,)
- (92, & Z))
(Final Configuration)
Since g, is the final state and input string is € in the final configuration, the string aabCbaa
is accepted by the PDA .
To reject the string :

The sequence of moves made by the PDA for the string aabCbab is shown below .
Initial ID
(g0, aabChab, Z,) (9o, abCbab, aZy)
(g0, bChab, aaZ,)
(90, Chab, baaZ,)
(g1, bab, baaZy)
(gy, ab, aaZy)
(41, b, az;)
(Final Configuration)
Since the transition &(g,, b, a) isnot defined, the string aabCbab is not a palindrome and
the machine halts and the string is rejected by the PDA.

Example 2 : Obtain a PDA to accept the language L = { a" 5" n = | } by a final state.
Solution :

The machine should accept n number of a's followed by n number of b's.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 70

6.3 DETERMINISTIC AND NONDETERMINISTIC PUSHDOWN AUTOMATA

In this section, we will discuss about the deterministic and nondeterministic behavior of pushdown
automata,

6.3.1 Nondeterministic PDA (NPDA)

Like NFA, nondeterministic PDA (NPDA) has finite number of choices for its inputs. As we
have discussed in the mathematical description that transition function § which maps from
0 % (2 v {€}) x T to(finite subset of) O x I' *. Anondeterministic PDA accepts an input if
asequence of choices leads to some final state or causes PDA to empty its stack. Since, sometimes
it has more than one choice to move further on a particular input ; it means, PDA guesses the
right choice always, otherwise it will fail and will be in hang state.

Example : consider a nondeterministic PDA M = ({g,}{a.b}.{a,b,Z},6.9,.Z), for the
language I, = {a"b" : n > 1} ,where § isdefined as follows :

5(%»5-2) = {(%,ab)v (qoraZb)} (Tmmlwmmfmiﬂw € onthetapeandZon ﬂ'wm)’

6 (qo-aya) - {(qo’e)} ’ and 5 (Qo,b,b) = {(qt)se)}
Check whether string w = qabb is accepted ornot ?
Solution : Initial configuration is (g,,aabb, Z) . Following moves are possible :

(o, aabb,ab) ~> (¢s,abb,b) —>
(qo,aabb.Z){
(9o, aabb,aZb) ——w (qq,abb,Zb)

(9o,abb,abb) (o, abb,aZbb)

(gq,bb,bb) (qo,bb, Zbb)

(q0,0,b)
(qa,bb,abbb) (qosbbsabeb)
(qorere)

]]
Hence, w = aabbis accepted by empty stack.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 71

One thing is noticeable here that only one move sequence leads to empty store and other don't.

In other words, we say that some move sequence(s) leads to accepting configuration and other
lead to hang state.

6.3.2 Deterministic PDA (DPDA)

Deterministic PDA (DPDA) is just like DFA, which has at most one choice to move for certain
input. APDA M =(Q,%,T,3,4,,Z,, F) isdeterministic if it satisfies both the conditions given
as follows :

1. Foranyg € Q,ae(Zu {e}i,and Z e, 8 (q, a, Z) hasat most one choice of move.
2. Forany ge Q,and 7z e, if 8(g,€ 2) is defined i.e. 8(q, € Z) # ¢, then

8(g,a,Z2) = pforall g ¢ £
Example : Consider a DPDA M = ({g,,q,},{a.c},{a,Z,},5,9¢,Z,,#) accepting the
language {a"ca" : n > 1}, where § is defined as follows :

6(g9,a,Zy) = {(g0,aZ,)}
6(qq,a,a) ={(gq,0a)},
5(‘10:":‘7) = ((qlaa)}s
4(gy,a,a) ={(q,,€)}, and 6(q1,€,Z;) = {(q,,€)}
Check whether the string w = aacaa is accepted by empty stack or not ?
Solution :
We see that in each transition DPDA has at most one move. Initial configuration is

(g4,aacaa, Z,,) . Following are the possible moves.

(qo,aacaa,Zy) - (qy,acaa,aZ,) - (qy,caa,aaZy) - (q,,aa,aaZ,)
$

(91:6:€) ¢ (9y,6,Z) « (gy,a,aZ,)
Hence, the string w = aacaa is accepted by empty stack.

As we have discussed in earlier chapters that DFA and NFA are equivalent with respect to
the language acceptance, but the same is not true for the PDA.

For example, language I, ={ww ":w € (a U b) *} isaccepted by nondeterministic PDA,
cannot by any deterministic PDA. A nondeterministic PDA can not be converted into equivalent
deterministic PDA, but all DCFLs which are accepted by DPDA, are also accepted by NPDA.
So, we say that deterministic PDA is a proper subset of nondeterministic PDA. Hence, the
power of nondeterministic PDA is more as compared to deterministic PDA.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 72

6.4 ACCEPTANCE OF LANGUAGE BY PDA
The language can be accepted by a Push Down Automata using two approaches.

1. Acceptance by Final State : The PDA accepts its input by consuming it and then it enters
in the final state.

Acceptance by empty stack : On reading the input string from initial configuration for
some PDA, the stack of PDA gets empty.

6.4.1 Equivalence of Empty Store and Final state acceptance

Theorem:
If M, =(0,,2,T,8,,p,,Z,,4) isaPDA accepting CFL L by empty store then there

existsPDA M, =(0,,2.,1,,8,, p3,Z,,{q,}) whichaccepts L by final state.

Proof :
First we construct PDA M, based onPDA M, and then we prove that both accept L.

Step 1 : Construction of PDA M, based on given PDA M,

% is same for both PDAs. We add a new initial state and a new final state with given PDA u, .

So, 9, =0,V {p,vgq,}

The stack alphabet T, of PDA s, contains one additional symbol Z, with T, .

So, I, =T, U {Z,}
The transition function &, containsall the transitions of given PDA. A+, and two additional transitions
(R, and Ry) asdefined as follows:

Ry :0,(pa€,Z,) ={(p1,2,2,)},

R, :0;(q,a,2)=6,(q,a,Z) forall (¢,e,Z) in 0, x (X U {e}) x T,

(the original transitions of 1,), and
Ry:6,(9,€,Z,)={(q,,€)} forall g € Q,

Bythe R, , &, moves fromitsinitial ID (p,,e,Z,) totheinitial D of », By R,, A, usesall the
transitions of 4, after reaching the initial ID of , and by using R; , reaches the final state g7 .

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 73

The block diagram is shown in below figure.

—@ntt @
N

FIGURE : Block diagram of PDA u,

Step 2 : The language accepted by PDA M, and PDA M,

The behaviorsof A, and M, are same exceptthe two by ¢ -movesdefinedby Ry and R3.
Let string w ¢ [and accepted by A, then
(p.,w,Z|)|M'—l(q,€,€) where g € 0, (Result 1)
For M,,theinitial IDis (p,,w,Z,) and it can be written as (p,,ewe2,). So,
(pz,ewe,Zz)!m (1sw,2,Z,) (This initial IDof M,)

|- @.2.22) (by R, and Result 1)

5= @/5.@) aer; (By Ry)
Thus, if M, accepts w, then M, also accepts it.

Itmeans L(M,)c L(M,) (Result 2)
Letstring w e L and accepted by PDA M,, then

(PrreweZ;) |-;,;(p,,w,Z,ZZ) By Ry) (Result 3)

wi; (9.€.2,) (By Ry) (Result 4)

le (4/,€9) aer; (ByRs)
Note : The Result 3 is the initial ID of A, . The Result 4 shows the empty store for M, if
symbol Z, is not there.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 74

For M,,theinitial IDis (p,, w,Z,)

So, (P, w,Z,) 57+ (9.€,€) ,where g € O, (ByResult3 and Result 4) Thus, if M, accepts
w, then M, also accepts it.
It means, L(M,)c L(M,) (Result 5)

Therefore, L= 2(M,)=1(M,) (From Result2and Result 5)
Hence, the statement of theorem is proved.

Example: Consider a nondeterministic PDA M, =({q,}. {a.b}, {a,b,5}, 8,q,.5,¢) which
accepts the language = {a"»" : n > 1} by empty store, where § is defined as follows :
8(g4,€,8) = {(g9,ab), (g,,aSb)} (Two possible moves),

8(90,a,a) ={(99.€)} , and 5(gy,b,0) = {(g,,€)}

Construct an equivalent PDA M, which accepts L in final state and check whether string
w = aabb is accepted ornot ?

Solution : Following moves are carried out by PDA M, inorder to accept w = gabb :

(g9.aabb,S) 1— (g, aabb,aSbh)

| (qy-abb, Sb)

|—(g-abb,abb)

|—(qq,bb,bb)
[—~(@0.5.5)

l_ (gy.€,€)

Hence, (4y,aabb,S) IV (90-€,€)
Therefore, yw = agbb isacceptedby M,.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 75

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 76

TURING MACHINES

After going through this chapter, you should be able to understand :

e Turing Machine

e Designof TM

e Computable functions

e Recursively Enumerable languages

e Church's Hypothesis & Counter machine
e Types of Turing Machines

7.1 INTRODUCTION

The Turing machine is a generalized machine which can recognize all types of languages viz,
regular languages (generated from regular grammar), context free languages (generated from
context free grammar) and context sensitive languages (generated from context sensitive grammar).
Apart from these languages, the Turing machine also accepts the language generated from
unrestricted grammar. Thus, Turing machine can accept any generalized language. This chapter
mainly concentrates on building the Turing machines for any language.

7.2 TURING MACHINE MODEL

The Turing machine model is shown in below figure . It is a finite automaton connected to read -
write head with the following components :

. Tape

. Read - write head

. Control unit

Tape
Jalaal....bfbf6]....T |

Read-write Head

Control
Unit

FIGURE : Turing machine model

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 77

Tape : Itisatemporary storage andis divided into cells. Each cell can store the information of
only one symbol. The string to be scanned will be stored from the left most position on the tape.
The string to be scanned should end with infinite number of blanks.

Read -write head : The read - write head can read a symbol from where it is pointing to and
it can write into the tape to where the read - write head points to.

Control Unit: The reading/ writing from / to the tape is determined by the control unit. The
different moves performed by the machine depends on the current scanned symbol and the
current state, The read - write head can move either towards left or right i.e., movement can be
on both the directions. The various moves performed by the machine are :

1. Change of state from one state to another state

2. The symbol pointing to by the read - write head can be replaced by another symbol.
3. The read - write head may move either towards left or towards right.

The Turing machine can be represented using various notations such as
. Transition table
. Instantaneous description
. Transition diagram

7.2.1 Transition Table

The table below shows the transition table for some Turing machine. Later sections describe how
fo obtain the transition table.

Tape Symbols (I')

a

b

X

.

Y

-

(qh X: R)

(43 3 Yv R)

(g, 0. B)

(qls Y3 L)

@ "B

(ql! a, L)

(%» Xa R)

(‘h] Yv L)

(g3, Y, R)

(‘ha B, R)

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 78

Note that for each state g, there can be a corresponding entry for the symbol in 1. In this table
the symbols a and b are input symbols and can be denoted by the symbol 3. Thus T¢I

excluding the symbol B, The symbol B indicates a blank character and usually the string ends
with infinite number of B's i. ., blank characters. The undefined entries indicate that there are no
- transitions defined or there can be a transition to dead state. When there is a transition to the

dead state, the machine halts and the input string is rejected by the machine. It is clear from the
table that

5:0% Tiw(Qx T x{LR})

where 0= {90.91:%, 9.9} T={a, b}

I'={a, b, X,Y,B}

q, istheinitial state; B isaspecial symbol indicating blank character

F ={¢,} whichisthe final state.
Thus, a Turing Machine M can be defined as follows.
Definition : The Turing Machine M =(Q,2,T,8,q,,8,F) where

Qs setof finite states

3 is set of input alphabets

I' issetof tape symbols

& istransition function Q xI'to (Q xI'x{L,R})

g, isthe initial state

Bisaspecial symbol indicating blank character

F <@ issetoffinal states.

7.2.2 Instantaneous description (ID)

Unlike the ID described in PDA, in Turing machine (TM), the ID is defined on the whole string
{ not on the string to be scanned) and the current state of the machine.

Definition :

AnIDof TM isastring in e ¢, where q is the current state, « g is the string made from tape
symbols denoted by 1i. €., @ and g e I'*. Theread - write head points to the first character of
the substring A. The initial I is denoted by ge8 where q is the start state and the read - write

head points to the first symbol of o from left. The final ID is denoted by o898 where g€ F is
the final state and the read - write head points to the blank character denoted by B.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 79

Examplé : Consider the snapshot of a Turing machine
Tape
Wfﬂzlazl&f%iaslaolmlaa[

Read-write Head

* Control
Unit

Inthis machine, each 2,e ' (i.e.,each g, belongsto the tape symbol). In this snapshot, the
symbol 4 is under read - write head and the symbol towards left of 4, i.e., g, isthe current

state. Note that, in the Turing machine, the symbol immediately towards left of the read - write
head will be the current state of the machine and the symbol immediately towards right of the
state will be the next symbol to be scanned. So, in this case an ID is denoted by

4Gy 0, G A5 Grdg

where the substring a,a,asa, towards left of the state g, is the left sequence, the
substring a,a,a,a;..... towards right of the state g, is the right sequence and ¢, is the current state
of the machine. The symbol as is the next symbol to be scanned.

Assume that the current ID of the Turing machine is a,a,a,a,4, 3599,
snapshot of example.

Suppose, there is a transition 8(¢,, as) = (g3, 8y, R)

Tt means that if the machine is in state g, and the next symbol o be scanned is a,, then the
machine enters into state g, replacing the symbol a; by & and R indicates that the read - write
head is moved one symbol towards right. The new configuration obtained is

@a,858,b1¢505a405

This can be represented by a MOVE 84S 0,,0,a, 4, 3506013y | — 410,330, 5193054705
Similarly if the current ID of the Turing machine is @,a,a,0,9,35060,¢
and there isa transition

6(q,,a5)=(qy,¢,L)
tmeans that if the machine isin state ¢, and the next symbol to be scanned is a5, then the machine
enters into state g, replacing the symbol ag by ¢, and L indicates that the read - write head is
moved one symbol towards left. The new configuration obtained is

343,y 34C1A5a1 4

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 80

This can be represented by amove as 6,a,0,a,4,8508,05.0 |- @0305G104€,060, g
This configuration indicates that the new state is g; , the next input symbol to be scanned
is a, . The actions performed by TM depends on
1. The current state.
2, The whole string to be scanned
3. The current position of the read - write head
The action performed by the machine consists of
1. Changing the states from one state to another
2. Replacing the symbol pointed to by the read - write head
3. Movement of the read - write head towards left or right.
7.2.3 The move of Turing Machine M can be defined as follows

Definition : Let M =(Q,5T,6.9,.8,F) be a TM. Let the ID of M be
a,a,a, a, where a; eT for 1< j<n-1, g e Q isthe current state and a, as
the next symbol to scanned. If there is a transition 8(g, ay) =(p, b, R)
thenthe move of machine M will be a,a,a,

Ifthere is a transition 5(q.a;) =(p, b, L)
then the move of machine M will be

ayd,a;

7.2.4 Acceptance of a language by TM
The language accepted by TM is defined as follows.

Definition ;

Let M = (Q,2.',6,4,,B,F) be a TM. The language I(M) accepted by M is defined as
L(M) = {w |gow}- *&, p @, where weL* pe F and o, @, & T*}
i.e., setofall those words win 3+ which causes M to move from start state g, to the final
state p. The language accepted by TM is called recursively enumerable language.

The string w which is the string to be scanned, should end with infinite number of blanks.
Initially, the machine will be in the start state ¢, with read - write head pointing to the first symbol
of witom left. After some sequence of moves, if the Turing machine enters into the final state and
halts, then we say that the string w is accepted by Turing machine.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 81

7.2.5 Differences between TM and PDA
Push Down Automa :

1.

2
3.

6.

7.

A PDA is a nondeterministic finite automaton coupled with a stack that can be used to store
astring of arbitrary length.

The stack can be read and modified only at its top.

A PDA chooses its next move based on its current state, the next input symbol and the
symbol at the top of the stack.

. There are two ways in which the PDA may be allowed to signal acceptance. One is by

entering an accepting state, the other by emptying its stack.

. ID consisting of the state, remaining input and stack contents to describe the "current condition”

ofaPDA.

The languages accepted by PDA's either by final state or by empty stack, are exactly the
context - free languages.

A PDA languages lie strictly between regular languages and CSL's.

Turing Machines :

1.

The TM is an abstract computing machine with the power of both real computers and of
other mathematical definitions of what can be computed.

. TM consists of a finite - state control and an infinite tape divided into cells.
. TM makes moves based on its current state and the tape symbol at the cell scanned by the

tape head.

The blank is one of tape symbols but not input symbol.

TM accepts its input if it ever enters an accepting state.

The languages accepted by TM's are called Recursively Enumerable (RE) languages.

. Instantaneous description of TM describes cumrent configuration of a TM by finite - length string.

Storage in the finite control helps to designa TM for a particular language.

. A'TM can simulate the storage and control of a real computer by using one tape to store all

the locations and their contents.

7.3 CONSTRUCTION OF TURING MACHINE (TM)

In this section, we shall see how TMs can be constructed.
Example 1: Obtain a Turing machine to accept the language L = { 0 "1 {n 21} .

Solution : Note that n number of 's should be followed by n number of 1's. For thislet us
take an example of the string v = 00001111. The string w should be accepted as it has four zeroes
followed by equal number of 1's.

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 82

General Procedure :

Let ¢, be the start state and let theread - write head points to the first symbol of the string to be
scanned. The general procedure to design TM for this case is shown below :

1. Replace the leftmost 0 by X and change the state o ¢, and then move the read - write head

towardsright. This is because, aftera zero is replaced, we have to replace the corresponding
1 so that number of zeroes matches withnumber of 1s.

2. Search for the lefimost 1 and replace it by the symbol Y and move towards left (soasto
obtain the leftmost 0 again). Steps 1 and 2 can be repeated

Consider the situation

XX00YY11

4
qo
where first two 0's are replaced by Xs and first two 1's are replaced by Ys. In this sitvation, the
read - write head points to the left most zero and the machine is in state g, . With thisas the
configuration , now let us design the TM.
Step 1: Instate gy, replace 0 by X, change the state to ¢, and move the pointer towards
right. The transition for this can be of the form
5(q0» 0) = (a1, X, B)
The resulting configurationis shown below .
XXX0YY1l
1
'3
Step 2: Instate g, , we have to obtain the left - most 1 and replace it by Y. For this, let us move

the pointer to point to leftmost one. Whenthe pointeris moved towards 1, the symbols encountered
may be 0 and Y. Irrespective what symbol is encountered, replace 0 by 0,Y by Y, remain in state

g, and move the pointer towards right. The transitions for this canbe ofthe form
5(g.0)=(41,0,R)
8(g,.Y)=(q Y .R)

When these transitions are repeatedly applied, the following configuration is obtained.

XXX0YY1l

T
4

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 83

Step 3 : Instate g,, if the input symbol to be scanned isa 1, then replace 1 by Y, change the
state to ¢, and move the pointer towards left. The transition for this can be of the form

8(q,,1)=(9,.Y,L)
and the following configuration is obtained.

XXX0YYY1

T
9z
Note that the pointer is moved towards left. This is because, a zero is replaced by X and the
corresponding 1 is replaced by Y. Now, we have to scan for the left most 0 again and so, the
pointer was move towards left.
Step 4 : Note that to obtain leftmost zero, we need to obtain right most X first. So, we scan for -
the right most X. During this process we may encounter Y's and 0's . Replace Yby Y, 0 by 0,
remain in state g, only and move the pointer towards left. The transitions for this can be of the
form 5(‘1.27}’)“(‘]2-}’:14)
5(%,0)=(42 J0.5)
The following configuration is obtained
XXX0YYYI
T
Ue! ;

Step 5: Now, we have obtained the right most X. To get leftmost 0, replace X by X, change
the state to g, and move the pointer towards right. The transition for this can be of the form

8(q,,X)=(gy,X,R)
and the following configuration is obtained

XXX0YYY!

7
4o
Now, repeating the steps 1 through 5, we get the configuration shown below :
| XXXXYYYY

1
qo
Step 6 : Instate g, , if the scanned symbol is Y, it means that there are no more 0's. If there are
no zeroes we should see that there are no 1's. For this we change the state to g, replace Yby Y
and move the pointer towards right. The transition for this can be of the form

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 84

8(q9-Y)=(g5,Y,R)
and the following configuration is obtained
XXXXYYYY
ik
93
Instate g,, we should see that there are only Ys and nomore 1's. So, as we canreplace Yby Y
andremain in g, only. The transition for this can be ofthe form
3(q3:Y)=(q5,Y ,R)
Repeatedly applying this transition, the following configuration is obtained .
XXXXYYYYB
2
UE]
Note that the string ends with infinite number of blanks and so, in state ¢, if we encounter the
symbol B, means that end of string is encountered and there exists n number of 0's ending with n
number of 1's. So, in state ¢, , on input symbol B, change the state to ¢, , replace B by B and
move the pointer towards right and the string is accepted. The transition for this can be of the
form 8(q5.8)=(¢4.B.R)

The following configuration is obtained
XXXXYYYYBB
T
94

So, the Turing machine to accept the language I ={a” " n>1}
is given by M =(0.2.I,8.94.B.F)
where
0=1{9-9%-9:}; Z={01}; TI'={0,1 XY, B}
go € Q isthe startstate of machine; B eI isthe blank symbol.
F ={q,} isthe final state.
& is shown below.
(g0, 0) = (g, X, B)
5(g,.0)=(q,,0,R)

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 85

The transitions can also be represented using tabular form as shown below.

8(q,,Y)=(q,,Y,R)
3(q,1)=(g,Y,L)
6(q45.Y)=(q,,Y,L)
5(44,0)=(g,,0,L)
8(gs,X)=(go,X,R)
8(q0.7)=(q3.Y,R)
5(qs,Y) =(g5.Y ,R)
5(q3,B)=(q4,B.R)

Tape Symbols (I')

0

1

X

Y

9

@, X.R)

(g3, ¥, R)

0

(91.0,8)

(42, Y, L) b

(CRR R

L]

(42,0,L)

(‘10: Xr R)

(g2, Y, 1)

LES

g1, R

(g4, B, R)

94 =

The transition table shown above can be represented as transition diagram as shown below :

YYR Y/YL
0/0,R

To accept the string :

The sequence of moves or computations (IDs) for the string 0011 made by the Turing machine
are shown below :

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 86

Initial ID

go0011 i— Xg,011 |~ X 0g,11
Xq,0¥1 4, X0¥1
Xg,011 XXqY1
XX¥q,1 XX, YY
X‘hm XXgo¥Y
XXYqY XXYYqy
XXYYBq,
(Final ID)

Example 2 : Obtain a Turing machine to accept the language L (M) = { 0" 172" [n 2 1}

Solution : Note that n number of 0's are followed by n number of 1's which in tum are followed
by n number of 2's. In simple terms, the solution to this problem can be stated as follows :

Replace first n number of 0's by X's, next n number of 1's by Y's and next n number of 2sby
Z's. Consider the situation where in first two 0's are replaced by X's , next immediate two 1's are
replaced by Y's and next two 2's are replaced by Z's as shown in figure 1(a).

XX00YY11Z2Z22 XXX0YY11ZZ22 XXX0YY11Z2Z722

1 1 t
qo Ust 9
(@)) ©

FIGURE 1 : Various Configurations
Now, with figure 1(a). a as the current configuration, let us design the Turing machine. In

state g, , if the next scanned symbol is 0 replace it by X, change the state to ¢, and move the
pointer towards right and the situation shown in figure 1(b) is obtained . The transition for this can
beof the form

6(q0,0)=(g,X,R)

Instate g,, wehave to search forthe lefimost 1. It is clear from figure 1(b) that, when we
are searching for the symbol 1, we may encounter the symbols 0 or Y. So, replace 0 by 0, Y by
Y and move the pointer towards right and remain in state g, only. The transitions for this can be
of the form 8(q,,0)=(4,,0,R)

5(q.Y)=(g:,Y.R)

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 87

The configuration shown in figure 1(c) is obtained. Instate g,, on encountering 1 change the
state to g, replace 1 by Y and move the pointer towards right. The transition for this can be of
the form

5(q1’1):(QZ:Y5R)
and the configuration shown in figure 2(a) is obtained

XXXOYYY1ZZ22 XXX0YYY1Z722
4 t

P! UF

@ (b) ©
FIGURE 2 : Various Configurations

Instate g,, we have to search for the leftmost 2. It is clear from figure 2(a) that, when we
are searching for the symbol 2, we may encounter the symbols 1 or 7. So, replace 1 by 1, Zby
7 and move the pointer towards right and remain in state ¢, only and the configuration shown in
figure 2(b)is obtained. The transitions for this can be of the form

d(q, 1)=(g2,1,R)
6(g5,2)=(q,.2Z R)

Instate g, , on encountering 2, change the state to g, replace 2 by Z and move the pointer

towards left. The transition for this can be of the form

§(q,.2)=(93,2 L)
and the configuration shown in figure 2(c) is obtained. Once the TM is instate g, ,it means that
equal number of 0's, 1's and 2's are replaced by equal number of X's, Y's and Z's respectively.
At this point, next we have to search for the rightmost X to get leftmost 0. During this process, it

is clear from figure 2(c) that the symbols such as Z's, 1,5, Y's, 0's and X are scanned respectively
one after the other. So, replace Z by Z, 1 by 1, Yby Y, 0 by 0, move the pointer towards left and

stay in state g, only. The transitions for this can be of the form
d(g5,2)=(45,Z,L)
8(q5.)=(g5.1,L)
6(gs,Y)=(g;,Y .L)
5(q5,0)=(g;,0.L)
Only on encountering X, replace X by X, change the state to g, and move the pointer
towards right to get leftmost 0. The transition for this can be of the form
5(43:X)=(‘IosX'R)

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 88

All the steps shown above are repeated till the following configuration is obtained.
XXXXYYYYZZZZ

4
UL

In state g, , if the input symbol is Y, it means that there areno 0's . If there are no 0's we
should see that there are no 1's also. For this to happen change the state to ¢, , replace Y byY
and move the pointer towards right. The transition for this can be of the form

8(q,.¥)=(g4.Y,R)

In state g, search for only Y's, replace Y by Y, remain in state g, only and move the pointer
towards right. The transition for this can be of the form

8(q4.Y)=(a4,Y,R)

Instate ¢, ,if we encounter Z, it means that thereareno 1's and so we should see that there
areno 2's and only Z's should be present. So, on scanning the first Z, change the state to g, ,
replace Z by Z and move the pointer towards right. The transition for this can be of the form

5(q4:2)=(gs W2 R)

But, instate g, only Z's should be there and no more 2's. So, as long as the scanned symbol

is Z, remain in state g, , replace Z by Z and move the pointer towards right. But, once blank

symbol B is encountered change the state to ¢, , replace B by B and move the pointer towards
right and say that the input string is accepted by the rmachine. The transitions for this can be of the
form 5(g5.Z)=(95,Z,R)
5(qs,B8)=(q¢,8,R)

where ¢, is the final state.
So, the TM to recognize the language L= { 0"1"2"{n 21} isgivenby
M =(0,5,T.6.94,B.F)
where
0 ={¢0.91:92:93:94>95:95} 3 £={0,1,2}
T=t{0,1, 24X, ¥..Z, B} q, isthe initial state
Bis blank character ; F={ g, }isthefinal state
& is shown below using the transition table.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 89

r
Y

g, g 5 R
4, 4, YR
q, g, LR
4, g,Z.L|q,,YL
a. 9..ZR g YR
g; g,.ZR

9s
The transition diagram for this can be of the form

Example 3 : Obtaina TMtoacceptthelanguage L = {w|w «(0+1)%} containing the substring 001.

Solution : The DFA which accepts the language consisting of strings of O's and 1's having a sub
string 001 is shown below :

The transition table for the DFA is shown below :

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 90

0 1

9o 9 90
ql qZ QB
A 4 a4,

q 3 q) q:{

We have seen thatany language which is accepted by aDFA is regular. As the DFA processes
the input string from left to right in only one direction, TM also processes the input string in only
one direction (unlike the previous examples, where the read - write header was moving in both
the directions). For each scanned input symbol (either O or 1), in whichever state the DFA was
in, TM also enters into the same states on same input symbols, replacing 0 by 0 and 1 by 1 and
the read - write head moves towards right. So, the transition table for DFA and TM remains
same (the format may be different. It is evident in both the transition tables). So, the transition
table for TM to recognize the language consisting of 0's and 1's with a substring 001 is shown
below:

0 1 B
9, q,:0,R g, LR -
4, ,.0,R 4., LR -
4, q,,0,R g,s LR -
q, 7,.0,R q,-1,R

9.
The TMis given by

M =(0,2,1.,0,94.B,F)
where

0=1{4, 9,:9:295> %35 I={0,1
T'={0,1}; §- isdefined already

q, istheinitial state; Bblank character
F={ ¢, }isthefinal state

The transition diagram for this is shown below.

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 91

Example 4 : Obtaina Turing machine to accept the language containing strings of 0's
and 1's ending with 011.

Solution : The DFA which accepts the language consisting of strings of 0's and 1's ending
with the string 001 is shown below :

The transition table for the DFA is shown below :

0 0 1

qo q\ qo

U8 9 9,

9. g 9
9. 4 4

We have seen thatany language which is accepted by a DFA is regular. As the DFA processes
the input string from left to right in only one direction, TM also processes the input string in only
onedirection. For each scanned input symbol (either 0 or 1), in whichever state the DFA was
in, TM also enters into the same states on same input symbols, replacing 0 by O and 1 by 1 and
the read - write head moves towards right. So, the transition table for DFA and TM remains
same (the format may be different. It is evident in both the transition tables). So, the transition
table for TM to recognize the language consisting of 0's and 1's ending with a substring 001 is
shown below :

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 92

S5 0

9 q,;0,R
q q,0,R
4, q,,0,R
q, q,,0,R

94 %

The TMisgivenby M =(0Q.Z.I',6.4,4,B.F)
where

0={90 423, } 3 Z={0,1} 5 T={0, 1}
& — isdefined already
g, istheinitial state ; B doesnotappear
F={ q, }isthefinal state

The transition diagram for this is shown below :

/LR OOR

Example 5 : Obtain a Turing machine to accept the language
L={wwis evenand L= {a,b}}
Solution :

The DFA to accept the language consisting of even number of characters is shown below.

a,b

—@O®

a,b

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 93

The transition table for the DFA is shown below :

a b
9 R 4

q| qo qD

We have seen that any language which is accepted by a DFA is regular. As the DFA processes
the input string from left to right in only one direction, TM also processes the input string in only
one direction. For each scanned input symbol (cither a or b), in whichever state the DFA was in,
"TM also enters into the same states on same input symbols, replacing a by aand b by band the
read - write head moves towards right. So, the transition table for DFA and TM remains same
(the format may be different). So, the transition table for TM to recognize the language consisting
of a'sand b's having even number of symbols is shown below :

] a b B

q, q‘,a,R q,,b,R q,,B,R

q; qo’a9R ‘107b’R =

9, L i
The TMis givenby

M =(Q72ar,5’q0’B!F)
where

Q={ 9os 94 }; Z={a b} i I'={a, b}
5 isdefined already ; ¢, istheinitial state
B does notappear ; F = { g, } is the final state

The transition diagram of TM is given by

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 94

Example 6 : Obtaina Turing machine to accept a palindrome consisting of a's and b's of any length.
Solution : Letus assume that the first symbol on the tape is blank character B and is followed
by the string which in turn ends with blank character B. Now, we have to design a Turing machine
which accepts the string, provided the string is a palindrome. For the string to be a palindrome,
the first and the last character should be same, The second character and last but one character
in the string should be same and so on. The procedure to accept only string of palindromes is
shown below. Let 0 be the start state of Turing machine.
Step 1 : Move theread - write head to point to the first character of the string. The transition
for this can be of the form §(g4.8)=(g,.B.R)
Step 2: Instate g, , if the first character is the symbol a, replace it by B and change the state
10 ¢, and move the pointer towards right. The transition for this can be of the form
5(q1 ’a)z(qZ’BsR)

Now , we move the read - write head to point to the last symbol of the string and the last
symbol should be a . The symbols scanned during this process are a's , b's and B. Replace aby
a, bby b and move the pointer towards right. The transitions defined for this can be of the form

6(q;,a)=(q,,a,R)
6(g,.6)=(q,.0.R)

But, once the symbol B is encountered, change the state to ¢, , replace B by B and move the
pointer towards left. The transition defined for this can be of the form

6(q,,B)=(g3,B,L)

Instate g, , the read - write head points to the last character of the string. If the last character
is a, then change the stateto g, , replace a by B and move the pointer towards left. The transitions
defined for this can be of the form

6(g3,a)=(q4,8,L)

At this point, we know that the first character is a and last character is also a. Now, reset the

read - write head to point to the first non blank character as shown in step5.

Instate g, ,if the last character is B (blank character), it means that the given string is an odd
palindrome. So, replace B by B change the state to ¢, and move the pointer towards right. The
transition for this can be of the form

6(q4,8)=(g;,B.R)
Step 3 : Ifthe first character is the symbol b, replace it by B and change the state from ¢, to g,
and move the pointer towards right. The transition for this can be of the form
5(q1,6)=(g5,B,R)

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 95

Now, we move the read - write head to point to the last symbol of the string and the last
symbol should be b. The symbols scanned during this process are a's,b'sand B. Replaceaby a,
b by band move the pointer towards right. The transitions defined for this can of the form

6(453a)=(q5,a"k)
F(¢s:b)=(g5,0,R)

But, once the symbol B is encountered, change the state to g, , replace B by B and move
the pointer towards left. The transition defined for this can be of the form

6(q5 aB)n(QG9B;L)

In state g, , the read - write head points to the last character of the string. Ifthe last character
is b, then change the state to g, , replace b by B and move the pointer towards left. The transitions
defined for this can be of the form

5(q6.0)=(q4,B.L)

At this point, we know that the first characteris b and last character is also b. Now, reset the

read - write head to point to the first non blank character as shown in step 5.

Instate g, , Ifthe last character is B (blank character), it means that the given string is an
odd palindrome. So, replace B by B, change the state to ¢, and move the pointer towards right.
The transition for this can be of the form

3(q6,8)=(q,,B,R)
Step 4 : In state g,, if the first symbol is blank character (B). the given string is even palindrome
and so change the state to ¢, , replace B by B and move the read - write head towards right. The
transition for this can be of the form

8(q,,B)=(¢,.8.R)

Step 5: Resettheread - writehead to point to the firstnon blank character. This can be done
as shown below.

If the first symbol of the string is a, step 2 is performed and if the first symbol of ihe string is
b, step 3 is performed. After completion of step 2 or step 3,itis clear that the first symbol and the

Jast symbol match and the machine is currently in state g, - Now, we have to reset the read - write
head to point to the first nonblank character in the string by repeatedly moving the head towards
left and remain in state ¢, . During this process, the symbols encountered may beaorborB
(blank character). Replace a by a, b by b and move the pointer towards left. The transitions
defined for this can be of the form 6(q4,a)=(g4,a,L)

5(‘14:b)=(‘14»b,L)

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 96

But, if the symbol B is encountered , change the state to ¢, , replace B by B and move the pointer
towards right. the transition defined for this can be of the form

6(44-B)=(q,B,R)
After resetting the read - write head to the first non - blank character, repeat through step 1.
So, the TM toaccept strings of palindromes over { a,b } isgivenby M =(Q, ¥, &, ¢,,B.F)
where Q0= {4,.4,,9,.9,,9.- 9, 9.:¢,} ; E={a b} ; T={ab B}; g, is the initial state
Bisthe blank character; F={ ¢, }; s is shown below using the transition table

r
) b B

9 » 7,8, R
q, 2,»B.R 7,-B.R
q, g,>b,R q,,B,L
4, - 7,-B,R
4 dys DL g,,B,R
q, 4,,b, R g B, L
q, - q.,sB,L g,-B,R

q, i = =
The transition diagram to accept palindromes over { a, b }is given by

The reader can trace the moves made by the machine for the strings abba, aba and aaba and is
left asan exercise.

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 97

Example 7 : Constructa Turing machine which accepts the language of aba over £={a,b} .

Solution : This TM is only for L= { aba }
We will assume that on the input tape the string 'aba’ is placed like this

la [b la lB
7

‘The tape head will read out the sequence upto the B character if aba’ is readout the TM will
halt after reading B.

(n.a,R) (b.b,R) (@aR)
(B,B,S)
The triplet along the edge written is (input read, output to be printed, direction)
Let us take the transition between start state and g, is (a, a, R) that is the current symbol

read from the tape is a then as a output a only has to be printed on the tape and then move the
tape head to the right. The tape will Jook like this

Lalob]al
T
Again the transition between ¢, and ¢, is(b, b, R). That means read b, print b and move

right. Note that as tape head is moving ahead the states are getting changed.
(e ls]s]® b
?

The TM will accept the language when it reaches to halt state. Halt state is always aaccept
state for any TM. Hence the transition between ¢, and haltis (B, B, S). This meansread B, print
B and stay there or there is no move left or right. Eventhough we write (B, B, L) or (B, B,R)
it is equally correct. Because after all the complete input is already recognized and now we
simply want to enter into a accept state or final state. Note that for invalid inputs such as abb or
ab or bab there is either no path reaching to final state and for such inputs the TM gets
stucked in between. This indicates that these all invalid inputs can not be recognized by our TM.

The same TM can be represented by another method of transition table

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 98

a

Start (4,,a,R)

4, B

4, (q;,a,R) B

q, - (HALT, B, S)
HALT - w

Inthe given transition table, we write the triplet in eachrow as :
(Next state, output to be printed, direction)
Thus TM can be represented by any of these methods.

Example 8 : Design a TM that recognizes the set L= {0*1"|n > 0}.

Solution : Here the TM checks for each one whether two 0's are present in the left side. Ifit
match then only it halts and accept the string.

The transition graph of the TM is,

FIGURE : Turing Machine for the given language L= {0*1"|n2 0}

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 99

Example 11 : What does the Turing Machine described by the & - tuples,
(q()»(}:‘ﬁ)’}’ R),(QQJ;Q;;O,")’(‘ZQ 7B:QZ ,B,R} ¥
(9,:0.4,:0, R), (g,,1,9,,), R) and (g,,B.q,,B, R) .Dowhen given a bit string
as input ?

Solution : The transition diagram of the TMis,

O/1,R

FIGURE : Transition Diagram for the given TM
The TM here reads an input and starts inverting 0's to 1'sand 1'sto O's till the first L.
After it has inverted the first 1, it read the input symbol and keeps it asitis till the next 1.
Afier encountering the 1 it starts repeating the cycle by inverting the symbol till next 1.1t halts
when it encounters a blank symbol.

7.4 COMPUTABLE FUNCTIONS

A Turing machine is a language acceptor which checks whether a string x isaccepted by a
Janguage L. In addition to that it may be viewed as computer which performs computations of
functions from integers to integers. In traditional approach an integer is represented in unary, an
integer ;> ¢ isrepresented by the string ¢ .

Example 1 : 2 is represented as 2. If a function has k arguments, i, iy,J; , then these

integers are initially placed on the tape separated by 1's,as 010 1 10% .

If the TM haits (whether in ot not in an accepting state) with a tape consisting of 0's for some m,
thenwe say that £(,, iy,.....iy) = m , where fis the function of k arguments computed by this
Turing machine.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 100

6(ga,D) = (g4, B, L)

8(94,0) = (44, 0. L)

9(q4,0) = (46,0, R)
Ifinstate ¢, aB is encountered before a 0, we have situation (i) described above. Enter state
g,and move left, changing all 1's to B 's until encountering a'B', This B is changed back toa 0,
state g, is entered, and M halts.
6. 8(qo,1) = (gs: B, R)

5(g5,0) = (g5, B, R)

8(gs5,1) = (95, B, R)

) 8(gs,B) = (g4, B, R)

Ifin state g, 21 is encountered instead of a 0, the first block of 0's has been exhausted, asin
situation (ii) above. M enters state ¢, to erase the rest of the tape, then enters g, and halts.

Example 4 : Design a TM which computes the addition of two bositive integers.

Solution: LetTM M =(Q, {0, 1, #}, 8,5) computes the addition of two positive integers m
and n. It means, the computed function f(m, n) defined as follows :
m+n(lf mnz1)
H ={0 (m=n=0)
1 on the tape separates both the numbers m and n. Following values are possible for m andn.
1. m=n=0 (#1# isthe input),
2. m=0and n£0 (#10"# is the input),
3. mz0andn=0 (#0°1# ... is the input), and
4. mzo0and p£0 { #0"10"# --... is the input)
Several techniques are possible for designing of M, some are as follows :
(a) M appends (writes) m after n and erases the m from the left end.

(b) M writes 0 in place of 1 and erases one zero from the right or left end , This ispossiblein
case of n#0 or m=0 only. If m=0orn=0 then 1 is replaced by #.

We use techniques (b) given above. M is shown in below figure.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 101

1is replaced by
in advance

Sinee, 1 is replaced by Gin
advance, so erase one 0ifn =0

FIGURE : TM for addition of two positive integers

7.5 RECURSIVELY ENUMERABLE LANGUAGES
AlanguageLoverthealphabet s, iscalled recursively enumerable ifthereisa TM Mihatacceptevery word
inL and either rejects(crashes) orloops for every word inlanguage 1 the complement of L.

Accept(M)=L

Reject (M) + Loop (M) =L
When TM M is still running on some input (of recursively enumerable languages) we can never
tell whether M will eventually accept if we let it run for long time or M will run forever (inloop).

Example : Consider alanguage(a+b)*bb(a+b)*.

T™ for thislanguage is, (6,5, R) (a2, R)

9 (b, b, R) 5 ,/2'\ (@

(a,aR)

FIGURE : Turing Machine for(a+b)*bb(a+b)*

Here the inputs are of three types.

1. All words with bb = accepts (M) as soon as TM sees two consecutive b's it halts.

2. Allstrings without bb but ending in b =rejects (M). When TM sces a single b, it enters
state2. If the string is ending with b, TM will halt at state 2 which is not accepting state.
Hence it is rejected.

. All strings without bb ending in 'a' or blank 'B'= loop (M) here when the TM sees lasta it
enters state 1. In this state on blank symbol it loops forever.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 102

Recursive Language

Alanguage L over the alphabet 3 is called recursive if there is a TM M that accepts every word
inL and rejects every word inL' i. e.,

accept (M) =L
reject (M) =L'

loop (M) = 4.

Example :Consideralanguageb(a+b)* . Itisrepresented by TM as:

()22)

FIGURE : Turing Machine forb(a+b)*

This TM accepts all words beginning with 'b' because it enters halt state and it rejects all words
beginning with a because it remains in start state which is not accepting state.

A language acoepted by a TM is said to be recursively enumerable languages. The subclass of
recursively enumberable sets (. €) are those languages of this class are said to be recursive sets
or recursive language.

7.6 CHURCH'S HYPOTHESIS

According to church's hypothesis, all the fumctions which can be defined by human beings can be
computed by Turing machine. The Turing machine is believed to be ultimate computing machine.

The church's original statement was slightly different because he gave his thesis before machines
were actually developed. He said that any machine that can do certain list of operations will be
able to perform all algorithms. TM can perform what church asked, so they are possibly the
machines which church described.

Church tied both recursive functions and computable functions together. Every partial recursive
function is computable on TM. Computer models such as RAM also give rise to partial recursive
functions. So they can be simulated on TM which confirms the validity of churches hypothesis.

Important of church’s hypothesis is as follows .

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 103

. First we will prove certain problems which cannot be solved using TM.

If churches thesis is true this implies that problems cannot be solved by any computer or any
programming languages we might every develop.

. Thus in studying the capabilities and limitations of"[hn'ng machines we ate indeed studying
the fundamental capabilities and limitations of any computational device we might even
construct.

It provides a general principle for algorithmic computation and, while not provable, gives strong
¢vidence that no more powerful models can be found.

7.7 COUNTER MACHINE

Counter machine has the same structure as the multistack machine, but in place of each stack is
a counter. Counters hold any non negative integer, but we can only distinguish between zero and
non zero counters.

" Counter machines are off - line Turing machines whose storage tapes are semi - infinite, and .
whose tape alphabets contain only two symbols, Z and B (blank). Furthermore the symbol Z,
which serves as a bottom of stack marker, appears initially on the cell scanned by the tape head
and miay never appear on any other cell. An integer i can be stored by moving the tape head i
cells to the right of Z. A stored number can be incremented or decremented by moving the tape
head rightor left. We can test whether a number is zero by checking whether Z is scanned by the
head, but we cannot directly test whether two nurnbers are equal.

[nl Read-only Input I Sl

Finite
Control

1 <%

BODREN0D0E

BODEDDOE

FIGURE : Counter Machine

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 104

¢and § are customarily used for end markers on the input. Here Z is the non blank symbol on
each tape. An instantaneous description of a counter machine can be described by the state, the
input tape contents, the position of the input head, and the distance of the storage heads from the
symbol Z (shown here as d, and d,). We call these distances the counts on the tapes. The
counter machine can only store a count an each tape and tell if that count is zero.

Power of Counter Machines'

- Bverylanguage accepted by a counter Machine is recursively enumerable.
- Every language accepted by a one - counter machine is a CFL so a one ~ counter machine
is a special case of one - stack machine i. e.,a PDA

7.8 TYPES OF TURING MACHINES

Various types of Turing Machines are :

i Withmultiple tapes.

il. 'With one tape but multiple heads.

iii. With two dimensional tapes.

iv. Nondeterministic Turing machines.
It is observed that computationally all these Turing Machines are equally powerful. That means
one type can compute the same that other can. However, the efficiency of computation may
vary.
1. Turing machine with Two - Way Infinite Tape :
This is a TM that have one finite control and one tape which extends infinitely in both directions.

AcceplUReject
Sl

HEENEEENRENN

tape

FIGURE : TMwith infinite Tape

Tt turns out that this type of Turing machines are as powerful as one tape Turing machines whose
tape has a left end.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 105

. Multiple Turing Machines :

input Einite Accept/Reject
control

P
wor T TTITT
w2 T 1T 111

wes | 1 |] 11
FIGURE : Multiple Turing Machines

Amultiple Turing machine consists of a finite control with k tape heads and k tapes, each tape is
infinite in both directions. On a single move depending on the state of the finite control and the
symbol scanned by each of the tape heads, the machine can

1. Change state.

2. Printanew symbo! on each of the cells scanned by its tape heads.

3. Moveeach of its tape heads, independently, one cell to the left or right or keep it stationary.

Initially, the input appears on the first tape and the other tapes are blank.
3. Nondeterministic Turing Machines :

A nondeterministic Turing machine is a device with a finite control and a single, one way infinite
tape. For a given state and tape symbol scanned by the tape head, the machine has a finite
number of choices for the next move. Each choice consists of a new state, a tape symbol to print,
and a direction of head motion. Note that the non deterministic TM is not permitied to make a
move in which the next state is selected from one choice, and the symbol printed and/ or direction
of head motion are selected from other choices. The non deterministic TM accepts its input if any
sequence of choices of moves leads to an accepting state.

As w1th the finite automaton, the addition of nondeterminism to the Turing machine does not
allow the device to accept new languages.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 106

4. Multidimensional Turing Machines : ' @

Y

3-dimensional TM

FIGURE : Multidimensional Turing Machine

The multidimensional Turing machine has the usual finite control, but the tape consists ofa
k - dimensional array of cells infinite in all 2k directions, for some fixed k. Depending on the state and
symbol scanned, the device changes state, prints a new symbol, and moves its tape head in one of 2k
directions, either positively or negatively, along one of the k axes. Initially, the input is along one axis, and
the head is at the left end of the input.At any time, only a finite number of rows in any dimension
contains nonblank symbols, and these rows cach have only a finite number of nonblank symbols
5. Multihead Turing Machines :

nput Finite AcceptReject

AR
controt

R
TITTTITETTLL]
12

pe

FIGURE : Multihead Turing Machine

Ak - head Turing machine has some fixed number, k, of heads. The heads are numbered 1 through
k, and a move of the TM depends on the state and on the symbol scanned by each head. In one
move, the heads may each move independently left, right or remain stationary.

6. Off - Line Turing Machines :

Finite
1

EIGURE : Off - line Turing Machine

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 1
07

COMPUTABILITY THEORY

e 2z B

After going through this chapter, you should be able to understand :

. Chomsky hierarchy of Languages
Linear Bounded Automata and CSLs
LR (0) Grammar
Decidability of problems
UTM and PCP
P and NP problems

8.1 CHOMSKY HIERARCHY OF LANGUAGES

Chomsky has classified all grammars in four categories (type 0 to type 3) based on the right
hand side forms of the productions.

(a) Type 0

These types of grammars are also known as phrase structured grammars, and RHS ofthese are
fiee from any restriction. All grammars are type 0 grammars.

Example : productions of types A4S —» aS, SB - §b,5 —»€ aretype 0 production.

(b) Type 1

We apply some restrictions on type O grammars and these restricted grammars are knownas
type 1 or context - sensitive grammars (CSGs). Suppose atype 0 production yaé —» 86

and the production & > # is restricted such that |a|<| #land f#e. Then these type of
productions is known as type 1 production. Ifall productions of a grammar are oftype 1 production,
then grammar is known as type 1 grammar. The language generated by a context - sensitive
grammar is called context - sensitive language (CSL).

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 108

In CSG, there is left context or right context or both. For example, consider the production
cAB—> caf . Inthis, ¢ isleft contextand # isright contextof Aand A is the variable which is
replaced.

The production oftype s — < isallowed intype 1 if ¢ isinL(G), but S should not appear on
right hand side of any production.

Example : productions § — 4B,S — €,4— ¢ aretype 1 productions, but the production
oftype 4 — Se isnotallowed . Almost every language can be thought as CSL.

Note : Iflefi or right context is missing then we assume that € is the context.
(c) Type 2

We apply some more restrictions on RHS of type 1 productions and these productions are
known as type 2 or context - free productions. A production of the form a— 8, where

a,Be(v UE)* is known as type 2 production. A grammar whose productions are type 2
production is known as type 2 or context - free grammar (CFG) and the languages generated by
this type of grammars is called context - free languages (CFL).

Example : §—>8+8,5->8*S, S—»id are type 2 productions.

(d) Type3

This is the most restricted type. Productions of types 4 —» q or 4 — aB|Ba ,where 4, B¢V,

and a e % are known as type 3 or regular grammar productions. A production of type 5 — ¢ is
also allowed, if eisin generated language.

Example : productions S —>aS, S— 4 are type 3 productions.
Left - linear production : Aproductionoftype 4> Ba is called left - linear production.
Right-linear production : Aproductionoftype 4 -» aB is called right - linear production.

Alefl - linear or right - linear grammar is called regular grammar. The language generated bya
regular grammar is known as regular language.

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 109

8.2 LINEAR BOUNDED AUTOMATA

The Linear Bounded Automata (LBA) isa model which was originally developed asa model for
actual computers rather than model for computational process. A linear bounded automaton isa
restricted form of a non deterministic Turing machine.

Alinear bounded automaton is a multitrack Turing machine which has only one tape and this tape
is exactly of same length as that of input.

The linear bounded automaton (LBA) accepts the string in the similar manner as that of Turing
machine does. For LBA halting means accepting. In LBA computation is restricted to an area
bounded by length of the input. This is very much similar to programming environment where size
of variable is bounded by its data type.

< a a

/

Leftend
marker

Finite
control

FIGURE : Linear bounded automaton

The LBA is powerful than NPDA but less powerful than Turing machine. The input is placed on
the input tape with beginning and end markers, In the above figure the input is bounded
by <and >.

A linear bounded antomata can be formally defined as:

LBA is 7 - tuple on deterministic Turing machine with
M=(Q, %, T, 6, Go; Qacceps Ureject) having
. Two extrasymbols of left end marker and right end marker which are not elementsof .
. The input lies between these end markers.
. The TM cannot replace < or > with anything else nor move the tape head left of <or
rightof >.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 110

8.3 CONTEXT SENSITIVE LANGUAGES (CSLs)

The context sensitive languages are the languages which are accepted by linear bounded automata.
These type of languages are defined by context sensitive grammar. In this grammar more than
one terminal or non terminal symbol may appear on the left hand side of the production rule.
Along with it, the context sensitive grammar follows following rules :

i Thenumber of symbols on the left hand side must not exceed number of symbols on the
right hand side.

ii. Theruleoftheform 4 —¢ isnotallowed unless A is a start symbol. It does not occur
on the right hand side of any rule.

The classic example of context sensitive languageis 7 = {a" 5" ¢" | n > 1 } . Thecontextsensitive
grammar can be written as :

aBC
SABC
AC
AB
BC

aa

ab

bb

be

ce

bC
cC

R R AR R

Now to derive the string aabbce we will start from start symbol :
S mleS — SABC
SABC ruleS —» aBC
aBCABC ruleCA —» AC
aBACBC rule CB - BC
aBABCC rleBA —» AB
aABBCC ruleaA —» aa
aaBBCC ruleaB -» ab
aabBCC rulebB — bb
aabbCC rulebC — be
aabbeC rulecC —» ce
aabbce

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 111

Note : The language o" 5" ¢" where > | isrepresented by context sensitive grammar but it
cannot be represented by context free grammar,

Every context sensitive language can be represented by LBA.

8.4 LR (k) GRAMMARS

Before going to the topic of LR (k) grammar, let us discuss about some concepts which will be
helpful understanding it.

In the unit of context free grammars you have seen that to check whether a particular string is
accepted by a particular grammar or not we try to derive that sentence using rightmost derivation
or leftmost derivation. If that string is derived we say that it is a valid string.

Example :

B3 BT
T>T*F| F
Foid| (E)

Suppose we want to check validity ofa string id +id * id . Its rightmost derivation s
E = E+T
E+T*F
E+T*id
E+ F*id
E +id*id
T+id *id
F +id*id
id + id *id

=
=
=
=
=
=

FIGURE(a) : Rightmost Derivation of id +id * id

Sinee this sentence is derivable using the given grammar. Itis a valid string. Here we have checked
the validity of string using process known as derivation.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 112

In reduction process we have seen that we repeat the process of substitution until we get starting
state. But some times several choices may be available for replacement. In this case we have to
backtrack and try some other substring . For certain grammars it is possible to carry out the
process in deterministic. (i. e., having only one choice at each time). LR grammars form one
such subclass of context free grammars, Depending on the number of fook ahead symbolized to
determine whether a substring must be replaced by a non terminal or not, they are classified as
LR(0),LR(1).... and in general LR(k) grammars.

LR(k) stands for left to right scanning of input string using rightmost derivation in reverse

order (we say reverse order because we use reduction which is reverse of derivation) using
look ahead of k symbols.

8.4.1 LR(0) Grammar

LR(0) stands for left to right scanning of input string using rightmost derivation in reverse order
using 0 look ahead symbols.

Before defining LR(0) grammars, let us know about few terms.

Prefix Property : A language L is said to have prefix property if whenever w in L, no proper
prefix of wis in L. By introducing marker symbol we can convert any DCFL to DCFL with prefix

property. Hence L$ = { w$ |w e L} isa DCFL with prefix property whenever wis inL.

Example : Consider a language L = { cat, cart, bat, art, car } . Here, we can see that sentence
cartis in L and its one of the prefixes caris also is in L. Hence, it is not satisfying property. But
L$ ={cat$,cart$, bat$ art§,car$ }

Here, cart $ is in L$ but its prefix cart or car are not present in L$. Similarly no proper prefix is
present in L$. Hence, it is satisfying prefix property.

Note : LR(0) grammar generates DCFL and every DCFL with prefix property has a LR(0)
grammar.

LR items

An item fora CFG is a production with dot any where in right side including beginning orend. In
case of ¢ production, suppose 4 — € 4—». isanitem.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 113

Computing Valid item Sets

‘The main idea here is to construct from a given grammar a deterministic finite automata to recognize
viable prefixes. We group items together into sets which give to states of DFA. The items may be
viewed as states of NFA and grouped items may be viewed as states of DFA obtained using
subset construction algorithm.

To compute valid set of items we use two operations goto and closure.
Closure Operation

It Iis a set of items for a grammar G, then closure (1) is the set of items constructed from I by two
rules.
1. Initially, every item 1 is added to closure ().
2. If 4— a.Bp isinclosure () and B -» § is productionthenadditem g — § tol ifitis
not already there. We apply this rule until no more new items can be added to closure (I).

Example : For the grammar,

s> 8
S — cdd
4 = a

If &' — S issetofoneitem in stateIthen closure of Iis,
L: § =
S = .cAD

The first item is added using rule 1 and § —» .c4d is added using rule 2. Because ' . 'is

followed by nonterminal S we add items having SinLHS.In § — .c4d '.’isfollowed by
terminal so no new item is added.

Goto Function : It is written as goto (I, X) where Lis set of items and X is grammar symbol.

If A4->a.X}3 is insome item set I then goto (I, X)) will be closure of set of all item 4 - a.X 6.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 114

FIGURE(a) : DFA whose States are the Sets of Valid items

Definition of LR(0) Grammar : We say G is an LR (0) grammar if,

1. Itsstart symbol does not appear on the right hand side of any production and

2. Forevery viable prefix y of G whenever 4 — is a complete item valid for y ,thenno
other complete item nor any item with terminal to the right of the dot s valid for 7.

Condition 1 : For a grammar to be LR(0) it should satisfy both the conditions. The first

condition can be made to satisfy by all grammars by introduction of a new production §'-> § is

known augmented grammar.

Condition 2 : For the DFA shown in Figure(a), the second condition is also satisfied because

inthe item sets 1,, 7, and I, each containinga completeitem, there areno other complete items

nor any other conflict.

Example : Consider the DFA given in figure(b).

FIGURE(b) : DFAfor the given Grammar

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 115

Each problem P is a pair consisting of a setand a question, where the question can be applied to
each element in the set. The set is called the domain of the problem, and its elements are called
the instances of the problem.

Example :

Domain = { All regular languages over scme alphabet 5 },
Instance : L={w:wisawordover 3 endingin abb},
Question : Is union of two regular languages regular ?

851 Decidable and Undecidable Problems

A problem is said to be decidable if
1. Itslanguage is recursive, or
2. Ithas solution

Other problems which do not satisfy the above are undecidable. We restrict the answer of
decidable problems to " YES" or "NO" . If there is some algorithm exists for the problem, then
outcome of the algorithm is either "YES" or "NO" but not both. Restricting the answers to only
"WES" or "NO™ we may not be able to cover the whole problems, still we can cover a lot of
problems. One question here. Why weare restricting our answers to only "YES" or "NO"? The
answer is very simple ; we want the answers as simple as possible.

Now, we say " If for a problem, there exists an algorithm which tells that the answer is either
"YES" or "NO" then problem is decidable."

If for a problem both the answers are possible ; some times "YES" and sometimes "NO",
then problem is undecidable.

8.5.2 Decidable Problems for FA, Regular Grammars and Regular Languages

Some decidable problems are mentioned below :

1. Does FA acceptregular language ?

2. Isthe power of NFA and DFA same ?

3. I, and I,are tworegular languages. Are these closed under following :
(@ Union
() Concatenation
(¢) Intersection
(d) Complement

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 116

6. Wehave following co - theorem based on above discussion for recursive enumerable and
recursive languages.

LetLand T aretwo languages, where T the complement of L, then one of the following
istrue:

(a) Both Land 7 arerecursive languages,

(b) Neither L nor T isrecursive languages,

(c) IfL is recursive enumerable but not recursive, then 7, is not recursive enumerable and
vice versa. ;

Undecidable Problems about Turing Machines

In this section, we will first discuss about halting problem in general and then about ™.
Halting Problem (HP)

The halting problem is a decision problem which is informally stated as follows:

"(iiven a description of an algorithm and a description of its initial arguments, determine whether
the algorithm, when executed with these arguments, ever halts. The alternative is thata given
algorithm runs forever without halting.”

Alan Turing proved in 1936 that there is no general method or algorithm which can solve the
halting problem for all possible inputs. An algorithm may contain loops which may be infinite or
finite in length depending on the inputand behaviour of the algorithm. The amount of work done
in an algorithm usually depends on the input size. Algorithms may consist of various number of
loops, nested or in sequence. The HP asks the question :

Given a program and an input to the program, determine if the program will eventually stop when
itis given that input ?

One thing we can do here to find the solution of HP. Let the program run with the given input and
if the program stops and we conclude that problem is solved. But, ifthe program doesn't stop in
areasonable amount of time, we can not conclude that it won't stop. The questionis: " howlong
we can wait 7" . The waiting time may be long enough to exhaust whole life. So, we can not
take it as easier as it seems to be. We want specific answer, either "YES" or "NO", and hence
some algorithm to decide the answer.

FORMAL LANGUAGES AND AUTOMATA THEORY

PAGE 117

Now, we analyse the following :
1. If H outputs "YES" and says that Q halts then Q itself would loop (that's how we
constructed it),
2. IfH outputs "NO" and says that Q loops then Q outputs "YES" and will halts.
Since, ineither case H gives the wrong answer for Q. Therefore, H cannot work inall cases
and hence can't answer right for all the inputs. This contradicts our assumption made earlier for
HP. Hence, HP is undecidable.

Theorem : HP of TM is undecidable. v
Proof : HP of TM means to decide whether or not a TM halts for some input w. We can prove
this following the similar steps discussed in above theorem.

8.6 UNIVERSAL TURING MACHINE .

The Church - Turing thesis conjectured that anything that can be done on any existing digital
computer can also be done by a TM. To prove this conjecture. A. M. Turing was able to construct
asingle TM which s the theoretical analogue of a general purpose digital computer. This machine
is called a Universal Turing Machine (UTM). He showed that the UTM is capable of initiating
the operation of any other TM, that is, it is areprogrammable TM. We can define this machine in
more formal way as follows :

Definition : A Universal Turing Machine (denoted as UTM) is a TM that can take as input an
arbitrary TM 7,, with anarbitrary input for 7, and then perform the execution of 7, onitsinput.

What Turing thus showed that a single TM can acts like a general purpose computer that stores
aprogram and its data in memory and then executes the program. We candescribe UTMasa 3

- tape TM where the description of TM, T, and its input string x e 4' arestored initially on the
first tape, ¢, . The second tape, t, used to hold the simulated tape of T, using the same format
as used for describing the TM, 7, . The third tape,, ¢, holds the state of T,

]

I Ta X
Desceiptionof Ty V{S‘Ih itsinpulx

Contro}

Unit i £
wf UTM

“Tape conteats of Ta

i
snl & | I...

Satenf Ta

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 118

Now, suppose that a Turing machine, 7, is consisting of a finite number of configurations,
denoted by, & ¢, G505 €, and let &, G Cy,es €, represent the encoding of them. Then, we
can define the encoding of 7, as follows :

Yo, HG B GH
Here, * and # are used only as separators, and cannot appear elsewhere. We use a pair of *'s to
enclose the encoding of each configuration of TM, T, .

The case where 8(s,q) is undefined can be encoded as follows :

#50a OB #
where the symbols 5 , @ and 7 stand for the encoding of symbols, s, a and B (Blank character),
respectively.

Working of UTM

Given a description of a TM, T, and its inputs representation on the UTM tape, ¢, and the
starting symbol ontape , #,, the UTM starts executing the quintuples of the encoded TM as
follows:
1. The UTM gets the current state from tape, ¢, and the current input symbol from tape ¢, .
2. then, itmatches the current state - symbol pair 10 the state symbol pairs in the program listed
ontape, f,.
if no match occurs, the UTM halts, otherwise it copies the next state into the current state
cell of tape, ¢,, and perform the corresponding write and move operations on tape, #,.
if the current state on tape, 1, is the halt state, then the UTM halts, otherwise the UTM goes
back to step 2. :

8.7 POST'S CORRESPONDENCE PROBLEM (PCP)

Post's correspondence problem is a combinatorial problem formulated by Emil Post in 1946.
This problem has many applications in the field theory of formal languages.

Definition :

A correspondence system P is a finite set of ordered pairs of nonempty strings over some alphabet.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 119

Here, u, =b, u, =a, u; =abe, vyy=ca, vy=ab, ty=c.
We haveasolution w=u;, u, = v, v, =abca.

8.8 TURING REDUCIBILITY

Reduction is a technique in which if a problem A is reduced to problem B then any solution of B
solves A, In general, if we have an algorithm to convert some instance of problem A to some
instance of problem B that have the same answer then it is called A reduces to B.

FIGURE: Reduction

Definition : Let Aand B be the two sets such that 4, B ¢ N ofnatural numbers, Then Ais
Turing reducible to B and denotedas 4 <, B.

If there is an oracle machine that computes the characteristic function of A when it is executed
with oracle machine for B.

This is also called as Ais B - recursive and B - computable. The oracle machine is an abstract
machine used to study decision problem. It is also called as Turing machine with black box.

We say that A is Turing equivalentto Band write 4 =, Bif A<, Band B<; 4.

Properties :
1. Every setis Turing equivalent to its complement.
2. Every computable set is Turing equivalent to every other computable set.

3. f4<, Band B, Cthen 4%, B.

8.9 DEFINITION OF P AND NP PROBLEMS

A problem is said fo be solvable if it has an algorithm to solve it. Problems can be categorized
into two groups depending on time taken for their execution.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 120

1. The problems whose solution times are bounded by polynomials of small degree.
Example: bubble sort algorithm obtains n numbers in sorted order in polynomial time

P(n) = n* —2n+1 where nis the length of input. Hence, it comes under this group.

Second group is made up of problems whose bestknown algorithm are non polynomial
example, travelling salesman problem has complexity of O(n? 2" which is exponential.
Hence, it comes under this group.

A problem can be solved if there is an algerithm to solve the given problem and time required is
expressed as a polynomial p(n) , n being length of input string. The problems of first group are of
thiskind. :

The problems of second group require large amount of time to execute and even require moderate
size so these problems are difficult to solve. Hence, problems of first kind are tractable or easy
and problems of second kind are intractable or hard.

8.9.1 P-Problem

P stands for deterministic polynomial time. A deterministic machine at each time executes an
instruction. Depending on instruction, it then goes to next state which is unique.

Hence, time complexity of deterministic TM is the maximum number of moves made by Mis
processing any input string of length n, taken over all inputs of length n.

Definition : Alanguage L is said to be in class Pif there exists a(deterministic) TM M such
that M is of time complexity P(n) for some polynomial P and M accepts L.
Class P consists of those problem that are solvable in polynomial time by DTM.

8.9.2 NP -Problem

NP stands for nondeterministic polynomial time.

The class NP consists of those problems that are verifiable in polynomial time. What we mean
here isthat if we are given certificate of a solution then we can verify that the certificate is correct
in polynomial time in size of input problem.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 121

8.10 NP - COMPLETE AND NP - HARD PROBLEMS

A problem S is said to be NP- Complete problem if it satisfies the following two conditions.
1. §eNP,and

2. For every other problems §, e NP for some i=1,2, n, there is polynomial - time
transformation from &, zo S i.e. everyprobleminNP class polynomial -timereducibleto'S.
We conclude one thing here that if §, is NP - complete then S is also NP - Complete.

As aconsequence, if we could find a polynomial time algorithm for S, then we can solve all NP
problems in polynomial time, because all problems in NP class are polynomial - time reducible to
each other.

"A problem P is said to be NP - Hard if it satisfies the second condition as NP - Complete, but
not necessarily the first condition..". '

The notion of NP - hardness plays an important role in the discussion about the relationship
between the complexity classes Pand NP, It is also often used to define the complexity class NP
- Complete which is the intersection of NP and NP - Hard. Consequently, the class NP - Hard
can be understood as the class of problems that are NP - complete or harder.

Example : AnNP- Hard problem is the decision problem SUBSET - SUM whichiisas follows.

* Given a set of integers, do any non empty subset of them add up to zero? Thisis a yes /no
question, and happens to be NP - complete ".

There are also decision problems that are NP - Hard but not NP - Complete , for example, the
halting problem of Turing machine. It is easy to prove that the halting problem is NP - Hard but
not NP - Complete. It is also easy to see that halting problem is not in NP since all problems in
NP are decidable but the halting problem is not (voilating the condition first given for NP -
complete languages).

In Complexity theory, the NP'- complete problems are the hardest problems in NP class, inthe
sense that they are the ones most likely not to be in P class. The reason is that if we could find a
way to solve any NP - complete problem quickly, then you could use that algorithm to solveall
NP problems quickly.

Atpresent time, all known algorithms for NP - complete problems require time which s exponential
in the input size. It is unknown whether there are any faster algorithms for these arenot.

FORMAL LANGUAGES AND AUTOMATA THEORY PAGE 122

