ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES

Department of Computer Science and Engineering

Academic Year 2023-24
II. B.Tech I Semster

Discrete Mathematical Structures
(Common to CSE,CIC,AIDS,AIML,CSE(DS))
(20ABS9914)

Prepared By

Dr. A Sreenivasulu
Assistant Professor
Department of HBS, AITS

Course Code	Discrete Mathematical Structures (common to CSE,CIC,AIDS,AIML,CSE(DS))		L	T	P	C
20ABS9914			3	0	0	3
Pre-requisite	Basic Mathematics	Semester	II-I			

Introduce the concepts of mathematical logic and gain knowledge in sets, relations and functions and Solve problems using counting techniques and combinatorics and to introduce generating functions and recurrence relations. Use Graph Theory for solving real world problems.

Course Outcomes (CO):

CO1: Make use of mathematical logic to solve problems
CO2: Analyse the concepts and perform the operations related to sets, relations and functions.
CO3: Identify basic counting techniques to solve combinatorial problems.
CO4: evaluate solutions by using recurrence relations
CO5: utilize Graph Theory in solving computer science problems

UNIT - I	Mathematical Logic	9 Hrs

Introduction, Statements and Notation, Connectives, Well-formed formulas, Tautology, Duality law, Equivalence, Implication, Normal Forms, Functionally complete set of connectives, Inference Theory of Statement Calculus, Predicate Calculus, Inference theory of Predicate Calculus.

UNIT - II	Set theory	9 Hrs
Basic Concepts of Set Theory, Relations and Ordering, The Principle of Inclusion- Exclusion, Pigeon hole principle and its application, Functions composition of functions, Inverse Functions, Recursive Functions, Lattices and its properties. Algebraic structures: Algebraic systems-Examples and General Properties, Semi groups and Monoids, groups, sub groups, homomorphism, Isomorphism.		

UNIT - III	Elementary Combinatorics	9 Hrs
Basics of Counting, Combinations and Permutations, Enumeration of Combinations and Permutations, Enumerating Combinations and Permutations with Repetitions, Enumerating Permutations with Constrained		

UNIT - IV	Recurrence Relations	9 Hrs
Generating Functions of Sequences, Calculating Coefficients of Generating Functions, Recurrence relations, Solving		

UNIT - V	Graphs	9 Hrs

Basic Concepts, Isomorphism and Sub-graphs, Trees and their Properties, Spanning Trees,Directed Trees, Binary Trees, Planar Graphs, Euler's Formula, Multigraphs and Euler Circuits, Hamiltonian Graphs, Chromatic Numbers, The Four Color Problem

Textbooks:

1. Joe L. Mott, Abraham Kandel and Theodore P. Baker, Discrete Mathematics for Computer Scientists \& Mathematicians, 2nd Edition, Pearson Education.
2. J.P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications to Computer Science, Tata McGraw Hill, 2002.

Reference Books:

1. Kenneth H. Rosen, Discrete Mathematics and its Applications with Combinatorics and Graph Theory, 7th Edition, McGraw Hill Education (India) Private Limited.
2. Graph Theory with Applications to Engineering and Computer Science by Narsingh Deo.

Online Learning Resources:

http://www.cs.yale.edu/homes/aspnes/classes/202/notes.pdf

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P010	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	3													
CO3	3													
CO4	3													
CO5	3													

(Levels of Correlation, viz., 1-Low, 2-Moderate, 3 High)
preposition (or) sentence (or) statement :
A proposition is a declarative sentence uthicts is in the given contest can be set to be then 'tue' or 'false' but not both.
(or)
Every statement is a sentence bat all sentence are not sentence. Negation:

A statement obtained by inserting the word 'NOT' at an appropriate place in a given statement is called the negation. It is denoted by (iv) or (7). The negation of the statement ' p ' is denoted by $\sim P$ or $7 P$?

Eq: $p^{r} 2$ is an even number NP, 2 is not ian even number. \qquad Conjunction:

A compound statements obtained by combainin to given preposition (statements), by inserting the word 'AND' it is denoted by the symbol' n ' and read as 'AND'. The conjunction of two statements' ' P ' and ${ }^{\prime}$ ' 6 is denoted by 'PRQ'.
Eg: p : Rama went to School
a: Raghe went to school

PNQ: Rama and Raghu went to school.
Truth table :
If P and $Q \quad(P \cap Q)$ is true ' T ' when P ' is true and Q is true otherwise false.

P	a	R
T	T	T
T	T	F
T	F	T
T	F	F
F	T	T
F	T	F
F	F	T

Disjunction:
A compound statement obtained by combaiting two given statements by inserting the 'OR' in between them is called the is junction it is denoted by the symbol ' V ' and read as ' $O R$ '. The statements ane p and Q as denoted by 'bra'.
Eg P. I will bay a computer.
a : I will buy a Ca

- pYa: Ir will buy a computer ai a car

Truth table:
If ' $p \vee Q$ ' is false when p is false and a is fall, otherwise true

P	T	T
T	T	T
T	T	T
$=T$	$=$	

coreseral ar irnficufor:

- compeurce trob-esty offorei bo corbiniriton

 sercter or $\rangle=\sim 6$

二?:
Os Doneop coseve rode
a.: Sorvo wi'l past the Exoen
 the star.
Tratoble:
In the creseral o二asitite corer 0 Eture and If tilye creasistrue.

Tre crevoral s=;p f thive uren of the ard
b. © troe, ctroutise troe.

p	3	$p=g$	$G=p$
T	T	T	-
T	F	F	-
F	-	T	E
$=$			

By implication: A compound statement obtained by combining two given statement by inserting a coond if and only if. If is denoted by the symbol $\Leftrightarrow \rightleftharpoons$ and read as double implies.
Eg: p : Two lines core parallel
Q: They have same stope
, $p \Leftrightarrow$ Q: Two lines care parallel if and only if they have
Same slope
Truth table:
If $p \Leftrightarrow Q$ is true when p is true and Q is true otherwise, false. p is false and G is false

P	Q	$P \Leftrightarrow Q$
T	T	T
T	F	F
F	T	F
F	F	F

Exclusive Disjunction: A compound statement obtained t combolining two given statements by insesfirg a word. $O R$ in the exclusive sense. we required that the compo statement PVQ to be True only, when P is true OR Q is true but not both. The exclusive OR is deroled by the symbol v.
Truth table.
If $(P \vee Q) p$ exclusive $O R$ is true when p is trice or a is true but not both true(or) p is false or a is,

| P | a | $\sim P$ | $\sim Q$ | $(p \vee \sim Q)$ | $(\sim P \wedge \sim Q)$ | $(p \vee \sim Q) \Leftrightarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | F | F | T | F | F |
| T | F | F | T | T | F | F |
| F | T | T | F | F | F | $T \sim \sim$ |
| F | F | T | T | T | T | T |
| | | T | | | | |

$$
\sim P \Rightarrow Q \quad(P \vee Q) \wedge(P \Rightarrow Q)
$$

P	Q	$P \vee Q$	$P=Q$	$(P \vee Q) \cap(P=力 Q)$
T	T	T	F	F
T	F	T	F	F
F	T	T	T	T
F	F	F	F	F

$$
(P \Rightarrow \sim Q) \Leftrightarrow(\sim P \vee Q Q)
$$

P	Q	$\sim p$	$\sim Q$	$(P \Rightarrow \sim Q)$	$(\sim p \vee Q)$
T	T	F	F	F	T
T	F	F	T	T	$F Q)$
F	T	T	F	T	F
F	F	T	T	T	F
$P \vee Q) \cap(P \Rightarrow Q)$	T	F			

$$
(P \vee R) \Rightarrow(\sim P \wedge Q)
$$

$$
(\sim P \Leftrightarrow \sim R) \Rightarrow(P \vee Q)
$$

ωP	Q	R	$O P$	$\sim R$	$O P \Leftrightarrow N R$	$P \underline{v} Q$	$(\sim P \Leftrightarrow \sim R) \Rightarrow(\rho \underline{V}$
T	T	T	F	F	T	F	F
T	T	F	F	T	F	F	T
T	F	T	F	F	T	T	T
F	E	F	F	T	F	T	T
F	T	T	T	F	F	T	T
F	F	T	T	T	T	T	
	T	T	F	F	F	T	
	F	T	T	T	F	F	

$(P \cap Q) \Rightarrow(R \Leftrightarrow S)$

$$
\begin{aligned}
& 0 \\
& \Sigma
\end{aligned}
$$

Tautology (T_{0})

- a compound statement whictios true for all possible truth values of its statements is called a tautology. It is denoted by T_{0}.
contradiction Fo:
A compound statement which is falls for all possible truth values of its statements is called contradiction. It 8 denoted by F_{0}.
contingency :
A compound statement that can be true or false s_{s} called contingency.
Eg:-
prop

P	$\sim P$	$P v \sim P$
T	F	T
T	F	T

prop is a toutdogy
$P \cap \sim P$

P	$\sim p$	$p \wedge r o p$
T	F	F
T	F	F

* Prop is contradiction.

1) prove that $[(P \Rightarrow a) \cap(Q \Rightarrow R)] \vee[(p \Leftrightarrow Q)]$ is tautology
2) prove that $(p \searrow Q) \vee(p \Leftrightarrow Q)$ is tautology
3) prove that $(p \not Q a) \wedge(P \Leftrightarrow Q)$ is contradiction
4) prove that $(P \vee Q) \wedge(P \Rightarrow Q)$ is contingency
(1) $[(p \Rightarrow Q) \wedge(Q \Rightarrow R)]$

(1) $[P \Rightarrow Q$	$Q \Rightarrow R$	$(P \Rightarrow Q) \wedge(Q \Rightarrow y)$	$P B>Q$	z			
P	R	$P \Rightarrow$	T	T	T		
T	T	T	T	T	T	F	T
T	T	F	T	F	F	F	F
T	F	T	F	T	F	F	F
T	F	F	F	T	F	F	F
F	T	T	T	T	T	F	F
F	T	F	T	F	F	T	T
F	F	T	T	T	T	T	T
F	F	F	T	T	T	i	T

3 $[P \vee Q] \vee(P \Leftrightarrow Q)$

P	Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \vee Q) \vee(R \Leftrightarrow Q)$
T	T	F	T	T
T	F	T	F	T
F	T	T	F	T
F	F	F	T	T

3) $(p \vee Q) \cap(p \Leftrightarrow a)$

P	Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \vee Q) \cap(P \Leftrightarrow Q)$
T	T	F	T	F
T	F	T	F	F
F	T	T	F	F
F	F	F	T	F

4) $(P \vee Q) \wedge(P \Rightarrow Q)$

$(P \vee Q) \wedge(P \Rightarrow Q)$
P
P

1* Tautological implications :-
Recall the definition of the additional statement and truth table for any statement formula $P \Rightarrow Q$ converse implication:

The statement $G \Rightarrow \% P$ is called the converse implication.
Inverse implication:
The statement $\sim p \Rightarrow \sim Q$ is called the Inverse implication.
contra positive implication :
The statement $N Q \Rightarrow \sim p$ is called the contra. positive implication.
Eg:

T	T	T	F	F	T	T	T
T	F	F	F	T	T	T	F
F	T	T	T	F	F	F	T,
F	F	T	T	T	T	T	T

In above,

$$
\begin{array}{ll}
\text { In above, } \\
+(p \Rightarrow Q) \equiv(\sim a \Rightarrow \sim p) & \text { or } \\
* \quad(p \Rightarrow Q) \Leftrightarrow(\sim Q \Rightarrow \sim p) \\
*(Q p) \equiv(\sim p \Rightarrow \sim Q) \quad \text { o } & (Q \Rightarrow p) \Leftrightarrow(\sim p \Rightarrow \sim Q)
\end{array}
$$

1. Define converse, contra-positive and inverse of implications and then prove that $(P \Rightarrow Q) \Rightarrow(N Q \Rightarrow P$ no $)$ is a Tautology

P	Q	$\sim P$	$\sim Q$	$P=\chi Q$	$v Q \Rightarrow \sim P$	Z
T	T	F	F	T	T	T
T	F	F	T	F	F	T
F	T	T	F	T	T	T
F	F	T	T	T	T	T

\Rightarrow logically equivewerke. .-
Tow programs proporitions/statements p and c^{1} abe solid to be logically equepuatent (or) simply equivalent if they have identical truth values. It is denoted by $\rho \equiv Q$ (or) $p \nRightarrow \theta$. ale bra of statements (or) formula for equivalence Replacencthi

1. Idempotent law (or) atternativemethod (or)

$$
\begin{aligned}
& * P V P \equiv P \\
& * P \cap P \equiv P
\end{aligned}
$$

2. Associative law

$$
\begin{aligned}
& * P \wedge(Q \wedge R) \equiv(P \wedge Q) \cap R \\
& * P \vee(Q \vee R) \equiv(P \vee Q) \vee R
\end{aligned}
$$

3. Commutative law
$\therefore P \vee Q \equiv Q \vee P$.
$\therefore P \wedge Q \equiv Q \wedge P$
4. complement law

* $p \vee \sim p \equiv T$
* $P \wedge \sim P \equiv F$
* PA $\sim T \equiv F$
*** * \because F $\equiv T$

5. Demorgans law

* $\sim(P \vee Q) \equiv \sim P \sim \sim Q$
$* \sim(P \wedge Q) \equiv \sim P \vee \sim Q$

6. Distributive law.

$$
\begin{aligned}
& * P \vee(Q \wedge R) \equiv(P \vee Q) \wedge(P \vee R) \\
& * P \wedge(Q \vee R) \equiv(P \wedge Q) \vee(P \wedge R)
\end{aligned}
$$

7. Identity law

$$
\begin{aligned}
& * P \vee F \equiv P \\
& * P \vee T \equiv T \\
& * P \wedge F \equiv F \\
& * P \cap T \equiv P
\end{aligned}
$$

8. Doceble negation law

$$
* \sim(\sim p) \equiv p
$$

9. Inverse law

* $P \vee \sim P=T_{0}$
* $P \cap \sim P \equiv F_{0}$

3) $\because 6$
4) Domination law

$$
\begin{aligned}
& * P \vee T_{0} \equiv T_{0} \\
& * P \cap T_{0} \equiv F_{0}
\end{aligned}
$$

11) Absorption law

* $P \vee(P \wedge Q) \equiv P$
* $P \wedge(P \vee Q) \equiv P$

Implication Law:

1) $P \Rightarrow Q \equiv \sim P \vee Q$
2) $v(P \Rightarrow Q) \equiv P \cap \sim Q$
3) $p \Leftrightarrow Q \equiv(p \Rightarrow Q) \sim Q \Rightarrow p)^{\prime}$
4)

$$
\begin{aligned}
& R \vee(P \cap \sim P) \equiv R \\
& R \wedge(P \vee \sim P) \equiv R
\end{aligned}
$$

14)

$$
\begin{aligned}
& R \vee(p \vee \sim P) \equiv T_{0} \\
& R \wedge(p \wedge \sim P) \equiv F_{0}
\end{aligned}
$$

1) Show that $[\sim P \cap(N Q \cap R)] \vee(Q \cap R) \vee(P \cap R) \equiv R$

$$
\begin{aligned}
& \text { L.H. } \underline{S}_{y}[\sim P \cap(\sim Q \cap R)] \vee(Q \wedge R) \vee(P \cap R) \equiv \\
& =[(N P \cap \sim Q) \wedge R] \cup[(Q \cap R) \cup(P \cap R)](\because \text { associaifl } \\
& \text { (} \mathrm{C} \omega \text {) } \\
& \equiv[(\text { (op } \cap \sim A) \cap R] \vee[R \wedge(Q \vee P)](\therefore \text { Distibuive lqus) } \\
& \equiv[\sim(P \vee Q) \cap R] \vee[R \wedge(Q \vee P)](\because \text { Democrgan's (aw) } \\
& \equiv R \wedge[\sim(p \vee Q) \vee(Q \vee p)](\because \text { Distribulive law) } \\
& \equiv R \wedge[\sim(P \vee Q) \vee(P \vee Q)] \text { (:commutative law) } \\
& =R \cap T_{0} \text { (} \because \text { inverselaw) } \\
& \equiv R \text { (Identity lawo) }
\end{aligned}
$$

2)

$$
P \Leftrightarrow Q \equiv(p \Rightarrow Q) \Delta(a \Rightarrow p)
$$

L.H.S

$$
\rightarrow P \Leftrightarrow Q \equiv
$$

2) $P \Leftrightarrow Q \equiv(P \vee Q) \Rightarrow(P \wedge Q)$
L.H.S

$$
\begin{aligned}
p \Leftrightarrow Q & \equiv(P \Rightarrow Q) \wedge(Q \Rightarrow P) \quad \text { (implication law) } \\
& \equiv(\sim P \vee Q) \wedge(\sim Q \vee p)(\therefore \text { implication law })
\end{aligned}
$$

$=[(\sim \rho \vee Q) \wedge(\sim Q)] \vee[\sim \rho \vee Q) \wedge p]$ (\because disffibifive law
" $\#$ "or $\left.n\left(\hat{\sim} p \vee \theta^{\prime}\right)^{\prime}\right] \vee[P \wedge(\sim p \vee Q)](\because$ commutative lau
$\equiv[(\sim Q \cap \sim p) \vee(\sim Q \wedge Q)] \vee[(P \wedge \sim P) \vee(P \wedge Q)](\therefore$ destribui
$\equiv[\sim(Q \vee P) \vee(\sim Q \wedge Q)] \vee[(P \wedge \sim P) \vee(P \wedge Q)](\therefore$ Demorgań
$\equiv\left[\sim(a \vee p) \vee F_{0}\right] \vee\left[F_{0} \vee(p \wedge Q)\right](\therefore$ Invaselaw)
$\approx[\sim(Q \vee P)] \vee[(\rho \sim Q)](\therefore$ Identity law)
$=[\sim(p \vee Q) \vee(p \wedge Q)](\therefore$ commutative law)
$=(p \vee a) \Rightarrow(P \wedge Q)(\therefore$ Implication Law)

$$
\therefore p \Leftrightarrow Q \equiv(p \vee Q) \Rightarrow(p \wedge \theta)
$$

3) P.T $P \Rightarrow(Q \Rightarrow P) \equiv \sim P \Rightarrow(P \Rightarrow Q)$

LoH.S

$$
\begin{aligned}
& P \Rightarrow(Q \Rightarrow P) \equiv P \Rightarrow(\sim Q \vee p) \quad(\therefore \text { Implicairion law) } \\
& \equiv \operatorname{NPV}(\text { NQUP })(\therefore \text { Amplicalion law) } \\
& \equiv(\text { op VNa) } \vee P \text { (Associceive law) } \\
& =\operatorname{Pv}(\sim p \vee r a) \text { (} \therefore \text { commutative) } \\
& \equiv(p \vee \sim p) \vee \sim a \text { (Associallve) } \\
& \equiv \text { To VOQ (Inveave) } \\
& =T_{0}(\therefore \text { Domination law) }
\end{aligned}
$$

R.H.S

$$
\begin{aligned}
\sim p \Rightarrow(P \Rightarrow Q) & \equiv \sim p_{P} \Rightarrow(\sim p \vee Q) \quad \text { (i. Implication } \\
& \equiv N(\sim p) \vee(\sim P \vee Q) \quad(\therefore \text { Implication) }
\end{aligned}
$$

$$
\begin{aligned}
& \equiv P \vee(\sim P \vee Q) \quad(\because \text { Associcilive law }) \\
& \equiv(P \vee \sim P) \vee Q \quad(\therefore \text { Inverse law } \\
& \equiv T_{0} \vee Q \quad(\therefore \text { Domination law } \\
& \equiv T_{0} \quad(P P \Rightarrow(P \Rightarrow Q)
\end{aligned}
$$

UST: $[(P \vee Q) \wedge \sim[\sim P \wedge(\sim Q \vee \sim R)]] \vee(\sim P \wedge \sim G) N(B P \cap \sim R)$
is tautology?

$$
\begin{aligned}
& \Rightarrow \quad \sim P \wedge N R \equiv N(P M R) \quad \text { ("Demo organs law") } \\
& \sim P \wedge N Q \equiv N(p \vee Q) \text { (u) } \\
& \Rightarrow(\sim P \wedge \sim Q) \vee(\sim P \wedge \sim R) \equiv[\sim(P \vee Q)] \vee[\sim(P \vee R)] \\
& 三 N\left[(P \vee Q)_{/} \vee(P \vee R]\right. \text {. (ODemorga } \\
& \Rightarrow \sim \sim \sim P \wedge(N Q V \sim R)] \equiv P(N Q V \sim R) \\
& \equiv P V v[\sim(Q \cap R)] \text { (Denorganls) } \\
& =P v(Q \wedge R) \\
& \Rightarrow(P \vee Q) \wedge \sim[\sim P \cap(\sim Q \vee \cap R)] \equiv(P \vee Q) \wedge[P \vee(Q \cap R)]_{\text {distrin }} \\
& =(P \vee Q) \wedge[(\underline{P} Q) \wedge(P \vee R)] \text { (Aleso organ's) } \\
& \equiv[(P \vee \theta) \wedge(P \vee \theta)] \wedge(P \vee R) \text { (Associalive law) } \\
& \equiv(p \vee \theta) \wedge(p \vee R)(\therefore \text { Idempotent }) \\
& \text { - } \\
& {[(P \vee Q) \wedge \sim[\sim P \wedge(\sim O Q \vee \cap R)]] \vee(\sim P \cap N Q) \vee(\cap P \cap \wedge \sim R)} \\
& \text { (Inveaselaw) } \\
& \frac{A(p v a) \wedge(p v a)] \wedge \varphi}{\square} \\
& v \sim[(p \vee Q)](p \vee B \\
& \Rightarrow[(\rho \cup Q) \cap(\rho \cup R)]^{v} \\
& \sim \sim[(p \vee Q) i n(p v \in \text {. }
\end{aligned}
$$

5) $(P \Rightarrow Q) \Rightarrow R$ and $P \Rightarrow(Q \Rightarrow R)$ logically equervalient justify your answer by using logical equivalence and by using truth table?

$p=r a)$ $P$$\quad R$	R	$P \Rightarrow Q$	$(P \Rightarrow Q) \Rightarrow R$
T	T	T	T

$P \Rightarrow(Q \Rightarrow R)$ truth table:

$P=R$	R	$Q R$	$P \Rightarrow C(Q \Rightarrow R)$	
P	Q	T	T	T
T	T	F	F	T
T	T	T	T	T
T	F	F	T	T
T	F	T	T	T
F	T	T	F	T
F	T	F	T	T
F	F	T	T	T

logical equivalence:

$$
\begin{aligned}
& (P \Rightarrow Q) \Rightarrow R \Rightarrow P \Rightarrow(Q \Rightarrow R) \\
& (P \Rightarrow Q) \Rightarrow R \\
& (\text { OP aQ) } \Rightarrow R(\text { implication (aN) } \\
& N(\sim P \vee Q) \vee R \\
& (P \wedge N Q) \vee R
\end{aligned}
$$

$$
\begin{aligned}
& P=P(\sim Q \vee R) \\
& \equiv \cap P \vee(\sim Q \vee R) \\
& \equiv(\sim P \vee \sim Q) \vee R \\
& \equiv D(P \cap Q) \vee R
\end{aligned}
$$

Both ore not equal $(P \Rightarrow Q) \Rightarrow R \neq P \Rightarrow(Q \Rightarrow R)$
6) show the following implication without constructing truth table

1) $(P \cap Q) \vee(\sim P \cap Q) \vee(P \cap \sim Q) \vee(\sim P \cap \sim Q)$ is tautology
2) $v[P \vee(Q \wedge R)] \wedge[(P \vee Q)(P \vee R)]$ Fo
iii) $[P \wedge(P \Rightarrow Q)] \Rightarrow Q$ is tautology
iv) $(P \Rightarrow Q) \wedge(R \Rightarrow Q) \equiv(P \vee R) \Rightarrow Q$
v) $p \vee[p \wedge(p \vee Q)] \Leftrightarrow p$

$$
\text { 1) } \begin{aligned}
& (p \cap Q) \vee(\cap P \wedge Q) \vee(p \wedge \sim Q) \vee \\
\equiv & {[Q \wedge(P \vee \cap P)] \vee[\sim Q \cap(P \vee \sim P)] } \\
\equiv & (Q \cap(T)) \vee(\sim Q \cap(T)) \\
\equiv & G_{0} \wedge(Q \vee \sim Q) \\
= & T_{0} \cap T_{0}=T_{0}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \sim[P(Q \cap R)] \wedge[(P \vee Q) \wedge(P \vee R)] \\
& \equiv \sim[(P \vee Q) \wedge(P \vee R)] \wedge[(P \vee Q) \wedge(P \vee R)] \\
& \equiv \sim[P \vee Q) \vee T_{O \vee \cap Q \cap T_{0}=T_{0} \vee T_{0} \equiv T_{0}} \sim[P \vee R] \wedge[P \vee(Q \cap R)] \\
& \equiv \sim[P \vee(Q \cap R)] \wedge[P \vee(Q \cap R)] \\
& \equiv T
\end{aligned}
$$

(\therefore distributive law (\therefore complement law (on) $\equiv(P \cap Q) v(\theta \Rightarrow P) \vee \sim Q \sim(P \vee \sim P)$ $\equiv[(p \cap \Omega) \vee(n Q \cup p)] \vee \sim Q \wedge T_{0}$ EPY (AVNP)VNOnTo
(4)

$$
\begin{aligned}
&(P=\otimes Q) \wedge(R=y Q) \equiv(P \vee R) \Rightarrow Q \\
& \text { L. H.S } \\
&(P \Rightarrow Q) \cap(R \Rightarrow Q) \equiv(\sim P \vee Q) \cap(\sim R \vee Q) \\
& \equiv Q \vee(\sim P \cap \sim R) \\
&=Q \vee \sim(P \vee R)
\end{aligned}
$$

R.HS

$$
\begin{aligned}
(P \vee R) \Rightarrow Q & \equiv N(P \vee R) \vee Q \\
& \equiv Q \vee(\sim P \wedge \sim R) \quad \therefore \text { Im } \\
& \equiv Q \vee \sim(P \vee R)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { L.HS }=\text { R.H.S } \\
& \quad(P \Rightarrow Q) \wedge(R \Rightarrow Q) \equiv(P \vee R) \Rightarrow Q
\end{aligned}
$$

5)

$$
\begin{aligned}
& p \vee[p \wedge(p \vee Q)] \Leftrightarrow p \\
& p \vee p \Leftrightarrow p
\end{aligned}
$$

$P \Leftrightarrow p$ (x) $\quad \therefore$ absorption law \therefore Idempotent-law
4)

$$
\begin{aligned}
\sim[p v(Q \wedge R)] & \wedge[p \vee(Q \wedge R)] \quad \quad(\therefore \text { distr } \\
P & =p \vee(Q \wedge R) \\
& =\sim p \wedge P \quad(\therefore \text { Inverse law } \\
& =f_{0} \quad
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& {[P \wedge(P \Rightarrow Q)] \Rightarrow Q} \\
& P \wedge(\sim P \vee Q) \Rightarrow Q \\
& (P \wedge \sim P) \vee(P \wedge Q) \Rightarrow Q \\
& \equiv T_{0} \vee(P \wedge Q) \Rightarrow Q \\
& \equiv T_{0} \vee[\sim(P \wedge Q) \vee Q] \\
& \equiv T_{0} \vee[\sim P \vee(\sim Q \vee Q)] \\
& \equiv T_{0} \vee\left[\sim P \vee T_{0}\right] \\
& =T_{0}
\end{aligned}
$$

$\therefore[P \wedge(P \Rightarrow Q)] \Rightarrow Q$ is tautology

Application of prepositional logics
\rightarrow 1) Tanslating English sentence to Symbolic form * 2) System speerficietion
3). Boolean
4) Logical curcuits
5) logical puzzles
i. Translating english sentence to symbolic form: * convert english sentence to symbolic form by using preposifional(statement) logic.

* Identify preposition and respect using prepositional logic
* Detamine appropriate logical conection.

Eg:- If get the book $T^{\text {then }}$ ard i begun to repeat Sot: If I get the book then i began to read.
Sol? p : I get the book
Q: I begin to read
The symbolic form is $P \Rightarrow Q$
Eg: If either Ramus prefers tea ar Ravi prefers coffee, then seetla prefers milk.
Sol: P : If Ramuc prefers tea
Q: Ravi prefers coffee
R: Seetha prefers milk.
The symbolic form:

$$
(P \vee Q) \Rightarrow R
$$

2. System specification :

Translating sentence of natural language into logical expression is required for hardworesisin
O Scanned with Oven Scanner
system.
Eos The automated reply cannot be sent when file System is fall.
P : The automated reply can be sent
Q: The file system is full
The symbolic form: $Q \Longrightarrow$ op

1) precedence of logical operator is

operator	precedence
N	1
n	2
v	3
\Rightarrow	4
\Rightarrow	5

logic and Bit operations

statement	Bit
T	1
F	0

Ff: $(P \cap Q) \Rightarrow(p \vee Q)$

P	Q	$P \cap Q$	$P \vee Q$	$(p \wedge Q)=\varnothing(p \vee Q)$
1	1	1	1	1
1	0	0	1	1
0	1	0	1	1
0	0	0	0	1

predicatesand quantifies:
predicates:
predicate describes somaliing about one an mare objects
Note:*Genexdly predicates are denoted by upper case letter $(A, B, C \ldots x, y, z)$ and objects are denoted by lower case leffors $(a, b, c \ldots x, y, z)$ * Any statement abstain of type small ' P '. Is Q but $Q Q$ is predicate and ' P ' is object. So we represent $Q(p)$
Eg'. 1) $\frac{J a c k}{p}$ is taller than Rama we can write symbolic. form $S(p, q)$
2) Naveen Sits between madouland Ravi

$$
Q(m, n, r)
$$

Note: * The order in which the names appecor in the statement and the predecate should be taken in that coder only * If S is an n places predecate and $\alpha_{1}, \alpha_{2} \ldots . \alpha_{r}$ are names of object then $S\left(\alpha_{1}, \alpha_{2}, \alpha_{5} \ldots \alpha_{n}\right)$ is a statement.
Eg. Let $p(x)$ denote the statement $x>3$ what core the truth values of $p(4)$ and $p(2)$.

Given $p(x)=x>3$, Here p is a predicate and x \& object.
$p(\varphi)=4>3$, which statement- is true.
$P(2)=2>3$, which statement is false
fo: 2
Let $p(x, y)$ \& denoted by the statement $x=y+3$, what ore the truth value of $Q(122), Q(3,0)$.
sd :. Given statement is $x=y+3, p(x, y)$
Here p is predict and x, y are.
objects

$$
\begin{aligned}
P(1,2) & =p(2+3,2) \\
& =p(5,2) \\
Q(1,2) \Rightarrow & =y+3 \\
Q(1,2) \Rightarrow & 1=2+3 \\
& 1=5
\end{aligned}
$$

The given statement is false

$$
a(3,0) \Rightarrow 3=0+3
$$

$$
3=3
$$

Quantifiers!
which statement -is true

In predecale calculas each statement contains a word indicating quantity such as all, everyone, some and one such words are called quantifiers.
aranffiers are classried into two types

1) universal quantifiers 2) Existencial quantifiers
2) Universal quantifiers: $p(x)-$ is true

It is used for the case of a rite tangy value of: for ever, (or) the case of for all, for each,

The symbol for all (\forall)ashen used to denote the sentence for all and for every in logic. these senterve
are regarded, as equivalence sentence. The sentence. for each and for every are, also taken as eqiivalente to sentence.

The symol V (forali) is used to denote all of these statements each of this equivalence sentence is called the universal quantifiers
EEg: All squares are rectangle
Sol: Let S denotes the Set of ail. Squares and x is set of all rectangles. That symbolically written as $\forall x \in S,{ }^{\text {where }} p(x)$. s a open Statement.
Existential quantifiers :
Existential quantifiers is used for when a statemer is true for some values given in the, universe of visors discourse (imit of the domain Retricted Domain of the quantifies s)

It is denoted by the symbol \exists. The existential quantifiers of $p(x)$ is the statement. There exist

There exist some x in the universe of discour such that $p(x)$ anditis denoted by the symbol $\exists x p(x)$
Note!
$\exists x p(x)$ is true

* when $p(x)$ is true for arlecist one value of x in the universe of discourse:
*) When $p(x)$ is false for every x in the universe of discourse

Note! universal quantifies represent wards care

* -bo rall, for every, for each, everything, eachtifing, there exist, there is a atleast, there is an there is some.

0 Q
for all
for every
for each
every thing each thing
$E Q$
There exist
There is a atfecest there of an there is some

Free and Bound variables (Binding workable):
Given a formula containing a port of the form $\forall x p(x)($ or $) \exists x p(x)$ such of pat is called x bound part of the formidar any accurance of x is an abound par of a formula is called a bound accurance by H while any accurance of $x(o r)$ any variable that is not a bound accuacence is called a free acciaance, and the formula $P(x)$ either in $\forall x p(x)$ (or) $\exists x p(x)$. Is described as the scope of the quantifier Eg:-

$$
\forall x p(x, y)
$$

there $p(x, y)$ is the scope of the quantifier and accurance is x bounded accuince $f x^{\prime}$. occurence of y is free acticience?

$$
E g: \quad \forall x[P(x) \Rightarrow(\exists y) R(x, y)]
$$

Here $p(x) \Rightarrow F(y) R(x, y)$ is the scope of the quanififie -rs and occurence of x, sis bounded occurence of x. and eccurence of y is bounded occurence

Indicate the variables that are free ε bound also scope of the avantifien $\forall x(p(x) Q(x)) \Rightarrow \forall x(p(x) \cap Q(x))$

The scope of the first quantifier $p(x)$ and $Q(x)$ and the occurence of variable x is bounded occurence

The scope of the second quantifier $p(x)$ en. and the ocsurence of variable x is bounded occurenct The universe of discourse.
we can limit the domain of the quantifiers by modifying the notation in a bit.
Ex:- $\forall x<0\left(x^{2}>0\right)$ (Domain-Realno).
meaning of the above statement A) The squares of che -ie realino is thrive. precidence of quantifiers:-

The quantifiers t, \exists have higher precidence then all logical operators from prepositional calculas.
Ex:- $\quad \forall x p(x) V Q(x)$ is the disjunction of $\forall x p(x)$ and $\varphi(x)$. vegaering quantifiers :consider the following statement.
\rightarrow Every student in the si university has studied discrete mathematics.
Domain i- Every stuckent in the so university
$p(x) \quad \therefore x$ has studied discrete mathematics.
Symbol: - Bros:- $\forall x p(x)$,

The negation of this statement. 1. It is not the case that every student in sviuniverstity has studied discrete mathematics. (or)
There is some students in tho sw univ. Who has not studied discrete mathematics.

The symbolic form of this statement is $\exists x \sim p(x)$.
similarly,
$\sim(\forall x p(x)) \equiv \exists x \cdot \sim p(x)$
$\sim(\exists x p(x)) \equiv \forall x \cdot \sim p(x)$
this is called Derorgan's law of puantifirs.
logical equivalence involving quantifiers: -
statements involving predicates and quanticfess are logical equivalent if and only if they have the same truth values no matter which predicates are substitute into this statements ane which elorain of discourse is used for the variables in this prepositions functions.
we use the notation $S E T$ indicate that two statements s and T involving predicates and quantifiers are logically equivalent. cogicas equivalence

$$
\begin{aligned}
& \exists x(p(x) \vee Q(x)) \equiv \exists x p(x) \vee \exists x Q(x) \\
& \forall x(p(x) \wedge Q(x)) \equiv \forall x p(x) \wedge \forall x Q(x)
\end{aligned}
$$

Demorgan's law

$$
\begin{aligned}
\sim(\forall x \cdot p(x)) & \equiv \exists x \cdot \sim p(x) \\
\sim(\exists x \cdot p(x)) & \equiv \forall x \cdot \sim p(x)
\end{aligned}
$$

proof:-
$\forall x(p(x) \wedge \varphi(x)) \equiv \forall x p(x) \wedge \forall x \varphi(x)$
papain. x : All students of sw university
$p(x)$: x has studied discrete mathdmaties
$Q(x): x$ has scored mure than 60\% marks in exam.
LHS $\Rightarrow \forall x[p(x) \wedge Q(x)] \equiv$ Every Student in SV cuiversity has studied discrete mathematics and has scored more than 60% marks in exam
$R 1+S \Rightarrow \forall x p(x) \cap \forall x \theta(x) \equiv$ Every student in si universe has studied discrete mathematics and every student- in sr university has scored more than 60% morals in exam.
Translating english sentence to logical expression Lex us suppose we have to understand translate the following english sentence into an equivalent logical expression.

1. Statement for each integer x their exist an integer y such that $x+y=0$
for each integer $x \Rightarrow \forall x$
there exist an integer $y=3 y$
predicate $x+y=0 \Rightarrow P(x, y)$
The symbolic form

$$
\forall x \exists y p(x, y)
$$

2. Statement : For all integers x andy such that $a y=y x$
for each integer $x \Rightarrow \forall x$
for each integer $y=\forall, y$
predicate $x y=y x \Rightarrow p(x, y)$
The symbolic form $\forall x \forall y, p(x, y)$
Nested quantifiers
Two quantifiers core set to be nested quant, -ry. If one quantifier is within the scope of the other quantifier.
Eg:- $\forall x \exists y(x+y=0)$, domain $=$ real numbers:
For every real number x there exists a real number y such that $x+y=0$.

These statement that every, real number as an additive inverse.
Note: Anything within the scope of the quantifier sal be thought of as a prepositional functional.

$$
\begin{aligned}
& \forall x \exists y p(x, y) \Rightarrow \forall x Q(x) \\
& \text { there, } Q(x)=\exists y p(x, y)
\end{aligned}
$$

Different combinations of nested quantifiers:

1. $\forall x, \forall y, p(x, y)$
2. $\exists x$ Fy $p(x, y)$
3. $\exists y p(x, y)$
4. $\exists x \forall y p(x, y)$
order of quantifiers:
The order of quantifiers is important under all the quantifiers are curiversal quantifiers or All the quantifiers are existential quantifies.
5. $\forall x+y p(x, y)=\forall y: \forall x, p(x, y)$
6. Xx $\exists y p(x, y)=\exists y \exists x p(x, y)$
7. $\forall x \exists y p(x, y) \neq \exists y \forall x p(x, y)$
8. $\exists x \forall y p(x, y) \neq \forall y \exists x p(x, y)$

Negating (Negation) of Nested quantifiers
The Negation of nested quantifiers predicate formulas may be optained by applying the rules: $f(a)$ negation from the left to right
 4^{+}Normal foams

1. Elementary product (Λ) :-

A product of the variables and their negations in a formula is called an elementary product
Eg: If p. and Q are two variables then the elementary products of p and a Q ($\rho \cap \sim Q$), ($\sim P$ na), (o pavO).
Q. Elementary $\operatorname{sim}(v):-$

A Sum of the variables and their negation is called the elementary sum.
Eq: If P and Q are two vooriables then the elementary sum of P and a are $(P \vee \sim Q),(\sim P \vee Q)$, (ropunee).

Definition of normal form:
converting the given statement formula into any ore of the standard forms (elementary product, elementary sum). is called the normal form on canonical form

Abrmal forms classified into two types they are:

1. Disjunctive Normal form (DNF)
2. Con junctive Normal form (CNF)

Disjunctive Normal Form (DNF)
A formula which is equivalent to the give formula and which consist of a sum of element -ry products is called a Dersurncive Normal fox r Eg:- $(P \wedge Q) \vee(\sim \rho P \cap Q) \vee(C O P \cap \sim Q) \vee(P \cap \sim Q)$
procedure to the DNF:-

* Remove all Implication and Bi-implication by equivalent expressions containing connectives. $(n, N, 0)$.
* Elemenate negation before sums and product by using double negation and demoxgans law. Eg: $v(n p) \equiv P$

$$
\therefore(p \wedge Q)=\sim p \vee \vee Q, \sim(p \vee Q)=\sim p \cap \sim a
$$

* Apply the distribution law until a sum of elementary products obtelined.

$$
P \wedge(Q \vee R) \equiv(P \cap Q) \vee(P \cap R)
$$

* Note:

Disjunctive normal -form need not bo be unique problems:

1. Find the DNF of $p \cap(p \Rightarrow Q)$

$$
\begin{aligned}
& \therefore p \wedge(p \Rightarrow Q) \equiv p \wedge(\sim p \vee Q) \\
& \equiv(p \wedge \sim P) \vee(p \wedge Q)(\therefore \text { Sum of elements of } \\
& \text { product) }
\end{aligned}
$$

2. Write an equivalent DNF for the equation.

$$
\begin{aligned}
p v & {[\sim P \Rightarrow(Q \vee(Q \Rightarrow \sim R)]} \\
& \equiv p \vee[\sim P \Rightarrow(Q \vee(\sim Q \vee \sim R))] \quad \therefore \text { implication law } \\
& \equiv p \vee[\sim P \Rightarrow((Q \vee \sim Q) \vee \sim R)] \therefore \text { Associative law } \\
& \equiv p \vee[\sim P \Rightarrow(T \vee \sim R)] \quad \therefore \text { complement law } \\
& \equiv p \vee[\sim P \Rightarrow T] \quad \therefore \text { identity law } \\
& \equiv p \vee[\sim(\sim P) \vee T] \quad \therefore \text { identity law } \\
& =p \vee T
\end{aligned}
$$

3. write an equivalent DNF for statement $\sim[(P v Q) \Leftrightarrow$ $(P \wedge Q)]$
Given that $\sim[(P \vee Q) \Leftrightarrow(p \wedge Q)]$

$$
\therefore \text { Distributive law }
$$

$$
\begin{aligned}
& \equiv[\sim(P \vee Q) \wedge(P \wedge Q)] \vee[(p \vee Q) \wedge \sim(P \cap Q)] \\
& \sim(P \Leftrightarrow Q) \equiv(\sim P \cap Q) \vee(P \cap \sim Q) \\
& B[(\sim P \cap \sim Q) \wedge(p \wedge Q)] \vee[(p \vee Q) \wedge(\sim P \vee \sim Q)] \therefore \text { Demorganls } \\
& \equiv[(\sim P M \sim Q \cap) \wedge Q] \vee[(p \vee Q) \cap O P] \vee[(P \vee Q) \cap \sim Q], \therefore \text { Associative }
\end{aligned}
$$

$$
\begin{aligned}
& \equiv[(F \wedge \sim Q) \wedge Q] \vee[(P \cap \sim P) \vee(Q \cap \sim P)] \vee[(P \cap \sim Q) \vee(Q \cap \cap) \\
& \text { pvt } P \text { : Distributive law } \\
& \equiv[F \cap Q] \vee[F \vee(Q \wedge \sim P)] \vee[(P \wedge \sim Q) \vee F] \text { (:complementllave) } \\
& \equiv(F \cap Q) \vee[(Q \cap \sim P) \vee(P \wedge \sim Q) \vee F] \therefore \text { complement law } \\
& \equiv F V[(Q \wedge \sim P) \vee(P \cap \sim Q)] \therefore \text { complement law } \\
& \equiv(Q \cap \sim \rho) \vee(p \wedge \sim Q)
\end{aligned}
$$

which is DNF of given statement
4.

$$
P \Rightarrow(P \Rightarrow Q) \wedge \sim(\sim Q \vee \sim P)
$$

*. Conjunctive Normal form (CNF) i-1:
A formula which is equivalent to a given
formula and which consists of a product of elementary
sums. is called a conjunctive Normal form of the given formula.
$E g:-1) P \wedge(p \vee Q) \wedge(\sim p \vee Q)$
2) $(p \vee \sim Q \vee R) \wedge(p \vee \sim Q \vee \sim R)$
problems:-

1) Find the CNF of $P \cap(P \Rightarrow Q)$

$$
P \wedge(P \Rightarrow Q) \equiv P \wedge(\sim P \vee Q)
$$

which is the CNF of given statement.
2) obtain conjunctive Normal form of this statement

$$
\sim(p \vee Q) \Leftrightarrow(p \wedge Q)
$$

sol:

$$
\begin{aligned}
& \sim(p \vee Q) \Leftrightarrow(p \wedge Q) \\
& \quad \equiv[\sim(P \vee Q) \Rightarrow(p \wedge Q)] \wedge[(P \wedge Q) \Rightarrow \sim(p \vee Q)] \\
& \therefore P \Leftrightarrow Q \equiv(P \Rightarrow Q) \wedge(Q \Rightarrow P)
\end{aligned}
$$

$$
\begin{aligned}
& \equiv[\sim(\sim(\rho \vee Q)) \vee(p \wedge Q)] \wedge[\sim(P \cap Q) \vee \sim(p \vee Q)]: \text { implication la } \\
& \equiv[(p \vee Q) \wedge(P \cap Q)] \wedge[\sim((P \cap Q) \wedge(p \vee Q))] \therefore \text { Demargan's law } \\
& \equiv[(p \vee Q \vee p) \wedge(p \vee Q \vee Q)] \wedge[\sim((P \cap Q \cap p) \vee(P \cap Q \cap Q)]
\end{aligned}
$$

\therefore Distributive law

$$
\equiv[(p \vee Q) \wedge(p \vee Q)] \wedge[\sim((p \cap Q) \vee(p \cap Q))]
$$

\therefore Associ alive law
$\equiv(P \vee Q) \wedge \sim(P \wedge Q)$
$\equiv(p \vee a) \wedge(\sim p \nless \sim a)$
which is the CNF of given statement.
sol:
ain CNF of the following statement $(C P \Rightarrow 2)$ anion.
Given that

$$
[(P \Rightarrow Q) \wedge \sim Q] \Rightarrow \sim P \equiv[(\sim P \vee Q) \wedge \sim Q] \Rightarrow \sim P\left[\because i m p \mathcal{R}_{6}\right.
$$

$$
\begin{aligned}
& \equiv \sim[(\sim P \vee Q) \wedge \sim Q] \vee \sim p \quad(\therefore \text { implication buy } \\
& \equiv[(\sim \sim O D) \text { a }
\end{aligned}
$$

$$
\begin{aligned}
& \equiv[(\sim(\sim P) \vee \sim Q) \vee Q] \vee \sim P(\therefore \text { Demorgan's law } \\
& =[\text { lay }
\end{aligned}
$$

$$
\equiv[(P \wedge \sim a) \vee a] \vee \sim P \quad\left(\therefore \text { Double negation } b_{1}\right.
$$

$$
=\underset{Q}{[(P \vee Q) \wedge(\sim Q \vee Q)]} \underset{R}{\operatorname{lop}}(\therefore \text { Distributive law })
$$

$$
\equiv[(P \vee Q) \vee \sim P] \wedge[(\sim Q \vee Q) \vee \sim P][\text { Distributive bu e }
$$

which is the given statement

* Obtain CN. F of the following statement

$$
[(P \Rightarrow Q) \wedge O p] \Rightarrow O Q
$$

Given that $(P \Rightarrow Q) \wedge \sim P \Rightarrow N Q$

$$
\begin{aligned}
& \left(\sim P_{V Q}\right) \cap \sim P=O Q Q \quad \text { (implication fowl) } \\
& \sim[(\sim P \vee Q) \cap N P] \cup N Q \quad,
\end{aligned}
$$

$\sim[(\sim P V V Q) \cap \sim P] \cup \sim Q \quad(1, \quad 1)$ ((pMQ)V.p) Vina double re $(p \vee p) \wedge(p \vee \sim p) \vee \sim Q \quad$ (distibuline (aw)
$[\operatorname{Nav}(\operatorname{PVP})] \cap[\operatorname{NQv}(\operatorname{PVNQ} Q)]$
principle of Disjunctive Normal form :-
Mintorms:-
Let P, Q be statement variables. Let us constry - ct all possible formulae which consists of, conjunction of p ar its Negation and conjunction of a or its Negation which $P \wedge Q \cdot \sim P \wedge Q$,
$P \cap \sim Q . O P \cap \sim Q$. These formulas are called rintams(or) Boolean conjunction of P and Q

+ Note:

1) Minterms of 2 variables are $2^{2}=4 \quad(p, Q)$
2) Minterms of 3 -variables P, Q, R are $2^{3}=8$ which care $(P \wedge Q \cap R),(\sim P \cap Q \cap R),(P \cap \sim Q \cap R),(P \cap Q \cap \sim R)$ i ($\sim P \cap \sim a n$ ($P \cap \sim Q \cap \sim R),(\sim P \cap Q \cap \sim R)$, ($\sim P \cap \sim Q \wedge \sim R)$
3) Every minterm is an elementary product but every elementary product need rot to be mintorm Definition:

An equivalent -formula consisting of disjunction of minterms only is called a principle Disjunction Normal form.'
Eg:

1) $(P \cap Q) \vee(P \cap \sim Q) \vee(\sim P \wedge Q) \vee(\sim P \wedge \sim Q)$ is a PDNF - of two variables p and a.
2) $(P \cap Q) \vee(P \cap \sim Q \wedge R)$ is not a PDNF
note:
3) principle Disjunction Normal form is unique
2). Every PDNF is a DNF but converse need not to be tue
4) There we two methods to obtain a PIDNF which are (1) using truth table method (2) Replacement method.
problems :
5) find PDNF of $p \Rightarrow Q$

Truthtable method of $p \Rightarrow a$

$$
\begin{array}{ccc}
P & a & P \Rightarrow a \\
T & T & T \\
T & F & F \\
F & T & T \\
F & F & T
\end{array}
$$

From the above table PDNF is $(P \cap Q) \cup(r o p \cap Q) v$ (ip
2) Find the PDNF of $P \vee Q$

- Truth table for PVQ

P	Q	$P \vee Q$
T	T	T
T	F	T
F	T	T
F	F	F

From the above table PDNF is

$$
(P \cap Q) \vee(P \wedge \sim Q) \vee(\sim P \wedge \theta)
$$

Replace method:
we need to follow the steps

1) First Replace the conditionals and Bi -conditionals By using equivalence formulas.
2) The negations are applied to the variables by De-mosgan's law folbwed by the applications of Distributive law.

$$
\begin{aligned}
& \sim(P \wedge Q) \equiv O P \vee \sim Q \\
& \sim(P \vee Q)=\sim P \wedge \sim Q
\end{aligned}
$$

3) Any elementary products which are contradicitons to be dropped.
a) Minterms are applied in, the apisjungions by using missing functions factors

$$
\begin{aligned}
\text { Eg:- } p \vee(P \wedge \sim Q) & \equiv(P \wedge T) \vee(P \wedge \sim Q) \\
& \equiv(P \wedge(Q \vee \sim Q)) \vee(P \wedge \sim Q) \\
& \equiv(P \wedge Q) \vee(P \cap \sim Q) \vee(P \cap \sim Q)
\end{aligned}
$$

प) Identical minterms appearing in the Disjunction are to be dropped.
Note:-
It two formulas are eqcivedent than both must have identical preef pDNF

* problems :-

1) Obtain the PDNF for the following formulas (statements, $P \Rightarrow Q$.

$$
\begin{aligned}
& P \Rightarrow Q \equiv \sim P \vee Q \quad(\therefore \text { implication (aw) } \\
& \equiv(\sim P \cap T) \vee(Q \cap T) \\
& \equiv[\sim P \cap(Q \vee \sim Q)] \vee[Q \cap(p \vee \sim P)](\therefore \text { inverse/complem } \\
& \text { - enscory tau } \\
& \equiv(\sim P \cap Q) \vee(\sim P \wedge \sim Q) \vee(Q \cap P) \vee(Q \cap \sim P)
\end{aligned}
$$

(distributive (aw)
2) $P \Leftrightarrow a$

Given that $P \Leftrightarrow Q$

$$
\begin{aligned}
P \Leftrightarrow & \equiv(P \Rightarrow Q) \wedge(Q \Rightarrow P) \quad \text { implication } \\
& \therefore P \Leftrightarrow Q \equiv(P \Rightarrow Q) \wedge(Q \Rightarrow P)] \\
& \equiv((\sim P \vee Q) \wedge(\sim Q \vee P) \\
& \equiv[(\sim P \vee Q) \wedge \sim Q) \vee((\sim P \vee Q) \cap P)] \text { Distributive law } \\
& \equiv[(\sim P \wedge \sim Q) \vee(Q \wedge \sim Q)] \vee[(\sim P \wedge P) \vee(Q \cap P)]:
\end{aligned}
$$

3) Obtain the PDNF fha the following formulas $(p \wedge a) \vee(\nu P \wedge R) \vee(a \wedge R)$
Given that

$$
(P \wedge a) \vee(\sim P \wedge R) \vee(Q \wedge R)
$$

$$
=(P \cap a \cap T) \vee(\sim P \cap T \wedge R) \vee(T \cap Q \cap R)
$$

$$
\equiv[\rho \cap Q \wedge(R \vee \circ R)] v[\sim \rho \wedge(a v \sim \theta) \wedge R] \vee[(\sim p \vee p) \cdot \hat{Q}
$$

$$
=(P \cap Q \cap R) \vee(P \cap Q \cap \cap R) \vee[\sim P \cap[(Q \cap R) \vee(\sim Q \cap R)]
$$

$$
\therefore v(\sim P \wedge Q \wedge R) v(P \wedge Q \cap R)
$$

CAtion

- vela

$$
=(P \cap Q \cap R) \vee(P \cap Q \cap \sim R) \vee[(\sim P \cap Q \cap R) \vee(\sim P \vee \sim Q \cap R)] \vee
$$

$$
(\sim P \wedge Q \cap R) \vee(P \cap G \cap R) \quad \therefore \text { Sistributrebu }
$$

$$
\equiv(P \wedge Q \cap R) \vee(P \cap Q \cap \sim R) \vee(\sim O P \cap Q \cap R) \vee(\sim P \cap \sim Q \cap R)(: \text { Idemppte }
$$

which is the required PDNF
4)

$$
\therefore \text { But de same }
$$

$$
\therefore \operatorname{HpV}_{Q}(\therefore \neg p A T) V(T \wedge Q)
$$

$$
\begin{aligned}
& =(N P \cap T) V(B \cap T) \\
& \text { E [Non (ava)]V[an (pron)] } \\
& E[(\operatorname{Non} \theta) y(\sim p \sim \sim B)] \text {. } \\
& \begin{array}{l}
\equiv(s \wedge \sim p) v(r \\
\Delta T) \cup(-\wedge Q) .
\end{array} \\
& =[N P \wedge(Q \vee \sim Q)] V^{\top}(\rho \vee \sim p i \cap Q] \\
& =[(\sim p \wedge Q) \cup(\operatorname{cop} \cap \sim Q) \cup[(Q \cap p) \cup(Q \times Q 1] \\
& \therefore(2 \cap \sim P) \text { V(anpV(OpA~OQ) }
\end{aligned}
$$

show the following ore expinclent formulas for PDNF
i) $p \vee(p \cap a) \equiv p$
ii) $p \vee(\sim P \cap Q)=p \vee a$
i) Given that

$$
\begin{aligned}
& \operatorname{pv}(p \wedge Q) \equiv P \\
& \text { LbS } P \vee(P \cap Q) \equiv(P \cap T) \vee(P \cap Q) \\
& \equiv[P \wedge(Q \vee \sim Q)] \vee(P \wedge Q) \\
& \equiv(P \cap Q) \vee(P \cap \sim Q) \vee(P \cap Q) \quad \therefore \text { Pistiburic law } \\
& \equiv(P \wedge Q) \vee(P \wedge \sim Q) \quad \therefore \text { Idempotent law }
\end{aligned}
$$

PDNF of $P V(P \cap Q) P S(P \cap Q) \vee(P \cap \sim Q)$ - (1)
R.H.S

$$
\begin{aligned}
P & \equiv(P \wedge T) \\
& \equiv[P \wedge(Q \vee \sim Q)] \\
& \equiv(P \cap Q) \vee(P \cap \sim Q)
\end{aligned}
$$

PDNF of P is $(P \cap Q) \cup(P \cap \sim Q)$ - (2)
from eau(1) and eqn (2) the PDNF of $P V(P \cap Q)$ and P care same.

Hence $p \sim(p \cap Q)=p$

* Maxterms :-

A maxterms consists of disjunction in which each variable and its Negation but not both appecors only once.
Example:

1) For two variables P and Q the number of max terms are $2^{2}=4$ which are $P \vee Q, ~ P V \sim Q, ~ \cup P V Q, ~ \sim P V N E$ 2) From three variables P, Q and R are the number of maxterms are
$2^{3}=8$ which are ($\left.\rho \vee Q \vee R\right),(\sim P \vee Q \vee R),(\rho \vee \sim \vee \vee R)$,

n^{2} The duals of minterms are called maxterms * principle conjunctive Normal form ($P C N F)$ -
principle conjunctive normal form of a given formula can be defined as an equivalent formula consists of conjunction of maxterms only. This is also called product of sums canonical.

$$
E g_{0}-(P \vee Q) \wedge(D \vee \sim Q) \vee(\sim P \vee Q)
$$

Note:
?) The process for obtaining PCNF is similar to the process of PDNF
2) The PCNF is unique.
3) Every \Rightarrow compound proposition which is not a tautology hove equivalent PCNF.
4) If the compound proposition which is net contradic -tion then its PCNF will contains all passible maxter of its components.
problems:- using troth table

* The truth table for formula ' s ' $\&$ given flor in following determine its PDNF and PCNF

P	Q	R	S
T	T	T	$T-D$
T	T	F	$T-D$
T	F	T	F
T	F	F	$T-D$
F	T	T	F
F	T	F	F
F	F	T	$T-D$
F	F	F	F

The PDNF I.
$(P \wedge Q \wedge R) \vee(P \wedge Q \wedge \sim R) \vee(P \wedge \sim Q \cap \sim R) \vee($ (o pA مQAR)
The $P C N F:-$
$(\rho \vee \sim Q \vee R) \wedge(\sim P \vee Q \vee R) \cap(\sim P \vee Q \vee \sim R) \wedge(\sim \rho \vee \cap \mathcal{D}) \sim \sim R)$
($\rho \vee \sim Q \vee R) \wedge(\sim P \vee Q R R) \cap(\sim p \vee$
Find the $P \subset N F$ of $\beta \Rightarrow a$ (using truth table)

P	Q	$P \Leftrightarrow Q$
T	T	T
T	F	F
F	T	F
F	F	T

* NOTE:

For obtaining PCNF of formula' s ' one can also NEOnstruct the PCNF of NS and then apply (\sim) Negation
$\begin{array}{l}14 \\ \gg\end{array}>$ obtain the PCNF of a formula ' B^{\prime} is ($\left.\sim P \Rightarrow R\right) \wedge(\theta \Leftrightarrow$ \geqslant and also find PDNF of S.

Given that

$$
\begin{aligned}
& (\sim P \Rightarrow R) \wedge(Q \Leftrightarrow P)=(\sim(\sim P) \vee R) \wedge((Q \Rightarrow P) \wedge(P \Rightarrow Q)] \\
& \therefore \text { implicationlaw } \\
& \equiv(p \vee R) \wedge[(\sim Q \vee P) \wedge(\sim P \vee Q)] \\
& \equiv(P \vee R \vee F) \wedge[((\vee Q \vee P \vee F) \wedge(\sim p \vee \vee \vee \vee F)] \\
& =\left[P \vee R \vee\left(\frac{Q \cap \sim Q)}{2}\right)\right][(\sim Q \vee P \vee(R \cap \sim R)) \cap(\sim P \vee Q \vee(R \wedge \sim R))] \\
& \equiv(P \vee R \vee Q) \cap(P \vee R \vee \sim Q) \wedge[(\sim Q \vee P \vee R) \cap(\sim Q \vee P \vee \sim R) \wedge[(\sim P \vee Q \vee F) \\
& \wedge(\sim P \vee Q \vee \sim R)] \quad \therefore \quad \text { sistri } \\
& \equiv(P \vee Q \vee R) \wedge(P \vee \sim Q \vee R) \wedge(P \vee \sim Q \vee \sim R) \wedge(P \vee \sim Q \vee \sim R) \wedge \\
& (\sim P \vee Q \vee \sim R) \wedge(\sim P \vee Q \vee \sim R) \text { (Idempota } \\
& \equiv(P \vee Q \vee R) \wedge(P \vee \sim Q \vee R) \wedge[(\sim Q \vee P \vee R) \wedge(\sim a \vee P \vee \sim R) \wedge(\sim P \vee Q \vee R, \\
& \wedge(\sim p \vee Q \vee \sim R)]
\end{aligned}
$$

$(P \vee Q \vee R) \wedge(P \vee \sim Q \vee R) \wedge(P \wedge \sim Q \vee \sim R) \wedge(\sim P \vee Q \vee R) \wedge$
which is the required PONF of ins
Now the conjunctive Normal form is can be obtain by written the conjunction of remaining maxterins

$$
2^{3}=8 \Rightarrow 8-5=3
$$

$\therefore(\sim P \vee \sim Q \vee \sim R) \wedge(\sim P \vee \sim Q \vee R) \wedge(P \vee Q \vee \sim R)$ then the considering the $v(\sim S)$ we obtain PDNF of S

$$
\begin{aligned}
\sim(\sim S) & =\sim[(\sim P \vee \sim Q \vee \sim R) \wedge(\sim P \vee \sim Q \vee R) \wedge(P \vee Q \vee \sim R)] \\
& =\sim(\sim P \vee \sim Q \vee \sim R) \vee \sim(\sim P \vee \sim Q \vee R) \vee \sim(P \vee Q \vee \sim R) \\
& =(P \wedge Q \wedge R) \vee(P \wedge Q \wedge \sim R) \vee(\sim P \wedge \sim Q \wedge R)
\end{aligned}
$$

ir \because "which is the required "PDNF".
*obtain paNT of ($P \cap Q) v(\sim p n \theta) \vee(P N \sim Q)$
2)t obtrin PDNF, PCNF for the following and which of the formula, are tautology
i) $Q \cap(P \vee \sim Q) \quad$ ii $(Q \Rightarrow P) \wedge(\sim P \wedge Q)$
3) find the PDNF and PCNF of
i) $\sim(p \vee Q)$
ii) $N(P \Rightarrow Q)$
4) obsciin the PDNF and PCNF of the fromula

$$
P \vee[\sim P \Rightarrow(Q \vee(\sim Q \Rightarrow R))]
$$

(1)

$$
\begin{aligned}
(P \wedge Q) & \vee(\sim P \wedge Q) \vee(P \wedge \sim Q) \\
(P \wedge Q) & =(P \vee f) \wedge(Q \vee F) \\
& =[P \vee(Q \wedge \sim Q)] \wedge[Q \vee(P \wedge \sim P)] \\
& =[(P \vee Q) \wedge(P \vee \sim Q)] \wedge[(Q \vee P) \wedge(Q \vee \sim P)] \\
& =(P \vee Q) \wedge(Q \vee \sim Q) \wedge(\sim P \vee Q)
\end{aligned}
$$

$$
\begin{aligned}
(\sim P \wedge Q) & =(\sim P \vee F) \wedge(Q \vee F) \\
& =(\sim P \vee(Q \wedge \sim Q)) \wedge(Q \vee(P \wedge \sim P)] \\
& =[(\sim P \vee Q) \wedge(\sim P \vee \sim Q)] \wedge((Q \vee P) \wedge(Q \vee \sim P)] \\
& =(\sim P \vee Q) \wedge(\sim P \vee \sim Q) \wedge(Q \vee \sim P) \\
(P \wedge \sim Q) & =(P \vee F) \wedge(\sim Q \vee F) \\
& =[P \vee(Q \wedge \sim Q)] \wedge[\sim Q \vee(P \vee \sim P)] \\
& =[(P \vee Q) \wedge(P \vee \vee Q)] \wedge[(\neg Q \vee P) \wedge(\neg G \vee \sim P)] \\
& =(P \vee Q) \wedge(P \vee \sim Q) \wedge(\sim P \vee \sim Q)
\end{aligned}
$$

$\Rightarrow[(p \vee a) \cap(p \vee \sim B) \wedge($ opvea) $\| \vee[(\sim p \vee G) \cap(p \vee G) \wedge(\sim p \vee \sim Q)]$ $V^{-}[(p \vee a) \wedge(p v, O Q) \wedge$ (apvoa) $]$.
2) (i) $Q \cap(p \vee \sim \theta)$

PCNF \Rightarrow GN(DWNS)

$$
=(Q v f) r[(P v E) v(1 Q v F)]
$$

$$
=[a v(p \sim \sim p)] \Delta(p v(\theta / r) \theta)) \text { y } \operatorname{lov}(p n a p))]
$$

(ii)

$$
\begin{aligned}
& (a \Rightarrow p) \wedge(\sim p \wedge Q) \\
& P D N F \Rightarrow(\sim Q \vee P) \wedge(\sim P \wedge Q) \\
& =[(Q \Delta T) V i p \wedge T) N(\sim \cap T) \wedge(\Omega \Delta T)] \\
& =[\sim \sim \wedge(\rho \vee \sim P)] \vee[Q N(Q \vee N Q)] \cap[\rho F \wedge(\rho \vee \sim Q)] \cap \\
& \cdot(a,(p \vee \sim p)])
\end{aligned}
$$

$$
\begin{aligned}
& \because \wedge[(\Omega \wedge p) \vee(\Omega \wedge \sim p)]
\end{aligned}
$$

$$
\begin{aligned}
& =(p n Q) \vee(\text { NpnQ }) \text { y (pnnas) } v(n p n n \theta)
\end{aligned}
$$

$$
\begin{aligned}
& =((P \cap \sim Q) \vee(P \cap Q) \vee(\sim P \wedge \sim Q)) \wedge[(\sim P \wedge Q) \vee(p \cap Q) \vee(\sim P \wedge \sim) \\
& =(P \cap \sim Q) \vee(P \cap Q) \vee(\sim P \wedge \sim Q)
\end{aligned}
$$

$P C N F:-(Q \Rightarrow P) \wedge(\sim P \wedge Q)$

$$
\begin{aligned}
& =(\sim Q \vee P) \wedge(\sim P \vee Q) \\
& =[(\sim Q \vee F) \vee(\rho \vee F)] \wedge[(\sim \rho \vee F) \wedge(Q \vee F)] \\
& =[[\sim Q \vee(P \wedge \sim P)] \vee(P \vee(Q \cap \sim Q))] \wedge[(\sim \rho \vee(\rho \wedge \sim P))]
\end{aligned}
$$

(3)(i) $\sim(P \vee Q)$

PCNF \Rightarrow (PVB) $=$ MPAN2

$$
\begin{aligned}
& =(\sim P \vee F) \cap(\sim Q \vee F) \\
& =\sim P \vee(Q \cap \cap) \cap(\sim Q V(P \cap \sim P)] \\
& =((P P \vee Q) \cap \\
& =(\sim P \vee \cap B) \cap(\sim P \vee(Q) \sim(P \vee \sim Q)
\end{aligned}
$$

(ii) $r(P \Rightarrow Q)$

$$
\begin{aligned}
& \text { PDNF: } \sim(P \Rightarrow Q)=\sim[O P \vee Q]=P \text { PNQ }=(P \cap T) \text { N(NQNT) } \\
& =[\text { PA(SVND })] \wedge[\text { NaA (pVNP) }] \\
& =[(p, a) \cup(p \text { (pa) })] \wedge[(\text { wanp }) \vee(\text { na mopt }]
\end{aligned}
$$

$$
\begin{aligned}
& P \subset N \neq: \sim(P \Rightarrow Q)=N[\sim P \vee Q]=(P \cap \sim Q)=(P \vee F) \wedge(\Omega Q \vee F)
\end{aligned}
$$

$$
\begin{aligned}
& \text { PDNF: N(Pva) = NPNNZ } \\
& \Rightarrow=(\sim P \wedge T) \wedge(\Omega Q \wedge T) \\
& =[\operatorname{NP} \wedge(B \vee \sim Q)] a[\text { nanpupp }] \\
& =[(\operatorname{po\wedge Q}) \times(\sim p, \sim \alpha)] \wedge((\sim Q \wedge p) \vee \cos a p)]
\end{aligned}
$$

$$
\begin{aligned}
& =[(p \wedge \sim \partial) \wedge(\sim P \wedge Q)] \text { ソ }(p \wedge \sim Q) \wedge(\sim P \wedge Q Q)] \\
& =(\operatorname{AnNQ}) \wedge(\text { opna }) \wedge(\text { vpANa })
\end{aligned}
$$

$$
\begin{aligned}
& =[P \vee(Q \wedge \sim Q)] \wedge[\sim Q \vee(P \cap \neg P)]) \\
& =[(P \vee Q) \wedge(p \vee \sim Q)] \cap[(\sim Q \vee P) \wedge(\sim Q \vee \sim P)] \\
& =(P \vee Q) \wedge(P \vee \sim Q) \wedge(\sim P \vee \vee Q)
\end{aligned}
$$

1)

(ii) $P \vee(\sim P \wedge \cap Q) \equiv P \vee Q$

$$
L_{0} H_{1} S \Rightarrow \quad P \vee\left(N P A^{-} Q\right)
$$

$=(P \cap T) \vee(N P \wedge Q)^{\text {b }}$ bes en
$=[p A(\alpha \vee \sim \alpha)] \cup(\sim \cap A)$
$\left.=[(p \wedge Q) \vee \cdot(p \wedge \sim \alpha)] V(n) p \wedge \theta^{\circ}\right)$
$=(p \wedge Q) \vee(p \wedge N Q) \dot{V}(N p \wedge s)=-(3$

Rot. S
$\Rightarrow p y 2$
$=(P \Lambda T) \cdot(Q \cap T)$
$=[P n(2 \% n \lambda)] \times[\partial \wedge(\rho \vee \sim p)]$
$\left.=\left[\rho \sin \left(\rho^{\prime}(\theta)\right] \times(\theta n \rho) \vee(\alpha) \theta \theta\right)\right]$
$=(\rho \cap \theta) \vee(p \cap \sim Q) \vee(\operatorname{p\rho \wedge } \theta)-2$
from

$$
\therefore \quad D V(\cos \operatorname{An} A)=P V 2
$$

Inference theory far calculus!
The main function of logic is to provide rules inference to inform a conclusion from certain premiss The theory associated with rules of inference P_{3} known as inference theory
Deduction $(0 x)$ formal proof:
If a conclusion is derived from a set of prone by using accepted rales of reasoning then such a process of derivation es called a deduction ora formal proof and the argument is called a valid argument (or) conclusion is called a valid conclusion. Note:

* Consoler a set of statervect $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3} \ldots \mathrm{H}$ and C then compound proposition of $\mathrm{H}_{1} \cap \mathrm{H}_{2} \cap \mathrm{H} \mathrm{H}_{3} \ldots+{ }^{\prime}$ is called a argument.
where $H_{1}, H_{2} \cdots H_{n}$ are called premises on assumptions (or Hypothesis of the argument and c is called conclusion of arguments
* To determine whether conclusion logically follows from the given premises, we use the following two methods

1) Truth table

Definition:
2. Rules of inference method.

Let A and B to two statements formula, we Say that ' B ' logically from A ' or' B ' is avalid conclus) from the premises ' A ' of $A \Rightarrow B$ is a tautaleq4
problems (using frith table)

1) Determine whether the conclusion ' C ' (dais logically from Hypothesis H_{1} and H_{2}
i) $H_{1}: P \Rightarrow Q, H_{2}: P, C: Q$

Q	$P \Rightarrow Q$	$H_{1} \wedge H_{2}$	$H_{1} \wedge H_{2} \Rightarrow C$	
T	T	T	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	T

$\therefore H_{1} \wedge H_{2} \Rightarrow C$ is a tacilology
\therefore ' C ' is valid conchesion.

$\therefore H_{1} \wedge H_{2} \Rightarrow$ not a tautology.
' c ' is not a valid conclusion.
3) $H_{1}: \sim P, H_{2}: P \Leftrightarrow Q, c: \sim(P \wedge Q)$
4) $H_{1}: p \Rightarrow Q, H_{2}: \sim(p \cap Q), c: \sim p$
5) $H_{1}: \sim Q, H_{2}: P \Leftrightarrow Q, C: \sim P$
6) $H_{1}: P \Rightarrow Q, H_{2}: Q \Rightarrow R, C: P \Rightarrow R$
7) $H_{1}: \sim P \vee Q, H_{2}: \sim(Q \wedge \sim R), H_{3}: \sim R, C: \sim P$

Rules of Inference:
We now describe the process of domination by wifich axe demonstrates that a peaticulary formal a B a valid consequence of a given set of praise. Bet ion we do this, we give two rules of inference which are called rales of P and rales I

* Rules of inferences core:We kioto describe

1) Recle-p !-A premise may be introduced at any point in the derivation
s) Rule-T :- A formula 's' may be introduced in deviation if ' S ' is's tanfolagically imploded by one. "or mode" of preceding fromeclas In the derivation.

* Implications:

$$
\begin{aligned}
& I_{1}: P \cap Q \Rightarrow P \\
& T_{Q}: P \cap Q \Rightarrow Q Q \\
& I_{3}: P \Rightarrow P \vee Q \\
& I_{4}: Q \Rightarrow P \vee Q \\
& I_{5}: \sim P \Rightarrow(P \Rightarrow Q) \\
& I_{6}: Q \Rightarrow(P \Rightarrow Q) \\
& I_{7}: \sim(P \Rightarrow Q) \Rightarrow P \\
& I_{8}: \sim(P \Rightarrow Q) \Rightarrow \sim Q \\
& I_{9}: P 1 Q \Rightarrow P \cap Q
\end{aligned}
$$

I10 : NP, PNG \Rightarrow O
III: $P, p \Rightarrow a \Rightarrow a$
TA: $\sim a, p \Rightarrow \theta \Rightarrow \sim p$
$I_{3}: P \Rightarrow \theta, \theta \Rightarrow R \Rightarrow P=>R$
IU4: pva, $P \Rightarrow R, \theta \Rightarrow R \Rightarrow R$.

A 8 vatid and Invalid argeoments
An argement with prewises $P_{1}, D_{2}, P_{2} \ldots P_{0}$ and conclusion'c' is seiv) to we witid of wieremens each of pueresess $\rho_{1}, \rho_{2}, \ldots$. In ore tase, then the conctiosion ' C ' fis: sivarugise towe.
 re' valid.

The prearises we derroys taven to the $t_{\text {sews whene }}$ as the concluopon may be tries (os) trose. The concle - Sion Ps tiree only in case of o valid ongeawent.

* Some of the rules are vilad below:-

arkfifin

$$
\frac{\text { Pas }}{\therefore \rho}
$$

2mprothotim,
P
\therefore PAG
pues
$\because P \vee R$
$\because O V R$

2nctin hit: a Corbury

$$
\therefore \text { Fochin grts a thoo coex }
$$

Col:-
P: Seckita biste a contory
n: Senthin gots a free cas.
Given oxgerment is $\quad P \Rightarrow a$

$$
\therefore \rho
$$

(modus porera)

0: Sachin gabs a fiose con.
a) If sachion hits a contwary then be gets a free can Cruchin does not get free con
\therefore Sachin has not hit a centuru

Sol:- p : Saclin hies a century
θ : Sacking gets a free cart:
NQ: Sachin does not get free cor.
Given cergument is $P \Rightarrow Q$

Sachin has not hit a century.

* I will become famous or I will not become a dances: I' will become a thanous dancer. Iwill b-
Sol: - I will become famous
P: I will become famous
NQ: I will not become a dancer
Q : I will become a dancer.
Given argument os $\frac{P V N Q}{\frac{Q}{P}}$ (modus ponens)
P: I will become a famous
* If it is rains today then we will not have a barbeque today. If we donot have a barbeque today then we will have a barbeque tomorrow.
\therefore Show that of i it rains today then we will have a barbeque tomorrow.
P : It is raining today
a: we will not have a barbeque today
R : we will have a barbeque to morrow
Given argument is

$$
P \Rightarrow a
$$

$\frac{Q R}{P \Rightarrow R} \quad$ (hypothetical syllogism)

* Detamine that R a varld inforence from the prome $P \Rightarrow$ e, $Q \Rightarrow R$ and P
$\{1\}$ (1) P Dule p
$\{[\}$ (s) $p \rightarrow$ Recta p
$\{1,2\}$ (3) Q Rule. T $\left(I_{11}\right)(P, P \Rightarrow O \Rightarrow 0)$
\{4\} (u) $\Leftrightarrow R$ Rule- P
$\{1,2,4\} \quad$ (5) $\quad R \quad$ Rule $-T\left(I_{11}\right)(Q, Q \Rightarrow R \Rightarrow P)$
(a)
\{1\} (1) $P \Rightarrow Q$ Rule- P previses
$\{2\}$
(2) $\quad a \Rightarrow R \quad$ Rule- p
$\{1,2\}$
(3) $\quad P \Rightarrow R$

Rule- $T\left(I_{13}\right)(P \Rightarrow Q, Q \Rightarrow R$ $\Rightarrow p \Rightarrow R)$
$\{4\}$
p
Rule-p
$\{1,2,4\}$
R
Rule $-T, I_{11}(p \Rightarrow R, P \Rightarrow R)$
R is a valid conclusion.
\rightarrow Show that sop logically follows from the premises: $\sim C P \cap \sim Q l, \sim Q V R, \sim R$
$\{1$,
(1) $\sim(P \wedge \sim Q)$ Rule- p
\{1\}
(2)
opva
\{1\}
(3) $\quad p \Rightarrow Q$

Rule-T (implication law
$\{4\}$
(4) NAVR

Rule-p
$\{u\}$
$a \Rightarrow i^{2}$
Rule-t (implication law
$\{1,4\}$

$$
\begin{equation*}
P \Rightarrow R \tag{6}
\end{equation*}
$$

Rule- $T\left(I_{1}\right) \geq\left(P_{2}>\theta_{1} \theta \Rightarrow R_{1}\right.$
$\{1,4\}$
(घ) $\quad \cdots a=\sim \omega \Gamma$
(s)
(8)
nR
$8.06=4$
$\{1,4,8\}$
(9)
n
Rule $T\left(J_{1}\right)(p, P \Rightarrow \infty)$
np is a valid concrusion.

* Show that RVS follows lagically from the premiser (VD),
$(C \vee D) \Rightarrow \sim H \quad \sim H \Rightarrow(A \wedge \sim B)$ and $(A \wedge \sim B) \Rightarrow R \cup S$ optation sets
$\{1\}$
(1)

CVD Rule- P
\{8\}
(2)

$$
\begin{equation*}
(C \vee D)=\sim H \quad \text { Rule }-P \tag{5}
\end{equation*}
$$

Rute-T(In), $P, P=\theta=\theta$,
$\{1,2\}$
OH
$\sim H \Rightarrow(A \cap \sim B)$ Rule $-P$
$\{4\}$
$\{1,2,4\}$
$A \wedge \sim B$
Rule-T $\left(I_{11}\right)(P, Q \Rightarrow 2=6$
$\{6\}$
(A^NB) $\Rightarrow R \cup S$
$\{1,2,4\}$
$A A \sim B$
Rule-7-(In)(p,pya

$$
\Rightarrow E)
$$

- $\{6\}$
$(A \cap \sim B) \Rightarrow R \vee S$
$\{, 2,4,6\}$
RUS
Rule- $-\left(I_{11}\right)(P, P \Rightarrow a \Rightarrow$:
RVS sfically follows from the given premses.
* Show that SVR is tautology follous fram the premilies $(p \vee a),(P \Rightarrow R) \&(Q=y s)$
$\{1\}$
(1) PVE

Rule - P
$\{1\}$
$\{1\}$
(Q) $\quad v(\sim P) \vee E$

Rule-T (Doublenegation)
$\{0\}$
Rulert (impticarion (ow)

$$
\begin{equation*}
a \Rightarrow s \tag{3}
\end{equation*}
$$ Rule-p

$\{0\}$
(2)
$p+>p$
Peron
i, $4 i$
$\{1,4,7\}$ (10). SuR Rule-T (Treble regrate,
SUR is a valid conclusion

+ ST $R \wedge(P \vee Q)$ is a valid conclusion from the premises $P \vee G, Q \Rightarrow R, P \Rightarrow M$ and $\sim M$

$\left\{,\{, 4,6\}\right.$ (8) $R \cap(p \vee G) \quad R u l e-T\left(I_{q}\right)(p, Q \Rightarrow p A t 1)$
Connectives NAN (1) and NOR
The word NOND QS a combination of Nor Air whee the wand NOR is the combination NOT and OR where NOT stands for negation (\sim)

 Patas N（pac）
 $P J=\cdots(p \vee a)$
1）Fore any two propevigons premt the folloring． 1）$\sim(p, a)=$ OP全路
$1119 \Rightarrow$

$$
\begin{aligned}
& \text { N(pva): o[o(pソo) }] \\
& \text { - alolomocij } \\
& =\text { mp个00 }
\end{aligned}
$$

yi）$\sim(P \uparrow Q) \equiv \sim P \downarrow \sim Q$
$1 . H S \Rightarrow$

$$
\begin{aligned}
\omega(p \hat{Q}) & =N(\sim(p \wedge Q)) \\
& =N[\sim p \vee N Q] \\
& =N p \nsim \sim Q
\end{aligned}
$$

2）for any three propostions P, Q, R prove that
i）$[P \hat{N}(Q \hat{R})] \equiv \operatorname{NPv}(Q \wedge R)$
L．H．S \Rightarrow

$$
\begin{aligned}
& P \hat{A}(B \hat{R}) \equiv \omega[P \wedge(Q \uparrow R)] \\
& =N[P \wedge \sim(\theta \wedge R)] \\
& \equiv \operatorname{OPV}(G \wedge R)
\end{aligned}
$$

ii）$(P \wedge Q) \wedge R \equiv(P \cap Q) \vee \sim R$
iii）$R \downarrow(Q \downarrow R) \equiv \sim P \wedge(Q \vee R)$
ii)

$$
\text { i) } \begin{aligned}
(P \wedge Q) A R & \equiv \\
\text { LAS } & (P \wedge Q) \vee \sim R: \\
(P \wedge Q) A R & \equiv \sim(P \cap Q) \uparrow R \\
& \equiv \sim[\sim(P \wedge Q) \cap R] \\
& \equiv(P \wedge Q) \vee \sim R \\
\therefore(P \wedge Q) A R & \equiv(P \wedge Q) \vee \sim R
\end{aligned}
$$

(iii)

$$
P \vee(Q \downarrow R) \equiv \sim P \wedge(Q \vee R)
$$

L.H.S

$$
\begin{aligned}
P \downarrow(Q \downarrow R) & \equiv P \downarrow[\sim(Q \vee R)] \\
& \equiv \sim[P \vee \sim(Q \vee R)] \\
& \equiv \sim P \cap(Q \vee R) \\
\therefore P \perp(Q \downarrow R) & \equiv \sim P \wedge(Q \vee R)
\end{aligned}
$$

problems using the th table $H_{1} \operatorname{rith}_{2} \Rightarrow c$
3) $H_{1}: \sim P, H_{2}: P \Leftrightarrow Q, C: \sim(P \cap Q)$

P	$\sim P$	Q	$H_{2}: P \Leftrightarrow Q$	$(P \cap Q)$	$\sim(P \cap Q)$	$H_{1} \wedge H_{2}$	$H_{n} H_{3}$
T	F	T	T	T	F	F	T
T	F	F	F	F	T	F	T
F	T	T	F	F	T	F	T
F	T	F	T	F	T	T	T

$\therefore \quad H_{1} \cap H_{2} \Rightarrow C$ is a tautology
\therefore ' c ' is valid conclusion.
4. $H_{1}: P \Rightarrow Q \quad H_{2}: \sim(P \cap Q)$

$\therefore H_{1} \wedge H_{2} \varphi_{s}$ a tautology
\therefore ' C ' is valideonclusion
5. $H_{1}: \sim Q \quad H_{2}: P \Rightarrow Q, C: \sim P$

P	$\sim P$	\sim	$P \Rightarrow Q$	$H_{1} \wedge H_{2}$	$H_{1} \cap H_{2} \Rightarrow C$
T	T	F	F	T	F
T	F	F	T	F	F
F	T	T	F	T	F
F	F	T	T	T	T

$\therefore H_{1} \wedge H_{2}$ is a tautology
\therefore ' C ' is valid conclusion.
6. $H_{1}: P \Rightarrow Q \quad H_{2}: Q \Rightarrow R \quad C: P \Rightarrow R$

P	Q	$P \Rightarrow Q$	$Q R R$	$H_{1} \cap H_{2}$	$P \Rightarrow R$	$H_{1} \wedge H_{2}=y C$	
T							
T	T	F	T	F	F	F	T
T	F	T	F	T	F	T	T
T	F	F	F	T	F	F	T
F	T						
F	T	F	T	F	F	T	T
F	F	T	T	T	T	T	T
F	F	F	T	T	T	T	T

$\therefore \mathrm{H}_{1} \cap \mathrm{H}_{2}$ is a tautology.
$\therefore c$ is valid conclusion.
F. $H_{1}: \sim P \vee Q, H_{2}: \sim(Q \cap \sim R)$, $H_{3}: \sim R$. $\subset \sim P$

$\therefore \mathrm{H}_{1} \cap \mathrm{H}_{2} \cap \mathrm{H}_{3} \Rightarrow \mathrm{C}$ is a tautog
\therefore ' C ' is a valid conclusion.
D. Set Theory

Set:-
A set is a collection of well defined objects elements.
for $\varepsilon g: A=\{a, b, c, d\}$
Finite set:-
-1 set having Countable no of elements is called finite set.
reg: $A=\{1,2,3,4\}$
Infinite set:-
A set having cincountable no. op elements is called infinite set.
reg:- $N=\{1,2,3, \ldots \ldots\}$.
Single set:-
A set having only one element is called (sitigle set. Eg:- $x=q^{2} \xrightarrow{\longrightarrow}$ even prime num.
Null set, / Empty set- (\varnothing)
A set which does not contain any element is called null set os empty, set.
reg:- $\quad \forall i=\{ \}$.
Equal set : $A=B$)
Two sets are said to be equal ifs $A \leq B$ then $A \leq B$:
Subset:- ;
Let $-\Lambda$, and B are two non emply sets, the set A is called subset of B. if every element: of $a \quad A$ is in element of B.
if $A \subset B$, Than B is called superset of $A(B \supset A)$ Pounds set:-

If ' s ' is cary set then the family of. all The subsets of s is called the power set.
$\Rightarrow D t$ is denoted by $P(S)$
ID A is a finite set. of n elements then The no. of subsets of A is $-2 n$.
Eg:
(1) $A=\{a\}$
subset of A are $\{a\}\}$
(2) $\begin{aligned} & A=\{a, b\} \\ & \\ & \{a\},\{b\},\{a b\},\{ \}\end{aligned}$
(3) $x=\{a, b, c\}$
$\{a\},\{b\},\{c\},\{a, b\}\{b\},\{c, a\}\{a, b, c\},\{ \}$.
Universal set:-
The set theory of all sets under discussion are assumed to be the subset of the fixed large Set is called universal set.
$\rightarrow 2 t$ is denoted by u ar μ
reg: $U=\{1,2,3,5,5,8,9,10\}$
Union of sets:-
Consider 2 sets A, B then the set consisting of all elements that belongs to A or B, or - in both A and B is called the union of A and B.
$\rightarrow 2 t$ is denoted by $A \cup B$

Intersection of sets:-
let A and B are two non empty sets, The intersection of A and B is the set of a elements which are in both A and B.
\rightarrow It is denoted by $A \cap B$
Complement of a set:-
Let A be any set. The complement of A, The set of elements That belongs to universe set but do not belongs to A.

$$
A \in \mu, \mu \notin A
$$

If μ is the universal set then the complement of A is $A-\mu-A(Q, 1)$ u- A.
It is denoted by $A^{C}(Q R) A^{\prime}(Q \Omega) \bar{A}$.
2210122
Laws of Set Theory:
(1) Commutative lain:

$$
\begin{aligned}
& i f) A \cup B=\hat{B \cup A} \\
& \therefore A \cap B=B \cap A
\end{aligned}
$$

(2) Associative Law:

$$
\begin{aligned}
& \because A \cup(B \cup C)=(A \cup B) \cup C \\
& \therefore A \cap(B \cap C)=(A \cap B) \cap C
\end{aligned}
$$

(3) Distributive Law:

$$
\begin{aligned}
& \because A \cap(B \cap C)=(A \cap B) \cup(\cap \cup C) \\
& \therefore A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$

(4) Idempotent Law;
i) $A \cup A=A$
i! $A \cap A=A$
(5) Identity Law:
i) $A \cup \varnothing=A$
ii, $A \cap \mu=A$
(6.) Lavs of double complement:

$$
i(\bar{A})=A \text { (or })\left(A^{C}\right)^{C}=A \text { (or) }\left(A^{\prime}\right)^{\prime}=A
$$

(-9) Inverse law:

$$
\begin{aligned}
& i, A \cup \bar{A}=\mu \\
& \therefore i) A \bar{A}=\varnothing
\end{aligned}
$$

(8) Demorgan's law'.

$$
\begin{aligned}
& \therefore(\overline{A \cup B})=\bar{A} \cap B \text { (OS) } \\
& \therefore(A \cap B)=A^{C} \cup B^{C}
\end{aligned}
$$

(9) Domination daiosi
i) A U el $=$ el
(i) $A \cap \phi=\varnothing$ -
(10) Absorption Law
i) $A \cup(A \cap B)=A$.
ii) $A \cap(A \cup B)=A$

1) Show that $A \cap(B \cap C)=(A \cap B) \cap C$

88:. Let x be the any arbitary element of $A \cap(B \cap C)$
CHS

$$
\begin{aligned}
A \cap(B \cap C) & =x \in A \cap(B \cap C) \\
& =x \in A \text { and } x \in(B \cap C) \\
& =(x \in A \text { and } x \in B) \text { and } x \in C \\
& =x \in(A \cap B) \text { and } x \in C \\
& =x \in(A \cap B) \cap C \\
A \cap(B \cap C) & =(A \cap B) \cap C
\end{aligned}
$$

(2) S.T $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

Let x be the orbitary element of $A \cup(B \cap C)$
2 HS

$$
\begin{aligned}
A \cup(B / A() & =x \in[A \cup(B \cap C)] \\
& \Rightarrow x \in A \text { or } x \in(B \cap C) \\
& \Rightarrow x \in A \text { or }(x \in B \text { and } x \in C) \\
& \Rightarrow(x \in A \text { or } x \in B) \text { and }(x \in A \text { or } x \in C) \\
& \Rightarrow x \in(A \cup B) \text { and } x \in A \cup C) \\
& \Rightarrow x \in(A \cup B) \cap(A \cup C)
\end{aligned}
$$

$$
\therefore A \cup(B \cup \cap C)=(A \cup B) \cap(A \cup C)
$$

(8) Let A, B be any two sets then P.T

$$
\text { i) }(A \cup B)^{C}=A^{c} \cap B^{C} \quad \text { ii) }(A \cap B)^{C}=A^{c} \cup B^{C}
$$

i, proof:
Let x be the any oobitary element of $(A \cup B)^{\text {. }}$
DHS:

$$
\begin{aligned}
& (A \cup B)^{\prime}=x \in\left(A \cup B f \quad\left\langle A^{C}=\mu-A\right\rangle\right. \\
& \Rightarrow x \in[\mu-(A \cup B)] \\
& \Rightarrow x \in \mu \text { and } x \notin(A \cup B) \\
& \left.\Rightarrow x \in \mu \text { and }[x)^{\prime} A \text { or } x \in B\right] \\
& \Rightarrow(x \in \mu \text { and } x \notin A) \text { and }(x \in \mu \text { and } x \notin B) \\
& \Rightarrow(x \in \mu-A) \text { and } x \in(\mu-B) \\
& \Rightarrow x \in A^{C} \text { and } x \in B^{C} \\
& \Rightarrow x \in A^{C} \cap B^{C}
\end{aligned}
$$

ii) Let x be the osbitary element of $(A \cap B)^{C}$
$\alpha+B$

$$
\begin{aligned}
(A \cap B)^{C} & =x \in(A \cap B)^{C} \\
& \Rightarrow x \in[\mu-(A \cap B)] \\
& \Rightarrow x \in \mu \text { and } x \notin(A \cap B) \\
& \Rightarrow x \in \mu \text { and }(x \notin A \notin X \notin B)
\end{aligned}
$$

$\Rightarrow(x \in \mu$ and $x \notin A)$ or $(x \in \mu$ and $x \notin B)$.

$$
\begin{aligned}
\Rightarrow & (x \in \mu-A) \text { or }(x \in l-B) \\
\Rightarrow & x \in A^{c} \text { or } x \in B^{c} \\
\Rightarrow & x \in A^{c} \cup B^{C} \\
& (A \cap B)^{c}=A^{c} \cup B^{c}
\end{aligned}
$$

25110
4) Prove that $A-(B \cup C) \cap(A-C)=(A-B) \cap(A-C)$
proof:-
LH :

$$
\begin{aligned}
A-(B \cup C) & =x \in[A-(B \cup C)] \\
& =x \in A \text { and } x \notin(B \cup C) \\
& =x \in A \text { and }(x \notin B \text { and } x \notin C) \\
& =(x \in A \text { and } x \notin B) \text { and }(x \in A \text { and } x \in C) \\
& =x \in(A-B) \text { and } x \in(A-C) \\
& =x \in(A-B) n(A-C) \\
\therefore A-(B \cup C) & =(A-B) \cap(A-C)
\end{aligned}
$$

5) prove that $A-(B \cap C)=(A-B) \cup(A-C)$
proof:- let ' x ' be the arbitary ell of ' $A-(B \cap C)$
LBS

$$
\begin{align*}
A-(B \cap C) & =x \in[A-(B \cap C)] \\
& =x \in A \text { and } x \notin(B \cap C) \\
& =x \in A \text { and }(x \notin B, \text { or } x \notin C) \\
& =(x \in A \text { and } x \notin B) \text { or }(x \in A \text { and } x \notin C) \\
& =x \in(A-B) \text { or } x \in(A-C) \\
& =x \in(A-B) \cup(A-C) \\
\therefore A-(B \cap C) & =(A-B) \cup(A-C) \tag{yin}
\end{align*}
$$

6) Let $s_{1}=\{1,2,3\}, S_{2}=\{3,4,5,6\}$ Then find
(i) $S_{1} \cup s_{2}$ (ii) $S_{1} n s_{2}$ (iii) $s_{1}-s_{2}$ (iv) $s_{2}-s_{1}$
i)

$$
\begin{aligned}
\operatorname{sivs}_{2} & =\{1,2,3\} \cup\{3,4,5,6\} \\
& =\{1,2,3,4,5,6\}
\end{aligned}
$$

$$
\text { 2) } \begin{aligned}
\operatorname{sins} 2 & =\{1,2,3\} n\{3,4,5,6\} \\
& =\{3\}
\end{aligned}
$$

$$
\text { 3) } \begin{aligned}
s_{1}-s_{2} & =\{1,2 / 3\}-\{3,4,5,6\} \\
& =\{1,2\}
\end{aligned}
$$

$$
\text { 4) } \begin{aligned}
s_{2-51} & =\{\not 3,4,5,6\}-\{1,2,3\} \\
& =\{4,5,6\}
\end{aligned}
$$

7) Df $A=\{2,3,4\} \quad B=\{3,4$
Veriby
(1) $A \cap(B-C)=(A \cap B)-(A \cap C)$

$$
\begin{aligned}
& \text { LHS } B-C=\{3,4,5,6\} \ldots\{2,4,6,8\} \\
& =\{3,5\} \\
& A \cap(B-C)=\{2,3,4\} \text { n }\{3,5\} \\
& =\{3\} \\
& A \cap B=\{2,3,4\} \cap\{3,4,5,6\} \\
& =\{3,4\} \\
& A \cap C=\{2,3,4\} \cap \quad\{2,4,6,8\} \\
& =\{2,4\} \\
& \begin{aligned}
A \cap B)-(A \cap C) & =\{3, \angle 4\}-\{2,4\}=\text { RHS. }
\end{aligned}
\end{aligned}
$$

8) Let $v=\{1,2,3,4,5,6,7,8,9,10\}, \theta=\{1,3,5\}$
$B=\{2,4,6,8\} \quad C\{2,5,10\}$ then verify
(1) $(A \cap B)^{C}=A^{C} \cup B^{C}$
(2) $(A \cup B)^{C}=A^{C} \cap B^{C}$
(3) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
(4) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
(1)

$$
\begin{aligned}
(A \cap B)^{C} & =A^{C} \cup B^{C} \\
A \cap B & =\{1,3,5\} \cap\{2,4,6,8\} \\
& =\{ \}
\end{aligned}
$$

(2)

$$
\begin{aligned}
&(A \cap B)^{C}=U-(A \cap B) \\
&=\{1,2,3,4,5,6,7,8,9,10\}-\{ \} \\
&=\{1,2,3,4,5,6,7,8,9,10\} \\
& A^{C}= U-A \\
&=\{1,2,3,4,5,6,7,8,9,10\} \\
&=\{2,4,6,7,8,9,10\} \\
& B^{C}= U-B=\{1,7,3,4,5,8,7,8,9,10\}-\{2,4,6,8\} \\
&=\{1,3,5,7,9,10\} \\
& A^{C} \cup B^{C}=\{2,4,6,7,8,9,10\} \cup\{1,3,5,7,9,10\}\} \\
&=\{1,2,3,4,5,6,7,8,9,10\} \\
& \therefore(A \cap B)^{C}=A, C \cup B C
\end{aligned}
$$

(3)

$$
\begin{aligned}
A \cap B & =\{1,3,5\} \cap\{2,4,6,8\} \\
& =\{ \} \\
A \cap C & =\{1,3,5\} \cap\{2,5,10\} \\
& =\{5\}
\end{aligned}
$$

$$
\begin{aligned}
(A \cap B) \cup(A \cap C) & =\{ \} \cup\{5\} \\
& =\{5\} \\
\therefore L H S & =\text { RHS }
\end{aligned}
$$

(4)

$$
\begin{aligned}
A \cup(B \cap C) & =\{1,3,5,\} \cup\{2\} \\
& =\{1,2,3,5\} \\
A \cup B & =\{1,3,5\} \cup\{2,4,6,8\} \\
& =\{1,2,3,4,5,6,8\}
\end{aligned}
$$

$$
\begin{aligned}
A \cup C & =\{1,3,5\} \cup\{2,5,10\}, \\
& =\{1,2,3,5,10\} \\
(A \cup B) \cap(A \cup C) & =\{1,2,3,4,5,6,8\} \cap\{1,2,3,5,10\} \\
& =\{1,2,3,5\}
\end{aligned}
$$

$$
\begin{aligned}
(A \cup B) \cap(A \cup C) & =\{1,2,3,4,5,6,8\} \cap\{1,2,3,5,10\} \\
& =\{1,2,3,5\} \\
\therefore \cap \cup(B \cap C) & =(A \cup B) \cap(A \cup C) .
\end{aligned}
$$

Computer representation of sets :-
Bit string methodian be used to represent sets to the Computes by storing their elements in an order manner since set operations like union, intersection, difference etc. Take large amount of time for searching Their elements, therefore an orbitary ordering of the elements of the universal set to store the elements is commonly used to represent sets. Suppose an universal. set ' U ' $=\left\{x_{1}, x_{2}, x_{3}, \ldots x_{n}\right\}$ has ' n ' elements. Then its subsets can be represented with a bit string of length ' n '. A Bitstring is a string over the alphabet the set is $\{0,1\}$. If the set ' A ' is subset of " U ' then it is represented by bitstring method. Where i th bit of string is one when $x_{i} \in A$ and 0 when $x_{i} \notin A$. This rule permits us to represent an universal set of length ' n '. ert the computer -assignment either 0 or 1 to each location of $A[K]$. of. The array specifies a unique subsets of u.
rg:© $\cup \cup=\{1,2,3,4,5,6,7\}$ be a universal set

$$
\begin{aligned}
A & =\{1,3,5\} \quad B=\{2,5\} \\
\therefore A & =\{1,0,1,0,1,0,0\} \quad B=\{0,1,0,0,1,0,0\}
\end{aligned}
$$

(2) $U=\{1,2,3,4,5,6\}$ be a universal set and $A=\{1,3\} \quad B=\{3,5,6\}$

$$
\therefore A=\{1,0,1,0,0,0\} \quad B=\{0,0,1,0,1,1,\} .
$$

(3) If $\mathrm{U}=\{1,2,3,4,5,6\}$

$$
A=\{1,2,3,4\} \text { and } B=\{3,4,5,6\}
$$

find the bit string for A and B and use Them to find: union, intersection. also find A^{C} and B^{C} :
Sol-lengith of universal set $u=6$.

$$
\begin{aligned}
A=\{1,1,1,1,0,0\} & A \cup B & =\{1,2,3,4\} \cup\{3,4,5,6\} \\
B=\{0,0,1,1,1,1,\} & & =\{1,2,3,4,5,6\} \\
& & =\{1,1,1,1,1,1\}
\end{aligned}
$$

$$
\begin{aligned}
A \cap B & =\{1,2,3,4\} \cap\{3,4,5,6\} \\
& =\{3,4\} \\
A D B & =\{0,0,1,1,0,0\} \\
A^{C} & =U-A \\
& =\{1,2,3,4,5,6\}-\{1,12,5,4\} \\
& =\{5,6\} \\
A^{C} & =\{0,0,0,0,1,1\} \\
B^{C} & =U-B \\
& =\{1,2,3,4,8,6\}-\{B, 4,5,6\} \\
B^{C} & =\{1,2\} \\
& =\{1,1,0,0,0,0\} .
\end{aligned}
$$

(2) If $u=\{1,2,3,4,5,6,7\}$ Then find set specified by each of the following bit strings.
(1) $1010100=\{1,3,5\}$
(2) $0101010=\{2,4,6\}$
(3) $0011001=\{3,4,7\}$
(4) $1110001=\{1,2,3,7\}$

The Inclusion and Exclusion principle: $\left\{\varepsilon_{1}\right.$ 28100. A
The no. of elements in afinite set is called. The inclusion and exclusion principle os Cordial no. of set ' A ' is denoted by $n(A)$.
agr Q) If $A=\{1,2,3\}$ then find $n(A)$

$$
n(A)=3
$$

Formulas:-

1) $n(A \cup B) \leqslant n(A)+n(B)$, when $n(A \cap B)=\varnothing$.
i) $n(A \cap B) \leq \min [n(A), n(B)]$.
) $n(A \Delta B)=n(A \oplus B)=n(A)+n(B)=n(A \cap B)$
(4) $n(A-B) \geq n(A)-n(B)$
(5) $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
(6) $n(A \cap B)=n(A)+n(B)-n(A \cup B)$
(7) if A and B are disjoint sets, then $n(A \cap B)=\varnothing$

$$
n(A \cup B)=n(A)+n(B)
$$

(8) $n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)-n(B \cap C)-$

$$
n(C \cap A)+n(A \cap B \cap C)
$$

(9) If A, B and C are mutually disjoints sets, Then.

$$
n(A \cup B \cup C)=n(A)+n(B)+n(C)
$$

(10) $n(A C)=n(\mu)-n(A)$
(11)

$$
\begin{aligned}
n(A)=n\left[\left(A \cap B^{C}\right) \cup(A \cap B)\right] & =n[(A B) \cup(A \cap B)] \\
= & =n(A-B)+n(A \cap B)
\end{aligned}
$$

(12) $n(B)=n(B-A)+n(A \cap B)$
(13) $n(A \cup B)=n(A-B)+n(A \cap B)+n(B-A)$
1.) Out of 450 students in. 吥点 school 193 students read science and 200 students read cominerce and 80 students reside, neither Find out how many. read both.
Sol:-

$$
\left\langle A^{c}=\mu-A\right\rangle
$$

$$
\begin{aligned}
& n(\mu)=n(T)=450 . \\
& n(s)=193 . \\
& n\left(c^{\circ}\right)^{\circ}=200^{\circ} \\
& n\left(s^{c} \cap c^{c}\right)=80^{\circ} \\
& n(S \cup C)^{c}=80 \\
& n(A)^{c}=n(\mu)-n(A) \\
& n(S \cup C)^{c}=n(\mu)-n(S \cup C) \\
& 80=450-n(S U C) \\
& n(\text { sc })=450-80=370 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
n(s) c) & =n(s)+n(c)-n(s U c) \\
& =193+200-370 \\
& =393-370 \\
& =23 \\
n(s n c) & =23
\end{aligned}
$$

2) - group of 20 persons, 10° are interested in music 7 are in photography, 4 are interested in swim m for that more 4 are interested in ho lh music and photography, 3 are interested in music and swimming., 2 ale interested in photography arid scoimming, one ass is interested in swimming, photography and music. How many ale interested in photography but not in music and swimming.

$$
\begin{aligned}
& h(\mu)=20 \\
& n(m \cap P)=4 \\
& n(m)=10 \\
& n(m n s)=3 \\
& n(p)=7 \\
& n(P \mid S)=2 \\
& n(s)=4 \\
& n(m \cap p \cap s)=1 \\
& n\left(p \cap S^{c} \cap M C\right)=\text { ? } \\
& n[A \cap(B \cup C) C]=n(A)-n(A \cap B)-n(B \cap C)+n(A \cap B \cap C) \\
& n\left(P \cap S^{c} \cap M C\right)=n[P \cap(S \cup M) c]+n(P \cap S \cap m) \\
& \angle n\left(A \cap B^{C}\right)=n(A)-D(A \cap B) \\
& =n(p)-n(p n(s u m))+n(p n s n m) \text {. } \\
& =n(p)-n[(p \cap s) \cup(p \cap m)]+n(p \cap S n m) \text {. } \\
& =n(p)-\left[n(p n s)+n(p n m)-n \frac{[(p n s) n(p \cap m)}{0}\right]+n(p n) \\
& =n(p)-n(p \cap s)-n(p n m)+n\left(p \cap s n_{m}^{\circ}\right) \\
& =7-2-4+1 \\
& =2
\end{aligned}
$$

Relation:-
The set of ordered pairs is called a relation.
Cartesian product of the sets:-
If A and B are too non empty sets then the set of all distinct or different order pairs whose brest number belongs to A and second number belongs to B is Called a cartesian product of A and B. It is denoted by ' $A X B$ '.

$$
\therefore A \times B=\{(a, b): a \in A, b \in B\}
$$

rah If $A=\{1,2,3\}$ and $B=\{2,3\}$, prove that $A \times B \neq B \times A$. Also find $n(A \times B)$
Sol:- $A=\{1,2,3\}$ and $B=\{2,3\}$

$$
\begin{aligned}
A \times B & =\{(1,2)(2,2)(3,2)(2,3) \\
B \times A & =\{(1,3)(3,3)\} \\
\therefore & (3,1)(2,2)(3,2) \\
\therefore B \times B) & (2,3)\} \\
n(A \times B) & =6
\end{aligned}
$$

Cartesian product of n sets:-
By The definition of cartesian product or cross product to more than two sets $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ are n sets, the set of ordered pairs $\left(a_{1}, a_{2}, a_{3}, \ldots-a_{n}\right)$ $a_{1} \in A 1, a_{2} \in A_{2}, a_{3} \in A_{3} \ldots a_{n} \in A_{n}$ is called the cartesian product of $A_{1}, A_{2}, A_{3} \ldots A_{n}$ and it is denoted by $A_{1} \times A_{2} \times A_{3} \ldots \ldots \times A_{n}=\prod_{i=1}^{n} A_{i}$
Binary Relation :-
Let A and B are two non empty sets then The binary relation R from A to B is defined to be A subsets of $A \times B$ symbolically $\frac{R: A \rightarrow B \text {, } A}{}$
If $R \subset A \times B$ and $(a, b) \in R$ where $a \in A$ and $b \in B$. If this relation holds Then, we say that a is related. to b and we write $a^{\prime} R b$. If a is not related to b and we write $a \nless b$
gob) let $A \times B=\{(1,2)(1,4)(2,2)(2,4)\}$
$R=\{(1,2)(2,4)(2,1)\}$ state whether R is from A to B or not
So A:

$$
\begin{aligned}
& R=\{(1,2)(2,4)(2,1)\} \\
& A \times B=\{(1,2)(1,4)(2,2)(2,4)\}
\end{aligned}
$$

$\therefore R$ is not the subset of $A \times B$ because $(2,1) \notin A \times B$.
$\therefore R$ is not related to $A \rightarrow B$

$$
A \not X B
$$

Domain and Range of a relation:-
If R is a relation from A to B then The set of elements in a are related to some elem in B is called the domain of R and set B is called the co-domain of R :

$$
A=\{1,2\} \quad B=\{2,4\}
$$

3. 10

Set Operations on Relations:-
All binary relations are set of order pairs, Therefor set of operations can be carry subsets.
Let R and S be two relations, then two relation defined as
1.) Intersection of R and $S: x(R \cap S) 4=(x R y) n(x S$
2.) Union of R and $s: x(R \cup S) 4=(X R Y) \cup .(x S Y)$
3) difference of R and $S: X(R-S) Y=(X R Y)-(X S Y)$
4.) Complement of $R: X\left(R^{1}\right) Y=X R^{\prime} Y$

1) If $A=\{2,3,5\}, B\{6,8,10\}, C=\{2,3\}, D=\left\{8,10^{\circ}\right.$ are four non-empty sets suppose a relation R from A to B is defined as $R=\{(2,6)(2,8)(3,10)$. and the relation S from C to D is defined. as $s=\{(2,8)(3,10)\}$ then find.
1.) RUS 5.) $\overline{5}$
2) RRS
3.) $R-S$
3) \bar{R}.

Sol:- Given that

$$
\begin{aligned}
& A=\{2,3,5\}, B=\{6,8,10\}, C=\{2,3\}, D=\{8,10\} \\
& A \times B=\{(2,6)(2,8)(2,10)(3,6)(3,8)(3,10)(5,6)(5,8)(5,10)\} \\
& C \times D=\{(2,8)(2,10)(3,8)(3,10)\} \\
& R=\{(2,6)(2,8)(3,10)\} \text { \& } S=\{(2,8)(3,10)\}
\end{aligned}
$$

(1) RUS $=\{(2,6)(2,8)(3,10)\} \cup\{(2,8)(3,10)\}$

$$
=\{(2,6)(2,8)(3,10)\}
$$

(2)

$$
\begin{aligned}
& =\{(2,6)(2,8)(3,10)\} \\
R n S & =\{(2,6)(2,8)(3,10)\}\{(2,8)\{3,10)\} \\
& =\{(2,8)(3,10)\}
\end{aligned}
$$

(3)

$$
\begin{aligned}
R-S & =\{(2,6)(2,8)(3 / 10)\}-\{(2 / 8)(3,10)\} \\
& =\{(2,6)\}
\end{aligned}
$$

(4)

$$
\begin{aligned}
\bar{R}= & (A \times B)-R \\
= & \{(2,6)(2,1,5)(2,10)(3,6)(3,8)(3,10)(5,6)(5,8)(5,0)\} \\
& -\{(2,6)(2,8)(3,10)\} \\
\bar{R}= & \{(2,10)(3,6)(3,8)(5,6)(5,8)(5,0)\}
\end{aligned}
$$

(5).

$$
\begin{aligned}
\bar{s} & =(\mathbb{0} \times \theta)-s \\
& =\{(2 / 8)(2,10)(3,8)(3,10)\}-\{(2,8)(3,10)\} \\
& =\{(2,10)(3,8)\}
\end{aligned}
$$

Types of Relations:-

1) Inverse Relation :-

Let R bl a relation from A to B. The inverse relation is a relation from ' B ' to A and it is denoted by ' R^{-1} '.

$$
\therefore \quad R^{-1}=\{(y, x): x \in A, y \in B,(x, y) \in R\}
$$

$$
x d y \Leftrightarrow y R^{-1} x
$$

2) Identity relation:-

Let A be a set, Then the relation R in a set devoted by Q_{a} is said to be identity relation or diagonal $I_{A}=\{(x, y): x \in A$ and $y \in B, x=y\}$ cg: $A\{a, b, c\}$

$$
\text { DA } A=\{(a, a),(b, b),(c, c)\}
$$

3) universal relation:-
A elation R in a set A said to be universal relation if $R=A \times A$ or

$$
\begin{aligned}
\text { Eq: -if } A=\{2,3\} \text { inn } R & =A \times A \\
& =\{(2,2)(2,3)(3,3)(3,2)\}
\end{aligned}
$$

4) Void relation:-
A. Relation ' R ' in a set A is said to be avoid relation provided R is null set.

$$
R=\{ \}
$$

Properties of relations:-

1) Reflexive relation:-

A Relation R on a set A is Reflexive if, and only it each element of in A is related to itself ie $a R a, \forall a \in A$
Eg:- $A=\{4,5,6\}$

$$
\begin{aligned}
& A=\{4,5,6\} \\
& \therefore \quad R=\{(4,4)(5,5)(6,6)\}
\end{aligned}
$$

2) Symmetric Relation:-

A Relation R on a set A is said to be symmetric il $\forall(a, b) \in R$ ie $(a, b) \in R \Leftrightarrow(b, a) \in R$,

$$
a R b=b R a
$$

The necessary and sufficient condition for a Relation R to be symmetric is $R=R^{-1}$

Eg:- $A=10\{2,2 \times\}$ al Then

$$
\begin{array}{ll}
12 \text { un f Then } & R=\{(1,2)\} \\
\therefore & R=R^{-1}
\end{array}
$$

A relation
3) Anti-Symmetric:-

A relation R on a set A then R is an anti-symmetric ifs $a R b$ and $b R a \Rightarrow a=b$ for

$$
a, b \in A \text { ie }(a, b) \in R,(b, a) \in R \Rightarrow a=b
$$

It is evident that The relation R the re on a set is anti-symmetric $R \cap R^{-1} \subseteq I_{A}$ where IA denotes identity relation.
reg:. Let. $A=\{1,2,3,4\}$ Then, $R=\{(1,1)(2,3)(3,2)\}$ and $R^{-1}=\{(1,1)(3,2)(2,3)\}$

$$
\begin{aligned}
& \therefore R \cap R^{-1}=\{(1,1)(2,3)(3,2)\} \\
& 2 A=\{(1,1),(2,2)(3,3)(4,4)\}
\end{aligned}
$$

$\therefore R$ is not Anti symmetric
4.) Transitive:-

A Relation R on, a set A is said to be transitive iff $\forall a, b, c \in R, a R b a n d b R C \Rightarrow a R c$

$$
\text { i.e }(a, b) \in R \text { and }(b, c) \in R \Rightarrow(a, c) \in R^{*}
$$

5) Equivalence Relation:

A relation R on a set. A is said to be equivalence relation its it satisfies the following Three Conditions / properties

I R is Reflexive; ara.
2. R is symmetries $a R^{R b}=b R^{\prime} \rightarrow a R C$.
6) Compatibility :- $A^{\text {3. } R}$ Relation R on a set A is said to be compatibility relation if it satisfies The following 2 conditions.

1) R is Reflective 2.4 is symmetric.
reflexive but mither symmetric noe transitive.
Sol- Let $A=\{1,2,3\}$ and R is defined as

$$
R=\{(1,1)(1,2)(2,3)(2,2)(3,3)\}
$$

Hence, R is replete
since $(a, a) \in R \quad \forall a \in A$.
It is not symmetric
since $(1,2) \in R$ but $(2,1) \in R$

$$
a R B \Leftrightarrow B R a
$$

It is also transitive
since $(1,2) \in R$ and $(2,3) \in R \Rightarrow(1,3) \in R$.
$(a, b) \in R$ and $(c, b) \in R \Rightarrow(a, b) \in R$
$a R b$ and $\Rightarrow R R C \Rightarrow a R C$
2). The relation R on a set ' s ' of all real numbers is defined as $a R b$ if and only, if $1+a b>0$ show it at relation is reflexive and symmetric but not transits Sol:- let ' a ' be any real number
(i) Hence $1+a b: 1+a \cdot a=1+a^{2}>0$

$$
\begin{aligned}
& \therefore \quad \text { aRa } \forall \text { ats } \\
& \therefore R \text { is a reflexive }=(a, a) \in R
\end{aligned}
$$

(ii) Let $a, b \in s$ then $a R b \Rightarrow 1+a b>0$

$$
\begin{gathered}
1+b a>0 \\
a R b=b R a^{\prime}
\end{gathered}
$$

$\therefore R$ is symmetric
(iii) Let $1,-1 / 2$ and -4 .

How $1+a b=1+(1)(-1 / 2)=1 / 2>0$

$$
\begin{aligned}
& \therefore 1 R(-1 / 2) \\
& 1+b c=1+a b=1+\left(-\frac{1}{2}\right)(-4)=3>0 \\
& \therefore(-1 / 2) R(-4) \\
& \text { now } \\
& 1+a b=1+c a=1+(-4)(1) \\
& =-3<0
\end{aligned}
$$

$1+a b<0$
(-4) (1)
$\therefore R$ is not transitive
3) Let $A=\{1,2,3,4,5,6,7\}$ and $R=\{(x, y): x-y$ is divisible by $S\}$ show that R is an equivalence Relation
Solid- Given $A=\{1,2,3,4,5,6,7\}$ and

$$
R=\{(x, y) ; x-y \text { is divisible by's }\}
$$

(i) Reflexive:-

These exist an elemat $x \in A$. such that $x-y=x-x$ is divisible by 3.
This show that $(x, x), \in_{R} \quad \forall x \in A$
$\therefore R$ is reflexive
(ii) Symmetric:-
\therefore If $x, y \in A$ and $(x, y) \in R$.
This means $x-y$ is divisible by 3_{1}.
le, $x-y=3 m ; m$ is any integer
$\Rightarrow y-x=3 m_{2} ; m_{2}$ is any integer $y-x$ is divisible by 3 R is symmetric.
(iii) Transitive:-

Let $x, y, z \in A$
also let $x-y=3 m$ p
(v) $g\left(x,-3 m_{2}, m_{1} \& m_{2}\right.$ ax integers
$\Rightarrow x-z=3^{2}\left(m_{1}+m_{2}\right) ; \quad m_{1}+m_{2}$ is integer
C So, $x_{15}^{\text {J }}$ is divisible by 3
$\therefore R$ is transitive
Hence, R is an equivalence relation.

Al Representation of Relations:-

1) Relation as an arrow diagram and tabular:

A Relation can also be represented in a tarry
(ai) graphical form. These beeps us understander a clear idea of the sitecation under considerate rg:-1)-A Howchart helps developing a "program t solving the problems.
2) Let $A=\{a, b, c\}$ be a set of students of $\{$ and $B=\{x, y, z, w\}$ be a set of compani that come for campus interviews for selection of the students for jobs. we might have relation R, from -1 to $B \quad\left(R_{1}: A \rightarrow B\right)$ to describe that the companies interviews with the students and the relation R_{2} from \cap to $B \quad\left(R_{2}: A \rightarrow B\right)$ to describe The jobs if Offer to students by the companies the element of the both relations $R=\{(x, a)(y, c)(z, a)(z, r$

$(\omega, b)\}$
tabular diagram:- $R=\{(x, a)(y, c)(z, a)(z, c)(u)$

2) Relations as a directed graph of digraphilv: 511) R be a relation from A to itself $\left(R: A \rightarrow A_{0}\right)$. Draw a smell circles for each element of A. and label: the circle with the corresponding elements of A. These circles are called the vertices. or nodes of The graph. Draw an arrow from the vertex a_{1} to The vertex b_{j} iff a_{i} is Related to b_{j}. This type of graph of a relation R is called a directed graph or digraph. Let A be a two n empty set. A directed graph G of A is made up of the elements of A called. The vertices or nodes of A, and the subset E Of $A X A$ that contains The directed edges of arcs of G. The Set A is called vertex set of G. and E is called edge set oD $G \cdot G=(A, E)$ is denoted The graph.
If $(a, b) \in A$ and $(a, b) \in E$. Then There is an edge from A to B. vertex a is called origin/socirie edge. and b is called terminus/termnating vertex.
If $a \neq b$ then $(a, b) \neq(b, a)$ and an edge of. The form $(a, a)-l o o p$
rap let $A=\{1,2,3,4\}$ and $R=\{(1,1)(1,2)(2,1)$ $(2,2)(2,3)(2,4)(3,4)(4,1)(4,3)\}$

In, The above graph ' R ', The 'indegre of the vertex is the noofedges terminally at the vertex, and the outdegree of The vertex is no.0f as edges leaving the vertex.

$$
\begin{array}{ccc:}
\text { vertex indegree out degree. } \\
1 & 3 & 2 \\
2 & 2 & 4 \\
3 & 2 & 1 \\
4 & 2 & 2 \\
& & 1
\end{array}
$$

3) Relation as matrix ($O \ell$), Boolean malxre: $-\infty$ aljacara

Consider a relation. R from a finite set $A=\left\{a_{1},\right\}$ $\left.a_{3}, \ldots, a_{m}\right\}$ to $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ containing m and n elements respectively, we define relation matrix $M_{R}=\left[m_{i j}\right]_{m \times n}$, for all whose elements are given by

$$
\mathrm{mij}_{\text {by }}=\left\{\begin{array}{cl}
1 & \text { if } a i R b_{j} \\
0 & \text { otherwise }
\end{array}\right.
$$

The matrix M_{R} is called Relation Q_{R} Boolean matrix. rq-1) let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ be two finite sets also let the relation defined b/w Them is $R=\left\{\left(a_{1}, b_{1}\right)\left(a_{1} b_{4}\right)\left(a_{2} b_{2}\right)\left(a_{2} b_{3}\right)\left(a_{3} b_{1}\right)(t)_{1}\right.$
Sol:- Given $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$

$$
R=\left\{\left(a_{1} b_{1}\right)\left(a_{1} b_{4}\right)\left(a_{2} b_{2}\right)\left(a_{2} b_{3}\right)\left(a_{3} b_{1}\right)\left(a_{3} b_{2}\right)\right\}
$$

2) Let R be the relation of set $A=\{1,2,3,4\}$ defined by $R=\{(1,1)(1,2)(1,3)(1,4)(2,2)(2,4)(3,3)$ $(3,4)(4,4)\}$ construct the matrix and digraph of R.
Sol:

$$
M_{R}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3) Let $A=\{a, b, c\}$ be a non empty set and R be The relation on A that has the matrix po $m_{R}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & \phi & 1\end{array}\right]$ construct the digraph of R and listout indegrues, outdegrees of all vertices.
S01:- Given $A=\{a, b, c\}$

$$
\begin{aligned}
& \text { Given } A=\{a, b, c\} \\
& m_{R}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \Rightarrow R=\{(a, a)(a, c)(b, b)(c, b)(c, c)\}
\end{aligned}
$$

digraph G:-

vertex indegriee outdegree
4) Let $A=\left\{\{, 2,3,4,5,6\}\right.$ and $\begin{array}{l}\text { R be The } \\ R \text { elation of } A\end{array}$ defined by " $a R b$ inf a is "a multiple of b ". Represent the relation ' R ' as a matrix and draw its digraph.

$$
R=\left\{\begin{array}{ccc}
(1,1) & (2,1)(2,2)(3,1)(3,3)(4,1)(4,2)(4,4) \\
(5,1) & (5,5)(6,1)(6,2)(6,3)(6,6)
\end{array}\right\}
$$

Vertex	indegree outdegre	
1	6	1
2	3	2
3	2	2
4	1	3
5	1	2
6	1	4

R	1	2	3	4	r_{1}	6
1	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
2	$(2,1)$	$(2,2)$	$(2,2)$	$(2,4)$	$(2,5)$	$(2,6)$
3	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
5	$(5,1)$	$(5,2)$	$(5,3)$	$(5,1,4)$	$(5,5)$	$(5,6)$
6	$(6,1)$	$(6,2)$	$(6,3)$	$(6,1)$	$(6,5)$	$(6,6)$

$$
\text { QAM }=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]_{6 \times 6}
$$

5) Find The relation R, write

$$
\begin{aligned}
& R=\{(1,2)(2,3)(2,4)(3,2)(3,3)(3,4)(4,4)\} \\
& M_{R}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]_{4 \times 4} .
\end{aligned}
$$

8111
Partial order relations:-
A binary relation ' R ' on a set ' P ' is called partially ordered relation (or) partial ordering in p. iff ' R ' is Reflexive, Anti-symmetric and transitive: It is devoted by The symbol \leq is a partially ordered relation in P Then The order pair
(or) poset.
(P, \leq) is called partially ordered set.
Hasse diagram:-
A partially ordering \leq on a set ' p ' can be represents by means of a diagram known as Hasse diagram of $(p, \leq=)$. In such a diagram each element is representec by a small circle. The circle for $x \in P$ is drawn blew the circle $y \in p$. If $x<y$ and a line is drawn bow x and, y. If $x<y$ but does not connect ' x ', Then x and y are not connected directly, single line. elements of ' p '. It is possible to: obtain. The set of order pairs in \leq from such a diagrams.

Sg: 1) let $P=\{1,2,3,4\}$ and \leqslant be the relation lefts or equal to, then the lase diagram is ty
Sol.

(or)

2) Let $x=\{2,3,6,12,24,36\}$ and the relation \leqslant be such that $x \leq y$ if x divides y. Draw the hare diagram.
Sol:-

3) Let $P=\{3,4,12,24,48,722\}$ and The relation be defined on p such that " $a \leqslant b$, if " a divides b " Sol:-

9111
4) Hasse diagram of poset $s=\{1,2,3,4,5,6,7,8\}$ is given bebw if $A=\{4,5,7\}$ is a subset of s find The upper and lower bounds, supremum an infrimum of A.

Qu: Cliven $S=\{1,2,3,4,5,6,7,8\}$

upper bounds $=\{1,2,3\}$
Sepremum $=3$
lower bound $=\{6,8\}$
infimum $=2$
5) Let $P=\{1,2,3,4,5,6\}$ and the relation \leq such that $x \leqslant y$ if x divides y draw the hasse diagram. Find upper and lowed bounds, supremum and infrimum of x and subset $A=\{4,5\}$
Sol: Given $x=\{1,2,3,4,5,6\}$

$$
A=\{4,5\}
$$

hare diagram

upper bound $=\{6\}$
Supremum $=1$
lowed bound $=\{1,2,3\}$
infremum $=3$.
6) lot $=\{2,3,6,12,24,36\}$ and the relation \leqslant such that $x \leq y$ of x divides y draw the hasse diagram. Find upper and lower bounds, supremum, and infrimum of x and subset $A=\{6,12\}$

Sol:-

upperbound $=\{24,36\}$
Supremuin $=\leqslant 2$
lower bound $=\{2,3\}$
infimam $:=2$
(5) let A be The set of factors of a particular the integer m and let s be the relation divides. i.e $\leq=\{(x, y) / x \in A$ and $y \in A$ and xaivides $y\}$.

Draw the hast diagram for
i) $m=2$
ii) $m=6$
iii) $m=30$
iv) $m=12$ w $m=45$

1) $m=2$

$$
A=\{1,2\} \quad, \quad o_{1}^{2}
$$

ii) $m=6$

$$
\therefore A=\{1,2,3,6\}
$$

ii) $\mathrm{m}=12$

$$
A=\{1,2,34,6,12\}
$$

v) $m=45$

$$
A=\{1,3,5,9,13,15,45\}
$$

iii) $m=30$

$$
A=\{1,2,3,5,6,10 x, 30\} \text {. }
$$

(8) Let A be a given finite set and $P(A)$ is its poser set let \leq be inclusion relation on the set of $P(4)$. Draw tasse diagram of $(P(A), \leq)$ for
(1) $A=\{a\}$
(2) $A=\{a, b\}$
(3) $A=\{a, b, c\}$

Sole:-
(i) $A=\{a\} \quad p(4)=2^{n}=2^{1}=2$

$$
P(A)=\{\not,\{a\}\} \cdots \oint_{\phi}\{a\}
$$

(2)

$$
\begin{aligned}
A= & \{a, b\} \quad 2^{n}=2^{2}=6 \\
P(A)= & \{\Delta\{a\}\{b\}\{a b\}\} \\
& \{a\}\{a, b\}
\end{aligned}
$$

(3)

$$
A=\{a, b, c\}
$$

$$
\begin{aligned}
& A=\{a, b, c\} \\
& P(A)=\{\phi\{a\}\{b\}\{c\}\{a, b\}\{b, c\}\{c, a\}\{a b c\}\}
\end{aligned}
$$

Lattice:-
A lattice is a partially ordered $\operatorname{set}(L, \leq)$ in which every pair of elements $a, b \in L$, has a greatest lower Bound (GLB) and a beat upper bound (CUB)

The GLB of a subset $(a, b) \leqslant L$ will be denoted by $a * b .(a$ meet $b)$ and $L U B$ is denoted by $a \oplus b$ (ajoin b)
(1) Determine all minimal and maximal elements of poses
(i)

Minimal Elements $-\{3,5\} \quad \therefore(L \cup B)$
maximal Elements - $\{1,6\}-(G L B)$
(ii)

$$
\begin{aligned}
& \text { LUR }=\text { maximal elements }=\{f, g\} \\
& G L B=\text { minimal elements }=\{a, b, c\}
\end{aligned}
$$

14 lilt
Sub Lattices:- / sub set 1-
let (L, R) be a lattice ξ ' M ' be The sub lattices (01) subset of ' L ' . $a \vee b \in M$ and $a \wedge b \in M$ wherever $a \in M \& b \in M$.

Eq:-
1.) Consider the Lattes (L, R) represented by The hasse diagram given below.

$$
L=\{1,2,3,4,5,6,7,8\}
$$

subset of L

$$
\begin{aligned}
& m_{1}=\{1,2,4,6\} \quad \xi m_{2}=\{3,5,7,8\} \\
& m_{3}=\{1,2,4,8\}
\end{aligned}
$$

here $\left(m_{1}, R\right) \&\left(m_{2}, R\right)$ are The sublattices of L \& $\left(m_{3}, R\right)$ is not sub Lattices of L : product of lattices:-

Consider the Lattices $\left(L_{1}, R\right)$ \& $\left(L_{2}, R\right)$ Then $\left(L_{1} \times L_{2}, R\right)$ is a poset and the product of partially ordered set defined by $(a ; b) R\left(a^{\prime}, b 1\right)$ if $a R a^{\prime}$ in L_{1} and $O R b^{\prime}$ in L_{2}. properties of lattices:
1.) Commutative property:-
i) $a * b=b * a$
ii) $a \oplus b=b \oplus a$

$$
a \vee b=b \vee a
$$

$$
a \wedge b=b \wedge a
$$

2.) Idempotent property:-
i.)

$$
\begin{array}{rrrl}
a * a=a & \text { ii) } & a \oplus a=a \\
a \vee a=a & a \wedge a=a
\end{array}
$$

3) Associate property:-
4)

$$
\begin{aligned}
a *(b * c)=(a * b) * c & \text { M) } a \oplus(b \oplus c)=(a \oplus b) \oplus c \\
a \vee(b \vee c)=(a \vee b) \cdot v c & \quad a \wedge(b \wedge c)=(a \wedge b) \wedge c
\end{aligned}
$$

4) absorption property:-
i)

$$
\begin{aligned}
& a *(a \oplus b)=a \\
& a \vee(a \wedge b)=a
\end{aligned}
$$

ii) $a(4)(a * b)=a$
$a \quad \wedge(a \vee b)=a$.
Bounded Lattices:-
$-A$ lattice L is said to be bounded lattice if it has least element zero and greatest element one If L is bounded lattice, then for any. element $a \in L$ we have the following identities.
(1) $0 \leq a \leq 1$
(2) $a \vee 0=a \quad a \wedge 0=0$
(3) $a \wedge 1=a \quad a \vee 1=a$

Distributive Lattices:-
\wedge Lattice L is said to be distributive Latice if for any elements $a, b, c \in L$. Then we have the following identities.
(1) $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$
(c) $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$

15" Complemented Lattices:-
Let L be the bounded lattice, it; has lower bow 1) and upperbound 1. An element ' x ' in bounded lat ' L ' is said to be Complement of it's another cleme $y \in L$ provided.
(i) $x \wedge y=0$
(2) $x \vee y=1$

The Complement of x of an element is $y \in L$ Can also be denoted $\bar{x} / x^{\prime} / x^{c}$.

Modular Lattices:-
A Lattice L is said to be modular Lattice if $\quad a \vee(b \wedge c)=a \wedge(b \vee c)$ and $\quad a \leq c \quad \forall a, b, c \in L$
i) Let $s=\{a, b, c\}$ and $A=p(s)$ draw the hasse diagram of the poset A with partial order c.
Sol:- $s=\{a, b, c\}$

$$
\begin{aligned}
b \ll\{a\}, & \varnothing \ll\{b\} \quad \phi \ll\{c\} \\
\{a\} \ll\{a b\}, & \{b\}<c\{a, b\},\{c\} \ll\{b, c\} \\
& \{b\} \ll\{b, c\}
\end{aligned}
$$

$$
\{a, b\} \ll\{a, b, c\},\{a, c\} \ll\{a, b, c\},\{b, c\} \ll\{a, b, c\}
$$

2) Let (L, \leq) be a lattice for any $a, b, c \in L$ the. Following properties are called Dsolopicityhold $b \leq c \Rightarrow$

$$
\left\{\begin{array}{l}
a * b \leq a * c \\
a \oplus b \leq a \oplus c
\end{array}\right.
$$

prof:- we know that

$$
\begin{aligned}
& b \leq c \quad \cdots^{\prime}+ \\
& b^{\prime} \leq c^{\prime} \Leftrightarrow b^{\prime}+c^{\prime}=b^{\prime} \\
& a \leq b=a \times b
\end{aligned}
$$

To prove $a * b \leq a * c:$

$$
\begin{aligned}
& =\{(a * b)\} *(a * c)=(a * b * a) * c \\
& =(a * b) * c=(a * a * b) * c \\
& =(a * a)+(b * c) \\
& =a * b
\end{aligned}
$$

$$
a * b \leq a * c .
$$

The second statement is The dual of the first Statement $a \oplus b \leq a \oplus c$.

$$
(a \oplus b) \oplus(a \oplus c) \Rightarrow(a \oplus a) \oplus \cdot(b \oplus c)
$$

$$
\begin{aligned}
& =a \oplus b \\
& =a \oplus c
\end{aligned}
$$

$$
a \oplus b \equiv a \oplus c \text {. }
$$

problems

1) The Complement of an elementain a bounded laticy if it exists, is unique,
Sol: let a_{1} and a_{2} be the complement rs of $a \in L$
Then

$$
\begin{array}{ll}
a \vee a_{1}=1, & a \vee a_{2}=1 \longrightarrow \text { (1) } \\
a \wedge a_{1}=0, & a \wedge a_{2}=0 \rightarrow \text { (2) }
\end{array}
$$

Now,

$$
\begin{aligned}
& \text { Now, } \\
& a_{2}=a_{2} \vee 0 \\
& \begin{array}{ll}
=a_{1} v\left(a \wedge a_{2}\right) \text { by (2) } \\
=\left(a_{1} \vee a\right) \wedge\left(a_{1}, a_{2}\right)
\end{array} \quad \therefore=a_{2} \vee\left(a \wedge a_{1}\right) \text { by (2) } \\
& =\left(a_{2} \vee a\right) \cdot A\left(a_{2} \vee a_{1}\right) \\
& =\left(a \vee a_{2}\right) \wedge\left(a_{2} v_{1}\right) \\
& =1 n\left(a_{2} v_{a}\right) \\
& a_{2}=a_{2} \mathrm{va}_{1} \\
& \therefore a_{1}=a_{2}
\end{aligned}
$$

The Complement of an eft a in a bounded lattias if it exist, it is unique.
2) prove that a and b are blements in bounded, and av distributive lattice and if a has a Complement ta a^{\prime}, Then $a v\left(a^{\prime} \wedge b\right)=a v b$ and $a \wedge\left(a^{\prime} v b\right)$ $=a \wedge b$.

Quo- as- Gurges that a a distribution e and ar Now, we have to show a $v\left(a^{\prime} \wedge\right)$
(1) $\quad a v\left(a^{\prime} \wedge b\right)=a v b$

LAS
$\operatorname{ar}\left(a^{\prime} \wedge b\right)=\operatorname{ara}$
$=1$, $=a \mathrm{vb}$
$\therefore a r\left(a^{\prime} \wedge b\right)$
(2) $a \wedge\left(a^{\prime} \vee b\right)=a \wedge b$ CHS
$a \wedge\left(a^{\prime} \vee b\right)$
$a \wedge\left(a^{\prime} v, b\right.$
3) if (L, \leq) is a et Then for c
(i) $a v_{1}=1$ and $a \times 1$
(ii) $a v o=\alpha$ and a^{\prime}

Sol. let a be any. since 1 is the.
a and 1 we have
\therefore from 1

Qol 33π Gives that a and b are. The efts in bounded distributive and a^{1} is the complement of a.

Now, we have to show that

$$
a \vee\left(a^{\prime} \wedge b\right)=a \vee b \text { \& } a \wedge\left(a^{\prime} \vee b\right)=a \wedge b \text {. }
$$

(1) $a v\left(a^{\prime} \wedge b\right)=a v b$

LBS

$$
\begin{aligned}
\operatorname{ar}\left(a^{\prime} \wedge b\right) & =\left(a \vee a^{\prime}\right) \wedge(a \vee b) \\
& =1 \wedge(a \vee b) \\
& =a \vee b \\
\therefore a \vee\left(a^{\prime} \wedge b\right) & =a \vee b
\end{aligned}
$$

(2)

$$
a \wedge\left(a^{\prime} \vee b\right)=a \wedge b
$$

CHS

$$
\begin{aligned}
& a \wedge\left(a^{\prime} \vee b\right)=\left(a \wedge a^{\prime}\right) \vee(a \wedge b) \\
&=0 \vee(a \wedge b) \quad\left\{a \wedge a^{\prime}=0\right\} \\
&=a \wedge b \\
& a \wedge\left(a^{\prime} v, b\right)=a \wedge b
\end{aligned}
$$

3) if (L, \leq) is a lattice with least et 0 , ircatest elf then for any $a \in L$. Show that
(i) $a \vee 1=1$ and $a \wedge 1=a$
(ii) $a \vee 0=\alpha$ and $a \wedge 0=0$

Sol. let a be any., eft of lattice L Since 1 is the greatest oft of Lattice: 1

$$
\because a v 1 \leq 1 \rightarrow \text { (1) }
$$

and also av 1 is the supremum (QR.) LUB of a and 1 we have $1 \leqslant a r 1 \rightarrow$ (2)
\therefore from (1) \& (2)

$$
a_{V} 1=1
$$

for then since $a A_{1}$ is the infremum $\left(\theta_{2}\right)^{r} G_{L_{B}}$ of $a \notin 1$

$$
\begin{equation*}
a \wedge 1 \leq a \tag{3}
\end{equation*}
$$

and also $a \leq a$ and $a \leq 1$
we have

$$
\begin{equation*}
a \leq a \times 1 \tag{4}
\end{equation*}
$$

from (5) \hat{G} (4)

$$
a \times 1=a
$$

(ii) Let and is least (or) minimum of elements a, and 0 , so $a \wedge 0 \leq 0 \rightarrow$ (1)
and also $0 \leqslant a$, we get $0 \leqslant a \wedge 0 \rightarrow$, (2)
from (1) \& (2) $a \wedge 0=0$
Ar o is greatest (θQ) maximum of a and 0 so

$$
a \vee 0 \leq a \rightarrow(3)
$$

and also $0 \leq a$, weget $a \leq \operatorname{aro} \rightarrow$ (4)
from (B) \& (4) beget avo $=a$

Every sub lattice of a distributive lattice is a sub lattice.
proof 1 Let S be a sublattice of distribution lattice L let $a, b, c \in S$ Then $a, b, c \in L$
then $a \wedge(b \cup c)=(a \wedge b) \vee(a \wedge c) \in L$
Since 's' is the closed in ' r ' and ' v ', we have

$$
a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c) \in S
$$

Hence s is a distributive: Lattice.

1al11.

1) If $A=\{1,2,3,5,30\}$ and R is the divisibility relation prove that (A, R) is a lattice but not a distributive. lattice.
SO:- Given $A=\{1,2,3,5,30\}$ and R is The : relation on A is divisibility relation which is posed.

Here we find that every two ells $a \& b$ of A has a LUB, : arb in A
\& GIB, $a \wedge b$ in A
indeed $a v b$ and $a \wedge b$ for att $a, b \in A$ are shown in, the following tables

LUB (ape ${ }^{\text {l }}$ limits $)$
GLB (lower limits)

V	1	2	3	5	30
1	1	2	3	5	30
2	2	2	30	30	30
3	3	30	3	30	30
5	5	30	30	5	30
30	30	30	30	30	30

A	1	2	3	5	30
1	1	1	1	1	1
2	1	2	1	1	2
3	1	1	3	1	3
5	1	1	1	5	5
30	1	2	3	5	30

Since $a \vee b$ and $a \wedge b$ are in A for every $a, b \in A$ we refer that the pose (A, R) is a lattice. Further note that

$$
2 v(3 \wedge 5)=2 \vee 1=2
$$

$$
\begin{aligned}
&\wedge \wedge c)=(a \vee b) \wedge(a \vee c) \\
& \wedge(2 \vee 5)=30 \wedge 30 \rightarrow(2) \\
&=30 \\
& a v(b \wedge c)=(a \vee b) \wedge(a \vee c) / \text { Native not a vive }
\end{aligned}
$$

$$
\begin{aligned}
& 2 \vee(3 \wedge 5)=(a \vee b) \times(\operatorname{arc}) \\
& a \vee(b \wedge c)=(a \vee b)=30 \wedge 3
\end{aligned}
$$

$$
\begin{aligned}
(2 \vee 3) \wedge(2 \vee 5) & =30 \wedge 30 . \\
& =30
\end{aligned}
$$

$$
=30
$$

$$
2 \neq 30
$$

This means that The distributive laws do not hold in This lattice

Homeomorphism/H0mo / Ils
let $f^{\prime} / y(L, \leqslant 1)$ and $(L, L, 2)$ be two posits. If The function ' f ' defined from L ' 10 LL is called homeomorphism.
(O)
[If $b: 4 \longleftrightarrow L 2$ such that $a \leq 1, b f(a) \leq 2 f(t$ $\forall a, b \in L]$
Then 1.) f is one-one and onto

$$
\text { 2) } \begin{aligned}
f(a \vee b) & =f(a) \vee f(b) \\
f(a \wedge b) & =f(a) \wedge f(b)
\end{aligned}
$$

where L_{1} is a lattice iff L_{2} is a lattice, however f is one-one and onto from. L_{1} to L_{2} Then for any clement $a, b \in L_{1}$ and $f(a) \leq 2 f(b)$ in L_{2}

1) Show that. The, lattice $L=\{1,2,3,5\}$, under divisibility relation and lattice $(P(s), \leqslant)$. where $S=\{a, b\}$ are homomorphism.
Sol:- Given that $\dot{L}=\{1,2,3,6\}$ under the divisibility relation and the lattice $(P(s), \leq)$ where $s=\{a, b\}$ we define amapping $f: L \longrightarrow p(s)$

$$
f(1)=6, f(2)=\{a\} \quad f(3)=\{b\} \quad f(b)=\{a, b\}
$$

This implies that f is one-one and onto and also for all $a, b e l$.

$$
f(a \vee b)=f(a) \vee f(b)
$$

and $f(a \wedge b) \subset f(a) \wedge f(b)$
$\therefore f$ is a homomorphism and.

hance lattice L is homo, to lattice $(P(S), \leq)$
2) Let the lattice $L=\{1,2,3,4,6,12\}$ (onsictes the lattice $(L, /)$ and (L, \leq) where,$/!$ is the divisibility relation on L and L and \leq is the relation ' L ' show that Lattice, $(L, /)$, and' (L, \leq) are not is isomorphism,
Sol:- Given that $L=\{1,2,3,4,6,12\}$ be a lattice \bar{W} defined a mapping $f:(L, 1) \rightarrow(L, \leq)$ such that

$$
\begin{aligned}
& 3 \wedge 4=1 \in(L, 1) \\
& f(3 \wedge 4)=f(1)
\end{aligned}
$$

But $f(3 \wedge 4)=f(3)$ or $f(4)$ depends upond the values of $f(3) \xi f(4)$
In any case

$$
\begin{gathered}
f(3 \wedge 4)=f(3) \wedge f(4)=f(3) \text { and } f(4) \\
f(3 \wedge 4) \not f(3) \wedge f(4)
\end{gathered}
$$

$(L, /)$ and $\left(L_{1} \leqslant\right)$ are not Isomorphism to each
other.
11
Algebraic Structure:
Elerrentary operators:-
$+, \ldots, \ldots$ are called The elementary operators

Binary Operation:
Let ' S ' be a non empty set, if $f: S \times S \rightarrow s$. is a mapping or function then t is said to be binary operation on ' s '. i.e $\forall a, b \in S$ then There exist an unique image $f(a, b) \in S$ and it is denoted by ' x '(or) ' O '.
we observe that,+- , are binary operation in ' R ' and \div is not binary operation in ' R '. ie

$$
\begin{aligned}
& \left\{\begin{array}{l}
1 \\
0
\end{array} \in R, \frac{1}{0}=\infty \notin R\right. \\
& R=|x \in R|, \quad-\infty<x<80 .
\end{aligned}
$$

Algebraic system:-
Let S be a non empty set on with which one or more n-array sin operators are defined Then a system consisting of ' S ' and some n-array operators on S is called algebraic system (oe) Simply algebra or Algebraic structure.
If $*_{1}, *_{2}, *_{3} \ldots x_{n}$ are ' n ' operations on 's' Then The System $\left(S, x_{1}, x_{2}, x_{3}, \ldots *_{n}\right)$ y called an algebraic system.
Properties of binary expression :-
1.) Closure property, A binary operation $*$ on a set ' s ' is said to be closure property, if for every ares $a, b \in S$ Then $\Rightarrow a * b: \in S$.
2.) Associative:- A binary operation x on a set ' s ' is said to be associative property, if for every

$$
\forall a, b \in s \Rightarrow a *(b * c)=(a * b) * c
$$

3) Identity :- Let ' s ' be a non empty set and * be The binary operation on ' s ' it These exist an element $e \in S$ such that
$a \times e=a=e \times a+a=c s$ is called identity property.
4) Incise propertius in

Let $2(s i ; *)$ be an algebraic structure with the identity element e_{+i} in, ' S^{\prime}. An element a ES is said to be invertible.
If These exist an elnt $x \in S$ such that

$$
a * x=c=x * \cdot a
$$

This property is called inverse property.
5.) Commutative :-

A binary operation '*' on a set 'S' is said to be Commutative property if for every $a, b \in S$ then
23111

$$
a * b=b * a
$$

Group:- Let ' G ' be a non-empty set $\& *$ be The binary
operation in ' G ' Then the algebraic structure $(. G, *)$ is operation in ' G ' Then the algebraic structure $(. G, *$) is called a group. If it satisfies the following properties.
i) closure property
2) Associat tive property
3) Identity property

Semi Group:- Let ' G ' be a non-empty set, ξ \& be the binary option in ' G '. Then The algebraic structure $(G, *)$ is called a semi group . If it satisfies the following properties
(i) Closure property
(2) Associative property

Abelian group: Let ' G ' be a non empty set and $*$ be The binary operation on ' G ' . Then'. The algebraic structure $(G, *)$ is called Abelian group if it satisfies the following properties
(1) Closure property
(2) ASSociative property
(3) Identity property
(4) Inverse property:
(5) Commutative property

Monoid group:- The semi group $(G, *)$ which has an the identity element with respect to The binary operations is said to be a monoid and it is denoted b ($M, *$)
(OR)
An algebraic structure $(m, *)$ is called a monoid, if it satisfies the following properties.
(1) closure property
(2) Associative property
(3) Identity property.
problems

1) prove that the set $G=\left\{1, \omega, \omega^{2}\right)$ (the \sec of cubic roots of unity)
$\left\{x / x^{3}=1\right\}$ forms an abelian group. we get the operation ". (multiplication)
Sol:- $G=\left\{1, \omega, \omega^{2}\right\}$
The set of cubic roots units (i.e, $\omega^{2}=1$) Now to show that G forms an abelian group. 1 pili
(I). Closure property: wt $1 \cdot \omega \in G$

$$
\begin{gathered}
\quad 1 \cdot \omega=\omega \in G \\
\text { ie }, a, b \in G \Rightarrow a * b \in G \text {. }
\end{gathered}
$$

$\therefore G$ satisfies closure property
(2) Associative property:-
$\omega t \quad 1, \omega, \omega^{2} \in G$

$$
\begin{aligned}
(1 \cdot \omega) \cdot \omega^{2} & =1 \cdot\left(\omega, \omega^{2}\right) \\
\omega \cdot \omega^{2} & =1 \cdot \omega^{3} \\
\omega^{3} & =\omega^{3} \\
1 & =1 \\
\therefore a, b, c^{\prime} \in G & \Rightarrow(a * b) * c=a *(b * c) \in G
\end{aligned}
$$

$\therefore G$ satisfies Associative property.
3.) Identity property: we know that w.r.t the mulupication Identity element is " 1 ".

$$
\begin{aligned}
& 1 \cdot 1=1 \\
& \omega \cdot 1=\omega \\
& \omega^{2} \cdot 1=\omega^{2}
\end{aligned}
$$

$$
\text { i.e; } a * e=a=e * a \quad \forall a \in G \text { : }
$$

$\therefore G$ satisfies Identity property.
4) Inverse property:
let $\quad 1, \omega, \omega^{2} \in G$

$$
\begin{aligned}
& x=1 \\
& \omega \cdot \omega^{2}=\omega^{3}=1 \\
& \omega^{2} \cdot \omega=\omega^{3}=1 \\
& a * x=e=x * a
\end{aligned}
$$

$\therefore G$ satisfies Inverse property
5.) Commutative property:-

Let $1, \omega, \omega^{2} \in G$

$$
\begin{aligned}
& 1, \omega^{2} \in G \\
& 1 \cdot w^{2}=w^{2} \cdot 1 \\
& w^{2}=w^{2} \\
& a, b \in G \Rightarrow a * b=b * a
\end{aligned}
$$

$\therefore G$ satisfies Commutative property Hence, G forms an Abelian group,
2) prove that the set $G=\{1,-1,1 ;-1\}$, an abelian group weir to the multiplication (.) In (The set of fourth roots of unity), $=\left\{x / x^{4} \leq 1, i\right.$
Sol:- Given $G=\{1,-1, i,-i\}$ \& $i=-1$
i.) Closure property:-

Let $\quad 1, i \in G$

$$
1 \cdot i=i \in G
$$

$$
\text { i.e } \quad a, b \in G \Rightarrow a * b \in G
$$

$\therefore G$ satisfies closure property.
ii) Associative property:-

Let $\quad i, i,-i \in G$

$$
(1 \cdot i) \cdot(-i)=1 \cdot(i,-i)
$$

$$
i \cdot(-i)=1 \cdot(-i)^{2}
$$

$$
\left\langle i^{2}=-1\right\rangle
$$

$$
-i^{2}=-i^{2}
$$

$$
-(-1)=-(-1)
$$

$$
1=1
$$

$a, b, c \in G$ Then $(a * b) * c=a *(b * c)$
$\therefore G$ satisfies Associative. property.
iii.) Identity property:

We know multiplication identity is 1 Let $1,-1, i,-i \in G$

$$
\begin{aligned}
1.1 & =1 \\
-1.1 & =-1 \\
i .1 & =i \\
-i .1 & =-i
\end{aligned} \quad(\text { ie } a * e=a=
$$

$\therefore G$ satisfies identity property.
$\therefore G$ form abelion aplite group.
3) prove that The set z (integers) forms an abelian group. with the operation is defined by $a O b=a+b+2$ for all $a, b \in z$
Sol:- Given $z=\{-\infty, \ldots,-2,-1,0,+1,+2 \ldots \infty\}$ and The operation

$$
\begin{aligned}
& a 0 b=a+b+2 \\
& a * b=a+b+2
\end{aligned}
$$

to prove that z forms an abelian group
i) closure property:-

Let $1,5 \in Z$
$\lambda 0 b=a+b+2$

$$
105=1+5+2
$$

$$
=8 \epsilon z .
$$

$\therefore a, b \in z$ then $a 0 b \in z$
z satisfies closure property
ii.) Associative property:-

Let $1,2,3 \in z$
(6) 60.0$) 0 c=a_{0}$ (b0c)

$$
\begin{aligned}
(a+b+2) \circ c & =a 0(2+3+2) \\
(1+2+2) \circ 3 & =10(7) \\
503 & =1+7+2 \\
5+3+2 & =10 \\
10 & =10
\end{aligned}
$$

\therefore satisfies Associative property iii. P density property y :-

Ne. know multiplication identity is 1
by the identity $a \circ c=\dot{a}$

$$
\begin{aligned}
a+b+2 & =a \\
a+2+2 & =a \text { ex }=0 \\
-b & =2 \\
e+2=a-a & \Rightarrow e=-2
\end{aligned}
$$

ie $a * e=a=e * a$
z satisfies Identity property
iv.) Inverse property:-

$$
\begin{aligned}
x & \text { is inverse of ' } a^{\prime} \text {. } \\
a 0 x & =e \\
a+b+2 & =e \\
a+x+2 & =4 \\
a+x & =-4 \\
x & =-4-a
\end{aligned}
$$

$$
1, a \circ x=e=x \circ a
$$

$Z=$ satisfies inverse property
b) Commutative property:-

$$
\begin{aligned}
& \text { Let }-3,6 \in z \\
& a \cdot b=b 0 a \\
& -3+6+2=6-3+2 \\
& 3+2=3+2 \\
& 5=5
\end{aligned}
$$

$\because z$ satisfies, commutative property.
$\therefore z$ form an abelian. group,

Finite group:-
If the set G contains a finite noon elements, $T_{\text {th }}$ The group $(G, *)$ is called a finite group otherolse $(G, *)$ is called aninfinite group.
Order of group:-
The no of elements in a finite group $(G, *)$ is Called order of the group and it is denoted os $O(G)$ is a group then $O(G)=4$.
Addition Modulo m (or) Addition of residue classes: Let $a, b \in z$ and m be the fixed positive integer if r is the remainder $\Rightarrow(0 \leq r<m)$ when " $(a+b$. is divided by $m^{\prime \prime}\left(\frac{a+b}{m}\right)$ be defined by $a+m b=$ a addition module $m \quad b$
vg: (1) $20+65=1$
(2) $24+54=3^{-1}$

$$
=\frac{25}{6} \quad \frac{6)}{25(4} \text { (1) }
$$

Multiplication module op:-
Let α, b are integers and p be The fixed positive inter if $a b$ divides by P such that is is. The remain $(0 \leqslant r<p)$, we define $a \times_{p} b=r$ and Read as a "multiplication modulo $P \cdot b$ ".

$$
\begin{equation*}
2 \times 26=0 \tag{1}
\end{equation*}
$$

(2) $20 \times_{20}^{7}$
(3) 20×6^{15}

$$
\begin{equation*}
\frac{12}{2} \tag{}
\end{equation*}
$$

0 is remainder when
20) $140(7$
6) $100(16$

12 divided by 2 .
1.) prove that the set $r=\{0,1,2,3\}$ forms group wot $\oplus \oplus_{4}$
Sol:- $G_{1}=\{0,1,2,3\}$ and the operation is wert
(4) 4

\uparrow_{4}	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

$$
\begin{array}{l|l|l}
0+40=0 / 4=0 & 1+40=1 / 4=1 & 2+40=\frac{2}{4}=2 \\
0+4=1 / 4=1 & 1+41=2 / 4=2 & 2+41=3 / 4=3 \\
0+42=2 / 4=2 & 1+42=3 / 4=3 & 2+42=\frac{4}{4}=0 \\
0+43=3 / 4=3 & 1+43=4 / 4=0 & 2+43=\frac{5}{4}=1
\end{array}
$$

$$
3+40=3 / 4=3
$$

$$
3+41=\frac{4}{4}=0
$$

$$
3+4^{2}=5 / 4=1
$$

$$
3+43=6 / 4=2
$$

(2) prove that set $G=\{-0,2,3,4,5\}$ forms an: abelian group wot X_{5}
Sols- G $=\{1,2 ; 3 ; 4$,
and the operation is wert \dot{x}_{5}

x_{5}	1	2,	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

Subgroup:-
Let $(G, *) /(G, \cdot)$ be a group and ' H ' be a nonet, subset of ' G ' such that $(H, t) /(H, \cdot)$. is a group Then ' H ' is called the subgroup of G,
Normal subgroup t-
A sub group ' H ' of a group ' G ' is said to be normal subgroup if $\forall x \in G$ and $h \in H$ then $x h x^{-1} \in H$ and it is denoted by $H \Delta G$ and read as ' H ' is a normal subgroup of ' G '
Homo mosphism. group:-
A function or a mapping 'f is said to be homomorphism between two groups $(G, \cdot) \rightarrow[G \prime, *)$ Then i) $f:(G, \bullet) \rightarrow\left(G^{\prime}, *\right)$ is a function

$$
\text { i) } \begin{aligned}
\quad f:(a, b) & \rightarrow f(a) * f(b) \forall a, b \in G, \\
f(a, b) & =f(a) \cdot f(b)
\end{aligned}
$$

Homomorphism Into:-
Let (G, G) be two groups and f is a mapping from G into $G^{\prime}, \forall a, b \in G$
$f(a \cdot b)=f(a) \cdot f(b)$. Then ' f ' is said to be horiono phi

- sm from G into G !,

Homo mosphism Onto:-
Let 'G',G' be two groups and 'f' is' a mapping from G onto G, if $\forall a, b \in G$. Then
$f(a \cdot b) \mp f(a), f(b)$ Than ' f ' is said to be homo-

- mosphism from G onto G.

Theorems:-
1.) prove that every subgroup of an abelian group G is a normalsubgroup.
proof)-
Given ' G ' is an abelian group.
Let ' N ' be a sub group of ' G '

Now, to show N^{\prime} is a normalsubgroup of G^{\prime}.
let $g \in G$ and $h \in N$ Then
by The depiction

$$
\begin{aligned}
x h x^{-1} & \in H \\
g h g^{-1} & =(g h) g^{-1} \\
& =(h g) g^{-1} \\
& =h\left(g g ^ { - 1 } \quad \quad \left\langleg g^{\prime}=\square^{1}\right.\right. \\
& =h \cdot l . \\
g h g^{-1} & =h \in N
\end{aligned}
$$

$\therefore N$ is a normal subgroup of G ($N \Delta G$)
Hence every subgroup of an abelian group G is a iii) Normal subgroup.
L.A subgroup of a group G is a normal.
$\Leftrightarrow x h x^{-1}=H: \quad \forall x \in G$
Sol:- proof:-: Given that G is a group, and H is a subgroup of G. Let H is a normal subgroup of G. Now we have to show. that

$$
x h x^{-1}=H \forall x \in G
$$

Since $t 1$ is normal subgroup of G
i.e $x+x^{-1} \leq H \quad \forall x \in G \rightarrow$ (1)

Since

$$
\begin{aligned}
x \in G & \Rightarrow x^{-1} \in G \\
& \Rightarrow x^{-1} H x \subseteq H \\
& \Rightarrow x\left(x^{-1} H \dot{x}\right) \subseteq x H \\
& \Rightarrow\left(x x^{-1}\right)(H x) \subseteq x H \\
& \Rightarrow e(H x) \subseteq x H \\
& \Rightarrow H x \subseteq x H \\
& \Rightarrow(H x) x^{-1} \subseteq(x H) x^{-1} \\
& \Rightarrow H \cdot\left(x x^{-1}\right) \subseteq x H x^{-1} \\
& \Rightarrow H \cdot e \subseteq x H x^{-1}
\end{aligned}
$$

$$
\begin{equation*}
\text { from (1) \&(2)wegt }=H \leq x H x^{-1} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mid x+1 x^{-1}=1+1 \tag{3}
\end{equation*}
$$

Conversly: Let us take $x H x^{-1}=H$
Now to show that 11 is a normal subgroup of G. We know that every set is a subset of it self. i.e $x H x^{-1} \leqslant x H x^{-1}$

$$
\begin{equation*}
x H x^{-1} \subseteq H \text { by } \tag{3}
\end{equation*}
$$

$\therefore M$ is a normal subgroup of G.
3) If M \& N are two normal subgroup of a group Then prove that $M N$ is also normal subgroup of G, proof:-

Given that
M and N are two normal subgroups of G Now we have to show that $M N$ is a normal subgroup of G.
for This $m n \in M N$ so that $m \in M \& n \in N$ Since M is a normal subgroup of G, Then we have

$$
\begin{equation*}
g m g^{-1} \in m \quad \forall g \in G \tag{1}
\end{equation*}
$$

$m \in M$
and also
Since N is a normal subgroup of G, then we have $g n q^{-1} \in N \quad \forall q \in G \rightarrow(2)$

Let us take $g(m n) g^{-1}=(g m)\left(n g^{-1}\right)$

$$
\begin{aligned}
& =(g m) \text { e }\left(n g^{-1}\right) \\
& =(g m)\left(g^{-1} g\right)\left(n g^{-1}\right) \\
& =\left(g m g^{-1}\right)\left(g n g^{-1}\right)
\end{aligned}
$$

ie $\left(g m g^{-1}\right) \cdot\left(g n g^{-1}\right) \in m n$
$\therefore M N$ is a normal subgroup of G
4) If $f:(2,+) \rightarrow(R$,

Pe $e^{x} x \in z$ then prove that f is a homomorphism.
proof:
Given that $f:(z,+) \rightarrow(R+$,$) is a function$ and $f(x)=e^{x} \quad$ fin ez:
Now we have to prove
t is a homomorphism
by. The definition of closure
let xiyez

$$
\begin{aligned}
f(x) & =e^{x} \\
f(x+y) & =e^{x+y} \\
& =e^{x} \cdot e^{y} \\
\therefore f(x+y) & f(x)
\end{aligned}
$$

\therefore Hence f is a homunworphism from $(z,+)$ to $(R+, \cdots)$
If $f:(Q+, \cdot) \rightarrow(R,+)$ is a function. and $f(x)=\log x \forall x \in Q^{*}$, then prove that f is a homomorphism.
Proof:- Given That $f^{\prime}:(Q *, 1) \rightarrow(R ;+)$
is a function and $f(x)=\log x \forall x \in Q^{*}$ Now to show that f is suit a Homomorphism by the definition of closure proper y $x, y \in Q^{*}$

$$
\begin{aligned}
& \Rightarrow x, y \in Q^{*} \Rightarrow x, y \in Q^{*} \\
& f(x)=\log x \\
& f(x, y)=\log (x \cdot y) \\
& f(x, y)=\log x+\log y
\end{aligned}
$$

$\therefore f$ is a homomorphism from

$$
\left(Q^{*}, \cdot\right) \quad \operatorname{LD}(R,+)
$$

Functions:- $(f: A \rightarrow B)$

- function ' f ' from set A to set B associates. to each element X in A, A unique element $f(x)$ in B and is written as $f: A \rightarrow B$
Types of functions:-
1.) One - One (or) infective:-

Let $f: A \rightarrow B$ then " f ' is called an one-0ne function: if no. two different elements in A have the san image. i.e different elements in ' A ' have different Clements in ' B '
(or)
let $f: A \rightarrow B$ be a function from ' A ' to ' B '. I distinct elements of ' A '' are mapped D distinct elements of B, Then B is called one-one or inject! function.

2) Onto I Subjective:-

- function $f: A \rightarrow B$, is said to be onto function if every element. of ' B ' is the image of 'some' elements of ' A ' under ' f '.

3) Bijective function:-
A function $t: A \rightarrow B$ is both infective and surjective, Then f is said, to be bjjective function

A) Inverse function:-

If $f: A \rightarrow B$ is a bijective of ' A ' onto ' B ' then' the set $\{(b, a) \in B \times A,(a, b) \in f\}$ is a function on; B into A. This function is called The inverse function of ' F '.and it is denoted by f^{-1}.

Constant function) -
A constant function is a function of the form $f(x)=6$ Where ' b ' is a number, $\therefore y=f(x)=b$
eg- 1)

2.)

Identity function:-
Let ' A ' be a won empty set and ' $f: A \rightarrow A$ be a mapping, if every element of ' A ' is mapped into itself, Then of is called an Ddentity function on A. \rightarrow It is denoted by D_{A}

$$
12 \quad I_{A}=\{(a, a) / a \in A\}
$$

Composition of a function:-
let $f: A \rightarrow B$ and $g: B \rightarrow C$ are two

Eg.

mapping. Then the composition of two mappings fond g denoted' by 'goo' is . The mapping from 'A' to ' C ' denoted y 'got: $A \rightarrow C$ '.

$$
\begin{aligned}
& \text { got }=\{(a, c)(a, b) \in f(b, c) \in g\} \\
& \therefore \text { got }: A \rightarrow c \text { is a mapping } \\
& g \circ f(a)=g[f(a)] \text { where a } \in A
\end{aligned}
$$

Commutative ie oof $\neq f_{0} g$. Where t and g are 16 ming for fy: i) Let $f: R \rightarrow R \quad \& \quad g: R \rightarrow R$ be defined by $f(x)=$ ing and $g(x)=2 x^{2}+3$. Then find fog \& got
Sol:- Given $f(x)=x+1, g(x)=2 x^{2}+3$

$$
\begin{aligned}
(f \circ g)(x) & =f[g(x)] \\
& =f\left[2 x^{2}+3\right] \\
& =2 x^{2}+3+1 \\
(f \circ g)(x) & =2 x^{2}+4 \\
(g \circ f)(x) & =g[f(x)] \\
& =\dot{g}(x+1) \\
& =2(x+1)^{2}+3 \\
& =2\left(x^{2}+1+2 x\right)+3 \\
(g \circ f)(x) & =2 x^{2}+4 x+5
\end{aligned}
$$

2) If $f(x)=x^{2} ; g(x)=x+4$ then find fog \& $g \circ f$.

Sols- Given $f(x)=x^{2} \quad g(x)=x+4$

$$
\begin{aligned}
(f \circ g)(x)= & f[g(x)] \\
& =f(x+4) \\
& =(x+4)^{2}=x^{2}+16+8 x \left\lvert\, \begin{aligned}
(g \circ f)(x) & =g[f(x)] \\
& =g\left(x^{2}\right) \\
& =x^{2}+4 \\
(f \circ g) x & =x^{2}+16+8 x \\
& \quad(g \circ f) x
\end{aligned} \quad \begin{aligned}
& =x^{2}+4
\end{aligned}\right.
\end{aligned}
$$

Association of a function:-
DE $f: A \rightarrow B$ and $g: B \rightarrow C, h: C \rightarrow D$ are three functions Then got: $A \rightarrow C$ and hog: $B \rightarrow D$ are also function we can form $(h \circ g$) of $: A \rightarrow D$ and ho(gof): $A \rightarrow D$ assuming That $Q \in A$, we have

$$
\begin{aligned}
{[(h \circ g) \circ f](a) } & =[h \circ g] f(a) \\
& =h[g[f(a)]] \\
& =h[(g \circ f) a] \\
& =h \circ(g \circ f)(a)
\end{aligned}
$$

\therefore The composition of function is associative.

Eff| 1) Let $f(x)=x+2, g(x)=x-2-h(x)=3 x, \forall x \in R$
find is got it bog mi> hog ios fogon v.s (hog) of
vi) ho (oof)

Sol:- Given $f(x)=(x+2), \quad g(x)=x-2 \quad h(x)=3 x$

$$
\text { i) } \begin{aligned}
{[g \circ f](x) } & =g[f(x)] \\
& =g[x+2] \\
& =x+x-x \\
(g \circ f) x & =x
\end{aligned}
$$

$$
\text { iii) } \begin{aligned}
(h \circ g](x) & =h[g(x)] \\
& =h(x-2) \\
& =3(x-2) \\
(h \circ g) x & =3 x-6
\end{aligned}
$$

$$
\begin{aligned}
\text { v) } & ((h \circ g) \circ f)(x)=h \circ g[f(x)] \\
& =h\{g[f(x)] \\
& =h\{g[x+2)\} \\
& =h[x+\Sigma-2] \\
& =h(x) \\
& =3 x .
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
{[f \circ g](x) } & =f[g(x)] \\
& =f(x-2) \\
& =x-2+/ 2 \\
(f \circ g) x & =x
\end{aligned}
$$

$$
\text { iv.) } \begin{aligned}
(f \circ g \circ h)(x) & =f[g[h(x)]] \\
& =f[g(3 x)] \\
& =f[3 x-2] \\
& =3 x-2 x+2 \\
\text { (fogoh) } x & =3 x
\end{aligned}
$$

vi> hog of) (x)

$$
=h[g[f(x)]]
$$

$$
=h[g[x+2]]
$$

$$
=h[x+2-x]
$$

$$
=h(x)
$$

$$
=3 x .
$$

Pigeon hole principal:-
If 'in' pigeons occupies ' n ' pigeon holes, Then atleast one pigeon hole mist contain $\left(\frac{m-1}{n}\right)+1$ (or) more pigeons.
i) If 7 cars carry 26 passengers, prove that attest One car must have 4 or more passengers.
Sol:- Let given no. of cars (pigeon holes) $=n=7$ no. of passengers (pigeons) $=m=26$
by pigeon hose principle

$$
\begin{aligned}
\left(\frac{m-1}{n}\right)+1 & =\frac{7}{7} \frac{26-1}{7}+1 \\
& =\frac{25}{7}+1 \\
& =\frac{25+7}{7}=\frac{32}{7}=4.5
\end{aligned}
$$

Hence pigeon hole principle is Verified．
Atleast one car must carry 4 or more passe
2）If 6 persons have a total of ₹ 2161 with the show that one or more of them must have atleast of ₹ 361 ．
Sol：－Given．

$$
\begin{aligned}
& \text { total money (pigeons) }=21.61 \\
& \text { no. of persons (pigeon holes) }=n=6 .
\end{aligned}
$$

by using generalised pigeon hole principle．

$$
\left(\frac{m-1}{n}\right)+1=\left(\frac{2161-1}{6}\right)+1=\frac{2160}{6}+1=\frac{2166}{6}
$$

有保愒 Hence it is prove that $=361$ ：
Ore of more 00．Them must have at least of 23
3）prove that 30 dictionaries in a library contain a total of 61327 pages than atreast one of the dictionary must have ateeast＊o＊ 2045 pages．（ms） Sol：－tet，us Consider
hoof dictionaries（pigeon，holes）$=n=30$

$$
\text { no. of pages (pigeon) }=m=61327
$$

by pigeon hole principle

$$
\begin{aligned}
\left(\frac{m-1}{n}\right)+1=\left(\frac{61327-1}{30}\right)+1 & =\frac{61326}{30}+1 \\
& =2045
\end{aligned}
$$

Hence pigeon hole principle is proved．
4) how many persons must chosen in order that at least 5 of them will have bithdate in The $\mathrm{f} / \mathrm{s} / 1 / \mathrm{s}$ same calender month.
Sol:- Let m be no. of persons.
n be no. of months in a year $=n=12$
and also given attest no of persons who have
Their bithdayife in the same month $=5$
by generalized pigeon hole principle.

$$
\begin{aligned}
\left(\frac{m-1}{n}\right)+1=5 & \Rightarrow\left(\frac{m-1}{12}\right)+1=5 \\
\Rightarrow \frac{m-1+12}{12} & =5 \\
\frac{m+11}{12} & =5 \\
m+11 & =60 \\
m & =60-11 \\
m & =49
\end{aligned}
$$

no. of pages $m=49$.
5) Find the max. no of students in a class to be sure that 4 out of them arse born on the same months
SOl:-

$$
\begin{aligned}
\left(\frac{m-1}{12}\right)+1 & =4 \\
\frac{m-1+12}{12} & =4 \\
\frac{m+11}{12} & =4 \\
m+11 & =48 \\
m & =48-11=37 \\
m & =37
\end{aligned}
$$

6) prove that in a set of 13 children atheast 2 have birthdays during the same month.
Sol:

$$
\begin{array}{r|r}
\left(\frac{m-1}{12}\right)+1=2 & m+11=24 \\
\frac{m+11}{12}=2 & m=24-11 \\
& m=13
\end{array}
$$

Elementary Combinatorics
In daily lives, many a times one needs to find out the number of all possible outcomes for a series of events.
for instance, in how many ways different 10 lettered PAN numbers can be generated such that the five letters are Capital alphabets, the next four are digits and the last is again a capital letter. For Solving these problems, mathematically theory of "Counting" are used.
Counting mainly encompasses(contains) "fundamental counting rule", the "permutation rule", and the "Combination rule."
There are two types of Counting principles:
They are: (i) Sum Rule (or Disjunctive Rule)
(ii) product rule (or Sequential Rule)

The Sum Rule:
If an event'A'Can occur in ' m ' ways and another event ' B ' Can occur in ' n ' ways, and if these two events Cannot occur simultaneously. Then A or B Can occur in $m+n$ ways.
In general, if $E_{1}, E_{2}, \ldots, E_{n}$ are mutually exclusive events and E_{1} Can happen n_{1} ways, E_{2} Can happen n_{2} ways,, E_{n} can happen n_{n} ways. Then one of the ' n ' events can occur in $n_{1}+n_{2}+\cdots+n_{n}$ ways.
EX:

1. If 8 male professor and 5 female professor teaching DMS then the student Can choose professor in $8+5=13$ ways.
2. If there are 5 boys and 4 girls in a class, then there are $5+4=9$ ways of selecting one student (either a boy or a girl) as class representative.
3. A student can choose a computer project from one of three lists contain $23,18,10$ possible projects. Then the number of possible projects are there to choose from are $23+18+10$ $=51$.
4. How many ways Can we get a Sum of 4 or of 8 when two distinguishable dice are rolled? And how many ways Can we get an even Sum?
Sol:
i) We see that the outcomes $(1,3),(2,2)$ and $(3,1)$ are the only ones whose sum is 4. Thus, there are 3 ways to obtain the Sum is 4 .
Similarly, we obtain the Sum 8 from the outcomes $(2,6),(3,5),(4,4),(5,3)$ and $(6,2)$. Thus, the re are $3+5=8$ out comes whose sum is 4 or 8 .
5. From a well shefled pack of playing cards, find the following:
i) How many ways can we draw a heart or a spade?
ii) How many ways can we draw an ace or a king?
iii) How many ways can we draw a card numbered 2 through 10 ?
iv) How many way can we draw a numbered card or a king!

Sol: ($)$ Since there are 13 hearts and 13 spades, we may draw a heart or a spade in $13+13=26$ ways.
ii) Since there are only 3 aces that are not hearts, we may draw a heart or an ace in $13+3=16$ ways.
iii) Since there are 9 cards numbered 2 through 10 in each of 4 suits (clubs, diamonds, hearts or spades).

Scanned with CamScanner

We may choose a numbered card in 36 ways.
iv) we may choose a numbered card or a king in $36+4=40$ ways

NOTE:
In a deck, we have 52 Cards. And these Cards are distributed in 4 Suits.

1. Spades
2. Diamonds
3. clubs
4. Hearts

Each Contain
Ace, two, three, four, five, Six, Seven, eight, nine, ten, jack, queen and king.
The product Rule:
If an event occur in ' m ' ways and a Second event Can occur in ' n ' ways, and if the number of ways the Second event occurs doesnot depend upon how the first event occurs, then the two events can occur Simultaneously in "mn" ways.
In general, if events $E_{1}, E_{2}, \ldots, E_{n}$ Can happen in $n_{1}, n_{2}, \ldots, n_{n}$ ways, then the sequence of events E_{1} first, followed by $E_{2} \ldots$, fottowed by E_{n} can happen in $n_{1} \cdot n_{2} \cdots n_{n}$ ways.
Ex:1. In class, there are 4 boys and 10 girls if a boy and a girl have to be chosen for the class representative, the students clan hoose $c R$ in $4 \times 10=40$ ways.
2. If 2 distinguishable dice are rolled then the first die Cantal (event E_{1}) in 6 ways and the Second (event E_{2}) in 6 ways. Hence there are 6.6=36 ways.
(3) How many different license plates are available if each plate contains a sequence of three letters -followed by three digits.
So There are 26 choices for each of the three letters and 10 choices for each of the three digits.
There are a total of $26 \cdot 26 \cdot 26 \cdot 10 \cdot 10 \cdot 10=17516000$ possible license plates.
Combinations and permutations:
A "Combination" of n objects taken ' r '' at a time called an unordered Selection of $r(r \leqslant n)$ of the n-objects.
A "permutation' of n objects taken ' v ' at a time called an ordered selection or arrangement of or of the ' n ' objects.
Note: The order of the things is not considered in combinations, and the order of the things considered in Permutations.
The total number of permutations of n objects taken ' r ' at a time is denoted by ${ }^{n} P_{n}$ (or) $P(n, r)$.

$$
n_{P_{r}}=\frac{n!}{(n-r)!}=n(n-1)(n-2) \cdots(n-r+1)
$$

Important Results:

1. ${ }^{n} P_{n}=n!$
2. ${ }^{n} P_{n-1}={ }^{n} P_{n}$
3. $0!=1$

The number of combination of n object's taken ' r ' at a time is denoted by ${ }^{n_{C_{r}}}$ or $C(n, v)$ or $\binom{n}{r}$.

$$
n_{c_{r}}=\frac{n!}{r!(n-r)!}
$$

* $C(n, n)=1$
* Relationship between ${ }^{n_{C_{r}}}$ and ${ }^{n} P_{r}$ is: $r!\times{ }^{n} C_{C_{r}}={ }^{n} P_{r}$.
* i) $c(n, r)=c(n, n-r)$ (ii) If $c(n, r)=c(n, s)$ then either $r=s$ or $r+s=n$.

Example:

1. Compute $p(8,5)$

Sol $P(8,5)=\frac{8!}{(8-5)!}=\frac{8!}{3!}=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3!}{3!}=6120$
2. Compute n and r if $P(n, r)=3024$

Sol $P(n, r)=\frac{n!}{(n-r)!}$
Since $p(n, \pi)$ is a product of Consecutive integers.
we write $p(n, r)=3024=9 \times 8 \times 4 \times 6=p(9,4)$

$$
\Rightarrow n=9, r=4
$$

3. Find n if $p(n-1,3): p(n+1,3)=5: 12$

Sol

$$
\begin{aligned}
& p(n-1,3): p(n+1,3)=5: 12 \\
\Rightarrow & 12 p(n-1,3)=5 p(n+1,3) \\
\Rightarrow & 12(n-1)(n-2)(n-3)=5(n+1) n(n-1) \\
\Rightarrow & 12(n-2)(n-3)=5(n+1) n \\
\Rightarrow & 12\left[n^{2}-5 n+6\right]=5\left(n^{2}+n\right) \\
\Rightarrow & 12 n^{2}-60 n+42=5 n^{2}+5 n \\
\Rightarrow & 7 n^{2}-65 n+72=0 \\
& n=8 \text { (or) } \frac{9}{7}=1.2851
\end{aligned}
$$

Since ' n ' is tue integer, $n=\frac{9}{7}$ is rejected. $\quad \therefore n=8$.
(4) If $C(n, \pi)=126$, find n.

Sol Since $C(n, r)$ is a positive integer, we write

$$
\begin{aligned}
& C(n, v)=126=68 \times 2=9 \times 7 \times 2=\frac{9 \times 8 \times 7}{4}=\frac{9 \times 8 \times 7 \times 6}{6 \times 4} \\
&=\frac{9 \times 8 \times 1 \times 6}{4 \times 3 \times 2 \times 1}=C(9,5) \\
& \therefore n=9
\end{aligned}
$$

(5) If $c(n, 6)=c(n, 10)$ find $c(n, 8)$.

Sol Since $C(n, 6)=C(n, 10)$

$$
\begin{aligned}
6+10 & =n \\
\therefore n & =16 \\
C(n, 8) & =C(16,8)=\frac{16!}{8!8!}=12870
\end{aligned}
$$

(6) How many ways can a hand of 5 cards to be selected from a deck of 52 Cards?
Sol

$$
C(52,5)=\frac{52!}{41!5!}
$$

(7) How many Committees of 6 or more can be chosen from 9 people.
Sol:

$$
\begin{aligned}
& C(9,6)+C(9,4)+C(9,8)+C(9,9) \\
& =\frac{9!}{6!3!}+\frac{9!}{7!2!}+\frac{9!}{8!1!}+\frac{9!}{9!0!} \\
& =130 .
\end{aligned}
$$

Enumerating combinations and permutations with Repetitions: (4)
 If repetition is allowed then the number of permutations of 'r' objects from a Set of 'n 'objects is " n "."

Example:

1. Consider the 6 digits number $2,3,4,5,6$ and 8 and repitions of digits are allowed.
(a) How many 3 digit numbers Can be formed?
(b) How many 3 digit number must Contain the digit 5 .

Sol (a) for a 3-digit number we have to fill up three places. Since repetitions of the digits is allowed, each of the places can be filled up in 6 ways.
Hence, the required 3 -digit number is $6 \times 6 \times 6=6^{3}=216$
(b) Excluding the digit 5 , the number of 3 digit numbers that Can be formed from the remaining 5 digits $2,3,4,6$ and 8 is $5 \times 5 \times 5=5^{3}=125$.
Hence the number must contain the digit 5 .
$=$ Total 3 digit number - the number of 3 digit number that $d b$ not contain 5.
$=216-125$
$=91$
2. How many four digit numbers can be formed using the digits $0,1,2,3,4,5$ if
i) repetition of digits is not allowed
ii) repetition of digits is allowed.
(i) In a four digit number 0 cannot appear in the thousand's place. So, thousand's place can be filled in 5 ways. (viz. $112,3,4,4$, , Since repetition of digits is not allowed and 0 can be used at hundred's place, so hundred's place can be filled in 5 ways Now, any one of the remaining four digits can be used to fill up ten's place. So, ten's place can be filled in 4 ways. one's place can be filled from the remaining three digits in 3 ways.
Hence, the required number of numbers $=5 \times 5 \times 4 \times 3=300$.
(ii) For a four-digit number we have to fill up four places and o cannot appear in the thous and's place. So, thousand's place can be filled in 5 ways. Since repetition of digits is allowed, So each of the remaining three places vie. hundred's, ten's and one's can be filled in 6 ways.
Hence, the required number of numbers $=5 \times 6 \times 6 \times 6=1080$
3. A computer password Consists of a letter of the alphabet followed by 4 or 5 digits. Find (a) the total number of passwords that can be -formed, and (b) the number of passwords in which no digit repeats.
Sols (a) Since there are 26 alphabets and 10 digits and the digits can be repeated, by product rule the number of 4-character passwords is $26 \times 10 \times 10 \times 10=26000$. Similarly the number of 5 -character password is $26 \times 10 \times 10 \times 10 \times 10=260000$. Hence the total $n 0$. of passwords is $26000+260000=286000$.
(b) Since the digits are not repeated, the first digit after alphabet can be taken from any one out of 10 , the second digit from remaining 9 digits and So on. Thus the no.f 4-character password is $26 \times 10 \times 9 \times 8=18720$.
and the number of 5 -character password is $26 \times 10 \times 9 \times 8 \times 7$ (5) $=131040$ by the product rule. Hence, the total number of passwords is 149760 .
Permutations of objects not all Distinct:
The number of permutations of ' n 'objects in which ' p ' objects are of one type, q objects are of Second type, or objects are of third type and rest are all distinct is

$$
\frac{n!}{p!q!r!}
$$

Example:

1. How many different words Can be formed with the letter of the word MISSISSIPPI?
So The total no. of words are $\frac{11!}{4!4!2!}=34650$.
2. The number of arrangements of letters in the word ENGINEERING is

$$
P(11 ; 3,3,2,2,1)=\frac{11!}{3!3!2!2!1!}
$$

3. In how many different Arrangements of $2 B$ books be given to 6 students so that 2 of the students will have 4 books each and the other 4 will have 5 books each?
Sol: $P(28 ; 4,4,5,5,5,5)=\frac{28!}{4!4!5!5!5!5!}$ ways.
4. Find the number of arrangements of letters in the word TALLAHASSEE.
Q) $P(11 ; 3,2,2,2,1,1)=\frac{11!}{3!2!2!2!1!1!}$
(5) How many arrangements Can be made of the letters of the word
(1) Apple
(2) COMMERCE
(3) PROGRA MMING
(4) MATHEMATICS

Sol (1) There are 5 letters in the word APPLE. In which p's are 2.
\therefore The no. of arrangements of 5 letters of which 2 are Similar of one kind is $\frac{n!}{p!}=\frac{5!}{2!}=60$.
(2) COMMERCE $=\frac{8!}{2!2!2!}$
(3) PROGRAMMING $=\frac{1!!}{2!2!2!}$
(4)

$$
\text { MATHEMATICS }=\frac{11!}{2!2!2!}
$$

(6) In how many ways a committee of 5 members Can be selected from 6 men and 5 women consisting of 3 men and 2 women?
Sol 3 men out of 6 men Can be selected in $6_{c_{3}}$ ways
2 nomen out of 5 women can be selected in $5_{\mathrm{C}_{2}}$ ways.
By product rule: $\epsilon_{3} \times \frac{5_{c_{2}}}{}=200$ ways
(7) out of 5 men $\mathcal{\xi} 2$ women a committe of 3 is to be formed, in how many ways can it be formed. If atleast one women is to be included.

Sol There are 2 possible ways:
Total men $=5 \quad \&$ women $=2$
(1) 2 men and 1 women
(2) 1 men and 2 women
\therefore The no. of ways of selecting 2 men $\& 1$ women is ${ }^{5} c_{2} \times{ }^{2} c_{1}$

$$
=20
$$

Similarly, the no. of ways of selecting 1 men $\& 2$ women is

$$
5_{c_{1}} \times{ }^{2} c_{2}=5
$$

\therefore Required no. of ways of forming the Committee is $20+5=25$.
(8) The question paper of Mathematics Contains two questions divided into two groups of 5 questions each. In how many ways Can an examine answer six questions taking at least two questions from each group.
Sol The examine Can answer questions from two groups in following ways.
(1) 2 from first group and 4 from second group.
\therefore The no of ways of selecting the questions $={ }^{5} c_{2} \times{ }^{5} c_{4}=50$
(2) 3 from first group and 3 from second group.
\therefore The no. of ways of selecting the questions $=5_{c_{3}} \times{ }^{5}{c_{3}}=100$
(3) 4 from first group and 2 from Second group.
\therefore The no. of ways of selecting the questions $={ }^{5} c_{4} \times{ }_{c_{2}}$

$$
=50 .
$$

\therefore The required no. of ways $=50+100+50=200$
(9) Out of 9 girls and 15 bays. How many different Committees Can be formed each Consisting of 6 boys and 4 girls.
Sol: There are 9 girls and 15 boys then we can form 2 committees such that each consisting of 6Boys and 4 Girts.
i) To select 6 Boys out of 15 boys \& 4 Girls out of 9 Girls. The no of ways to select $6 B$ out of $15 B$ is ${ }^{15} C_{6}=5006$ The no. of ways to select $4 G$ out of $9 G$ is $9_{C_{4}}=126$. By product rule, ${ }^{15}{c_{6}}_{6} \times 9_{c_{4}}=6,30,630$ ways to form a committee with 6 Boys \& 4 Girls.
ii) After forming a $1^{\text {st }}$ Committer, there are remaining 9 Boys \& 5 Girls. In which we can form Another $2^{\text {nd }}$ Committer also.
i.e., we have to select again $6 B$ out of $9 B$ \& $4 G$ out of $5 G$.
\therefore No. of ways of selecting 6 boys from 9 boys is $9 c_{6}$ No. of ways of selecting 4 Girls from 5 Girls is ${ }^{5}{ }_{C_{4}}{ }_{4}$.
\therefore By product rule,
No. of ways of $2^{\text {nd }}$ Committee is ${ }^{9} c_{6} \times{ }^{5} C_{4}=420$.
\therefore By Sum rule $630630+420=631050$.

Circular Permutation:
Cabelockwise and Anti clock wise orders are same:
Cabeit* The Number of Circular permutations of a distinct items is $\frac{1}{2}[(n-1)!]=P_{n}$
If anti-clockwise and clockwise order of arrangements are not distinct. e.g. arrangements of beads in a necklace, arrangements of flowers in a garland etc.,
Ex:

1. In how many, ways can 7 differently coloured beads be Strung on a necklace?
Sol Since the arrangement is circular, the direction of the arrangements need not be considered, the number of ways required $=\frac{(y-1)!}{2}=360$.
\rightarrow Clockwise and Anticlockwise orders are different:
casein The number of Circular permutations of n ' objects taken all ' n ' at a time is $(n-1)!=P_{n}$.
Ex:
2. How many ways Can 5 children arrange themselves in a ring.

So $(n-1)!=(5-1)!=4!=24$ ways. \quad [orders are different]
Problem:

1. Calculate circular permutation of 4 persons sitting around a round table considering
i) clockwise and Anticlockwise orders as different and
ii) Clockwise and Anticbckwise orders as same.

Sol
i) $n=4$,

$$
P_{n}=(n-1)!=(4-1)!=3!
$$

ii) $P_{n}=\frac{1}{2}(n-1)$!

$$
P_{4}=\frac{3!}{2}=3 .
$$

2. How many different arrangements of 8 balls are possible in a circle, given that the clockwise and anticlockwise arrangements are different?
$P_{n}=(n-1)!$
$\therefore P_{8}=(8-1)!=7!=5040$. ways
How many different, arrangements of 5 Students are possible in a circle, given that the clockeoise and anticlockwise arrangements are the Same?

$$
\begin{aligned}
& P_{n}=\frac{1}{2}(n-1)! \\
& \therefore P_{5}=\frac{1}{2}(5-1)!=\frac{24}{2}=12
\end{aligned}
$$

Combinations with Repetitions Formula:
To find out the number of combinations when repetition is allowed.

$$
C(n, r)=\frac{(n+r-1)!}{r!(n-1)!}
$$

Here, $n=$ total no. of objects in a set
$r=$ no. of objects that can be selected from a Set.
Example:

1. There are five colored balls in a pool. All balls are of different

Sol
colors. In how many ways Can we choose four pool baths?
The order in which the balls can be selected doesnot matter in this Case. The selection of balls can be repeated.
Total no of balls in the pool $n=5$
The no. of balls to be selected $r=4$.
we have $C(n, r)=\frac{(n+r-1)!}{r!(n-1)!}$

$$
\therefore C(5,4)=\frac{(5+4-1)!}{4!(5-1)!}=\frac{8!}{4!4!}=70 \cdot \text { different ways. }
$$

(2) Maria has ten different Candies. How many ways Can Six, Candies to be selected?
SOl.

$$
C(10,6)=\frac{(10+6-1)!}{6!9!}=\frac{15!}{6!9!}=5005 \text { ways }
$$

(3) Ali has Seven different chocolates. How many ways can five chocolates be selected?
Sol $C(7,5)=\frac{(7+5-1)!}{5!6!}=\frac{11!}{5!6!}=462$ ways.

Combinations without repetitions:
To find out the number of Combinations when repetitions are not allowed.

$$
C(n, r)=\frac{n!}{(n-r)!r!}
$$

Example:

1. The number of possible combinations of 3 objects from 5.

$$
C(5,3)=\frac{5!}{2!3!}=1
$$

2. A man will go on a trip for 3 days, So he will take with him 3 shirts, if he has y shirts, how many Combination of Shirts Can he take.
Sol

$$
\begin{aligned}
& n_{c_{r}}=\frac{n!}{(n-r)!r!} \\
& 7_{C_{3}}=\frac{7!}{(7-3)!3!}=35 \text { ways }
\end{aligned}
$$

3. In a bucket there are 10 balls, every ball is numbered from I to 10 , if somebody pulls out 3 of this balls randomly, how many Combination of could he take.
sid

$$
\begin{aligned}
n_{c_{r}} & =\frac{n!}{(n-r)!r!} \\
{ }^{10} c_{3} & =\frac{10!}{(10-3)!3!} \\
\therefore{ }^{10} c_{3} & =120 .
\end{aligned}
$$

* The number of unordered choices of 'ri from ' n ', with repetitions allowed is

$$
C(n+r-1, r)
$$

* The number of r-combinations of ' n ' objects with unlimited repetitions. is
$=$ The no. of ways of distributing ' r ' similar balls into ' n ' numbered boxes.

$$
c(n+r-1, n-1)=\frac{(n+r-1)!}{(n-1)!r!}
$$

* The number of solutions of $x_{1}+x_{2} \ldots+x_{n}=r$ in non-negative integers x_{i} is $C(n+r-1, n)$
* The number of integral solutions of $x_{1}+x_{2}+\cdots+x_{n}=r$, where each $x_{i}>0$ is $C(0-1 ; n-1)$.
* Suppose that $r_{1, r}, r_{2}, \ldots, r_{n}$ are integers.

Then the number of integral solutions of $x_{1}+x_{2}+\cdots+x_{n}=r$ where $x_{1} \geq r_{1}, x_{2} \geqslant r_{2}, \ldots, x_{n} \geqslant r_{n}$. is $c(n, n-r)$ Example:

1. How many solution does the equation $x_{1}+x_{2}+x_{3}=17$ have, where x_{1}, x_{2}, x_{3} are non-negative integers?
Sol Here $n=11, r=3$.
Then $C(n+r-1, n)=C(17+3-1,17)=C(19,17)=C(19,2)$

$$
=1.71
$$

Each solution of the given Equation is equivalent to distribution of 17 identical balls. in 3 numbered boxes with repetitions, where x_{i} represents the number of balls in the i th box.
(2) How many solutions are there of $x_{1}+x_{2}+x_{3}=1 y$ Subject to the Constraints $x_{1} \geqslant 1, x_{2} \geqslant 2 \& x_{3} \geqslant 3$.
So First we distribute 1 balt in box, 2 balls in box 2 and 3 balls in box 3 .
The remaining "balls can be distributed in 3 boxes. in $C(11+3-1,11)=C(13,11)=C(13,2)=78$ ways which is the required no. of solutions.
(or)
put $x=1+u, y=z+v \& z=3+w$.
The given Equation becomes $u+v+w=11$ and we Seek in: non negative integers u, v, w.
The no. of solutions is therefore

$$
C(11+3-1,11)=C(13,11)=C(13,2)=78
$$

(3) In how many ways can a prize winner chose three CDS in from the top ten if repeats are allowed?
Sol This is an unordered selection with repetition.
Here $n=10$ and $r=3$. Hence the no of selection is

$$
c(10+3-1,3)=c(12,3)=220
$$

Recurrence relation (R.R)
generating functions :-

* The generating function of a sequence. $a_{0}, a_{1}, a_{2}, a_{3} \ldots . a_{n}$ of a real numbers. is written as the series, the given below.

$$
\begin{aligned}
& G(z)=a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+\cdots+a_{n} z^{n} \\
& G(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
\end{aligned}
$$

Find the generating function for the sequence $1,3,3^{2}, 3^{3} \ldots \ldots(\operatorname{lor}$) find the generating function for the sequence. $\left\{a_{n}\right\}$ with $a_{n}=3^{n}$.
Sol:- given series $1,3,3^{2}, 3^{3} \ldots$...

$$
a_{n}=3 n
$$

The generating function of given series is $G(z)=\sum_{n=0}^{\infty} 3^{n} z^{n}$.
Find the generating function for the sequence $1,2,3,4$
: Sol:- given series, $1,2,3,4$

$$
a_{n}=n+1
$$

The generating function for the given series is

$$
G(z)=\sum_{n=0}^{\infty}(n+1) z^{n} .
$$

find the generating function of the following sequences
(i) $0,1,-2,3,-4$
(ii) $0,2,6,12,20,30,42$

Sol:- (i) given series, $0,1,-2,3,-4, \ldots$

$$
a_{n}=(-1)^{n+1} \cdot n
$$

The generating function for the given series is

$$
G(z)=\sum_{n=0}^{\infty}(-1)^{n+1} \cdot n z^{n}
$$

$$
\begin{aligned}
& (-1)^{n+1} \cdot n=0 n=0 \\
& (-1)^{1+1} \cdot(-1)^{n+1} \cdot n=1 n=-1 \\
& (-1)^{n+1} \cdot 2(-1)^{n+1}, n=-2
\end{aligned}
$$

(ii) given series, $0,2,6,12,20,30,42,(-1)^{3+1} 3 \Rightarrow n=3$

$$
a_{n}=\frac{2 n(n+1)}{2}
$$

$$
(-1)^{4+1} \cdot 4 \Rightarrow D=-4
$$

the generating function for the given series is

$$
\begin{aligned}
& G(z)=\sum_{n=0}^{\alpha_{0}} \frac{2 n(n+1)}{2} z \\
& n=0 \Rightarrow \frac{n=3}{}=\frac{2 / \cdot 3 \cdot 4}{x}=12 \\
& n=1 \Rightarrow \frac{2 \cdot 2}{x}=2 \\
& n=2 \Rightarrow \frac{2(2)(3)}{x}=6 \quad n=5 \Rightarrow \frac{2 \cdot 5 \cdot 5}{x}=20 \\
&
\end{aligned}
$$

sequen ce $\left(a_{n}\right)$
gereqating furction

$$
G(z)
$$

(1)

$$
a^{n}
$$

$$
\frac{1}{1-a^{2}}
$$

(2) kan^{n}

$$
\frac{k}{1-a z}
$$

(3) $b n a^{n}$

$$
\frac{b a z}{(1-a z)^{2}}
$$

(4) 1

$$
\frac{1}{1-2}
$$

(5) $n+1$

$$
\frac{1}{(1-2)^{2}}
$$

(6) $\frac{1}{n!} e^{z}$
(7) $\frac{(-1)^{n+1}}{n}$

$$
\log (1+z)=z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\frac{z^{4}}{4}+4
$$

(8) $\quad n_{c_{k}}$

$$
(1+x)^{?}
$$

(9) $\quad n c_{k} a^{n}$

$$
(1+a x)^{n}
$$

(10) $n-k-1 c_{k}^{=n+k-1} c_{n-1} \frac{1}{(1-x)^{n}}$
(11) $(-)^{k} n+k-1 c_{k}=(-1)^{k}(n+k-1) c_{n-1} \frac{1}{(1-x)^{n}}$
problems:-
using generating function to solve the recurence relation using generating function $a_{n}=3 a_{n-1}+2, n \geq 1$ with $a_{0}=1$

Sol: given $a_{n}=3 a_{n-1}+2 \quad n \geq 1$ with $a_{0}=1$
Taking bothsides $\sum_{n=0}^{\infty} z^{n}$

$$
\begin{align*}
& \sum_{n=0}^{\infty} a_{n} z^{n}=3 \sum_{n=0}^{\infty} a_{n-1} z^{n}+2 \sum_{n=0}^{\infty} 1 z^{n} \\
& \begin{array}{ll}
\sum_{n=0} a_{n} z^{n}=3 \sum_{n=0}^{n-1} a_{n=0}^{\infty} \\
\sum_{n=1}^{\infty} a_{n} z^{n}=32 \sum_{n=1}^{\infty} a_{n-1}^{n-1}+2 \sum_{n=1}^{n} & a^{n}
\end{array} \\
& \left(G(z)-a_{0}\right)=3 z G(z)+2 \frac{1}{(1-z)} \\
& G(z)-1-3 z G(z)=\frac{2 z}{1-z} \\
& G(z)[1-3 z]=\frac{2 z}{1-z}+1 \\
& G(z)=\frac{2 z+1-z}{(1-z)(1-32)} \\
& G(z)=\frac{z+1}{(1-2)(1-3 z)} \\
& G(z)=\frac{z+1}{(1-z)(1-3 z)}=\frac{A}{(1-z)}+\frac{B}{(1-3 z)} \longrightarrow(1) \\
& \frac{z+1}{(1-z)(1-32)}=\frac{A(1-3 z)+B(1-z)}{(1-2)(1-3 z)} \tag{2}\\
& z+1=A(1-3 z)+B(1-z) \\
& \text { pot } z=1 \text { in } \in q(2) \text { we get }
\end{align*}
$$

www.Jntufastupdates.com

$$
\begin{gathered}
2=A(-2)+0 \\
A=-1
\end{gathered}
$$

put $z=\frac{1}{3}$ in eq (2) we get

$$
\begin{aligned}
y_{3}+1 & =0+B\left(1-y_{3}\right) \\
y^{2} / y & =B \frac{x}{3} \\
B & =2
\end{aligned}
$$

$$
\begin{aligned}
& G(z)=\frac{z+1}{(1-2)(1-32)}=\frac{-1}{1-2}+\frac{2}{1-32} \\
& G(z)=\frac{-1}{1-2}+\frac{2}{1-32} \\
& G(z)=-1\left(\frac{1}{1-2}\right)+2\left(\frac{1}{1-32}\right) \\
& a_{n}=-1(1)+2\left(3^{n}\right) \\
& a_{n}=-1+2\left(3^{n}\right)
\end{aligned}
$$

(2) Using the method of generating function to solve recuraniee relation of

$$
a_{n}-2 a_{n-1}-3 a_{n-2}=0, n \geq 2 \text {; with } a_{0}=9, a_{1}=1
$$

Sol:- given,

$$
\begin{gathered}
a_{n}-2 a_{n-1}-3 a_{n-2}=0 n \geq 2, \\
\sum_{n=2}^{\infty} a_{n} z^{n}-2 \sum_{n=2}^{\infty} a_{n}-1 z^{n}-3 \sum_{n-2}^{\infty} a_{n-2} z^{n}=0
\end{gathered}
$$

$$
\begin{aligned}
& \left(G(z)-a_{0}-a_{1} z\right)-2 z \sum_{n=2} a_{n-1} z^{n-1}-3 z^{2} z=2 a_{n-2} z^{n-1}=0 \\
& \left(G(z)-a_{0}-a_{1} z\right)-2 z\left(G(z)-a_{0}\right)-3 z^{2} G(z)=0 \\
& G(z)-3-z)-2 z(G(z)-3)-3 z^{2} G(z)=0 \\
& G(z)\left[-3 z^{2}-2 z+1\right]-3-z+6 z-6 \\
& G(z)\left[-3 z^{2}-2 z+1\right]-3+5 z=0 \\
& G(z)=\frac{3-5 z}{\left(-3 z^{2}-2 z+1\right)} \\
& G(z)=\frac{3-5 z}{(1+2 z)(1-3 z)} \\
& G(z)=\frac{3-5 z}{(1+2)(1-3 z)}=\frac{A}{(1+z)}+\frac{B}{(1-3 z)} \rightarrow(1) \\
& \frac{3-5 z}{(1+z)(1-3 z)}=A(1-3 z)+B(1+z) \\
& (1+z)(1-3 z) \\
& 3-5 z=A(1-3 z)+B(1+z) \longrightarrow(2)
\end{aligned}
$$

put $z=-1$ in eq (2), we get

$$
\begin{aligned}
& 3-5(-1)=A(1-3(-1))+B(1-1) \\
& 3+5=A(1+3)+B(0) \\
& 8^{2}=A(x) \\
& A=2
\end{aligned}
$$

Put $z=\frac{1}{3}$ in eq (2), we get

$$
3-5(1 / 3)=A(1-3(1 / 3))+B(1+1 / 3)
$$

www.Jntufastupdates.com

$$
\begin{aligned}
3-5 / 3 & =A(1-3 / 5)+B(\\
3-5 / 3 & =A(1-1)+B(4 / 3) \\
\frac{9-5}{3} & =B(4 / 3) \\
\frac{4}{3} & =B(4 / 3) \\
B & =1 \\
G(2) & =\frac{2}{1+2}+\frac{1}{1-32} \\
G(2) & =2\left(\frac{1}{1-(-2)}+\frac{1}{1-32}\right. \\
a_{n} & =2(-1)+\left(3^{n}\right) \\
a_{n} & =-2+3^{n}
\end{aligned}
$$

Fecurence relation :-
An Equation that Express an in terms of one of more of the previous terms of the sequence $a_{0}, a_{1}, a_{2} \ldots a_{n}$ is called a recurpence relation for the sequence $\left\{a_{n}\right\}$.

1) Find the first five terms of the sequence define by each of the following recurence relation and intial conditions
(i) $a_{n}=a_{n}^{2}-1, a_{n}=2$
(ii) $a_{n}=n a_{n-1}+n^{2} a_{n-2} \quad a_{0}=1, a_{1}=1$
(iii) $a_{n}=a_{n-1}+a_{n-3} \quad a_{0}=1, a_{1}=2, a_{2}=0$
(i) given $R \cdot R$ is $a_{n}=a_{n=1}^{2}$
put $A=2$

$$
\begin{gathered}
a_{2}=a_{2-1}^{2} \\
a_{2}=a_{1}^{2} \\
a_{2}=4 \\
a_{3}=a_{2}^{2}=16 \\
a_{4}=a_{3}^{2}=(16)^{2}=256 \\
a_{5}=a_{4}^{2}=(256)^{2}=(65536)^{2} \\
a_{6}=a_{5}^{2}=(65536)^{2}=4294967296 .
\end{gathered}
$$

(ii) $a_{n}=n a_{n-1}+n^{2} a_{n-2}, a_{0}=1, a_{1}=1$
given $R \cdot R$ is $a_{n}=n a_{n-1}+n^{2} a_{n-2}$ pot $n=2$

$$
\begin{aligned}
& a_{2}=2 a_{2-1}+2^{2} a_{2-2} \\
& a_{2}=2 a_{1}+4 a_{0} \\
& a_{2}=2(1)+4(1) \\
& a_{2}=2+4 \\
& a_{2}=6 \\
& \Rightarrow a_{3}=3 a_{3-1}+3^{2} a_{3-2} \\
&=3 a_{2}+9 a_{1} \\
&=3(6)+9(1) \\
&=3
\end{aligned}
$$

www.Jntufastupdates.com

$$
\begin{aligned}
a_{4} & =4 a_{4-1}+(4)^{2} a_{4}-2 \\
& =4 a_{3}+16 a_{2} \\
& =4(27)+16(6) \\
& =108+96 \\
& =204 \\
a_{5} & =5 a_{5-1}+(5)^{2} a_{5-2} \\
& =5 a_{4}+25 a_{3} \\
& =5(204)+25(27) \\
& =1020+675 \quad a_{5}=1695 .
\end{aligned}
$$

(iii) given RRis, $a_{n}=a_{n-1}+a_{n-3}, a_{0}=1, a_{1}=2, a_{2}=0$
put $n=3$

$$
\begin{aligned}
\rightarrow a_{3} & =a_{3-1}+a_{3-3} \\
a_{3} & =a_{2}+a_{0} \\
a_{3} & =0+1 \\
a_{3} & =1 \\
\rightarrow a_{4} & =a_{4-1}+a_{4-3} \\
a_{4} & =a_{3}+a_{1} \\
a_{4} & =1+2 \\
a_{4} & =3 \\
a_{5} & =a_{5-1}+a_{5-3} \\
& =a_{4}+a_{2} \Rightarrow 3+0 \Rightarrow 3
\end{aligned}
$$

$$
\begin{aligned}
\rightarrow a_{6} & =a_{6-1}+a_{6-3} \\
& =a_{5}+a_{3} \\
& =3+1 \\
a_{7} & =4 \\
\rightarrow a_{7} & =a_{7-1}+a_{7-3} \\
& =a_{6}+a_{4} \\
& =4+3 \\
a_{7} & =7
\end{aligned}
$$

By using an iterative approach find the solutions to each of these recurrence relation with the given initial conditions ${ }_{3}^{3}$
(i) $a_{n}=a_{n-1}+2, a_{0}=3$
(ii) $a_{n}=a_{n-1}+n, a_{0}=$ (1)
i(iii) $a_{n}=a_{n-1}+2 n+3, a_{0}=4$
(iv) $a_{n}=3 a_{n-1}+1, a_{0}=1$
(i) given $R \cdot R$ is $a_{n}=a_{n-1}+2$
pot $n=1$

$$
\begin{aligned}
& a_{1}=a_{0}+2 \\
& a_{1}=3+2 \\
& a_{1}=5
\end{aligned}
$$

pot $n=2$

$$
\begin{aligned}
a_{2} & =a_{1}+2 \\
a_{2} & =5+2 \\
& =7
\end{aligned}
$$

put $n=3$

$$
\begin{array}{ll}
a_{3}=a_{2}+2 & 3+0 \times 2 \\
a_{3}=9 & 3+1 \times 2 \\
\vdots & 3+2 \times 2 \\
\vdots & 3+3 \times 2 \\
a_{n}=3+2 n & \vdots+n \times 2 \\
& 3+n .2
\end{array}
$$

\longrightarrow it wrillatisify from, 0,1,2
(ii) given, $a_{n}=a_{n-1}+n$
given, $R: R$ is $a_{n}=a_{n-1}+n$
put $n=1$

$$
\begin{aligned}
a_{1} & =a_{1-1}+1 \\
& =a_{0}+1 \\
& =1+1 \\
& =2
\end{aligned}
$$

put $n=2$ 1

$$
\begin{aligned}
a_{2} & =a_{2-1}+2 \\
& =a_{1}+2 \\
& =2+2 \\
& =4
\end{aligned}
$$

put $n=3$

$$
\begin{aligned}
a_{3} & =a_{3-1}+3 \\
a_{3} & =a_{2}+3 \\
& =4+3 \\
a_{3} & =7
\end{aligned}
$$

pot $n=4$

$$
\begin{aligned}
a_{4} & =a_{4-1}+4 \\
& =a_{3}+4 \\
& =7+4 \\
& =11 \\
& \\
a_{n} & \left.=1+\frac{(n+1}{2}\right) \cdot n
\end{aligned}
$$

$$
1+\frac{n+1}{2} \cdot n
$$

\Rightarrow put $n=1 \Rightarrow 1+\frac{4}{2}, 1 \Rightarrow 2$
\Rightarrow put $n=2 \Rightarrow 1+\frac{2+1}{x}, x \Rightarrow 4$
\Rightarrow Put $n=3 \Rightarrow 1+\frac{3+1}{2} \cdot 3-77$
\Rightarrow put $n=y \Rightarrow 1+\frac{4+1}{x} \cdot x^{2} \Rightarrow 11$
(iii)
given $R \cdot R$ is $a_{n}=a_{n-1}+2 n+3, a_{0}=4$
put $n=1$

$$
\begin{aligned}
a_{1} & =a_{1-1}+2(1)+3 \\
& =a_{0}+2+3 \\
& =a_{0}+5 \\
& =4+5 \\
& =9
\end{aligned}
$$

put $n=2$

$$
\begin{aligned}
a_{2} & =a_{2-1}+2(2)+3 \\
& =a_{1}+4+3 \\
& =a_{1}+7 \\
& =9+7 \\
a_{2} & =16
\end{aligned}
$$

put $n=3$

$$
\begin{aligned}
& a_{3}=a_{3-1}+2(3)+3 \\
&=a_{2}+6+3 \\
&=a_{2}+9=16+9 \\
&=25
\end{aligned}
$$

www.Jntufastupdates.com
put $n=4$

$$
\begin{array}{rlrl}
a_{4} & =a_{4}-1+2(4)+3 & & \Rightarrow a_{0}=n^{2}+0 \times 4+4 \Rightarrow n=1 \\
& =a_{3}+8+3 & & \Rightarrow a_{1}=n^{2}+1 \times 4+4 \Rightarrow n_{n} \\
& =a_{3}+11 & & \Rightarrow a_{2}=n^{2}+2 \times 4+4 \Rightarrow n_{1} \\
& =25+11 & & \Rightarrow a_{3}=n^{2}+3 \times 4+4 \Rightarrow n \\
& =36
\end{array}
$$

$$
\begin{aligned}
& a_{n}=n^{2}+n 4+4 \\
& a_{n}=n^{2}+4 n+4
\end{aligned}
$$

(iv) given R.R is $a_{n}=3 a_{n-1}+1, a_{0}=1$
put $n=1$

$$
\begin{aligned}
a_{1} & =3 a_{1-1}+1 \\
& =3 a_{0}+1 \\
& =3(1)+1 \\
& =3+1 \\
a_{1} & =4
\end{aligned}
$$

put $n=2$

$$
\begin{aligned}
a_{2} & =3 a_{2-1}+1 \\
& =3 a_{1}+1 \\
& =3(4)+1 \\
& =13
\end{aligned}
$$

put $n=3$

$$
a_{3}=3 a_{3-1}+1
$$

$$
\begin{aligned}
a_{3} & =3 a_{2}+1 \\
& =3(13)+1 \\
& =39+1 \\
& =40
\end{aligned}
$$

$$
\text { pot } n=0 \Rightarrow a_{n}=\frac{3^{n+1}-1}{2}
$$

pot $n=4$

$$
\begin{aligned}
a_{4} & =3 a_{3}+1 \\
& =3(40)+1 \\
& =121 \\
a_{n} & =\frac{3^{n+1}-1}{2}
\end{aligned}
$$

pot $n=3 \Rightarrow a_{n}=\frac{3^{3+1}-1}{2}$

$$
\begin{aligned}
& a_{n}=\frac{3^{4}-1}{2} \\
& a_{n}=\frac{80}{2} \\
& a_{n}=40
\end{aligned}
$$

put $n=4, \Rightarrow a_{n}=\frac{9^{4+1}-1}{2}$

$$
\begin{aligned}
& a_{n}=\frac{3^{5}-1}{2} \\
& a_{n}=121
\end{aligned}
$$

charcterstic roots : consider the. rearence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$, Where $c_{1}, c_{2}, c_{3} \ldots . c_{k}$ are real numbers,
\longrightarrow The chapterstic Equation of Recuspnce -relation,

$$
\gamma^{k}-c_{1} \gamma^{k-1}-c_{2} \gamma^{k-2} \ldots a_{c} \neq 0
$$

\rightarrow The solutions of choopterstic equations are three types
(1) if roots are real \&s different then the solution is,

$$
a_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}
$$

(2) if roots are real \& equal then solution is,

$$
a_{n}=\left(c_{1}+c_{2} n\right) r^{n}
$$

(3) if roots are complex roots, then Solution is,

$$
a_{n}=y^{n}\left[c_{1} \cos n \theta+c_{2} \sin n \theta\right]
$$

problems:-
1: Solve the Recurence relation, $a_{n}=5 a_{n-1}+$ $6 a_{n-2}$ for $n \geq 2, a_{0}=1, a_{1}=0$.
Sol:- given R.Ris,

$$
a_{n}=5 a_{n-1}+6 a_{n-2}
$$

By $\operatorname{sim} f l i y i n g$,

$$
a_{n}-5 a_{n-1}+6 a_{n-2}=0
$$

charderstic $\&$ of $R \cdot R$ is $\eta^{2}-5 \eta+6=0$

$$
\text { roots, } 7=2,3
$$

\therefore the given pots are real and different, then the solution is

$$
\begin{aligned}
& a_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n} \\
& a_{n}=c_{1}(2)^{n}+c_{2}(3)^{n}
\end{aligned}
$$

Now, pot $n=0$

$$
\begin{aligned}
a_{0} & =c_{1} 2^{0}+c_{2} 3^{D} \\
1 & =c_{1}+c_{2} \longrightarrow(1)
\end{aligned}
$$

Now, put $n=1$

$$
\begin{aligned}
a_{1} & =c_{12}^{\prime}+c_{2} 3^{\prime} \\
0 & =2 c_{1}+3 c_{2} \longrightarrow(2)
\end{aligned}
$$

Now (1) \& (2) becomes,

$$
\begin{gathered}
c_{1}+c_{2}=1 \times(2) \\
2 c_{1}+3 c_{2}=0 \times 1 \\
2 c_{1}+2 c_{2}=2 \\
2 c_{1}+3 c_{2}=0 \\
-c_{2}=2 \\
c_{2}=-2
\end{gathered}
$$

$$
\begin{array}{r}
f_{10 m},-2+c_{1}=1 \\
c_{1}=1+2 \\
\quad c_{1}=3 \\
\therefore \quad a_{n}=32^{n}-2.3^{n}
\end{array}
$$

2) Solve the recurperce relation of

$$
\begin{aligned}
& a_{n}-6_{a_{n-1}}+9_{a_{n-2}}=0 n \geqslant 2 . a_{0}=5, a_{1}=12, \\
& n>i=2
\end{aligned}
$$

Sol:- Given $a_{0}=5$

$$
a_{1}=12
$$

$R \cdot R$ is $a_{n}-6 a_{n-1}+9 a_{n-2}=0$
choopterstic equation

$$
\begin{aligned}
& r^{2}-6 q+9=0 \\
& r^{2}-3 y-3 y+9=0 \\
& r(r-3)-3(r-3)=0 \\
& (\gamma-3)(\eta-3)=0 \\
& \text { roots }=3,3
\end{aligned}
$$

the given roots are real and equal the solution will be

$$
a_{n}=\left(c_{1}+c_{2} n\right) 3^{n}
$$

put $n=0$,

$$
\begin{aligned}
& a_{0}=\left(c_{1}+c_{2}(0)\right) 3^{0} \\
& 5=c_{1} \longrightarrow(1)
\end{aligned}
$$

put $n=1$,

$$
\begin{gathered}
a_{1}=\left(c_{1}+c_{2}(1)\right) 3^{\prime} \\
12=\left(c_{1}+c_{2}\right) 3 \rightarrow(2) \\
a_{1} \neq 15 \\
5=c_{1} \\
12=\left(c_{1}+c_{2}\right) 3 \\
15+3 c_{2}=12 \\
3 c_{2}=12-15 \\
3 c_{2}=-3 \\
c_{2}=-1
\end{gathered}
$$

3) Solve the recurence relation:

$$
\begin{aligned}
& a_{n}=8 a_{n-1}-16 a_{n-2} \text { for } n \geq 2, a_{0}=16, \\
& a_{1}=80 .
\end{aligned}
$$

sol:-
given $R \cdot R$ is

$$
a_{n}=8 a_{n-1}-16 a_{n-2}
$$

By simplifying,

$$
a_{n}-8 a_{n-1}+16 a_{n-2}=0
$$

charcterstic eq of R.R is $r^{2}-801+16=0$

$$
\begin{aligned}
& r^{2}-87+16=0 \\
& r^{2}-4 r-47+16=0 \\
& 7(7-4)-4(\eta-4)=0 \\
& (\eta-4)(\eta-4)=0 \\
& \pi=4,4
\end{aligned}
$$

The given roots are real and equal the solution will be,

$$
a_{n}=\left(c_{1}+c_{2} n\right) 4^{n}
$$

put $n=0$

$$
\begin{aligned}
a_{0} & =\left(c_{1}+c_{2}(0)\right) 4^{\circ} \\
16 & =c_{1}
\end{aligned}
$$

put $n=1$.

$$
\begin{gathered}
a_{1}=\left(c_{1}+c_{2}(1)\right) 4^{\prime} \\
80=\left(16+c_{2}\right) 4 \\
64+4 c_{2}=80 \\
4 c_{2}=80-64 \\
c_{2}=4
\end{gathered}
$$

$$
a_{n}=(16+4) 4^{n}
$$

(4) Solve the recurpence relation

$$
a_{n}=2 a_{n-1}+a_{n-2}-2 a_{n-3} \text { for } n=3,4,5 \ldots
$$

with $a_{0}=3, a_{1}=6, a_{2}=0$
Sol:- given recurence relation is

$$
a_{n}=2 a_{n-1}+a_{n-2}-2 a_{n-3}
$$

By simplifying,

$$
a_{n}-2 a_{n-1}+a_{n-2}+2 a_{n-3}=0
$$

charadersticeq of recurence relation is

$$
\begin{aligned}
& \qquad \gamma^{3}-2 \eta^{2}-7+2=0 \\
& \text { roots }=1,2,-1
\end{aligned}
$$

The jots ape real is different The solution will be

$$
\begin{aligned}
& a_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}+c_{3} r_{3}^{n} \\
& a_{n}=c_{1}(1)^{n}+c_{2}(2)^{n}+c_{3}(-1)^{n} \quad r=2, \cdot 1 \\
& a_{n}=c_{1}(1)^{n}+c_{2}(-1)^{n}+c_{3}(2)^{n}
\end{aligned}
$$

pot $n=0$

$$
\begin{aligned}
& a_{0}=c_{1}(1)^{0}+c_{2}(-1)^{0}+c_{3}(2)^{0} \\
& a_{0}=c_{1} 1^{0}+c_{2}(-1)^{0}+c_{3}(2)^{0} \\
& 3=c_{1}+c_{2}+c_{3} \longrightarrow(1)
\end{aligned}
$$

put $n=1$

$$
\begin{aligned}
& n=1 \\
& a_{1}=c_{1}(1)^{\prime}+c_{2}(-1)^{1}+c_{3}(2)^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& x_{x}= \\
& 6=c_{1}-c_{2}+2 c_{3} \longrightarrow(2)
\end{aligned}
$$

pot $n=2$

$$
\begin{align*}
& a_{2}=c_{1}(1)^{2}+c_{2}(-1)^{2}+c_{2}(2)^{2} \rightarrow 2 \\
& 0=c_{1}+c_{2}+4 c_{3} \rightarrow 3 \tag{3}
\end{align*}
$$

solve (1) \& (2)

$$
\begin{array}{r}
c_{1}+c_{1}+c_{3}=3 \\
c_{1}-c_{2}+2 c_{3}=6 \\
2 c_{1}+3 c_{3}=9
\end{array}+\oplus
$$

solve (2) \&s (3)

$$
\begin{align*}
& c_{1}-c_{2}+2 c_{3}=6 \\
& c_{1}+c_{2}+4 c_{3}=0 \tag{5}\\
& \hline 2 c_{1}+6 c_{3}=6
\end{align*}
$$

solve (4)

$$
\begin{aligned}
2 c_{1}+3 c_{3} & =9 \\
2 c_{1}+6 c_{3} & =6 \\
\hline-3 c_{3} & =3 \\
c_{3} & =-1
\end{aligned}
$$

sob c_{3} value in (5)

$$
\begin{gathered}
2 c_{1}+6(-1)=6 \\
2 c_{1}=12 \\
c_{1}=6
\end{gathered}
$$

Sob c_{1} \& c_{3} in(2)

$$
\begin{array}{ll}
6-c_{2}-2=6 \\
-c_{2}=2 \\
c_{2}=-2
\end{array} \quad c_{3}=-1
$$

solutions of inhomogenous recurence relation
\rightarrow A linear inhomogenous of non hornogenous recureence reaction with constant coefficents of degree k is a recurence relation of the form $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots$ $+c_{k} a_{n-k}+G(n)$, where c_{1}, c_{2} up to $c k$ are ne q real numbers and equal $G(n)$ is a function not identically zero depending only on (n)
Poolicular solution for $G(n)$:-
$G(n)$

$$
P \cdot I
$$

(1) constant c constant d
(2) linear function $\left(c_{0}+c_{1} n\right)$

$$
d_{0}+d_{1} k
$$

(3) min $^{\text {th }}$ degree polifnornial $c_{0}+c_{1} n+c_{2} n^{2}+\cdots+c_{m n^{m}}$

FTh degree polynomial
(4) $r^{n} \quad r \in R$ $d_{0}+d_{1} k+d_{2} k^{2}+\cdots+d_{2 m} k^{m}$ $d p^{n}$

1) Solve the recurence relation

$$
a_{n}=3 a_{n-1}+2^{n}, a_{0}=1, n \geq 1
$$

Sol :-

$$
\text { Given } a_{n}=3 a_{\frac{n-1}{9 n}}+2 n \quad n-12^{-n}
$$

it is a non homozenous linear
Equation,

$$
a_{n}-3 a_{n-1}=2^{n}
$$

general solution

$$
a_{n}-3 a_{n-1}=0
$$

The chaoterstic equation of given εq,

$$
r-3=0
$$

roots

$$
r=3
$$

The roots are real solution will be,

$$
a_{n}=c_{1}(3)^{n}
$$

Pot $n=0$

$$
\begin{aligned}
& a_{0}=c_{1}(3)^{0} \\
& q=\sigma_{1} \\
& c_{1}=1 \\
& a_{n}=(3)
\end{aligned}
$$

Now, we can. PI,

$$
\begin{gathered}
p I=2 n \\
d 2^{n}-3 d 2^{n-1}=2^{n} \\
2^{n}\left(d-\frac{3 d}{2}\right)=2^{\infty} \\
2 d-3 d=2 \\
-d=2 \\
d=-2
\end{gathered}
$$

this is of the form dr

$$
d r^{n}=(-2) 2^{n} \Rightarrow P I
$$

Now, $a_{n}=G+P I$

$$
a_{n}=(3)^{n}+(-2) 2^{n}
$$

$4^{a^{a^{4}} y}$ VI GRAPH THEORY
Graph:- A graph G has pair (V, E) where Y is a non empty finite set cutose elements are called vertices (nodes or points). ils a another set whose elements are called edges (lines). The graph G with vertices V and edges E is written as $G=(V, E)$ (or) $G(V, E)$.

Here $v=\left\{v_{1}, v_{2}\right\}, E=\left\{e_{1}\right\}$
Note:-1. If an edge $e \in E$ is associated with an ordered pair (u, v) where $(u, v) \in V$.
2. e(edge) is connected to u and v are called end points dee. 3. Any two vertices connected by an edge in a graph is called adjacent vertices.
4. Any two edges e_{1} and e_{2} are incident with a common point coss vertex then they are called adjacent edges.

Here e has two adjacent vertices u and v. In the above graph v_{1} has two adjacent edges e_{1} and e_{2} and v_{1} denoted as incident vertex.
$V=\{a, b, c, d\}$ and $E=\{(a, b)(a, c)(a, d)\}$ draw the graph G. (at:
2. construct the vertices and edges from given yup Sol:- The given graph $G=(v, E)$.

$$
v=\{a, b, c, d\} \in=\{(a, b)(b, c)(c, d)\}
$$

loop:-Anedge of a graph G that Join a node to Itself is ${ }^{c}$ called a loop (oas) self loop defined as $e_{1}=\left(v_{1}, v_{1}\right)$

$36-8-16$

Multigraph: If more than one line (edge) joining between two Vertices are allowed in a graph then the graph is called multigraph. Ex:-

Simple graph:- A graph has neither loops nor multiple edges is called a simple graph.

Psuedo graph:- A graph in which loops and multiple edges are allowed is called psuedo graph.

Directed and undirected graph:-
Undirected graph:-An undirected graph G has a set of vertices V and a set of edges E such that each eagle $e \in E$ is associated
with on unordered pair of vertices. $\left(e \in\left(v_{i}, v_{j}\right)\right.$ and $\left(v_{j}, y_{i}\right)$):s?

Ex:-

directed graph:-A directed graph G has a set of vertices ' V. and a set of edges E such that each edge $e \in E$ is associated with an ordered pair of vertices; means directions oneach edge($e \dot{\in}(v i, v\rangle)$

* Degree of a Vertex: The degree of a vertex v of an undirected graph G is the no of edges incl dent with it-The degree of 1 that vertex denoted as $\operatorname{deg}(V)(o r)$ d (v).

$$
\operatorname{deg}\left(v_{1}\right)=2 \quad \operatorname{deg}\left(v_{3}\right)=3
$$

$$
\operatorname{deg}\left(V_{2}\right)=3 \quad \operatorname{deg}\left(V_{4}\right)=2, \quad 10.1
$$

1. construct degree of vertices form given diagram.

$$
\begin{aligned}
\operatorname{sol}-\operatorname{deg}\left(v_{1}\right) & =2, \operatorname{deg}\left(v_{2}\right)
\end{aligned}=2 . \quad \begin{aligned}
\operatorname{deg}\left(v_{3}\right) & =3, \operatorname{deg}\left(v_{4}\right)
\end{aligned}=2 .
$$

Note riT. The vertex degree 0 is called mIsdated vertex. 2. The vertex degree 1 ' is called pendant vertex.

Nalı6
(1)-degree and out-degree on directed graphs:-

The In degree of a vertex v of a directed graph G is the number of edges receiving (or) ending (or) coming at V and
denoted as $\operatorname{deg}^{-g}(V)$ cor) Indeg (V).
The outdegree of a vertex v of a directed graph G_{1} is the $n_{i m} / \mathrm{m}_{\mathrm{s}}$, of edges going coristarting corr sending at v and denoted as $\operatorname{deg}^{+}(v)$ (ox) outdeg (v).
Ex:-

$$
\begin{array}{ll}
\operatorname{deg}\left(v_{1}\right)=1 & \operatorname{deg}^{4}\left(v_{1}\right)=2 \\
\operatorname{deg}^{-}\left(v_{2}\right)=1 & \operatorname{deg}^{+}\left(v_{2}\right)=1 \\
\operatorname{deg}\left(v_{3}\right)=1 & \operatorname{deg}^{+\left(v_{3}\right)=1} \\
\frac{\operatorname{deg}^{-}\left(v_{4}\right)=2}{\text { Indegree }} & \frac{\operatorname{deg}^{+}\left(v_{4}\right)=1}{\text { out-degree }}
\end{array}
$$

Note:- If $\mathrm{G}=(y, e)$ is a directed graph with edge e then

$$
\sum_{v \in V}^{\sum} \operatorname{deg}^{-}(V)=\sum_{V \in V} \operatorname{deg}^{\prime}(V)=E \quad \sum_{i=1}^{n} \operatorname{deg}(V i)=2 E
$$

1. construct in-degrees and out-degrees from given graphs.

(41)

$$
\begin{array}{ll}
\operatorname{deg}^{-}\left(v_{1}\right)=2 & \operatorname{deg}^{+}\left(v_{1}\right)=1 \\
\operatorname{deg}^{-}\left(v_{2}\right)=2 & \operatorname{deg}^{+}\left(v_{2}\right)=2 \\
\operatorname{deg}^{-}\left(V_{3}\right)=2 & \operatorname{deg}^{+}\left(v_{3}\right)=2 \\
\operatorname{deg}^{-}\left(V_{4}\right)=1 & \operatorname{deg}^{+}\left(v_{4}\right)=2
\end{array}
$$

(G) 2
for graph 2

$$
\begin{array}{ll}
\operatorname{deg}^{-}\left(G_{1}\right)=1 & \operatorname{deg}^{+}\left(G_{1}\right)=1 \\
\operatorname{deg}^{(}\left(G_{2}\right)=1 & \operatorname{deg}^{+}\left(G_{2}\right)=1 \\
\operatorname{deg}^{-}\left(G_{3}\right)=1 & \operatorname{deg}^{+}\left(G_{3}\right)=1 \\
\operatorname{deg}\left(G_{4}\right)=1 & \operatorname{deg}^{+}\left(G_{4}\right)=1 \\
\operatorname{deg}\left(G_{5}\right)=1 & \operatorname{deg}^{+}\left(G_{5}\right)=1
\end{array}
$$

node is called a null graph. The vertex v has" o edges.
(x) $\dot{v i}_{1} \dot{v}_{q}$
complete graph i-A simple graph G is said to be complete graph If every vertex in G is connected with every other vertex. i.e exactly one edge between pair of alstinct vertices.

(GI)

(GB)

Regular graph:-

A graph G has all vertices of degree is equal is called a regular graph.
ex:-

(GI)

(GI)

(GB)
$2=9-4$
*Bipartiate graph:- A graph $G=(V, E)$ Is said to be Blpartiate graph if the Yértex V can be divided into 2 disjoint subsets v_{1} and v_{2} such that every edge e connects from v_{1} to v_{2}. No , edge is connects ether two vertices in V_{1} (or) V_{2} of G.

(GI)
(G2)

elimination of edges:-

Hylomorphism: - Two graphs $G_{1}=\left(\hat{V}_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are gain to be Isomorphic if there exists a Bijection $f: v_{1} \rightarrow V_{2}$ such that $\left(u_{1}, v_{1}\right) \in E_{1}$ (or) adjacent vertices in $G_{n} .\left(u_{2}, v_{2}\right) \in E_{2}$ are adjacent vertices in G_{2}.
degree of vertex in G_{1} are equivalent to degree of Vertex in G_{2}. if the adjacent vertices degrees are equal in G_{1} and G_{2} Such that G_{1} is isomorphic to G_{2}, then we write as $G_{1} \cong G_{2}$. . (degrees of vertices are same).

$$
\begin{aligned}
& \operatorname{deg}\left(v_{1}\right)=2 \Leftrightarrow \operatorname{deg}\left(u_{1}\right)=2 \\
& \operatorname{deg}\left(v_{2}\right)=3 \Leftrightarrow \operatorname{deg}\left(u_{2}\right)=3 \\
& \operatorname{deg}\left(v_{4}\right)=3 \Leftrightarrow \operatorname{deg}\left(u_{3}\right)=3 \\
& \operatorname{deg}\left(v_{3}\right)=3 \Leftrightarrow \operatorname{deg}\left(u_{3}\right)=3 \\
& \operatorname{deg}\left(v_{5}\right)=3 \Leftrightarrow \operatorname{deg}\left(u_{5}\right)=3
\end{aligned}
$$

\therefore The given twoographs are in isomorphism.

1. Show that the following graphs G and G are isomorphic.
(a)

Sol:- $\operatorname{deg}(1)=2 \Leftrightarrow \operatorname{deg}(9)=2$

$$
\begin{aligned}
& \operatorname{deg}(2)=2 \Leftrightarrow \operatorname{deg}(t)=2 \\
& \operatorname{deg}()^{3}=2 \Leftrightarrow \operatorname{deg}(b)=2 \operatorname{deg}(c)=2 \\
& \left.\operatorname{deg}()^{\prime}\right)^{\prime}=2 \Leftrightarrow \operatorname{deg}(d)=2 \quad \operatorname{deg}(b)=2
\end{aligned}
$$

\therefore :The given two graphs are isomorphism.

$$
\begin{aligned}
& \operatorname{deg}(1)=2 \Leftrightarrow \operatorname{deg}\left(v_{1}\right)=2 \\
& \operatorname{deg}(2)=2 \Leftrightarrow \operatorname{deg}\left(v_{2}\right)=2 \\
& \operatorname{deg}(4)=3 \Leftrightarrow \operatorname{deg}\left(V_{4}\right)=3 \\
& \operatorname{deg}(3)=2 \Leftrightarrow \operatorname{deg}\left(V_{3}\right)=3 .
\end{aligned}
$$

In the first graph $\operatorname{deg}(3)=2$ and in second graph $\operatorname{deg}\left(v_{3}\right)=3$
\therefore These two graphs are not Isomorphic,
3) Matrix representation of a graph:-matrix representation of a graph has 2 types. 1. Adjocence matrix 2 : mcidence 1.Adjacence matrix:-

Let $G=(V, F)$ be a simple graph with n vertices ordered from $v i t o$ v_{2} then the adjacence matrix Am $=[a i j] n \times n$ of Wis an n n n symmetric matrix defined by -m. $[a-i s] m+n$ a on $n+n$
$a_{i j}= \begin{cases}1 & \text { When } v_{i} \text { is adjacent to } v j \\ 0 & \text { otherwise }\end{cases}$

Ex:-

2. Incidence matrix:-

$$
\begin{gathered}
A_{m}= \\
a \\
b \\
c \\
d
\end{gathered}\left[\begin{array}{cccc}
a & b & c & d \\
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

Let G be a graph with n vertices $v=\left\{v_{1}, v_{2}, v_{3} \ldots v_{n}\right\}$ and $E=\left\{e_{1}, e_{2} \cdots e_{m}\right\}$ define $n \times m$ matrix $\operatorname{Im}=[a i i]_{n \times m}$ Where $a_{i j}=\left\{\begin{array}{l}1 \text { when } v_{i} \text { is Incident with } e j \\ 0 \text { otherwise }\end{array}\right.$

Ex:-

$$
A m=\begin{aligned}
& a m \\
& b \\
& c
\end{aligned}\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

1. find the adjacence and Incidence matrix from given graphs

Sol:- The adjacent matrix from first graph is $A m=$ The Incidence 11
-
4. is $I_{\mathrm{m}}=$
$A_{m}=\begin{array}{llllll}v_{1} & v_{2} & v_{3} & v_{4} & N_{5} & v_{6}\end{array}$

$$
v_{1} v_{2}\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1 \\
v_{3} \\
v_{4} \\
v_{5} & 0 & 1 & 0 & 0 & 1 \\
v_{6} & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

$\pi_{\text {m }}=e_{1} e_{2} e_{3} e_{4}$ es e6 eq es eq e lo v_{1}
v_{2}
v_{3}
v_{4}
v_{5}
$v_{6}$$\left[\begin{array}{llllllllll}1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1\end{array}\right]$
The adjacent matrix to Second graph

$$
\begin{array}{r}
A m= \\
a \\
a \\
b \\
c \\
d
\end{array}\left[\begin{array}{llll}
0 & 2 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
1
\end{array}\right] .
$$

The Incidence matrix to second graph is
$I_{m}=e l l e l l e 3 ~ e q ~ e s ~ e 6 ~_{4}$

$$
\begin{aligned}
& a \\
& b \\
& c \\
& d
\end{aligned}\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

now the graph represented by the adjacence matrix.

$$
A_{G}=\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right] \quad A G=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 0 & 2 & 0 & 1 \\
1 & 2 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

301:- The given adiacence matrix is

$$
\text { Let } \begin{array}{rl}
A G= & a \\
& b \\
a & c \\
a & d
\end{array} e
$$

The given adjacence matrix is Let $A G=a b c d e$.

$$
\left(\begin{array}{r}
a \\
\\
\\
\\
\\
\\
\\
\\
\\
d
\end{array}\left(\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 0 & 2 & 0 & 1 \\
1 & 2 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0
\end{array}\right)\right.
$$

3. Draw the graph from given Incidence matrix

$$
I G=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Sol- The of ven incidence matrix is

$$
I G=e_{1} e_{2} e_{3} e_{4}
$$

$$
\left.\begin{array}{lllll}
a \\
b \\
c \\
d & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

q-9-10
Paths and circuits:-

1. Walk:- \dot{A} walk of a graph G is defined as on alternating Sequence of vertices and edges. voeov, $e_{1} \ldots \ldots$. . en v_{n}. Starting and ending with vertices such that each line e_{i} is Incident with V_{i}. A walk Joining V_{0} and V_{n} is called $V_{o}-V_{n}$ walk.
It contains only a single vertex such a walk is called trivial calk. 2.Trail:- A walk is called a trail if all its edges are distinct.
3.path:-A walk " " "path a ". "vertices
2. closed path:-A closed path is a path that starts and ends at the same point cor) vertex.
3. circuit:- A circuit cor) cycle is defined as a closed path that does not contain repeated edges (distinct edges).

4. $v_{1} e_{1} v_{2} e_{2} v_{3}$
5. $v_{1} e_{1} v_{2} e_{2} v_{3} e_{3} v_{4} e_{5} \mathrm{~V}_{2} \mathrm{e}_{2} \mathrm{v}_{3}$ are Walks.
6. $v_{1} e_{1} v_{2} e_{5} v_{4} e_{3} v_{3} e_{2} v_{2} e_{6} v_{5}$ is a trail.
H. vieuvue3v3e2 $V_{2} e 6 V_{5}$ is a path.
7. $v_{1} e_{1} v_{2} e_{5} v_{4} e_{3} v_{3} e_{2} v_{2} e_{1} v_{1}$ is a closed path
8. $v_{1} e_{4} v e_{5} v_{2} e_{1} v_{1}$
9. $v_{1} e_{4} v_{4} e_{3} v_{3} e_{2} v_{2} e_{1} v_{1}$ are circuits.
10. Determine of the following sequences are circuits \& paths
from below graph.

$$
\text { 1. } v_{1} e_{1} v_{2} e_{6} v_{u} e_{3} v_{3} e_{2} v_{2}
$$

$$
\text { 2. } v_{1} e_{1} v_{2} e_{2} v_{3} e_{3} v_{4} e_{4} v_{5}
$$

$$
\text { 3.v1 es } v_{4} e_{3} v_{3} e_{7} v_{1} e_{8} v_{4}
$$

$4 \cdot v_{5} e_{5} v_{1} e_{8} v_{4} e_{3} v_{3} e_{2} v_{2} e_{6} v_{4} e_{4} v_{5}$
5. $V_{2} e_{2} V_{3} e_{3} V_{4} e_{4} v_{5} e_{5} V_{1} e_{1} V_{2}$

Soli-1-veritex v_{2} is repeated twice, so it is not a path. starting vertex v_{1} and ending vertex v_{2}, sols is nat drulit 2Here all vertices are distinct, 80 it is a path.
starting vertex v_{1} ending vertex v_{5}, so it is not a circuit.
3. Here vertex v_{1}, vi are repeated, so it is not path. starting vertex v_{1} ending vertex v_{4}, so it is ". is Chrydils
mo $_{1}+$ Hereivertex $V 5:$, V4I are repeated, so it is not a path starting vertex $/ 55$, ending vertex $v 5$, so it is a circuit?
5. Here v_{o} is repeated, so it is not a path. starting vertex v_{2}, ending vertex v_{2}, so it is a circuit.
2. Let the graph G (i) How many paths
 are there from Ito. (ii) How many trails

Sol:- The possible paths are from I to u is

1. $1 e_{12} e_{33} e_{5} 4$
2. $1 e_{1} 2 e_{2} 3 e_{54}$
3. Ie, 2ey3e54

The possible trails are from 1 to 4 is

1. 1e12e33e54
2. $1 e_{12 e 23} e_{5} 4$
3. 1212243254 $4 \cdot 1 e_{1}$ 2e2se3 $_{3} e_{4} 3 e_{54}$ $5 \cdot 1 e_{1} 2 e_{2} 3 e_{4} 2 e_{3} 3 e_{5} 4$
4. 1e,2e4 seq 2e3 3 es 4

5. $1 e_{1} \mathrm{Ie}_{3}$ зe42 $_{4} e_{2} e_{5}$
Q. $1 e_{1} 2 e_{3} 3 e_{2} 2 e_{4} 3 e_{54}$.
*Euleriangraph (ox) Eulergraph (os Eulerion circuit:-
1.A trail in G is called on Eulerian trail (distinct edges).
6. It contains all vertices atleast once of G.
7. A closed Eulerian trail (starting and ending Vertices Same)is Called Eulerian graph con Euler circuit. Euler path:-
8. A path in a Graph G is called an Euler path if le incluides every edge exactly once (distinct edges) 2. visit all vertices. at least once
jove:- If G is a graph in which the degree of every vertex is even then it is possible to construct Euler circuit:
9. The graph G is a euler path if atteast one degree of vertex is even.
10. If the given graph G is not a Eulercircuit and path if and any if its vertices has odd degree 1. Determine whether the graph is Euler path con circuit. a
sol:- From a given graph vertices $v_{2}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$
 Indegree to every vertex is

$$
\operatorname{deg}\left(V_{1}\right)=2, \operatorname{deg}\left(V_{2}\right)=1, \operatorname{deg}\left(V_{3}\right)=1, \operatorname{deg}\left(V_{4}\right)=1
$$

outdegie to every vertex is

$$
\operatorname{deg}^{+}\left(v_{1}\right)=1, \operatorname{deg}^{+}\left(v_{2}\right)=1, \operatorname{deg}^{+}\left(v_{3}\right)=2, \operatorname{deg}^{+}\left(v_{4}\right)=1
$$

Here vertex v_{1} and v_{3} has odd degree $=3$
\therefore The Euler path is $v_{3}-v_{2}-v_{1}-v_{3}-v_{4}-v_{1}$.
2. from the given graph check whether Euler circuit or path.

Sol:- from given graph

$$
\begin{gathered}
\text { vertices } v^{\prime}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right) . \\
\operatorname{deg}\left(v_{1}\right)=2, \operatorname{deg}\left(v_{2}\right)=2, \operatorname{deg}\left(v_{3}\right)=4 \\
\operatorname{deg}\left(v_{4}\right)=2, \operatorname{deg}\left(v_{5}\right)=2
\end{gathered}
$$

Here all the vertices have even degrees
\therefore The euler circuit is $v_{1}-v_{2}-v_{3}-v_{4}-v_{5}-v_{3}-v_{1}$.
Sol:- from given graph

$$
\text { voustan of } s \text { a }, b, c, d, e, f
$$

$\operatorname{deg}(a)=3, \operatorname{deg}(b)=3, \operatorname{deg}(c)=3$
$\operatorname{deg}(d)=3, \operatorname{deg}(e)=3, \operatorname{deg}(f)=3$.
Here all the vertices have odd degrees $=3$.
The path is $a-d-c-f-b-e-a-f$
Here bed, e-c edges are not covered. So it is not a path.
So it is not a circuit.
13-9-10
Hamaltonian graph:- A circuit in a graph G is called Homoltania circuit cor graph.
2. If it contains each vertex h a exactly once except for the Starting and ending vertex that appears twice.
Hamaltonian path:- A tamaltorion path is a path that contains all vertices of G where the endpoints (starting and ending Vertices) may be distinct.

1. Determine which of the following graph is Hamaltonian circuit or path.

Sol:- (i) from given graph
vertices $\gamma=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$
The path is $v_{1}-v_{2}-v_{3}-v_{4}-v_{5}-v_{1}$.
\therefore It is Hamaltonion circuit.

In this path all vertices visited exactly once except starting \& ending vertex.

(ii) from given graph vertices $v=\left\{\begin{array}{l}a, b, c, d\} \\ \text { da }\end{array}\right.$ The path is a-b-c-d.
$(f, a, b, 2, d, 0$, - y a pity on

IT this path all vertices visited exactly once and starting and ending vertices are distinct.

1. \therefore It is a Hamaltonion path.
2. The given graph which is Hamattonion, circuit (or) Euler circuit col: (i) coset:- from given graph. $v=\{a, b, c a, e, f\}$
The path is $a-b-c-d-e-f-a$

mantis path all vertices visited exactly once except starting and ending vertex.

\therefore It is a Hamaltonian circuit.
case2:-frare given graph degrees to all vertices $\operatorname{deg}(a)=2, \operatorname{deg}(b)=5, \operatorname{deg}(c)=2, \operatorname{deg}(d) \div 3, \operatorname{deg}(e)=3$ $\operatorname{deg}(f)=3$.
degree of vertices b, d, e, f has odd degree. It is not possible to construct Euler circuit.
(ii) 'osel:--from given graph $v=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ The path is $\mathrm{v}_{1}-\mathrm{v}_{2}-\mathrm{v}_{6}-\mathrm{v}_{3}-\mathrm{V}_{4}-\mathrm{v}_{5}$. Here all vertices visited exactly once but starting and ending vertices are distinct.
\therefore It is not a Hamaltonian circuit-
Case 2:- from given graph degrees to all vertices
$\operatorname{deg}\left(v_{1}\right)=2, \operatorname{deg}\left(v_{2}\right)=4, \operatorname{deg}\left(v_{3}\right)=4, \operatorname{deg}\left(v_{4}\right)=2$

- $\operatorname{deg}\left(V_{5}\right)=2, \quad \operatorname{deg}\left(V_{6}\right)=4$

The path is $v_{1}-v_{2}-v_{3}-v_{4}-v_{5}-v_{3}-v_{6}-v_{2}-v_{6}-v_{1}$.
Here all ridges exactly once and visited all vertices. Starting' and ending vertex is same.

\therefore It is Euler circuit

Planar graph:- A graph G is called a planar graph if it can be draco in a plane such that no two edges intersect except at. the vertices.
Ex:-

\Leftrightarrow

15-9-10

1. Determine the graph is it planar con not. Sol:- The planar -graph is

2. The given graph is planar corn not. Sol:- The planar graph is

7: \quad f3.the given two graphs are planar or not. sol:- The planar graph is
 given
The planar graph is graph.

e, d, b, c

$d, a, e, c:$
$a_{p, b,}, e_{1}$.

$$
a, c, b, e
$$

If is not possible to design the b tod edge. It is a nomplarar Every complete graph and above are equal to 5 vertices that is not possible to design the planar graph.
\therefore These are non planar graphs.
characteristics:- $n v=n e+n f$
where $n v=$ number of vertices in a graph.

$$
n e=" \quad \text { edges } "
$$

$$
\text { o in } n f=11 \text { faces con regions }
$$

Inf:- It is the combination of interior and exterior regions in a plane graph.
(i) no. of vertices nv $=5$ - edges ne te $=6$

no. of faces (or) regions from given graph $n f=$

$$
R_{1}=a-b-c-a, R_{2}=c-d-e-c
$$

$R_{1}=$ The region bounded by the cycle $a-b-c-a$.

$$
R_{2}=" \quad \| \quad \because \quad 4 \quad " \quad c-d-e-c \text {. }
$$

Here R_{1} and R_{2} are interior regions.
The exterior region $R_{3}=$ The plane graph outside path

$$
\begin{aligned}
& a-b-c-d-e-c-a . \\
& \therefore n f=3 .
\end{aligned}
$$

The characteristics to given graph $n v-n e+n f=5-6+3=2$.
2. construct the characteristics to pane graph.

Sol:- no. of vertices $n v=4$
no. of edges ne $=4$

no. of faces (or) regions from given graph on $=$

$$
R_{1}=a-a-c-b-a .
$$

Here R_{1} is interior region
The exterior region $R_{3}=$ the plane outside path $a-c-b-a$

$$
\therefore n f=2
$$

The characteristics to given graph ny -ne+nf $=4-4+2=2$.
G-9-10ph colouring and covering:-
colouring:- An assignment of colours to the vertices of a graph and no two adjacent vertices get the same colour is called colouring of the graph (or) vertex colouring.
Ex:-

$$
\begin{array}{ll}
f(a)=\text { Red } & f(c)=\text { pink } \\
f(b)=\text { Cue } & f(d)=\text { yellow }
\end{array}
$$

chromatic number:- The chromatic number of a graph G th is the minimum number of colours needed to colour the vertices of the graph G and denoted by $x(G)$.

$$
\therefore x(G)=4
$$

1. Determine the chromatic number of given Bipartite graph.
Sol:-

$$
\begin{aligned}
\therefore f\left(v_{1}\right) & =R, \quad f\left(v_{2}\right)=R, f\left(v_{3}\right)=R \\
f\left(v_{4}\right) & =B_{1}, f\left(v_{5}\right)=B \\
x(G) & =2
\end{aligned}
$$

A tree is a simple graph G such that there is a unique simple undirected path between each pair of vertices in G.

3.

2.

5.

Here $1,2,3$, and 4 are trees 5 is not a tree.
\rightarrow tree is denoted as ' T '.
rooted tree:- A rooted thee is atree in which a particular vertex is designed as the root (Starting node (or) vertex).
\rightarrow If a vertex. v of ' F ' is a child vertex, if that vertex is a end vertex cor) exit vertex. such that vo os a root node (vo, $\left.e_{1}, v_{1}, e_{2} \ldots . . e_{n} v_{n}\right)$ and v_{n} is a child vertex in every path.
\rightarrow except root and child vertices remaining all vertices orel interval (on) middle vertices.
\rightarrow The level of a vertex v in a tree is the length of simple path from the root. The height of a rooted tree is the maximum 6 t) number.

[^0]

- In the above tree a is root node: (or) vertex.

Here child nodes are d, e, and. Interval (ors)terminal Vertices are b, c, and f.
$\rightarrow a, b, c, d, e, f$ and g has $0,1,1,2,2,2,3$ are levels respectively to all vertices.
\rightarrow the height of tree is ' 3 '.

1. From the given rooted tree ' T
(i) What is the root of T ?
(ii) find the levels \&interval vertices? (iii) What are the levels of ω and z ? (iv) find the child of W and z ?

Sol:- (i)from the given tree root node is ' u '.
(ii) The levels of given tree

$$
\begin{aligned}
& 4, v, \omega, x, y, z, x^{\prime}, y^{\prime}, z^{1} \\
& 0,1,1,2,2,3,3,3,4 .
\end{aligned}
$$

The interval vertices are ω, ω, x, y, z.
(iii) The level of ω is 1 and level of z is 3 .
(iv) The child s of w and z are $x^{\prime}, y^{\prime}, z^{\prime}$ and z^{\prime}.
spanning tree:- A tree ' T ' is a spanning tree of a graph G. Ils a subgraph of G that contains all of the vertices of G. If G is a corrected graph with n vertices and m edges, aspanning tree of G must have $n-1$ edges.

2. Determine the sparing trees from given graph sol:- The spanning trees are

BFS and DFS in spanning trees:-
BFS (Breadth first search):-
1.-BFS starts traversal from root node and then explore the search in the level by levelthat is as passible from root node.
2.BFS can be done with the help of queue (first in first out)
3. The BFS works in a single level then visited vertices are removed from the queue until all vertices in tree.
DFS (Depth first search):-

1. Die gats the traversal from the root node and explore bon dingle
the search for as possible from the root node that is depth wise 2. DIS can be done with the help of stack (last in first out).
2. Later, on when there is no vertex further to visit all vertices are processed.

Note:-1.DFS is more faster than BFS
2. DFS requires less memory compare to BFS.

BES: $a-b-c-d-e-p-g$.
DHS: $a-b-d-e-c-f-g$.

1. Use BFS and DFS find the spanning tree for given graph

SOl:- BFS:-

1. The root node is a
a) a
2. node a has two childs b and e.

3. node e and o has child
4. node c has 2 childs d and e and b has child d But it will be derived the cycle. nodes f and g.

> 5 ghas one child h^{\prime}. m $^{\text {bps }} a^{\prime}$-cob- $-e^{\prime}-d-f-g-h$.

$$
\begin{array}{l|l|l|l|l|}
V=a & V=c & v=e & V=f & v=d \\
W=\{c, b\} & \omega=\{e, d, a\} & \omega=\{f, d, c\} & \omega=\{e\} & \omega=\{e, g, b, c\}
\end{array}
$$

$$
\begin{array}{c|c|l}
v=9 & v=h & v=b \\
\omega=\{h, d\} & h=\{9\} & w=\{d, a\}
\end{array}
$$

\therefore The DFS is ac-e-f-d-g-h-b.

2. Determine BFS and DFS from the given graph Sol:- BFS:-
lithe root node is a
2. root node a has 2 chids b and c.

3. node b' does not hos one more newchild, chas two child nodes d and e.

4. node has one new child node f nit chino for

The BFS path is $a-b-c=d+e^{92}$!

$$
\begin{array}{l|l|l|l|l}
V=a & V=b & V=c & V=d & V=f \\
w=\{b, c\} & w=\{a, c\} & w=\left\{d, e e^{2}\right. & w=\{f, c\} & w=\{d, e\}
\end{array}
$$

$$
\begin{array}{cc}
V=e & \therefore \text { The DFS is } \\
W=\{f, c\} & a-b-c-d-f-e .
\end{array}
$$

HST (minimum spanning tree):- A minimal spanning tree of g is a spanning tree with minimum weight to constructing minimum spanning tree use following Tectriques. 1. Kruskal's. for MST 2. prim's for MST . Prim's

1. for MST - - select any edge of minimum value that is not a loop this is the first edge of T.
2. select any remaining edge of G having minimal value that does not form a circuit with the edges already included in τ '.
3. continue step 2 until tree contains n-1 edges. krystal
2 algorithm for MST:-1 select any vertex and choose the edge find minimum weight from G.
4. At each stage, choose the edge of smallest weight joining a vertex already included to vertex, notyet included:
5. continue until all vertices are included.
6. find the minimum spanning tree of the coeighted graph given below using Krystal's and prim's algorithm. sol:- print for MST:- ito $=14$ alt

Edges $\{a, e\} \quad\{a, d\} \quad\{a, c\}$
Weights $\begin{array}{lll}3 & 3 & 3\end{array}$
$\{a, b\}\{b, e\} \quad\{b, d\}\{b, c\}$

$$
\begin{array}{llll}
4 & 3 & 1 & 2
\end{array}
$$

$\{c d\}\{d, e\}$
3

$$
2
$$

1. a is root node
(a)
2. We have consider

$$
\{a, e\}=3
$$

3. We have to consider

$$
\{e, d\}=2
$$

5. We have to consider b it

$$
\left\{b_{1} c\right\}=2
$$

krushkal's
forms:-
edges $\{a, e\}\{a, d\}\{a, c\}\{a, b\}\{b, e\}\{b, d\}\{b, c\}$
Weights $3 \quad 3 \quad 3 \quad 4,3,3 \mathrm{mbln} 2 \boldsymbol{2} 5$

$$
\{c, d\} \quad\{d, e\}\rangle
$$

1. The minionium weight of all.nodes $\{b, d\}$.

2. next $\{0, e\}=2$
3. next minimum weight $\{b,\{ \}=2$

4. next minimum weight

$$
\{a, e\}=3
$$

2. construct the minimum spanning tree using krushkal's and prim's algorithm.

$\left\{b, c\left\{\begin{array}{l}\{b, f\} \\ 4\end{array} 2\right.\right.$
$\{f, e\}$
3
$1 . a$ is root node

9. We have to consider $\{e, f\}=3$

4. We have to consider

$$
\{f, d\}=1
$$

5. We have to consider $\{d, e\}=5$

6. We have to consider $\{c, b\}=4$

Kruskal's
-algorithm:-
edges $\{a, b\}\{a, f\}\{a, e\}\{b, c\}\{b, f\}\{c, d\}\{d, f\}, 1$ weights $3: 6$ 2 4 1.2 2 2,5 : Wist) \{d,e\}. \{fie\}:x:

1. The minimum weight of
 - 3 all nodes is $\left\{d_{1} f\right\}$

Q ait nov toot af
3. next $\{a, b\}=3$

4. next $\{b, c\}=4$

$19-9-14$
Binary tree:-A rooted tree in which the children of each vertex are assigned a fixed ordereng is called a Binary tree.
2. If either each vertex has no child, one child cor) two child. 3. If a tree has one child then that child is designed as either leftechild cor) rightechild [but not both].
4. If a vertex cor) node has two children then the first child is designed as leftchild otherchild is designed as right child.

Ex:-
 size is 9 height $h=3$.
\rightarrow The above tree size is ' 9 ' and height is 3 .

The root node is ' 2 '.
the child nodes are $3,5,11,4$.

preorder:- FBADCEGIH
Inorder:- $A B C D E F G H I$
postorder:- ACEDBHIGf.
"construct preorder, inorder and postorder from given graph.
goli- preorder:-
ABDECFg

postorder:- $D E B \& g C A$.
cut vertex:- A cut vertex of a connected graph ' G ' is a vertex, 18 which is removal the number of components.

Ex:-

\rightarrow Here the vertex 'c' is a cut vertex.
\rightarrow If we are removing the vertex ' c '. It is dividing into two components $\{a, b\} \&\{d, e\}$.
cut edge (Bridge): - A cut Bridge of a connected of ' G ' is an edge which is removed increases the a number of components. $E x_{1}-$
\Rightarrow Here (ed) edge cutedge (or) Bridge
If we ore, removing (c-d) edge, the graph is olvided Into two Components.
Cut Set:- The set of all minimum number of edges of G ' which is removal (on disconnect a graph is a cut set of ' G '.

$\left.\rightarrow \int_{a}^{a}\right|_{b} ^{c}$
\rightarrow Here removing of two edges $\{(a-b),(c-d)\}$. \rightarrow The graph dividing into two components

\rightarrow Here the cut sets is $\{(b-c)\}$

[^0]: lyon ar mo
 Ex:

