

Department of Computer Science and Engineering

Academic Year 2023-24

III B.Tech. I Semester

Software Engineering

(20APC0519)

Prepared By

Smt. G. Bhavana, M.Tech.

Assistant Professor

Department of CSE, AITS

bhavanagyarampalli@gmail.com

UNIT-1

INTRODUCTION

Software is a program or set of programs containing instructions that provide desired functionality.

And Engineering is the process of designing and building something that serves a particular purpose

and finds a cost-effective solution to problems.

Software Engineering is the process of designing, developing, testing, and maintaining software. It is a

systematic and disciplined approach to software development that aims to create high-quality, reliable,

and maintainable software. Software engineering includes a variety of techniques, tools, and

methodologies, including requirements analysis, design, testing, and maintenance.

Evolution of an Art into an Engineering Discipline: Software engineering principles have evolved

over the past six decades, thanks to the contributions of researchers and software professionals. It has

transformed from an art to a craft and ultimately into an engineering discipline.

Early programmers employed ad hoc programming styles, now referred to as exploratory, build and fix,

and code and fix approaches. The build and fix style involved quickly developing a program without

any formal specifications or design, only addressing noticed imperfections later on.

Exploratory programming, an informal style, allowed programmers to develop techniques based on

their intuition, experience, whims, and fancies. However, this style often resulted in poor quality,

unmaintainable code, and expensive, time-consuming development.

In the early computing history, the build and fix style was widely adopted. The exploratory style was

akin to an art, guided mostly by intuition, and some exceptionally skilled programmers could create

elegant and correct programs using this approach.

Evolution Pattern for Engineering Disciplines:

Over the past sixty years, the evolution of software development styles has followed a familiar pattern

observed in other engineering disciplines. Initially, software development was considered an esoteric

art form, much like iron making or paper making in ancient times. The knowledge was limited to a

select few, passed down as closely-guarded secrets from generation to generation.

Gradually, software development transitioned into a craft form, where skilled tradesmen shared their

knowledge with apprentices, expanding the collective pool of expertise. Eventually, through systematic

organization, documentation, and incorporation of scientific principles, software engineering emerged

as a disciplined field.

In the early days of programming, there were discernible differences between good and bad

programmers, with the former possessing certain principles or tricks for writing excellent programs. As

time went on, these principles were organized into a cohesive body of knowledge, shaping the discipline

of software engineering as we know it today.

SOFTWARE DEVELOPMENT PROJECTS

Before discussing about the various types of development projects that are being undertaken by software

development companies, let us first understand the important ways in which professional software

differs from toy software such as those written by a student in his first programming assignment.

Programs versus Products

Individuals, such as students working on classroom assignments or hobbyists pursuing personal

projects, often develop toy software. These programs tend to be small in size and offer limited

functionalities. Typically, the author of the program is the sole user and responsible for maintaining the

code.

As this toy software lack extensive user-interface design and proper documentation, they may suffer

from poor maintainability, efficiency, and reliability. Due to the absence of supporting documents like

users' manuals, maintenance manuals, design documents, and test documents, we refer to these creations

as "programs."

In contrast, professional software caters to multiple users, leading to the inclusion of robust user-

interface design, comprehensive users' manuals, and extensive documentation support. With a large

user base, professional software undergoes systematic design, careful implementation, and thorough

testing.

A professionally developed software product encompasses not only the program code but also various

associated documents like requirements specification, design documents, test documents, and users'

manuals. Furthermore, these software projects are often too large and complex to be handled by a single

individual, necessitating the collaborative efforts of a team of developers working together.

A professional software is developed by a group of software developers working together in a team. It

is therefore necessary for them to use some systematic development methodology. Otherwise, they

would find it very difficult to interface and understand each other’s work, and produce a coherent set

of documents. Even though software engineering principles are primarily intended for use in

development of professional software, many results of software engineering can effectively be used for

development of small programs as well. However, when developing small programs for personal use,

rigid adherence to software engineering principles is often not worthwhile. An ant can be killed using

a gun, but it would be ridiculously inefficient and inappropriate. CAR Hoare [1994] observed that

rigorously using software engineering principles to develop toy programs is very much like employing

civil and architectural engineering principles to build sand castles for children to play.

Types of Software Development Projects

A software development company is typically structured into a large number of teams that handle

various types of software development projects. These software development projects concern the

development of either software product or some software service. In the following subsections, we

distinguish between these two types of software development projects.

Software products: Various software products, like Microsoft's Windows and Office suite, Oracle

DBMS, and software bundled with camcorders or laser printers, are well-known examples. These are

considered generic software products, readily available for purchase and used by a diverse range of

customers. Many users essentially use the same software, making them suitable for off-the-shelf

purchase.

When a software development company aims to create a generic product, it identifies features or

functionalities that would be beneficial to a large user base. Based on this, the development team creates

the product specification, sometimes considering feedback from numerous users. Typically, each

software product is targeted at specific market segments.

Companies often find it advantageous to develop product lines catering to slightly different market

segments while using variations of essentially the same software. For instance, Microsoft targets

desktops and laptops with its Windows 8 operating system, high-end mobile handsets with its Windows

mobile operating system, and servers with its Windows server operating system.

Software services: A software service usually involves either development of a customised software

or development of some specific part of a software in an outsourced mode. A customised software is

developed according to the specification drawn up by one or at most a few customers. These need to be

developed in a short time frame (typically a couple of months), and at the same time the development

cost must be low. Usually, a developing company develops customised software by tailoring some of

its existing software. For example, if an academic institution needs software to automate student

registration, grading, and fee collection, a company would develop a customized product for that

specific purpose. This process involves adapting one of the company's existing software products,

which might have been previously developed for another academic institution or client.

EXPLORATORY STYLE OF SOFTWARE DEVELOPMENT

We've previously explored the concept of the exploratory program development style, which entails an

informal approach to programming. In this style, programmers rely on their intuition rather than

adhering strictly to the established body of knowledge within the realm of software engineering. The

exploratory development style grants programmers the freedom to select the methods they deem

appropriate for software development.

While this style doesn't impose specific regulations, a typical development process commences with an

initial briefing from the customer. With this briefing as a foundation, developers initiate the coding

phase to create a functional program. Subsequently, the software undergoes testing, during which any

identified bugs are rectified. This iterative process of testing and bug fixing persists until the software

meets the customer's satisfaction.

A visual representation of this approach, resembling a build and fix methodology, is depicted in Figure

1.3. Notably, the coding phase commences after an initial briefing from the customer, outlining the

project's requirements. Upon completing the program development, a cycle of testing and refinement

ensues until the program aligns with the customer's expectations.

An exploratory development style can be successful when used for developing very small programs,

and not for professional software. We had examined this issue with the help of the petty contractor

analogy. Now let us examine this issue more carefully.

Summary of the shortcomings of the exploratory style of software development:

We briefly summarise the important shortcomings of using the exploratory development style to

develop a professional software:

 The foremost difficulty is the exponential growth of development time and effort with problem

size and large-sized software becomes almost impossible using this style of development.

 The exploratory style usually results in unmaintainable code. The reason for this is that any

code developed without proper design would result in highly unstructured and poor quality

code.

 It becomes very difficult to use the exploratory style in a team development environment. In

the exploratory style, the development work is undertaken without any proper design and

documentation. Therefore, it becomes very difficult to meaningfully partition the work among

a set of developers who can work concurrently. On the other hand, team development is

indispensable for developing modern software—most software mandate huge development

efforts, necessitating team effort for developing these. Besides poor quality code, lack of proper

documentation makes any later maintenance of the code very difficult.

Perceived Problem Complexity: An Interpretation Based on Human Cognition Mechanism:

The rapid increase of the perceived complexity of a problem with increase in problem size can be

explained from an interpretation of the human cognition mechanism. A simple understanding of the

human cognitive mechanism would also give us an insight into why the exploratory style of

development leads to an undue increase in the time and effort required to develop a programming

solution. It can also explain why it becomes practically infeasible to solve problems larger than a certain

size while using an exploratory style; whereas using software engineering principles, the required effort

grows almost linearly with size.

Principles Deployed by Software Engineering to Overcome:

Human Cognitive Limitations:

We shall see throughout this book that a central theme of most of software engineering principles is the

use of techniques to effectively tackle the problems that arise due to human cognitive limitations. Two

important principles that are deployed by software engineering to overcome the problems arising due

to human cognitive limitations are—abstraction and decomposition. In the following subsections, with

the help of Figure 1.6(a) and (b), we explain the essence of these two important principles and how they

help to overcome the human cognitive limitations. In the rest of this book, we shall time and again

encounter the use of these two fundamental principles in various forms and flavours in the different

software development activities. A thorough understanding of these two principles is therefore needed.

Abstraction

Abstraction refers to construction of a simpler version of a problem by ignoring the details. The

principle of constructing an abstraction is popularly known as modelling (or model construction).

When using the principle of abstraction to understand a complex problem, we focus our attention on

only one or two specific aspects of the problem and ignore the rest. Whenever we omit some details of

a problem to construct an abstraction, we construct a model of the problem. In everyday life, we use the

principle of abstraction frequently to understand a problem or to assess a situation. Consider the

following two examples.

 Suppose you are asked to develop an overall understanding of some country. No one in his right

mind would start this task by meeting all the citizens of the country, visiting every house, and

examining every tree of the country, etc. You would probably take the help of several types of

abstractions to do this. You would possibly start by referring to and understanding various types

of maps for that country. A map, in fact, is an abstract representation of a country. It ignores

detailed information such as the specific persons who inhabit it, houses, schools, play grounds,

trees, etc. Again, there are two important types of maps—physical and political maps. A

physical map shows the physical features of an area; such as mountains, lakes, rivers, coastlines,

and so on. On the other hand, the political map shows states, capitals, and national boundaries,

etc. The physical map is an abstract model of the country and ignores the state and district

boundaries. The political map, on the other hand, is another abstraction of the country that

ignores the physical characteristics such as elevation of lands, vegetation, etc. It can be seen

that, for the same object (e.g. country), several abstractions are possible. In each abstraction,

some aspects of the object are ignored. We understand a problem by abstracting out different

aspects of a problem (constructing different types of models) and understanding them. It is not

very difficult to realise that proper use of the principle of abstraction can be a very effective

help to master even intimidating problems.

 Consider the following situation. Suppose you are asked to develop an understanding of all the

living beings inhabiting the earth. If you use the naive approach, you would start taking up one

living being after another who inhabit the earth and start understanding them. Even after putting

in tremendous effort, you would make little progress and left confused since there are billions

of living things on earth and the information would be just too much for anyone to handle.

Instead, what can be done is to build and understand an abstraction hierarchy of all living beings

as shown in Figure 1.7. At the top level, we understand that there are essentially three

fundamentally different types of living beings—plants, animals, and fungi. Slowly more details

are added about each type at each successive level, until we reach the level of the different

species at the leaf level of the abstraction tree.

A single level of abstraction can be sufficient for rather simple problems. However, more complex

problems would need to be modelled as a hierarchy of abstractions. A schematic representation of an

abstraction hierarchy has been shown in Figure 1.6(a). The most abstract representation would have

only a few items and would be the easiest to understand. After one understands the simplest

representation, one would try to understand the next level of abstraction where at most five or seven

new information are added and so on until the lowest level is understood. By the time, one reaches the

lowest level, he would have mastered the entire problem.

Decomposition:

Decomposition is another important principle that is available in the repertoire of a software engineer

to handle problem complexity. This principle is profusely made use by several software engineering

techniques to contain the exponential growth of the perceived problem complexity. The decomposition

principle is popularly known as the divide and conquer principle.

The decomposition principle advocates decomposing the problem into many small independent parts.

The small parts are then taken up one by one and solved separately. The idea is that each small part

would be easy to grasp and understand and can be easily solved. The full problem is solved when all

the parts are solved.

A popular way to demonstrate the decomposition principle is by trying to break a large bunch of sticks

tied together and then breaking them individually. Figure 1.6(b) shows the decomposition o f a large

problem into many small parts. However, it is very important to understand that any arbitrary

decomposition of a problem into small parts would not help. The different parts after decomposition

should be more or less independent of each other. That is, to solve one part you should not have to refer

and understand other parts. If to solve one part you would have to understand other parts, then this

would boil down to understanding all the parts together. This would effectively reduce the problem to

the original problem before decomposition (the case when all the sticks tied together). Therefore, it is

not sufficient to just decompose the problem in any way, but the decomposition should be such that the

different decomposed parts must be more or less independent of each other.

As an example of a use of the principle of decomposition, consider the following. You would understand

a book better when the contents are decomposed (organised) into more or less independent chapters.

That is, each chapter focuses on a separate topic, rather than when the book mixes up all topics together

throughout all the pages. Similarly, each chapter should be decomposed into sections such that each

section discusses a different issue. Each section should be decomposed into subsections and so on. If

various subsections are nearly independent of each other, the subsections can be understood one by one

rather than keeping on cross referencing to various subsections across the book to understand one.

Why study software engineering?

Let us examine the skills that you could acquire from a study of the software engineering principles.

The following two are possibly the most important skill you could be acquiring after completing a study

of software engineering:

 The skill to participate in development of large software. You can meaningfully participate in

a team effort to develop a large software only after learning the systematic techniques that are

being used in the industry.

 You would learn how to effectively handle complexity in a software development problem. In

particular, you would learn how to apply the principles of abstraction and decomposition to

handle complexity during various stages in software development such as specification, design,

construction, and testing.

Besides the above two important skills, you would also be learning the techniques of software

requirements specification user interface development, quality assurance, testing, project management,

maintenance, etc. As we had already mentioned, small programs can also be written without using

software engineering principles. However even if you intend to write small programs, the software

engineering principles could help you to achieve higher productivity and at the same time enable you

to produce better quality programs.

EMERGENCE OF SOFTWARE ENGINEERING

We have already pointed out that software engineering techniques have evolved over many years in the

past. This evolution is the result of a series of innovations and accumulation of experience about writing

good quality programs. Since these innovations and programming experiences are too numerous, let us

briefly examine only a few of these innovations and programming experiences which have contributed

to the development of the software engineering discipline.

Early Computer Programming

 Early commercial computers were very slow and too elementary as compared to today’s standards.

Even simple processing tasks took considerable computation time on those computers. No wonder that

programs at that time were very small in size and lacked sophistication. Those programs were usually

written in assembly languages. Program lengths were typically limited to about a few hundreds of lines

of monolithic assembly code. Every programmer developed his own individualistic style of writing

programs according to his intuition and used this style ad hoc while writing different programs. In

simple words, programmers wrote programs without formulating any proper solution strategy, plan, or

design a jump to the terminal and start coding immediately on hearing out the problem. They then went

on fixing any problems that they observed until they had a program that worked reasonably well. We

have already designated this style of programming as the build and fix (or the exploratory programming)

style.

High-level Language Programming

Computers became faster with the introduction of the semiconductor technology in the early 1960s.

Faster semiconductor transistors replaced the prevalent vacuum tube-based circuits in a computer. With

the availability of more powerful computers, it became possible to solve larger and more complex

problems. At this time, high-level languages such as FORTRAN, ALGOL, and COBOL were

introduced. This considerably reduced the effort required to develop software and helped programmers

to write larger programs (why?). Writing each high-level programming construct in effect enables the

programmer to write several machine instructions. Also, the machine details (registers, flags, etc.) are

abstracted from the programmer. However, programmers were still using the exploratory style of

software development. Typical programs were limited to sizes of around a few thousands of lines of

source code.

Control Flow-based Design

As the size and complexity of programs kept on increasing, the exploratory programming style proved

to be insufficient. Programmers found it increasingly difficult not only to write cost-effective and

correct programs, but also to understand and maintain programs written by others. To cope up with this

problem, experienced programmers advised other programmers to pay particular attention to the design

of a program’s control flow structure.

A program’s control flow structure indicates the sequence in which the program’s instructions are

executed. In order to help develop programs having good control flow structures, the flow charting

technique was developed. Even today, the flow charting technique is being used to represent and design

algorithms; though the popularity of flow charting represent and design programs has want to a great

extent due to the emergence of more advanced techniques. Figure 1.8 illustrates two alternate ways of

writing program code for the same problem. The flow chart representations for the two program

segments of Figure 1.8 are drawn in Figure 1.9. Observe that the control flow structure of the program

segment in Figure 1.9(b) is much simpler than that of Figure 1.9(a). By examining the code, it can be

seen that Figure 1.9(a) is much harder to understand as compared to Figure 1.9(b). This example

corroborates the fact that if the flow chart representation is simple, then the corresponding code should

be simple. You can draw the flow chart representations of several other problems to convince yourself

that a program with complex flow chart representation is indeed more difficult to understand and

maintain.

Let us now try to understand why a program having good control flow structure would be easier to

develop and understand. In other words, let us understand why a program with a complex flow chart

representation is difficult to understand? The main reason behind this situation is that normally one

understands a program by mentally tracing its execution sequence (i.e. statement sequences) to

understand how the output is produced from the input values. That is, we can start from a statement

producing an output, and trace back the statements in the program and understand how they produce

the output by transforming the input data. Alternatively, we may start with the input data and check by

running through the program how each statement processes (transforms) the input data until the output

is produced. For example, for the program of Fig 1.9(a) you would have to understand the execution of

the program along the paths 1-2-3-7-8-10, 1-4-5-6-9-10, and 1- 4-5-2-3-7-8-10. A program having a

messy control flow (i.e. flow chart) structure, would have a large number of execution paths (see Figure

1.10). Consequently, it would become extremely difficult to determine all the execution paths, and

tracing the execution sequence along all the paths trying to understand them can be nightmarish. It is

therefore evident that a program having a messy flow chart representation would indeed be difficult to

understand and debug.

Data Structure-oriented

Design Computers became even more powerful with the advent of integrated circuits (ICs) in the early

seventies. These could now be used to solve more complex problems. Software developers were tasked

to develop larger and more complicated software. which often required writing in excess of several tens

of thousands of lines of source code. The control flow-based program development techniques could

not be used satisfactorily any more to write those programs, and more effective program development

techniques were needed. It was soon discovered that while developing a program, it is much more

important to pay attention to the design of the important data structures of the program than to the design

of its control structure. Design techniques based on this principle are called data structure- oriented

design techniques.

Using data structure-oriented design techniques, first a program’s data structures are designed. The code

structure is designed based on the data structure.

In the next step, the program design is derived from the data structure. An example of a data structure-

oriented design technique is the Jackson’s Structured Programming (JSP) technique developed by

Michael Jackson [1975]. In JSP methodology, a program’s data structure is first designed using the

notations for sequence, selection, and iteration. The JSP methodology provides an interesting technique

to derive the program structure from its data structure representation. Several other data structure-based

design techniques were also developed. Some of these techniques became very popular and were

extensively used. Another technique that needs special mention is the Warnier-Orr Methodology [1977,

1981]. However, we will not discuss these techniques in this text because now-a-days these techniques

are rarely used in the industry and have been replaced by the data flowbased and the object-oriented

techniques.

Data Flow-oriented Design

As computers became still faster and more powerful with the introduction of very large scale integrated

(VLSI) Circuits and some new architectural concepts, more complex and sophisticated software were

needed to solve further challenging problems. Therefore, software developers looked out for more

effective techniques for designing software and soon d a t a flow-oriented techniques were proposed.

The data flow-oriented techniques advocate that the major data items handled by a system must be

identified and the processing required on these data items to produce the desired outputs should be

determined.

The functions (also called as processes) and the data items that are exchanged between the different

functions are represented in a diagram known as a data flow diagram (DFD). The program structure can

be designed from the DFD representation of the problem.

DFDs: A crucial program representation for procedural program design

DFD has proven to be a generic technique which is being used to model all types of systems, and not

just software systems. For example, Figure 1.11 shows the data-flow representation of an automated

car assembly plant. If you have never visited an automated car assembly plant, a brief description of an

automated car assembly plant would be necessary. In an automated car assembly plant, there are several

processing stations (also called workstations) which are located along side of a conveyor belt (also

called an assembly line). Each workstation is specialised to do jobs such as fitting of wheels, fitting the

engine, spray painting the car, etc. As the partially assembled program moves along the assembly line,

different workstations perform their respective jobs on the partially assembled software. Each circle in

the DFD model of Figure 1.11 represents a workstation (called a process or bubble). Each workstation

consumes certain input items and produces certain output items. As a car under assembly arrives at a

workstation, it fetches the necessary items to be fitted from the corresponding stores (represented by

two parallel horizontal lines), and as soon as the fitting work is complete passes on to the next

workstation. It is easy to understand the DFD model of the car assembly plant shown in Figure 1.11

even without knowing anything regarding DFDs. In this regard, we can say that a major advantage of

the DFDs is their simplicity.

Object-oriented Design

Data flow-oriented techniques evolved into object-oriented design (OOD) techniques in the late

seventies. Object-oriented design technique is an intuitively appealing approach, where the natural

objects (such as employees, pay-roll-register, etc.) relevant to a problem a r e first identified and then

the relationships among the objects such as composition, reference, and inheritance are determined.

Each object essentially acts as a data hiding (also known as data abstraction) entity. Object-oriented

techniques have gained wide spread acceptance because of their simplicity, the scope for code and

design reuse, promise of lower development time, lower development cost, more robust code, and easier

maintenance.

NOTABLE CHANGES IN SOFTWARE DEVELOPMENT PRACTICES

Before we discuss the details of various software engineering principles, it is worthwhile to examine

the glaring differences that you would notice when you observe an exploratory style of software

development and another development effort based on modern software engineering practices. The

following noteworthy differences between these two software development approaches would be

immediately observable.

 A significant distinction lies in the fact that the exploratory software development approach is

centred on error correction (build and fix), whereas software engineering methods prioritize

error prevention. Software engineering principles recognize the cost-effectiveness of

preventing errors, rather than correcting them later. Even when mistakes occur during

development, software engineering emphasizes error detection mainly during final product

testing. In contrast, modern software development follows well-defined stages such as

requirements specification, design, coding, and testing. Efforts are focused on identifying and

rectifying errors within the same phase in which they arise.

 In the exploratory approach, coding equated to software development. This approach aimed to

quickly build a functional system and progressively modify it until it met requirements.

Exploratory programmers would dive into coding before fully grasping the problem, often

leading to challenges. This approach proved costly for complex problems and generated hard-

to-maintain programs. Even minor changes later became difficult. In modern software

development, coding is just a fraction of the process. Other activities like design and testing

demand significant effort, acknowledging that coding is a small part of the overall development

activities.

 Considerable focus is directed toward requirements specifications in modern software

development. Substantial effort is invested in creating an accurate and clear problem

specification before commencing development activities. If the requirements specification fails

to accurately capture customer needs, extensive rework may become necessary later. This

rework leads to increased development costs and customer dissatisfaction.

 Now there is a distinct design phase where standard design techniques are employed to yield

coherent and complete design models.

 Periodic reviews are being carried out during all stages of the development process. The main

objective of carrying out reviews is phase containment of errors, i.e. detect and correct errors

as soon as possible. Phase containment of errors is an important software engineering principle.

 Today, software testing has become very systematic and standard testing techniques are

available. Testing activity has also become all encompassing, as test cases are being developed

right from the requirements specification stage.

 There is better visibility of the software through various developmental activities.

 By visibility we mean production of good quality, consistent and peer reviewed documents at

the end of every software development activity.

 In the past, very little attention was being paid to producing good quality and consistent

documents. In the exploratory style, the design and test activities, even if carried out (in

whatever way), were not documented satisfactorily. Today, consciously good quality

documents are being developed during software development. This has made fault diagnosis

and maintenance far smoother.

 Presently, projects undergo meticulous planning to ensure seamless development activities and

resource availability. Project planning encompasses estimating, scheduling resources, and

creating tracking plans. Various techniques and automation tools, such as configuration

management and scheduling tools, are employed for efficient software project management.

 Several metrics (quantitative measurements) of the products and the product development

activities are being collected to help in software project management and software quality

assurance.

COMPUTER SYSTEMS ENGINEERING

Throughout our discussions, we've assumed the software is designed for general-purpose hardware like

computers or servers. However, in various scenarios, specialized hardware is necessary for software

execution. Instances include robots, factory automation, and cell phones. Cell phones, for instance,

possess unique processors and devices like speakers. These systems exclusively run tailored programs.

Creating such systems involves both software and hardware development, a realm known as computer

systems engineering. Systems engineering encompasses software engineering while addressing the

development of systems requiring dedicated hardware and software integration.

The general model of systems engineering is shown schematically in Figure 1.13. One of the important

stages in systems engineering i s the stage in which decision is made regarding the parts of the problems

that are to be implemented in hardware and the ones that would be implemented in software. This has

been represented by the box captioned hardware-software partitioning in Figure 1.13. While partitioning

the functions between hardware and software, several trade-offs such as flexibility, cost, speed of

operation, etc., need to be considered. The functionality implemented in hardware run faster. On the

other hand, functionalities implemented in software is easier to extend. Further, it is difficult to

implement complex functions in hardware. Also, functions implemented in hardware incur extra space,

weight, manufacturing cost, and power overhead.

After the hardware-software partitioning stage, development of hardware and software are carried out

concurrently (shown as concurrent branches in Figure 1.13). In system engineering, testing the software

during development becomes a tricky issue, the hardware on which the software would run and tested

would still be under development—remember that the hardware and the software are being developed

at the same time. To test the software during development, it usually becomes necessary to develop

simulators that mimic the features of the hardware being developed. The software is tested using these

simulators. Once both hardware and software development are complete, these are integrated and tested.

The project management activity is required throughout the duration of system development as shown

in Figure 1.13.

SOFTWARE LIFE CYCLE MODELS

A FEW BASIC CONCEPTS

In this section, we present a few basic concepts concerning the life cycle models.

Software life cycle

It is well known that all living organisms undergo a life cycle. For example, when a seed is planted, it

germinates, grows into a full tree, and finally dies. Based on this concept of a biological life cycle, the

term software life cycle has been defined to imply the different stages (or phases) over which a software

evolves from an initial customer request for it, to a fully developed software, and finally to a stage

where it is no longer useful to any user, and then it is discarded.

As we have already pointed out, the life cycle of every software starts with a request for it by one or

more customers. At this stage, the customers are usually not clear about all the features that would be

needed, neither can they completely describe the identified features in concrete terms, and can only

vaguely describe what is needed. This stage where the customer feels a need for the software and forms

rough ideas about the required features is known as the inception stage. Starting with the inception

stage, a software evolves through a series of identifiable stages (also called phases) on account of the

development activities carried out by the developers, until it is fully developed and is released to the

customers.

Once installed and made available for use, the users start to use the software. This signals the start of

the operation (also called maintenance) phase. As the users use the software, not only do they request

for fixing any failures that they might encounter, but they also continually suggest several

improvements and modifications to the software. Thus, the maintenance phase usually involves

continually making changes to the software to accommodate the bug-fix and change requests from the

user. The operation phase is usually the longest of all phases and constitutes the useful life of a software.

Finally, the software is retired, when the users do not find it any longer useful due to reasons such as

changed business scenario, availability of a new software having improved features and working,

changed computing platforms, etc. This forms the essence of the life cycle of every software. Based on

this description, we can define the software life cycle as follows:

The life cycle of a software represents the series of identifiable stages through which it evolves during

its life time.

With this knowledge of a software life cycle, we discuss the concept of a software life cycle model and

explore why it is necessary to follow a life cycle model in professional software development

environments.

Software development life cycle (SDLC) model

In any systematic software development scenario, certain well-defined activities need to be performed

by the development team and possibly by the customers as well, for the software to evolve from one

stage in its life cycle to the next. For example, for a software to evolve from the requirements

specification stage to the design stage, the developers need to elicit requirements from the customers,

analyse those requirements, and formally document the requirements in the form of an SRS document.

A software development life cycle (SDLC) model (also called software life cycle model and software

development process model) describes the different activities that need to be carried out for the software

to evolve in its life cycle. Throughout our discussion, we shall use the terms software development life

cycle (SDLC) and software development process interchangeably. However, some authors distinguish

an SDLC from a software development process. In their usage, a software development process

describes the life cycle activities more precisely and elaborately, as compared to an SDLC. Also, a

development process may not only describe various activities that are carried out over the life cycle,

but also prescribe a specific methodology to carry out the activities, and also recommends the the

specific documents and other artifacts that should be produced at the end of each phase. In this sense,

the term SDLC can be considered to be a more generic term, as compared to the development process

and several development processes may fit the same SDLC.

An SDLC is represented graphically by drawing various stages of the life cycle and showing the

transitions among the phases. This graphical model is usually accompanied by a textual description of

various activities that need to be carried out during a phase before that phase can be considered to be

complete. In simple words, we can define an SDLC as follows:

An SDLC graphically depicts the different phases through which a software evolves. It is usually

accompanied by a textual description of the different activities that need to be carried out during each

phase.

Process versus methodology

Though the terms process a n d methodology are at time used interchangeably, there is a subtle

difference between the two. First, the term process has a broader scope and addresses either all the

activities taking place during software development, or certain coarse grained activities such as design

(e.g. design process), testing (test process), etc. Further, a software process not only identifies the

specific activities that need to be carried out, but may also prescribe certain methodology for carrying

out each activity. For example, a design process may recommend that in the design stage, the high-level

design activity be carried out using Hatley and Pirbhai’s structured analysis and design methodology.

A methodology, on the other hand, prescribes a set of steps for carrying out a specific life cycle activity.

It may also include the rationale and philosophical assumptions behind the set of steps through which

the activity is accomplished.

A software development process has a much broader scope as compared to a software development

methodology. A process usually describes all the activities starting from the inception of a software to

its maintenance and retirement stages, or at least a chunk of activities in the life cycle. It also

recommends specific methodologies for carrying out each activity. A methodology, in contrast,

describes the steps to carry out only a single or at best a few individual activities.

Why use a development process?

The primary advantage of using a development process is that it encourages development of software

in a systematic and disciplined manner. Adhering to a process is especially important to the

development of professional software needing team effort. When software is developed by a team rather

than by an individual programmer, use of a life cycle model becomes indispensable for successful

completion of the project.

Software development organisations have realised that adherence to a suitable life cycle model helps to

produce good quality software and that helps minimise the chances of time and cost overruns.

Suppose a single programmer is developing a small program. For example, a student may be developing

code for a class room assignment. The student might succeed even when he does not strictly follow a

specific development process and adopts a build and fix style of development. However, it is a different

ball game when a professional software is being developed by a team of programmers. Let us now

understand the difficulties that may arise if a team does not use any development process, and the team

members are given complete freedom to develop their assigned part of the software as per their own

discretion. Several types of problems may arise. We illustrate one of the problems using an example.

Suppose, a software development problem has been divided into several parts and these parts are

assigned to the team members. From then on, suppose the team members are allowed the freedom to

develop the parts assigned to them in whatever way they like. It is possible that one member might start

writing the code for his part while making assumptions about the input results required from the other

parts, another might decide to prepare the test documents first, and some other developer might start to

carry out the design for the part assigned to him. In this case, severe problems can arise in interfacing

the different parts and in managing the overall development. Therefore, ad hoc development turns out

to be is a sure way to have a failed project. Believe it or not, this is exactly what has caused many project

failures in the past!

When a software is developed by a team, it is necessary to have a precise understanding among the

team members as to—when to do what. In the absence of such an understanding, if each member at any

time would do whatever activity he feels like doing. This would be an open invitation to developmental

chaos and project failure. The use of a suitable life cycle model is crucial to the successful completion

of a team-based development project. But, do we need an SDLC model for developing a small program.

In this context, we need to distinguish between programming-in-the-small and programming-in-the-

large.

Programming-in-the-small refers to development of a toy program by a single programmer. Whereas

programming-in-the-large refers to development of a professional software through team effort. While

development of a software of the former type could succeed even while an individual programmer uses

a build and fix style of development, use of a suitable SDLC is essential for a professional software

development project involving team effort to succeed.

Why document a development process?

It is not enough for an organisation to just have a well-defined development process, but the

development process needs to be properly documented. To understand the reason for this, let us consider

that a development organisation does not document its development process. In this case, its developers

develop o n l y an informal understanding of the development process. An informal understanding of

the development process among the team members can create several problems during development.

We have identified a few important problems that may crop up when a development process is not

adequately documented. Those problems are as follows:

 A well-documented process model precisely outlines each activity in the life cycle. It also

describes methodologies for conducting these activities when necessary. Without proper

documentation, activity sequences can become unclear, leading to confusion among different

teams. For instance, code reviews might lack structure without documented methods. Loose

definitions prompt subjective judgments. For instance, when to design test cases or whether to

document and rigorously detail them becomes a matter of debate. Clear documentation is

crucial to avoid such challenges and maintain consistency in software development processes.

 An undocumented process gives a clear indication to the members of the development teams

about the lack of seriousness on the part of the management of the organisation about following

the process. Therefore, an undocumented process serves as a hint to the developers to loosely

follow the process. The symptoms of an undocumented process are easily visible—designs are

shabbily done, reviews are not carried out rigorously, etc.

 A project team might often have to tailor a standard process model for use in a specific project.

It is easier to tailor a documented process model, when it is required to modify certain activities

or phases of the life cycle. For example, consider a project situation that requires the testing

activities to be outsourced to another organisation. In this case, a documented process model

would help to identify where exactly the required tailoring should occur.

 A documented process model, as we discuss later, is a mandatory requirement of the modern

quality assurance standards such as ISO 9000 and SEI CMM. This means that unless a software

organisation has a documented process, it would not qualify for accreditation with any of the

quality standards. In the absence of a quality certification for the organisation, the customers

would be suspicious of its capability of developing quality software and the organisation might

find it difficult to win tenders for software development.

A documented development process forms a common understanding of the activities to be carried

out among the software developers and helps them to develop software in a systematic and

disciplined manner. A documented development process model, besides preventing the

misinterpretations that might occur when the development process is not adequately documented,

also helps to identify inconsistencies, redundancies, and omissions in the development process.

WATERFALL MODEL AND ITS EXTENSIONS

The waterfall model and its derivatives were extremely popular in the 1970s and still are heavily

being used across many development projects. The waterfall model is possibly the most obvious

and intuitive way in which software can be developed through team effort. We can think of the

waterfall model as a generic model that has been extended in many ways for catering to certain

specific software development situations to realise all other software life cycle models. For this

reason, after discussing the classical and iterative waterfall models, we discuss its various

extensions.

Classical Waterfall Model

Classical waterfall model is intuitively the most obvious way to develop software. It is simple but

idealistic. In fact, it is hard to put this model into use in any non-trivial software development

project. One might wonder if this model is hard to use in practical development projects, then why

study it at all? The reason is that all other life cycle models can be thought of as being extensions

of the classical waterfall model. Therefore, it makes sense to first understand the classical waterfall

model, in order to be able to develop a proper understanding of other life cycle models.

The classical waterfall model divides the life cycle into a set of phases as shown in Figure 2.1. It

can be easily observed from this figure that the diagrammatic representation of the classical

waterfall model resembles a multi-level waterfall. This resemblance justifies the name of the model.

Phases of the classical waterfall model

The different phases of the classical waterfall model have been shown in Figure 2.1. As shown in

Figure 2.1, the different phases are—feasibility study, requirements analysis and specification,

design, coding and unit testing, integration and system testing, and maintenance. The phases starting

from the feasibility study to the integration and system testing phase are known as the development

phases. A software is developed during the development phases, and at the completion of the

development phases, the software is delivered to the customer. After the delivery of software,

customers start to use the software signalling the commencement of the operation phase. As the

customers start to use the software, changes to it become necessary on account of bug fixes and

feature extensions, causing maintenance works to be undertaken. Therefore, the last phase is also

known as the maintenance phase of the life cycle. An activity that spans all phases of software

development is project management. Since it spans the entire project duration, no specific phase is

named after it. Project management, nevertheless, is an important activity in the life cycle and deals

with managing t h e software development and maintenance activities.

In the waterfall model, different life cycle phases typically require relatively different amounts of

efforts to be put in by the development team. The relative amounts of effort spent on different

phases for a typical software has been shown in Figure 2.2. Observe from Figure 2.2 that among all

the life cycle phases, the maintenance phase normally requires the maximum effort. On the average,

about 60 per cent of the total effort put in by the development team in the entire life cycle is spent

on the maintenance activities alone.

However, among the development phases, the integration and system testing phase requires the

maximum effort in a typical development project. In the following subsection, we briefly describe

the activities that are carried out in the different phases of the classical waterfall model.

Feasibility study

The main focus of the feasibility study stage is to determine whether it would be financially and

technically feasible to develop the software. The feasibility study involves carrying out several

activities such as collection of basic information relating to the software such as the different data

items that would be input to the system, the processing required to be carried out on these data, the

output data required to be produced by the system, as well as various constraints on the

development. These collected data are analysed to perform at the following:

Development of an overall understanding of the problem: It is necessary to first develop an

overall understanding of what the customer requires to be developed. For this, only the the

important requirements of the customer need to be understood and the details of various

requirements such as the screen layouts required in the graphical user interface (GUI), specific

formulas or algorithms required for producing the required results, and the databases schema to be

used are ignored.

Formulation of the various possible strategies for solving the problem: In this activity, various

possible high-level solution schemes to the problem are determined. For example, solution in a

client-server framework and a standalone application framework may be explored.

Evaluation of the different solution strategies: The different identified solution schemes are

analysed to evaluate their benefits and shortcomings. Such evaluation often requires making

approximate estimates of the resources required, cost of development, and development time

required. The different solutions are compared based on the estimations that have been worked out.

Once the best solution is identified, all activities in the later phases are carried out as per this

solution. At this stage, it may also be determined that none of the solutions is feasible due to high

cost, resource constraints, or some technical reasons. This scenario would, of course, require the

project to be abandoned.

We can summarise the outcome of the feasibility study phase by noting that other than deciding

whether to take up a project or not, at this stage very high-level decisions regarding the solution

strategy is defined. Therefore, feasibility study is a very crucial stage in software development.

Requirements analysis and specification

The aim of the requirements analysis and specification phase is to understand the exact requirements

of the customer and to document them properly. This phase consists of two distinct activities,

namely requirements gathering and analysis, and requirements specification. In the following

subsections, we give an overview of these two activities:

 Requirements gathering and analysis: The goal of the requirements gathering activity is

to collect all relevant information regarding the software to be developed from the customer

with a view to clearly understand the requirements. For this, first requirements are gathered

from the customer and then the gathered requirements are analysed. The goal of the

requirements analysis activity is to weed out the incompleteness and inconsistencies in

these gathered requirements. Note that a n inconsistent requirement is one in which some

part of the requirement contradicts with some other part. On the other hand, a n incomplete

requirement is one in which some parts of the actual requirements have been omitted.

 Requirements specification: After the requirement gathering and analysis activities are

complete, the identified requirements are documented. This is called a software

requirements specification (SRS) document. The SRS document is written using end-user

terminology. This makes the SRS document understandable to the customer. Therefore,

understandability of the SRS document is an important issue. The SRS document normally

serves as a contract between the development team and the customer. Any future dispute

between the customer and the developers can be settled by examining the SRS document.

The SRS document is therefore an important document which must be thoroughly

understood by the development team, and reviewed jointly with the customer. The SRS

document not only forms the basis for carrying out all the development activities, but

several documents such as users’ manuals, system test plan, etc. are prepared directly based

on it.

Design

The goal of the design phase is to transform the requirements specified in the SRS document into a

structure that is suitable for implementation in some programming language. In technical terms, during

the design phase the software architecture is derived from the SRS document. Two distinctly different

design approaches are popularly being used at present—the procedural and object-oriented design

approaches.

 Procedural design approach: The traditional design approach is in use in many software

development projects at the present time. This traditional design technique is based on the data

flow-oriented design approach. It consists of two important activities; first structured analysis

of the requirements specification is carried out where the detailed structure of the problem is

examined. This is followed by a structured design step where the results of structured analysis

are transformed into the software design.

 Object-oriented design approach: In this technique, various objects that occur in the problem

domain and the solution domain are first identified and the different relationships that exist

among these objects are identified. The object structure is further refined to obtain the detailed

design. The OOD approach is credited to have several benefits such as lower development time

and effort, and better maintainability of the software.

Coding and unit testing

The purpose of the coding and unit testing phase is to translate a software design into source code and

to ensure that individually each function is working correctly. The coding phase is also sometimes called

t h e implementation phase, since the design is implemented into a workable solution in this phase. Each

component of the design is implemented as a program module. The end-product of this phase is a set

of program modules that have been individually unit tested. The main objective of unit testing is to

determine the correct working of the individual modules. The specific activities carried out during unit

testing include designing test cases, testing, debugging to fix problems, and management of test cases.

Integration and system testing

Integration testing is carried out to verify that the interfaces among different units are working

satisfactorily. On the other hand, the goal of system testing is to ensure that the developed system

conforms to the requirements that have been laid out in the SRS document.

System testing usually consists of three different kinds of testing activities:

 𝜶-testing: testing is the system testing performed by the development team.

 𝜷-testing: This is the system testing performed by a friendly set of customers.

 Acceptance testing: After the software has been delivered, the customer performs system

testing to determine whether to accept the delivered software or to reject it.

Maintenance

The total effort spent on maintenance of a typical software during its operation phase is much more than

that required for developing the software itself. Many studies carried out in the past confirm this and

indicate that the ratio of relative effort of developing a typical software product and the total effort spent

on its maintenance is roughly 40:60. Maintenance is required in the following three types of situations:

 Corrective maintenance: This type of maintenance is carried out to correct errors that were

not discovered during the product development phase.

 Perfective maintenance: This type of maintenance is carried out to improve the performance

of the system, or to enhance the functionalities of the system based on customer’s requests.

 Adaptive maintenance: Adaptive maintenance is usually required for porting the software to

work in a new environment. For example, porting may be required to get the software to work

on a new computer platform or with a new operating system.

Iterative Waterfall Model

The main change brought about by the iterative waterfall model to the classical waterfall model is in

the form of providing feedback paths from every phase to its preceding phases.

The feedback paths introduced by the iterative waterfall model are shown in Figure 2.3. The feedback

paths allow for correcting errors committed by a programmer during some phase, as and when these are

detected in a later phase. For example, if during the testing phase a design error is identified, then the

feedback path allows the design to be reworked and the changes to be reflected in the design documents

and all other subsequent documents. Please notice that in Figure 2.3 there is no feedback path to the

feasibility stage. This is because once a team having accepted to take up a project, does not give up the

project easily due to legal and moral reasons.

Phase containment of errors

Programmers, despite their caution, can make mistakes during lifecycle activities, leading to errors or

bugs in their work. Detecting these errors early, ideally in the same phase they occur, minimizes

correction time and effort. Early identification in design prevents more complex issues during later

stages like testing. Prompt error detection is cost-effective, although catching all errors in the same

phase isn't always feasible. Regardless, early error detection remains crucial.

The principle of detecting errors as close to their points of commitment as possible is known as phase

containment of errors.

For achieving phase containment of errors, how can the developers detect almost all error that they

commit in the same phase? After all, the end product of many phases are text or graphical documents,

e.g. SRS document, design document, test plan document, etc. A popular technique is to rigorously

review the documents produced at the end of a phase.

Phase overlap

Even though the strict waterfall model envisages sharp transitions to occur from one phase to the next

(see Figure 2.3), in practice the activities of different phases overlap (as shown in Figure 2.4) due to

two main reasons:

 In spite of the best effort to detect errors in the same phase in which they are committed, some

errors escape detection and are detected in a later phase. These subsequently detected errors

cause the activities of some already completed phases to be reworked. If we consider such

rework after a phase is complete, we can say that the activities pertaining to a phase do not end

at the completion of the phase, but overlap with other phases as shown in Figure 2.4.

 Phase overlap is common due to task distribution among team members. If strictly sequential

phases are followed, early finishers wait for others, causing inefficiency, resource wastage, and

cost escalation. To avoid this, in actual projects, phases overlap. Developers move to the next

phase after completing their tasks, instead of waiting for all teammates to finish.

Considering these situations, the effort distribution for different phases with time would be as shown in

Figure 2.4.

Shortcomings of the iterative waterfall model The iterative waterfall model is a simple and intuitive

software development model. It was used satisfactorily during 1970s and 1980s. However, the

characteristics of software development projects have changed drastically over years. In the 1970s and

1960s, software development projects spanned several years and mostly involved generic software

product development. The projects are now shorter, and involve Customised software development.

Further, software was earlier developed from scratch. Now the emphasis is on as much reuse of code

and other project artifacts as possible. Waterfall-based models have worked satisfactorily over last many

years in the past. The situation has changed substantially now. As pointed out in the first chapter several

decades back, every software was developed from scratch. Now, not only software has become very

large and complex, very few (if at all any) software project is being developed from scratch. The

software services (customised software) are poised to become the dominant types of projects. In the

present software development projects, use of waterfall model causes several problems. In this context,

the agile models have been proposed about a decade back that attempt to overcome the important

shortcomings of the waterfall model by suggesting certain radical modification to the waterfall style of

software development.

The Rapid Application Development Model (RAD)

The Rapid Application Development Model was first proposed by IBM in the 1980s. The RAD model

is a type of incremental process model in which there is extremely short development cycle. When the

requirements are fully understood and the component-based construction approach is adopted then the

RAD model is used. Various phases in RAD are Requirements Gathering, Analysis and Planning,

Design, Build or Construction, and finally Deployment.

The critical feature of this model is the use of powerful development tools and techniques. A software

project can be implemented using this model if the project can be broken down into small modules

wherein each module can be assigned independently to separate teams. These modules can finally be

combined to form the final product. Development of each module involves the various basic steps as

in the waterfall model i.e. analyzing, designing, coding, and then testing, etc. as shown in the figure.

Another striking feature of this model is a short time span i.e. the time frame for delivery(time-box) is

generally 60-90 days.

Multiple teams work on developing the software system using RAD model parallely.

The use of powerful developer tools such as JAVA, C++, Visual BASIC, XML, etc. is also an integral

part of the projects. This model consists of 4 basic phases:

1. Requirements Planning – It involves the use of various techniques used in requirements

elicitation like brainstorming, task analysis, form analysis, user scenarios, FAST (Facilitated

Application Development Technique), etc. It also consists of the entire structured plan

describing the critical data, methods to obtain it, and then processing it to form a final refined

model.

2. User Description – This phase consists of taking user feedback and building the prototype

using developer tools. In other words, it includes re-examination and validation of the data

collected in the first phase. The dataset attributes are also identified and elucidated in this

phase.

3. Construction – In this phase, refinement of the prototype and delivery takes place. It includes

the actual use of powerful automated tools to transform processes and data models into the

final working product. All the required modifications and enhancements are too done in this

phase.

4. Cutover – All the interfaces between the independent modules developed by separate teams

have to be tested properly. The use of powerfully automated tools and subparts makes testing

easier. This is followed by acceptance testing by the user.

The process involves building a rapid prototype, delivering it to the customer, and taking feedback.

After validation by the customer, the SRS document is developed and the design is finalized.

When to use RAD Model?

When the customer has well-known requirements, the user is involved throughout the life cycle, the

project can be time-boxed, the functionality delivered in increments, high performance is not required,

low technical risks are involved and the system can be modularized. In these cases, we can use the

RAD Model. when it is necessary to design a system that can be divided into smaller units within two

to three months. when there is enough money in the budget to pay for both the expense of automated

tools for code creation and designers for modeling.

Advantages:

 The use of reusable components helps to reduce the cycle time of the project.

 Feedback from the customer is available at the initial stages.

 Reduced costs as fewer developers are required.

 The use of powerful development tools results in better quality products in comparatively

shorter time spans.

 The progress and development of the project can be measured through the various stages.

 It is easier to accommodate changing requirements due to the short iteration time spans.

 Productivity may be quickly boosted with a lower number of employees.

Disadvantages:

 The use of powerful and efficient tools requires highly skilled professionals.

 The absence of reusable components can lead to the failure of the project.

 The team leader must work closely with the developers and customers to close the project on

time.

 The systems which cannot be modularized suitably cannot use this model.

 Customer involvement is required throughout the life cycle.

 It is not meant for small-scale projects as in such cases, the cost of using automated tools and

techniques may exceed the entire budget of the project.

 Not every application can be used with RAD.

Applications:

1. This model should be used for a system with known requirements and requiring a short

development time.

2. It is also suitable for projects where requirements can be modularized and reusable

components are also available for development.

3. The model can also be used when already existing system components can be used in

developing a new system with minimum changes.

4. This model can only be used if the teams consist of domain experts. This is because relevant

knowledge and the ability to use powerful techniques are a necessity.

5. The model should be chosen when the budget permits the use of automated tools and

techniques required.

Drawbacks of rapid application development:

 It requires multiple teams or a large number of people to work on the scalable projects.

 This model requires heavily committed developer and customers. If commitment is lacking

then RAD projects will fail.

 The projects using RAD model requires heavy resources.

 If there is no appropriate modularization then RAD projects fail. Performance can be problem

to such projects.

 The projects using RAD model find it difficult to adopt new technologies.

Agile Development Models

In earlier days, the Iterative Waterfall Model was very popular for completing a project. But nowadays,

developers face various problems while using it to develop software. The main difficulties included

handling customer change requests during project development and the high cost and time required to

incorporate these changes. To overcome these drawbacks of the Waterfall Model, in the mid-1990s

the Agile Software Development model was proposed.

The Agile Model was primarily designed to help a project adapt quickly to change requests. So, the

main aim of the Agile model is to facilitate quick project completion. To accomplish this task, agility

is required. Agility is achieved by fitting the process to the project and removing activities that may not

be essential for a specific project. Also, anything that is a waste of time and effort is avoided.

The Agile Model refers to a group of development processes. These processes share some basic

characteristics but do have certain subtle differences among themselves.

Agile SDLC Models/Methods

 Models: Crystal Agile methodology places a strong emphasis on fostering effective

communication and collaboration among team members, as well as taking into account the

human elements that are crucial for a successful development process. This methodology is

particularly beneficial for projects with a high degree of uncertainty, where requirements tend

to change frequently.

 Atern: This methodology is tailored for projects with moderate to high uncertainty where

requirements are prone to change frequently. Its clear-cut roles and responsibilities focus on

delivering working software in short time frames. Governance practices set it apart and make

it an effective approach for teams and projects.

 Feature-driven development: This approach is implemented by utilizing a series of

techniques, like creating feature lists, conducting model evaluations, and implementing a

design-by-feature method, to meet its goal. This methodology is particularly effective in

ensuring that the end product is delivered on time and that it aligns with the requirements of the

customer.

 Scrum: This methodology serves as a framework for tackling complex projects and ensuring

their successful completion. It is led by a Scrum Master, who oversees the process, and a

Product Owner, who establishes the priorities. The Development Team, accountable for

delivering the software, is another key player.

 Extreme programming (XP): It uses specific practices like pair programming, continuous

integration, and test-driven development to achieve these goals. Extreme programming is ideal

for projects that have high levels of uncertainty and require frequent changes, as it allows for

quick adaptation to new requirements and feedback.

 Lean Development: It is rooted in the principles of lean manufacturing and aims to streamline

the process by identifying and removing unnecessary steps and activities. This is achieved

through practices such as continuous improvement, visual management, and value stream

mapping, which helps in identifying areas of improvement and implementing changes

accordingly.

 Unified Process: Unified Process is a methodology that can be tailored to the specific needs of

any given project. It combines elements of both waterfall and Agile methodologies, allowing

for an iterative and incremental approach to development. This means that the UP is

characterized by a series of iterations, each of which results in a working product increment,

allowing for continuous improvement and the delivery of value to the customer.

All Agile methodologies discussed above share the same core values and principles, but they may differ

in their implementation and specific practices. Agile development requires a high degree of

collaboration and communication among team members, as well as a willingness to adapt to changing

requirements and feedback from customers.

In the Agile model, the requirements are decomposed into many small parts that can be incrementally

developed. The Agile model adopts Iterative development. Each incremental part is developed over an

iteration. Each iteration is intended to be small and easily manageable and can be completed within a

couple of weeks only. At a time one iteration is planned, developed, and deployed to the customers.

Long-term plans are not made.

Steps in the Agile Model

The agile model is a combination of iterative and incremental process models. The steps involve in

agile SDLC models are:

 Requirement gathering

 Design the Requirements

 Construction / Iteration

 Testing / Quality Assurance

 Deployment

 Feedback

Steps in Agile Model

1. Requirement Gathering: In this step, the development team must gather the requirements, by

interaction with the customer. development team should plan the time and effort needed to build the

project. Based on this information you can evaluate technical and economic feasibility.

2. Design the Requirements: In this step, the development team will use user-flow-diagram or high-

level UML diagrams to show the working of the new features and show how they will apply to the

existing software. Wire framing and designing user interfaces are done in this phase.

3. Construction / Iteration: In this step, development team members start working on their project,

which aims to deploy a working product.

4. Testing / Quality Assurance: Testing involves Unit Testing, Integration Testing, and System

Testing. A brief introduction of these three tests is as follows:

5. Unit Testing: Unit testing is the process of checking small pieces of code to ensure that the individual

parts of a program work properly on their own. Unit testing is used to test individual blocks (units) of

code.

 Integration Testing: Integration testing is used to identify and resolve any issues that may

arise when different units of the software are combined.

 System Testing: Goal is to ensure that the software meets the requirements of the users and

that it works correctly in all possible scenarios.

5. Deployment: In this step, the development team will deploy the working project to end users.

6. Feedback: This is the last step of the Agile Model. In this, the team receives feedback about the

product and works on correcting bugs based on feedback provided by the customer.

The time required to complete an iteration is known as a Time Box. Time-box refers to the maximum

amount of time needed to deliver an iteration to customers. So, the end date for an iteration does not

change. However, the development team can decide to reduce the delivered functionality during a Time-

box if necessary to deliver it on time. The Agile model’s central principle is delivering an increment to

the customer after each Time-box.

Principles of the Agile Model

 To establish close contact with the customer during development and to gain a clear

understanding of various requirements, each Agile project usually includes a customer

representative on the team. At the end of each iteration stakeholders and the customer

representative review, the progress made and re-evaluate the requirements.

 The agile model relies on working software deployment rather than comprehensive

documentation.

 Frequent delivery of incremental versions of the software to the customer representative in

intervals of a few weeks.

 Requirement change requests from the customer are encouraged and efficiently incorporated.

 It emphasizes having efficient team members and enhancing communications among them is

given more importance. It is realized that improved communication among the development

team members can be achieved through face-to-face communication rather than through the

exchange of formal documents.

 It is recommended that the development team size should be kept small (5 to 9 people) to help

the team members meaningfully engage in face-to-face communication and have a

collaborative work environment.

 The agile development process usually deploys Pair Programming. In Pair programming, two

programmers work together at one workstation. One does coding while the other reviews the

code as it is typed in. The two programmers switch their roles every hour or so.

Characteristics of the Agile Process

 Agile processes must be adaptable to technical and environmental changes. That means if any

technological changes occur, then the agile process must accommodate them.

 The development of agile processes must be incremental. That means, in each development,

the increment should contain some functionality that can be tested and verified by the customer.

 The customer feedback must be used to create the next increment of the process.

 The software increment must be delivered in a short span of time.

 It must be iterative so that each increment can be evaluated regularly.

When To Use the Agile Model?

 When frequent modifications need to be made, this method is implemented.

 When a highly qualified and experienced team is available.

 When a customer is ready to have a meeting with the team all the time.

 when the project needs to be delivered quickly.

 Projects with few regulatory requirements or not certain requirements.

 projects utilizing a less-than-strict current methodology

 Those undertakings where the product proprietor is easily reachable

 Flexible project schedules and budgets.

Advantages of the Agile Model

 Working through Pair programming produces well-written compact programs which have

fewer errors as compared to programmers working alone.

 It reduces the total development time of the whole project.

 Agile development emphasizes face-to-face communication among team members, leading to

better collaboration and understanding of project goals.

 Customer representatives get the idea of updated software products after each iteration. So, it

is easy for him to change any requirement if needed.

 Agile development puts the customer at the center of the development process, ensuring that

the end product meets their needs.

Disadvantages of the Agile Model

 The lack of formal documents creates confusion and important decisions taken during different

phases can be misinterpreted at any time by different team members.

 It is not suitable for handling complex dependencies.

 The agile model depends highly on customer interactions so if the customer is not clear, then

the development team can be driven in the wrong direction.

 Agile development models often involve working in short sprints, which can make it difficult

to plan and forecast project timelines and deliverables. This can lead to delays in the project

and can make it difficult to accurately estimate the costs and resources needed for the project.

 Agile development models require a high degree of expertise from team members, as they need

to be able to adapt to changing requirements and work in an iterative environment. This can be

challenging for teams that are not experienced in agile development practices and can lead to

delays and difficulties in the project.

 Due to the absence of proper documentation, when the project completes and the developers

are assigned to another project, maintenance of the developed project can become a problem.

SPIRAL MODEL

The Spiral Model is one of the most important Software Development Life Cycle models, which

provides support for Risk Handling. In its diagrammatic representation, it looks like a spiral with many

loops. The exact number of loops of the spiral is unknown and can vary from project to project. Each

loop of the spiral is called a Phase of the software development process.

The exact number of phases needed to develop the product can be varied by the project manager

depending upon the project risks. As the project manager dynamically determines the number of phases,

the project manager has an important role to develop a product using the spiral model.

The Spiral Model is a Software Development Life Cycle (SDLC) model that provides a systematic

and iterative approach to software development. It is based on the idea of a spiral, with each iteration

of the spiral representing a complete software development cycle, from requirements gathering and

analysis to design, implementation, testing, and maintenance.

What Are the Phases of Spiral Model?

The Spiral Model is a risk-driven model, meaning that the focus is on managing risk through multiple

iterations of the software development process. It consists of the following phases:

 Planning: The first phase of the Spiral Model is the planning phase, where the scope of the

project is determined and a plan is created for the next iteration of the spiral.

 Risk Analysis: In the risk analysis phase, the risks associated with the project are identified

and evaluated.

 Engineering: In the engineering phase, the software is developed based on the requirements

gathered in the previous iteration.

 Evaluation: In the evaluation phase, the software is evaluated to determine if it meets the

customer’s requirements and if it is of high quality.

 Planning: The next iteration of the spiral begins with a new planning phase, based on the results

of the evaluation.

 The Spiral Model is often used for complex and large software development projects, as it

allows for a more flexible and adaptable approach to software development. It is also well-

suited to projects with significant uncertainty or high levels of risk.

The Radius of the spiral at any point represents the expenses(cost) of the project so far, and the angular

dimension represents the progress made so far in the current phase.

Each phase of the Spiral Model is divided into four quadrants as shown in the above figure. The

functions of these four quadrants are discussed below-

 Objectives determination and identify alternative solutions: Requirements are gathered

from the customers and the objectives are identified, elaborated, and analyzed at the start of

every phase. Then alternative solutions possible for the phase are proposed in this quadrant.

 Identify and resolve Risks: During the second quadrant, all the possible solutions are

evaluated to select the best possible solution. Then the risks associated with that solution are

identified and the risks are resolved using the best possible strategy. At the end of this quadrant,

the Prototype is built for the best possible solution.

 Develop the next version of the Product: During the third quadrant, the identified features

are developed and verified through testing. At the end of the third quadrant, the next version of

the software is available.

 Review and plan for the next Phase: In the fourth quadrant, the Customers evaluate the so-

far developed version of the software. In the end, planning for the next phase is started.

Risk Handling in Spiral Model

A risk is any adverse situation that might affect the successful completion of a software project. The

most important feature of the spiral model is handling these unknown risks after the project has started.

Such risk resolutions are easier done by developing a prototype. The spiral model supports coping with

risks by providing the scope to build a prototype at every phase of software development.

The Prototyping Model also supports risk handling, but the risks must be identified completely before

the start of the development work of the project. But in real life, project risk may occur after the

development work starts, in that case, we cannot use the Prototyping Model. In each phase of the Spiral

Model, the features of the product dated and analyzed, and the risks at that point in time are identified

and are resolved through prototyping. Thus, this model is much more flexible compared to other SDLC

models.

Why Spiral Model is called Meta Model?

The Spiral model is called a Meta-Model because it subsumes all the other SDLC models. For example,

a single loop spiral actually represents the Iterative Waterfall Model. The spiral model incorporates the

stepwise approach of the Classical Waterfall Model. The spiral model uses the approach of

the Prototyping Model by building a prototype at the start of each phase as a risk-handling technique.

Also, the spiral model can be considered as supporting the Evolutionary model – the iterations along

the spiral can be considered as evolutionary levels through which the complete system is built.

Advantages of the Spiral Model

Below are some advantages of the Spiral Model.

 Risk Handling: The projects with many unknown risks that occur as the development

proceeds, in that case, Spiral Model is the best development model to follow due to the risk

analysis and risk handling at every phase.

 Good for large projects: It is recommended to use the Spiral Model in large and complex

projects.

 Flexibility in Requirements: Change requests in the Requirements at a later phase can be

incorporated accurately by using this model.

 Customer Satisfaction: Customers can see the development of the product at the early phase

of the software development and thus, they habituated with the system by using it before

completion of the total product.

 Iterative and Incremental Approach: The Spiral Model provides an iterative and incremental

approach to software development, allowing for flexibility and adaptability in response to

changing requirements or unexpected events.

 Emphasis on Risk Management: The Spiral Model places a strong emphasis on risk

management, which helps to minimize the impact of uncertainty and risk on the software

development process.

 Improved Communication: The Spiral Model provides for regular evaluations and reviews,

which can improve communication between the customer and the development team.

 Improved Quality: The Spiral Model allows for multiple iterations of the software

development process, which can result in improved software quality and reliability.

Disadvantages of the Spiral Model

Below are some main disadvantages of the spiral model.

 Complex: The Spiral Model is much more complex than other SDLC models.

 Expensive: Spiral Model is not suitable for small projects as it is expensive.

 Too much dependability on Risk Analysis: The successful completion of the project is very

much dependent on Risk Analysis. Without very highly experienced experts, it is going to be a

failure to develop a project using this model.

 Difficulty in time management: As the number of phases is unknown at the start of the project,

time estimation is very difficult.

 Complexity: The Spiral Model can be complex, as it involves multiple iterations of the

software development process.

 Time-Consuming: The Spiral Model can be time-consuming, as it requires multiple

evaluations and reviews.

 Resource Intensive: The Spiral Model can be resource-intensive, as it requires a significant

investment in planning, risk analysis, and evaluations.

The most serious issue we face in the cascade model is that taking a long length to finish the item, and

the product became obsolete. To tackle this issue, we have another methodology, which is known as

the Winding model or spiral model. The winding model is otherwise called the cyclic model.

When to Use the Spiral Model?

 When a project is vast in software engineering, a spiral model is utilized.

 A spiral approach is utilized when frequent releases are necessary.

 When it is appropriate to create a prototype

 When evaluating risks and costs is crucial

 The spiral approach is beneficial for projects with moderate to high risk.

 The SDLC’s spiral model is helpful when requirements are complicated and ambiguous.

 If modifications are possible at any moment

 When committing to a long-term project is impractical owing to shifting economic priorities.

A COMPARISON OF DIFFERENT LIFE CYCLE MODELS

The classical waterfall model can be considered as the basic model and all other life cycle models as

embellishments of this model. However, the classical waterfall model cannot be used in practical
development projects, since this model supports no mechanism to correct the errors that are committed

during any of the phases but detected at a later phase. This problem is overcome by the iterative waterfall

model through the provision of feedback paths.

The iterative waterfall model is probably the most widely used software development model so far. This

model is simple to understand and use. However, this model is suitable only for well-understood

problems, and is not suitable for development of very large projects and projects that suffer from large

number of risks.

The prototyping model is suitable for projects for which either the user requirements or the underlying

technical aspects are not well understood, however all the risks can be identified before the project

starts. This model is especially popular for development of the user interface part of projects.

The evolutionary approach is suitable for large problems which can be decomposed into a set of

modules for incremental development and delivery. This model is also used widely for object-oriented

development projects. Of course, this model can only be used if incremental delivery of the system is

acceptable to the customer.

The spiral model is considered a meta model and encompasses all other life cycle models. Flexibility

and risk handling are inherently built into this model. The spiral model is suitable for development of

technically challenging and large software that are prone to several kinds of risks that are difficult to

anticipate at the start of the project. However, this model is much more complex than the other models—

this is probably a factor deterring its use in ordinary projects.

Let us now compare the prototyping model with the spiral model. The prototyping model can be used

if the risks are few and can be determined at the start of the project. The spiral model, on the other hand,

is useful when the risks are difficult to anticipate at the beginning of the project, but are likely to crop

up as the development proceeds.

Let us compare the different life cycle models from the viewpoint of the customer. Initially, customer

confidence is usually high on the development team irrespective of the development model followed.

During the lengthy development process, customer confidence normally drops off, as no working

software is yet visible. Developers answer customer queries using technical slang, and delays are

announced. This gives rise to customer resentment. On the other hand, an evolutionary approach lets

the customer experiment with a working software much earlier than the monolithic approaches. Another

important advantage of the incremental model is that it reduces the customer’s trauma of getting used

to an entirely new system. The gradual introduction of the software via incremental phases provides

time to the customer to adjust to the new software. Also, from the customer’s financial view point,

incremental development does not require a large upfront capital outlay. The customer can order the

incremental versions as and when he can afford them.

Selecting an Appropriate Life Cycle Model for a Project

We have discussed the advantages and disadvantages of the various life cycle models. However, how

to select a suitable life cycle model for a specific project? The answer to this question would depend on

several factors. A suitable life cycle model can possibly be selected based on an analysis of issues such

as the following:

Characteristics of the software to be developed: The choice of the life cycle model to a large extent

depends on the nature of the software that is being developed. For small services projects, the agile

model is favoured. On the other hand, for product and embedded software development, the iterative

waterfall model can be preferred. An evolutionary model is a suitable model for object-oriented

development projects.

Characteristics of the development team: The skill-level of the team members is a significant factor

in deciding about the life cycle model to use. If the development team is experienced in developing

similar software, then even an embedded software can be developed using an iterative waterfall model.

If the development team is entirely novice, then even a simple data processing application may require

a prototyping model to be adopted.

Characteristics of the customer: If the customer is not quite familiar with computers, then the

requirements are likely to change frequently as it would be difficult to form complete, consistent, and

unambiguous requirements. Thus, a prototyping model may be necessary to reduce later change

requests from the customers.

UNIT-II

SOFTWARE PROJECT MANAGEMENT(SPM)

SPM Complexities:

Software Project Management (SPM) is a proper way of planning and leading software

projects. It is a part of project management in which software projects are planned,

implemented, monitored, and controlled.

Need for Software Project Management: Software is a non-physical product. Software

development is a new stream in business and there is very little experience in building software

products. Most of the software products are made to fit clients’ requirements. The most

important is that the basic technology changes and advances so frequently and rapidly that

experience of one product may not be applied to the other one. Such type of business and

environmental constraints increase risk in software development hence it is essential to manage

software projects efficiently. It is necessary for an organization to deliver quality products,

keep the cost within the client’s budget constrain and deliver the project as per schedule. Hence

in order, software project management is necessary to incorporate user requirements along with

budget and time constraints.

Software Project Management consists of Several Different Types of Management:

1. Conflict Management: Conflict management is the process to restrict the negative

features of conflict while increasing the positive features of conflict. The goal of

conflict management is to improve learning and group results including efficacy or

performance in an organizational setting. Properly managed conflict can enhance group

results.

2. Risk Management: Risk management is the analysis and identification of risks that is

followed by synchronized and economical implementation of resources to minimize,

operate and control the possibility or effect of unfortunate events or to maximize the

realization of opportunities.

3. Requirement Management: It is the process of analyzing, prioritizing, tracking, and

documenting requirements and then supervising change and communicating to

pertinent stakeholders. It is a continuous process during a project.

4. Change Management: Change management is a systematic approach for dealing with

the transition or transformation of an organization’s goals, processes, or technologies.

The purpose of change management is to execute strategies for effecting change,

controlling change, and helping people to adapt to change.

5. Software Configuration Management: Software configuration management is the

process of controlling and tracking changes in the software, part of the larger cross-

disciplinary field of configuration management. Software configuration management

includes revision control and the inauguration of baselines.

6. Release Management: Release Management is the task of planning, controlling, and

scheduling the build-in deploying releases. Release management ensures that the

organization delivers new and enhanced services required by the customer while

protecting the integrity of existing services.

Aspects of Software Project Management:

The list of focus areas it can tackle and the broad upsides of the Software Project. Management

are:

1. Planning: The software project manager lays out the complete project’s blueprint. The

project plan will outline the scope, resources, timelines, techniques, strategy,

communication, testing, and maintenance steps. SPM can aid greatly here.

2. Leading: A software project manager brings together and leads a team of

engineers, strategists, programmers, designers, and data scientists. Leading a team

necessitates exceptional communication, interpersonal, and leadership abilities. One

can only hope to do this effectively if one sticks with the core SPM principles.

3. Execution: SPM comes to the rescue here also as the person in charge of software

projects (if well versed with SPM/Agile methodologies) will ensure that each stage of

the project is completed successfully. measuring progress, monitoring to check how

teams function, and generating status reports are all part of this process.

4. Time management: Abiding by a timeline is crucial to completing deliverables

successfully. This is especially difficult when managing software projects because

changes to the original project charter are unavoidable over time. To assure progress in

the face of blockages or changes, software project managers ought to be specialists in

managing risk and emergency preparedness. This Risk Mitigation and management is

one of the core tents of the philosophy of SPM.

5. Budget: Software project managers, like conventional project managers, are

responsible for generating a project budget and adhering to it as closely as feasible,

regulating spending and reassigning funds as needed. SPM teaches us how to

effectively manage the monetary aspect of projects to avoid running into a financial

crunch later on in the project.

6. Maintenance: Software project management emphasizes continuous product testing to

find and repair defects early, tailor the end product to the needs of the client, and keep

the project on track. The software project manager makes ensuring that the product is

thoroughly tested, analyzed, and adjusted as needed. Another point in favour of SPM.

Downsides of Software Project Management:

Numerous issues can develop if a Software project manager lacks the necessary expertise or

knowledge. Software Project management has several drawbacks, including resource loss,

scheduling difficulty, data protection concerns, and interpersonal conflicts between

Developers/Engineers/Stakeholders. Furthermore, outsourcing work or recruiting

additional personnel to complete the project may result in hefty costs for one’s company.

1. Costs are high: Consider spending money on various kinds of project

management tools, software, & services if ones engage in Software Project

Management strategies. These initiatives can be expensive and time-consuming to put

in place. Because your team will be using them as well, they may require training. One

may need to recruit subject matter experts or specialists to assist with a project,

depending on the circumstances. Stakeholders will frequently press for the inclusion of

features that were not originally envisioned. All of these factors can quickly drive up a

project’s cost.

2. Complexity will be increased: Software Project management is a multi-stage,

complex process. Unfortunately, some specialists might have a propensity to

overcomplicate everything, which can lead to confusion among teams and lead to

delays in project completion. They may also

become dogmatic and specific in their ideas, resulting in a difficult work atmosphere.

Projects having a larger scope are typically more arduous to complete, especially if

there isn’t a dedicated team committed completely to the project. Members of cross-

functional teams may lag far behind their daily tasks, adding to the overall complexity

of the project being worked on.

3. Overhead in Communication: Recruits enter your organisation when we hire

software project management personnel. This provides a steady flow of communication

that may or may not match a company’s culture. As a result, it is advised that you

maintain your crew as

small as feasible. The communication overhead tends to skyrocket when a team

becomes large enough. When a large team is needed for a project, it’s critical to identify

software project managers who can conduct effective communication with a variety of

people.

4. Lack of originality: Software Project managers can sometimes provide little or no

space for creativity. Team leaders either place an excessive amount of emphasis on

management processes or impose hard deadlines on their employees, requiring them to

develop and operate code within stringent guidelines. This can stifle innovative thought

and innovation that could be beneficial to the project. When it comes to Software

project management, knowing when to encourage creativity and when to stick to the

project plan is crucial. Without Software project management personnel, an

organization can perhaps build and ship code more quickly. However, employing a

trained specialist to handle these areas, on the other hand, can open up new doors and

help the organisation achieve its objectives more quickly and more thoroughly.

Responsibility of a software development manager:

A software project manager is the most important person inside a team who takes the overall

responsibilities to manage the software projects and plays an important role in the successful

completion of the projects. A project manager has to face many difficult situations to

accomplish these works. In fact, the job responsibilities of a project manager range from

invisible activities like building up team morale to highly visible customer presentations. Most

of the managers take responsibility for writing the project proposal, project cost estimation,

scheduling, project staffing, software process tailoring, project monitoring and control,

software configuration management, risk management, managerial report writing and

presentation and interfacing with clients. The task of a project manager are classified into two

major types:

1. Project planning

2. Project monitoring and control

Project planning

Project planning is undertaken immediately after the feasibility study phase and before the

starting of the requirement analysis and specification phase. Once a project has been found to

be feasible, Software project managers started project planning. Project planning is completed

before any development phase starts. Project planning involves estimating several

characteristics of a project and then plan the project activities based on these estimations.

Project planning is done with most care and attention. A wrong estimation can result in

schedule slippage. Schedule delay can cause customer dissatisfaction, which may lead to a

project failure. Before starting a software project, it is essential to determine the tasks to be

performed and properly manage allocation of tasks among individuals involved is the software

development. Hence, planning is important as it results in effective software development.

project planning is an organized and integrated management process, which focuses on

activities required for successful completion of the project. It prevents obstacles that arise in

the project such as changes in projects or organizations objectives, non- availability of

resources, and so on. Project planning also helps in better utilization of resources and optimal

usage of the allotted time for a project. The other objectives of project planning are listed below.

It defines the roles and responsibilities of the project management team members. It ensures

that the project management team works according to the business objectives. It checks

feasibility of the schedule and user requirements. It determines project constraints- several

individuals help in planning the project. These include senior management and project

management team. For effective project planning, in addition to a very good knowledge of

various estimation techniques, past experience is also very important. During the project

planning the project manager performs the following activities:

1. Project Estimation: Project Size Estimation is the most important parameter based on

which all other estimations like cost, duration and effort are made.

 Cost Estimation: Total expenses to develop the software product is estimated.

 Time Estimation: The total time required to complete the project.

 Effort Estimation: The effort needed to complete the project is estimated.

2. Scheduling: After the completion of the estimation of all the project parameters,

scheduling for manpower and other resources is done.

3. Staffing: Team structure and staffing plans are made.

4. Risk Management: The project manager should identify the unanticipated risks that

may occur during project development risk, analyze the damage that might cause these

risks, and take a risk reduction plan to cope with these risks.

5. Miscellaneous plans: This includes making several other plans such as quality

assurance plans, configuration management plans, etc.

 Lead the team: The project manager must be a good leader who makes a team

of different members of various skills and can complete their individual tasks.

 Motivate the team-member: One of the key roles of a software project

manager is to encourage team members to work properly for the successful

completion of the project.

 Tracking the progress: The project manager should keep an eye on the

progress of the project. A project manager must track whether the project is

going as per plan or not. If any problem arises, then take the necessary action to

solve the problem. Moreover, check whether the product is developed by

maintaining correct coding standards or not.

 Liaison: The project manager is the link between the development team and the

customer. Project manager analysis the customer requirements and convey it to

the development team and keep telling the progress of the project to the

customer. Moreover, the project manager checks whether the project is fulfilling

the customer’s requirements or not.

 Monitoring and reviewing: Project monitoring is a continuous process that

lasts the whole time a product is being developed, during which the project

manager compares actual progress and cost reports with anticipated reports as

soon as possible. While most firms have a formal system in place to track

progress, qualified project managers may still gain a good understanding of the

project’s development by simply talking with participants.

 Documenting project report: The project manager prepares the

documentation of the project for future purposes. The reports contain detailed

features of the product and various techniques. These reports help to maintain

and enhance the quality of the project in the future.

 Reporting: Reporting project status to the customer and his or her organization

is the responsibility of the project manager. Additionally, they could be required

to prepare brief, well-organized pieces that summarise key details from in-depth

studies.

 Knowledge of project estimation techniques

 Good decision-making abilities at the right time

 Previous experience managing a similar types of projects

 Good communication skills to meet the customer satisfaction

 A project manager must encourage all the team members to successfully develop the

product

 He must know the various type of risks that may occur and the solution to these

problems

Metrics for Project Size Estimation:

Project size estimation is a crucial aspect of software engineering, as it helps in planning and

allocating resources for the project. Here are some of the popular project size estimation

techniques used in software engineering:

Expert Judgment: In this technique, a group of experts in the relevant field estimates the

project size based on their experience and expertise. This technique is often used when there is

limited information available about the project.

Analogous Estimation: This technique involves estimating the project size based on the

similarities between the current project and previously completed projects. This technique is

useful when historical data is available for similar projects.

Bottom-up Estimation: In this technique, the project is divided into smaller modules or tasks,

and each task is estimated separately. The estimates are then aggregated to arrive at the overall

project estimate.

Three-point Estimation: This technique involves estimating the project size using three

values: optimistic, pessimistic, and most likely. These values are then used to calculate the

expected project size using a formula such as the PERT formula.

Function Points: This technique involves estimating the project size based on the functionality

provided by the software. Function points consider factors such as inputs, outputs, inquiries,

and files to arrive at the project size estimate.

Use Case Points: This technique involves estimating the project size based on the number of

use cases that the software must support. Use case points consider factors such as the

complexity of each use case, the number of actors involved, and the number of use cases.

 Each of these techniques has its strengths and weaknesses, and the choice of technique

depends on various factors such as the project’s complexity, available data, and the expertise

of the team.

Estimation of the size of the software is an essential part of Software Project Management. It

helps the project manager to further predict the effort and time which will be needed to build

the project. Various measures are used in project size estimation. Some of these are:

 Lines of Code

 Number of entities in ER diagram

 Total number of processes in detailed data flow diagram

 Function points

1. Lines of Code (LOC): As the name suggests, LOC counts the total number of lines of source

code in a project. The units of LOC are:

 KLOC- Thousand lines of code

 NLOC- Non-comment lines of code

 KDSI- Thousands of delivered source instruction

The size is estimated by comparing it with the existing systems of the same kind. The experts

use it to predict the required size of various components of software and then add them to get

the total size.

It’s tough to estimate LOC by analyzing the problem definition. Only after the whole code has

been developed can accurate LOC be estimated. This statistic is of little utility to project

managers because project planning must be completed before development activity can begin.

Two separate source files having a similar number of lines may not require the same effort. A

file with complicated logic would take longer to create than one with simple logic. Proper

estimation may not be attainable based on LOC.

The length of time it takes to solve an issue is measured in LOC. This statistic will differ greatly

from one programmer to the next. A seasoned programmer can write the same logic in fewer

lines than a newbie coder.

Advantages:

 Universally accepted and is used in many models like COCOMO.

 Estimation is closer to the developer’s perspective.

 Both people throughout the world utilize and accept it.

 At project completion, LOC is easily quantified.

 It has a specific connection to the result.

 Simple to use.

Disadvantages:

 Different programming languages contain a different number of lines.

 No proper industry standard exists for this technique.

 It is difficult to estimate the size using this technique in the early stages of the project.

 When platforms and languages are different, LOC cannot be used to normalize.

2. Number of entities in ER diagram: ER model provides a static view of the project. It

describes the entities and their relationships. The number of entities in ER model can be used

to measure the estimation of the size of the project. The number of entities depends on the size

of the project. This is because more entities needed more classes/structures thus leading to more

coding.

Advantages:

 Size estimation can be done during the initial stages of planning.

 The number of entities is independent of the programming technologies used.

Disadvantages:

 No fixed standards exist. Some entities contribute more to project size than others.

 Just like FPA, it is less used in the cost estimation model. Hence, it must be converted

to LOC.

3. Total number of processes in detailed data flow diagram: Data Flow Diagram(DFD)

represents the functional view of software. The model depicts the main processes/functions

involved in software and the flow of data between them. Utilization of the number of functions

in DFD to predict software size. Already existing processes of similar type are studied and used

to estimate the size of the process. Sum of the estimated size of each process gives the final

estimated size.

Advantages:

 It is independent of the programming language.

 Each major process can be decomposed into smaller processes. This will increase the

accuracy of the estimation

Disadvantages:

 Studying similar kinds of processes to estimate size takes additional time and effort.

 All software projects are not required for the construction of DFD.

4. Function Point Analysis: In this method, the number and type of functions supported by

the software are utilized to find FPC (function point count). The steps in function point analysis

are:

 Count the number of functions of each proposed type.

 Compute the Unadjusted Function Points(UFP).

 Find the Total Degree of Influence(TDI).

 Compute Value Adjustment Factor(VAF).

 Find the Function Point Count(FPC).

The explanation of the above points is given below:

 Count the number of functions of each proposed type: Find the number of functions

belonging to the following types:

 External Inputs: Functions related to data entering the system.

 External outputs: Functions related to data exiting the system.

 External Inquiries: They lead to data retrieval from the system but don’t change

the system.

 Internal Files: Logical files maintained within the system. Log files are not

included here.

 External interface Files: These are logical files for other applications which are

used by our system.

 Compute the Unadjusted Function Points(UFP): Categorise each of the five

function types like simple, average, or complex based on their complexity. Multiply the

count of each function type with its weighting factor and find the weighted sum. The

weighting factors for each type based on their complexity are as follows:

Function type Simple Average Complex

External Inputs 3 4 6

Function type Simple Average Complex

External Output 4 5 7

External Inquiries 3 4 6

Internal Logical Files 7 10 15

External Interface Files 5 7 10

 Find Total Degree of Influence: Use the “14 general characteristics” of a system to

find the degree of influence of each of them. The sum of all 14 degrees of influence

will give the TDI. The range of TDI is 0 to 70. The 14 general characteristics are: Data

Communications, Distributed Data Processing, Performance, Heavily Used

Configuration, Transaction Rate, On-Line Data Entry, End-user Efficiency, Online

Update, Complex Processing Reusability, Installation Ease, Operational Ease, Multiple

Sites and Facilitate Change.

Each of the above characteristics is evaluated on a scale of 0-5.

 Compute Value Adjustment Factor(VAF): Use the following formula to calculate

VAF

VAF = (TDI * 0.01) + 0.65

 Find the Function Point Count: Use the following formula to calculate FPC

FPC = UFP * VAF

Advantages:

 It can be easily used in the early stages of project planning.

 It is independent of the programming language.

 It can be used to compare different projects even if they use different technologies

(database, language, etc.).

Disadvantages:

 It is not good for real-time systems and embedded systems.

 Many cost estimation models like COCOMO use LOC and hence FPC must be

converted to LOC.

Project Estimation Techniques:

Estimation of various project parameters is an important project planning activity. The different

parameters of a project that need to be estimated include—project size, effort required to

complete the project, project duration, and cost. Accurate estimation of these parameters is

important, since these not only help in quoting an appropriate project cost to the customer, but

also form the basis for resource planning and scheduling. A large number of estimation

techniques have been proposed by researchers. These can broadly be classified into three main

categories:

• Empirical estimation techniques

• Heuristic techniques

• Analytical estimation techniques

In the following subsections, we provide an overview of the different categories of estimation

techniques.

Empirical Estimation Techniques: Empirical estimation techniques are essentially based on

making an educated guess of the project parameters. While using this technique, prior

experience with development of similar products is helpful. Although empirical estimation

techniques are based on common sense and subjective decisions, over the years, the different

activities involved in estimation have been formalised to a large extent. We shall discuss two

such formalisations of the basic empirical estimation techniques known as expert judgement

and the Delphi techniques.

Heuristic Techniques: Heuristic techniques assume that the relationships that exist among the

different project parameters can be satisfactorily modelled using suitable mathematical

expressions. Once the basic (independent) parameters are known, the other (dependent)

parameters can be easily determined by substituting the values of the independent parameters

in the corresponding mathematical expression. Different heuristic estimation models can be

divided into the following two broad categories—single variable and multivariable models.

Analytical Estimation Techniques: Analytical estimation techniques derive the required

results starting with certain basic assumptions regarding a project. Unlike empirical and

heuristic techniques, analytical techniques do have certain scientific basis. As an example of

an analytical technique, we shall discuss the Halstead’s software science. We shall see that

starting with a few simple assumptions, Halstead’s software science derives some interesting

results. Halstead’s software science is especially useful for estimating software maintenance

efforts. In fact, it outperforms both empirical and heuristic techniques as far as estimating

software maintenance efforts is concerned.

EMPIRICAL ESTIMATION TECHNIQUES:

We have already pointed out that empirical estimation techniques have, over the years, been

formalised to a certain extent. Yet, these are still essentially euphemisms for pure guess work.

These techniques are easy to use and give reasonably accurate estimates. Two popular

empirical estimation techniques are—Expert judgement and Delphi estimation techniques. We

discuss these two techniques in the following subsection.

Expert Judgement: Expert judgement is a widely used size estimation technique. In this

technique, an expert makes an educated guess about the problem size after analysing the

problem thoroughly. Usually, the expert estimates the cost of the different components (i.e.

modules or subsystems) that would make up the system and then combines the estimates for

the individual modules to arrive at the overall estimate. However, this technique suffers from

several shortcomings. The outcome of the expert judgement technique is subject to human

errors and individual bias. Also, it is possible that an expert may overlook some factors

inadvertently. Further, an expert making an estimate may not have relevant experience and

knowledge of all aspects of a project. For example, he may be conversant with the database

and user interface parts, but may not be very knowledgeable about the computer

communication part. Due to these factors, the size estimation arrived at by the judgement of a

single expert may be far from being accurate.

A more refined form of expert judgement is the estimation made by a group of experts. Chances

of errors arising out of issues such as individual oversight, lack of familiarity with a particular

aspect of a project, personal bias, and the desire to win contract through overly optimistic

estimates is minimised when the estimation is done by a group of experts. However, the

estimate made by a group of experts may still exhibit bias. For example, on certain issues the

entire group of experts may be biased due to reasons such as those arising out of political or

social considerations. Another important shortcoming of the expert judgement technique is that

the decision made by a group may be dominated by overly assertive members.

Delphi Cost Estimation:

Delphi cost estimation technique tries to overcome some of the shortcomings of the expert

judgement approach. Delphi estimation is carried out by a team comprising a group of experts

and a co-ordinator. In this approach, the co-ordinator provides each estimator with a copy of

the software requirements specification (SRS) document and a form for recording his cost

estimate. Estimators complete their individual estimates anonymously and submit them to the

co-ordinator. In their estimates, the estimators mention any unusual characteristic of the

product which has influenced their estimations. The co-ordinator prepares the summary of the

responses of all the estimators, and also includes any unusual rationale noted by any of the

estimators. The prepared summary information is distributed to the estimators. Based on this

summary, the estimators re-estimate. This process is iterated for several rounds. However, no

discussions among the estimators is allowed during the entire estimation process. The purpose

behind this restriction is that if any discussion is allowed among the estimators, then many

estimators may easily get influenced by the rationale of an estimator who may be more

experienced or senior. After the completion of several iterations of estimations, the co-

ordinator takes the responsibility of compiling the results and preparing the final estimate. The

Delphi estimation, though consumes more time and effort, overcomes an important

shortcoming of the expert judgement technique in that the results cannot unjustly be influenced

by overly assertive and senior members.

COCOMO—A HEURISTIC ESTIMATION TECHNIQUE

COnstructive COst estimation MOdel (COCOMO) was proposed by Boehm [1981].

COCOMO prescribes a three stage process for project estimation. In the first stage, an initial

estimate is arrived at. Over the next two stages, the initial estimate is refined to arrive at a more

accurate estimate. COCOMO uses both single and multivariable estimation models at different

stages of estimation. The three stages of COCOMO estimation technique are—basic

COCOMO, intermediate COCOMO, and complete COCOMO. We discuss these three stages

of estimation in the following subsection.

Basic COCOMO Model

Boehm postulated that any software development project can be classified into one of the

following three categories based on the development complexity—organic, semidetached, and

embedded. Based on the category of a software development project, he gave different sets of

formulas to estimate the effort and duration from the size estimate.

Three basic classes of software development projects

 In order to classify a project into the identified categories, Boehm requires us to consider not

only the characteristics of the product but also those of the development team and development

environment. Roughly speaking, the three product development classes correspond to

development of application, utility and system software. Normally, data processing programs

are considered to be application programs. Compilers, linkers, etc., are utility programs.

Operating systems and real-time system programs, etc. are system programs. System programs

interact directly with the hardware and programming complexities also arise out of the

requirement for meeting timing constraints and concurrent processing of tasks.

Brooks [1975] states that utility programs are roughly three times as difficult to write as

application programs and system programs are roughly three times as difficult as utility

programs. Thus according to Brooks, the relative levels of product development complexity

for the three categories (application, utility and system programs) of products are 1:3:9.

Boehm’s [1981] definitions of organic, semidetached, and embedded software are elaborated

as follows:

Organic: We can classify a development project to be of organic type, if the project deals with

developing a well-understood application program, the size of the development team is

reasonably small, and the team members are experienced in developing similar types of

projects.

Semidetached: A development project can be classifying to be of semidetached type, if the

development team consists of a mixture of experienced and inexperienced staff. Team members

may have limited experience on related systems but may be unfamiliar with some aspects of

the system being developed.

Embedded: A development project is considered to be of embedded type, if the software being

developed is strongly coupled to hardware, or if stringent regulations on the operational

procedures exist. Team members may have limited experience on related systems but may be

unfamiliar with some aspects of the system being developed.

Intermediate COCOMO

The basic COCOMO model assumes that effort and development time are functions of the

product size alone. However, a host of other project parameters besides the product size affect

the effort as well as the time required to develop the product. For example, the effort to develop

a product would vary depending upon the sophistication of the development environment.

Therefore, in order to obtain an accurate estimation of the effort and project duration, the effect

of all relevant parameters must be taken into account. The intermediate COCOMO model

recognises this fact and refines the initial estimates.

The intermediate COCOMO model uses a set of 15 cost drivers (multipliers) that are

determined based on various attributes of software development. These cost drivers are

multiplied with the initial cost and effort estimates (obtained from the basic COCOMO) to

appropriately scale those up or down. For example, if modern programming practices are used,

the initial estimates are scaled downward by multiplication with a cost driver having a value

less than 1. If there are stringent reliability requirements on the software product, the initial

estimates are scaled upward. Boehm requires the project manager to rate 15 different

parameters for a particular project on a scale of one to three. For each such grading of a project

parameter, he has suggested appropriate cost drivers (or multipliers) to refine the initial

estimates.

In general, the cost drivers identified by Boehm can be classified as being attributes of the

following items:

Product: The characteristics of the product that are considered include the inherent complexity

of the product, reliability requirements of the product, etc.

Computer: Characteristics of the computer that are considered include the execution speed

required, storage space required, etc.

Personnel: The attributes of development personnel that are considered include the experience

level of personnel, their programming capability, analysis capability, etc.

Development environment: Development environment attributes capture the development

facilities available to the developers. An important parameter that is considered is the

sophistication of the automation (CASE) tools used for software development.

Complete COCOMO

A major shortcoming of both the basic and the intermediate COCOMO models is that they

consider a software product as a single homogeneous entity. However, most large systems are

made up of several smaller sub-systems. These sub-systems often have widely different

characteristics. For example, some sub-systems may be considered as organic type, some

semidetached, and some even embedded. Not only may the inherent development complexity

of the subsystems be different, but for some subsystem the reliability requirements may be

high, for some the development team might have no previous experience of similar

development, and so on.

The complete COCOMO model considers these differences in characteristics of the subsystems

and estimates the effort and development time as the sum of the estimates for the individual

sub-systems.

In other words, the cost to develop each sub-system is estimated separately, and the complete

system cost is determined as the subsystem costs. This approach reduces the margin of error in

the final estimate.

Let us consider the following development project as an example application of the complete

COCOMO model. A distributed management information system (MIS) product for an

organisation having offices at several places across the country can have the following sub-

component:

 Database part

 Graphical user interface (GUI) part

 Communication part

Of these, the communication part can be considered as embedded software. The database part

could be semi-detached software, and the GUI part organic software. The costs for these three

components can be estimated separately, and summed up to give the overall cost of the system.

To further improve the accuracy of the results, the different parameter values of the model can

be fine-tuned and validated against an organisation’s historical project database to obtain more

accurate estimations. Estimation models such as COCOMO are not totally accurate and lack a

full scientific justification. Still, software cost estimation models such as COCOMO are

required for an engineering approach to software project management. Companies consider

computed cost estimates to be satisfactory, if these are within about 80 per cent of the final

cost. Although these estimates are gross approximations—without such models, one has only

subjective judgements to rely on.

HALSTEAD’S SOFTWARE SCIENCE—AN ANALYTICAL TECHNIQUE

Halstead’s software science is an analytical technique to measure size development effort, and

development cost of software products. Halstead used a few primitive program parameters to

develop the expressions for overall program length, potential minimum volume, actual volume,

language level, effort, and development time.

For a given program, let:

ℎ1 be the number of unique operators used in the program,

ℎ2 be the number of unique operands used in the program,

𝑁1 be the total number of operators used in the program,

𝑁2 be the total number of operands used in the program.

Although the terms operators and operands have intuitive meanings, a precise definition

of these terms is needed to avoid ambiguities. But, unfortunately we would not be able to

provide a precise definition of these two terms. There is no general agreement among

researchers on what is the most meaningful way to define the operators and operands for

different programming languages. However, a few general guidelines regarding identification

of operators and operands for any programming language can be provided. For instance,

assignment, arithmetic, and logical operators are usually counted as operators. A pair of

parentheses, as well as a block begin —block end pair, are considered as single operators. A

label is considered to be an operator, if it is used as the target of a GOTO statement. The

constructs if ... then ... else ... endif and a while ... do are considered as single operators. A

sequence (statement termination) operator’;’ is considered as a single operator. Subroutine

declarations and variable declarations comprise the operands. Function name in a function call

statement is considered as an operator, and the arguments of the function call are considered as

operands. However, the parameter list of a function in the function declaration statement is not

considered as operands. We list below what we consider to be the set of operators and operands

for the ANSI C language. However, it should be realised that there is considerable

disagreement among various researchers in this regard.

STAFFING LEVEL ESTIMATION

Once the effort required to complete a software project has been estimated, the staffing

requirement for the project can be determined. Putnam was the first to study the problem of

determining a proper staffing pattern for software projects. He extended the classical work of

Norden who had earlier investigated the staffing pattern of general research and development

(R&D) type of projects. In order to appreciate the uniqueness of the staffing pattern that is

desirable for software projects, we must first understand both Norden’s and Putnam’s results.

Norden’s Work: Norden studied the staffing patterns of several R&D projects. He found that

the staffing pattern of R&D type of projects is very different from that of manufacturing or

sales. In a sales outlet, the number of sales staff does not usually vary with time. For example,

in a supermarket the number of sales personnel would depend on the number of sales counters

and would be approximately constant over time. However, the sta ffing pattern of R&D type

of projects needs to change over time. At the start of an R&D project, the activities of the

project are planned and initial investigations are made. During this time, the manpower

requirements are low. As the project progresses, the manpower requirement increases, until it

reaches a peak. Thereafter, the manpower requirement gradually diminishes.

Norden represented the Rayleigh curve by the following equation:

𝐸 =
𝐾

𝑡𝑑
2 ∗ 𝑡 ∗ 𝑒

−𝑡2

2𝑡𝑑
2
 where, E is the effort required at time t. E is an indication of the

number of developers (or the staffing level) at any particular time during the duration of the

project, K is the area under the curve, and td is the time at which the curve attains its maximum

value. It must be remembered that the results of Norden are applicable to general R&D projects

and were not meant to model the staffing pattern of software development projects.

Putnam’s Work: Putnam studied the problem of staffing of software projects and found that

the staffing pattern for software development projects has characteristics very similar to any

other R&D projects. Only a small number of developers are needed at the beginning of a project

to carry out the planning and specification tasks. As the project progresses and more detailed

work is performed, the number of developers increases and reaches a peak during product

testing. After implementation and unit testing, the number of project staff falls.

Putnam found that the Rayleigh-Norden curve can be adapted to relate the number of delivered

lines of code to the effort and the time required to develop the product. By analysing a large

number of defence projects, Putnam derived the following expression:

 𝐿 = 𝐶𝑘𝐾1 3⁄ 𝑡𝑑
4 3⁄

where the different terms are as follows:

 K is the total effort expended (in PM) in the product development and L is the

product size in KLOC.

 𝑡𝑑corresponds to the time of system and integration and testing. Therefore, 𝑡𝑑

can be approximately considered as the time required to develop the software.

 𝐶𝑘 is the state of technology constant and reflects constraints that impede the

progress of the programmer Typical values of 𝐶𝑘 = 2 for poor development

environment (no methodology, poor documentation, and review, etc.), 𝐶𝑘 = 8

for good software development environment (software engineering principles

are adhered to), 𝐶𝑘 = 11 for an excellent environment (in addition to following

software engineering principles, automated tools and techniques are used). The

exact value of 𝐶𝑘 for a specific project can be computed from historical data of

the organisation developing it.

For efficient resource utilisation as well as project completion over optimal duration, starting

from a small number of developers, there should be a staff build-up and after a peak size has

been achieved, staff reduction is required. However, the staff build-up should not be carried

out in large installments. The team size should either be increased or decreased slowly

whenever required to match the Rayleigh-Norden curve.

SCHEDULING

Scheduling the project tasks is an important project planning activity. Once a schedule has been

worked out and the project gets underway, the project manager monitors the timely completion

of the tasks and takes any corrective action that may be necessary whenever there is a chance

of schedule slippage. In order to schedule the project activities, a software project manager

needs to do the following:

1. Identify all the major activities that need to be carried out to complete the

project.

2. Break down each activity into tasks.

3. Determine the dependency among different tasks.

4. Establish the estimates for the time durations necessary to complete the tasks.

5. Represent the information in the form of an activity network.

6. Determine task starting and ending dates from the information represented in

the activity network.

7. Determine the critical path. A critical path is a chain of tasks that determines

the duration of the project.

8. Allocate resources to tasks.

The first step in scheduling a software project involves identifying all the activities necessary

to complete the project. A good knowledge of the intricacies of the project and the development

process helps the managers to effectively identify the important activities of the project. Next,

the activities are broken down into a logical set of smaller activities (sub-activities). The

smallest sub-activities are called tasks which are assigned to different developers.

The smallest unit of work activities that are subject to management planning and control are

called tasks.

Once the activity network representation has been worked out, resources are allocated to each

activity. Resource allocation is typically done using a Gantt chart. After resource allocation is

done, a project evaluation and review technique (PERT) chart representation is developed. The

PERT chart representation is useful to a project manager to carry out project monitoring and

control. Let us now discuss the work break down structure, activity network, Gantt and PERT

charts.

Work Breakdown Structure: Work breakdown structure (WBS) is used to recursively

decompose a given set of activities into smaller activities. First, let us understand why it is

necessary to break down project activities into tasks. Once project activities have been

decomposed into a set of tasks using WBS, the time frame when each activity is to be performed

is to be determined. The end of each important activity is called a milestone. The project

manager tracks the progress of a project by monitoring the timely completion of the milestones.

If he observes that some milestones start getting delayed, he carefully monitors and controls

the progress of the tasks, so that the overall deadline can still be met.

WBS provides a notation for representing the activities, sub-activities, and tasks needed to be

carried out in order to solve a problem. Each of these is represented using a rectangle (see

Figure 3.7). The root of the tree is labelled by the project name. Each node of the tree is broken

down into smaller activities that are made the children of the node. To decompose an activity

to a sub-activity, a good knowledge of the activity can be useful. Figure 3.7 represents the WBS

of a management information system (MIS) software.

Activity Networks: An activity network shows the different activities making up a project,

their estimated durations, and their interdependencies. Two equivalent representations for

activity networks are possible and are in use:

Activity on Node (AoN): In this representation, each activity is represented by a rectangular

(some use circular) node and the duration of the activity is shown alongside each task in the

node. The inter-task dependencies are shown using directional edges (see Figure 3.8).

Activity on Edge (AoE): In this representation tasks are associated with the edges. The edges

are also annotated with the task duration. The nodes in the graph represent project milestones.

Activity networks were originally represented using activity on edge (AoE) representation.

However, later activity on node (AoN) has become popular since this representation is easier

to understand and revise.

Critical Path Method (CPM):

CPM and PERT are operation research techniques that were developed in the late 1950s. Since

then, they have remained extremely popular among project managers. Of late, these two

techniques have got merged and many project management tools support them as CPM/PERT.

However, we point out the fundamental differences between the two and discuss CPM in this

subsection and PERT in the next subsection.

A path in the activity network graph is any set of consecutive nodes and edges in this graph

from the starting node to the last node. A critical path consists of a set of dependent tasks that

need to be performed in a sequence and which together take the longest time to complete.

CPM is an algorithmic approach to determine the critical paths and slack times for tasks not on

the critical paths involves calculating the following quantities:

Minimum time (MT): It is the minimum time required to complete the project. It is computed

by determining the maximum of all paths from start to finish.

Earliest start (ES): It is the time of a task is the maximum of all paths from the start to this

task. The ES for a task is the ES of the previous task plus the duration of the preceding task.

Latest start time (LST): It is the difference between MT and the maximum of all paths from

this task to the finish. The LST can be computed by subtracting the duration of the subsequent

task from the LST of the subsequent task.

Earliest finish time (EF): The EF for a task is the sum of the earliest start time of the task and

the duration of the task.

Latest finish (LF): LF indicates the latest time by which a task can finish without affecting

the final completion time of the project. A task completing beyond its LF would cause project

delay. LF of a task can be obtained by subtracting maximum of all paths from this task to finish

from MT.

Slack time (ST): The slack time (or float time) is the total time that a task may be delayed

before it will affect the end time of the project. The slack time indicates the “flexibility” in

starting and completion of tasks. ST for a task is LS-ES and can equivalently be written as LF-

EF.

PERT Charts

The activity durations computed using an activity network are only estimated duration. It is

therefore not possible to estimate the worst case (pessimistic) and best case (optimistic)

estimations using an activity diagram. Since, the actual durations might vary from the estimated

durations, the utility of the activity network diagrams are limited. The CPM can be used to

determine the duration of a project, but does not provide any indication of the probability of

meeting that schedule.

Project evaluation and review technique (PERT) charts are a more sophisticated form of

activity chart. Project managers know that there is considerable uncertainty about how much

time a task would exactly take to complete. The duration assigned to tasks by the project

manager are after all only estimates. Therefore, in reality the duration of an activity is a random

variable with some probability distribution. In this context, PERT charts can be used to

determine the probabilistic times for reaching various project mile stones, including the final

mile stone. PERT charts like activity networks consist of a network of boxes and arrows. The

boxes represent activities and the arrows represent task dependencies. A PERT chart represents

the statistical variations in the project estimates assuming these to be normal distribution. PERT

allows for some randomness in task completion times, and therefore provides the capability to

determine the probability for achieving project milestones based on the probability of

completing each task along the path to that milestone. Each task is annotated with three

estimates:

 Optimistic (O): The best possible case task completion time.

 Most likely estimate (M): Most likely task completion time.

 Worst case (W): The worst possible case task completion time.

The optimistic (O) and worst case (W) estimates represent the extremities of all possible

scenarios of task completion. The most likely estimate (M) is the completion time that has the

highest probability. The three estimates are used to compute the expected value of the standard

deviation.

Gantt Charts

Gantt chart has been named after its developer Henry Gantt. A Gantt chart is a form of bar

chart. The vertical axis lists all the tasks to be performed. The bars are drawn along the y-axis,

one for each task. Gantt charts used in software project management are actually an enhanced

version of the standard Gantt charts. In the Gantt charts used for software project management,

each bar consists of a unshaded part and a shaded part. The shaded part of the bar shows the

length of time each task is estimated to take. The unshaded part shows the slack time or lax

time. The lax time represents the leeway or flexibility available in meeting the latest time by

which a task must be finished. Gantt charts are useful for resource planning (i.e. allocate

resources to activities). The different types of resources that need to be allocated to activities

include staff, hardware, and software.

Gantt chart representation of a project schedule is helpful in planning the utilisation of

resources, while PERT chart is useful for monitoring the timely progress of activities. Also, it

is easier to identify parallel activities in a project using a PERT chart. Project managers need

to identify the parallel activities in a project for assignment to different developers.

ORGANISATION AND TEAM STRUCTURES

Usually every software development organisation handles several projects at any time.

Software organisations assign different teams of developers to handle different software

projects. With regard to staff organisation, there are two important issues—How is the

organisation as a whole structured? And, how are the individual project teams structured?

There are a few standard ways in which software organisations and teams can be structured.

We discuss these in the following subsection.

Organisation Structure: Essentially there are three broad ways in which a software

development organisation can be structured—functional format, project format, and matrix

format. We discuss these three formats in the following subsection.

Functional format: In the functional format, the development staff are divided based on the

specific functional group to which they belong to. This format has schematically been shown

in Figure 3.13(a). The different projects borrow developers from various functional groups for

specific phases of the project and return them to the functional group upon the completion of

the phase. As a result, different teams of programmers from different functional groups perform

different phases of a project. For example, one team might do the requirements specification,

another do the design, and so on. The partially completed product passes from one team to

another as the product evolves. Therefore, the functional format requires considerable

communication among the different teams and development of good quality documents

because the work of one team must be clearly understood by the subsequent teams working on

the project. The functional organisation therefore mandates good quality documentation to be

produced after every activity.

Project format: In the project format, the development staff are divided based on the project

for which they work (See Figure 3.13(b)). A set of developers is assigned to every project at

the start of the project, and remain with the project till the completion of the project. Thus, the

same team carries out all the life cycle activities. An advantage of the project format is that it

provides job rotation. That is, every developer undertakes different life cycle activities in a

project. However, it results in poor manpower utilisation, since the full project team is formed

since the start of the project, and there is very little work for the team during the initial phases

of the life cycle.

Functional versus project formats: Even though greater communication among the team

members may appear as an avoidable overhead, the functional format has many advantages.

The main advantages of a functional organisation are:

• Ease of staffing

• Production of good quality documents

• Job specialisation

• Efficient handling of the problems associated with manpower turnover.

The functional organisation allows the developers to become specialists in particular roles, e.g.

requirements analysis, design, coding, testing, maintenance, etc. They perform these roles

again and again for different projects and develop deep insights to their work. It also results in

more attention being paid to proper documentation at the end of a phase because of the greater

need for clear communication as between teams doing different phases. The functional

organisation also provides an efficient solution to the staffing problem. We have already seen

that the staffing pattern should approximately follow the Rayleigh distribution for efficient

utilisation of the personnel by minimizing their wait times. The project staffing problem is

eased significantly because personnel can be brought onto a project as needed, and returned to

the functional group when they are no more needed. This possibly is the most important

advantage of the functional organisation. A project organisation structure forces the manager

to take in almost a constant number of developers for the entire duration of his project. This

results in developers idling in the initial phase of software development and are under

tremendous pressure in the later phase of development. A further advantage of the functional

organisation is that it is more effective in handling the problem of manpower turnover. This is

because developers can be brought in from the functional pool when needed. Also, this

organisation mandates production of good quality documents, so new developers can quickly

get used to the work already done.

In spite of several important advantages of the functional organisation, it is not very popular in

the software industry. This apparent paradox is not difficult to explain. We can easily identify

the following three points:

 The project format provides job rotation to the team members. That is, each team

member takes on the role of the designer, co der, tester, etc during the course of the

project. On the other hand, considering the present skill shortage, it would be very

difficult for the functional organisations to fill slots for some roles such as the

maintenance, testing, and coding groups.

 Another problem with the functional organisation is that if an organisation handles

projects requiring knowledge of specialized domain areas, then these domain experts

cannot be brought in and out of the project for the different phases, unless the company

handles a large number of such projects.

 For obvious reasons the functional format is not suitable for small organisations

handling just one or two projects.

Matrix format: A matrix organisation is intended to provide the advantages of both functional

and project structures. In a matrix organisation, the pool of functional specialists is assigned to

different projects as needed. Thus, the deployment of the different functional specialists in

different projects can be represented in a matrix (see Figure 3.14). In Figure 3.14 observe that

different members of a functional specialisation are assigned to different projects. Therefore,

in a matrix organisation, the project manager needs to share responsibilities for the project with

a number of individual functional managers.

Matrix organisations can be characterised as weak or strong, depending upon the relative

authority of the functional managers and the project managers. In a strong functional matrix,

the functional managers have authority to assign workers to projects and project managers have

to accept the assigned personnel. In a weak matrix, the project manager controls the project

budget, can reject workers from functional groups, or even decide to hire outside workers.

Two important problems that a matrix organisation often suffers from are:

 Conflict between functional manager and project managers over allocation of workers.

 Frequent shifting of workers in a firefighting mode as crises occur in different projects.

Team Structure

Team structure addresses organisation of the individual project teams. Let us examine the

possible ways in which the individual project teams are organised. In this text, we shall consider

only three formal team structures—democratic, chief programmer, and the mixed control team

organisations, although several other variations to these structures are possible. Projects of

specific complexities and sizes often require specific team structures for efficient working.

In this team organisation, a senior engineer provides the technical leadership and is designated

the chief programmer. The chief programmer partitions the task into many smaller tasks and

assigns them to the team members. He also verifies and integrates the products developed by

different team members. The structure of the chief programmer team is shown in Figure 3.15.

The chief programmer provides an authority, and this structure is arguably more efficient than

the democratic team for well-understood problems. However, the chief programmer team leads

to lower team morale, since the team members work under the constant supervision of the chief

programmer. This also inhibits their original thinking. The chief programmer team is subject

to single point failure since too much responsibility and authority is assigned to the chief

programmer. That is, a project might suffer severely, if the chief programmer either leaves the

organisation or becomes unavailable for some other reasons.

Let us now try to understand the types of projects for which the chief programmer team

organisation would be suitable. Suppose an organisation has successfully completed many

simple MIS projects. Then, for a similar MIS project, chief programmer team structure can be

adopted. The chief programmer team structure works well when the task is within the

intellectual grasp of a single individual. However, even for simple and well understood

problems, an organisation must be selective in adopting the chief programmer structure. The

chief programmer team structure should not be used unless the importance of early completion

outweighs other factors such as team morale, personal developments, etc.

RISK MANAGEMENT

Every project is susceptible to a large number of risks. Without effective management of the

risks, even the most meticulously planned project may go hay ware.

We need to distinguish between a risk which is a problem that might occur from the problems

currently being faced by a project. If a risk becomes real, the anticipated problem becomes a

reality and is no more a risk. If a risk becomes real, it can adversely affect the project and

hamper the successful and timely completion of the project. Therefore, it is necessary for the

project manager to anticipate and identify different risks that a project is susceptible to, so that

contingency plans can be prepared beforehand to contain each risk. In this context, risk

management aims at reducing the chances of a risk becoming real as well as reducing the

impact of a risks that becomes real. Risk management consists of three essential activities—

risk identification, risk assessment, and risk mitigation.

Risk Identification:

The project manager needs to anticipate the risks in a project as early as possible. As soon as a

risk is identified, effective risk management plans are made, so that the possible impacts of the

risks is minimised. So, early risk identification is important. Risk identification is somewhat

similar to the project manager listing down his nightmares. For example, project manager might

be worried whether the vendors whom you have asked to develop certain modules might not

complete their work in time, whether they would turn in poor quality work, whether some of

your key personnel might leave the organisation, etc. All such risks that are likely to affect a

project must be identified and listed.

A project can be subject to a large variety of risks. In order to be able to systematically identify

the important risks which might affect a project, it is necessary to categorise risks into different

classes. The project manager can then examine which risks from each class are relevant to the

project. There are three main categories of risks which can affect a software project: project

risks, technical risks, and business risks. We discuss these risks in the following.

Project risks: Project risks concern various forms of budgetary, schedule, personnel, resource,

and customer-related problems. An important project risk is schedule slippage. Since, software

is intangible, it is very difficult to monitor and control a software project. It is very difficult to

control something which cannot be seen. For any manufacturing project, such as manufacturing

of cars, the project manager can see the product taking shape. He can for instance, see that the

engine is fitted, after that the doors are fitted, the car is getting painted, etc. Thus he can

accurately assess the progress of the work and control it, if he finds any activity is progressing

at a slower rate than what was planned. The invisibility of the product being developed is an

important reason why many software projects suffer from the risk of schedule slippage.

Technical risks: Technical risks concern potential design, implementation, interfacing,

testing, and maintenance problems. Technical risks also include ambiguous specification,

incomplete specification, changing specification, technical uncertainty, and technical

obsolescence. Most technical risks occur due the development team’s insufficient knowledge

about the product.

Business risks: This type of risks includes the risk of building an excellent product that no one

wants, losing budgetary commitments, etc.

Risk Assessment:

The objective of risk assessment is to rank the risks in terms of their damage causing potential.

For risk assessment, first each risk should be rated in two ways:

 The likelihood of a risk becoming real (r).

 The consequence of the problems associated with that risk (s).

Based on these two factors, the priority of each risk can be computed as follows:

𝑝 = 𝑟 ∗ 𝑠 where, 𝑝 is the priority with which the risk must be handled, 𝑟 is the

probability of the risk becoming real, and s is the severity of damage caused due to the risk

becoming real. If all identified risks are prioritised, then the most likely and damaging risks

can be handled first and more comprehensive risk abatement procedures can be designed for

those risks.

Risk Mitigation:

After all the identified risks of a project have been assessed, plans are made to contain the most

damaging and the most likely risks first. Different types of risks require different containment

procedures. In fact, most risks require considerable ingenuity on the part of the project manager

in tackling the risks. There are three main strategies for risk containment:

Avoid the risk: Risks can be avoided in several ways. Risks often arise due to project

constraints and can be avoided by suitably modifying the constraints. The different categories

of constraints that usually give rise to risks are:

Process-related risk: These risks arise due to aggressive work schedule, budget, and resource

utilisation.

Product-related risks: These risks arise due to commitment to challenging product features (e.g.

response time of one second, etc.), quality, reliability etc.

Technology-related risks: These risks arise due to commitment to use certain technology (e.g.,

satellite communication). A few examples of risk avoidance can be the following: Discussing

with the customer to change the requirements to reduce the scope of the work, giving incentives

to the developers to avoid the risk of manpower turnover, etc.

Transfer the risk: This strategy involves getting the risky components developed by a third

party, buying insurance cover, etc.

Risk reduction: This involves planning ways to contain the damage due to a risk. For example,

if there is risk that some key personnel might leave, new recruitment may be planned. The most

important risk reduction techniques for technical risks is to build a prototype that tries out the

technology that you are trying to use. For example, if you are using a compiler for recognising

user commands, you would have to construct a compiler for a small and very primitive

command language first. There can be several strategies to cope up with a risk. To choose the

most appropriate strategy for handling a risk, the project manager must consider the cost of

handling the risk and the corresponding reduction of risk. For this we may compute the risk

leverage of the different risks. Risk leverage is the difference in risk exposure divided by the

cost of reducing the risk. More formally,

 𝑟𝑖𝑠𝑘 𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑟𝑖𝑠𝑘 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛−𝑟𝑖𝑠𝑘 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑎𝑓𝑡𝑒𝑟 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑐𝑜𝑠𝑡 𝑜𝑓 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

SOFTWARE CONFIGURATION MANAGEMENT

The results (also called as the deliverables) of a large software development effort typically

consist of a large number of objects, e.g., source code, design document, SRS document, test

document, user’s manual, etc. These objects are usually referred to and modified by a number

of software developers throughout the life cycle of the software. The state of each deliverable

object changes as development progresses and also as bugs are detected and fixed.

As a software is changed, new revisions and versions get created. Before we discuss

configuration management, we must be clear about the distinction between a version and a

revision of a software product.

Software revision versus version: A new version of a software is created when there is

significant change in functionality, technology, or the hardware it runs on, etc. On the other

hand, a new release is created if there is only a bug fix, minor enhancements to the functionality,

usability, etc. Even the initial delivery might consist of several versions and more versions

might be added later on. For example, one version of a mathematical computation package

might run on Unix-based machines, another on Microsoft Windows and so on. As a software

is released and used by the customer, errors are discovered that need correction. Enhancements

to the functionalities of the software may also be needed. A new release of software is an

improved system intended to replace an old one. Often systems are described as version m,

release n; or simply mn. Formally, a history relation is version of can be defined between

objects. This relation can be split into two sub-relations is revision of and is variant of. In the

following subsections, we first discuss the necessity of configuration management and

subsequently we discuss the configuration management activities and tools.

Necessity of Software Configuration Management: There are several reasons for putting an

object under configuration management. The following are some of the important problems

that can crop up, if configuration management is not used: every software developer has a

personal copy of an object (e.g. source code). When a developer makes changes to his local

copy, he is expected to intimate the changes that he has made to other developers, so that the

necessary changes in interfaces could be uniformly carried out across all modules. However,

not only would it eat up valuable time of the developers, but many times a developer might

make changes to the interfaces in his local copies and forgets to intimate the teammates about

the changes. This makes the different copies of the object inconsistent. Finally, when the

different modules are integrated, it does not work. Therefore, when several team members work

on developing an application, it is necessary for them to work on a single copy of the

application, otherwise inconsistencies may arise.

Problems associated with concurrent access: Possibly the most important reason for

configuration management is to control the access to the different deliverable objects. Unless

strict discipline is enforced regarding updation and storage of different objects, several

problems can appear. Assume that only a single copy of a program module is maintained, and

several developers are working on it. Two developers may simultaneously carry out changes

to different functions of the same module, and while saving overwrite each other. Similar

problems can occur for any other deliverable object.

Providing a stable development environment: When a project work is underway, the team

members need a stable environment to make progress. Suppose one developer is trying to

integrate module A, with the modules B and C; since if developer of module C keeps changing

C; this can be especially frustrating if a change to module C forces recompilation of the module.

When an effective configuration management is in place, the manager freezes the objects to

form a baseline. A baseline is the status of all the objects under configuration control. When

any of the objects under configuration control is changed, a new baseline gets formed. When

any team member needs to change any of the objects under configuration control, he is provided

with a copy of the baseline item. The requester makes changes to his private copy. Only after

the requester is through with all modifications to his private copy, the configuration is updated

and a new baseline gets formed instantly. This establishes a baseline for others to use and

depend on. Also, baselines may be archived periodically (archiving means copying to a safe

place such as a remote storage), so that the last baseline can be recovered when there is a

disaster.

System accounting and maintaining status information: System accounting denotes

keeping track of who made a particular change to an object and when the change was made.

Handling variants: Existence of variants of a software product causes some peculiar

problems. Suppose you have several variants of the same module, and find that a bug exists in

one of them. Then, it has to be fixed in all versions and revisions. To do it efficiently, you

should not have to fix it in each and every version and revision of the software separately.

Making a change to one program should be reflected appropriately in all relevant versions and

revisions.

Configuration Management Activities

Configuration identification: It involves deciding which parts of the system should be kept

track of.

Configuration control: It ensures that changes to a system happen smoothly. Normally, a

project manager performs the configuration management activity by using a configuration

management tool. In addition, a configuration management tool helps to keep track of various

deliverable objects, so that the project manager can quickly and unambiguously determine the

current state of the project. The configuration management tool enables the developer to change

various components in a controlled manner. In the following subsections, we provide an

overview of the two configuration management activities.

Configuration identification:

Project managers normally classify the objects associated with a software development into

three main categories—controlled, precontrolled, and uncontrolled. Controlled objects are

those that are already under configuration control. The team members must follow some formal

procedures to change them. Precontrolled objects are not yet under configuration control, but

will eventually be under configuration control. Uncontrolled objects are not subject to

configuration control. Controllable objects include both controlled and precontrolled objects.

Typical controllable objects include:

 Requirements specification document

 Design documents

 Tools used to build the system, such as compilers, linkers, lexical analysers, parsers,

etc.

 Source code for each module

 Test cases

 Problem reports

Configuration management plan is written during the project planning phase. It lists all

controlled objects. The managers who develop the plan must strike a balance between

controlling too much, and controlling too little. If too much is controlled, overheads due to

configuration management increase to unreasonably high levels. On the other hand, controlling

too little might lead to confusion and inconsistency when something changes.

REQUIREMENTS ANALYSIS AND SPECIFICATION

The requirements analysis and specification phase starts after the feasibility study stage is

complete and the project has been found to be financially viable and technically feasible. The

requirements analysis and specification phase ends when the requirements specification

document has been developed and reviewed. The requirements specification document is

usually called as the software requirements specification (SRS) document. The goal of the

requirements analysis and specification phase can be stated in a nutshell as follows.

Who carries out requirements analysis and specification?

Requirements analysis and specification activity is usually carried out by a few experienced

members of the development team and it normally requires them to spend some time at the

customer site. The engineers who gather a n d analyse customer requirements and then write

the requirements specification document are known as system analysts in the software industry

parlance. System analysts collect data pertaining to the product to be developed and analyse

the collected data to conceptualise what exactly needs to be done. After understanding the

precise user requirements, the analysts analyse the requirements to weed out inconsistencies,

anomalies and incompleteness. They then proceed to write the software requirements

specification (SRS) document.

How is the SRS document validated?

Once the SRS document is ready, it is first reviewed internally by the project team to ensure

that it accurately captures all the user requirements, and that it is understandable, consistent,

unambiguous, and complete. The SRS document is then given to the customer for review. After

the customer has reviewed the SRS document and agrees to it, it forms the basis for all future

development activities and also serves as a contract document between the customer and the

development organisation.

Requirements analysis and specification phase mainly involves carrying out the following two

important activities:

 Requirements gathering and analysis

 Requirements specification

In the next section, we will discuss the requirements gathering and analysis activity and in the

subsequent section we will discuss the requirements specification activity.

REQUIREMENTS GATHERING AND ANALYSIS

We can conceptually divide the requirements gathering and analysis activity into two separate

tasks:

 Requirements gathering

 Requirements analysis

Requirements Gathering

Requirements gathering is also popularly known as requirements elicitation. The primary

objective of the requirements gathering task is to collect the requirements from the

stakeholders.

Requirements gathering may sound like a simple task. However, in practice it is very difficult

to gather all the necessary information from a large number of stakeholders and from

information scattered across several pieces of documents. Gathering requirements turns out to

be especially challenging if there is no working model of the software being developed.

Suppose a customer wants to automate some activity in his organisation that is currently being

carried out manually. In this case, a working model of the system (that is, the manual system)

exists. Availability of a working model is usually of great help in requirements gathering. For

example, if the project involves automating the existing accounting activities of an

organisation, then the task of the system analyst becomes a lot easier as he can immediately

obtain the input and output forms and the details of the operational procedures. In this context,

consider that it is required to develop a software to automate the book-keeping activities

involved in the operation of a certain office. In this case, the analyst would have to study the

input and output forms and then understand how the outputs are produced from the input data.

However, if a project involves developing something new for which no working model exists,

then the requirements gathering activity becomes all the more difficult. In the absence of a

working system, much more imagination and creativity is required on the part of the system

analyst.

Typically, even before visiting the customer site, requirements gathering activity is started by

studying the existing documents to collect all possible information about the system to be

developed. During visit to the customer site, the analysts normally interview the end-users and

customer representatives, carry out requirements gathering activities such as questionnaire

surveys, task analysis, scenario analysis, and form analysis. Given that many customers are not

computer savvy; they describe their requirements very vaguely. Good analysts share their

experience and expertise with the customer and give his suggestions to define certain

functionalities more comprehensively, make the functionalities more general and more

complete. In the following, we briefly discuss the important ways in which an experienced

analyst gathers requirements:

1. Studying existing documentation: The analyst usually studies all the available documents

regarding the system to be developed before visiting the customer site. Customers usually

provide statement of purpose (SoP) document to the developers. Typically, these documents

might discuss issues such as the context in which the software is required, the basic purpose,

the stakeholders, features of any similar software developed elsewhere, etc.

2. Interview: Typically, there are many different categories of users of a software. Each

category of users typically requires a different set of features from the software. Therefore, it

is important for the analyst to first identify the different categories of users and then determine

the requirements of each. For example, the different categories of users of a library automation

software could be the library members, the librarians, and the accountants. The library

members would like to use the software to query availability of books and issue and return

books. The librarians might like to use the software to determine books that are overdue, create

member accounts, delete member accounts, etc. The accounts personnel might use the software

to invoke functionalities concerning financial aspects such as the total fee collected from the

members, book procurement expenditures, staff salary expenditures, etc. To systematise this

method of requirements gathering, the Delphi technique can be followed. In this technique, the

analyst consolidates the requirements as understood by him in a document and then circulates

it for the comments of the various categories of users. Based on their feedback, he refines his

document. This procedure is repeated till the different users agree on the set of requirements.

3. Task analysis: The users usually have a black-box view of a software and consider the

software as something that provides a set of services (functionalities). A service supported by

a software is also called a task. We can therefore say that the software performs various tasks

of the users. In this context, the analyst tries to identify and understand the different tasks to be

performed by the software. For each identified task, the analyst tries to formulate the different

steps necessary to realise the required functionality in consultation with the users. For example,

for the issue book service, the steps may be—authenticate user, check the number of books

issued to the customer and determine if the maximum number of books that this member can

borrow has been reached, check whether the book has been reserved, post the book issue details

in the member’s record, and finally print out a book issue slip that can be presented by the

member at the security counter to take the book out of the library premises.

Requirements Analysis

After requirements gathering is complete, the analyst analyses the gathered requirements to

form a clear understanding of the exact customer requirements and to weed out any problems

in the gathered requirements. It is natural to expect that the data collected from various

stakeholders to contain several contradictions, ambiguities, and incompleteness, since each

stakeholder typically has only a partial and incomplete view of the software. Therefore, it is

necessary to identify all the problems in the requirements and resolve them through further

discussions with the customer.

For carrying out requirements analysis effectively, the analyst first needs to develop a clear

grasp of the problem. The following basic questions pertaining to the project should be clearly

understood by the analyst before carrying out analysis:

 What is the problem?

 Why is it important to solve the problem?

 What exactly are the data input to the system and what exactly are the data output by

the system?

 What are the possible procedures that need to be followed to solve the problem?

 What are the likely complexities that might arise while solving the problem?

 If there are external software or hardware with which the developed software has to

interface, then what should be the data interchange formats with the external systems?

SOFTWARE REQUIREMENTS SPECIFICATION (SRS)

After the analyst has gathered all the required information regarding the software to be

developed, and has removed all incompleteness, inconsistencies, and anomalies from the

specification, he starts to systematically organise the requirements in the form of an SRS

document. The SRS document usually contains all the user requirements in a structured though

an informal form.

Among all the documents produced during a software development life cycle, SRS document

is probably the most important document and is the toughest to write. One reason for this

difficulty is that the SRS document is expected to cater to the needs of a wide variety of

audience. In the following subsection, we discuss the different categories of users of an SRS

document and their needs from it.

Users of SRS Document

Usually a large number of different people need the SRS document for very different purposes.

Some of the important categories of users of the SRS document and their needs for use are as

follows:

Users, customers, and marketing personnel: These stakeholders need to refer to the SRS

document to ensure that the system as described in the document will meet their needs.

Remember that the customer may not be the user of the software, but may be some one

employed or designated by the user. For generic products, the marketing personnel need to

understand the requirements that they can explain to the customers.

Software developers: The software developers refer to the SRS document to make sure that

they are developing exactly what is required by the customer.

Test engineers: The test engineers use the SRS document to understand the functionalities,

and based on this write the test cases to validate it’s working. They need that the required

functionality should be clearly described, and the input and output data should have been

identified precisely.

User documentation writers: The user documentation writers need to read the SRS document

to ensure that they understand the features of the product well enough to be able to write the

users’ manuals.

Project managers: The project managers refer to the SRS document to ensure that they can

estimate the cost of the project easily by referring to the SRS document and that it contains all

the information required to plan the project.

Maintenance engineers: The SRS document helps the maintenance engineers to under- stand

the functionalities supported by the system. A clear knowledge of the functionalities can help

them to understand the design and code. Also, a proper understanding of the functionalities

supported enables them to determine the specific modifications to the system’s functionalities

would be needed for a specific purpose.

Characteristics of a Good SRS Document

The skill of writing a good SRS document usually comes from the experience gained from

writing SRS documents for many projects. However, the analyst should be aware of the

desirable qualities that every good SRS document should possess. IEEE Recommended

Practice for Software Requirements Specifications[IEEE830] describes the content and

qualities of a good software requirements specification (SRS). Some of the identified desirable

qualities of an SRS document are the following:

Concise: The SRS document should be concise and at the same time unambiguous, consistent,

and complete. Verbose and irrelevant descriptions reduce readability and also increase the

possibilities of errors in the document.

Implementation-independent: The SRS should be free of design and implementation

decisions unless those decisions reflect actual requirements. It should only specify what the

system should do and refrain from stating how to do these. This means that the SRS document

should specify the externally visible behaviour of the system and not discuss the

implementation issues. This view with which a requirements specification is written, has been

shown in Figure 4.1. Observe that in Figure 4.1, the SRS document describes the output

produced for the different types of input and a description of the processing required to produce

the output from the input (shown in ellipses) and the internal working of the software is not

discussed at all.

Traceable: It should be possible to trace a specific requirement to the design elements that

implement it and vice versa. Similarly, it should be possible to trace a requirement to the code

segments that implement it and the test cases that test this requirement and vice versa.

Traceability is also important to verify the results of a phase with respect to the previous phase

and to analyse the impact of changing a requirement on the design elements and the code.

Modifiable: Customers frequently change the requirements during the software development

due to a variety of reasons. Therefore, in practice the SRS document undergoes several

revisions during software development. Also, an SRS document is often modified after the

project completes to accommodate future enhancements and evolution. To cope up with the

requirements changes, the SRS document should be easily modifiable. For this, an SRS

document should be well-structured. A well-structured document is easy to understand and

modify. Having the description of a requirement scattered across many places in the SRS

document may not be wrong—but it tends to make the requirement difficult to understand and

also any modification to the requirement would become difficult as it would require changes

to be made at large number of places in the document.

Identification of response to undesired events: The SRS document should discuss the system

responses to various undesired events and exceptional conditions that may arise.

Verifiable: All requirements of the system as documented in the SRS document should be

verifiable. This means that it should be possible to design test cases based on the description

of the functionality as to whether or not requirements have been met in an implementation. A

requirement such as “the system should be user friendly” is not verifiable. On the other hand,

the requirement — “When the name of a book is entered, the software should display whether

the book is available for issue or it has been loaned out” is verifiable. Any feature of the

required system that is not verifiable should be listed separately in the goals of the

implementation section of the SRS document.

FORMAL SYSTEM SPECIFICATION

In recent years, formal techniques 3 have emerged as a central issue in software engineering.

This is not accidental; the importance of precise specification, modelling, and verification is

recognised to be important in most engineering disciplines. Formal methods provide us with

tools to precisely describe a system and show that a system is correctly implemented. We say

a system is correctly implemented when it satisfies it’s given specification. The specification

of a system can be given either as a list of its desirable properties (property-oriented approach)

or as an abstract model of the system (model-oriented approach). These two approaches are

discussed here. Before discussing representative examples of these two types of formal

specification techniques, we first discuss a few basic concepts in formal specification We will

first highlight some important concepts in formal methods, and examine the merits and

demerits of using formal techniques.

Merits and limitations of formal methods

In addition to facilitating precise formulation of specifications, formal methods possess several

positive features, some of which are discussed as follows:

 Formal specifications encourage rigour. It is often the case that the very process of

construction of a rigorous specification is more important than the formal specification

itself. The construction of a rigorous specification clarifies several aspects of system

behaviour that are not obvious in an informal specification. It is widely acknowledged

that it is cost-effective to spend more efforts at the specification stage, otherwise, many

flaws would go unnoticed only to be detected at the later stages of software

development that would lead to iterative changes to occur in the development life cycle.

According to an estimate, for large and complex systems like distributed real-time

systems 80 per cent of project costs and most of the cost overruns result from the

iterative changes required in a system development process due to inappropriate

formulation of requirements specification. Thus, the additional effort required to

construct a rigorous specification is well worth the trouble.

 Formal methods usually have a well-founded mathematical basis. Thus, formal

specifications are not only more precise, but also mathematically sound and can be used

to reason about the properties of a specification and to rigorously prove that an

implementation satisfies its specifications. Informal specifications may be useful in

understanding a system and its documentation, but they cannot serve as a basis of

verification. Even carefully written specifications are prone to error, and experience has

shown that unverified specifications are comparable in reliability to unverified

programs. automatically avoided when one formally specifies a system.

 The mathematical basis of the formal methods makes it possible for automating the

analysis of specifications. For example, a tableau-based technique has been used to

automatically check the consistency of specifications. Also, automatic theorem proving

techniques can be used to verify that an implementation satisfies its specifications. The

possibility of automatic verification is one of the most important advantages of formal

methods.

 Formal specifications can be executed to obtain immediate feedback on the features of

the specified system. This concept of executable specifications is related to rapid

prototyping. Informally, a prototype is a “toy” working model of a system that can

provide immediate feedback on the behaviour of the specified system, and is especially

useful in checking the completeness of specifications.

It is clear that formal methods provide mathematically sound frameworks within which large,

complex systems can be specified, developed and verified in a systematic rather than in an ad

hoc manner. However, formal methods suffer from several shortcomings, some of which are

as following:

 Formal methods are difficult to learn and use.

 The basic incompleteness results of first-order logic suggest that it is impossible to

check absolute correctness of systems using theorem proving techniques.

 Formal techniques are not able to handle complex problems. This shortcoming results

from the fact that, even moderately complicated problems blow up the complexity of

formal specification and their analysis. Also, a large unstructured set of mathematical

formulas is difficult to comprehend.

AXIOMATIC SPECIFICATION

In axiomatic specification of a system, first-order logic is used to write the pre- and post-

conditions to specify the operations of the system in the form of axioms. The pre-conditions

basically capture the conditions that must be satisfied before an operation can successfully be

invoked. In essence, the pre-conditions capture the requirements on the input parameters of a

function. The post-conditions are the conditions that must be satisfied when a function post-

conditions are essentially constraints on the results produced for the function execution to be

considered successful.

How to develop an axiomatic specification?

The following are the sequence of steps that can be followed to systematically develop the

axiomatic specifications of a function:

 Establish the range of input values over which the function should behave correctly.

Establish the constraints on the input parameters as a predicate.

 Specify a predicate defining the condition which must hold on the output of the function

if it behaved properly.

 Establish the changes made to the function’s input parameters after execution of the

function. Pure mathematical functions do not change their input and therefore this type

assertion is not necessary for pure functions.

 Combine all of the above into pre- and post-conditions of the function.

ALGEBRAIC SPECIFICATION

In the algebraic specification technique, an object class or type is specified in terms of

relationships existing between the operations defined on that type. It was first brought into

prominence by Guttag [1980,1985] in specification of abstract data types. Various notations of

algebraic specifications have evolved, including those based on OBJ and Larch languages.

Essentially, algebraic specifications define a system as a heterogeneous algebra. A

heterogeneous algebra is a collection of different sets on which several operations are defined.

Traditional algebras are homogeneous. A homogeneous algebra consists of a single set and

several operations defined in this set; e.g. {I, +, -, * , / }. In contrast, alphabetic strings S

together with operations of concatenation and length {S, I , con, len}, is not a homogeneous

algebra, since the range of the length operation is the set of integers.

 Each set of symbols in a heterogeneous algebra is called a sort of the algebra. To define a

heterogeneous algebra, besides defining the sorts, we need to specify the involved operations,

their signatures, and their domains and ranges. Using algebraic specification, we define the

meaning of a set of interface procedure by using equations. An algebraic specification is usually

presented in four sections.

Types section: In this section, the sorts (or the data types) being used is specified.

Exception section: This section gives the names of the exceptional conditions that might occur

when different operations are carried out. These exception conditions are used in the later

sections of an algebraic specification.

Syntax section: This section defines the signatures of the interface procedures. The collection

of sets that form input domain of an operator and the sort where the output is produced are

called the signature of the operator. For example, PUSH takes a stack and an element as its

input and returns a new stack that has been created.

Equations section: This section gives a set of rewrite rules (or equations) defining the meaning

of the interface procedures in terms of each other. In general, this section is allowed to contain

conditional expressions.

Properties of algebraic specifications

Three important properties that every algebraic specification should possess are:

Completeness: This property ensures that using the equations, it should be possible to reduce

any arbitrary sequence of operations on the interface procedures. When the equations are not

complete, at some step during the reduction process, we might not be able to reduce the

expression arrived at that step by using any of the equations. There is no simple procedure to

ensure that an algebraic specification is complete.

Finite termination property: This property essentially addresses the following question: Do

applications of the rewrite rules to arbitrary expressions involving the interface procedures

always terminate? For arbitrary algebraic equations, convergence (finite termination) is

undecidable. But, if the right hand side of each rewrite rule has fewer terms than the left, then

the rewrite process must terminate.

Unique termination property: This property indicates whether application of rewrite rules in

different orders always result in the same answer. Essentially, to determine this property, the

answer to the following question needs to be checked—Can all possible sequence of choices

in application of the rewrite rules to an arbitrary expression involving the interface procedures

always give the same answer? Checking the unique termination property is a very difficult

problem.

EXECUTABLE SPECIFICATION AND 4GL

When the specification of a system is expressed formally or is described by using a

programming language, then it becomes possible to directly execute the specification without

having to design and write code for implementation. However, executable specifications are

usually slow and inefficient, 4GLs (4th Generation Languages) are examples of executable

specification languages. 4GLs are successful because there is a lot of large granularity

commonality across data processing applications which have been identified and mapped to

program code. 4GLs get their power from software reuse, where the common abstractions have

been identified and parameterized. Careful experiments have shown that rewriting 4GL

programs in 3GLs results in up to 50 per cent lower memory usage and also the program

execution time can reduce up to ten folds.

Chapter
5

SOFTWARE DESIGN

During the software design phase, the design document is produced, based
on the customer requirements as documented in the SRS document. We can
state the main objectives of the design phase, in other words, as follows.

The activities carried out during the design phase (called as design process)
transform the SRS document into the design document.

This view of a design process has been shown schematically in Figure 5.1.
As shown in Figure 5.1, the design process starts using the SRS document and
completes with the production of the design document. The design document
produced at the end of the design phase should be implementable using a
programming language in the subsequent (coding) phase.

Figure 5.1: The design process.

5.1 OVERVIEW OF THE DESIGN PROCESS
The design process essentially transforms the SRS document into a
design document. In the following sections and subsections, we will
discuss a few important issues associated with the design process.

5.1.1 Outcome of the Design Process
The following items are designed and documented during the design
phase.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Different modules required: The different modules in the solution should
be clearly identified. Each module is a collection of functions and the data
shared by the functions of the module. Each module should accomplish some
well-defined task out of the overall responsibility of the software. Each
module should be named according to the task it performs. For example, in
an academic automation software, the module consisting of the functions and
data necessary to accomplish the task of registration of the students should
be named handle student registration.
Control relationships among modules: A control relationship between
two modules essentially arises due to function calls across the two modules.
The control relationships existing among various modules should be identified
in the design document.
Interfaces among different modules: The interfaces between two
modules identifies the exact data items that are exchanged between the two
modules when one module invokes a function of the other module.
Data structures of the individual modules: Each module normally stores
some data that the functions of the module need to share to accomplish the
overall responsibility of the module. Suitable data structures for storing and
managing the data of a module need to be properly designed and
documented.
Algorithms required to implement the individual modules: Each
function in a module usually performs some processing activity. The
algorithms required to accomplish the processing activities of various modules
need to be carefully designed and documented with due considerations given
to the accuracy of the results, space and time complexities.

Starting with the SRS document (as shown in Figure 5.1), the design
documents are produced through iterations over a series of steps that we are
going to discuss in this chapter and the subsequent three chapters. The
design documents are reviewed by the members of the development team to
ensure that the design solution conforms to the requirements specification.

5.1.2 Classification of Design Activities
A good software design is seldom realised by using a single step
procedure, rather it requires iterating over a series of steps called the
design activities. Let us first classify the design activities before
discussing them in detail. Depending on the order in which various
design activities are performed, we can broadly classify them into two

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

important stages.
• Preliminary (or high-level) design, and
• Detailed design.

The meaning and scope of these two stages can vary considerably from one
design methodology to another. However, for the traditional function-oriented
design approach, it is possible to define the objectives of the high-level
design as follows:

Through high-level design, a problem is decomposed into a set of modules. The
control relationships among the modules are identified, and also the interfaces among
various modules are identified.

The outcome of high-level design is called the program structure or the
software architecture. High-level design is a crucial step in the overall design
of a software. When the high-level design is complete, the problem should
have been decomposed into many small functionally independent modules
that are cohesive, have low coupling among themselves, and are arranged in
a hierarchy. Many different types of notations have been used to represent a
high-level design. A notation that is widely being used for procedural
development is a tree-like diagram called the structure chart. Another popular
design representation techniques called UML that is being used to document
object-oriented design, involves developing several types of diagrams to
document the object-oriented design of a systems. Though other notations
such as Jackson diagram [1975] or Warnier-Orr [1977, 1981] diagram are
available to document a software design, we confine our attention in this text
to structure charts and UML diagrams only.

Once the high-level design is complete, detailed design is undertaken.

During detailed design each module is examined carefully to design its data structures
and the algorithms.

The outcome of the detailed design stage is usually documented in the
form of a module specification (MSPEC) document. After the high-level design
is complete, the problem would have been decomposed into small modules,
and the data structures and algorithms to be used described using MSPEC and
can be easily grasped by programmers for initiating coding. In this text, we
do not discuss MSPECs and confine our attention to high-level design only.

5.1.3 Classification of Design Methodologies
The design activities vary considerably based on the specific design

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

methodology being used. A large number of software design
methodologies are available. We can roughly classify these
methodologies into procedural and object-oriented approaches. These
two approaches are two fundamentally different design paradigms. In
this chapter, we shall discuss the important characteristics of these two
fundamental design approaches. Over the next three chapters, we shall
study these two approaches in detail.

Do design techniques result in unique solutions?
Even while using the same design methodology, different designers
usually arrive at very different design solutions. The reason is that a
design technique often requires the designer to make many subjective
decisions and work out compromises to contradictory objectives. As a
result, it is possible that even the same designer can work out many
different solutions to the same problem. Therefore, obtaining a good
design would involve trying out several alternatives (or candidate
solutions) and picking out the best one. However, a fundamental
question that arises at this point is—how to distinguish superior design
solution from an inferior one? Unless we know what a good software
design is and how to distinguish a superior design solution from an
inferior one, we can not possibly design one. We investigate this issue
in the next section.

Analysis versus design
Analysis and design activities differ in goal and scope.

The goal of any analysis technique is to elaborate the customer requirements through
careful thinking and at the same time consciously avoiding making any decisions
regarding the exact way the system is to be implemented.

The analysis results are generic and does not consider implementation or
the issues associated with specific platforms. The analysis model is usually
documented using some graphical formalism. In case of the function-oriented
approach that we are going to discuss, the analysis model would be
documented using data flow diagrams (DFDs), whereas the design would be
documented using structure chart. On the other hand, for object-oriented
approach, both the design model and the analysis model will be documented
using unified modelling language (UML). The analysis model would normally
be very difficult to implement using a programming language.

The design model is obtained from the analysis model through

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

transformations over a series of steps. In contrast to the analysis model, the
design model reflects several decisions taken regarding the exact way system
is to be implemented. The design model should be detailed enough to be
easily implementable using a programming language.

5.2 HOW TO CHARACTERISE A GOOD SOFTWARE DESIGN?
Coming up with an accurate characterisation of a good software design
that would hold across diverse problem domains is certainly not easy. In
fact, the definition of a “good” software design can vary depending on
the exact application being designed. For example, “memory size used
up by a program” may be an important issue to Characterise a good
solution for embedded software development—since embedded
applications are often required to work under severely limited memory
sizes due to cost, space, or power consumption considerations. For
embedded applications, factors such as design comprehensibility may
take a back seat while judging the goodness of design. Thus for
embedded applications, one may sacrifice design comprehensibility to
achieve code compactness. Similarly, it is not usually true that a
criterion that is crucial for some application, needs to be almost
completely ignored for another application. It is therefore clear that the
criteria used to judge a design solution can vary widely across different
types of applications. Not only do the criteria used to judge a design
solution depend on the exact application being designed, but to make
the matter worse, there is no general agreement among software
engineers and researchers on the exact criteria to use for judging a
design even for a specific category of application. However, most
researchers and software engineers agree on a few desirable
characteristics that every good software design for general applications
must possess. These characteristics are listed below:

Correctness: A good design should first of all be correct. That is, it should
correctly implement all the functionalities of the system.
Understandability: A good design should be easily understandable. Unless
a design solution is easily understandable, it would be difficult to implement
and maintain it.
Efficiency: A good design solution should adequately address resource,
time, and cost optimisation issues.
Maintainability: A good design should be easy to change. This is an

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

important requirement, since change requests usually keep coming from the
customer even after product release.

5.2.1 Understandability of a Design: A Ma jor Concern
While performing the design of a certain problem, assume that we have
arrived at a large number of design solutions and need to choose the best
one. Obviously all incorrect designs have to be discarded first. Out of the
correct design solutions, how can we identify the best one?

Given that we are choosing from only correct design solutions, understandability of a
design solution is possibly the most important issue to be considered while judging
the goodness of a design.

Recollect from our discussions in Chapter 1 that a good design should help
overcome the human cognitive limitations that arise due to limited short-term
memory. A large problem overwhelms the human mind, and a poor design
would make the matter worse. Unless a design solution is easily
understandable, it could lead to an implementation having a large number of
defects and at the same time tremendously pushing up the development
costs. Therefore, a good design solution should be simple and easily
understandable. A design that is easy to understand is also easy to develop
and maintain. A complex design would lead to severely increased life cycle
costs. Unless a design is easily understandable, it would require tremendous
effort to implement, test, debug, and maintain it. We had already pointed out
in Chapter 2 that about 60 per cent of the total effort in the life cycle of a
typical product is spent on maintenance. If the software is not easy to
understand, not only would it lead to increased development costs, the effort
required to maintain the product would also increase manifold. Besides, a
design solution that is difficult to understand would lead to a program that is
full of bugs and is unreliable. Recollect that we had already discussed in
Chapter 1 that understandability of a design solution can be enhanced
through clever applications of the principles of abstraction and decomposition.

An understandable design is modular and layered
How can the understandability of two different designs be compared, so
that we can pick the better one? To be able to compare the
understandability of two design solutions, we should at least have an
understanding of the general features that an easily understandable
design should possess. A design solution should have the following

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

characteristics to be easily understandable:

It should assign consistent and meaningful names to various design
components.
It should make use of the principles of decomposition and abstraction
in good measures to simplify the design.

We had discussed the essential concepts behind the principles of
abstraction and decomposition principles in Chapter 1. But, how can the
abstraction and decomposition principles are used in arriving at a design
solution? These two principles are exploited by design methodologies to
make a design modular and layered. (Though there are also a few other
forms in which the abstraction and decomposition principles can be used in
the design solution, we discuss those later). We can now define the
characteristics of an easily understandable design as follows: A design
solution is understandable, if it is modular and the modules are arranged in
distinct layers.

A design solution should be modular and layered to be understandable.

We now elaborate the concepts of modularity and layering of modules:

Modularity
A modular design is an effective decomposition of a problem. It is a basic
characteristic of any good design solution. A modular design, in simple
words, implies that the problem has been decomposed into a set of
modules that have only limited interactions with each other.
Decomposition of a problem into modules facilitates taking advantage
of the divide and conquer principle. If different modules have either no
interactions or little interactions with each other, then each module can
be understood separately. This reduces the perceived complexity of the
design solution greatly. To understand why this is so, remember that it
may be very difficult to break a bunch of sticks which have been tied
together, but very easy to break the sticks individually.

It is not difficult to argue that modularity is an important characteristic of a
good design solution. But, even with this, how can we compare the
modularity of two alternate design solutions? From an inspection of the
module structure, it is at least possible to intuitively form an idea as to which
design is more modular For example, consider two alternate design solutions

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

to a problem that are represented in Figure 5.2, in which the modules M1 ,
M2 etc. have been drawn as rectangles. The invocation of a module by
another module has been shown as an arrow. It can easily be seen that the
design solution of Figure 5.2(a) would be easier to understand since the
interactions among the different modules is low. But, can we quantitatively
measure the modularity of a design solution? Unless we are able to
quantitatively measure the modularity of a design solution, it will be hard to
say which design solution is more modular than another. Unfortunately, there
are no quantitative metrics available yet to directly measure the modularity
of a design. However, we can quantitatively characterise the modularity of a
design solution based on the cohesion and coupling existing in the design.

A design solution is said to be highly modular, if the different modules in the solution
have high cohesion and their inter-module couplings are low.

A software design with high cohesion and low coupling among modules is
the effective problem decomposition we discussed in Chapter 1. Such a
design would lead to increased productivity during program development by
bringing down the perceived problem complexity.

Figure 5.2: Two design solutions to the same problem.

Based on this classification, we would be able to easily judge the cohesion
and coupling existing in a design solution. From a knowledge of the cohesion
and coupling in a design, we can form our own opinion about the modularity
of the design solution. We shall define the concepts of cohesion and coupling
and the various classes of cohesion and coupling in Section 5.3. Let us now
discuss the other important characteristic of a good design solution—layered

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

design.

Layered design
A layered design is one in which when the call relations among different
modules are represented graphically, it would result in a tree-like
diagram with clear layering. In a layered design solution, the modules
are arranged in a hierarchy of layers. A module can only invoke
functions of the modules in the layer immediately below it. The higher
layer modules can be considered to be similar to managers that invoke
(order) the lower layer modules to get certain tasks done. A layered
design can be considered to be implementing control abstraction, since
a module at a lower layer is unaware of (about how to call) the higher
layer modules.

A layered design can make the design solution easily understandable, since
to understand the working of a module, one would at best have to
understand how the immediately lower layer modules work without having to
worry about the functioning of the upper layer modules.

When a failure is detected while executing a module, it is obvious that the
modules below it can possibly be the source of the error. This greatly
simplifies debugging since one would need to concentrate only on a few
modules to detect the error. We shall elaborate these concepts governing
layered design of modules in Section 5.4.

5.3 COHESION AND COUPLING
We have so far discussed that effective problem decomposition is an
important characteristic of a good design. Good module decomposition
is indicated through high cohesion of the individual modules and low
coupling of the modules with each other. Let us now define what is
meant by cohesion and coupling.

Cohesion is a measure of the functional strength of a module, whereas the
coupling between two modules is a measure of the degree of interaction (or
interdependence) between the two modules.

In this section, we first elaborate the concepts of cohesion and coupling.
Subsequently, we discuss the classification of cohesion and coupling.

Coupling: Intuitively, we can think of coupling as follows. Two modules are
said to be highly coupled, if either of the following two situations arise:

If the function calls between two modules involve passing large chunks

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

of shared data, the modules are tightly coupled.
If the interactions occur through some shared data, then also we say
that they are highly coupled.

If two modules either do not interact with each other at all or at best
interact by passing no data or only a few primitive data items, they are said
to have low coupling.
Cohesion: To understand cohesion, let us first understand an analogy.
Suppose you listened to a talk by some speaker. You would call the speech to
be cohesive, if all the sentences of the speech played some role in giving the
talk a single and focused theme. Now, we can extend this to a module in a
design solution. When the functions of the module co-operate with each other
for performing a single objective, then the module has good cohesion. If the
functions of the module do very different things and do not co-operate with
each other to perform a single piece of work, then the module has very poor
cohesion.

Functional independence
By the term functional independence, we mean that a module performs a
single task and needs very little interaction with other modules.

A module that is highly cohesive and also has low coupling with other modules is said
to be functionally independent of the other modules.

Functional independence is a key to any good design primarily due to the
following advantages it offers:
Error isolation: Whenever an error exists in a module, functional
independence reduces the chances of the error propagating to the other
modules. The reason behind this is that if a module is functionally
independent, its interaction with other modules is low. Therefore, an error
existing in the module is very unlikely to affect the functioning of other
modules.

Further, once a failure is detected, error isolation makes it very easy to
locate the error. On the other hand, when a module is not functionally
independent, once a failure is detected in a functionality provided by the
module, the error can be potentially in any of the large number of modules
and propagated to the functioning of the module.
Scope of reuse: Reuse of a module for the development of other
applications becomes easier. The reasons for this is as follows. A functionally

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

independent module performs some well-defined and precise task and the
interfaces of the module with other modules are very few and simple. A
functionally independent module can therefore be easily taken out and
reused in a different program. On the other hand, if a module interacts with
several other modules or the functions of a module perform very different
tasks, then it would be difficult to reuse it. This is especially so, if the module
accesses the data (or code) internal to other modules.
Understandability: When modules are functionally independent, complexity
of the design is greatly reduced. This is because of the fact that different
modules can be understood in isolation, since the modules are independent
of each other. We have already pointed out in Section 5.2 that
understandability is a major advantage of a modular design. Besides the
three we have listed here, there are many other advantages of a modular
design as well. We shall not list those here, and leave it as an assignment to
the reader to identify them.

5.3.1 Classification of Cohesiveness
Cohesiveness of a module is the degree to which the different functions of the
module co-operate to work towards a single objective. The different modules
of a design can possess different degrees of freedom. However, the different
classes of cohesion that modules can possess are depicted in Figure 5.3. The
cohesiveness increases from coincidental to functional cohesion. That is,
coincidental is the worst type of cohesion and functional is the best cohesion
possible. These different classes of cohesion are elaborated below.

Figure 5.3: Classification of cohesion.

Coincidental cohesion: A module is said to have coincidental cohesion,
if it performs a set of tasks that relate to each other very loosely, if at
all. In this case, we can say that the module contains a random
collection of functions. It is likely that the functions have been placed in
the module out of pure coincidence rather than through some thought
or design. The designs made by novice programmers often possess this
category of cohesion, since they often bundle functions to modules
rather arbitrarily. An example of a module with coincidental cohesion

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

has been shown in Figure 5.4(a).Observe that the different functions of
the module carry out very different and unrelated activities starting
from issuing of library books to creating library member records on one
hand, and handling librarian leave request on the other.

Figure 5.4: Examples of cohesion.

Logical cohesion: A module is said to be logically cohesive, if all
elements of the module perform similar operations, such as error
handling, data input, data output, etc. As an example of logical
cohesion, consider a module that contains a set of print functions to
generate various types of output reports such as grade sheets, salary
slips, annual reports, etc.

Temporal cohesion: When a module contains functions that are related by
the fact that these functions are executed in the same time span, then the
module is said to possess temporal cohesion. As an example, consider the
following situation. When a computer is booted, several functions need to be
performed. These include initialisation of memory and devices, loading the
operating system, etc. When a single module performs all these tasks, then
the module can be said to exhibit temporal cohesion. Other examples of
modules having temporal cohesion are the following. Similarly, a module
would exhibit temporal cohesion, if it comprises functions for performing
initialisation, or start-up, or shut-down of some process.
Procedural cohesion: A module is said to possess procedural cohesion, if
the set of functions of the module are executed one after the other, though
these functions may work towards entirely different purposes and operate on
very different data. Consider the activities associated with order processing in
a trading house. The functions login(), place-order(), check-order(), print-
bill(), place-order-on-vendor(), update-inventory(), and logout() all do
different thing and operate on different data. However, they are normally

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

executed one after the other during typical order processing by a sales clerk.
Communicational cohesion: A module is said to have communicational
cohesion, if all functions of the module refer to or update the same data
structure. As an example of procedural cohesion, consider a module named
student in which the different functions in the module such as admitStudent,
enterMarks, printGradeSheet, etc. access and manipulate data stored in an
array named studentRecords defined within the module.
Sequential cohesion: A module is said to possess sequential cohesion, if
the different functions of the module execute in a sequence, and the output
from one function is input to the next in the sequence. As an example
consider the following situation. In an on-line store consider that after a
customer requests for some item, it is first determined if the item is in stock.
In this case, if the functions create-order(), check-item-availability(), place-
order-on-vendor() are placed in a single module, then the module would
exhibit sequential cohesion. Observe that the function create-order() creates
an order that is processed by the function check-item-availability() (whether
the items are available in the required quantities in the inventory) is input to
place-order-on-vendor().
Functional cohesion: A module is said to possess functional cohesion, if
different functions of the module co-operate to complete a single task. For
example, a module containing all the functions required to manage
employees’ pay-roll displays functional cohesion. In this case, all the functions
of the module (e.g., computeOvertime(), computeWorkHours(),
computeDeductions(), etc.) work together to generate the payslips of the
employees. Another example of a module possessing functional cohesion has
been shown in Figure 5.4(b). In this example, the functions issue-book(),
return-book(), query-book(), and find-borrower(), together manage all
activities concerned with book lending. When a module possesses functional
cohesion, then we should be able to describe what the module does using
only one simple sentence. For example, for the module of Figure 5.4(a), we
can describe the overall responsibility of the module by saying “It manages
the book lending procedure of the library.”

A simple way to determine the cohesiveness of any given module is as
follows. First examine what do the functions of the module perform. Then, try
to write down a sentence to describe the overall work performed by the
module. If you need a compound sentence to describe the functionality of the
module, then it has sequential or communicational cohesion. If you need
words such as “first”, “next”, “after”, “then”, etc., then it possesses sequential

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

or temporal cohesion. If it needs words such as “initialise”, “setup”, “shut
down”, etc., to define its functionality, then it has temporal cohesion.

We can now make the following observation. A cohesive module is one in
which the functions interact among themselves heavily to achieve a single
goal. As a result, if any of these functions is removed to a different module,
the coupling would increase as the functions would now interact across two
different modules.

5.3.2 Classification of Coupling
The coupling between two modules indicates the degree of interdependence
between them. Intuitively, if two modules interchange large amounts of data,
then they are highly interdependent or coupled. We can alternately state this
concept as follows.

The degree of coupling between two modules depends on their interface complexity.

The interface complexity is determined based on the number of parameters
and the complexity of the parameters that are interchanged while one
module invokes the functions of the other module.

Let us now classify the different types of coupling that can exist between
two modules. Between any two interacting modules, any of the following five
different types of coupling can exist. These different types of coupling, in
increasing order of their severities have also been shown in Figure 5.5.

Figure 5.5: Classification of coupling.

Data coupling: Two modules are data coupled, if they communicate using
an elementary data item that is passed as a parameter between the two, e.g.
an integer, a float, a character, etc. This data item should be problem related
and not used for control purposes.
Stamp coupling: Two modules are stamp coupled, if they communicate
using a composite data item such as a record in PASCAL or a structure in C.
Control coupling: Control coupling exists between two modules, if data
from one module is used to direct the order of instruction execution in
another. An example of control coupling is a flag set in one module and

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

tested in another module.
Common coupling: Two modules are common coupled, if they share some
global data items.
Content coupling: Content coupling exists between two modules, if they
share code. That is, a jump from one module into the code of another module
can occur. Modern high-level programming languages such as C do not
support such jumps across modules.

The different types of coupling are shown schematically in Figure 5.5. The
degree of coupling increases from data coupling to content coupling. High
coupling among modules not only makes a design solution difficult to
understand and maintain, but it also increases development effort and also
makes it very difficult to get these modules developed independently by
different team members.

5.4 LAYERED ARRANGEMENT OF MODULES
T h e control hier a r c h y represents the organisation of program
components in terms of their call relationships. Thus we can say that
the control hierarchy of a design is determined by the order in which
different modules call each other. Many different types of notations
have been used to represent the control hierarchy. The most common
notation is a tree-like diagram known as a structure chart which we
shall study in some detail in Chapter 6. However, other notations such
as Warnier-Orr [1977, 1981] or Jackson diagrams [1975] may also be
used. Since, Warnier-Orr and Jackson’s notations are not widely used
nowadays, we shall discuss only structure charts in this text.

In a layered design solution, the modules are arranged into several layers
based on their call relationships. A module is allowed to call only the modules
that are at a lower layer. That is, a module should not call a module that is
either at a higher layer or even in the same layer. Figure 5.6(a) shows a
layered design, whereas Figure 5.6(b) shows a design that is not layered.
Observe that the design solution shown in Figure 5.6(b), is actually not
layered since all the modules can be considered to be in the same layer. In
the following, we state the significance of a layered design and subsequently
we explain it.

An important characteristic feature of a good design solution is layering of the
modules. A layered design achieves control abstraction and is easier to understand
and debug.

In a layered design, the top-most module in the hierarchy can be

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

In a layered design, the top-most module in the hierarchy can be
considered as a manager that only invokes the services of the lower level
module to discharge its responsibility. The modules at the intermediate layers
offer services to their higher layer by invoking the services of the lower layer
modules and also by doing some work themselves to a limited extent. The
modules at the lowest layer are the worker modules. These do not invoke
services of any module and entirely carry out their responsibilities by
themselves.

Understanding a layered design is easier since to understand one module,
one would have to at best consider the modules at the lower layers (that is,
the modules whose services it invokes). Besides, in a layered design errors
are isolated, since an error in one module can affect only the higher layer
modules. As a result, in case of any failure of a module, only the modules at
the lower levels need to be investigated for the possible error. Thus,
debugging time reduces significantly in a layered design. On the other hand,
if the different modules call each other arbitrarily, then this situation would
correspond to modules arranged in a single layer. Locating an error would be
both difficult and time consuming. This is because, once a failure is observed,
the cause of failure (i.e. error) can potentially be in any module, and all
modules would have to be investigated for the error. In the following, we
discuss some important concepts and terminologies associated with a layered
design:
Superordinate and subordinate modules: In a control hierarchy, a
module that controls another module is said to be superordinate to it.
Conversely, a module controlled by another module is said to be subordinate
to the controller.
Visibility: A module B is said to be visible to another module A, if A directly
calls B. Thus, only the immediately lower layer modules are said to be visible
to a module.
Control abstraction: In a layered design, a module should only invoke the
functions of the modules that are in the layer immediately below it. In other
words, the modules at the higher layers, should not be visible (that is,
abstracted out) to the modules at the lower layers. This is referred to as
control abstraction.
Depth and width: Depth and width of a control hierarchy provide an
indication of the number of layers and the overall span of control respectively.
For the design of Figure 5.6(a), the depth is 3 and width is also 3.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Fan-out: Fan-out is a measure of the number of modules that are directly
controlled by a given module. In Figure 5.6(a), the fan-out of the module M1
is 3. A design in which the modules have very high fan-out numbers is not a
good design. The reason for this is that a very high fan-out is an indication
that the module lacks cohesion. A module having a large fan-out (greater
than 7) is likely to implement several different functions and not just a single
cohesive function.
Fan-in: Fan-in indicates the number of modules that directly invoke a given
module. High fan-in represents code reuse and is in general, desirable in a
good design. In Figure 5.6(a), the fan-in of the module M1 is 0, that of M2 is
1, and that of M5 is 2.

Figure 5.6: Examples of good and poor control abstraction.

5.5 APPROACHES TO SOFTWARE DESIGN
There are two fundamentally different approaches to software design
that are in use today— function-oriented design, and object-oriented
design. Though these two design approaches are radically different,
they are complementary rather than competing techniques. The object-
oriented approach is a relatively newer technology and is still evolving.
For development of large programs, the object- oriented approach is
becoming increasingly popular due to certain advantages that it offers.
On the other hand, function-oriented designing is a mature technology
and has a large following. Salient features of these two approaches are
discussed in subsections 5.5.1 and 5.5.2 respectively.

5.5.1 Function-oriented Design

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The following are the salient features of the function-oriented design
approach:

Top-down decomposition: A system, to start with, is viewed as a black
box that provides certain services (also known as high-level functions) to the
users of the system.

In top-down decomposition, starting at a high-level view of the system,
each high-level function is successively refined into more detailed functions.

For example, consider a function create-new-library membe r which
essentially creates the record for a new member, assigns a unique
membership number to him, and prints a bill towards his membership charge.
This high-level function may be refined into the following subfunctions:

• assign-membership-number
• create-member-record
• print-bill
Each of these subfunctions may be split into more detailed subfunctions and

so on.
Centralised system state: The system state can be defined as the values
of certain data items that determine the response of the system to a user
action or external event. For example, the set of books (i.e. whether
borrowed by different users or available for issue) determines the state of a
library automation system. Such data in procedural programs usually have
global scope and are shared by many modules.

The system state is centralised and shared among different functions.

For example, in the library management system, several functions such as
the following share data such as member-records for reference and updation:

• create-new-member
• delete-member
• update-member-record
A large number of function-oriented design approaches have been proposed

in the past. A
few of the well-established function-oriented design approaches are as

following:
• Structured design by Constantine and Yourdon, [1979]
• Jackson’s structured design by Jackson [1975]
• Warnier-Orr methodology [1977, 1981]

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

• Step-wise refinement by Wirth [1971]
• Hatley and Pirbhai’s Methodology [1987]

5.5.2 Object-oriented Design
In the object-oriented design (OOD) approach, a system is viewed as
being made up of a collection of objects (i.e. entities). Each object is
associated with a set of functions that are called its methods. Each
object contains its own data and is responsible for managing it. The
data internal to an object cannot be accessed directly by other objects
and only through invocation of the methods of the object. The system
state is decentralised since there is no globally shared data in the
system and data is stored in each object. For example, in a library
automation software, each library member may be a separate object
with its own data and functions to operate on the stored data. The
methods defined for one object cannot directly refer to or change the
data of other objects.

The object-oriented design paradigm makes extensive use of the principles
of abstraction and decomposition as explained below. Objects decompose a
system into functionally independent modules. Objects can also be
considered as instances of abstract data types (ADTs). The ADT concept did
not originate from the object-oriented approach. In fact, ADT concept was
extensively used in the ADA programming language introduced in the 1970s.
ADT is an important concept that forms an important pillar of object-
orientation. Let us now discuss the important concepts behind an ADT. There
are, in fact, three important concepts associated with an ADT—data
abstraction, data structure, data type. We discuss these in the following
subsection:

Data abstraction: The principle of data abstraction implies that how
data is exactly stored is abstracted away. This means that any entity
external to the object (that is, an instance of an ADT) would have no
knowledge about how data is exactly stored, organised, and
manipulated inside the object. The entities external to the object can
access the data internal to an object only by calling certain well-defined
methods supported by the object. Consider an ADT such as a stack. The
data of a stack object may internally be stored in an array, a linearly
linked list, or a bidirectional linked list. The external entities have no
knowledge of this and can access data of a stack object only through
the supported operations such as push and pop.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Data structure: A data structure is constructed from a collection of primitive
data items. Just as a civil engineer builds a large civil engineering structure
using primitive building materials such as bricks, iron rods, and cement; a
programmer can construct a data structure as an organised collection of
primitive data items such as integer, floating point numbers, characters, etc.
Data type: A type is a programming language terminology that refers to
anything that can be instantiated. For example, int, float, char etc., are the
basic data types supported by C programming language. Thus, we can say
that ADTs are user defined data types.

In object-orientation, classes are ADTs. But, what is the advantage of
developing an application using ADTs? Let us examine the three main
advantages of using ADTs in programs:

The data of objects are encapsulated within the methods. The
encapsulation principle is also known as data hiding. The encapsulation
principle requires that data can be accessed and manipulated only
through the methods supported by the object and not directly. This
localises the errors. The reason for this is as follows. No program
element is allowed to change a data, except through invocation of one
of the methods. So, any error can easily be traced to the code segment
changing the value. That is, the method that changes a data item,
making it erroneous can be easily identified.
An ADT-based design displays high cohesion and low coupling.
Therefore, object- oriented designs are highly modular.
Since the principle of abstraction is used, it makes the design solution
easily understandable and helps to manage complexity.

Similar objects constitute a class. In other words, each object is a member
of some class. Classes may inherit features from a super class. Conceptually,
objects communicate by message passing. Objects have their own internal
data. Thus an object may exist in different states depending the values of the
internal data. In different states, an object may behave differently. We shall
elaborate these concepts in Chapter 7 and subsequently we discuss an
object-oriented design methodology in Chapter 8.

O b je ct -or ie n t e d v e r s u s function-oriented design
approaches

The following are some of the important differences between the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

function-oriented and object-oriented design:

Unlike function-oriented design methods in OOD, the basic abstraction
is not the services available to the users of the system such as issue-
book, display-book-details, find-issued-books, etc., but real-world
entities such as member, book, book-register, etc. For example in
OOD, an employee pay-roll software is not developed by designing
functions such as update-employee-record, get-employee-address,
etc., but by designing objects such as employees, departments, etc.
In OOD, state information exists in the form of data distributed among
several objects of the system. In contrast, in a procedural design, the
state information is available in a centralised shared data store. For
example, while developing an employee pay-roll system, the employee
data such as the names of the employees, their code numbers, basic
salaries, etc., are usually implemented as global data in a traditional
programming system; whereas in an object-oriented design, these
data are distributed among different employee objects of the system.
Objects communicate by message passing. Therefore, one object may
discover the state information of another object by sending a message
to it. Of course, somewhere or other the real-world functions must be
implemented.
Function-oriented techniques group functions together if, as a group,
they constitute a higher level function. On the other hand, object-
oriented techniques group functions together on the basis of the data
they operate on.

To illustrate the differences between the object-oriented and the function-
oriented design approaches, let us consider an example—that of an
automated fire-alarm system for a large building.

Automated fire-alarm system—customer requirements
The owner of a large multi-storied building wants to have a
computerised fire alarm system designed, developed, and installed in
his building. Smoke detectors and fire alarms would be placed in each
room of the building. The fire alarm system would monitor the status of
these smoke detectors. Whenever a fire condition is reported by any of
the smoke detectors, the fire alarm system should determine the
location at which the fire has been sensed and then sound the alarms

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

only in the neighbouring locations. The fire alarm system should also
flash an alarm message on the computer console. Fire fighting
personnel would man the console round the clock. After a fire condition
has been successfully handled, the fire alarm system should support
resetting the alarms by the fire fighting personnel.

Function-oriented approach: In this approach, the different high-level
functions are first identified, and then the data structures are designed.

The functions which operate on the system state are:
interrogate_detectors();
get_detector_location();
determine_neighbour_alarm();
determine_neighbour_sprinkler();
ring_alarm();
activate_sprinkler();
reset_alarm();
reset_sprinkler();
report_fire_location();

Object-oriented approach: In the object-oriented approach, the different
classes of objects are identified. Subsequently, the methods and data for
each object are identified. Finally, an appropriate number of instances of each
class is created.

class detector
attributes: status, location, neighbours
operations: create, sense-status, get-location,

find-neighbours

class alarm
attributes: location, status
operations: create, ring-alarm, get_location, reset-
alarm

class sprinkler

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

attributes: location, status
operations: create, activate-sprinkler, get_location,
reset-sprinkler

We can now compare the function-oriented and the object-oriented
approaches based on the two examples discussed above, and easily observe
the following main differences:

In a function-oriented program, the system state (data) is centralised
and several functions access and modify this central data. In case of an
object-oriented program, the state information (data) is distributed
among various objects.
In the object-oriented design, data is private in different objects and
these are not available to the other objects for direct access and
modification.
The basic unit of designing an object-oriented program is objects,
whereas it is functions and modules in procedural designing. Objects
appear as nouns in the problem description; whereas functions appear
as verbs.

At this point, we must emphasise that it is not necessary that an object-
oriented design be implemented by using an object-oriented language only.
However, an object-oriented language such as C++ and Java support the
definition of all the basic mechanisms of class, inheritance, objects, methods,
etc. and also support all key object-oriented concepts that we have just
discussed. Thus, an object-oriented language facilitates the implementation
of an OOD. However, an OOD can as well be implemented using a
conventional procedural languages—though it may require more effort to
implement an OOD using a procedural language as compared to the effort
required for implementing the same design using an object-oriented
language. In fact, the older C++ compilers were essentially pre-processors
that translated C++ code into C code.

Even though object-oriented and function-oriented techniques are
remarkably different approaches to software design, yet one does not replace
the other; but they complement each other in some sense. For example,
usually one applies the top-down function oriented techniques to design the
internal methods of a class, once the classes are identified. In this case,
though outwardly the system appears to have been developed in an object-
oriented fashion, but inside each class there may be a small hierarchy of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

functions designed in a top-down manner.

SUMMARY

software design is typically carried out through two stages—high-level
design, and detailed design. During high-level design, the important
components (modules) of the system and their interactions are
identified. During detailed design, the algorithms and data structures
are identified.
We discussed that there is no unique design solution to any problem
and one needs to choose the best solution among a set of candidate
solutions. To be able to achieve this, we identified the factors based on
which a superior design can be distinguished from a inferior design.
We discussed that understandability of a design is a major criterion
determining the goodness of a design. We Characterised the
understandability of design in terms of satisfactory usage of
decomposition and abstraction principles. Later, we Characterised
these in terms of cohesion, coupling, layering, control abstraction, fan-
in, fan-out, etc.
We identified two fundamentally different approaches to software
design—function- oriented design and object-oriented design. We
discussed the essential philosophy governing these two approaches
and argued that these two approaches to software design are not
really competing approaches but complementary approaches.

EXERCISES
1. Choose the correct option

(a) The extent of data interchange between two modules is called:
(i) Coupling
(ii) Cohesion
(iii) Structure
(iv) Union

(b) Which of the following type of cohesion can be considered as the
strongest cohesion:
(i) Logical
(ii) Coincidental
(iii) Temporal
(iv) Functional

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(c) The modules in a good software design should have which of the
following characteristics:
(i) High cohesion, low coupling
(ii) Low cohesion, high coupling
(iii) Low cohesion, low coupling
(iv) High cohesion, high coupling

2 . Do you agree with the following assertion? A design solution that is
difficult to under- stand would lead to increased development and
maintenance cost. Give reasonings for your answer.

3. What do you mean by the terms cohesion and coupling in the context of
software design?
How are these concepts useful in arriving at a good design of a system?

4 . What do you mean by a modular design? How can you determine
whether a given design is modular or not?

5 . Enumerate the different types of cohesion that a module in a design
might exhibit. Give examples of each.

6. Enumerate the different types of coupling that might exist between two
modules. Give examples of each.

7 . Is it true that whenever you increase the cohesion of your design,
coupling in the design would automatically decrease? Justify your answer
by using suitable examples.

8. What according to you are the characteristics of a good software design?
9 . What do you understand by the term functional independence in the

context of software design? What are the advantages of functional
independence? How can functional independence in a software design be
achieved?

10. Explain how the principles of abstraction and decomposition are used
to arrive at a good design.

1 1 . What do you understand by information hiding in the context of
software design?
Explain why a design approach based on the information hiding principle
is likely to lead to a reusable and maintainable design. Illustrate your
answer with a suitable example.

12. In the context of software development, distinguish between analysis
and design with respect to intention, methodology, and the
documentation technique used.

13. State whether the following statements are TRUE o r FALSE. Give
reasons for your answer.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(a) The essence of any good function-oriented design technique is to
map the functions performing similar activities into a module.

(b) Traditional procedural design is carried out top-down whereas
object-oriented design is normally carried out bottom-up.

(c) Common coupling is the worst type of coupling between two
modules.

(d) Temporal cohesion is the worst type of cohesion that a module can
have.

(e) The extent to which two modules depend on each other determines
the cohesion of the two modules.

14. Compare relative advantages of the object-oriented and function-
oriented approaches to software design.

15. Name a few well-established function-oriented software design
techniques.

16. Explain the important causes of and remedies for high coupling
between two software modules.

17. What problems are likely to arise if two modules have high coupling?
18. What problems are likely to occur if a module has low cohesion?
19. Distinguish between high-level and detailed designs. What documents

should be produced on completion of high-level and detailed designs
respectively?

20. What is meant by the term cohesion in the context of software design?
Is it true that in a good design, the modules should have low cohesion?
Why?

21. What is meant by the term coupling in the context of software design?
Is it true that in a good design, the modules should have low coupling?
Why?

22. What do you mean by modular design? What are the different factors
that affect the modularity of a design? How can you assess the
modularity of a design? What are the advantages of a modular design?

23. How would you improve a software design that displays very low
cohesion and high coupling?

24. Explain how the overall cohesion and coupling of a design would be
impacted if all modules of the design are merged into a single module.

25. Explain what do you understand by the terms decomposition and
abstraction in the context of software design. How are these two
principles used in arriving good procedural designs?

26. What is an ADT? What advantages accrue when a software design

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

technique is based on ADTs? Explain why the object paradigm is said to
be based on ADTs.

27. By using suitable examples explain the following terms associated with
an abstract data type (ADT)—data abstraction, data structure, data
type.

28. What do you understand by the term top-down decomposition in the
context of function- oriented design? Explain your answer using a
suitable example.

29. What do you understand by a layered software design? What are the
advantages of a layered design? Explain your answer by using suitable
examples.

30. What is the principal difference between the software design
methodologies based on functional abstraction and those based on data
abstraction? Name at least one popular design technique based on each
of these two software design paradigms.

31. What are the main advantages of using an object-oriented approach to
software design over a function-oriented approach?

32. Point out three important differences between the function oriented
and the object- oriented approaches to software design. Corroborate
your answer through suitable examples.

33. Identify the criteria that you would use to decide which one of two
alternate function- oriented design solutions to a problem is superior.

34. Explain the main differences between architectural design, high-level-
design, and detailed design of a software system.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter
6

FUNCTION-ORIENTED SOFTWARE
DESIGN

Function-oriented design techniques were proposed nearly four decades ago.
These techniques are at the present time still very popular and are currently
being used in many software development organisations. These techniques,
to start with, view a system as a black-box that provides a set of services to
the users of the software. These services provided by a software (e.g., issue
book, serach book, etc., for a Library Automation Software to its users are also
known as the high-level functions supported by the software. During the
design process, these high-level functions are successively decomposed into
more detailed functions.

The term top-down decomposition i s often used to denote the successive
decomposition of a set of high-level functions into more detailed functions.

After top-down decomposition has been carried out, the different identified
functions are mapped to modules and a module structure is created. This
module structure would possess all the characteristics of a good design
identified in the last chapter.

In this text, we shall not focus on any specific design methodology. Instead,
we shall discuss a methodology that has the essential features of several
important function-oriented design methodologies. Such an approach shall
enable us to easily assimilate any specific design methodology in the future
whenever the need arises. Learning a specific methodology may become
necessary for you later, since different software development houses follow
different methodologies. After all, the different procedural design techniques
can be considered as sister techniques that have only minor differences with
respect to the methodology and notations. We shall call the design technique
discussed in this text a s structured analysis/structured design (SA/SD)

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

methodology. This technique draws heavily from the design methodologies
proposed by the following authors:

DeMarco and Yourdon [1978]
Constantine and Yourdon [1979]
Gane and Sarson [1979]
Hatley and Pirbhai [1987]

The SA/SD technique can b e used to perform the high-level design of a
software. The details of SA/SD technique are discussed further.

6.1 OVERVIEW OF SA/SD METHODOLOGY
As the name itself implies, SA/SD methodology involves carrying out two
distinct activities:

Structured analysis (SA)
Structured design (SD)

The roles of structured analysis (SA) and structured design (SD) have been
shown schematically in Figure 6.1. Observe the following from the figure:

During structured analysis, the SRS document is transformed into a
data flow diagram (DFD) model.
During structured design, the DFD model is transformed into a
structure chart.

Figure 6.1: Structured analysis and structured design methodology.

As shown in Figure 6.1, the structured analysis activity transforms the SRS
document into a graphic model called the DFD model. During structured
analysis, functional decomposition of the system is achieved. That is, each

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

function that the system needs to perform is analysed and hierarchically
decomposed into more detailed functions. On the other hand, during
structured design, all functions identified during structured analysis are
mapped to a module structure. This module structure is also called the high-
level design or the software architecture for the given problem. This is
represented using a structure chart.

The high-level design stage is normally followed by a detailed design stage.
During the detailed design stage, the algorithms and data structures for the
individual modules are designed. The detailed design can directly be
implemented as a working system using a conventional programming
language.

It is important to understand that the purpose of structured analysis is to capture the
detailed structure of the system as perceived by the user, whereas the purpose of
structured design is to define the structure of the solution that is suitable for
implementation in some programming language.

The results of structured analysis can therefore, be easily understood by
the user. In fact, the different functions and data in structured analysis are
named using the user’s terminology. The user can therefore even review the
results of the structured analysis to ensure that it captures all his
requirements.

In the following section, w e first discuss how to carry out structured
analysis to construct the DFD model. Subsequently, we discuss how the DFD
model can be transformed into structured design.

6.2 STRUCTURED ANALYSIS
We have already mentioned that during structured analysis, the major
processing tasks (high-level functions) of the system are analysed, and
t h e data flow among these processing tasks are represented
graphically. Significant contributions to the development of the
structured analysis techniques have been made by Gane and Sarson
[1979], and DeMarco and Yourdon [1978]. The structured analysis
technique is based on the following underlying principles:

Top-down decomposition approach.
Application of divide and conquer principle. Through this each high-
level function is independently decomposed into detailed functions.
Graphical representation of the analysis results us i ng data flow

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

diagrams (DFDs).

DFD representation of a problem, as we shall see shortly, is very easy to
construct. Though extremely simple, it is a very powerful tool to tackle the
complexity of industry standard problems.

A DFD is a hierarchical graphical model of a system that shows the different
processing activities or functions that the system performs and the data interchange
among those functions.

Please note that a DFD model only represents the data flow aspects and
does not show the sequence of execution of the different functions and the
conditions based on which a function may or may not be executed. In fact, it
completely ignores aspects such as control flow, the specific algorithms used
by the functions, etc. In the DFD terminology, each function is called a
process or a bubble. It is useful to consider each function as a processing
station (or process) that consumes some input data and produces some
output data.

DFD is an elegant modelling technique that can be used not only to
represent the results of structured analysis of a software problem, but also
useful for several other applications such as showing the flow of documents
or items in an organisation. Recall that in Chapter 1 we had given an example
(see Figure 1.10) to illustrate how a DFD can be used t o represent the
processing activities and flow of material in an automated car assembling
plant. We now elaborate how a DFD model can be constructed.

6.2.1 Data Flow Diagrams (DFDs)
The DFD (also known as the bubble chart) is a simple graphical
formalism that can be used to represent a system in terms of the input
data to the system, various processing carried out on those data, and
the output data generated by the system. The main reason why the
DFD technique is so popular is probably because of the fact that DFD is
a very simple formalism— it is simple to understand and use. A DFD
model uses a very limited number of primitive symbols (shown in Figure
6.2) to represent the functions performed by a system and the data
flow among these functions.

Starting with a set of high-level functions that a system performs, a DFD
model represents the subfunctions performed by the functions using a
hierarchy of diagrams. We had pointed out while discussing the principle of
abstraction in Section 1.3.2 that any hierarchical representation is an

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

effective means to tackle complexity. Human mind is such that it can easily
understand any hierarchical model of a system—because in a hierarchical
model, starting with a very abstract model of a system, various details of the
system are slowly introduced through different levels of the hierarchy. The
DFD technique is also based on a very simple set of intuitive concepts and
rules. We now elaborate the different concepts associated with building a
DFD model of a system.

Primitive symbols used for constructing DFDs
There are essentially five different types of symbols used for constructing
DFDs. These primitive symbols are depicted in Figure 6.2. The meaning of
these symbols are explained as follows:

Figure 6.2: Symbols used for designing DFDs.

Function symbol: A function is represented using a circle. This symbol is
called a process or a bubble. Bubbles are annotated with the names of
the corresponding functions (see Figure 6.3).

External entity symbol: An external entity such as a librarian, a library
member, etc. is represented by a rectangle. The external entities are
essentially those physical entities external to the software system which
interact with the system by inputting data to the system or by consuming the
data produced by the system. In addition to the human users, the external
entity symbols can be used to represent external hardware and software such
as another application software that would interact with the software being
modelled.
Data flow symbol: A directed arc (or an arrow) is used as a data flow symbol.
A data flow symbol represents the data flow occurring between two processes
or between an external entity and a process in the direction of the data flow
arrow. Data flow symbols are usually annotated with the corresponding data
names. For example the DFD in Figure 6.3(a) shows three data flows—the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

data item number flowing from the process read-number to validate-number, data-
item flowing into read-number, and valid-number flowing out of validate-number.
Data store symbol: A data store is represented using two parallel lines. It
represents a logical file. That is, a data store symbol can represent either a
data structure or a physical file on disk. Each data store is connected to a
process by means of a data flow symbol. The direction of the data flow arrow
shows whether data is being read from or written into a data store. An arrow
flowing in or out of a data store implicitly represents the entire data of the
data store and hence arrows connecting t o a data store need not be
annotated with the name of the corresponding data items. As an example of
a data store, number is a data store in Figure 6.3(b).

Output symbol: The output symbol i s as shown in Figure 6.2. The output
symbol is used when a hard copy is produced.

The notations that we are following in this text are closer to the Yourdon’s
notations than to the other notations. You may sometimes find notations in
other books that are slightly different than those discussed here. For
example, the data store may look like a box with one end open. That is
because, they may be following notations such as those of Gane and Sarson
[1979].

Important concepts associated with constructing DFD models
Before we discuss how to construct the DFD model of a system, let us
discuss some important concepts associated with DFDs:

Synchronous and asynchronous operations
If two bubbles are directly connected by a data flow arrow, then they are
synchronous. This means that they operate at t he same speed. An
example of such an arrangement is shown in Figure 6.3(a). Here, the
validate-number bubble can start processing only after t he read-
number bubble has supplied data to it; and the read-number bubble
has to wait until the validate-number bubble has consumed its
data.

However, if two bubbles are connected through a data store, as in Figure
6.3(b) then the speed of operation of the bubbles are independent. This
statement can be explained using the following reasoning. The data produced
by a producer bubble gets stored in the data store. It is therefore possible
that the producer bubble stores several pieces of data items, even before the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

consumer bubble consumes any of them.

Figure 6.3: Synchronous and asynchronous data flow.

Data dictionary
Every DFD model of a system must be accompanied by a data dictionary. A
data dictionary lists all data items that appear in a DFD model. The data
items listed include all data flows and the contents of all data stores
appearing on all the DFDs in a DFD model. Please remember that the DFD
model of a system typically consists of several DFDs, viz., level 0 DFD, level 1
DFD, level 2 DFDs, etc., as shown in Figure 6.4 discussed in new subsection.
However, a single data dictionary should capture all the data appearing in all
the DFDs constituting the DFD model of a system.

A data dictionary lists the purpose of all data items and the definition of all composite
data items in terms of their component data items.

For example, a data dictionary entry may represent that the data grossPay
consists of the components regularPay and overtimePay.

grossP ay = regularP ay + overtimeP ay
For the smallest units of data items, the data dictionary simply lists their
name and their type. Composite data items are expressed in terms of
the component data items using certain operators. The operators using
which a composite data item can be expressed in terms of its
component data items are discussed subsequently.

The dictionary plays a very important role in any software development
process, especially for the following reasons:

A data dictionary provides a standard terminology for all relevant data
for use by the developers working in a project. A consistent vocabulary
for data items is very important, since in large projects different
developers of the project have a tendency to use different terms to
refer to the same data, which unnecessarily causes confusion.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The data dictionary helps the developers to determine the definition of
different data structures in terms of their component elements while
implementing the design.
The data dictionary helps to perform impact analysis. That is, it is
possible to determine the effect of some data on various processing
activities and vice versa. Such impact analysis is especially useful when
one wants to check the impact of changing an input value type, or a
bug in some functionality, etc.

For large systems, the data dictionary can become extremely complex and
voluminous. Even moderate-sized projects can have thousands of entries in
the data dictionary. It becomes extremely di fficult to maintain a voluminous
dictionary manually. Computer-aided software engineering (CASE) tools come
handy to overcome this problem. Most CASE tools usually capture the data
items appearing in a DFD as the DFD is drawn, and automatically generate
the data dictionary. As a result, the designers do not have to spend almost
any effort in creating the data dictionary. These CASE tools also support some
query language facility to query about the definition and usage of data items.
For example, queries may be formulated to determine which data item
affects which processes, or a process affects which data items, or the
definition and usage of specific data items, etc. Query handling is facilitated
by storing the data dictionary in a relational database management system
(RDBMS).

Data definition
Composite data items can be defined in terms of primitive data items
using the following data definition operators.

+: denotes composition of two data items, e.g. a+b represents data a and b.
[,,]: represents selection, i.e. any one of the data items listed inside the

square bracket can occur For example, [a,b] represents either a occurs or b
occurs.

(): the contents inside the bracket represent optional data which may or may
not appear.
a+(b) represents either a or a+b occurs.

{}: represents iterative data definition, e.g. {name}5 represents five name data.
{name}* represents zero or more instances of name data.

=: represents equivalence, e.g. a=b+c means that a is a composite data item

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

comprising of both b and c.
/* */: Anything appearing within /* and */ is considered as comment.

6.3 DEVELOPING THE DFD MODEL OF A SYSTEM
A DFD model of a system graphically represents how each input data is
transformed to its corresponding output data through a hierarchy of DFDs.

The DFD model of a problem consists of many of DFDs and a single data dictionary.

The DFD model of a system i s constructed by using a hierarchy of DFDs
(see Figure 6.4). The top level DFD is called the level 0 DFD or the context
diagram. This is the most abstract (simplest) representation of the system
(highest level). It is the easiest to draw and understand. At each successive
lower level DFDs, more and more details are gradually introduced. To
develop a higher-level DFD model, processes are decomposed into their
subprocesses and the data flow among these subprocesses are identified.

To develop the data flow model of a system, first the most abstract
representation (highest level) of the problem is to be worked out.
Subsequently, the lower level DFDs are developed. Level 0 and Level 1
consist of only one DFD each. Level 2 may contain up to 7 separate DFDs,
and level 3 up to 49 DFDs, and so on. However, there is only a single data
dictionary for the entire DFD model. All the data names appearing in all DFDs
are populated in the data dictionary and the data dictionary contains the
definitions of all the data items.

6.3.1 Context Diagram
The context diagram is the most abstract (highest level) data flow
representation of a system. It represents the entire system as a single
bubble. The bubble in the context diagram is annotated with the name of the
software system being developed (usually a noun). This is the only bubble in
a DFD model, where a noun is used for naming the bubble. The bubbles at all
other levels are annotated with verbs according to the main function
performed by the bubble. This is expected since the purpose of the context
diagram is to capture the context of the system rather than its functionality.
As an example of a context diagram, consider the context diagram a software
developed to automate the book keeping activities of a supermarket (see
Figure 6.10). The context diagram has been labelled as ‘Supermarket
software’.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.4: DFD model of a system consists of a hierarchy of DFDs and a single data dictionary.

The context diagram establishes the context in which the system operates; that is,
who are the users, what data do they input to the system, and what data they
received by the system.

The name context diagram of the level 0 DFD is justified because it
represents the context in which the system would exist; that is, the external
entities who would interact with the system and the specific data items that
they would be supplying the system and the data items they would be
receiving from the system. The various external entities with which the
system interacts and the data flow occurring between the system and the
external entities are represented. The data input to the system and the data
output from the system are represented as incoming and outgoing arrows.
These data flow arrows should be annotated with the corresponding data

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

names.
To develop the context diagram of the system, we have to analyse the SRS

document to identify the different types o f users who would be using the
system and the kinds of data they would be inputting to the system and the
data they would be receiving from the system. Here, the term users of the
system also includes any external systems which supply data to or receive
data from the system.

6.3.2 Level 1 DFD
The level 1 DFD usually contains three to seven bubbles. That is, the
system is represented as performing three to seven important functions.
To develop the level 1 DFD, examine the high-level functional
requirements in the SRS document. If there are three to seven high-
level functional requirements, then each of these can be directly
represented as a bubble in the level 1 DFD. Next, examine the input
data to these functions and the data output by these functions as
documented in the SRS document and represent them appropriately in
the diagram.

What if a system has more than seven high-level requirements identified in
the SRS document? In this case, some of the related requirements have to be
combined and represented as a single bubble in the level 1 DFD. These can
be split appropriately in the lower DFD levels. If a system has less than three
high-level functional requirements, then some of the high-level requirements
need to be split into their subfunctions so that we have roughly about five to
seven bubbles represented on the diagram. We illustrate construction of level
1 DFDs in Examples 6.1 to 6.4.

Decomposition
Each bubble in the DFD represents a function performed by the system.
The bubbles are decomposed into subfunctions at the successive levels
of the DFD model. Decomposition of a bubble is also known as factoring
o r exploding a bubble. Each bubble at any level of DFD is usually
decomposed to anything three to seven bubbles. A few bubbles at any
level m a k e that level superfluous. For example, if a bubble is
decomposed to just one bubble or two bubbles, then this decomposition
becomes trivial and redundant. On the other hand, too many bubbles
(i.e. more than seven bubbles) at any level o f a DFD makes the DFD
model hard to understand. Decomposition of a bubble should be carried

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

on until a level is reached at which the function of the bubble can be
described using a simple algorithm.

We can now describe how to go about developing the DFD model of a
system more systematically.

1. Construction of context diagram: Examine the SRS document to
determine:

• Different high-level functions that the system needs to perform.
• Data input to every high-level function.
• Data output from every high-level function.
• Interactions (data flow) among the identified high-level functions.

Represent these aspects of the high-level functions in a diagrammatic
form. This would form the top-level data flow diagram (DFD), usually
called the DFD 0.
Construction of level 1 diagram: Examine the high-level functions
described in the SRS document. If there are three to seven high-level
requirements in the SRS document, then represent each of the high-level
function in the form of a bubble. If there are more than seven bubbles,
then some of them have to be combined. If there are less than three
bubbles, then some of these have to be split.
Construction of lower-level diagrams: Decompose each high-level function
into its constituent subfunctions through the following set of activities:
•...Identify the different subfunctions of the high-level function.
•...Identify the data input to each of these subfunctions.
•...Identify the data output from each of these subfunctions.
•...Identify the interactions (data flow) among these subfunctions.
Represent these aspects in a diagrammatic form using a DFD.
Recursively repeat Step 3 for each subfunction until a subfunction can be
represented by using a simple algorithm.

Numbering of bubbles
It is necessary to number the different bubbles occurring in the DFD.
These numbers help in uniquely identifying any bubble in the DFD from
its bubble number. The bubble at the context level is usually assigned
the number 0 to indicate that it is the 0 level DFD. Bubbles at level 1
are numbered, 0.1, 0.2, 0.3, etc. When a bubble numbered x is

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

decomposed, its children bubble are numbered x.1, x.2, x.3, etc. In this
numbering scheme, by looking at the number of a bubble we can
unambiguously determine its level, its ancestors, and its successors.

Balancing DFDs
The DFD model of a system usually consists of many DFDs that are organised
in a hierarchy. In this context, a DFD is required to be balanced with respect
to the corresponding bubble of the parent DFD.

The data that flow into or out of a bubble must match the data flow at the next level
of DFD. This is known as balancing a DFD.

We illustrate the concept of balancing a DFD in Figure 6.5. In the level 1
DFD, data items d1 and d3 flow out of the bubble 0.1 and the data item d2
flows into the bubble 0.1 (shown by the dotted circle). In the next level,
bubble 0.1 is decomposed into three DFDs (0.1.1,0.1.2,0.1.3). The
decomposition is balanced, as d1 and d3 flow out of the level 2 diagram and
d2 flows in. Please note that dangling arrows (d1,d2,d3) represent the data
flows into or out of a diagram.

How far to decompose?
A bubble should not be decomposed any further once a bubble is found to
represent a simple set of instructions. For simple problems, decomposition up
to level 1 should suffice. However, large industry standard problems may
need decomposition up to level 3 or level 4. Rarely, if ever, decomposition
beyond level 4 is needed.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.5: An example showing balanced decomposition.

Commonly made errors while constructing a DFD model
Although DFDs are simple to understand and draw, students and
practitioners alike encounter similar types of problems while modelling
software problems using DFDs. While learning from experience is a
powerful thing, it is an expensive pedagogical technique in the business
world. It is therefore useful to understand the different types of
mistakes that beginners usually make while constructing the DFD model

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

of systems, so that you can consciously try to avoid them.The errors are
as follows:

Many beginners commit the mistake of drawing more than one bubble
in the context diagram. Context diagram should depict the system as a
single bubble.
Many beginners create DFD models in which external entities
appearing at all levels of DFDs. All external entities interacting with the
system should be represented only in the context diagram. The
external entities should not appear in the DFDs at any other level.
It is a common oversight to have either too few or too many bubbles in
a DFD. Only three to seven bubbles per diagram should be allowed.
This also means that each bubble in a DFD should be decomposed
three to seven bubbles in the next level.
Many beginners leave the DFDs at the different levels of a DFD model
unbalanced.
A common mistake committed by many beginners while developing a
DFD model is attempting to represent control information in a DFD.

It is important to realise that a DFD represents only data flow, and it does not
represent any control information.

The following are some illustrative mistakes of trying to represent control
aspects such as:
Illustration 1. A book can be searched in the library catalog by inputting its
name. If the book is available in the library, then the details of the book are
displayed. If the book is not listed in the catalog, then an error message is
generated. While developing the DFD model for this simple problem, many
beginners commit the mistake of drawing an arrow (as shown in Figure 6.6)
to indicate that the error function is invoked after the search book. But, this is
a control information and should not be shown on the DFD.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.6: It is incorrect to show control information on a DFD.

Illustration 2. Another type of error occurs when one tries to represent
when or in what order different functions (processes) are invoked. A
DFD similarly should not represent the conditions under which different
functions are invoked.

Illustration 3. If a bubble A invokes either the bubble B or the bubble C
depending upon some conditions, we need only to represent the data that
flows between bubbles A and B or bubbles A and C and not the conditions
depending on which the two modules are invoked.

A data flow arrow should not connect two data stores or even a data
store with an external entity. Thus, data cannot flow from a data store
to another data store or to an external entity without any intervening
processing. As a result, a data store should be connected only to
bubbles through data flow arrows.
All the functionalities of the system must be captured by the DFD
model. No function of the system specified in the SRS document of the
system should be overlooked.
Only those functions of the system specified in the SRS document
should be represented. That is, the designer should not assume
functionality of the system not specified by the SRS document and then
try to represent them in the DFD.
Incomplete data dictionary and data dictionary showing incorrect
composition of data items are other frequently committed mistakes.
The data and function names must be intuitive. Some students and
even practicing developers use meaningless symbolic data names such
as a,b,c, etc. Such names hinder understanding the DFD model.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Novices usually clutter their DFDs with too many data flow arrow. It
becomes difficult to understand a DFD if any bubble is associated with
more than seven data flows. When there are too many data flowing in
or out of a DFD, it is better to combine these data items into a high-
level data item. Figure 6.7 shows an example concerning how a DFD
can be simplified by combining several data flows into a single high-
level data flow.

Figure 6.7: Illustration of how to avoid data cluttering.

We now illustrate the structured analysis technique through a few
examples.

Example 6.1 (RMS Calculating Software) A software system called RMS
calculating software would read three integral numbers from the user in the
range of –1000 and +1000 and would determine the root mean square (RMS)
of the three input numbers and display it.

In this example, the context diagram is simple to draw. The system accepts
three integers from the user and returns the result to him. This has been
shown in Figure 6.8(a). To draw the level 1 DFD, from a cursory analysis of
the problem description, we can see that there are four basic functions that
the system needs to perform—accept the input numbers from the user,
validate the numbers, calculate the root mean square of the input numbers
and, then display the result. After representing these four functions in Figure
6.8(b), we observe that the calculation of root mean square essentially
consists of the functions—calculate the squares of the input numbers,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

calculate the mean, and finally calculate the root. This decomposition is
shown in the level 2 DFD in Figure 6.8(c).

Figure 6.8: Context diagram, level 1, and level 2 DFDs for Example 6.1.

Data dictionary for the DFD model of Example 6.1
data-items: {integer}3
rms: float
valid-data:data-items
a: integer
b: integer
c: integer
asq: integer

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

bsq: integer
csq: integer
msq: integer
Example 6.1 is an almost trivial example and is only meant to illustrate the

basic methodology. Now, let us perform the structured analysis for a more
complex problem.
Example 6.2 (Tic-Tac-Toe Computer Game) Tic-tac-toe is a computer game in
which a human player and the computer make alternate moves on a 3 × 3
square. A move consists of marking a previously unmarked square. The
player who is first to place three consecutive marks along a straight line (i.e.,
along a row, column, or diagonal) on the square wins. As soon as either of
the human player or the computer wins, a message congratulating the winner
should be displayed. If neither player manages to get three consecutive
marks along a straight line, and all the squares on the board are filled up,
then the game is drawn. The computer always tries to win a game.

The context diagram and the level 1 DFD are shown in Figure 6.9.

Data dictionary for the DFD model of Example 6.2
move: integer /* number between 1 to 9 */
display: game+result
game: board
board: {integer}9
result: [“computer won”, “human won”, “drawn”]

Example 6.3 (Supermarket Prize Scheme) A super market needs to develop a
software that would help it to automate a scheme that it plans to introduce
to encourage regular customers. In this scheme, a customer would have first
register by supplying his/her residence address, telephone number, and the
driving license number. Each customer who registers for this scheme is
assigned a unique customer number (CN) by the computer. A customer can
present his CN to the check out staff when he makes any purchase. In this
case, the value of his purchase is credited against his CN. At the end of each
year, the supermarket intends to award surprise gifts to 10 customers who
make the highest total purchase over the year. Also, it intends to award a 22
caret gold coin to every customer whose purchase exceeded Rs. 10,000. The
entries against the CN are reset on the last day of every year after the prize
winners’ lists are generated.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.9: Context diagram and level 1 DFDs for Example 6.2.

The context diagram for the supermarket prize scheme problem of Example
6.3 is shown in Figure 6.10. The level 1 DFD in Figure 6.11. The level 2 DFD
in Figure 6.12.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.10: Context diagram for Example 6.3.

Figure 6.11: Level 1 diagram for Example 6.3.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.12: Level 2 diagram for Example 6.3.

Data dictionary for the DFD model of Example 6.3
address: name+house#+street#+city+pin
sales-details: {item+amount}* + CN
CN: integer
customer-data: {address+CN}*
sales-info: {sales-details}*
winner-list: surprise-gift-winner-list + gold-coin-winner-list
surprise-gift-winner-list: {address+CN}*
gold-coin-winner-list: {address+CN}*
gen-winner-command: command
total-sales: {CN+integer}*

Observations: The following observations can be made from the Example 6.3.

1. The fact that the customer is issued a manually prepared customer
identity card or that the customer hands over the identity card each
time he makes a purchase has not been shown in the DFD. This is
because these are item transfers occurring outside the computer.

2. The data generate-winner-list in a way represents control information

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(that is, command to the software) a n d no real data. We have
included it in the DFD because it simplifies the structured design
process as we shall realize after we practise solving a few problems.
We could have also as well done without the generate-winner-list data,
but this could have a bit complicated the design.

3. Observe in Figure 6.11 that w e have two separate stores for the
customer data and sales data. Should we have combined them into a
single data store? The answer is—No, we should not. If we had
combined them into a single data store, the structured design that
would be carried out based on this model would become complicated.
Customer data and sales data have very different characteristics. For
example, customer data once created, does not change. On the other
hand, the sales data changes frequently and also the sales data is
reset at the end of a year, whereas the customer data is not.

Example 6.4 (Trading-house Automation System (TAS)) A trading house wants
us to develop a computerized system that would automate various book-
keeping activities associated with its business. The following are the salient
features of the system to be developed:

The trading house has a set of regular customers. The customers place
orders with it for various kinds of commodities. The trading house
maintains the names and addresses of its regular customers. Each of
these regular customers should be assigned a unique customer
identification numbe r (CIN) by the computer. The customers quote
their CIN on every order they place.
Once order is placed, as per current practice, the accounts department
of the trading house first checks the credit-worthiness of the customer.
The credit-worthiness of the customer is determined by analysing the
history of his payments to different bills sent to him in the past. After
automation, this task has be done by the computer.
If a customer is not credit-worthy, his orders are not processed any
further and an appropriate order rejection message is generated for
the customer.
If a customer is credit-worthy, the items that he has ordered are
checked against the list of items that the trading house deals with. The
items in the order which the trading house does not deal with, are not
processed any further and an appropriate apology message for the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

customer for these items is generated.
The items in the customer’s order that the trading house deals with are
checked for availability in the inventory. I f the items are available in
the inventory in desired quantity, then:

– A bill is with the forwarding address of the customer is printed.
– A material issue slip is printed. The customer can produce this material
issue slip at the store house and take delivery of the items.

– Inventory data is adjusted to reflect the sale to the customer.

If any of the ordered items are not available in the inventory in
sufficient quantity to satisfy the order, then these out-of-stock items
along with the quantity ordered by the customer and the CIN are
stored in a “pending-order” file for further processing to be carried out
when the purchase department issues the “generate indent” command.
The purchase department should be allowed to periodically issue
commands to generate indents. When a command to generate indents
is issued, the system should examine the “pending-order” file to
determine the orders that are pending and determine the total
quantity required for each of the items. It should find out the addresses
of the vendors who supply these items by examining a file containing
vendor details and then should print out indents to these vendors.
The system should also answer managerial queries regarding the
statistics of different items sold over any given period of time and the
corresponding quantity sold and the price realised.

The context diagram for the trading house automation problem is shown in
Figure 6.13. The level 1 DFD in Figure 6.14.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.13: Context diagram for Example 6.4.

Figure 6.14: Level 1 DFD for Example 6.4.

Data dictionary for the DFD model of Example 6.4
response: [bill + material-issue-slip, reject-msg,apology-msg]
query: period /* query from manager regarding sales statistics*/
period: [date+date,month,year,day]
date: year + month + day year: integer
month: integer day: integer customer-id: integer
order: customer-id + {items + quantity}* + order#

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

accepted-order: order /* ordered items available in inventory */
reject-msg: order + message /* rejection message */
pending-orders: customer-id + order# + {items+quantity}*
customer-address: name+house#+street#+city+pin
name: string
house#: string
street#: string
city: string
pin: integer
customer-id: integer
customer-file: {customer-address}* + customer-id
bill: {item + quantity + price}* + total-amount + customer-address +

order#
material-issue-slip: message + item + quantity + customer-address
message: string
statistics: {item + quantity + price }*
sales-statistics: {statistics}* + date
quantity: integer
order#: integer /* unique order number generated by the program */
price: integer
total-amount: integer
generate-indent: command
indent: {item+quantity}* + vendor-address
indents: {indent}*
vendor-address: customer-address
vendor-list: {vendor-address}*
item-file: {item}*
item: string
indent-request: command

Observations: The following observations can be made from Example 6.4.
1. In a DFD, if two data stores deal with different types of data, e.g. one

type of data is invariant with time whereas another varies with time,
(e.g. vendor address, and inventory data) it is a good idea to represent
them as separate data stores.

If two types of data always get updated at the same time, they should be stored in a
single data store. Otherwise, separate data stores should be used for them.

The inventory data changes each time supply arrives and the inventory

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

is updated or an item is sold, whereas the vendor data remains
unchanged.

2. If we are developing the DFD model of a process which is already being
manually carried out, then the names of the registers being maintained
in the manual process would appear as data stores in the DFD model.
For example, if TAS is currently being manually carried out, then
normally there would registers corresponding to accepted orders,
pending orders, vendor list, etc.

3. We can observe that DFDs enable a software developer to develop the
data domain and functional domain model of the system at the same
time. As the DFD is refined into greater levels of detail, the analyst
performs an implicit functional decomposition. At the same time, the
DFD refinement automatically results in refinement of corresponding
data items.

4. The data that are maintained in physical registers in manual processing,
become data stores in the DFD representation. Therefore, to determine
which data should be represented as a data store, it is useful t o try to
imagine whether a set of data items would be maintained in a register in
a manual system.

Example 6.5 (Personal Library Software) Perform structured analysis for the
personal library software of Example 6.5.

The context diagram is shown in Figure 6.15.

Figure 6.15: Context diagram for Example 6.5.

The level 1 DFD is shown in Figure 6.16.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.16: Level 1 DFD for Example 6.5.

The level 2 DFD for the manageOwnBook bubble is shown in Figure 6.17.

Figure 6.17: Level 2 DFD for Example 6.5.

Data dictionary for the DFD model of Example 6.5
input-data: friend-reg-data + own-book-data + stat-request + borrowed-book-data

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

response: friend-reg-conf-msg + own-book-response + stat-response + borrowed-book-response
own-book-data: query-details + own-book-details + query-outstanding-books-option + return-own book-

details + reg-own-book-data
own-book-response: query-book-response + issue-book-msg + friend-details + return-book- msg +

serial#.
borrowed-book-data: borrowed-book-details + book-return-details + display-books-option borrowed-book-

response: reg-msg + unreg-msg + borrowed-books-list
friend-reg-data: name + address + landline# + mobile#
own-book-details: friend-reg-data + book-title + data-of-issue
return-own-book-details: book-title + date-of-return
friend-details: name + address + landline# + mobile# + book-list
borrowed-book-details: book-title + borrow-date
serial#: integer

Observation: Observe that since there are more than seven functional
requirements for the personal library software, related requirements have
been combined to have only five bubbles in the level 1 diagram. Only level 2
DFD has been shown, since the other DFDs are trivial and need not be drawn.

Shortcomings of the DFD model
DFD models suffer from several shortcomings. The important
shortcomings of DFD models are the following:

Imprecise DFDs leave ample scope to be imprecise. In the DFD model,
we judge the function performed by a bubble from its label. However,
a short label may not capture the entire functionality of a bubble. For
example, a bubble named find-book-position has only intuitive
meaning and does not specify several things, e.g. what happens when
some input information i s missing or is incorrect. Further, t he find-
book-position bubble may not convey anything regarding what happens
when the required book is missing.
Not-well defined control aspects are not defined by a DFD. For
instance, the order in which inputs are consumed and outputs are
produced by a bubble is not specified. A DFD model does not specify
the order in which the different bubbles are executed. Representation
of such aspects is very important for modelling real-time systems.
Decomposition: The method of carrying out decomposition to arrive at
the successive levels and the ultimate level to which decomposition is
carried out are highly subjective and depend on the choice and
judgment of the analyst. D u e to this reason, even for the same
problem, several alternative DFD representations are possible. Further,
many times it is not possible to say which DFD representation is

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

superior or preferable to another one.
Improper data flow diagram: The data flow diagramming technique
does not provide any specific guidance as to how exactly to decompose
a given function into its subfunctions and we have to use subjective
judgment to carry out decomposition.

6.3.3 Extending DFD Technique to Make it Applicable to Real-time
Systems

In a real-time system, some of the high-level functions are associated
with deadlines. Therefore, a function must not only produce correct
results but also should produce them by some prespecified time. For
real-time systems, execution time is an important consideration for
arriving at a correct design. Therefore, explicit representation of control
and event flow aspects are essential. One of the widely accepted
techniques for extending the DFD technique to real-time system
analysis is the Ward and Mellor technique [1985]. In the Ward and
Mellor notation, a type of process that handles only control flows is
introduced. These processes representing control processing are
denoted using dashed bubbles. Control flows are shown using dashed
lines/arrows.

Unlike Ward and Mellor, Hatley and Pirbhai [1987] show the dashed and
solid representations on separate diagrams. To be able to separate the data
processing and the control processing aspects, a control flow diagram (CFD)
is defined. This reduces the complexity of the diagrams. In order to link the
data processing and control processing diagrams, a notational reference
(solid bar) to a control specification is used. The CSPEC describes the
following:

The effect of an external event or control signal.
The processes that are invoked as a consequence of an event.

Control specifications represents the behavior of the system in two
different ways:

It contains a state transition diagram (STD). The STD is a sequential
specification of behaviour.
It contains a program activation table (PAT). The PAT is a
combinatorial specification of behaviour. PAT represents invocation

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

sequence of bubbles in a DFD.

6.4 STRUCTURED DESIGN
The aim of structured design is to transform the results of the structured
analysis (that i s , the DFD model) into a structure chart. A structure
chart represents the software architecture. The various modules making
up the system, the module dependency (i.e. which module calls which
other modules), and the parameters that are passed among the
different modules. The structure chart representation can be easily
implemented using some programming language. Since the main focus
in a structure chart representation is on module structure of a software
and the interaction among the different modules, the procedural
aspects (e.g. how a particular functionality is achieved) are not
represented.

The basic building blocks using which structure charts are designed are as
following:
Rectangular boxes: A rectangular box represents a module. Usually, every
rectangular box is annotated with the name of the module it represents.
Module invocation arrows: An arrow connecting two modules implies that
during program execution control is passed from one module to the other in
the direction of the connecting arrow. However, just by looking at the
structure chart, we cannot say whether a modules calls another module just
once or many times. Also, just by looking at the structure chart, we cannot
tell the order in which the different modules are invoked.
Data flow arrows: These are small arrows appearing alongside the module
invocation arrows. The data flow arrows are annotated with the
corresponding data name. Data flo w arrows represent the fact that the
named data passes from one module to the other in the direction of the
arrow.
Library modules: A library module is usually represented by a rectangle with
double edges. Libraries comprise the frequently called modules. Usually,
when a module is invoked by many other modules, it is made into a library
module.
Selection: The diamond symbol represents the fact that one module of several
modules connected with the diamond symbol i s invoked depending on the
outcome of the condition attached with the diamond symbol.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Repetition: A loop around the control flow arrows denotes that the respective
modules are invoked repeatedly.

In any structure chart, there should be one and only one module at the top,
called the root. There should be at most one control relationship between any
two modules in the structure chart. This means that if module A invokes
module B, module B cannot invoke module A. The main reason behind this
restriction is that we can consider the different modules of a structure chart
to be arranged in layers or levels. The principle of abstraction does not allow
lower-level modules to be aware of the existence of the high-level modules.
However, it is possible for t wo higher-level modules to invoke the same
lower-level module. An example of a properly layered design and another of a
poorly layered design are shown in Figure 6.18.

Figure 6.18: Examples of properly and poorly layered designs.

Flow chart versus structure chart
We are all familiar with the flow chart representation of a program. Flow
chart is a convenient technique to represent the flo w of control in a
program. A structure chart differs from a flow chart in three principal
ways:

It is usually difficult to identify the different modules of a program from
its flow chart representation.
Data interchange among different modules is not represented in a flow
chart.
Sequential ordering of tasks that i s inherent to a flow chart is
suppressed in a structure chart.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

6.4.1 Transformation of a DFD Model into Structure Chart
Systematic techniques are available to transform the DFD representation
of a problem into a module structure represented by as a structure
chart. Structured design provides two strategies to guide transformation
of a DFD into a structure chart:

Transform analysis
Transaction analysis

Normally, one would start with the level 1 DFD, transform it into module
representation using either the transform or transaction analysis and then proceed
toward the lower level DFDs.

At each level of transformation, it is important to first determine whether
the transform or the transaction analysis is applicable to a particular DFD.

Whether to apply transform or transaction processing?
Given a specific DFD of a model, how does one decide whether to apply
transform analysis or transaction analysis? For this, one would have to
examine the data input to the diagram. The data input to the diagram
can be easily spotted because they are represented by dangling arrows.
If all the data flow into the diagram are processed in similar ways (i.e. if
all the input data flow arrows are incident on the same bubble in the
DFD) then transform analysis is applicable. Otherwise, transaction
analysis is applicable. Normally, transform analysis is applicable only to
very simple processing.

Please recollect that the bubbles are decomposed until it represents a very
simple processing that can be implemented using only a few lines of code.
Therefore, transform analysis is normally applicable at the lower levels of a
DFD model. Each different way in which data is processed corresponds to a
separate transaction. Each transaction corresponds to a functionality that lets
a user perform a meaningful piece of work using the software.

Transform analysis
Transform analysis identifies the primary functional components
(modules) and the input and output data for these components. The
first step in transform analysis is to divide the DFD into three types of
parts:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

• Input.
• Processing.
• Output.
The input portion in the DFD includes processes that transform input data

from physical (e.g, character from terminal) to logical form (e.g. internal
tables, lists, etc.). Each input portion is called an afferent branch.

The output portion of a DFD transforms output data from logical form to
physical form. Each output portion is called an efferent branch. The remaining
portion of a DFD is called central transform.

In the next step of transform analysis, the structure chart is derived by
drawing one functional component each for the central transform, the
afferent and efferent branches. These are drawn below a root module, which
would invoke these modules.

Identifying the input and output parts requires experience and skill. One
possible approach is to trace the input data until a bubble is found whose
output data cannot be deduced from its inputs alone. Processes which
validate input are not central transforms. Processes which sort input or filter
data from it are central tansforms. T h e first level o f structure chart is
produced by representing each input and output unit as a box and each
central transform as a single box.

In the third step of transform analysis, the structure chart is refined by
adding subfunctions required by each of the high-level functional components.
Many levels of functional components may be added. This process of breaking
functional components into subcomponents is called factoring. Factoring
includes adding read and write modules, error-handling modules, initialisation
and termination process, identifying consumer modules etc. The factoring
process is continued until all bubbles in the DFD are represented in the
structure chart.
Example 6.6 Draw the structure chart for the RMS software of Example 6.1.

By observing the level 1 DFD of Figure 6.8, we can identify validate-input as
the afferent branch and write-output as the efferent branch. The remaining
(i.e., compute-rms) as the central transform. By applying the step 2 and step
3 of transform analysis, we get the structure chart shown in Figure 6.19.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.19: Structure chart for Example 6.6.

Example 6.7 Draw the structure chart for the tic-tac-toe software of
Example 6.2.

The structure chart for the Tic-tac-toe software is shown in Figure 6.20.
Observe that the check-game-status bubble, though produces some outputs.
i s not really responsible for converting logical data to physical data. On the
other hand, it carries out the processing involving checking game status. That
is the main reason, why we have considered it as a central transform and not
as an efferent type of module.

Transaction analysis
Transaction analysis is an alternative to transform analysis and is useful while
designing transaction processing programs. A transaction allows the user to
perform some specific type of work by using the software. For example, ‘issue
book’, ‘return book’, ‘query book’, etc., are transactions.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.20: Structure chart for Example 6.7.

As in transform analysis, first all data entering into the DFD need to be
identified. In a transaction-driven system, different data items may pass
through different computation paths through the DFD. This is in contrast to a
transform centered system where each data item entering the DFD goes
through the same processing steps. Each different way in which input data is
processed is a transaction. A simple way to identify a transaction is the
following. Check the input data. The number of bubbles on which the input
data to the DFD are incident defines the number of transactions. However,
some transactions may not require any input data. These transactions can be
identified based on the experience gained from solving a large number of
examples.

For each identified transaction, trace the input data to the output. All the
traversed bubbles belong to the transaction. These bubbles should be
mapped to the same module on the structure chart. In the structure chart,
draw a root module and below this module draw each identified transaction
as a module. Every transaction carries a tag identifying its type. Transaction
analysis uses this tag to divide the system into transaction modules and a
transaction-center module.
Example 6.8 Draw the structure chart for the Supermarket Prize Scheme
software of Example 6.3.

The structure chart for the Supermarket Prize Scheme software is shown in
Figure 6.21.
Example 6.9 Draw the structure chart for the trade-house automation system
(TAS) software of Example 6.4.

The structure chart for the trade-house automation system (TAS) software of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Example 6.4 is shown in Figure 6.22.
By observing the level 1 DFD of Figure 6.14, we can see that the data input

to the diagram are handled by different bubbles and therefore transaction
analysis is applicable to this DFD. Input data to this DFD are handled in three
different ways (accept-order, accept- indent-request, and handle-query), we
have three different transactions corresponding to these as shown in Figure
6.22.

Figure 6.21: Structure chart for Example 6.8.

Figure 6.22: Structure chart for Example 6.9.

Word of caution

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

We should view transform and transaction analyses as guidelines, rather
than rules. We should apply these guidelines in the context of the
problem and handle the pathogenic cases carefully.

Example 6.10 Draw the structure chart for the personal library software of
Example 6.6.

The structure chart for the personal library software is shown in Figure
6.23.

Figure 6.23: Structure chart for Example 6.10.

6.5 DETAILED DESIGN
During detailed design the pseudo code description of the processing and
the different data structures are designed for the different modules of
the structure chart. These are usually described in the form of module
specifications (MSPEC). MSPEC is usually written using structured
English. The MSPEC for the non-leaf modules describe the different
conditions under which the responsibilities are delegated to the lower-
level modules. The MSPEC for the leaf-level modules should describe in
algorithmic form how the primitive processing steps are carried out. To
develop the MSPEC of a module, it is usually necessary to refer to the
DFD model and the SRS document to determine the functionality of the
module.

6.6 DESIGN REVIEW

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

After a design is complete, the design is required to be reviewed. The
review team usually consists of members with design, implementation,
testing, and maintenance perspectives, who may or may not be the
members of the development team. Normally, members of the team
who would code the design, and test the code, the analysts, and the
maintainers attend the review meeting. The review team checks the
design documents especially for the following aspects:

Traceability: Whether each bubble of the DFD can be traced to some module
in the structure chart and vice versa. They check whether each functional
requirement in the SRS document can be traced to some bubble in the DFD
model and vice versa.
Correctness: Whether all the algorithms and data structures of the detailed
design are correct.
Maintainability: Whether the design can be easily maintained in future.

Implementation: Whether the design can be easily and efficiently be
implemented.

After the points raised by the reviewers is addressed by the designers, the
design document becomes ready for implementation.

SUMMARY

In this chapter, we discussed a sample function-oriented software
design methodology called structured analysis/structured design
(SA/SD) which incorporates features of some important design
methodologies.
Methodologies like SA/SD give us a recipe for developing a good design
according to the different goodness criteria we had discussed in
Chapter 5. item SA/SD consists of two important parts—structured
analysis and structured design.
The goal of structured analysis is to perform a functional
decomposition of the system. Results of structured analysis is
represented using data flow diagrams (DFDs). The DFD representation
is difficult to implement using a traditional programming language. The
DFD representation can be systematically be transformed to structure
chart representation. The structure chart representation can be easily
implemented using a conventional programming language.
During structured design, the DFD representation obtained during

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter
9

USER INTERFACE DESIGN

The user interface portion of a software product is responsible for all
interactions with the user. Almost every software product has a user
interface (can you think of a software product that does not have any
user interface?). In the early days of computer, no software product had
any user interface. The computers those days were batch systems and
no interactions with the users were supported. Now, we know that
things are very different—almost every software product is highly
interactive. The user interface part of a software product is responsible
for all interactions with the end-user. Consequently, the user interface
part of any software product is of direct concern to the end-users. No
wonder then that many users often judge a software product based on
its user interface. Aesthetics apart, an interface that is difficult to use
leads to higher levels of user errors and ultimately leads to user
dissatisfaction. Users become particularly irritated when a system
behaves in an unexpected ways, i.e., issued commands do not carry out
actions according to the intuitive expectations of the user. Normally,
when a user starts using a system, he builds a mental model of the
system and expects the system behaviour to conform to it. For
example, if a user action causes one type of system activity and
response under some context, then the user would expect similar
system activity and response to occur for similar user actions in similar
contexts. Therefore, sufficient care and attention should be paid to the
design of the user interface of any software product.

Systematic development of the user interface is also important from
another consideration. Development of a good user interface usually takes
significant portion of the total system development effort. For many
interactive applications, as much as 50 per cent of the total development
effort is spent on developing the user interface part. Unless the user interface

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

is designed and developed in a systematic manner, the total effort required
to develop the interface will increase tremendously. Therefore, it is necessary
to carefully study various concepts associated with user interface design and
understand various systematic techniques available for the development of
user interface.

In this chapter, we first discuss some common terminologies and concepts
associated with development of user interfaces. Then, we classify the
different types of interfaces commonly being used. We also provide some
guidelines for designing good interfaces, and discuss some tools for
development of graphical user interfaces (GUIs). Finally, we present a GUI
development methodology.

9.1 CHARACTERISTICS OF A GOOD USER INTERFACE
Before we start discussing anything about how to develop user
interfaces, it is important to identify the different characteristics that
are usually desired of a good user interface. Unless we know what
exactly is expected of a good user interface, we cannot possibly design
one. In the following subsections, we identify a few important
characteristics of a good user interface:

Speed of learning: A good user interface should be easy to learn. Speed of
learning is hampered by complex syntax and semantics of the command issue
procedures. A good user interface should not require its users to memorise
commands. Neither should the user be asked to remember information from
one screen to another while performing various tasks using the interface.
Besides, the following three issues are crucial to enhance the speed of
learning:

— U s e of metaphors1 and intuitive command names: Speed of
learning an interface is greatly facilitated if these are based on some day-
to-day real-life examples or some physical objects with which the users
are familiar with. The abstractions of real-life objects or concepts used in
user interface design are called metaphors. If the user interface of a text
editor uses concepts similar to the tools used by a writer for text editing
such as cutting lines and paragraphs and pasting it at other places, users
can immediately relate to it. Another popular metaphor is a shopping cart.
Everyone knows how a shopping cart is used to make choices while
purchasing items in a supermarket. If a user interface uses the shopping
cart metaphor for designing the interaction style for a situation where

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

similar types of choices have to be made, then the users can easily
understand and learn to use the interface. Also, learning is facilitated by
intuitive command names and symbolic command issue procedures.

— Consistency: Once, a user learns about a command, he should be able
to use the similar commands in different circumstances for carrying out
similar actions. This makes it easier to learn the interface since the user
can extend his knowledge about one part of the interface to the other
parts. Thus, the different commands supported by an interface should be
consistent.

— Component-based interface: Users can learn an interface faster if the
interaction style of the interface is very similar to the interface of other
applications with which the user is already familiar with. This can be
achieved if the interfaces of different applications are developed using
some standard user interface components. This, in fact, is the theme of
the component-based user interface discussed in Section 9.5.

The speed of learning characteristic of a user interface can be determined
by measuring the training time and practice that users require before they
can effectively use the software.
Speed of use: Speed of use of a user interface is determined by the time
and user effort necessary to initiate and execute different commands. This
characteristic of the interface is some times referred to as productivity
support of the interface. It indicates how fast the users can perform their
intended tasks. The time and user effort necessary to initiate and execute
different commands should be minimal. This can be achieved through careful
design of the interface. For example, an interface that requires users to type
in lengthy commands or involves mouse movements to different areas of the
screen that are wide apart for issuing commands can slow down the
operating speed of users. The most frequently used commands should have
the smallest length or be available at the top of a menu to minimise the
mouse movements necessary to issue commands.
Speed of recall: Once users learn how to use an interface, the speed with
which they can recall the command issue procedure should be maximised.
This characteristic is very important for intermittent users. Speed of recall is
improved if the interface is based on some metaphors, symbolic command
issue procedures, and intuitive command names.
Error prevention: A good user interface should minimise the scope of
committing errors while initiating different commands. The error rate of an
interface can be easily determined by monitoring the errors committed by an

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

average users while using the interface. This monitoring can be automated by
instrumenting the user interface code with monitoring code which can record
the frequency and types of user error and later display the statistics of
various kinds of errors committed by different users. Consistency of names,
issue procedures, and behaviour of similar commands and the simplicity of
the command issue procedures minimise error possibilities. Also, the interface
should prevent the user from entering wrong values.
Aesthetic and attractive: A good user interface should be attractive to use.
An attractive user interface catches user attention and fancy. In this respect,
graphics-based user interfaces have a definite advantage over text-based
interfaces.
Consistency: The commands supported by a user interface should be
consistent. The basic purpose of consistency is to allow users to generalise
the knowledge about aspects of the interface from one part to another. Thus,
consistency facilitates speed of learning, speed of recall, and also helps in
reduction of error rate
Feedback: A good user interface must provide feedback to various user
actions. Especially, if any user request takes more than few seconds to
process, the user should be informed about the state of the processing of his
request. In the absence of any response from the computer for a long time, a
novice user might even start recovery/shutdown procedures in panic. If
required, the user should be periodically informed about the progress made in
processing his command.
Support for multiple skill levels: A good user interface should support
multiple levels of sophistication of command issue procedure for different
categories of users. This is necessary because users with different levels of
experience in using an application prefer different types of user interfaces.
Experienced users are more concerned about the efficiency of the command
issue procedure, whereas novice users pay importance to usability aspects.
Very cryptic and complex commands discourage a novice, whereas elaborate
command sequences make the command issue procedure very slow and
therefore put off experienced users. When someone uses an application for
the first time, his primary concern is speed of learning. After using an
application for extended periods of time, he becomes familiar with the
operation of the software. As a user becomes more and more familiar with an
interface, his focus shifts from usability aspects to speed of command issue
aspects. Experienced users look for options such as “hot-keys”, “macros”, etc.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Thus, the skill level of users improves as they keep using a software product
and they look for commands to suit their skill levels.
Error recovery (undo facility): While issuing commands, even the expert
users can commit errors. Therefore, a good user interface should allow a user
to undo a mistake committed by him while using the interface. Users are
inconvenienced if they cannot recover from the errors they commit while
using a software. If the users cannot recover even from very simple types of
errors, they feel irritated, helpless, and out of control.
User guidance and on-line help: Users seek guidance and on-line help
when they either forget a command or are unaware of some features of the
software. Whenever users need guidance or seek help from the system, they
should be provided with appropriate guidance and help.

9.2 BASIC CONCEPTS
In this section, we first discuss some basic concepts in user guidance and
on-line help system. Next, we examine the concept of a mode-based
and a modeless interface and the advantages of a graphical interface.

9.2.1 User Guidance and On-line Help
Users may seek help about the operation of the software any time while
using the software. This is provided by the on-line help system. This is
different from the guidance and error messages which are flashed
automatically without the user asking for them. The guidance messages
prompt the user regarding the options he has regarding the next
command, and the status of the last command, etc.

On-line help system: Users expect the on-line help messages to be tailored
to the context in which they invoke the “help system”. Therefore, a good on-
line help system should keep track of what a user is doing while invoking the
help system and provide the output message in a context-dependent way.
Also, the help messages should be tailored to the user’s experience level.
Further, a good on-line help system should take advantage of any graphics
and animation characteristics of the screen and should not just be a copy of
the user’s manual.
Guidance messages: The guidance messages should be carefully designed
to prompt the user about the next actions he might pursue, the current status
of the system, the progress so far made in processing his last command, etc.
A good guidance system should have different levels of sophistication for

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

different categories of users. For example, a user using a command language
interface might need a different type of guidance compared to a user using a
menu or iconic interface (These different types of interfaces are discussed
later in this chapter). Also, users should have an option to turn off the
detailed messages.
Error messages: Error messages are generated by a system either when
the user commits some error or when some errors encountered by the system
during processing due to some exceptional conditions, such as out of
memory, communication link broken, etc. Users do not like error messages
that are either ambiguous or too general such as “invalid input or system
error”. Error messages should be polite. Error messages should not have
associated noise which might embarrass the user. The message should
suggest how a given error can be rectified. If appropriate, the user should be
given the option of invoking the on-line help system to find out more about
the error situation.

9.2.2 Mode-based versus Modeless Interface
A mode is a state or collection of states in which only a subset of all user
interaction tasks can be performed. In a modeless interface, the same
set of commands can be invoked at any time during the running of the
software. Thus, a modeless interface has only a single mode and all the
commands are available all the time during the operation of the
software. On the other hand, in a mode-based interface, different sets
of commands can be invoked depending on the mode in which the
system is, i.e., the mode at any instant is determined by the sequence
of commands already issued by the user.

A mode-based interface can be represented using a state transition
diagram, where each node of the state transition diagram would represent a
mode. Each state of the state transition diagram can be annotated with the
commands that are meaningful in that state.

9.2.3 Graphical User Interface (GUI) versus Text-based
User Interface

Let us compare various characteristics of a GUI with those of a text-
based user interface:

In a GUI multiple windows with different information can
simultaneously be displayed on the user screen. This is perhaps one of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

the biggest advantages of GUI over text- based interfaces since the
user has the flexibility to simultaneously interact with several related
items at any time and can have access to different system information
displayed in different windows.
Iconic information representation and symbolic information
manipulation is possible in a GUI. Symbolic information manipulation
such as dragging an icon representing a file to a trash for deleting is
intuitively very appealing and the user can instantly remember it.
A GUI usually supports command selection using an attractive and
user-friendly menu selection system.
In a GUI, a pointing device such as a mouse or a light pen can be used
for issuing commands. The use of a pointing device increases the
efficacy of command issue procedure.
On the flip side, a GUI requires special terminals with graphics
capabilities for running and also requires special input devices such a
mouse. On the other hand, a text-based user interface can be
implemented even on a cheap alphanumeric display terminal. Graphics
terminals are usually much more expensive than alphanumeric
terminals. However, display terminals with graphics capability with bit-
mapped high-resolution displays and significant amount of local
processing power have become affordable and over the years have
replaced text-based terminals on all desktops. Therefore, the emphasis
of this chapter is on GUI design rather than text-based user interface
design.

9.3 TYPES OF USER INTERFACES
Broadly speaking, user interfaces can be classified into the following
three categories:

Command language-based interfaces
Menu-based interfaces
Direct manipulation interfaces

Each of these categories of interfaces has its own characteristic advantages
and disadvantages. Therefore, most modern applications use a careful
combination of all these three types of user interfaces for implementing the
user command repertoire. It is very difficult to come up with a simple set of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

guidelines as to which parts of the interface should be implemented using
what type of interface. This choice is to a large extent dependent on the
experience and discretion of the designer of the interface. However, a study
of the basic characteristics and the relative advantages of different types of
interfaces would give a fair idea to the designer regarding which commands
should be supported using what type of interface. In the following three
subsections, we briefly discuss some important characteristics, advantages,
and disadvantages of using each type of user interface.

9.3.1 Command Language-based Interface
A command language-based interface—as the name itself suggests, is
based on designing a command language which the user can use to
issue the commands. The user is expected to frame the appropriate
commands in the language and type them appropriately whenever
required. A simple command language-based interface might simply
assign unique names to the different commands. However, a more
sophisticated command language-based interface may allow users to
compose complex commands by using a set of primitive commands.
Such a facility to compose commands dramatically reduces the number
of command names one would have to remember. Thus, a command
language-based interface can be made concise requiring minimal typing
by the user. Command language-based interfaces allow fast interaction
with the computer and simplify the input of complex commands.

Among the three categories of interfaces, the command language interface
allows for most efficient command issue procedure requiring minimal typing.
Further, a command language-based interface can be implemented even on
cheap alphanumeric terminals. Also, a command language-based interface is
easier to develop compared to a menu-based or a direct-manipulation
interface because compiler writing techniques are well developed. One can
systematically develop a command language interface by using the standard
compiler writing tools Lex and Yacc.

However, command language-based interfaces suffer from several
drawbacks. Usually, command language-based interfaces are difficult to learn
and require the user to memorise the set of primitive commands. Also, most
users make errors while formulating commands in the command language
and also while typing them. Further, in a command language-based interface,
all interactions with the system is through a key-board and cannot take
advantage of effective interaction devices such as a mouse. Obviously, for

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

casual and inexperienced users, command language-based interfaces are not
suitable.

Issues in designing a command language-based interface
Two overbearing command design issues are to reduce the number of
primitive commands that a user has to remember and to minimise the
total typing required. We elaborate these considerations in the
following:

The designer has to decide what mnemonics (command names) to use
for the different commands. The designer should try to develop
meaningful mnemonics and yet be concise to minimise the amount of
typing required. For example, the shortest mnemonic should be
assigned to the most frequently used commands.
The designer has to decide whether the users will be allowed to
redefine the command names to suit their own preferences. Letting a
user define his own mnemonics for various commands is a useful
feature, but it increases the complexity of user interface development.
The designer has to decide whether it should be possible to compose
primitive commands to form more complex commands. A sophisticated
command composition facility would require the syntax and semantics
of the various command composition options to be clearly and
unambiguously specified. The ability to combine commands is a
powerful facility in the hands of experienced users, but quite
unnecessary for inexperienced users.

9.3.2 Menu-based Interface
An important advantage of a menu-based interface over a command
language-based interface is that a menu-based interface does not
require the users to remember the exact syntax of the commands. A
menu-based interface is based on recognition of the command names,
rather than recollection. Humans are much better in recognising
something than recollecting it. Further, in a menu-based interface the
typing effort is minimal as most interactions are carried out through
menu selections using a pointing device. This factor is an important
consideration for the occasional user who cannot type fast.

However, experienced users find a menu-based user interface to be slower
than a command language-based interface because an experienced user can

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

type fast and can get speed advantage by composing different primitive
commands to express complex commands. Composing commands in a menu-
based interface is not possible. This is because of the fact that actions
involving logical connectives (and, or, etc.) are awkward to specify in a menu-
based system. Also, if the number of choices is large, it is difficult to design a
menu-based interfae. A moderate-sized software might need hundreds or
thousands of different menu choices. In fact, a major challenge in the design
of a menu-based interface is to structure large number of menu choices into
manageable forms. In the following, we discuss some of the techniques
available to structure a large number of menu items:
Scrolling menu: Sometimes the full choice list is large and cannot be
displayed within the menu area, scrolling of the menu items is required. This
would enable the user to view and select the menu items that cannot be
accommodated on the screen. However, in a scrolling menu all the
commands should be highly correlated, so that the user can easily locate a
command that he needs. This is important since the user cannot see all the
commands at any one time. An example situation where a scrolling menu is
frequently used is font size selection in a document processor (see Figure
9.1). Here, the user knows that the command list contains only the font sizes
that are arranged in some order and he can scroll up or down to find the size
he is looking for. However, if the commands do not have any definite ordering
relation, then the user would have to in the worst case, scroll through all the
commands to find the exact command he is looking for, making this
organisation inefficient.

Figure 9.1: Font size selection using scrolling menu.

Walking menu: Walking menu is very commonly used to structure a large
collection of menu items. In this technique, when a menu item is selected, it

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

causes further menu items to be displayed adjacent to it in a sub-menu. An
example of a walking menu is shown in Figure 9.2. A walking menu can
successfully be used to structure commands only if there are tens rather than
hundreds of choices since each adjacently displayed menu does take up
screen space and the total screen area is after all limited.

Figure 9.2: Example of walking menu.

Hierarchical menu: This type of menu is suitable for small screens with
limited display area such as that in mobile phones. In a hierarchical menu,
the menu items are organised in a hierarchy or tree structure. Selecting a
menu item causes the current menu display to be replaced by an appropriate
sub-menu. Thus in this case, one can consider the menu and its various sub-
menu to form a hierarchical tree-like structure. Walking menu can be
considered to be a form of hierarchical menu which is practicable when the
tree is shallow. Hierarchical menu can be used to manage large number of
choices, but the users are likely to face navigational problems because they
might lose track of where they are in the menu tree. This probably is the
main reason why this type of interface is very rarely used.

9.3.3 Direct Manipulation Interfaces
Direct manipulation interfaces present the interface to the user in the
form of visual models (i.e., icons2 or objects). For this reason, direct
manipulation interfaces are sometimes called as iconic interfaces. In
this type of interface, the user issues commands by performing actions
on the visual representations of the objects, e.g., pull an icon

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

representing a file into an icon representing a trash box, for deleting the
file.

Important advantages of iconic interfaces include the fact that the icons can
be recognised by the users very easily, and that icons are language-
independent. However, experienced users find direct manipulation interfaces
very for too. Also, it is difficult to give complex commands using a direct
manipulation interface. For example, if one has to drag an icon representing
the file to a trash box icon for deleting a file, then in order to delete all the
files in the directory one has to perform this operation individually for all files
—which could be very easily done by issuing a command like delete *.*.

9.4 FUNDAMENTALS OF COMPONENT-BASED GUI
DEVELOPMENT

Graphical user interfaces became popular in the 1980s. The main reason
why there were very few GUI-based applications prior to the eighties is
that graphics terminals were too expensive. For example, the price of a
graphics terminal those days was much more than what a high-end
personal computer costs these days. Also, the graphics terminals were
of storage tube type and lacked raster capability.

One of the first computers to support GUI-based applications was the Apple
Macintosh computer. In fact, the popularity of the Apple Macintosh computer
in the early eighties is directly attributable to its GUI. In those early days of
GUI design, the user interface programmer typically started his interface
development from the scratch. He would starting from simple pixel display
routines, write programs to draw lines, circles, text, etc. He would then
develop his own routines to display menu items, make menu choices, etc.
The current user interface style has undergone a sea change compared to the
early style.

The current style of user interface development is component-based. It
recognises that every user interface can easily be built from a handfuls of
predefined components such as menus, dialog boxes, forms, etc. Besides the
standard components, and the facilities to create good interfaces from them,
one of the basic support available to the user interface developers is the
window system. The window system lets the application programmer create
and manipulate windows without having to write the basic windowing
functions.

In the following subsections, we provide an overview of the window
management system, the component-based development style, and visual

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

programming.

9.4.1 Window System
Most modern graphical user interfaces are developed using some window
system. A window system can generate displays through a set of
windows. Since a window is the basic entity in such a graphical user
interface, we need to first discuss what exactly a window is.

Window: A window is a rectangular area on the screen. A window can be
considered to be a virtual screen, in the sense that it provides an interface to
the user for carrying out independent activities, e.g., one window can be used
for editing a program and another for drawing pictures, etc.

Figure 9.3: Window with client and user areas marked.

A window can be divided into two parts—client part, and non-client part.
The client area makes up the whole of the window, except for the borders
and scroll bars. The client area is the area available to a client application for
display. The non-client-part of the window determines the look and feel of
the window. The look and feel defines a basic behaviour for all windows, such
as creating, moving, resizing, iconifying of the windows. The window
manager is responsible for managing and maintaining the non-client area of a
window. A basic window with its different parts is shown in Figure 9.3.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Window management system (WMS)
A graphical user interface typically consists of a large number of
windows. Therefore, it is necessary to have some systematic way to
manage these windows. Most graphical user interface development
environments do this through a window management system (WMS). A
window management system is primarily a resource manager. It keeps
track of the screen area resource and allocates it to the different
windows that seek to use the screen. From a broader perspective, a
WMS can be considered as a user interface management system (UIMS)
—which not only does resource management, but also provides the
basic behaviour to the windows and provides several utility routines to
the application programmer for user interface development. A WMS
simplifies the task of a GUI designer to a great extent by providing the
basic behaviour to the various windows such as move, resize, iconify,
etc. as soon as they are created and by providing the basic routines to
manipulate the windows from the application program such as creating,
destroying, changing different attributes of the windows, and drawing
text, lines, etc.

A WMS consists of two parts (see Figure 9.4):
• a window manager, and
• a window system.
These components of the WMS are discussed in the following subsection.

Window manager and window system: The window manager is built on
the top of the window system in the sense that it makes use of various
services provided by the window system. The window manager and not the
window system determines how the windows look and behave. In fact,
several kinds of window managers can be developed based on the same
window system. The window manager can be considered as a special kind of
client that makes use of the services (function calls) supported by the window
system. The application programmer can also directly invoke the services of
the window system to develop the user interface. The relationship between
the window manager, window system, and the application program is shown
in Figure 9.4. This figure shows that the end-user can either interact with the
application itself or with the window manager (resize, move, etc.) and both
the application and the window manger invoke services of the window
manager.

Window manager is the component of WMS with which the end user interacts to do

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

various window-related operations such as window repositioning, window resizing,
iconification, etc.

Figure 9.4: Window management system.

It is usually cumbersome to develop user interfaces using the large set of
routines provided by the basic window system. Therefore, most user interface
development systems usually provide a high-level abstraction called widgets
for user interface development. A widget is the short form of a window
object. We know that an object is essentially a collection of related data with
several operations defined on these data which are available externally to
operate on these data. The data of an window object are the geometric
attributes (such as size, location etc.) and other attributes such as its
background and foreground colour, etc. The operations that are defined on
these data include, resize, move, draw, etc.

Widgets are the standard user interface components. A user interface is
usually made up by integrating several widgets. A few important types of
widgets normally provided with a user interface development system are
described in Section 9.4.2.

Component-based development
A development style based on widgets is called component-based (or
widget-based) GUI development style. There are several important
advantages of using a widget-based design style. One of the most

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

important reasons to use widgets as building blocks is because they
help users learn an interface fast. In this style of development, the user
interfaces for different applications are built from the same basic
components. Therefore, the user can extend his knowledge of the
behaviour of the standard components from one application to the
other. Also, the component-based user interface development style
reduces the application programmer’s work significantly as he is more of
a user interface component integrator than a programmer in the
traditional sense. In the following section, we will discuss some of these
popular widgets.

Visual programming
Visual programming is the drag and drop style of program development.
In this style of user interface development, a number of visual objects
(icons) representing the GUI components are provided by the
programming environment. The application programmer can easily
develop the user interface by dragging the required component types
(e.g., menu, forms, etc.) from the displayed icons and placing them
wherever required. Thus, visual programming can be considered as
program development through manipulation of several visual objects.
Reuse of program components in the form of visual objects is an
important aspect of this style of programming. Though popular for user
interface development, this style of programming can be used for other
applications such as Computer-Aided Design application (e.g., factory
design), simulation, etc. User interface development using a visual
programming language greatly reduces the effort required to develop
the interface.

Examples of popular visual programming languages are Visual Basic, Visual
C++, etc. Visual C++ provides tools for building programs with window-
based user interfaces for Microsoft Windows environments. In visual C++ you
usually design menu bars, icons, and dialog boxes, etc. before adding them to
your program. These objects are called as resources. You can design shape,
location, type, and size of the dialog boxes before writing any C++ code for
the application.

9.4.2 Types of Widgets
Different interface programming packages support different widget sets.
However, a surprising number of them contain similar kinds of widgets,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

so that one can think of a generic widget set which is applicable to most
interfaces. The following widgets we have chosen as representatives of
this generic class.

Label widget: This is probably one of the simplest widgets. A label widget
does nothing except to display a label, i.e., it does not have any other
interaction capabilities and is not sensitive to mouse clicks. A label widget is
often used as a part of other widgets.
Container widget: These widgets do not stand by themselves, but exist
merely to contain other widgets. Other widgets are created as children of the
container widget. When the container widget is moved or resized, its children
widget also get moved or resized. A container widget has no callback routines
associated with it.
Pop-up menu: These are transient and task specific. A pop-up menu
appears upon pressing the mouse button, irrespective of the mouse position.
Pull-down menu : These are more permanent and general. You have to
move the cursor to a specific location and pull down this type of menu.
Dialog boxes: We often need to select multiple elements from a selection
list. A dialog box remains visible until explicitly dismissed by the user. A
dialog box can include areas for entering text as well as values. If an apply
command is supported in a dialog box, the newly entered values can be tried
without dismissing the box. Though most dialog boxes ask you to enter some
information, there are some dialog boxes which are merely informative,
alerting you to a problem with your system or an error you have made.
Generally, these boxes ask you to read the information presented and then
click OK to dismiss the box.
Push button: A push button contains key words or pictures that describe the
action that is triggered when you activate the button. Usually, the action
related to a push button occurs immediately when you click a push button
unless it contains an ellipsis (. . .). A push button with an ellipsis generally
indicates that another dialog box will appear.
Radio buttons: A set of radio buttons are used when only one option has to
be selected out of many options. A radio button is a hollow circle followed by
text describing the option it stands for. When a radio button is selected, it
appears filled and the previously selected radio button from the group is
unselected. Only one radio button from a group can be selected at any time.
This operation is similar to that of the band selection buttons that were
available in old radios.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Combo boxes: A combo box looks like a button until the user interacts with
it. When the user presses or clicks it, the combo box displays a menu of items
to choose from. Normally a combo box is used to display either one-of-many
choices when space is limited, the number of choices is large, or when the
menu items are computed at run-time.

9.4.3 An Overview of X-Window/MOTIF
One of the important reasons behind the extreme popularity of the X-window
system is probably due to the fact that it allows development of portable
GUIs. Applications developed using the X-window system are device-
independent. Also, applications developed using the X-window system
become network independent in the sense that the interface would work just
as well on a terminal connected anywhere on the same network as the
computer running the application is. Network-independent GUI operation has
been schematically represented in Figure 9.5. Here, A is the computer
application in which the application is running. B can be any computer on the
network from where you can interact with the application. Network-
independent GUI was pioneered by the X-window system in the mid-eighties
at MIT (Massachusetts Institute of Technology) with support from DEC
(Digital Equipment Corporation). Now-a-days many user interface
development systems support network-independent GUI development, e.g.,
the AWT and Swing components of Java.

Figure 9.5: Network-independent GUI.

The X-window functions are low level functions written in C language which

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

can be called from application programs. But only the very serious application
designer would program directly using the X-windows library routines. Built
on top of X-windows are higher level functions collectively called Xtoolkit,
which consists of a set of basic widgets and a set of routines to manipulate
these widgets. One of the most widely used widget sets is X/Motif. Digital
Equipment Corporation (DEC) used the basic X-window functions to develop
its own look and feel for interface designs called DECWindows. In the
following, we shall provide a very brief overview of the X-window system and
its architecture and the interested reader is referred to Scheifler et al. [1988]
for further study on graphical user interface development using X-windows
and Motif.

9.4.4 X Architecture
The X architecture is pictorially depicted in Figure 9.6. The different terms
used in this diagram are explained as follows:

Figure 9.6: Architecture of the X System.

Xserver: The X server runs on the hardware to which the display and
the key board are attached. The X server performs low-level graphics,
manages window, and user input functions. The X server controls
accesses to a bit-mapped graphics display resource and manages it.

X protocol. The X protocol defines the format of the requests between client
applications and display servers over the network. The X protocol is designed
to be independent of hardware, operating systems, underlying network

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

protocol, and the programming language used.
X library (Xlib). The Xlib provides a set of about 300 utility routines for
applications to call. These routines convert procedure calls into requests that
are transmitted to the server. Xlib provides low level primitives for developing
an user interface, such as displaying a window, drawing characters and
graphics on the window, waiting for specific events, etc.
Xtoolkit (Xt). The Xtoolkit consists of two parts: the intrinsics and the
widgets. We have already seen that widgets are predefined user interface
components such as scroll bars, menu bars, push buttons, etc. for designing
GUIs. Intrinsics are a set of about a dozen library routines that allow a
programmer to combine a set of widgets into a user interface. In order to
develop a user interface, the designer has to put together the set of
components (widgets) he needs, and then he needs to define the
characteristics (called resources) and behaviour of these widgets by using the
intrinsic routines to complete the development of the interface. Therefore,
developing an interface using Xtoolkit is much easier than developing the
same interface using only X library.

9.4.5 Size Measurement of a Component-based GUI
Lines of code (LOC) is not an appropriate metric to estimate and
measure the size of a component-based GUI. This is because, the
interface is developed by integrating several pre- built components. The
different components making up an interface might have been in
written using code of drastically different sizes. However, as far as the
effort of the GUI developer who develops an interface by integrating the
components may not be affected by the code size of the components he
integrates.

A way to measure the size of a modern user interface is widget points (wp).
The size of a user interface (in wp units) is simply the total number of
widgets used in the interface. The size of an interface in wp units is a
measure of the intricacy of the interface and is more or less independent of
the implementation environment. The wp measure opens up chances for
contracts on a measured amount of user interface functionality, instead of a
vague definition of a complete system. However, till now there is no reported
results to estimate the development effort in terms of the wp metric. An
alternate way to compute the size of GUI is to simply count the number of
screens. However, this would be inaccurate since a screen complexity can
range from very simple to very complex.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

9.5 A USER INTERFACE DESIGN METHODOLOGY
At present, no step-by-step methodology is available which can be
followed by rote to come up with a good user interface. What we
present in this section is a set of recommendations which you can use
to complement your ingenuity. Even though almost all popular GUI
design methodologies are user-centered, this concept has to be clearly
distinguished from a user interface design by users. Before we start
discussing about the user interface design methodology, let us
distinguish between a user-centered design and a design by users.

User-centered design is the theme of almost all modern user interface
design techniques. However, user-centered design does not mean
design by users. One should not get the users to design the interface,
nor should one assume that the user’s opinion of which design
alternative is superior is always right. Though users may have good
knowledge of the tasks they have to perrform using a GUI, but they
may not know the GUI design issues.
Users have good knowledge of the tasks they have to perform, they
also know whether they find an interface easy to learn and use but
they have less understanding and experience in GUI design than the
GUI developers.

9.5.1 Implications of Human Cognition Capabilities on User
Interface Design

An area of human-computer interaction where extensive research has
been conducted is how human cognitive capabilities and limitations
influence the way an interface should be designed. In the following
subsections, we discuss some of the prominent issues that have been
extensively reported in the literature.

Limited memory: Humans can remember at most seven unrelated items of
information for short periods of time. Therefore, the GUI designer should not
require the user to remember too many items of information at a time. It is
the GUI designer’s responsibility to anticipate what information the user will
need at what point of each task and to ensure that the relevant information is
displayed for the user to see. Showing the user some information at some
point, and then asking him to recollect that information in a different screen
where they no longer see the information, places a memory burden on the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

user and should be avoided wherever possible.
Frequent task closure: Doing a task (except for very trivial tasks) requires
doing several subtasks. When the system gives a clear feedback to the user
that a task has been successfully completed, the user gets a sense of
achievement and relief. The user can clear out information regarding the
completed task from memory. This is known as task closure. When the
overall task is fairly big and complex, it should be divided into subtasks, each
of which has a clear subgoal which can be a closure point.
Recognition rather than recall. Information recall incurs a larger memory
burden on the users and is to be avoided as far as possible. On the other
hand, recognition of information from the alternatives shown to him is more
acceptable.
Procedural versus ob ject-oriented: Procedural designs focus on tasks,
prompting the user in each step of the task, giving them very few options for
anything else. This approach is best applied in situations where the tasks are
narrow and well-defined or where the users are inexperienced, such as a
bank ATM. An object-oriented interface on the other hand focuses on objects.
This allows the users a wide range of options.

9.5.2 A GUI Design Methodology
The GUI design methodology we present here is based on the seminal
work of Frank Ludolph [Frank1998]. Our user interface design
methodology consists of the following important steps:

• Examine the use case model of the software. Interview, discuss, and
review the GUI issues with the end-users.
Task and object modelling.
Metaphor selection.
Interaction design and rough layout.
Detailed presentation and graphics design.
GUI construction.
Usability evaluation.

Examining the use case model
We now elaborate the above steps in GUI design. The starting point for
GUI design is the use case model. This captures the important tasks the
users need to perform using the software. As far as possible, a user

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

interface should be developed using one or more metaphors. Metaphors
help in interface development at lower effort and reduced costs for
training the users. Over time, people have developed efficient methods
of dealing with some commonly occurring situations. These solutions
are the themes of the metaphors. Metaphors can also be based on
physical objects such as a visitor’s book, a catalog, a pen, a brush, a
scissor, etc. A solution based on metaphors is easily understood by the
users, reducing learning time and training costs. Some commonly used
metaphors are the following:

White board
Shopping cart
Desktop
Editor’s work bench
White page
Yellow page
Office cabinet
Post box
Bulletin board
Visitor’s Book

Task and ob ject modelling
A task is a human activity intended to achieve some goals. Examples of
task goals can be as follows:

Reserve an airline seat
Buy an item
Transfer money from one account to another
Book a cargo for transmission to an address

A task model is an abstract model of the structure of a task. A task model
should show the structure of the subtasks that the user needs to perform to
achieve the overall task goal. Each task can be modeled as a hierarchy of
subtasks. A task model can be drawn using a graphical notation similar to the
activity network model we discussed in Chapter 3. Tasks can be drawn as
boxes with lines showing how a task is broken down into subtasks. An
underlined task box would mean that no further decomposition of the task is
required. An example of decomposition of a task into subtasks is shown in

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 9.7.

Figure 9.7: Decomposition of a task into subtasks.

Identification of the user objects forms the basis of an object-based design.
A user object model is a model of business objects which the end-users
believe that they are interacting with. The objects in a library software may
be books, journals, members, etc. The objects in the supermarket automation
software may be items, bills, indents, shopping list, etc. The state diagram
for an object can be drawn using a notation similar to that used by UML (see
Section 7.8). The state diagram of an object model can be used to determine
which menu items should be dimmed in a state. An example state chart
diagram for an order object is shown in Figure 9.8.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 9.8: State chart diagram for an order object.

Metaphor selection
The first place one should look for while trying to identify the candidate
metaphors is the set of parallels to objects, tasks, and terminologies of
the use cases. If no obvious metaphors can be found, then the designer
can fall back on the metaphors of the physical world of concrete
objects. The appropriateness of each candidate metaphor should be
tested by restating the objects and tasks of the user interface model in
terms of the metaphor. Another criterion that can be used to judge
metaphors is that the metaphor should be as simple as possible, the
operations using the metaphor should be clear and coherent and it
should fit with the users’ ‘common sense’ knowledge. For example, it
would indeed be very awkward and a nuisance for the users if the
scissor metaphor is used to glue different items.

Example 9.1 We need to develop the interface for a web-based pay-order
shop, where the users can examine the contents of the shop through a web
browser and can order them.

Several metaphors are possible for different parts of this problem as
follows:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Different items can be picked up from racks and examined. The user
can request for the catalog associated with the items by clicking on
the item.
Related items can be picked from the drawers of an item cabinet.
The items can be organised in the form of a book, similar to the way
information abo u t electronic components are organised in a
semiconductor hand book.

Once the users make up their mind about an item they wish to buy, they
can put them into a shopping cart.

Interaction design and rough layout
The interaction design involves mapping the subtasks into appropriate
controls, and other widgets such as forms, text box, etc. This involves
making a choice from a set of available components that would best
suit the subtask. Rough layout concerns how the controls, an other
widgets to be organised in windows.

Detailed presentation and graphics design
Each window should represent either an object or many objects that
have a clear relationship to each other. At one extreme, each object
view could be in its own window. But, this is likely to lead to too much
window opening, closing, moving, and resizing. At the other extreme,
all the views could be placed in one window side-by-side, resulting in a
very large window. This would force the user to move the cursor around
the window to look for different objects.

GUI construction
Some of the windows have to be defined as modal dialogs. When a
window is a modal dialog, no other windows in the application is
accessible until the current window is closed. When a modal dialog is
closed, the user is returned to the window from which the modal dialog
was invoked. Modal dialogs are commonly used when an explicit
confirmation or authorisation step is required for an action (e.g.,
confirmation of delete). Though use of modal dialogs are essential in
some situations, overuse of modal dialogs reduces user flexibility. In
particular, sequences of modal dialogs should be avoided.

User interface inspection

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Nielson [Niel94] studied common usability problems and built a check list
of points which can be easily checked for an interface. The following
check list is based on the work of Nielson [Niel94]:

Visibility of the system status: The system should as far as possible keep
the user informed about the status of the system and what is going on. For
example, it should not be the case that a user gives a command and keeps
waiting, wondering whether the system has crashed and he should reboot the
system or that the results shall appear after some more time.
Match between the system and the real world: The system should
speak the user’s language with words, phrases, and concepts familiar to that
used by the user, rather than using system-oriented terms.
Undoing mistakes: The user should feel that he is in control rather than
feeling helpless or to be at the control of the system. An important step
toward this is that the users should be able to undo and redo operations.
Consistency: The users should not have to wonder whether different words,
concepts, and operations mean the same thing in different situations.
Recognition rather than recall: The user should not have to recall
information which was presented in another screen. All data and instructions
should be visible on the screen for selection by the user.
Support for multiple skill levels: Provision of accelerators for experienced
users allows them to efficiently carry out the actions they most frequently
require to perform.
Aesthetic and minimalist design: Dialogs and screens should not contain
information which are irrelevant and are rarely needed. Every extra unit of
information in a dialog or screen competes with the relevant units and
diminishes their visibility.
Help and error messages: These should be expressed in plain language
(no codes), precisely indicating the problem, and constructively suggesting a
solution.
Error prevention: Error possibilities should be minimised. A key principle in
this regard is to prevent the user from entering wrong values. In situations
where a choice has to be made from among a discrete set of values, the
control should present only the valid values using a drop-down list, a set of
option buttons or a similar multichoice control. When a specific format is
required for attribute data, the entered data should be validated when the
user attempts to submit the data.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

saving becomes possible. According to experience reports, well-established
object-oriented development environment can help to reduce development
costs by as much as 20 per cent to 50 per cent over a traditional
development environment.

Disadvantages of OOD
The following are some of the prominent disadvantages inherent to the
object paradigm:

The principles of abstraction, data hiding, inheritance, etc. do incur run
time overhead due to the additional code that gets generated on
account of these features. This causes an project-oriented program to
run a little slower than an equivalent procedural program.
An important consequence of object-orientation is that the data that is
centralised in a procedural implementation, gets scattered across
various objects in an object-oriented implementation. Therefore, the
spatial locality of data becomes weak and this leads to higher cache
miss ratios and consequently to larger memory access times. This
finally shows up as increased program run time.

As we can see, increased run time is the principal disadvantage of object-
orientation and higher productivity is the major advantage. In the present
times, computers have become remarkably fast, and a small run time
overhead is not an issue at all. Consequently, the advantages of OOD
overshadow the disadvantages.

7.2 UNIFIED MODELLING LANGUAGE (UML)
As the name itself implies, UML is a language for documenting models.
As is the case with any other language, UML has its syntax (a set of
basic symbols and sentence formation rules) and semantics (meanings
of basic symbols and sentences). It provides a set of basic graphical
notations (e.g. rectangles, lines, ellipses, etc.) that can be combined in
certain ways to document the design and analysis results.

It is important to remember that UML is neither a system design or
development methodology by itself, nor is tied to any specific methodology.
UML is merely a language for documenting models. Before the advent of UML,
every design methodology not only prescribed entirely different design steps,
but each was tied to some specific design modelling language. For example,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

OMT methodology had its own design methodology and had its own unique
set of notations. So was the case with Booch’s methodology, and so on. This
situation made it hard for someone familiar with one methodology to
understand the design solutions developed and documented using another
methodology. In general, reuse of design solutions across different
methodologies was hard. UML was intended to address this problem that was
inherent to the modelling techniques that existed.

UML can be used to document object-oriented analysis and design results that have
been obtained using any methodology.

One of the objectives of the developers of UML was to keep the notations
of UML independent of any specific design methodology, so that it can be
used along with any specific design methodology. In this respect, UML is
different from its predecessors (e.g., OMT, Booch’s methodology, etc.) where
the notations supported by the modelling languages were closely tied to the
corresponding design methodologies.

7.2.1 Origin of UML
In the late eighties and early nineties, there was a proliferation of
object-oriented design techniques and notations. Many of these had
become extremely popular and were widely used. However, the
notations they used and the specific design paradigms that they
advocated, differed from each other in major ways. With so many
popular techniques to choose from, it was not very uncommon to find
different project teams in the same organisation using different
methodologies and documenting their object-oriented analysis and
design results using different notations. These diverse notations used
for documenting design solutions gave arise to a lot of confusion among
the team members and made it extremely difficult to reuse designs
across projects and communicating ideas across project teams.

UML was developed to standardise the large number of object-oriented
modelling notations that existed in the early nineties. The principal ones in
use those days include the following:

OMT [Rumbaugh 1991]
Booch’s methodology [Booch 1991]
OOSE [Jacobson 1992]
Odell’s methodology [Odell 1992]

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Shlaer and Mellor methodology[Shlaer 1992]

Needless to say that UML has borrowed many concepts from these
modeling techniques. Concepts and notations from especially the first three
methodologies have heavily been drawn upon. The influence of various object
modeling techniques on UML is shown schematically in Figure 7.12. As shown
in Figure 7.12, OMT had the most profound influence on UML.

Figure 7.12: Schematic representation of the impact of different object modelling techniques on UML.

UML was adopted by object management group (OMG) as a de facto
standard in 1997. Actually, OMG is not a standards formulating body, but is
an association of industries that tries to facilitate early formulation of
standards. OMG aims to promote consensus notations and techniques with
the hope that if the usage becomes wide-spread, then they would
automatically become standards. For more information on OMG, see
www.omg.org. With widespread use of UML, ISO adopted UML a standard
(ISO 19805) in 2005, and with this UML has become an official standard; this
has further enhanced the use of UML.

UML is more complex than its antecedents. This is only natural and
expected because it is intended to be more comprehensive and applicable to
a wider gamut of problems than any of the notations that existed before UML.
UML contains an extensive set of notations to help document several aspects
(views) of a design solution through many types of diagrams. UML has
successfully been used to model both large and small problems. The elegance
of UML, its adoption by OMG, and subsequently by ISO as well as a strong
industry backing have helped UML to find wide spread acceptance. UML is
now being used in academic and research institutions as well as in large

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

number of software development projects world-wide. It is interesting to note
that the use of UML is not restricted to the software industry alone. As an
example of UML’s use outside the software development problems, some car
manufacturers are planning to use UML for their “build-to-order” initiative.

Many of the UML notations are difficult to draw by hand on a paper and are
best drawn using a CASE tool such as Rational Rose© (see www.rational.com
) or MagicDraw (www.magicdraw.com). Now several free UML CASE tools
are also available on the web. Most of the available CASE tools help to refine
an initial object model to final design, and these also automatically generate
code templates in a variety of languages, once the UML models have been
constructed.

7.2.2 Evolution of UML
Since the release of UML 1.0 in 1997, UML continues to evolve (see Figure
7.13) with feedback from practitioners and academicians to make it
applicable to different system development situations. Almost every year
several new releases (shown as UML 1.X in Figure 7.13) were announced. A
major milestone in the evolution of UML was the release of UML 2.0 in the
year 2007. Since the use of embedded applications is increasing rapidly, there
was popular demand to extend UML to support the special concepts and
notations required to develop embedded applications. UML 2.0 was an
attempt to make UML applicable to the development of concurrent and
embedded systems. For this, many new features such as events, ports, and
frames in sequence diagrams were introduced. We briefly discuss these
developments in this chapter.

Figure 7.13: Evolution of UML.

What is a model?

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Before we discuss the features of UML in detail, it is important to understand
what exactly is meant by a model, and why is it necessary to create a model.

A model is an abstraction of a real problem (or situation), and is constructed by
leaving out unnecessary details. This reduces the problem complexity and makes it
easy to understand the problem (or situation).

A model is a simplified version of a real system. It is useful to think of a
model as capturing aspects important for some application while omitting (or
abstracting out) the rest. As we had already pointed out in Chapter 1, as the
size of a problem increases, the perceived complexity increases exponentially
due to human cognitive limitations. Therefore, to develop a good
understanding of any problem, it is necessary to construct a model of the
problem. Modelling has turned out to be a very essential tool in software
design and helps to effectively handle the complexity in a problem. These
models that are first constructed are the models of the problem. A design
methodology essentially transform these analysis models into a design model
through iterative refinements.

Different types of models are obtained based on the specific aspects of the
actual system that are ignored while constructing the model. To understand
this, let us consider the models constructed by an architect of a large
building. While constructing the frontal view of a large building (elevation
plan), the architect ignores aspects such as floor plan, strength of the walls,
details of the inside architecture, etc. While constructing the floor plan, he
completely ignores the frontal view (elevation plan), site plan, thermal and
lighting characteristics, etc. of the building.

A model in the context of software development can be graphical, textual,
mathematical, or program code-based. Graphical models are very popular
because they are easy to understand and construct. UML is primarily a
graphical modeling tool. However, there are certain modelling situations
(discussed later in this Chapter), for which in addition to the graphical UML
models, separate textual explanations are required to accompany the
graphical models.

Why construct a model?
An important reason behind constructing a model is that it helps to
manage the complexity in a problem and facilitates arriving at good
solutions and at the same time helps to reduce the design costs. The
initial model of a problem is called an analysis model. The analysis
model of a problem can be refined into a design model using a design

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

methodology. Once models of a system have been constructed, these
can be used for a variety of purposes during software development,
including the following:

Analysis
Specification
Design
Coding
Visualisation and understanding of an implementation.
Testing, etc.

Since a model can be used for a variety of purposes, it is reasonable to
expect that the models would vary in detail depending on the purpose for
which these are being constructed. For example, a model developed for initial
analysis and specification should be very different from the one used for
design. A model that is constructed for analysis and specification would not
show any of the design decisions that would be made later on during the
design stage. On the other hand, a model constructed for design purposes
should capture all the design decisions. Therefore, it is a good idea to
explicitly mention the purpose for which a model has been developed.

We now discuss the different types of UML diagrams and the notations used
to develop these diagrams.

7.3 UML DIAGRAMS
In this section, we discuss the diagrams supported by UML 1.0. Later in
Section 7.9.2, we discuss the changes to UML 1.0 brought about by UML 2.0.
UML 1.0 can be used to construct nine different types of diagrams to capture
five different views of a system. Just as a building can be modelled from
several views (or perspectives) such as ventilation perspective, electrical
perspective, lighting perspective, heating perspective, etc.; the different UML
diagrams provide different perspectives of a software system to be developed
and facilitate a comprehensive understanding of the system. Each perspective
focuses on some specific aspect and ignores the rest. Some may ask, why
construct several models from different perspectives—why not just construct
one model that captures all perspectives? The answer to this is the following:

If a single model is made to capture all the required perspectives, then it would be as
complex as the original problem, and would be of little use.

Once a system has been modelled from all the required perspectives, the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Once a system has been modelled from all the required perspectives, the
constructed models can be refined to get the actual implementation of the
system.

UML diagrams can capture the following views (models) of a system:

User’s view
Structural view
Behaviourial view
Implementation view
Environmental view

Figure 7.14 shows the different views that the UML diagrams can
document. Observe that the users’ view is shown as the central view. This is
because based on the users’ view, all other views are developed and all views
need to conform to the user’s view. Most of the object oriented analysis and
design methodologies, including the one we are going to discuss in Chapter 8
require us to iterate among the different views several times to arrive at the
final design. We first provide a brief overview of the different views of a
system which can be documented using UML. In the subsequent sections, the
diagrams used to realize the important views are discussed.

Figure 7.14: Different types of diagrams and views supported in UML.

Users’ view

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

This view defines the functionalities made available by the system to its
users.

The users’ view captures the view of the system in terms of the functionalities offered
by the system to its users.

The users’ view is a black-box view of the system where the internal
structure, the dynamic behaviour of different system components, the
implementation etc. are not captured. The users’ view is very different from
all other views in the sense that it is a functional model1 compared to all
other views that are essentially object models.2

The users’ view can be considered as the central view and all other views
are required to conform to this view. This thinking is in fact the crux of any
user centric development style. It is indeed remarkable that even for object-
oriented development, we need a functional view. That is because, after all,
a user considers a system as providing a set of functionalities.

Structural view
The structural view defines the structure of the problem (or the solution) in
terms of the kinds of objects (classes) important to the understanding of the
working of a system and to its implementation. It also captures the
relationships among the classes (objects).

The structural model is also called the static model, since the structure of a system
does not change with time.

Behaviourial view
The behaviourial view captures how objects interact with each other in
time to realise the system behaviour. The system behaviour captures
the time-dependent (dynamic) behaviour of the system. It therefore
constitutes the dynamic model of the system.

Implementation view
This view captures the important components of the system and their
interdependencies. For example, the implementation view might show
the GUI part, the middleware, and the database part as the different
parts and also would capture their interdependencies.

Environmental view

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

This view models how the different components are implemented on
different pieces of hardware.

For any given problem, should one construct all the views using all the
diagrams provided by UML? The answer is No. For a simple system, the use
case model, class diagram, and one of the interaction diagrams may be
sufficient. For a system in which the objects undergo many state changes, a
state chart diagram may be necessary. For a system, which is implemented
on a large number of hardware components, a deployment diagram may be
necessary. So, the type of models to be constructed depends on the problem
at hand. Rosenberg provides an analogy [Ros 2000] saying that “Just like you
do not use all the words listed in the dictionary while writing a prose, you do
not use all the UML diagrams and modeling elements while modeling a
system.”

7.4 USE CASE MODEL
The use case model for any system consists of a set of use cases.

Intuitively, the use cases represent the different ways in which a system can be used
by the users.

A simple way to find all the use cases of a system is to ask the question
—“What all can the different categories of users do by using the system?”
Thus, for the library information system (LIS), the use cases could be:

• issue-book
• query-book
• return-book
• create-member
• add-book, etc.
Roughly speaking, the use cases correspond to the high-level functional

requirements that we discussed in Chapter 4. We can also say that the use
cases partition the system behaviour into transactions, such that each
transaction performs some useful action from the user’s point of view. Each
transaction, to complete, may involve multiple message exchanges between
the user and the system.

The purpose of a use case is to define a piece of coherent behaviour
without revealing the internal structure of the system. The use cases do not
mention any specific algorithm to be used nor the internal data
representation, internal structure of the software. A use case typically

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

involves a sequence of interactions between the user and the system. Even
for the same use case, there can be several different sequences of
interactions. A use case consists of one main line sequence and several
alternate sequences. The main line sequence represents the interactions
between a user and the system that normally take place. The mainline
sequence is the most frequently occurring sequence of interaction. For
example, in the mainline sequence of the withdraw cash use case supported
by a bank ATM would be—the user inserts the ATM card, enters password,
selects the amount withdraw option, enters the amount to be withdrawn,
completes the transaction, and collects the amount. Several variations to the
main line sequence (called alternate sequences) may also exist. Typically, a
variation from the mainline sequence occurs when some specific conditions
hold. For the bank ATM example, consider the following variations or
alternate sequences:

• Password is invalid.
• The amount to be withdrawn exceeds the account balance.
The mainline sequence and each of the alternate sequences corresponding

to the invocation of a use case is called a scenario of the use case.

A use case can be viewed as a set of related scenarios tied together by a common
goal. The main line sequence and each of the variations are called scenarios or
instances of the use case. Each scenario is a single path of user events and system
activity.

Normally, each use case is independent of the other use cases. However,
implicit dependencies among use cases may exist because of dependencies
that may exist among use cases at the implementation level due to factors
such as shared resources, objects, or functions. For example, in the Library
Automation System example, renew-book a nd reserve-book are two
independent use cases. But, in actual implementation of renew-book, a check
is to be made to see if any book has been reserved by a previous execution
of the reserve-book use case. Another example of dependence among use
cases is the following. In the Bookshop Automation Software, update-
inventory and sale-book are two independent use cases. But, during
execution of sale-book there is an implicit dependency on update-
inventory. Since when sufficient quantity is unavailable in the inventory,
sale-book cannot operate until the inventory is replenished using update-
inventory.

The use case model is an important analysis and design artifact. As already

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

mentioned, other UML models must conform to this model in any use case-
driven (also called as the user-centric) analysis and development approach. It
should be remembered that the “use case model” is not really an object-
oriented model according to a strict definition of the term.

In contrast to all other types of UML diagrams, the use case model represents a
functional or process model of a system.

7.4.1 Representation of Use Cases
A use case model can be documented by drawing a use case diagram
and writing an accompanying text elaborating the drawing. In the use
case diagram, each use case is represented by an ellipse with the name
of the use case written inside the ellipse. All the ellipses (i.e. use cases)
of a system are enclosed within a rectangle which represents the
system boundary. The name of the system being modeled (e.g., library
information system) appears inside the rectangle.

The different users of the system are represented by using stick person
icons. Each stick person icon is referred to as an actor. 3 An actor is a role
played by a user with respect to the system use. It is possible that the same
user may play the role of multiple actors. An actor can participate in one or
more use cases. The line connecting an actor and the use case is called the
communication relationship. It indicates that an actor makes use of the
functionality provided by the use case.

Both human users and external systems can be represented by stick person
icons. When a stick person icon represents an external system, it is annotated
by the stereotype <<external system>>.

At this point, it is necessary to explain the concept of a stereotype in UML.
One of the main objectives of the creators of the UML was to restrict the
number of primitive symbols in the language. It was clear to them that when
a language has a large number of primitive symbols, it becomes very difficult
to learn use. To convince yourself, consider that English with 26 alphabets is
much easier to learn and use compared to the Chinese language that has
thousands of symbols. In this context, the primary objective of stereotype is
to reduce the number of different types of symbols that one needs to learn.

The stereotype construct when used to annotate a basic symbol, can give slightly
different meaning to the basic symbol— thereby eliminating the need to have several
symbols whose meanings differ slightly from each other.

Just as you stereotype your friends as studious, jovial, serious, etc.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Just as you stereotype your friends as studious, jovial, serious, etc.
stereotyping can be used to give special meaning to any basic UML construct.
We shall, later on, see how other UML constructs can be stereotyped. We can
stereotype the stick person icon symbol to denote an external system. If the
developers of UML had assigned a separate symbol to denote things such as
an external system, then the number of basic symbols one would have to
learn and remember while using UML would have increased significantly. This
would have certainly made learning and using UML much more difficult.

You can draw a rectangle around the use cases, called the system
boundary box, to indicates the scope of your system. Anything within the box
represents functionality that is in scope and anything outside the box is not.
However, drawing the system boundary is optional.

We now give a few examples to illustrate how use cases of a system can be
documented.
Example 7 .2 The use case model for the Tic-tac-toe game software is
shown in Figure 7.15. This software has only one use case, namely, “play
move”. Note that we did not name the use case “get-user-move”, as “get-
user-move” would be inappropriate because this would represent the
developer’s perspective of the use case. The use cases should be named from
the users’ perspective.

Figure 7.15: Use case model for Example 7.2.

Text description
Each ellipse in a use case diagram, by itself conveys very little
information, other than giving a hazy idea about the use case.
Therefore, every use case diagram should be accompanied by a text
description. The text description should define the details of the
interaction between the user and the computer as well as other
relevant aspects of the use case. It should include all the behaviour

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

associated with the use case in terms of the mainline sequence, various
alternate sequences, the system responses associated with the use
case, the exceptional conditions that may occur in the behaviour, etc.
The behaviour description is often written in a conversational style
describing the interactions between the actor and the system. The text
description may be informal, but some structuring is helpful. The
following are some of the information which may be included in a use
case text description in addition to the mainline sequence, and the
alternate scenarios.

Contact persons: This section lists of personnel of the client organisation
with whom the use case was discussed, date and time of the meeting, etc.
Actors: In addition to identifying the actors, some information about actors
using a use case which may help the implementation of the use case may be
recorded.
Pre-condition: The preconditions would describe the state of the system
before the use case execution starts.
Post-condition: This captures the state of the system after the use case has
successfully completed.
Non-functional requiremen t s : This could contain the important
constraints for the design and implementation, such as platform and
environment conditions, qualitative statements, response time requirements,
etc.
Exceptions, error situations: This contains only the domain-related errors
such as lack of user’s access rights, invalid entry in the input fields, etc.
Obviously, errors that are not domain related, such as software errors, need
not be discussed here.
Sample dialogs: These serve as examples illustrating the use case.
Specific user interface requiremen t s : These contain specific
requirements for the user interface of the use case. For example, it may
contain forms to be used, screen shots, interaction style, etc.
Document references: This part contains references to specific domain-
related documents which may be useful to understand the system operation.
Example 7.3 The use case diagram of the Super market prize scheme
described in example 6.3 is shown in Figure 7.16.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 7.16: Use case model for Example 7.3.

Text description
U1: register-customer: Using this use case, the customer can register
himself by providing the necessary details.

Scenario 1: Mainline sequence
1. Customer: select register customer option
2 . System: display prompt to enter name, address, and

telephone number.
3. Customer: enter the necessary values
4: System: display the generated id and the message that

the customer has successfully been registered.

Scenario 2: At step 4 of mainline sequence
4 : System: displays the message that the customer has

already registered.

Scenario 3: At step 4 of mainline sequence
4 : System: displays message that some input information

have not been entered. The system displays a prompt to
enter the missing values.

U2: register-sales: Using this use case, the clerk can register the details of
the purchase made by a customer.
Scenario 1: Mainline sequence

1. Clerk: selects the register sales option.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

2. System: displays prompt to enter the purchase details
and the id of the customer.

3. Clerk: enters the required details.
4 : System: displays a message of having successfully

registered the sale.

U3: select-winners. Using this use case, the manager can generate the
winner list.
Scenario 2: Mainline sequence

1. Manager: selects the select-winner option.
2 . System: displays the gold coin and the surprise gift

winner list.

7.4.2 Why Develop the Use Case Diagram?
If you examine a use case diagram, the utility of the use cases
represented by the ellipses would become obvious. They along with the
accompanying text description serve as a type of requirements
specification of the system and the model based on which all other
models are developed. In other words, the use case model forms the
core model to which all other models must conform. But, what about
the actors (stick person icons)? What way are they useful to system
development? One possible use of identifying the different types of
users (actors) is in implementing a security mechanism through a login
system, so that each actor can invoke only those functionalities to
which he is entitled to. Another important use is in designing the user
interface in the implementation of the use case targetted for each
specific category of users who would use the use case. Another possible
use is in preparing the documentation (e.g. users’ manual) targeted at
each category of user. Further, actors help in identifying the use cases
and understanding the exact functioning of the system.

7.4.3 How to Identify the Use Cases of a System?
Identification of the use cases involves brain storming and reviewing the
SRS document. Typically, the high-level requirements specified in the
SRS document correspond to the use cases. In the absence of a well-
formulated SRS document, a popular method of identifying the use
cases is actor-based. This involves first identifying the different types of
actors and their usage of the system. Subsequently, for each actor the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

different functions that they might initiate or participate are identified.
For example, for a Library Automation System, the categories of users
can be members, librarian, and the accountant. Each user typically
focuses on a set of functionalities. Foe example, the member typically
concerns himself with book issue, return, and renewal aspects. The
librarian concerns himself with creation and deletion of the member and
book records. The accountant concerns itself with the amount collected
from membership fees and the expenses aspects.

7.4.4 Essential Use Case versus Real Use Case
Essential use cases are created during early requirements elicitation.
These are also early problem analysis artifacts. They are independent
of the design decisions and tend to be correct over long periods of time.

Real use cases describe the functionality of the system in terms of its actual
current design committed to specific input/output technologies. Therefore,
the real use cases can be developed only after the design decisions have
been made. Real use cases are a design artifact. However, sometimes
organisations commit to development contracts that include the detailed user
interface specifications. In such cases, there is no distinction between the
essential use case and the real use case.

7.4.5 Factoring of Commonality among Use Cases
It is often desirable to factor use cases into component use cases. All use
cases need not be factored. In fact, factoring of use cases are required
under two situations as follows:

Complex use cases need to be factored into simpler use cases. This
would not only make the behaviour associated with the use case much
more comprehensible, but also make the corresponding interaction
diagrams more tractable. Without decomposition, the interaction
diagrams for complex use cases may become too large to be
accommodated on a single standard-sized (A4) paper.
Use cases need to be factored whenever there is common behaviour
across different use cases. Factoring would make it possible to define
such behaviour only once and reuse it wherever required.

It is desirable to factor out common usage such as error handling from a set
of use cases. This makes analysis of the class design much simpler and

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

elegant. However, a word of caution here. Factoring of use cases should not
be done except for achieving the above two objectives. From the design point
of view, it is not advantageous to break up a use case into many smaller
parts just for the sake of it. UML offers three factoring mechanisms as
discussed further.

Generalisation
Use case generalisation can be used when you have one use case that is
similar to another, but does something slightly differently or something more.
Generalisation works the same way with use cases as it does with classes.
The child use case inherits the behaviour and meaning of the present use
case. The notation is the same too (See Figure 7.17). It is important to
remember that the base and the derived use cases are separate use cases
and should have separate text descriptions.

Figure 7.17: Representation of use case generalisation.

Includes
The includes relationship in the older versions of UML (prior to UML 1.1)
was known as the uses relationship. The includes relationship implies
one use case includes the behaviour of another use case in its sequence
of events and actions. The includes relationship is appropriate when you
have a chunk of behaviour that is similar across a number of use cases.
The factoring of such behaviour will help in not repeating the
specification and implementation across different use cases. Thus, the
includes relationship explores the issue of reuse by factoring out the
commonality across use cases. It can also be gainfully employed to

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

decompose a large and complex use case into more manageable parts.
As shown in Figure 7.18, the includes relationship is represented using a

predefined stereotype <<include>>. In the includes relationship, a base use
case compulsorily and automatically includes the behaviour of the common
use case. As shown in example Figure 7.19, the use cases issue-book and
renew-book both include check-reservation use case. The base use
case may include several use cases. In such cases, it may interleave their
associated common use cases together. The common use case becomes a
separate use case and independent text description should be provided for it.

Figure 7.18: Representation of use case inclusion.

Figure 7.19: Example of use case inclusion.

Extends
The main idea behind the extends relationship among use cases is that it
allows you show optional system behaviour. An optional system behaviour is
executed only if certain conditions hold, otherwise the optional behaviour is
not executed. This relationship among use cases is also predefined as a
stereotype as shown in Figure 7.20.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 7.20: Example of use case extension.

T h e extends relationship is similar to generalisation. But unlike
generalisation, the extending use case can add additional behaviour only at
an extension point only when certain conditions are satisfied. The extension
points are points within the use case where variation to the mainline
(normal) action sequence may occur. The extends relationship is normally
used to capture alternate paths or scenarios.

Organisation
When the use cases are factored, they are organised hierarchically. The high-
level use cases are refined into a set of smaller and more refined use cases
as shown in Figure 7.21. Top-level use cases are super-ordinate to the refined
use cases. The refined use cases are sub-ordinate to the top-level use cases.
Note that only the complex use cases should be decomposed and organised
in a hierarchy. It is not necessary to decompose the simple use cases.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 7.21: Hierarchical organisation of use cases.

The functionality of a super-ordinate use case is traceable to its
subordinate use cases. Thus, the functionality provided by the super-ordinate
use cases is composite of the functionality of the sub-ordinate use cases.

At the highest level of the use case model, only the fundamental use cases
are shown. The focus is on the application context. Therefore, this level is
also referred to as the context diagram. In the context diagram, the system
limits are emphasised. In the top-level diagram, only those use cases with
which external users interact are shown. The topmost use cases specify the
complete services offered by the system to the external users of the system.
The subsystem-level use cases specify the services offered by the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

subsystems. Any number of levels involving the subsystems may be utilized.
In the lowest level of the use case hierarchy, the class-level use cases specify
the functional fragments or operations offered by the classes.

7.4.6 USE CASE PACKAGING
Packaging is the mechanism provided by UML to handle complexity. When we
have too many use cases in the top-level diagram, we can package the
related use cases so that at best 6 or 7 packages are present at the top level
diagram. Any modeling element that becomes large and complex can be
broken up into packages. Please note that you can put any element of UML
(including another package) in a package diagram. The symbol for a package
is a folder. Just as you organise a large collection of documents in a folder,
you organise UML elements into packages. An example of packaging use
cases is shown in Figure 7.22.

Figure 7.22: Use case packaging.

7.5 CLASS DIAGRAMS
A class diagram describes the static structure of a system. It shows how
a system is structured rather than how it behaves. The static structure
of a system comprises a number of class diagrams and their
dependencies. The main constituents of a class diagram are classes and

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

their relationships—generalisation, aggregation, association, and
various kinds of dependencies. We now discuss the UML syntax for
representation of the classes and their relationships.

Classes
The classes represent entities with common features, i.e., attributes and
operations. Classes are represented as solid outline rectangles with
compartments. Classes have a mandatory name compartment where
the name is written centered in boldface. The class name is usually
written using mixed case convention and begins with an uppercase (e.g.
LibraryMember). Object names on the other hand, are written using a
mixed case convention, but starts with a small case letter (e.g.,
studentMember). Class names are usually chosen to be singular
nouns. An example of various representations of a class are shown in
Figure 7.23.

Classes have optional attributes and operations compartments. A class may
appear on several diagrams. Its attributes and operations are suppressed on
all but one diagram. But, one may wonder why there are so many
representations for a class! The answer is that these different notations are
used depending on the amount of information about a class is available. At
the start of the design process, only the names of the classes is identified.
This is the most abstract representation for the class. Later in the design
process the methods for the class and the attributes are identified and the
other more concrete notations are used.

Figure 7.23: Different representations of the LibraryMember class.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Attributes
An attribute is a named property of a class. It represents the kind of data
that an object might contain. Attributes are listed with their names, and
may optionally contain specification of their type (that is, their class,
e.g., Int, Book, Employee, etc.), an initial value, and constraints.
Attribute names are written left-justified using plain type letters, and
the names should begin with a lower case letter.

Attribute names may be followed by square brackets containing a
multiplicity expression, e.g. sensorStatus[10]. The multiplicity expression
indicates the number of attributes per instance of the class. An attribute
without square brackets must hold exactly one value. The type of an attribute
is written by following the attribute name with a colon and the type name,
(e.g., sensorStatus[1]:Int).

The attribute name may be followed by an initialisation expression. The
initialisation expression can consist of an equal sign and an initial value that
is used to initialise the attributes of the newly created objects, e.g.
sensorStatus[1]:Int=0.
Operation: The operation names are typically left justified, in plain type, and
always begin with a lower case letter. Abstract operations are written in
italics.4 (Remember that abstract operations are those for which the
implementation is not provided during the class definition.) The parameters
of a function may have a kind specified. The kind may be “in” indicating that
the parameter is passed into the operation; or “out” indicating that the
parameter is only returned from the operation; or “inout” indicating that the
parameter is used for passing data into the operation and getting result from
the operation. The default is “in”.

An operation may have a return type consisting of a single return type
expression, e.g., issueBook(in bookName):Boolean. An operation may have a
class scope (i.e., shared among all the objects of the class) and is denoted by
underlining the operation name.

Often a distinction is made between the terms operation and method. An
operation is something that is supported by a class and invoked by objects of
other classes. There can be multiple methods implementing the same
operation. We have pointed out earlier that this is called static polymorphism.
The method names can be the same; however, it should be possible to
distinguish among the methods by examining their parameters. Thus, the
t e rms opera t ion a n d method are distinguishable only when there is

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

polymorphism. When there is only a single method implementing an
operation, the terms method and operation are indistinguishable and can be
used interchangeably.

Association
Association between two classes is represented by drawing a straight line
between the concerned classes. Figure 7.24 illustrates the graphical
representation of the association relation. The name of the association is
written along side the association line. An arrowhead may be placed on the
association line to indicate the reading direction of the association. The
arrowhead should not be misunderstood to be indicating the direction of a
pointer implementing an association. On each side of the association relation,
the multiplicity is noted as an individual number or as a value range. The
multiplicity indicates how many instances of one class are associated with the
other. Value ranges of multiplicity are noted by specifying the minimum and
maximum value, separated by two dots, e.g. 1..5. An asterisk is used as a
wild card and means many (zero or more). The association of Figure 7.24
should be read as “Many books may be borrowed by a LibraryMember”.
Usually, associations (and links) appear as verbs in the problem statement.

Figure 7.24: Association between two classes.

Associations are usually realised by assigning appropriate reference
attributes to the classes involved. Thus, associations can be implemented
using pointers from one object class to another. Links and associations can
also be implemented by using a separate class that stores which objects of a
class are linked to which objects of another class. Some CASE tools use the
role names of the association relation for the corresponding automatically
generated attribute.

Aggregation
Aggregation is a special type of association relation where the involved
classes are not only associated to each other, but a whole-part
relationship exists between them. That is, the aggregate object not
only knows the addresses of its parts and therefore invoke the methods
of its parts, but also takes the responsibility of creating and destroying

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

its parts. An example of aggregation, a book register is an aggregation
of book objects. Books can be added to the register and deleted as and
when required.

Aggregation is represented by an empty diamond symbol at the aggregate
end of a relationship. An example of the aggregation relationship has been
shown in Fig 7.25. The figure represents the fact that a document can be
considered as an aggregation of paragraphs. Each paragraph can in turn be
considered as aggregation of lines. Observe that the number 1 is annotated
at the diamond end, and a * is annotated at the other end. This means that
one document can have many paragraphs. On the other hand, if we wanted
to indicate that a document consists of exactly 10 paragraphs, then we would
have written number 10 in place of the (*).

The aggregation relationship cannot be reflexive (i.e. recursive). That is, an
object cannot contain objects of the same class as itself. Also, the
aggregation relation is not symmetric. That is, two classes A and B cannot
contain instances of each other. However, the aggregation relationship can
be transitive. In this case, aggregation may consist of an arbitrary number of
levels. As an example of a transitive aggregation relationship, please see
Figure 7.25.

Figure 7.25: Representation of aggregation.

Composition
Composition is a stricter form of aggregation, in which the parts are
existence-dependent on the whole. This means that the life of the parts
cannot exist outside the whole. In other words, the lifeline of the whole
and the part are identical. When the whole is created, the parts are
created and when the whole is destroyed, the parts are destroyed.

A typical example of composition is an order object where after placing the
order, no item in the order cannot be changed. If any changes to any of the
order items are required after the order has been placed, then the entire
order has to be cancelled and a new order has to be placed with the changed
items. In this case, as soon as an order object is created, all the order items
in it are created and as soon as the order object is destroyed, all order items
in it are also destroyed. That is, the life of the components (order items) is
the same as the aggregate (order). The composition relationship is

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

represented as a filled diamond drawn at the composite-end. An example of
the composition relationship is shown in Figure 7.26.

Figure 7.26: Representation of composition.

Aggregation versus Composition: Both aggregation and composition
represent part/whole relationships. When the components can dynamically be
added and removed from the aggregate, then the relationship is aggregation.
If the components cannot be dynamically added/delete then the components
are have the same life time as the composite. In this case, the relationship is
represented by composition.

As an example, consider the example of an order consisting many order
items. If the order once placed, the items cannot be changed at all. In this
case, the order is a composition of order items. However, if order items can
be changed (added, delete, and modified) after the order has been placed,
then aggregation relation can be used to model it.

Inheritance
The inheritance relationship is represented by means of an empty arrow
pointing from the subclass to the superclass. The arrow may be directly
drawn from the subclass to the superclass. Alternatively, when there
are many subclasses of a base class, the inheritance arrow from the
subclasses may be combined to a single line (see Figure 7.27) and is
labelled with the aspect of the class that is abstracted.

The direct arrows allow flexibility in laying out the diagram and can easily
be drawn by hand. The combined arrows emphasise the collectivity of the
subclasses, when specialisation has been done on the basis of some
discriminator. In the example of Figure 7.27, issuable and reference are the
discriminators. The various subclasses of a superclass can then be
differentiated by means of the discriminator. The set of subclasses of a class
having the same discriminator is called a partition. It is often helpful to
mention the discriminator during modelling, as these become documented
design decisions.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 7.27: Representation of the inheritance relationship.

Dependency
A dependency relationship is shown as a dotted arrow (see Figure 7.28)
that is drawn from the dependent class to the independent class.

Figure 7.28: Representation of dependence between classes.

Constraints
A constraint describes a condition or an integrity rule. Constraints are
typically used to describe the permissible set of values of an attribute,
to specify the pre- and post-conditions for operations, to define certain
ordering of items, etc. For example, to denote that the books in a
library are sorted on ISBN number we can annotate the book class with
the constraint

{sorted}. UML allows you to use any free form expression to describe
constraints. The only rule is that they are to be enclosed within braces.
Constraints can be expressed using informal English. However, UML also
provides object constraint language (OCL) to specify constraints. In OCL the
constraints are specified a semi-formal language, and therefore it is more
amenable to automatic processing as compared to the informal constraints
enclosed within {}. The interested reader is referred to [Rumbaugh1999].

Object diagrams
Object diagrams shows the snapshot of the objects in a system at a point in

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

time. Since it shows instances of classes, rather than the classes themselves,
it is often called as an instance diagram. The objects are drawn using
rounded rectangles (see Figure 7.29).

Figure 7.29: Different representations of a LibraryMember object.

An object diagram may undergo continuous change as execution proceeds.
For example, links may get formed between objects and get broken. Objects
may get created and destroyed, and so on. Object diagrams are useful to
explain the working of a system.

7.6 INTERACTION DIAGRAMS
When a user invokes one of the functions supported by a system, the
required behaviour is realised through the interaction of several objects in the
system. Interaction diagrams, as their name itself implies, are models that
describe how groups of objects interact among themselves through message
passing to realise some behaviour.

Typically, each interaction diagram realises the behaviour of a single use case.

Sometimes, especially for complex use cases, more than one interaction
diagrams may be necessary to capture the behaviour. An interaction diagram
shows a number of example objects and the messages that are passed
between the objects within the use case.

There are two kinds of interaction diagrams—sequence diagrams and
collaboration diagrams. These two diagrams are equivalent in the sense that

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

any one diagram can be derived automatically from the other. However, they
are both useful. These two actually portray different perspectives of
behaviour of a system and different types of inferences can be drawn from
them. The interaction diagrams play a major role in any effective object-
oriented design process. We discuss this issue in Chapter 8.

Sequence diagram
A sequence diagram shows interaction among objects as a two
dimensional chart. The chart is read from top to bottom. The objects
participating in the interaction are shown at the top of the chart as
boxes attached to a vertical dashed line. Inside the box the name of the
object is written with a colon separating it from the name of the class
and both the name of the object and the class are underlined. This
signifies that we are referring any arbitrary instance of the class. For
example, in Figure 7.30 :Book represents any arbitrary instance of the
Book class.

An object appearing at the top of the sequence diagram signifies that the
object existed even before the time the use case execution was initiated.
However, if some object is created during the execution of the use case and
participates in the interaction (e.g., a method call), then the object should be
shown at the appropriate place on the diagram where it is created.

The vertical dashed line is called the object’s lifeline. Any point on the
lifeline implies that the object exists at that point. Absence of lifeline after
some point indicates that the object ceases to exist after that point in time,
particular point of time. Normally, at the point if an object is destroyed, the
lifeline of the object is crossed at that point and the lifeline for the object is
not drawn beyond that point. A rectangle called the activation symbol is
drawn on the lifeline of an object to indicate the points of time at which the
object is active. Thus an activation symbol indicates that an object is active
as long as the symbol (rectangle) exists on the lifeline. Each message is
indicated as an arrow between the lifelines of two objects. The messages are
shown in chronological order from the top to the bottom. That is, reading the
diagram from the top to the bottom would show the sequence in which the
messages occur.

Each message is labelled with the message name. Some control
information can also be included. Two important types of control information
are:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

A condition (e.g., [invalid]) indicates that a message is sent, only if the
condition is true.
An iteration marker shows that the message is sent many times to
multiple receiver objects as would happen when you are iterating over
a collection or the elements of an array. You can also indicate the basis
of the iteration, e.g., [for every book object].

Figure 7.30: Sequence diagram for the renew book use case

The sequence diagram for the book renewal use case for the Library
Automation Software is shown in Figure 7.30. Observe that the exact objects
which participate to realise the renew book behaviour and the order in which
they interact can be clearly inferred from the sequence diagram. The
development of the sequence diagram in the development methodology
(discussed in Chapter 8) would help us to determine the responsibilities that
must be assigned to the different classes; i.e., what methods should be
supported by each class.

Collaboration diagram
A collaboration diagram shows both structural and behavioural aspects

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

explicitly. This is unlike a sequence diagram which shows only the
behavioural aspects. The structural aspect of a collaboration diagram
consists of objects and links among them indicating association. In this
diagram, each object is also called a collaborator. The behavioural
aspect is described by the set of messages exchanged among the
different collaborators.

The link between objects is shown as a solid line and can be used to send
messages between two objects. The message is shown as a labelled arrow
placed near the link. Messages are prefixed with sequence numbers because
they are the only way to describe the relative sequencing of the messages in
this diagram.

The collaboration diagram for the example of Figure 7.30 is shown in Figure
7.31. Use of the collaboration diagrams in our development process would be
to help us to determine which classes are associated with which other
classes.

Figure 7.31: Collaboration diagram for the renew book use case.

7.7 ACTIVITY DIAGRAM
The activity diagram is possibly one modelling element which was not
present in any of the predecessors of UML. No such diagrams were
present either in the works of Booch, Jacobson, or Rumbaugh. It has
possibly been based on the event diagram of Odell [1992] though the
notation is very different from that used by Odell.

The activity diagram focuses on representing various activities or chunks of
processing and their sequence of activation. The activities in general may not

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

correspond to the methods of classes. An activity is a state with an internal
action and one or more outgoing transitions which automatically follow the
termination of the internal activity. If an activity has more than one outgoing
transitions, then exact situation under which each is executed must be
identified through appropriate conditions.

Activity diagrams are similar to the procedural flow charts. The main
difference is that activity diagrams support description of parallel activities
and synchronisation aspects involved in different activities.

Parallel activities are represented on an activity diagram by using swim
lanes. Swim lanes enable you to group activities based on who is performing
them, e.g., academic department vs. hostel office. Thus swim lanes subdivide
activities based on the responsibilities of some components. The activities in
a swim lanes can be assigned to some model elements, e.g. classes or some
component, etc. For example, in Figure 7.32 the swim lane corresponding to
the academic section, the activities that are carried out by the academic
section and the specific situation in which these are carried out are shown.

Figure 7.32: Activity diagram for student admission procedure at IIT.

Activity diagrams are normally employed in business process modelling.
This is carried out during the initial stages of requirements analysis and
specification. Activity diagrams can be very useful to understand complex

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

processing activities involving the roles played by many components. Besides
helping the developer to understand the complex processing activities, these
diagrams can also be used to develop interaction diagrams which help to
allocate activities (responsibilities) to classes.

The student admission process in IIT is shown as an activity diagram in
Figure 7.32. This shows the part played by different components of the
Institute in the admission procedure. After the fees are received at the
account section, parallel activities start at the hostel office, hospital, and the
Department. After all these activities complete (this is a synchronisation issue
and is represented as a horizontal line), the identity card can be issued to a
student by the Academic section.

7.8 STATE CHART DIAGRAM
A state chart diagram is normally used to model how the state of an
object changes in its life time. State chart diagrams are good at
describing how the behaviour of an object changes across several use
case executions. However, if we are interested in modelling some
behaviour that involves several objects collaborating with each other,
state chart diagram is not appropriate. We have already seen that such
behaviour is better modelled using sequence or collaboration diagrams.
State chart diagrams are based on the finite state machine (FSM)
formalism. An FSM consists of a finite number of states corresponding to
those of the object being modelled. The object undergoes state
changes when specific events occur. The FSM formalism existed long
before the object-oriented technology and has been used for a wide
variety of applications. Apart from modelling, it has even been used in
theoretical computer science as a generator for regular languages.

Why state chart?
A major disadvantage of the FSM formalism is the state explosion
problem. The number of states becomes too many and the model too
complex when used to model practical systems. This problem is
overcome in UML by using state charts. The state chart formalism was
proposed by David Harel [1990]. A state chart is a hierarchical model of
a system and introduces the concept of a composite state (also called
nested state).

Actions are associated with transitions and are considered to be processes
that occur quickly and are not interruptible. Activities are associated with

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

states and can take longer. An activity can be interrupted by an event.

Basic elements of a state chart
The basic elements of the state chart diagram are as follows:

Initial state: This represented as a filled circle.
Final state: This is represented by a filled circle inside a larger circle.
State: These are represented by rectangles with rounded corners.
Transition: A transition is shown as an arrow between two states. Normally,
the name of the event which causes the transition is places along side the
arrow. You can also assign a guard to the transition. A guard is a Boolean
logic condition. The transition can take place only if the guard evaluates to
true. The syntax for the label of the transition is shown in 3 parts—
[guard]event/action.

An example state chart for the order object of the Trade House Automation
software is shown in Figure 7.33. Observe that from Rejected order state,
there is an automatic and implicit transition to the end state. Such transitions
are called pseudo transitions.

7.9 POSTSCRIPT
UML has gained rapid acceptance among practitioners and academicians over
a short time and has proved its utility in arriving at good design solutions to
software development problems.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 7.33: State chart diagram for an order object.

In this text, we have kept our discussions on UML to a bare minimum and
have concentrated only on those aspects that are necessary to solve
moderate sized traditional software design problems.

Before concluding this chapter, we give an overview of some of the aspects
that we had chosen to leave out. We first discuss the package and
deployment diagrams. Since UML has undergone a significant change with the
release of UML 2.0 in 2003. We briefly mention the highlights of the
improvements brought about UML 2.0 over the UML 1.X which was our focus
so far. This significant revision was necessitated to make UML applicable to
the development of software for emerging embedded and telecommunication
domains.

7.9.1 Package, Component, and Deployment Diagrams
In the following subsections we provide a brief overview of the package,
component, and deployment diagrams:

Package diagram
A package is a grouping of several classes. In fact, a package diagram can be

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

used to group any UML artifacts. We had already discussed packaging of use
cases in Section 7.4.6. Packages are popular way of organising source code
files. Java packages are a good example which can be modelled using a
package diagram. Such package diagrams show the different class groups
(packages) and their inter dependencies. These are very useful to document
organisation of source files for large projects that have a large number of
program files. An example of a package diagram has been shown in Figure
7.34.

Figure 7.34: An example package diagram.

Note, that a package may contain further packages.

Component diagram
A component represents a piece of software that can be independently
purchased, upgraded, and integrated into an existing software. A
component diagram can be used to represent the physical structure of
an implementation in terms of the various components of the system. A
component diagram is typically used to achieve the following purposes:

• Organise source code to be able to construct executable releases.
• Specify dependencies among different components.
A package diagram can be used to provide a high-level view of each

component in terms the different classes it contains.

Deployment diagram
The deployment diagram shows the environmental view of a system.
That is, it captures the environment in which the software solution is
implemented. In other words, a deployment diagram shows how a

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

software system will be physically deployed in the hardware
environment. That is, which component will execute on which hardware
component and how they will they communicate with each other. Since
the diagram models the run time architecture of an application, this
diagram can be very useful to the system’s operation staff.

The environmental view provided by the deployment diagram is important
for complex and large software solutions that run on hardware systems
comprising multiple components. In this case, deployment diagram provides
an overview of how the different components are distributed among the
different hardware components of the system.

7.9.2 UML 2.0
UML 1.X lacked a few specialised capabilities that made it difficult to use
in some non- traditional domains. Some of the features that
prominently lacked in UML 1.X include lack of support for representation
of the following—concurrent execution of methods, development
domain, asynchronous messages, events, ports, and active objects. In
many applications, including the embedded and telecommunication
software development, capability to model timing requirements using a
timing diagram was urgently required to make UML applicable in these
important segments of software development. Further, certain changes
were required to support interoperability among UML-based CASE tools
using XML metadata interchange (XMI).

UML 2.0 defines thirteen types of diagrams, divided into three categories as
follows:
Structure diagrams: These include the class diagram, object diagram,
component diagram, composite structure diagram, package diagram, and
deployment diagram.
Behaviour diagrams: These diagrams include the use case diagram,
activity diagram, and state machine diagram.
Interaction diagrams: These diagrams include the sequence diagram,
communication diagram, timing diagram, and interaction overview diagram.
The collaboration diagram of UML 1.X has been renamed in UML 2.0 as
communication diagram. This renaming was necessary as the earlier name
was somewhat misleading, it shows the communications among the classes
during the execution of a use case rather than showing collaborative problem
solving.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter
10

CODING AND TESTING

In this chapter, we will discuss the coding and testing phases of the software
life cycle.

Coding is undertaken once the design phase is complete and the design documents
have been successfully reviewed.

In the coding phase, every module specified in the design document is
coded and unit tested. During unit testing, each module is tested in isolation
from other modules. That is, a module is tested independently as and when
its coding is complete.

After all the modules of a system have been coded and unit tested, the integration
and system testing phase is undertaken.

Integration and testing of modules is carried out according to an integration
plan. The integration plan, according to which different modules are
integrated together, usually envisages integration of modules through a
number of steps. During each integration step, a number of modules are
added to the partially integrated system and the resultant system is tested.
The full product takes shape only after all the modules have been integrated
together. System testing is conducted on the full product. During system
testing, the product is tested against its requirements as recorded in the SRS
document.

We had already pointed out in Chapter 2 that testing is an important phase
in software development and typically requires the maximum effort among all
the development phases. Usually, testing of a professional software is carried
out using a large number of test cases. It is usually the case that many of the
different test cases can be executed in parallel by different team members.
Therefore, to reduce the testing time, during the testing phase the largest
manpower (compared to all other life cycle phases) is deployed. In a typical
development organisation, at any time, the maximum number of software

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

engineers can be found to be engaged in testing activities. It is not very
surprising then that in the software industry there is always a large demand
for software test engineers. However, many novice engineers bear the wrong
impression that testing is a secondary activity and that it is intellectually not
as stimulating as the activities associated with the other development
phases.

Over the years, the general perception of testing as monkeys typing in random data
and trying to crash the system has changed. Now testers are looked upon as masters
of specialised concepts, techniques, and tools.

As we shall soon realize, testing a software product is as much challenging
as initial development activities such as specifications, design, and coding.
Moreover, testing involves a lot of creative thinking.

In this Chapter, we first discuss some important issues associated with the
activities undertaken in the coding phase. Subsequently, we focus on various
types of program testing techniques for procedural and object-oriented
programs.

10.1 CODING
The input to the coding phase is the design document produced at the end of
the design phase. Please recollect that the design document contains not only
the high-level design of the system in the form of a module structure (e.g., a
structure chart), but also the detailed design. The detailed design is usually
documented in the form of module specifications where the data structures
and algorithms for each module are specified. During the coding phase,
different modules identified in the design document are coded according to
their respective module specifications. We can describe the overall objective
of the coding phase to be the following.

The objective of the coding phase is to transform the design of a system into code in
a high-level language, and then to unit test this code.

Normally, good software development organisations require their
programmers to adhere to some well-defined and standard style of coding
which is called their coding standard. These software development
organisations formulate their own coding standards that suit them the most,
and require their developers to follow the standards rigorously because of the
significant business advantages it offers. The main advantages of adhering to
a standard style of coding are the following:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

A coding standard gives a uniform appearance to the codes written by
different engineers.
It facilitates code understanding and code reuse.
It promotes good programming practices.

A coding standard lists several rules to be followed during coding, such as
the way variables are to be named, the way the code is to be laid out, the
error return conventions, etc. Besides the coding standards, several coding
guidelines are also prescribed by software companies. But, what is the
difference between a coding guideline and a coding standard?

It is mandatory for the programmers to follow the coding standards. Compliance of
their code to coding standards is verified during code inspection. Any code that does
not conform to the coding standards is rejected during code review and the code is
reworked by the concerned programmer. In contrast, coding guidelines provide some
general suggestions regarding the coding style to be followed but leave the actual
implementation of these guidelines to the discretion of the individual developers.

After a module has been coded, usually code review is carried out to ensure
that the coding standards are followed and also to detect as many errors as
possible before testing. It is important to detect as many errors as possible
during code reviews, because reviews are an efficient way of removing errors
from code as compared to defect elimination using testing. We first discuss a
few representative coding standards and guidelines. Subsequently, we
discuss code review techniques. We then discuss software documentation in
Section 10.3.

10.1.1 Coding Standards and Guidelines
Good software development organisations usually develop their own
coding standards and guidelines depending on what suits their
organisation best and based on the specific types of software they
develop. To give an idea about the types of coding standards that are
being used, we shall only list some general coding standards and
guidelines that are commonly adopted by many software development
organisations, rather than trying to provide an exhaustive list.

Representative coding standards
Rules for limiting the use of globals: These rules list what types of
data can be declared global and what cannot, with a view to limit the
data that needs to be defined with global scope.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Standard headers for different modules: The header of different
modules should have standard format and information for ease of
understanding and maintenance. The following is an example of header
format that is being used in some companies:

Name of the module.
Date on which the module was created.
Author’s name.
Modification history.
Synopsis of the module. This is a small writeup about what the module
does.
Different functions supported in the module, along with their
input/output parameters.
Global variables accessed/modified by the module.

Naming conventions for global variables, local variables, and
constant identifiers: A popular naming convention is that variables
are named using mixed case lettering. Global variable names would
always start with a capital letter (e.g., GlobalData) and local variable
names start with small letters (e.g., localData). Constant names should
be formed using capital letters only (e.g., CONSTDATA).

Conventions regarding error return values and exception handling
mechanisms: The way error conditions are reported by different functions in
a program should be standard within an organisation. For example, all
functions while encountering an error condition should either return a 0 or 1
consistently, independent of which programmer has written the code. This
facilitates reuse and debugging.
Representative coding guidelines: The following are some representative
coding guidelines that are recommended by many software development
organisations. Wherever necessary, the rationale behind these guidelines is
also mentioned.
Do not use a coding style that is too clever or too difficult to
understand: Code should be easy to understand. Many inexperienced
engineers actually take pride in writing cryptic and incomprehensible code.
C l e ve r coding can obscure meaning of the code and reduce code
understandability; thereby making maintenance and debugging difficult and
expensive.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Avoid obscure side effects: The side effects of a function call include
modifications to the parameters passed by reference, modification of global
variables, and I/O operations. An obscure side effect is one that is not
obvious from a casual examination of the code. Obscure side effects make it
difficult to understand a piece of code. For example, suppose the value of a
global variable is changed or some file I/O is performed obscurely in a called
module. That is, this is difficult to infer from the function’s name and header
information. Then, it would be really hard to understand the code.
Do not use an identifier for multiple purposes: Programmers often use
the same identifier to denote several temporary entities. For example, some
programmers make use of a temporary loop variable for also computing and
storing the final result. The rationale that they give for such multiple use of
variables is memory efficiency, e.g., three variables use up three memory
locations, whereas when the same variable is used for three different
purposes, only one memory location is used. However, there are sev eral
things wrong with this approach and hence should be avoided. Some of the
problems caused by the use of a variable for multiple purposes are as follows:

Each variable should be given a descriptive name indicating its
purpose. This is not possible if an identifier is used for multiple
purposes. Use of a variable for multiple purposes can lead to confusion
and make it difficult for somebody trying to read and understand the
code.
Use of variables for multiple purposes usually makes future
enhancements more difficult. For example, while changing the final
computed result from integer to float type, the programmer might
subsequently notice that it has also been used as a temporary loop
variable that cannot be a float type.

Code should be well-documented: As a rule of thumb, there should
be at least one comment line on the average for every three source
lines of code.

Length of any function should not exceed 10 source lines: A lengthy
function is usually very difficult to understand as it probably has a large
number of variables and carries out many different types of computations. For
the same reason, lengthy functions are likely to have disproportionately
larger number of bugs.
Do not use GO TO statements: Use of GO TO statements makes a program

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

unstructured. This makes the program very difficult to understand, debug,
and maintain.

10.2 CODE REVIEW
Testing is an effective defect removal mechanism. However, testing is
applicable to only executable code. Review is a very effective technique
to remove defects from source code. In fact, review has been
acknowledged to be more cost-effective in removing defects as
compared to testing. Over the years, review techniques have become
extremely popular and have been generalised for use with other work
products.

Code review for a module is undertaken after the module successfully
compiles. That is, all the syntax errors have been eliminated from the
module. Obviously, code review does not target to design syntax errors in a
program, but is designed to detect logical, algorithmic, and programming
errors. Code review has been recognised as an extremely cost-effective
strategy for eliminating coding errors and for producing high quality code.

The reason behind why code review is a much more cost-effective strategy
to eliminate errors from code compared to testing is that reviews directly
detect errors. On the other hand, testing only helps detect failures and
significant effort is needed to locate the error during debugging.

The rationale behind the above statement is explained as follows.
Eliminating an error from code involves three main activities—testing,
debugging, and then correcting the errors. Testing is carried out to detect if
the system fails to work satisfactorily for certain types of inputs and under
certain circumstances. Once a failure is detected, debugging is carried out to
locate the error that is causing the failure and to remove it. Of the three
testing activities, debugging is possibly the most laborious and time
consuming activity. In code inspection, errors are directly detected, thereby
saving the significant effort that would have been required to locate the error.

Normally, the following two types of reviews are carried out on the code of
a module:

Code inspection.
Code walkthrough.

The procedures for conduction and the final objectives of these two review
techniques are very different. In the following two subsections, we discuss

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

these two code review techniques.

10.2.1 Code Walkthrough
Code walkthrough is an informal code analysis technique. In this technique,

a module is taken up for review after the module has been coded,
successfully compiled, and all syntax errors have been eliminated. A few
members of the development team are given the code a couple of days
before the walkthrough meeting. Each member selects some test cases and
simulates execution of the code by hand (i.e., traces the execution through
different statements and functions of the code).

The main objective of code walkthrough is to discover the algorithmic and logical
errors in the code.

The members note down their findings of their walkthrough and discuss
those in a walkthrough meeting where the coder of the module is present.

Even though code walkthrough is an informal analysis technique, several
guidelines have evolved over the years for making this naive but useful
analysis technique more effective. These guidelines are based on personal
experience, common sense, several other subjective factors. Therefore, these
guidelines should be considered as examples rather than as accepted rules to
be applied dogmatically. Some of these guidelines are following:

The team performing code walkthrough should not be either too big or
too small. Ideally, it should consist of between three to seven
members.
Discussions should focus on discovery of errors and avoid deliberations
on how to fix the discovered errors.
In order to foster co-operation and to avoid the feeling among the
engineers that they are being watched and evaluated in the code
walkthrough meetings, managers should not attend the walkthrough
meetings.

10.2.2 Code Inspection
During code inspection, the code is examined for the presence of some
common programming errors. This is in contrast to the hand simulation of
code execution carried out during code walkthroughs. We can state the
principal aim of the code inspection to be the following:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The principal aim of code inspection is to check for the presence of some common
types of errors that usually creep into code due to programmer mistakes and
oversights and to check whether coding standards have been adhered to.

The inspection process has several beneficial side effects, other than
finding errors. The programmer usually receives feedback on programming
style, choice of algorithm, and programming techniques. The other
participants gain by being exposed to another programmer’s errors.

As an example of the type of errors detected during code inspection,
consider the classic error of writing a procedure that modifies a formal
parameter and then calls it with a constant actual parameter. It is more lik ely
that such an error can be discovered by specifically looking for this kinds of
mistakes in the code, rather than by simply hand simulating execution of the
code. In addition to the commonly made errors, adherence to coding
standards is also checked during code inspection.

Good software development companies collect statistics regarding different
types of errors that are commonly committed by their engineers and identify
the types of errors most frequently committed. Such a list of commonly
committed errors can be used as a checklist during code inspection to look
out for possible errors.

Following is a list of some classical programming errors which can be
checked during code inspection:

Use of uninitialised variables.
Jumps into loops.
Non-terminating loops.
Incompatible assignments.
Array indices out of bounds.
Improper storage allocation and deallocation.
Mismatch between actual and formal parameter in procedure calls.
Use of incorrect logical operators or incorrect precedence among
operators.
Improper modification of loop variables.
Comparison of equality of floating point values.
Dangling reference caused when the referenced memory has not been
allocated.

10.2.3 Clean Room Testing
Clean room testing was pioneered at IBM. This type of testing relies

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

heavily on walkthroughs, inspection, and formal verification. The
programmers are not allowed to test any of their code by executing the
code other than doing some syntax testing using a compiler. It is
interesting to note that the term cleanroom was first coined at IBM by
drawing analogy to the semiconductor fabrication units where defects
are avoided by manufacturing in an ultra-clean atmosphere.

This technique reportedly produces documentation and code that is more
reliable and maintainable than other development methods relying heavily on
code execution-based testing. The main problem with this approach is that
testing effort is increased as walkthroughs, inspection, and verification are
time consuming for detecting all simple errors. Also testing- based error
detection is efficient for detecting certain errors that escape manual
inspection.

10.3 SOFTWARE DOCUMENTATION
When a software is developed, in addition to the executable files and the
source code, several kinds of documents such as users’ manual,
software requirements specification (SRS) document, design document,
test document, installation manual, etc., are developed as part of the
software engineering process. All these documents are considered a
vital part of any good software development practice. Good documents
are helpful in the following ways:

Good documents help enhance understandability of code. As a result,
the availability of good documents help to reduce the effort and time
required for maintenance.
Documents help the users to understand and effectively use the
system.
Good documents help to effectively tackle the manpower turnover1
problem. Even when an engineer leaves the organisation, and a new
engineer comes in, he can build up the required knowledge easily by
referring to the documents.
Production of good documents helps the manager to effectively track
the progress of the project. The project manager would know that
some measurable progress has been achieved, if the results of some
pieces of work has been documented and the same has been
reviewed.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Different types of software documents can broadly be classified into the
following:

Internal documentation: These are provided in the source code itself.
External documentation: These are the supporting documents such as SRS
document, installation document, user manual, design document, and test document.

We discuss these two types of documentation in the next section.

10.3.1 Internal Documentation
Internal documentation is the code comprehension features provided in
the source code itself. Internal documentation can be provided in the
code in several forms. The important types of internal documentation
are the following:

Comments embedded in the source code.
Use of meaningful variable names.
Module and function headers.
Code indentation.
Code structuring (i.e., code decomposed into modules and functions).
Use of enumerated types.
Use of constant identifiers.
Use of user-defined data types.

Out of these different types of internal documentation, which one is the
most valuable for understanding a piece of code?

Careful experiments suggest that out of all types of internal documentation,
meaningful variable names is most useful while trying to understand a piece of code.

The above assertion, of course, is in contrast to the common expectation
that code commenting would be the most useful. The research finding is
obviously true when comments are written without much thought. For
example, the following style of code commenting is not much of a help in
understanding the code.

a=10; /* a made 10 */

A good style of code commenting is to write to clarify certain non-obvious
aspects of the working of the code, rather than cluttering the code with trivial
comments. Good software development organisations usually ensure good
internal documentation by appropriately formulating their coding standards

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

and coding guidelines. Even when a piece of code is carefully commented,
meaningful variable names has been found to be the most helpful in
understanding the code.

10.3.2 External Documentation
External documentation is provided through various types of supporting
documents such as users’ manual, software requirements specification
document, design document, test document, etc. A systematic software
development style ensures that all these documents are of good quality
and are produced in an orderly fashion.

An important feature that is requierd of any good external documentation is
consistency with the code. If the different documents are not consistent, a lot
of confusion is created for somebody trying to understand the software. In
other words, all the documents developed for a product should be up-to-date
and every change made to the code should be reflected in the relevant
external documents. Even if only a few documents are not up-to-date, they
create inconsistency and lead to confusion. Another important feature
required for external documents is proper understandability by the category
of users for whom the document is designed. For achieving this, Gunning’s fog
index is very useful. We discuss this next.

Gunning’s fog index
Gunning’s fog index (developed by Robert Gunning in 1952) is a metric
that has been designed to measure the readability of a document. The
computed metric value (fog index) of a document indicates the number
of years of formal education that a person should have, in order to be
able to comfortably understand that document. That is, if a certain
document has a fog index of 12, any one who has completed his 12th
class would not have much difficulty in understanding that document.

The Gunning’s fog index of a document D can be computed as follows:

Observe that the fog index is computed as the sum of two different factors.
The first factor computes the average number of words per sentence (total
number of words in the document divided by the total number of sentences).
This factor therefore accounts for the common observation that long
sentences are difficult to understand. The second factor measures the
percentage of complex words in the document. Note that a syllable is a group

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

o f words that can be independently pronounced. For example, the word
“sentence” has three syllables (“sen”, “ten”, and “ce”). Words having more
than three syllables are complex words and presence of many such words
hamper readability of a document.
Example 10.1 Consider the following sentence: “The Gunning’s fog index is
based on the premise that use of short sentences and simple words makes a
document easy to understand.” Calculate its Fog index.

The fog index of the above example sentence is
0.4 � (23/1) + (4/23) � 100 = 26

If a users’ manual is to be designed for use by factory workers whose
educational qualification is class 8, then the document should be written such
that the Gunning’s fog index of the document does not exceed 8.

10.4 TESTING
The aim of program testing is to help realiseidentify all defects in a
program. However, in practice, even after satisfactory completion of the
testing phase, it is not possible to guarantee that a program is error
free. This is because the input data domain of most programs is very
large, and it is not practical to test the program exhaustively with
respect to each value that the input can assume. Consider a function
taking a floating point number as argument. If a tester takes 1sec to
type in a value, then even a million testers would not be able to
exhaustively test it after trying for a million number of years. Even with
this obvious limitation of the testing process, we should not
underestimate the importance of testing. We must remember that
careful testing can expose a large percentage of the defects existing in
a program, and therefore provides a practical way of reducing defects in
a system.

10.4.1 Basic Concepts and Terminologies
In this section, we will discuss a few basic concepts in program testing
on which our subsequent discussions on program testing would be
based.

How to test a program?
Testing a program involves executing the program with a set of test
inputs and observing if the program behaves as expected. If the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

program fails to behave as expected, then the input data and the
conditions under which it fails are noted for later debugging and error
correction. A highly simplified view of program testing is schematically
shown in Figure 10.1. The tester has been shown as a stick icon, who
inputs several test data to the system and observes the outputs
produced by it to check if the system fails on some specific inputs.
Unless the conditions under which a software fails are noted down, it
becomes difficult for the developers to reproduce a failure observed by
the testers. For examples, a software might fail for a test case only
when a network connection is enabled.

Figure 10.1: A simplified view of program testing.

Terminologies
As is true for any specialised domain, the area of software testing has
come to be associated with its own set of terminologies. In the
following, we discuss a few important terminologies that have been
standardised by the IEEE Standard Glossary of Software Engineering
Terminology [IEEE90]:

A mistake is essentially any programmer action that later shows up as
an incorrect result during program execution. A programmer may
commit a mistake in almost any development activity. For example,
during coding a programmer might commit the mistake of not
initializing a certain variable, or might overlook the errors that might
arise in some exceptional situations such as division by zero in an
arithmetic operation. Both these mistakes can lead to an incorrect
result.
An error is the result of a mistake committed by a developer in any of
the development activities. Among the extremely large variety of
errors that can exist in a program. One example of an error is a call
made to a wrong function.

The terms error, fault, bug, and defect are considered to be synonyms in the area of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

program testing.

Though the terms error, fault, bug, and defect are all used interchangeably
by the program testing community. Please note that in the domain of
hardware testing, the term fault is used with a slightly different connotation
[IEEE90] as compared to the terms error and bug.
Example 10.2 Can a designer’s mistake give rise to a program error? Give
an example of a designer’s mistake and the corresponding program error.
Answer: Yes, a designer’s mistake give rise to a program error. For example,
a requirement might be overlooked by the designer, which can lead to it
being overlooked in the code as well.

A failure of a program essentially denotes an incorrect behaviour
exhibited by the program during its execution. An incorrect behaviour is
observed either as an incorrect result produced or as an inappropriate
activity carried out by the program. Every failure is caused by some
bugs present in the program. In other words, we can say that every
software failure can be traced to some bug or other present in the
code. The number of possible ways in which a program can fail is
extremely large. Out of the large number of ways in which a program
can fail, in the following we give three randomly selected examples:

– The result computed by a program is 0, when the correct result is 10.
– A program crashes on an input.
– A robot fails to avoid an obstacle and collides with it.

It may be noted that mere presence of an error in a program code may not
necessarily lead to a failure during its execution.
Example 10.3 Give an example of a program error that may not cause any
failure.
Answer: Consider the following C program segment:

In the above code, if the variable roll assumes zero or some negative value

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

under some circumstances, then an array index out of bound type of error
would result. However, it may be the case that for all allowed input values
the variable roll is always assigned positive values. Then, the else clause is
unreachable and no failure would occur. Thus, even if an error is present in
the code, it does not show up as an error since it is unreachable for normal
input values.
Explanation: An array index out of bound type of error is said to occur, when
the array index variable assumes a value beyond the array bounds.

A test case is a triplet [I , S, R], where I is the data input to the
program under test, S is the state of the program at which the data is
to be input, and R is the result expected to be produced by the
program. The state of a program is also called its execution mode. As
an example, consider the different execution modes of a certain text
editor software. The text editor can at any time during its execution
assume any of the following execution modes—edit, view, create, and
display. In simple words, we can say that a test case is a set of test
inputs, the mode in which the input is to be applied, and the results
that are expected during and after the execution of the test case.

A n example of a test case is—[input: “abc”, state: edit, result: abc is
displayed], which essentially means that the input abc needs to be applied in
the edit mode, and the expected result is that the string abc would be
displayed.

A test scenario is an abstract test case in the sense that it only
identifies the aspects of the program that are to be tested without
identifying the input, state, or output. A test case can be said to be an
implementation of a test scenario. In the test case, the input, output,
and the state at which the input would be applied is designed such that
the scenario can be executed. An important automatic test case design
strategy is to first design test scenarios through an analysis of some
program abstraction (model) and then implement the test scenarios as
test cases.
A test script is an encoding of a test case as a short program. Test
scripts are developed for automated execution of the test cases.
A test case is said to be a positive test case if it is designed to test
whether the software correctly performs a required functionality. A test

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

case is said to be negative test case, if it is designed to test whether
the software carries out something, that is not required of the system.
As one example each of a positive test case and a negative test case,
consider a program to manage user login. A positive test case can be
designed to check if a login system validates a user with the correct
user name and password. A negative test case in this case can be a
test case that checks whether the the login functionality validates and
admits a user with wrong or bogus login user name or password.
A test suite is the set of all test that have been designed by a tester
to test a given program.
Testability of a requirement denotes the extent to which it is possible
to determine whether an implementation of the requirement conforms
to it in both functionality and performance. In other words, the
testability of a requirement is the degree to which an implementation
of it can be adequately tested to determine its conformance to the
requirement.

Example 10.4 Suppose two programs have been written to implement
essentially the same functionality. How can you determine which of these is
more testable?
Answer: A program is more testable, if it can be adequately tested with less
number of test cases. Obviously, a less complex program is more testable.
The complexity of a program can be measured using several types of metrics
such as number of decision statements used in the program. Thus, a more
testable program should have a lower structural complexity metric.

A failure mode of a software denotes an observable way in which it
can fail. In other words, all failures that have similar observable
symptoms, constitute a failure mode. As an example of the failure
modes of a software, consider a railway ticket booking software that
has three failure modes—failing to book an available seat, incorrect
seat booking (e.g., booking an already booked seat), and system
crash.
Equivalent faults denote two or more bugs that result in the system
failing in the same failure mode. As an example of equivalent faults,
consider the following two faults in C language—division by zero and
illegal memory access errors. These two are equivalent faults, since
each of these leads to a program crash.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Verification versus validation
The objectives of both verification and validation techniques are very
similar since both these techniques are designed to help remove errors
in a software. In spite of the apparent similarity between their
objectives, the underlying principles of these two bug detection
techniques and their applicability are very different. We summarise the
main differences between these two techniques in the following:

Verification is the process of determining whether the output of one
phase of software development conforms to that of its previous phase;
whereas validation is the process of determining whether a fully
developed software conforms to its requirements specification. Thus,
the objective of verification is to check if the work products produced
after a phase conform to that which was input to the phase. For
example, a verification step can be to check if the design documents
produced after the design step conform to the requirements
specification. On the other hand, validation is applied to the fully
developed and integrated software to check if it satisfies the
customer’s requirements.
The primary techniques used for verification include review, simulation,
formal verification, and testing. Review, simulation, and testing are
usually considered as informal verification techniques. Formal
verification usually involves use of theorem proving techniques or use
of automated tools such as a model checker. On the other hand,
validation techniques are primarily based on product testing. Note that
we have categorised testing both under program verification and
validation. The reason being that unit and integration testing can be
considered as verification steps where it is verified whether the code is
a s per the module and module interface specifications. On the other
hand, system testing can be considered as a validation step where it is
determined whether the fully developed code is as per its requirements
specification.
Verification does not require execution of the software, whereas
validation requires execution of the software.
Verification is carried out during the development process to check if
the development activities are proceeding alright, whereas validation is
carried out to check if the right as required by the customer has been
developed.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

We can therefore say that the primary objective of the verification steps are to
determine whether the steps in product development are being carried out alright,
whereas validation is carried out towards the end of the development process to
determine whether the right product has been developed.

Verification techniques can be viewed as an attempt to achieve phase
containment of errors. Phase containment of errors has been
acknowledged to be a cost-effective way to eliminate program bugs,
and is an important software engineering principle. The principle of
detecting errors as close to their points of commitment as possible is
known as phase containment of errors. Phase containment of errors
can reduce the effort required for correcting bugs. For example, if a
design problem is detected in the design phase itself, then the problem
can be taken care of much more easily than if the error is identified,
say, at the end of the testing phase. In the later case, it would be
necessary not only to rework the design, but also to appropriately redo
the relevant coding as well as the system testing activities, thereby
incurring higher cost.

While verification is concerned with phase containment of errors, the aim of validation
is to check whether the deliverable software is error free.
We can consider the verification and validation techniques to be different

types of bug filters. To achieve high product reliability in a cost-effective
manner, a development team needs to perform both verification and
validation activities. The activities involved in these two types of bug
detection techniques together are called the “V and V” activities.

Based on the above discussions, we can conclude that:

Error detection techniques = Verification techniques + Validation techniques

Example 10.5 Is it at all possible to develop a highly reliable software, using
validation techniques alone? If so, can we say that all verification techniques
are redundant?
Answer: It is possible to develop a highly reliable software using validation
techniques alone. However, this would cause the development cost to
increase drastically. Verification techniques help achieve phase containment
of errors and provide a means to cost-effectively remove bugs.

10.4.2 Testing Activities

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Testing involves performing the following main activities:
Test suite design: The set of test cases using which a program is to be
tested is designed possibly using several test case design techniques. We
discuss a few important test case design techniques later in this Chapter.
Running test cases and checking the results to detect failures: Each
test case is run and the results are compared with the expected results. A
mismatch between the actual result and expected results indicates a failure.
The test cases for which the system fails are noted down for later debugging.
Locate error: In this activity, the failure symptoms are analysed to locate
the errors. For each failure observed during the previous activity, the
statements that are in error are identified.
Error correction: After the error is located during debugging, the code is
appropriately changed to correct the error.

The testing activities have been shown schematically in Figure 10.2. As can
be seen, the test cases are first designed, the test cases are run to detect
failures. The bugs causing the failure are identified through debugging, and
the identified error is corrected.Of all the above mentioned testing activities,
debugging often turns out to be the most time-consuming activity.

Figure 10.2: Testing process.

10.4.3 Why Design Test Cases?
Before discussing the various test case design techniques, we need to
convince ourselves on the following question. Would it not be sufficient to
test a software using a large number of random input values? Why design

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

test cases? The answer to this question—this would be very costly and at the
same time very ineffective way of testing due to the following reasons:

When test cases are designed based on random input data, many of the test cases do
not contribute to the significance of the test suite, That is, they do not help detect
any additional defects not already being detected by other test cases in the suite.

Testing a software using a large collection of randomly selected test cases
does not guarantee that all (or even most) of the errors in the system will be
uncovered. Let us try to understand why the number of random test cases in
a test suite, in general, does not indicate of the effectiveness of testing.
Consider the following example code segment which determines the greater
of two integer values x and y. This code segment has a simple programming
error:

if (x>y) max = x;
else max = x;

For the given code segment, the test suite {(x=3,y=2);(x=2,y=3)} can
detect the error, whereas a larger test suite {(x=3,y=2);(x=4,y=3);
(x=5,y=1)} does not detect the error. All the test cases in the larger test
suite help detect the same error, while the other error in the code remains
undetected. So, it would be incorrect to say that a larger test suite would
always detect more errors than a smaller one, unless of course the larger test
suite has also been carefully designed. This implies that for effective testing,
the test suite should be carefully designed rather than picked randomly.

We have already pointed out that exhaustive testing of almost any non-
trivial system is impractical due to the fact that the domain of input data
values to most practical software systems is either extremely large or
countably infinite. Therefore, to satisfactorily test a software with minimum
cost, we must design a minimal test suite that is of reasonable size and can
uncover as many existing errors in the system as possible. To reduce testing
cost and at the same time to make testing more effective, systematic
approaches have been developed to design a small test suite that can detect
most, if not all failures.

A minimal test suite is a carefully designed set of test cases such that each test case
helps detect different errors. This is in contrast to testing using some random input
values.

There are essentially two main approaches to systematically design test
cases:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Black-box approach
White-box (or glass-box) approach

In the black-box approach, test cases are designed using only the functional
specification of the software. That is, test cases are designed solely based on
an analysis of the input/out behaviour (that is, functional behaviour) and
does not require any knowledge of the internal structure of a program. For
this reason, black-box testing is also known as functional testing. On the
other hand, designing white-box test cases requires a thorough knowledge of
the internal structure of a program, and therefore white-box testing is also
called structural testing. Black- box test cases are designed solely based on
the input-output behaviour of a program. In contrast, white-box test cases
are based on an analysis of the code. These two approaches to test case
design are complementary. That is, a program has to be tested using the test
cases designed by both the approaches, and one testing using one approach
does not substitute testing using the other.

10.4.4 Testing in the Large versus Testing in the Small
A software product is normally tested in three levels or stages:

Unit testing
Integration testing
System testing

During unit testing, the individual functions (or units) of a program are
tested.

Unit testing is referred to as testing in the small, whereas integration and system
testing are referred to as testing in the large.

After testing all the units individually, the units are slowly integrated and
tested after each step of integration (integration testing). Finally, the fully
integrated system is tested (system testing). Integration and system testing
are known as testing in the large.

Often beginners ask the question—“Why test each module (unit) in
isolation first, then integrate these modules and test, and again test the
integrated set of modules—why not just test the integrated set of modules
once thoroughly?” The answer to this question is the following—There are
two main reasons to it. First while testing a module, other modules with
which this module needs to interface may not be ready. Moreover, it is

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

always a good idea to first test the module in isolation before integration
because it makes debugging easier. If a failure is detected when an
integrated set of modules is being tested, it would be difficult to determine
which module exactly has the error.

In the following sections, we discuss the different levels of testing. It should
be borne in mind in all our subsequent discussions that unit testing is carried
out in the coding phase itself as soon as coding of a module is complete. On
the other hand, integration and system testing are carried out during the
testing phase.

10.5 UNIT TESTING
Unit testing is undertaken after a module has been coded and reviewed.
This activity is typically undertaken by the coder of the module himself
in the coding phase. Before carrying out unit testing, the unit test cases
have to be designed and the test environment for the unit under test
has to be developed. In this section, we first discuss the environment
needed to perform unit testing.

Driver and stub modules
In order to test a single module, we need a complete environment to
provide all relevant code that is necessary for execution of the module.
That is, besides the module under test, the following are needed to test
the module:

The procedures belonging to other modules that the module under test
calls.
Non-local data structures that the module accesses.
A procedure to call the functions of the module under test with
appropriate parameters.

Modules required to provide the necessary environment (which either call
or are called by the module under test) are usually not available until they
too have been unit tested. In this context, stubs and drivers are designed to
provide the complete environment for a module so that testing can be carried
out.
Stub: The role of stub and driver modules is pictorially shown in Figure 10.3.
A stub procedure is a dummy procedure that has the same I/O parameters as
the function called by the unit under test but has a highly simplified

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

behaviour. For example, a stub procedure may produce the expected
behaviour using a simple table look up mechanism.

Figure 10.3: Unit testing with the help of driver and stub modules.

Driver: A driver module should contain the non-local data structures
accessed by the module under test. Additionally, it should also have the
code to call the different functions of the unit under test with
appropriate parameter values for testing.

10.6 BLACK-BOX TESTING
In black-box testing, test cases are designed from an examination of the
input/output values only and no knowledge of design or code is
required. The following are the two main approaches available to
design black box test cases:

Equivalence class partitioning
Boundary value analysis

In the following subsections, we will elaborate these two test case
design techniques.

10.6.1 Equivalence Class Partitioning
In the equivalence class partitioning approach, the domain of input values to
the program under test is partitioned into a set of equivalence classes. The
partitioning is done such that for every input data belonging to the same
equivalence class, the program behaves similarly.

The main idea behind defining equivalence classes of input data is that testing the
code with any one value belonging to an equivalence class is as good as testing the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

code with any other value belonging to the same equivalence class.

Equivalence classes for a unit under test can be designed by examining the
input data and output data. The following are two general guidelines for
designing the equivalence classes:

1. If the input data values to a system can be specified by a range of
values, then one valid and two invalid equivalence classes need to be
defined. For example, if the equivalence class is the set of integers in
the range 1 to 10 (i.e., [1,10]), then the invalid equivalence classes
are [−∞,0], [11,+∞].

2. If the input data assumes values from a set of discrete members of
some domain, then one equivalence class for the valid input values
and another equivalence class for the invalid input values should be
defined. For example, if the valid equivalence classes are {A,B,C},
then the invalid equivalence class is �-{A,B,C}, where � is the
universe of possible input values.

In the following, we illustrate equivalence class partitioning-based test case
generation through four examples.
Example 10.6 For a software that computes the square root of an input
integer that can assume values in the range of 0 and 5000. Determine the
equivalence classes and the black box test suite.
Answer: There are three equivalence classes—The set of negative integers,
the set of integers in the range of 0 and 5000, and the set of integers larger
than 5000. Therefore, the test cases must include representatives for each of
the three equivalence classes. A possible test suite can be: {–5,500,6000}.
Example 10.7 Design the equivalence class test cases for a program that
reads two integer pairs (m1, c1) and (m2, c2) defining two straight lines of
the form y=mx+c. The program computes the intersection point of the two
straight lines and displays the point of intersection.
Answer: The equivalence classes are the following:

• Parallel lines (m1 = m2, c1 � c2)
• Intersecting lines (m1 � m2)
• Coincident lines (m1 = m2, c1 = c2)
Now, selecting one representative value from each equivalence class, we

get the required equivalence class test suite {(2,2)(2,5),(5,5)(7,7), (10,10)

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(10,10)}.
Example 10.8 Design equivalence class partitioning test suite for a function
that reads a character string of size less than five characters and displays
whether it is a palindrome.
Answer: The equivalence classes are the leaf level classes shown in Figure
10.4. The equivalence classes are palindromes, non-palindromes, and invalid
inputs. Now, selecting one representative value from each equivalence class,
we have the required test suite: {abc,aba,abcdef}.

Figure 10.4: Equivalence classes for Example 10.6.

10.6.2 Boundary Value Analysis
A type of programming error that is frequently committed by programmers is
missing out on the special consideration that should be given to the values at
the boundaries of different equivalence classes of inputs. The reason behind
programmers committing such errors might purely be due to psychological
factors. Programmers often fail to properly address the special processing
required by the input values that lie at the boundary of the different
equivalence classes. For example, programmers may improperly use <
instead of <=, or conversely <= for <, etc.

Boundary value analysis-based test suite design involves designing test cases using
the values at the boundaries of different equivalence classes.

To design boundary value test cases, it is required to examine the
equivalence classes to check if any of the equivalence classes contains a
range of values. For those equivalence classes that are not a range of values

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(i.e., consist of a discrete collection of values) no boundary value test cases
can be defined. For an equivalence class that is a range of values, the
boundary values need to be included in the test suite. For example, if an
equivalence class contains the integers in the range 1 to 10, then the
boundary value test suite is {0,1,10,11}.
Example 10.9 For a function that computes the square root of the integer
values in the range of 0 and 5000, determine the boundary value test suite.
Answer: There are three equivalence classes—The set of negative integers,
the set of integers in the range of 0 and 5000, and the set of integers larger
than 5000. The boundary value-based test suite is: {0,-1,5000,5001}.
Example 10.10 Design boundary value test suite for the function described
in Example 10.6.
Answer: The equivalence classes have been showed in Figure 10.5. There is
a boundary between the valid and invalid equivalence classes. Thus, the
boundary value test suite is {abcdefg, abcdef}.

Figure 10.5: CFG for (a) sequence, (b) selection, and (c) iteration type of constructs.

10.6.3 Summary of the Black-box Test Suite Design
Approach

We now summarise the important steps in the black-box test suite
design approach:

Examine the input and output values of the program.
Identify the equivalence classes.
Design equivalence class test cases by picking one representative

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

value from each equivalence class.
Design the boundary value test cases as follows. Examine if any
equivalence class is a range of values. Include the values at the
boundaries of such equivalence classes in the test suite.

The strategy for black-box testing is intuitive and simple. For black-box
testing, the most important step is the identification of the equivalence
classes. Often, the identification of the equivalence classes is not
straightforward. However, with little practice one would be able to identify all
equivalence classes in the input data domain. Without practice, one may
overlook many equivalence classes in the input data set. Once the
equivalence classes are identified, the equivalence class and boundary value
test cases can be selected almost mechanically.

10.7 WHITE-BOX TESTING
White-box testing is an important type of unit testing. A large number of
white-box testing strategies exist. Each testing strategy essentially
designs test cases based on analysis of some aspect of source code and
is based on some heuristic. We first discuss some basic concepts
associated with white-box testing, and follow it up with a discussion on
specific testing strategies.

10.7.1 Basic Concepts
A white-box testing strategy can either be coverage-based or fault-
based.

Fault-based testing
A fault-based testing strategy targets to detect certain types of faults.
These faults that a test strategy focuses on constitutes the fault
model of the strategy. An example of a fault-based strategy is
mutation testing, which is discussed later in this section.

Coverage-based testing
A coverage-based testing strategy attempts to execute (or cover) certain
elements of a program. Popular examples of coverage-based testing
strategies are statement coverage, branch coverage, multiple condition
coverage, and path coverage-based testing.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Testing criterion for coverage-based testing
A coverage-based testing strategy typically targets to execute (i.e., cover)
certain program elements for discovering failures.

The set of specific program elements that a testing strategy targets to execute is
called the testing criterion of the strategy.

For example, if a testing strategy requires all the statements of a program
to be executed at least once, then we say that the testing criterion of the
strategy is statement coverage. We say that a test suite is adequate with
respect to a criterion, if it covers all elements of the domain defined by that
criterion.

Stronger versus weaker testing
We have mentioned that a large number of white-box testing strategies have
been proposed. It therefore becomes necessary to compare the effectiveness
of different testing strategies in detecting faults. We can compare two testing
strategies by determining whether one is stronger, weaker, or
complementary to the other.

A white-box testing strategy is said to be stronger than another strategy, if the
stronger testing strategy covers all program elements covered by the weaker testing
strategy, and the stronger strategy additionally covers at least one program element
that is not covered by the weaker strategy.

When none of two testing strategies fully covers the program elements
exercised by the other, then the two are called complementary testing
strategies. The concepts of stronger, weaker, and complementary testing are
schematically illustrated in Figure 10.6. Observe in Figure 10.6(a) that testing
strategy A is stronger than B since B covers only a proper subset of elements
covered by B. On the other hand, Figure 10.6(b) shows A and B are
complementary testing strategies since some elements of A are not covered
by B and vice versa.

If a stronger testing has been performed, then a weaker testing need not be carried
out.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 10.6: Illustration of stronger, weaker, and complementary testing strategies.

A test suite should, however, be enriched by using various complementary
testing strategies.

We need to point out that coverage-based testing is frequently used to check the
quality of testing achieved by a test suite. It is hard to manually design a test suite to
achieve a specific coverage for a non-trivial program.

10.7.2 Statement Coverage
The statement coverage strategy aims to design test cases so as to execute
every statement in a program at least once.

The principal idea governing the statement coverage strategy is that unless a
statement is executed, there is no way to determine whether an error exists in that
statement.

It is obvious that without executing a statement, it is difficult to determine
whether it causes a failure due to illegal memory access, wrong result
computation due to improper arithmetic operation, etc. It can however be
pointed out that a weakness of the statement- coverage strategy is that
executing a statement once and observing that it behaves properly for one

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

input value is no guarantee that it will behave correctly for all input values.
Never the less, statement coverage is a very intuitive and appealing testing
technique. In the following, we illustrate a test suite that achieves statement
coverage.
Example 10.11 Design statement coverage-based test suite for the
following Euclid’s GCD computation program:

int computeGCD(x,y)
int x,y;

{
1 while (x != y){
2 if (x>y) then
3 x=x-y;
4 else y=y-x;
5 }
6 return x;

}

Answer: To design the test cases for the statement coverage, the
conditional expression of the while statement needs to be made true and
the conditional expression of the if statement needs to be made both true
and false. By choosing the test set {(x = 3, y = 3), (x = 4, y = 3), (x = 3, y =
4)}, all statements of the program would be executed at least once.

10.7.3 Branch Coverage
A test suite satisfies branch coverage, if it makes each branch condition
in the program to assume true and false values in turn. In other words,
for branch coverage each branch in the CFG representation of the
program must be taken at least once, when the test suite is executed.
Branch testing is also known as edge testing, since in this testing
scheme, each edge of a program’s control flow graph is traversed at
least once.

Example 10.12 For the program of Example 10.11, determine a test suite to
achieve branch coverage.
Answer: The test suite {(x = 3, y = 3), (x = 3, y = 2), (x = 4, y = 3), (x =
3, y = 4)} achieves branch coverage.

It is easy to show that branch coverage-based testing is a stronger testing
than statement coverage-based testing. We can prove this by showing that
branch coverage ensures statement coverage, but not vice versa.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Theorem 10.1 Branch coverage-based testing is stronger than statement
coverage-based testing.
Proof: We need to show that (a) branch coverage ensures statement
coverage, and (b) statement coverage does not ensure branch coverage.

(a) Branch testing would guarantee statement coverage since every
statement must belong to some branch (assuming that there is no
unreachable code).

(b) To show that statement coverage does not ensure branch coverage, it
would be sufficient to give an example of a test suite that achieves
statement coverage, but does not cover at least one branch. Consider
the following code, and the test suite {5}.
if(x>2) x+=1;

The test suite would achieve statement coverage. However, it does not
achieve branch coverage, since the condition (x > 2) is not made false by any
test case in the suite.

10.7.4 Multiple Condition Coverage
In the multiple condition (MC) coverage-based testing, test cases are
designed to make each component of a composite conditional
expression to assume both true and false values. For example, consider
the composite conditional expression ((c1 .and.c2).or.c3). A test suite
would achieve MC coverage, if all the component conditions c1, c2 and
c3 are each made to assume both true and false values. Branch testing
can be considered to be a simplistic condition testing strategy where
only the compound conditions appearing in the different branch
statements are made to assume the true and false values. It is easy to
prove that condition testing is a stronger testing strategy than branch
testing. For a composite conditional expression of n components, 2n
test cases are required for multiple condition coverage. Thus, for
multiple condition coverage, the number of test cases increases
exponentially with the number of component conditions. Therefore,
multiple condition coverage-based testing technique is practical only if n
(the number of conditions) is small.

Example 10.13 Give an example of a fault that is detected by multiple
condition coverage, but not by branch coverage.
Answer: Consider the following C program segment:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

if(temperature>150 || temperature>50)
setWarningLightOn();

The program segment has a bug in the second component condition, it
should have been temperature<50. The test suite {temperature=160,
temperature=40} achieves branch coverage. But, it is not able to check that
setWarningLightOn(); should not be called for temperature values within
150 and 50.

10.7.5 Path Coverage
A test suite achieves path coverage if it exeutes each linearly
independent paths (o r basis paths) at least once. A linearly
independent path can be defined in terms of the control flow graph
(CFG) of a program. Therefore, to understand path coverage-based
testing strategy, we need to first understand how the CFG of a program
can be drawn.

Control flow graph (CFG)
A control flow graph describes how the control flows through the program.
We can define a control flow graph as the following:

A control flow graph describes the sequence in which the different instructions of a
program get executed.

In order to draw the control flow graph of a program, we need to first
number all the statements of a program. The different numbered statements
serve as nodes of the control flow graph (see Figure 10.5). There exists an
edge from one node to another, if the execution of the statement
representing the first node can result in the transfer of control to the other
node.

More formally, we can define a CFG as follows. A CFG is a directed graph
consisting of a set of nodes and edges (N, E), such that each node n � N
corresponds to a unique program statement and an edge exists between two
nodes if control can transfer from one node to the other.

We can easily draw the CFG for any program, if we know how to represent
the sequence, selection, and iteration types of statements in the CFG. After
all, every program is constructed by using these three types of constructs
only. Figure 10.5 summarises how the CFG for these three types of constructs
can be drawn. The CFG representation of the sequence and decision types of
statements is straight forward. Please note carefully how the CFG for the loop

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(iteration) construct can be drawn. For iteration type of constructs such as the
while construct, the loop condition is tested only at the beginning of the loop
and therefore always control flows from the last statement of the loop to the
top of the loop. That is, the loop construct terminates from the first
statement (after the loop is found to be false) and does not at any time exit
the loop at the last statement of the loop. Using these basic ideas, the CFG of
the program given in Figure 10.7(a) can be drawn as shown in Figure 10.7(b).

Figure 10.7: Control flow diagram of an example program.

Path
A path through a program is any node and edge sequence from the start
node to a terminal node of the control flow graph of a program. Please
note that a program can have more than one terminal nodes when it
contains multiple exit or return type of statements. Writing test cases to
cover all paths of a typical program is impractical since there can be an
infinite number of paths through a program in presence of loops. For
example, in Figure 10.5(c), there can be an infinite number of paths

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

such as 12314, 12312314, 12312312314, etc. If coverage of all paths is
attempted, then the number of test cases required would become
infinitely large. For this reason, path coverage testing does not try to
cover all paths, but only a subset of paths called linearly independent
pa ths (o r basis paths). Let us now discuss what are linearly
independent paths and how to determine these in a program.

Linearly independent set of paths (or basis path set)
A set of paths for a given program is called linearly independent set of paths
(or the set of basis paths or simply the basis set), if each path in the set
introduces at least one new edge that is not included in any other path in the
set. Please note that even if we find that a path has one new node compared
to all other linearly independent paths, then this path should also be included
in the set of linearly independent paths. This is because, any path having a
new node would automatically have a new edge. An alternative definition of
a linearly independent set of paths [McCabe76] is the following:

If a set of paths is linearly independent of each other, then no path in the set can be
obtained through any linear operations (i.e., additions or subtractions) on the other
paths in the set.

According to the above definition of a linearly independent set of paths, for
any path in the set, its subpath cannot be a member of the set. In fact, any
arbitrary path of a program, can be synthesized by carrying out linear
operations on the basis paths. Possibly, the name basis set comes from the
observation that the paths in the basis set form the “basis” for all the paths of
a program. Please note that there may not always exist a unique basis set for
a program and several basis sets for the same program can usually be
determined.

Even though it is straight forward to identify the linearly independent paths
for simple programs, for more complex programs it is not easy to determine
the number of independent paths. In this context, McCabe’s cyclomatic
complexity metric is an important result that lets us compute the number of
linearly independent paths for any arbitrary program. McCabe’s cyclomatic
complexity defines an upper bound for the number of linearly independent
paths through a program. Also, the McCabe’s cyclomatic complexity is very
simple to compute. Though the McCabe’s metric does not directly identify the
linearly independent paths, but it provides us with a practical way of
determining approximately how many paths to look for.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

10.7.6 McCabe’s Cyclomatic Complexity Metric
McCabe obtained his results by applying graph-theoretic techniques to
the control flow graph ofa program. McCabe’s cyclomatic complexity
defines an upper bound on the number of independent paths in a
program. We discuss three different ways to compute the cyclomatic
complexity. For structured programs, the results computed by all the
three methods are guaranteed to agree.

Method 1: Given a control flow graph G of a program, the cyclomatic
complexity V(G) can be computed as:

V(G) = E – N + 2
where, N is the number of nodes of the control flow graph and E is the
number of edges in the control flow graph.

For the CFG of example shown in Figure 10.7, E = 7 and N = 6. Therefore,
the value of the Cyclomatic complexity = 7 – 6 + 2 = 3.
Method 2: An alternate way of computing the cyclomatic complexity of a
program is based on a visual inspection of the control flow graph is as follows
—In this method, the cyclomatic complexity V (G) for a graph G is given by
the following expression:

V(G) = Total number of non-overlapping bounded areas + 1

In the program’s control flow graph G, any region enclosed by nodes and
edges can be called as a bounded area. This is an easy way to determine the
McCabe’s cyclomatic complexity. But, what if the graph G is not planar (i.e.,
how ever you draw the graph, two or more edges always intersect). Actually,
it can be shown that control flow representation of structured programs
always yields planar graphs. But, presence of GOTO’s can easily add
intersecting edges. Therefore, for non-structured programs, this way of
computing the McCabe’s cyclomatic complexity does not apply.

The number of bounded areas in a CFG increases with the number of
decision statements and loops. Therefore, the McCabe’s metric provides a
quantitative measure of testing difficulty and the ultimate reliability of a
program. Consider the CFG example shown in Figure 10.7. From a visual
examination of the CFG the number of bounded areas is 2. Therefore the
cyclomatic complexity, computed with this method is also 2+1=3. This
method provides a very easy way of computing the cyclomatic complexity of
CFGs, just from a visual examination of the CFG. On the other hand, the
method for computing CFGs can easily be automated. That is, the McCabe’s
metric computations methods 1 and 3 can be easily coded into a program

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

that can be used to automatically determine the cyclomatic complexities of
arbitrary programs.
Method 3: The cyclomatic complexity of a program can also be easily
computed by computing the number of decision and loop statements of the
program. If N is the number of decision and loop statements of a program,
then the McCabe’s metric is equal to N + 1.

How is path testing carried out by using computed
McCabe’s cyclomatic metric value?

Knowing the number of basis paths in a program does not make it any
easier to design test cases for path coverage, only it gives an indication
of the minimum number of test cases required for path coverage. For
the CFG of a moderately complex program segment of say 20 nodes
and 25 edges, you may need several days of effort to identify all the
linearly independent paths in it and to design the test cases. It is
therefore impractical to require the test designers to identify all the
linearly independent paths in a code, and then design the test cases to
force execution along each of the identified paths. In practice, for path
testing, usually the tester keeps on forming test cases with random
data and executes those until the required coverage is achieved. A
testing tool such as a dynamic program analyser (see Section 10.8.2) is
used to determine the percentage of linearly independent paths
covered by the test cases that have been executed so far. If the
percentage of linearly independent paths covered is below 90 per cent,
more test cases (with random inputs) are added to increase the path
coverage. Normally, it is not practical to target achievement of 100 per
cent path coverage, since, the McCabe’s metric is only an upper bound
and does not give the exact number of paths.

Steps to carry out path coverage-based testing
The following is the sequence of steps that need to be undertaken for
deriving the path coverage-based test cases for a program:

1. Draw control flow graph for the program.
2. Determine the McCabe’s metric V(G).
3. Determine the cyclomatic complexity. This gives the minimum number

of test cases required to achieve path coverage.
4. repeat

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Test using a randomly designed set of test cases.
Perform dynamic analysis to check the path coverage achieved.
until at least 90 per cent path coverage is achieved.

Uses of McCabe’s cyclomatic complexity metric
Beside its use in path testing, cyclomatic complexity of programs has
many other interesting applications such as the following:

Estimation of structural complexity of code: McCabe’s cyclomatic
complexity is a measure of the structural complexity of a program. The
reason for this is that it is computed based on the code structure (number of
decision and iteration constructs used). Intuitively, the McCabe’s complexity
metric correlates with the difficulty level of understanding a program, since
one understands a program by understanding the computations carried out
along all independent paths of the program.

Cyclomatic complexity of a program is a measure of the psychological complexity or
the level of difficulty in understanding the program.

In view of the above result, from the maintenance perspective, it makes
good sense to limit the cyclomatic complexity of the different functions to
some reasonable value. Good software development organisations usually
restrict the cyclomatic complexity of different functions to a maximum value
of ten or so. This is in contrast to the computational complexity that is based
on the execution of the program statements.
Estimation of testing effort: Cyclomatic complexity is a measure of the
maximum number of basis paths. Thus, it indicates the minimum number of
test cases required to achieve path coverage. Therefore, the testing effort
and the time required to test a piece of code satisfactorily is proportional to
the cyclomatic complexity of the code. To reduce testing effort, it is necessary
to restrict the cyclomatic complexity of every function to seven.
Estimation of program reliability: Experimental studies indicate there
exists a clear relationship between the McCabe’s metric and the number of
errors latent in the code after testing. This relationship exists possibly due to
the correlation of cyclomatic complexity with the structural complexity of
code. Usually the larger is the structural complexity, the more difficult it is to
test and debug the code.

10.7.7 Data Flow-based Testing
Data flow based testing method selects test paths of a program

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

according to the definitions and uses of different variables in a program.
Consider a program P . For a statement numbered S of P , let

DEF(S) = {X /statement S contains a definition of X } and
USES(S)= {X /statement S contains a use of X }

For the statement S: a=b+c;, DEF(S)={a}, USES(S)={b, c}. The definition
of variable X at statement S is said to be live at statement S1 , if there exists
a path from statement S to statement S1 which does not contain any
definition of X .

All definitions criterion is a test coverage criterion that requires that an
adequate test set should cover all definition occurrences in the sense that, for
each definition occurrence, the testing paths should cover a path through
which the definition reaches a use of the definition. All use criterion requires
that all uses of a definition should be covered. Clearly, all-uses criterion is
stronger than all-definitions criterion. An even stronger criterion is all
definition-use-paths criterion, which requires the coverage of all possible
definition-use paths that either are cycle-free or have only simple cycles. A
simple cycle is a path in which only the end node and the start node are the
same.

The definition-use chain (or DU chain) of a variable X is of the form [X, S,
S1], where S and S1 are statement numbers, such that X � DEF(S) and X �
USES(S1), and the definition of X in the statement S is live at statement S1 .
One simple data flow testing strategy is to require that every DU chain be
covered at least once. Data flow testing strategies are especially useful for
testing programs containing nested if and loop statements.

10.7.8 Mutation Testing
All white-box testing strategies that we have discussed so far, are
coverage-based testing techniques. In contrast, mutation testing is a
fault-based testing technique in the sense that mutation test cases are
designed to help detect specific types of faults in a program. In
mutation testing, a program is first tested by using an initial test suite
designed by using various white box testing strategies that we have
discussed. After the initial testing is complete, mutation testing can be
taken up.

The idea behind mutation testing is to make a few arbitrary changes to a
program at a time. Each time the program is changed, it is called a mutated
program and the change effected is called a mutant. An underlying
assumption behind mutation testing is that all programming errors can be

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

expressed as a combination of simple errors. A mutation operator makes
specific changes to a program. For example, one mutation operator may
randomly delete a program statement. A mutant may or may not cause an
error in the program. If a mutant does not introduce any error in the program,
then the original program and the mutated program are called equivalent
programs.

A mutated program is tested against the original test suite of the program.
If there exists at least one test case in the test suite for which a mutated
program yields an incorrect result, then the mutant is said to be dead, since
the error introduced by the mutation operator has successfully been detected
by the test suite. If a mutant remains alive even after all the test cases have
been exhausted, the test suite is enhanced to kill the mutant. However, it is
not this straightforward. Remember that there is a possibility of a mutated
program to be an equivalent program. When this is the case, it is futile to try
to design a test case that would identify the error.

An important advantage of mutation testing is that it can be automated to
a great extent. The process of generation of mutants can be automated by
predefining a set of primitive changes that can be applied to the program.
These primitive changes can be simple program alterations such as—deleting
a statement, deleting a variable definition, changing the type of an arithmetic
operator (e.g., + to -), changing a logical operator (and to or) changing the
value of a constant, changing the data type of a variable, etc. A major pitfall
of the mutation-based testing approach is that it is computationally very
expensive, since a large number of possible mutants can be generated.

Mutation testing involves generating a large number of mutants. Also each
mutant needs to be tested with the full test suite. Obviously therefore,
mutation testing is not suitable for manual testing. Mutation testing is most
suitable to be used in conjunction of some testing tool that should
automatically generate the mutants and run the test suite automatically on
each mutant. At present, several test tools are available that automatically
generate mutants for a given program.

10.8 DEBUGGING
After a failure has been detected, it is necessary to first identify the
program statement(s) that are in error and are responsible for the
failure, the error can then be fixed. In this Section, we shall summarise
the important approaches that are available to identify the error
locations. Each of these approaches has its own advantages and

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

disadvantages and therefore each will be useful in appropriate
circumstances. We also provide some guidelines for effective
debugging.

10.8.1 Debugging Approaches
The following are some of the approaches that are popularly adopted by
the programmers for debugging:

Brute force method
This is the most common method of debugging but is the least efficient
method. In this approach, print statements are inserted throughout the
program to print the intermediate values with the hope that some of
the printed values will help to identify the statement in error. This
approach becomes more systematic with the use of a symbolic
debugger (also called a source code debugger), because values of
different variables can be easily checked and break points and watch
points can be easily set to test the values of variables effortlessly.
Single stepping using a symbolic debugger is another form of this
approach, where the developer mentally computes the expected result
after every source instruction and checks whether the same is
computed by single stepping through the program.

Backtracking
This is also a fairly common approach. In this approach, starting from the
statement at which an error symptom has been observed, the source
code is traced backwards until the error is discovered. Unfortunately, as
the number of source lines to be traced back increases, the number of
potential backward paths increases and may become unmanageably
large for complex programs, limiting the use of this approach.

Cause elimination method
In this approach, once a failure is observed, the symptoms of the failure
(i.e., certain variable is having a negative value though it should be
positive, etc.) are noted. Based on the failure symptoms, the causes
which could possibly have contributed to the symptom is developed and
tests are conducted to eliminate each. A related technique of
identification of the error from the error symptom is the software fault
tree analysis.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Program slicing
This technique is similar to back tracking. In the backtracking approach,
one often has to examine a large number of statements. However, the
search space is reduced by defining slices. A slice of a program for a
particular variable and at a particular statement is the set of source
lines preceding this statement that can influence the value of that
variable [Mund2002]. Program slicing makes use of the fact that an
error in the value of a variable can be caused by the statements on
which it is data dependent.

10.8.2 Debugging Guidelines
Debugging is often carried out by programmers based on their ingenuity
and experience. The following are some general guidelines for effective
debugging:

Many times debugging requires a thorough understanding of the
program design. Trying to debug based on a partial understanding of
the program design may require an inordinate amount of effort to be
put into debugging even for simple problems.
Debugging may sometimes even require full redesign of the system. In
such cases, a common mistakes that novice programmers often make
is attempting not to fix the error but its symptoms.
One must be beware of the possibility that an error correction may
introduce new errors. Therefore after every round of error-fixing,
regression testing (see Section 10.13) must be carried out.

10.9 PROGRAM ANALYSIS TOOLS
A program analysis tool usually is an automated tool that takes either
the source code or the executable code of a program as input and
produces reports regarding several important characteristics of the
program, such as its size, complexity, adequacy of commenting,
adherence to programming standards, adequacy of testing, etc. We can
classify various program analysis tools into the following two broad
categories:

Static analysis tools
Dynamic analysis tools

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

These two categories of program analysis tools are discussed in the
following subsection.

10.9.1 Static Analysis Tools
Static program analysis tools assess and compute various characteristics
of a program without executing it. Typically, static analysis tools
analyse the source code to compute certain metrics characterising the
source code (such as size, cyclomatic complexity, etc.) and also report
certain analytical conclusions. These also check the conformance of the
code with the prescribed coding standards. In this context, it displays
the following analysis results:

To what extent the coding standards have been adhered to?
Whether certain programming errors such as uninitialised variables,
mismatch between actual and formal parameters, variables that are
declared but never used, etc., exist? A list of all such errors is
displayed.

Code review techniques such as code walkthrough and code inspection
discussed in Sections 10.2.1 and 10.2.2 can be considered as static analysis
methods since those target to detect errors based on analysing the source
code. However, strictly speaking, this is not true since we are using the term
static program analysis to denote automated analysis tools. On the other
hand, a compiler can be considered to be a type of a static program analysis
tool.

A major practical limitation of the static analysis tools lies in their inability
to analyse run-time information such as dynamic memory references using
pointer variables and pointer arithmetic, etc. In a high level programming
languages, pointer variables and dynamic memory allocation provide the
capability for dynamic memory references. However, dynamic memory
referencing is a major source of programming errors in a program.

Static analysis tools often summarise the results of analysis of every
function in a polar chart known as Kiviat Chart. A Kiviat Chart typically shows
the analysed values for cyclomatic complexity, number of source lines,
percentage of comment lines, Halstead’s metrics, etc.

10.9.2 Dynamic Analysis Tools
Dynamic program analysis tools can be used to evaluate several program

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

characteristics based on an analysis of the run time behaviour of a program.
These tools usually record and analyse the actual behaviour of a program
while it is being executed. A dynamic program analysis tool (also called a
dynamic analyser) usually collects execution trace information by
instrumenting the code. Code instrumentation is usually achieved by inserting
additional statements to print the values of certain variables into a file to
collect the execution trace of the program. The instrumented code when
executed, records the behaviour of the software for different test cases.

An important characteristic of a test suite that is computed by a dynamic analysis tool
is the extent of coverage achieved by the test suite.

After a software has been tested with its full test suite and its behaviour
recorded, the dynamic analysis tool carries out a post execution analysis and
produces reports which describe the coverage that has been achieved by the
complete test suite for the program. For example, the dynamic analysis tool
can report the statement, branch, and path coverage achieved by a test
suite. If the coverage achieved is not satisfactory more test cases can be
designed, added to the test suite, and run. Further, dynamic analysis results
can help eliminate redundant test cases from a test suite.

Normally the dynamic analysis results are reported in the form of a
histogram or pie chart to describe the structural coverage achieved for
different modules of the program. The output of a dynamic analysis tool can
be stored and printed easily to provide evidence that thorough testing has
been carried out.

10.10 INTEGRATION TESTING
Integration testing is carried out after all (or at least some of) the modules
have been unit tested. Successful completion of unit testing, to a large
extent, ensures that the unit (or module) as a whole works satisfactorily. In
this context, the objective of integration testing is to detect the errors at the
module interfaces (call parameters). For example, it is checked that no
parameter mismatch occurs when one module invokes the functionality of
another module. Thus, the primary objective of integration testing is to test
the module interfaces, i.e., there are no errors in parameter passing, when
one module invokes the functionality of another module.

The objective of integration testing is to check whether the different modules of a
program interface with each other properly.

During integration testing, different modules of a system are integrated in a

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

During integration testing, different modules of a system are integrated in a
planned manner using an integration plan. The integration plan specifies the
steps and the order in which modules are combined to realise the full system.
After each integration step, the partially integrated system is tested.

An important factor that guides the integration plan is the module
dependency graph.

We have already discussed in Chapter 6 that a structure chart (or module
dependency graph) specifies the order in which different modules call each
other. Thus, by examining the structure chart, the integration plan can be
developed. Any one (or a mixture) of the following approaches can be used to
develop the test plan:

Big-bang approach to integration testing
Top-down approach to integration testing
Bottom-up approach to integration testing
Mixed (also called sandwiched) approach to integration testing

In the following subsections, we provide an overview of these approaches
to integration testing.

Big-bang approach to integration testing
Big-bang testing is the most obvious approach to integration testing. In
this approach, all the modules making up a system are integrated in a
single step. In simple words, all the unit tested modules of the system
are simply linked together and tested. However, this technique can
meaningfully be used only for very small systems. The main problem
with this approach is that once a failure has been detected during
integration testing, it is very difficult to localise the error as the error
may potentially lie in any of the modules. Therefore, debugging errors
reported during big-bang integration testing are very expensive to fix.
As a result, big-bang integration testing is almost never used for large
programs.

Bottom-up approach to integration testing
Large software products are often made up of several subsystems. A
subsystem might consist of many modules which communicate among
each other through well-defined interfaces. In bottom-up integration
testing, first the modules for the each subsystem are integrated. Thus,
the subsystems can be integrated separately and independently.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The primary purpose of carrying out the integration testing a subsystem is
to test whether the interfaces among various modules making up the
subsystem work satisfactorily. The test cases must be carefully chosen to
exercise the interfaces in all possible manners.

In a pure bottom-up testing no stubs are required, and only test-drivers are
required. Large software systems normally require several levels of
subsystem testing, lower-level subsystems are successively combined to form
higher-level subsystems. The principal advantage of bottom- up integration
testing is that several disjoint subsystems can be tested simultaneously.
Another advantage of bottom-up testing is that the low-level modules get
tested thoroughly, since they are exercised in each integration step. Since the
low-level modules do I/O and other critical functions, testing the low-level
modules thoroughly increases the reliability of the system. A disadvantage of
bottom-up testing is the complexity that occurs when the system is made up
of a large number of small subsystems that are at the same level. This
extreme case corresponds to the big-bang approach.

Top-down approach to integration testing
Top-down integration testing starts with the root module in the structure
chart and one or two subordinate modules of the root module. After the
top-level ‘skeleton’ has been tested, the modules that are at the
immediately lower layer of the ‘skeleton’ are combined with it and
tested. Top-down integration testing approach requires the use of
program stubs to simulate the effect of lower-level routines that are
called by the routines under test. A pure top-down integration does not
require any driver routines. An advantage of top-down integration
testing is that it requires writing only stubs, and stubs are simpler to
write compared to drivers. A disadvantage of the top-down integration
testing approach is that in the absence of lower-level routines, it
becomes difficult to exercise the top-level routines in the desired
manner since the lower level routines usually perform input/output
(I/O) operations.

Mixed approach to integration testing
The mixed (also called sandwiched) integration testing follows a
combination of top-down and bottom-up testing approaches. In top-
down approach, testing can start only after the top-level modules have
been coded and unit tested. Similarly, bottom-up testing can start only

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

after the bottom level modules are ready. The mixed approach
overcomes this shortcoming of the top-down and bottom-up
approaches. In the mixed testing approach, testing can start as and
when modules become available after unit testing. Therefore, this is
one of the most commonly used integration testing approaches. In this
approach, both stubs and drivers are required to be designed.

10.10.1 Phased versus Incremental Integration Testing
Big-bang integration testing is carried out in a single step of integration.
In contrast, in the other strategies, integration is carried out over
several steps. In these later strategies, modules can be integrated
either in a phased or incremental manner. A comparison of these two
strategies is as follows:

In incremental integration testing, only one new module is added to
the partially integrated system each time.
In phased integration, a group of related modules are added to the
partial system each time.

Obviously, phased integration requires less number of integration steps
compared to the incremental integration approach. However, when failures
are detected, it is easier to debug the system while using the incremental
testing approach since the errors can easily be traced to the interface of the
recently integrated module. Please observe that a degenerate case of the
phased integration testing approach is big-bang testing.

10.11 TESTING OBJECT-ORIENTED PROGRAMS
During the initial years of object-oriented programming, it was believed
that object-orientation would, to a great extent, reduce the cost and
effort incurred on testing. This thinking was based on the observation
that object-orientation incorporates several good programming features
such as encapsulation, abstraction, reuse through inheritance,
polymorphism, etc., thereby chances of errors in the code is minimised.
However, it was soon realised that satisfactory testing object-oriented
programs is much more difficult and requires much more cost and effort
as compared to testing similar procedural programs. The main reason
behind this situation is that various object-oriented features introduce
additional complications and scope of new types of bugs that are

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

present in procedural programs. Therefore additional test cases are
needed to be designed to detect these. We examine these issues as
well as some other basic issues in testing object-oriented programs in
the following subsections.

10.11.1 What is a Suitable Unit for Testing
Object-oriented Programs?
For procedural programs, we had seen that procedures are the basic units of
testing. That is, first all the procedures are unit tested. Then various tested
procedures are integrated together and tested. Thus, as far as procedural
programs are concerned, procedures are the basic units of testing. Since
methods in an object-oriented program are analogous to procedures in a
procedural program, can we then consider the methods of object-oriented
programs as the basic unit of testing? Weyuker studied this issue and
postulated his anticomposition axiom as follows:

Adequate testing of individual methods does not ensure that a class has been
satisfactorily tested.

The main intuitive justification for the anticomposition axiom is the
following. A method operates in the scope of the data and other methods of
its object. That is, all the methods share the data of the class. Therefore, it is
necessary to test a method in the context of these. Moreover, objects can
have significant number of states. The behaviour of a method can be different
based on the state of the corresponding object. Therefore, it is not enough to
test all the methods and check whether they can be integrated satisfactorily.
A method has to be tested with all the other methods and data of the
corresponding object. Moreover, a method needs to be tested at all the
states that the object can assume. As a result, it is improper to consider a
method as the basic unit of testing an object-oriented program.

An object is the basic unit of testing of object-oriented programs.

Thus, in an object oriented program, unit testing would mean testing each
object in isolation. During integration testing (called cluster testing in the
object-oriented testing literature) various unit tested objects are integrated
and tested. Finally, system-level testing is carried out.

10.11.2 Do Various Ob ject-orientation Features Make
Testing Easy?

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

In this section, we discuss the implications of different object-orientation
features in testing.

Encapsulation: We had discussed in Chapter 7 that the encapsulation
feature helps in data abstraction, error isolation, and error prevention.
However, as far as testing is concerned, encapsulation is not an obstacle to
testing, but leads to difficulty during debugging. Encapsulation prevents the
tester from accessing the data internal to an object. Of course, it is possible
that one can require classes to support state reporting methods to print out
all the data internal to an object. Thus, the encapsulation feature though
makes testing difficult, the difficulty can be overcome to some extent through
use of appropriate state reporting methods.
Inheritance: The inheritance feature helps in code reuse and was expected
to simplify testing. It was expected that if a class is tested thoroughly, then
the classes that are derived from this class would need only incremental
testing of the added features. However, this is not the case.

Even if the base class class has been thoroughly tested, the methods inherited from
the base class need to be tested again in the derived class.

The reason for this is that the inherited methods would work in a new
context (new data and method definitions). As a result, correct behaviour of a
method at an upper level, does not guarantee correct behaviour at a lower
level. Therefore, retesting of inherited methods needs to be followed as a
rule, rather as an exception.
Dynamic binding: Dynamic binding was introduced to make the code
compact, elegant, and easily extensible. However, as far as testing is
concerned all possible bindings of a method call have to be identified and
tested. This is not easy since the bindings take place at run-time.
Object states: In contrast to the procedures in a procedural program,
objects store data permanently. As a result, objects do have significant
states. The behaviour of an object is usually different in different states. That
is, some methods may not be active in some of its states. Also, a method
may act differently in different states. For example, when a book has been
issued out in a library information system, the book reaches the issuedOut
state. In this state, if the issue method is invoked, then it may not exhibit its
normal behaviour.

In view of the discussions above, testing an object in only one of its states
is not enough. The object has to be tested at all its possible states. Also,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

whether all the transitions between states (as specified in the object model)
function properly or not should be tested. Additionally, it needs to be tested
that no extra (sneak) transitions exist, neither are there extra states present
other than those defined in the state model. For state-based testing, it is
therefore beneficial to have the state model of the objects, so that the
conformance of the object to its state model can be tested.

10.11.3 Why are Traditional Techniques Considered Not
Satisfactory for Testing Object-oriented Programs?

We have already seen that in traditional procedural programs,
procedures are the basic unit of testing. In contrast, objects are the
basic unit of testing for object-oriented programs. Besides this, there
are many other significant differences as well between testing
procedural and object-oriented programs. For example, statement
coverage-based testing which is popular for testing procedural programs
is not meaningful for object-oriented programs. The reason is that
inherited methods have to be retested in the derived class. In fact, the
different object- oriented features (inheritance, polymorphism, dynamic
binding, state-based behaviour, etc.) require special test cases to be
designed compared to the traditional testing as discussed in Section
10.11.4. The various object-orientation features are explicit in the
design models, and it is usually difficult to extract from and analysis of
the source code. As a result, the design model is a valuable artifact for
testing object-oriented programs. Test cases are designed based on the
design model. Therefore, this approach is considered to be intermediate
between a fully white-box and a fully black-box approach, and is called
a grey-box approach. Please note that grey-box testing is considered
important for object-oriented programs. This is in contrast to testing
procedural programs.

10.11.4 Grey-Box Testing of Object-oriented Programs
As we have already mentioned, model-based testing is important for object-
oriented programs, as these test cases help detect bugs that are specific to
the object-orientation constructs.

For object-oriented programs, several types of test cases can be designed based on
the design models of object-oriented programs. These are called the grey-box test
cases.

The following are some important types of grey-box testing that can be

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The following are some important types of grey-box testing that can be
carried on based on UML models:

State-model-based testing
State coverage: Each method of an object are tested at each state of
the object.

State transition coverage: It is tested whether all transitions depicted in
the state model work satisfactorily.
State transition path coverage: All transition paths in the state model are
tested.

Use case-based testing
Scenario coverage: Each use case typically consists of a mainline
scenario and several alternate scenarios. For each use case, the
mainline and all alternate sequences are tested to check if any errors
show up.

Class diagram-based testing
Testing derived classes: All derived classes of the base class have to
be instantiated and tested. In addition to testing the new methods
defined in the derivec. lass, the inherited methods must be retested.

Association testing: All association relations are tested.
Aggregation testing: Various aggregate objects are created and tested.
Sequence diagram-based testing
Method coverage: All methods depicted in the sequence diagrams are
covered. Message path coverage: All message paths that can be
constructed from the sequence diagrams are covered.

10.11.5 Integration Testing of Object-oriented Programs
There are two main approaches to integration testing of object-oriented
programs:

• Thread-based
• Use based

Thread-based approach: In this approach, all classes that need to
collaborate to realise the behaviour of a single use case are integrated and
tested. After all the required classes for a use case are integrated and tested,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

another use case is taken up and other classes (if any) necessary for
execution of the second use case to run are integrated and tested. This is
continued till all use cases have been considered.
Use-based approach: Use-based integration begins by testing classes that
either need no service from other classes or need services from at most a few
other classes. After these classes have been integrated and tested, classes
that use the services from the already integrated classes are integrated and
tested. This is continued till all the classes have been integrated and tested.

10.12 SYSTEM TESTING
After all the units of a program have been integrated together and tested,
system testing is taken up.

System tests are designed to validate a fully developed system to assure that it meets
its requirements. The test cases are therefore designed solely based on the SRS
document.

The system testing procedures are the same for both object-oriented and
procedural programs, since system test cases are designed solely based on
the SRS document and the actual implementation (procedural or object-
oriented) is immaterial.

There are essentially three main kinds of system testing depending on who
carries out testing:

1. Alpha Testing: Alpha testing refers to the system testing carried out
by the test team within the developing organisation.

2. Beta Testing: Beta testing is the system testing performed by a
select group of friendly customers.

3. Acceptance Testing: Acceptance testing is the system testing
performed by the customer to determine whether to accept the
delivery of the system.

In each of the above types of system tests, the test cases can be the same,
but the difference is with respect to who designs test cases and carries out
testing.

The system test cases can be classified into functionality and performance test cases.

Before a fully integrated system is accepted for system testing, smoke
testing is performed. Smoke testing is done to check whether at least the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

main functionalities of the software are working properly. Unless the software
is stable and at least the main functionalities are working satisfactorily,
system testing is not undertaken.

The functionality tests are designed to check whether the software satisfies
the functional requirements as documented in the SRS document. The
performance tests, on the other hand, test the conformance of the system
with the non-functional requirements of the system. We have already
discussed how to design the functionality test cases by using a black-box
approach (in Section 10.5 in the context of unit testing). So, in the following
subsection we discuss only smoke and performance testing.

10.12.1 Smoke Testing
Smoke testing is carried out before initiating system testing to ensure
that system testing would be meaningful, or whether many parts of the
software would fail. The idea behind smoke testing is that if the
integrated program cannot pass even the basic tests, it is not ready for
a vigorous testing. For smoke testing, a few test cases are designed to
check whether the basic functionalities are working. For example, for a
library automation system, the smoke tests may check whether books
can be created and deleted, whether member records can be created
and deleted, and whether books can be loaned and returned.

10.12.2 Performance Testing
Performance testing is an important type of system testing.

Performance testing is carried out to check whether the system meets the non-
functional requirements identified in the SRS document.

There are several types of performance testing corresponding to various
types of non-functional requirements. For a specific system, the types of
performance testing to be carried out on a system depends on the different
non-functional requirements of the system documented in its SRS document.
All performance tests can be considered as black-box tests.

Stress testing
Stress testing is also known as endurance testing. Stress testing
evaluates system performance when it is stressed for short periods of
time. Stress tests are black-box tests which are designed to impose a
range of abnormal and even illegal input conditions so as to stress the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

capabilities of the software. Input data volume, input data rate,
processing time, utilisation of memory, etc., are tested beyond the
designed capacity. For example, suppose an operating system is
supposed to support fifteen concurrent transactions, then the system is
stressed by attempting to initiate fifteen or more transactions
simultaneously. A real-time system might be tested to determine the
effect of simultaneous arrival of several high-priority interrupts.

Stress testing is especially important for systems that under normal
circumstances operate below their maximum capacity but may be severely
stressed at some peak demand hours. For example, if the corresponding non-
functional requirement states that the response time should not be more than
twenty secs per transaction when sixty concurrent users are working, then
during stress testing the response time is checked with exactly sixty users
working simultaneously.

Volume testing
Volume testing checks whether the data structures (buffers, arrays,
queues, stacks, etc.) have been designed to successfully handle
extraordinary situations. For example, the volume testing for a compiler
might be to check whether the symbol table overflows when a very
large program is compiled.

Configuration testing
Configuration testing is used to test system behaviour in various
hardware and software configurations specified in the requirements.
Sometimes systems are built to work in different configurations for
different users. For instance, a minimal system might be required to
serve a single user, and other extended configurations may be required
to serve additional users during configuration testing. The system is
configured in each of the required configurations and depending on the
specific customer requirements, it is checked if the system behaves
correctly in all required configurations.

Compatibility testing
This type of testing is required when the system interfaces with external
systems (e.g., databases, servers, etc.). Compatibility aims to check
whether the interfaces with the external systems are performing as
required. For instance, if the system needs to communicate with a large

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

database system to retrieve information, compatibility testing is
required to test the speed and accuracy of data retrieval.

Regression testing
This type of testing is required when a software is maintained to fix
some bugs or enhance functionality, performance, etc. Regression
testing is also discussed in Section 10.13.

Recovery testing
Recovery testing tests the response of the system to the presence of
faults, or loss of power, devices, services, data, etc. The system is
subjected to the loss of the mentioned resources (as discussed in the
SRS document) and it is checked if the system recovers satisfactorily.
For example, the printer can be disconnected to check if the system
hangs. Or, the power may be shut down to check the extent of data loss
and corruption.

Maintenance testing
This addresses testing the diagnostic programs, and other procedures
that are required to help maintenance of the system. It is verified that
the artifacts exist and they perform properly.

Documentation testing
It is checked whether the required user manual, maintenance manuals,
and technical manuals exist and are consistent. If the requirements
specify the types of audience for which a specific manual should be
designed, then the manual is checked for compliance of this
requirement.

Usability testing
Usability testing concerns checking the user interface to see if it meets
all user requirements concerning the user interface. During usability
testing, the display screens, messages, report formats, and other
aspects relating to the user interface requirements are tested. A GUI
being just being functionally correct is not enough. Therefore, the GUI
has to be checked against the checklist we discussed in Sec. 9.5.6.

Security testing

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Security testing is essential for software that handle or process
confidential data that is to be gurarded against pilfering. It needs to be
tested whether the system is fool-proof from security attacks such as
intrusion by hackers. Over the last few years, a large number of security
testing techniques have been proposed, and these include password
cracking, penetration testing, and attacks on specific ports, etc.

10.12.3 Error Seeding
Sometimes customers specify the maximum number of residual errors
that can be present in the delivered software. These requirements are
often expressed in terms of maximum number of allowable errors per
line of source code. The error seeding technique can be used to
estimate the number of residual errors in a software.

Error seeding, as the name implies, it involves seeding the code with some
known errors. In other words, some artificial errors are introduced (seeded)
into the program. The number of these seeded errors that are detected in the
course of standard testing is determined. These values in conjunction with
the number of unseeded errors detected during testing can be used to predict
the following aspects of a program:

The number of errors remaining in the product.
The effectiveness of the testing strategy.

Let N be the total number of defects in the system, and let n of these
defects be found by testing.

Let S be the total number of seeded defects, and let s of these defects be
found during testing. Therefore, we get:

Defects still remaining in the program after testing can be given by:

Error seeding works satisfactorily only if the kind seeded errors and their
frequency of occurrence matches closely with the kind of defects that actually
exist. However, it is difficult to predict the types of errors that exist in a
software. To some extent, the different categories of errors that are latent

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

and their frequency of occurrence can be estimated by analyzing historical
data collected from similar projects. That is, the data collected is regarding
the types and the frequency of latent errors for all earlier related projects.
This gives an indication of the types (and the frequency) of errors that are
likely to have been committed in the program under consideration. Based on
these data, the different types of errors with the required frequency of
occurrence can be seeded.

10.13 SOME GENERAL ISSUES ASSOCIATED WITH TESTING
In this section, we shall discuss two general issues associated with
testing. These are—how to document the results of testing and how to
perform regression testing.

Test documentation
A piece of documentation that is produced towards the end of testing is
the test summary report. This report normally covers each subsystem
and represents a summary of tests which have been applied to the
subsystem and their outcome. It normally specifies the following:

What is the total number of tests that were applied to a subsystem.
Out of the total number of tests how many tests were successful.
How many were unsuccessful, and the degree to which they were
unsuccessful, e.g., whether a test was an outright failure or whether
some of the expected results of the test were actually observed.

Regression testing
Regression testing spans unit, integration, and system testing. Instead, it
is a separate dimension to these three forms of testing. Regression
testing is the practice of running an old test suite after each change to
the system or after each bug fix to ensure that no new bug has been
introduced due to the change or the bug fix. However, if only a few
statements are changed, then the entire test suite need not be run —
only those test cases that test the functions and are likely to be
affected by the change need to be run. Whenever a software is changed
to either fix a bug, or enhance or remove a feature, regression testing is
carried out.

SUMMARY

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

UNIT-5

SOFTWARE RELIABILITY

Reliability of a software product essentially denotes its trustworthiness or dependability.

Alternatively, reliability of a software product can also be defined as the probability of the

product working “correctly” over a given period of time.

It is obvious that a software product having a large number of defects is unreliable. It is also

clear that the reliability of a system improves, if the number of defects in it is reduced. However,

there is no simple relationship between the observed system reliability and the number of latent

defects in the system. For example, removing errors from parts of a software which are rarely

executed makes little difference to the perceived reliability of the product. It has been

experimentally observed by analyzing the behavior of a large number of programs that 90% of

the execution time of a typical program is spent in executing only 10% of the instructions in the

program. These most used 10% instructions are often called the core of the program. The rest

90% of the program statements are called non-core and are executed only for 10% of the total

execution time. It therefore may not be very surprising to note that removing 60% product

defects from the least used parts of a system would typically lead to only 3% improvement to the

product reliability. It is clear that the quantity by which the overall reliability of a program

improves due to the correction of a single error depends on how frequently is the corresponding

instruction executed.

Thus, reliability of a product depends not only on the number of latent errors but also on the

exact location of the errors. Apart from this, reliability also depends upon how the product is

used, i.e. on its execution profile. If it is selected input data to the system such that only the

“correctly” implemented functions are executed, none of the errors will be exposed and the

perceived reliability of the product will be high. On the other hand, if the input data is selected

such that only those functions which contain errors are invoked, the perceived reliability of the

system will be very low.

The reasons why software reliability is difficult to measure can be summarized as follows:

• The reliability improvement due to fixing a single bug depends on where the bug is

located in the code.

• The perceived reliability of a software product is highly observer dependent.

• The reliability of a product keeps changing as errors are detected and fixed.

Hardware reliability vs. software reliability differ

Reliability behavior for hardware and software are very different. For example, hardware failures

are inherently different from software failures. Most hardware failures are due to component

wear and tear. A logic gate may be stuck at 1 or 0, or a resistor might short circuit. To fix

hardware faults, one has to either replace or repair the failed part. On the other hand, a software

product would continue to fail until the error is tracked down and either the design or the code is

changed. For this reason, when a hardware is repaired its reliability is maintained at the level that

existed before the failure occurred; whereas when a software failure is repaired, the reliability

may either increase or decrease (reliability may decrease if a bug introduces new errors). To put

this fact in a different perspective, hardware reliability study is concerned with stability (for

example, inter-failure times remain constant). On the other hand, software reliability study aims

at reliability growth (i.e. inter-failure times increase).

The change of failure rate over the product lifetime for a typical hardware and a software product

are sketched in fig. 5.1. For hardware products, it can be observed that failure rate is high

initially but decreases as the faulty components are identified and removed. The system then

enters its useful life. After some time (called product life time) the components wear out, and the

failure rate increases. This gives the plot of hardware reliability over time its characteristics

“bath tub” shape. On the other hand, for software the failure rate is at it’s highest during

integration and test. As the system is tested, more and more errors are identified and removed

resulting in reduced failure rate. This error removal continues at a slower pace during the useful

life of the product. As the software becomes obsolete no error corrections occurs and the failure

rate remains unchanged.

(a) Hardware product

(b) Software product

Fig 5.1: Change in failure rate of a product

Reliability metrics

The reliability requirements for different categories of software products may be different. For

this reason, it is necessary that the level of reliability required for a software product should be

specified in the SRS (software requirements specification) document. In order to be able to do

this, some metrics are needed to quantitatively express the reliability of a software product. A

good reliability measure should be observer-dependent, so that different people can agree on the

degree of reliability a system has. For example, there are precise techniques for measuring

performance, which would result in obtaining the same performance value irrespective of who is

carrying out the performance measurement. However, in practice, it is very difficult to formulate

a precise reliability measurement technique. The next base case is to have measures that correlate

with reliability. There are six reliability metrics which can be used to quantify the reliability of

software products.

 • Rate of occurrence of failure (ROCOF). ROCOF measures the frequency of occurrence of

unexpected behavior (i.e. failures). ROCOF measure of a software product can be obtained by

observing the behavior of a software product in operation over a specified time interval and then

recording the total number of failures occurring during the interval.

• Mean Time To Failure (MTTF). MTTF is the average time between two successive failures,

observed over a large number of failures

• Mean Time To Repair (MTTR). Once failure occurs, some time is required to fix the error.

MTTR measures the average time it takes to track the errors causing the failure and to fix them.

• Mean Time Between Failure (MTBR). MTTF and MTTR can be combined to get the MTBR

metric: MTBF = MTTF + MTTR. Thus, MTBF of 300 hours indicates that once a failure occurs,

the next failure is expected after 300 hours. In this case, time measurements are real time and not

the execution time as in MTTF.

• Probability of Failure on Demand (POFOD). Unlike the other metrics discussed, this metric

does not explicitly involve time measurements. POFOD measures the likelihood of the system

failing when a service request is made. For example, a POFOD of 0.001 would mean that 1 out

of every 1000 service requests would result in a failure.

• Availability. Availability of a system is a measure of how likely shall the system be available

for use over a given period of time. This metric not only considers the number of failures

occurring during a time interval, but also takes into account the repair time (down time) of a

system when a failure occurs. This metric is important for systems such as telecommunication

systems, and operating systems, which are supposed to be never down and where repair and

restart time are significant and loss of service during that time is important.

Classification of software failures

A possible classification of failures of software products into five different types is as follows:

• Transient. Transient failures occur only for certain input values while invoking a function of

the system.

• Permanent. Permanent failures occur for all input values while invoking a function of the

system.

• Recoverable. When recoverable failures occur, the system recovers with or without operator

intervention.

• Unrecoverable. In unrecoverable failures, the system may need to be restarted.

• Cosmetic. These classes of failures cause only minor irritations, and do not lead to incorrect

results. An example of a cosmetic failure is the case where the mouse button has to be clicked

twice instead of once to invoke a given function through the graphical user interface.

Reliability growth models

A reliability growth model is a mathematical model of how software reliability improves as

errors are detected and repaired. A reliability growth model can be used to predict when (or if at

all) a particular level of reliability is likely to be attained. Thus, reliability growth modeling can

be used to determine when to stop testing to attain a given reliability level. Although several

different reliability growth models have been proposed, in this text we will discuss only two very

simple reliability growth models.

Jelinski and Moranda Model

The simplest reliability growth model is a step function model where it is assumed that the

reliability increases by a constant increment each time an error is detected and repaired. Such a

model is shown in fig. 5.2. However, this simple model of reliability which implicitly assumes

that all errors contribute equally to reliability growth, is highly unrealistic since it is already

known that correction of different types of errors contribute differently to reliability growth.

Fig. 5.2: Step function model of reliability growth

Littlewood and Verall’s Model

This model allows for negative reliability growth to reflect the fact that when a repair is carried

out, it may introduce additional errors. It also models the fact that as errors are repaired, the

average improvement in reliability per repair decreases (Fig. 5.3). It treat’s an error’s

contribution to reliability improvement to be an independent random variable having Gamma

distribution. This distribution models the fact that error corrections with large contributions to

reliability growth are removed first. This represents diminishing return as test continues.

Fig. 5.3: Random-step function model of reliability growth

STATISTICAL TESTING

Statistical testing is a testing process whose objective is to determine the reliability of software

products rather than discovering errors. Test cases are designed for statistical testing with an

entirely different objective than those of conventional testing.

Operation profile

Different categories of users may use a software for different purposes. For example, a Librarian

might use the library automation software to create member records, add books to the library,

etc. whereas a library member might use to software to query about the availability of the book,

or to issue and return books. Formally, the operation profile of software can be defined as the

probability distribution of the input of an average user. If the input to a number of classes {Ci} is

divided, the probability value of a class represent the probability of an average user selecting his

next input from this class. Thus, the operation profile assigns a probability value Pi to each input

class Ci.

Steps in statistical testing

Statistical testing allows one to concentrate on testing those parts of the system that are most

likely to be used. The first step of statistical testing is to determine the operation profile of the

software. The next step is to generate a set of test data corresponding to the determined operation

profile. The third step is to apply the test cases to the software and record the time between each

failure. After a statistically significant number of failures have been observed, the reliability can

be computed.

Advantages and disadvantages of statistical testing

Statistical testing allows one to concentrate on testing parts of the system that are most likely to

be used. Therefore, it results in a system that the users to be more reliable (than actually it is!).

Reliability estimation using statistical testing is more accurate compared to those of other

methods such as ROCOF, POFOD etc. But it is not easy to perform statistical testing properly.

There is no simple and repeatable way of defining operation profiles. Also it is very much

cumbersome to generate test cases for statistical testing cause the number of test cases with

which the system is to be tested should be statistically significant.

SOFTWARE QUALITY

Traditionally, a quality product is defined in terms of its fitness of purpose. That is, a

quality product does exactly what the users want it to do. For software products, fitness of

purpose is usually interpreted in terms of satisfaction of the requirements laid down in the SRS

document. Although “fitness of purpose” is a satisfactory definition of quality for many products

such as a car, a table fan, a grinding machine, etc. – for software products, “fitness of purpose” is

not a wholly satisfactory definition of quality. To give an example, consider a software product

that is functionally correct. That is, it performs all functions as specified in the SRS document.

But, has an almost unusable user interface. Even though it may be functionally correct, we

cannot consider it to be a quality product. Another example may be that of a product which does

everything that the users want but has an almost incomprehensible and unmaintainable code.

Therefore, the traditional concept of quality as “fitness of purpose” for software products is not

wholly satisfactory.

The modern view of a quality associates with a software product several quality factors such as

the following:

• Portability: A software product is said to be portable, if it can be easily made to work in

different operating system environments, in different machines, with other software products,

etc.

• Usability: A software product has good usability, if different categories of users (i.e. both

expert and novice users) can easily invoke the functions of the product.

• Reusability: A software product has good reusability, if different modules of the product can

easily be reused to develop new products.

• Correctness: A software product is correct, if different requirements as specified in the SRS

document have been correctly implemented.

• Maintainability: A software product is maintainable, if errors can be easily corrected as and

when they show up, new functions can be easily added to the product, and the functionalities of

the product can be easily modified, etc.

Software quality management system

A quality management system (often referred to as quality system) is the principal

methodology used by organizations to ensure that the products they develop have the desired

quality. A quality system consists of the following:

• Managerial Structure and Individual Responsibilities. A quality system is actually the

responsibility of the organization as a whole. However, every organization has a separate quality

department to perform several quality system activities. The quality system of an organization

should have support of the top management. Without support for the quality system at a high

level in a company, few members of staff will take the quality system seriously.

• Quality System Activities. The quality system activities encompass the following:

- auditing of projects

- review of the quality system

- development of standards, procedures, and guidelines, etc.

- production of reports for the top management summarizing the effectiveness of the quality

system in the organization.

SOFTWARE QUALITY MANAGEMENT SYSTEM

Quality systems have rapidly evolved over the last five decades. Prior to World War II,

the usual method to produce quality products was to inspect the finished products to eliminate

defective products. Since that time, quality systems of organizations have undergone through

four stages of evolution as shown in the fig. 5.4. The initial product inspection method gave way

to quality control (QC). Quality control focuses not only on detecting the defective products and

eliminating them but also on determining the causes behind the defects. Thus, quality control

aims at correcting the causes of errors and not just rejecting the products. The next breakthrough

in quality systems was the development of quality assurance principles.

The basic premise of modern quality assurance is that if an organization’s processes are

good and are followed rigorously, then the products are bound to be of good quality. The modern

quality paradigm includes guidance for recognizing, defining, analyzing, and improving the

production process. Total quality management (TQM) advocates that the process followed by an

organization must be continuously improved through process measurements.

TQM goes a step further than quality assurance and aims at continuous process improvement.

TQM goes beyond documenting processes to optimizing them through redesign. A term related

to TQM is Business Process Reengineering (BPR). BPR aims at reengineering the way business

is carried out in an organization. From the above discussion it can be stated that over the years

the quality paradigm has shifted from product assurance to process assurance (as shown in fig.

5.4).

Fig. 5.4: Evolution of quality system and corresponding shift in the quality paradigm

ISO 9000

International standards organisation (ISO) is a consortium of 63 countries established to

formulate and foster standardisation. ISO published its 9000 series of standards in 1987.

What is ISO 9000 Certification?

ISO 9000 certification serves as a reference for contract between independent parties.

ISO 9000 standard is a set of guidelines for the production process and is not directly concerned

about the product it self.

The ISO 9000 series of standards are based on the premise that if a proper process is

followed for production, then good quality products are bound to follow automatically.

ISO 9000 is a series of three standards—ISO 9001, ISO 9002, and ISO 9003.

The types of software companies to which the different ISO standards apply are as follows:

ISO 9001: This standard applies to the organizations engaged in design, development,

production, and servicing of goods. This is the standard that is applicable to most software

development organisations.

ISO 9002: This standard applies to those organisations which do not design products but are

only involved in production. Examples of this category of industries include steel and car

manufacturing industries who buy the product and plant designs from external sources and are

involved in only manufacturing those products.

ISO 9003: This standard applies to organisations involved only in installation and testing of

products.

ISO 9000 for Software Industry

The ISO 9000 documents are written using generic terminologies and it is very difficult to

interpret them in the context of software development organisations.

An important reason behind such a situation is the fact that software development is in many

respects radically different from the development of other types of products. Two major

differences between software development and development of other kinds of products are as

follows:

1. Software is intangible and therefore difficult to control. It means that software would not

be visible to the user until the development is complete and the software is up and

running. It is difficult to control and manage anything that you cannot see and feel. In

contrast, in any other type of product manufacturing such as car manufacturing, you can

see a product being developed through various stages such as fitting engine, fitting doors,

etc. Therefore, it becomes easy to accurately determine how much work has been

completed and to estimate how much more time will it take.

2. During software development, the only raw material consumed is data. In contrast, large

quantities of raw materials are consumed during the development of any other product.

As an example, consider a steel making company. The company would consume large

amounts of raw material such as iron-ore, coal, lime, manganese, etc. Not surprisingly

then, many clauses of ISO 9000 standards are concerned with raw material control. These

clauses are obviously not relevant for software development organisations.

Due to such radical differences between software and other types of product development, it

was difficult to interpret various clauses of the original ISO standard in the context of

software industry. Therefore, ISO released a separate document called ISO 9000 part-3 in

1991 to help interpret the ISO standard for software industry.

Why Get ISO 9000 Certification?

There is a mad scramble among software development organisations for obtaining ISO

certification due to the benefits it offers. The following are the benefits:

1. Confidence of customers in an organisation increases when the organisation qualifies for

ISO 9001 certification. This is especially true in the international market.

2. ISO 9000 requires a well-documented software production process to be in place. A well-

documented software production process contributes to repeatable and higher quality of

the developed software.

3. ISO 9000 makes the development process focused, efficient, and cost effective.

4. ISO 9000 certification points out the weak points of an organization and recommends

remedial action.

5. ISO 9000 sets the basic framework for the development of an optimal process and TQM.

How to Get ISO 9000 Certification?

The ISO 9000 registration process consists of the following stages:

Application stage: Once an organisation decides to go for ISO 9000

certification, it applies to a registrar for registration.

Pre-assessment: During this stage the registrar makes a rough assessment

of the organisation.

Document review and adequacy audit: During this stage, the registrar reviews the documents

submitted by the organisation and makes suggestions for possible improvements.

Compliance audit: During this stage, the registrar checks whether the suggestions made by it

during review have been complied to by the organisation or not.

Registration: The registrar awards the ISO 9000 certificate after successful

completion of all previous phases.

Continued surveillance: The registrar continues monitoring the organisation periodically.

Summary of ISO 9001 Requirements

A summary of the main requirements of ISO 9001 as they relate of software development are as

follows:

Section numbers in brackets correspond to those in the standard itself:

Management responsibility

 The management must have an effective quality policy.

 The responsibility and authority of all those whose work affects quality must be defined

and documented.

 A management representative, independent of the development process, must be

responsible for the quality system. This requirement probably has been put down so that

the person responsible for the quality system can work in an unbiased manner.

 The effectiveness of the quality system must be periodically reviewed by audits.

Quality system

 A quality system must be maintained and documented.

Contract reviews

 Before entering into a contract, an organisation must review the contract to ensure that it

is understood, and that the organisation has the necessary capability for carrying out its

obligations.

Design control

 The design process must be properly controlled, this includes controlling coding also.

This requirement means that a good configuration control system must be in place.

 Design inputs must be verified as adequate.

 Design must be verified.

 Design output must be of required quality.

 Design changes must be controlled.

Document control

 There must be proper procedures for document approval, issue and removal.

 Document changes must be controlled. Thus, use of some configuration management

tools is necessary.

Purchasing

 Purchased material, including bought-in software must be checked for conforming to

requirements.

Purchaser supplied product

 Material supplied by a purchaser, for example, client-provided software must be properly

managed and checked.

Product identification

 The product must be identifiable at all stages of the process. In software terms this means

configuration management.

Process control

 The development must be properly managed.

 Quality requirement must be identified in a quality plan.

Inspection and testing

 In software terms this requires effective testing i.e., unit testing, integration testing and

system testing. Test records must be maintained.

Inspection, measuring and test equipment

 If integration, measuring, and test equipments are used, they must be properly maintained

and calibrated.

Inspection and test status

 The status of an item must be identified. In software terms this implies configuration

management and release control.

Control of non-conforming product

 In software terms, this means keeping untested or faulty software out of the released

product, or other places whether it might cause damage.

Corrective action

 This requirement is both about correcting errors when found, and also investigating why

the errors occurred and improving the process to prevent occurrences. If an error occurs

despite the quality system, the system needs improvement.

Handling

 This clause deals with the storage, packing, and delivery of the software product.

Quality records

 Recording the steps taken to control the quality of the process is essential in order to be

able to confirm that they have actually taken place.

Quality audits

 Audits of the quality system must be carried out to ensure that it is effective.

Training

 Training needs must be identified and met.

Salient Features of ISO 9001 Requirements

In subsection 11.5.5 we pointed out the various requirements for the ISO 9001 certification. We

can summarise the salient features all the the requirements as follows:

Document control: All documents concerned with the development of a software product

should be properly managed, authorised, and controlled. This requires a configuration

management system to be in place.

Planning: Proper plans should be prepared and then progress against these plans should be

monitored.

Review: Important documents across all phases should be independently checked and reviewed

for effectiveness and correctness.

Testing: The product should be tested against specification.

Organisational aspects: Several organizational aspects should be addressed e.g., management

reporting of the quality team.

5.5.7 ISO 9000-2000

ISO revised the quality standards in the year 2000 to fine tune the standards. The major

changes include a mechanism for continuous process improvement. There is also an increased

emphasis on the role of the top management, including establishing measurable objectives for

various roles and levels of the organisation. The new standard recognises that there can be many

processes in an organisation.

Shortcomings of ISO 9000 Certification

Even though ISO 9000 is widely being used for setting up an effective

Quality system in an organisation, it suffers from several shortcomings. Some of these

shortcoming of the ISO 9000 certification process are the following:

 ISO 9000 requires a software production process to be adhered to, but does not guarantee

the process to be of high quality. It also does not give any guideline for defining an

appropriate process.

 ISO 9000 certification process is not fool-proof and no international accredition agency

exists. Therefore it is likely that variations in the norms of awarding certificates can exist

among the different accredition agencies and also among the registrars.

 Organisations getting ISO 9000 certification often tend to downplay domain expertise

and the ingenuity of the developers. These organisations start to believe that since a good

process is in place, the development results are truly person-independent. That is, any

developer is as effective as any other developer in performing any particular software

development activity. In manufacturing industry there is a clear link between process

quality and product quality. Once a process is calibrated, it can be run again and again

producing quality goods. Many areas of software development are so specialised that

special expertise and experience in these areas (domain expertise) is required. Also,

unlike in case of general product manufacturing, ingenuity and effectiveness of personal

practices play an important part in determining the results produced by a developer. In

other words, software development is a creative process and individual skills and

experience are important.

 ISO 9000 does not automatically lead to continuous process improvement. In other

words, it does not automatically lead to TQM.

SEI CAPABILITY MATURITY MODEL

SEI capability maturity model (SEI CMM) was proposed by Software Engineering

Institute of the Carnegie Mellon University, USA. CMM is patterned after the pioneering work

of Philip Crosby who published his maturity grid of five evolutionary stages in adopting quality

practices in his book “Quality is Free”

In simple words, CMM is a reference model for apprising the software process maturity into

different levels. This can be used to predict the most likely outcome to be expected from the next

project that the organization undertakes. It must be remembered that SEI CMM can be used in

two ways—

capability evaluation and software process assessment. Capability evaluation and software

process assessment differ in motivation, objective, and the final use of the result. Capability

evaluation provides a way to assess the software process capability of an organisation. Capability

evaluation is administered by

the contract awarding authority, and therefore the results would indicate the likely contractor

performance if the contractor is awarded a work. On the other hand, software process assessment

is used by an organisation with the objective to improve its own process capability. Thus, the

latter type of assessment is for purely internal use by a company.

The different levels of SEI CMM have been designed so that it is easy for an organisation to

slowly build its quality system starting from scratch. SEI CMM classifies software development

industries into the following five maturity levels:

Level 1: Initial

A software development organisation at this level is characterised by ad hoc activities.

Very few or no processes are defined and followed. Since software production processes are not

defined, different engineers follow their own process and as a result development efforts become

chaotic. Therefore, it is also called chaotic level. The success of projects depends on individual

efforts and heroics. When a developer leaves the organisation, the successor would have great

difficulty in understanding the process that was followed and the work completed. Also, no

formal project management practices are followed. As a result, time pressure builds up towards

the end of the delivery time, as a result short-cuts are tried out leading to low quality products.

Level 2: Repeatable

At this level, the basic project management practices such as tracking cost and schedule

are established. Configuration management tools are used on items identified for configuration

control. Size and cost estimation techniques such as function point analysis, COCOMO, etc., are

used. The necessary process discipline is in place to repeat earlier success on projects with

similar applications. Though there is a rough understanding among the developers about the

process being followed,

the process is not documented. Configuration management practices are used for all project

deliverables. Please remember that opportunity to repeat a process exists only when a company

produces a family of products. Since the products are very similar, the success story on

development of one product can repeated for another. In a nonrepeatable software development

organisation, a software product

development project becomes successful primarily due to the initiative, effort, brilliance, or

enthusiasm displayed by certain individuals. On the other hand, in a non-repeatable software

development organisation, the chances of successful completion of a software project is to a

great extent depends on who the team members are. For this reason, the successful development

of one product by such an organisation does not automatically imply that the next product

development will be successful.

Level 3: Defined

At this level, the processes for both management and development activities are defined and

documented. There is a common organisation-wide understanding of activities, roles, and

responsibilities.

The processes though defined, the process and product qualities are not measured. At this level,

the organisation builds up the capabilities of its employees through periodic training programs.

Also, review techniques are emphasized and documented to achieve phase containment of errors.

ISO 9000 aims at achieving this level.

Level 4: Managed

At this level, the focus is on software metrics. Both process and product metrics are

collected. Quantitative quality goals are set for the products and at the time of completion of

development it was checked whether the quantitative quality goals for the product are met.

Various tools like Pareto charts, fishbone diagrams, etc. are used to measure the product and

process quality. The process metrics are used to check if a project performed satisfactorily. Thus,

the results of process measurements are used to evaluate project performance rather than

improve the process.

Level 5: Optimising

At this stage, process and product metrics are collected. Process and product measurement data

are analysed for continuous process improvement. For example, if from an analysis of the

process measurement results, it is found that the code reviews are not very effective and a large

number of errors are detected only during the unit testing, then the process would be fine tuned

to make the review more effective. Also, the lessons learned from specific projects are

incorporated into the process. Continuous process improvement is achieved both by carefully

analysing the quantitative feedback from the process measurements and also from application of

innovative ideas and technologies. At CMM level 5, an organisation would identify the best

software engineering practices and innovations (which may be tools, methods, or processes) and

would transfer these organisationwide.

Level 5 organisations usually have a department whose sole responsibility is to assimilate latest

tools and technologies and propagate them organisation-wide. Since the process changes

continuously, it becomes necessary to effectively manage a changing process. Therefore, level 5

organisations use configuration management techniques to manage process changes.

Except for level 1, each maturity level is characterised by several key process areas (KPAs) that

indicate the areas an organisation should focus to improve its software process to this level from

the previous level. Each of the focus areas identifies a number of key practices or activities that

need to be implemented. In other words, KPAs capture the focus areas of a level. The focus of

each level and the corresponding key process areas are shown in the Table 11.1:

SEI CMM provides a list of key areas on which to focus to take an organisation from one level

of maturity to the next. Thus, it provides a way for gradual quality improvement over several

stages. Each stage has been carefully designed such that one stage enhances the capability

already built up. For example, trying to implement a defined process (level 3) before a repeatable

process (level 2) would be counterproductive as it becomes difficult to follow the defined

process due to schedule and budget pressures.

Substantial evidence has now been accumulated which indicate that adopting SEI CMM has

several business benefits. However, the organizations trying out the CMM frequently face a

problem that stems from the characteristic of the CMM itself.

CMM Shortcomings: CMM does suffer from several shortcomings. The important among these

are the following:

The most frequent complaint by organisations while trying out the CMM-based process

improvement initiative is that they understand what is needed to be improved, but they need

more guidance about how to improve it.

Another shortcoming (that is common to ISO 9000) is that thicker documents, more detailed

information, and longer meetings are considered to be better. This is in contrast to the principles

of software economics—reducing complexity and keeping the documentation to the minimum

without sacrificing the relevant details.

Getting an accurate measure of an organisation’s current maturity level is also an issue. The

CMM takes an activity-based approach to measuring maturity; if you do the prescribed set of

activities then you are at a certain level. There is nothing that characterises or quantifies whether

you do these activities well enough to deliver the intended results.

Comparison Between ISO 9000 Certification and SEI/CMM

Let us compare some of the key characteristics of ISO 9000 certification and the SEI CMM

model for quality appraisal:

ISO 9000 is awarded by an international standards body. Therefore, ISO 9000 certification can

be quoted by an organisation in official documents, communication with external parties, and in

tender quotations. However, SEI CMM assessment is purely for internal use.

SEI CMM was developed specifically for software industry and therefore addresses many issues

which are specific to software industry alone.

SEI CMM goes beyond quality assurance and prepares an organization to ultimately achieve

TQM. In fact, ISO 9001 aims at level 3 of SEI CMM model.

SEI CMM model provides a list of key process areas (KPAs) on which an organisation at any

maturity level needs to concentrate to take it from one maturity level to the next. Thus, it

provides a way for achieving gradual quality improvement. In contrast, an organisation adopting

ISO 9000 either qualifies for it or does not qualify.

Is SEI CMM Applicable to Small Organisations?

Highly systematic and measured approach to software development suits large organisations

dealing with negotiated software, safety-critical software, etc. But, what about small

organisations? These organizations typically handle applications such as small Internet, e-

commerce applications, and often are without an established product range, revenue base, and

experience on past projects, etc. For such organisations, a CMM-based appraisal is probably

excessive. These organisations need to operate more efficiently at the lower levels of maturity.

For example, they need to practise effective project management, reviews, configuration

management, etc.

Capability Maturity Model Integration (CMMI)

Capability maturity model integration (CMMI) is the successor of the capability maturity model

(CMM). The CMM was developed from 1987 until 1997. In 2002, CMMI Version 1.1 was

released. Version 1.2 followed in 2006. CMMI aimed to improve the usability of maturity

models by integrating many different models into one framework.

After CMMI was first released in 1990, it was adopted and used in many domains. For example,

CMMs were developed for disciplines such as systems engineering (SE-CMM), people

management (PCMM), software acquisition (SA-CMM), and others. Although many

organisations found these models to be useful, they also struggled with problems caused by

overlap, inconsistencies, and integrating the models. In this context, CMMI is generalised to be

applicable to many domains. For example, the word “software” does not appear in definitions of

CMMI. This unification of various types of domains into a single model makes CMMI extremely

abstract. The CMMI, like its predecessor, describes five distinct levels of maturity.

Software Process Improvement and Capability Determination (SPICE)

SPICE stands for Software Process Improvement and Capability determination. It is an ISO

standard (IEC 15504). It distinguishes different kinds of processes—engineering process,

management process, customer-supplier, support. For each process, it defines six capability

maturity levels. It integrates existing standards to provide a single process reference model and

process assessment model that addresses broad categories of enterprise processes.

Personal Software Process (PSP)

PSP is based on the work of David Humphrey [Hum97]. PSP is a scaled down version of

industrial software process discussed in the last section. PSP is suitable for individual use. It is

important to note that SEI CMM does not tell software developers how to analyse, design, code,

test, or document software products, but assumes that engineers use effective personal practices.

PSP recognizes that the process for individual use is different from that necessary for a team.

The quality and productivity of an engineer is to a great extent dependent

on his process. PSP is a framework that helps engineers to measure and improve the way they

work. It helps in developing personal skills and methods by estimating, planning, and tracking

performance against plans, and provides a defined process which can be tuned by individuals.

Time measurement: PSP advocates that developers should rack the way they spend time.

Because, boring activities seem longer than actual and interesting activities seem short.

Therefore, the actual time spent on a task should be measured with the help of a stop-watch to

get an objective picture of the time spent. For example, he may stop the clock when attending a

telephone call, taking a coffee break, etc. An engineer should measure the time he spends for

various development activities such as designing, writing code, testing, etc.

PSP Planning: Individuals must plan their project. Unless an individual properly plans his

activities, disproportionately high effort may be spent on trivial activities and important activities

may be compromised, leading to poor quality results. The developers must estimate the

maximum, minimum, and the average LOC required for the product. They should use their

productivity in minutes/LOC to calculate the maximum, minimum, and the average development

time. They must record the plan data in a project plan summary.

The PSP is schematically shown in Figure 11.4. While carrying out the different phases, an

individual must record the log data using time measurement. During post-mortem, they can

compare the log data with their project plan to achieve better planning in the future projects, to

improve his process, etc.

Figure 11.4: A schematic representation of PSP.

The PSP levels are summarised in Figure 11.5. PSP2 introduces defect management via the use

of checklists for code and design reviews. The checklists are developed by analysing the defect

data gathered from earlier projects.

Figure 11.5: Levels of PSP.

SIX SIGMA

General Electric (GE) corporation first began Six Sigma in 1995 after Motorola and Allied

Signal blazed the Six Sigma trail. Since them, thousands of companies around the world have

discovered the far reaching benefits of Six Sigma. The purpose of Six Sigma is to improve

processes to do things better, faster, and at lower cost. It can be used to improve every facet of

business, from production, to human resources, to order entry, to technical support. Six Sigma

can be used for any activity that is concerned with cost, timeliness, and quality of results.

Therefore, it is applicable to virtually every industry. Six Sigma at many organisations simply

means striving for near perfection. Six Sigma is a disciplined, data-driven approach to eliminate

defects in any process – from manufacturing to transactional and from product to service. The

statistical representation of Six Sigma describes quantitatively how a process is performing. To

achieve Six Sigma, a process must not produce more than 3.4 defects per million opportunities.

A Six Sigma defect is defined as any system behaviour that is not as per customer specifications.

Total number of Six Sigma opportunities is then the total number of chances for a defect. Process

sigma can easily be calculated using a Six Sigma calculator. The fundamental objective of the

Six Sigma methodology is the implementation of a measurement-based strategy that focuses on

process improvement and variation reduction through the application of Six Sigma improvement

projects. This is accomplished through the use of two Six Sigma sub-methodologies—DMAIC

and DMADV. The Six Sigma DMAIC process (define, measure, analyse, improve, control) is an

improvement system for existing processes falling below specification and looking for

incremental improvement. The Six Sigma DMADV process (define, measure, analyse, design,

verify) is an improvement system used to develop new processes or products at Six Sigma

quality levels. It can also be employed if a current process requires more than just incremental

improvement. Both Six Sigma processes are executed by Six Sigma Green Belts and Six Sigma

Black Belts, and are overseen by Six Sigma Master Black Belts. Many frameworks exist for

implementing the Six Sigma methodology. Six Sigma Consultants all over the world have also

developed proprietary methodologies for impleme

nting Six Sigma quality, based on the similar change management philosophies and applications

of tools.

SOFTWARE REUSE
Software products are expensive. Therefore, software project managers are always worried about

the high cost of software development and are desperately looking for ways to cut development

cost. A possible way to reduce development cost is to reuse parts from previously developed

software. In addition to reduced development cost and time, reuse also leads to higher quality of

the developed products since the reusable components are ensured to have high quality. A reuse

approach that is of late gaining prominence is component-based development. Component-based

software development is different from the traditional software development in the sense that

software is developed by assembling software from off-the-shelf components.

Software development with reuse is very similar to a modern hardware engineer building an

electronic circuit by using standard types of ICs and other components. In this Chapter, we will

review the state of art in software reuse.

what can be reused

Before discussing the details of reuse techniques, it is important to deliberate about the kinds of

the artifacts associated with software development that can be reused. Almost all artifacts

associated with software development, including project plan and test plan can be reused.

However, the prominent items that can be effectively reused are:

Requirements specification

Design

Code

Test cases

Knowledge

Knowledge is the most abstract development artifact that can be reused. Out of all the reuse

artifacts, reuse of knowledge occurs automatically without any conscious effort in this direction.

However, two major difficulties with unplanned reuse of knowledge is that a developer

experienced in one type of product might be included in a team developing a different type of

software. Also, it is difficult to remember the details of the potentially reusable development

knowledge. A planned reuse of knowledge can increase the effectiveness of reuse. For this, the

reusable knowledge should be systematically extracted and documented. But, it is usually very

difficult to extract and document reusable knowledge.

Issues

The following are some of the basic issues that must be clearly understood for starting any reuse

program:

Component creation.

Component indexing and storing.

Component search.

Component understanding.

Component adaptation.

Repository maintenance.

Component creation: For component creation, the reusable components have to be first

identified. Selection of the right kind of components having potential for reuse is important. In

Section 14.4, we discuss domain analysis as a promising technique which can be used to create

reusable components.

Component indexing and storing

Indexing requires classification of the reusable components so that they can be easily searched

when we look for a component for reuse. The components need to be stored in a relational

database management system (RDBMS) or an object-oriented database system (ODBMS) for

efficient access when the number of components becomes large.

Component searching

The programmers need to search for right components matching their requirements in a database

of components. To be able to search components efficiently, the programmers require a proper

method to describe the components that they are looking for.

Component understanding

The programmers need a precise and sufficiently complete understanding of what the component

does to be able to decide whether they can reuse the component. To facilitate understanding, the

components should be well documented and should do something simple.

Component adaptation

Often, the components may need adaptation before they can be reused, since a selected

component may not exactly fit the problem at hand. However, tinkering with the code is also not

a satisfactory solution because this is very likely to be a source of bugs.

Repository maintenance

A component repository once is created requires continuous maintenance. New components, as

and when created have to be entered into the repository. The faulty components have to be

tracked.

Further, when new applications emerge, the older applications become obsolete. In this case, the

obsolete components might have to be removed from the repository.

A reuse approach

A promising approach that is being adopted by many organisations is to introduce a building

block approach into the software development process. For this, the reusable components need to

be identified after every development project is completed. The reusability of the identified

components has to be enhanced and these have to be cataloged into a component library. It must

be clearly understood that an issue crucial to every reuse effort is the identification of reusable

components. Domain analysis is a promising approach to identify

reusable components. In the following subsections, we discuss the domain analysis approach to

create reusable components.

Domain Analysis

The aim of domain analysis is to identify the reusable components for a problem domain.

Reuse domain

A reuse domain is a technically related set of application areas. A body of information is

considered to be a problem domain for reuse, if a deep and comprehensive relationship exists

among the information items as characterised by patterns of similarity among the development

components of the software product. A reuse domain is a shared understanding of some

community, characterised by concepts, techniques, and terminologies that show some coherence.

Examples of domains are accounting software domain, banking software domain, business

software domain, manufacturing automation software domain, telecommunication software

domain, etc.

Just to become familiar with the vocabulary of a domain requires months of interaction

with the experts. Often, one needs to be familiar with a network of related domains for

successfully carrying out domain analysis. Domain analysis identifies the objects, operations,

and the relationships among them.

For example, consider the airline reservation system, the reusable objects can be seats, flights,

airports, crew, meal orders, etc. The reusable operations can be scheduling a flight, reserving a

seat, assigning crew to flights, etc. We can see that the domain analysis generalises the

application domain. A domain model transcends specific applications. The common

characteristics or the similarities between systems are generalised.

During domain analysis, a specific community of software developers get

together to discuss community-wide solutions. Analysis of the application domain is required to

identify the reusable components. The actual construction of the reusable components for a

domain is called domain engineering.

Evolution of a reuse domain

The ultimate results of domain analysis is development of problem oriented languages. The

problem-oriented languages are also known as application generators. These application

generators, once developed form application development standards. The domains slowly

develop.

As a domain develops, we may distinguish the various stages it undergoes:

Stage 1: There is no clear and consistent set of notations. Obviously, no reusable components are

available. All software is written from scratch.

Stage 2: H e r e , only experience from similar projects are used in a development effort. This

means that there is only knowledge reuse.

Stage 3: At this stage, the domain is ripe for reuse. The set of concepts are stabilised and the

notations standardised. Standard solutions to standard problems are available. There is both

knowledge and component reuse.

Stage 4: The domain has been fully explored. The software development for the domain can

largely be automated. Programs are not written in the traditional sense any more. Programs are

written using a domain specific language, which is also known as an application generator.

14.4.2 Component Classification

Components need to be properly classified in order to develop an effective indexing and storage

scheme. We have already remarked that hardware reuse has been very successful. If we look at

the classification of hardware components for clue, then we can observe that hardware

components are classified using a multilevel hierarchy. At the lowest level, the components are

described in several forms—natural language description, logic schema, timing information, etc.

The higher the level at which a component is described, the more is the ambiguity. This has

motivated the Prieto-Diaz’s classification scheme.

Prieto-Diaz’s classification scheme

Each component is best described using a number of different characteristics or facets. For

example, objects can be classified using the following:

 Actions they embody.

 Objects they manipulate.

 Data structures used.

 Systems they are part of, etc.

Prieto-Diaz’s faceted classification scheme requires choosing an n-tuple that best fits a

component. Faceted classification has advantages over enumerative classification. Strictly

enumerative schemes use a pre-defined hierarchy. Therefore, these force you to search for an

item that best fits the component to be classified. This makes it very difficult to search a required

component. Though cross referencing to other items can be included, the resulting network

becomes complicated.

Searching

The domain repository may contain thousands of reuse items. In such large domains, what is the

most efficient way to search an item that one is looking for? A popular search technique that has

proved to be very effective is one that provides a web interface to the repository.

Using such a web interface, one would search an item using an approximate automated search

using key words, and then from these results would do a browsing using the links provided to

look up related items. The approximate automated search locates products that appear to fulfill

some of the specified requirements. The items located through the approximate search serve as a

starting point for browsing the repository. These serve as the starting point for browsing the

repository. The developer may follow links to other products until a sufficiently good match is

found. Browsing is done using the keyword to- keyword, keyword-to-product, and product- to-

product links. These links help to locate additional products and compare their detailed

attributes. Finding a satisfactory item from the repository may require several iterations of

approximate search followed by browsing. With

each iteration, the developer would get a better understanding of the available products and their

differences. However, we must remember that the items to be searched may be components,

designs, models, requirements, and even knowledge.

Repository Maintenance

Repository maintenance involves entering new items, retiring those items which are no more

necessary, and modifying the search attributes of items to improve the effectiveness of search.

Also, the links relating the different items may need to be modified to improve the effectiveness

of search. The software industry is always trying to implement something that has not been quite

done before. As patterns requirements emerge, new reusable components are identified, which

may ultimately become more or less the standards. However, as technology advances, some

components which are still reusable, do not fully address the current requirements. On the other

hand, restricting reuse to highly mature components,can sacrifice potential reuse opportunity.

Making a product available before it has been thoroughly assessed can be counter productive.

Negative experiences tend to dissolve the trust in the entire reuse framework.

Reuse without Modifications

Once standard solutions emerge, no modifications to the program parts may be necessary. One

can directly plug in the parts to develop his application. Reuse without modification is much

more useful than the classical program libraries. These can be supported by compilers

through linkage to run-time support routines (application generators).

Application generators translate specifications into application programs. The specification

usually is written using 4GL. The specification might also be in a visual form. The programmer

would create a graphical drawing using some standard available symbols. Defining what is

variant and what is invariant corresponds to parameterising a subroutine to make it reusable. A

subroutine’s parameters are variants because the programmer can specify them while calling the

subroutine. Parts of a subroutine that are not parameterised, cannot be changed.

Application generators have significant advantages over simple parameterised programs. The

biggest of these is that the application generators can express the variant information in an

appropriate language rather than being restricted to function parameters, named constants, or

tables. The other advantages include fewer errors, easier to maintain, substantially reduced

development effort, and the fact that one need not bother about the implementation details.

Application generators are handicapped when it is necessary to support some new concepts or

features.

Some application generators overcome this handicap through an escape mechanism.

Programmers can write code in some 3GL through this mechanism.

Application generators have been applied successfully to data processing application, user

interface, and compiler development. Application generators are less successful with the

development of applications with close interaction with hardware such as real-time systems.

REUSE AT ORGANISATION LEVEL

Reusability should be a standard part in all software development activities including

specification, design, implementation, test, etc.

Ideally, there should be a steady flow of reusable components. In practice, however, things are

not so simple. Extracting reusable components from projects that were completed in the

past presents an important difficulty not encountered while extracting a reusable component from

an ongoing project—typically, the original developers are no longer available for consultation.

Development of new systems leads to an assortment of products, since reusability ranges from

items whose reusability is immediate to those items whose reusability is highly improbable.

Achieving organisation-level reuse requires adoption of the following steps:

 Assess of an item’s potential for reuse.

 Refine the item for greater reusability.

 Enter the product in the reuse repository.

In the following subsections, we elaborate these three steps required to achieve organisation-

level reuse.

Assessing a product’s potential for reuse

Assessment of a components reuse potential can be obtained from an analysis of a questionnaire

circulated among the developers. The questionnaire can be devised to assess a component’s

reusability. The programmers working in similar application domain can be used to answer the

questionnaire about the product’s reusability. Depending on the answers given by the

programmers, either the component be taken up for reuse as it is, it is modified and refined

before it is entered into the reuse repository, or it is ignored. A sample questionnaire to assess a

component’s reusability is the following:

 Is the component’s functionality required for implementation of systems in the future?

 How common is the component’s function within its domain?

 Would there be a duplication of functions within the domain if the component is taken

up?

 Is the component hardware dependent?

 Is the design of the component optimised enough?

 If the component is non-reusable, then can it be decomposed to yield some reusable

components?

 Can we parametrise a non-reusable component so that it becomes reusable?

Refining products for greater reusability

For a product to be reusable, it must be relatively easy to adapt it to different contexts. Machine

dependency must be abstracted out or localised using data encapsulation techniques. The

following refinements may be carried out:

Name generalisation: The names should be general, rather than being directly related to a

specific application.

Operation generalisation: Operations should be added to make the component more general.

Also, operations that are too specific to an application can be removed.

Exception generalisation: This involves checking each component to see which exceptions it

might generate. For a general component, several types of exceptions might have to be handled.

Handling portability problems: Programs typically make some assumption regarding the

representation of information in the underlying machine. These assumptions are in general not

true for all machines. The programs also often need to call some operating system functionality

and these calls may not be the same on all machines. Also, programs use some function libraries,

which may not be available on all host machines. A portability solution to overcome these

problems is shown in Figure 14.1. The portability solution suggests that rather than call the

operating system and I/O procedures directly, abstract versions of these should be called by the

application program. Also, all platform-related calls should be routed through the portability

interface. One problem with this solution is the significant overhead incurred, which makes it

inapplicable to many real-time systems and applications requiring very fast response.

Figure 14.1: Improving reusability of a component by using a portability interface.

Current State of Reuse

In spite of all the shortcomings of the state-of-the-art reuse techniques, it is the experience of

several organisations that most of the factors inhibiting an effective reuse program are non-

technical. Some of these factors are the following:

 Need for commitment from the top management.

 Adequate documentation to support reuse.

 Adequate incentive to reward those who reuse. Both the people contributing new reusable

components and those reusing the existing components should be rewarded to start a

reuse program and keep it going.

 Providing access to and information about reusable components. Organisations are often

hesitant to provide an open access to the reuse repository for the fear of the reuse

components finding a way to their competitors.

Emerging trends:

CLIENT-SERVER SOFTWARE

In a client-server software, both clients and servers are essentially software components.

A client is a consumer of services and a server is a provider of services. The client-server

concept is not a new concept. It existed in the society since long. For example, a teacher may be

a client of a doctor, and the doctor may in turn be a client of a barber, who in turn may be a client

of the lawyer, and so forth. From this, we can observe that a server in some context can be a

client in some other context. So, clients and servers can be considered to be mere roles.

Considering the level of popularity of the client-server paradigm in the context of

software development, there must be several advantages accruing from adopting this concept.

Let us deliberate on the important advantages of the client-server paradigm.

Advantages of client-server software

There are many reasons for the popularity of client-server software. A

few important reasons are as follows:

Concurrency: A client-server software divides the computing work among many different client

and server components that could be residing on different machines. Thus client-server solutions

are inherently concurrent and as a result offer the advantage of faster processing.

Loose coupling: Client and server components are inherently looselycoupled, making these easy

to understand and develop.

Flexibility: A client-server software i s flexible in the sense that clients and servers can be

attached and removed as and when required. Also, clients can access the servers from anywhere.

Cost-effectiveness: The client-server paradigm usually leads to cost effective solutions. Clients

usually run on cheap desktop computers, whereas severs may run on sophisticated and expensive

computers. Even to use a sophisticated software, one needs to own only a cheap client machine

to invoke the server.

Heterogeneous hardware: In a client-server solution, it is easy to have specialised servers that

can efficiently solve specific problems. It is possible to efficiently integrate heterogeneous

computing platforms to support the requirements of different types of server software.

Fault-tolerance: Client-server solutions are usually fault-tolerant. It is possible to have many

servers providing the same service. If one server becomes unavailable, then client requests can

be directed to any other working server.

Mobile computing: Mobile computing implicitly requires uses of clientserver technique. Cell

phones are, of late, evolving as handheld computing and communicating devices and are being

provided with small processing power, keyboard, small memory, and LCD display. The

handhelds have limited processing power and storage capacity, and therefore can act only as

clients. To perform any non-trivial task, the handheld computers can possibly only support the

necessary user interface to place requests on some remote servers.

Application service provisioning: There are many application software products that are

extremely expensive to own. A client-server based approach can be used to make these software

products affordable for use. In this approach, a n application service provider (ASP) would own

it, and the users would pay the ASP based on the charges per unit time of usage.

Component-based development: Client-server paradigm fits well with the component- based

software development. Component-based software development holds out the promise of

achieving substantial reductions to cost and delivery time and at the same time achieve increased

product reliability.

Component-based development is similar to the way hardware equipments are being constructed

cost-effectively. A hardware developer achieves cost, effort, and time savings in an equipment

development by integrating pre-built components (ICs) purchased off-the-shelf on a printed

circuit board (PCB).

As discussed, advantages of the client-server software paradigm are numerous. No wonder that

the client-server paradigm has become extremely popular. However, before we discuss more

details of this technology, it is important to know the important shortcomings of it as well.

Disadvantages of client-server software

There are several disadvantages of client-server software development. The main disadvantages

are:

Security: In a monolithic application, addressing the security concerns is much easier as

compared to client-server implementations. A client-server based software provides many

flexibilities. For example, a client can connect to a server from anywhere. This makes it easy for

hackers to break into the system. Therefore, ensuring security of a client-server system is a very

challenging task.

Servers can be bottlenecks: Servers can turn out to be bottlenecks because many clients might

try to connect to a server at the same time. This problem arises due to the flexibility given that

any client can connect anytime required.

Compatibility: Clients and servers may not be compatible to each other. Since the client and

server components may be manufactured by different vendors, they may not be compatible with

respect to data types, languages, number representation, etc.

Inconsistency: Replication of servers can potentially create problems as whenever there is

replication of data, there is a danger of the data becoming inconsistent.

CLIENT-SERVER ARCHITECTURES

The simplest way to connect clients and servers is by using a two-tier architecture shown in

Figure 15.1(a). In a two-tier architecture, any client can get service from any server by sending a

request over the network.

Limitations of two-tier client-server architecture

A two-tier architecture for client-server applications though is an intuitively obvious solution,

but it turns out to be not practically usable. The main problem is that client and server

components are usually manufactured by different vendors, who may adopt their own interfacing

and implementation solutions. As a result, the different components may not interface with (talk

to) each other easily.

Three-tier client-server architecture

The three-tier architecture overcomes the main limitations of the two tier architecture. In the

three-tier architecture, a middleware is added between client and the server components as

shown in Figure 15.1(b).

The middleware keeps track of all servers. It also translates client requests into server

understandable form. For example, the client can deliver its request to the middleware and

disengage because the middleware will access the data and return the answer to the client.

Figure 15.1: Two-tier and three-tier client-server architectures.

Functions of middleware

The important activities of the middleware include the following: The middleware keeps track of

the addresses of servers. Based on a client request, it can therefore easily locate the required

server.

It can translate between client and server formats of data and vice versa.

Two popular middleware standards are:

Common Object Request Broker Architecture (CORBA)

COM/DCOM

CORBA is being promoted by Object Management Group (OMG), a consortium of a large

number of computer industries such as IBM, HP, Digital, etc. However, OMG is not a standards

body. OMG in fact does not have any authority to make or enforce standards. It just tries to

popularize good solutions with the hope that if a solution becomes highly popular, it would

ultimately become a standard. COM/DCOM is being promoted mainly by Microsoft. In the

following subsections, we discuss these two important middleware standards.

CORBA

Common object request broker architecture (CORBA) is a specification of a standard

architecture for middleware. Using a CORBA implementation,a client can transparently invoke a

service of a server object, which can be on the same machine or across a network. CORBA

automates many common network programming tasks such as object registration, location, and

activation; request demultiplexing; framing and errorhandling; parameter marshalling and

demarshalling; and operation dispatching.

CORBA Reference Model

The CORBA reference model has been shown in Figure 15.2. In the following subsection, we

briefly discuss the major components of the CORBA reference model.

Figure 15.2: CORBA reference model.

ORB

ORB is also known as the object bus, since ORB supports communication among the different

components attached to it. This is akin to a bus on a printed circuit board (PCB) on which the

different hardware components (ICs) communicate. Observe that due to this analogy, even the

symbol of a bus from the hardware domain is used to represent ORB (see Figure 15.2). The ORB

handles client requests for any service, and is responsible for finding an object that can

implement the request, passing it the parameters, invoking its method, and returning the results

of the invocation. The client does not have to be aware of where the required server object is

located, its programming language, its operating system or any other aspects that are not part of

an object’s interface.

Domain interfaces

T h e s e interfaces provide services pertaining to specific application domains. Several domain

services have been in use, including manufacturing, telecommunication, medical, and financial

domains.

Object services

These are domain-independent interfaces that are used by many distributed object programs. For

example, a service providing for the discovery of other available services is almost always

necessary regardless of the application domain. Two examples of o bject services that fulfill this

role are the following:

Naming Service: This allows clients to find objects based on names. Naming service is also

called white page service.

Trading Service: This allows clients to find objects based on their properties. Trading service is

also called yellow page service. Using trading service a specific service can be searched. This is

akin to searching a service such as automobile repair shop in a yellow page directory.

There can be other services which can be provided by object services such as security services,

life-cycle services and so on.

Common facilities

Like object service interfaces, these interfaces are also horizontally oriented, but unlike object

services they are oriented towards end-user applications. An example of such a facility is the

distributed document component facility (DDCF), a compound document common facility based

on OpenDoc. DDCF allows for the presentation and interchange of objects based on a document

model, for example, facilitating the linking of a spreadsheet object into a report document.

Application interfaces

These are interfaces developed specifically for a given application.

CORBA ORB Architecture

The representation of Figure 15.3 is simplified since it does not show the various components of

ORB. Let us now discuss the important components of CORBA architecture and how they

operate. The ORB must support a large number of functions in order to operate consistently and

effectively. In the carefully thought-out design of ORB, the ORB implements much of these

functionality as pluggable modules to simplify the design and implementation of ORB and to

make it efficient.

Figure 15.3: CORBA ORB architecture.

ORB

CORBA’s most fundamental component is the object request broker (ORB) whose task is to

facilitate communication between objects. The main responsibility of ORB is to transmit the

client request to the server and get the response back to the client. ORB abstracts out the

complexities of service invocation across a network and makes service invocation by client

seamless and easy. The ORB simplifies distributed programming by decoupling clients from the

details of the service calls. When a client invokes an operation, the ORB is responsible for

finding the object implementation, transparently activating it if necessary, delivering the request

to the object, and returning any response to the caller. ORB allows objects to hide their

implementation details from clients. The different aspects of a program that are hidden

(abstracted out) from the client include programming language, operating system, host

hardware,and object location.

Stubs and skeletons

Using a CORBA implementation clients can communicate to the server in two ways—by using

stubs or by using dynamic invocation interface (DII). The stubs help static service invocation,

where a client requests for a specific service using the required parameters. In the dynamic

service invocation, the client need not know before hand about the required parameters and these

are determined at the run time. Though dynamic service invocation is more flexible, static

service invocation is more efficient that dynamic service invocation.

Service invocation by client through stub is suitable when the interface between the client and

server is fixed and it does not change with time. If the interface is known before starting to

develop client and the server parts then stubs can effectively be used for service invocation. The

stub part resides in the client computer and acts as a proxy for the server which may reside in the

remote computer. That is the reason why stub is also known as a proxy.

Object adapter

Service invocation through dynamic invocation interface (DII) transparently accesses the

interface repository (OA). When an object gets created, it registers information about itself with

OA. DII gets the relevant information from the IR and lets the client know about the interface

being used.

CORBA Implementations

There are several CORBA implementations that are available for use. The following are a few

popular ones.

Visibroker is a software from Borland is probably the most popular CORBA implementation.

Netscape browser supports Visibroker.

Therefore, CORBA applications can be run using Netscape web browser. In other words,

Netscape browser can act as a client for CORBA applications. Netscape is extremely popular and

there are several millions of copies installed on desktops across the world. Orbix from Iona

technologies. Java IDL.

Software Development in CORBA

Let us examine how software can be developed in CORBA. Before developing a client-server

application, the solution is split into two parts —the client part and the serv part. Next, the exact

client and server interfaces are determined. To specify an interface, interface definition language

(IDL) is used. IDL is very similar to C++ and Java except that it has no executable statements.

Using IDL only data interface between clients and servers can be defined. It supports inheritance

so that interfaces can be reused in the same or across different applications. It also supports

exception.

After the client-server interface is specified in IDL, an IDL compiler is used to compile the IDL

specification. Depending on whether the target language in which the application is to be

developed is Java, C++, C, etc., Different IDL compilers such as IDL2Java, IDL2C++, IDL2C

etc. can be used as required. When the IDL specification is compiled, it generates the skeletal

code for stub and skeleton. The stub and skeleton contain interface definitions and only the

method body needs to be written by the programmers developing the components.

Inter-ORB communication

Initially, CORBA could only integrate components running on the same LAN. However, on

certain applications, it becomes necessary to run the different components of the application in

different networks. This shortcoming of CORBA 1.X was removed by CORBA 2.0. CORBA 2.0

defines general interoperability standard. The general inter-orb protocol (GIOP) is an abstract

meta-protocol. It specifies a standard transfer syntax and a set of message formats for object

requests. The GIOP is designed to work over many different transport protocols. In a distributed

implementation, every ORB must support GIOP mapped onto its local transport. GIOP can be

used by almost any connection-oriented byte stream transport.

GIOP is popularly implemented on TCP/IP known as internet inter-ORB protocol (IIOP).

COM/DCOM

COM

The main idea in the component object model (COM) is that different vendors can sell binary

components. Application can be developed by integrating off-the-shelf components. COM can

be used to develop component applications on a single computer. The concepts used are very

similar to CORBA. The components are known as binary objects.

These can be generated using languages such as Visual Basic, Delphi, Visual C++ etc. These

languages have the necessary features to create COM components. COM components are binary

objects and they exist in the form of either .exe or .dll (dynamic link library). The .exe

components have separate existence. But .dll COM components are in process servers, that get

linked to a process. For example, ActiveX is a dll type server, which gets loaded on the client-

side.

DCOM

Distributed component object model (DCOM) is the extension of the component object model

(COM). The restriction that clients and servers reside in the same computer is relaxed here. So,

DCOM can operate on networked computers. Using DCOM, development is easy as compared

to CORBA. Much of the complexities are hidden from the programmer.

SERVICE-ORIENTED ARCHITECTURE (SOA)

Service-orientation principles have their roots in the object-oriented designing. Many claim that

service-orientation will replace object orientation; others think that the two are complementary

paradigms.

SOA views software as providing a set of services. Each service composed of smaller services.

Let us first understand what are software services. Services are implemented and provided by a

component for use by an application developer. A service is a contractually de fined behaviour.

That is, a component providing a service guarantees that its behaviour is as per the

specifications. A few examples of services are the following—Filling out an online application,

viewing an on-line bank-statement, and placing an online booking. Different services in an

application communicate with each other.

The services are self-contained. That is, a service does not depend on the context or state of the

other service. An application integrating different services works within a distributed-system

architecture.

The main idea behind SOA is to build applications by composing software services.

SOA principally leverages the Internet and emerging the standardizations on it for

interoperability among various services. An application is built using the services available on

the Internet, and writing only the missing ones.

There are several similarities between services and components, which are as follows:

Reuse: Both a component and a service are reused across multiple applications.

Generic: The components and services are usually generic enough to be useful to a wide range

of applications.

Composable: Both services and components are integrated together to develop an application.

Encapsulated: Both components and services are non-investigable through their interfaces.

Independent development and versioning: Both components and services are developed

independently by different vendors and also continue to evolve independently.

Loose coupling: Both applications developed using the component paradigm and the SOA

paradigm have loose coupling inherent to them. However, there are several dissimilarities

between the components and the SOA paradigm, which are as follow:

The granularity (size) of services in the SOA paradigm are often 100 to 1,000 times larger than

the components of the component paradigm.

Services may be developed and hosted on separate machines.

Normally components in the component paradigm are procured for use as per requirement

(ownership). On the other hand, services are usually availed in a pay per use arrangement.

Instead of services embedding calls to each other in their source code, services use well-defined

protocols which describe how services can talk to each other. This architecture facilitates a

business process expert to tailor an application as per requirement. To meet a new business

requirement, the business process expert can link and sequences services in a process known as

orchestration.

SOA targets fairly large chunks of functionality to be strung together to form new services. That

is, large services can be developed by integrating existing software services. The larger the

chunks, the fewer the interfacings required. This leads to faster development. However, very

large chunks may prove to be difficult to reuse.

Service-oriented Architecture (SOA): Nitty Gritty

The SOA paradigm utilises services that may be hosted on different computers. The

different computers and services may be under the control of different owners. To facilitate

application development, SOA must provide a means to offer, discover, interact with and use

capabilities of the services to achieve desired results.

SOA involves statically and dynamically plugging-in services to build software. SOA

players—BEA Aqua logic, Oracle Web services manager, HP Systinet Registry, MS .Net, IBM

Web Sphere, Iona Artrix, Java composite application suite. Web services can be used to

implement a service-oriented architecture. Web services can make functional building blocks

accessible over standard Internet protocols independent of platforms and programming

languages.

One of the central assumptions of SOA is that once a market place for services develops,

services can be purchased to develop new applications. To build an application, one would use

off-the-shelf services and possibly build some. When services are used across a large number of

applications, automatically quality would improve and also price would reduce. When a service

is used by a very large number of applications, the cost of using that service becomes near zero.

Thus the cost of creating an application that uses widely used services would also be near zero,

as all of the software services required would already exist and cost near zero, only orchestration

of these services would be required to produce the application.

SOFTWARE AS A SERVICE (SAAS)

Owning software is very expensive. For example, a Rs. 50 Lakh software running on an

Rs. 1 Lakh computer is common place. As with hardware, owning software is the current

tradition across individuals and business houses. Most of IT budget now goes in supporting the

software assets.

The support cost includes annual maintenance charge (AMC), keeping the software

secure and virus free, and taking regular back-ups, etc.

But, often the usage of a specific software package does not exceed a couple of hours of usage

per week. In this situation, it would be economically worthwhile to pay per hour of usage. This

would also free the user from the botherance of maintenance, upgradation, backup, etc.

This is exactly what is advocated by SaaS. In this context, SaaS makes a case for pay per

usage of software rather than owning software for use. SaaS is a software delivery model and

involves customers to pay for any software per unit time of usage, with the price reflecting

market place supply and demand.

As we can see, SaaS shifts “ownership” of the software from the customer to a service

provider. Software owner provides maintenance, daily technical operation, and support for the

software. Services are provided to the clients on amount of usage basis. The service provider is a

vendor who hosts the software and lets the users execute on-demand charges per usage units. It

also shifts the responsibility for hardware and software management from the customer to the

provider. The cost of providing software services reduces as more and more customers subscribe

to the service. Elements of outsourcing and application service provisioning are implicit in the

SaaS model. Also, it makes the software accessible to a large number of customers who cannot

afford to purchase the software outright. Target the “long tail” of small customers.

If we compare SaaS to SOA, we can observe that SaaS is a software delivery model,

whereas SOA is a software construction model. Despite significant differences, both SOA and

SaaS espouse closely related architecture models. SaaS and SOA complement each other. SaaS

helps to offer components for SOA to use. SOA helps to help quickly realise SaaS. Also, the

main enabler of SaaS and SOA are the Internet and web services technologies.

	Academic Year 2023-24
	(20APC0519)

