ANNAMACHARYA INSTITUE OF TECHNOLOGY AND
SCIENCES -TIRUPATI

AUTONOMOUS

UNIT-1 Laplace Transforms
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Why use Laplace Transforms?

Find solution to differential equation using algebra

Relationship to Fourier Transform allows easy way
to characterize systems

No need for convolution of input and differential
equation solution

Useful with multiple processes in system



“History of the Transform

* Euler began looking at integrals as solutions to differential equations
B0l BEYSHTOSIENg at integrals as solutlons to differential equations in

t}
= /J&(r”}e” dr z(x; a) = fﬁ“’ X(2) dt,

« Lagrange took this a step further while working on probability density

Kasctioesapl tnakedap Rmseivhadolionking edustéMability density

functions and looked at forms of the following equation:
fﬁ[(r‘_}e_ﬂrar dr,

 Finally, in 1785, Laplace began using a transformation to solve

maUAliaRs 984t iderraaes sigheyantrotdershtethswarrent
daBei8Rof finite differences which eventually lead to the current

S=Ay +BAy +CAy | ...,y = [e ™ ¢(x)dx,




Transforms -- a mathematical conversion from one way of
thinking to another to make a problem easier to solve

problem solution
in original in original
way of way of

thinking thinking




Complex numbers

= complex number in Cartesian form:z=x + jy
» x =Rz, the Real part of z

= y=.7z,Imainary part of z

= j=1+/-1(engineering notation)
= | =+/-1is polite term in mixed company




Complex numbers in polar form

complex number in polar form: z = re exp jd
r is the modulus or magnitude of z

¢ is the angle or phase of z

exp(jd) = cos P +j sin d



The Laplace transform

we’ll be interested in signals defined for t > O the

Laplace transform of a signal (function) f is the function
F = L(f) defined by

F(s) = e f(t) dt for those s € C for which the
in’regroﬁ makes sense

F is a complex-valued function of complex numbers ¢

s is called the (complex) frequency variable, with units
sec—1;

t is called the time variable (in sec);

st is unitless * for now, we assume f contains no impulses
att =0



problem solution
in time in time
domain domain

« Other transforms
* Fourier
* z-transform
- wavelets



time domain

Lapl

sform

Laplace transform

algebra

Laplace domain or
complex frequency domain

inverse Laplace
transform




why to use Laplace Transform



F(s) = L{f (1)} = Tf (t)e 'dt

G+ joo

£(t) = LY{F(s)} = zim [F(s)eds

G—joo

tisreal, sis complex!
nverse requires complex analysis to solve

Note “fransform™: f(t) — F(s), where 1 is
Infegrated and s is variable

Conversely F(s) — f(f), tis variable and s
IS Infegrated




Necessary and sufficient condition

There are two governing factors that determine
whether Laplace transforms can be used:

e f(t) must be at least piecewise continuous for t = o
* |f(t)| = MeYtwhere M and y are constants



/‘
“Basic Tool For Continuous Time:

Laplace Transform

L[ ()] = F(s) = jooo f (t)e "dt

Convert time-domain functions and operations into
frequency-domain

e f(t) = F(s) (teR, seC)

 Linear differential equations (LDE) — algebraic expression in
Complex plane

Graphical solution for key LDE characteristics

Discrete systems use the analogous z-transform
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The Complex Plane (review)

Imaginary axis (j)

Uu=Xx+Jy
ﬁ ............ ZUE¢:tan_1X
X

> Real axi —
eaaXIS‘U‘ErE‘U|=\/X2—I—y2
—y ............ ;

u=x-Jy

(complex) conjugate




Continuity

* Since the general form of the Laplace

transform is:
F(s) = L{f(t)} = f St f(t) dt.

it makes sense that f(t) must be at least
piecewise continuous for t > 0.

 |f f(t) were very nasty, the integral would not
be computable.
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Boundedness
This criterion also follows directly from the general
definition:

F(s) = L{f(t)} = ] () dt.

If f(t) is not bounded by Me! then the integral will not
converge.
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Laplace Transfo i
General Theory S R

Example

Convergence




~Laplace Transforms of Common

Functions
Name f(t) F(s)
1 it =0 |
f(t) =
Impulse (t) {O - - 1
|
Step f(t)=1 %
|
1
Ramp f(t)=t =
— S
Exponential f(t)=e" i
sine (1) =sin( ) -




=

Some more Transforms




Theorem 1

* Linearity of the Laplace Transform

e The Laplace transform is a linear operation, that is,
for any functions f(t) and g(t) whose transforms exist
and any constants a and b the transform of af(t) + bg(t)
exists, and

L taf(t) + bg(t) ) =aL{f(t)} + bL{g(1)}.




Laplace Transform

Table 6.1 Some Functions f(t) and Their Laplace Transforms £(f)

f(1) £(f) f(n) £(f)
1 1/s 7 cos wl - 2 -
)
t 1/5% 8 sin wt
s2 + w?
" o s
t 2!/s 9 cosh ar
§2 — 42
n' g a
n=01--- el 10 sinh ar 22
1@ IN'a+1) 2 s—a
(a positive) a+1 1l Al A 2
K (s —a)"+ o
e = l p 12 ¢™ sin wt <




Laplace Transform Properties

Addition/S caling L[af, (t) £ bf, (t)] = aF,(s) £ bF,(s)

Differenti ation L[% f(t)} =sF(s)— f(0%)
: F(s) 1
Integratio n L{| f(t)dt|=——=+=]| f(t)dt
: [1wa]-E2 1w,

t

Convolutio n [ f.t = f,(2)dz = F,(5)F, (s)
0

Inttial -value theorem f(0+) =lim sF(s)

Final -value theorem !im ft)= Iim0 sF(s)



~—+ SIMPLE TRANSFORMATIONS

e Impulse -- 5 (t,)

o0

F(s) = f estd (t,) dt

(0]

= e'StO

(t) 0 (to)
1 t




» Step --u (t,)

F(s) = f estu (to) dt = e-sto/s




Linearity

Constant multiplication

Complex shift

Real shift

Scaling

f, (1) = 1,5(t)

a f(t)

eat f(t)

f(t - T)

f(t/a)

F1(s)  Fy(s)

a F(s)

F(s-a)

e’ F(as)

a F(as)



First shifting Theorem

Theorem 2

* First Shifting Theorem, s-Shifting

o If f(¢) has the transform F(s) (Where s > k for some k),
then e“f(t) has the transform F(s — a) (wWheres — a =
k). In formulas,

Lie“[(D)y = F(s — a)
or, If we take the inverse on both sides,

e“f(t) = L '{F(s — a)}




Properties: Multiplication by t"

Example : Proof :



DRIOE %f(t)

OE _t[f(t)dt g(t) = j f(t)dt

Dg(t) = f (1) g(t)=D,f(1)




Properties: Integrals

Proof :

Example :

let

If t=0, g(t)=0

for SO

slower than



operties: Derivatives
(this is the big one)

Example : Proof :

let



Properties: Nth order derivatives
L{D*f (1)} ="

g(t) = Di(1),9(0) = Df (0) =1(0)

= L{D*g(1)}=5G(s) —9(0) = sL{DF (1)}~ ' (0)
=s(sF(s) - (0)) — ' (0) = s’F(s) —sF(0) - f'(0)

L{D"f ()} =s"F(s) —s"f (0) —s"2f'(0) —--- —sF "2 (0) - F " (0)

L{D"f (1)}

D"f (t), D" *f (t),...Df (t),f (t) =



.

Unit Step Function
(Heaviside Function).
Second Shifting Theorem
(t-Shifting)




Unit Step Function(or) Second
Shifting Theorem

= We shall introduce two auxiliary functions, the unit
step function or Heaviside function u(t - a) (following)
and Dirac’s delta 6(t - a)

= These functions are suitable for solving ODEs with
co mplicated right sides of considerable engineering
interest, such as single waves, inputs (driving forces)
that are discontinuous or act for some time only,
periodic inputs more general than just cosine and sine,
or impulsive forces acting for an instant
(hammerblows, for example).




oecond snirting 1 heorem;
~“Time Shifting * —

If f(t) has the transform F(s) then the “shifted function”

. 0 ift<a
(3) f(t):f(t_a)”(t_a):{f(t—a) ift >a

has the transform e™F(s). That is, if L {f(t)} = F(s), then
4) L {f(t — a)u(t — a)} = e *F(s).
Or, if we take the inverse on both sides, we can write

(4%) f(t = a)u(t —a)} =L "HeF(s)}.




The unit step function or Heaviside function u(f — a) is 0
for t <a, has a jump of size 1 at t =a (where we can leave it
undefined), and is 1 for ¢ > g, in a formula:

0 ift<a
u(t—a) ={1 s (a2 0).(1)




Unit Step Function (Heaviside Function) u(t = a)
(continued)

Figure 1 shows the special case u(t), which has its jump at
zero, and Fig. 2 the general case u(t — a) for an arbitrary
positive a. (For Heaviside, see Sec. 6.1.)

u(t) u(t —a)

1 1~

0 t 0 a t

Unit step function u(t) Unit step function u(t — a)




UNIT STEP FUNCTION (HEAVISIDE FUNCTION) U(T = A)
(CONTINUED)

—as

(2) L {u(t —a)} = es
Multiplying functions f (¢) with u(t — a), we can produce
all sorts of effects. The simple basic idea is illustrated in

Figs. 3 In Fig. 120 the given function is shown in (A). In
(B) it is switched off between t =0 and t =2 (because

u(t —2) =0 when t < 2) and is switched on beginning

at t =2. In (C) it is shifted to the right by 2 units, say, for
instance, by 2 sec, so that it begins 2 sec later in the same
fashion as before.

(s >0).




—

More generally we have the following.
Let f(t) = O for all negative t. Then f(t — a)u(t — a) with a >0 is
f(t) shifted (translated) to the right by the amount a.

()
5 \ 5| - 5
|
/ |
/ T\ { /\
O T 2 ¢ O Q2% 2 ¢ Or T42 27r+2 ¢
L\ ol N L Ao
(A) F(¢) =5 sin ¢ (B) () wult — 2) (C) f(£ — 2Dt — 2)

Effects of the unit step function: (A) Given function.
(B) Switching off and on. (C) Shift
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EXAMPLE 1
Application of Theorem 1. Use of Unit Step Functions

Write the following function using unit step functions
and find its transform.

2 ifO0<t<l1

1, . 1
ty=<—t ifl<t<—rx
f(t) s >

Fig. 122
cost if t>%7z. (Fig )







\

J\

:;tzuu—l)}:L {G(t—lf+<t—1>+;ju<t—1>}

-

.

1

2

2 2 2 2 8

1 7 7
— —7s/2
= 3 + > + e

S 25 8s

t2u<t—;7z>}=L {(1(t—1ﬂ)2+(t—ﬂ)+




~ Solution (CW

S tep 2. (continued)

s°+1

_1 — —| Q1 _1 _1 — 1 —7s/2
L{(cost)u(t 27:)}—L{ (sm(t 27z)ju(t 272)}— e .

Together,

2
L(,f):g_ge_s +( ]; + ]:, + 1 )e_s — 1 + 4 —|—7Z. e—ﬂ'S/Z _ 1 e—ﬂS/Z.

G R e R R T s°+1



Short Impulses.
eDirac’s Delta Function.




—  Short Impulses. Dirac’s Delta
Function

Impulse examples:
*An airplane making a “hard” landing
*A mechanical system being hit by a hammer blow
*A ship being hit by a single high wave
* A tennis ball being hit by a racket, and many other
similar examples appear in everyday life. They are
phenomena of an impulsive nature where actions of
forces—mechanical, electrical, etc. —are applied over
short intervals of time.

We can model such phenomena and problems by
“Dirac’s delta function,” and solve them very effectively
by the Laplace transform.




/

>

To model situations of that type, we consider the function

1/k ifast<a+k .
D flt=a) {O otherwise (Fig- 132)
(and later its limit as k — 0). This function represents, for
instance, a force of magnitude 1/k acting from t=a to
t =a + k, where k is positive and small. In mechanics, the
integral of a force acting over a time interval a <t<a+kis
called the impulse of the force; similarly for electromotive
forces E(t) acting on circuits. Since the blue rectangle in
Fig. 132 has area 1, the impulse of f, in (1) is

@ L= f-ayde= [ ar=1.




“tmpulse function

Phenomena of an impulsive nature: such as the
action of forces or voltages over short intervals of
time:

e a mechanical system is hit by a hammerblow,

e an airplane makes a “hard” landing,

e a ship is hit by a single high wave, or

Goal:

e Dirac’s delta function.
e solve the equation efficiently by the Laplace transform..



/

“Laplace Transform of Periodic
Function

Definition: A function f(t) is said to be periodic
function with period p(> o) if f(t+p)=£(t) for all t>o.

Theorem 1: Transform of Periodic Functions

The Laplace transform of a piecewise continuous
periodic function f(t) with period p is

{0} = [e 0 dt (5>0)



L{f(t)} = ]Oe‘stf(t) dt

= Te‘stf(t) dt + ]oe‘stf(t) dt

Transform of Peri




“Laplace Transform of Periodic
Function

Put t=u+p in the second integral,
-.dt=du, whent =p,u=0and whent — oo, U — 0.

s L{f(D)} = p |e “H(t) dt + j e*“*Pf(u+ p) du since f(p+u) = f(u)

e~ 'f(t) dt + e~ j e f(u) du

o'-—-.8 ot



f(s) = [e'f(t) dt+e *"-f(s)
O
Solving for f (s) the desired result follows.

- LLROY =T (s) = 1_}3 — [e™'f) dt, (s> 0)

EXx: Find Laplace Transform of Half — wave Re ctifier

—

sSiNnwt, O<t<£
() = - <
0 7% 27
8 2 @
n 27T
Sol" :Here p=—-—-0
v
27



— By definition of L.T.of periodic function

(1) = 1_i_pg [ f(tyt

2z

= e‘stf (t)dt

—275

l-e @

27

1 e f(t)dt + Te‘“ f(t)dt

—27S

l-e @

O 2 | N

Q




B 1_275 Te‘“ sin otdt
1_e w 0)
1 i oSt |
—s-sin wt — w - cos wt
1_e_i)ﬂs _(—3)2 +(W)2 ( 4% (£ a ):|
1 P e—St (_S.Sin 7T—C!)COSC¢)) _
1_e—i)75 | s2 4 o2
g st _
{32 —(—s-sin O—a)coso)}
+
1 i 1 e—z)ﬁ . o
275 | g2 | 2
1—e @ L )

N

«

0



Inverse Laplace transform

The Laplace transform is an expression involving variable s and can be
denoted as such by F (s). That is:

F(s)=L{f(t)}
It is said that f (t) and F (s) form a transform pair.

This means that if F (s) is the Laplace transform of f (t) then f (t) is the inverse
Laplace transform of F (s).

That is: F(t) = L‘l{F(s)}
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INVERSE LAPLACE TRANSFORMS FORMULAE

f(t)=L"{F(s)} F(s)=L{f(t)} f)=L{F(s)} F(s)=L{f(t)}

Kk
k — s>0 - Peand
2 sin kt e s“+k“>0
T 1
e —— s>-k x C
il coskt - ka0
te ™ . S




—

e Definition :

e Partial fractions are several fractions whose
sum equals a given fraction

* Purpose -- Working with transforms requires
breaking complex fractions into simpler
fractions to allow use of tables of transforms



——,

“Example : Determine the inverse
transform of the function below.

F(S)—5 12 &

S 32 g 43

f(t)=5+12t +8e™




Inverse Laplace Transforms |-

There are three cases to consider in doing the partial fraction expansion of F(s).

Case 1: F(s) has all non repeated simple roots.

kl kz kn
F(s)= + +...+
S+ P, S+p_

Case 2: F(s) has complex poles:

*

P.(s) k k

F(s)= : —= e Ca e
Q(s)(s+a—)B)(s+a+]B) s+a—-]B s+a+]p)
Case 3: F(s) has repeated poles.
P, (s) . e K P (s)

R S— SR

F(s)= -= + 2 S
Q8)s+p) SEP (s4p) (s+p,) Q,(s)




Inverse Laplace Transforms |

/

| EXAMPLE 1: |

F (S) _ 4(S + 2) — Al + AZ + A3
(s+1)(s+4)(s+10) (s+1) (s+4) (s+10)
_ (s+1)4(s+2) _ (s+4)4(s+2)
A (s+1)(s+4)(s+10)|S=‘1 Y21 A2=(S+?L;-(s+4§(2+10)|3=‘4 = 4/9
A= (s+10)4(s+2) _16/27

(s+1)(s+4)(s+10) ls=10 =

f(t)=|a/27)e™ + (4/9)e™ + (=16/27)e 1% lu(t)



/'

For the given F(s) find f(t)

ts: An Example.

(s+1)

s(s® +4s + 5)

Ky

(s+1)

s(s+2— J)(s+2+ })

S S+2— ]

(s+1)

(s® +4s + 5) ||3=O

(s+1)

s(s+2+ j) ||S=—2+j

>
Ky
S+2+ ]
_ 1
5
_ _—2*+J1+1 4535 _108°
—2+ j)(2]))




. Determine exponential portic

o transform of function below.

=) — 50(s +3)

(s +1D(s +2)(s® +2s+5)
1(5) - ’Al : Az

s +1 S+ 2

i 50(s + 3) } _ (50)(2) Tu=.

(s + 2)(s® +2s+5) D (4)

50(s + 3) _ (50)@ .
(s+D(s*+2s+5) |, (—D(5)

f. (t) = 25e* —10e*




/
~——Example 3. Determine inverse transform

of function below.

60
- s(s + 2)2
F(s) = 60 2:A+ C _ c.
s(s+2) s (s+2) (s+2)
A=skEG)| = 5t 2} =~ O - =15
=2 (0 2

C,=(s+2)°F(s) | 2 :@} 080 55
e S S

CONT..NEXT PAGE



e R B

__ &0 5 @ €
sis 2. ¢ & ) -

F(s)

60 15 X G
MAE+2): 1 (1+2)° (1+2)

- - - .
S(s 23 = [s 7 <P

F(s)

f (t) =15—30te 2 —15e 2 =15—15e 2 (1+ 2t)
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e Laplace transform o
atives,Integrals

f | {f(s)}="f(t)then

ILTD(INVERSELAPLACETRANSFORMOFDERIVATIVES)

L T or={-1't"f

INVERSELAP LACETRANSFORMOFINTGRALS)

SIS ORESIC




Inve ansform o

powers of ‘s’ & Division by ‘s’

If | 4 f(s)}="(t),then

| sn f(S)}=f(n)(t),if f(”)(t):Ofor,n:LZ,S, ..... ni

L_j{i@}czf (u)du



Convolution Theorem




Convolution theorem

Proof:




0 ) gy gy

N
L L(S_Qz}_L L» (3_4)2} LYF(5)-G(s)]

| 1 Hiva i 1 A
L [g}_l_f(t), L {(5_4)2}—% =g(t)

% -1 l o o 1 % +/4t
il [3(5—4)2}_]‘(0 g(t) =1*te

=_[Otre‘”dr —te" /4—-e"/16+1/16



Convolution has to do with the multiplication of
transforms. The situation is as follows.

Addition of transforms provides no problem;
we know that L (f+¢g)=L (f) +L (g).

Now multiplication of transforms occurs frequently in
connection with ODEs, integral equations, ang
elsewhere. Then we usually know L (f) and L (g) and
would like to know the function whose transform is the
product

L (AL (2). We might perhaps guess that it is fg, but this is
fal(?e. 7%1@ tmns{o?m oan progu%‘ 1s generally dszfqerent from
the product of the transforms of the f%zctors,

L (fg) #L (L (9) in general.



Example ot Convolution Theorem_.

If f=e'and g=1.
Then fg=¢, L (fg)=1/(s - 1),
butL (H=1/(s-1)and L (1)=1/s
give L (f)L (g) =1/(s* - s).
According to the next theorem, the correct answer
is that

L ()L (g) is the transform of the convolution of f and
g, denoted by the standard notation f *¢ and defined
by the integral

h(t)=(f *g)(t) =, f(2)s(t—7)dr.



DY) 3=sy(s)—y(0)
() L{y"()}=s2y(s)-sy(0)-y'(0)
(iDL{y" ®)}=s3y(s)-s2y(0)-sy'(0)—y"(0)

Step3:Re placee y(0), y'(0) & y"(0)



Transform Method continuation

\ /

y v

e

step4:Transpose the terms with minus signs to the
right.
Steps: D1V_1de by the coefficient of

getting as a known function of x.

y

Step6:Resolve this function into partial fractions. _

Step7:Take the Inverse of Laplace Transform of
obtained in steps.This gives y as a function of t which
is the required solution of the given equation
satisfying the given initial conditions.



Example of Solution of an ODE

C('jty+6%+8y 2 y(0)=y'(0)=0 = ODE wf/initial conditions
Apply Laplace transform

SY(s) + 6sY(s) +8Y(s) =2/s
to each term

5 Solve forY(s)
Y(s) =
5) s(s+2)(s+4)
Apply partial fraction
Y (s) = 1 N -1 N 1 expanslon
4s  2(s+2) 4(s+4) Apply inverse Laplace
1 o2 g transform to each term
y(t) =——-——+
4 2 4



“Example: Use of the Laplace Transform

to solve the initial-value problem

y'+4y =sint  ¥(0)=0 y'(0)=1
Solve , & .

Solution: Taking the Laplace Transform of both sides

1.e Lly"+4y;}=Lisint] usi'n{gllt}HeA'H@f}V?alt{%i@t}
property
Lyl=styl=yO  Ly)=siiy}-510-y©)

s?L{y}—sy(0) - y'(0) +4L{y}= L{sint} =

32+1



AP
AN

A R - LA

A A A P A LY " WA A AN

u A T L R, AR A
AR R T

e e A A L
= g

o

Al oo oy
G A A AP A NP L] i WAty ety A
B

-] TG e Ty PRI e e
P 2

N S B A R AT
o T wet N

N SPPPIIIIN o
By Wiy
o A et 4

B

o e 0 I I I

O N NS



Solving pagtlal fractions
Y(s) = _ As+ B Cs+D

(5 +1)(=s +4) (s +1) (s Wé)get
=(AS+B)(S +4)+(CS+D)(S +1)
=(A+C)s® +(B+D)s’+ (4A+C)s+ (4B + D) =5 +2
A+C=0 B+D=1 AA+C =0 4B+D=2

| B

\4 s




1 2

- 3211 352+ 4d)

L{sint}+§L{sin2t}

2
3

ce the solution is y(t) = Lsint+Zsin2t







~—— Real-Life Applications

®ec

@ Semiconductor
mobility

@ Call completion in
wireless networks

@ Vehicle vibrations on
compressed rails

@ Behavior of magnetic
and electric fields
above the
atmosphere




~——Diffusion Equation

u, = ku,, in (0,1)
Initial Conditions:
u(o,t) =u(L,t) =1, u(x,0) =1 + sin(mx/1)

Using  af(t) + bg(t) = aF(s) + bG(s)
and df/dt = sF(s) - f(o0)

and noting that the partials with respect to x commute with the transforms with
respect to t, the Laplace transform U(x,s) satisfies

sU(X,s) — u(x,0) = kU, (x,s)

With e - 1/(s-a) and a=o,
the boundary conditions become U(o,s) = U(l,s) = 1/s.

So we have an ODE in the variable x together with some boundary conditions.
The solution is then:

U(x,8) = 1/s + (1/(s+kn?/1?))sin(nx/1)

Therefore, when we invert the transform, using the Laplace table:
DD

u(x,t) =1+ e* Wgin(nx/1)



- Ex. Semiconductor Mobfﬁty/

@ Motivation

» semiconductors are commonly
made with superlattices having
layers of differing compositions

» need to determine properties of
carriers in each layer

@ concentration of electrons and
holes

@ mobility of electrons and holes
-+ conductivity tensor can be related

to Laplace transform of electron
and hole densities
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" Real world Applications of
Laplace Transform

* A simple Laplace Transform is conducted while
sending signals over any  two-way
communication medium (FM/AM stereo, 2-way
radio sets, cellular phones). When information is
sent over medium such as cellular phones, they
are first converted into time-varying wave, and
then it is super-imposed on the medium. In this
way, the information propagates. Now, at the
receiving end, to decipher the information being
sent, medium waves time functions are
converted to frequency functions.



~Engineering Applications ofﬁace
Transform
* System Modeling

* Analysis of Electrical Circuits

* Analysis of Electronic Circuits

» Digital Signal Processing
* Nuclear Physics
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FOURIER SERIES

Baron Jean Baptiste Joseph Fourier (1768—1830) introduced the idea that
any periodic function can be represented by a series of Sines and cosines
which are harmonically related.

Fourier series is an infinite series representation of a periodic function in
terms of Sines and Cosines. Fourier series is useful to solve Ordinary and
Partial differential equations particularly with periodic functions appearing
as non-nomogeneous terms.

Suppose that a given function f(x) defined by [-z,z] or [o0,2z] or any other
Interval can be expressed as a trigonometric series as

I f(x)= % +> (a.Cosnx +bnSinnx)| """"" (1)

Such series is known as the Fourier series for f(x) and the constants
a,,a &b ; (n=123...) are called the Fourier Coefficients of f(x).




Periodic Function

A function f(x) is said to be of period T or to be periodic with period T>0 if for all real x, f(x+T)=f(T)
and T is the least of such values. (a function returning to the same value at regular intervals)

Example: Since Sinx =Sin(x+z)=Sin(x+2x)=Sin(x+4x)=———— the function Sinx is periodic
with period 27.

In a similar manner the period of Cosx is2x

The period of tanx is .

Euler’s Formulae

The Fourier series for the function f(x) in the interval C <x<C+2x is given by

F(X) = %+ 3 (a Cosnx +b Sinnx)

C+2rm

where aO:1 [ f(x)dx
T C

1C+27r
a, == [ f(x)Cosnxdx ’
T ¢

1 c+2r7

[ f(x)Sinnxdx y

&b =

T

These values of a,,a, &b, are called the Euler’s formulae.



NOTE

o If f(x) 1s to be expanded as a Fourier series in the intervalo<x<2~. Put C=0, then
the formulae (A) reduces to

1 2
== [ f(x)dx
T o
1 2
a, =— | f(x)Cosnxdx
T o

2
&b, :lj f (x)Sinnxdx
T o

s If f(x) is to be expanded as a Fourier series in the interval-z<x<z. Put C=-r,
then the formulae (A) reduces to

a, =1 [ f(x)dx
T x
1 V4
== | f(x)Cosnxdx
T x

&b =L | f(xsinnxdx
T _rx



SOLVED PROBLEMS
1. Expand f(x)=x*0<x<2z as a Fourier series.

Solution: Let f(x)=x*0<x<27x

1., x? =%+ > (a,Cosnx +h, Sinnx) -==------ (1)
n=1
27 27 37%” 3 2
Thenaozijf(x)dxzijﬁdx:lx_ :l 87" -0 :8”
7T 0 T o T3], ~« 3 3

2r 2r 1 _ _Q 2z
a, = 1 [ f(x)Cosnxdx = 1 [ x*Cosnxdx = E{XZ(Smnx)_ZX( Cosnx}rz( Smnxﬂ
T o T o n

2 3
v n n .

ZE[OJ{MCOSZM)—O} =i2 (.- Cos2nr =1)
n n n

27 27z _ _Q 27

b, :lj f(x)Sinnxdx:i [ xzsinnxdx=£{x2( Cosnxj_z){ SII’Zlan+2 Cossnxﬂ
T o T o T n n n 0

i 2
_1] (4x COSZ””}O{ZCO?”” —(O+O+%ﬂ

n n n

1

T

1| (4 (2) (2) wy
=—| - — |4+ —= |[—| — = —

T n n® n® n



Substituting the values of a,,a, &b, in (1), we get the required Fourier series for f(x) as

X —gﬂ' +Z( Cosnx+4—8|nnxj
n

= gnz +4(Cosx+%C032x+3i2C053x+————j—47z(5inx+%Sin2x+%8in3x+————)

2. Expand f(x)=x,0<x< 27z as a Fourier series.

Solution: Let f(x)=x,0<x<27

i.e,x:%+i(anCosnx+bnSinnx) --------- (1)

n=1

27 27 2 27
Then a, :% j f(x)dx:% g xdx:i[ﬂ

a 0
1 4n° -0
T 2
=27
. 2r
a, —lj f(x)Cos.nxdx—l [ xCosnxdx—i{x(Smnxj—( Cozsnxﬂ
T o T o T n n 0

1 O+(C052m—ij _(i_i)_o
T n’ n? n> n?



2 2 _ _Q 2r
b, =L f(x)Sinnxdx:ljxSinnxdx:l[x( COS”Xj—l( S'Q”Xﬂ
T o T 0 T n n 0

=l|:_(27Z'C082n72'j (0+ 0)}

T

Substituting the values of a,,a, &b, in (1), we get the required Fourier series for f(x) as

X = 7z—2§‘(18innxj = ﬂ—Z(Sinx+%Sin2x+%8in3x+————j
n

n=1
3. Obtain the Fourier Series for the function f(x)=e*from x=0to x=2r

Solution: Let f(x)=e*,0<x<2x

i.e,e” :%+ i(anCosnx+bnSinnx) ————————— (1)
n=1

1271' 1272' « 1 y 2”_
Thenaoz;£ f(x)dx:zge dx:;[e ]0 =

ax

(aCosbx +bSinbx)

2

2 2
a, = 1 [ f(x)Cosnxdx = 1 | e*Cosnxdx (.- [e*™Cosbxdx =
T 0 T o a +Db

X 2

2

(Cosnx + nSinnx)}

0
e’ —1
| (1+n?)

1
7| 1+n
1
T

} (.- Cos2nz =1,Sin2nz = 0)



ax

2r 2
b, = 1 [ f(x)Sinnxdx _1 [ e*Sinnxdx (.- [e™Sinbxdx = (aSinbx —bCosbx)
T o 7T o

2

a’+b
X 2 27
:1 ~(Sinnx—nCosnx) | = e 21
1+n? 0 7 | (A+n°)
Substituting the values of a,,a, &b, in (1), we get the required Fourier series for f(x) as
—n)(e*” -1
e :i(ez” -1)+ Z;CosnijZ( ( . )Sinnx
27 a7 (L+n?) 1 z(1l+n%)

1, 5. 1 = Cosnx & Sinnx
— 2 (e ) 2+ £ SO 5 S
T 2 na1(l+n°) na(@+n%)

4. Expand f(x) =xSinx,0< x < 27 as a Fourier series.
Solution: Let f(x) =xSinx,0<x <2z

i.e,xSinx=%+ 3" (@,CosnX + b, Sinnx) --------- (1)
n=1

127 127 . 1 . ~ 1
Then a, =;£ f(x)dx=; g xSmxdx:;[x(—Cosx)—l(—Smx)]z =;[—272'—O—0]:—2

2z 2z 2r
-2 [ f(x)Cosnxdx = 1 [ xSinxCosnxdx = 1 [ x(2SinxCosnx)dx ————(2)
T o T o 2 0

12x . -
= g x[sin(n+1)x —sin(n —1)x]dx



1 _X{_Cos(n +1)x  Cos(n —1)x}_1.{_ Sin(n+1)x _Sin(n _1)XH2” (e

:ﬂ_ n+1 n—-1 (n+1)° (n—1)? .
_ 1 2ﬂ{_CosZ(n+l)7z+CosZ(n—l)n} _ 1 N 1 _ 22 (n=1)
27w n+1 n—1 n+1 n-1 n°-1

If n=1, we have[Puttingn =1in(2)]

alzlz(jjx(SinZX)dx=%[X(Mj—1(_smzxﬂh i[_”]:_71

e 2 4 )|, 2«
1 27 ] 1 27 _ ] 1 27 ] ]

b, == [ f(x)Sinnxdx= = | xSinxSinnxdx = — | x(2SinxSinnx)dx ———————— (3)
T 0 T 0o 27T

27
_ 1 [ x[Cos(n—1)x —Cos(n+1)x]dx
272' 0

_ 1 _X{Sin(n—l)x _ Sin(n +1)x}_1.{_Cos(n—:2L)x+Cos(n +21)XH ”,(n 1)
(n=1) (n+1)

27 | n—-1 n+1 0
_1[[Cos2(n-1)z Cos2(n+l)z 1 ! (h=1)
2x (n —1)? (n +1)? (n—-1? (h+D?] |

= _{ 1 5 — L 5 — ! 5+ L 2H=Oforn7&1
27| | (n=D° (n+D)° (h-21)° (n+1)




If n=1, then

b, = lzjﬁx(ZSinzx)dx [Puttingn =1in (3)]
T o

—izjﬂx(l—Cost)dx—i x(x—smzxj—l X—2+C052X i
T 0 2 2 2 4 .

1 27[(27r)—41—E 1 =7
2 2

T 4 4

Substituting the values of a,,a, &b, in (1), we get the required Fourier series for f(x) as

j —1+7zS|nx—lCosx 2§j Cosnx
2 n=2 n -1

. XSinx = —1—lCosx+ Z (
2 n° -1

This is the required Fourier series



EVEN AND ODD FUNCTIONS
A function f(x) is said to be even function if f(-x)=f(x) and odd function if f(-x)=-f(x)
Example:

X%, x* +x? +1,e* +e7%,Cosx, Secx are all even functions of x,

X, x> 4+ 2x° + 3, Sinx, Cosec X, tan xare odd functions of x

FOURIER SERIES FOR EVEN AND ODD FUNCTIONS

Case I. When f(x) is an even function in (-z, )

f(x)= % + i a,Cosnx
n=1
Where a, =2 f (x)dx
7To

a, :E][ f (x)Cosnxdx,n=0,1,2,.....
To




Case Il. When f(x) is an odd function in (-z, )

f(x) = 3 b Sinnx
n=1

Where b, = 2 f (x)Sinnxdx,n = 0,1,2
To




SOLVED PROBLEMS
1. Express f(x)=x as a Fourier series in(—x, 7).
Solution: Since f(—x)=—x=—1(X)
. T(x)is an odd function in (-, 7).

Hence the Fourier series consists of Sine terms only.

e, X =3 b SinnX --------- (1)
n=1

Where b, = ET f (x)Sinnxdx,n=0,12,.....
7To

b, = 3][ f (x)Sinnxdx = E’f xSinnxdx = g[x[—Cosnxj_l(—Smnxﬂ
T o To

2
3 n .

n
_ EK—‘”COS”” " oj ~(0+ 0)} _ (-2

T n n

Substituting the values of b, in (1), we get the required Fourier series for f(x) as

o __1\n+l
SX=2) (=D Sinnx =Z(Sinx—ESin2x+18in3x—£8in4x+———)
n=1 n 2 3 4



2. Expand the function f(x)=x* as a Fourier series in(—z, z).

(OR) Prove that x* = ?+42( 1)" Cosnx
Hence deduce that (i)lz_2_12+3i2_4_12+_____7lf_2
(||)—+—+i+i+—————7[—2
32 42 6
(|||)—+i+i+i+_____”_
52 72 8

Solution: Since f(=x) =(=x)* =x* = f(x)
. f (x)is an even function in (-, 7). Hence the Fourier series consists of Cosine terms only

e xt=2,% a_Cosnx --------- (1)

n=1

b 7 3)” 3 _ 2
Thenaozggf(x)dx:ijdeZ%{X_} zg{” 0}22”
0

0 3 3 3
a, = E][ f (x)Cosnxdx = E]T x*Cosnxdx = g{xz (Smnxj — ZX(—Cozsnxj + 2[_S'anﬂ
o T o T n n n 0

:E{o{mﬂj— }:—( 1)" (- Cosnz = (~1)")

n



Substituting the values of a, &a, in (1), we get the required Fourier series for f(x) as

72'2 0 4 n 7[2 1 1
x> ="+ —(-1) Cosnx="-—4| Cosx——Co0s2X+ —C0S3X+———— |....... 2
3 nz_:an( ) 3 ( 22 2 j (2)
Deductions:

(i) Puttingx=0in(2)

2
oz”—4(COs0—1ZCoso+1ZCOSO—120030————)

3 2 3 4

1 1 1 %

2?3 4 12

(ii) Putting x = 7in (2)

2
7’ :7[—4(Cos;z—12C0527z+12Cos37:+12Cos47z————j
3 2 3 4
2
= :7;—4(—1—212+312—412+————j
2
:>7z2—7;:4(1+212+312+412+————)
1 7’
:>1+?+7+E S

(it1) Adding (i)and (ii) and dividing it by 2, we get

N N S
P 5 7 8



3. Find the Fourier series to represent the function f(x) = ,—7T < X< asaFourier series

Solution: Since |Sinx|is an even function in (-7, ).

Hence the Fourier series consists of Cosine terms only

e,

= % + i a,Cosnx ————— (1) --------- (1)
n=1
Then a, = g]r f(x)dx = g]rSinxdx = g[(—Cosx)]g = E[—Cos(yz) +Cos0] = 4
To To T T T

a, = gijz f (x)Cosnxdx
7T o
= iT(ZSinxCosnx)dx [ 2SinAxCosBx = Sin(A+ B)x —Sin(A—B)x]

[sin(L+ n)x+sin(n—1)x]dx

-]
[ Cos(l+n)x Cos(l—n)x |

_ ,(n=1

1+n 1-n :|o( )

_yCostenr Colonr_ 1 1]y
1+n 1-n 1+n 1-n

1{( l)nﬂ{ 1 } { 11 }}:—2[(—1)“+ +1]’(n¢1)
1on 1-n| |1en 1-n n(nz—l)



O,if nisodd andn =1

Soa, = —4 . .
5 JIf niseven
z(n°=1)
If n=1, we have
& = ETSinxCosxdx: 1Tsmzxdx - E[Mj
7T 0 7T o pn 2 .

= _—1[C0827z ~-1]=0

27w
Substituting the values of in (1), we get the required Fourier series for f(x) as

.'.\Sinx\=3+ > _24 Cosnx
T n=246,.\ (N —1)

sim2 4 5 [ Comn
T 7n=246..(N°—1)

2 4 = Cos2nx ]
=——— ———— | (Replacing nby 2n
T ﬂnl((4n2 —1)j( P g nby2n)
] 2 4| Cos2x Cos4dx
Hence, |Sinx| == —— + 4

T 7T 3 15



HALF RANGE FOURIER SERIES

It is often required to obtain Fourier series of a function f(x) in the interval (0, )

The Sine Series:

The half range Sine series in (0, 7)is given by

o0
f(x)= Z b Sinnx
n=1

T
Where by, =2 j £ (x)Sinnxdx,n = 0,1,2, ...
T
0



The Cosine Series:

The half range Cosine series in (0, 7)is given by

f(x)= % + i a,Cosnx
n=1

Where a, = ET f (x)dx and
T o

a, = ET f (x)Cosnxdx,n=0,1,2,.....
T o



1. Find the half-range cosine and sine series for the function f(x)=x inthe range O<x<r.
(OR)
Prove that the function f(x) =xcan be expanded in a series of cosines in 0<x<x

7 4 [Cosx Cos3x Cos5x }
S X="——| o+ —————
2 x| 1 3 5

Hence deduce that 132+312+ 5—12 b=

oo‘*‘\,\,

Solution:

The Cosine Series: The half range cosine series expansion of f(x) in [0, 7]

f(x)= % + i a,CosnNx  -------------mm--- (1)

n=1

Where a, = 2 ] f (x)dx and
7To

a, = ET f (x)Cosnxdx,n=0,1,2,.....
7To

T o 20

T V4 2 4
Then aozgjf(x)dx=3jxdx=3{x—} — 7
To T



J.a, =

a, = ET f (x)Cosnxdx = ET xCosnxdx = E[X[Smnxj _[—Co::nxﬂ
7T o 7T o T n 0

:3[0+(C032n7z_ 12ﬂ:g[(—12)” B 12j
Vi n n AL n

n

{O, for neven

zn

Substituting the values of a, &a, in (1), we get the required Fourier series for f(x) as

7 4| Cosx Cos3x Cosbx
O xX=%"——|—"FF+—F—+—5—+———-
2 x| 1 3 5

Deduction:
When x=0, f(x)=0 i.e., f(0)=0
Putting x=0 in (2), we get

r 41 1 1
e Sttt | ottt —— =
2 |12 ¥ 5 3)



The Sine Series:

f(X)=x=3 b Sinnx ————(3)

Where b, = 2 f (x)Sinnxdx,n = 0,1,2,....
To

b, = 2 £ (x)Sinnxdx = 2 xSinnxdx = g[x(—c:osnxj —1(‘8'””)‘)}
To To

2
T n n 0
n+1 g

3 g (—ECOSI’VT
n

n

+0)—(0+0)} =(-1)

T

Substituting the values of b, in (3), we get the required Fourier series for f(x) as

SX = Zi((_l)nﬂ

Sinnx | = Z(Sinx—ESinZX+18in3x—l8in4x+———j
n 2 3 4



2. Obtain the half-range sine series for the function f (x)=¢e* in(0, 7).
Solution: The half range sine series expansion of e*in (0, z)is given by

f(x) = 3 b Sinnx,
n=1

Where b, =2 f (x)Sinnxdx,n =0,1,2,.....
To

le, e = i b.Sinnx  ------- (1)
n=1
b, = 2 £ (x)Sinnxdx = 2 fe*Sinnxdx (-~ [e™Sinbxdx = (aSinbx —bCosbx)
" 0 To 8.2 + b2
2| €” ’
=— 0-nCosnr ) - 0-n
L+ n’ ( ) 1+n° ( )l

ﬁ(1+n )[1+( 1)"e” |

Substituting the values of b, in (1), we get the required Fourier series for f(x) as

Y =gi n[1+(—1)“+ ° ]Sln {( e ) 2(1_6”)Sin2x+3(l+eﬂ)Sin3x+———}
T

zna  (1+n%) 12+1 2°+1 3 +1




3. Obtain the half-range sine series for the function f (x) =Cosx In(0, ).

Solution: The half range sine series expansion of Cosxin (0, )is given by
f(x) = > b Sinnx i.e, Cosx = 3 b Sinnx ------- (1)
n=1 n=1
Where b, = 2 f (x)Sinnxdx,n =0,1,2,.....
To

b, = 2T f (x)Sinnxdx = 2 [ CosxSinnxdx
0 7To

T
= i]IZSinnxCosxdx
7To
_ 1[ —Cos(n+1)x _Cos(n—l)x}”
Tl n+1 n+1 0
_1_—Cos(n+1)7z_Cos(n—l)yzJr 1 s 1 }
7| n+1 n+1 n+1 n-1
B n+1 n
_ 11 -1 +(—1) N 1 N 1
#| n+l n+l n+l n-1
[ 1\ (_1\2 _1\n
:i(l)(1)+(l)+1+1 (n=1)
7| n+l n+l n+l1 n-1
1 1 1 2n| (-D)" +1
=—|1(-1)" +1 + =
z_{( : }{n+1 n—1ﬂ 7Z'|: nz—l}




0, when nisodd
~b =

" |———<,when niseven
z(n°-1)

If n=1, then

b = gTCosxSinxdx = l]ZZCosxSinxdx = l]TSiandx
T o 7To To

B l[—CostT o
/4 2 0
Owhen nisodd
~b, = .
>——Wwhen niseven
z(n“-1)
Substituting the values of b’s in (1), we get
> 4n . 4 2 :
. Cosx = Sinnx = — Sinnx
n:Z%G,.... z(n*=1) T nzz%e,.... (n* 1)
_4 i 2N Sin2nx (- niseven, replace by 2n)
7 =1 (4n? =1) ' ’

= §(ESin2x+38in4x+————j
T 15



FOURIER SERIES IN AN ARBITRARY INTERVAL (CHANGE OF
INTERVAL)

INTERVALS OTHER THAN (-7, 7) AND (0,27)
(FOURIER SERIES FOR FUNCTIONS HAVING PERIOD 20):

The Fourier series for the function f(x) in the interval C < x<C+2l is given by

f(x)=%+n§(a Cosl— +b,Sin @j

c+2|
where a, = j f (x)dx )

C+2I

=—j f (X )Cosl—dx S —— (A)

c+21

&b, } j f(x )Slanx

J



NOTE

s If f(x) is to be expanded as a Fourier series in the interval0<x<2l. Put C=0, then the
formulae (A) reduces to

12I
a, = I—(j) f (x)dx

_1

21
a, = | | f(x)Cos@dx
0

21
&b :I}j f(x)Sin@dx
0

s If f(x) is to be expanded as a Fourier series in the interval-lI < x<I. Put C =-I, then the
formulae (A) reduces to

1 |

a, =|‘f f (x)dx
o

a =%'{ f(x)Cos@dx
e

|
b, =I}j f(x)Sin@dx
—|



FOURIER SERIES FOR EVEN AND ODD FUNCTIONS

We know that a function f(x) defined in the interval (-I,1)can be represented by the Fourier

series.
Case I. When f(x) is an even function in (-I,1)

f(x) = —+za Cos@

Where a, = Tj f (x)dx
0

I
_ %j f(0Cos =N =0,12.....
0




Case Il. When f(x) is an odd function in (-1,1)

f(x) = ibnsm@
n=1

Where b =|3T f(x)Sin@dx,n 01,2,
0




1. Find the Fourier series to represent f (x) = x* -2 , when—2<x<2.
Solution: Since f(—x)=(-x)*-2=%x*-2= f(X)
-. f(x)is an even function in (-2,2).

Hence the Fourier series consists of Cosine terms only

o0 n7Z'X 2I 22 X3 ’ 23
i-e,X2=%+ZanCOS— --------- (1) Thena, ==[ f(x)dx==[(xX* = 2)dx=| —-2x| =| ——4|=—
2 o 2 K 20 3 ]| 3

| 2
a =2jf(x)Coszdx=Zj(xz—Z)Cosnﬂde
I o | 2% 2

— T2

IN IN
2 |_2x 2 |42 i23
SREIG
2 2 2 1

_ _O N (16(305””) _ 0} - 162 (-1)" (- Cosnz = (-1)")

n’z? N’z

= (¢-2)

Substituting the values of a, &a, in (1), we get the required Fourier series for f(x) as

X? =—

2
2. 2 3

16 n N7 X 2 16( Cos(zx) Cos(2zx) Cos(37x
§+n:1n27z-2 (_1) Cos___( ( )_ ( ) ( )



2. Find the Fourier series with period 3 to represent f (x) = x+ x* in (0,3)

Solution:Let f(x) = 7+Z(aCosT+bS nij —————— Q)
Here 21 =3=1=3/2
i.e,x+x2=@+§(anCoszn”X bnSinzmxj --------- 2)
n=1
22 23 2[x2 xT
Thena, == [ f(X)dx==[(x+x*)dx==| =—+=| =9
o= 3] 000 Sfocen =355
2N7TX
jf()C —dx——j(x+x)Cos dx
, Sin 2N X _Cos 2n;zx
— 2 N AN
=3 (X+X7) e 1+ 2x) (Znﬂ)z
2 3 9 }_ 9
31 4n°z*  4n°x® n°z?

+2

—Sin

2N X

[

2N

f




12! Nz X

b, = I—j f (x)Sin dx
(0]
3
_ %j(x+ x2)Sin 207X gy
(0]
B - N - 7
> —Cos Zn;X —Sin 2n§zx Cos 2n§zx
= = (x + X? —(1+2x + 2
3 ( ) 2Nz ( ) (2!’1%)2 (2n7rj3
i 3 \ 3 Y N 3 J_
—12
 nx

Substituting the values of in (2), we get the required Fourier series
for f (x) as

x+x2=9+§: 292Cos(2nﬂxj—28in[2nﬂxj
2 n=1 | N~ 7T 3 N-t 3




3. Find the Fourier series to represent the function f(x)=|x|,—2 <x <2 as a Fourier series
Solution: Since |x| is an even function in (-2,2).

Hence the Fourier series consists of Cosine terms only

N7z X

e, x\=%+%anCosT ————————— (1)

0

Then a, =Iglj f (x)dx:gixdx:[x—z} ={2—2} =2 (~1=2)

|
a =Igj f(x)c:os@dx
0

2
=ijCos@dx
20 2
- -2
Sin "X —Cos ¥
= (] 2= |- :

LG )
= :O+(%(Cosnn —1))}

Nz

4 "
~ g OV




0 when niseven
a =< -8

n
2_2
nrz

when nisodd

Substituting the values of a, & a, in (1), we get the required Fourier series for f(x) as

8 1 Nz X
S X=1l-— — Cos——
‘ ‘ 7% - %5,...([‘]2 2 j

‘X‘=1—£2[COS7Z—X+%COSS7T—X+————}
V4 2 3 2



HALF RANGE FOURIER SERIES

It is often required to obtain Fourier series of a function f(x) in the interval (0,1)

The Sine Series:

The half range Sine series in (0,1)is given by

f(X) = ibnsm@
n=1

|
Where b, = Igj f (x)Sin@dx, nN=012,...
0




The Cosine Series:

The half range Cosine series in (0,1)is given by




SOLVED PROBLEMS

1. Obtain the half-range sine series for the function f(x)=1in[0,1].
Solution: The half range sine series expansion of f (x)=1in (0,l)is given by

o0 |
f(x)=1= zbnsm@,wmre b = Igj f (x)Sin@dx,n —0,1,2,..... ————— 1)
n=1 0
e, 1= ibnsm@ ------- (1)
n=1
i nzX |
| | —Cos——
b, =2 £ (0sin "X dx = 21.5in "X ax =2 1
0 | | 5 | | nz
R
2 2
= —[-Cosnz +1]=—| (-1)™* +1
Lo ] = LD

0 whenn iseven
b =

n

iwhen n isodd
Nz



Substituting the values of b, in (1), we get the required Fourier series for f(x) as

. Sin”—x Singﬂ—x SinSE—X
n=135,... T T 1 3 5




2. Obtain the half-range sine series for the function f(x) =ax+bin0<x<1.
Solution: The half range sine series expansion of f (x)=ax+bin (0,1)is given by

F(X) = ax+b = zbs| @

Where b, :—j f (x)SinI—dx,n =0,12,.....

Nz X

l.e, ax+b= Zb Sin T ------- (1)
nzx —Cosnz _ -Sinnz |
—jf( )Sin de_—j(ax+b)8|n—dx 2[(ax b) —-a }
Nz nz |,
2 [ a .
=— (—1)(a+b)Cosn7z+—S|nn7z+b}
nrz| nrz
= 2 (1" (a+b)+b]
nz*-

Substituting the values of b, in (1), we get the required Fourier series for f(x) as

sax+b= E(a+ 2b)Sinzx —ESiHZﬂ'X + i(a+ 2b)SIiNn3zX ——————
T 27 3



3. Find the half-range cosine series for the function f(x)=x(2—x) in the range 0<x<2
and hence find the sum of the series %—iﬁ%—%———

1° 20 3 4
Solution: The half range Cosine series expansion of f (x) =x(2—x) in [0,2]

X(2—x) = % + i a,Cos % -------- (1)

n=1
| 2
Then a, :%g f(x)dx:§£(2x—x2)dx:%

| 2
a. = 2] £ (xCos "X dx = 2] (2%~ x2)Cos X i
I o | 20 2

Sin@ —Cos@ Sin@
= | (2x—x2) —(2-2x) ——2- |+ (2x) 2
2 HERG
| 2 2 2 0
-8 8 -8 .
= Cosnhrz — peR (1+ (-1) )
0, for nisodd
Joa, =y -16 .
for niseven

)
n2z?



Substituting the values of a, &a, in (1), we get the required Fourier series for f(x) as

. 2 16 = 1 N X
1.e,.. X(2—X)=——— —Cos——
( ) 3 7l n:2§6,.....n2 2
(or)
2 4 Cos2zx Cos3rx
X(2—X)=§—?|:COS7TX+ 52 + 2 +————} ------------- (2)
Deduction:

Putting x=1in (2), we get
2—1=g—i2|:£2COS7Z'+%COSZ?Z’+£2COS37Z'+————:|
3 n°[1 2 3

[%Com +i2C0827z+12COS37r + ————}
2 3



4. Obtain the half-range sine series for the function f(x)=x?in[0,4].

Solution: The half range sine series expansion of f(x)=x*in (0,4)is given by
Here | =4

F()=x=3 bnsm@ ————— 1)

n=1

|
Where b, = IE I f(x)Sin@dx
0

|
b, =%jf(x)3in@dx
0

N7z X . N7TX N7 X
94 X 1 —Cos—— -Sin-—— Cos——
== [x*Sin—=dx == x 4 |2 2—24 +2| —5—5—
45 4 2 Nz n"rz n"z
i 4 16 64 Jl
= %[;—416Cosn7z + :2282 Sinnz + :3283 Cosnrz — :3283}
T T T T

_ 32{2[(_1)n 1, (_1)%1}

nés3 Nz



Substituting the values of b, in (1), we get the required Fourier series for f(x) as

CRNEE W
4

n37z3 14

X = §32{
n=1






