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Why use Laplace Transforms?

• Find solution to differential equation using algebra

• Relationship to Fourier Transform allows easy way 
to characterize systems

• No need for convolution of input and differential 
equation solution

• Useful with multiple processes in system



History of the Transform

 Euler began looking at integrals as solutions to differential equations in 
the mid 1700’s:

 Lagrange took this a step further while working on probability density 
functions and looked at forms of the following equation:

 Finally, in 1785, Laplace began using a transformation to solve 
equations of finite differences which eventually lead to the current 
transform

• Euler began looking at integrals as solutions to differential equations 
in the mid 1700’s:

• Lagrange took this a step further while working on probability density 
functions and looked at forms of the following equation:

• Finally, in 1785, Laplace began using a transformation to solve 
equations of finite differences which eventually lead to the current 
transform



Transforms -- a mathematical conversion from one way of 

thinking to another to make a problem easier to solve

problem 
in original 

way of 
thinking

transform
solution

in transform
way of

thinking

inverse
transform

solution 
in original 

way of 
thinking



Complex numbers

 complex number in Cartesian form: z = x + jy

 x = Rz, the Real part of z

 y = I z, Imainary part of z

 j = √−1 (engineering notation)

 i = √−1 is polite term in mixed company





Complex numbers in polar form
 complex number in polar form: z = re exp jφ

 r is the modulus or magnitude of z

 φ is the angle or phase of z

 exp(jφ) = cos φ + j sin φ



The Laplace transform

 we’ll be interested in signals defined for t ≥ 0 the 
Laplace transform of a signal (function) f is the function 
F = L(f) defined by

 F(s) =                 f(t) dt for those s ∈ C for which the 
integral makes sense 

 F is a complex-valued function of complex numbers • 

 s is called the (complex) frequency variable, with units 
sec−1; 

 t is called the time variable (in sec);

 st is unitless • for now, we assume f contains no impulses 
at t = 0
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Laplace
transform

solution
in

s domain

inverse 
Laplace 

transform

solution 
in time
domain

problem 
in time 
domain

• Other transforms
• Fourier
• z-transform
• wavelets



Laplace transformation
linear

differential
equation

time
domain
solution

Laplace
transformed

equation

Laplace
solution

time domain

Laplace domain or
complex frequency domain

algebra

Laplace transform

inverse Laplace
transform



• Find differential equations that describe system

• Obtain Laplace transform

• Perform algebra to solve for output or variable 
of interest

• Apply inverse transform to find solution
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• t is real,  s is complex!

• Inverse requires complex analysis to solve

• Note “transform”: f(t)  F(s), where t is 
integrated and s is variable

• Conversely F(s)  f(t), t is variable and s 
is  integrated



Necessary and sufficient condition
 There are two governing factors that determine 

whether Laplace transforms can be used:

 f(t) must be at least piecewise continuous for  t ≥ 0

 |f(t)| ≤ Meγt where M and γ are constants



Basic Tool For Continuous Time: 
Laplace Transform

 Convert time-domain functions and operations into 
frequency-domain 

 f(t)  F(s)   (tR, sC)

 Linear differential equations (LDE)  algebraic expression in 
Complex plane

 Graphical solution for key LDE characteristics

 Discrete systems use the analogous z-transform
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The Complex Plane (review)
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Continuity

• Since the general form of the Laplace 
transform is:

it makes sense that f(t) must be at least 
piecewise continuous for t ≥ 0.

• If f(t) were very nasty, the integral would not 
be computable.



Boundedness
 This criterion also follows directly from the general 

definition:

 If f(t) is not bounded by Meγt then the integral will not 
converge.



Laplace Transform Theory 
• General Theory

• Example

• Convergence



Laplace Transforms of Common 
Functions

Name f(t) F(s)
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Laplace Transform



Laplace Transform Properties

   

)(lim)(lim theoremvalueFinal

)(lim)0( theoremvalueInitial

)()()nConvolutio

)(
1)(

)(nIntegratio

)0()()(ationDifferenti

)()()]()([calingAddition/S

0

0

2121

0

2121

ssFtf-

ssFf-

sFsFdτ(ττ)f(tf

dttf
ss

sF
dttfL

fssFtf
dt

d
L

sbFsaFtbftafL

st

s

t

t
































• SIMPLE TRANSFORMATIONS

• Impulse --  (to)

F(s) = e-st  (to) dt

0



= e-sto

f(t)  (to)

t



• Step -- u (to)

F(s) = e-st u (to) dt

0



= e-sto/s

f(t)

t

u (to)1



Linearity

Constant multiplication

Complex shift

Real shift

Scaling

f1(t)  f2(t)

a f(t)

eat f(t)

f(t - T)

f(t/a)

F1(s) ± F2(s)

a F(s)

F(s-a)

eTs F(as)

a F(as)



First shifting Theorem



Properties: Multiplication by tn
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The “D” Operator
1. Differentiation shorthand

2. Integration shorthand
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Properties: Integrals
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Properties: Derivatives
(this is the big one)
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NOTE: to take
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called initial conditions!
We will use this to solve differential equations!

 )t(f),t(Df),...t(fD),t(fD 2n1n

)}t(fD{L n



Unit Step Function 

(Heaviside Function). 

Second Shifting Theorem 

(t-Shifting)  



Unit Step Function(or) Second 
Shifting Theorem
 We shall introduce two auxiliary functions, the unit

step function or Heaviside function u(t − a) (following)

and Dirac’s delta δ(t − a) 

 These functions are suitable for solving ODEs with

co mplicated right sides of considerable engineering

interest, such as single waves, inputs (driving forces)

that are discontinuous or act for some time only,

periodic inputs more general than just cosine and sine,

or impulsive forces acting for an instant

(hammerblows, for example).



Second Shifting Theorem; 
Time Shifting

 If f(t) has the transform F(s) then the “shifted function”

 (3)

 has the transform e−asF(s). That is, if L {f(t)} = F(s), then

 (4) L {f(t − a)u(t − a)} = e−asF(s).

 Or, if we take the inverse on both sides, we can write

 (4*) f(t − a)u(t − a)} = L −1{e−asF(s)}.
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The unit step function or Heaviside function u(t − a) is 0 
for t < a, has a jump of size 1 at t = a (where we can leave it 
undefined), and is 1 for t > a, in a formula:

(a ≥ 0).(1)
0     if 

( )
1     if 

t a
u t a

t a


  





Figure 1 shows the special case u(t), which has its jump at 
zero, and Fig. 2 the general case u(t − a) for an arbitrary 
positive a. (For Heaviside, see Sec. 6.1.)

Fig. 1. Unit step function u(t) Fig. 2 Unit step function u(t − a)

Unit Step Function (Heaviside Function) u(t − a) 
(continued)



UNIT STEP FUNCTION (HEAVISIDE FUNCTION) U(T − A)
(CONTINUED)

 (2) (s > 0).

 Multiplying functions f (t) with u(t − a), we can produce 
all sorts of effects. The simple basic idea is illustrated in 
Figs. 3 In Fig. 120 the given function is shown in (A). In 
(B) it is switched off between t = 0 and t = 2 (because 

 u(t − 2) = 0 when t < 2) and is switched on beginning 

 at t = 2. In (C) it is shifted to the right by 2 units, say, for 
instance, by 2 sec, so that it begins 2 sec later in the same 
fashion as before. 
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Unit Step Function (Heaviside Function) u(t − a) (continued)
 More generally we have the following.

 Let f(t) = 0 for all negative t. Then f(t − a)u(t − a) with a > 0 is

 f(t) shifted (translated) to the right by the amount a.

Fig. 3. Effects of the unit step function: (A) Given function. 

(B) Switching off and on. (C) Shift



EXAMPLE 1  

Application of Theorem 1. Use of Unit Step Functions

 Write the following function using unit step functions 
and find its transform.



 (Fig. 122)
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 Fig. 122. ƒ(t) in Example 1



Solution  for example 1 
 Step 1. 

 In terms of unit step functions

 f (t) = 2(1 − u(t − 1)) +  t2(u(t − 1) − u(t − π)) + (cos t)u(t − 
π). Indeed, 2(1 − u(t − 1)) gives f(t) for 0 < t < 1, and so 
on.Solution (continued)

Step 2. 
To apply Theorem 1, we must write each term in f(t) in the 
form (t − a)u(t − a). Thus, 2(1 − u(t − 1)) remains as it is and 
gives the transform 2(1 − e−s)/s. Then
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Solution (continued) 

 Step 2. (continued)
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Short Impulses.  

Dirac’s Delta Function.  



Short Impulses.  Dirac’s Delta 

Function. 

Impulse examples:
*An airplane making a “hard” landing
•A mechanical system being hit by a hammer blow 
•A ship being hit by a single high wave
• A tennis ball being hit by a racket, and many other 
similar examples appear in everyday life. They are 
phenomena of an impulsive nature where actions of 
forces—mechanical, electrical, etc.—are applied over 
short intervals of time.

We can model such phenomena and problems by 
“Dirac’s delta function,” and solve them very effectively 
by the Laplace transform.



To model situations of that type, we consider the function

(1) (Fig. 132)

(and later its limit as k → 0). This function represents, for 
instance, a force of magnitude 1/k acting from t = a to 
t = a + k, where k is positive and small. In mechanics, the 
integral of a force acting over a time interval a ≤ t ≤ a + k is 
called the impulse of the force; similarly for electromotive 
forces E(t) acting on circuits. Since the blue rectangle in 
Fig. 132 has area 1, the impulse of fk in (1) is

(2)
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Impulse  function

 Phenomena of an impulsive nature: such as the 
action of forces or voltages over short intervals of 
time:

 a mechanical system is hit by a hammerblow, 

 an airplane makes a “hard” landing, 

 a ship is hit by a single high wave, or 

 Goal: 

 Dirac’s delta function. 

 solve the equation efficiently by the Laplace transform..



Laplace Transform of Periodic 
Function
 Definition: A function f(t) is said to be periodic 

function with period p(> 0) if f(t+p)=f(t) for all t>0.

 Theorem 1: Transform of Periodic Functions

− The Laplace transform of a piecewise continuous 
periodic function f(t) with period p is             
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Laplace Transform of Periodic 
Function
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Laplace Transform of Periodic 
Function
 Put t=u+p in the second integral,   
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Inverse Laplace transform

The Laplace transform is an expression involving variable s and can be 

denoted as such by F (s). That is:

It is said that f (t) and F (s) form a transform pair. 

This means that if F (s) is the Laplace transform of f (t) then f (t) is the inverse 

Laplace transform of F (s). 

That is:
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INVERSE LAPLACE TRANSFORMS FORMULAE



• Definition :

• Partial fractions are several fractions whose 
sum equals a given fraction

• Purpose -- Working with transforms requires 
breaking complex fractions into simpler 
fractions to allow use of tables of transforms



Example : Determine the inverse 
transform of the function below.
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Inverse Laplace Transforms

There are three cases to consider in doing the partial fraction expansion  of F(s).

Case 1:  F(s) has all non repeated simple roots.
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Case 2:  F(s) has complex poles:
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Inverse Laplace Transforms

EXAMPLE 1:
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Complex Roots:  An Example.
For the given F(s) find f(t)

o

jj

j

jsjss

s
K

sss

s
A

js

K

js

K

s

A
sF

jsjss

s

sss

s
sF

10832.0
)2)(2(

12

2|)2(

)1(

1

5

1

0|)54(

)1(

2

1

2

1)(

)2)(2(

)1(

)54(

)1(
)(

|

|2

2

*




































Example-2. Determine exponential portion of 

inverse transform of function below.
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Example 3. Determine inverse transform 
of function below.
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Inverse Laplace transform of 
Derivatives,Integrals
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Inverse laplace Transform of 
powers of ‘s’ & Division by ‘s’
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Convolution Theorem  



Convolution theorem

Proof:
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CONVOLUTION THEOREM 

 Convolution has to do with the multiplication of 
transforms. The situation is as follows.

 Addition of transforms provides no problem; 
 we know that L (f + g) = L (f) + L (g).
 Now multiplication of transforms occurs frequently in 

connection with ODEs, integral equations, and 
elsewhere. Then we usually know L (f) and L (g) and 
would like to know the function whose transform is the 
product 

 L (f)L (g). We might perhaps guess that it is fg, but this is 
false. The transform of a product is generally different from 
the product of the transforms of the factors,

 L (fg) ≠ L (f)L (g) in general.



Example of Convolution Theorem

 If  f = et and g = 1. 

 Then fg = et, L (fg) = 1/(s − 1), 

 but L (f) = 1/(s − 1) and L (1) = 1/s 

 give L (f)L (g) = 1/(s2 − s).

 According to the next theorem, the correct answer 
is that 

 L (f)L (g) is the transform of the convolution of f and 
g, denoted by the standard notation f *g and defined 
by the integral
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 Step1: Take the Laplace transform of both sides 
of the given differential equation 

 Step2:Use the formulas:





 with the Initial conditions
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Working Rule to solve Differential Equations By Laplace 
Transform Method continuation

 step4:Transpose the terms with minus signs to the 
right.

 Step5:Divide by the coefficient of 

getting      as  a known function of x.

 Step6:Resolve this function into partial fractions.

 Step7:Take the Inverse of Laplace Transform of  
obtained in step5.This gives y as a function of t which 
is the required solution of the given equation 
satisfying the given initial conditions.
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yd
 ODE w/initial conditions

 Apply Laplace transform 
to each term

 Solve for Y(s)

 Apply partial fraction 
expansion

 Apply inverse Laplace 
transform to each term
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Example:   Use of the Laplace Transform
to solve the initial-value problem

 Solve                      ,               &             .

 Solution: Taking the Laplace Transform of both sides                               
i.e using the derivative 
property                                                              
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 we obtain substituting the initial conditions                                  
&                 and                   using more 

suggestive , 

we obtain 

i.e

Solving 
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 Solving partial fractions  
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p4=Plot[((1/3)Sin[t]+(2/3)Sin[2t]),{t,0,4*Pi}]       by 
Mathematica
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Real-Life Applications

Semiconductor 
mobility

Call completion in 
wireless networks

Vehicle vibrations on 
compressed rails

Behavior of magnetic 
and electric fields 
above the 
atmosphere



Diffusion Equation
ut = kuxx in (0,l)

Initial Conditions:
u(0,t) = u(l,t) = 1,   u(x,0) = 1 + sin(πx/l)

Using af(t) + bg(t)  aF(s) + bG(s)
and df/dt  sF(s) – f(0)
and noting that the partials with respect to x commute with the transforms with 

respect to t, the Laplace transform U(x,s) satisfies
sU(x,s) – u(x,0) = kUxx(x,s)

With eat
 1/(s-a) and a=0,

the boundary conditions become U(0,s) = U(l,s) = 1/s.

So we have an ODE in the variable x together with some boundary conditions.  
The solution is then:

U(x,s) = 1/s + (1/(s+kπ2/l2))sin(πx/l)

Therefore, when we invert the transform, using the Laplace table:
u(x,t) = 1 + e-kπ2t/l2sin(πx/l)



Ex. Semiconductor Mobility

Motivation
 semiconductors are commonly 

made with superlattices having 
layers of differing compositions

 need to determine properties of 
carriers in each layer 

concentration of electrons and 
holes

mobility of electrons and holes 

 conductivity tensor can be related 
to Laplace transform of electron 
and hole densities



Real world Applications of 
Laplace Transform

• A simple Laplace Transform is conducted while
sending signals over any two-way
communication medium (FM/AM stereo, 2-way
radio sets, cellular phones). When information is
sent over medium such as cellular phones, they
are first converted into time-varying wave, and
then it is super-imposed on the medium. In this
way, the information propagates. Now, at the
receiving end, to decipher the information being
sent, medium wave’s time functions are
converted to frequency functions.



Engineering Applications of Laplace 
Transform

• System Modeling

• Analysis of Electrical Circuits

• Analysis of Electronic Circuits

• Digital Signal Processing

• Nuclear Physics
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Baron Jean Baptiste Joseph Fourier (1768−1830) introduced the idea that 

any periodic function can be represented by a series of Sines and cosines 

which are harmonically related. 

Fourier series is an infinite series representation of a periodic function in 

terms of Sines and Cosines. Fourier series is useful to solve Ordinary and 

Partial differential equations particularly with periodic functions appearing 

as non-homogeneous terms. 

Suppose that a given function f(x) defined by  ,   or   0,2  or any other 

interval can be expressed as a trigonometric series as  

                                                                                              --------- (1) 

 

Such series is known as the Fourier series for f(x) and the constants 

0 , &n na a b  ; ( 1,2,3,.....)n   are called the Fourier Coefficients of f(x). 
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FOURIER SERIES 



Periodic Function 

A function f(x) is said to be of period T or to be periodic with period T>0 if for all real x, f(x+T)=f(T) 

and T is the least of such values. (a function returning to the same value at regular intervals) 

Example: Since ( ) ( 2 ) ( 4 )Sinx Sin x Sin x Sin x           the function Sinx is periodic 

with period 2 .  

In a similar manner the period of Cosx is2  

The period of tanx is  . 

Euler’s Formulae 

The Fourier series for the function f(x) in the interval 2C x C     is given by  

 

 

where 
2

0

1
( )

c

c

a f x dx






   

21
( )

c

n
c

a f x Cosnxdx






                         --------------------------------- (A) 

&
21

( )
c

n
c

b f x Sinnxdx






   

These values of 0 , &n na a b are called the Euler’s formulae. 
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NOTE 

 If f(x) is to be expanded as a Fourier series in the interval0 2x   . Put C=0, then 

the formulae (A) reduces to 
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 If f(x) is to be expanded as a Fourier series in the interval x    . Put C   , 

then the formulae (A) reduces to 
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SOLVED PROBLEMS 

1. Expand 2( ) ,0 2f x x x     as a Fourier series. 

Solution: Let 2( ) ,0 2f x x x     

i.e,  2 0

12
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a
x a Cosnx b Sinnx
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Substituting the values of 0 , &n na a b  in (1), we get the required Fourier series for f(x) as  
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2. Expand ( ) ,0 2f x x x     as a Fourier series. 

Solution: Let ( ) ,0 2f x x x     

i.e,  0
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 Substituting the values of 0 , &n na a b  in (1), we get the required Fourier series for f(x) as  
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3. Obtain the Fourier Series for the function ( ) xf x e from 0x   to 2x   

Solution: Let ( ) ,0 2xf x e x     

i.e,  0
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Substituting the values of 0 , &n na a b  in (1), we get the required Fourier series for f(x) as 

 

 
 

 

22
2

2 2
1 1

2

2 2
1 1

( ) 11 1
1

2 (1 ) (1 )

1 1
1

2 (1 ) (1 )

x

n n

n n

n ee
e e Cosnx Sinnx

n n

Cosnx Sinnx
e

n n






  



 

 

 

 

 
    

 

 
      

 

 

 

4. Expand ( ) ,0 2f x xSinx x     as a Fourier series. 

Solution: Let ( ) ,0 2f x xSinx x      

i.e,  0
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Substituting the values of 0 , &n na a b  in (1), we get the required Fourier series for f(x) as
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This is the required Fourier series 



 EVEN AND ODD FUNCTIONS  

A function f(x) is said to be even function if f(-x)=f(x) and odd function if f(-x)=-f(x) 

Example: 

2 4 2, 1, , ,x xx x x e e Cosx Secx    are all even functions of x,  

3 5, 2 3, , sec , tanx x x Sinx Co x x  are odd functions of x 

FOURIER SERIES FOR EVEN AND ODD FUNCTIONS 
 

Case I. When f(x) is an even function in ( , )   
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Case II. When f(x) is an odd function in ( , ) 
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SOLVED PROBLEMS 

1. Express ( )f x x  as a Fourier series in( , )  . 

Solution: Since ( ) ( )f x x f x      

( )f x is an odd function in ( , ).   

Hence the Fourier series consists of Sine terms only. 

i.e,
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 Substituting the values of nb  in (1), we get the required Fourier series for f(x) as  
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2. Expand the function 2( )f x x  as a Fourier series in( , )  . 

(OR) Prove that 
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Solution: Since 2 2( ) ( ) ( )f x x x f x      

( )f x is an even function in ( , ).   Hence the Fourier series consists of Cosine terms only 
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Substituting the values of 0 & na a  in (1), we get the required Fourier series for f(x) as  
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3. Find the Fourier series to represent the function ( ) ,f x Sinx x      as a Fourier series 

Solution: Since Sinx is an even function in ( , ).   

Hence the Fourier series consists of Cosine terms only 
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HALF RANGE FOURIER SERIES 

It is often required to obtain Fourier series of a function f(x) in the interval (0, )  

The Sine Series: 

The half range Sine series in (0, ) is given by 
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The Cosine Series: 

The half range Cosine series in (0, ) is given by 
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1. Find the half-range cosine and sine series for the function ( )f x x  in the range 0 x   . 

(OR) 

Prove that the function ( )f x x can be expanded in a series of cosines in 0 x    

as 
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The Cosine Series: The half range cosine series expansion of f(x) in  0,   
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Substituting the values of 0 & na a  in (1), we get the required Fourier series for f(x) as  
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The Sine Series: 

1

( ) (3)n
n

f x x b Sinnx




       

0

2
Where ( ) , 0,1,2,.....nb f x Sinnxdx n




   

 

2
0 0 0

1

2 2 2
( ) 1

2 2
0 0 0 ( 1)

n

n

Cosnx Sinnx
b f x Sinnxdx xSinnxdx x

n n

Cosn

n n


 

  

 





     
       

    

  
       

  

 

 

Substituting the values of nb  in (3), we get the required Fourier series for f(x) as 
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2. Obtain the half-range sine series for the function ( ) xf x e  in(0, ) . 

Solution: The half range sine series expansion of xe in (0, ) is given by 
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0 0

2 2

0

1

2

2 2
( ) (

2 1
0 (0 )

1 1

2
1 ( 1)

(1 )

ax
x ax

n

n

e
b f x Sinnxdx e Sinnxdx e Sinbxdx aSinbx bCosbx

a b

e
nCosn n

n n

n
e

n

 





 








   


 
    

  

    

  

 

Substituting the values of nb  in (1), we get the required Fourier series for f(x) as 

1

2 2 2 2
1

1 ( 1)2 2 (1 ) 2(1 ) 3(1 )
2 3

(1 ) 1 1 2 1 3 1

n

x

n

n e e e e
e Sinnx Sinx Sin x Sin x

n

   

 






              
    

  



3. Obtain the half-range sine series for the function ( )f x Cosx  in(0, ) . 

Solution: The half range sine series expansion of Cosxin (0, ) is given by 

1

( ) n
n

f x b Sinnx




   i.e, 
1

n
n

Cosx b Sinnx




    ------- (1) 

0

2
Where ( ) , 0,1,2,.....nb f x Sinnxdx n




 

 

0 0

0

0

1

2

2 2
( )

1
2

1 ( 1) ( 1)

1 1

1 ( 1) ( 1) 1 1

1 1 1 1

1 ( 1) ( 1) 1 1

1 1 1 1

1 ( 1) ( 1) ( 1)

1 1

n

n n

n n

b f x Sinnxdx CosxSinnxdx

SinnxCosxdx

Cos n x Cos n x

n n

Cos n Cos n

n n n n

n n n n

n n

 





 





 









 



   
    

   
        

   
    

    

  
 

 

 



   2

1 1
( 1)

1 1

1 1 1 2 ( 1) 1
( 1) 1

1 1 1

n
n

n
n n

n

n n n 

 
   

  

   
            

 



2

0, when isodd

4
,when iseven

( -1)

n

n

b n
n

n




  



 

If n=1, then 

 

1
0 0 0

0

2 1 1
2 2

1 2
0

2

b CosxSinxdx CosxSinxdx Sin xdx

Cos x

  



  



  

 
   

  

 

2

0 when isodd

4
when iseven

( -1)

n

n

b n
n

n




  



 

Substituting the values of b’s in (1), we get 

2 2
2,4,6,.... 2,4,6,....

2
1

4 4

( 1) ( 1)

4 2
2 ( iseven, replaceby2 )

(4 1)

8 1 2
2 4

3 15

n n

n

n n
Cosx Sinnx Sinnx

n n

n
Sin nx n n

n

Sin x Sin x

 





 

 





  
 




 
     

 

 

  



 

FOURIER SERIES IN AN ARBITRARY INTERVAL (CHANGE OF 

INTERVAL) 

 

 INTERVALS OTHER THAN ( , )  AND (0,2 )  

(FOURIER SERIES FOR FUNCTIONS HAVING PERIOD 2l): 

The Fourier series for the function f(x) in the interval 2C x C l    is given by 

 

 

where 
2

0

1
( )

c l

c

a f x dx
l



   

          

21
( )

c l

n
c

n x
a f x Cos dx

l l



               --------------------------------- (A) 

       &
21

( )
c l

n
c

n x
b f x Sin dx

l l



   

0

1

( )
2

n n
n

a n x n x
f x a Cos b Sin

l l

 



 
   

 
 



 

NOTE 

 If f(x) is to be expanded as a Fourier series in the interval0 2x l  . Put C=0, then the 

formulae (A) reduces to 

       
2

0
0

1
( )

l

a f x dx
l

   

       
2

0

1
( )

l

n

n x
a f x Cos dx

l l


                          

      &
2

0

1
( )

l

n

n x
b f x Sin dx

l l


   

 If f(x) is to be expanded as a Fourier series in the interval l x l   . Put C l  , then the 

formulae (A) reduces to 

  0

1
( )

l

l

a f x dx
l 

   

  
1

( )
l

n
l

n x
a f x Cos dx

l l





                          

   
1

( )
l

n
l

n x
b f x Sin dx

l l





   

 



FOURIER SERIES FOR EVEN AND ODD FUNCTIONS 

 

We know that a function f(x) defined in the interval ( , )l l can be represented by the Fourier 

series.
 

Case I. When f(x) is an even function in ( , )l l  

 

 

 

0

1

( )
2

n
n

a n x
f x a Cos

l





    

0
0

0

2
Where ( )

2
( ) , 0,1,2,.....

l

l

n

a f x dx
l

n x
a f x Cos dx n

l l





 





 

 



Case II. When f(x) is an odd function in ( , )l l  

 

 

 

 

 

1

( ) n
n

n x
f x b Sin

l





 
 

0

2
Where ( ) , 0,1,2,.....n

n x
b f x Sin dx n

l l

 
 

 

 



1. Find the Fourier series to represent 2( ) 2f x x   , when 2 2x   . 

Solution: Since 2 2( ) ( ) 2 2 ( )f x x x f x        

( )f x is an even function in ( 2,2).  

Hence the Fourier series consists of Cosine terms only 

i.e, 2 0

12 2
n

n

a n x
x a Cos





   ---------(1)

23 32
2

0
0 0 0

2 2 2 4
Then ( ) ( 2) 2 4

2 3 3 3

l x
a f x dx x dx x

l

    
          

   
          

2
2

0 0

2 2
( ) ( 2)

2 2

l

n

n x n x
a f x Cos dx x Cos dx

l l

 
   

 

2

2

2 3

0

2 2 2 2

2 2 2( 2) 2 2

2 2 2

16 16
0 0 ( 1) ( ( 1) )n n

n x n x n x
Sin Cos Sin

x x
n n n

Cosn
Cosn

n n

  

  




 

     
      
        
        

                

  
        

  
 

Substituting the values of 0 & na a  in (1), we get the required Fourier series for f(x) as  

 

 

 
     2

2 2 2 2 2 2
1

2 32 16 2 16
1

3 2 3 1 2 3

n

n

Cos x Cos x Cos xn x
x Cos

n

  

 





 
           

 




2. Find the Fourier series with period 3 to represent 2( )f x x x   in (0,3)  

Solution:Let 0

1

( ) (1)
2

n n
n

a n x n x
f x a Cos b Sin

l l

 



 
         

 


                            
 

Here 2 3 3/ 2l l    

i.e, 2 0

1

2 2

2 3 3
n n

n

a n x n x
x x a Cos b Sin

 



 
    

 
 ---------(2) 

32 32 3
2

0
0 0 0

2 2 2
Then ( ) ( ) 9

3 3 3 2 3

l x x
a f x dx x x dx

 
      

 
          

2 3
2

0 0

3

2

2 3

0

2 2 2 2 2 2

1 2 2
( ) ( )

3 3

2 2 2
2 3 3 3( ) (1 2 ) 2

23 2 2
3 3 3

2 3 9 9

3 4 4

l

n

n x n x
a f x Cos dx x x Cos dx

l l

n x n x n x
Sin Cos Sin

x x x
n n n

n n n

 

  

  

  

  

     
      
         
        

                

 
    

 

 



2

0

3
2

0

3

2

2 3

0

1
( )

2 2
( )

3 3

2 2 2
2 3 3 3( ) (1 2 ) 2

23 2 2
3 3 3

12

Substituting the values of   in 

l

n

n x
b f x Sin dx

l l

n x
x x Sin dx

n x n x n x
Cos Sin Cos

x x x
n n n

n





  

  





 

     
      
         
        

                








2

2 2
1

(2), we get the required Fourier series 

for ( ) as 

9 9 2 12 2

2 3 3n

f x

n x n x
x x Cos Sin

n n

 

 





    
       

    


  

  

 



3. Find the Fourier series to represent the function ( ) , 2 2f x x x     as a Fourier series 

Solution: Since x  is an even function in ( 2,2).  

Hence the Fourier series consists of Cosine terms only 

i.e, 0

12 2
n

n

a n x
x a Cos





   ---------(1) 

22 22

0
0 0 0

2 2 2
Then ( ) 2 ( 2)

2 2 2

l x
a f x dx x dx l

l

   
        

   
          

 

0

2

0

2

2

0

2 2

2 2

2
( )

2

2 2

2 2( )

2 2

4
0 1

4
( 1) 1

l

n

n

n x
a f x Cos dx

l l

n x
xCos dx

n x n x
Sin Cos

x
n n

Cosn
n

n





 

 










   
   
    
    

        

  
    

  

    





 



2 2

0 when iseven

-8
when isodd

n

n

n

a
n






 


 

Substituting the values of 0 & na a  in (1), we get the required Fourier series for f(x) as  

2 2
1,3,5,....

2 2

8 1
1

2

8 1 3
1

2 3 2

n

n x
x Cos

n

x x
x Cos Cos





 







 
    

 

 
      



 



HALF RANGE FOURIER SERIES 

It is often required to obtain Fourier series of a function f(x) in the interval (0, )l  

The Sine Series: 

The half range Sine series in (0, )l is given by 

 

 

 

1

( ) n
n

n x
f x b Sin

l





   

0

2
Where ( ) , 0,1,2,.....

l

n

n x
b f x Sin dx n

l l


 

 

 



The Cosine Series: 

The half range Cosine series in (0, )l is given by 

 

 

 

0

1

( )
2

n
n

a n x
f x a Cos

l





    

0
0

0

2
Where ( ) and 

2
( ) , 0,1,2,.....

l

l

n

a f x dx
l

n x
a f x Cos dx n

l l





 





 

 



SOLVED PROBLEMS
 

1. Obtain the half-range sine series for the function ( ) 1f x  in 0, l . 

Solution: The half range sine series expansion of ( ) 1f x  in (0, )l is given by 

1 0

2
( ) 1 ,Where ( ) , 0,1,2,..... (1)

l

n n
n

n x n x
f x b Sin b f x Sin dx n

l l l

 



         
 

 

  i.e, 
1

1 n
n

n x
b Sin

l





    -------(1) 

 

0 0

0

1

2 2 2
( ) 1

2 2
1 ( 1) 1

l

l l

n

n

n x
Cos

n x n x lb f x Sin dx Sin dx
nl l l l l

l

Cosn
n n


 




 



 

 

     
 
 

       

 

 

0 when iseven

4
when isodd

n

n

n

b
n






 
  



Substituting the values of nb  in (1), we get the required Fourier series for f(x) as  

1,3,5,....

3 5
4 4

1
1 3 5n

n x x x x
Sin Sin Sin Sin

l l l l

   

  





 
 

       
 
 

  



2. Obtain the half-range sine series for the function ( )f x ax b  in0 1x  . 

Solution: The half range sine series expansion of ( )f x ax b  in (0,1) is given by 

1

0

( ) ,

2
Where ( ) , 0,1,2,.....

n
n

l

n

n x
f x ax b b Sin

l

n x
b f x Sin dx n

l l









  

 




 

 i.e, 
1 1

n
n

n x
ax b b Sin





     -------(1)

1
1

0 0 0

1

2 2
( ) ( ) 2 ( )

1 1

2
( 1)( )

2
( 1) ( )

l

n

n

n x n x Cosn Sinn
b f x Sin dx ax b Sin dx ax b a

l l n n

a
a b Cosn Sinn b

n n

a b b
n

   

 

 
 





  
       

 
      

     

 

 

Substituting the values of nb  in (1), we get the required Fourier series for f(x) as  

2 2 2
( 2 ) 2 ( 2 ) 3

2 3

a
ax b a b Sin x Sin x a b Sin x  

  
         



3. Find the half-range cosine series for the function ( ) (2 )f x x x   in the range 0 2x 

and hence find the sum of the series 
2 2 2 2

1 1 1 1

1 2 3 4
     

Solution: The half range Cosine series expansion of ( ) (2 )f x x x   in  0,2   

                               
0

1

(2 )
2 2

n
n

a n x
x x a Cos





   
  

--------(1) 

2
2

0
0 0

2 2 4
Then ( ) (2 )

2 3

l

a f x dx x x dx
l

    

 

 

2
2

0 0

2

2 3

0

2 2 2 2 2 2

2 2
( ) (2 )

2 2

2 2 2(2 ) (2 2 ) (2 )

2 2 2

8 8 8
1 ( 1)

0, for i

l

n

n

n

n x n x
a f x Cos dx x x Cos dx

l l

n x n x n x
Sin Cos Sin

x x x x
n n n

Cosn
n n n

n

a



 

  

  


  

  

     
     
         
        

                

 
    

 

 

2 2

sodd

-16
,for iseven

n
n








 



Substituting the values of 0 & na a  in (1), we get the required Fourier series for f(x) as  

i.e,
2 2

2,4,6,.....

2 16 1
(2 )

3 2n

n x
x x Cos

n









      

                               (or)  

2 2 2

2 4 2 3
(2 )

2 2 3

Cos x Cos x
x x Cos x

 




 
             

-------------(2)  

Deduction: 

Putting x=1 in (2), we get 

2 2 2 2

2 2 2 2

2

2 2 2

2 4 1 1 1
2 1 2 3

3 1 2 3

1 4 1 1 1
2 3

3 1 2 3

1 1 1

1 2 3 12

Cos Cos Cos

Cos Cos Cos

  


  




 
           

 
         

       

 



4. Obtain the half-range sine series for the function 2( )f x x in 0,4 . 

Solution: The half range sine series expansion of 2( )f x x in (0,4) is given by 

Here 4l   

2

1

0

( ) (1)

2
Where ( )

n
n

l

n

n x
f x x b Sin

l

n x
b f x Sin dx

l l









  






 

0

4

4
2 2

2 2 3 3
0

0

2 2 3 3 3 3

2
( )

2 1 4 4 42 2
4 4 2

4 16 64

1 4 128 128 128
16

2

2 ( 1) 1
32

l

n

n

n x
b f x Sin dx

l l

n x n x n x
Cos Sin Cos

n x
x Sin dx x x

n n n

Cosn Sinn Cosn
n n n n



  


  

  
   



     
      

        
         

      

 
     

  






1

3 3

( 1)n

n n 

     
  

 

 



Substituting the values of nb  in (1), we get the required Fourier series for f(x) as 

1
2

3 3
1

2 ( 1) 1 ( 1)
32

4

n n

n

n x
x Sin

n n



 





        
  


 



Thank You


