
 C language important topics:

 The C Language is developed by Dennis Ritchie for creating system applications that directly

interact with the hardware devices such as drivers, kernels, etc.

It can be defined by the following ways:

1. Mother language

2. System programming language

3. Procedure-oriented programming language

4. Structured programming language

5. Mid-level programming language

1) C as a mother language

C language is considered as the mother language of all the modern programming languages
because most of the compilers, JVMs, Kernels, etc. are written in C language, and most of the
programming languages follow C syntax, for example, C++, Java, C#, etc.

It provides the core concepts like the array

, strings
, functions
, file handling
, etc. that are being used in many languages like C++
, Java
, C#
, etc.

2) C as a system programming language

A system programming language is used to create system software. C language is a system
programming language because it can be used to do low-level programming (for example
driver and kernel). It is generally used to create hardware devices, OS, drivers, kernels, etc. For
example, Linux kernel is written in C.

It can't be used for internet programming like Java, .Net, PHP, etc.

3) C as a procedural language

 A procedure is known as a function, method, routine, subroutine, etc. A procedural
language specifies a series of steps for the program to solve the problem.

https://www.javatpoint.com/c-array
https://www.javatpoint.com/c-array
https://www.javatpoint.com/c-strings
https://www.javatpoint.com/c-strings
https://www.javatpoint.com/functions-in-c
https://www.javatpoint.com/functions-in-c
https://www.javatpoint.com/file-handling-in-c
https://www.javatpoint.com/file-handling-in-c
https://www.javatpoint.com/cpp-tutorial
https://www.javatpoint.com/cpp-tutorial
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/c-sharp-tutorial
https://www.javatpoint.com/c-sharp-tutorial

A procedural language breaks the program into functions, data structures, etc.

C is a procedural language. In C, variables and function prototypes must be declared before being
used.

4) C as a structured programming language

 A structured programming language is a subset of the procedural language. Structure
means to break a program into parts or blocks so that it may be easy to understand.

In the C language, we break the program into parts using functions. It makes the program easier to
understand and modify.

5) C as a mid-level programming language

C is considered as a middle-level language because it supports the feature of both low-level and
high-level languages. C language program is converted into assembly code, it supports pointer
arithmetic (low-level), but it is machine independent (a feature of high-level).

A Low-level language is specific to one machine, i.e., machine dependent. It is machine dependent,
fast to run. But it is not easy to understand.

A High-Level language is not specific to one machine, i.e., machine independent. It is easy to
understand.

C Program

 All C programs are given with C compiler so that you can quickly change the C program code.

File: main.c

#include <stdio.h>

int main()

{

 printf("Hello C Programming\n");

return 0;

}

C programming language was developed in 1972 by Dennis Ritchie at bell laboratories of AT&T
(American Telephone & Telegraph), located in the U.S.A.

Dennis Ritchie is known as the founder of the c language.

Features of C Language

C is the widely used language. It provides many features that are given below.

1. Simple

2. Machine Independent or Portable

3. Mid-level programming language

4. structured programming language

5. Rich Library

6. Memory Management

7. Fast Speed

8. Pointers

9. Recursion

10. Extensible

1) Simple

C is a simple language in the sense that it provides a structured approach (to break the problem
into parts), the rich set of library functions, data types, etc.

2) Machine Independent or Portable

Unlike assembly language, c programs can be executed on different machines with some
machine specific changes. Therefore, C is a machine independent language.

3) Mid-level programming language

Although, C is intended to do low-level programming. It is used to develop system applications
such as kernel, driver, etc. It also supports the features of a high-level language. That is why it is
known as mid-level language.

4) Structured programming language

C is a structured programming language in the sense that we can break the program into parts
using functions. So, it is easy to understand and modify. Functions also provide code reusability.

5) Rich Library

C provides a lot of inbuilt functions that make the development fast.

6) Memory Management

It supports the feature of dynamic memory allocation. In C language, we can free the allocated
memory at any time by calling the free() function.

7) Speed

The compilation and execution time of C language is fast since there are lesser inbuilt functions and
hence the lesser overhead.

8) Pointer

C provides the feature of pointers. We can directly interact with the memory by using the pointers.
We can use pointers for memory, structures, functions, array, etc.

9) Recursion

In C, we can call the function within the function. It provides code reusability for every function.
Recursion enables us to use the approach of backtracking.

10) Extensible

C language is extensible because it can easily adopt new features.

First C Program

Before starting the abcd of C language, you need to learn how to write, compile and run the first c
program.

To write the first c program, open the C console and write the following code:

#include <stdio.h>

int main(){

printf("Hello C Language");

return 0;

}

#include <stdio.h> includes the standard input output library functions. The printf() function is
defined in stdio.h .

int main() The main() function is the entry point of every program in c language.

printf() The printf() function is used to print data on the console.

return 0 The return 0 statement, returns execution status to the OS. The 0 value is used for
successful execution and 1 for unsuccessful execution.

How to compile and run the c program

There are 2 ways to compile and run the c program, by menu and by shortcut.

By menu

Now click on the compile menu then compile sub menu to compile the c program.

Then click on the run menu then run sub menu to run the c program

Or, press ctrl+f9 keys compile and run the program directly.

Compilation process in c

What is a compilation?

The compilation is a process of converting the source code into object code. It is done with the help
of the compiler. The compiler checks the source code for the syntactical or structural errors, and if
the source code is error-free, then it generates the object code.

The c compilation process converts the source code taken as input into the object code or machine
code. The compilation process can be divided into four steps, i.e., Pre-processing, Compiling,
Assembling, and Linking.

The preprocessor takes the source code as an input, and it removes all the comments from the
source code. The preprocessor takes the preprocessor directive and interprets it. For example,
if <stdio.h>, the directive is available in the program, then the preprocessor interprets the directive
and replace this directive with the content of the 'stdio.h' file.

The following are the phases through which our program passes before being transformed into an
executable form:

o Preprocessor

o Compiler

o Assembler

o Linker

Preprocessor

The source code is the code which is written in a text editor and the source code file is given an
extension ".c". This source code is first passed to the preprocessor, and then the preprocessor
expands this code. After expanding the code, the expanded code is passed to the compiler.

Compiler

The code which is expanded by the preprocessor is passed to the compiler. The compiler converts
this code into assembly code. Or we can say that the C compiler converts the pre-processed code
into assembly code.

Assembler

The assembly code is converted into object code by using an assembler. The name of the object file
generated by the assembler is the same as the source file. The extension of the object file in DOS is
'.obj,' and in UNIX, the extension is 'o'. If the name of the source file is 'hello.c', then the name of the
object file would be 'hello.obj'.

Linker

Mainly, all the programs written in C use library functions. These library functions are pre-
compiled, and the object code of these library files is stored with '.lib' (or '.a') extension. The main
working of the linker is to combine the object code of library files with the object code of our
program. Sometimes the situation arises when our program refers to the functions defined in other
files; then linker plays a very important role in this. It links the object code of these files to our
program. Therefore, we conclude that the job of the linker is to link the object code of our program
with the object code of the library files and other files. The output of the linker is the executable file.
The name of the executable file is the same as the source file but differs only in their extensions. In
DOS, the extension of the executable file is '.exe', and in UNIX, the executable file can be named as
'a.out'. For example, if we are using printf() function in a program, then the linker adds its
associated code in an output file.

Let's understand through an example.

hello.c

1. #include <stdio.h>

2. int main()

3. {

4. printf("Hello java");

5. return 0;

6. }

Now, we will create a flow diagram of the above program:

https://www.javatpoint.com/compilation-process-in-c
https://www.javatpoint.com/compilation-process-in-c
https://www.javatpoint.com/compilation-process-in-c
https://www.javatpoint.com/compilation-process-in-c
https://www.javatpoint.com/compilation-process-in-c
https://www.javatpoint.com/compilation-process-in-c

In the above flow diagram, the following steps are taken to execute a program:

o Firstly, the input file, i.e., hello.c, is passed to the preprocessor, and the preprocessor

converts the source code into expanded source code. The extension of the expanded source

code would be hello.i.

o The expanded source code is passed to the compiler, and the compiler converts this

expanded source code into assembly code. The extension of the assembly code would

be hello.s.

o This assembly code is then sent to the assembler, which converts the assembly code into

object code.

o After the creation of an object code, the linker creates the executable file. The loader will

then load the executable file for the execution.

printf() and scanf() in C:

The printf() and scanf() functions are used for input and output in C language. Both functions are
inbuilt library functions, defined in stdio.h (header file).

printf() function

The printf() function is used for output. It prints the given statement to the console.

The syntax of printf() function is given below:

1. printf("format string",argument_list);

The format string can be %d (integer), %c (character), %s (string), %f (float) etc.

scanf() function

The scanf() function is used for input. It reads the input data from the console.

1. scanf("format string",argument_list);

Program to print cube of given number

Let's see a simple example of c language that gets input from the user and prints the cube of the
given number.

1. #include<stdio.h>

2. int main(){

3. int number;

4. printf("enter a number:");

5. scanf("%d",&number);

6. printf("cube of number is:%d ",number*number*number);

7. return 0;

8. }

Output

enter a number:5
cube of number is:125

The scanf("%d",&number) statement reads integer number from the console and stores the given
value in number variable.

The printf("cube of number is:%d ",number*number*number) statement prints the cube of
number on the console.

Program to print sum of 2 numbers

Let's see a simple example of input and output in C language that prints addition of 2 numbers.

1. #include<stdio.h>

2. int main(){

3. int x=0,y=0,result=0;

4.

5. printf("enter first number:");

6. scanf("%d",&x);

7. printf("enter second number:");

8. scanf("%d",&y);

9.

10. result=x+y;

11. printf("sum of 2 numbers:%d ",result);

12.

13. return 0;

14. }

Output

enter first number:9

enter second number:9
sum of 2 numbers:18

Variables in C

A variable is a name of the memory location. It is used to store data. Its value can be changed, and it
can be reused many times.

It is a way to represent memory location through symbol so that it can be easily identified.

Let's see the syntax to declare a variable:

1. type variable_list;

The example of declaring the variable is given below:

1. int a;

2. float b;

3. char c;

Here, a, b, c are variables. The int, float, char are the data types.

We can also provide values while declaring the variables as given below:

1. int a=10,b=20;//declaring 2 variable of integer type

2. float f=20.8;

3. char c='A';

Rules for defining variables

o A variable can have alphabets, digits, and underscore.

o A variable name can start with the alphabet, and underscore only. It can't start with a digit.

o No whitespace is allowed within the variable name.

o A variable name must not be any reserved word or keyword, e.g. int, float, etc.

Valid variable names:

1. int a;

2. int _ab;

3. int a30;

Invalid variable names:

1. int 2;

2. int a b;

3. int long;

Types of Variables in C

There are many types of variables in c:

1. local variable

2. global variable

3. static variable

4. automatic variable

5. external variable

Local Variable

A variable that is declared inside the function or block is called a local variable.

It must be declared at the start of the block.

1. void function1(){

2. int x=10;//local variable

3. }

You must have to initialize the local variable before it is used.

Global Variable

A variable that is declared outside the function or block is called a global variable. Any function can
change the value of the global variable. It is available to all the functions.

It must be declared at the start of the block.

1. int value=20;//global variable

2. void function1(){

3. int x=10;//local variable

4. }

Static Variable

A variable that is declared with the static keyword is called static variable.

It retains its value between multiple function calls.

1. void function1(){

2. int x=10;//local variable

3. static int y=10;//static variable

4. x=x+1;

5. y=y+1;

6. printf("%d,%d",x,y);

7. }

If you call this function many times, the local variable will print the same value for each function
call, e.g, 11,11,11 and so on. But the static variable will print the incremented value in each
function call, e.g. 11, 12, 13 and so on.

Automatic Variable

All variables in C that are declared inside the block, are automatic variables by default. We can
explicitly declare an automatic variable using auto keyword.

1. void main(){

2. int x=10;//local variable (also automatic)

3. auto int y=20;//automatic variable

4. }

External Variable

We can share a variable in multiple C source files by using an external variable. To declare an
external variable, you need to use extern keyword.

1. extern int x=10;//external variable (also global)

Data Types in C

A data type specifies the type of data that a variable can store such as integer, floating, character,
etc.

There are the following data types in C language.

Types Data Types

Basic Data Type int, char, float, double

Derived Data Type array, pointer, structure, union

Enumeration Data Type enum

Void Data Type void

Basic Data Types

The basic data types are integer-based and floating-point based. C language supports both signed
and unsigned literals.

The memory size of the basic data types may change according to 32 or 64-bit operating system.

Let's see the basic data types. Its size is given according to 32-bit architecture.

Data Types Memory Size Range

char 1 byte −128 to 127

signed char 1 byte −128 to 127

unsigned char 1 byte 0 to 255

short 2 byte −32,768 to 32,767

signed short 2 byte −32,768 to 32,767

unsigned short 2 byte 0 to 65,535

int 2 byte −32,768 to 32,767

signed int 2 byte −32,768 to 32,767

unsigned int 2 byte 0 to 65,535

short int 2 byte −32,768 to 32,767

signed short int 2 byte −32,768 to 32,767

unsigned short int 2 byte 0 to 65,535

long int 4 byte -2,147,483,648 to 2,147,483,647

signed long int 4 byte -2,147,483,648 to 2,147,483,647

unsigned long int 4 byte 0 to 4,294,967,295

float 4 byte

double 8 byte

long double 10 byte

Keywords in C:

A keyword is a reserved word. You cannot use it as a variable name, constant name, etc. There are
only 32 reserved words (keywords) in the C language.

A list of 32 keywords in the c language is given below:

auto break case char const continue default do

double else enum extern float for goto if

int long register return short signed sizeof static

struct switch typedef union unsigned void volatile while

C Identifiers:

C identifiers represent the name in the C program, for example, variables, functions, arrays,
structures, unions, labels, etc. An identifier can be composed of letters such as uppercase, lowercase
letters, underscore, digits, but the starting letter should be either an alphabet or an underscore. If
the identifier is not used in the external linkage, then it is called as an internal identifier. If the
identifier is used in the external linkage, then it is called as an external identifier.

We can say that an identifier is a collection of alphanumeric characters that begins either with an
alphabetical character or an underscore, which are used to represent various programming
elements such as variables, functions, arrays, structures, unions, labels, etc. There are 52
alphabetical characters (uppercase and lowercase), underscore character, and ten numerical digits
(0-9) that represent the identifiers. There is a total of 63 alphanumerical characters that represent
the identifiers.

Rules for constructing C identifiers

o The first character of an identifier should be either an alphabet or an underscore, and then

it can be followed by any of the character, digit, or underscore.

o It should not begin with any numerical digit.

o In identifiers, both uppercase and lowercase letters are distinct. Therefore, we can say that

identifiers are case sensitive.

o Commas or blank spaces cannot be specified within an identifier.

o Keywords cannot be represented as an identifier.

o The length of the identifiers should not be more than 31 characters.

o Identifiers should be written in such a way that it is meaningful, short, and easy to read.

Types of identifiers :

o Internal identifier

o External identifier

Internal Identifier

If the identifier is not used in the external linkage, then it is known as an internal identifier. The
internal identifiers can be local variables.

External Identifier

If the identifier is used in the external linkage, then it is known as an external identifier. The
external identifiers can be function names, global variables.

Differences between Keyword and Identifier

Keyword Identifier

Keyword is a pre-defined word. The identifier is a user-defined word

It must be written in a lowercase letter. It can be written in both lowercase and uppercase letters.

Its meaning is pre-defined in the c compiler. Its meaning is not defined in the c compiler.

It is a combination of alphabetical characters. It is a combination of alphanumeric characters.

It does not contain the underscore character. It can contain the underscore character.

Let's understand through an example.

int main()

{

 int a=10;

 int A=20;

 printf("Value of a is : %d",a);

 printf("\nValue of A is :%d",A);

 return 0;

}

Output

Value of a is : 10
Value of A is :20

The above output shows that the values of both the variables, 'a' and 'A' are different. Therefore, we
conclude that the identifiers are case sensitive.

C Operators

An operator is simply a symbol that is used to perform operations. There can be many types of
operations like arithmetic, logical, bitwise, etc.

There are following types of operators to perform different types of operations in C language.

o Arithmetic Operators

o Relational Operators

o Shift Operators

o Logical Operators

o Bitwise Operators

o Ternary or Conditional Operators

o Assignment Operator

o Misc Operator

Precedence of Operators in C

The precedence of operator species that which operator will be evaluated first and next. The
associatively specifies the operator direction to be evaluated; it may be left to right or right to left.

Let's understand the precedence by the example given below:

The value variable will contain 210 because * (multiplicative operator) is evaluated before +
(additive operator).

The precedence and associativity of C operators is given below:

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

Comments in C :

Comments in C language are used to provide information about lines of code. It is widely used for
documenting code. There are 2 types of comments in the C language.

1. Single Line Comments

2. Multi-Line Comments

Single Line Comments

Single line comments are represented by double slash \\. Let's see an example of a single line
comment in C.

#include<stdio.h>

int main(){

 //printing information

 printf("Hello C");

return 0;

}

Output:

Hello C

Multiline Comments:

Multi-Line comments are represented by slash asterisk * ... *\. It can occupy many lines of code,
but it can't be nested. Syntax:

1. /*

2. code

3. to be commented

4. */

Let's see an example of a multi-Line comment in C.

#include<stdio.h>

int main(){

 /*printing information

 Multi-Line Comment*/

 printf("Hello C");

return 0;

}

Output:

Hello C

C Format Specifier :

 The Format specifier is a string used in the formatted input and output functions. The format
string determines the format of the input and output. The format string always starts with a '%'
character.

The commonly used format specifiers in printf() function are:

Format

specifier

Description

%d or %i It is used to print the signed integer value where signed integer means that the variable can hold both

positive and negative values.

%u It is used to print the unsigned integer value where the unsigned integer means that the variable can hold

only positive value.

%o It is used to print the octal unsigned integer where octal integer value always starts with a 0 value.

%x It is used to print the hexadecimal unsigned integer where the hexadecimal integer value always starts with

a 0x value. In this, alphabetical characters are printed in small letters such as a, b, c, etc.

%X It is used to print the hexadecimal unsigned integer, but %X prints the alphabetical characters in uppercase

such as A, B, C, etc.

%f It is used for printing the decimal floating-point values. By default, it prints the 6 values after '.'.

%e/%E It is used for scientific notation. It is also known as Mantissa or Exponent.

%g It is used to print the decimal floating-point values, and it uses the fixed precision, i.e., the value after the

decimal in input would be exactly the same as the value in the output.

%p It is used to print the address in a hexadecimal form.

%c It is used to print the unsigned character.

%s It is used to print the strings.

%ld It is used to print the long-signed integer value.

Let's understand the format specifiers in detail through an example.

o %d

int main()

{

 int b=6;

 int c=8;

 printf("Value of b is:%d", b);

 printf("\nValue of c is:%d",c);

 return 0;

}

In the above code, we are printing the integer value of b and c by using the %d specifier.

Escape Sequence in C :

 An escape sequence in C language is a sequence of characters that doesn't represent itself
when used inside string literal or character.

 It is composed of two or more characters starting with backslash \. For example: \n
represents new line.

List of Escape Sequences in C :

Escape Sequence Meaning

\a Alarm or Beep

\b Backspace

\f Form Feed

\n New Line

\r Carriage Return

\t Tab (Horizontal)

\v Vertical Tab

\\ Backslash

\' Single Quote

\" Double Quote

\? Question Mark

\nnn octal number

\xhh hexadecimal number

\0 Null

Escape Sequence Example

#include<stdio.h>

int main(){

 int number=50;

 printf("You\nare\nlearning\n\'c\' language\n\"Do you know C language\"");

return 0;

}

Output:

You
are
learning
'c' language
"Do you know C language"

Constants in C :

 A constant is a value or variable that can't be changed in the program, for example: 10,
20, 'a', 3.4, "c programming" etc.

There are different types of constants in C programming.

List of Constants in C

Constant Example

Decimal Constant 10, 20, 450 etc.

Real or Floating-point Constant 10.3, 20.2, 450.6 etc.

Octal Constant 021, 033, 046 etc.

Hexadecimal Constant 0x2a, 0x7b, 0xaa etc.

Character Constant 'a', 'b', 'x' etc.

String Constant "c", "c program", "c in javatpoint" etc.

2 ways to define constant in C :

There are two ways to define constant in C programming

https://www.javatpoint.com/c-programming-language-tutorial

1.const keyword

2define preprocessor

1) C const keyword :

The const keyword is used to define constant in C programming.

1. const float PI=3.14;

Now, the value of PI variable can't be changed.

#include<stdio.h>

int main(){

 const float PI=3.14;

 printf("The value of PI is: %f",PI);

 return 0;

}

Output:

The value of PI is: 3.140000

If you try to change the the value of PI, it will render compile time error.

#include<stdio.h>

int main(){

const float PI=3.14;

PI=4.5;

printf("The value of PI is: %f",PI);

 return 0;

}

Output:

https://www.javatpoint.com/constants-in-c
https://www.javatpoint.com/constants-in-c
https://www.javatpoint.com/constants-in-c
https://www.javatpoint.com/constants-in-c
https://www.javatpoint.com/constants-in-c
https://www.javatpoint.com/constants-in-c

Compile Time Error: Cannot modify a const object

What are literals :

 Literals are the constant values assigned to the constant variables. We can say that the
literals represent the fixed values that cannot be modified. It also contains memory but does not
have references as variables. For example, const int =10; is a constant integer expression in which
10 is an integer literal.

Types of literals :

There are four types of literals that exist in C programming:

o Integer literal

o Float literal

o Character literal

o String literal

 Integer literal

 It is a numeric literal that represents only integer type values. It represents the value neither
in fractional nor exponential part.

It can be specified in the following three ways:

Decimal number (base 10) :

It is defined by representing the digits between 0 to 9. For example, 45, 67, etc.

Octal number (base 8) :

It is defined as a number in which 0 is followed by digits such as 0,1,2,3,4,5,6,7. For example, 012,
034, 055, etc.

Hexadecimal number (base 16) :

It is defined as a number in which 0x or 0X is followed by the hexadecimal digits (i.e., digits from 0
to 9, alphabetical characters from (a-z) or (A-Z)).

An integer literal is suffixed by following two sign qualifiers:

L or l: It is a size qualifier that specifies the size of the integer type as long.

https://www.javatpoint.com/c-programming-language-tutorial

U or u: It is a sign qualifier that represents the type of the integer as unsigned. An unsigned
qualifier contains only positive values.

#include <stdio.h>

int main()

{

 const int a=23; // constant integer literal

 printf("Integer literal : %d", a);

 return 0;

}

Output

Integer literal : 23

Float literal :

 It is a literal that contains only floating-point values or real numbers. These real numbers
contain the number of parts such as integer part, real part, exponential part, and fractional part. The
floating-point literal must be specified either in decimal or in exponential form. Let's understand
these forms in brief.

Decimal form

The decimal form must contain either decimal point, exponential part, or both. If it does not contain
either of these, then the compiler will throw an error. The decimal notation can be prefixed either
by '+' or '-' symbol that specifies the positive and negative numbers.

Examples of float literal in decimal form are:

1. 1.2, +9.0, -4.5

Let's see a simple example of float literal in decimal form.

#include <stdio.h>

int main()

{

 const float a=4.5; // constant float literal

 const float b=5.6; // constant float literal

 float sum;

 sum=a+b;

 printf("%f", sum);

 return 0;

}

Output

10.100000

Exponential form :

 The exponential form is useful when we want to represent the number, which is having a
big magnitude. It contains two parts, i.e., mantissa and exponent. For example, the number is
2340000000000, and it can be expressed as 2.34e12 in an exponential form.

Character literal :

 A character literal contains a single character enclosed within single quotes. If multiple
characters are assigned to the variable, then we need to create a character array. If we try to store
more than one character in a variable, then the warning of a multi-character character
constant will be generated. Let's observe this scenario through an example.

#include <stdio.h>

int main()

{

 const char c='ak';

 printf("%c",c);

 return 0;

}

In the above code, we have used two characters, i.e., 'ak', within single quotes. So, this statement

will generate a warning as shown below.

String literal :

 A string literal represents multiple characters enclosed within double-quotes. It contains
an additional character, i.e., '\0' (null character), which gets automatically inserted. This null
character specifies the termination of the string. We can use the '+' symbol to concatenate two
strings.

For example,

String1= "javatpoint";

String2= "family";

To concatenate the above two strings, we use '+' operator, as shown in the below statement:

"javatpoint " + "family"= javatpoint family

Tokens in C :

 Tokens in C is the most important element to be used in creating a program in C. We
can define the token as the smallest individual element in C. For `example, we cannot create a
sentence without using words; similarly, we cannot create a program in C without using tokens in C.
Therefore, we can say that tokens in C is the building block or the basic component for creating
a program in C language

.

Classification of tokens in C :

Tokens in C language

can be divided into the following categories:

o Keywords in C

o Identifiers in C

o Strings in C

o Operators in C

https://www.javatpoint.com/c-programs
https://www.javatpoint.com/c-programs
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/c-programming-language-tutorial

o Constant in C

o Special Characters in C

Let's understand each token one by one.

Keywords in C

Keywords in C

can be defined as the pre-defined or the reserved words having its own importance, and each

keyword has its own functionality. Since keywords are the pre-defined words used by the compiler,

so they cannot be used as the variable names. If the keywords are used as the variable names, it

means that we are assigning a different meaning to the keyword, which is not allowed. C language

supports 32 keywords given below:

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Identifiers in C :

Identifiers in C

 are used for naming variables, functions, arrays, structures, etc. Identifiers in C are the

user-defined words. It can be composed of uppercase letters, lowercase letters, underscore, or

digits, but the starting letter should be either an underscore or an alphabet. Identifiers cannot be

used as keywords. Rules for constructing identifiers in C are given below:

https://www.javatpoint.com/keywords-in-c
https://www.javatpoint.com/keywords-in-c
https://www.javatpoint.com/c-identifiers
https://www.javatpoint.com/c-identifiers

o The first character of an identifier should be either an alphabet or an underscore, and then

it can be followed by any of the character, digit, or underscore.

o It should not begin with any numerical digit.

o In identifiers, both uppercase and lowercase letters are distinct. Therefore, we can say that

identifiers are case sensitive.

o Commas or blank spaces cannot be specified within an identifier.

o Keywords cannot be represented as an identifier.

o The length of the identifiers should not be more than 31 characters.

o Identifiers should be written in such a way that it is meaningful, short, and easy to read.

Strings in C :

Strings in C

 are always represented as an array of characters having null character '\0' at the end of the

string. This null character denotes the end of the string. Strings in C are enclosed within double

quotes, while characters are enclosed within single characters. The size of a string is a number of

characters that the string contains.

Now, we describe the strings in different ways:

char a[10] = "javatpoint"; // The compiler allocates the 10 bytes to the 'a' array.

char a[] = "javatpoint"; // The compiler allocates the memory at the run time.

char a[10] = {'j','a','v','a','t','p','o','i','n','t','\0'}; // String is represented in the form of characters.

Operators in C

Operators in C

 is a special symbol used to perform the functions. The data items on which the operators

are applied are known as operands. Operators are applied between the operands. Depending on the

number of operands, operators are classified as follows:

Unary Operator :

 A unary operator is an operator applied to the single operand. For example: increment
operator (++), decrement operator (--), sizeof, (type)*.

Binary Operator :

https://www.javatpoint.com/c-strings
https://www.javatpoint.com/c-strings
https://www.javatpoint.com/c-operators
https://www.javatpoint.com/c-operators

 The binary operator is an operator applied between two operands. The following is the list of
the binary operators:

o Arithmetic Operators

o Relational Operators

o Shift Operators

o Logical Operators

o Bitwise Operators

o Conditional Operators

o Assignment Operator

o Misc Operator

Constants in C :

 A constant is a value assigned to the variable which will remain the same throughout the
program, i.e., the constant value cannot be changed.

There are two ways of declaring constant:

o Using const keyword

o Using #define pre-processor

Types of constants in C

Constant Example

Integer constant 10, 11, 34, etc.

Floating-point constant 45.6, 67.8, 11.2, etc.

Octal constant 011, 088, 022, etc.

Hexadecimal constant 0x1a, 0x4b, 0x6b, etc.

https://www.javatpoint.com/constants-in-c
https://www.javatpoint.com/constants-in-c

Character constant 'a', 'b', 'c', etc.

String constant "java", "c++", ".net", etc.

Special characters in C

Some special characters are used in C, and they have a special meaning which cannot be used for
another purpose.

o Square brackets []: The opening and closing brackets represent the single and

multidimensional subscripts.

o Simple brackets (): It is used in function declaration and function calling. For example,

printf() is a pre-defined function.

o Curly braces { }: It is used in the opening and closing of the code. It is used in the opening

and closing of the loops.

o Comma (,): It is used for separating for more than one statement and for example,

separating function parameters in a function call, separating the variable when printing the

value of more than one variable using a single printf statement.

o Hash/pre-processor (#): It is used for pre-processor directive. It basically denotes that we

are using the header file.

o Asterisk (*): This symbol is used to represent pointers and also used as an operator for

multiplication.

o Tilde (~): It is used as a destructor to free memory.

o Period (.): It is used to access a member of a structure or a union.

C if else Statement :

 The if-else statement in C is used to perform the operations based on some specific
condition. The operations specified in if block are executed if and only if the given condition is true.

There are the following variants of if statement in C language.

o If statement

o If-else statement

o If else-if ladder

o Nested if

If Statement :

 The if statement is used to check some given condition and perform some operations
depending upon the correctness of that condition. It is mostly used in the scenario where we need
to perform the different operations for the different conditions. The syntax of the if statement is
given below.

if(expression){

//code to be executed

https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else

}

Flowchart of if statement in C :

Let's see a simple example of C language if statement.

#include<stdio.h>

int main(){

int number=0;

printf("Enter a number:");

scanf("%d",&number);

if(number%2==0){

printf("%d is even number",number);

} return 0;

1. }

Output

Enter a number:4
4 is even number
enter a number:5

Program to find the largest number of the three.\

#include <stdio.h>

int main()

{

 int a, b, c;

 printf("Enter three numbers?");

 scanf("%d %d %d",&a,&b,&c);

 if(a>b && a>c)

 {

 printf("%d is largest",a);

 }

 if(b>a && b > c)

 {

 printf("%d is largest",b);

 }

 if(c>a && c>b)

https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else

 {

 printf("%d is largest",c);

 }

 if(a == b && a == c)

 {

 printf("All are equal");

 }

}

Output

Enter three numbers?
12 23 34
34 is largest

If-else Statement :

 The if-else statement is used to perform two operations for a single condition. The if-
else statement is an extension to the if statement using which, we can perform two different
operations, i.e., one is for the correctness of that condition, and the other is for the incorrectness of
the condition. Here, we must notice that if and else block cannot be executed simiulteneously. Using
if-else statement is always preferable since it always invokes an otherwise case with every if
condition. The syntax of the if-else statement is given below.

if(expression){

//code to be executed if condition is true

}else{

//code to be executed if condition is false

}

Flowchart of the if-else statement in C

https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else

Let's see the simple example to check whether a number is even or odd using if-else statement in C
language.

#include<stdio.h>

int main(){

int number=0;

printf("enter a number:");

scanf("%d",&number);

if(number%2==0){

https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else

printf("%d is even number",number);

}

else{

printf("%d is odd number",number);

}

return 0;

}

Output

enter a number:4
4 is even number
enter a number:5
5 is odd number

Program to check whether a person is eligible to vote or not.:

#include <stdio.h>

int main()

{

 int age;

 printf("Enter your age?");

 scanf("%d",&age);

 if(age>=18)

 {

 printf("You are eligible to vote...");

 }

 else

 {

 printf("Sorry ... you can't vote");

 }

}

Output

Enter your age?18
You are eligible to vote...
Enter your age?13

https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else

Sorry ... you can't vote

If else-if ladder Statement

The if-else-if ladder statement is an extension to the if-else statement. It is used in the scenario
where there are multiple cases to be performed for different conditions. In if-else-if ladder
statement, if a condition is true then the statements defined in the if block will be executed,
otherwise if some other condition is true then the statements defined in the else-if block will be
executed, at the last if none of the condition is true then the statements defined in the else block will
be executed. There are multiple else-if blocks possible. It is similar to the switch case statement
where the default is executed instead of else block if none of the cases is matched.

if(condition1){

//code to be executed if condition1 is true

}else if(condition2){

//code to be executed if condition2 is true

}

else if(condition3){

//code to be executed if condition3 is true

}

else{

//code to be executed if all the conditions are false

}

Flowchart of else-if ladder statement in C :

https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else

The example of an if-else-if statement in C language is given below.

#include<stdio.h>

int main(){

int number=0;

printf("enter a number:");

scanf("%d",&number);

if(number==10){

printf("number is equals to 10");

}

else if(number==50){

printf("number is equal to 50");

}

else if(number==100){

printf("number is equal to 100");

}

else{

printf("number is not equal to 10, 50 or 100");

}

return 0;

}

Output

enter a number:4
number is not equal to 10, 50 or 100
enter a number:50
number is equal to 50

Program to calculate the grade of the student according to the specified marks.

#include <stdio.h>

int main()

{

 int marks;

 printf("Enter your marks?");

 scanf("%d",&marks);

 if(marks > 85 && marks <= 100)

 {

 printf("Congrats ! you scored grade A ...");

 }

 else if (marks > 60 && marks <= 85)

 {

 printf("You scored grade B + ...");

 }

 else if (marks > 40 && marks <= 60)

 {

 printf("You scored grade B ...");

 }

https://www.javatpoint.com/c-if-else
https://www.javatpoint.com/c-if-else

 else if (marks > 30 && marks <= 40)

 { printf("You scored grade C ...");

1. }

2. else

3. {

4. printf("Sorry you are fail ...");

5. }

6. }

Output

Enter your marks?10
Sorry you are fail ...
Enter your marks?40
You scored grade C ...
Enter your marks?90
Congrats ! you scored grade A ...

Graphs Terminology

A graph consists of:

 A set, V, of vertices (nodes)

 A collection, E, of pairs of vertices from V called edges (arcs)

Edges, also called arcs, are represented by (u, v) and are either:

Directed if the pairs are ordered (u, v)

u the origin

v the destination

Undirected if the pairs are unordered

A graph is a pictorial representation of a set of objects where some pairs of objects are

connected by links. The interconnected objects are represented by points termed

as vertices, and the links that connect the vertices are called edges.

Formally, a graph is a pair of sets (V, E), where V is the set of vertices and Eis the set

of edges, connecting the pairs of vertices. Take a look at the following graph −

In the above graph,

V = {a, b, c, d, e}

E = {ab, ac, bd, cd, de}

Then a graph can be:

Directed graph (di-graph) if all the edges are directed

Undirected graph (graph) if all the edges are undirected

Mixed graph if edges are both directed or undirected

Illustrate terms on graphs

End-vertices of an edge are the endpoints of the edge.

Two vertices are adjacent if they are endpoints of the same edge.

An edge is incident on a vertex if the vertex is an endpoint of the edge.

Outgoing edges of a vertex are directed edges that the vertex is the origin.

Incoming edges of a vertex are directed edges that the vertex is the destination.

Degree of a vertex, v, denoted deg(v) is the number of incident edges.

Out-degree, outdeg(v), is the number of outgoing edges.

In-degree, indeg(v), is the number of incoming edges.

Parallel edges or multiple edges are edges of the same type and end-vertices

Self-loop is an edge with the end vertices the same vertex

Simple graphs have no parallel edges or self-loops

Properties

If graph, G, has m edges then Σv∈G deg(v) = 2m

If a di-graph, G, has m edges then

Σv∈G indeg(v) = m = Σv∈G outdeg(v)

If a simple graph, G, has m edges and n vertices:

If G is also directed then m ≤ n(n-1)

If G is also undirected then m ≤ n(n-1)/2

So a simple graph with n vertices has O(n

2

) edges at most

More Terminology

Path is a sequence of alternating vetches and edges such that each successive vertex

is connected by the edge. Frequently only the vertices are listed especially if there are

no parallel edges.

Cycle is a path that starts and end at the same vertex.

Simple path is a path with distinct vertices.

Directed path is a path of only directed edges

Directed cycle is a cycle of only directed edges.

Sub-graph is a subset of vertices and edges.

Spanning sub-graph contains all the vertices.

Connected graph has all pairs of vertices connected by at least one path.

Connected component is the maximal connected sub-graph of a unconnected graph.

Forest is a graph without cycles.

Tree is a connected forest (previous type of trees are called rooted trees, these are free

trees)

Spanning tree is a spanning subgraph that is also a tree.

More Properties

If G is an undirected graph with n vertices and m edges:

 If G is connected then m ≥ n - 1

 If G is a tree then m = n - 1

 If G is a forest then m ≤ n – 1

Graph Traversal:

1. Depth First Search

2. Breadth First Search

Lecture-20

Depth First Search:

Depth First Search (DFS) algorithm traverses a graph in a depthward motion and uses

a stack to remember to get the next vertex to start a search, when a dead end occurs

in any iteration.

As in the example given above, DFS algorithm traverses from S to A to D to G to E to

B first, then to F and lastly to C. It employs the following rules.

 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it

in a stack.

 Rule 2 − If no adjacent vertex is found, pop up a vertex from the stack. (It will

pop up all the vertices from the stack, which do not have adjacent vertices.)

 Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty.

Step Traversal Description

1

Initialize the stack.

2

Mark

S as visited and put it

onto the stack. Explore any

unvisited adjacent node

from

S. We have three nodes

and we can pick any of them.

For this example, we shall

take the node in an

alphabetical order.

3

Mark

A as visited and put it

onto the stack. Explore any

unvisited adjacent node from

A. Both

Sand

D are adjacent

to

A but we are concerned for

unvisited nodes only.

4

Visit

D and mark it as visited

and put onto the stack. Here,

we have

B and

C nodes,

which are adjacent to

D and

both are unvisited. However,

we shall again choose in an

alphabetical order.

5

We choose

B, mark it as

visited and put onto the stack.

Here

Bdoes not have any

unvisited adjacent node. So,

we pop

Bfrom the stack.

6

We check the stack top for

return to the previous node

and check if it has any

unvisited nodes. Here, we

find D to be on the top of the

stack.

7

Only unvisited adjacent node

is from D is C now. So we

visit C, mark it as visited and

put it onto the stack.

As C does not have any unvisited adjacent node so we keep popping the stack until we

find a node that has an unvisited adjacent node. In this case, there's none and we keep

popping until the stack is empty.

Lecture-21

Breadth First Search

Breadth First Search (BFS) algorithm traverses a graph in a breadthward motion and

uses a queue to remember to get the next vertex to start a search, when a dead end

occurs in any iteration.

As in the example given above, BFS algorithm traverses from A to B to E to F first then

to C and G lastly to D. It employs the following rules.

 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert it

in a queue.

 Rule 2 − If no adjacent vertex is found, remove the first vertex from the queue.

 Rule 3 − Repeat Rule 1 and Rule 2 until the queue is empty.

Step Traversal Description

1

Initialize the queue.

2

We start from

visiting S(starting node), and

mark it as visited.

3

We then see an unvisited

adjacent node from S. In this

example, we have three nodes

but alphabetically we

choose A, mark it as visited

and enqueue it.

4

Next, the unvisited adjacent

node from S is B. We mark it

as visited and enqueue it.

5

Next, the unvisited adjacent

node from S is C. We mark it

as visited and enqueue it.

6

Now, S is left with no unvisited

adjacent nodes. So, we

dequeue and find A.

7

From A we have D as

unvisited adjacent node. We

mark it as visited and enqueue

it.

At this stage, we are left with no unmarked (unvisited) nodes. But as per the algorithm

we keep on dequeuing in order to get all unvisited nodes. When the queue gets

emptied, the program is over.

Lecture-22

Graph representation

You can represent a graph in many ways. The two most common ways of representing

a graph is as follows:

Adjacency matrix

An adjacency matrix is a VxV binary matrix A. Element Ai,j is 1 if there is an edge from

vertex i to vertex j else Ai,jis 0.

Note: A binary matrix is a matrix in which the cells can have only one of two possible

values - either a 0 or 1.

The adjacency matrix can also be modified for the weighted graph in which instead of

storing 0 or 1 in Ai,j, the weight or cost of the edge will be stored.

In an undirected graph, if Ai,j = 1, then Aj,i = 1. In a directed graph, if Ai,j = 1,

then Aj,i may or may not be 1.

Adjacency matrix provides constant time access (O(1)) to determine if there is an

edge between two nodes. Space complexity of the adjacency matrix is O(V2).

The adjacency matrix of the following graph is:

i/j : 1 2 3 4

1 : 0 1 0 1

2 : 1 0 1 0

3 : 0 1 0 1

4 : 1 0 1 0

The adjacency matrix of the following graph is:

i/j: 1 2 3 4

1 : 0 1 0 0

2 : 0 0 0 1

3 : 1 0 0 1

4 : 0 1 0 0

Adjacency list

The other way to represent a graph is by using an adjacency list. An adjacency list is an

array A of separate lists. Each element of the array Ai

is a list, which contains all the

vertices that are adjacent to vertex i.

For a weighted graph, the weight or cost of the edge is stored along with the vertex in

the list using pairs. In an undirected graph, if vertex j is in list Ai then vertex i will be in

list Aj.

The space complexity of adjacency list is O(V + E) because in an adjacency list

information is stored only for those edges that actually exist in the graph. In a lot of

cases, where a matrix is sparse using an adjacency matrix may not be very useful. This

is because using an adjacency matrix will take up a lot of space where most of the

elements will be 0, anyway. In such cases, using an adjacency list is better.

Note: A sparse matrix is a matrix in which most of the elements are zero, whereas a

dense matrix is a matrix in which most of the elements are non-zero.

Consider the same undirected graph from an adjacency matrix. The adjacency list of the

graph is as follows:

A1 → 2 → 4

A2 → 1 → 3

A3 → 2 → 4

A4 → 1 → 3

Consider the same directed graph from an adjacency matrix. The adjacency list of the

graph is as follows:

A1 → 2

A2 → 4

A3 → 1 → 4

A4 → 2

Lecture-23

Topological Sorting:

Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices

such that for every directed edge uv, vertex u comes before v in the

ordering. Topological Sorting for a graph is not possible if the graph is not a DAG.

For example, a topological sorting of the following graph is “5 4 2 3 1 0”. There can be

more than one topological sorting for a graph. For example, another topological sorting

of the following graph is “4 5 2 3 1 0”. The first vertex in topological sorting is always a

vertex with in-degree as 0 (a vertex with no in-coming edges).

Algorithm to find Topological Sorting:

In DFS, we start from a vertex, we first print it and then recursively call DFS for its

adjacent vertices. In topological sorting, we use a temporary stack. We don’t print the

vertex immediately, we first recursively call topological sorting for all its adjacent

vertices, then push it to a stack. Finally, print contents of stack. Note that a vertex is

pushed to stack only when all of its adjacent vertices (and their adjacent vertices and so

on) are already in stack.

Topological Sorting vs Depth First Traversal (DFS):

In DFS, we print a vertex and then recursively call DFS for its adjacent vertices. In

topological sorting, we need to print a vertex before its adjacent vertices. For example,

in the given graph, the vertex ‘5’ should be printed before vertex ‘0’, but unlike DFS, the

vertex ‘4’ should also be printed before vertex ‘0’. So Topological sorting is different

from DFS. For example, a DFS of the shown graph is “5 2 3 1 0 4”, but it is not a

topological sorting

Dynamic Programming

The Floyd Warshall Algorithm is for solving the All Pairs Shortest Path problem. The

problem is to find shortest distances between every pair of vertices in a given edge

weighted directed Graph.

Example:

Input:

 graph[][] = { {0, 5, INF, 10},

 {INF, 0, 3, INF},

 {INF, INF, 0, 1},

 {INF, INF, INF, 0} }

which represents the following graph

 10

 (0)------->(3)

 | /|\

 5 | |

 | | 1

 \|/ |

 (1)------->(2)

 3

Note that the value of graph[i][j] is 0 if i is equal to j

And graph[i][j] is INF (infinite) if there is no edge from vertex i to j.

Output:

Shortest distance matrix

 0 5 8 9

 INF 0 3 4

 INF INF 0 1

 INF INF INF 0

Floyd Warshall Algorithm

We initialize the solution matrix same as the input graph matrix as a first step. Then we

update the solution matrix by considering all vertices as an intermediate vertex. The

idea is to one by one pick all vertices and update all shortest paths which include the

picked vertex as an intermediate vertex in the shortest path. When we pick vertex

number k as an intermediate vertex, we already have considered vertices {0, 1, 2, .. k-1}

as intermediate vertices. For every pair (i, j) of source and destination vertices

respectively, there are two possible cases.

1) k is not an intermediate vertex in shortest path from i to j. We keep the value of

dist[i][j] as it is.

2) k is an intermediate vertex in shortest path from i to j. We update the value of dist[i][j]

as dist[i][k] + dist[k][j].

The following figure shows the above optimal substructure prop

 Page 1 of 75

UNIT-II
Pointer Variables – Pointer Operators - Pointer Expressions – Pointers And Arrays – Multiple
Indirection – Initializing Pointers – Pointers to Functions – C‟s Dynamic Allocation Functions
–
Problems with Pointers.
Understanding the scope of Functions – Scope Rules – Type Qualifiers – Storage Class
Specifiers-
Functions Arguments –The Return Statement.
POINTERS:
 Pointer is a variable which holds address of anothervariable of same data-type.
 The size of a pointer depends on the amount of memory to be addressed.
 By default pointer size is 4 bytes
 Pointer is used to access memory and manipulate addresses.
 A pointer comes under Derived data type.

Advantages of Pointers
a) Pointers are efficient in handling data and associated with array.
b) Pointers are used for saving memory space.
c) Pointers reduce length and complexity of the program
d) Use of pointers assigns the memory space and also releases it. It helps to make

better use of the available memory (dynamic memory allocation).
e) Since the pointer data manipulation is done with address, the execution time is

faster

f) The two dimensional and multi-dimensional array representation is easy in pointers.
g) Pointer allows for references to function, this may facilitating passing of function as

arguments to other functions.
h) Pointers are more compact and efficient code
i) Pointers can be used to achieve clarity and simplicity
j) Pointers are used to pass information between function and its reference point
k) Pointers provides a way to return multiple data items from a function using its

function arguments
l) Pointers also provide an alternative way to access an array element
m) Pointers enables us to access the memory directly.

Pointer Variables:

 As we know that, each variable has two attributes: address and value.
 A variable can take any value specified by its data type.

For example, if the variable i is of the integer type, it can take any value permitted in
therange specified by the integer data type.

 A pointer to an integer is a variable that can store the address of that integer.
Consider the declaration,
inti = 3 ;

 Page 2 of 75

This declaration tells the C compiler to:
(a) Reserve space in memory to hold the integer value.
(b) Associate the name i with this memory location.
(c) Store the value 3 at this location.
We can print this address number through the following program:
void main()
{
inti = 3 ;
printf ("\nAddress of i = %u", &i) ; // “address of” operator
printf ("\nValue of i = %d", i) ;
printf(“\nValue of i=%d”,*(&i)); // “value at address” operator
}
Expected Output
Address of i = 65524
Value of i = 3
Value of i=3

Declaring and Initializing pointers:
Syntax:
<datatype> *<pointer name>
For Ex:
int *ptr; /* pointer to int */
char *s; /* pointer to char */
float *fp; /* pointer to float */
char **s; /* pointer to variable that is a pointer to char */
Initializing Pointers

 After a non static, local pointer is declared but before it has been assigned a value, it
contains an unknown value. (Global and static local pointers are automatically
initialized to null.) Should you try to use the pointer before giving it a valid value, you
will probably crash your program— and possibly your computer's operating system
as well— a very nasty type of error!

 There is an important convention that most C programmers follow when working
withpointers: A pointer that does not currently point to a valid memory location is
given the valuenull (which is zero).

 Null is used because C guarantees that no object will exist at the null address.
 Thus, any pointer that is null implies that it points to nothing and should not be

used.One way to give a pointer a null value is to assign zero to it. For example,
thefollowing initializes p to null.

char *p = 0;
Additionally, many of C's headers, such as <stdio.h>, define the macro NULL, which is a

 Page 3 of 75

null pointer constant.
Therefore, you will often see a pointer assigned null using a statement such as this:
p = NULL;

Note:Always the Size of a pointer is 4 Bytes (default) because irrespective of the data type
of the pointer , it occupies 4 bytes only as they are holding some unsigned integers called
addresses.
int *a;
float *b;
char *c;
printf(“%d %d %d”,sizeof(a),sizeof(b),sizeof(c)); prints 4 4 4

Q. What is NULL pointer explain it?
NULL Pointer is a pointer which is pointing to nothing. In case, if we don’t have address to be assigned
to a pointer, then we can simply use NULL.
Important Points

1. NULL vs Uninitialized pointer – An uninitialized pointer stores an undefined value. A null pointer
stores a defined value, but one that is defined by the environment to not be a valid address for any
member or object.

2. NULL vs Void Pointer – Null pointer is a value, while void pointer is a type

#include <stdio.h>
int main()
{

// Null Pointer
int *ptr = NULL;

printf("The value of ptr is %p", ptr);
return 0;

}
Output:
The value of ptr is (nil)

Q. Wild pointer in C?
A pointer which has not been initialized to anything (not even NULL) is known as wild pointer. The
pointer may be initialized to a non-NULL garbage value that may not be a valid address.

Ex:main()
{

int *p /* wild pointer */

int a = 20;
int *p = &a;// p is not a wild pointer now

printf(“%d%d%d%d”,p,*p,*&p,&a);
}

 Page 4 of 75

output: 1000 20 1000 1000.
a p

1000 2000
Q. What is void pointer?
Void pointer is a specific pointer type – void * – a pointer that points to some data location in storage,
which doesn’t have any specific type. Void refers to the type. Basically the type of data that it points to
is can be any. If we assign address of char data type to void pointer it will become char Pointer, if int
data type then int pointer and so on. Any pointer type is convertible to a void pointer hence it can
point to any value.
Important Points

1. void pointers cannot be dereferenced. It can however be done using typecasting the void pointer
2. Pointer arithmetic is not possible on pointers of void due to lack of concrete value and thus size.

#include<stdlib.h>

int main()
{

int x = 4;
float y = 5.5;

//A void pointer
void *ptr;
ptr = &x;

// (int*)ptr - does type casting of void
// *((int*)ptr) dereferences the typecasted
// void pointer variable.
printf("Integer variable is = %d", *((int*) ptr));

// void pointer is now float
ptr = &y;
printf("\nFloat variable is= %f", *((float*) ptr));

return 0;
}
Output:
Integer variable is = 4

Float variable is= 5.500000

Q. Dangling pointer in C?

20 1000

 Page 5 of 75

A pointer pointing to a memory location that has been deleted (or freed) is called dangling pointer.
There are three different ways where Pointer acts as dangling pointer

1. De-allocation of memory

// Deallocating a memory pointed by ptr causes
// dangling pointer
#include <stdlib.h>
#include <stdio.h>
int main()
{

int *ptr = (int *)malloc(sizeof(int));

// After below free call, ptr becomes a
// dangling pointer
free(ptr);

// No more a dangling pointer
ptr = NULL;

}
2. Function Call

// The pointer pointing to local variable becomes
// dangling when local variable is not static.
#include<stdio.h>

int *fun()
{

// x is local variable and goes out of
// scope after an execution of fun() is
// over.
int x = 5;

return&x;
}

// Driver Code
int main()
{

int *p = fun();
fflush(stdin);

// p points to something which is not
// valid anymore
printf("%d", *p);

 Page 6 of 75

return 0;
}
Output: A garbage address
The above problem doesn’t appear (or p doesn’t become dangling) if x is a static variable.

// The pointer pointing to local variable doesn't
// become dangling when local variable is static.
#include<stdio.h>

int *fun()
{

// x now has scope throughout the program
static int x = 5;

return&x;
}

int main()
{

int *p = fun();
fflush(stdin);

// Not a dangling pointer as it points
// to static variable.
printf("%d",*p);

}
Output: 5

3. Variable goes out of scope

void main()

{

int *ptr;

.....

.....

{

intch;

ptr = &ch;

}

.....

 Page 7 of 75

// Here ptr is dangling pointer

}

Q. Explain about pointer operators? Or what are the different types of operators used for
pointers representation
Pointer Operators:
 Look at the first printf() statement carefully. ‘&’used in this statement is

C’s‘addressof’operator. The expression &ireturns the address of the variable i, which
in this case happens to be 65524. We have been using the „&‟ operator all the time
in the scanf()statement.

 The other pointer operator available in C is ‘*’, called ‘value at address’operator. It
gives the value stored at a particular address. The „value at address‟ operator is also
called ‘indirection’operator.

Consider the Statement
int *p;
intx=5;

p=&x;

 Here ‘&’ is called address of a variable. ‘p’ contains the address of a variable x.
 The operator &returns the memory address of variable on which it is operated, this

is called Referencing.
 The * operator is called an indirection operator or dereferencing operator which

issued to display the contents of the Pointer Variable.
Assume that x is stored at the memory address 2000. Then the output for thefollowing
printf statements is :
Output
Printf(“The Value of x is %d”,x); 5
Printf(“The Address of x is %u”,&x); 2000
Printf(“The Address of x is %u”,p); 2000
Printf(“The Value of x is %d”,*p); 5
Printf(“The Value of x is %d”,*(&x)); 5
Ex2:
main()

{
void *a;
int n=2,*m;

Pointers are associated with two operators &,*.

& - address of operator / referencing operator

*- value at address operator / Dereferencing/indirection Operator.

 Page 8 of 75

double d=2.3,*c;
a=&n;
m=a;

printf(“\n%d %d %d”,a,*m,m);
a=&d;
c=a;

printf(“\n%d %3.1f %d”,a,*c,c);
}

In the above program a is declared as a pointer to void which is used to carry the address of
an int(a=&n)and to carry the address of a double(a=&d) and the original pointers are
recovered with out any loss of information.
Q. What is multiple pointers or multi pointers or pointer to pointers
Multiple Indirection(Pointers To Pointers):

 Pointer is a variable that contains the address of the another variable. Similarly
another pointer variable can store the address of this pointer variable, So we can
say, this is a pointer to pointer variable.

 Pointers to Pointers– also considered as chain of Pointers. Because A single pointer
can store the address of a variable.

 A double pointer can store the address of single pointer
 A Triple Pointer can store the address of double pointer.
 For example,we can have a pointer pointing to a pointer to an integer.This two

levelindirection is seen as below:
//Local declarations
int a;
int* p;
int **q;

//statements
a=58;
p=&a;
q=&p;
printf(“%3d”,a);
printf(“%3d”,*p);

 Page 9 of 75

printf(“%3d”,**q);

 There is no limit as to how many level of indirection we can use but practicallywe
seldom use morethantwo.Each level of pointer indirection requires a
separateindirection operator when it is dereferences .

 In the above figure to refer to ‘a’ using the pointer ‘p’, we have to dereference it
as shown below.

*p
 To refer to the variable ‘a’ using the pointer ‘q’ ,we have to dereference it twicetoget

to the integer ‘a’ because there are two levels of indirection(pointers) involved.
 If wedereference it only once we are referring ‘p’ which is a pointer to an integer

.Anotherway to say this is that ‘q’ is a pointer to a pointer to an integer.Thedouble
dereference isshown below:

**q
 In above example all the three references in the printf statement refer to the

variable ‘a’.The first printf statement prints the value of the variable ‘a’
directly,second uses thepointer ‘p’,third uses the pointer ‘q’.The result is the value
58 printed 3 times as below

58 58 58

Ex2:int a=10,*b,**c,***d;
b = &a;
c = &b;
d = &c;

printf (“%d %d %d %d”,a,*b,**c,***d);
prints 10 10 10 10
Q. Explain about pointer expressions ?
Pointer Expressions:
In general, expressions involving pointers conform to the same rules as other expressions.
This section examines a few special aspects of pointer expressions, such as
assignments,conversions and arithmetic.

1. Pointer Assignments
2. Pointer Conversions
3. Pointer Arithmetic
4. Address Arithmetic

(i) Pointer Assignments
You can use a pointer on the right-hand side of an assignment statement to assign its value
to
another pointer. When both pointers are the same type, the situation is straightforward.

 Page 10 of 75

For example:
#include <stdio.h>
#include<conio.h>
void main()
{
int x = 99;
int *p1, *p2;
p1 = &x;
p2 = p1;
/* print the value of x twice */
printf(''Values at p1 and p2: %d %
d\n", *p1, *p2);
/* print the address of x twice */
printf("Addresses pointed to by p1 and p2: %u %u", p1, p2);
getch();
}
After the assignment sequence
p1 = &x;
p2 = p1;
p1and p2 both point to x.
Thus, both p1 and p2 refer to the same object.

Expected Output
Values at p1 and p2: 99 99
Addresses pointed to by p1 and p2: 65524 65524

e %u printf() format specifier,which
causes printf() to display an address in the format used by the host computer.

However, doing so involves a pointer conversion, which is the subject of the next
section.
(ii) Pointer Conversions
One type of pointer can be converted into another type of pointer.
In C, it is permissible to assign a void * pointer to any other type of pointer.
It is also permissible to assign any other type of pointer to a void * pointer.
Generic Pointers:A void Pointer is also called as a Generic Pointer, which can store the
address of any variable .
Ex: - int a;

float b;
char c;
void *ptr; // void pointer
ptr = &a;

 Page 11 of 75

*(int *) ptr = 10;
ptr = &b;

*(float *) ptr = 3.14;
ptr = &c;
*(char *) ptr= ‘s’;

Printf(“%d %f %c”,a,b,c); prints 10 3.14 s
Through void pointer values can be assigned through proper type casting

(iii) Pointer Arithmetic
Like normal variables, pointers can also be used to perform various arithmetic operations
like
addition, subtraction etc.
//Program to show the use Arithmetic operations on pointers
#include<stdio.h>
#include<conio.h>
void main()
{
inta,b,*res,*ptr1,*ptr2;
clrscr();
printf("\nEnter any two numbers:");
scanf("%d%d",&a,&b);
ptr1=&a;
ptr2=&b;
*res=*ptr1+*ptr2; // addition
printf("\nSum=%d",*res);
*res=*ptr1-*ptr2; // subtraction
printf("\nDifference=%d",*res);
*res=*ptr1**ptr2; // multiplication
printf("\nProduct=%d",*res);
*res=*ptr1/(*ptr2); // division
printf("\nDivision=%d",*res);
*res=*ptr1%*ptr2; // mod
printf("\nRemainder=%d",*res);
getch();
}
Expected Output
Enter any two numbers:
20
10
Sum=30
Difference=10

 Page 12 of 75

Product=200
Division=2
Remainder=0
Q. Explain what are the operations performed on pointers?
Q. Explain Valid and invalid operations performed on pointers

4 Address Arithmetic :
Valid operations that can we do with pointers are

 we can increment/decrement a pointer
 we can add or subtract a integer value to/from a pointer
 we can subtract two pointer, which tells the number of elements in between these

two addresses.
Operator Result
++ Goes to thenextmemorylocation that the pointerispointingto.

-- Goes to thepreviousmemorylocation that the pointeris

-=or - Subtracts value from pointer.

+=or+ Addingtothepointer

1. Incrementing/Decrementing a Pointer

Consider a float variable (a) and a pointer to a float (ptr) as shown below
float a=2.3;
float *ptr=&a;

float(4bytes)

a

ptr++ptr(ptr+1) (ptr+2)

Pointer Arithmetic Assume that ptr points to a then if we increment the pointer (++ptr) it
moves to the position shown 4 bytes on. If on the other hand we added 2 to the pointer
then it moves 2 float positionsi.e 8 bytes as shown in the Figure.
Ex2:
#include<stdio.h>

main()
{ inta,b,c,d,e,f,*p,*q;

clrscr();
printf("Enter a,b values:");
scanf("%d%d",&a,&b);
p=&a;

 Page 13 of 75

q=&b;
c=--q;
d=q--;
e=++p;
f=p++;
printf("\n pre decrement=%d", c);
printf("\n post decrement=%d", d);
printf("\n pre increment=%d", e);
printf("\n post increment=%d", f);
getch();

}

2. Addition/Subtraction of a constant number to a pointer

Addition or subtraction of a constant number to a pointer is allowed. The result is similar to
the increment or decrement operator with the only difference being the increase or
decrease in the memory location by the constant number given.

Also, not to forget the values get incremented or decremented according to the type of
variable it stores.

#include <stdio.h>
int main()
{

//declaring the pointer for integer variable
int a = 5, *x;

//declaring the pointer for char variable

char b = 'z', *y;

//storing the memory location of variable a in pointer variable x
x = &a;

/*The corresponding values of the addition and subtraction operations on pointer variable x are

given below*/
//printing the actual value of x

printf("x= %d\n", x);

//the value incremented by 3
printf("x+3= %d\n", x + 3);

//the value decremented by 2
printf("x-2= %d\n", x - 2);

//storing the memory location of variable b in pointer variable y
y = &b;

 Page 14 of 75

/*The corresponding values of the addition and subtraction operations on pointer variable y are
given below*/

//printing the actual value of y
printf("y= %d\n", y);

//the value incremented by 3

printf("y+3= %d\n", y + 3);

//the value decremented by 2
printf("y-2= %d\n", y - 2);
return 0;
}

Output:

3. Subtraction of one pointer from another

A pointer variable can be subtracted from another pointer variable only if they point to the elements
of the same array. Also, subtraction of one pointer from another pointer that points to the elements
of the same array gives the number of elements between the array elements that are indicated by
the pointer.
#include <stdio.h>
int main()
{
int num[10] = {1, 5, 9, 4, 8, 3, 0, 2, 6, 7}, *a, *b;

//storing the address of num[2] in variable a
a = &num[2];

//storing the address of num[6] in variable b
b = &num[6];

printf("a = %d\n", a);
printf("b = %d\n", b);

//prints the number of elements between the two elements indicated by the pointers
printf("a-b = %d\n", b - a);

//prints the difference in value of the two elements

printf("*a-*b = %d\n", *a - *b);

Output:-
x= 593874396
x+3= 593874408
x-2= 593874388
y= 593874395
y+3= 593874398
y-2= 593874393

 Page 15 of 75

return 0;
}

Output:

4. Comparison of two pointers

Comparison of two pointer variables is possible only if the two pointer variables are of the same
type. It becomes more convenient if they point to the elements of the same array. These
comparisons are to check equality or inequality. The result is true if both the pointers point to the
same location in the memory and false if they point to different locations in the memory.
#include <stdio.h>
int main()
{
int num[10] = {1, 5, 9, 4, 8, 3, 0, 2, 6, 7}, *a, *b, *c;

//storing the address of num[2] in variable a
a = &num[2];

//base address plus 2 stores the address of num[2] in the variable b
b = (num + 2);

//storing the address of num[6] in variable b
c = &num[6];

//Print values of all the pointers

printf("a= %d\n", a);
printf("b= %d\n", b);
printf("c= %d\n", c);

//comparing for equality

if (a == b)
printf("a and b point to the same location and the value is: %d\n", *a);

//comparing for inequality
if (a != c)
printf("a and c do not point to the same location in the memory");
return 0;
}

Output:

Output:-
a= 2686676

Output:-
a= 2686680
b= 2686696
a-b = 4
*a-*b = 9

 Page 16 of 75

Invalid Operations with Pointers.
 Two Pointers cannot be added, multiplied, divided
 A Pointer cannot be adding double, float values
 A Pointer cannot be multiplied by a integer.
 A Pointer cannot be divided by a integer.
 Masking or shifting of pointers
 Assigning a pointer of one to another type of pointer
 Modulo operation on pointer.
 Cannot perform bitwise AND,OR,XOR operations on pointer.
 Cannot perform NOT operation or negation operation.

Q. Explain where we can use pointers ?
C uses pointers explicitly with:
 Functions.
 Arrays,
 Structures,

Pointers and Functions:
Parameter passing mechanism in ‘C’ is of two types.
1. Call by Value
2. Call by Reference.
 The process of passing the actual value of variables is known as Call by Value.The

process of calling a function using pointers to pass the addresses of variablesis
known as Call by Reference.The function which is called by reference can changethe
value of the variable used in the call.

Comparison between call-by-value and call-by-reference
S.NO Call-by-value(normal variables) Call-by-reference(pointer variables)

1

Different memory locations are
occupied by formal and actual
arguments

Same memory location occupied by formal
and actual arguments, so there is a saving
of memory location.

2

Any alteration in the value of the
arguments passed is local to the
function and is not accepted in the
calling program

Any alteration in the value of the
arguments passed is accepted in the calling
program

3

The usual method to call a function in
which only the value of the variable is
passed as an argument

The address of the variable is passed as an
argument

b= 2686676
c= 2686692
a and b point to the same location and the value is: 9
a and c do not point to the same location in the memory

 Page 17 of 75

4
When a new location is created it is
very slow.

The existing memory location is used
through its address, it is very fast.

5

There is no possibility of wrong data
manipulation since the argument are
directly used in an expression

There is a possibility of wrong data
manipulation since the addresses are used
in an expression. A good skill of
programming is required.

Example of Call by Reference:
#include<stdio.h>
main()
{
inta,b;

a = 10;
b = 20;

swap (&a, &b);
printf(“After Swapping \n”);
printf(“a = %d \t b = %d”, a,b);
}
void swap(int *x, int *y)

{
int temp;
temp = *x;

*x = *y;
*y = temp;
}

Function Pointers:
Ex:
int add(intx,int y);
main()
{
int x=6,y=9;
int(*ptr)(int,int); //pointer to function
ptr=add;
printf(“%dplus%dequals%d\n”,x,y,(*ptr)(x,y));
return 0;
}
int add(intx,int y)
{
returnx+y;
}

 Page 18 of 75

Pointers and Arrays :
 When an array is declared, elements of array are stored in contiguous locations.
 The address of the first element of an array is called its base address.
Consider the array

 The name of the array is called its base address. i.e., a and k&a[20] are equal.
 Now both a and a[0] points to location 2000. If we declare p as an integer pointer,

thenwe can make the pointer P to point to the array a by following assignment
p = a;
We can access every value of array a by moving P from one element to another.
i.e., P points to 0thelement
P+1 points to 1stelement
P+2 points to 2nd element
P+3 points to 3rd element
P +4 points to 4thelement
Ex1:Single dimensional array through pointers
main()
{
int a[]={1,2,3};
inti,*p=a; //p=a;
for(i=0;i<5;++i)
printf(“%d”,*(p+i));
}prints 1 2 3
Two Dimensional array through pointers
main()
{
inti,j,a[3][3]={1,2,3,4,5,6,7,8,9};
for(i=0;i<3;++i,printf(“\n”))
for(j=0;j<3;++j)

printf(“%d”,*(*(p+i)+j)); //p++
}
o/p: 1 2 3

4 5 6
7 8 9

 In one dimensional array, a[i] element is referred by (a+i) is the address of ith
element. * (a+i) is the value at the I element.

 In two-dimensional array, a[i][j] element is represented as *(*(a+i)+j)

 Page 19 of 75

 Note: a[i][j][k][l] can be represented as *(*(*(*(a+i)+j)+k)+l)

Pointers and Structures

These are fairly straight forward and are easily defined. Consider the following:
struct COORD {float x,y,z;} pt;
struct COORD *pt_ptr;
pt_ptr = &pt; /* assigns pointer to pt */
the->operator lets us access a member of the structure pointed to by a pointer.i.e.:
pt_ptr-> x = 1.0;
pt_ptr-> y = - 3.0;

Ex: Linked Lists
typedefstruct { int value;

ELEMENT *next;
} ELEMENT;
ELEMENT n1, n2;
n1.next = &n2;

n1 n2

Fig. Linking Two Nodes
NOTE: We can only declare next as a pointer to ELEMENT. We cannot have a element of the
variable type as this would set up a recursive definition which is NOT ALLOWED. We are
allowed to set a pointer reference since 4 bytes are set aside for any pointer.

Q. explain what are the problems with pointers
Problems with Pointers
 Nothing will get you into more trouble than a wild pointer! Pointers are a

mixedblessing. They give you tremendous power, but when a pointer is used
incorrectly, orcontains the wrong value, it can be a very difficult bug to find.

 An erroneous pointer is difficult to find because the pointer, by itself, is not
theproblem. The trouble starts when you access an object through that pointer. In
short, whenyou attempt to use a bad pointer, you are reading or writing to some
unknown piece ofmemory. If you read from it, you will get a garbage value, which
will probably cause yourprogram to malfunction. If you write to it, you might be
writing over other pieces of yourcode or data. In either case, the problem might not

*next Value *next Value

 Page 20 of 75

show up until later in the execution ofyour program and may lead you to look for the
bug in the wrong place. There may be little orno evidence to suggest that the pointer
is the original cause of the problem. Programmers losesleep over this type of bug
time and time again.

 Because pointer errors are so troublesome, you should, of course, do your best
neverto generate one. To help you avoid them, a few of the more common errors
are discussedhere.

(i) The classic example of a pointer error is the uninitialized pointer.
Consider this program:
/* This program is wrong. */
void main()
{
int x, *p;
x = 10;
p = x; / error, p not initialized */
}
Eventually, your program stops working. In this simple example, most compilers will issue a
warning.
(ii) A second common error is caused by a simple misunderstanding of how to use a pointer.
Consider the following:
/* This program is wrong. */
#include <stdio.h>
void main()
{
int x, *p;
x = 10;
p = x;
printf("%d", *p);
}

 The call to printf() does not print the value of x, which is 10, on the screen. It prints
some unknown value because the assignment p = x; is wrong. That statement assigns
the value 10 to the pointer p. However, p is supposed to contain an address, not a
value. To correct the program, write p = &x;

 As with the earlier error, most compilers will issue at least a warning message when
you attempt to assign x to p.

Dynamic Memory Allocation:

 Dynamic memory allocation uses predefined functions to allocate and
releasememory for data while the program is running. It effectively postpones the
data definition,but not the declaration to run time.

 Page 21 of 75

 To use dynamic memory allocation ,we use either standard data types or
derivedtypes .To access data in dynamic memory we need pointers.

Advantages of Dynamic memory allocation
 It has the ability to reserve or allocate additional memory space during the program

execution.
 It has the ability to release unwanted memory space during the program execution
 It is very useful to modify the size of the previously allocated memory.
 It is very useful to allocate memory space to an array of elements and initialize them

to zero.
Memory Allocation Functions:
 Four memory management functions are used with dynamic memory. Three of them

malloc,calloc,andreallocare used for memory allocation. The fourth, free is used
toreturn memory when it is no longer needed.

 All the memory management functions arefound in standard library file(stdlib.h).

Function Syntax

malloc() (datatype *) malloc (number *sizeof(int));

calloc() (datatype *) calloc (number, sizeof(int));

realloc() (datatype *) realloc (pointer_name, number * sizeof(int));

free() free (pointer_name);

Block Memory Allocation (malloc) :
 malloc() is used to allocate memory space in bytes for variables of any valid C data

type.
 It returns starting address of the allocated bytes.
 If sufficient memory is not available, then it returns the NULL value.
 It allocates a block a size bytes of consecutive memory from the heap of memory.

Declaration:
Syntax : -

pointer= (data_type*)malloc(number *sizeof(int));

 Page 22 of 75

int *p=(int*)malloc(6*sizeof(int);
Example:
#include <stdio.h>
#include <stdlib.h>
int main()
{

// This pointer will hold the
// base address of the block created
int* ptr;
int n, i;

// Get the number of elements for the array
n = 5;
printf("Enter number of elements: %d\n", n);

// Dynamically allocate memory using malloc()
ptr = (int*)malloc(n * sizeof(int));

// Check if the memory has been successfully
// allocated by malloc or not
if (ptr == NULL) {

printf("Memory not allocated.\n");
exit(0);

}
else {

// Memory has been successfully allocated
printf("Memory successfully allocated using malloc.\n");

// Get the elements of the array
for (i = 0; i< n; ++i) {

ptr[i] = i + 1;
}

// Print the elements of the array
printf("The elements of the array are: ");
for (i = 0; i< n; ++i) {

printf("%d, ", ptr[i]);
}

}

return 0;
}
Output:
Enter number of elements: 5

 Page 23 of 75

Memory successfully allocated using malloc.
The elements of the array are: 1, 2, 3, 4, 5

Contagious Memory Allocation(calloc) :
“calloc” or “contiguous allocation” method in C is used to dynamically allocate the specified number
of blocks of memory of the specified type. It initializes each block with a default value ‘0’.

(datatype *) calloc (number, sizeof(int));
Example:
#include <stdio.h>
#include <stdlib.h>

int main()
{

// This pointer will hold the
// base address of the block created
int* ptr;
int n, i;

// Get the number of elements for the array
n = 5;
printf("Enter number of elements: %d\n", n);

// Dynamically allocate memory using calloc()
ptr = (int*)calloc(n, sizeof(int));

// Check if the memory has been successfully
// allocated by calloc or not
if (ptr == NULL) {

printf("Memory not allocated.\n");
exit(0);

}
else {

// Memory has been successfully allocated
printf("Memory successfully allocated using calloc.\n");

// Get the elements of the array
for (i = 0; i < n; ++i) {

ptr[i] = i + 1;
}

// Print the elements of the array
printf("The elements of the array are: ");
for (i = 0; i < n; ++i) {

printf("%d, ", ptr[i]);
}

 Page 24 of 75

}

return 0;
}
Output:
Enter number of elements: 5
Memory successfully allocated using calloc.
The elements of the array are: 1, 2, 3, 4, 5

Reallocation Of Memory(realloc):
“realloc” or “re-allocation” method in C is used to dynamically change the memory allocation of a
previously allocated memory. In other words, if the memory previously allocated with the help of
malloc or calloc is insufficient, realloc can be used to dynamically re-allocate memory. re-allocation of
memory maintains the already present value and new blocks will be initialized with default garbage
value.

Syntax:
(datatype *) realloc (pointer_name, number * sizeof(int));

Ex: Ptr=realloc(ptr,15*sizeof(int);

Example:
#include <stdio.h>
#include <stdlib.h>
int main()
{

// This pointer will hold the
// base address of the block created
int* ptr;

 Page 25 of 75

int n, i;

// Get the number of elements for the array
n = 5;
printf("Enter number of elements: %d\n", n);

// Dynamically allocate memory using calloc()
ptr = (int*)calloc(n, sizeof(int));

// Check if the memory has been successfully
// allocated by malloc or not
if (ptr == NULL) {

printf("Memory not allocated.\n");
exit(0);

}
else {

// Memory has been successfully allocated
printf("Memory successfully allocated using calloc.\n");

// Get the elements of the array
for (i = 0; i< n; ++i) {

ptr[i] = i + 1;
}

// Print the elements of the array
printf("The elements of the array are: ");
for (i = 0; i< n; ++i) {

printf("%d, ", ptr[i]);
}

// Get the new size for the array
n = 10;
printf("\n\nEnter the new size of the array: %d\n", n);

// Dynamically re-allocate memory using realloc()
ptr = realloc(ptr, n * sizeof(int));

// Memory has been successfully allocated
printf("Memory successfully re-allocated using realloc.\n");

// Get the new elements of the array
for (i = 5; i< n; ++i) {

ptr[i] = i + 1;
}

 Page 26 of 75

// Print the elements of the array
printf("The elements of the array are: ");
for (i = 0; i< n; ++i) {

printf("%d, ", ptr[i]);
}

free(ptr);
}

return 0;
}
output:
Enter number of elements: 5
Memory successfully allocated using calloc.
The elements of the array are: 1, 2, 3, 4, 5

Enter the new size of the array: 10
Memory successfully re-allocated using realloc.
The elements of the array are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Releasing Memory(free):

 free () function frees the allocated memory by malloc (), calloc (), realloc () functions
and returns the memory to the system.
void free(void *ptr);

#include <stdio.h>
#include <stdlib.h>

int main()
{

// This pointer will hold the

 Page 27 of 75

// base address of the block created
int *ptr, *ptr1;
int n, i;

// Get the number of elements for the array
n = 5;
printf("Enter number of elements: %d\n", n);

// Dynamically allocate memory using malloc()
ptr = (int*)malloc(n * sizeof(int));

// Dynamically allocate memory using calloc()
ptr1 = (int*)calloc(n, sizeof(int));

// Check if the memory has been successfully
// allocated by malloc or not
if (ptr == NULL || ptr1 == NULL) {

printf("Memory not allocated.\n");
exit(0);

}
else {

// Memory has been successfully allocated
printf("Memory successfully allocated using malloc.\n");

// Free the memory
free(ptr);
printf("Malloc Memory successfully freed.\n");

// Memory has been successfully allocated
printf("\nMemory successfully allocated using calloc.\n");

// Free the memory
free(ptr1);
printf("Calloc Memory successfully freed.\n");

}

return 0;
}
Output:
Enter number of elements: 5
Memory successfully allocated using malloc.
Malloc Memory successfully freed.

Memory successfully allocated using calloc.

 Page 28 of 75

Calloc Memory successfully freed.

Difference between static memory allocation and dynamic memory allocation in C:

S.no Static memory allocation Dynamic memory allocation

1 In static memory allocation, memory is
allocated while writing the C program. Actually,
user requested memory will be allocated at
compile time.

In dynamic memory allocation,
memory is allocated while executing
the program. That means at run
time.

2 Memory size can’t be modified while execution.
Example: array

Memory size can be modified while
execution.
Example: Linked list

Difference between malloc() and calloc() functions in C:

S.no malloc() calloc()

1 It allocates only single block of requested
memory

It allocates multiple blocks of requested
memory

2 int *ptr;ptr = malloc(20 * sizeof(int));For
the above, 20*4 bytes of memory only
allocated in one block.
Total = 80 bytes

int *ptr;Ptr = calloc(20, 20 * sizeof(int)
);For the above, 20 blocks of memory
will be created and each contains 20*4
bytes of memory.
Total = 1600 bytes

3 malloc () doesn’t initializes the allocated
memory. It contains garbage values

calloc () initializes the allocated memory
to zero

4 type cast must be done since this function
returns void pointer int *ptr;ptr =
(int*)malloc(sizeof(int)*20);

Same as malloc () function int *ptr;ptr =
(int*)calloc(20, 20 * sizeof(int));

 Page 29 of 75

Arrays
An array is defined as the collection of similar type of data items stored at contiguous
memory locations.
Arrays are the derived data type in c programming language which can store the primitive
type of data such as int, char, double, float, etc.
It also has the capability to store the collection of derived data types, such as pointers,
structure, etc.
The array is the simplest data structure where each data element can be randomly accessed
by using its index number.
The array is indexed from 0 to (size-1)
Properties of array
The array contains the following properties.
Each element of an array is of same data type and carries the same size, i.e., int = 4 bytes.
Elements of the array are stored at contiguous memory locations where the first element is
stored at the smallest memory location.
Elements of the array can be randomly accessed since we can calculate the address of each
element of the array with the given base address and the size of the data element.
Advantage of c array
1) Code optimization: less code to the access the data.
2) Ease of traversing: by using the for loop, we can retrieve the elements of an array easily.
3) Ease of sorting: to sort the elements of the array, we need a few lines of code only.
4) Random access: we can access any element randomly using the array.
Disadvantage of c array
1) fixed size: whatever size, we define at the time of declaration of the array, we can't
exceed the limit. so, it doesn't grow the size dynamically like linkedlist which we will learn
later.

Declaration of c array
we can declare an array in the c language in the following way.

now, let us see the example to declare the array.
int marks[5];
Index 0 1 2 3 4

Values Garbage
value

Garbage
value

Garbage
value

Garbage
value

Garbage
value

Individual
element

Marks[0] Marks[1] Marks[2] Marks[3] Marks[4]

data_type array_name[array_size];

 Page 30 of 75

Address
Locations

80820 80822 80824 80826 80828

 Array Memory Mapping

5 means array size or subscript number or Dimension number
Marks array name

int a[10];// an array of ten integers; a[0], a[1], …, a[9]
char name[20];// an array of 20 characters
floatnums[50];// an array of fifty floating numbers; nums[0], nums[1], …,nums[49]
int c[];// an array of an unknown number of integers; c[0], c[1], …, c[size-1]
int table[5][10];// a two dimensional array of integers

Initialization of c array
1. Static type initialization
2. Runtime initialization

1. Static initialization: method1
We manually allocate values to the array variables is called as static initialization

int marks[5];
The simplest way to initialize an array is by using the index of each element. we can initialize
each element of the array by using the index. consider the following example.
marks[0]=80;//initialization of array
marks[1]=60;
marks[2]=70;
marks[3]=85;
marks[4]=75;

Index 0 1 2 3 4

Values 80 60 70 85 75

Individual
element

Marks[0] Marks[1] Marks[2] Marks[3] Marks[4]

Address
Locations

80820 80822 80824 80826 80828

 Array Memory Mapping

Printing array values:
#include<stdio.h>
int main(){

 By using loops:
#include<stdio.h>
int main(){

 Page 31 of 75

Regulation:
AK20

Subject Code:
20AES0501

Subject Name : Problem Solving and
Programming

AY: 2022-2023

UNIT-4 pointers functions

int i=0;
int marks[5];//declaration of array
marks[0]=80;//initialization of array
marks[1]=60;
marks[2]=70;
marks[3]=85;
marks[4]=75;
Printf(“%4dt”,marks[0]);
Printf(“%4d”,marks[1]);
Printf(“%4d”,marks[2]);
Printf(“%4d”,marks[3]);
Printf(“%4d”,marks[4]);
Return 0;
}
Output: 80 60 70 85 75

int i=0;
int marks[5];//declaration of array
marks[0]=80;//initialization of array
marks[1]=60;
marks[2]=70;
marks[3]=85;
marks[4]=75;
//traversal of array
for(i=0;i<5;i++){
printf("%4d \n",marks[i]);
}//end of for loop
return 0;
}
Output: 80 60 70 85 75

Static initialization: method2:
declaration with initialization
we can initialize the c array at the time of declaration. let's see the code.
int marks[5]={20,30,40,50,60};

Static initialization: method3:
we can initialize the c array at the time of declaration

int marks[5]={20,30,40};
in this declaration array size is 5 but we initialize only 3 values so, the remaining values are
initialized with ‘0’ (zeros).

Index 0 1 2 3 4

Values 20 30 40 0 0

Individual
element

Marks[0] Marks[1] Marks[2] Marks[3] Marks[4]

Address
Locations

80820 80822 80824 80826 80828

 Array Memory Mapping

Static initialization: method4:
we can initialize the c array at the time of declaration

 Page 32 of 75

int marks[]={20,30,40,50,60.70,80};
in this declaration array size is not defined so, thecompilerfix the array size based on the
max size of the initialization element . in this case max initialization element is 7. So the
array size is fix with 7.

Index 0 1 2 3 4 5 6

Values 20 30 40 50 60 70 80

Individual
element

Marks[0] Marks[1] Marks[2] Marks[3] Marks[4] Marks[5] Marks[6]

Address
Locations

80820 80822 80824 80826 80828 80830 80832

 Array Memory Mapping

2. Runtime initialization
Runtime initialization means we assign values through runtime by using keyboard.
#include<stdio.h>
Int main()
{
Int marks[5],I;
Printf(“\nEnter 5 elements in to the array”);
For(i=0;i<5;i++);
Scanf(“%d”,&marks[i]);
//print the array
For(i=0;i<5;i++)
Printf(“\n marks[%d]=%d”,I,marks[i]);
Return 0;
}
Using array elements in expressions
Example: int a[10];
declares 10 integers and can be accessed by the name a
each variable is assigned a unique location (location is also called as an index). the range of
the location is 0 to (length – 1). for the said array range of the location is 0 to 9.

0 1 2 3 4 5 6 7 8 9

15 8 14 45 48 45 -57 45 1 0

x = a[1] * 2; /* sets x to 16 */
a[4] = 88; /* replaces 48 with 88 */

 Page 33 of 75

m = 6;
y = a[m]; /* sets y to –57 */
z = a[a[9]]; /* sets z to 15 */

Accessing Array Elements

Accessing array elements by using
1. Accessing Individual element
2. Accessing by using loops
3. Accessing by using pointers
4. Accessing by using array name with different ways

1. Accessing Individual element
#include<stdio.h>
int main(){
int i=0;
int marks[5];//declaration of array
marks[0]=80;//initialization of array
marks[1]=60;
marks[2]=70;
marks[3]=85;
marks[4]=75;
Printf(“%4dt”,marks[0]);
Printf(“%4d”,marks[1]);
Printf(“%4d”,marks[2]);
Printf(“%4d”,marks[3]);
Printf(“%4d”,marks[4]);
Return 0;
}
Output: 80 60 70 85 75

2. Accessing by using loops
#include<stdio.h>
int main(){
int i=0;
int marks[5];//declaration of array
marks[0]=80;//initialization of array
marks[1]=60;
marks[2]=70;
marks[3]=85;
marks[4]=75;
//traversal of array
for(i=0;i<5;i++){
printf("%4d \n",marks[i]);
}//end of for loop
return 0;
}
Output: 80 60 70 85 75

3. Accessing by using pointers

 Array elements are always stored in contiguous memory locations.
 A pointer when incremented always points to the next location of its type.

#include<stdio.h>
int main()
{
int num[]={24,34,12,44,56,17 };
inti,*j;

Pointer variable j

 Page 34 of 75

j=&num[0]; //assign address of zeroth element
for(i=0;i<=5;i++)
{
printf(“\n address=%u element = %d”,j,*j);
j++; //increment pointer point to next location
}
return (0);
}
Output:
Address=65512
element=24
Address=65516
element=34
Address=65520
element=12
Address=65524
element=44
Address=65528 element=56
Address=65532 element=17

4. Accessing by using array name with different ways

int num[]={24,34,12,44,56,17 };
Mentioning the name of the array means we get the base address of the arrayso,
Below all are point to the same base location

num[i]
*(num+i)
*(i+num)
i[num]

Example:
#include<stdio.h>
int main()
{
int num[]={24,34,12,44,56,17 };
inti;
for(i=0;i<-5;i++)
{
printf(“\n address=%u”,&num[i]);

Pointer value 65512

Pointer address 8500

Index 0 1 2 3 4 5

Values 24 34 12 44 56 17

Individual
element

num[0] num
[1]

num
[2]

num
[3]

num
[4]

num
[5]

Address
Locations

65512 65516 65520 65524 65528 65532

 Array Memory Mapping

 Page 35 of 75

printf(“element=%3d %3d”,num[i], i[num]);
printf(“element=%3d %3d”,*(num+i), *(i+num));
}
return 0;
}
Output:

Address=65512 element=24 24 24 24
Address=65516 element=34 34 34 34
Address=65520 element=12 12 12 12
Address=65524 element=44 44 44 44
Address=65528 element=56 56 56 56
Address=65532 element=17 17 17 17

No index out of bound checking:
there is no index out of bounds checking in c

#include <stdio.h>

int main()
{

int arr[2];
printf("%d ", arr[3]);
printf("%d ", arr[-2]);

return 0;
}

Output
-449684907 4195777

Copying arrays:
we have two arrays list1 and list2
int list1[6] = {2, 4, 6, 8, 10, 12};
int list2[6];
and we want to copy the contents of list1 to list2. for general variables (e.g. int x=3, y=5) we
use simple assignment statement (x=y or y=x). but for arrays the following statement is
wrong.
list2 = list1;
we must copy between arrays element by element and the two arrays must have the same
size. in the following example, we use a for loop which makes this easy.
#include <stdio.h>
main()
int list1[6] = {2, 4, 6, 8, 10, 12};

 Page 36 of 75

int list2[6];
for (int ctr = 0; ctr<6; ctr++)
{
list2[ctr] = list1[ctr];
}
printf("elements of list2 :\n");
for (int ctr = 0; ctr<6; ctr++)
{
printf("%d ",list2[ctr]);
}
}
copy
output:
elements of list2 :
2 4 6 8 10 12

Q. Write a c program for finding the no. of students passed in an examination

#include<stdio.h>
#include<conio.h>
int main()

{
intn,a[40],count=0,i;
printf("Enter the number of students");
scanf("%d",&n);
printf("\n Enter marks of the students");
for(i=1;i<=n;i++)
{
printf("\n Enter %d student marks :",i);
scanf("%d",&a[i]);
if(a[i]>=50)
count=count+1;
}
printf(" Number of students passed =%d ", count);
return 0;
}
Output:

Enter the number of students7
Enter marks of the students
Enter 1 student marks :55

 Page 37 of 75

Enter 2 student marks :42
Enter 3 student marks :77
Enter 4 student marks :63
Enter 5 student marks :29
Enter 6 student marks :57
Enter 7 student marks :89
Number of students passed =5

Q. Write a program to find Average of Student marks
#include<stdio.h>
#include<conio.h>
void main()
{
int marks[50],i,sum=0,average,count=0;
printf("Enter the Student marks");
for(i=0;i<5;i++)
{
scanf("%d",&marks[i]);
sum=sum+marks[i];
}
average=sum/5.0;
for(i=0;i<5;i++)
if(marks[i]>average)
count++;
printf("No of students who scored more than average marks:%d",count);
return 0;
} Output:
Enter the Student marks: 96 56 86 76 36 No of students who scored more than average
marks: 3
Q. write a c program to reverse an array

Different arrays
#include <stdio.h>
#define MAX_SIZE 100 // Maximum array
size

int main()
{

int arr[MAX_SIZE], reverse[MAX_SIZE];
int size, i, arrIndex, revIndex;

/* Input size of the array */

Within the array
#include<stdio.h>
int main()
{
int a[20],i,n,t;
printf("\n Enter the array size: ");
scanf("%d",&n);
printf("\n Enter %d elements in to
thearray:");
for(i=1;i<=n;i++)

 Page 38 of 75

printf("\nFind reverse of an array:");
printf("\nEnter size of the array: ");

scanf("%d", &size);

/* Input array elements */
printf("Enter %d elements in to the array:

",size);
for(i=0; i<size; i++)
{

scanf("%d", &arr[i]);
}

revIndex = 0;
arrIndex = size - 1;

while(arrIndex>= 0)
{

reverse[revIndex] = arr[arrIndex];
revIndex++;
arrIndex--;

}
printf("\nReversed array : ");
for(i=0; i<size; i++)
{

printf("%d\t", reverse[i]);
}
return 0;

}

scanf("%d",&a[i]);
printf("\n Given elements are :");
for(i=1;i<=n;i++)
printf("%4d",a[i]);
for(i=1;i<=n/2;i++)
{
t=a[i];
a[i]=a[n-i+1];
a[n-i+1]=t;
}
printf("\n Given elements in reverse order
are :");
for(i=1;i<=n;i++)
printf("%4d",a[i]);
}

Output:
Enter the array size: 5
Enter 5 elements in to thearray:100 -50 25

11 5
Given elements are : 100 -50 25 11 5

Given elements in reverse order are : 5 11
25 -50 100

Two dimensional array

So far we have discussed the array variables that can store a list of values. There could be
situations where a table of values will have to be stored. In such situations this concept is
useful.

✓ An array with two dimensions are called “Two dimensional array”

✓ An array with two dimensions‟ are called matrix.

✓ When the data must be stored in the form of a matrix we use two dimensional arrays.

Declaration of Two –Dimensional array:
Syntax:
datatype array-name [row- size] [column- size];

 Page 39 of 75

For example a two dimensional array consisting of 5 rows and 3 columns. So the total
number of elements which can be stored in this array are 5*3 i.e. 15

Ex: int a[3][4];

a two-dimensional array a, which contains three rows and four columns can be shown as
follows −

thus, every element in the array a is identified by an element name of the form a[i][j],
where 'a' is the name of the array, and 'i' and 'j' are the subscripts that uniquely identify
each element in 'a'.

Initialization of 2-D array:
Two –D array can also be initialized at the place of declaration itself.
Syntax:
Data-type array-name [row-size] [column-size] = {{row1 list}, {row2 list}….{rown list}

We already know, when we initialize a normal array (or you can say one dimensional array)
during declaration, we need not to specify the size of it. However that’s not the case with 2D
array, you must always specify the second dimension even if you are specifying elements
during the declaration. Let’s understand this with the help of few examples –

Method1:-
/* Valid declaration*/
intabc[2][2] = {1, 2, 3 ,4 } ;
Method2:-
/* Valid declaration*/
intabc[][2] = {1, 2, 3 ,4 } ;

NOTE:
/* Invalid declaration – you must specify second dimension*/
intabc[][] = {1, 2, 3 ,4 } ;
intabc[2][] = {1, 2, 3 ,4 };

Method3:-
intabc[2][2] = { {1, 2}, {3 ,4} } ;

https://beginnersbook.com/2014/01/c-arrays-example/

 Page 40 of 75

intabc[2][2] = { {1, 2},
{3 ,4}
} ;

Method4:-

intabc[2][3] = { {1}, {3 ,4}, } ;
here, we declared abc array with row size = 2 and column size = 3. but we only assigned 1
column in the 1st row and 2 columns in the 2nd row. in these situations, the remaining
values will assign to default values (0 in this case).

Storage Representation of two –Dimensional array:
When speaking of two-dimensional arrays, we are logically saying that, it consists of two
rows and columns but when it is stored in memory, the memory is linear.

✓ Hence, the actual storage differs from our matrix representation.

Two major types of representation can be used for 2-D array
1. Row representation

2. Column representation

e.g. int a[3][3]

 Page 41 of 75

Q. Storing elements in a matrix and printing it.
#include <stdio.h>
#define MAX 10
void main ()
{
intarr[MAX][MAX],i,j;

intm,n;
printf("\n enter size of matrix1 and matrix2:");
scanf("%d%d",&m,&n);

for (i=0;i<m;i++) //row
{

for (j=0;j<n;j++) //column
{

printf("Enter a[%d][%d]: ",i,j);
scanf("%d",&arr[i][j]);

}
}

printf("\n printing the elements in matrix form. .. \n");
for(i=0;i<m;i++) // row

{

 Page 42 of 75

for (j=0;j<n;j++) //column
{

printf("%d\t",arr[i][j]);
}

printf("\n");
}

}
Output:
enter size of matrix1 and matrix2:3 3
Enter a[0][0]: 1
Enter a[0][1]: 2
Enter a[0][2]: 3
Enter a[1][0]: 4
Enter a[1][1]: 5
Enter a[1][2]: 6
Enter a[2][0]: 7
Enter a[2][1]: 8
Enter a[2][2]: 9
printing the elements in matrix form....

1 2 3
4 5 6
7 8 9

Q. Matrix Addition

#include<stdio.h>
#define MAX 100
int main ()
{

int a[MAX][MAX],b[MAX][MAX],c[MAX][MAX],i,j,k;
int r1,c1,r2,c2;
printf("\nColumn of first matrix and row of second matrix must be same.");
printf("\n Enter the number of rows and columns for matrix A(between 1 and 50):");
scanf("%d%d",&r1,&c1);
printf("\n Enter the number of rows and columns for matrix B(between 1 and 50):");
scanf("%d%d",&r2,&c2);

if (r1!=r2 && c1!=c2)
{

printf("Matrices Addition is not possible");
printf("\nRows and Columns of Both Matrices are must be same:");
}

 Page 43 of 75

else
{

printf("\n Enter matrix1 values:\n");

for (i=0;i<r1;i++) //row
for (j=0;j<c1;j++) //column

scanf("%d",&a[i][j]);

printf("\n Enter matrix2 values:\n");
for (i=0;i<r2;i++) //row

for (j=0;j<c2;j++) //column
scanf("%d",&b[i][j]);

printf("\nThe First matrix is :\n");

for(i=0;i<r1;i++)
{
printf("\n");
for(j=0;j<c1;j++)

printf("%d\t",a[i][j]);
}

printf("\nThe Second matrix is :\n");
for(i=0;i<r2;i++)
{
printf("\n");
for(j=0;j<c2;j++)
printf("%d\t",b[i][j]);
}

for (i=0;i<r1;i++)//row of first matrix
{

for (j=0;j<c2;j++) //column of second matrix
{

c[i][j] = a[i][j] + b[i][j];
}

}

printf("\nAddition of two entered matrices are:-\n");

for (i=0;i<r1;i++) //row of first matrix
{

 Page 44 of 75

for (j=0;j<c2;j++) //column of second matrix
printf("%4d",c[i][j]);

printf("\n");
}

}

return(0);
}

Output:
Column of first matrix and row of second matrix must be same.
Enter the number of rows and columns for matrix A(between 1 and 50):1 2

Enter the number of rows and columns for matrix B(between 1 and 50):3 2
Matrices Addition is not possible
Rows and Columns of Both Matrices are must be same:
Output:
Column of first matrix and row of second matrix must be same.
Enter the number of rows and columns for matrix A(between 1 and 50):2 2

Enter the number of rows and columns for matrix B(between 1 and 50):2 2

Enter matrix1 values:
1 2 3 4

Enter matrix2 values:
1 1 1 1

The First matrix is :

1 2
3 4
The Second matrix is :

1 1
1 1
Addition of two entered matrices are:-

2 3
4 5

 Page 45 of 75

Q. Matrix Subtraction

#include<stdio.h>
#define MAX 100
int main ()
{

int a[MAX][MAX],b[MAX][MAX],c[MAX][MAX],i,j,k;
int r1,c1,r2,c2;
printf("\nColumn of first matrix and row of second matrix must be same.");
printf("\n Enter the number of rows and columns for matrix A(between 1 and 50):");
scanf("%d%d",&r1,&c1);
printf("\n Enter the number of rows and columns for matrix B(between 1 and 50):");
scanf("%d%d",&r2,&c2);

if (r1!=r2 || c1!=c2)
{

printf("Matrices Subtraction is not possible");
printf("\nRows and Columns of Both Matrices are must be same:");
}

else
{

printf("\n Enter matrix1 values:\n");
for (i=0;i<r1;i++) //row

for (j=0;j<c1;j++) //column
scanf("%d",&a[i][j]);

printf("\n Enter matrix2 values:\n");
for (i=0;i<r2;i++) //row

for (j=0;j<c2;j++) //column
scanf("%d",&b[i][j]);

printf("\nThe First matrix is :\n");

for(i=0;i<r1;i++)
{
printf("\n");
for(j=0;j<c1;j++)

printf("%d\t",a[i][j]);
}

printf("\nThe Second matrix is :\n");

for(i=0;i<r2;i++)
{

 Page 46 of 75

printf("\n");
for(j=0;j<c2;j++)
printf("%d\t",b[i][j]);
}

for (i=0;i<r1;i++)//row of first matrix
{
for (j=0;j<c2;j++) //column of second matrix
{

c[i][j] = a[i][j] - b[i][j];
}

}

printf("\nSubtraction of two entered matrices are:-\n");

for (i=0;i<r1;i++) //row of first matrix
{

for (j=0;j<c2;j++) //column of second matrix
printf("%4d",c[i][j]);

printf("\n");
}

}

return(0);
}

Output:
Column of first matrix and row of second matrix must be same.
Enter the number of rows and columns for matrix A(between 1 and 50):2 2

Enter the number of rows and columns for matrix B(between 1 and 50):4 4

Matrices Subtraction is not possible
Rows and Columns of Both Matrices are must be same:
Output:
Column of first matrix and row of second matrix must be same.
Enter the number of rows and columns for matrix A(between 1 and 50):2 2
Enter the number of rows and columns for matrix B(between 1 and 50):2 2
Enter matrix1 values:

1 2 3 4
Enter matrix2 values:

 Page 47 of 75

Q. Matrix multiplication

#include<stdio.h>
#define MAX 100
int main ()
{

int a[MAX][MAX],b[MAX][MAX],c[MAX][MAX],i,j,k;
int r1,c1,r2,c2;
printf("\nColumn of first matrix and row of second matrix must be same.");
printf("\n Enter the number of rows and columns for matrix A(between 1 and 50):");
scanf("%d%d",&r1,&c1);
printf("\n Enter the number of rows and columns for matrix B(between 1 and 50):");
scanf("%d%d",&r2,&c2);

if (c1!=r2)
{

printf("Matrices multiplication is not possible");
printf("\nColumn of first matrix and row of second matrix must be same.");
}

else
{

printf("\n Enter matrix1 values:\n");
for (i=0;i<r1;i++) //row

for (j=0;j<c1;j++) //column
scanf("%d",&a[i][j]);

printf("\n Enter matrix2 values:\n");

for (i=0;i<r2;i++) //row
for (j=0;j<c2;j++) //column
scanf("%d",&b[i][j]);

1 1 1 1
The First matrix is :
1 2
3 4
The Second matrix is :
1 1
1 1
Subtraction of two entered matrices are:-

0 1
2 3

 Page 48 of 75

printf("\nThe First matrix is :\n");
for(i=0;i<r1;i++)
{
printf("\n");
for(j=0;j<c1;j++)

printf("%d\t",a[i][j]);
}

printf("\nThe Second matrix is :\n");
for(i=0;i<r2;i++)
{
printf("\n");
for(j=0;j<c2;j++)
printf("%d\t",b[i][j]);
}

for (i=0;i<r1;i++)//row of first matrix

{
for (j=0;j<c2;j++) //column of second matrix
{
c[i][j]=0;

for(k=0;k<c1;k++)//column of first matrix
c[i][j] = c[i][j] + a[i][k] * b[k][j];

}

}

printf("\nProduct of two entered matrices are:-\n");

for (i=0;i<r1;i++) //row of first matrix
{

for (j=0;j<c2;j++) //column of second matrix
printf("%4d",c[i][j]);

printf("\n");
}

}

return(0);
}

Output:

 Page 49 of 75

Q. Transpose of the matrix

Column of first matrix and row of second matrix must be same.
Enter the number of rows and columns for matrix A(between 1 and 50):2 2
Enter the number of rows and columns for matrix B(between 1 and 50):1 2

Matrices multiplication is not possible
Column of first matrix and row of second matrix must be same.

Output:
Column of first matrix and row of second matrix must be same.
Enter the number of rows and columns for matrix A(between 1 and 50):2 2

Enter the number of rows and columns for matrix B(between 1 and 50):2 2
Enter matrix1 values:

1 2 3 4
Enter matrix2 values:

1 1 1 1
The First matrix is :
1 2
3 4
The Second matrix is :
1 1
1 1
Product of two entered matrices are:-

3 3
7 7

#include<stdio.h>
#define MAX 100
int main ()
{

int a[MAX][MAX],b[MAX][MAX],i,j;
int r1,c1;
printf("\nColumn of first matrix and row of second matrix must be same.");
printf("\n Enter the number of rows and columns for matrix A(between 1 and 50):");
scanf("%d%d",&r1,&c1);

printf("\n Enter matrix values:\n");
for (i=0;i<r1;i++) //row

for (j=0;j<c1;j++) //column
scanf("%d",&a[i][j]);

 Page 50 of 75

How to declare a multidimensional array in c
a multidimensional array is declared using the following syntax:
type array_name[d1][d2][d3][d4]………[dn];

printf("\nThe Given matrix is :\n");
for(i=0;i<r1;i++)
{
printf("\n");
for(j=0;j<c1;j++)

printf("%d\t",a[i][j]);
}

for (i=0;i<r1;i++)//row
for (j=0;j<c1;j++) //column

b[j][i] = a[i][j];

printf("\nTranspose Matrix is:-\n");
for (i=0;i<r1;i++) //row
{

for (j=0;j<c1;j++) //column
printf("%4d",b[i][j]);

printf("\n");
}

return(0);
}

Output:
Column of first matrix and row of second matrix must be same.
Enter the number of rows and columns for matrix A(between 1 and 50):2 2
Enter matrix values:

1 2 3 4
The Given matrix is :
1 2
3 4
Transpose Matrix is:-

1 3
2 4

 Page 51 of 75

where each d is a dimension, and dn is the size of final dimension.
examples:

1. int table[5][5][20];
2. float arr[5][6][5][6][5];

in example 1:
 int designates the array type integer.
 table is the name of our 3d array.
 our array can hold 500 integer-type elements. this number is reached by multiplying the

value of each dimension. in this case: 5x5x20=500.

In example 2:
 array arr is a five-dimensional array.
 It can hold 4500 floating-point elements (5x6x5x6x5=4500).

Can you see the power of declaring an array over variables? when it comes to holding
multiple values in c programming, we would need to declare several variables. but a single
array can hold thousands of values.
Explanation of a 3d array
let's take a closer look at a 3d array. a 3d array is essentially an array of arrays of arrays: it's
an array or collection of 2d arrays, and a 2d array is an array of 1d array.

it may sound a bit confusing, but don't worry. as you practice working with
multidimensional arrays, you start to grasp the logic.

the diagram below may help you understand:

3d array conceptual view

3d array memory map.

 Page 52 of 75

initializing a 3d array in c
like any other variable or array, a 3d array can be initialized at the time of compilation. by
default, in c, an uninitialized 3d array contains “garbage” values, not valid for the intended
use.

Pointer to Multidimensional Arrays

1. Pointers and two dimensional Arrays: In a two dimensional array, we can access each
element by using two subscripts, where first subscript represents the row number and
second subscript represents the column number. The elements of 2-D array can be
accessed with the help of pointer notation also. Suppose arr is a 2-D array, we can access
any element arr[i][j] of the array using the pointer expression *(*(arr + i) + j). Now we’ll
see how this expression can be derived.
Let us take a two dimensional array arr[3][4]:
intarr[3][4] = { {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12} };

Since memory in a computer is organized linearly it is not possible to store the 2-D array in
rows and columns. The concept of rows and columns is only theoretical, actually, a 2-D
array is stored in row-major order i.e rows are placed next to each other. The following
figure shows how the above 2-D array will be stored in memory.

Each row can be considered as a 1-D array, so a two-dimensional array can be considered
as a collection of one-dimensional arrays that are placed one after another. In other
words, we can say that 2-D dimensional arrays that are placed one after another. So
here arr is an array of 3 elements where each element is a 1-D array of 4 integers.
We know that the name of an array is a constant pointer that points to 0th 1-D array and
contains address 5000. Since arr is a ‘pointer to an array of 4 integers’, according to

 Page 53 of 75

pointer arithmetic the expression arr + 1 will represent the address 5016 and expression
arr + 2 will represent address 5032.
So we can say that arr points to the 0th 1-D array,
arr + 1 points to the 1st 1-D array and
arr + 2 points to the 2nd 1-D array.

In general we can write:

arr + i Points to ith element of arr ->Points to ith 1-D array
 Since arr + i points to ith element of arr, on dereferencing it will get ith element

of arr which is of course a 1-D array. Thus the expression *(arr + i) gives us the base
address of ith 1-D array.

 We know, the pointer expression *(arr + i) is equivalent to the subscript
expression arr[i]. So *(arr + i) which is same as arr[i] gives us the base address of ith 1-D
array.

In general we can write:
*(arr + i) -arr[i] - Base address of ith 1-D array -> Points to 0th element of ith 1-D array

Note: Both the expressions (arr + i) and *(arr + i) are pointers, but their base type are
different. The base type of (arr + i) is ‘an array of 4 units’ while the base type of *(arr + i)
or arr[i] is int.
 To access an individual element of our 2-D array, we should be able to access any

jth element of ith 1-D array.

 Page 54 of 75

 Since the base type of *(arr + i) is int and it contains the address of 0th element of ith 1-
D array, we can get the addresses of subsequent elements in the ith 1-D array by
adding integer values to *(arr + i).

 For example *(arr + i) + 1 will represent the address of 1st element of 1stelement of
ith 1-D array and *(arr+i)+2 will represent the address of 2nd element of ith 1-D array.

 Similarly *(arr + i) + j will represent the address of jth element of ith 1-D array. On
dereferencing this expression we can get the jth element of the ith 1-D array.

// C program to print the values and
// address of elements of a 2-D array
#include<stdio.h>

int main()
{
intarr[3][4] = {

inti, j;
for (i = 0; i< 3; i++)
{

{ 10, 11, 12, 13 },
{ 20, 21, 22, 23 },
{ 30, 31, 32, 33 }

};

 Page 55 of 75

printf("Address of %dth array = %p %p\n",
i, arr[i], *(arr + i));

for (j = 0; j < 4; j++)
printf("%d %d ", arr[i][j], *(*(arr + i) + j));
printf("\n");

}

return 0;
}

Output:

Address of 0th array = 0x7ffe50edd580 0x7ffe50edd580

10 10 11 11 12 12 13 13

Address of 1th array = 0x7ffe50edd590 0x7ffe50edd590

20 20 21 21 22 22 23 23

Address of 2th array = 0x7ffe50edd5a0 0x7ffe50edd5a0

30 30 31 31 32 32 33 33

Strings

The string can be defined as the one-dimensional array of characters terminated by a null
('\0'). The character array or the string is used to manipulate text such as word or sentences.
Each character in the array occupies one byte of memory, and the last character must
always be 0. The termination character ('\0') is important in a string since it is the only way
to identify where the string ends. When we define a string as char s[10], the character s[10]
is implicitly initialized with the null in the memory.

There are two ways to declare a string in c language.

 By char array

 By string literal
Let's see the example of declaring string by char array in C language.

charch[13]={'a', 'n', 'n', 'a', 'm', 'a', 'c', 'h', 'a', 'r', ‘’y', ‘a’, \0'};

As we know, array index starts from 0, so it will be represented as in the figure given below.

C Strings

 Page 56 of 75

While declaring string, size is not mandatory. So we can write the above code as given
below:
char ch[13]={'a', 'n', 'n', 'a', 'm', 'a', 'c', 'h', 'a', 'r', ‘’y', ‘a’, \0'};
We can also define the string by the string literal in C language. For example:
charch[]="annamacharya";
In such case, '\0' will be appended at the end of the string by the compiler.

Q. Difference between char array and string literal
There are two main differences between char array and literal.
We need to add the null character '\0' at the end of the array by yourself whereas, it is
appended internally by the compiler in the case of the character array.
The string literal cannot be reassigned to another set of characters whereas, we can reassign
the characters of the array.
String Example in C
Let's see a simple example where a string is declared and being printed. The '%s' is used as a
format specifier for the string in c language.
char ch[13]={'a', 'n', 'n', 'a', 'm', 'a', 'c', 'h', 'a', 'r', ‘’y', ‘a’, \0'};
As we know, array index starts from 0, so it will be represented as in the figure given below.

0 1 2 3 4 5 6 7 8 9 10 11 12

a n n a m a c h a r y a \0

While declaring string, size is not mandatory. So we can write the above code as given
below:
char ch[]={'a', 'n', 'n', 'a', 'm', 'a', 'c', 'h', 'a', 'r', ‘’y', ‘a’, \0'};
We can also define the string by the string literal in C language. For example:
char ch[]="annamacharya";
In such case, '\0' will be appended at the end of the string by the compiler.
String Example in C
Let's see a simple example where a string is declared and being printed. The '%s' is used as a
format specifier for the string in c language.
#include<stdio.h>
#include <string.h>
int main(){
charch[13]={'a', 'n', 'n', 'a', 'm', 'a', 'c', 'h', 'a', 'r', ‘’y', ‘a’, \0'};
char ch2[13]="annamacharya";

printf("Char Array Value is: %s\n", ch);
printf("String Literal Value is: %s\n", ch2);
return 0;

 Page 57 of 75

}
Output
Char Array Value is: annamacharya
String Literal Value is: annamacharya

Q. Explain about traversing methods in strings OR Explain how to traverse string array
Traversing String
Traversing the string is one of the most important aspects in any of the programming languages. We
may need to manipulate a very large text which can be done by traversing the text. Traversing string
is somewhat different from the traversing an integer array. We need to know the length of the array
to traverse an integer array, whereas we may use the null character in the case of string to identify
the end the string and terminate the loop.
Hence, there are two ways to traverse a string.

 By using the length of string

 By using the null character.
Let's discuss each one of them.
1. Using the length of string

Let's see an example of counting the number of vowels in a string.
#include<stdio.h>
void main ()
{
char s[13] = " annamacharya ";
inti = 0;
int count = 0;
while(i<13)

{
if(s[i]=='a' || s[i] == 'e' || s[i] == 'i' || s[i] == 'u' || s[i] == 'o')
{

count ++;
}

i++;
}

printf("The number of vowels %d",count);
}
Output
The number of vowels 5

2. Using the null character
Let's see the same example of counting the number of vowels by using the null character.

#include<stdio.h>
void main ()

 Page 58 of 75

{
char s[13] = "annmacharya";
inti = 0;
int count = 0;
while(s[i] != NULL)

{
if(s[i]=='a' || s[i] == 'e' || s[i] == 'i' || s[i] == 'u' || s[i] == 'o')
{

count ++;
}

i++;
}

printf("The number of vowels %d",count);
}
Output
The number of vowels 5
Q. what are the limitations of the scanf() function explain it
Accepting string as the input
Till now, we have used scanf to accept the input from the user. However, it can also be used
in the case of strings but with a different scenario. Consider the below code which stores
the string while space is encountered.

#include<stdio.h>
void main ()
{
char s[20];
printf("Enter the string?");
scanf("%s",s);
printf("You entered %s",s);
}
Output
Enter the string?annamacharya is the best
You entered annamacharya

It is clear from the output that, the above code will not work for space separated strings. To
make this code working for the space separated strings, the minor changed required in the
scanf function,

i.e., instead of writing scanf("%s",s), we must write: scanf("%[^\n]s",s) which instructs the
compiler to store the string s while the new line (\n) is encountered. Let's consider the
following example to store the space-separated strings.

 Page 59 of 75

#include<stdio.h>

void main ()
{ char s[20];
printf("Enter the string?");
scanf("%[^\n]s",s);
printf("You entered %s",s);
}
Output
Enter the string?annamacharya is the best
You entered annamacharya is the best

Here we must also notice that we do not need to use address of (&) operator in scanf to
store a string since string s is an array of characters and the name of the array, i.e., s
indicates the base address of the string (character array) therefore we need not use & with
it.

Q. What are the limitations of array? OR Explain about array bounds checking

Some important points

However, there are the following points which must be noticed while entering the strings by
using scanf.

The compiler doesn't perform bounds checking on the character array. Hence, there can be
a case where the length of the string can exceed the dimension of the character array which
may always overwrite some important data.

Instead of using scanf, we may use gets() which is an inbuilt function defined in a header file
string.h. The gets() is capable of receiving only one string at a time.

Q, Discuss about pointers and strings?
Pointers with strings
We have used pointers with the array, functions, and primitive data types so far. However,
pointers can be used to point to the strings. There are various advantages of using pointers
to point strings. Let us consider the following example to access the string via the pointer.
#include<stdio.h>
void main ()
{
char s[13] = "annamacharya ";
char *p = s; // pointer p is pointing to string s.
printf("%s",p); // the string annamacharya is printed if we print p.

 Page 60 of 75

}
Output
annamacharya

Q. Explain about string copying

Wecannot change the content of s or copy the content of s into another string directly. For this
purpose, we need to use the pointers to store the strings. In the following example, we have shown
the use of pointers to copy the content of a string into another.

#include<stdio.h>
void main ()
{
char *p = "hello annamacharya";
printf("String p: %s\n",p);
char *q;
printf("copying the content of p into q...\n");

q = p;
printf("String q: %s\n",q);
}
Output
String p: hello annamacharya
copying the content of p into q...
String q: hello annamacharya

Once a string is defined, it cannot be reassigned to another set of characters. However,
using pointers, we can assign the set of characters to the string. Consider the following
example.

#include<stdio.h>
void main ()
{
char *p = "hello annamacharya ";
printf("Before assigning: %s\n",p);

p = "hello";
printf("After assigning: %s\n",p);
}
Output
Before assigning: hello annamacharya
After assigning: hello

Q. How to copy the contents of one array in to another array by using pointers

 Page 61 of 75

C gets() function
The gets() function enables the user to enter some characters followed by the enter key. All
the characters entered by the user get stored in a character array. The null character is
added to the array to make it a string. The gets() allows the user to enter the space-
separated strings. It returns the string entered by the user.
Declaration
char[] gets(char[]);
Reading string using gets()
#include<stdio.h>
void main ()
{
char s[30];
printf("Enter the string? ");
gets(s);
printf("You entered %s",s);
}
Output
Enter the string?
annamacharya is the best
You entered annamacharya is the best

C puts() function

The puts() function is very much similar to printf() function. The puts() function is used to
print the string on the console which is previously read by using gets() or scanf() function.
The puts() function returns an integer value representing the number of characters being
printed on the console. Since, it prints an additional newline character with the string, which
moves the cursor to the new line on the console, the integer value returned by puts() will
always be equal to the number of characters present in the string plus 1.

Declaration
int puts(char[])
#include<stdio.h>
#include <string.h>
int main(){
char name[50];
printf("enter your name: ");
gets(name); //reads string from user
printf("your name is: ");
puts(name); //displays string
return 0;
}

 Page 62 of 75

Output:
Enter your name: Sreenivas reddy
Your name is: Sreenivas reddy

C String Functions
There are many important string functions defined in "string.h" library.

No. Function Description

1) strlen(string_name) returns the length of string name.

2) strcpy(destination, source) copies the contents of source string to destination
string.

3) strcat(first_string,
second_string)

concats or joins first string with second string. The
result of the string is stored in first string.

4) strcmp(first_string,
second_string)

compares the first string with second string. If both
strings are same, it returns 0.

5) strrev(string) returns reverse string.

6) strlwr(string) returns string characters in lowercase.

7) strupr(string) returns string characters in uppercase.

Q. Write a c program to check whether a given string is palindrome or not?

#include<stdio.h>
#include<string.h>

int main(){
char string1[20];
inti, length;
int flag =0;

printf("Enter a string:");
scanf("%s", string1);

length =strlen(string1);

for(i=0;i < length ;i++){
if(string1[i]!= string1[length-i-1]){

https://www.javatpoint.com/c-strlen
https://www.javatpoint.com/c-strcpy
https://www.javatpoint.com/c-strcat
https://www.javatpoint.com/c-strcat
https://www.javatpoint.com/c-strcmp
https://www.javatpoint.com/c-strcmp
https://www.javatpoint.com/c-strrev
https://www.javatpoint.com/c-strlwr
https://www.javatpoint.com/c-strupr

 Page 63 of 75

Q. Implement string length function as User defined function?

#include<stdio.h>

// Prototype Declaration
int FindLength(char str[]);

int main() {

char str[100];
int length;

printf("\nEnter the String : ");
gets(str);

length = FindLength(str);

printf("\nLength of the String is : %d", length);
return(0);

}

int FindLength(char str[]) {

int len = 0;
while (str[len] != '\0')

len++;
return (len);

flag =1;
break;
}
}

if(flag){
printf("%s is not a palindrome", string1);

}
else{

printf("%s is a palindrome", string1);
}
return0;
}
OUTPUT:
Enter a string: MADAM
MADAM is a palindrome

 Page 64 of 75

Q. Implement string copy function as User defined function?

Q. Implement string concatenation function as User defined function?

#include<stdio.h>
#include<string.h>

void concat(char[], char[]);

int main() {
char s1[50], s2[30];

printf("\nEnter String 1 :");
gets(s1);
printf("\nEnter String 2 :");
gets(s2);

concat(s1, s2);

printf("nConcated string is :%s", s1);

#include<stdio.h>

int main() {
char s1[100], s2[100];
int i;

printf("\nEnter the string :");
gets(s1);

i = 0;
while (s1[i] != '\0') {

s2[i] = s1[i];
i++;

}

s2[i] = '\0';
printf("\nCopied String is %s ", s2);

return (0);
}

}

 Page 65 of 75

Q. Implement string reverse function as User defined function?

#include<stdio.h>
#include<string.h>

int main() {
char str[100], temp;
int i, j = 0;

printf("\nEnter the string :");
gets(str);

i = 0;

j = strlen(str) - 1;

while (i< j) {
temp = str[i];

str[i] = str[j];
str[j] = temp;
i++;

j--;
}

printf("\nReverse string is :%s", str);
return (0);

return (0);
}

void concat(char s1[], char s2[]) {

int i, j;

i = strlen(s1);

for (j = 0; s2[j] != '\0'; i++, j++) {
s1[i] = s2[j];

}

s1[i] = '\0';
}

 Page 66 of 75

Q. Implement string comparison function as User defined function?

Array of Strings
A string is a 1-D array of characters, so an array of strings is a 2-D array of characters. Just
like we can create a 2-D array of int, float etc; we can also create a 2-D array of character or
array of strings. Here is how we can declare a 2-D array of characters.

Declaration of the array of strings

Syntax:-

char string-array-name[row-size][column-size];

Here the first index (row-size) specifies the maximum number of strings in the array, and the
second index (column-size) specifies the maximum length of every individual string.

#include<stdio.h>

int main() {

char str1[30], str2[30];
int i;

printf("\nEnter two strings :");
gets(str1);
gets(str2);

i = 0;

while (str1[i] == str2[i] && str1[i] != '\0')
i++;

if (str1[i] > str2[i])
printf("str1 > str2");

else if (str1[i] < str2[i])
printf("str1 < str2");

else
printf("str1 = str2");

return (0);
}

 Page 67 of 75

For example, char language[5][10]; In the “language” array we can store a maximum of 5
Strings and each String can have a maximum of 10 characters.

In C language, each character take 1 byte of memory. For the “language” array it will
allocate 50 bytes (1*5*10) of memory. Where each String will have 10 bytes (1*10) of
memory space.

Initialization of array of strings

Two dimensional (2D) strings in C language can be directly initialized as shown below,

char language[5][10] = {"Java", "Python", "C++", "HTML", "SQL"};

charlargestcity[6][15] =

{"Tokyo", "Delhi", "Shanghai", "Mumbai", "Beijing", "Dhaka"};

The two dimensional (2D) array of Strings in C also can be initialized as,

char language[5][10] =

{

{'J','a','v','a','\0'},

{'P','y','t','h','o','n','\0'},

{'C','+','+','\0'},

{'H','T','M','L','\0'},

{'S','Q','L','\0'}

};

Since it is a two-dimension of characters, so each String (1-D array of characters) must end
with null character i.e. ‘\0’

 Page 68 of 75

Note1:- the number of characters (column-size) must be declared at the time of the
initialization of the two-dimensional array of strings.

// it is valid
char language[][10] = {"Java", "Python", "C++", "HTML", "SQL"};

But that the following declarations are invalid.

// invalid
char language[][] = {"Java", "Python", "C++", "HTML", "SQL"};

// invalid
char language[5][] = {"Java", "Python", "C++", "HTML", "SQL"};

Note2:- Once we initialize the array of String then we can’t directly assign a new String.

char language[5][10] = {"Java", "Python", "C++", "HTML", "SQL"};

// now, we can't directly assign a new String
language[0] = "Kotlin"; // invalid

// we must copy the String
strcpy(language[0], "Kotlin"); // valid
// Or,
scanf(language[0], "Kotlin"); // valid

Reading and displaying 2d array of strings in C
#include<stdio.h>
int main()
{
char name[10][20];
inti,n;

 Page 69 of 75

printf("Enter the number of names (<10): ");
scanf("%d",&n);

// reading string from user
printf("Enter %d names:\n",n);
for(i=0; i<n; i++)
gets(name[i]);

// dispaying strings

printf("\nEntered names are:\n");
for(i=0;i<n;i++)
puts(name[i]);

return 0;
}
Enter the number of names (<10): 5
Enter 5 names:
c
c plus plus
java
python
angular 7

Entered names are:
c
c plus plus
java
python
angular 7Enter the number of names (<10): 5
Enter 5 names:
c
c plus plus
java
python
angular 7

Entered names are:
c
c plus plus
java
python

 Page 70 of 75

angular 7

Command line arguments in C

The most important function of C/C++ is main() function. It is mostly defined with a return
type of int and without parameters :

int main() { /* ... */ }

We can also give command-line arguments in C and C++. Command-line arguments are
given after the name of the program in command-line shell of Operating Systems.
To pass command line arguments, we typically define main() with two arguments : first
argument is the number of command line arguments and second is list of command-line
arguments.

int main(int argc, char *argv[]) { /* ... */ }

or

int main(int argc, char **argv) { /* ... */ }

 argc (ARGument Count) is int and stores number of command-line arguments passed
by the user including the name of the program. So if we pass a value to a program,
value of argc would be 2 (one for argument and one for program name)

 The value of argc should be non negative.
 argv(ARGument Vector) is array of character pointers listing all the arguments.
 If argc is greater than zero,the array elements from argv[0] to argv[argc-1] will contain

pointers to strings.
 Argv[0] is the name of the program , After that till argv[argc-1] every element is

command -line arguments.
Properties of Command Line Arguments:
1. They are passed to main() function.
2. They are parameters/arguments supplied to the program when it is invoked.
3. They are used to control program from outside instead of hard coding those values

inside the code.
4. argv[argc] is a NULL pointer.
5. argv[0] holds the name of the program.
6. argv[1] points to the first command line argument and argv[n] points last argument.
Note : You pass all the command line arguments separated by a space, but if argument
itself has a space then you can pass such arguments by putting them inside double quotes
“” or single quotes ”.

#include<stdio.h>

intmain(intargc,char* argv[])

 Page 71 of 75

{
intcounter;
printf("Program Name Is: %s",argv[0]);
if(argc==1)

printf("\nNo Extra Command Line Argument Passed Other Than Program Name");
if(argc>=2)
{

printf("\nNumber Of Arguments Passed: %d",argc);
printf("\n----Following Are The Command Line Arguments Passed ---- ");
for(counter=0;counter<argc;counter++)

printf("\nargv[%d]: %s",counter,argv[counter]);
}
return0;

}

Output in different scenarios:
Without argument: When the above code is compiled and executed without passing
any argument, it produces following output.
$./a.out

Program Name Is: ./a.out

No Extra Command Line Argument Passed Other Than Program Name

Three arguments : When the above code is compiled and executed with a three
arguments, it produces the following output.

$./a.out First Second Third

Program Name Is: ./a.out

Number Of Arguments Passed: 4

----Following Are The Command Line Arguments Passed----

argv[0]: ./a.out

argv[1]: First

argv[2]: Second

argv[3]: Third

Single Argument : When the above code is compiled and executed with a single
argument separated by space but inside double quotes, it produces the following
output.

 Page 72 of 75

Q. C Program to Add two numbers using Command Line Arguments

#include<stdio.h>
void main(int argc, char * argv[]) {

int i, sum = 0;
if (argc != 3) {

printf("You have forgot to type numbers.");
exit(1);

}
printf("The sum is : ");
for (i = 1; i<argc; i++)

sum = sum + atoi(argv[i]);
printf("%d", sum);

}
Output:
add1020
The sum is:30

$./a.out "First Second Third"

Program Name Is: ./a.out

Number Of Arguments Passed: 2

----Following Are The Command Line Arguments Passed----

argv[0]: ./a.out

argv[1]: First Second Third

Single argument in quotes separated by space : When the above code is compiled and
executed with a single argument separated by space but inside single quotes, it
produces the following output.
$./a.out 'First Second Third'

Program Name Is: ./a.out

Number Of Arguments Passed: 2

----Following Are The Command Line Arguments Passed----

argv[0]: ./a.out

argv[1]: First Second Third

 Page 73 of 75

Q. C Program to find factorial of a number using Command Line Arguments

// C program to find factorial of a number
// using command line arguments

#include <stdio.h>
#include <stdlib.h> /* atoi */

// Function to find factorial of given number
unsigned int factorial(unsigned int n)
{

int f = 1, i;
for (i = 2; i<= n; i++)

f =f*i;
return f;

}

// Driver code
int main(int argc, char* argv[])
{

int num, res = 0;

// Check if the length of args array is 1
if (argc == 1)
{

printf("No command line arguments found.\n");
printf("\n Ex: cmd_factorial 5");

}
else {

// Get the command line argument and
// Convert it from string type to integer type
// using function "atoi(argument)"
num = atoi(argv[1]);

// Find the factorial
printf("%d\n", factorial(num));

}
return 0;

}
OUTPUT:

 Page 74 of 75

Q. C Program to find LCM, GCM of two numbers using Command Line Arguments

#include<stdio.h>
#include<conio.h>
int main(int argc,char *argv[])
{

int a,b,hcf=1,lcm,i,j;

if(argc!=3)
{

printf("\n please use programname value1 value2\n");
return-1;

}
a=atoi(argv[1]);
b=atoi(argv[2]);
j=(a<b)?a:b;
for(i=1;i<=j;i++)
{

if(a%i==0 &&b%i==0)
{

hcf=i;
}

}
lcm=(a*b)/hcf;
printf("\nThe LCM of %d and %d is %d",a,b,lcm);
printf("\nThe HCF is %d",hcf);

return(0);
}
OUTPUT:
G:\Record_Observation\cprgs>cmd_factors 4
please use program name value1 value2
OUTPUT:
G:\Record_Observation\cprgs>cmd_factors 4 5
The LCM of 4 and 5 is 20
The HCF is 1

No command line arguments found.
Ex: cmd_factorial 5

OUTPUT:
G:\Record_Observation\cprgs>cmd_factorial 6
720

 Page 75 of 75

#include <stdio.h>

int main(int argc, char *argv[])
{

int a,b,sum;
int i; //for loop counter

if(argc<2)

{ printf("No command line arguments found.\n");
printf("please use \"prg_name value1 value2 ... \"\n");
return -1;

}
sum=0;
for(i=1; i<argc; i++)
{

printf("arg[%2d]: %d\n",i,atoi(argv[i]));
sum += atoi(argv[i]);

}
printf("SUM of all values: %d\n",sum);
return 0;

}
OUTPUT:
No command line arguments found.
please use "prg_name value1 value2 ... "
OUTPUT:
G:\Record_Observation\cprgs>cmd_sum_of_n 10 5 20 -5 30
arg[1]: 10
arg[2]: 5
arg[3]: 20
arg[4]: -5
arg[5]: 30
SUM of all values: 60

Q. C Program to find sum of n numbers using Command Line Arguments

 Page 1 of 70

Unit 3

Sorting and Searching: Sorting by selection, sorting by exchange, sorting by

insertion, sorting by partitioning, binary search.

Structures: Basics of structures, structures and functions, arrays of structures,

pointers to structures, self-referential structures, table lookup, typedef, unions, bit-

fields.

Some other Features: Variable-length argument lists, formatted input-Scanf, file
access, Error handling-stderr and exit, Line Input and Output, Miscellaneous

Functions.

SORTING AND SEARCHING

Sorting By Exchange: Bubble Sort, Quick Sort

Sorting By Selection: Selection Sort, Heap sort

Sorting By Insertion: Insertion Sort, Shell Sort

Sorting By Partition: Quick Sort, Merge Sort

Bubble Sort-

 Bubble sort is the easiest sorting algorithm to implement.

 It is inspired by observing the behavior of air bubbles over foam.

 It is an in-place sorting algorithm.

 It uses no auxiliary data structures (extra space) while sorting.

How Bubble Sort Works?

 Bubble sort uses multiple passes (scans) through an array.

 In each pass, bubble sort compares the adjacent elements of the array.

 It then swaps the two elements if they are in the wrong order.

 In each pass, bubble sort places the next largest element to its proper

position.

 In short, it bubbles down the largest element to its correct position.

 Page 2 of 70

Program:

/* Bubble sort code */

#include <stdio.h>

int main()

{

int array[100], n, c, d, swap;

printf("Enter number of elements\n");

scanf("%d", &n);

printf("Enter %d integers\n", n);

for (c = 0; c < n; c++)

scanf("%d", &array[c]);

for (c = 0 ; c < n - 1; c++)

{

for (d = 0 ; d < n - c - 1; d++)

{

if (array[d] > array[d+1]) /* For decreasing order use '<' instead of '>' */

{

swap = array[d];

array[d] = array[d+1];

array[d+1] = swap;

}

}

}

printf("Sorted list in ascending order:\n");

for (c = 0; c < n; c++)

printf("%d\n", array[c]);

 Page 3 of 70

return 0;

}

Bubble Sort Example-

Consider the following array A-

Now, we shall implement the above bubble sort algorithm on this array.

Step-01:

 We have pass=1 and i=0.

 We perform the comparison A[0] > A[1] and swaps if the 0th element

is greater than the 1th element.

 Since 6 > 2, so we swap the two elements.

Step-02:

 We have pass=1 and i=1.

 We perform the comparison A[1] > A[2] and swaps if the 1th element

is greater than the 2th element.

 Since 6 < 11, so no swapping is required.

 Page 4 of 70

Step-03:

 We have pass=1 and i=2.

 We perform the comparison A[2] > A[3] and swaps if the 2nd element

is greater than the 3rd element.

 Since 11 > 7, so we swap the two elements.

Step-04:

 We have pass=1 and i=3.

 We perform the comparison A[3] > A[4] and swaps if the 3rd element

is greater than the 4th element.

 Since 11 > 5, so we swap the two elements.

Finally after the first pass, we see that the largest element 11 reaches its

correct position.

Step-05:

 Similarly after pass=2, element 7 reaches its correct position.

 The modified array after pass=2 is shown below-

 Page 5 of 70

Step-06:

 Similarly after pass=3, element 6 reaches its correct position.

 The modified array after pass=3 is shown below-

Step-07:

 No further improvement is done in pass=4.

 This is because at this point, elements 2 and 5 are already present at

their correct positions.

 The loop terminates after pass=4.

 Finally, the array after pass=4 is shown below-

Time Complexity Analysis-

 Bubble sort uses two loops- inner loop and outer loop.

 The inner loop deterministically performs O(n) comparisons.

The following table summarizes the time complexities of bubble sort in each case-

Time Complexity

Best Case O(n)

Average Case Θ(n2)

Worst Case O(n2)

Problem-01:

 Page 6 of 70

The number of swapping needed to sort the numbers 8, 22, 7, 9, 31, 5, 13 in

ascending order using bubble sort is- (ISRO CS 2017)

1. 11

2. 12

3. 13

4. 10

Solution-

In bubble sort, Number of swaps required = Number of inversion pairs.

Here, there are 10 inversion pairs present which are-

1. (8,7)

2. (22,7)

3. (22,9)

4. (8,5)

5. (22,5)

6. (7,5)

7. (9,5)

8. (31,5)

9. (22,13)

10.(31,13)

Thus, Option (D) is correct.

Selection Sort-

 Selection sort is one of the easiest approaches to sorting.

 It is inspired from the way in which we sort things out in day to day life.

 It is an in-place sorting algorithm because it uses no auxiliary data structures

while sorting.

How Selection Sort Works?

Consider the following elements are to be sorted in ascending order using selection

sort-

 It finds the first smallest element (2).

 It swaps it with the first element of the unordered list.

 It finds the second smallest element (5).

 It swaps it with the second element of the unordered list.

 Similarly, it continues to sort the given elements.

 Page 7 of 70

Ex:- A list of unsorted elements are: 23 78 45 8 32 56

As a result, sorted elements in ascending order are-

2, 5, 6, 7, 11

Program:

#include <stdio.h>

int main()

{

int array[100], n, c, d, position, t;

printf("Enter number of elements\n");

scanf("%d", &n);

printf("Enter %d integers\n", n);

for (c = 0; c < n; c++)

scanf("%d", &array[c]);

for (c = 0; c < (n - 1); c++) // finding minimum element (n-1) times

{

position = c;

for (d = c + 1; d < n; d++)

{

if (array[position] > array[d])

position = d;

 Page 8 of 70

}

if (position != c)

{

t = array[c];

array[c] = array[position];

array[position] = t;

}

}

printf("Sorted list in ascending order:\n");

for (c = 0; c < n; c++)

printf("%d\n", array[c]);

return 0;

}

The above selection sort algorithm works as illustrated below-

Step-01: For i = 0

Step-02: For i = 1

 Page 9 of 70

Step-03: For i = 2

Step-04: For i = 3

Step-05: For i = 4

Loop gets terminated as ‘i’ becomes 4.

The state of array after the loops are finished is as shown-

 Page 10 of 70

With each loop cycle,

 The minimum element in unsorted sub-array is selected.

 It is then placed at the correct location in the sorted sub-array until array A is completely sorted.

Time Complexity Analysis-

 Selection sort algorithm consists of two nested loops.

 Owing to the two nested loops, it has O(n2) time complexity.

Time Complexity

Best Case n2

Average Case n2

Worst Case n2

Insertion Sort-

 Insertion sort is an in-place sorting algorithm.
 It uses no auxiliary data structures while sorting.
 It is inspired from the way in which we sort playing cards.

Program:
/* Insertion sort ascending order */

 Page 11 of 70

#include <stdio.h>
int main()
{

int n, array[1000], c, d, t, flag = 0;
printf("Enter number of elements\n");
scanf("%d", &n);
printf("Enter %d integers\n", n);
for (c = 0; c < n; c++)
scanf("%d", &array[c]);
for (c = 1 ; c <= n - 1; c++) {

t = array[c];
for (d = c - 1 ; d >= 0; d--) {

if (array[d] > t) {
array[d+1] = array[d];
flag = 1;
}
else

break;
}
if (flag)

array[d+1] = t;
}
printf("Sorted list in ascending order:\n");
for (c = 0; c <= n - 1; c++) {

printf("%d\n", array[c]);
}
return 0;

}

Insertion Sort Example-

Consider the following elements are to be sorted in ascending order-

6, 2, 11, 7, 5

The above insertion sort algorithm works as illustrated below-

Step-01: For i = 1

 Page 12 of 70

Step-02: For i = 2

Step-03: For i = 3

2 5 11 7 6

For j = 2; 11 > 7 so A[3] = 11

2

5

11

11

6
For j = 1; 5 < 7 so loop stops and
A[2] = 7

2 5 7 11 6 After inner loop ends

Working of inner loop when i = 3

Step-04: For i = 4

Loop gets terminated as ‘i’ becomes 5. The state of array after the loops are finished-

 Page 13 of 70

With each loop cycle,

 One element is placed at the correct location in the sorted sub-array until array A is completely sorted.

Time Complexity Analysis-

 Selection sort algorithm consists of two nested loops.

 Owing to the two nested loops, it has O(n2) time complexity.

Time Complexity

Best Case n

Average Case n2

Worst Case n2

Quick Sort-

 Quick Sort is a famous sorting algorithm.
 It sorts the given data items in ascending order.
 It uses the idea of divide and conquer approach.
 It follows a recursive algorithm.

How Does Quick Sort Works?

 Quick Sort follows a recursive algorithm.
 It divides the given array into two sections using a partitioning element called as pivot.

The division performed is such that-
 All the elements to the left side of pivot are smaller than pivot.
 All the elements to the right side of pivot are greater than pivot.

After dividing the array into two sections, the pivot is set at its correct position.
Then, sub arrays are sorted separately by applying quick sort algorithm recursively.

 Page 14 of 70

 Page 15 of 70

Program:
// Quick sort in C

#include <stdio.h>

// function to swap elements
void swap(int *a, int *b) {

int t = *a;
*a = *b;
*b = t;

}

// function to find the partition position
int partition(int array[], int low, int high) {

// select the rightmost element as pivot
int pivot = array[high];

// pointer for greater element
int i = (low - 1);

// traverse each element of the array
// compare them with the pivot
for (int j = low; j < high; j++) {

if (array[j] <= pivot) {

// if element smaller than pivot is found
// swap it with the greater element pointed by i
i++;

// swap element at i with element at j
swap(&array[i], &array[j]);

}
}

// swap the pivot element with the greater element at i
swap(&array[i + 1], &array[high]);

// return the partition point
return (i + 1);

}

 Page 16 of 70

void quickSort(int array[], int low, int high) {
if (low < high) {

// find the pivot element such that
// elements smaller than pivot are on left of pivot
// elements greater than pivot are on right of pivot
int pi = partition(array, low, high);

// recursive call on the left of pivot
quickSort(array, low, pi - 1);

// recursive call on the right of pivot
quickSort(array, pi + 1, high);

}
}

// function to print array elements
void printArray(int array[], int size) {
for (int i = 0; i < size; ++i) {

printf("%d ", array[i]);
}
printf("\n");

}

// main function
int main() {

int data[] = {8, 7, 2, 1, 0, 9, 6};

int n = sizeof(data) / sizeof(data[0]);

printf("Unsorted Array\n");
printArray(data, n);

// perform quicksort on data
quickSort(data, 0, n - 1);

printf("Sorted array in ascending order: \n");
printArray(data, n);

}
Quick Sort Example-

Consider the following array has to be sorted in ascending order using quick sort algorithm-

 Page 17 of 70

Quick Sort Algorithm works in the following steps-

Step-01:

Initially-
 Left and Loc (pivot) points to the first element of the array.
 Right points to the last element of the array.

So to begin with, we set loc = 0, left = 0 and right = 5 as-

Step-02:

Since loc points at left, so algorithm starts from right and move towards left.

As a[loc] < a[right], so algorithm moves right one position towards left as-

Now, loc = 0, left = 0 and right = 4.

Step-03:

 Page 18 of 70

Since loc points at left, so algorithm starts from right and move towards left.

As a[loc] > a[right], so algorithm swaps a[loc] and a[right] and loc points at right as-

Now, loc = 4, left = 0 and right = 4.

Step-04:

Since loc points at right, so algorithm starts from left and move towards right.

As a[loc] > a[left], so algorithm moves left one position towards right as-

Now, loc = 4, left = 1 and right = 4.

Step-05:

Since loc points at right, so algorithm starts from left and move towards right.

As a[loc] > a[left], so algorithm moves left one position towards right as-

 Page 19 of 70

Now, loc = 4, left = 2 and right = 4.

Step-06:

Since loc points at right, so algorithm starts from left and move towards right.

As a[loc] < a[left], so we algorithm swaps a[loc] and a[left] and loc points at left as-

Now, loc = 2, left = 2 and right = 4.

Step-07:

Since loc points at left, so algorithm starts from right and move towards left.

As a[loc] < a[right], so algorithm moves right one position towards left as-

Now, loc = 2, left = 2 and right = 3.

 Page 20 of 70

Step-08:

Since loc points at left, so algorithm starts from right and move towards left.

As a[loc] > a[right], so algorithm swaps a[loc] and a[right] and loc points at right as-

Now, loc = 3, left = 2 and right = 3.

Step-09:

Since loc points at right, so algorithm starts from left and move towards right.

As a[loc] > a[left], so algorithm moves left one position towards right as-

Now, loc = 3, left = 3 and right = 3.

Now,

 loc, left and right points at the same element.

 This indicates the termination of procedure.

 The pivot element 25 is placed in its final position.

 All elements to the right side of element 25 are greater than it.

 All elements to the left side of element 25 are smaller than it.

 Page 21 of 70

Now, quick sort algorithm is applied on the left and right sub arrays separately in the similar manner.

Advantages of Quick Sort-

The advantages of quick sort algorithm are-
 Quick Sort is an in-place sort, so it requires no temporary memory.
 Quick Sort is typically faster than other algorithms.

(because its inner loop can be efficiently implemented on most architectures)
 Quick Sort tends to make excellent usage of the memory hierarchy like virtual memory

or caches.

 Quick Sort can be easily parallelized due to its divide and conquer nature.

Merge Sort-

 Merge sort is a famous sorting algorithm.
 It uses a divide and conquer paradigm for sorting.
 It divides the problem into sub problems and solves them individually.
 It then combines the results of sub problems to get the solution of the original

problem.

Merge Sort Algorithm-

Merge Sort Algorithm works in the following steps-

 It divides the given unsorted array into two halves- left and right sub arrays.

 The sub arrays are divided recursively.

 This division continues until the size of each sub array becomes 1.

 After each sub array contains only a single element, each sub array is sorted trivially.

 Then, the above discussed merge procedure is called.

 The merge procedure combines these trivially sorted arrays to produce a final sorted array.

 Page 22 of 70

Program:
// Merge sort in C

#include <stdio.h>

// Merge two subarrays L and M into arr
void merge(int arr[], int p, int q, int r) {

// Create L ← A*p..q+ and M ← A*q+1..r+
int n1 = q - p + 1;
int n2 = r - q;

int L[n1], M[n2];

for (int i = 0; i < n1; i++)

L[i] = arr[p + i];
for (int j = 0; j < n2; j++)

M[j] = arr[q + 1 + j];

// Maintain current index of sub-arrays and main array
int i, j, k;

 Page 23 of 70

i = 0;
j = 0;
k = p;

// Until we reach either end of either L or M, pick larger among
// elements L and M and place them in the correct position at A[p..r]
while (i < n1 && j < n2) {

if (L[i] <= M[j]) {
arr[k] = L[i];
i++;

} else {
arr[k] = M[j];
j++;

}
k++;

}

// When we run out of elements in either L or M,
// pick up the remaining elements and put in A[p..r]
while (i < n1) {

arr[k] = L[i];
i++;
k++;

}

while (j < n2) {
arr[k] = M[j];
j++;
k++;

}
}

// Divide the array into two subarrays, sort them and merge them
void mergeSort(int arr[], int l, int r) {

if (l < r) {

// m is the point where the array is divided into two subarrays
int m = l + (r - l) / 2;

mergeSort(arr, l, m);
mergeSort(arr, m + 1, r);

 Page 24 of 70

// Merge the sorted subarrays
merge(arr, l, m, r);

}
}

// Print the array
void printArray(int arr[], int size) {

for (int i = 0; i < size; i++)
printf("%d ", arr[i]);
printf("\n");

}

// Driver program
int main() {

int arr[] = {6, 5, 12, 10, 9, 1};
int size = sizeof(arr) / sizeof(arr[0]);

mergeSort(arr, 0, size - 1);

printf("Sorted array: \n");
printArray(arr, size);

}
How Merge Sort Works?

The merge procedure of merge sort algorithm is used to merge two sorted arrays into a third
array in sorted order.

Consider we want to merge the following two sorted sub arrays into a third array in sorted
order-

The above merge procedure of merge sort algorithm is explained in the following steps-

Step-01:

 Create two variables i and j for left and right sub arrays.
 Create variable k for sorted output array.

 Page 25 of 70

Regulation:
AK20

Subject Code:
20AES0501

Subject Name : Problem Solving and
Programming

AY: 2021-2022

UNIT-5 Searching , Sorting, Structures, Unions, Others

Step-02:

 We have i = 0, j = 0, k = 0.
 Since L[0] < R[0], so we perform A[0] = L[0] i.e. we copy the first element from left sub

array to our sorted output array.
 Then, we increment i and k by 1.

Then, we have-

Step-03:

 We have i = 1, j = 0, k = 1.
 Since L[1] > R[0], so we perform A[1] = R[0] i.e. we copy the first element from right sub

array to our sorted output array.
 Then, we increment j and k by 1.

Then, we have-

 Page 26 of 70

Step-04:

 We have i = 1, j = 1, k = 2.
 Since L[1] > R[1], so we perform A[2] = R[1].
 Then, we increment j and k by 1.

Then, we have-

Step-05:

 We have i = 1, j = 2, k = 3.
 Since L[1] < R[2], so we perform A[3] = L[1].
 Then, we increment i and k by 1.

Then, we have-

 Page 27 of 70

Step-06:

 We have i = 2, j = 2, k = 4.
 Since L[2] > R[2], so we perform A[4] = R[2].
 Then, we increment j and k by 1.

Then, we have-

Step-07:

 Clearly, all the elements from right sub array have been added to the sorted output
array.

 So, we exit the first while loop with the condition while(i<nL && j<nR) since now j>nR.
 Then, we add remaining elements from the left sub array to the sorted output array

using next while loop.

Finally, our sorted output array is-

 Page 28 of 70

Time Complexity
The above mentioned merge procedure takes Θ(n) time.
This is because we are just filling an array of size n from left & right sub arrays by
incrementing i and j at most Θ(n) times.

Basically,
 After finishing elements from any of the sub arrays, we can add the remaining

elements from the other sub array to our sorted output array as it is.
 This is because left and right sub arrays are already sorted.

Searching Algorithms
 Searching is a process of finding a particular element among several given elements.
 The search is successful if the required element is found.
 Otherwise, the search is unsuccessful.

Searching Algorithms-

Searching Algorithms are a family of algorithms used for the purpose of searching.
The searching of an element in the given array may be carried out in the following two ways-

1. Linear Search
2. Binary Search

Linear Search-

 Linear Search is the simplest searching algorithm.
 It traverses the array sequentially to locate the required element.

 Page 29 of 70

Start

i = 0

 Yes
K = A[i]?

 No

i ≥ n

Yes

 No

Stop

Print "Unsuccessful"

Print "Successful"

i = i+1

 It searches for an element by comparing it with each element of the array one by
one.

 So, it is also called as Sequential Search.

Linear Search Algorithm is applied when-
 No information is given about the array.
 The given array is unsorted or the elements are unordered.
 The list of data items is smaller.

Linear Search Algorithm-

Consider-
 There is a linear array ‘a’ of size ‘n’.
 Linear search algorithm is being used to search an element ‘item’ in this linear array.
 If search ends in success, it sets loc to the index of the element otherwise it sets loc

to -1.

Linear Search Example-

Consider-
 We are given the following linear array.
 Element 15 has to be searched in it using Linear Search Algorithm.

 Page 30 of 70

Now,
 Linear Search algorithm compares element 15 with all the elements of the array one

by one.
 It continues searching until either the element 15 is found or all the elements are

searched.

Linear Search Algorithm works in the following steps-

Step-01:

 It compares element 15 with the 1st element 92.
 Since 15 ≠ 92, so required element is not found.
 So, it moves to the next element.

Step-02:

 It compares element 15 with the 2nd element 87.
 Since 15 ≠ 87, so required element is not found.
 So, it moves to the next element.

Step-03:

 It compares element 15 with the 3rd element 53.
 Since 15 ≠ 53, so required element is not found.
 So, it moves to the next element.

Step-04:

 It compares element 15 with the 4th element 10.
 Since 15 ≠ 10, so required element is not found.
 So, it moves to the next element.

Step-05:

 It compares element 15 with the 5th element 15.

 Page 31 of 70

 Since 15 = 15, so required element is found.
 Now, it stops the comparison and returns index 4 at which element 15 is present.

Time Complexity of Linear Search Algorithm is O(n).

Binary Search-

 Binary Search is one of the fastest searching algorithms.
 It is used for finding the location of an element in a linear array.
 It works on the principle of divide and conquer technique.

Binary Search Algorithm can be applied only on Sorted arrays.

So, the elements must be arranged in-

 Either ascending order if the elements are numbers.
 Or dictionary order if the elements are strings.

To apply binary search on an unsorted array,
 First, sort the array using some sorting technique.
 Then, use binary search algorithm.

Binary Search Algorithm-

Consider-
 There is a linear array ‘a’ of size ‘n’.
 Binary search algorithm is being used to search an element ‘item’ in this linear array.
 If search ends in success, it sets loc to the index of the element otherwise it sets loc to -

1.
 Variables beg and end keeps track of the index of the first and last element of the array

or sub array in which the element is being searched at that instant.
 Variable mid keeps track of the index of the middle element of that array or sub array

in which the element is being searched at that instant.

Explanation

Binary Search Algorithm searches an element by comparing it with the middle
most element of the array.
Then, following three cases are possible-

Case-01

If the element being searched is found to be the middle most element, its index is
returned.

 Page 32 of 70

Time Complexity of Binary Search Algorithm is O(log2n).
Here, n is the number of elements in the sorted linear array.

Time Complexity Analysis-

Binary Search time complexity analysis is done below-
 In each iteration or in each recursive call, the search gets reduced to half of the array.
 So for n elements in the array, there are log2n iterations or recursive calls.

Thus, we have-

This time complexity of binary search remains unchanged irrespective of the element position
even if it is not present in the array.

Case-02

If the element being searched is found to be greater than the middle most
element,
then its search is further continued in the right sub array of the middle most
element.

Case-03

If the element being searched is found to be smaller than the middle most
element,
then its search is further continued in the left sub array of the middle most
element.

This iteration keeps on repeating on the sub arrays until the desired element is
found
or size of the sub array reduces to zero.

 Page 33 of 70

 Page 34 of 70

 Page 35 of 70

Structures
Scalar variables can hold one piece of information and arrays can hold a number of pieces of
information of the same datatype. These two data types can handle a great variety of
situations. But quite often we deal with entities that are collection of dissimilar data types.

For example, suppose you want to store data about a book.
You might want to store its name (a string), its price (a float) and number of pages in it(an int). If
data about say3 such books is to be stored, then we can follow two approaches:

(a) Construct individual arrays, one for storing names, another for storing prices and still
another for storing number of pages.
(b) Use a structure variable.

In the first approach, the program becomes more difficult to handle as the number of items
relating to the book go on increasing. For example, we would be required to use a number of
arrays, if we also decide to store name of the publisher, date of purchase of book, etc. To solve
this problem, C provides a special data type—the structure.

Defining a structure

struct keyword is used to define a structure. struct defines a new data type which is a
collection of primary and derived data types.
Syntax:

struct[structure_tag or structure_name]
{
//member variable 1
//member variable 2
//member variable 3
...
}[structure_variables];

As you can see in the syntax above, we start with the struct keyword, then it's optional to
provide your structure a name, we suggest you to give it a name, then inside the curly braces,
we have to mention all the member variables, which are nothing but normal C language
variables of different types like int, float, array etc.
After the closing curly brace, we can specify one or more structure variables, again this is
optional.
Note: The closing curly brace in the structure type declaration must be followed by a

semicolon(;).

Example of Structure
struct Student

{
char name[25];

https://www.studytonight.com/c/datatype-in-c.php

 Page 36 of 70

int age;
char branch[10];
// F for female and M for male

char gender;
};

Here struct Student declares a structure to hold the details of a student which consists of
4 data fields, namely name, age, branch and gender. These fields are called structure
elements or members.

Each member can have different data type, like in this case, name is an array of char type
and age is of int type etc. Student is the name of the structure and is called as the structure
tag.

Declaring Structure Variables
It is possible to declare variables of a structure, either along with structure definition or after
the structure is defined. Structure variable declaration is similar to the declaration of any
normal variable of any other datatype. Structure variables can be declared in following two
ways:

1) Declaring Structure variables separately
struct Student

{
char name[25];

int age;

char branch[10];
//F for female and M for male

char gender;
};

struct Student S1, S2;//declaring variables of struct Student

2) Declaring Structure variables with structure definition
struct Student

{
char name[25];

int age;

char branch[10];
//F for female and M for male

char gender;
}S1, S2;

https://www.studytonight.com/c/variables-in-c.php

 Page 37 of 70

Here S1 and S2 are variables of structure Student. However this approach is not much
recommended.

Structure Initialization
Like a variable of any other datatype, structure variable can also be initialized at compile time.

struct Patient
{
float height;
int weight;
int age;
};

struct Patient p1 = { 180.75 , 73, 23 }; //initialization
OR,

struct Patient p1;
p1.height = 180.75; //initialization of each member separately
p1.weight = 73;
p1.age = 23;

Accessing Structure Members:
Structure members can be accessed and assigned values in a number of ways. Structure
members have no meaning individually without the structure. In order to assign a value to any
structure member, the member name must be linked with the structure variable using a

dot . Operator also called period or member access operator.
For example:

#include<stdio.h>

#include<string.h>

struct Student

{
char name[25];

int age;

char branch[10];
//F for female and M for male

char gender;
};

Int main()
{

struct Student s1;

 Page 38 of 70

/*s1 is a variable of Student type and age is a member of Student */

s1.age =18;
/*using string function to add name */

strcpy(s1.name,"seenu");

/*displaying the stored values */
printf("Name of Student 1: %s\n", s1.name);

printf("Age of Student 1: %d\n", s1.age);

return(0);
}

Name of Student 1: seenu
Age of Student 1: 18

We can also use scanf() to give values to structure members through terminal.

scanf(" %s ", s1.name);

scanf(" %d ",&s1.age);

DIFFERENCE BETWEEN C VARIABLE, C ARRAY AND C STRUCTURE:
A normal C variable can hold only one data of one data type at a time.
An array can hold group of data of same data type.
A structure can hold group of data of different data types and Data types can be int, char, float,
double and long double etc.
C Structure:

Syntax

struct student
{
int a;
char b[10];
}s1,s2;

Example

S1.a = 10;
strcpy(s1.b, “Hello”);

C Variable:

int

Syntax: int a;
Example: a = 20;

char

Syntax: char b;
Example: b=’Z’;

C Array:

 Page 39 of 70

int

Syntax: int a[3];
Example:
a[0] = 10;
a[1] = 20;
a[2] = 30;

char

Syntax: char b[10];
Example:
b=”Hello”;

How Structure Elements are Stored

Whatever be the elements of a structure, they are always stored in contiguous memory

locations. The following program would illustrate this:

main()

{

struct book

{

char name;

float price;

intpages ;

} ;

struct book b1 = {'B', 130.00, 550 } ;

printf ("\nAddress of name =%u",&b1.name);

printf ("\nAddress of price=%u",&b1.price);

printf ("\nAddress of pages=%u",&b1.pages) ;

getch();

}

Memory Representation

Actually the structure elements are stored in memory as shown below

ExpectedOutput

Address of name=65518

 Page 40 of 70

C STRUCTURE DECLARATION IN SEPARATE HEADER FILE:

In above structure programs, C structure is declared in main source file. Instead of declaring C
structure in main source file, we can have this structure declaration in another file called
“header file” and we can include that header file in main source file as shown below.

HEADER FILE NAME – STRUCTURE.H

Before compiling and executing below C program, create a file named “structure.h” and declare
the below structure.

Address of price=65519

Address of pages =65523

ExampleProgram

voidmain()

{

struct book

{

char name[20];

float price;

intpage;

}b1;

printf("\nEnter the name, price, pages of book\n");

scanf("%s%f%d",&b1.name,&b1.price,&b1.page);

printf("\nBook Name=%s",b1.name);

printf("\nPrice=%.2f",b1.price);

printf("\nPages=%d",b1.page);

getch();

}

Expected Output

Enter the name, price, pages of book

CP

275.50

370

Book Name=CP

Price=275.50

Pages=370

 Page 41 of 70

OUTPUT:

Id is: 1

Name is: Raju

Percentage is: 86.500000

// File name - structure.c
#include <stdio.h>
#include <string.h>
#include "structure.h" /* header file where C structure is
declared */

int main()
{

record.id=1;

strcpy(record.name, "Raju");
record.percentage = 86.5;

printf(" Id is: %d \n", record.id);
printf(" Name is: %s \n", record.name);
printf(" Percentage is: %f \n", record.percentage);
return 0;
}

Array of Structures

 If we want to store data of 100 books we would be required to use100 different

structure variables fromb1 to b100, which is definitely not very convenient.

 A better approach would be to use an array of structures.

struct student
{
int id;
char name[20];
float percentage;
} record;

MAIN FILE NAME – STRUCTURE.C:

In this program, above created header file is included in “structure.c” source file as #include
“structure.h”. So, the structure declared in “structure.h” file can be used in “structure.c” source
file.

 Page 42 of 70

 The syntax we use to reference each element of the array b is similar to the syntax

used for arrays of ints and chars.

 For example,we refer to zeroth books price as b[0]. price. Similarly, we refer first

books pages as b[1].pages.

ExampleProgram1

//Arrayof structures

struct student

{

Int rno;

char name[20];

};

int main()

{

struct student s[2]={{25,"Ritchie"},{20,"Babbage"}}; //structure array initialization

int i;
printf("\n***Students Details***");

for(i=0;i<2;i++)

{

printf("\nRoll no=%d\nName=%s",s[i].rno,s[i].name);

printf("\n ---------------- \n");

getch();

}

 Page 43 of 70

Expected Output

Students Details

Rollno=25

Name=Ritchie

Rollno=20

Name=Babbage

ExampleProgram2

//Array of structures elements accepting from keyboard

struct student

{

Int rno;

char name[20];

char branch[10];

};

int main()

{

struct student s[2];

int i;

printf("\nEnter Rollno, Name & Branch of two students:\n");

for(i=0;i<2;i++)

{ scanf("%d%s%s",&s[i].rno,&s[i].name,&s[i].branch);

printf("\n");

}

printf("\n***Students Details***");

for(i=0;i<2;i++)

{

printf("\nRoll no=%d\nName=%s\nBranch=%s",s[i].rno,s[i].name,s[i].branch);

printf("\n \n");

}
getch();

}

ExpectedOutput

 Page 44 of 70

Enter Rollno, Name & Branch of two students:

25

Ritchie

CSE

20

Babbage

CSE

Students Details

Rollno=25

Name=Ritchie

Branch=CSE

Rollno=20

Name=Babbage

Branch=CSE

 In an array of structures, all elements of the array are stored in adjacent memory

locations.

 Since each element of this array is a structure, and since all structure elements are

always stored in adjacent locations you can very well visualize the arrangement of

array of structures in memory.

 In our example, s[0]’s rno, name and branch in memory would be immediately

followed by s[1]’s rno, name and branch, and soon.

Arrays and Structures within Structures (Nested Structures)

A member of a structure can be either a simple variable, such as an int or double, or

an aggregate type. InC, aggregate types are arrays and structures. You have already seen one

type of aggregate element: the character arrays used ins[0].

For example, consider this structure:
struct x{

inta[10][10]; /* 10x10arrayof ints */

float b;

}y;

To reference integer 3,7ina of structure y, write

 Page 45 of 70

y.a[3][7]

One structure can be nested within another structure. Using this facility complex data types

can be created.

ExampleProgram

//Structure within Structure

voidmain()

{

}stud;

struct student //outer structure

{

char name[20];

intrno;

struct address //inner structure

{

charcity[20];

char state[20];

}addr;

printf("Enter Student name, Roll no,City,State\n");

scanf("%s%d%s%s",&stud.name,&stud.rno,&stud.aaddr.city,&stud.addr.state);

printf("\nName:%s\nRoll no:%d",stud.name,stud.rno);

printf("\nCity:%s\nState:%s",stud.addr.city,stud.addr.state)

;

getch();

}

ExpectedOutput

Enter Student name, Roll no, City, State

Sreenivas

25

Kurnool

AP

Name:

Sreenivas

Rollno:25

City:Kurnool

State:AP

In the above program, the method used to access the element of a structure that is

 Page 46 of 70

part of another structure. For this the dot operator is used twice, as in the expression,

stud.addr.city and

stud.addr.state

Structure Pointers
The way we can have a pointer pointing to an int,or a pointer pointing to a char, similarly we

can have a pointer pointing to a struct.

Such pointers are known as „structure pointers‟.

//Pointer to structure

int main()

{

struct student

{

char name[20];

int rno;

float per;

};

struct students={"Sreenivas",25,71.00};

struct student *ptr;

ptr=&s; //pointer “ptr”pointingto structure variable „s‟
printf("\nName:%s\nRollno:%d\nPercentage:%.2f",ptr->name,ptr->rno,ptr->per);

getch();

}

ExpectedOutput

Name: Sreenivas

Rollno:25

Percentage:71.00

 We can’t use ptr.name or ptr.rno because ptr is not a structure variable but a pointer to

a structure, and the dot operator requires a structure variable on its left.

 In such cases C provides an operator->, called an arrow operator to refer to the

structure elements.

 Remember that on the left hand side of the‘.’ Structure operator, there must always be

a structure variable, where as on the left hand side of the‘->’ operator there must

always be a pointer to a structure.

Memory Representation

b1.name b1.rno b1.per

 Page 47 of 70

Sreenivas25 71 .00

Address-65472 65492
65494 ptr

65498

Passing Structures to Functions
Like an ordinary variable, a structure variable can also be passed to afunction. The following are

the three different ways of passing structure arguments to functions.

a) Passing individual structure elements to a function

b) Passing an entire structure to a function

c) Passing address of a structure to a function

(a) Passing individual structure elements to a function

Example Program

//to pass an individual structure element

void display(char *n,char*a,intp); //function prototype

int main()

{

struct book

{

char name[20];

char author[40];

intprice;

};

struct book b={"Computer","Sreenivas Reddy",250};

display(b.name, b.author, b.price); //passing individual structure elements to display()

getch();

return 0;

}

void display(char *n,char*a,intp)

{

65472

 Page 48 of 70

printf("\nBook Name:%s\nAuthor:%s\nPrice:%d",n,a,p);

}

ExpectedOutput

Book Name:Computer

Author: Sreenivas

Reddy

Price:250

In the above program, we are passing the base addresses of the arrays name and

author, and the value stored in price.

Thus, this is a mixed call—a call by reference as well as a call by value.

(b) Passing an entire structure to a function

It can be immediately realized that to pass individual elements would become more

tedious as the number of structure elements go on increasing.

A better way would be to pass the entire structure variable at a time.

ExampleProgram

//to pass an entirestructure

void display(); //function prototype

struct book //structure named “book”

{
char name[20]; char author[20]; intprice;

};

int main()

{

struct book b={"Computer","Sreenivas Reddy",250};

display(b); //passing entirestructure variable „b‟

getch();

}

void display(struct bookb1)

{

printf("\nName=%s\nAuthor=%s\nPrice=%d",b1.name,b1.author,b1.price);

}

ExpectedOutput

 Page 49 of 70

Book Name:Computer

Author: Sreenivas

Reddy

Price:250

(c) Passing address of a structure to a function

//to pass the address ofstructure

Like variables, the address of structure variable can be passed to a function.

ExampleProgram

void display(); //function prototype

struct book //structure definition outsidethe main()

{

char name[20];

char author[20];

intprice;

};

voidmain()

{

struct book b={"Computer","Sreenivas Reddy",250};

display(&b); //passing address of structure variable „b‟todisplay()

getch();

}

void display(struct book*b1)

{

printf("\nName=%s\nAuthor=%s\nPrice=%d",b1->name,b1->author,b1->price);

}

ExpectedOutput

Book Name:Computer Author: Sreenivas Reddy

Price:250

Self Referential Structures
Self Referential structures are those structures that have one or more pointers which point to
the same type of structure, as their member.
In other words, structures pointing to the same type of structures are self-referential in
nature.

https://www.geeksforgeeks.org/structures-c/

 Page 50 of 70

struct node {
int data1;
char data2;
struct node* link;

};
int main()
{ struct node ob;

return 0;
}
In the above example ‘link’ is a pointer to a structure of type ‘node’. Hence, the structure
‘node’ is a self-referential structure with ‘link’ as the referencing pointer.
An important point to consider is that the pointer should be initialized properly before
accessing, as by default it contains garbage value.
Types of Self Referential Structures

1. Self Referential Structure with Single Link
2. Self Referential Structure with Multiple Links

1. Self Referential Structure with Single Link: These structures can have only one self-pointer
as their member. The following example will show us how to connect the objects of a self-
referential structure with the single link and access the corresponding data members. The
connection formed is shown in the following figure.

#include <stdio.h>
struct node {

int data1;

 Page 51 of 70

char data2;
struct node* link;

};
int main()
{ struct node ob1; // Node1

// Initialization
ob1.link = NULL;
ob1.data1 = 10;
ob1.data2 = 20;

struct node ob2; // Node2
// Initialization
ob2.link = NULL;
ob2.data1 = 30;
ob2.data2 = 40;

// Linking ob1 and ob2
ob1.link = &ob2;

// Accessing data members of ob2 using ob1
printf("%d", ob1.link->data1);
printf("\n%d", ob1.link->data2);
return 0;

}
Output:
30
40
2. Self Referential Structure with Multiple Links: Self referential structures with multiple
links can have more than one self-pointers. Many complicated data structures can be easily
constructed using these structures. Such structures can easily connect to more than one
nodes at a time. The following example shows one such structure with more than one links.
The connections made in the above example can be understood using the following figure.

#include <stdio.h>

struct node {
int data;

 Page 52 of 70

struct node* prev_link;
struct node* next_link;

};

int main()

{
struct node ob1; // Node1

// Initialization
ob1.prev_link = NULL;
ob1.next_link = NULL;
ob1.data = 10;

struct node ob2; // Node2

// Initialization
ob2.prev_link = NULL;
ob2.next_link = NULL;
ob2.data = 20;

struct node ob3; // Node3

// Initialization
ob3.prev_link = NULL;
ob3.next_link = NULL;
ob3.data = 30;

// Forward links
ob1.next_link = &ob2;
ob2.next_link = &ob3;

// Backward links
ob2.prev_link = &ob1;
ob3.prev_link = &ob2;

// Accessing data of ob1, ob2 and ob3 by ob1
printf("%d\t", ob1.data);
printf("%d\t", ob1.next_link->data);
printf("%d\n", ob1.next_link->next_link->data);

// Accessing data of ob1, ob2 and ob3 by ob2

 Page 53 of 70

 Typedef is a keyword that is used to give a new symbolic name for the existing name in a C
program. This is same like defining alias for the commands.

 Consider the below structure.

printf("%d\t", ob2.prev_link->data);
printf("%d\t", ob2.data);
printf("%d\n", ob2.next_link->data);

// Accessing data of ob1, ob2 and ob3 by ob3
printf("%d\t", ob3.prev_link->prev_link->data);
printf("%d\t", ob3.prev_link->data);
printf("%d", ob3.data);
return 0;

}
Output:

10 20 30
10 20 30
10 20 30
In the above example we can see that ‘ob1’, ‘ob2’ and ‘ob3’ are three objects of the self
referential structure ‘node’. And they are connected using their links in such a way that any of
them can easily access each other’s data. This is the beauty of the self referential structures.
The connections can be manipulated according to the requirements of the programmer.
Applications:
Self referential structures are very useful in creation of other complex data structures like:
Linked Lists
Stacks
Queues
Trees
Graphs etc

 C – Typedef

typedef<existing_name><alias_name>
Lets take an example and see how typedef actually works.

typedef unsigned long ulong;

The above statement define a term ulong for an unsigned long datatype. Now this ulong
identifier can be used to define unsigned long type variables.

ulongi, j;

https://www.geeksforgeeks.org/data-structures/linked-list/
https://www.geeksforgeeks.org/stack-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/binary-tree-data-structure/
https://www.geeksforgeeks.org/graph-and-its-representations/

 Page 54 of 70

 When we use “typedef” keyword before struct <tag_name> like above, after that we can
simply use type definition “status” in the C program to declare structure variable.

 Now, structure variable declaration will be, “status record”.
 This is equal to “struct student record”. Type definition for “struct student” is status. i.e.

status = “struct student”

Structure definition using typedef

Example:
#include<stdio.h>

#include<string.h>
typedef struct employee
{
char name[50];
int salary;
}emp;

void main()
{
emp e1;
printf("\nEnter Employee record:\n");
printf("\nEmployee name:\t");
scanf("%s", e1.name);
printf("\nEnter Employee salary: \t");
scanf("%d", &e1.salary);
printf("\nstudent name is %s", e1.name);
printf("\nroll is %d", e1.salary);
}

 C – Union

 C Union is also like structure, i.e. collection of different data types which are grouped
together. Each element in a union is called member.

 Union and structure in C are same in concepts, except allocating memory for their
members.

 Variable for the above structure can be declared in two ways.
1st way :
struct student record; /* for normal variable */
struct student *record; /* for pointer variable */

2nd way :
typedef struct student status;

 Page 55 of 70

Structure allocates storage space for all its members separately.

 Whereas, Union allocates one common storage space for all its members

 We can access only one member of union at a time. We can’t access all member values
at the same time in union. But, structure can access all member values at the same
time. This is because, Union allocates one common storage space for all its members.
Where as Structure allocates storage space for all its members separately.

 Many union variables can be created in a program and memory will be allocated for
each union variable separately.

Below table will help you how to form a C union, declare a union, initializing and accessing the
members of the union.

Using normal variable Using pointer variable

Syntax:
union tag_name
{
data type var_name1;
data type var_name2;
data type var_name3;
};

Syntax:
union tag_name
{
data type var_name1;
data type var_name2;
data type var_name3;
};

Example:
union student
{
int mark;
char name[10];
float average;
};

Example:
union student
{
int mark;
char name[10];
float average;
};

Declaring union using normal variable:
union student report;

Declaring union using pointer variable:
union student *report, rep;

Initializing union using normal variable:
union student report = ,100, “Mani”, 99.5-;

Initializing union using pointer variable:
union student rep = {100, “Mani”, 99.5-;
report = &rep;

Accessing union members using normal
variable:
report.mark;
report.name;
report.average;

Accessing union members using pointer
variable:
report -> mark;
report -> name;
report -> average;

 Page 56 of 70

 MEMORY REPRESENTATION:

 EXAMPLE PROGRAM FOR C UNION:

#include <stdio.h>
#include <string.h>

union student
{
char name[20];
char subject[20];
float percentage;
};

int main()
{
union student record1;
union student record2;

// assigning values to record1 union variable
strcpy(record1.name, "Raju");
strcpy(record1.subject, "Maths");

record1.percentage = 86.50;

printf("Union record1 values example\n");
printf(" Name : %s \n", record1.name);
printf(" Subject : %s \n", record1.subject);

 Page 57 of 70

printf(" Percentage : %f \n\n", record1.percentage);

// assigning values to record2 union variable
printf("Union record2 values example\n");

strcpy(record2.name, "Mani");
printf(" Name : %s \n", record2.name);

strcpy(record2.subject, "Physics");
printf(" Subject : %s \n", record2.subject);

record2.percentage = 99.50;
printf(" Percentage : %f \n", record2.percentage);
return 0;
}

 EXAMPLE PROGRAM – ANOTHER WAY OF DECLARING C UNION:

#include <stdio.h>
#include <string.h>

union student
{
char name[20];
char subject[20];
float percentage;
}record;

int main()
{

strcpy(record.name, "Raju");

OUTPUT:

Union record1 values example

Name :

Subject :

Percentage : 86.500000;

Union record2 values example

Name : Mani

Subject : Physics

Percentage : 99.500000

 Page 58 of 70

strcpy(record.subject, "Maths");
record.percentage = 86.50;

printf(" Name : %s \n", record.name);
printf(" Subject : %s \n", record.subject);
printf(" Percentage : %f \n", record.percentage);
return 0;
}
OUTPUT:
Name :

Subject :
Percentage : 86.500000

NOTE:
We can access only one member of union at a time. We can’t access all member values at the
same time in union.
But, structure can access all member values at the same time. This is because, Union allocates
one common storage space for all its members. Where as Structure allocates storage space for
all its members separately.

C Structure C Union

Structure allocates storage space for all
its members separately.

Union allocates one common storage
space for all its members.
Union finds that which of its member
needs high storage space over other
members and allocates that much space

Structure occupies higher memory
space.

Union occupies lower memory space over
structure.

We can access all members of structure
at a time.

We can access only one member of union
at a time.

Structure example:
struct student
{
int mark;
char name[6];
double average;
};

Union example:
union student
{
int mark;
char name[6];
double average;
};

For above structure, memory allocation For above union, only 8 bytes of memory

 Page 59 of 70

will be like below.
int mark – 2B
char name[6] – 6B
double average – 8B
Total memory allocation = 2+6+8 = 16
Bytes

will be allocated since double data type
will occupy maximum space of memory
over other data types.
Total memory allocation = 8 Bytes

Enum in C
The enum in C is also known as the enumerated type. It is a user-defined data type that consists
of integer values, and it provides meaningful names to these values. The use of enum in C
makes the program easy to understand and maintain. The enum is defined by using the enum
keyword.

The following is the way to define the enum in C:

enum flag{integer_const1, integer_const2, integter_constN};
In the above declaration, we define the enum named as flag containing 'N' integer constants.
The default value of integer_const1 is 0, integer_const2 is 1, and so on. We can also change the
default value of the integer constants at the time of the declaration.

For example:

1. enum fruits{mango, apple, strawberry, papaya};
The default value of mango is 0, apple is 1, strawberry is 2, and papaya is 3. If we want to
change these default values, then we can do as given below:

1. enum fruits{
2. mango=2,
3. apple=1,
4. strawberry=5,
5. papaya=7,
6. };

Enumerated type declaration
As we know that in C language, we need to declare the variable of a pre-defined type such as
int, float, char, etc. Similarly, we can declare the variable of a user-defined data type, such as
enum. Let's see how we can declare the variable of an enum type.
Suppose we create the enum of type status as shown below:

enum status{false,true};
Now, we create the variable of status type:

enum status s; // creating a variable of the status type.
In the above statement, we have declared the 's' variable of type status.
To create a variable, the above two statements can be written as:

 Page 60 of 70

enum status{false,true} s;
In this case, the default value of false will be equal to 0, and the value of true will be equal to 1.

Let's create a simple program of enum.
#include <stdio.h>
enum weekdays{Sunday=1, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday};
int main()
{
enum weekdays w; // variable declaration of weekdays type
w=Monday; // assigning value of Monday to w.
printf("The value of w is %d",w);
return 0;
}
Output:
The value of w is 2

example

#include <stdio.h>
enum months{jan=1, feb, march, april, may, june, july, august, september, october, november,
december};
int main()

{
// printing the values of months
for(int i=jan;i<=december;i++)

{
printf("%d, ",i);
}
return 0;
}
Output:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

use an enum in a switch case statement
#include <stdio.h>
enum days{sunday=1, monday, tuesday, wednesday, thursday, friday, saturday};
int main()
{
enum days d;

d=monday;
switch(d)

{
casesunday:

 Page 61 of 70

printf("Today is sunday");
break;
casemonday:
printf("Today is monday");
break;
casetuesday:
printf("Today is tuesday");
break;
casewednesday:
printf("Today is wednesday");
break;

casethursday:
printf("Today is thursday");
break;
casefriday:
printf("Today is friday");
break;
casesaturday:
printf("Today is saturday");
break;

}

return 0;
}
Output:
Today is Monday
Some important points related to enum

 If we do not provide any value to the enum names, then the compiler will automatically
assign the default values to the enum names starting from 0.

 We can also provide the values to the enum name in any order, and the unassigned
names will get the default value as the previous one plus one.

 The values assigned to the enum names must be integral constant, i.e., it should not be
of other types such string, float, etc.

#include <stdio.h>

int main(void) {
enum fruits{mango = 1, strawberry=0, apple=1};
printf("The value of mango is %d", mango);
printf("\nThe value of apple is %d", apple);
return 0;

 Page 62 of 70

}
Output:
The value of mango is 1
The value of apple is 1

o All the enum names must be unique in their scope, i.e., if we define

two enum having same scope, then these two enums should have

different enum names otherwise compiler will throw an error.

#include <stdio.h>
enum status{success, fail};
enumboolen{fail,pass};
int main(void) {

printf("The value of success is %d", success);
return 0;
}
Output:

 In enumeration, we can define an enumerated data type without the name also.

#include <stdio.h>
enum {success, fail} status;
int main(void) {
status=success;
printf("The value of status is %d", status);
return 0;

}
Output
The value of status is 0

Enum vs. Macro in C

 Page 63 of 70

Macro can also be used to define the name constants, but in case of an enum, all the name
constants can be grouped together in a single statement.
For example,
define pass 0;
define success 1;

The above two statements can be written in a single statement by using the enum type.
enum status{pass, success};

 The enum type follows the scope rules while macro does not follow the scope rules.

 In Enum, if we do not assign the values to the enum names, then the compiler will
automatically assign the default value to the enum names. But, in the case of macro, the
values need to be explicitly assigned.

 The type of enum in C is an integer, but the type of macro can be of any type.

Bit Fields in C
When we use structures in the c programming language, the memory required by structure
variable is the sum of memory required by all individual members of that structure. To save
memory or to restrict memory of members of structure we use bitfield concept. Using bitfield
we can specify the memory to be allocated for individual members of a structure. To
understand the bitfields,

Declaring Bit Fields:

Variables that are defined using a predefined width or size are called bit fields. This bit

field can leave more than a single bit. The format and syntax of bit-field declaration

inside a structure is something like this:

struct{

data_typemember_name: width;

};

Date structure in C
struct Date
{
unsigned int day;

unsigned int month;
unsigned int year;
} ;

Here, the variable of Date structure allocates 6 bytes of memory.

 Page 64 of 70

In the above example structure the members day and month both does not requires 2 bytes of
memory for each. Becuase member day stores values from 1 to 31 only which requires 5 bits of
memory, and the member month stores values from 1 to 12 only which required 4 bits of
memory. So, to save the memory we use the bitfields.
Consider the following structure with bitfields...

Date structure in C
struct Date
{
unsigned int day : 5;
unsigned int month : 4;
unsigned int year;
} ;

Here, the variable of Date structure allocates 4 bytes of memory.
Example:
#include <stdio.h>
#include <string.h>

struct {
unsigned int age : 3;
} Age;

int main() {

Age.age = 4;

printf("Sizeof(Age) : %d\n", sizeof(Age));
printf("Age.age : %d\n", Age.age);

Age.age = 7;
printf("Age.age : %d\n", Age.age);

Age.age = 8;
printf("Age.age : %d\n", Age.age);

return 0;
}
Output:
Sizeof(Age) : 4
Age.age : 4

 Page 65 of 70

Age.age : 7
Age.age : 0

Important points about bit fields in C

1) A special unnamed bit field of size 0 is used to force alignment on next boundary. For
example consider the following program.
#include <stdio.h>

// A structure without forced alignment
struct test1 {

unsigned int x : 5;
unsigned int y : 8;

};

// A structure with forced alignment
struct test2 {

unsigned int x : 5;
unsigned int : 0;
unsigned int y : 8;

};

int main()
{

printf("Size of test1 is %lu bytes\n",
sizeof(struct test1));

printf("Size of test2 is %lu bytes\n",
sizeof(struct test2));

return 0;
}
Output:
Size of test1 is 4 bytes
Size of test2 is 8 bytes

2) We cannot have pointers to bit field members as they may not start at a byte boundary.
#include <stdio.h>
struct test {

unsigned int x : 5;
unsigned int y : 5;
unsigned int z;

};
int main()

 Page 66 of 70

{
struct test t;

// Uncommenting the following line will make
// the program compile and run
printf("Address of t.x is %p", &t.x);

// The below line works fine as z is not a
// bit field member
printf("Address of t.z is %p", &t.z);
return 0;

}

Output:
prog.c: In function 'main':
prog.c:14:1: error: cannot take address of bit-field 'x'
printf("Address of t.x is %p", &t.x);
^
3) It is implementation defined to assign an out-of-range value to a bit field member.

#include <stdio.h>
struct test {

unsigned int x : 2;
unsigned int y : 2;
unsigned int z : 2;

};
int main()
{

struct test t;
t.x = 5;
printf("%d", t.x);
return 0;

}
Output:

Implementation-Dependent

4) In C++, we can have static members in a structure/class, but bit fields cannot be static.

// The below C++ program compiles and runs fine
struct test1 {

static unsigned int x;
};

 Page 67 of 70

int main() {}
Output:

// But below C++ program fails in the compilation
// as bit fields cannot be static
struct test1 {

static unsigned int x : 5;
};
int main() {}

Output:
prog.cpp:5:29: error: static member 'x' cannot be a bit-field
static unsigned int x : 5;

^
5) Array of bit fields is not allowed. For example, the below program fails in the compilation.
struct test {

unsigned int x[10] : 5;
};

int main()
{
}
Output:

prog.c:3:1: error: bit-field 'x' has invalid type

unsigned int x[10]: 5;

^

6) Use bit fields in C to figure out a way whether a machine is little-endian or big-endian.

Applications –

 If storage is limited, we can go for bit-field.
 When devices transmit status or information encoded into multiple bits for this type of

situation bit-fiels is most effiecient.
 Encryption routines need to access the bits within a byte in that situation bit-field is quite

usefull.

C - Variable Length Arguments

Sometimes, you may come across a situation, when you want to have a function, which can
take variable number of arguments, i.e., parameters, instead of predefined number of

 Page 68 of 70

intfunc(int, ...) {
.
.
.

}

int main() {
func(1, 2, 3);
func(1, 2, 3, 4);
}

parameters. The C programming language provides a solution for this situation and you are
allowed to define a function which can accept variable number of parameters based on your
requirement. The following example shows the definition of such a function.

It should be noted that the function func() has its last argument as ellipses, i.e. three dotes (...)
and the one just before the ellipses is always an int which will represent the total number
variable arguments passed. To use such functionality, you need to make use
of stdarg.h header file which provides the functions and macros to implement the
functionality of variable arguments and follow the given steps −

 Define a function with its last parameter as ellipses and the one just before the ellipses
is always an int which will represent the number of arguments.

 Create a va_list type variable in the function definition. This type is defined in stdarg.h
header file.

 Use int parameter and va_start macro to initialize the va_list variable to an argument
list. The macro va_start is defined in stdarg.h header file.

 Use va_arg macro and va_list variable to access each item in argument list.

 Use a macro va_end to clean up the memory assigned to va_list variable.

Now let us follow the above steps and write down a simple function which can take the
variable number of parameters and return their average −

#include <stdio.h>
#include <stdarg.h>

double average(int num,...) {

va_list valist;

double sum = 0.0;
inti;

/* initialize valist for num number of arguments */

 Page 69 of 70

va_start(valist, num);

/* access all the arguments assigned to valist */
for (i = 0; i< num; i++) {
sum += va_arg(valist, int);

}

/* clean memory reserved for valist */
va_end(valist);

return sum/num;
}

int main() {
printf("Average of 2, 3, 4, 5 = %f\n", average(4, 2,3,4,5));
printf("Average of 5, 10, 15 = %f\n", average(3, 5,10,15));
}
Output:
Average of 2, 3, 4, 5 = 3.500000
Average of 5, 10, 15 = 10.000000

Q. find minimum of given set of integers.

#include <stdarg.h>
#include <stdio.h>
int min(int arg_count, ...)
{
inti;
int min, a; 159

// va_list is a type to hold information about variable arguments
va_listap;

// va_start must be called before accessing variable argument list
va_start(ap, arg_count);

// Now arguments can be accessed one by one
// using va_arg macro. Initialize min as first argument in list
min = va_arg(ap, int);

// traverse rest of the arguments to find out minimum
for (i = 2; i<= arg_count; i++)

 Page 70 of 70

if ((a = va_arg(ap, int)) < min)
min = a;

// va_end should be executed before the function returns whenever va_start has been
previously
// used in that function
va_end(ap);

return min;
}
// Driver code
int main()
{
int count = 5;
printf("Minimum value is %d", min(count, 12, 67, 6, 7, 100));
return 0;
}
Output:
Minimum value is 6

Linked List

Linked List can be defined as collection of objects called nodes that are randomly stored in the

memory.

A node contains two fields i.e. data stored at that particular address and the pointer which contains

the address of the next node in the memory.

The last node of the list contains pointer to the null.

DS Linked List

Uses of Linked List

The list is not required to be contiguously present in the memory. The node can reside any where in

the memory and linked together to make a list. This achieves optimized utilization of space.

list size is limited to the memory size and doesn't need to be declared in advance.

Empty node can not be present in the linked list.

We can store values of primitive types or objects in the singly linked list.

Why use linked list over array?

Till now, we were using array data structure to organize the group of elements that are to be stored

individually in the memory. However, Array has several advantages and disadvantages which must

be known in order to decide the data structure which will be used throughout the program.

Array contains following limitations:

The size of array must be known in advance before using it in the program.

Increasing size of the array is a time taking process. It is almost impossible to expand the size of the

array at run time.

All the elements in the array need to be contiguously stored in the memory. Inserting any element

in the array needs shifting of all its predecessors.

Linked list is the data structure which can overcome all the limitations of an array. Using linked list

is useful because,

It allocates the memory dynamically. All the nodes of linked list are non-contiguously stored in the

memory and linked together with the help of pointers.

Sizing is no longer a problem since we do not need to define its size at the time of declaration. List

grows as per the program's demand and limited to the available memory space.

Singly linked list or One way chain

Singly linked list can be defined as the collection of ordered set of elements. The number of

elements may vary according to need of the program. A node in the singly linked list consist of two

parts: data part and link part. Data part of the node stores actual information that is to be

represented by the node while the link part of the node stores the address of its immediate

successor.

One way chain or singly linked list can be traversed only in one direction. In other words, we can
say that each node contains only next pointer, therefore we can not traverse the list in the reverse
direction.

Consider an example where the marks obtained by the student in three subjects are stored in a
linked list as shown in the figure.

In the above figure, the arrow represents the links. The data part of every node contains the marks
obtained by the student in the different subject. The last node in the list is identified by the null
pointer which is present in the address part of the last node. We can have as many elements we
require, in the data part of the list.

Complexity

Data
Structur
e

Time Complexity Space
Compleit
y

 Average Worst Worst

 Acces
s

Searc
h

Insertio
n

Deletio
n

Acces
s

Searc
h

Insertio
n

Deletio
n

Singly
Linked
List

θ(n) θ(n) θ(1) θ(1) O(n) O(n) O(1) O(1) O(n)

Operations on Singly Linked List

There are various operations which can be performed on singly linked list. A list of all such
operations is given below.

Node Creation

1. struct node

2. {

3. int data;

4. struct node *next;

5. };

6. struct node *head, *ptr;

7. ptr = (struct node *)malloc(sizeof(struct node *));

Insertion

The insertion into a singly linked list can be performed at different positions. Based on the position
of the new node being inserted, the insertion is categorized into the following categories.

SN Operation Description

1 Insertion at
beginning

It involves inserting any element at the front of the list. We just need to
a few link adjustments to make the new node as the head of the list.

2 Insertion at end
of the list

It involves insertion at the last of the linked list. The new node can be
inserted as the only node in the list or it can be inserted as the last one.
Different logics are implemented in each scenario.

3 Insertion after
specified node

It involves insertion after the specified node of the linked list. We need
to skip the desired number of nodes in order to reach the node after
which the new node will be inserted. .

Deletion and Traversing

The Deletion of a node from a singly linked list can be performed at different positions. Based on
the position of the node being deleted, the operation is categorized into the following categories.

SN Operation Description

1 Deletion at
beginning

It involves deletion of a node from the beginning of the list. This is the
simplest operation among all. It just need a few adjustments in the
node pointers.

2 Deletion at the
end of the list

It involves deleting the last node of the list. The list can either be empty
or full. Different logic is implemented for the different scenarios.

3 Deletion after It involves deleting the node after the specified node in the list. we

https://www.javatpoint.com/insertion-in-singly-linked-list-at-beginning
https://www.javatpoint.com/insertion-in-singly-linked-list-at-beginning
https://www.javatpoint.com/insertion-in-singly-linked-list-at-end
https://www.javatpoint.com/insertion-in-singly-linked-list-at-end
https://www.javatpoint.com/insertion-in-singly-linked-list-after-specified-node
https://www.javatpoint.com/insertion-in-singly-linked-list-after-specified-node
https://www.javatpoint.com/deletion-in-singly-linked-list-at-beginning
https://www.javatpoint.com/deletion-in-singly-linked-list-at-beginning
https://www.javatpoint.com/deletion-in-singly-linked-list-at-end
https://www.javatpoint.com/deletion-in-singly-linked-list-at-end
https://www.javatpoint.com/deletion-in-singly-linked-list-after-specified-node

specified node need to skip the desired number of nodes to reach the node after which
the node will be deleted. This requires traversing through the list.

4 Traversing In traversing, we simply visit each node of the list at least once in order
to perform some specific operation on it, for example, printing data
part of each node present in the list.

5 Searching In searching, we match each element of the list with the given element. If

the element is found on any of the location then location of that element is

returned otherwise null is returned. .

linked list is a linear data structure that includes a series of connected nodes. Linked list can be
defined as the nodes that are randomly stored in the memory. A node in the linked list contains two
parts, i.e., first is the data part and second is the address part. The last node of the list contains a
pointer to the null. After array, linked list is the second most used data structure. In a linked list,
every link contains a connection to another link.

Representation of a Linked list

Linked list can be represented as the connection of nodes in which each node points to the next
node of the list. The representation of the linked list is shown below -

Till now, we have been using array data structure to organize the group of elements that are to be
stored individually in the memory. However, Array has several advantages and disadvantages that
must be known to decide the data structure that will be used throughout the program.

Now, the question arises why we should use linked list over array?

Why use linked list over array?

Linked list is a data structure that overcomes the limitations of arrays. Let's first see some of the
limitations of arrays -

o The size of the array must be known in advance before using it in the program.

o Increasing the size of the array is a time taking process. It is almost impossible to expand

the size of the array at run time.

https://www.javatpoint.com/deletion-in-singly-linked-list-after-specified-node
https://www.javatpoint.com/traversing-in-singly-linked-list
https://www.javatpoint.com/searching-in-singly-linked-list

o All the elements in the array need to be contiguously stored in the memory. Inserting an

element in the array needs shifting of all its predecessors.

Linked list is useful because -

o It allocates the memory dynamically. All the nodes of the linked list are non-contiguously

stored in the memory and linked together with the help of pointers.

o In linked list, size is no longer a problem since we do not need to define its size at the time

of declaration. List grows as per the program's demand and limited to the available memory

space.

How to declare a linked list?

It is simple to declare an array, as it is of single type, while the declaration of linked list is a bit more
typical than array. Linked list contains two parts, and both are of different types, i.e., one is the
simple variable, while another is the pointer variable. We can declare the linked list by using the
user-defined data type structure.

The declaration of linked list is given as follows -

1. struct node

2. {

3. int data;

4. struct node *next;

5. }

In the above declaration, we have defined a structure named as node that contains two variables,
one is data that is of integer type, and another one is next that is a pointer which contains the
address of next node.

Now, let's move towards the types of linked list.

Types of Linked list

Linked list is classified into the following types -

o Singly-linked list - Singly linked list can be defined as the collection of an ordered set of

elements. A node in the singly linked list consists of two parts: data part and link part. Data

part of the node stores actual information that is to be represented by the node, while the

link part of the node stores the address of its immediate successor.

o Doubly linked list - Doubly linked list is a complex type of linked list in which a node

contains a pointer to the previous as well as the next node in the sequence. Therefore, in a

doubly-linked list, a node consists of three parts: node data, pointer to the next node in

sequence (next pointer), and pointer to the previous node (previous pointer).

o Circular singly linked list - In a circular singly linked list, the last node of the list contains a

pointer to the first node of the list. We can have circular singly linked list as well as circular

doubly linked list.

o Circular doubly linked list - Circular doubly linked list is a more complex type of data

structure in which a node contains pointers to its previous node as well as the next node.

Circular doubly linked list doesn't contain NULL in any of the nodes. The last node of the list

contains the address of the first node of the list. The first node of the list also contains the

address of the last node in its previous pointer.

Now, let's see the benefits and limitations of using the Linked list.

Advantages of Linked list

The advantages of using the Linked list are given as follows -

o Dynamic data structure - The size of the linked list may vary according to the

requirements. Linked list does not have a fixed size.

o Insertion and deletion - Unlike arrays, insertion, and deletion in linked list is easier. Array

elements are stored in the consecutive location, whereas the elements in the linked list are

stored at a random location. To insert or delete an element in an array, we have to shift the

elements for creating the space. Whereas, in linked list, instead of shifting, we just have to

update the address of the pointer of the node.

o Memory efficient - The size of a linked list can grow or shrink according to the

requirements, so memory consumption in linked list is efficient.

o Implementation - We can implement both stacks and queues using linked list.

Disadvantages of Linked list

The limitations of using the Linked list are given as follows -

o Memory usage - In linked list, node occupies more memory than array. Each node of the

linked list occupies two types of variables, i.e., one is a simple variable, and another one is

the pointer variable.

o Traversal - Traversal is not easy in the linked list. If we have to access an element in the

linked list, we cannot access it randomly, while in case of array we can randomly access it

by index. For example, if we want to access the 3rd node, then we need to traverse all the

nodes before it. So, the time required to access a particular node is large.

o Reverse traversing - Backtracking or reverse traversing is difficult in a linked list. In a

doubly-linked list, it is easier but requires more memory to store the back pointer.

Applications of Linked list

The applications of the Linked list are given as follows -

o With the help of a linked list, the polynomials can be represented as well as we can perform

the operations on the polynomial.

o A linked list can be used to represent the sparse matrix.

o The various operations like student's details, employee's details, or product details can be

implemented using the linked list as the linked list uses the structure data type that can

hold different data types.

o Using linked list, we can implement stack, queue, tree, and other various data structures.

o The graph is a collection of edges and vertices, and the graph can be represented as an

adjacency matrix and adjacency list. If we want to represent the graph as an adjacency

matrix, then it can be implemented as an array. If we want to represent the graph as an

adjacency list, then it can be implemented as a linked list.

o A linked list can be used to implement dynamic memory allocation. The dynamic memory

allocation is the memory allocation done at the run-time.

Operations performed on Linked list

The basic operations that are supported by a list are mentioned as follows -

o Insertion - This operation is performed to add an element into the list.

o Deletion - It is performed to delete an operation from the list.

o Display - It is performed to display the elements of the list.

o Search - It is performed to search an element from the list using the given key.

Complexity of Linked list

Now, let's see the time and space complexity of the linked list for the operations search, insert, and
delete.

1. Time Complexity

Operations Average case time complexity Worst-case time complexity

Insertion O(1) O(1)

Deletion O(1) O(1)

Search O(n) O(n)

Types of Linked List

Before knowing about the types of a linked list, we should know what is linked list. So, to know
about the linked list, click on the link given below:

Types of Linked list

The following are the types of linked list:

o Singly Linked list

o Doubly Linked list

o Circular Linked list

o Doubly Circular Linked list

Singly Linked list

It is the commonly used linked list in programs. If we are talking about the linked list, it means it is
a singly linked list. The singly linked list is a data structure that contains two parts, i.e., one is the
data part, and the other one is the address part, which contains the address of the next or the
successor node. The address part in a node is also known as a pointer.

Suppose we have three nodes, and the addresses of these three nodes are 100, 200 and 300
respectively. The representation of three nodes as a linked list is shown in the below figure:

We can observe in the above figure that there are three different nodes having address 100, 200
and 300 respectively. The first node contains the address of the next node, i.e., 200, the second node
contains the address of the last node, i.e., 300, and the third node contains the NULL value in its
address part as it does not point to any node. The pointer that holds the address of the initial node
is known as a head pointer.

The linked list, which is shown in the above diagram, is known as a singly linked list as it contains
only a single link. In this list, only forward traversal is possible; we cannot traverse in the backward
direction as it has only one link in the list.

Representation of the node in a singly linked list

https://www.javatpoint.com/ds-types-of-linked-list#Singly
https://www.javatpoint.com/ds-types-of-linked-list#Doubly
https://www.javatpoint.com/ds-types-of-linked-list#Circular
https://www.javatpoint.com/ds-types-of-linked-list#Doubly-Circular

struct node

{

 int data;

 struct node *next;

}

In the above representation, we have defined a user-defined structure named a node containing
two members, the first one is data of integer type, and the other one is the pointer (next) of the
node type.

To know more about a singly linked list, click on the link given below:

Doubly linked list

As the name suggests, the doubly linked list contains two pointers. We can define the doubly linked
list as a linear data structure with three parts: the data part and the other two address part. In other
words, a doubly linked list is a list that has three parts in a single node, includes one data part, a
pointer to its previous node, and a pointer to the next node.

Suppose we have three nodes, and the address of these nodes are 100, 200 and 300, respectively.
The representation of these nodes in a doubly-linked list is shown below:

As we can observe in the above figure, the node in a doubly-linked list has two address parts; one
part stores the address of the next while the other part of the node stores the previous node's
address. The initial node in the doubly linked list has the NULL value in the address part, which
provides the address of the previous node.

Representation of the node in a doubly linked list

1. struct node

2. {

3. int data;

4. struct node *next;

 struct node *prev;

}

In the above representation, we have defined a user-defined structure named a node with three
members, one is data of integer type, and the other two are the pointers, i.e., next and prev of the
node type. The next pointer variable holds the address of the next node, and the prev
pointer holds the address of the previous node. The type of both the pointers, i.e., next and
prev is struct node as both the pointers are storing the address of the node of the struct
node type.

To know more about doubly linked list, click on the link given below:

Circular linked list

A circular linked list is a variation of a singly linked list. The only difference between the singly
linked list and a circular linked list is that the last node does not point to any node in a singly
linked list, so its link part contains a NULL value. On the other hand, the circular linked list is a list
in which the last node connects to the first node, so the link part of the last node holds the first
node's address. The circular linked list has no starting and ending node. We can traverse in any
direction, i.e., either backward or forward. The diagrammatic representation of the circular linked
list is shown below:

1. struct node

2. {

3. int data;

4. struct node *next;

5. }

A circular linked list is a sequence of elements in which each node has a link to the next node, and
the last node is having a link to the first node. The representation of the circular linked list will be
similar to the singly linked list, as shown below:

To know more about the circular linked list, click on the link given below:

Doubly Circular linked list

The doubly circular linked list has the features of both the circular linked list and doubly linked
list.

The above figure shows the representation of the doubly circular linked list in which the last node
is attached to the first node and thus creates a circle. It is a doubly linked list also because each
node holds the address of the previous node also. The main difference between the doubly linked
list and doubly circular linked list is that the doubly circular linked list does not contain the NULL
value in the previous field of the node. As the doubly circular linked contains three parts, i.e., two
address parts and one data part so its representation is similar to the doubly linked list.

struct node

{

 int data;

 struct node *next;

 struct node *prev;

}

Linked List

o Linked List can be defined as collection of objects called nodes that are randomly stored in

the memory.

o A node contains two fields i.e. data stored at that particular address and the pointer which

contains the address of the next node in the memory.

o The last node of the list contains pointer to the null.

Uses of Linked List

o The list is not required to be contiguously present in the memory. The node can reside any

where in the memory and linked together to make a list. This achieves optimized utilization

of space.

o list size is limited to the memory size and doesn't need to be declared in advance.

o Empty node can not be present in the linked list.

o We can store values of primitive types or objects in the singly linked list.

Why use linked list over array?

Till now, we were using array data structure to organize the group of elements that are to be stored
individually in the memory. However, Array has several advantages and disadvantages which must
be known in order to decide the data structure which will be used throughout the program.

Array contains following limitations:

1. The size of array must be known in advance before using it in the program.

2. Increasing size of the array is a time taking process. It is almost impossible to expand the

size of the array at run time.

3. All the elements in the array need to be contiguously stored in the memory. Inserting any

element in the array needs shifting of all its predecessors.

Linked list is the data structure which can overcome all the limitations of an array. Using linked list
is useful because,

1. It allocates the memory dynamically. All the nodes of linked list are non-contiguously stored

in the memory and linked together with the help of pointers.

2. Sizing is no longer a problem since we do not need to define its size at the time of

declaration. List grows as per the program's demand and limited to the available memory

space.

Singly linked list or One way chain

Singly linked list can be defined as the collection of ordered set of elements. The number of
elements may vary according to need of the program. A node in the singly linked list consist of two
parts: data part and link part. Data part of the node stores actual information that is to be
represented by the node while the link part of the node stores the address of its immediate
successor.

Doubly linked list

Doubly linked list is a complex type of linked list in which a node contains a pointer to the

previous as well as the next node in the sequence. Therefore, in a doubly linked list, a node

consists of three parts: node data, pointer to the next node in sequence (next pointer) , pointer to

the previous node (previous pointer). A sample node in a doubly linked list is shown in the

figure.

A doubly linked list containing three nodes having numbers from 1 to 3 in their data part, is

shown in the following image.

In C, structure of a node in doubly linked list can be given as :

1. struct node

2. {

3. struct node *prev;

4. int data;

5. struct node *next;

6. }

The prev part of the first node and the next part of the last node will always contain null

indicating end in each direction.

Circular Singly Linked List

In a circular Singly linked list, the last node of the list contains a pointer to the first node of the list.
We can have circular singly linked list as well as circular doubly linked list.

We traverse a circular singly linked list until we reach the same node where we started. The
circular singly liked list has no beginning and no ending. There is no null value present in the next
part of any of the nodes.

The following image shows a circular singly linked list.

 Circular linked list are mostly used in task maintenance in operating systems. There
are many examples where circular linked list are being used in computer science including browser
surfing where a record of pages visited in the past by the user, is maintained in the form of circular
linked lists and can be accessed again on clicking the previous button.

Memory Representation of circular linked list:

In the following image, memory representation of a circular linked list containing marks of a
student in 4 subjects. However, the image shows a glimpse of how the circular list is being stored in
the memory. The start or head of the list is pointing to the element with the index 1 and containing
13 marks in the data part and 4 in the next part. Which means that it is linked with the node that is
being stored at 4th index of the list.

However, due to the fact that we are considering circular linked list in the memory therefore the
last node of the list contains the address of the first node of the list.

We can also have more than one number of linked list in the memory with the different start
pointers pointing to the different start nodes in the list. The last node is identified by its next part
which contains the address of the start node of the list. We must be able to identify the last node of

any linked list so that we can find out the number of iterations which need to be performed while
traversing the list.

Operations on Circular Singly linked list:

Insertion

SN Operation Description

1 Insertion at beginning Adding a node into circular singly linked list at the beginning.

2 Insertion at the end Adding a node into circular singly linked list at the end.

Deletion & Traversing

SN Operation Description

1 Deletion at

beginning

Removing the node from circular singly linked list at the beginning.

2 Deletion at the

end

Removing the node from circular singly linked list at the end.

3 Searching Compare each element of the node with the given item and return the

location at which the item is present in the list otherwise return null.

4 Traversing Visiting each element of the list at least once in order to perform some

specific operation.

Circular Doubly Linked List

Circular doubly linked list is a more complexed type of data structure in which a node contain
pointers to its previous node as well as the next node. Circular doubly linked list doesn't contain
NULL in any of the node. The last node of the list contains the address of the first node of the list.
The first node of the list also contain address of the last node in its previous pointer.

https://www.javatpoint.com/insertion-in-circular-singly-list-at-beginning
https://www.javatpoint.com/insertion-in-circular-singly-linked-list-at-end
https://www.javatpoint.com/deletion-in-circular-singly-linked-list-at-beginning
https://www.javatpoint.com/deletion-in-circular-singly-linked-list-at-beginning
https://www.javatpoint.com/deletion-in-circular-singly-linked-list-at-end
https://www.javatpoint.com/deletion-in-circular-singly-linked-list-at-end
https://www.javatpoint.com/searching-in-circular-singly-linked-list
https://www.javatpoint.com/traversing-in-circular-singly-linked-list

A circular doubly linked list is shown in the following figure.

Due to the fact that a circular doubly linked list contains three parts in its structure therefore, it
demands more space per node and more expensive basic operations. However, a circular doubly
linked list provides easy manipulation of the pointers and the searching becomes twice as efficient.

Memory Management of Circular Doubly linked list

The following figure shows the way in which the memory is allocated for a circular doubly linked
list. The variable head contains the address of the first element of the list i.e. 1 hence the starting
node of the list contains data A is stored at address 1. Since, each node of the list is supposed to
have three parts therefore, the starting node of the list contains address of the last node i.e. 8 and
the next node i.e. 4. The last node of the list that is stored at address 8 and containing data as 6,
contains address of the first node of the list as shown in the image i.e. 1. In circular doubly linked
list, the last node is identified by the address of the first node which is stored in the next part of the
last node therefore the node which contains the address of the first node, is actually the last node of
the list.

Tree Data Structure

We read the linear data structures like an array, linked list, stack and queue in which all the
elements are arranged in a sequential manner. The different data structures are used for different
kinds of data.

Some factors are considered for choosing the data structure:

o What type of data needs to be stored?: It might be a possibility that a certain data

structure can be the best fit for some kind of data.

o Cost of operations: If we want to minimize the cost for the operations for the most

frequently performed operations. For example, we have a simple list on which we have to

perform the search operation; then, we can create an array in which elements are stored in

sorted order to perform the binary search. The binary search works very fast for the

simple list as it divides the search space into half.

o Memory usage: Sometimes, we want a data structure that utilizes less memory.

A tree is also one of the data structures that represent hierarchical data. Suppose we want to show
the employees and their positions in the hierarchical form then it can be represented as shown
below:

The above tree shows the organization hierarchy of some company. In the above
structure, john is the CEO of the company, and John has two direct reports named
as Steve and Rohan. Steve has three direct reports named Lee, Bob, Ella where Steve is a manager.
Bob has two direct reports named Sal and Emma. Emma has two direct reports
named Tom and Raj. Tom has one direct report named Bill. This particular logical structure is
known as a Tree. Its structure is similar to the real tree, so it is named a Tree. In this structure,
the root is at the top, and its branches are moving in a downward direction. Therefore, we can say
that the Tree data structure is an efficient way of storing the data in a hierarchical way.

Backward Skip 10sPlay Video

Backward Skip 10sPlay Video

Let's understand some key points of the Tree data structure.

o A tree data structure is defined as a collection of objects or entities known as nodes that are

linked together to represent or simulate hierarchy.

o A tree data structure is a non-linear data structure because it does not store in a sequential

manner. It is a hierarchical structure as elements in a Tree are arranged in multiple levels.

o In the Tree data structure, the topmost node is known as a root node. Each node contains

some data, and data can be of any type. In the above tree structure, the node contains the

name of the employee, so the type of data would be a string.

o Each node contains some data and the link or reference of other nodes that can be called

children.

Some basic terms used in Tree data structure.

Let's consider the tree structure, which is shown below:

In the above structure, each node is labeled with some number. Each arrow shown in the above
figure is known as a link between the two nodes.

o Root: The root node is the topmost node in the tree hierarchy. In other words, the root node

is the one that doesn't have any parent. In the above structure, node numbered 1 is the root

node of the tree. If a node is directly linked to some other node, it would be called a parent-

child relationship.

o Child node: If the node is a descendant of any node, then the node is known as a child node.

o Parent: If the node contains any sub-node, then that node is said to be the parent of that

sub-node.

o Sibling: The nodes that have the same parent are known as siblings.

o Leaf Node:- The node of the tree, which doesn't have any child node, is called a leaf node. A

leaf node is the bottom-most node of the tree. There can be any number of leaf nodes

present in a general tree. Leaf nodes can also be called external nodes.

o Internal nodes: A node has atleast one child node known as an internal

o Ancestor node:- An ancestor of a node is any predecessor node on a path from the root to

that node. The root node doesn't have any ancestors. In the tree shown in the above image,

nodes 1, 2, and 5 are the ancestors of node 10.

o Descendant: The immediate successor of the given node is known as a descendant of a

node. In the above figure, 10 is the descendant of node 5.

Properties of Tree data structure

o Recursive data structure: The tree is also known as a recursive data structure. A tree can

be defined as recursively because the distinguished node in a tree data structure is known

as a root node. The root node of the tree contains a link to all the roots of its subtrees. The

left subtree is shown in the yellow color in the below figure, and the right subtree is shown

in the red color. The left subtree can be further split into subtrees shown in three different

colors. Recursion means reducing something in a self-similar manner. So, this recursive

property of the tree data structure is implemented in various applications.

o Number of edges: If there are n nodes, then there would n-1 edges. Each arrow in the

structure represents the link or path. Each node, except the root node, will have atleast one

incoming link known as an edge. There would be one link for the parent-child relationship.

o Depth of node x: The depth of node x can be defined as the length of the path from the root

to the node x. One edge contributes one-unit length in the path. So, the depth of node x can

also be defined as the number of edges between the root node and the node x. The root

node has 0 depth.

o Height of node x: The height of node x can be defined as the longest path from the node x to

the leaf node.

Based on the properties of the Tree data structure, trees are classified into various categories.

Implementation of Tree

The tree data structure can be created by creating the nodes dynamically with the help of the
pointers. The tree in the memory can be represented as shown below:

The above figure shows the representation of the tree data structure in the memory. In the above
structure, the node contains three fields. The second field stores the data; the first field stores the
address of the left child, and the third field stores the address of the right child.

In programming, the structure of a node can be defined as:

1. struct node

2. {

3. int data;

4. struct node *left;

5. struct node *right;

6. }

The above structure can only be defined for the binary trees because the binary tree can have
utmost two children, and generic trees can have more than two children. The structure of the node
for generic trees would be different as compared to the binary tree.

Applications of trees

The following are the applications of trees:

o Storing naturally hierarchical data: Trees are used to store the data in the hierarchical

structure. For example, the file system. The file system stored on the disc drive, the file and

folder are in the form of the naturally hierarchical data and stored in the form of trees.

o Organize data: It is used to organize data for efficient insertion, deletion and searching. For

example, a binary tree has a logN time for searching an element.

o Trie: It is a special kind of tree that is used to store the dictionary. It is a fast and efficient

way for dynamic spell checking.

o Heap: It is also a tree data structure implemented using arrays. It is used to implement

priority queues.

o B-Tree and B+Tree: B-Tree and B+Tree are the tree data structures used to implement

indexing in databases.

o Routing table: The tree data structure is also used to store the data in routing tables in the

routers.

Types of Tree data structure

The following are the types of a tree data structure:

o General tree: The general tree is one of the types of tree data structure. In the general tree,

a node can have either 0 or maximum n number of nodes. There is no restriction imposed

on the degree of the node (the number of nodes that a node can contain). The topmost node

in a general tree is known as a root node. The children of the parent node are known

as subtrees.

There can be n number of subtrees in a general tree. In the general tree, the subtrees are

unordered as the nodes in the subtree cannot be ordered.

Every non-empty tree has a downward edge, and these edges are connected to the nodes

known as child nodes. The root node is labeled with level 0. The nodes that have the same

parent are known as siblings.

o Binary tree: Here, binary name itself suggests two numbers, i.e., 0 and 1. In a binary tree,

each node in a tree can have utmost two child nodes. Here, utmost means whether the node

has 0 nodes, 1 node or 2 nodes.

https://www.javatpoint.com/binary-tree

To know more about the binary tree, click on the link given below:

https://www.javatpoint.com/binary-tree

o Binary Search tree: Binary search tree is a non-linear data structure in which one node is

connected to n number of nodes. It is a node-based data structure. A node can be

represented in a binary search tree with three fields, i.e., data part, left-child, and right-

child. A node can be connected to the utmost two child nodes in a binary search tree, so the

node contains two pointers (left child and right child pointer).

Every node in the left subtree must contain a value less than the value of the root node, and

the value of each node in the right subtree must be bigger than the value of the root node.

A node can be created with the help of a user-defined data type known as struct, as shown below:

1. struct node

2. {

3. int data;

4. struct node *left;

5. struct node *right;

6. }

https://www.javatpoint.com/binary-tree
https://www.javatpoint.com/binary-search-tree

The above is the node structure with three fields: data field, the second field is the left pointer of the
node type, and the third field is the right pointer of the node type.

o AVL tree

It is one of the types of the binary tree, or we can say that it is a variant of the binary search tree.
AVL tree satisfies the property of the binary tree as well as of the binary search tree. It is a self-
balancing binary search tree that was invented by Adelson Velsky Lindas. Here, self-balancing
means that balancing the heights of left subtree and right subtree. This balancing is measured in
terms of the balancing factor.

We can consider a tree as an AVL tree if the tree obeys the binary search tree as well as a balancing
factor. The balancing factor can be defined as the difference between the height of the left subtree
and the height of the right subtree. The balancing factor's value must be either 0, -1, or 1;
therefore, each node in the AVL tree should have the value of the balancing factor either as 0, -1, or
1.

To know more about the AVL tree, click on the link given below:

o Red-Black Tree

The red-Black tree is the binary search tree. The prerequisite of the Red-Black tree is that we
should know about the binary search tree. In a binary search tree, the value of the left-subtree
should be less than the value of that node, and the value of the right-subtree should be greater than
the value of that node. As we know that the time complexity of binary search in the average case is
log2n, the best case is O(1), and the worst case is O(n).

When any operation is performed on the tree, we want our tree to be balanced so that all the
operations like searching, insertion, deletion, etc., take less time, and all these operations will have
the time complexity of log2n.

The red-black tree is a self-balancing binary search tree. AVL tree is also a height balancing binary
search tree then why do we require a Red-Black tree. In the AVL tree, we do not know how many
rotations would be required to balance the tree, but in the Red-black tree, a maximum of 2 rotations
are required to balance the tree. It contains one extra bit that represents either the red or black
color of a node to ensure the balancing of the tree.

o Splay tree

The splay tree data structure is also binary search tree in which recently accessed element is placed
at the root position of tree by performing some rotation operations. Here, splaying means the
recently accessed node. It is a self-balancing binary search tree having no explicit balance
condition like AVL tree.

It might be a possibility that height of the splay tree is not balanced, i.e., height of both left and right
subtrees may differ, but the operations in splay tree takes order of logN time where n is the
number of nodes.

https://www.javatpoint.com/avl-tree
https://www.javatpoint.com/red-black-tree

Splay tree is a balanced tree but it cannot be considered as a height balanced tree because after
each operation, rotation is performed which leads to a balanced tree.

o Treap

Treap data structure came from the Tree and Heap data structure. So, it comprises the properties of
both Tree and Heap data structures. In Binary search tree, each node on the left subtree must be
equal or less than the value of the root node and each node on the right subtree must be equal or
greater than the value of the root node. In heap data structure, both right and left subtrees contain
larger keys than the root; therefore, we can say that the root node contains the lowest value.

In treap data structure, each node has both key and priority where key is derived from the Binary
search tree and priority is derived from the heap data structure.

The Treap data structure follows two properties which are given below:

o Right child of a node>=current node and left child of a node <=current node (binary tree)

o Children of any subtree must be greater than the node (heap)

o B-tree

B-tree is a balanced m-way tree where m defines the order of the tree. Till now, we read that the
node contains only one key but b-tree can have more than one key, and more than 2 children. It
always maintains the sorted data. In binary tree, it is possible that leaf nodes can be at different
levels, but in b-tree, all the leaf nodes must be at the same level.

If order is m then node has the following properties:

o Each node in a b-tree can have maximum m children

o For minimum children, a leaf node has 0 children, root node has minimum 2 children and

internal node has minimum ceiling of m/2 children. For example, the value of m is 5 which

means that a node can have 5 children and internal nodes can contain maximum 3 children.

o Each node has maximum (m-1) keys.

The root node must contain minimum 1 key and all other nodes must contain atleast ceiling of m/2
minus 1 keys.

Binary Tree

The Binary tree means that the node can have maximum two children. Here, binary name itself
suggests that 'two'; therefore, each node can have either 0, 1 or 2 children.

Let's understand the binary tree through an example.

https://www.javatpoint.com/b-tree

The above tree is a binary tree because each node contains the utmost two children. The logical
representation of the above tree is given below:

In the above tree, node 1 contains two pointers, i.e., left and a right pointer pointing to the left and
right node respectively. The node 2 contains both the nodes (left and right node); therefore, it has
two pointers (left and right). The nodes 3, 5 and 6 are the leaf nodes, so all these nodes
contain NULL pointer on both left and right parts.

Properties of Binary Tree

o At each level of i, the maximum number of nodes is 2i.

o The height of the tree is defined as the longest path from the root node to the leaf node. The

tree which is shown above has a height equal to 3. Therefore, the maximum number of

nodes at height 3 is equal to (1+2+4+8) = 15. In general, the maximum number of nodes

possible at height h is (20 + 21 + 22+….2h) = 2h+1 -1.

o The minimum number of nodes possible at height h is equal to h+1.

o If the number of nodes is minimum, then the height of the tree would be maximum.

Conversely, if the number of nodes is maximum, then the height of the tree would be

minimum.

If there are 'n' number of nodes in the binary tree.

The minimum height can be computed as:

As we know that,

n = 2h+1 -1

n+1 = 2h+1

Taking log on both the sides,

log2(n+1) = log2(2h+1)

log2(n+1) = h+1

h = log2(n+1) - 1

The maximum height can be computed as:

As we know that,

n = h+1

h= n-1

Types of Binary Tree

There are four types of Binary tree:

o Full/ proper/ strict Binary tree

o Complete Binary tree

o Perfect Binary tree

o Degenerate Binary tree

o Balanced Binary tree

1. Full/ proper/ strict Binary tree

The full binary tree is also known as a strict binary tree. The tree can only be considered as the full
binary tree if each node must contain either 0 or 2 children. The full binary tree can also be defined
as the tree in which each node must contain 2 children except the leaf nodes.

Let's look at the simple example of the Full Binary tree.

In the above tree, we can observe that each node is either containing zero or two children;
therefore, it is a Full Binary tree.

Properties of Full Binary Tree

o The number of leaf nodes is equal to the number of internal nodes plus 1. In the above

example, the number of internal nodes is 5; therefore, the number of leaf nodes is equal to 6.

o The maximum number of nodes is the same as the number of nodes in the binary tree, i.e.,

2h+1 -1.

o The minimum number of nodes in the full binary tree is 2*h-1.

o The minimum height of the full binary tree is log2(n+1) - 1.

o The maximum height of the full binary tree can be computed as:

n= 2*h - 1

n+1 = 2*h

h = n+1/2

Complete Binary Tree

The complete binary tree is a tree in which all the nodes are completely filled except the last level.
In the last level, all the nodes must be as left as possible. In a complete binary tree, the nodes should
be added from the left.

Let's create a complete binary tree.

The above tree is a complete binary tree because all the nodes are completely filled, and all the
nodes in the last level are added at the left first.

Properties of Complete Binary Tree

o The maximum number of nodes in complete binary tree is 2h+1 - 1.

o The minimum number of nodes in complete binary tree is 2h.

o The minimum height of a complete binary tree is log2(n+1) - 1.

o The maximum height of a complete binary tree is

Perfect Binary Tree

A tree is a perfect binary tree if all the internal nodes have 2 children, and all the leaf nodes are at
the same level.

Let's look at a simple example of a perfect binary tree.

The below tree is not a perfect binary tree because all the leaf nodes are not at the same level.

Note: All the perfect binary trees are the complete binary trees as well as the full binary tree, but vice

versa is not true, i.e., all complete binary trees and full binary trees are the perfect binary trees.

Degenerate Binary Tree

The degenerate binary tree is a tree in which all the internal nodes have only one children.

Let's understand the Degenerate binary tree through examples.

The above tree is a degenerate binary tree because all the nodes have only one child. It is also
known as a right-skewed tree as all the nodes have a right child only.

The above tree is also a degenerate binary tree because all the nodes have only one child. It is also
known as a left-skewed tree as all the nodes have a left child only.

Balanced Binary Tree

The balanced binary tree is a tree in which both the left and right trees differ by atmost 1. For
example, AVL and Red-Black trees are balanced binary tree.

Let's understand the balanced binary tree through examples.

The above tree is a balanced binary tree because the difference between the left subtree and right
subtree is zero.

The above tree is not a balanced binary tree because the difference between the left subtree and the
right subtree is greater than 1.

Binary Tree Implementation

A Binary tree is implemented with the help of pointers. The first node in the tree is represented by
the root pointer. Each node in the tree consists of three parts, i.e., data, left pointer and right
pointer. To create a binary tree, we first need to create the node. We will create the node of user-
defined as shown below:

1. struct node

2. {

3. int data,

4. struct node *left, *right;

5. }

In the above structure, data is the value, left pointer contains the address of the left node,
and right pointer contains the address of the right node.

Binary Tree program in C

1. #include<stdio.h>

2. struct node

3. {

4. int data;

5. struct node *left, *right;

6. }

7. void main()

8. {

9. struct node *root;

10. root = create();

11. }

12. struct node *create()

13. {

14. struct node *temp;

15. int data;

16. temp = (struct node *)malloc(sizeof(struct node));

17. printf("Press 0 to exit");

18. printf("\nPress 1 for new node");

19. printf("Enter your choice : ");

20. scanf("%d", &choice);

21. if(choice==0)

22. {

23. return 0;

24. }

25. else

26. {

27. printf("Enter the data:");

28. scanf("%d", &data);

29. temp->data = data;

30. printf("Enter the left child of %d", data);

31. temp->left = create();

32. printf("Enter the right child of %d", data);

33. temp->right = create();

34. return temp;

35. }

36. }

The above code is calling the create() function recursively and creating new node on each recursive
call. When all the nodes are created, then it forms a binary tree structure. The process of visiting the
nodes is known as tree traversal. There are three types traversals used to visit a node:

o Inorder traversal

o Preorder traversal

o Postorder traversal

Binary Search tree

In this article, we will discuss the Binary search tree. This article will be very helpful and
informative to the students with technical background as it is an important topic of their course.

Before moving directly to the binary search tree, let's first see a brief description of the tree.

What is a tree?

A tree is a kind of data structure that is used to represent the data in hierarchical form. It can be
defined as a collection of objects or entities called as nodes that are linked together to simulate a
hierarchy. Tree is a non-linear data structure as the data in a tree is not stored linearly or
sequentially.

Now, let's start the topic, the Binary Search tree.

What is a Binary Search tree?

A binary search tree follows some order to arrange the elements. In a Binary search tree, the value
of left node must be smaller than the parent node, and the value of right node must be greater than
the parent node. This rule is applied recursively to the left and right subtrees of the root.

Let's understand the concept of Binary search tree with an example.

In the above figure, we can observe that the root node is 40, and all the nodes of the left subtree are
smaller than the root node, and all the nodes of the right subtree are greater than the root node.

Similarly, we can see the left child of root node is greater than its left child and smaller than its right
child. So, it also satisfies the property of binary search tree. Therefore, we can say that the tree in
the above image is a binary search tree.

Suppose if we change the value of node 35 to 55 in the above tree, check whether the tree will be
binary search tree or not.

In the above tree, the value of root node is 40, which is greater than its left child 30 but smaller than
right child of 30, i.e., 55. So, the above tree does not satisfy the property of Binary search tree.
Therefore, the above tree is not a binary search tree.

Advantages of Binary search tree

o Searching an element in the Binary search tree is easy as we always have a hint that which

subtree has the desired element.

o As compared to array and linked lists, insertion and deletion operations are faster in BST.

Example of creating a binary search tree

Now, let's see the creation of binary search tree using an example.

Suppose the data elements are - 45, 15, 79, 90, 10, 55, 12, 20, 50

o First, we have to insert 45 into the tree as the root of the tree.

o Then, read the next element; if it is smaller than the root node, insert it as the root of the left

subtree, and move to the next element.

o Otherwise, if the element is larger than the root node, then insert it as the root of the right

subtree.

Now, let's see the process of creating the Binary search tree using the given data element. The
process of creating the BST is shown below -

Step 1 - Insert 45.

Step 2 - Insert 15.

As 15 is smaller than 45, so insert it as the root node of the left subtree.

Step 3 - Insert 79.

As 79 is greater than 45, so insert it as the root node of the right subtree.

Step 4 - Insert 90.

90 is greater than 45 and 79, so it will be inserted as the right subtree of 79.

Step 5 - Insert 10.

10 is smaller than 45 and 15, so it will be inserted as a left subtree of 15.

Step 6 - Insert 55.

55 is larger than 45 and smaller than 79, so it will be inserted as the left subtree of 79.

Step 7 - Insert 12.

12 is smaller than 45 and 15 but greater than 10, so it will be inserted as the right subtree of 10.

Step 8 - Insert 20.

20 is smaller than 45 but greater than 15, so it will be inserted as the right subtree of 15.

Step 9 - Insert 50.

50 is greater than 45 but smaller than 79 and 55. So, it will be inserted as a left subtree of 55.

Now, the creation of binary search tree is completed. After that, let's move towards the operations
that can be performed on Binary search tree.

We can perform insert, delete and search operations on the binary search tree.

Let's understand how a search is performed on a binary search tree.

Searching in Binary search tree

Searching means to find or locate a specific element or node in a data structure. In Binary search
tree, searching a node is easy because elements in BST are stored in a specific order. The steps of
searching a node in Binary Search tree are listed as follows -

1. First, compare the element to be searched with the root element of the tree.

2. If root is matched with the target element, then return the node's location.

3. If it is not matched, then check whether the item is less than the root element, if it is smaller

than the root element, then move to the left subtree.

4. If it is larger than the root element, then move to the right subtree.

5. Repeat the above procedure recursively until the match is found.

6. If the element is not found or not present in the tree, then return NULL.

Now, let's understand the searching in binary tree using an example. We are taking the binary
search tree formed above. Suppose we have to find node 20 from the below tree.

Step1:

Step2:

Step3:

Now, let's see the algorithm to search an element in the Binary search tree.

Algorithm to search an element in Binary search tree

1. Search (root, item)

2. Step 1 - if (item = root → data) or (root = NULL)

3. return root

4. else if (item < root → data)

5. return Search(root → left, item)

6. else

7. return Search(root → right, item)

8. END if

9. Step 2 - END

Now let's understand how the deletion is performed on a binary search tree. We will also see an
example to delete an element from the given tree.

Deletion in Binary Search tree

In a binary search tree, we must delete a node from the tree by keeping in mind that the property of
BST is not violated. To delete a node from BST, there are three possible situations occur -

o The node to be deleted is the leaf node, or,

o The node to be deleted has only one child, and,

o The node to be deleted has two children

We will understand the situations listed above in detail.

When the node to be deleted is the leaf node

It is the simplest case to delete a node in BST. Here, we have to replace the leaf node with NULL and
simply free the allocated space.

We can see the process to delete a leaf node from BST in the below image. In below image, suppose
we have to delete node 90, as the node to be deleted is a leaf node, so it will be replaced with NULL,
and the allocated space will free.

When the node to be deleted has only one child

In this case, we have to replace the target node with its child, and then delete the child node. It
means that after replacing the target node with its child node, the child node will now contain the
value to be deleted. So, we simply have to replace the child node with NULL and free up the
allocated space.

We can see the process of deleting a node with one child from BST in the below image. In the below
image, suppose we have to delete the node 79, as the node to be deleted has only one child, so it will
be replaced with its child 55.

So, the replaced node 79 will now be a leaf node that can be easily deleted.

When the node to be deleted has two children

This case of deleting a node in BST is a bit complex among other two cases. In such a case, the steps
to be followed are listed as follows -

o First, find the inorder successor of the node to be deleted.

o After that, replace that node with the inorder successor until the target node is placed at the

leaf of tree.

o And at last, replace the node with NULL and free up the allocated space.

The inorder successor is required when the right child of the node is not empty. We can obtain the
inorder successor by finding the minimum element in the right child of the node.

We can see the process of deleting a node with two children from BST in the below image. In the
below image, suppose we have to delete node 45 that is the root node, as the node to be deleted has
two children, so it will be replaced with its inorder successor. Now, node 45 will be at the leaf of the
tree so that it can be deleted easily.

Now let's understand how insertion is performed on a binary search tree.

Insertion in Binary Search tree

A new key in BST is always inserted at the leaf. To insert an element in BST, we have to start
searching from the root node; if the node to be inserted is less than the root node, then search for
an empty location in the left subtree. Else, search for the empty location in the right subtree and
insert the data. Insert in BST is similar to searching, as we always have to maintain the rule that the
left subtree is smaller than the root, and right subtree is larger than the root.

B+ Tree

B+ Tree is an extension of B Tree which allows efficient insertion, deletion and search operations.

In B Tree, Keys and records both can be stored in the internal as well as leaf nodes. Whereas, in B+
tree, records (data) can only be stored on the leaf nodes while internal nodes can only store the key
values.

The leaf nodes of a B+ tree are linked together in the form of a singly linked lists to make the search
queries more efficient.

B+ Tree are used to store the large amount of data which can not be stored in the main memory.
Due to the fact that, size of main memory is always limited, the internal nodes (keys to access
records) of the B+ tree are stored in the main memory whereas, leaf nodes are stored in the
secondary memory.

The internal nodes of B+ tree are often called index nodes. A B+ tree of order 3 is shown in the
following figure.

Advantages of B+ Tree

1. Records can be fetched in equal number of disk accesses.

2. Height of the tree remains balanced and less as compare to B tree.

3. We can access the data stored in a B+ tree sequentially as well as directly.

4. Keys are used for indexing.

5. Faster search queries as the data is stored only on the leaf nodes.

B Tree VS B+ Tree

SN B Tree B+ Tree

1 Search keys can not be repeatedly stored. Redundant search keys can be present.

2 Data can be stored in leaf nodes as well as
internal nodes

Data can only be stored on the leaf nodes.

3 Searching for some data is a slower process
since data can be found on internal nodes as
well as on the leaf nodes.

Searching is comparatively faster as data
can only be found on the leaf nodes.

4 Deletion of internal nodes are so complicated
and time consuming.

Deletion will never be a complexed
process since element will always be
deleted from the leaf nodes.

5 Leaf nodes can not be linked together. Leaf nodes are linked together to make the
search operations more efficient.

Insertion in B+ Tree

Step 1: Insert the new node as a leaf node

Step 2: If the leaf doesn't have required space, split the node and copy the middle node to the next
index node.

Step 3: If the index node doesn't have required space, split the node and copy the middle element
to the next index page.

Example :

Insert the value 195 into the B+ tree of order 5 shown in the following figure.

195 will be inserted in the right sub-tree of 120 after 190. Insert it at the desired position.

The node contains greater than the maximum number of elements i.e. 4, therefore split it and place
the median node up to the parent.

Now, the index node contains 6 children and 5 keys which violates the B+ tree properties, therefore
we need to split it, shown as follows.

Graph Introduction:

 A Graph is a non-linear data structure consisting of vertices and edges. The vertices are
sometimes also referred to as nodes and the edges are lines or arcs that connect any two nodes in
the graph. More formally a Graph is composed of a set of vertices(V) and a set of edges(E). The
graph is denoted by G(V, E).
Graph data structures are a powerful tool for representing and analyzing complex relationships
between objects or entities. They are particularly useful in fields such as social network analysis,
recommendation systems, and computer networks. In the field of sports data science, graph data
structures can be used to analyze and understand the dynamics of team performance and player
interactions on the field.

Imagine a game of football as a web of connections, where players are the nodes and their
interactions on the field are the edges. This web of connections is exactly what a graph data
structure represents, and it’s the key to unlocking insights into team performance and player
dynamics in sports.

Components of a Graph
 Vertices: Vertices are the fundamental units of the graph. Sometimes, vertices are also known

as vertex or nodes. Every node/vertex can be labeled or unlabelled.
 Edges: Edges are drawn or used to connect two nodes of the graph. It can be ordered pair of

nodes in a directed graph. Edges can connect any two nodes in any possible way. There are no
rules. Sometimes, edges are also known as arcs. Every edge can be labelled/unlabelled.

Types Of Graph
1. Null Graph
A graph is known as a null graph if there are no edges in the graph.

2. Trivial Graph
Graph having only a single vertex, it is also the smallest graph possible.

https://www.geeksforgeeks.org/graph-data-structure-and-algorithms/
https://media.geeksforgeeks.org/wp-content/uploads/20200630111809/graph18.jpg

3. Undirected Graph
A graph in which edges do not have any direction. That is the nodes are unordered pairs in the
definition of every edge.

4. Directed Graph
A graph in which edge has direction. That is the nodes are ordered pairs in the definition of every
edge.

5. Connected Graph

https://media.geeksforgeeks.org/wp-content/uploads/20200630113942/null_graph_trivial.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20200630114438/directed.jpg

The graph in which from one node we can visit any other node in the graph is known as a
connected graph.

6. Disconnected Graph
The graph in which at least one node is not reachable from a node is known as a disconnected
graph.

7. Regular Graph
The graph in which the degree of every vertex is equal to K is called K regular graph.

8. Complete Graph
The graph in which from each node there is an edge to each other node.

.

https://media.geeksforgeeks.org/wp-content/uploads/20200630121400/connected1.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20200630122008/regular.jpg

9. Cycle Graph
The graph in which the graph is a cycle in itself, the degree of each vertex is 2.

10. Cyclic Graph
A graph containing at least one cycle is known as a Cyclic graph.

11. Directed Acyclic Graph
A Directed Graph that does not contain any cycle.

12. Bipartite Graph
A graph in which vertex can be divided into two sets such that vertex in each set does not contain
any edge between them.

https://media.geeksforgeeks.org/wp-content/uploads/20200630122225/cyclic.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20200630122552/bipartite1.jpg

13. Weighted Graph
 A graph in which the edges are already specified with suitable weight is known as a weighted

graph.
 Weighted graphs can be further classified as directed weighted graphs and undirected

weighted graphs.

Tree v/s Graph
Trees are the restricted types of graphs, just with some more rules. Every tree will always be a
graph but not all graphs will be trees. Linked List, Trees, and Heaps all are special cases of
graphs.

Representation of Graphs
There are two ways to store a graph:

 Adjacency Matrix
 Adjacency List
Adjacency Matrix
In this method, the graph is stored in the form of the 2D matrix where rows and columns denote
vertices. Each entry in the matrix represents the weight of the edge between those vertices.

https://www.geeksforgeeks.org/data-structures/linked-list/
https://www.geeksforgeeks.org/binary-tree-data-structure/
https://www.geeksforgeeks.org/heap-data-structure/
https://media.geeksforgeeks.org/wp-content/uploads/20200630123458/tree_vs_graph.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20200630124726/adjacency_mat1.jpg

Adjacency List
This graph is represented as a collection of linked lists. There is an array of pointer which points
to the edges connected to that vertex.

Comparison between Adjacency Matrix and Adjacency List
When the graph contains a large number of edges then it is good to store it as a matrix because
only some entries in the matrix will be empty. An algorithm such as Prim’s and Dijkstra adjacency
matrix is used to have less complexity.

Action Adjacency Matrix Adjacency List

Adding Edge O(1) O(1)

Removing an edge O(1) O(N)

Initializing O(N*N) O(N)

Basic Operations on Graphs
Below are the basic operations on the graph:

 Insertion of Nodes/Edges in the graph – Insert a node into the graph.
 Deletion of Nodes/Edges in the graph – Delete a node from the graph.

https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://media.geeksforgeeks.org/wp-content/uploads/20200630125356/adjacency_list.jpg

 Searching on Graphs – Search an entity in the graph.
 Traversal of Graphs – Traversing all the nodes in the graph.
Usage of graphs
 Maps can be represented using graphs and then can be used by computers to provide various

services like the shortest path between two cities.
 When various tasks depend on each other then this situation can be represented using a

Directed Acyclic graph and we can find the order in which tasks can be performed using
topological sort.

 State Transition Diagram represents what can be the legal moves from current states. In-game
of tic tac toe this can be used.

Real-Life Applications of Graph

Following are the real-life applications:
 Graph data structures can be used to represent the interactions between players on a team,

such as passes, shots, and tackles. Analyzing these interactions can provide insights into team
dynamics and areas for improvement.

 Commonly used to represent social networks, such as networks of friends on social media.
 Graphs can be used to represent the topology of computer networks, such as the connections

between routers and switches.
 Graphs are used to represent the connections between different places in a transportation

network, such as roads and airports.
 Neural Networks: Vertices represent neurons and edges represent the synapses between

them. Neural networks are used to understand how our brain works and how connections
change when we learn. The human brain has about 10^11 neurons and close to 10^15
synapses.

https://media.geeksforgeeks.org/wp-content/uploads/20200630130949/applications_graph.jpg

 Compilers: Graphs are used extensively in compilers. They can be used for type inference, for
so-called data flow analysis, register allocation, and many other purposes. They are also used
in specialized compilers, such as query optimization in database languages.

 Robot planning: Vertices represent states the robot can be in and the edges the possible
transitions between the states. Such graph plans are used, for example, in planning paths for
autonomous vehicles.

When to use Graphs:
 When you need to represent and analyze the relationships between different objects or

entities.
 When you need to perform network analysis.
 When you need to identify key players, influencers or bottlenecks in a system.
 When you need to make predictions or recommendations.
 Modeling networks: Graphs are commonly used to model various types of networks, such as

social networks, transportation networks, and computer networks. In these cases, vertices
represent nodes in the network, and edges represent the connections between them.

 Finding paths: Graphs are often used in algorithms for finding paths between two vertices in a
graph, such as shortest path algorithms. For example, graphs can be used to find the fastest
route between two cities on a map or the most efficient way to travel between multiple
destinations.

 Representing data relationships: Graphs can be used to represent relationships between data
objects, such as in a database or data structure. In these cases, vertices represent data objects,
and edges represent the relationships between them.

 Analyzing data: Graphs can be used to analyze and visualize complex data, such as in data
clustering algorithms or machine learning models. In these cases, vertices represent data
points, and edges represent the similarities or differences between them.

However, there are also some scenarios where using a graph may not be the best approach. For
example, if the data being represented is very simple or structured, a graph may be overkill and a
simpler data structure may suffice. Additionally, if the graph is very large or complex, it may be
difficult or computationally expensive to analyze or traverse, which could make using a graph less
desirable.

Advantages and Disadvantages:

Advantages:

1. Graphs are a versatile data structure that can be used to represent a wide range of
relationships and data structures.

2. They can be used to model and solve a wide range of problems, including pathfinding, data
clustering, network analysis, and machine learning.

3. Graph algorithms are often very efficient and can be used to solve complex problems quickly
and effectively.

4. Graphs can be used to represent complex data structures in a simple and intuitive way,
making them easier to understand and analyze.

Disadvantages:

1. Graphs can be complex and difficult to understand, especially for people who are not familiar
with graph theory or related algorithms.

2. Creating and manipulating graphs can be computationally expensive, especially for very large
or complex graphs.

3. Graph algorithms can be difficult to design and implement correctly, and can be prone to bugs
and errors.

4. Graphs can be difficult to visualize and analyze, especially for very large or complex graphs,
which can make it challenging to extract meaningful insights from the data.

Graph and its representations
Graph is a data structure that consists of the following two components:

 A finite set of vertices also called nodes.
 A finite set of ordered pair of the form (u, v) called edge. The pair is ordered because (u, v) is not

the same as (v, u) in the case of a directed graph(di-graph). The pair of the form (u, v) indicates
that there is an edge from vertex u to vertex v. The edges may contain weight/value/cost.

Following is an example of an undirected graph with 5 vertices.

Example of undirected graph with 5 vertices

Graphs are used to represent many real-life applications: Graphs are used to represent networks.
The networks may include paths in a city or telephone network or circuit network. Graphs are also
used in social networks like linkedIn, Facebook. For example, in Facebook, each person is
represented with a vertex(or node). Each node is a structure and contains information like person
id, name, gender, and locale. See this for more applications of graph.
In computer science, a graph is a data structure that is used to represent connections or
relationships between objects. A graph consists of a set of vertices (also known as nodes) and a set
of edges (also known as arcs) that connect the vertices. The vertices can represent anything from
cities in a map to web pages in a network, and the edges can represent the relationships between
them, such as roads or links.

A graph can be visualized as a collection of points (vertices) connected by lines (edges), where each
vertex represents a point of interest and each edge represents a connection between two points.
The edges can be directed or undirected, meaning they can either have a specific direction or be
bidirectional. For example, a map of a city may have directed edges that represent the direction of
one-way streets, while a social network may have undirected edges that represent friendships
between individuals.

Representations of Graphs:

The following two are the most commonly used representations of a graph.

 Adjacency Matrix
 Adjacency List

http://en.wikipedia.org/wiki/Graph_theory#Applications

There are other representations also like, Incidence Matrix and Incidence List. The choice of graph
representation is situation-specific. It totally depends on the type of operations to be performed
and the ease of use.

Adjacency List:

An adjacency list is a simple way to represent a graph as a list of vertices, where each vertex has a
list of its adjacent vertices. Here's an example of an adjacency list for an undirected graph with 4
vertices:

makefile

Copy code

0: 1 3

1: 0 2

2: 1 3

3: 0 2

In this example, vertex 0 is adjacent to vertices 1 and 3, vertex 1 is adjacent to vertices 0 and 2, and
so on.

Adjacency Matrix:

An adjacency matrix is a two-dimensional array that represents the graph by storing a 1 at position
(i,j) if there is an edge from vertex i to vertex j, and 0 otherwise. Here's an example of an adjacency
matrix for the same undirected graph:

Copy code

 0 1 2 3

0 0 1 0 1

1 1 0 1 0

2 0 1 0 1

3 1 0 1 0

In this example, there is an edge from vertex 0 to vertex 1 (represented by a 1 in position (0,1)), an
edge from vertex 1 to vertex 0 (represented by a 1 in position (1,0)), and so on.

Incidence Matrix:

An incidence matrix is a two-dimensional array that represents the graph by storing a 1 at position
(i,j) if vertex i is incident on edge j, and 0 otherwise. Here's an example of an incidence matrix for
the same undirected graph:

Copy code

 0 1 2 3

0 1 1 0 1

1 1 0 1 0

2 0 1 1 0

3 1 0 0 1

In this example, vertex 0 is incident on edges 0, 1, and 3 (represented by a 1 in positions (0,0), (0,1),
and (0,3)), vertex 1 is incident on edges 0, 2 (represented by a 1 in positions (1,0) and (1,2)), and so
on.

Each representation has its own advantages and disadvantages depending on the application, and
choosing the right representation can have a significant impact on the performance of graph
algorithms.

Adjacency Matrix:

Adjacency Matrix is a 2D array of size V x V where V is the number of vertices in a graph. Let the 2D
array be adj[][], a slot adj[i][j] = 1 indicates that there is an edge from vertex i to vertex j. The
adjacency matrix for an undirected graph is always symmetric.
Adjacency Matrix is also used to represent weighted graphs. If adj[i][j] = w, then there is an edge from
vertex i to vertex j with weight w.
We follow the below pattern to use the adjacency matrix in code:

 In the case of an undirected graph, we need to show that there is an edge from vertex i to
vertex j and vice versa. In code, we assign adj[i][j] = 1 and adj[j][i] = 1.

 In the case of a directed graph, if there is an edge from vertex i to vertex j then we just
assign adj[i][j]=1.\

See the undirected graph shown below:

Example of undirected graph with 5 vertices

The adjacency matrix for the above example graph is:

Adjacency matrix representation

Advantages of Adjacency Matrix:
 Representation is easier to implement and follow.
 Removing an edge takes O(1) time.
 Queries like whether there is an edge from vertex ‘u’ to vertex ‘v’ are efficient and can be done

O(1).
Disadvantages of Adjacency Matrix:
 Consumes more space O(V2). Even if the graph is sparse(contains less number of edges), it

consumes the same space.
 Adding a vertex takes O(V2) time. Computing all neighbors of a vertex takes O(V) time (Not

efficient).
Implementation of Adjacency Matrix:

 C
 C++
 Java

 Python3
 C#
 Javascript

if __name__ == '__main__':

 # n is the number of vertices

 # m is the number of edges

 n, m = map(int, input().split())

 adjMat = [[0 for i in range(n)]for j in range(n)]

 for i in range(n):

 u, v = map(int, input().split())

 adjMat[u][v] = 1

 adjMat[v][u] = 1

 # for a directed graph with an edge

 # pointing from u to v,we just assign

 # adjMat[u][v] as 1

Adjacency List:

An array of linked lists is used. The size of the array is equal to the number of vertices. Let the array be
an array[]. An entry array[i] represents the linked list of vertices adjacent to the ith vertex.
This representation can also be used to represent a weighted graph. The weights of edges can be
represented as lists of pairs.

Recommended Problem

Print adjacency list

Solve Problem

https://practice.geeksforgeeks.org/problems/print-adjacency-list-1587115620/1?utm_source=gfg&utm_medium=article&utm_campaign=bottom_sticky_on_article
https://practice.geeksforgeeks.org/problems/print-adjacency-list-1587115620/1?utm_source=gfg&utm_medium=article&utm_campaign=bottom_sticky_on_article

Consider the following graph:

Example of undirected graph with 5 vertices

Following is the adjacency list representation of the above graph.

Adjacency List representation of the above graph

Advantages of Adjacency List:
 Saves space. Space taken is O(|V|+|E|). In the worst case, there can be C(V, 2) number of edges in

a graph thus consuming O(V2) space.
 Adding a vertex is easier.
 Computing all neighbors of a vertex takes optimal time.
Disadvantages of Adjacency List:
Queries like whether there is an edge from vertex u to vertex v are not efficient and can be done
O(V).

Implementation of Adjacency List:
Note that in the below implementation, we use dynamic arrays (vector in C++/ArrayList in Java) to
represent adjacency lists instead of the linked list. The vector implementation has the advantage of

cache friendliness.

Output

 Adjacency list of vertex 0

 head -> 1-> 4

 Adjacency list of vertex 1

 head -> 0-> 2-> 3-> 4

 Adjacency list of vertex 2

 head -> 1-> 3

 Adjacency list of vertex 3

 head -> 1-> 2-> 4

 Adjacency list of vertex 4

 head -> 0-> 1-> 3

Breadth First Search or BFS for a Graph

 The Breadth First Search (BFS) algorithm is used to search a graph data structure for a node that
meets a set of criteria. It starts at the root of the graph and visits all nodes at the current depth level
before moving on to the nodes at the next depth level.
Relation between BFS for Graph and Tree traversal:
Breadth-First Traversal (or Search) for a graph is similar to the Breadth-First Traversal of a tree.
The only catch here is, that, unlike trees, graphs may contain cycles, so we may come to the same
node again. To avoid processing a node more than once, we divide the vertices into two categories:

 Visited and
 Not visited.
A boolean visited array is used to mark the visited vertices. For simplicity, it is assumed that all
vertices are reachable from the starting vertex. BFS uses a queue data structure for traversal.
How does BFS work?
Starting from the root, all the nodes at a particular level are visited first and then the nodes of the
next level are traversed till all the nodes are visited.

To do this a queue is used. All the adjacent unvisited nodes of the current level are pushed into the
queue and the nodes of the current level are marked visited and popped from the queue.

Recommended Problem

BFS of graph

http://en.wikipedia.org/wiki/Breadth-first_search
https://www.geeksforgeeks.org/level-order-tree-traversal/
https://www.geeksforgeeks.org/queue-data-structure/
https://practice.geeksforgeeks.org/explore?page=1&category%5b%5d=Graph&sortBy=submissions

Graph

BFS

Illustration:

Let us understand the working of the algorithm with the help of the following example.

Step1: Initially queue and visited arrays are empty.

Queue and visited arrays are empty initially.

Step2: Push node 0 into queue and mark it visited.

https://practice.geeksforgeeks.org/explore?page=1&category%5b%5d=Graph&sortBy=submissions
https://practice.geeksforgeeks.org/explore?page=1&category%5b%5d=Graph&sortBy=submissions
https://practice.geeksforgeeks.org/explore?page=1&category%5b%5d=BFS&sortBy=submissions
https://practice.geeksforgeeks.org/explore?page=1&category%5b%5d=BFS&sortBy=submissions

Push node 0 into queue and mark it visited.

Step 3: Remove node 0 from the front of queue and visit the unvisited neighbours and push them into
queue.

Remove node 0 from the front of queue and visited the unvisited neighbours and push into queue.

Step 4: Remove node 1 from the front of queue and visit the unvisited neighbours and push them into
queue.

Remove node 1 from the front of queue and visited the unvisited neighbours and push

Step 5: Remove node 2 from the front of queue and visit the unvisited neighbours and push them into
queue.

Remove node 2 from the front of queue and visit the unvisited neighbours and push them into queue.

Step 6: Remove node 3 from the front of queue and visit the unvisited neighbours and push them into
queue.
As we can see that every neighbours of node 3 is visited, so move to the next node that are in the front
of the queue.

Remove node 3 from the front of queue and visit the unvisited neighbours and push them into queue.

Steps 7: Remove node 4 from the front of queue and visit the unvisited neighbours and push them into
queue.
As we can see that every neighbours of node 4 are visited, so move to the next node that is in the front
of the queue.

Remove node 4 from the front of queue and visit the unvisited neighbours and push them into queue.

Now, Queue becomes empty, So, terminate these process of iteration.

Implementation of BFS for Graph using Adjacency List:
 C
 C++
 Java

 Python3
 C#
 Javascript

Python3 Program to print BFS traversal

from a given source vertex. BFS(int s)

traverses vertices reachable from s.

from collections import defaultdict

This class represents a directed graph

using adjacency list representation

class Graph:

 # Constructor

 def __init__(self):

 # Default dictionary to store graph

 self.graph = defaultdict(list)

 # Function to add an edge to graph

 def addEdge(self, u, v):

 self.graph[u].append(v)

 # Function to print a BFS of graph

 def BFS(self, s):

 # Mark all the vertices as not visited

 visited = [False] * (max(self.graph) + 1)

 # Create a queue for BFS

 queue = []

 # Mark the source node as

 # visited and enqueue it

 queue.append(s)

 visited[s] = True

 while queue:

 # Dequeue a vertex from

 # queue and print it

 s = queue.pop(0)

 print(s, end=" ")

 # Get all adjacent vertices of the

 # dequeued vertex s.

 # If an adjacent has not been visited,

 # then mark it visited and enqueue it

 for i in self.graph[s]:

 if visited[i] == False:

 queue.append(i)

 visited[i] = True

Driver code

if __name__ == '__main__':

 # Create a graph given in

 # the above diagram

 g = Graph()

 g.addEdge(0, 1)

 g.addEdge(0, 2)

 g.addEdge(1, 2)

 g.addEdge(2, 0)

 g.addEdge(2, 3)

 g.addEdge(3, 3)

 print("Following is Breadth First Traversal"

 " (starting from vertex 2)")

 g.BFS(2)

This code is contributed by Neelam Yadav

Output

Following is Breadth First Traversal (starting from vertex 2)

2 0 3 1

Time Complexity: O(V+E), where V is the number of nodes and E is the number of edges.

DFS (Depth First Search) algorithm

In this article, we will discuss the DFS algorithm in the data structure. It is a recursive algorithm to
search all the vertices of a tree data structure or a graph. The depth-first search (DFS) algorithm
starts with the initial node of graph G and goes deeper until we find the goal node or the node with
no children.

Because of the recursive nature, stack data structure can be used to implement the DFS algorithm.
The process of implementing the DFS is similar to the BFS algorithm.

The step by step process to implement the DFS traversal is given as follows -

1. First, create a stack with the total number of vertices in the graph.

2. Now, choose any vertex as the starting point of traversal, and push that vertex into the

stack.

3. After that, push a non-visited vertex (adjacent to the vertex on the top of the stack) to the

top of the stack.

4. Now, repeat steps 3 and 4 until no vertices are left to visit from the vertex on the stack's top.

5. If no vertex is left, go back and pop a vertex from the stack.

6. Repeat steps 2, 3, and 4 until the stack is empty.

Applications of DFS algorithm

The applications of using the DFS algorithm are given as follows -

o DFS algorithm can be used to implement the topological sorting.

o It can be used to find the paths between two vertices.

o It can also be used to detect cycles in the graph.

o DFS algorithm is also used for one solution puzzles.

o DFS is used to determine if a graph is bipartite or not.

Algorithm

Step 1: SET STATUS = 1 (ready state) for each node in G

Step 2: Push the starting node A on the stack and set its STATUS = 2 (waiting state)

Step 3: Repeat Steps 4 and 5 until STACK is empty

Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed state)

Step 5: Push on the stack all the neighbors of N that are in the ready state (whose STATUS = 1) and
set their STATUS = 2 (waiting state)

[END OF LOOP]

Step 6: EXIT

Pseudocode

1. DFS(G,v) (v is the vertex where the search starts)

2. Stack S := {}; (start with an empty stack)

3. for each vertex u, set visited[u] := false;

4. push S, v;

5. while (S is not empty) do

6. u := pop S;

7. if (not visited[u]) then

8. visited[u] := true;

9. for each unvisited neighbour w of uu

10. push S, w;

11. end if

12. end while

13. END DFS()

Example of DFS algorithm

Now, let's understand the working of the DFS algorithm by using an example. In the example given
below, there is a directed graph having 7 vertices.

Now, let's start examining the graph starting from Node H.

Step 1 - First, push H onto the stack.

1. STACK: H

Step 2 - POP the top element from the stack, i.e., H, and print it. Now, PUSH all the neighbors of H
onto the stack that are in ready state.

1. Print: H]STACK: A

Step 3 - POP the top element from the stack, i.e., A, and print it. Now, PUSH all the neighbors of A
onto the stack that are in ready state.

1. Print: A

2. STACK: B, D

Step 4 - POP the top element from the stack, i.e., D, and print it. Now, PUSH all the neighbors of D
onto the stack that are in ready state.

1. Print: D

2. STACK: B, F

Step 5 - POP the top element from the stack, i.e., F, and print it. Now, PUSH all the neighbors of F
onto the stack that are in ready state.

1. Print: F

2. STACK: B

Step 6 - POP the top element from the stack, i.e., B, and print it. Now, PUSH all the neighbors of B
onto the stack that are in ready state.

1. Print: B

2. STACK: C

Step 7 - POP the top element from the stack, i.e., C, and print it. Now, PUSH all the neighbors of C
onto the stack that are in ready state.

1. Print: C

2. STACK: E, G

Step 8 - POP the top element from the stack, i.e., G and PUSH all the neighbors of G onto the stack
that are in ready state.

1. Print: G

2. STACK: E

Step 9 - POP the top element from the stack, i.e., E and PUSH all the neighbors of E onto the stack
that are in ready state.

1. Print: E

2. STACK:

Now, all the graph nodes have been traversed, and the stack is empty.

Complexity of Depth-first search algorithm

The time complexity of the DFS algorithm is O(V+E), where V is the number of vertices and E is the
number of edges in the graph.

The space complexity of the DFS algorithm is O(V).

Implementation of DFS algorithm

Now, let's see the implementation of DFS algorithm in Java.

In this example, the graph that we are using to demonstrate the code is given as follows -

1. /*A sample java program to implement the DFS algorithm*/

2.

3. import java.util.*;

4.

5. class DFSTraversal {

6. private LinkedList<Integer> adj[]; /*adjacency list representation*/

7. private boolean visited[];

8.

9. /* Creation of the graph */

10. DFSTraversal(int V) /*'V' is the number of vertices in the graph*/

11. {

12. adj = new LinkedList[V];

13. visited = new boolean[V];

14.

15. for (int i = 0; i < V; i++)

16. adj[i] = new LinkedList<Integer>();

17. }

18.

19. /* Adding an edge to the graph */

20. void insertEdge(int src, int dest) {

21. adj[src].add(dest);

22. }

23.

24. void DFS(int vertex) {

25. visited[vertex] = true; /*Mark the current node as visited*/

26. System.out.print(vertex + " ");

27.

28. Iterator<Integer> it = adj[vertex].listIterator();

29. while (it.hasNext()) {

30. int n = it.next();

31. if (!visited[n])

32. DFS(n);

33. }

34. }

35.

36. public static void main(String args[]) {

37. DFSTraversal graph = new DFSTraversal(8);

38.

39. graph.insertEdge(0, 1);

40. graph.insertEdge(0, 2);

41. graph.insertEdge(0, 3);

42. graph.insertEdge(1, 3);

43. graph.insertEdge(2, 4);

44. graph.insertEdge(3, 5);

45. graph.insertEdge(3, 6);

46. graph.insertEdge(4, 7);

47. graph.insertEdge(4, 5);

48. graph.insertEdge(5, 2);

49.

50. System.out.println("Depth First Traversal for the graph is:");

51. graph.DFS(0);

52. }

53. }

Output

Conclusion

In this article, we have discussed the depth-first search technique, its example, complexity, and
implementation in the java programming language. Along with that, we have also seen the
applications of the depth-first search algorithm.

Spanning tree

In this article, we will discuss the spanning tree and the minimum spanning tree. But before moving

directly towards the spanning tree, let's first see a brief description of the graph and its types.

Graph

A graph can be defined as a group of vertices and edges to connect these vertices. The types of graphs

are given as follows -

o Undirected graph: An undirected graph is a graph in which all the edges do not point to any

particular direction, i.e., they are not unidirectional; they are bidirectional. It can also be defined as

a graph with a set of V vertices and a set of E edges, each edge connecting two different vertices.

o Connected graph: A connected graph is a graph in which a path always exists from a vertex to

any other vertex. A graph is connected if we can reach any vertex from any other vertex by

following edges in either direction.

o Directed graph: Directed graphs are also known as digraphs. A graph is a directed graph (or

digraph) if all the edges present between any vertices or nodes of the graph are directed or have

a defined direction.

Now, let's move towards the topic spanning tree.

What is a spanning tree?

A spanning tree can be defined as the subgraph of an undirected connected graph. It includes all the
vertices along with the least possible number of edges. If any vertex is missed, it is not a spanning
tree. A spanning tree is a subset of the graph that does not have cycles, and it also cannot be
disconnected.

A spanning tree consists of (n-1) edges, where 'n' is the number of vertices (or nodes). Edges of the
spanning tree may or may not have weights assigned to them. All the possible spanning trees
created from the given graph G would have the same number of vertices, but the number of edges in
the spanning tree would be equal to the number of vertices in the given graph minus 1.

A complete undirected graph can have nn-2 number of spanning trees where n is the number of
vertices in the graph. Suppose, if n = 5, the number of maximum possible spanning trees would
be 55-2 = 125.

Applications of the spanning tree

Basically, a spanning tree is used to find a minimum path to connect all nodes of the graph. Some of
the common applications of the spanning tree are listed as follows -

o Cluster Analysis

o Civil network planning

o Computer network routing protocol

Now, let's understand the spanning tree with the help of an example.

Example of Spanning tree

Suppose the graph be -

As discussed above, a spanning tree contains the same number of vertices as the graph, the number
of vertices in the above graph is 5; therefore, the spanning tree will contain 5 vertices. The edges in
the spanning tree will be equal to the number of vertices in the graph minus 1. So, there will be 4
edges in the spanning tree.

Some of the possible spanning trees that will be created from the above graph are given as follows -

Properties of spanning-tree

Some of the properties of the spanning tree are given as follows -

o There can be more than one spanning tree of a connected graph G.

o A spanning tree does not have any cycles or loop.

o A spanning tree is minimally connected, so removing one edge from the tree will make the

graph disconnected.

o A spanning tree is maximally acyclic, so adding one edge to the tree will create a loop.

o There can be a maximum nn-2 number of spanning trees that can be created from a complete

graph.

o A spanning tree has n-1 edges, where 'n' is the number of nodes.

o If the graph is a complete graph, then the spanning tree can be constructed by removing

maximum (e-n+1) edges, where 'e' is the number of edges and 'n' is the number of vertices.

So, a spanning tree is a subset of connected graph G, and there is no spanning tree of a disconnected
graph.

Minimum Spanning tree

A minimum spanning tree can be defined as the spanning tree in which the sum of the weights of
the edge is minimum. The weight of the spanning tree is the sum of the weights given to the edges
of the spanning tree. In the real world, this weight can be considered as the distance, traffic load,
congestion, or any random value.

Example of minimum spanning tree

Let's understand the minimum spanning tree with the help of an example.

The sum of the edges of the above graph is 16. Now, some of the possible spanning trees created
from the above graph are -

So, the minimum spanning tree that is selected from the above spanning trees for the given
weighted graph is -

Applications of minimum spanning tree

The applications of the minimum spanning tree are given as follows -

o Minimum spanning tree can be used to design water-supply networks, telecommunication

networks, and electrical grids.

o It can be used to find paths in the map.

Algorithms for Minimum spanning tree

A minimum spanning tree can be found from a weighted graph by using the algorithms given below
-

o Prim's Algorithm

o Kruskal's Algorithm

Let's see a brief description of both of the algorithms listed above.

Prim's algorithm - It is a greedy algorithm that starts with an empty spanning tree. It is used to
find the minimum spanning tree from the graph. This algorithm finds the subset of edges that
includes every vertex of the graph such that the sum of the weights of the edges can be minimized.

To learn more about the prim's algorithm, you can click the below link -
 https://www.javatpoint.com/prim-algorithm

Kruskal's algorithm - This algorithm is also used to find the minimum spanning tree for a
connected weighted graph. Kruskal's algorithm also follows greedy approach, which finds an
optimum solution at every stage instead of focusing on a global optimum.

To learn more about the prim's algorithm, you can click the below link -
 https://www.javatpoint.com/kruskal-algorithm

So, that's all about the article. Hope the article will be helpful and informative to you. Here, we have
discussed spanning tree and minimum spanning tree along with their properties, examples, and
applications.

https://www.javatpoint.com/prim-algorithm
https://www.javatpoint.com/kruskal-algorithm

	1) C as a mother language
	2) C as a system programming language
	3) C as a procedural language
	4) C as a structured programming language
	5) C as a mid-level programming language
	C Program
	Features of C Language
	1) Simple
	2) Machine Independent or Portable
	3) Mid-level programming language
	4) Structured programming language
	5) Rich Library
	6) Memory Management
	7) Speed
	8) Pointer
	9) Recursion
	10) Extensible

	First C Program
	How to compile and run the c program
	By menu

	Compilation process in c
	What is a compilation?
	Preprocessor
	Compiler
	Assembler
	Linker

	printf() and scanf() in C:
	printf() function
	scanf() function
	Program to print cube of given number
	Program to print sum of 2 numbers

	Variables in C
	Rules for defining variables
	Types of Variables in C
	Local Variable
	Global Variable
	Static Variable
	Automatic Variable
	External Variable

	Data Types in C
	Basic Data Types

	Keywords in C:
	C Identifiers:
	Rules for constructing C identifiers
	Types of identifiers :
	Differences between Keyword and Identifier

	C Operators
	Precedence of Operators in C

	Comments in C :
	Single Line Comments
	Multiline Comments:

	C Format Specifier :
	Escape Sequence in C :
	List of Escape Sequences in C :
	Escape Sequence Example

	Constants in C :
	List of Constants in C
	2 ways to define constant in C :
	1) C const keyword :

	What are literals :
	Types of literals :
	Integer literal
	It can be specified in the following three ways:
	Decimal number (base 10) :
	Octal number (base 8) :
	Hexadecimal number (base 16) :
	Float literal :
	Decimal form
	Exponential form :
	Character literal :
	String literal :

	Tokens in C :
	C if else Statement :
	If Statement :
	Program to find the largest number of the three.\

	If-else Statement :
	Program to check whether a person is eligible to vote or not.:

	If else-if ladder Statement
	Program to calculate the grade of the student according to the specified marks.

	UNIT-II
	Advantages of Pointers
	Pointer Variables:
	This declaration tells the C compiler to:
	(b) Associate the name i with this memory location.
	<datatype> *<pointer name> For Ex:
	Initializing Pointers
	Q. What is NULL pointer explain it?
	Output:
	Q. Wild pointer in C?

	Ex:main()
	printf(“%d%d%d%d”,p,*p,*&p,&a);
	output: 1000 20 1000 1000.
	1000 2000
	Q. What is void pointer?

	Output: (1)
	Q. Dangling pointer in C?

	Output: 5
	Q. Explain about pointer operators? Or what are the different types of operators used for pointers representation
	Output
	Ex2:
	Q. What is multiple pointers or multi pointers or pointer to pointers Multiple Indirection(Pointers To Pointers):
	Q. Explain about pointer expressions ? Pointer Expressions:
	1. Pointer Assignments
	3. Pointer Arithmetic
	(i) Pointer Assignments
	Expected Output
	(ii) Pointer Conversions
	(iii) Pointer Arithmetic
	//Program to show the use Arithmetic operations on pointers

	Expected Output (1)
	Q. Explain what are the operations performed on pointers?
	4 Address Arithmetic :
	a
	Output: (2)
	Output: (3)
	Output: (4)
	 Two Pointers cannot be added, multiplied, divided
	 A Pointer cannot be multiplied by a integer.
	 Masking or shifting of pointers
	 Arrays,
	1. Call by Value
	Comparison between call-by-value and call-by-reference
	Function Pointers:
	p = a;
	P+1 points to 1stelement P+2 points to 2nd element P+3 points to 3rd element P +4 points to 4thelement
	Two Dimensional array through pointers
	 In one dimensional array, a[i] element is referred by (a+i) is the address of ith element. * (a+i) is the value at the I element.
	 Note: a[i][j][k][l] can be represented as *(*(*(*(a+i)+j)+k)+l) Pointers and Structures
	Ex: Linked Lists
	Fig. Linking Two Nodes
	Q. explain what are the problems with pointers Problems with Pointers
	Dynamic Memory Allocation:
	Advantages of Dynamic memory allocation
	Memory Allocation Functions:
	Block Memory Allocation (malloc) :
	Declaration:
	pointer= (data_type*)malloc(number *sizeof(int));
	Contagious Memory Allocation(calloc) :
	(datatype *) calloc (number, sizeof(int)); Example:
	Reallocation Of Memory(realloc):
	Syntax:
	Releasing Memory(free):
	void free(void *ptr);
	Difference between static memory allocation and dynamic memory allocation in C:
	Arrays
	Properties of array
	Advantage of c array
	Disadvantage of c array
	Declaration of c array
	5 means array size or subscript number or Dimension number Marks array name
	Initialization of c array
	2. Runtime initialization
	int marks[5];
	Static initialization: method2:
	Static initialization: method3:
	Static initialization: method4:
	2. Runtime initialization (1)
	Using array elements in expressions Example: int a[10];
	Accessing Array Elements Accessing array elements by using
	2. Accessing by using loops
	4. Accessing by using array name with different ways
	 Array elements are always stored in contiguous memory locations.
	int main()
	int num[]={24,34,12,44,56,17 };
	j=&num[0]; //assign address of zeroth element for(i=0;i<=5;i++)
	printf(“\n address=%u element = %d”,j,*j); j++; //increment pointer point to next location
	return (0);
	Output: (5)
	Address=65528 element=56 Address=65532 element=17
	Mentioning the name of the array means we get the base address of the arrayso,
	num[i]
	*(i+num) i[num]
	{
	inti;
	{ (1)
	printf(“element=%3d %3d”,num[i], i[num]); printf(“element=%3d %3d”,*(num+i), *(i+num));
	return 0;
	Output: (6)
	Output (1)
	Copying arrays:
	Q. Write a c program for finding the no. of students passed in an examination
	Q. write a c program to reverse an array
	Declaration of Two –Dimensional array:
	Syntax:

	Ex: int a[3][4];
	Initialization of 2-D array:
	Syntax:

	Method1:-
	Method2:-
	NOTE:
	intabc[2][] = {1, 2, 3 ,4 };
	Method4:-
	Storage Representation of two –Dimensional array:
	Q. Matrix Addition
	Q. Matrix Subtraction
	Q. Transpose of the matrix
	type array_name[d1][d2][d3][d4]………[dn];
	1. int table[5][5][20];
	in example 1:
	In example 2:
	Pointer to Multidimensional Arrays
	arr + i Points to ith element of arr ->Points to ith 1-D array
	In general we can write:
	Output: (7)
	Strings
	C Strings
	Q. Difference between char array and string literal
	String Example in C
	String Example in C (1)
	Output (2)
	Output (3)
	2. Using the null character
	Output (4)
	Q. what are the limitations of the scanf() function explain it Accepting string as the input
	Output (5)
	Output (6)
	Q. What are the limitations of array? OR Explain about array bounds checking Some important points
	Q, Discuss about pointers and strings? Pointers with strings
	Output (7)
	Q. Explain about string copying
	Output (8)
	Output (9)
	Q. How to copy the contents of one array in to another array by using pointers
	Declaration
	Output (10)
	C puts() function
	Declaration (1)
	Output: (8)
	C String Functions
	Array of Strings
	Declaration of the array of strings
	char string-array-name[row-size][column-size];
	Initialization of array of strings
	The two dimensional (2D) array of Strings in C also can be initialized as,
	Reading and displaying 2d array of strings in C
	Command line arguments in C
	Properties of Command Line Arguments:
	Q. C Program to Add two numbers using Command Line Arguments
	Q. C Program to find LCM, GCM of two numbers using Command Line Arguments
	Time Complexity Analysis-
	Step-01: For i = 0
	Step-03: For i = 2
	Step-05: For i = 4
	Time Complexity Analysis-
	Insertion Sort-
	break;

	Insertion Sort Example-

	Step-01: For i = 1
	Step-03: For i = 3
	Step-04: For i = 4
	Time Complexity Analysis-
	Quick Sort-
	How Does Quick Sort Works?
	Quick Sort Example-
	Step-01:

	Step-02:
	Step-03:
	Step-04:
	Step-05:
	Step-06:
	Step-07:
	Step-08:
	Step-09:
	Advantages of Quick Sort-
	Merge Sort-
	How Merge Sort Works?
	Step-01:
	Step-02:
	Step-03:
	Step-04:
	Step-05:
	Step-06:
	Step-07:

	Searching Algorithms
	Searching Algorithms-
	Linear Search-
	 It traverses the array sequentially to locate the required element.
	 So, it is also called as Sequential Search.
	 No information is given about the array.
	 The list of data items is smaller.
	Consider-
	 Linear search algorithm is being used to search an element ‘item’ in this linear array.
	Linear Search Example-
	 We are given the following linear array.
	Now,
	 It continues searching until either the element 15 is found or all the elements are searched.
	Step-01:
	 Since 15 ≠ 92, so required element is not found.
	Step-02:
	 Since 15 ≠ 87, so required element is not found.
	Step-03:
	 Since 15 ≠ 53, so required element is not found.
	Step-04:
	 Since 15 ≠ 10, so required element is not found.
	Step-05:
	 Since 15 = 15, so required element is found.
	Time Complexity of Linear Search Algorithm is O(n).
	Binary Search Algorithm-
	Time Complexity Analysis-

	Structures
	Defining a structure
	Syntax:
	{
	//member variable 2
	...
	Example of Structure
	Declaring Structure Variables
	1) Declaring Structure variables separately
	2) Declaring Structure variables with structure definition
	Structure Initialization
	OR,
	Accessing Structure Members:
	DIFFERENCE BETWEEN C VARIABLE, C ARRAY AND C STRUCTURE:
	C Structure:
	C Array:
	Memory Representation
	ExpectedOutput
	ExampleProgram
	Expected Output
	Array of Structures
	ExampleProgram1
	Expected Output (1)
	ExampleProgram2
	ExpectedOutput (1)
	Arrays and Structures within Structures (Nested Structures)
	ExampleProgram (1)
	ExpectedOutput (2)
	stud.addr.city and

	Structure Pointers
	 Remember that on the left hand side of the‘.’ Structure operator, there must always be a structure variable, where as on the left hand side of the‘->’ operator there must always be a pointer to a structure.

	Passing Structures to Functions
	a) Passing individual structure elements to a function
	c) Passing address of a structure to a function
	Example Program
	ExpectedOutput

	(b) Passing an entire structure to a function
	ExampleProgram
	ExpectedOutput

	(c) Passing address of a structure to a function
	ExampleProgram
	ExpectedOutput

	Self Referential Structures
	Types of Self Referential Structures
	Applications:
	typedef unsigned long ulong;
	ulongi, j;
	Example:
	OUTPUT:
	NOTE:
	Enum in C
	enum flag{integer_const1, integer_const2, integter_constN};
	For example:
	Enumerated type declaration
	Let's create a simple program of enum.
	Output:
	example
	Output: (1)
	use an enum in a switch case statement
	Output: (2)
	Some important points related to enum
	Output: (3)
	Output: (4)
	Output
	Enum vs. Macro in C
	Bit Fields in C
	Declaring Bit Fields:
	Date structure in C
	Example: (1)
	Output: (5)
	Output: (6)
	Output: (7)
	Output: (8)
	Output: (9)

	C - Variable Length Arguments
	Output:
	Q. find minimum of given set of integers.
	Output: (1)

	Complexity
	Operations on Singly Linked List
	Node Creation
	Insertion
	Deletion and Traversing
	Representation of a Linked list
	Why use linked list over array?
	How to declare a linked list?
	Types of Linked list
	Advantages of Linked list
	Disadvantages of Linked list
	Applications of Linked list
	Operations performed on Linked list
	Complexity of Linked list
	1. Time Complexity

	Types of Linked List
	Types of Linked list
	Singly Linked list
	Doubly linked list
	Circular linked list
	Doubly Circular linked list

	Linked List
	Uses of Linked List
	Why use linked list over array?
	Singly linked list or One way chain

	Doubly linked list
	Circular Singly Linked List
	Memory Representation of circular linked list:
	Operations on Circular Singly linked list:
	Insertion
	Deletion & Traversing

	Circular Doubly Linked List
	Memory Management of Circular Doubly linked list

	Tree Data Structure
	Properties of Tree data structure
	Implementation of Tree
	Applications of trees
	Types of Tree data structure

	Binary Tree
	Properties of Binary Tree
	Types of Binary Tree
	Note: All the perfect binary trees are the complete binary trees as well as the full binary tree, but vice versa is not true, i.e., all complete binary trees and full binary trees are the perfect binary trees.

	Degenerate Binary Tree
	Binary Tree Implementation

	Binary Search tree
	What is a tree?
	What is a Binary Search tree?
	Advantages of Binary search tree
	Example of creating a binary search tree
	Searching in Binary search tree
	Algorithm to search an element in Binary search tree
	Deletion in Binary Search tree
	Insertion in Binary Search tree

	B+ Tree
	Advantages of B+ Tree
	B Tree VS B+ Tree
	Insertion in B+ Tree
	Example :

	Graph Introduction:
	Components of a Graph
	Types Of Graph
	1. Null Graph
	2. Trivial Graph
	3. Undirected Graph
	4. Directed Graph
	5. Connected Graph
	6. Disconnected Graph
	7. Regular Graph
	8. Complete Graph
	9. Cycle Graph
	10. Cyclic Graph
	11. Directed Acyclic Graph
	12. Bipartite Graph

	Tree v/s Graph
	Representation of Graphs
	Adjacency Matrix
	Adjacency List
	Comparison between Adjacency Matrix and Adjacency List

	Basic Operations on Graphs
	Usage of graphs
	Real-Life Applications of Graph
	Following are the real-life applications:
	When to use Graphs:

	Advantages and Disadvantages:
	Advantages:
	Disadvantages:

	Graph and its representations
	Representations of Graphs:
	Adjacency Matrix:
	Adjacency List:

	Breadth First Search or BFS for a Graph
	Relation between BFS for Graph and Tree traversal:
	How does BFS work?
	Implementation of BFS for Graph using Adjacency List:

	DFS (Depth First Search) algorithm
	Applications of DFS algorithm
	Algorithm
	Pseudocode
	Example of DFS algorithm
	Complexity of Depth-first search algorithm
	Implementation of DFS algorithm
	Conclusion

	Spanning tree
	Graph
	What is a spanning tree?
	Applications of the spanning tree
	Example of Spanning tree
	Properties of spanning-tree
	Minimum Spanning tree
	Example of minimum spanning tree
	Applications of minimum spanning tree
	Algorithms for Minimum spanning tree

