COMPUTER ORGANIZATION(20APC3007)

ANNAMACHARYA
INSTITUTE OF TECHNOLOGY AND SCIENCES

(AUTONOMOUS)

Approved by AICTE, New Delhi & Permanent Affiliation to INTUA, Anantapur.
Three B. Tech Programmes (CSE , ECE & CE) are accredited by NBA, New Delhi Accredited by NAAC with ‘A’ Grade , Bangalore.
A-grade awarded by AP Knowledge Mission. Recognized under sections 2(f) & 12(B) of UGC Act 1956.

Venkatapuram Village, Renigunta Mandal, Tirupati, Andhra Pradesh-517520.

Department of Computer Science and Engineering

Academic Year 2023-24

I1. B.Tech I Semster
(AIDS)
COMPUTER ORGANIZATION
(20APC3007)

Prepared By

Mrs.S.Venkata lakshmi., M.Tech(Ph.D).
Assistant Professor
Department of CSE, AITS

Department of CSE,AITS-TIRUPATI 0

COMPUTER ORGANIZATION(20APC3007)

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND
SCIENCES:: TIRUPATI(AUTONOMOUS)

Year: 11 Semester: 1 Branch of Study: AI & DS
COURSE CODE |COURSE TITLE L (T [P |[CREDITS
20APC3007 Computer Organization (Common to: CSE, CIC,3 0 0 3

& DS

COURSE OUTCOMES:

After completion of the course, students will be able:
CO1: To Represent numbers and perform arithmetic operations.

CO2: To Minimize the Boolean expression using Boolean algebra and design it using logic
gates

CO3: To Analyze and design combinational circuit.

CO4: To Design and develop sequential circuits

CO5: To Understand and apply the working of different operations on binary numbers

UNIT - 1: Basic Structure of Computer, Machine Instructions and Programs

Basic Structure of Computer: Computer Types, Functional Units, Basic operational
Concepts, Bus Structure, Software, Performance

Machine Instructions and Programs: Numbers, Arithmetic Operations and Programs,
Instructions and Instruction Sequencing, Addressing Modes, Basic Input/output Operations,
Stacks and Queues, Subroutines,Additional Instructions.

UNIT - 2: Arithmetic, Basic Processing Unit

Arithmetic: Addition and Subtraction of Signed Numbers, Design of Fast Adders,
Multiplication of Positive Numbers, Signed-operand Multiplication, Fast Multiplication, Integer
Division, Floating-PointNumbers and Operations.

Basic Processing Unit: Fundamental Concepts, Execution of a Complete Instruction,
Multiple-Bus Organization, Hardwired Control, and Multi programmed Control.

UNIT - 3: The Memory System, Input/Output Organization

The Memory System: Basic Concepts, Semiconductor RAM Memories, Read-Only Memories,
Speed, Size and Cost, CacheMemories, Performance Considerations, Virtual Memories, Memory
Management Requirements, Secondary Storage.

Input/Output Organization: Accessing I/O Devices, Interrupts, Processor Examples, Direct
MemoryAccess, Buses, Interface Circuits,Standard I/0O Interfaces.

UNIT - 4: Pipelining, Large Computer Systems

Pipelining: Basic Concepts, Data Hazards, Instruction Hazards, Influence on Instruction Sets
Large Computer Systems: Forms of Parallel Processing, Array Processors, The Structure of
General-Purpose multiprocessors, Interconnection Networks.

Department of CSE,AITS-TIRUPATI 1

COMPUTER ORGANIZATION(20APC3007)

Unit -5: Computer Architecture

Parallel and Scalable Architectures, Multiprocessors and Multicomputers, cache coherence and
synchronization mechanism, Three Generations of Multicomputers, Message-passing
Mechanisms, Multivetor and SIMD computers, Vector Processing Principals, Multivector
Multiprocessors, Compound Vector processing, SIMD computer Organizations.

Textbooks:

1. Carl Hamacher, ZvonkoVranesic, SafwatZaky, —Computer Organizationll, 5th
Edition, McGraw Hill Education, 2013.

2. M.Morris Mano, —Computer System Architecturell, 3rd Edition, Pearson
Education, 2017.

3. Advanced Computer Architecture Second Edition, Kai Hwang, Tata McGraw Hill
Publishers.

References

1. Themes and Variations, Alan Clements, —Computer Organization and
Architecturell, CENGAGE Learning.

2. SmrutiRanjanSarangi, —Computer Organization and Architecturell, McGraw Hill
Education.

3. John P.Hayes, —Computer Architecture and Organizationll, McGraw Hill Education

Online Learning Resources:

https://nptel.ac.in/courses/106/103/106103068/

Mapping of course outcomes with program outcomes

PO1 PO2 PO3 PO4 [PO5 [PO6 [PO7 [PO8 [PO9 [PO10[PO11{P0O12PSO1PSO2
CO13 2 2
CO2Z[2 2 2 2
CO31
CO4(2 I
COb5 2 2 2 2

(Levels of Correlation, viz., 1-L.ow, 2-Moderate, 3 High)

Department of CSE,AITS-TIRUPATI 2

https://nptel.ac.in/courses/106/103/106103068/

COMPUTER ORGANIZATION(20APC3007)

UNIT-I
Basic Structure of Computer: Computer Types, Functional Units, Basic operational Concepts,

Bus Structure, Software, Performance, Multiprocessors and Multicomputer.

Machine Instructions and Programs: Numbers, Arithmetic Operations and Programs,
Instructions and Instruction Sequencing, Addressing Modes, Basic Input/output Operations,
Stacks and Queues, Subroutines, Additional Instructions.

CHAPTER:1 Basic Structure of Computer
Computer types

A computer can be defined as a fast electronic calculating machine that accepts the (data)
digitized input information process it as per the list of internally stored instructions and produces
the resulting information. List of instructions are called programs & internal storage is called
computer memory.

The different types of computers are

1. Personal computers: - This is the most common type found in homes, schools, Business
offices etc., It is the most common type of desk top computers with processing and storage units
along with various input and output devices.

2. Note book computers: - These are compact and portable versions of PC

3. Work stations: - These have high resolution input/output (I/O) graphics capability,
but with same dimensions as that of desktop computer. These are used in engineering applications
of interactive design work.

4. Enterprise systems: - These are used for business data processing in medium to
large corporations that require much more computing power and storage capacity than work
stations. Internet associated with servers has become a dominant worldwide source of all types of
information.

5. Super computers: - These are used for large scale numerical calculations required
in the applications like weather forecasting etc.,

Functional units:

A computer consists of five functionally independent main parts input, memory, arithmetic
logicunit (ALU), and output and control unit.

Arithmetic
Input and i
logic !
Output Control
10 Processor §

Figura 1.1 Bosic functionel uaits of ¢ computer.

Department of CSE,AITS-TIRUPATI 3

COMPUTER ORGANIZATION(20APC3007)

Input device accepts the coded information as source program i.e. high level language. This is either stored in the
memory or immediately used by the processor to perform the desiredoperations. The program stored in the memory
determines the processing steps. Basically the computer converts one source program to an object program. i.e. into
machine language.

Finally the results are sent to the outside world through output device. All of these actions are coordinated by the
control unit.

Input unit: -

The source program/high level language program/coded information/simply data is fed to a computer through
input devices keyboard is a most common type. Whenever a key is pressed, one corresponding word or number is
translated into its equivalent binary code over a cable & fed either to memory or processor. Joysticks, trackballs,
mouse, scanners etc are other input devices.

Memory unit: -

Its function is to store programs and data. There are two classes of storage, they are:

1. Primary memory
2. Secondary memory
1. Primary memory: - Is the one exclusively associated with the processor and operates at the electronics

speeds programs must be stored in this memory while they are being executed. The memory contains a large number of
semiconductors storage cells, each capable of storing one bit of information. These cells are rarely read or written as
individual cells but instead are processed in groups of fixed size called words.

To provide easy access to a word in memory, a distinct address is associated with each word location. Addresses
are numbers that identify memory location. Number of bits in each word is called word length of the computer.
Programs must reside in the memory during execution. Instructions and data can be written into the memory or read out
under the control of processor.

Memory in which any location can be reached in a short and fixed amount of time afterspecifying its address is called
random-access memory (RAM).

The time required to access one word in called memory access time. Memory which is only readable by the user and
contents of which can’t be altered is called read only memory (ROM) it contains operating system.

Caches are the small fast RAM units, which are coupled with the processor and are often contained on the same IC
chip to achieve high performance. Although primary storage isessential it tends to be expensive.

Department of CSE,AITS-TIRUPATI 4

COMPUTER ORGANIZATION(20APC3007)

2. Secondary Memory: - Is used where large amounts of data & programs have to be stored,particularly
information that is accessed infrequently.

Examples: Magnetic disks & tapes, optical disks (ie CD-ROM’s), floppies etc.,
Arithmetic logic unit (ALU):-

Most of the computer operators are executed in ALU of the processor like addition, subtraction, division,
multiplication, etc. the operands are brought into the ALU from memory and stored in high speed storage elements
called register. Then according to the instructions the operation is performed in the required sequence.

The control and the ALU are many times faster than other devices connected to a computer system. This enables a
single processor to control a number of external devices such as key boards, displays, magnetic and optical disks, sensors
and other mechanical controllers.

Output unit:-

These actually are the counterparts of input unit. Its basic function is to send the processed results to the outside
world.

Examples: Printer, speakers, monitor etc.,

Control unit:-

It effectively is the nerve center that sends signals to other units and senses their states. The actual timing signals
that govern the transfer of data between input unit, processor, memory and output unit are generated by the control unit.

The operation of a computer can be summarized as follows:

> The computer accepts information in the form of programs and data through an input unitand stores
it in the memory.

> Information stored in the memory is fetched, under program controi, into an arithmeticand logic
unit, where it is processed.

> Processed information leaves the computer through an output unit.

> All activities inside the machine are directed by the control unit.

Basic operational concepts

To perform a given task an appropriate program consisting of a list of instructions is stored in thememory. Individual
instructions are brought from the memory into the processor, which executesthe specified operations. Data to be stored
are also stored in the memory.

Examples: - Add LOCA, RO

This instruction adds the operand at memory location LOCA, to operand in register RO & places the sum into register.

Department of CSE,AITS-TIRUPATI 5

COMPUTER ORGANIZATION(20APC3007)

The original contents of location LOCA are preserved, whereas those of RO are overwritten. This instruction requires
the performance of several steps,

1. First the instruction is fetched from the memory into the processor.
2. The operand at LOCA is fetched and added to the contents of R0
3. Finally the resulting sum is stored in the register RO

The preceding Add instruction combines a memory access operation with an ALU Operations. In

some other type of computers, these two types of operations are performed by separateinstructions for performance
reasons.

Load LOCA,
R1Add R1, R0
The first of these instructions transfers the contents of memory location LOCA into processor register R1, and the

second instruction adds the contents of registers RI and RO and places the sum into RO.

Transfers between the memory and the processor are started by sending the address of the memory location to be
accessed to the memory unit and issuing the appropriate control signals. The data are then transferred to or from the
memory.

B

Control

) Ryt
- n gevcra pusposc
regiszees

Figure 1.2 Conneclions between the processor and the memory.

The fig shows how memory & the processor can be connected. In addition to the ALU & the control circuitry, the
processor contains a number of registers used for several different purposes.

The instruction register (IR):- Holds the instruction that is currently being executed. Its output is available for the
control circuits which generates the timing signals that control the various processing elements in one execution of

Department of CSE,AITS-TIRUPATI 6

COMPUTER ORGANIZATION(20APC3007)
instruction.

The program counter PC:-

This is another specialized register that keeps track of execution of a program. It contains thememory address of

the next instruction to be fetched and executed. Besides IR and PC, there are

n-general purpose registers RQ through Rn-1.
The other two registers which facilitate communication with memory are:
1. MAR - (Memory Address Register):- It holds the address of the location to be accessed.

2. MDR - (Memory Data Register):- It contains the data to be written into or read out of theaddress location.
Operating steps are

1. Programs reside in the memory & usually get these through the Input unit.

2. Execution of the program starts when the PC is set to point at the first instruction of theprogram.

3. Contents of PC are transferred to MAR and a Read Control Signal is sent to the memory.

4. After the time required to access the memory elapses, the address word is read out of thememory and loaded into
the MDR.

Now contents of MDR are transferred to the IR & now the instruction is ready to bedecoded and executed.
If the instruction involves an operation by the ALU, it is necessary to obtain the requiredoperands.

An operand in the memory is fetched by sending its address to MAR & Initiating a readcycle.

When the operand has been read from the memory to the MDR, it is transferred fromMDR to the ALU.
After one or two such repeated cycles, the ALU can perform the desired operation.

10. If the result of this operation is to be stored in the memory, the result is sent to MDR.

11. Address of location where the result is stored is sent to MAR & a write cycle is initiated.

12. The contents of PC are incremented so that PC points to the next instruction that is to beexecuted.

LN L

Normal execution of a program may be preempted (temporarily interrupted) if some devicesrequire urgent
servicing, to do this one device raises an Interrupt signal.

An interrupt is a request signal from an I/O device for service by the processor. The processorprovides the
requested service by executing an appropriate interrupt service routine.

The Diversion may change the internal stage of the processor its state must be saved in the memory location before
interruption. When the interrupt-routine service is completed the state ofthe processor is restored so that the interrupted
program may continue.

BUS STRUCTURES

To achieve a reasonable speed of operation, a computer must be organized so that all its units canhandle one full
word of data at a given time. A group of lines that serve as a connecting port for several devices is called a bus.

“The simplest way to interconnect functional units is to use a single bus, as shown in Figure 1.3. Ail units are

Department of CSE,AITS-TIRUPATI 7

COMPUTER ORGANIZATION(20APC3007)

connected to this bus. Because the bus can be used for only one transfer at a time, only two units can actively use the
bus at any given time. Bus control lines are used to arbitrate multiple requests for use of one bus.

Input Qutput Memory Processor

5 | 't
(i‘:.__ " L -

Figure 1.3 Single-bus stucture,

g
§
i
L

i

‘::‘*nm

—
%

Single bus structure is

> Low cost
> Very flexible for attaching peripheral devices

Multiple bus structure certainly increases the performance but also increases the costsignificantly.

All the interconnected devices are not of same speed & time leads to a bit of a problem. This is solved by using
cache registers (ie buffer registers). These buffers are electronic registers ofsmall capacity when compared to the
main memory but of comparable speed.

The instructions from the processor at once are loaded into these buffers and then the completetransfer of data at
a fast rate will take place.

Software

System software is a collection of programs that are executed as needed to perform functionssuch as,

Receiving and interpreting user commands

Entering and editing application programs and storing them as files in secondary storagedevices

Managing the storage and retrieval of files in secondary storage devices

Running standard application programs such as word processors, spreadsheets, or games,with data
supplied by the user

Controlling 1/0 units to receive input information and produce output results

Translating programs from source form prepared by the user into object form consistingof machine
instructions

Linking and running user-written application programs with existing standard libraryroutines,

such as numerical computation packages

System software is thus responsible for the coordination of all activities in a computing system. Application programs
are usually written in a high-level programming language, such as C, C++, Java, or FORTRAN, in which the
programmer specifies mathematical or text-processingoperations.

A system software program called a compiler translates the high-level language program into asuitable machine

Department of CSE,AITS-TIRUPATI 8

COMPUTER ORGANIZATION(20APC3007)
language program.

Another important system program is Text editor; it is used for entering and editing application programs. The user
of this program interactively executes commands that allow statements of a source program entered at a keyboard to be
accumulated in a file.

A file is simply a sequence of alphanumeric characters or binary data that is stored in memory or in secondary storage.
A file can be referred to by a name chosen by the user.

Performance

The most important measure of the performance of a computer is how quickly it can execute programs. The speed
with which a computer executes program is affected by the design of its hardware. For best performance, it is necessary
to design the compiles, the machine instruction set, and the hardware in a coordinated way.

The total time required to execute the program is elapsed time is a measure of the performance ofthe entire computer
system. It is affected by the speed of the processor, the disk and the printer. The time needed to execute a instruction is
called the processor time.

Just as the elapsed time for the execution of a program depends on all units in a computer system, the processor time
depends on the hardware involved in the execution of individual machine instructions. This hardware comprises the
processor and the memory which are usually connected by the bus as shown in the fig c.

Mai Cache) ‘
|
L Bus ‘

< »

Figwe 1.5 The processor coche.

Let us examine the flow of program instructions and data between the memory and the processor. At the start of
execution, all program instructions and the required data are stored in the main memory. As the execution proceeds,
instructions are fetched one by one over the bus into the processor, and a copy is placed in the cache later if the same
instruction or data item is needed a second time, it is read directly from the cache.

The processor and relatively small cache memory can be fabricated on a single IC chip. The internal speed of
performing the basic steps of instruction processing on chip is very high and is considerably faster than the speed at
which the instruction and data can be fetched from the mainmemory. A program will be executed faster if the movement
of instructions and data between themain memory and the processor is minimized, which is achieved by using the cache.

Department of CSE,AITS-TIRUPATI 9

COMPUTER ORGANIZATION(20APC3007)

For example: Suppose a number of instructions are executed repeatedly over a short period of time as happens in a
program loop. If these instructions are available in the cache, they can be fetched quickly during the period of repeated
use. The same applies to the data that are used repeatedly.

Processor clock:

Processor circuits are controlled by a timing signal called clock. The clock designer the regular time intervals called
clock cycles. To execute a machine instruction the processor divides the action to be performed into a sequence of basic
steps that each step can be completed in one clock cycle. The length P of one clock cycle is an important parameter that
affects the processor performance.

Processor used in today’s personal computer and work station has a clock rates that range from a few hundred million
to over a billion cycles per second.

CHAPTER-2
MACHINE INSTRUCTIONS AND PROGRAMS

NUMBERS, ARITHMETIC OPERATIONS AND PROGRAMS

Computers are built using logic circuits that operate on information represented by two valued electrical signals. We
label the two values as 0 and 1; and we define the amount of information represented by such a signal as a bit of
information, where bit stands for binary digit. The most natural way to represent a number in a computer system is by
a string of bits, called a binary number. A text character can also be represented by a string of bits called a character
code.

NUMBER REPRESENTATION

Consider an n-bit vector

B:bn_l ceen B1b0
Where b;=0 or 1for 0<i < n— 1. This vector can represent unsigned integer values V in the range0 to 2" -1, where

ViB) by x2 1o b by x 2+ by x 2P

We obviously need to represent both positive and negative numbers. Three systems are used forrepresenting
such numbers:

v Sign-and-magnitude
v 1’s-complement
v 2’s-complement

In all three systems, the leftmost bit is 0 for positive numbers and 1 for negative numbers. Fig
illustrates all three representations using 4-bit numbers. Positive values have identical representations in al systems,
but negative values have different representations. In the sign-and- magnitude systems, negative values are represented

Department of CSE,AITS-TIRUPATI 10

COMPUTER ORGANIZATION(20APC3007)

by changing the most significant bit (b3 in figure 2.1) from 0 to 1 in the B vector of the corresponding positive value.
For example, +5 is represented by 0101, and -5 is represented by 1101.

B Yalves represeoted
ign ang
bybyby b, nﬂgﬁﬁ I'scomplernent 2's complement
0111 +1 +7 +1
01tad +6 +6 +6
6101 +5 +5 +3
6100 +4 +4 +4
ge11 +3 +3 +3
go1i1d +2 +2 +2
canti +1 +1 + 1
Go09 + 0 +0 +0
10040 ~{ -7 -8
18601 -1 -6 -7
10140 -2 -5 -~
1911 -3 -4 -5
1109 -4 _ -3 -4
1101 -5 ~% -3
1119 -6 -1 -2
1111 ~7 -0 -1

Figure 2.1 Binary, signed-integer reprasentations.

In 1’s- complement representation, negative values are obtained by complementing each bit ofthe corresponding
positive number. Thus, the representation for -3 is obtained by complementingeach bit in the vector 0011 to yield 1100.
Clearly, the same operation, bit complementing, is done in converting a negative number to the corresponding positive
value. Converting either wayis referred to as forming the 1’s-complement of a given number. Finally, in the 2’s-
complement system, forming the 2’s-complement of a number is done by subtracting that number from 2". Hence, the
2’s complement of a number is obtained by adding 1 to the 1’s complement of that number.

Addition of Positive numbers:-

Consider adding two 1-bit numbers. The results are shown in figure 2.2. Note that the sum of 1 and 1 requires the
2-bit vector 10 to represent the value 2. We say that the sum is 0 and the carry-out is 1. In order to add multiple-bit
numbers, we use a method analogous to that used for manual computation with decimal numbers. We add bit pairs
starting from the low-order (right) and of the bit vectors, propagating carries toward the high-order (left) end.

Department of CSE,AITS-TIRUPATI 11

COMPUTER ORGANIZATION(20APC3007)

1 { 1

+ + 0 + 1 + 1
[} 1 1 i0
Carry-out

Figure 2.2 Addition of 1-bit numbers.

INSTRUCTIONS AND INSTRUCTION SEQUENCING

A computer must have instructions capable of performing four types of operations.

Data transfers between the memory and the processor registers
Arithmetic and logic operations on data

Program sequencing and control

I/O transfers

REGISTER TRANSFER NOTATION:-
Transfer of information from one location in the computer to another. Possible locations that may be involved in
such transfers are memory locations that may be involved in such transfers are memory locations, processor registers,

or registers in the I/O subsystem. Most of the time, weidentify a location by a symbolic name standing for its hardware
binary address. For Example,

names for the addresses of memory locations may be LOC, PLACE, A, VAR2; processor

registers names may be R0, R5; and I/O register names may be DATAIN, OUTSTATUS, and so on. The contents
of a location are denoted by placing square brackets around the name of the location. Thus, the expression

RE « [LOCY

Means that the contents of memory location LOC are transferred into processor register R1.

As another example, consider the operation that adds the contents of registers R1 and R2, and then places their sum

into register R3. This action is indicated as

R3 « [R1} + [R2]

This type of notation is known as Register Transfer Notation (RTN). Note that “the right-hand side of an RTN
expression always denotes a value, and the left-hand side is the name of a location where the value is to be places,
overwriting the old contents of that location”.

ASSEMBLY LANGUAGE NOTATION:-

Assembly language format is another type of notation to represent machine instructions and programs. For example,

Department of CSE,AITS-TIRUPATI 12

COMPUTER ORGANIZATION(20APC3007)

an instruction that causes the transfer described above, from memory location LOC to processor register R1, is specified
by the statement

MOV LOC,R1

The contents of LOC are unchanged by the execution of this instruction, but the old contents of register R1 are
overwritten.

The second example of adding two numbers contained in processor registers R1 and R2 and placing their sum in R3
can be specified by the assembly language statement

AddR1,R2,R3

BASIC INSTRUCTIONS:

The operation of adding two numbers is a fundamental capability in any computer. The statement

C=A+B

In a high-level language program is a command to the computer to add the current values of the two variables called
A and B, and to assign the sum to a third variable, C. When the program containing this statement is compiled, the three
variables, A, B, and C, are assigned to distinct locations in the memory. We will use the variable names to refer to the
corresponding memory location addresses. The contents of these locations represent the values of the three variables.
Hence, the above high-level language statement requires the action to take place in the computer.

C «[A] +{B]

To carry out this action, the contents of memory locations A and B are fetched from the memory and transferred into

the processor where their sum is computed. This result is then sent back to the memory and stored in location C.

Let us first assume that this action is to be accomplished by a single machine instruction. Furthermore, assume that
this instruction contains the memory addresses of the three operands, A, B, and C. This three-address instruction can be
represented symbolically as

Add A,B,C

Operands A and B are called the source operands, C is called the destination operand, and Addis the operation to
be performed on the operands. A general instruction of this type has the format

Operation Sourcel, Source2, Destination

If k bits are needed for specify the memory address of each operand, the encoded form of the above instruction must
contain 3k bits for addressing purposes in addition to the bits needed to denote the Add operation.

Department of CSE,AITS-TIRUPATI 13

COMPUTER ORGANIZATION(20APC3007)

An alternative approach is to use a sequence of simpler instructions to perform the same task, with each instruction
having only one or two operands. Suppose that two- address instructions of the form

Operation Source, Destination
are available. An Add instruction of this type is
Add A,B

which performs the operation B <~ [A]+[B]. When the sum is calculated, the result is sent to the

memory and stored in location B, replacing the original contents of this location. This means thatoperand B is both
a source and a destination.

A single two-address instruction cannot be used to solve our original problem, which is to addthe contents of
locations A and B, without destroying either of them, and to place the sum in location C. The problem can be solved by
using another two-address instruction that copies the contents of one memory location into another. Such an instruction
is

Move B,C

Which performs the operations C « [B], leaving the contents of location B unchanged. Using only one-address
instructions, the operation C < [A] + [B] can be performed by two instruction sequence

Move B,CAdd A,C
Thus, the one-address instruction
Add A

means the following: Add the contents of memory location A to the contents of the accumulator register and place
the sum back into the accumulator. Let us also introduce the one-address instructions

Load A
and

store A

The Load instruction copies the contents of memory location A into the accumulator, and the Store instruction copies
the contents of the accumulator into memory location A. Using only one-address instructions, the operation C < [A]
+ [B] can be performed by executing the sequence of instructions

Load A Add B
Store C

Some early computers were designed around a single accumulator structure. Most moderncomputers have a number
of general-purpose processor registers — typically 8 to 32, and even considerably more in some cases. Access to data in
these registers is much faster than to data stored in memory locations because the registers are inside the processor.

Let Ri represent a general-purpose register. The instructions
Department of CSE,AITS-TIRUPATI 14

COMPUTER ORGANIZATION(20APC3007)

Load A, Rij Store Ri, A andAdd A, Ri

Are generalizations of the Load, Store, and Add instructions for the single-accumulator case, in which register Ri
performs the function of the accumulator.

When a processor has several general-purpose registers, many instructions involve only operandsthat are in the
register. In fact, in many modern processors, computations can be performed directly only on data held in processor
registers. Instructions such as

Add Ri, Rj Or

Add Ri, Rj, Rk

In both of these instructions, the source operands are the contents of registers R; and R;. In the first instruction, R;
also serves as the destination register, whereas in the second instruction, a third register, Ry, is used as the destination.

It is often necessary to transfer data between different locations. This is achieved with the instruction
Move Source, Destination

When data are moved to or from a processor register, the Move instruction can be used rather than the Load or Store
instructions because the order of the source and destination operands determines which operation is intended. Thus,

Move A, Ri
Is the same as

And
Load A, Ri
Move Ri, A

Is the same as
Store Ri, A

In processors where arithmetic operations are allowed only on operands that are processor registers, the C=A + B
task can be performed by the instruction sequence

Move A, Ri Move B, Rj Add Ri, Rj Move Rj, C

In processors where one operand may be in the memory but the other must be in register, an instruction sequence
for the required task would be

Department of CSE,AITS-TIRUPATI 15

COMPUTER ORGANIZATION(20APC3007)

Move A, Ri
Add B, Ri Move Ri, C

The speed with which a given task is carried out depends on the time it takes to transfer instructions from memory
into the processor and to access the operands referenced by these instructions. Transfers that involve the memory are
much slower than transfers within the processor.

We have discussed three-, two-, and one-address instructions. It is also possible to use instructions in which the
locations of all operands are defined implicitly. Such instructions are found in machines that store operands in a
structure called a pushdown stack. In this case, the instructions are called zero-address instructions.

INSTRUCTION EXECUTION AND STRAIGHT-LINE SEQUENCING:

The three instructions of the program are in successive word locations, starting at location i. Since each instruction
is 4 bytes long, the second and third instructions start at addresses i + 4 and i + 8.

Let us consider how below program is executed. The processor contains a register called the program counter (PC),
which holds the address of the instruction to be executed next.

To begin executing a program, the address of its first instruction (i in our example) must be placed into the PC.
Then, the processor control circuits use the information in the PC to fetch and execute instructions, one at a time, in
the order of increasing addresses. This is called straight-line sequencing. During the execution of each instruction, the
PC is incremented by 4 to point to the next instruction. Thus, after the Move instruction at location i + 8 is executed,
the PC

contains the value i + 12, which is the address of the first instruction of the next program segment

Department of CSE,AITS-TIRUPATI 16

COMPUTER ORGANIZATION(20APC3007)

Adilress Contents
Begin execution here —e | Move ARO
3-instruction
i+4 Add BRO program
segment
i+8 Move RO,.C
A e
Data for
3 the program
C gt

Figure 2.8 A progrem for C « [A] + [B].

Executing a given instruction is a two-phase procedure: instruction fetch & instruction execute.

In the first phase the instruction is fetched from the memory location whose address is in the PC. This instruction is
placed in the instruction register (IR) in the processor.

At the start of the second phase the instruction in IR is examined to determine which operation is to be performed.
BRANCHING:

Consider the task of adding a list of n numbers. The addresses of the memory locations containing the n numbers
are symbolically giver as NUM1, NUM2... NUMn and a separate Add

instruction is used to add each number to the contents of register R0. After all the numbers have been added, the
result is placed in memory location SUM.

The loop is a straight-line sequence of instructions executed as many times as needed. It starts at location LOOP
and ends at the instruction Branch>0. During each pass through this loop, the address of the next list entry is
determined, and that entry is fetched and added to RO.

Assume that the number of entries in the list, 2, is stored in memory location N. Register R1 is used as a counter to
determine the number of times the loop is executed. Hence, the contents of location N are leaded into register R1 at
the beginning of the program. Then, within the body of the loop, the instruction

Department of CSE,AITS-TIRUPATI 17

COMPUTER ORGANIZATION(20APC3007)

Decrement R1

reduces the contents of RI by 1 each time through the Loop. Execution of the loop is repeated as long as the result
of the decrement operation is greater than zero.

Branch instruction loads a new value into the program counter. The processor fetches and executes the instruction
at this new address, called the branch target. Conditional branch instruction causes a branch only if a specified
condition is satisfied. If the condition is not satisfied, the PC is incremented in the normal way, and the next
instruction in sequential address order is fetched and executed.

Branch>0 LOOP

Move NRI

Clear RO

LOOP
. Determine address of .
<~ "Next"mumberandadd - -
Program "Next” number to RO

Decrement R1
Brancho0 LOOP
Move ROSUM

SUM

NUMI
NUM2

NUMn

Figure 2.10 Using o loop fo add n numbers.

The Move instruction is fetched and executed. It moves the final result from RO into memory location SUM.

CONDITION CODES:

Department of CSE,AITS-TIRUPATI 18

COMPUTER ORGANIZATION(20APC3007)

The processor keeps track of information about the results of various operations for use by subsequent conditional
branch instructions. This is accomplished by recording the required information in individual bits, often called
condition code flags. These flags are usually grouped together in a special processor register called the condition code
register or status register.

Individual condition code flags are set to 1 or cleared to 0, depending on the outcome of the operation performed.

Four commonly used flags are:

N (negative) Set to 1 if the result is negative; otherwise, cleared to 0 Z (zero) Set to 1 if the result is 0;
otherwise, cleared to 0

V (overfiow} Set to 1 if arithmetic overflow occurs; otherwise, cleared to 0
C (carry) Set to 1 if a carry-out results from the operation; otherwise, cleared to 0

The N and Z flags indicate whether the result of an arithmetic or logic operation is negative or zero. The N and Z
flags may also be affected by instructions that transfer data, such as Move, Load, or Store.

The V flag indicates whether overflow has taken place. The processor sets the V flag to allow the programmer to
test whether overflow has occurred and branch to an appropriate routine that corrects the problem. Instructions such as
BranchlfOverfiow are provided for this purpose.

The C flag is set to 1 if a carry occurs from the most significant bit position during an arithmetic operation. This
flag makes it possible to perform arithmetic operations on operands that are longer than the word length of the
processor.

The instruction Branch>0, tests one or more of the condition flags.

GENERATING MEMORY ADDRESSES:

Suppose that a processor register, Ri, is used to hold the memory address of an operand, H it is initially loaded with
the address NUM1 before the loop is entered and is then incremented by 4 on each pass through the loop, it can
provide the needed capability.

ADDRESSING MODES:

The different ways in which the location of an operand is specified in an instruction are referred to as addressing
modes.

Department of CSE,AITS-TIRUPATI 19

COMPUTER ORGANIZATION(20APC3007)

Yable 2.1 Generic oddressing modes

Name Assembler syntax Addressing function
Ernediaie T #vaiee T Operand = Value
Register Ri EA = RF
Absolute (Direct) LOC EA = LOC
Indirect © {Ri&) EA = [Ri}
(LOC) EA = [L.OC)
- Imdex MRy EA=(Ril+ X
Base with index (RER) EA = [Ri] + [Rj]
Base with index; X{RIRF) "EA =R+ [RF] + X
and offset
Reiative X(PC) EA =[C] + X
Auloincrement (Riy+ EA = [Ril
[ncresnent Ri
Antodecrement —(Ri) Decrement Ri:
BA = [Ri)

IMPLEMENTATION OF VARIABLES AND CONSTANTS:

Variables and constants are the simplest data types and are found in almost every computer program. In assembly
language, a variable is represented by allocating a register or a memory location to hold its value. Thus, the value can
be changed as needed using appropriate instructions.

Register mode: The operand is the contents of a processor register; the name (address) of the register is given in the

instruction.

Absolute mode: The operand is in a memory location; the address of this location is given explicitly in the
instruction. (In some assembly languages, this mode is called Direct.)

The instruction

MOVE LOC, R2

uses these two modes. Processor registers are used as temporary storage locations where the data in a register are
accessed using the Register mode. The Absolute mode can represent global variables in a program. A declaration such

as
Integer A, B;

in a high-level language program will cause the compiler to allocate a memory location to each of the variables A
and B.

Department of CSE,AITS-TIRUPATI 20

COMPUTER ORGANIZATION(20APC3007)

Immediate mode: The operand is given explicitly in the instruction.

For example, the instruction

Move 200immediae, RO

places the value 200 in register RO.

The Immediate mode is only used to specify the value of a source operand.

A common convention is to use the sharp sign (#) in front of the value to indicate that this value is to be used as an
immediate operand.

Move #200, RO
Constant values are used frequently in high-level language programs. For example, the statement
A=B+6

contains the constant 6, Assuming that A and B have been declared earlier as variables and may be accessed using
the Absolute mode, this statement may be compiled asfollows:

Move B,R1
Add #6,R1
Move R1,A

INDIRECTION AND POINTERS

In the addressing modes that follow, the instruction provides information from which the memory address of the
operand can be determined. We refer to this address as the effective address (EA) of the operand.

Indirect mode: The effective address of the operand is the contents of a register or memory location whose address
appears in the instruction.

Indirection will be denoted by placing the name of the register or the memory address given in the instruction in
parentheses.

Department of CSE,AITS-TIRUPATI 21

COMPUTER ORGANIZATION(20APC3007)

To execute the Add instruction in Figure 2.11a, the processor uses the value B, which is in register R1, as the
effective address of the operand. It requests a read operation from the memory to read the contents of location B. The
value read is the desired operand, which the processor adds to the contents of register RO. Indirect addressing through
a memory location is also possible as shown in Figure 2.11b. In this case, the processor first reads the contents of
memory location A, and then requests a second read operation using the value B as an address to obtain the operand.

Add (RI)LRO Add (A)RO
Main
memory
B Operand A B
RI | B | Regiser B Opecand
(a) Through a general-purpose register (b) Through a memory location

Figure 2.11 Indirect addressing.

The register or memory location that contains the address of an operand is called a pointer.

For adding a list of numbers, indirect addressing can be used to access successive numbers in the list, resulting in
the program shown in Figure 2.12. Register R2 is used as a pointer to the numbers in the list, and the operands are
accessed indirectly through R2. The initialization section of the program loads the counter value n from memory
location N into R1 and uses the immediate addressing mode to place the address value NUM1, which is the address of
the first number in the list, into R2. Then it clears RO to 0. The first time through the loop, the instruction

Add (R2),R0

fetches the operand at location NUMI and adds it to RO. The second Add instruction adds 4 to the contents of the
pointer R2, so that it will contain the address value NUM2 when the above instruction is executed in the second pass
through the loop.

Consider the C-language statement

A=*B

where B is a pointer variable. This statement may be compiled into

Move B,R1 Move (R1),A
Using indirect addressing through memory, the same action can be achieved with

Department of CSE,AITS-TIRUPATI 22

COMPUTER ORGANIZATION(20APC3007)

Move (B),A

INDEXING AND ARRAYS:

It is useful in dealing with lists and arrays.

Index mode: The effective address of the operand is generated by adding a constant value to the contents of a
register.

The register used may be either a special register provided for this purpose, or, more commonly, it may be any one
of a set of general-purpose registers in the processor. In either case, it is referred to as an index register.

Index mode can be indicated symbolically as

X(Ri)

where X denotes the constant value contained in the instruction and Ri is the name of the register involved. The
effective address of the operand is given by

EA =X+[Ri]
The contents of the index register are not changed in the process of generating the effective address.

In an assembly language program, the constant X may be given cither as an explicit number or as a symbolic name
representing a numerical value.

In Figure 2.13a, the index register, Ri, contains the address of a memory location, and the value X defines an offset
(also called a displacement) from this address to the location where the operand is found.

An alternative use is illustrated in Figure 2.13b. Here, the constant X corresponds to a memory address, and the
contents of the index register define the offset to the operand.

In either case, the effective address is the sum of two values; one is given explicitly in the instruction, and the other
is stored in a register.

Department of CSE,AITS-TIRUPATI 23

COMPUTER ORGANIZATION(20APC3007)

Add 20(RIR2

4 o o

{a) Offsel is given as a constant

Add 100(R1MR2

-—-L 1020 Operand

(b) Offsetis in the index register

Figure 213 Indexed addressing.

To see the usefulness of indexed addressing, consider a simple example involving a list of test scores for students
taking a given course. Assume that the list of scores, beginning at location LIST, is structured as shown in Figure
2.14. A four-word memory block comprises a record that stores the relevant information for each student. Each record
consists of the student’s identification number (ID), followed by the scores the student earned on three tests. There are
n students in the class, and the value n is stored in location N immediately in front of the list. The addresses given in
the figure for the student IDs and test scores assume that the memory is byte addressable and that the word length is
32 bits

Each row contains the entries for one student, and the columns give the IDs and test scores.

In general, the Index mode facilitates access to an operand whose location is defined relative to a reference point
within the data structure in which the operand appears.

Department of CSE,AITS-TIRUPATI 24

COMPUTER ORGANIZATION(20APC3007)

i
r
N n
LIST Studemt ID
LIST +4 Test 1
> Student 1
LIST+8 Test 2
LIST + 12 Test 3
LIST + 16 Student ID '
Test 1
> Student 2
Test 2
Test 3

Figure 2.14 A list of students’ marks.

Several variations of basic form provide for very efficient access to memory operands in practical programming
situations. For Example,

(Ri Rj)

The effective address is the sum of the contents of registers Ri and Rj. The second register is usually called the base
register.

Move #LIST,RO
Clear Rl
Clear R2
Clear R3
Maove N,R4
— LOOP Add 4{RO)RI
Add 8(RO),R2
Add 12(RO},R3
Add #16,R0
Decrement R4
Branch>(LOOP
Move R1,SUMI
Move Rz SUM2
Move R3,SUM3

Figure 2.15 Indexed oddressing used in accessing
test scores in the list in Figure 2.14.

Department of CSE,AITS-TIRUPATI 25

COMPUTER ORGANIZATION(20APC3007)

RELATIVE ADDRESSING:

Then, X(PC) can be used to address a memory location that is X bytes away from the location presently pointed to
by the program counter. Since the addressed location is identified “relative” to the program counter, which always
identifies the current execution point in a program, the name Relative mode is associated with this type of addressing.

Relative mode: The effective address is determined by the Index mode using the program counter in place of the
general-purpose register Ri.

This mode can be used to access data operands. But, it’s most common use is to specify the target address in
branch instructions. An instruction such as

Branch>0 LOOP

causes program execution to go to the branch target location identified by the name LOOP if the branch condition
is satisfied.

APDITIONAL MODES:

Autoincrement mode: The effective address of the operand is the contents of a register specified in the instruction.
After accessing the operand, the contents of this register are automatically incremented to point to the next item in a
list.

Autoincrement mode can be denoted by putting the specified register in parentheses, to show that the contents of
the register are used as the effective address, followed by a plus sign to indicate that these contents are to be
incremented after the operand is accessed. Thus, the Autoincrement mode is written as

(Ri)+

Implicitly, the increment amount is 1 when the mode is given in this form.

Autodecrement mode: The contents of a register specified in the instruction are first automatically decremented and
are then used as the effective address of the operand.

Autodecrement mode can be denoted by putting the specified register in parentheses, preceded by a minus sign to
indicate that the contents of the register are to be decremented before being used as the effective address. Thus, we
write

-(Ri)

Department of CSE,AITS-TIRUPATI 26

COMPUTER ORGANIZATION(20APC3007)

Move N,R1
Move #NUMILR2 Initialization
Clear RG
et LOOP Add (R2)+,R0
Decrement Rl
Branch>{ LoQpP
Move ROSUM

Figure 2.16 The Autoincrement addressing mode used in the program
of Figure 2.12,

In this mode, operands are accessed in descending address order.

Basic input/output operations

We now examine the means by which data are transferred between the memory of a computer and the outside
world. Input/Output (I/O) operations are essential, and the way they are performed can have a significant effect on the
performance of the computer.

Consider a task that reads in character input from a keyboard and produces character output on a display screen. A
simple way of performing such I/O tasks is to use a method known as program- controlled I/O. The rate of data
transfer from the keyboard to a computer is limited by the typing speed of the user, which is unlikely to exceed a few
characters per second. The rate of output transfers from the computer to the display is much higher. It is determined
by the rate at which characters can be transmitted over the link between the computer and the display device, typically
several thousand characters per second. However, this is still much slower than the speed of a processor that can
execute many millions of instructions per second. The difference in speed between the processor and I/O devices
creates the need for mechanisms to synchronize the transfer of data between them.

T

DATAIN DATAOUT

Processor
. SIN . SOUT

Keyboard Display

Fig a Bus connection for processor, keyboard, and display

The keyboard and the display are separate device as shown in fig a. the action of striking a key on the keyboard
does not automatically cause the corresponding character to be displayed on the screen. One block of instructions in
the I/0O program transfers the character into the processor, and another associated block of instructions causes the
character to be displayed.

Striking a key store the corresponding character code in an 8-bit buffer register associated with the keyboard. Let
us call this register DATAIN, as shown in fig a. To inform the processor that a valid character is in DATAIN, a status

Department of CSE,AITS-TIRUPATI 27

COMPUTER ORGANIZATION(20APC3007)

control flag, SIN, is set to 1. A program monitors SIN, and when SIN is set to 1, the processor reads the contents of
DATAIN. When the character is transferred to the processor, SIN is automatically cleared to 0. If a second character
is entered at the keyboard, SIN is again set to 1, and the processor repeats.

An analogous process takes place when characters are transferred from the processor to the display. A buffer
register, DATAOUT, and a status control flag, SOUT, are used for this transfer. When SOUT equals 1, the display is
ready to receive a character.

In order to perform I/O transfers, we need machine instructions that can check the state of the status flags and
transfer data between the processor and the I/0O device. These instructions are similar in format to those used for
moving data between the processor and the memory. For example, the processor can monitor the keyboard status flag
SIN and transfer a character from DATAIN to register R1 by the following sequence of operations.

Stacks and queues

A computer program often needs to perform a particular subtask using the familiar subroutine structure. In order to
organize the control and information linkage between the main program and the subroutine, a data structure called a
stack is used. This section will describe stacks, as well as a closely related data structure called a queue.

Data operated on by a program can be organized in a variety of ways. We have already encountered data structured
as lists. Now, we consider an important data structure known as a stack. A stack is a list of data elements, usually
words or bytes, with the accessing restriction that elements can be added or removed at one end of the list only. This
end is called the top of the stack, and the other end is called the bottom. Another descriptive phrase, last-in-first-out
(LIFO) stack, is also used to describe this type of storage mechanism; the last data item placed on the

stack is the first one removed when retrieval begins. The terms push and pop are used to describe placing a new
item on the stack and removing the top item from the stack, respectively.

Fig b shows a stack of word data items in the memory of a computer. It contains numerical values, with 43 at the
bottom and -28 at the top. A processor register is used to keep track of the address of the element of the stack that is at
the top at any given time. This register is called the stack pointer (SP). It could be one of the general-purpose registers
or a register dedicated to this function.

5P —= 19

18 -8

17 5P —» 17

739 L)

> Stack

I
e
4 43 |
NN myv [m]
(a) After push from NEWITEM (b} After pop into ITEM

Figure 2.22 Effect of stack operations on the skack in Figure 2.21.
Department of CSE,AITS-TIRUPATI 28

COMPUTER ORGANIZATION(20APC3007)

Another useful data structure that is similar to the stack is called a queue. Data are stored in and retrieved from a
queue on a first-in-first-out (FIFO) basis. Thus, if we assume that the queue grows in the direction of increasing
addresses in the memory, which is a common practice, new data are added at the back (high-address end) and
retrieved from the front (low-address end) of the queue.

There are two important differences between how a stack and a queue are implemented. One end of the stack is
fixed (the bottom), while the other end rises and falls as data are pushed and popped. A single pointer is needed to
point to the top of the stack at any given time. On the other hand, both ends of a queue move to higher addresses as
data are added at the back and removed from the front. So, two pointers are needed to keep track of the two ends of
the queue.

Another difference between a stack and a queue is that, without further control, a queue would continuously move
through the memory of a computer in the direction of higher addresses. One way to limit the queue to a fixed region in
memory is to use a circular buffer. Let us assume that memory addresses from BEGINNING to END are assigned to
the queue. The first entry in the queue is entered into location BEGINNING, and successive entries are appended to
the queue by entering them at successively higher addresses. By the time the back of the queue reaches END, space
will have been created at the beginning if some items have been removed from the queue. Hence, the back pointer is
reset to the value BEGINNING and the process continues. As in the case of a stack, care must be taken to detect when
the region assigned to the data structure is either completely full or completely empty.

Subroutines

In a given program, it is often necessary to perform a particular subtask many times on different data-values. Such
a subtask is usually called a subroutine. For example, a subroutine may evaluate the sine function or sort a list of
values into increasing or decreasing order.

It is possible to include the block of instructions that constitute a subroutine at every place where it is needed in the
program. However, to save space, only one copy of the instructions that constitute the subroutine is placed in the
memory, and any program that requires the use of the subroutine simply branches to its starting location. When a
program branches to a subroutine we say that it is calling the subroutine. The instruction that performs this branch
operation is named a Call instruction.

After a subroutine has been executed, the calling program must resume execution, continuing immediately after the
instruction that called the subroutine. The subroutine is said to return to the program that called it by executing a
Return instruction.

The way in which a computer makes it possible to call and return from subroutines is referred to as its subroutine
linkage method. The simplest subroutine linkage method is to save the return address in a specific location, which
may be a register dedicated to this function. Such a register is called the link register. When the subroutine completes
its task, the Return instruction returns to the calling program by branching indirectly through the link register.

The Call instruction is just a special branch instruction that performs the following operations

. Store the contents of the PC in the link register
Department of CSE,AITS-TIRUPATI 29

COMPUTER ORGANIZATION(20APC3007)

. Branch to the target address specified by the instruction.

The Return instruction is a special branch instruction that performs the operation.

. Branch to the address contained in the link register.
location Calling program location Subrowtine SL'B
200 Call SUB 1000 first instruction
204 pext instruction —— .
2 Retum
1000

v [] =

Call Return

Figure 2.24 Subroutine linkage using a link register.
SUBROUTINE NESTING AND THE PROCESSOR STACK:-

A common programming practice, called subroutine nesting, is to have one subroutine call another. In this case, the
return address of the second call is also stored in the link register, destroying its previous contents. Hence, it is
essential to save the contents of the link register in some other location before calling another subroutine. Otherwise,
the return address of the first subroutine will be lost.

Subroutine nesting can be carried out to any depth. Eventually, the last subroutine called completes its
computations and returns to the subroutine that called it. The return address needed for this first return is the last one
generated in the nested call sequence. That is, return addresses

are generated and used in a last-in-first-out order. This suggests that the return addresses associated with subroutine
calls should be pushed onto a stack. A particular register is designated as the stack pointer, SP, to be used in this
operation. The stack pointer points to a stack called the processor stack. The Call instruction pushes the contents of the
PC onto the processor stack and loads the subroutine address into the PC. The Return instruction pops the return
address from the processor stack into the PC.

ADDITIONAL INSTRUCTIONS
Department of CSE,AITS-TIRUPATI 30

COMPUTER ORGANIZATION(20APC3007)

Logic instructions

Logic operations such as AND, OR, and NOT, applied to individual bits, are the basic building blocks of digital
circuits, as described. It is also useful to be able to perform logic operations is software, which is done using
instructions that apply these operations to all bits of a word or byte independently and in parallel. For example, the
instruction

Not dst
SHIFT AND ROTATE INSTRUCTIONS:-

There are many applications that require the bits of an operand to be shifted right or left some specified number of
bit positions. The details of how the shifts are performed depend on whether the operand is a signed number or some
more general binary-coded information. For general operands, we use a logical shift. For a number, we use an
arithmetic shift, which preserves the sign of the number.

Logical shifts:-

Two logical shift instructions are needed, one for shifting left (LShiftL.) and another for shifting right (LShiftR).
These instructions shift an operand over a number of bit positions specified in a count operand contained in the
instruction. The general form of a logical left shift instruction is

LShiftL. count, dst

Logical shift left LShiftL #2, RO

< L RO -—

IZI 011 10...011
before :

after: 1 110 01100

(b) Logical shift right LShiftR #2, RO

— RO —_— C

Before: 01110 .« 5 011 0

QU0 1110 40
After:

(o) Arithmetic shift right AShiftR #2, RO

Department of CSE,AITS-TIRUPATI 31

COMPUTER ORGANIZATION(20APC3007)

=

— RO — C —

Before: 1 &9 .1 1L . .0 10 0

After:
Rotate Operations:-

In the shift operations, the bits shifted out of the operand are lost, except for the last bit shifted out which is
retained in the Carry flag C. To preserve all bits, a set of rotate instructions can be used. They move the bits that are
shifted out of one end of the operand back into the other end. Two versions of both the left and right rotate instructions
are usually provided. In one version, the bits of the operand are simply rotated. In the other version, the rotation
includes the C flag.

(a) Rotate left without carry RotateL #2, RO

- e RO «—

Before:

After: 1 1 10 .. .011°0°1

(b) Rotate left with carry RotateL.C #2, RO

—_— C +— RO -

i [01110...011
Before: 0

110..01100
after:

Department of CSE,AITS-TIRUPATI 32

COMPUTER ORGANIZATION(20APC3007)

(¢) Rotate right without carry RotateR #2. RO
= _‘.Jl c i_,
RO ‘ ‘
Befire: 01 11 0 011 ‘ [0 ‘
1101110 ; 0 ‘ [1 ‘
After: 1!
(d) Rotate nnght with carry RotateRC #2, RO

Before: | 01 1 1 0 01 1 ‘ o |
after; 1 0 0 1 110. 0 ‘ 1 |

MULTIPLICATION AND DIVISION

“Two signed integers can be multiplied or divided by machine instructions with the same format. The instruction
Multiply Ri,Rj

performs the operation

Rj « [Ri] x [R]]

The product of two n-bit numbers can be as large as 2n bits. A number of instruction sets have a Multiply
instruction that computes the lew-order n bits of the product and places i in register Rj, as indicated. To accommodate
the general 2n-bit product case, some processors produce the product in two registers, usually adjacent registers Rj
and R(j + 1), with the high-order half being placed in register R(j + 1).

Some instruction sets provide a signed integer Divide instruction
Divide Ri,Rj
which performs the operation

Rj « [Rj]/[Ri]

Department of CSE,AITS-TIRUPATI 33

COMPUTER ORGANIZATION(20APC3007)

placing the quotient in Rj. The remainder may be placed in R(j + 1), or it may be Lost.

UNIT-II

Arithmetic: Addition and Subtraction of Signed Numbers, Design and Fast Adders, Multiplication of Positive
Numbers, Signed-operand Multiplication, Fast Multiplication, Integer Division, Floating-Point Numbers and
Operations.

Basic Processing Unit: Fundamental Concepts, Execution of a Complete Instruction, Multiple-Bus Organization,
Hardwired Control, Multiprogrammed Control.

CHAPTER-1

Arithmetic
2.1 ADDITION AND SUBTRACTION OF SIGNED NUMBERS

Figure 6.1 shows the logic truth table for the sum and carry-out functions for adding equally weighted bits x; and y,
in two numbers X and Y, The figure also shows logic expressions for these functions, along with an example of addition
of the 4-bit unsigned numbers 7 and 6. Note that each stage of the addition process must accommodate a carry-in bit.
We use ci to represent the carry-in to the i™" stage, which is the same as the carry-out from the (i - 1) * stage.

The logic expression for sj in Figure 6.1 can be implemented with a 3-input XOR gate, used in Figure 6.2a as part of
the logic required for a single stage of binary addition. The carry-out function, ci+1, is implemented with a two-level
AND-OR logic circuit. A convenient symbol for the complete circuit for a single stage of addition, called a full adder
(FA), is also shown in the figure.

A cascaded connection of such n full adder blocks, as shown in Figure 6.2C, forms a parallel adder & can be used to
add two n-bit numbers. Since the carries must propagate, or ripple, through this cascade, the configuration is called an
n-bit ripple-carry adder.

The carry-in, Co, into the least-significant-bit (LSB) position [1% stage] provides a convenient means of adding 1 to
a number. Take for instance; forming the 2's- complement of a number involves adding 1 to the 1’s-complement of the
number. The carry signals are also useful for interconnecting k adders to form an adder capable of handling input
numbers that are kn bits long, as shown in Figure 6.2c.

Department of CSE,AITS-TIRUPATI 34

COMPUTER ORGANIZATION(20APC3007)

% ¥i Carry-ing; ! Sums; Camy-oute,,
o 0 o i 0 0
o 0o 1 P 0
0 i 0 l I 0
0 I 1 L0 i
i 0 0 b1 0
1 0 1 0 I
i i 0 {t i
i i 1 _1 1 i

5= XY RO XRYCH XY= @y B¢

Example:

X 7 0 tf 11 Ty i

+Y = 46 = +00:11 140 Car:z:ml__ﬁahu‘__ﬁr:ym

z 13 104l | 5
Legend for stage i

Figure 6.1 Logic specification for o stage of binary addition.

Department of CSE,AITS-TIRUPATI

35

COMPUTER ORGANIZATION(20APC3007)

1 —
':I: —
‘I)
] £ Civl
1
5 d
X }ll
¥ —4

I Fall
Eip) =-—j h:l_:?“ j— C;

T

(&) Logic for & single stege

n Xy F i
I
faol £
FA - Fh J-—rﬂ

L‘"E" | T

<, FA e e —

55 T
Most significant biz Least significant bit
(M5B} position (L53H) position

() An n-bit Fpple-carry adder

Tl Yo *ona1 Fac) Ta fnet Yool T Ko
. it il e i
A= (LBl [8
Cp dder il W w --—-J ey A cdder [=— Ty
] ddw RN . LR
| P~} !
-t Tkl Trw-i Ty LE ¥y

(c) Gascade of k rbit adders
Fgure 8.2 logic fw addition of binory vectors,

ADDITION/SUBTRACTION Logic UNIT:

The n-bit adder in Figure 6.28 can be used to add 2’s-complement numbers X and Y, where the Xn-1 and yn-1 bits
are the sign bits. Overflow can only occur when the signs of the two operands are the same. In this case, overflow
obviously occurs if the sign of the result is different, therefore, a circuit to detect overflow can be added to the n-bit

adder by implementing the logic expression

5= XY HXYCHRYEH XY= 0y @

Department of CSE,AITS-TIRUPATI

COMPUTER ORGANIZATION(20APC3007)

Overflow can also occur when the carry bits ¢, and cn-1 are different. Therefore, a simpler alternative circuit for
detecting overflow can be obtained by implementing the expression c¢n [cn-1 with an XOR gate.

In order to perform the subtraction operation X - Y on 2’s-complement numbers X and Y, we form the 2’s-
compiement of Y and add it to X. The logic circuit network shown in Figure 6.3 canbe used to perform either addition
or subtraction based on the value applied to the Add/Sub inputcontrol line. This line is set to O for addition, applying
the Y vector unchanged to one of the adder inputs along with a carry-in signal, co, of 0, When the Add/Sub control line
is set to 1, the Y vector is 1’s-complemented (that is, bit complemented) by the XOR gates and co is set to 1 to complete
the 2’s-complementation of Y. An XOR gate can be added to Figure 6.3 to detect the overflow condition cn [cn-1.

Y

L
AdidBuh
E F i ! [controb
E
e ‘4-“-:--“'---!?
n-bal adder '{
fon—1

H
L
1i|' -\\.-W-u-u-r-nj’

T

¥a-1
A

u-1 LA
'

T

Figure 4. Binory addition-sibhracficn logic natwerk

DESIGN OF FAST ADDERS:

In an n-bit parallel adder (ripple-carry adder), there is too much delay in developing the outputs, so through sn-1 and
cn. On many occasions this delay is not acceptable; in comparison with the speed of other processor components and
speed of the data transfer between registers and cache memories. The delay through a network depends on the integrated
circuit technology used in fabricating the network and on the number of gates in the paths from inputs to outputs
(propagation delay). The delay through any combinational logic network constructed from gates in a particular
technology is determined by adding up the number of logic-gate delays along the longest signal propagation path through
the network. In the case of the n-bit ripple-carry adder, the longest path is from inputs x0, y0, and c0 at the least-
significant-bit (LSB) position to outputs cn and sn-1 at the most-significant-bit (MSB) position.

Using the logic implementation indicated in Figure 6.2a, cn-1 is available in 2(n—1) gate delays, and sn-1 is one
XOR gate delay later. The final carry-out, cn is available after 2n gate delays. Therefore, if a ripple-carry adder is used

to implement the addition/subtraction unit shown in Figure-6.3, all sum bits are available in 2n gate delays, including
the delay through the XOR

Department of CSE,AITS-TIRUPATI 37

COMPUTER ORGANIZATION(20APC3007)

gates on the Y input. Using the implementation cn [cn-1 for overflow, this indicator is available after 2n+2 gate
delays. In summary, in a parallel adder an nth stage adder cannot complete the addition process before all its previous
stages have completed the addition even with input bits ready. This is because; the carry bit from previous stage has to
be made available for addition of the present stage.

In practice, a number of design techniques have been used to implement high- speed adders. In order to reduce this
delay in adders, an augmented logic gate network structure may be used. Onesuch method is to use circuit designs for
fast propagation of carry signals (carry prediction).

Carry-Look ahead Addition:

As it is clear from the previous discussion that a parallel adder is considerably slow & a fast adder circuit must speed
up the generation of the carry signals, it is necessary to make the carry input to each stage readily available along with
the input bits.

This can be achieved either by propagating the previous carry or by generating a carry dependingon the input bits &
previous carry. The logic expressions for si (sum) and ci+1 (carry-out) of stagei are

=X @y
ard
B3 = Xi¥: T 40+ W
Factoring the second eqestion iato
Log =Ty + (G + w)e
we can write

L=t = GI 1 F;EI-

Gy ad P=z+w

The expressions Gi and Pj are called generate and propagate functions for stage i. If the generate function for stage
i is equal to 1, then ci+1 = 1, independent of the input carry, ci. This occurs when both xi and yi are 1. The propagate
function means that an input carry will produce an output carry when either xj or yi or both equal to 1. Now, using Gi
& Pi functions we can decide carry for i stage even before its previous stages have completed their addition operations.
All Gi and Pij functions can be formed independently and in parallel in only one gate delay after the Xj and Yi inputs
are applied to an n-bit adder. Each bit stage contains an AND gate to form Gi, an OR gate to form Pj and a three-input
XOR gate to form sj. However, a much simpler circuit can be derived by considering the propagate function as Pj = xi
0 yi which differs from Pi = xi + yi only when xj = yi =1 where Gij = 1 (so it does not matter whether Pi is 0 or 1). Then,
the basic diagram in Figure-6.4a can be used in each bit stage to predict carry ahead of any stagecompleting its addition.

Consider the cj+1 expression

Department of CSE,AITS-TIRUPATI 38

COMPUTER ORGANIZATION(20APC3007)

ci =0+ B+ BF

This is because, Ci = (Gi-1 + Pi-1Ci-1).

Further, Ci-1 = (Gi-2 + Pi-2Cj-2) and so on. Expanding in this fashion, the final carry expression can be written as
below;

G =G+ PG+ AP Giat o+ B Ry PG+ BE o By

Thus, all carries can be obtained in three gate delays after the input signals Xi, Yi and Cin are applied at the inputs.
This is because only one gate delay is needed to develop all Pi and Gi signals, followed by two gate delays in the AND-

OR circuit (SOP expression) for ci after a further XOR gate delay, all sum bits are available. Therefore, independent of
n, the number of stages, the n-bit addition process requires only four gate delays.

B eell
G £ 2
(a) Bit-stage call
n oM no» X ¥ eI
. . , i
LI B calt B eell B cell B cell €y
)
1] f i
H + o)
@ | Ry [P L) O] Gl 1M
r ST !
et Carry-hoakahead logic | _E-——
| \
{5} 4-bit adder

Fgure 6.4 4-bid corry-ookahecd odder,

Department of CSE,AITS-TIRUPATI 39

COMPUTER ORGANIZATION(20APC3007)

Now, consider the design of a 4-bit parallel adder. The carries can be implemented as

¢y = lag + Faep

o3 = b5y + PGy + P Py

c; = Gy PG + PPy Gy + PP B

oy = Gz + Pyliy + B Pl + B AGy + Bl O Py

The complete 4-bit adder is shown in Figure 6.4b where the B cell indicates Gi, Pi & Sigenerator. The carries are
implemented in the block labeled carry look-ahead logic. An adder implemented in this form is called a carry look ahead
adder. Delay through the adder is 3 gate delays for all carry bits and 4 gate delays for all sum bits. In comparison, note
that a 4-bit ripple- carry adder requires 7 gate delays for S3(2n-1) and 8 gate delays(2n) for c4.

If we try to extend the carry lookahead adder of Figure 5b for longer operands, we run into a problem of gate fan-in
constraints. From the final expression for Ci+1 & the carry expressions for a 4 bit adder, we see that the last AND gate
and the OR gate require a fan-in of i + 2 in generating cn-1. For c4 (i = 3)in the 4-bit adder, a fan-in of 5 is required.
This puts the limit on the practical implementation. So the adder design shown in Figure 4b cannot be directly extended
to longer operand sizes. However, if we cascade a number of 4-bit adders, it is possible to build longer adders without
the practical problems of fan- in. An example of a 16 bit carry look ahead adder is as shown in figure. Eight 4-bit carry
look-ahead adders can be connected asin Figure-6.2 to form a 32-bit adder.

Y1912 Yisaz ‘e Tis 4 Y14 20 Y30
f-3 = I bood
I:I - L“I} I:,‘_
Cip - 4.bit adder |, 4.bit adder __ d-pit adder d-bitadder " €y
' ' { !
S5 -8 9.4 %4
[] '
o 5l = I] (=g e | i
G, F ; &, i F-. |:._ 1 Jf FI'I
Ty | . | 1Y +
) Carmy-lookahead logic -

FIG: 16 bit carry-lookahead adder

Department of CSE,AITS-TIRUPATI 40

COMPUTER ORGANIZATION(20APC3007)

MULTIPLICATION OF POSITIVE NUMBERS

Consider the multiplication of two integers as in Figure-6a in binary number system. This algorithm applies to
unsigned numbers and to positive signed numbers. The product of two n- digit numbers can be accommodated in 2n
digits, so the product of the two 4-bit numbers in this example fits into 8 bits. In the binary system, multiplication by
the multiplier bit ‘1’ means the multiplicand is entered in the appropriate position to be added to the partial product. If
the multiplier bit is ‘0’, then Os are entered, as indicated in the third row of the shown example.

Binary multiplication of positive operands can be implemented in a combinational (speed up) two-dimensional logic
array, as shown in Figure 6.6. Here, M- indicates multiplicand, Q- indicates multiplier & P- indicates partial product.
The basic component in each cell is a full adder FA. The AND gate in each cell determines whether a multiplicand bit
mj, is added to the incoming partial-product bit, based on the value of the multiplier bit, gi. For i in the range of 0 to 3,
if gi = 1, add the multiplicand (appropriately shifted) to the incoming partial product, PPi, to generate the outgoing
partial product, PP(i+ 1) & if gi = 0, PPi is passed vertically downward unchanged. The initial partial product PPO is
all Os. PP4 is the desired product. The multiplicand is shifted left one position per row by the diagonal signal path. Since
the multiplicand is shifted and added to the partial product depending on the multiplier bit, the method is referred as
SHIFT & ADD method. The multiplier array & the components of each bit cell are indicated in the diagram, while the
flow diagram shown explains the multiplication procedure.

1101 (13) Multiplicand M
x 1011 (i) MultiplierQ
1101
1101
0000
1101
10001111 (143 PoductP
(a) Manual multiplication elgorithm

Partialproduct ¢ my () 0 m'Q
(PPO) 4 3 g 1 My

-

PPl

PP2

PP3

Pr Pg Ps Py Py

Department of CSE,AITS-TIRUPATI 41

COMPUTER ORGANIZATION(20APC3007)

Bit of incoming partial product (PPi)
-I! - I un ki
f
Carry-out = FA

Bit of outgoing partial product [PP(i+!)]
(b) Array implementation

Fig 6.6: Array multiplication of positive binary operands

The following SHIFT & ADD method flow chart depicts the multiplication logic for unsignednumbers.

0
Multiplicand
M ultiplicer
n

C.A
M
Q

Count

C, A

Shift C, A.Q
Count Count =1

A+M

Product
in A, Q

Despite the use of a combinational network, there is a considerable amount of delay associatedwith the arrangement

Department of CSE,AITS-TIRUPATI

42

COMPUTER ORGANIZATION(20APC3007)

shown. Although the preceding combinational multiplier is easy to

Department of CSE,AITS-TIRUPATI

43

COMPUTER ORGANIZATION(20APC3007)

understand, it uses many gates for multiplying numbers of practical size, such as 32- or 64-bit numbers. The worst
case signal propagation delay path is from the upper right corner of the arrayto the high-order product bit output at the
bottom left corner of the array. The path includes the two cells at the right end of each row, followed by all the cells in
the bottom row. Assuming that there are two gate delays from the inputs to the outputs of a full adder block, the path
has a total of 6(n - 1) - 1 gate delays, including the initial AND gate delay in all cells, for the n x n array. In the delay
expression, (n-1) because, only the AND gates are actually needed in the first row of the array because the incoming
(initial) partial product PPO is zero

Multiplication can also be performed using a mixture of combinational array techniques (similar to those shown in
Figure 7) and sequential techniques requiring less combinational logic. Multiplication is usually provided as an
instruction in the machine instruction set of a processor. High-performance processor (DS processors) chips use an
appreciable area of the chip to perform arithmetic functions on both integer and floating-point operands. Sacrificing an
area on- chip for these arithmetic circuits increases the speed of processing. Generally, processors built for real time
applications have an on-chip multiplier.

Register A (initially 0)

iml‘l! ew ,l Mol

Multiplicand M
() Register configuration

Another simplest way to perform multiplication is to use the adder circuitry in the ALU for a number of sequential
steps. The block diagram in Figure 8a shows the hardware arrangement for sequential multiplication. This circuit
performs multiplication by using single n-bit adder n timesto implement the spatial addition performed by the n rows
of ripple-carry adders. Registers A and Q combined to hold PPi while multiplier bit qi generates the signal Add/No-add.
This signal controls the addition of the multiplicand M to PPi to generate PP(i + 1). The product is computedin n cycles.
The partial product grows in length by one bit per cycle from the initial vector, PPO, of n Os in register A. The carry-
out from the adder is stored in flip-flop C. To begin with, the multiplier is loaded into register Q, the multiplicand into
register M and registers C and A are cleared to 0. At the end of each cycle C, A, and Q are shifted right one bit positions
to allow for growth of the partial product as the multiplier is shifted out of register Q. Because of thisshifting,
multiplier bit qi, appears at the LSB position of Q to generate the Add/No-add signal at the correct time, starting with
go during the first cycle, q1 during the second cycle, and so on.

Department of CSE,AITS-TIRUPATI 44

COMPUTER ORGANIZATION(20APC3007)

After they are used, the multiplier bits are discarded by the right-shift operation. Note that the carry-out from the
adder is the leftmost bit of PP(i + 1), and it must be held in the C flip-flop to be shifted right with the contents of A and
Q. After n cycles, the high-order half-of- the productis held in register A and the low-order half is in register Q. The
multiplication example used above is shown in Figure 8b as it would be performed by this hardware arrangement.

M
EET
e SAoTIE T s Initial configuration
010000 (10110
c A Q \
0 1101 1011 Add }ﬁmdc
0 0110 1101 Shift .
1 00t 1 110t Add
0 1001l 1110 Shift } Second L‘yl:]c
0 1001 EEbo No add }
. Third cycle
0 0100 IR 1\Shm y
1 0001 1§14 Add } Fourth cvele
0 1000 EYE D Shift 4
" . .
Product
(b} Multiplication example

Fig: Sequential circuit binary multiplier.

Using this sequential hardware structure, it is clear that a multiply instruction takes much more time to execute than
an Add instruction. This is because of the sequential circuits associated in a multiplier arrangement. Several techniques
have been used to speed up multiplication; bit pair recoding, carry save addition, repeated addition, etc.

SIGNED-OPERAND MULTIPLIATION:

Multiplication of 2's-complement signed operands, generating a double-length product is still achieved by
accumulating partial products by adding versions of the multiplicand as decided by the multiplier bits. First, consider
the case of a positive multiplier and a negative multiplicand. When we add a negative multiplicand to a partial product,
we must extend the sign-bit value of the multiplicand to the left as far as the product will extend. In Figure 6.8, for
example, the 5-bit signed operand, - 13, is the multiplicand, and +11, is the 5 bit multiplier & the expected product -143
is 10-bit wide. The sign extension of the multiplicand is shown in red color. Thus, the hardware discussed earlier can
be used for negative multiplicands if it provides for sign extension of the partial products.

For a negative multiplier, a straightforward solution is to form the 2's- complement of both the multiplier and the
multiplicand and proceed as in the case of a positive multiplier. This is possible because complementation of both
operands does not change the value or the sign of the product. In order to take care of both negative and positive
multipliers, BOOTH algorithm can beused.

Department of CSE,AITS-TIRUPATI 45

COMPUTER ORGANIZATION(20APC3007)

0 0 1 1 (-13)
x 0 1 0 1t 1 (+1)

Sign extension is
shown in blue g 0 0 0 ¢ 0 0 O

1 101 L 1 0 0 0 1 (~143)

Figure 6.8 Sign extension of negafive multiplicand.

Booth Algorithm
The Booth multiplication algorithm defines a multiplication algorithm that can multiply two signed binary numbers
in two’s complement. This algorithm helps in the study of computer architecture.

Booth’s algorithm contains the addition of one of two predetermined values (A and S) to a product (P) continually
and then implementing a rightward arithmetic shift on the product (P). Let us consider the predetermined values to be
A and S, and the product to be P. Consider that the multiplicand and multiplier are m and r respectively. Let the number
of bits in m and r be x and y respectively.

The Booth’s multiplication algorithm involves the following steps —

Step 1 — The values of A and S and the initial value of P are determined. These values should have a length that is
equalto (x +y + 1).

® For A, the MSB is filled with the value of m, and the remaining (y+1) bits are filled with zeros.

® For S, the MSB is filled with the value of (-m) in two’s complement notations, and the remaining (y + 1) bits
are filled with zeros.

® For P, the MSB for x is filled with zeros. To the right of this value, the value of r is appended. Then, the LSB

is filled with a zero.
Step 2 — The LSBs of P are determined.

In case they are 01, find the value of P + A, and ignore the overflow or carry if any.
In case they are 10, find the value of P + S, and ignore the overflow or carry if any.
In case they are 00, use P directly in the next step.

G 6 6 6

In case they are 11, use P directly in the next step.
Step 3 — The value obtained in the second step is arithmetically shifted by one place to the right. P is now assigned
the new value.

Department of CSE,AITS-TIRUPATI 46

COMPUTER ORGANIZATION(20APC3007)

Step 4 — Step 2 and Step 3 are repeated for y number of times. Step 5: The LSB is dropped from P, which gives the
product of m and r.

Example — Find the product of 3 x (-4), wherem =3, r=-4,x =4 and y = -4.
A =001100001

S =110100000

P =000011000

The loop has to be performed four times since y = 4.

P =000011000

Here, the last two bits are 00.

Therefore, P = 000001100 after performing the arithmetic right shift.
P = 000001100

Here, the last two bits are 00.

Therefore, P = 000000110 after performing the arithmetic right shift.
P =000000110

Here, the last two bits are 10.

Therefore, P =P + S, which is 110100110.

P =111010011 after performing the arithmetic right shift.
P=111010011

Here, the last two bits are 11.

Therefore, P = 111101001 after performing the arithmetic right shift.
The product is 11110100 after dropping the L.SB from P.

11110100 is the binary representation of -12.

FLOW CHART:

Department of CSE,AITS-TIRUPATI 47

COMPUTER ORGANIZATION(20APC3007)

L by [
Rl i ol e i T 1w cosmapdaernaen® off R

The Booth algorithm generates a 2n-bit product and both positive and negative 2's-complement n-bit operands are
uniformly treated. To understand this algorithm, consider a multiplication operation in which the multiplier is positive
and has a single block of 1s, for example, 0011110(+30). To derive the product, as in the normal standard procedure,
we could add four appropriately shifted versions of the multiplicand,. However, using the Booth algorithm, we can
reduce the number of required operations by regarding this multiplier as the difference between numbers 32 & 2 as
shown below;

0100000 (32)
~0000010 (2)

0011110 (30)

This suggests that the product can be generated by adding 25 times the multiplicand to the 2's- complement of 21
times the multiplicand. For convenience, we can describe the sequence of required operations by recoding the preceding
multiplier as 0 +1000 - 10. In general, in the Booth scheme, -1 times the shifted multiplicand is selected when moving
from O to 1, and +1 times the shifted multiplicand is selected when moving from 1 to 0, as the multiplier is scanned
from right to left.

Figure 6.9 illustrates the normal and the Booth algorithms for the said example. The Booth algorithm clearly extends
to any number of blocks of 1s in a multiplier, including the situation in which a single 1 is considered a block. See
Figure 6.10 for another example of recoding a multiplier. The case when the least significant bit of the multiplier is 1 is
handled by assuming that an implied O lies to its right. The Booth algorithm can also be used directly for negative
multipliers, as shown in Figure 6.11. To verify the correctness of the Booth algorithm for negative multipliers, we use
the following property of negative-number representations in the 2's-complement.

Department of CSE,AITS-TIRUPATI 48

COMPUTER ORGANIZATION(20APC3007)

e ro1 101
0 04141 +1+1 0
00O0O0O0TO0TO
01011 €1
0101101
o101 101
orLo1 101
0 00O0O0OO0OD
000 0DTCOCCO
000100101 000110
¢t 1901101
0+1 0 0 0-1 @
¢ 000O0COQCO0OC0CCOCODOO0OOD0 OGO "
|1|1t1to|nn|1.—-§”:‘;m?"‘m"’““
0 ¢6000O0O0CO0CCO0O0OTCO0CCOQ
0o0O00O0OD0O0O0OD0TU0CT O
0000O0CO0OOD0O0OCTDODTCO
0 o011 01 i 01
G o000CO0COQOCQOD
0 o001l 0O10O0CO0DTIT1O
Figure 6.9 Normal ond Beoth mulfiplicafion schemes.

0+ -1 +1

Figure 6,10 Booth recoding of a multiplier.

0 -1 0+t 0 O -1 +1 -1 +1 0 -~1 0 O
(+13) ﬁ 01101
{~6) 0-l+1-1 0
go000O0CO0CO0O0C0
I T O { I T |
0001 10¢
1110011
000000
P11 10110010 (-78

Figure 6.11 Booth multiplication with & negutive multiplier.

To demonstrate the correctness of the Booth algorithm for negative multipliers, we use the following property of
negative-number representations in the 2’s-complement system: Let the leftmost 0 of a negative number, X, be at bit

position k, that is,

Department of CSE,AITS-TIRUPATI

49

COMPUTER ORGANIZATION(20APC3007)

X = ll.,.lﬂxh;...xg
Then the value of X is given by
VX) = =2 b xq x 2 4 xg x 20

The correctness of this expression for V(X) is shown by observing that if X is formed as the sum of two numbers

... 10001...0
4+ 00.,.00x;...x9

X = 11..."11}..1...1.‘;;

then the top number is the 2’s-complement representation of -2k*!, The recoded multiplier now consists of the part
corresponding to the second number, with —1 added inposition k + 1. For example, the multiplier 110110 is recoded as
0-1+10 -10.

The Booth technique for recoding multipliers is summarized in Figure 6.12. The transformation 011...110 =>
+100..,0—10 is called skipping over 1s. This term is derived from the case in whichthe multiplier has its 1s grouped
into a few contiguous blocks, Only a few versions of the shifted multiplicand (the summands) must be added to generate
the product, thus speeding up the multiplication operation. However, in the worst case — that of alternating 1s and 0s
in the multiplier - each bit of the multiplier selects a summand, In fact, this results in more summands than if the Booth
algorithm were not used. A 16-bit, worst-case multiplier, an ordinary multiplier, and a good multiplier are shown in
Figure 6.13.

' Muiuphcr _ Version ol inultiplicand
e ; selected by bit i
Biti Biti-1
o 0 0xM
0 1 +1xM
1 0 E -ixM

1 | 0xM

Figure 6.12 Booth multiplier recoding table.

Department of CSE,AITS-TIRUPATI 50

COMPUTER ORGANIZATION(20APC3007)

t I 1I0101D L4 L0101

Worst-case i
ruliplier i
3 I T R) (S S IS I) IS NS B S (R
P 10001011 0111100
Ordinary "
multiplier g
0 -1 00+ -1+ 014 00 0-100
P01 1T LT EEDOQOBDLE L
Good '
multiplicr N

6 0 0+ 6 00 C-1 00 0+ 0 @~

Figure 6.13 Booth recoded multipliers.

The Booth algorithm has two attractive features:

> First, it handles both positive and negative multipliers uniformly.
> Second, it achieves some efficiency in the number of additions required when themultiplier has a
few large blocks of 1s.

FAST MULIPLICATION:

There are two techniques for speeding up the multiplication operation. The first technique guarantees that the
maximum number of summands (versions of the multiplicand) that must be added is n/2 for n-bit operands. The second
technique reduces the time needed to add the summands (carry-save addition of summands method).

Bit-Pair Recoding of Multipliers:

This bit-pair recoding technique halves the maximum number of summands. It is derived from the Booth algorithm.
Group the Booth-recoded multiplier bits in pairs, and observe the following: The pair (+1 -1) is equivalent to the pair
(0 +1). That is, instead of adding —1 times the multiplicand M at shift position i to + 1 x M at position i + 1, the same
result is obtained by adding +1 x M at position I Other examples are: (+1 0) is equivalent to (0 +2),(-1 +1) is equivalent
to (0 —1). and so on. Thus, if the Booth-recoded multiplier is examined two bits at a time, starting from the right, it can
be rewritten in a form that requires at most one version of the multiplicand to be added to the partial product for
each pair of multiplier bits. Figure 6.11ashows an example of bit-pair recoding of the multiplier in Figure 6.11, and
Figure 6.14b shows a table of the multiplicand selection decisions for all possibilities.

The multiplication operation in Figure 6.11 is shown in Figure 6.15 as it would be computed using bit-pair recoding
of the multiplier.

Department of CSE,AITS-TIRUPATI 51

COMPUTER ORGANIZATION(20APC3007)

Sign extension Imptlied 0 1o right of LSB
e[t 0 1 0 o]
b
4
0 0 -1+ -1 0
0 s ol

(a} Example of bit-pair recoding derived from Booth recoding

Mulriplier bit-pair | Nultiplier bit on the right Multiplicand
il 11 g
0 0 0 OxM
0 0 I +1xM
0 1 0 +1xM
0 1 1 +2xM
1 0 0 ~2xM
1 0 1 ~1xM
1 3 0 ~1xM
i 1 1 0xM

{b) Table of multiplicand seisction decisions
Figws 6,14 Multiphier bitpair recoding.

01 1 0 1 (+13)
*x I 1 0 1 0 (-6)

Q1101
0-1+1-1 0

000 O0OO0COOO0OO0

i 1131 10601°¢

¢ 00 01 1 0 1

I I 1 001 1

G 000 0O

$1 1101 10010 (-78)
C i 101
0 =1 -2

1111100110

P 111 9011

0O 0CO0OO0DOOD

111 1 1 00¢% 0

h 6.15 Muitiplicalion requiring
onky n/2 summands.

Department of CSE,AITS-TIRUPATI

52

COMPUTER ORGANIZATION(20APC3007)

CARRY-SAVE ADDITION OF SUMMANDS

Multiplication requires the addition of several summands. A technique called carry save addition(CSA) speeds up
the addition process. Consider the array for 4x4 multiplication shown in Figure 6.16a. This structure is the general array
with the first row consisting of just the AND gates that implement the bit products m3q0, m2q0, m1g0, and m0q0.

Instead of letting the carries ripple along the rows, they can be “saved” and introduced into the next row, at the correct
weighted positions, as shown in Figure 6.16b. This frees up an input to three full adders in the first row. These inputs
are used to introduce the third summand bit products m2q2, m1q2, and m0q2.

myio mx L] Mol

m2 ey mgz 7]

gy mada i3 mods
i t { 1

FA |*— FA |*— FBA [~ FA [=—0
Ps Ps P4 5] Ll 4] Pa

{a) Ripple-camy ammay (Figure 5.5 structure)

Y —

0 mdo mdy mdo Moo
myg) | maq mody
4 ' ks {
myg) " miqy Moy
FA I~ FA |- FA |+ A p—0

mids mds mgs oy 0
4 } | [
FA FA A e FA

paiEsatesti s |
|

FA p— R FA A |—0
i ' ' '
m s P Py m L] Py P
(b} Cany-save array

Figure .16 Ripplecarry and carry-save amays for the muliiplication operafion M x Q = P for 4.bit operands.

Department of CSE,AITS-TIRUPATI 53

COMPUTER ORGANIZATION(20APC3007)

i 0 1 1 0 1 (45) M

¥ 21 1 £ 3 3 (63) Q
1Yo 1 1 8 | A
Ljofs 1 0 1 B
| oml 0 1 C
10 1{“1"0 1 D
10 1 1'50 { E
10 1 1 i}ij_ F

1 01 1 0 0 0 1 0 0 1 1} (2.835) Product

Figure 8.17 A multiplication example used 1o illustrate carry-save addition s
shown in Figure 6.18.

Now, two inputs of each full adder in the second row are fed by sum and carry outputs from the first row. ‘The third
input is used to introduce the bit products m2q3, m1g3, and m0qg3 of the fourth summand. The high-order bit products
m3g2 and m3qg3 of the third and fourth summands are introduced into the remaining free inputs at the left end in the
second and third rows. The saved carry bits and the sum bits from the second row are now added in the third row to
produce the final product bits.

Delay through the carry-save array is somewhat less than delay through the ripple-carry array. This is because the S
and C vector outputs from each row are produced in parallel in one full- adder delay.

A more significant reduction in delay can be achieved as follows. Consider the addition of many summands, as
required in the multiplication of longer operands. We can group the summands in threes and perform carry-save addition
on each of these groups in parallel to generate a set of § and C vectors in one full-adder delay. Next, we group all of the
S and C vectors into threes, and perform carry-save addition on them, generating a further set of S and C vectors in one
more full-adder delay. We continue with this process until there are only two vectors remaining. They can then be added
in a ripple-carry or a carry-lookahead adder to produce the desired product.

Consider the example of adding the six shifted versions of the multiplicand for the case of multiplying two 6-bit
unsigned numbers where all six bits of the multiplier are equal to 1. Such an example is shown in Figure 6.17. The six
summands, A, B,..., F are added by carry-save addition in Figure 6.18. The, “blue boxes” in these two figures indicate
the same operand bits, and show how they are reduced to sum and carry bits in Figure 6.18 by carry-save addition.
Three levels of carry-save addition are performed, as shown schematically in Figure 6.19. It is clear from this figure
that the final two vectors S4, and C4, are available in three full-adder delays after the six input summands are applied
to level 1. The final regular addition operationon S4, and C4, which produces the product, can be done with either a
ripple-carry or a carry- lookahead adder.

Department of CSE,AITS-TIRUPATI 54

COMPUTER ORGANIZATION(20APC3007)

1011 0 1 M
xt 1 1 1 1 & Q
fije 1 1 o 1 A
:iu‘a T oo o1 B
1 o[1f1 0 C
1 1fojo 0o o 1 1 S
oo{_T_jTL 10 0 ¢
1t o 1f1}o 1 I D
1 ¢ 1 1]of1 E
t 0 1 1 0|1} i F
i1 00 ofol i i $ —1
o 0 1 1 1fijo o I
1100 9 0 1 1 -_iw--.f[*-s;
o & i % 0 '+;~-(:1
1 1 b0 0 0 t 4 l—g,
1 1 0 1 0 1L 6 0 © 1 I S; ‘
000 01 0 1 1 0 00 Cs
0 0 1 1 1t 1 0 0 Cjeiirmnd
ot 0 1 1t 1 9 1 0 0 1 1 Sy
+ 0 D 1.0 i 0 0 0 0 &
i 0 t 1 00 0 1! 6 0 t 1 Product

Figure 6.18 The multiplication example from Figure .17 performed using carry-save
oddition,

Level 1 CSA

E L"‘T"'L'I"I Level 2 CSA

G G 0§
L i | }] Level 3CSA
Cs S
Ll_l Final addition
+
Product

Figure 6.19 Schemaltic representation of
the carry-save addition
operations in Figure 6.18.

Summary of Fast Multiplication:

Bit-pair recoding of the multiplier, derived from the Booth algorithm, reduces the number ofsummands by a

Department of CSE,AITS-TIRUPATI 55

COMPUTER ORGANIZATION(20APC3007)

factor of 2. These summands can then be reduced to only 2 by using a relatively

Department of CSE,AITS-TIRUPATI

56

COMPUTER ORGANIZATION(20APC3007)

small number of carry-save addition steps. The final product can be generated by an addition operation that uses a
carry-lookahead adder.

All three of these techniques — bit-pair recoding of the multiplier, carry-save addition of the summands, and
lookahead addition have been used in various ways by the designers of high- performance processors to reduce the time
needed to perform multiplication.

INTEGER DIVISION

Positive-number multiplication operation is done manually in the way it is done in a logic circuit.A similar kind of
approach can be used here in discussing integer division.

First, consider positive-number division. Figure 6.20 shows examples of decimal division and its binary form of
division. First, let us try to divide 2 by13, and it does not work. Next, let us try to divide 27 by 13. Going through the
trials, we enter 2 as the quotient and perform the required subtraction. The next digit of the dividend, 4, is brought down,
and we finish by deciding that 13 goes into 14 once and the remainder is 1. Binary division is similar to this, with the
quotient bits only 0 and 1.

A circuit that implements division by this longhand method operates as follows: It positions the divisor appropriately
with respect to the dividend and performs a subtraction. If the remainder is zero or positive, a quotient bit of 1 is
determined, the remainder is extended by another bit of the dividend, the divisor is repositioned, and sub- traction is
performed. On the other hand, if the remainder is negative, a quotient bit of 0 is determined, the dividend is restored by
adding back the divisor, and the divisor H repositioned for another subtraction

2 10101
13)27 1101 J100010010
2% 1101
14 10000
1 1101
1 T
1101

|

Figure 6.20 longhand division examples.

Department of CSE,AITS-TIRUPATI 57

COMPUTER ORGANIZATION(20APC3007)

ﬂ Shift left
ﬂﬂ an--l W au qB_,i P
A Dividend Q
Quotient
seumg
n+ 1-bit Add/Subtract
adder
1 i
o 5 m, i “as my
Divisor M i

Figure 6.21 Circui! arrangement for binary division,

RESTORING DIVISION

Figure 6.21 shows a logic circuit arrangement that implements restoring division. An n-bit positive divisor is loaded
into register M and an n-bit positive dividend is loaded into register Qat the start of the operation. Register A is set to
0. After the division is complete, the n-bit quotient is in register Q and the remainder is in register A. The required
subtractions arefacilitated by using 2's complement arithmetic. The extra bit position at the left end of both A and M
accommodates the sign bit during subtractions.

The following algorithm performs restoring division.

1. Shift A and Q left one binary position.
2. Subtract M from A, and place the answer back in A.
3. If the sign of A is 1, set q0 to 0 and add M back to A (that is, restore A); otherwise, set q0to 1.Figure 6.22

shows a 4-bit example as it would be processed by the circuit in Figure 6.21.

Department of CSE,AITS-TIRUPATI 58

COMPUTER ORGANIZATION(20APC3007)

10
11) 1000
11
10
Tniially 0000 C 1000
00011
Shift 0080 e 0ol -
Subtract 1 1 1 0 | > First cycle
Seqp (1 1re
Restore 11 i
0060 | 0000)
Shift 00010 ¢ oo}
Subtract 1 1 1 0 1
Seqy (1111 > Second cycle
Restore 11 i
06010 o o [0][0!
Shift 00 1 Q0O ¢ @0l
Subtact 1 1 1 0 1
Setg, (00000 1 > Third cycle
Shift 00010 o[ﬁ]
Subrmct 1 1 1 0 1t [BIONTI))

Setqg (D1 111 -
Restoce [J i
o001 o foiloifiilo])

: y N Siaiai

Remainder Quotient

Figure 622 A restoringdivision example.

NONRESTORING DIVISION

Instead of the quotient digit set {0, 1}, the set {-1, 1} is used by the non-restoring division. The non-restoring division
algorithm is more complex as compared to the restoring division algorithm. But when we implement this algorithm in
hardware, it has an advantage, i.e., it contains only one decision and addition/subtraction per quotient bit. After
performing the subtraction operation, there will not be any restoring steps. Due to this, the numbers of operations
basically cut down up to half. Because of the less operation, the execution of this algorithm will be fast. This algorithm
basically performs simple operations such as addition, subtraction. In this method, we will use the sign bit of register
A. 0 is the starting value/bit of register A.

Department of CSE,AITS-TIRUPATI 59

COMPUTER ORGANIZATION(20APC3007)

START

N = number of bits in dividend
A=0

M = divisor

0 =dividend

Slgn bit of A

Shift left AQ Shift left AQ
A=A-M AsA M

Sign bit of A

itof A

‘ A= AdM

CQuatient Is in reglster O
And remainder is In register A

Sign b

Now we will learn steps of the non-restoring division algorithm, which are described as follows:

Step 1: In this step, the corresponding value will be initialized to the registers, i.e., register A will contain value 0,
register M will contain Divisor, register Q will contain Dividend, and N is used to specify the number of bits in dividend.

Step 2: In this step, we will check the sign bit of A.

Step 3: If this bit of register A is 1, then shift the value of AQ through left, and perform A = A + M. If this bit is 0,
then shift the value of AQ into left and perform A = A - M. That means in case of 0, the 2's complement of M is added

into register A, and the result is stored into A.

Step 4: Now, we will check the sign bit of A again.

Department of CSE,AITS-TIRUPATI

COMPUTER ORGANIZATION(20APC3007)

Step 5: If this bit of register A is 1, then Q[0] will become 0. If this bit is 0, then Q[0] will become 1. Here Q[0]
indicates the least significant bit of Q.

FLOATING-POINT NUMBERS AND OPERATIONS:

Floating — point arithmetic is an automatic way to keep track of the radix point. The discussion so far was exclusively
with fixed-point numbers which are considered as integers, that is, as having an implied binary point at the right end of
the number. It is also possible to assume that the binary point is just to the right of the sign bit, thus representing a
fraction or anywhere else resulting in real numbers. In the 2's-complement system, the signed value F, represented by
the n-bit binary fraction

B =b0.b-1b-2b-(n-1) is given by

F(B) = -b0*20 + b-1*2"1 +b-2*22 + ... + b-(n-1) x 2D

Where the range of F is

-1<F<1-2-(n-1)

Consider the range of values representable in a 32-bit, signed, fixed-point format. Interpreted as integers, the value
range is approximately 0 to +2.15 x 10°. If we consider them to be fractions, the range is approximately +4.55 x 10-10
to £1. Neither of these ranges is sufficient for scientificcalculations, which might involve parameters like Avogadro's
number (6.0247 * 10?3 mole™!) or Planck's constant (6.6254 * 10-?’erg.s). Hence, we need to easily accommodate both
very large integers and very small fractions. To do this, a computer must be able to represent numbers and operate on
them in such a way that the position of the binary point is variable and is automatically adjusted as computation
proceeds. In such a case, the binary point is said to float, and the numbers are called floating-point numbers. This
distinguishes them from fixed-point numbers, whose binary point is always in the same position.

Because the position of the binary point in a floating-point number is variable, it must be given explicitly in the
floating-point representation. For example, in the familiar decimal scientific notation, numbers may be written as 6.0247
x 10%3, 6.6254* 10?7, - 1.0341 x 102, -7.3000 x 10-'4,and so on. These numbers are said to be given to five significant
digits. The scale factors (10?3, 10?7, and so on) indicate the position of the decimal point with respect to the significant
digits. By convention, when the decimal point is placed to the right of the first (nonzero) significant digit, the number
is said to be normalized. Note that the base, 10, in the scale factor is fixed and does not need to appear explicitly in the
machine representation of a floating-point number. The sign, the significant digits, and the exponent in the scale factor
constitute the representation. We are thus motivated to define a floating-point number representation as one in which a
number is represented by its sign, a string of significant digits, commonly called the mantissa, and an exponent to an
implied base for the scale factor.

Department of CSE,AITS-TIRUPATI 61

COMPUTER ORGANIZATION(20APC3007)

[EEE STANDARD FOR FLOATING-POINT NUMBERS:

General form and size for floating-point numbers in the decimal system is:
+ X, X0 X: X4 Xs X X7 x 1007

Where Xj; and Yi; are decimal digits.

A standard for representing floating-point numbers in 32 bits has been developed and specified in detail by the
Institute of Electrical and Electronics Engineers (IEEE). The standard describes both the representation and the way in
which the four basic arithmetic operations are to be performed. The 32-bit representation is given in Figure 6.24a. The
sign of the number is given in the first bit, followed by a representation for the exponent (to the base 2) of the scale
factor. Instead of the signed exponent, E, the value actually stored in the exponent field is an unsigned integer Ell = E +
127.

32 bits
sl = 1 " |
S_ 0‘ W - A
nﬁbcr: 8-bit signed A3-bit
0 signifies + cxpun.cr;‘;;;l mantissa fraction
1 signifies — m;m' A
Value represented = +1.M x 21
(a) Single pracision
foloc1orooofosioro. .. o]
Value represenéd = 1.001010...0x 2>
(b) Exampie of a single-precision number
64 bits
st =} u
Sign —J ¥ >
11-bit excess-1023 52-bit

exponent mantissa fraction

Value represented = £1.M % 23. Al

(c) Pouble precision
Figure 6.24 |EFE standard flooting-point formals.

This is called the excess-127 format. Thus, El is in the range 0 < E' < 255. The end values of this range, 0 and 255,
are used to represent special values. Therefore, the range of E’ for normal values is 1 < Ell < 254. This means that the
actual exponent, E, is in the range -126 < E < 127.The last 23 bits represent the mantissa, Since binary normalization
is used, the most significant bit of the mantissa is always equal to 1. This bit is not explicitly represented, it is assumed
to be to-the immediate left of the binary point, Hence, the 23 bits stored in the M field actually represent the fractional
part of the mantissa, that is, the bits to the right of the binary point. An example of a single-precision floating-point
number is shown in Figure 6.24b.

Department of CSE,AITS-TIRUPATI 62

COMPUTER ORGANIZATION(20APC3007)

The 32-bit standard representation in Figure 6.24a is called a single-precision representation because it occupies a
single 32-bit word. The scale factor has a range of 21?6 to 2*1%7, which is approximately equal to 10*38, The 24-bit
mantissa provides approximately the same precision asa 7-digit decimal value.

To provide more precision and range for floating-point numbers, the IEEE standard also specifies a double precision
format, as shown in Figure 6.24c. The double-precision format has increased exponent and mantissa ranges. The 11-bit
excess-1023 exponent A’ has the range i < E'

< 2046 for normal values, with 0 and 2047 used to indicate special values, as before. Thus, the actual exponent E is
in the range -1022 < E < 1023, providing scale factors of 21022 to 21923, The 53-bit mantissa provides a precision
equivalent to about 16 decimal digits.

Two basic aspects of operating with floating-point numbers:

First, if a number is not normalized, it can always be put in normalized form by shifting the fraction and adjusting
the exponent. Figure 6.25 shows an unnormalized value, 0.0010110... x 2% and its normalized version, 1.0110... x 2°.
Since the scale factor is in the form 2!, shifting the mantissa right or left by one bit position is compensated by an
increase or a decrease of 1 in the exponent, respectively. This is occurrence of underflow.

Second, as computations proceed, a number that does not fall in the representable range of normal numbers might
be generated. This is occurrence of overflow.

excess- 117 expoment
————

0j1000190G604001011C..

(There: is no impiieit § 1o the Lefl of the binary puoint)

Vilue represenind = +|;L1.'£|!1:-11ﬂ,..:-uc.'!F

{a) Unnarrmallzed wilue

RI10000101401140 ..

Value eprogenied = + 10EI0. m!ﬁ

{h) Mormalized varsion

Fgure 6.25 Floting-point normatization in IEES single-precision format.

Special Values:

The end values 0 and 255 of the excess-127 exponent El are used to represent special values. When Ell = 0 and the
mantissa fraction M is zero, the value exact 0 is represented. When E[l = 255

Department of CSE,AITS-TIRUPATI 63

COMPUTER ORGANIZATION(20APC3007)

and M = 0, the value o is represented, where oo is the result of dividing a normal number byzero. The sign bit
is still part of these representations, so there are +0 and +oo representations.

When E' = 0 and M # 0, denormal numbers are represented. Their -value is +0.M x 2-1%6, Therefore, they are smaller
than the smallest normal number. The purpose of introducing denormal numbers is to allow for gradual underflow,
providing an extension of the range of normal representable numbers that is useful in dealing with very small numbers
in certain situations. When Ell = 255 and M # 0, the value represented is called Not Number (NaN).

Exceptions:

In conforming to the IEEE Standard, a processor must set exception flags if any of the following occur in performing
operations: underflow, overflow, and divide by zero, inexact, invalid. Inexact is the name for a result that requires
rounding in order to be represented in one of the normal formats. An invalid exception occurs if operations such as 0/0
or V-1 are attempted. When exceptions occur, the results are set to special values.

ARITHMETIC OPERATIONS ON FLOATING-POINT NUMBERS:

The rule for addition and subtraction can be stated as follows:

Add/Subtract Rule

1. Choose the number with the smaller exponent and shift its mantissa right a number ofsteps equal
to the difference in exponents.

2. Set the exponent of the result equal to the larger exponent.

3. Perform addition/subtraction on the mantissas and determine the sign of the result.

4. Normalize the resulting value, if necessary.

Multiplication and division are somewhat easier than addition and subtraction, in that noalignment of mantissas is
needed.

Multiply Rule

1. Add the exponents and subtract 127.

2. Multiply the mantissas and determine the sign of the result.
3. Normalize the resulting value, if necessary.

Divide Rule

1. Subtract the exponents and add 127.

2. Divide the mantissas and determine the sign of the result,
3. Normalize the resulting value, if necessary.

GUARD BITS AND TRUNCATION:

The mantissas of initial operands and final results are limited to 24 bits, including the implicitleading 1, it is
important to retain extra bits, often called guard bits.

Removing guard bits in generating a final result requires that the extended mantissa be truncated
Department of CSE,AITS-TIRUPATI 64

COMPUTER ORGANIZATION(20APC3007)

to create a 24-bit number that approximates the longer version.

There are several ways to truncate.

> 1%t method is to remove the guard bits and make no changes in the retained bits. This is called
chopping. The result of chopping is a biased approximation because the error rangeis not symmetrical about 0.
> 2" method is Von Neumann rounding. If the bits to be removed are all Os, they aresimply

dropped, with no changes to the retained bits. However, if any of the bits to be removed are 1, the least significant bit
of the retained bits is set to 1. Although the range of error is larger with this technique than it is with chopping, the
maximum magnitude is the same, and the approximation is unbiased because the error range is symmetrical aboutO0.

> The third truncation method is a rounding procedure. Rounding achieves the closest approximation
to the number being truncated and is an unbiased technique. The procedure is as follows: A 1 is added to the LSB
position of the bits to be retained if thereis a 1 in the MSB position of the bits being removed.

IMPLEMENTING FLOATING-POINT OPERATIONS

An example of the implementation of floating-point operations is shown in Figure 6.26. This is a block diagram of a
hardware implementation for the addition and subtraction of 32-bit floating- point operands that have the format shown
in Figure 6.24a.

1. In step 1, the sign is sent to the SWAP network in the upper right corner. If the sign is 0, then E[A, >
E[B, and the mantissas MA, and MB are sent straight through the SWAP network. This results in MB, being sent to the
SHIFTER, to be shifted n positions to the right. The other mantissa, MA, is sent directly to the mantissa adder/subtractor.
If the sign is 1, then EJA < EIB and the mantissas are swapped before they are sent to the SHIFTER.

2. Step 2 is performed by the two-way multiplexer, MUX, near the bottom left corner of the figure. The
exponent of the result, Ell, is tentatively determined as E'A if EIA > EIB, or EIB if EJA < EIB, based on the sign of the
difference resulting from comparing exponents in step 1.

3. Step 3 involves the major component, the mantissa adder/subtractor in the middle of the figure. The
CONTROL logic determines whether the mantissas are to be added orsubtracted. This is decided by the signs of the
operands (SA, and SB) and the operation (Add or Subtract) that is to be performed on the operands. The CONTROL
logic also determines the sign of the result, SR.

4, Step 4 of the Add/Subtract rule consists of normalizing the result of step 3, mantissa M. The number
of leading zeros in M determines the number of bit shifts, X, to be applied to

M. The normalized value is truncated to generate the 24-bit mantissa, MR, of the result. The value X is also subtracted

from the tentative result exponent EI to generate the true result exponent E[R.

Department of CSE,AITS-TIRUPATI 65

COMPUTER ORGANIZATION(20APC3007)

A5 E M
32-bit operands N A
B:SnE, My
Ey Eg’
M, My
‘{/L {} M of rtumherr
E—h’it £y AP with m]"ﬂ
subdractor i

: i k ' M ol nuntbeer
with larper £

- Magnitucde M

MNormalize and
round

{Rrﬁt

Figure .26 Flocking-paint additicn-subiraction unit,

A2t
H' mesult
R=4A+8

Department of CSE,AITS-TIRUPATI

66

COMPUTER ORGANIZATION(20APC3007)

CHAPTER-2

BASIC PROCESSING UNIT

The heart of any computer is the central processing unit (CPU). The CPU executes all the machine instructions and
coordinates the activities of all other units during the execution of an instruction. This unit is also called as the Instruction
Set Processor (ISP). By looking at its internal structure, we can understand how it performs the tasks of fetching,
decoding, andexecuting instructions of a program. The processor is generally called as the central processing unit (CPU)
or micro processing unit (MPU).An high-performance processor can be built by making various functional units operate
in parallel. High-performance processors have a pipelined organization where the execution of one instruction is started
before the execution of the preceding instruction is completed. In another approach, known as superscalar operation,
several instructions are fetched and executed at the same time. Pipelining and superscalar architectures provide a very
high performance for any processor.

A typical computing task consists of a series of steps specified by a sequence of machine instructions that constitute
a program. A program is a set of instructions performing a meaningfultask. An instruction is command to the processor
& is executed by carrying out a sequence of sub-operations called as micro-operations. Figurel indicates various blocks
of a typical processing unit. It consists of PC, IR, ID, MAR, MDR, a set of register arrays for temporary storage, Timing
and Control unit as main units.

FUNDAMENTAL CONCEPTS

Execution of a program by the processor starts with the fetching of instructions one at a time, decoding the instruction
and performing the operations specified. From memory, instructions are fetched from successive locations until a branch
or a jump instruction is encountered. The processor keeps track of the address of the memory location containing the
next instruction to be fetched using the program counter (PC) or Instruction Pointer (IP). After fetching an instruction,
the contents of the PC are updated to point to the next instruction in the sequence. But, when a branch instruction is to
be executed, the PC will be loaded with a different (jump/branchaddress).

Department of CSE,AITS-TIRUPATI 67

COMPUTER ORGANIZATION(20APC3007)

Instruction register, IR is another key register in the processor, which is used to hold the op- codes before decoding.
IR contents are then transferred to an instruction decoder (ID) fordecoding. The decoder then informs the control unit
about the task to be executed. The control unit along with the timing unit generates all necessary control signals needed
for the instruction execution. Suppose that each instruction comprises 2 bytes, and that it is stored in one memory word.
To execute an instruction, the processor has to perform the following three steps:

1. Fetch the contents of the memory location pointed to by the PC. The contents of this location are
interpreted as an instruction code to be executed. Hence, they are loaded into the IR/ID. Symbolically, this operation

can be written as

IR « [[PC]]
2. Assuming that the memory is byte addressable, increment the contents of the PC by 4, thatis, PC
~[PC]+4
3. Carry out the actions specified by the instruction in the IR.
Taternal processor
bus
A Coatrol signals
Imstruction
Address decoder and
coatrol logic

IR

V

Figure 2: Single-bus organization of the datapath inside a processor.

In cases where an instruction occupies more than one word, steps 1 and 2 must be repeated as many times as necessary
to fetch the complete instruction. These two steps together are usually referred to as the fetch phase; step 3 constitutes

the execution phase.

To study these operations in detail, let us examine the internal organization of the processor. The main building
blocks of a processor are interconnected in a variety of ways. A very simple organization is shown in Figure 2. A more

Department of CSE,AITS-TIRUPATI 68

COMPUTER ORGANIZATION(20APC3007)

complex structure that provides high performance will be presented at the end.

Department of CSE,AITS-TIRUPATI

69

COMPUTER ORGANIZATION(20APC3007)

Figure shows an organization in which the arithmetic and logic unit (ALU) and all the registers are interconnected
through a single common bus, which is internal to the processor. The data andaddress lines of the external memory bus
are shown in Figure 2 connected to the internal processor bus via the memory data register, MDR, and the memory
address register, MAR, respectively. Register MDR has two inputs and two outputs. Data may be loaded into
MDReither from the memory bus or from the internal processor bus. The data stored in MDR may be placed on either
bus. The input of MAR is connected to the internal bus, and its output is connected to the external bus. The control lines
of the memory bus are connected to the instruction decoder and control logic block. This unit is responsible for issuing
the signals that control the operation of all the units inside the processor and for interacting with the memorybus.

The number and use of the processor registers RO through R(n - 1) vary considerably from one processor to another.
Registers may be provided for general-purpose use by the programmer. Some may be dedicated as special-purpose
registers, such as index registers or stack pointers. Three registers, Y, Z, and TEMP in Figure 2, have not been mentioned
before. These registers are transparent to the programmer, that is, the programmer need not be concerned with them
because they are never referenced explicitly by any instruction. They are used by the processor for temporary storage
during execution of some instructions. These registers are never used for storing data generated by one instruction for
later use by another instruction.

The multiplexer MUX selects either the output of register Y or a constant value 4 to be provided as input A of the
ALU. The constant 4 is used to increment the contents of the program counter. We will refer to the two possible values
of the MUX control input Select as Select4 and Select Y for selecting the constant 4 or register Y, respectively.

As instruction execution progresses, data are transferred from one register to another, often passing through the ALU
to perform some arithmetic or logic operation. The instruction decoder and control logic unit is responsible for
implementing the actions specified by the instruction loaded in the IR register. The decoder generates the control signals
needed to select the registers involved and direct the transfer of data. The registers, the ALU, and the interconnecting
bus are collectively referred to as the data path.

With few exceptions, an instruction can be executed by performing one or more of the following operations in some
specified sequence:

1. Transfer a word of data from one processor register to another or to the ALU

2. Perform an arithmetic or a logic operation and store the result in a processor register
3. Fetch the contents of a given memory location and load them into a processor register
4. Store a word of data from a processor register into a given memory location
REGISTER TRANSFERS:

Instruction execution involves a sequence of steps in which data are transferred from oneregister to another. For
each register, two control signals are used to place the contents of that register on the bus or to load the data on the bus
into the register. This is represented symbolically in Figure 7.2. The input and output of register Ri are connected
to the bus via

Department of CSE,AITS-TIRUPATI 70

COMPUTER ORGANIZATION(20APC3007)

switches controlled by the signals Riin and Riout respectively. When Riin is set to 1, the data on the bus are loaded
into Ri. Similarly, when Riout, is set to 1, the contents of register Riout are placed on the bus. While Riout is equal to
0, the bus can be used for transferring data from other registers.

Suppose that we wish to transfer the contents of register RI to register R4. This can be accomplished as follows:

1. Enable the output of register R1 by setting Rlout, to 1. This places the contents of R1 on the processor
bus.

2. Enable the input of register R4 by setting R4in to 1. This loads data from the processorbus into
register R4.

All operations and data transfers within the processor take place within time period defined by the processor clock.
The control signals that govern a particular transfer are asserted at the start of the clock cycle. In our example, Rlout
and R4in are set to 1. The registers consist of edge- triggered flip-flops. Hence, at the next active edge of the clock, the
flip-flops that constitute R4 will load the data present at their inputs. At the same time, the control signals Rlout and
R4in will return to 0. We will use this simple model of the timing of data transfers for the rest of this chapter. However,
we should point out that other schemes are possible. For example, data transfers may use both the rising and falling
edges of the clock. Also, when edge-triggered flip- flops are not used, two or more clock signals may be needed to
guarantee proper transfer of data. This is known as multiphase clocking.

PERFORMING AN ARITHMETIC OR LOGIC OPERATION:

The ALU is a combinational circuit that has no internal storage. It performs arithmetic and logic operations on the
two operands applied to its A and B inputs. In Figures 7.1 and 7.2, one of the operands is the output of the multiplexer
MUX and the other operand is obtained directly from the bus. The result produced by the ALU is stored temporarily in
register Z. Therefore, a sequence of operations to add the contents of register R1 to those of register R2 and store the
result in register R3 is

1. Rlout, Yin
2. R2out, SelectY, Add, Zin
3. Zout,R3in

The signals whose names are given in any step are activated for the duration of the clock cyclecorresponding to
that step. All other signals are inactive. Hence,

> In step 1, the output of register R1 and the input of register Y are enabled, causing the contents of R1
to be transferred over the bus to Y.
> In step 2, the multiplexer’s Select signal is set to Select, causing the multiplexer to gate the contents

of register Y to input A of the ALU. At the same time, the contents of register R2 are gated onto the bus and, hence, to
input B. The function performed by the ALU depends on the signals applied to its control lines. In this case, the Add
line is set to

Department of CSE,AITS-TIRUPATI 71

COMPUTER ORGANIZATION(20APC3007)

1, causing the output of the ALU to be the sum of the two numbers at inputs A and B. This sum is loaded into register
Z because its input control signal is activated.

> In step 3, the contents of register Z are transferred to the destination register, R3. This lasttransfer
cannot be carried out during step 2, because only one register output can be connected to the bus during any clock cycle.

Fetching a word from Memory:

To fetch a word of information from memory, the processor has to specify the address of the memory location where
this information is stored and request a Read operation. This applies whether the information to be fetched represents
an instruction in a program or an operand specified by an instruction. The processor transfers the required address to
the MAR, whose output is connected to the address lines of the memory bus, At the same time, the processor uses the
control lines of the memory bus to indicate that a Read operation is needed. When the requested data are received from
the memory they are stored in register MDR, from where they can be transferred to other registers in the processor.

The connections for register MDR are illustrated in Figure 7.4. It has four control signals: MDRin, and MDRout
control the connection to the internal bus, and MDRinE and MDRoutE control the connection to the external bus. The
circuit in Figure 7.3 is easily modified to provide the additional connections. A three-input multiplexer can be used,
with the memory bus data line connected to the third input. This input is selected when MDRinE=1. A second tri-state
gate, controlled by MDRoutE can be used to connect the output of the flip-flop to the memory bus.

During memory Read and Write operations, the timing of internal processor operations must be coordinated with the
response of the addressed device on the memory bus. The processorcompletes one internal data transfer in one clock
cycle. The speed of operation of the addressed device, on the other hand, varies with the device.

A control signal called Memory-Function-Completed (MFC) is used for the processor waits until it receives an
indication that the requested Read operation has been completed. The addressed device sets this signal to 1 to indicate
that the contents of the specified location have been read and are available on the data lines of the memory bus.

As an example of a read operation, consider the instruction Move (R1),R2. The actions needed to execute this
instruction are:

MAR + [R1]

Start a Read operation on the memory bus
Wait for the MFC response from the memory
Load MDR from the memory bus

R2 < [MDR]

AR

For simplicity, let us assume that the output of MAR is enabled all the time. When a new addressis loaded into MAR,
it will appear on the memory bus at the beginning of the next clock cycle, asshown in Figure 7.5. A Read control signal
is activated at the same time MAR is loaded. This signal will cause the bus interface circuit to send a read command,
MR, on the bus. With this arrangement, we have combined actions 1 and 2 above into a single control step. Actions 3
and 4can also be combined by activating control signal MDRinE while waiting for a response from the

memory. Thus, the data received from the memory are loaded into MDR at the end of the clock cycle in which the
MEFC signal is received. In the next clock cycle, MDRout is activated to transfer the data to register R2. This means
that the memory read operation requires three steps, which can be described by the signals being activated as follows:

Department of CSE,AITS-TIRUPATI 72

COMPUTER ORGANIZATION(20APC3007)

1. R1lout, MARin, Read
2. MDRinE, WMFC
3. MDRout, R2in

where WMFC is the control signal that causes the processor’s control circuitry to wait for the arrival of the MFC
signal.

Figure 7.5 shows that MDRInE is set to 1 for exactly the same period as the read command, MR.

i

s:eplc-ri 2 i
illll—

Clock ! '_' !_l i

i
AR, | | -
1

Address

NRN - .

| L
MDZe | l

s [T L
o J —n

Figure 7.5 Timing of a memory Read operation.
STORING A WORD IN MEMORY

Writing a word into a memory location follows a similar procedure. The desired address is loaded into MAR. Then,
the data to be written are loaded into MDR, and a Write command is issued. Hence, executing the instruction Move
R2,(R1) requires the following sequence:

1. Rlout, MARin
2. R2out, MDRin, Write
3. MDRoutE, WMEC

The Write control signal causes the memory bus interface hardware to issue a Write command on the memory bus.
The processor remains in step 3 until the memory operation is completed and an MFC response is received.

Department of CSE,AITS-TIRUPATI 73

COMPUTER ORGANIZATION(20APC3007)

EXECUTION OF A COMPLETE INSTRUCTION:
Consider the instruction
Add (R3), R1

which adds the contents of a memory location pointed to by R3 to register R1.Executing this instruction requires the

following actions:

1. Fetch the instruction.

2. Fetch the first operand (the contents of the memory location pointed to by R3).
3. Perform the addition.

4. Load the result into RI.

Step Action

1 PC_,.. MAR A . Read, Select4 Add, Z
2 Zout+ PCin « Yin « WMFC

3 MDR_,,. IR,,

4 R3.,;. MAR,, . Read

5 R1.ut. Yin . WMFC

6 MDR,_,,,. SelectY, Aad, Z,,

T Zouts R1yn . End

Figure 7.6 gives the sequence of control steps required to perform these operations for the single-bus architecture of
Figure 7.1. Instruction execution proceeds as follows:

In step I, the instruction fetch operation is initiated by loading the contents of the PC into the MAR and sending a
Read request to the memory. The Select signal is set to Select4, which causes the multiplexer MUX to select the
constant 4. This value is added to the operand at input B, which is the contents of the PC, and the result is stored in
register Z. The updated value is moved from register Z back into the PC during step 2, while waiting for the memory to
respond. In step 3, the word fetched from the memory is loaded into the IR.

Steps 1 through 3 constitute the instruction fetch phase, which is the same for all instructions. The instruction
decoding circuit interprets the contents of the IR at the beginning of step 4. This enables the control circuitry to activate
the control signals for steps 4 through 7, which constitute the execution phase. The contents of register R3 are transferred
to the MAR in step 4, and a memory read operation is initiated.

Then the contents of Rl are transferred to register Y in step 5, to prepare for the addition operation. When the Read

Department of CSE,AITS-TIRUPATI 74

COMPUTER ORGANIZATION(20APC3007)

operation is completed, the memory operand is available in register MDR, and the addition operation is performed in
step 6. The contents of MDR are gated to the

Department of CSE,AITS-TIRUPATI 75

COMPUTER ORGANIZATION(20APC3007)

bus, and thus also to the B input of the ALU, and register Y is selected as the second input to the ALU by choosing
Select Y. The sum is stored in register Z, then transferred to Rl in step 7. The End signal causes a new instruction fetch
cycle to begin by returning to step 1.

This discussion accounts for all control signals in Figure 7.6 except Y in step 2. There is no need to copy the updated
contents of PC into register Y when executing the Add instruction. But, in Branch instructions the updated value of the
PC is needed to compute the Branch target address. To speed up the execution of Branch instructions, this value is
copied into register Y in step 2. Since step 2 is part of the fetch phase, the same action will be performed for all
instructions. Thisdoes not cause any harm because register Y is not used for any other purpose at that time.

Branch Instructions:

A branch instruction replaces the contents of the PC with the branch target address. This address is usually obtained
by adding an offset X, which is given in the branch instruction, to the updatedvalue of the PC. Listing in figure 8 below
gives a control sequence that implements an unconditional branch instruction. Processing starts, as usual, with the fetch
phase. This phase ends when the instruction is loaded into the IR in step 3. The offset value is extracted from the IRby
the instruction decoding circuit, which will also perform sign extension if required. Since the value of the updated PC
is already available in register Y, the offset X is gated onto the bus in step 4, and an addition operation is performed.
The result, which is the branch target address, is loaded into the PC in step 5.

The offset X used in a branch instruction is usually the difference between the branch target address and the address
immediately following the branch instruction.

Step Action

PGy, MAR n, Read, Select4 Add, Zin
Zot, PCin, Yin. WMFC

MDR, .. IR,

Offset-field-of-IF.w, Add, Zin

Lo, PGn, End

1+ BN %

For example, if the branch instruction is at location 2000 and if the branch target address is 2050,the value of X must
be 46. The reason for this can be readily appreciated from the control sequence in Figure 7. The PC is incremented
during the fetch phase, before knowing the type of instruction being executed. Thus, when the branch address is
computed in step 4, the PC value used is the updated value, which points to the instruction following the branch
instruction in the memory.

Department of CSE,AITS-TIRUPATI 76

COMPUTER ORGANIZATION(20APC3007)

Consider now a conditional branch. In this case, we need to check the status of the condition codes before loading a
new value into the PC. For example, for a Branch-on-negative (Branch<0) instruction, step 4 is replaced with

Offset-field-of-IRout Add, Zin, If N = 0 then End

Thus, if N = 0 the processor returns to step 1 immediately after step 4. If N = 1, step 5 is performed to load a new
value into the PC, thus performing the branch operation.

MULTIPLE-BUS ORGANIZATION:

The resulting control sequences shown are quite long because only one data item can be transferred over the bus in
a clock cycle. To reduce the number of steps needed, most commercial processors provide multiple internal paths that
enable several transfers to take place in parallel.

Figure 7.8 depicts a three-bus structure used to connect the registers and the ALU of a processor. All general-purpose
registers are combined into a single block called the register file. In VLSI technology, the most efficient way to
implement a number of registers is in the form of an array of memory cells similar to those used in the implementation
of random-access memories (RAMs). The register file in Figure 7.8 is said to have three ports. There are two outputs,
allowing the contents of two different registers to be accessed simultaneously and have their contents placed on buses
A and B. The third port allows the data on bus C to be loaded into a third register during the same clock cycle.

Buses A and B are used to transfer the source operands to the A and B inputs of the ALU, where an arithmetic or
logic operation may be performed. The result is transferred to the destination over bus C. If needed, the ALU may
simply pass one of its two input operands unmodified to bus

C. We will call the ALU control signals for such an operation R=A or R=B. The three-bus arrangement obviates the
need for registers Y and Z.

A second feature in Figure 7.8 is the introduction of the Incremental unit, which is used to increment the PC by 4.
The source for the constant 4 at the ALU input multiplexer is still useful. It can be used to increment other addresses,
such as the memory addresses in Load Multiple and Store Multiple instructions.

Step Action

1 POy, B=EB, MARo, Rewd, InclPC
2 WhFL

4 MBH g, R=E, Iy

4

Bdons, Bl Selectd, Add, Ry, Eod

Figure 7.9 Conirol sequance for the instruction Add R4,R5 k6
tar tha threebus argenizokion in Figurs X 8.

Department of CSE,AITS-TIRUPATI 77

COMPUTER ORGANIZATION(20APC3007)

Bus A Bz B Bus C
i A q'ﬁ‘
g [':I_'lI
1 i I Incremenier |El
& ! [L

| -
i i
'i :_...____ e [I..._ .lg
il I i}
Bl . 13
i t
'.--_—i'— o ma — A mm i
a 1 & 7T
| Constant 4
i | §
[
i ;!
! &
. e |
i i
! i
| |
|
: [
| |
il ?
1
1 :
e S e = MDR =i
‘; ! i
! . !
by I! !I
_ L l i
1i j i akb
|....Ill:' l"'._.-:: -_“,_'
Memory bus Addrems
darn lines fmes

Figure 7.8 Three bus organization of the dolapo*h,

Consider the three-operand instruction

Add R4,R5,R6

The control sequence for executing this instruction is given in Figure 7.9.

Department of CSE,AITS-TIRUPATI

COMPUTER ORGANIZATION(20APC3007)

In step 1, the contents of the PC are passed through the ALU, using the R=B control signal, and loaded into the MAR
to start a memory read operation. At the same time the PC is incremented by 4. Note that the value loaded into MAR is
the original contents of the PC. The incremented value is loaded into the PC at the end of the clock cycle and will not
affect the contents of MAR. In step 2, the processor waits for MFC and loads the data received into MDR, then transfers
themto IR in step 3. Finally, the execution phase of the instruction requires only one control step to complete, step 4.

By providing more paths for data transfer a significant reduction in the number of clock cycles needed to execute an
instruction is achieved.

HARDWIRED CONTROL:

To execute instructions, the processor must have some means of generating the control signals needed in the proper
sequence. Computer designers use a wide variety of techniques to solve thisproblem. The approaches used fall into one
of two categories: hardwired control and micro programmed control.

The required control signals are determined by the following information:

<> Contents of the control step counter

X Contents of the instruction register

<> Contents of the condition code flags

X External input signals, such as MFC and interrupt requests

LK Conmol step
Clock s CUn gy
1 L
o e o
- ity Hxrammal
1 SETpLILS
Deeodert |0
.8 .
. cponder
z Cardibon
= . el S
- | 1
* § 4

Fgure 7.10 Carfral urit erganizction.

To gain insight into the structure of the control unit, we start with a simplified view of the hardware involved. The
decoder/encoder block in Figure 7.10 is a combinational circuit that generates the required control outputs, depending

on the state of all its inputs. By separating the decoding and encoding functions, we obtain the more detailed block
diagram in Figure 7.11. The

Department of CSE,AITS-TIRUPATI 79

COMPUTER ORGANIZATION(20APC3007)

step decoder provides a separate signal line for each step, or time slot, in the control sequence. Similarly, the output
of the instruction decoder consists of a separate line for each machine instruction. For any instruction loaded in the IR,
one of the output lines INS1 through INSm is set to 1, and all other lines are set to 0. The input signals to the encoder
block in Figure 7.11 are combined to generate the individual control signals Yin, PCout, Add, End, and so on. An
example of how the encoder generates the Zin control signal for the processor organization in Figure 7.1 is given in
Figure 7.12. This circuit implements the logic function

Zin=T1+T6 - ADD + T4-BR+---

This signal is asserted during time slot T1 for all instructions, during T6 for an Add instruction, during T4 for an
unconditional branch instruction, and so on. The logic function for Zin isderived from the control sequences in
Figures 7.6 and 7.7. As another example, Figure 7.13 givesa circuit that generates the End control signal from the logic
function

End=T7+ADD +T5¢«BR+ (IT5*N+T4+N)*BRN + e«

The End signal starts a new instruction fetch cycle by resetting the control step counter to its starting value. Figure
7.11 contains another control signal called RUN. When set to 1, RUN causes the counter to be incremented by one at
the end of every clock cycle. When RUN is equal to 0, the counter stops counting. This is needed whenever the WMFC
signal is issued, to cause the processor to wait for the reply from the memory.

(LK
Clock Control step | Reset
- CONEE !
[b
™ T
T, T, ==+ 1, |
T i
- i External
i ﬁ'ﬂ;r !ﬂpm
Ensbructicd T
IR = - b Eacoder -
= g Condistan
- b] oodes
NS, -
Runi 1 1 Ewd
LA
Cartrol sigmals

Figure 7.11 Separalion of fio decoding wnd sacoding funclians,

The control hardware shown can be viewed as a state machine that changes from one state to another in every clock
cycle, depending on the contents of the instruction register, the condition codes, and the external inputs. The outputs of
the state machine are the control signals. The sequence of operations carried out by this machine is determined by
the wiring of the logic

Department of CSE,AITS-TIRUPATI 80

COMPUTER ORGANIZATION(20APC3007)

elements, hence the name "hardwired." A controller that uses this approach can operate at high speed. However, it
has little flexibility, and the complexity of the instruction set it can implementis limited.

Iy

Figure 7.12 Generation of the 2, controf signal for the
procassor in Fagura 7.1,

Branchel)
Add Braach

1 . 1

I

E
ol | - w

_ End
Figure T.13 Generctien of the End control signal,
MICROPROGRAMMED CONTROL:

Microprogrammed control signals are generated by a program similar to machine language programs.

Department of CSE,AITS-TIRUPATI 81

COMPUTER ORGANIZATION(20APC3007)

ALU is the heart of any computing system, while Control unit is its brain. The design of a control unit is not unique;
it varies from designer to designer. Some of the commonly used control logic design methods are:

Sequence Reg & Decoder method
Hard-wired control method

PLA control method
Micro-program control method

, = | | T 2 k= -| . |8
Misttcoon .. 5 S |5 |E (B | = |3 3|« |IF | 2|53
1 o1 1 110]0]|]0] 1 111 0|0|]0 |0 0:0
2 1/,0,0|]0|]O0|]O)|]1|j]0)|J]0O0|O|1]|]0O0]J]O|0O0]|1]0
3 ojojo|]O|1]1 0|0 o0jo0|0|0]| O 00|0
o o0 1 1/0]|0 0|0 0jo|0]O]jO |1 0‘0
5 cjojojojojo}j1]j]0]l]0]j]0]j0]1}0}|0]1]0
6 o oo o 1+ O o 0O 11 00 0 0 0 O
7 ¢ 00 0O OO OO OO 1T 0 1 090 1

Figure 7.15 An example of microinstructions for Figure 7.6.

A control word (CW) is a word whose individual bits represent the various control signals. Each of the control steps
in the control sequence of an instruction defines a unique combination of 1s and Os in the CW. A sequence of CWs
corresponding to the control sequence of a machine instruction constitutes the microroutine for that instruction, and the
individual control words in this microroutine are referred to as microinstructions.

The micro routines for all instructions in the instruction set of a computer are stored in a special memory called the
control store. The control unit can generate the control signals for any instruction by sequentially reading the CWs of
the corresponding micro routine from the control store.

In Figure 7.16 to read the control words sequentially from the control store, a micro program counter (LPC) is used.
Every time a new instruction is loaded into the IR, the output of the block labeled "starting address generator" is loaded
into the pPC. The pPC is then automatically incremented by the clock, causing successive microinstructions to be read
from the control store. Hence, the control signals are delivered to various parts of the processor in the correct sequence.

In microprogrammed control, an alternative approach to control unit is to use conditional branch microinstructions.
In addition to the branch address, these microinstructions specify which of the external inputs, condition codes, or,
possibly, bits of the instruction register should be checked asa condition for branching to take place.

The instruction Branch <0 may now be implemented by a microroutine such as that shown in Figure 7.17. After
loading this instruction into IR, a branch microinstruction transfers control to the corresponding microroutine, which is
assumed to start at location 25 in the control store. This

Department of CSE,AITS-TIRUPATI 82

COMPUTER ORGANIZATION(20APC3007)

address is the output of the starting address generator block in Figure 7.16. The microinstruction at location 25 tests
the N bit of the condition codes. If this bit is equal to 0, a branch takes placeto location 0 to fetch a new machine
instruction. Otherwise, the microinstruction at location 26 isexecuted to put the branch target address into register Z, as
in step 4 in Figure 7.7. Themicroinstruction in location 27 loads this address into the PC.

Starting Address Microinstruction

R :-> address U . e

generator 0 PCoy, MAR;n, Read, Select4, Add, Z;
1 Zout, PCin, Yin, WMFC
2 MDRout, IR
\l K} Branch to starting address of appropriate microroutine

Clock urPC
: 25 If N=0, then branch to microinstruction
yt 26 Offset-field-0f-IR ¢, SelectY, Add, Zin

27 Zout, PCin, End

wore. | OW .

figure 7.17 Microroutine for the instruction Branch < Q.

Figure 7.16 Basic organization of o

microprogrammed confrol unif,
=
inputs
Starting and at
IR ::> branch address <: Cf;d{;;?n
generator
Clock - #PC

==

]

Figure 7.18 Orgonizotion of the control unit to ollow
conditionc! branching in the microprogrom.,

Department of CSE,AITS-TIRUPATI 83

COMPUTER ORGANIZATION(20APC3007)

To support microprogram branching, the organization of the control unit should be modified as shown in Figure 7.18.
The starting address generator block of Figure 7.16 becomes the starting and branch address generator. This block loads
a new address into the pPC when a microinstruction instructs it to do so. To allow implementation of a conditional
branch, inputs to this block consist of the external inputs and condition codes as well as the contents of the instruction
register. In this control unit, the pPC is incremented every time a new microinstruction is fetched from the micro
program memory, except in the following situations:

1. When a new instruction is loaded into the IR, the pPC is loaded with the starting addressof the micro
routine for that instruction.
2 When a Branch microinstruction is encountered and the branch condition is satisfied, the pPC is

loaded with the branch address.
When an End microinstruction is encountered, the pPC is loaded with the address of thefirst CW in the micro

routine for the instruction.

Department of CSE,AITS-TIRUPATI 84

COMPUTER ORGANIZATION(20APC3007)

UNIT-III
The Memory System: Basic Concepts, Semiconductor RAM Memories, Read-Only Memories,

Speed, Size and Cost, Cache Memories, Performance Considerations, Virtual Memories, Memory
Management Requirements, Secondary Storage.

THE MEMORY SYSTEM

SOME BASIC CONCEPTS

The maximum: size of the memory that can be used in any computer is determined by the
addressing scheme.

For example,
» 16-bit computer that generates 16-bit addresses is capable of addressing up to 2'® = 64K
memory locations.
» 32-bit addresses can utilize a memory that contains up to 232 = 4G (giga) memory
locations.
» 40-bit addresses can access up to 24° = 1T (tera) locations.
The number of locations represents the size of the address space of the computer.

Most modern computers are byte addressable. The big-endian arrangement is used in the 68000
processor. The little-endian arrangement is used in Intel processors.

Word length of a computer is defined as the number of bits actually stored or retrieved in one
memory access.

Consider, for example, a byte addressable computer whose instructions generate 32-bit addresses,
when a 32-bit address is sent from the processor to the memory unit, the high-order 30 bits
determine which word will be accessed. If a byte quantity is specified, the low-order 2bits of
the address specify which byte location is involved. In a Read operation, other bytes may be
fetched from the memory, but they are ignored by the processor. If the byte operation is a Write,
however, the control circuitry of the memory must ensure that the contents of other bytes of the
same word are not changed.

Department of CSE,AITS-TIRUPATI 85

COMPUTER ORGANIZATION(20APC3007)

Memory
k-bit
address bus
: A
(] : i i
F""tﬂ".‘.._' TE TP n-bit
i n] Upto2* addressable
o A locations
ﬁ:,ﬁi;r I “
:tl”iis 3 e -
th_t»lml lines
{ R/ W, MEC, etc.)

- Figurs 5.1 Connection of the memory to the processor.

Data transfer between the memory and the processor takes place through the use of two processor
registers, usually called MAR and MDR. If MAR is k bits long and MDR is n bits long, then the
memory unit may contain up to 2 addressable locations. During a memory cycle, n bits of data
are transferred between the memory and the processor. This transfer takes place over the processor
bus, which has k address lines and n data lines. The bus also includes the control lines Read/Write
(R/W) and MemorymtionEompleted (MFC) for coordinating data transfers. Other control lines
may be added to indicate the number of bytes to be transferred.

The processor reads data from the memory by loading the address of the required memory location
into the MAR register and setting the R/W line to 1. The memory responds by placing the data
from the addressed location onto the data lines, and confirms this action by asserting the MFC
signal. Upon receipt of the MFC signal, the processor loads the data on the data lines into the MDR
register.

The processor writes data into a memory location by loading the address of this location into MAR
and loading the data into MDR. It indicates that a write operation is involved by setting theR/W
line to 0.

If read or write operations involve consecutive address locations is the main memory, then a “block
transfer” operation can be performed in which the only address sent to the memory is the one that
identifies the first location.

A useful measure of the speed of memory units is the time that elapses between the initiation of
an operation and the completion of that operation, for example, the time between the Read and the
MEC signals. This is referred to as the memory access time. Another important measure is the
memory cycle time, which is the minimum time delay required between the initiations of two
successive memory operations, for example, the time between two successive Read operations.
The cycle time is usually slightly longer than the access time, depending on the implementation
details of the memory unit.

A memory unit is called random-access memory (RAM) if any location can be accessed for a Read

Department of CSE,AITS-TIRUPATI 86

COMPUTER ORGANIZATION(20APC3007)

or Write operation in some fixed amount of time that is independent of the location’s address. This
distinguishes such memory units from serial, or partly serial, access storage devices such as
magnetic disks and tapes. Access time on the latter devices depends on the address or position of
the data.

The processor of a computer can usually process instructions and data faster than they can be
fetched from a reasonably priced memory unit.

Cache memory is used to reduce the memory access time. This is a small, fast memory that is
inserted between the larger, slower main memory and the processor. It holds the currently active
segments of a program and their data.

Virtual memory is another important concept related to memory organization. The memory control
circuitry translates the address specified by the program into an address that can be used to access
the physical memory. In such a case, an address generated by the processor is referred to as a
virtual or logical address. The virtual address space is mapped onto the physical memory

where data are actually stored. The mapping function is implemented by a special memory control
circuit, often called the memory management unit. This mapping function can be changed during
program execution according to system requirements.

Virtual memory is used to increase the apparent size of the physical memory.
SEMICONDUCTOR RAM MEMORIES

Semiconductor memories cycle times range from 100 ns to less than 10 ns. Because of rapid
advances in VLSI (Very Large Scale Integration} technology, the cost of semiconductor memories
has dropped dramatically.

INTERNAL ORGANIZATION OF MEMORY CHIPS:

Department of CSE,AITS-TIRUPATI 87

COMPUTER ORGANIZATION(20APC3007)

Memory cells are usually organized in the form of an array, in which each cell is capable of storing

by b’, b, Y, by by
147 E™ 5 N i
W 5 " i
4 -4 1 FF |4 ~~ FF
As) W, T I \
A= Adkens
. " . . Memory
decoder " " » . cells

Az-‘-" . . ‘. : : +
Ay — /

) LI | L‘ ’_l LI |
Sense / Write Sense / Write Sense / Write [R/W
circuit circuit circoit |, g
Data input/output lines: b, by b,

Figure 5.2 Organization of bit cells in @ memory chip.

one bit of information. Each row of cells constitutes a memory word, and all cells of a row are
connected to a common line referred to as the word line, which is driven by the address decoder
on the chip. The cells in each column are connected to a Sense/Write circuit by two bit lines, The
Sense/Write circuits are connected to the data input/output lines of the chip, During a Read
operation, these circuits sense, or read, the information stored in the cells selected by aword
line and transmit this information to the output data lines. During a Write operation, the
Sense/Write circuits receive input information and store it in the cells of the selected word.

Figure 5.2 is an example of a very small memory chip consisting of 16 words of 8 bits each. This
is referred to as a 16 x 8 organization. The data input and the data output of each Sense/Write
circuit are connected to a single bidirectional data line that can be connected to the data bus of a
computer. Two control lines, R/W and CS, are provided in addition to address and data lines.

The R/'W (Read/Write) input specifies the required operation, and the CS (Chip Select) input
selects a given chip in a multichip memory system.

The memory circuit in Figure 5.2 stores 128 bits and requires 14 external connections for address,
data, and control lines. This circuit requires 14 external connections, and allowing 2 pinsfor power
supply and ground connections, can be manufactured in the form of a 16-pin chip. It can store 16
x 8 = 128 bits.

Another type of organization for 1k x 1 format is shown below: This circuit can be organized as
a 128 x 8 memory, requiring a total of 19 external connections. Alternatively, the same number
of cells can be organized into a 1K x | format. In this case, a 10-bit address is needed, but there is
only one data line, resulting in 15 external connections. Figure 5.3 shows such an organization.

Department of CSE,AITS-TIRUPATI 88

COMPUTER ORGANIZATION(20APC3007)

The required 10-bit address is divided into two groups of 5 bits each to form the row and column
addresses for the cell array. A row address selects a row of 32 cells, all of which are accessed in

parallel.
5-bit row
address | W,
W,
; 2x32
digizr . memory celf
. amay
Wy, ;
4 U Sense/Write
ﬁ # =)
10-bit | ——————
address 3 A
32-to-1 -
output multiplexer e
ud po— C§
input demultiplexer
5-bit column |]
address) l
Data
inputfoutput

Figure 5.3 Organization of o 1K x 1 memory chip.

STATIC MEMORIES:

Memories that consist of circuits capable of retaining their state as long as power is applied are
known as static memories.

Figure 5.4 illustrates how a static RAM (SRAM) cell may be implemented. Two inverters are
cross-connected to form a latch. The latch is connected to two bit lines by transistors T; and T».
These transistors act as switches that can be opened or closed under control of the word line. When
the word line is at ground level, the transistors are turned off and the latch retains its state. For
example, let us assume that the cell is in state 1 if the logic value at point X is 1 and at point Y is
0. This state is maintained as long as the signal on the word line is at ground level.

Read Operation

In order to read the state of the SRAM cell, the word line is activated to close switches T, and T».
If the cell is in state 1, the signal on bit line b is high and the signal on bit line bl is low. The
opposite is true if the cell is in state 0. Thus, b and bl are complements of each other. Sense/Write
circuits at the end of the bit lines monitor the state of b and bl and set the output accordingly.

Write Operation

The state of the cell is set by placing the appropriate value on bit line b and its complement on b[,
Department of CSE,AITS-TIRUPATI 89

COMPUTER ORGANIZATION(20APC3007)

and then activating the word line. This forces the cell into the corresponding state. The required
signals on the bit lines are generated by the Sense/Write circuit.

Word line
- : Bit lines -
Figura 5.4 A static RAM cell.
b v b’
n b 4| 7
T T
T | B
X Vi
= /
i /
: L l—' “"I T
|
| i
; —
| Word line
-- Bit lines -

Figure 5.5 An exomple of a CMOS memory cell.

Department of CSE,AITS-TIRUPATI 90

COMPUTER ORGANIZATION(20APC3007)

CMOS Cell:

In figure 5.5, Transistor pairs (Ts, Ts) and (T4, Ts) form the inverters in the latch. For example, in
state 1, the voltage at point X is maintained high by having transistors T3 and Tg on, while T, and
Ts are off. If T, and T, are turned on (closed), bit lines b and bl will have high and low signals,
respectively.

The power supply voltage, Vpiy, is 5 V in older CMOS SRAMs of 3.3 V in new low-voltage
versions. Continuous power is needed for the cell to retain its state. If power is interrupted, the
cell's contents will be lost. When power is restored, the latch will settle into a stable state, but it
will not necessarily be the same state the cell was in before the interruption. Hence, SRAMs are
said to be volatile memories because their contents are lost when power is interrupted.

A major advantage of CMOS SRAMs is their very low power consumption because current flows
in the cell only when the cell is being accessed.

Static RAMs can be accessed very quickly. SRAMs are used in applications where speed is of
critical concern.

Static RAMs are fast, but they come at a high cost because their cells require several transistors.
ASYNCHRONOUS DRAMs:

Dynamic RAMs (DRAMs) are less expensive RAMs can be implemented if simpler cells are used.
However, such cells do not retain their state indefinitely.

Information is stored in a dynamic memory cell in the form of a charge on a capacitor, and this
charge can be maintained for only tens of milliseconds. Since the cell is required to store
information for a much longer time, its contents must be periodically refreshed by restoring the
capacitor charge to its full value.

After the transistor is turned off, the capacitor begins to discharge. This is caused by the capacitor’s
own leakage resistance and by the fact that the transistor continues to conduct a tiny amount of
current, measured in picoamperes, after it is turned off. Hence, the information stored in the cell
can be retrieved correctly only if it is read before the charge on the capacitor drops below some
threshold value. During a Read operation, the transistor in a selected cell is turned on. A sense
amplifier connected to the bit line detects whether the charge stored on the capacitor is above the
threshold value. If so, it drives the bit line to a full voltage that represents logicvalue 1. This
voltage recharges the capacitor to the full charge that corresponds to logic value 1. If the sense
amplifier detects that the charge on the capacitor is below the threshold value, it pullsthe bit line
to ground level, which ensures that the capacitor will have no charge, representing logic value 0.
Thus, reading the contents of the cell automatically refreshes its contents. All cells in a selected
row are read at the same time, which refreshes the contents of the entire row.

A 16-megabit DRAM chip, configured as 2M x 8, is shown in Figure 5.7. The cells areorganized
Department of CSE,AITS-TIRUPATI 91

COMPUTER ORGANIZATION(20APC3007)

in the form of a 4K x 4K array. The 4096 cells in each row are divided into 512 groupsof 8, so
that a row can store 512 bytes of data, Therefore, 12 address bits are needed to select a

row. Another 9 bits are needed to specify a group of 8 bits in the selected row. Thus, a 21-bit
address is needed to access a byte in this memory. The high-order 12 bits and the low-order 9
bits of the address constitute the row and column addresses of a byte, respectively.

RAS
1
| Bl Row | . 14096x(512x8)
> tatch :adbcodcr e cell array
Am-9/Ag-0 Sense / Write [+~ CS
' ceuls | piW
Coilumn
| address o
latch
[T JE— D, D,

Figure 5.7 !Interncl organization of o 2M x 8 dynamic memory chip.

To reduce the number of pins needed for extremal connections, the row and column addresses are
multiplexed on 12 pins. During a Read or a Write operation, the row address is applied first.It is
loaded into the row address latch in response to a signal pulse on the Row Address Strobe (RAS)
input of the chip. Then a Read operation is initiated, in which all cells on the selected row are read
and refreshed. Shortly after the row address is loaded, the column address is applied to the address
pins and loaded into the column address latch under control of the Column Address Strobe (CAS)
signal. The information in this latch is decoded and the appropriate group of 8 Sense/Write circuits
is selected. If the R/W control signal indicates a Read operation, the output values of the selected
circuits are transferred to the data lines, D;. For a Write operation, the information on the D5
lines is transferred to the selected circuits.

Applying a row address causes all cells on the corresponding row to be read and refreshed during
both Read and Write operations. To ensure that the contents of a DRAM are maintained, each row
of cells must be accessed periodically. A refresh circuit usually performs this function

Department of CSE,AITS-TIRUPATI 92

COMPUTER ORGANIZATION(20APC3007)

automatically. Many dynamic memory chips incorporate a refresh facility within the chips
themselves.

A specialized memory controller circuit provides the necessary control signals, RAS and CAS,
that govern the timing. The processor must take into account the delay in the response of the
memory. Such memories are referred to as asynchronous DRAMS.

Because of their high density and low cost, DRAMs are widely used in the memory units of
computers. Available chips range in size from 1M to 256M bits, and even larger chips are being
developed. To reduce the number of memory chips needed in a given computer, a DRAM chip is
organized to read or write a number of bits in parallel.

Fast Page Mode

When the DRAM in Figure 5.7 is accessed, the contents of all 4096 cells in the selected row ate
sensed, but only 8 bits are placed on the data lines D5.,. This byte is selected by the column address
bits Ago. A simple modification can make it possible to access the other bytes in the same row
without having to reselect the row. A latch can be added at the output of the sense amplifier in
each column. The application of a row address will load the latches corresponding toall bits in the
selected row. Then, it is only necessary to apply different column addresses to place the different
bytes on the data lines.

The most useful arrangement is to transfer the bytes in sequential order, which is achieved by
applying a consecutive sequence of column addresses under the control of successive CAS signals.
This scheme allows transferring a block of data at a much faster rate than can be achieved for
transfers involving random addresses. The block transfer capability is referred to as the fast page
mode feature.

SYNCHRONOUS DRAMS

DRAMs whose operation is directly synchronized with a clock signal, such memories are knows
as synchronous DRAMs (SDRAMs).

Department of CSE,AITS-TIRUPATI 93

COMPUTER ORGANIZATION(20APC3007)

Refresh
counter
Row
address :> {bcilc(]kl'" = Cell array
latch .
Row/Column __
address]
Column ’
Column Read/Write
address :" > » Rt
counter _{ decader : |circuits & latches
Clock —= r‘w,v
RAS —=' Mode register :
CAS —= and Data input Data output
R/W —a timing control reginer register

Figure 5.8 Synchronous DRAM.

The cell array is the same as in asynchronous DRAMs. The address and data connections are
buffered by means of registers. The output of each sense amplifier is connected to a latch. A
Read operation causes the contents of all cells in the selected row to be loaded into these latches.
But, if an access is made for refreshing purposes only, it will not change the contents of these
latches; it will merely refresh the contents of the cells. Data held in the latches that correspond to
the selected column(s) are transferred into the data output register, thus becoming available on the
data output pins.

SDRAMs have several different modes of operation, which can be selected by writing control
information into a mode register. For example, burst operations of different lengths can be
specified.

Figure 5.9 shows a timing diagram for a typical burst read of length 4. First, the row address is
latched under control of the RAS signal. The memory typically takes 2 or 3 clock cycles (we use
2 in the figure) to activate the selected row. Then, the column address is latched under control of
the CAS signal. After a delay of one clock cycle, the first set of data bits is placed on the data lines.
The SDRAM automatically increments the column address to access the next three sets of bits in
the selected row, which are placed on the data lines in the next 3 clock cycles.

Department of CSE,AITS-TIRUPATI 94

COMPUTER ORGANIZATION(20APC3007)

RAS

Data { Nno x

Figure 5.9 Burst read of length 4 in an SDRAM.

SDRAMs have built-in refresh circuitry. A part of this circuitry is a refresh counter, which provides
the addresses of the rows that are selected for refreshing.

Commercial SDRAMs can be used with clock speeds above 100 MHz. These chips are designed
to meet the requirements of commercially available processors that are used in large volume.

Latency and Bandwidth:

A good indication of the performance of a computer system is given by two parameters: latency
and bandwidth.

The term memory latency is used to refer to the amount of time it takes to transfer a word of data
to or from the memory. In the case of reading or writing a single word of data, the latency provides
a complete indication of memory performance. But, in the case of burst operations that transfer a
block of data, the time needed to complete the operation depends also on the rate at which
successive words can be transferred and on the size of the block.

In block transfers, the term latency is used to denote the time if takes to transfer the first word of
data. This time is usually substantially longer than the time needed to transfer each subsequent
word of a block.

When transferring blocks of data, since blocks can be variable in size, it is useful to define a
performance measure in terms of the number of bits or bytes that can be transferred in one second.
This measure is often referred to as the memory bandwidth. This measure is often referred to as
the memory bandwidth. The bandwidth of a memory unit (consisting of one or more memory
chips) depends on the speed of access to the stored data and on the number of bits that can be
accessed in parallel. The effective bandwidth in a computer system also depends on the transfer

capability of the links that connect the memory and the processor, typically the speedof the bus.
Department of CSE,AITS-TIRUPATI 95

COMPUTER ORGANIZATION(20APC3007)

The bandwidth clearly depends on the speed of access and transmission along a single wire, as
well as on the number of bits that can be transferred in parallel, namely the number of wires.

Thus, the bandwidth is the product of the rate at which data are transferred (and accessed) and
the width of the data bus.

Double-Data-Rate SDRAM:

The standard SDRAM performs all actions on the rising edge of the clock signal. A similar
SDRAM memory device is available, which accesses the cell array in the same way, buttransfers
data on both edges of the clock. The latency of these devices is the same as for standardSDRAMs.
But, since they transfer data on both edges of the clock, their bandwidth is essentially doubled for
long burst transfers. Such devices are known as double-data-rate SDRAMs (DDR SDRAMS).

To make it possible to access the data at a high enough rate, the cell array is organized in two
banks. Each bank can be accessed separately. Consecutive words of a given block are stored in
different banks. Such interleaving of words allows simultaneous access to two words that are
transferred on successive edges of the clock.

DDR SDRAMs and standard SDRAMs are most efficiently used in applications where block
transfers are prevalent.

STRUCTURE OF LARGER MEMORIES
Static Memory Systems:

Consider a memory consisting of 2M (2,097,152) words of 32 bits each. Figure 5.10 shows how
we can implement this memory using 512K x 8 static memory chips. Each column in the figure

consists of four chips, which implement one byte position. Four of these sets provide therequired
2M x 32 memory. Each chip has a control input called Chip Select. When this input is set to 1, it
enables the chip to accept data from or to place date on its data lines. The data output for each chip
is of the three-state type. Only the selected chip places data on the data output line, while all other
outputs are in the high-impedance state. Twenty one address bits are needed to select a 32-bit
word in this memory. The high-order 2 bits of the address are decoded todetermine which
of the four Chip Select control signals should be activated and the remaining 19address bits are
used to access specific byte locations inside each chip of the selected row. The R/W inputs of all
chips are tied together to provide a common Read/Write control.

Department of CSE,AITS-TIRUPATI 96

COMPUTER ORGANIZATION(20APC3007)

21-bit
A addresses 19-bit internal chip address
Al [- 1
=l | I |
;“‘j = ki ki ks
Pl ’ !
Am__'i f ...:g...l..,, ,_,.g 1 ____: l lw——-ﬂw‘!
- = L
| = BBl B A A R
: |
I e o e e o
| :- | :
e b e 5 1 L - L
L k: = E <: i """" ﬂ:\ E ¢ - C:
dezcgé; F o e d | i i
L_ I | I
st) o “strci| B e Reten
//ML i | s | B
512Kx:_ V \% {/ \%
HERRER Dyss Dk Dyss Dra
512K x 8 memory chip
19-bit __~ 8-bit data
address v K=> input/output
i
Chip select

Figure 5.10 Crganization of a 2M x 32 memory module using 512K x 8 stafic
memory chips.

Department of CSE,AITS-TIRUPATI 97

COMPUTER ORGANIZATION(20APC3007)

Dynamic Memory Systems:

Physical implementation of large dynamic memory systems is often done more conveniently in
the form of memory modules.

A large memory leads to better performance because more of the programs and data used in
processing can be held in the memory, thus reducing the frequency of accessing the information
in secondary storage. However, if a large memory is built by placing DRAM chips directly on the
main system printed-circuit board that contains the processor, often referred to as a motherboard,
it will occupy an unacceptably large amount of space on the board. These packaging considerations
have led to the development of larger memory units known as SIMMs (Single In-line Memory
Modules) and DIMMs (Dual In-line Memory Modules). SIMMs and DIMMs of different sizes are
designed to use the same size socket. Such modules occupy a smaller amount of space on a
motherboard, and they allow easy expansion by replacement if a larger module uses the same
socket as the smaller one.

MEMORY SYSTEM CONSIDERS TIONS:

The choice of a RAM chip for a given application depends on several factors. Foremost among
these factors are the cost, speed, power dissipation, and size of the chip.

Static RAMs are generally used only when very fast operation is the primary requirement. They
are used mostly in cache memories.

Dynamic RAMs are the predominant choice for implementing computer main memories. The high
densities achievable in these chips make large memories economically feasible.

Memory Controller:

To reduce the number of pins, the dynamic memory chips use multiplexed address inputs.
The address is divided into two parts.

The high-order address bits, which select a row in the cell array, are provided first and latched
into the memory chip under control of the RAS signal.

Then, the low-order address bits, which select a column, are provided on the same address pins
and latched using the CAS signal.

A typical processor issues all bits of an address at the same time. The required multiplexing of
address bits is usually performed by a memory controller circuit, which is interposed between the
processor and the dynamic memory.

The controller accepts a complete address and the R/W signal from the processor, under control of
a Request signal which indicates that a memory access operation is needed. The controller then
forwards the row and column portions of the address to the memory and generates the RAS and

Department of CSE,AITS-TIRUPATI — 98

COMPUTER ORGANIZATION(20APC3007)

CAS signals. Thus, the controller provides the RAS-CAS timing, in addition to its address
multiplexing function. It also sends the R/W and CS signals to the memory.

Row/Column

Address | aﬁ“ >
o RAS

RIW —

g Memory CAS -
Request controiler R/ W

Processor e &3 "1 Memory

Clock | "

Clock

< =

Data

Figure 5,11 Use of a memory controlier.

The CS signal is usually active low; hence it is shown as CS. Data lines are connected directly
between the processor and the memory.

When used with DRAM chips, which do not have self-refreshing capability, the memory controller
has to provide all the information needed to control the refreshing process. It containsa refresh
counter that provides successive row addresses. Its function is to cause the refreshing ofall rows to
be done within the period specified for a particular device.

READ-ONLY MEMORIES:

The contents of non-volatile memory can be read as if they were SRAM or DRAM memories. But,
a special writing process is needed to place the information into this memory. Since its normal
operation involves only reading of stored data, a memory of this type is called read-only memory
(ROM).

ROM

A logic value 0 is stored in the cell if the transistor is connected to ground at point P; otherwise,
a 1 is stored. The bit line is connected through a resistor to the power supply. To read the state of
the cell, the word line is activated. Thus, the transistor switch is closed and the voltage on the bit
line drops to near zero if there is a connection between the transistor and ground. If there is no
connection to ground, the bit line remains at the high voltage, indicating a 1. A sense circuit at the
end of the bit line generates the proper output value. Data are written into a ROM when it is
manufactured.

Department of CSE,AITS-TIRUPATI 99

COMPUTER ORGANIZATION(20APC3007)

Bit line
) Word line
s
F — | . S——

T 1

a Connected to store a 0
P \.:- e

o Not connected to store a |
:

Figure 5.12 A ROM celi.

PROM:

Some ROM designs allow the data to be loaded by the user, thus providing a programmable ROM
(PROM). Programmability is achieved by inserting a fuse at point P in Figure 5.12. Beforeit is
programmed, the memory contains all 0s. The user can insert 1s at the required locations by
burning out the fuses at these locations using high-current pulses. Of course, this process is
irreversible.

PROMs provide flexibility and convenience. PROMs provide a faster and considerably less
expensive approach because they can be programmed directly by the user.

EPROM:

Another type of ROM chip allows the stored data to be erased and new data to be loaded. Such
an erasable, reprogrammable ROM is usually called an EPROM. Since EPROMs are capable of
retaining stored information for a long time, they can be used in place of ROMs while software is
being developed.

The important advantage of EPROM chips is that their contents can be erased and reprogrammed.
Erasure requires dissipating the charges trapped in the transistors of memory cells; this can be done
by exposing the chip to ultraviolet light. For this reason, EPROM chips are mounted in packages
that have transparent windows.

EEPROM:

A significant disadvantage of EPROMs is that a chip must be physically removed from the
circuit for reprogramming and that its entire contents are erased by the ultraviolet light. It is
possible to implement another version of erasable PROMs that can be both programmed and erased
electrically. Such chips, called EEPROMs, do not have to be removed for erasure.Moreover, it is

possible to erase the cell contents selectively. The only disadvantage of EEPROMs is that different
Department of CSE,AITS-TIRUPATI 100

COMPUTER ORGANIZATION(20APC3007)

voltages are needed for erasing, writing, and reading the stored data.

Flash Memory:

In EEPROM it is possible to read and write the contents of a single cell. In a flash device it is
possible to read the contents of a single cell, but it is only possible to write an entire block of cells.
Prior to writing, the previous contents of the block are erased. Flash devices have greater density,
which leads to higher capacity and a lower cost per bit. They require a single power supply voltage,
and consume less power in their operation.

Flash memory consumes low power.
Applications:

Typical applications include hand-held computers, cell phones, digital cameras, and MP3 music
players. In hand-held computers and cell phones, flash memory holds the software needed to
operate the equipment, thus obviating the need for a disk drive. In digital cameras, flash memory
is used to store picture image data. In MP3 players, flash memory stores the data that represent
sound. Cell phones, digital cameras, and MP3 players are good examples of embedded systems,

There are two popular choices for the implementation of larger modules: flash cards and flash
drives.

Flash Cards:

One way of constructing a larger module is to mount flash chips on a small card. Such flash cards
have a standard interface that makes them usable in a variety of products. A card is simply plugged
into a conveniently accessible slot.

Flash Drives:

The storage capacity of flash drives is significantly lower. Currently, the capacity of flash drives
is less than one gigabyte. In contrast, hard disks can store many gigabytes.

The fact that flash drives are solid state electronic devices that have no movable parts provides
some important advantages. They have shorter seek and access times, which results in faster
response. They have lower power consumption.

The disadvantages of flash drives vis-a-vis hard disk drives are their smaller capacity and higher
cost per bit. Disks provide an extremely low cost per bit. Another disadvantage is that the flash
memory will deteriorate after it has been written a number of times.

SPEED, SIZE, AND COST

A very fast memory can be implemented if SRAM chips are used. But these chips are expensive
because their basic cells have six transistors, which preclude packing a very large number of cells
onto a single chip. The alternative is to use Dynamic RAM chips, which have much simpler basic

Department of CSE,AITS-TIRUPATI 101

COMPUTER ORGANIZATION(20APC3007)

cells and thus are much less expensive, but such memories are significantly slower.

Secondary storage, mainly magnetic disks, is used to implement large memory spaces. Very large
disks are available at a reasonable price, and they are used extensively in computer systems.
However, they are much slower than the semiconductor memory units.

“A huge amount of cost-effective storage can be provided by magnetic disks. A large, yet
dffordable, main memory can be built with dynamic RAM technology”. This leaves SRAMs to be
used in smaller units where speed is of the essence, such as in cache memories.

The entire computer memory can be viewed as the hierarchy. The fastest access is to data held in
processor registers. Therefore, if we consider the registers to be part of the memory hierarchy, then
the processor registers are at the top in terms of the speed of access.

At the next level of the hierarchy is a relatively small amount of memory that can be implemented
directly on the processor chip. This memory, called a processor cache, holds copiesof instructions
and data stored in a much larger memory that is provided externally.

There are often two levels of caches.

A primary cache is always located on the processor chip. This cache is small because it competes
for space on the processor chip, which must implement many other functions. The primary cache
is referred to as level 1 (L1) cache. A larger, secondary cache is placed between the primary cache
and the rest of the memory. It is referred to as level 2 (L2) cache.

The next level in the hierarchy is called the main
memory. This rather large memory is implemented
using dynamic memory components, typically in the
"™ @ast form of SIMMs, DIMMs, or RIMMs. The main

memory is much larger but significantly slower than
the cache memory. In a typical computer, the access
i time for the main memory is about ten times longer
e L2 than the access time for the L1 cache.
.
i Disk devices provide a huge amount of inexpensive
" storage. They are very slow compared to the
B semiconductor devices used to implement the main
(————n memory.
ey

Figure 5.13 Memory hierarchy.

CACHE MEMORIES

Fast cache memory essentially makes the main memory appear to the processor to be faster than
it really is.

Department of CSE,AITS-TIRUPATI 102

COMPUTER ORGANIZATION(20APC3007)

The effectiveness of the cache mechanism is based on a property of computer programs called
locality of reference.

Many instructions in localized areas of the program are executed repeatedly during some time
period, and the remainder of the program is accessed relatively infrequently. This is referred to
as locality of reference. It manifests itself in two ways: temporal and spatial. The first means that
a recently executed instruction is likely to be executed again very soon. The spatial aspect means
that instructions in close proximity to a recently executed instruction are also likely to be executed
soon.

The temporal aspect of the locality of reference suggests that whenever an information item
(instruction or data) is first needed, this item should be brought into the cache where it will
hopefully remain until it is needed again. The spatial aspect suggests that instead of fetching just
one item from the main memory to the cache, it is useful to fetch several items that reside at
adjacent addresses as well. The term block to refer to a set of contiguous address locations of some
size, another term that is often used to refer to a cache block is cache line.

Main
memory

Y

Processor j »{ (Cache =

Figure 5.14 Use of a cache memory.

In above figure, when a Read request is received from the processor, the contents of a block of
memory words containing the location specified are transferred into the cache one word at a time.
Subsequently, when the program references any of the locations in this block, the desired contents
are read directly from the cache. Usually, the cache memory can store a reasonable number of
blocks at any given time, but this number is small compared to the total number of blocks in the
main memory. The correspondence between the main memory blocks and those in the cache is
specified by a mapping function. When the cache is full and a memory word (instruction or data)
that is not in the cache is referenced, the cache control hardware must decidewhich block should
be removed to create space for the new block that contains the referenced word. The collection of
rules for making this decision constitutes the replacement algorithm.

The processor does not need to know explicitly about the existence of the cache. It simply issues
Read and Write requests using addresses that refer to locations in the memory. The cache control
circuitry determines whether the requested word currently exists in the cache. If it does, the Read
or Write operation is performed on the appropriate cache location. In this case, a read or write hit
is said to have occurred.

Department of CSE,AITS-TIRUPATI 103

COMPUTER ORGANIZATION(20APC3007)

In a Read operation, the main memory is not involved.

For a Write operation, the system can proceed in two ways. In the first technique, called the
write-through protocol, the cache location and the main memory location are updated
simultaneously. The second technique is to update only the cache location and to mark it as
updated with an associated flag bit, often called the dirty or modified bit.

The main memory location of the word is updated later, when the block containing this marked
word is to be removed from the cache to make room for a new block. This technique is known as
the write-back, or copy-back, protocol. The write-through protocol is simpler, but it results in
unnecessary Write operations in the main memory when a given cache word is updated several
times during its cache residency. Note that the write-back protocol may also result in unnecessary
Write operations because when a cache block is written back to the memory all words of the block
are written back, even if only a single word has been changed while the blockwas in the cache.

When the addressed word in a Read operation is not in the cache, a read miss occurs. The block of
words that contains the requested word is copied from the main memory into the cache. After the
entire block is loaded into the cache, the particular word requested is forwarded to the processor.
Alternatively, this word may be sent to the processor as soon as it is read from the main memory.
The latter approach, which is called load-through, or early restart, reduces the processor's waiting
period somewhat, but at the expense of more complex circuitry.

During a Write operation, if the addressed word is not in the cache, a write miss occurs. Then, if
the write-through protocol is used, the information is written directly into the main memory. In the
case of the write-back protocol, the block containing the addressed word is first brought into the
cache, and then the desired word in the cache is overwritten with the new information.

MAPPING FUNCTIONS:

Consider a cache consisting of 128 blocks of 16 words each, for a total of 2048 (2K) words, and
assume that the main memory is addressable by 2 16-bit address. The main memory has 64K
words, which we will view as 4K blocks of 16 words each. For simplicity, we will assume that
consecutive addresses refer to consecutive words.

Direct Mapping:

The simplest way to determine cache locations in which to store memory blocks is the direct-
mapping technique. In this technique, block j of the main memory maps onto block j modulo 128
of the cache. Thus, whenever one of the main memory blocks 0, 128, 256,... is loaded in the cache,
it is stored in cache block 0. Blocks 1, 129, 257,... are stored in cache block 1, and so on. Since
more than one memory block is mapped onto a given cache block position, contention mayarise
for that position even when the cache is not full. For example, instructions of a program may start
in block 1 and continue in block 129, possibly after a branch. As this program is executed, both of
these blocks must be transferred to the block-1 position in the cache. Contention is resolved by
allowing the new block to overwrite the currently resident block. In this case, the replacement
algorithm is trivial.

Department of CSE,AITS-TIRUPATI 104

COMPUTER ORGANIZATION(20APC3007)

Placement of a block in the cache is determined from the memory address. The memory address
can be divided into three fields, as shown in Figure 5.15,

» The low-order 4 bits select one of 16 words in a block. When a new block enters the cache,
the 7-bit cache block field determines the cache position in which this block must be stored.
» The high-order 5 bits of the memory address of the block are stored in 5 tag bits associated
with its location in the cache. They identify which of the 32 blocks that are mapped into
this cache position are currently resident in the cache.
» As execution proceeds, the 7-bit cache block field of each address generated by the
processor points to a particular block location in the cache.
The high-order 5 bits of the address are compared with the tag bits associated with that cache
location. If they match, then the desired word is in that block of the cache. If there is no match,
then the block containing the required word must first be read from the main memory and loaded

into the cache.

The direct-mapping technique is easy to implement, but it is not very flexible.

Cache Block 127

Block 129

T Block 127 Block 255

Block 256 3

Tag Block Word :

l 5 l 7 1 4]Mﬂnmenm-ymdﬂ:ss

Figure 5.15 Directmapped cache.

Associative Mapping:

In this mapping method, a main memory block can be placed into any cache block position. In this
case, 12 tag bits are required to identify a memory block when it is resident in the cache. Thetag

Department of CSE,AITS-TIRUPATI 105

COMPUTER ORGANIZATION(20APC3007)

bits of an address received from the processor are compared to the tag bits of each block of the
cache to see if the desired block is present. This is called the associative-mapping technique. It
gives complete freedom in choosing the cache location in which to place the memory block. Thus,
the space in the cache can be used more efficiently. A new block that has to be brought into the
cache has to replace (eject) an existing block only if the cache is full. The cost of an associative
cache is higher than the cost of a direct-mapped cache because of the need to search all 128 tag
patterns to determine whether a given block is in the cache. A search of this kind is called an
associative search. For performance reasons, the tags must be searched in parallel.

Main

[Block 4095 8

Tag Word
| 12 | 4 | Mainmemory address

Figure 5.16 Associafive-mopped cache.

Set-Associative Mapping:

Blocks of the cache are grouped into sets, and the mapping allows a block of the main memory
to reside in any block of a specific set. Hence, the contention problem of the direct method is eased
by having a few choices for block placement. At the same time, the hardware cost is reduced by
decreasing the size of the associative search. An example of this set-associative- mapping
technique is shown in Figure 5.17 for a cache with two blocks per set. In this case, memory blocks
0, 64, 128,. , 4032 map into cache set 0, and they can occupy either of the two

block positions within this set. Having 64 sets means that the 6-bit set field of the address
determines which set of the cache might contain the desired block. The tag field of the address
must then be associatively compared to the tags of the two blocks of the set to check if the desired
block is present. This two-way associative search is simple to implement.

The number of blocks per set is a parameter that can be selected to suit the requirements of a
Department of CSE,AITS-TIRUPATI 106

COMPUTER ORGANIZATION(20APC3007)

particular computer.
A cache that has k blocks per set is referred to as a k-way set-associative cache.

The control bit, valid bit indicates whether the block contains valid data.

Rlock 126
Block 127

Tag Set "Word

I 6 | 6 | 4 | Mainmemory address

Figure 5.17 Setassociafive-mapped cache with hwo blocks per set.

PERFORMANCE CONSIDERATIONS

Two key factors in the commercial success of a computer are performance and cost; the best
possible performance at the lowest cost is the objective. The challenge in considering design
alternatives is to improve the performance without increasing the cost. A common measure of
success is the price/performance ratio.

Performance depends on how fast machine instructions can be brought into the processor for
execution and how fast they can be executed. The main purpose of the memory hierarchy is to
create a memory that the processor sees as having a short access time and 2 large capacities. Each
level of the hierarchy plays an important role. It is beneficial if transfers to and from the faster
units can be done at a rate equal to that of the faster unit. This is not possible if both the slow and

Department of CSE,AITS-TIRUPATI 107

COMPUTER ORGANIZATION(20APC3007)

the fast units are accessed in the same manner, but it can be achieved when parallelism is used in
the organization of the slower unit. An effective way to introduce parallelism is to use an
interleaved organization.

INTERLEAVING:

If the main memory of a computer is structured as a collection of physically separate modules,
each with its own address buffer register (ABR) and data buffer register (DBR), memory access
operations may proceed in more than one module at the same time. Thus, the aggregate rate of
transmission of words to and from the main memory system can be increased.

How individual addresses are distributed over the modules is critical in determining the average
number of modules that can be kept busy as computations proceed. Two methods of address layout
are indicated in Figure 5.25. In the first case, the memory address generated by the processor is
decoded as shown in Figure 5.25a. The high-order & bits name one of n modules, and the low-
order m bits name a particular word in that module. When consecutive locations are accessed, as
happens when a block of data is transferred to a cache, only one module is involved. At the same
time, however, devices with direct memory access (DMA) ability may be accessing information
in other memory modules.

The second and more effective way to address the modules is shown in Figure 5.25b. It is called
memory interleaving. The low-order & bits of the memory address select a module, and the high-
order m bits name a location within that module. In this way, consecutive addresses are located
in successive modules. Thus, any component of the system that generates requests for access to
consecutive memory locations can keep several modules busy at any one time. This results in both
faster accesses to a block of data and higher average utilization of the memory system as a whole.
To implement the interleaved structure, there must be 2 modules; otherwise, there will be gaps of
nonexistent locations in the memory address space.

Department of CSE,AITS-TIRUPATI 108

COMPUTER ORGANIZATION(20APC3007)

Moduole Address in module MM address
| SRS | j
i
E" I s—— '_T_'T___"_ —1
S R .
r e
: ABR | DBR j ABR | DBR E ABR | DBR
i £
= i o i e Cwl Module
o - i n-1

{a) Consecutive words in a module

m bits - DIS —-
Hddress in modale Module MM address
L a dL. o]
l |
1
| S R "_“L
¥] ! |
ey | — | %
ABR | DBER | | ABR|DBR . | ABR | DBR :
{ ¥ i
i |
Module [~ - Module ™ l\-'ludncu-:l P
0 » i . 2 -1

{b) Consecutive words in consecutiva modules

Pgure 5.25 Addressing multiple-nmodule memory systems.

Example 1:

The effect of interleaving is substantial. Consider the time needed to transfer 2 block of data
from the main memory to the cache when a read miss occurs. Suppose that a cache with 8-word
blocks is used, similar to our examples in Section 5.5, On a read miss, the block that contains the
desired word must be copied from the memory into the cache. Assume that the hardware has the
following properties. It takes one clock cycle to send an address to the main memory. The memory
is built with relatively slow DRAM chips that allow the first word to be accessed in 8 cycles, but
subsequent words of the block are accessed in 4 clock cycles per word. (Recall from Section 5.2.3
that, when consecutive locations in a DRAM are read from a given row of cells, therow address is
decoded only once. Addresses of consecutive columns of the array are then applied to access the
desired words, which takes only half the time per access.) Also, one clock cycle is needed to send
one word to the cache.

If a single memory module is used, then the time needed to load the desired block into the cache
is

1+8+(7*4)+1=38 cycles

Department of CSE,AITS-TIRUPATI 109

COMPUTER ORGANIZATION(20APC3007)

Suppose now that the memory is constructed as four interleaved modules, using the scheme in
Figure 5.25b, When the starting address of the block arrives at the memory, all four modules

begin accessing the required data, using the high-order bits of the address. After 8 clock cycles,
each module has one word of data in its DBR. These words are transferred to the cache, one word
at a time, during the next 4 clock cycles. During this time, the next word in each module is
accessed. Then it takes another 4 cycles to transfer these words to the cache. Therefore, the total
time needed to load the block from the interleaved memory is

1+8+4+4=17 cycles
Thus, interleaving reduces the block transfer time by more than a factor of 2.
HIT RATE AND MISS PENALTY

A successful access to data in a cache is called a hit. The number of hits stated as a fraction of all
attempted accesses is called the hit rate, and the miss rate is the number of misses stated as a
fraction of attempted accesses.

High hit rates, well over 0.9, are essential for high-performance computers.

Performance is adversely affected by the actions that must be taken after a miss. The extra time
needed to bring the desired information into the cache is called the miss penalty. This penalty is
ultimately reflected in the time that the processor is stalled because the required instructions or
data are not available for execution. In general, the miss penalty is the time needed to bring a block
of data from a slower unit in the memory hierarchy to a faster unit. The miss penalty is reduced if
efficient mechanisms for transferring data between the various units of the hierarchy are
implemented.

Example 2:

Consider now the impact of the cache on the overall performance of the computer. Let h be the hit
rate, M the miss penalty, that is, the time to access information in the main memory, and Cthe
time to access information in the cache. The average access time experienced by the processor is

toe = hC+(1-W)M

We use the same parameters as in Example 5.1. If the computer has no cache, then, using a fast
processor and a typical DRAM main memory, it takes 10 clock cycles for each memory read
access. Suppose the computer has a cache that holds 8-word blocks and an interleaved main
memory. Then, as we showed in Section 5.6.1, 17 cycles are needed to load a block into the cache.
Assume that 30 percent of the instructions in a typical program perform a read or a write
operation, which means that there are 130 memory accesses for every 100 instructions executed.
Assume that the hit rates in the cache are 0.95 for instructions and 0.9 for data. Let us further

Time without cache _ 130 x 10 = S04
Time withcache 100095 x 1 +0.05 x IT) +30009x L +0.1x17) ~
Department of CSE,AITS-TIRUPATI 110

COMPUTER ORGANIZATION(20APC3007)

assume that the miss penalty is the same for both read and write accesses. Then, a rough estimate
of the improvement in performance that results from using the cache can be obtained asfollows:

This result suggests that the computer with the cache performs five times better.

It is also interesting to consider how effective this cache is compared to an ideal cache that has a
hit rate of 100 percent (in which case, all memory references take one cycle). Our rough estimate
of relative performance for these caches is

100(0.95 x 1 +0.05 x 17) +30(0.9 x 1 + 0.1 x 17)

= 1.98
130

How can the hit rate be improved?

» To make the cache larger, but this entails increased cost
» Another possibility is to increase the block size while keeping the total cache size constant,
to take advantage of spatial locality, If all items in a larger block are needed in a
computation, then it is better to load these items into the cache as a consequence of a single
miss, rather than loading several smaller blocks as a result of several misses. The efficiency
of parallel access to blocks in an interleaved memory is the basic reason for this advantage.
The miss penalty increases as the block size increases. Since the performance of a computer is

affected positively by increased hit rate and negatively by increased miss penalty, the block sizes
that are neither very small nor very large give the best results.

Finally, we note that the miss penalty can be reduced if the load-through approach is used when
loading new blocks into the cache. Then, instead of waiting for the completion of the block
transfer, the processor can continue as soon as the required word is loaded in the cache.

CACHES ON THE PROCESSOR CHIP:
From the speed point of view, the optimal place for a cache is on the processor chip.

All high-performance processor chips include some form of a cache. Some manufacturers have
chosen to implement two separate caches, one for instructions and another for data, as in the 68040,
Pentium III, and Pentium 4 processors. Others have implemented a single cache for both
instructions and data, as in the ARM710T processor.

A combined cache for instructions and data is likely to have a somewhat better hit rate because it
offers greater flexibility in mapping new information into the cache. However, if separate caches
are used, it is possible to access both caches at the same time, which leads to increased parallelism
and, hence, better performance. The disadvantage of separate caches is that the increased
parallelism comes at the expense of more complex circuitry.

In high-performance processors two levels of caches are normally used, The L1 cache(s) is on
the processor chip. The L2 cache, which is much larger, may be implemented externally using

Department of CSE,AITS-TIRUPATI 111

COMPUTER ORGANIZATION(20APC3007)

SRAM chips.

If both L1 and L2 caches are used, the L1 cache should be designed to allow very fast access by
the processor because its access time will have a large effect on the clock rate of the processor. A

practical way to speed up access to the cache is to access more than one word simultaneously and
then let the processor use them one at a time,

The L2 cache can be slower, but it should be much larger to ensure a high hit rate. Its speed is less
critical because it only affects the miss penalty of the L1 cache. A workstation computer may
include an L1 cache with the capacity of tens of kilobytes and an L.2 cache of several megabytes.

Including an L2 cache further reduces the impact of the main memory speed on the performance
of a computer. The average access time experienced by the processor in a system with two levels
of caches is

tae=h1CI+(1-h1)h2C2+(1-h1)(1-h2)M

Where

h1 is the hit rate in the L1 cache.

h2 is the hit rate in the L2 cache.

C1 is the time to access information in the LI cache.
C2 is the time to access information in the L.2 cache.

M is the time to access information in the main memory

The number of misses in the L2 cache, given by the term (1-h1) (1-h2), should be low. If both h1
and h2 are in the 90 percent range, then the number of misses will be less than 1 percent of the
processor’s memory accesses. Thus, the miss penalty M will be less critical from a performance
point of view.

VIRTUAL MEMORIES

Techniques that automatically move program and data blocks into the physical main memory when
they are required for execution are called virtual-memory techniques. The binary addressesthat the
processor issues for either instructions or data are called virtual or logical addresses. These
addresses are translated into physical addresses by a combination of hardware and software
components. If a virtual address refers to a part of the program or data space that is currently in
the physical memory, then the contents of the appropriate location in the main memory are
accessed immediately. If the referenced address is not in the main memory, its contents must be
brought into a suitable location in the memory before they can be used.

Department of CSE,AITS-TIRUPATI 112

COMPUTER ORGANIZATION(20APC3007)

Processor

|
| Virtual address
I

Data MMU

Physical address
Cache
Data Physical address
Main memory
DMA transfer
Disk storage

Figura 5.26 Virtual memory organization.

A special hardware unit, called the Memory Management Unit (MMU), translates virtual addresses
into physical addresses. When the desired data (or instructions) are in the mainmemory, these data
are fetched. If the data are not in the main memory, the MMU causes the operating system to bring
the data into the memory from the disk. Transfer of data between the disk and the main memory
is performed using the DMA scheme.

ADDRESS TRANSLATION:

A simple method for translating virtual addresses into physical addresses is to assume that all
programs and data are composed of fixed-length units called pages, each of which consists of a
block of words that occupy contiguous locations in the main memory. Pages commonly range from
2K to 16K bytes in length.

Pages should not be too small, because the access time of a magnetic disk is much longer
(several milliseconds) than the access time of the main memory. The reason for this is that it takes
a considerable amount of time to locate the data on the disk, but once located, the data can be
transferred at a rate of several megabytes per second. On the other hand, if pages are too large it is
possible that a substantial portion of a page may not be used, yet this unnecessary data will occupy
valuable space in the main memory.

The cache bridges the speed pap between the processor and the main memory and is implemented
in hardware. The virtual-memory mechanism bridges the size and speed gaps between the main
memory and secondary storage and is usually implemented in part by softwaretechniques.

A virtual-memory address translation method based on the concept of fixed-length pages is shown
schematically in Figure 5.27, Each virtual address generated by the processor, whether itis for
an: instruction fetch or an operand fetch/store operation, is interpreted as a virtual page number

Department of CSE,AITS-TIRUPATI 113

COMPUTER ORGANIZATION(20APC3007)

(high-order bits) followed by an offset (low-order bits) that specifies the location of a

particular byte (or word) within a page. Information about the main memory location of each page
is kept in a page table. This information includes the main memory address where the page is
stored and the current status of the page. An area in the main memory that can hold one page is
called a page frame. The starting address of the page table is kept in a page table base register. By
adding the virtual page number to the contents of this register, the address of the corresponding
entry in the page table is obtained. The contents of this location give the starting address of the
page if that page currently resides in the main memory.

Each entry in the page table also includes some control bits that describe the status of the page
while it is in the main memory. One bit indicates the validity of the page, that is, whether the page
is actually loaded in the main memory. Another bit indicates whether the page has been modified
during its residency in the memory.

WVintual address from processor

FPape table base register : 1 P

i Page table address] r Wirmaal pags pumber I Offser ‘E

&y

PAGE TABILE

[RR]

bits in memory { Pagetrame | Ofse |
L |

H

Physical addreas io makn smS gy

Figure 5.27 Virtuclmemory address translofion.

The page table information is used by the MMU for every read and write access, so ideally, the
page table should be situated within the MMU. A copy of a small portion of the page table can be
accommodated within the MMU. This portion consists of the page table entries that correspond to
the most recently accessed pages. A small cache, usually called the Translation Lookaside Buffer
(TLB) is incorporated into the MMU for this purpose.

When the operating system changes the contents of page tables, it must simultaneously invalidate
the corresponding entries in the TLB. When an entry is invalidated, the TLB will acquire the new
information as part of the MMU’s normal response to access misses.

Department of CSE,AITS-TIRUPATI 114

COMPUTER ORGANIZATION(20APC3007)

Address translation proceeds as follows. Given a virtual address, the MMU looks in the TLB for
the referenced page. If the page table entry for this page is found in the TLB, the physical
address is obtained immediately. If there is a miss in the TLB, then the required entry is obtained
from the page table in the main memory and the TLB is updated.

When a program generates an access request to a page that is not in the main memory, a page fault is said
to have occurred. The whole page must be brought from the disk into the memory before access can proceed.
A page fault occurs when some instruction accesses a memory operand that is not in the main memory,
resulting in an interruption before the execution of this instruction is completed. Hence, when the task
resumes, either the execution of the interrupted instruction must continue from the point of interruption, or
the instruction must be restarted.

If a new page is brought from the disk when the main memory is full, it must replace one of the resident
pages by using replacement algorithms.

Virual address from processor
1

i Virtual page number ; Offset 1

bits in memory

B

&
.

*a
-

Miss

Hit

| Paerame § offscr |

|

Physical address in main memory

Figure 5.28 Use of an associative-mepped TLE.

A modified page has to be written back to the disk before it is removed from the main memory

MEMORY MANAGEMENT REQUIREMENTS:

Memory management keeps track of the status of each memory location, whether it is allocated or free. It
allocates the memory dynamically to the programs at their request and frees it for reuse when it is no longer needed.
Memory management meant to satisfy some requirements that we should keep in mind.

These Requirements of memory management are:
Department of CSE,AITS-TIRUPATI 115

COMPUTER ORGANIZATION(20APC3007)

1. Relocation — The available memory is generally shared among a number of processes in a
multiprogramming system, so it is not possible to know in advance which other programs will be
resident in main memory at the time of execution of this program. Swapping the active processes in and
out of the main memory enables the operating system to have a larger pool of ready-to-execute process.

When a program gets swapped out to a disk memory, then it is not always possible that when it is
swapped back into main memory then it occupies the previous memory location, since the location may
still be occupied by another process. We may need to relocate the process to a different area of memory.

Thus there is a possibility that program may be moved in main memory due to swapping.
Process control

information Process control block
Entry point
to program g Brancl}
Program instruction
Increasing Reference
address
to data
values
top of
stack

1. The figure depicts a process image. The process image is occupying a continuous region of main
memory. The operating system will need to know many things including the location of process control
information, the execution stack, and the code entry. Within a program, there are memory references in
various instructions and these are called logical addresses.

After loading of the program into main memory, the processor and the operating system must be able
to translate logical addresses into physical addresses. Branch instructions contain the address of the
next instruction to be executed. Data reference instructions contain the address of byte or word of data
referenced.

2. Protection — There is always a danger when we have multiple programs at the same time as one
program may write to the address space of another program. So every process must be protected against
unwanted interference when other process tries to write in a process whether accidental or incidental.
Between relocation and protection requirement a trade-off occurs as the satisfaction of relocation
requirement increases the difficulty of satisfying the protection requirement.

Department of CSE,AITS-TIRUPATI 116

COMPUTER ORGANIZATION(20APC3007)

Prediction of the location of a program in main memory is not possible, that’s why it is impossible to
check the absolute address at compile time to assure protection. Most of the programming language
allows the dynamic calculation of address at run time. The memory protection requirement must be
satisfied by the processor rather than the operating system because the operating system can hardly
control a process when it occupies the processor. Thus it is possible to check the validity of memory
references.

3. Sharing — A protection mechanism must have to allow several processes to access the same portion of
main memory. Allowing each processes access to the same copy of the program rather than have their
own separate copy has an advantage.

For example, multiple processes may use the same system file and it is natural to load one copy of the
file in main memory and let it shared by those processes. It is the task of Memory management to allow
controlled access to the shared areas of memory without compromising the protection. Mechanisms are
used to support relocation supported sharing capabilities.

4. Logical organization — Main memory is organized as linear or it can be a one-dimensional address
space which consists of a sequence of bytes or words. Most of the programs can be organized into
modules, some of those are unmodifiable (read-only, execute only) and some of those contain data that
can be modified. To effectively deal with a user program, the operating system and computer hardware
must support a basic module to provide the required protection and sharing. It has the following
advantages:

@ Modules are written and compiled independently and all the references from one module to
another module are resolved by "the system at run time.

@ Different modules are provided with different degrees of protection.

® There are mechanisms by which modules can be shared among processes. Sharing can be
provided on a module level that lets the user specify the sharing that is desired.

5. Physical organization — The structure of computer memory has two levels referred to as main memory
and secondary memory. Main memory is relatively very fast and costly as compared to the secondary
memory. Main memory is volatile. Thus secondary memory is provided for storage of data on a long-
term basis while the main memory holds currently used programs. The major system concern between
main memory and secondary memory is the flow of information and it is impractical for programmers
to understand this for two reasons:

® The programmer may engage in a practice known as overlaying when the main memory
available for a program and its data may be insufficient. It allows different modules to be
assigned to the same region of memory. One disadvantage is that it is time-consuming for
the programmer.

@ In a multiprogramming environment, the programmer does not know how much space will
be available at the time of coding and where that space will be located inside the memory.

Department of CSE,AITS-TIRUPATI 117

COMPUTER ORGANIZATION(20APC3007)

SECONDARY STORAGE

MAGNETIC HARD DISK:

The storage medium in a magnetic-disk system consists of one or more disks mounted on a common spindle.
A thin magnetic film is deposited on each disk, usually on both sides; the disks are placed in a rotary drive
so that the magnetized surfaces move in close proximity to read/writeheads, as shown in Figure 5.29a, the
disks rotate at a uniform speed. Each head consists of a magnetic yoke and a magnetizing coil, as indicated
in Figure 5.29b.

Digital information can be stored on the magnetic film by applying current pulses of suitable
polarity to the magnetizing coil. This causes the magnetization of the film in the area immediately
underneath the head to switch to a direction parallel to the applied field. The same head can be
used for reading the stored information. Only changes in the magnetic field under the head can be
sensed during the Read operation. Therefore, if the binary states 0 and 1 are represented by two
opposite states of magnetization, a voltage is induced in the head only at 0- to-1 and at 1-to-0
transitions in the bit stream. A long string of Os or 1s causes an induced voltage only at the
beginning and end of the string. To determine the number of consecutive Os or 1s stored, a clock
must provide information for synchronization.

In phase encoding or Manchester encoding changes in magnetization occur for each data bit, as shown in
the figure. The drawback of Manchester encoding is its poor bit-storage density. We use the Manchester
encoding example to illustrate how a self-clocking scheme may be implemented, because it is easy to
understand.

Read/write heads must be maintained at a very small distance from the moving disk surfaces in order to
achieve high bit densities and reliable read/write operations. When the disks are moving at their steady rate,
air pressure develops between the disk surface and the head and forces the head away from the surface.

In most modern disk units, the disks and the read/write heads are placed in a sealed, air-filtered enclosure.
This approach is known as Winchester technology.

Department of CSE,AITS-TIRUPATI 118

COMPUTER ORGANIZATION(20APC3007)

P
Rory .
dﬂnﬁ:‘i‘ﬁ l current
| =
. ———— Magneric
| {7 i
'] /
| | p———
k= Eﬁ{]
I e Air .L
Dist '-Td q o= 2p 1 \\
Access Magnetic
mechanism thin film
(&) Mechanical structure (b} Read/Write head delail
Direction of 0 ! ! ;

|
/
bit

&
{c) Bit representation by phase encoding
Figure 5.29 Magnetic disk principles.

Organization and Accessing of Data on a Disk:

The organization of data on a disk is illustrated in Figure 5.30. Each surface is divided into
concentric tracks, and each track is divided into sectors. The set of corresponding tracks on all
surfaces of a stack of disks forms a logical cylinder. The data on all tracks of a cylinder can be
accessed without moving the read/write heads. The data are accessed by specifying the surface
number, the track number, and the sector number. The Read and Write operations start at sector
boundaries.

Sector 3, track 1 Sector 0, rack 1

Sector 0, track 0

Figure 5.30 Organization of one surface of a disk.

Department of CSE,AITS-TIRUPATI 119

COMPUTER ORGANIZATION(20APC3007)

Data bits are stored serially on each track. Each sector usually contains 512 bytes of data, but other sizes
may be used. The data are preceded by a sector header that contains identification (addressing) information
used to find the desired sector on the selected track. Following the data, there are additional bits that
constitute an error correcting code (ECC). The ECC bits are used todetect and correct errors that may have
occurred in writing or reading of the 512 data bytes. To easily distinguish between two consecutive sectors,
there is a small intersector gap.

An unformatted disk has no information on its tracks. The formatting process divides the disk physically
into tracks and sectors. This process may discover some defective sectors or even whole tracks; the disk
controller keeps a record of such defects and excludes them from use.

Access Time:

There are two components involved in the time delay between receiving an address and the beginning of
the actual data transfer. The first, called the seek time, is the time required to move the read/write head to
the proper track. The second component is the rotational delay, also calledlatency time. This is the amount
of time that elapses after the head is positioned over the correct track until the starting position of the
addressed sector passes under the read/write head. The sumof these two delays is called the disk access
time.

Data Buffer/Cache:

The SCSI bus is capable of transferring data at much higher rates than the rate at which data can be read
from disk tracks. An efficient way to deal with the possible differences in transfer rates between the disk
and the SCSI bus is to include a data buffer in the disk unit. This buffer is a semiconductor memory, capable
of storing a few megabytes of data. The requested data are transferred between the disk tracks and the buffer
at a rate dependent on the rotational speed of the disk. Transfers between the data buffer and other devices
connected to the bus, normally the main memory, can then take place at the maximum rate allowed by the
bus.

The data buffer can also be used to provide a caching mechanism for the disk. When a read request arrives
at the disk, the controller can first check to see if the desired data are already available in the cache (buffer).
If so, the data can be accessed and placed on the SCSI bus in microseconds rather than milliseconds.
Otherwise, the data are read from a disk track in the usualway and stored in the cache.

Disk Controller:

Operation of a disk drive is controlled by a disk controller circuit, which also provides an interface between
the disk drive and the bus that connects it to the rest of the computer system. The disk controller may be
used to control more than one drive. Figure 5.31 shows a disk controller which controls two disk drives.

Department of CSE,AITS-TIRUPATI 120

COMPUTER ORGANIZATION(20APC3007)

A disk controller that is connected directly to the processor system bus, or to an expansion bus such as PCI,
contains a number of registers that can be read and written by the operating system. The disk controller uses
the DMA scheme to transfer data between the disk and the main memory.

Processor Main memory

I System bus

Disk controller

| l

Disk dnve Disk dnive

Figure 5.31 Disks connected fo the system bus.
The OS initiates the transfers by issuing Read and Write requests, which entail loading the controller’s
registers with the necessary addressing and control information, typically:

Main memory address- The address of the first main memory location of the block of words involved in the
transfer.

Disk address- The location of the sector containing the beginning of the desired block of words
Word count- The number of words in the block to be transferred

The disk address issued by the OS is a logical address. The corresponding physical address on the
disk may be different.

On the disk drive side, the controller's major functions are:

Seek— Causes the disk drive to move the read/write head from its current position to the desired
track,

Read — Initiates a Read operation, starting at the address specified in the disk address register. Data read
serially from the disk are assembled into words and placed into the data buffer for transfer to the main
memory. The number of words is determined by the word count register.

Write — Transfers data to the disk, using a control method similar to that for the Read operations.Error
checking - Computes the error correcting code (ECC) value for the data read from 2 given sector and
compares it with the corresponding ECC value read from the disk. In case of a mismatch, it corrects the

Department of CSE,AITS-TIRUPATI 121

COMPUTER ORGANIZATION(20APC3007)

error if possible; otherwise, it raises an interrupt to inform the OS that an error has occurred, During 2 write
operation, the controller computes the ECC value for the data to be written and stores this value on the disk.

Software and Operating System implications:

When the power is turned on again, the OS has to be loaded into the main memory, which takes place as
part of a process known as booting. To initiate booting, a tiny part of main memory is implemented as a
nonvolatile ROM. This ROM stores a small monitor program that can read and write main memory
locations as well as read one block of data stored on the disk at address 0. This block, referred to as the boot
block, contains a loader program.

Floppy Disks:

Floppy disks are smaller, simpler, and cheaper disk units that consist of a flexible, removable, plastic
diskette coated with magnetic material. The diskette is enclosed in a plastic jacket, which has an opening
where the read/write head makes contact with the diskette. A hole in the center ofthe diskette allows a
spindle mechanism in the disk drive to position and rotate the diskette

One of the simplest schemes used in the first floppy disks for recording data is phase or Manchester
encoding mentioned earlier. Disks encoded in this way are said to have single density. A more complicated
variant of this scheme, called double density, is most often used in current standard floppy disks. It increases
the storage density by a factor of 2 but also requires more complex circuits in the disk controller.

Main feature of floppy disks is their low cost and shipping convenience. However, they have much smaller
storage capacities, longer access times, and higher failure rates than hard disks. Current standard floppy
disks are 3.25 inches in diameter and store 1.44 or 2 Mbytes of date. Larger super-floppy disks are also
available.

OPTICAL DISKS:

The first generation of CDs was developed in the mid-1980s by the Sony and Philips companies. To provide
high-quality sound recording and reproduction, 16-bit samples of the analog signalare taken at a rate of
44,100 samples per second.

CD Technology:

The optical technology that is used for CD systems is based on a laser light source. A laser beam is directed
onto the surface of the spinning disk. Physical indentations in the surface are arrangedalong the tracks of
the disk. They reflect the focused beam toward a photodetector, which detectsthe stored binary patterns.

The laser emits a coherent light beam that is sharply focussed on the surface of the disk. Coherent light
consists of synchronized waves that have the same wavelength. If a coherent light beam is combined with
another beam of the same kind, and the two beams are in phase, then the result will be a brighter beam. But,
if the waves of the two beams are 180 degrees out of phase, they will cancel each other. Thus, if a
photodetector is used to detect the beams, it will detect a bright spot in the first case and a dark spot in the

Department of CSE,AITS-TIRUPATI 122

COMPUTER ORGANIZATION(20APC3007)

second case.

A cross-section of a small portion of a CD is shown in Figure 5.32a. The bottom layer is
polycarbonate plastic, which functions as a clear glass base. The surface of this plastic is
programmed to store data by indenting it with pits. The unindented parts are called ands, A thin
layer of reflecting aluminum material is placed on top of a programmed disk. The aluminum is
then covered by a protective acrylic. Finally, the topmost layer is deposited and stamped with a
label. The total thickness of the disk is 1.2mm.

Figure 5.32b shows what happens as the laser beam scans across the disk and encounters a transition from a
pit to a land. ‘Three different positions of the laser source and the detector are shown, as would occur when
the disk is rotating. When the light reflects solely from the pit, or solely from the land, the detector will see
the reflected beam as a bright spot. But, a different situation arises when the beam moves through the edge
where the pit changes to the land, and vice versa.

Figure 5.32c depicts several transitions between lands and pits. If each transition, detected as a dark spot,
is taken to denote the binary value 1, and the flat portions represent Os.

CD is 120 mm in diameter. There is a 15-mm hole in the center. Data are stored on tracks that cover the
area from 25-mm radius to 58-mm radius. The space between the tracks is 1.6 microns.Pits are 0.5 microns

wide and 0.8 to 3 microns long. There are more than 15,000 tracks on a disk.
Aburdmem Acrylic Lahed

Polycarbonate plastic

{a) Cmss-saction

Pit | Land
Raflection
\ No reflection
Sowrce l Eretectior I Source i Detector i

(b) Transition from pit 1o land

el BBk B R

& 1+ ¢ 0 » o OO O 1 0 0 0 1 © 0 1 0 0 1 O

(c) Stored binary patiern
Figure 5,32 Optical disk.

Department of CSE,AITS-TIRUPATI 123

COMPUTER ORGANIZATION(20APC3007)

CD-ROM:
CD-ROMs contents can only be read, as with semiconductor ROM chips.

Stored data are organized on CD-ROM tracks in the form of blocks that are called sectors. There are several
different formats for a sector. One format, known as Mode 1, uses 2352-byte sectors. There is a 16-byte
header that contains a synchronization field used to detect the beginning of the sector and addressing
information used to identify the sector. This is followed by 2048 bytes of stored data. At the end of the
sector, there are 288 bytes used to implement the error-correcting scheme. The number of sectors per track
is variable; there are more sectors on the longer outer tracks.

Error detection and correction is done at more than one level. Each byte of stored information is
encoded using a 14-bit code that has some error-correcting capability. This code can correct single-
bit errors. Errors that occur in short bursts, affecting several bits, are detected and corrected using
the error-checking bits at the end of the sector.

CD-ROM drives operate at a number of different rotational speeds. The basic speed, known as 1X, is 75
sectors per second. This provides a data rate of 153,600 bytes/s (150 Kbytes/s), using the Mode 1 format.
With this speed and format, a CD-ROM based on the standard CD designed for 75 minutes of music has a
data storage capacity of about 650 Mbytes. Note that the speed of the drive dffects only the data transfer
rate bat not the storage capacity of the disk. A 40X CD- ROM has a data transfer rate that is 40 times higher
than that of the 1X CD-ROM.

The importance of CD ROMs for computer systems stems from their large storage capacity and fast access
times compared to other inexpensive portable media, such as floppy disks and magnetic tapes. They are
widely used for the distribution of software, databases, large texts (books), application programs, and video
games.

CD-Recordables:

CD-R was developed in the late 1990s on which data can be easily recorded by a computer user.
A spiral track is implemented on a disk during the manufacturing process. A laser in a CD-R drive
is used to burn pits into an organic dye on the track. When a burned spot is heated beyond acritical
temperature, it becomes opaque. Such burned spots reflect less light when subsequently read. The
written data are stored permanently. Unused portions of a disk can be used to store additional data
at a later time.

CD-ReWritables:

The most flexible CDs are those that can be written multiple times by the user. They are known as CD-
RWs (CD-ReWritables).

Department of CSE,AITS-TIRUPATI 124

COMPUTER ORGANIZATION(20APC3007)

The basic structure of CD-RWs is similar to the structure of CD-Rs. Instead of using an organic dye in the
recording layer, an alloy of silver, indium, antimony and tellurium is used.

The CD-RW drive uses three different laser powers. The highest power is used to record the pits.The middle
power is used to put the alloy into its crystalline state; it is referred to as the “erase power.” The lowest
power is used to read the stored information. There is a limit on how many times a CD-RW disk can be
rewritten. Presently, this can be done up to 1000 times.

CD-RWs can be used for low-volume distribution of information, just like CD-Rs. The CD-RW drives are
now fast enough to be used for daily hard disk backup purposes.

DVD Technology:

The first DVD standard was defined in 1996 by a consortium of companies. The objective is tobe able to
store a full-length movie on one side of a DVD disk.

The physical size of a DVD disk is the same as for CDs. The disk is 1.2 mm thick, and itis 120 mm in
diameter. Its storage capacity is made much larger than that of CDs by several design changes:

A red light laser with a wavelength of 635 nm is used instead of the infrared light laser used in CDs,
which has a wavelength of 780 nm. The shorter wavelength makes it possible to focus the light to a
smaller spot.

Pits are smaller, having a minimum length of 0.4 micron.

Tracks are placed closer together; the distance between tracks is 0.74 micron Using these
improvements leads to a DVD capacity of 4.7 Gbytes.

The single-layered single-sided disk, defined in the standard as DVD-5. A double-layered disk
makes use of two layers on which tracks are implemented on top of each other. The first layer is
the clear base, as in CD disks. But, instead of using reflecting aluminum, the lands and pits of this
layer are covered by a translucent material that acts as a semireflector. The surface of this material
is then also programmed with indented pits to store data. A reflective material is placed on top of
the second layer of pits and lands. The disk is read by focusing the laser beam on the desired layer.
When the bear is focused on the first layer, sufficient light is reflected by the translucent material
to detect the stored binary patterns. When the beam is focused on the second layer, the light
reflected by the reflective material corresponds to the information stored on this layer. In both
cases, the layer on which the beam is not focused reflects a much smaller amountof light, which
is eliminated by the detector circuit as noise. The total storage capacity of both layers is 8.5 Gbytes.
This disk is called DVD-9 in the standard.

Two single-sided disks can be put together to form a sandwich-like structure where the top diskis turned
upside down. This can be done with single-layered disks, as specified in DVD-10, giving a composite disk
with a capacity of 9.4 Gbytes. It can also be done with the double- layered disks, as specified in DVD-18,
yielding a capacity of 17 Gbytes.

Department of CSE,AITS-TIRUPATI 125

COMPUTER ORGANIZATION(20APC3007)

DVD-RAM:

A rewritable version of DVD devices, known as DVD-RAM, has also been developed. Itprovides a large
storage capacity. Its only disadvantages are the higher price and the relatively slow writing speed. To ensure
that the data have been recorded correctly on the disk, a process known as write verification is performed.
This is done by the DVD-RAM drive, which reads the stored contents and checks them against the original
data

MAGNETIC TAPE SYSTEMS:

Magnetic tapes are suited for off-line storage of large amounts of data. They are typically used for hard
disk backup purposes and for archival storage.

Data on the tape are organized in the form of records separated by gaps, as shown in Figure 5.33.Tape
motion is stopped only when a record gap is underneath the read/write heads. The record gaps are long
enough to allow the tape to attain its normal speed before the beginning of the next record is reached. Gaps
are identified as areas where there is no change in magnetization. This allows record gaps to be detected
independently of the recorded data. To help users organize large amounts of data, a group of related records
is called a file. The beginning of a file is identified by a file mark, as shown in Figure 5.33. The file mark
is a special single- or multiple character record, usually preceded by a gap longer than the interrecord gap.

File ‘ File 1

I_ mak | i ﬁ:l:r:k
‘ m

: { /7 i | L 709
: } \‘, ‘) hks
: f 2 {{ H

File gap Record Record Record Record

gap gap

Figure 5,33 Organization of data on magnetic tape.

The first record following a file mark can be used as a header or identifier for this file. This allows the user to search
a tape containing a large number of files for a particular file.

The controller of a magnetic tape drive enables the execution of a number of control commands in addition
to read and write commands. Control commands include the following operations:

Rewind tape

Rewind and unload tape
Erase tape

Write tape mark

Forward space one record
Backspace one record

Department of CSE,AITS-TIRUPATI 126

CRCRCRENENE

COMPUTER ORGANIZATION(20APC3007)

Forward space one file
Backspace one file

The tape mark referred to in the operation “Write tape mark” is similar to a file mark except that it is used
for identifying the beginning of the tape. The end of the tape is sometimes identified bythe EOT (end of
tape) character.

Two methods of formatting and using tapes are available. In the first method, the records are variable in
length. This allows efficient use of the tape, but it does not permit updating or overwriting of records in
place. The second method is to use fixed-length records. In this case, it is possible to update records in place.

Cartridge Tape System:

Tape systems have been developed for backup of on-line disk storage. One such system uses an 8-mm video
format tape housed in a cassette. These units are called cartridge tapes.

They have capacities in the range of 2 to 5 gigabytes and handle data transfers at the rate of a few hundred
kilobytes per second. Reading and writing is done by a helical scan system operating across the tape. Bit
densities of tens of millions of bits per square inch are achievable.

INPUT/OUTPUT ORGANIZATION

ACCESSING I/0 DEVICES

Department of CSE,AITS-TIRUPATI 127

COMPUTER ORGANIZATION(20APC3007)

A simple arrangement to connect I/O devices to a computer is to use a single bus arrangement.
The bus enables all the devices connected to it to exchange information. Typically, it consists of
three sets of lines used to carry address, data, and control signals. Each I/O device is assigned a
unique set of addresses. When the processor places a particular address on the address lines, the
device that recognizes this address responds to the commands issued on the control lines. The
processor requests either a read or a write operation, and the requested data are transferred over
the data lines. When 1I/O devices and the memory share the same address space, the arrangement
is called memory-mapped I/0O.

With memory-mapped I/0, any machine instruction that can access memory can be used to transfer
data to or from an I/O device.

Bus

10 device | i VO device n

Figure 4.1 A singlebus structure.

For example, if DATAIN is the address of the input buffer associated with the keyboard, the
instruction

Move DATAIN,R0

Reads the data from DATAEN and stores them into processor register RO.

Similarly, the instruction

Move RO, DATAOUT

Sends the contents of register RO to location DATAOUT, which may be the output data buffer of
a display unit or a printer.

Figure 4.2 illustrates the hardware required to connect an I/O device to the bus. The address
decoder enables the device to recognize its address when this address appears on the address lines.
The data register holds the data being transferred to or from the processor. The status register
contains information relevant to the operation of the I/0O device. Both the data and status

Department of CSE,AITS-TIRUPATI 128

COMPUTER ORGANIZATION(20APC3007)

registers are connected to the data bus and assigned unique addresses. The address decoder, the
data and status registers, and the control circuitry required to coordinate I/O transfers constitute
the device's interface circuit.

For an input device such as a keyboard, a status flag, SIN, is included in the interface circuit as
part of the status register. This flag is set to 1 when a character is entered at the keyboard and
cleared to 0 once this character is read by the processor. Hence, by checking the SIN flag, the
software can ensure that it is always reading valid data. A similar procedure can be used to control
output operations using an output status flag, SOUT.

Example: Let us consider a simple example of 1/0 operations involving a keyboard and a display
device in a computer system. The four registers shown in Figure 4.3 are used in the data transfer
operations. Register STATUS contains two control flags, SIN and SOUT, which provide status
information for the keyboard and the display unit, respectively. The two flags KIRQ and DIRQ
in this register are used in conjunction with interrupts. Data from the keyboard are madeavailable
in the DATAIN register, and data sent to the display are stored in the DATAOUT register.

DATAIN

DATAOUT

STATUS DIRQ | KIRQ | SOUT § SIN
CONTROL DEN | KEN

¥ 6 5 4 3 2 i 0

Figure 4.3 Registers in keyboord and disploy interfoces.

In program-controlled 1/0O the processor repeatedly checks a status flag to achieve the required
synchronization between the processor and an input or output device. We say that the processor
polls the device.

There are two other commonly used mechanisms for implementing 1/O operations: interrupts and
direct memory access. In the case of interrupts, synchronization is achieved by having the I/0
device send a special signal over the bus whenever it is ready for a data transfer operation. Direct
memory access is a technique used for high-speed I/O devices. It involves having the device
interface transfer data directly to or from the memory, without continuous involvement by the
processor.

Department of CSE,AITS-TIRUPATI 129

COMPUTER ORGANIZATION(20APC3007)

INTERRUPTS
Types of interrupts

There are two types of interrupts which are as follows —

Hardware interrupts

The interrupt signal generated from external devices and i/o devices are made interrupt to CPU when the instructions
are ready.

For example — In a keyboard if we press a key to do some action this pressing of the keyboard generates a signal
that is given to the processor to do action, such interrupts are called hardware interrupts.

Hardware interrupts are classified into two types which are as follows —

@ Maskable Interrupt — The hardware interrupts that can be delayed when a highest priority interrupt
has occurred to the processor.

@ Non Maskable Interrupt — The hardware that cannot be delayed and immediately be serviced by the
processor.
Software interrupts

The interrupt signal generated from internal devices and software programs need to access any system call then
software interrupts are present.

Software interrupt is divided into two types. They are as follows —

® Normal Interrupts — The interrupts that are caused by the software instructions are called software
instructions.

@ Exception — Exception is nothing but an unplanned interruption while executing a program. For
example — while executing a program if we got a value that is divided by zero is called an exception.

DIRECT MEMORY ACCESS(DMA)

Direct Memory Access (DMA) transfers the block of data between the memory and peripheral devices of the

system, without the participation of the processor. The unit that controls the activity of accessing memory directly
is called a DMA controller.

What is DMA and Why it is used?

Direct memory access (DMA) is amode of data transfer between the memory and I/O devices. This
happens without the involvement of the processor. We have two other methods of data transfer, programmed
I/0 and Interrupt driven I/O. Let’s revise each and get acknowledge with their drawbacks.

In programmed 1/0, the processor keeps on scanning whether any device is ready for data transfer. If an I/O device
is ready, the processor fully dedicates itself in transferring the data between I/O and memory. It transfers data at
a high rate, but it can’t get involved in any other activity during data transfer. This is the major drawback of
programmed I/O.

In Interrupt driven I/0, whenever the device is ready for data transfer, then it raises an interrupt to processor.
Processor completes executing its ongoing instruction and saves its current state. It then switches to data transfer

Department of CSE,AITS-TIRUPATI 130

COMPUTER ORGANIZATION(20APC3007)

which causes a delay. Here, the processor doesn’t keep scanning for peripherals ready for data transfer. But, it is fully
involved in the data transfer process. So, it is also not an effective way of data transfer.

The above two modes of data transfer are not useful for transferring a large block of data. But, the DMA controller
completes this task at a faster rate and is also effective for transfer of large data block.

The DMA controller transfers the data in three modes:

1. Burst Mode: Here, once the DMA controller gains the charge of the system bus, then it releases the system
bus only after completion of data transfer. Till then the CPU has to wait for the system buses.

2. Cycle Stealing Mode: In this mode, the DMA controller forces the CPU to stop its operation and relinquish
the control over the bus for a short term to DMA controller. After the transfer of every byte, the DMA
controller releases the bus and then again requests for the system bus. In this way, the DMA controller steals
the clock cycle for transferring every byte.

3. Transparent Mode: Here, the DMA controller takes the charge of system bus only if the processor does
not require the system bus.

Direct Memory Access Controller & it’s Working

DMA controller is a hardware unit that allows I/O devices to access memory directly without the participation of
the processor. Here, we will discuss the working of the DMA controller. Below we have the diagram of DMA
controller that explains its working:

DMA controller has to share the bus with the processor to make the data transfer. The device that holds the bus at a
given time is called bus master. When a transfer from I/O device to the memory or viceversa has to be made, the
processor stops the execution of the current program, increments the program counter, moves data over stack then
sends a DMA select signal to DMA controller over the address bus.

If the DMA controller is free, it requests the control of bus from the processor by raising the bus request signal.
Processor grants the bus to the controller by raising the bus grant signal, now DMA controller is the bus master. The
processor initiates the DMA controller by sending the memory addresses, number of blocks of data to be transferred
and direction of data transfer. After assigning the data transfer task to the DMA controller, instead of waiting ideally

Department of CSE,AITS-TIRUPATI 131

COMPUTER ORGANIZATION(20APC3007)

till completion of data transfer, the processor resumes the execution of the program after retrieving instructions from

Intermupt
BG
cCPLu RAdA
BR
RD WHR Address Data RD WiR Address Data
- b “I" and Contnol G
)k Miirite Control
| b Sddress Bll.:;t =—
— 2 S
Fﬁddmsﬁ Select I I
RD “WR Address Data
0s
it Pl A DA,
er le_gok. |
BG 1D Device
Crhy,
Interrupt 'F-bal:],ueﬂtf

the stack.

Fig:Transfer Of Data in Computer By DMA Controller

DMA controller now has the full control of buses and can interact directly with memory and I/O devices independent
of CPU. It makes the data transfer according to the control instructions received by the processor. After completion
of data transfer, it disables the bus request signal and CPU disables the bus grant signal thereby moving control of
buses to the CPU.

When an I/O device wants to initiate the transfer then it sends a DMA request signal to the DMA controller, for
which the controller acknowledges if it is free. Then the controller requests the processor for the bus, raising the bus
request signal. After receiving the bus grant signal it transfers the data from the device. For n channelled DMA
controller n number of external devices can be connected.

Advantages and Disadvantages of DMA Controller
The advantages and disadvantages of DMA controller include the following.

Advantages
@ DMA speedups the memory operations by bypassing the involvement of the CPU.
® The work overload on the CPU decreases.
@ For each transfer, only a few numbers of clock cycles are required
Disadvantages
@ Cache coherence problem can be seen when DMA is used for data transfer.
@ Increases the price of the system.
DMA (Direct Memory Access) controller is being used in graphics cards, network cards, sound cards etc...

Department of CSE,AITS-TIRUPATI 132

https://en.wikipedia.org/wiki/Direct_memory_access

COMPUTER ORGANIZATION(20APC3007)

BUS ARBITRATION:

Bus Arbitration is the procedure by which the active bus master accesses the bus, relinquishes control of it, and then
transfers it to a different bus-seeking processor unit. A bus master is a controller that can access the bus for a given
instance.

A conflict could occur if multiple DMA controllers, other controllers, or processors attempt to access the common
bus simultaneously, yet only one is permitted to access. Bus master status can only be held by one processor or
controller at once. By coordinating the actions of all devices seeking memory transfers, the Bus Arbitration method
is used to resolve these disputes.

Two approaches are followed for the bus Arbitration:

1. Centralized Bus Arbitration - In which the necessary arbitration is carried out by a lone bus arbitrator.

2. Distributive Bus Arbitration - In which every device takes part in choosing the new bus master. A 4bit

identification number is allocated to each device on the bus. The created ID will decide the device's priority.

Centralized Bus Arbitration Methodologies
There are three methods of Centralized Bus Arbitration, which are listed below:Ba

1. Daily Chaining Method - All bus masters work on the same line to make bus requests in this straightforward and
less expensive approach. Up until it comes across the first master who is making a request for access to the bus, the
bus grant signal travels serially through each master. Any other seeking module will not receive the grant signal and
hence be unable to access the bus since this master prevents the bus grant signal from propagating.

Any device linked to the bus, such as the processor or any DMA controller unit, may act as the bus master throughout
any bus cycle.

Its Advantages:

o Itis scalable and provides simplicity

o The user is free to add multiple devices to a predefined number of maximum devices wherever he wants along

the chain.

Its Disadvantages:

o A device's priority value is determined by the location of the master bus.
o Using this strategy results in propagation delay.

o The entire system will cease to function if one gadget malfunctions.

2. Rotating or Polling Priority Method - The address lines needed depend on how many connected masters are in
the system. The controller is utilized to produce the unique priority for the master (or address). A series of master

Department of CSE,AITS-TIRUPATI 133

COMPUTER ORGANIZATION(20APC3007)

addresses are generated by the controller. The bus is used once the asking master knows its address and activates the
busy line.

Its Advantages:

o This approach is neutral in terms of processor and device preferences.

o The process is also straightforward.

Its Disadvantages:

o Itis challenging to add bus masters since it increases the circuit's address line count.

o The system will continue to function even if one device malfunctions.
3. Independent Request or Fixed Priority Method - A unique pair of bus requests and bus grant lines are provided
to each master, and each pair is given a priority. The controller's built-in priority decoder chooses the utmost priority

request and then asserts the matching bus grant signal.

Its Advantage:

o This technique produces a quick response.
Its Disadvantage:

A significant number of control lines are needed, which raises the cost of the hardware.

Department of CSE,AITS-TIRUPATI 134

COMPUTER ORGANIZATION(20APC3007)

BUSES
Every bus has three distinct channels of communication. The address bus, which is a unidirectional

pathway that allows information to travel in only one direction, carries information about where data will
be stored in memory.

The data bus is a bidirectional pathway that carries the actual data (information) to and from the main memory.

The control bus carries the control and timing signals needed to coordinate the activities of the entire computer.
Think of this as a traffic cop.

Table 1: Three Components of a Bus

Bus Type Description

Address bus | A unidirectional pathway — information can only flow one way

Data bus A bi-directional pathway — information can flow in two directions

Carries the control and timing signals needed to coordinate the activities of the entire

Control bus
computer

Synchronous and Asynchronous Buses

Bus Protocols: A bus is a communication channel shared by many devices and hence rules need to be established in
order for the communication to happen correctly. These rules are called bus protocols. Design of a bus architecture
involves several tradeoffs related to the width of the data bus, data transfer size, bus protocols, clocking, etc.
Depending on whether the bus transactions are controlled by a clock or not, buses are classified into synchronous
and asynchronous buses. Depending on whether the data bits are sent on parallel wires or multiplexed onto one single
wire, there are parallel and serial buses. Control of the bus communication in the presence of multiple devices
necessitates defined procedures called arbitration schemes. In this section, different kinds of buses and arbitration
schemes are described.

Synchronous Buses: In synchronous buses, the steps of data transfer take place at fixed clock cycles. Everything is
synchronized to bus clock and clock signals are made available to both master and slave. The bus clock is a square
wave signal. A cycle starts at one rising edge of the clock and ends at the next rising edge, which is the beginning of
the next cycle. A transfer may take multiple bus cycles depending on the speed parameters of the bus and the two
ends of the transfer.One scenario would be that on the first clock cycle, the master puts an address on the address
bus, puts data on the data bus, and asserts the appropriate control lines. Slave recognizes its address on the address
bus on the first cycle and reads the new value from the bus in the second cycle. Synchronous buses are simple and
easily implemented. However, when connecting devices with varying speeds to a synchronous bus, the slowest device
will determine the speed of the bus. Also, the synchronous bus length could be limited to avoid clock-skewing
problems.

Department of CSE,AITS-TIRUPATI 135

COMPUTER ORGANIZATION(20APC3007)

Address | }‘(Memory address 1o be ;"< |

KAl

MASTER ' !(‘

N
b — “‘l.
Data 'l \ Xlk]'l.l T:Jll:d)z

SLAVI _“E‘*a’ \7,'

>

Figure 6. Read Operations on an Asynchronous Bus

A memory read transaction on the synchronous bus typically proceeds as illustrated in Fig. 5. During the first clock
cycle the CPU places the address of the location it wants to read, on the address lines of the bus. Later during the
same clock cycle, once the address lines have stabilized, the READ request is asserted by the CPU. Many times,
some of these control signals are active low and asserting the signal means that they are pulled low. A few clock
cycles are needed for the memory to perform accessing of the requested location. In a simple non-pipelined bus,
these appear as wait states and the data is placed on the bus by the memory after the tow or three wait cycles. The
CPU then releases the bus by deasserting the READ control signal. The write transaction is similar except that the
processor is the data source and the WRITE signal is the one that is asserted. Different bus architectures synchronize
bus operations with respect to the rising edge or falling edge or level of the clock signal.

Asynchronous Buses: There are no fixed clock cycles in asynchronous buses. Handshaking is used instead. Figure
8.11 shows the handshaking protocol. The master asserts the data-ready line

Data-Bus L4 Data /‘ < Data Data

3 1 3

Data-ready 1

Data-accept 2

Figure 8.11 Asynchronous bus timing using handshaking protocol

(point 1 in the figure) until it sees a data-accept signal. When the slave sees a dataready signal, it will assert the data-
accept line (point 2 in the figure). The rising of the data-accept line will trigger the falling of the data-ready line and
Department of CSE,AITS-TIRUPATI 136

COMPUTER ORGANIZATION(20APC3007)

the removal of data from the bus. The falling of the data-ready line (point 3 in the figure) will trigger the falling of
the data-accept line (point 4 in the figure). This handshaking, which is called fully interlocked, is repeated until the
data is completely transferred. Asynchronous bus is appropriate for different speed devices.

An asynchronous bus has no system clock. Handshaking is done to properly conduct the transmission of data between
the sender and the receiver. The process is illustrated in Fig. 6. For example, in an asynchronous read operation, the
bus master puts the address and control signals on the bus and then asserts a synchronization signal. The
synchronization signal from the master prompts the slave to get synchronized and once it has accessed the data, it
asserts its own synchronization signal. The slave's synchronization signal indicates to the processor that there is valid
data on the bus, and it reads the data. The master then deasserts its synchronization signal, which indicates to the
slave that the master has read the data. The slave then deasserts its synchronization signal. This method of
synchronization is referred to as a full handshake. Note that there is no clock and that starting and ending of the data
transfer are indicated by special synchronization signals. An asynchronous communication protocol can be
considered as a pair of Finite State machines (FSMs) that operate in such a way that one FSM does not proceed until
the other FSM has reached a certain state.

Synchronous buses are typically faster than asynchronous buses because there is no overhead to establish a time
reference for each transaction. Another reason that helps the synchronous bus to operate fast is that the bus protocol
is predetermined and very little logic is involved in implementing the Finite State machine. However, synchronous
buses are affected by clock skew and they cannot be very long. But asynchronous buses work well even when they
are long because clock skew problems do not affect them. Thus asynchronous buses can handle longer physical
distances and higher number of devices. Processor-memory buses are typically synchronous because the devices
connected to the bus are fast, are small in number and are located in close proximity. I/O buses are typically
asynchronous because many peripherals need only slow data rates and are physically situated far away.

Difference between Synchronous and Asynchronous bus

Sr. Topic Synchronous Bus Asynchronous Bus

No.

1. Clock Rate A synchronous bus works at a fixed An asynchronous bus is not
clock rate. dependent on a fixed clock rate.

2. Clock Transmitter and receivers both are Transmitters and receivers are not

Synchronization synchronized with the clock. synchronized with the clock.

3. Clock Skew Synchronous Bus affected by clock Asynchronous Bus not affected

skew. by clock skew.

Department of CSE,AITS-TIRUPATI 137

COMPUTER ORGANIZATION(20APC3007)

Sr. Topic Synchronous Bus

No.

4, Bus Length The length of a synchronous bus could
be limited to avoid clock-skewing
problems.

5. Bus Protocol Bus protocol is predetermined in

Synchronous Bus.

6. Physical Distance Synchronous buses cannot handle
longer physical distances.

7. Number of Synchronous buses cannot handle a
Devices higher number of devices.

8. Data Transfer Data transfer takes place in the block.

9. Data Bits Bits of data are transmitted with the
Transmission synchronization of the clock.

10. Character Rate Character is received at a constant Rate.

11. Speed of Buses Synchronous Buses are faster.

Department of CSE,AITS-TIRUPATI

Asynchronous Bus

The length of the asynchronous
bus could not be limited.

Bus protocol is not predetermined
in Asynchronous Bus.

Asynchronous buses can handle
longer physical distances.

Asynchronous buses can handle a
higher number of devices.

Data transfer is character-
oriented.

Bits of data are transmitted at a
constant rate.

Character may arrive at any rate at
the receiver.

Asynchronous Buses
comparatively slower.

138

COMPUTER ORGANIZATION(20APC3007)

Sr.

No.

12.

13.

14.

15.

Topic Synchronous Bus

Speed of Data Used for high-speed data transmission.
Transmission

Overhead No overhead is present to establish a
time reference for each transaction.

Finite State Require very less logic to implement
machine Finite State machine.
Type of Buses Processor-memory buses are typically

synchronous because the devices
connected to the bus are fast, are small
in number, and are located in close
proximity.

INTERFACE CIRCUITS

Asynchronous Bus

Used for low-speed data
transmission.

Overhead is present to establish a
time reference for each
transaction.

Require more logic to implement
Finite State machine.

/O buses are typically
asynchronous because many
peripherals need only slow data
rates and are physically situated
far away.

An I/0O interface consists of the circuitry required to connect an I/O device to a computer bus. On
one side of the interface we have the bus signals for address, data, and control. On the other side
we have a data path with its associated controls to transfer data between the interface and the I/O
device. This side is called a port, and it can be classified as either a parallel or a serial port.A
parallel port transfers data in the form of a number of bits, typically 8 or 16,simultaneously to or

from the device.

» A serial port transmits and receives data one bit at a time.

I/O interface does the following:

1. Provides a storage buffer for at least one word of data (or one byte, in the case of byte-

oriented devices)

2. Contains status flags that can be accessed by the processor to determine whether the

Department of CSE,AITS-TIRUPATI

139

COMPUTER ORGANIZATION(20APC3007)

buffer is full (for input) or empty (for output)

3. Contains address-decoding circuitry to determine when it is being addressed by the

processor

4. Generates the appropriate timing signals required by the bus control scheme

5. Performs any format conversion that may be necessary to transfer data between the bus

and the I/O device, such as parallel-serial conversion in the case of a serial port

PARALLEL PORT:

Processor

Data

Address

————>

R/W

-

Mastefready
o

Slave-ready
l————

Here,

» Keyboard is connected to a processor using a parallel port.

DATAIN

SIN

Input
interface

Data

Valid

Encoder
and
debouncing
circuit

Keyboard
switches

* Processor is 32-bits and uses memory-mapped I/0O and the asynchronous bus protocol.

* On the processor side of the interface we have:

- Data lines.

- Address lines

- Control or R/W line.

- Master-ready signal and

- Slave-ready signal
Above diagram shows the hardware components needed for connecting a keyboard to a processor.

A typical keyboard consists of mechanical switches that are normally open. When a key is pressed,
its switch closes and establishes a path for an electrical signal. This signal is detected by an encoder
circuit that generates the ASCII code for the corresponding character. A difficulty with such
push-button switches is that the contacts bounce when a key is pressed. Bouncing can be eliminated

in two ways:

A simple debouncing circuit can be included, or a software approach can be used. When
debouncing is implemented in software, the I/O routine that reads a character from the keyboard
wait long enough to ensure that bouncing has subsided. Above Figure illustrates the hardware
approach; debouncing circuits are included as a part of the encoder block.

Department of CSE,AITS-TIRUPATI

COMPUTER ORGANIZATION(20APC3007)

The output of the encoder consists of the bits that represent the encoded character and one control
signal called Valid, which indicates that a key is being pressed. This information is sentto the
interface circuit, which contains a data register, DATAIN, and a status flag, SIN.

When a key is pressed, the Valid signal changes from 0 to 1, causing the ASCII code to
be loaded into DATAIN and SIN to be set to 1.

The status flag SIN is cleared to 0 when the processor reads the contents of the DATAIN
register.

The interface circuit is connected to an asynchronous bus on which transfers are controlled using
the handshake signals Master-ready and Slave-ready. The third control line, R/W distinguishes
read and write transfers.

Input Interface:

Figure 4.29 shows a suitable circuit for an input interface. The output lines of the DATAIN register
are connected to the data lines of the bus by means of three-state drivers, which are turned on when
the processor issues a read instruction with the address that selects this register. The SIN signal is
generated by a status flag circuit. This signal is also sent to the bus through a three-state driver. It
is connected to bit BO, which means it will appear as bit 0 of the status register. Other bits of this
register do not contain valid information. An address decoder is used to select the input interface
when the high-order 31 bits of an address correspond to any of the addresses assigned to this
interface. Address bit A0 determines whether the status or the data registers is to be read when the
Master-ready signal is active. The control handshake is accomplished by activating the Slave-
ready signal when either Read-status or Read-data is equal to 1.

Department of CSE,AITS-TIRUPATI 141

COMPUTER ORGANIZATION(20APC3007)

DATAIN
D7 {} Q b
- & Keyboard
: i data
Do Q Dy
"'iq -
SIN)
—Q Status Valid
flag
Read-
stams Read
< data
3 ()
-] |
Master-
Yy
i Address
b decoder
Al ———— 4
AD
Figure 4.29 Inpu! imerface circuit
Output Interface:
| € e 84
Address | igmagur (] Das
1 |
———Sr“ h] semmes.
Procassor RIW o1 00 sout (| vae Printer
Maseready | ————
. Dutput Idie
Siave-ready interfhce |
Figura 4.31 Printer o processor connection.
Here,

» Printer is connected to a processor using a parallel port.
* Processor is 32 bits, uses memory-mapped I/O and asynchronous bus protocol.
* On the processor side:

- Data lines.

- Address lines

- Control or R/W line.

Department of CSE,AITS-TIRUPATI 142

COMPUTER ORGANIZATION(20APC3007)

- Master-ready signal and
- Slave-ready signal.

The printer operates under control of the handshake signals Valid and Idle. When it is ready to
accept a character, the printer asserts its Idle signal. The interface circuit can then place a new
character on the data lines and activate the Valid signal. In response, the printer starts printingthe
new character and negates the Idle signal, which in turn causes the interface to deactivate the Valid

signal.
DATAOUT
D7 D -
: : Printer
data
DI D Q =
Do Dy Q -
A
sout
L] sion] adiban it
Slave- 1 o ot e vaid
ready
Read-
status Load:
data

RIW DDJ

Master-
ready

AJl ——

decoder

Al é
Al

Fiaure 4.32 Oumut interface circuit.

The interface contains a-data register, DATAOUT, and a status flag, SOUT. The SOUT flag is set
to 1 when the printer is ready to accept another character, and it is cleared to O when a new character
is loaded into DATAOUT by the processor.

The input and output interfaces just described can be combined into a single interface, as shown
in below diagram. The overall interface is selected by the high-order 30 bits of the address. Address
bits Al and AO select one of the three addressable locations in the interface, namely, the two data
registers and the status register. The status register contains the flags SIN and SOUT in bits 0 and
1, respectively. Labels RS1 and RSO (for Register Select) are used to denote the two inputs that

Department of CSE,AITS-TIRUPATI 143

COMPUTER ORGANIZATION(20APC3007)

determine the register being selected.

General-purpose parallel interface circuit that can be configured in a variety of ways is shown
below. Data lines P7 through PO can be used for either input or output purposes. For increased
flexibility, the circuit makes it possible for some lines to serve as inputs and some lines to serve

as outputs, under program control. The DATAOUT register is connected to these lines via three-
state drivers that are controlled by a data direction register, DDR. The processor can write any 8-
bit pattern into DDR. For a given bit, if the DDR value is 1, the corresponding data line acts as
an output line; otherwise, it acts as an input line.

Two lines, C1 and C2, are provided to control the interaction between the interface circuit and
the I/O device it serves. Line C2 is bidirectional to provide several different modes of signaling,
including the handshake. The Ready and Accept lines are the handshake control lines on the
processor bus side, and hence would be connected to Master-ready and Slave-ready. The input
signal My-address should be connected to the output of an address decoder that recognizes the
address assigned to the interface. There are three register select lines, allowing up to eight registers
in the interface, input and output data, data direction, and control and status registers forvarious
modes of operation. An interrupt request output, INTR, is also provided.

Serial Port:

A serial port is used to connect the processor to I/0O devices that require transmission of data one
bit at a time. The key feature of an interface circuit for a serial port is that it is capable of
communicating in a bit-serial fashion on the device side and in a bit-parallel fashion on the bus
side. The transformation between the parallel and serial formats is achieved with shift registers
that have parallel access capability. A block diagram of a typical serial interface is shown in Figure
4.37. Tt includes the familiar DATAIN and DATAOUT registers. The input shift register accepts
bit-serial input from the I/0 device. When all 8 bits of data have been received, the contents of this
shift register are loaded in parallel into the DATAIN register. Similarly, output data in the
DATAQUT register are loaded into the output shift register, from which the bits are shifted out
and sent to the I/O device.

The SIN flag is set to 1 when new data are loaded in DATAIN; it is cleared to 0 when the processor
reads the contents of DATAIN. As soon as the data are transferred from the input shift register
into the DATAIN register, the shift register can start accepting the next 8-bit character from the
1/0 device. The SOUT flag indicates whether the output buffer is available. It is cleared to 0 when
the processor writes new data into the DATAOUT register and set to | when data are transferred
from DATAOUT into the output shift register.

The double buffering used in the input and output paths is important. A simpler interface could
be implemented by turning DATAIN and DATAOUT into shift registers and eliminating the
shift registers in Figure 4.37. With the double buffer, the transfer of the second character can begin
as soon as the first character is loaded from the shift register into the DATAIN register.

Department of CSE,AITS-TIRUPATI 144

COMPUTER ORGANIZATION(20APC3007)

Because it requires fewer wires, serial transmission is convenient for connecting devices that are
physically far away from the computer. The speed of transmission, often given as a bit rate,
depends on the nature of the devices connected.

2al
Input shift register ~ pa—r m‘

DATAIN

—%7 .- _V

D7 i
Do
DATAOUT
My-address ——1
RS] ——eg
RSO —= Chip and Sezial
RW i 1‘:52“’ Ouiput shift register = output
Ready
Accepl =
oy =— Receiving cleck
INTR and
control NG
te—— Transmission clock

Figure 4.37 A serial interface.

Several standard serial interfaces have been developed:
¢ Universal Asynchronous Receiver Transmitter (UART) for low-speed serial devices.
¢ RS-232-C for connection to communication links.

STANDARD I/O INTERFACES

¢ I/O device is connected to a computer using an interface circuit.
¢ Do we have to design a different interface for every combination of an I/O device and a
computer?
¢ A practical approach is to develop standard interfaces and protocols.
¢ A personal computer has:
¢ A motherboard which houses the processor chip, main memory and some I/O interfaces.
¢ A few connectors into which additional interfaces can be plugged.
¢ Processor bus is defined by the signals on the processor chip. Devices which require high-
speed connection to the processor are connected directly to this bus. Because of electrical
reasons only a few devices can be connected directly to the processor bus. Motherboard usually
provides another bus that can support more devices. Processor bus and the other bus (called as
expansion bus) are interconnected by a circuit called “bridge”. Devices connected to the
expansion bus experience a small delay in data transfers.

¢ Design of a processor bus is closely tied to the architecture of the processor.
Department of CSE,AITS-TIRUPATI 145

COMPUTER ORGANIZATION(20APC3007)

¢ No uniform standard can be defined.
¢ Expansion bus however can have uniform standard defined.
A number of standards have been developed for the expansion bus.
¢ Some have evolved by default.
¢ For example, IBM’s Industry Standard Architecture.
Three widely used bus standards:
¢ PCI (Peripheral Component Interconnect)
¢ SCSI (Small Computer System Interface)
¢ USB (Universal Serial Bus)

Main

Processor memory

I Processor bus

Bridge

] PCI bus

| | I l l

Additional SCSI Ethernet USB ISA
memary controller interface controller interface

SCSI bus / [-
11.)!:

l [Video -

Disk CD-ROM
controller controller

5]

Disk 1] | Disk2 i Keyboard | | Game

Figure 4.38 An exomple of a computer system using different interface standards.

PCI BUS:
¢ Peripheral Component Interconnect
¢ Introduced in 1992
¢ Low-cost bus
¢ Processor independent
¢ Plug-and-play capability

¢ In today’s computers, most memory transfers involve a burst of data rather than just one
word. The PCI is designed primarily to support this mode of operation.

Department of CSE,AITS-TIRUPATI 146

COMPUTER ORGANIZATION(20APC3007)

¢ The bus supports three independent address spaces: memory, I/0O, and configuration.

¢ We assumed that the master maintains the address information on the bus until data transfer
is completed. But, the address is needed only long enough for the slave to be selected.
Thus, the address is needed on the bus for one clock cycle only, freeing the

address lines to be used for sending data in subsequent clock cycles. The result is a
significant cost reduction.

¢ A master is called an initiator in PCI terminology. The addressed device that responds to
read and write commands is called a target.

Data Transfer:

Data are transferred between the cache and the main memory in bursts of several words each. The
words involved in such a transfer are stored at successive memory locations. When the processor
(actually the cache controller) specifies an address and requests a read operation from the main
memory, the memory responds by sending a sequence of data words starting at that address.
Similarly, during a write operation, the processor sends a memory address followed by asequence
of data words, to be written in successive memory locations starting at that address. The PCI is
designed primarily to support this mode of operation. A read or a write operation involving a single
word is simply treated as a burst of length one.

The bus supports three independent address spaces: memory, J/O, and configuration. The first two
are self-explanatory. The I/O address space is intended for use with processors, such as Pentium,
that have a separate I/0 address space.

As in below diagram, The PCI bridge provides a separate physical connection for the main
memory. For electrical reasons, the bus may be further divided into segments connected via
bridges.

Department of CSE,AITS-TIRUPATI 147

COMPUTER ORGANIZATION(20APC3007)

Department of CSE,AITS-TIRUPATI

Host
PC1 bridge M
memory
PCI bus
Disk Printer PR
interface

Figure 4.39 Use of o PC! bus in a computer system.

148

COMPUTER ORGANIZATION(20APC3007)

F’:D;ta transfer signals on the PCI bus.

Name Function

CLK A 33-MHz or 66-MHz clock.

FRAME® Sent by the initiatorto indicate the duration of a
transaction.

AD 32 address/data lines, which may be optionally
increased to 64,

C/BE# 4 command/byte—enable lines (8 for a 64-bit bus).

IRD Y#, TRD Y# Initiator-readyand Target-readysignals.

DEVSEL# A response from the device indicating that it has
recognized itsaddress and is ready for a data
transfer transaction

IDSEL# InitializationDevice Select.

A complete transfer operation on the bus, involving an address and a burst of data, is called a
transaction. Individual word transfers within a transaction are called phases.

“The sequence of events on the bus is shown in Figure 4.40.

s s 2___~L_Ea_\| 4 5
e (3 [FT 1P
i | | ! | i
AD { Hdress) { o Y w2 Y w X #)
| | | | |
cpEt —+— Cmd X Byte enable C——
IRD V4 | =
TRD V& | =
DEVSEL# =F

A read operation on the PCI bus

Fig: 4.40 A read operation of the PCI bus

Department of CSE,AITS-TIRUPATI 149

COMPUTER ORGANIZATION(20APC3007)

In clock cycle 1, the processor asserts FRAME# to indicate the beginning of a transaction. At the
same time, it sends the address on the AD lines and a command on the C/BE# lines. The

command indicates that a read operation is requested and that the memory address space is being
used.

Clock cycle 2 is used to turn the AD bus lines around. The processor removes the address and
disconnects its drivers from the AD lines. The selected target enables its drivers on the AD lines,
and fetches the requested data to be placed on the bus during clock cycle 3. It asserts DEVSEL#
and maintains it in the asserted state until the end of the transaction.

The C/BE# lines, which were used to send a bus command in clock cycle 1, are used for a different
purpose during the rest of the transaction. Each of these four lines is associated with one byte on
the AD lines. The initiator sets one or more of the C/BE# lines to indicate whichbyte lines are
to be used for transferring data.

During clock cycle 3, the initiator asserts the initiator ready signal, IRDY#, to indicate that it is
ready to receive data. If the target has data ready to send at this time, it asserts target ready, TRDY#,
and sends a word of data. The initiator loads the data into its input buffer at the end of the clock
cycle. The target sends three more words of data in clock cycles 4 to 6.

The initiator uses the FRAME# signal to indicate the duration of the burst. It negates this signal
during the second last word of the transfer. Since it wishes to read four words, the initiator negates
FRAME# during clock cycle 5, the cycle in which it receives the third word. After sending the
fourth word in clock cycle 6, the target disconnects its drivers and negates DEVSEL# at the
beginning of clock cycle 7.

Device Configuration:

¢ When an I/O device is connected to a computer, several actions are needed to configure
both the device and the software that communicates with it.
¢ PCI incorporates in each I/O device interface a small configuration ROM memory that
stores information about that device.
¢ The configuration ROMs of all devices are accessible in the configuration address space.
The PCI initialization software reads these ROMs and determines whether the device is a
printer, a keyboard, an Ethernet interface, or a disk controller. It can further learn bout
various device options and characteristics.
¢ Devices are assigned addresses during the initialization process.
¢ This means that during the bus configuration operation, devices cannot be accessed based
on their address, as they have not yet been assigned one.
¢ Hence, the configuration address space uses a different mechanism. Each device has an
input signal called Initialization Device Select, IDSEL#
Electrical characteristics:
¢ PCI bus has been defined for operation with either a 5 or 3.3 V power supply
SCSI BUS:

¢ The acronym SCSI stands for Small Computer System Interface.

Department of CSE,AITS-TIRUPATI 150

COMPUTER ORGANIZATION(20APC3007)

¢ It refers to a standard bus defined by the American National Standards Institute (ANSI)
under the designation X3.131 .

¢ In the original specifications of the standard, devices such as disks are connected to a
computer via a 50-wire cable, which can be up to 25 meters in length and can transfer
data at rates up to 5 megabytes/s.

¢ The SCSI bus standard has undergone many revisions, and its data transfer capability has
increased very rapidly, almost doubling every two years.

¢ SCSI-2 and SCSI-3 have been defined, and each has several options.
¢ Because of various options SCSI connector may have 50, 68 or 80 pins.
¢ Devices connected to the SCSI bus are not part of the address space of the processor

¢ The SCSI bus is connected to the processor bus through a SCSI controller. This controller
uses DMA to transfer data packets from the main memory to the device, or vice versa.

¢ A packet may contain a block of data, commands from the processor to the device, or status
information about the device.

¢ A controller connected to a SCSI bus is one of two types — an initiator or a target.

¢ An initiator has the ability to select a particular target and to send commands specifying
the operations to be performed. The disk controller operates as a target. It carries out the
commands it receives from the initiator.

¢ The initiator establishes a logical connection with the intended target.

¢ Once this connection has been established, it can be suspended and restored as needed to
transfer commands and bursts of data.

¢ While a particular connection is suspended, other device can use the bus to transfer
information.

¢ This ability to overlap data transfer requests is one of the key features of the SCSI bus
that leads to its high performance.

¢ Data transfers on the SCSI bus are always controlled by the target controller.

¢ To send a command to a target, an initiator requests control of the bus and, after winning
arbitration, selects the controller it wants to communicate with and hands control of the
bus over to it.

¢ Then the controller starts a data transfer operation to receive a command from theinitiator.

¢ Assume that processor needs to read block of data from a disk drive and that data are stored
in disk sectors that are not contiguous.

¢ The processor sends a command to the SCSI controller, which causes the following
sequence of events to take place:
Department of CSE,AITS-TIRUPATI 151

COMPUTER ORGANIZATION(20APC3007)

¢ The SCSI controller, acting as an initiator, contends for control of the bus.

¢ When the initiator wins the arbitration process, it selects the target controller and hands
over control of the bus to it.

¢ The target starts an output operation (from initiator to target); in response to this, the
initiator sends a command specifying the required read operation.

¢ The target, realizing that it first needs to perform a disk seek operation, sends amessage
to the initiator indicating that it will temporarily suspend the connectionbetween them.
Then it releases the bus.

¢ The target controller sends a command to the disk drive to move the read head to the first
sector involved in the requested read operation. Then, it reads the data stored in that
sector and stores them in a data buffer. When it is ready to begin transferring data to the
initiator, the target requests control of the bus. After it wins arbitration, it reselects the
initiator controller, thus restoring the suspended connection.

¢ The target transfers the contents of the data buffer to the initiator and then suspends the
connection again

¢ The target controller sends a command to the disk drive to perform another seek
operation. Then, it transfers the contents of the second disk sector to the initiator as
before. At the end of this transfer, the logical connection between the two controllers is
terminated.

¢ As the initiator controller receives the data, it stores them into the main memory using

the DMA approach.
Category Name Function
Data — DE(0) to Datalines:Carry one byte of information
—DB(7) duringthe information transfer phase and
iden tify deviceduring arbitration,selection and
reselaection phases
—DB(P) Parity bit for the data bus
Phase — BSY Busy: Asserted when the bus is notfree
—SEL Selection: Assertedduring selection and
reselection
Information —C/D Cortrol/Data: Asserted during transfer of
type control information (command,status or
message)
—MSG Messageindicates thatthe information being

transferred is a message
¢ The SCSI controller sends as interrupt to the processor to inform it that the requested
operation has been completed.

Department of CSE,AITS-TIRUPATI 152

COMPUTER ORGANIZATION(20APC3007)

Main Phases involved:

Arbitration
¢ A controller requests the bus by asserting BSY and by asserting it’s associated data line
¢ When BSY becomes active, all controllers that are requesting bus examine data lines
Selection
¢ Controller that won arbitration selects target by asserting SEL and data line of target.
After that initiator releases BSY line.
¢ Target responds by asserting BSY line
¢ Target controller will have control on the bus from then
Information Transfer
¢ Handshaking signals are used between initiator and target
¢ At the end target releases BSY line
Reselection

When a logical connection is suspended and the target is ready to restore it, the target must first
gain control of the bus.

Targets examine [D
m | |
5 Ll
e | [
S T L
s I [
e
P 442 Abiaion s sdcion o b SCS1 b, D 6w rien

UNIVERSAL SERIAL BUS (USB):

¢ Universal Serial Bus (USB) is an industry standard developed through a collaborative
effort of several computer and communication companies, including Compaq, Hewlett-
Packard, Intel, Lucent, Microsoft, Nortel Networks, and Philips.
¢ Speed
¢ Low-speed(1.5 Mb/s)
¢ Full-speed(12 Mb/s)
¢ High-speed(480 Mb/s)
¢ Port Limitation
¢ Device Characteristics
¢ Plug-and-play

Department of CSE,AITS-TIRUPATI 153

COMPUTER ORGANIZATION(20APC3007)

Host computer

HS - High speed
Fil.S — Full/L.ow speed

Device Device
C D

Figure 4.44 Split bus operation.

Universal Serial Bus tree structure:

¢ To accommodate a large number of devices that can be added or removed at any time, the
USB has the tree structure as shown in the figure.

¢ Each node of the tree has a device called a hub, which acts as an intermediate control point
between the host and the I/0O devices. At the root of the tree, a root hub connects theentire
tree to the host computer. The leaves of the tree are the I/O devices being served (for
example, keyboard, Internet connection, speaker, or digital TV)

¢ In normal operation, a hub copies a message that it receives from its upstream connection
to all its downstream ports. As a result, a message sent by the host computer is broadcast
to all I/O devices, but only the addressed device will respond to that message. However, a
message from an I/O device is sent only upstream towards the root of the tree and is not
seen by other devices. Hence, the USB enables the host to communicate with the I/O
devices, but it does not enable these devices to communicate with each other.

Addressing:

¢ When a USB is connected to a host computer, its root hub is attached to the processor bus,
where it appears as a single device. The host software communicates with individual
devices attached to the USB by sending packets of information, which the root hub
forwards to the appropriate device in the USB tree.

¢ Each device on the USB, whether it is a hub or an I/O device, is assigned a 7-bit address.
This address is local to the USB tree and is not related in any way to the addresses used
on the processor bus.

¢ A hub may have any number of devices or other hubs connected to it, and addresses are
assigned arbitrarily. When a device is first connected to a hub, or when it is powered on,

Department of CSE,AITS-TIRUPATI 154

COMPUTER ORGANIZATION(20APC3007)

it has the address 0. The hardware of the hub to which this device is connected is capable
of detecting that the device has been connected, and it records this fact as part of its own
status information. Periodically, the host polls each hub to collect status information and
learn about new devices that may have been added or disconnected.

¢ When the host is informed that a new device has been connected, it uses a sequence of
commands to send a reset signal on the corresponding hub port, read information from
the device about its capabilities, send configuration information to the device, and assign
the device a unique USB address. Once this sequence is completed the device begins
normal operation and responds only to the new address.

USB Protocols:

¢ All information transferred over the USB is organized in packets, where a packet consists
of one or more bytes of information. There are many types of packets that perform a variety
of control functions.
¢ The information transferred on the USB can be divided into two broad categories: control
and data.
¢ Control packets perform such tasks as addressing a device to initiate data
transfer, acknowledging that data have been received correctly, or indicating an
error.
¢ Data packets carry information that is delivered to a device.
¢ A packet consists of one or more fields containing different kinds of information. The
first field of any packet is called the packet identifier, PID, which identifies the type of
that packet.
¢ They are transmitted twice. The first time they are sent with their true values, and the
second time with each bit complemented
¢ The four PID bits identify one of 16 different packet types. Some control packets, such as
ACK (Acknowledge), consist only of the PID byte.

PID, | PID, | PID, | PID, | PID, | PIT, | FID, | PID,

(a) Packet identifier field

Rits | 2 | ! | * | ° | Control packets used for

| == [AD0R l P [CRCLE | controlling data transfer
operations are called token
_ _ packets.

(b) Token packet, IN or OUT

Bits I 8 | 0 to 8192 I 16 |

lPID‘ DATA [CRC16 |

(c) Data packet

Figure 45. USB packet format.

Department of CSE,AITS-TIRUPATI 155

COMPUTER ORGANIZATION(20APC3007)

Host Hub LD Deice

“Token

Time ‘dﬂrﬂﬂrﬂﬂrﬂﬂ,ﬂ,,,ﬂ,,.»
Token

ACK

Token

Daml\ Figure: An output
*ﬁ- transler
o

I///I//T;;;}l

ACK

Isochronous Traffic on USB:

One of the key objectives of the USB is to support the transfer of isochronous data.

Devices that generate or receive isochronous data require a time reference to control the
sampling process.

To provide this reference. Transmission over the USB is divided into frames of equal
length.

A frame is 1ms long for low-and full-speed data.

The root hub generates a Start of Frame control packet (SOF) precisely once every 1 ms
to mark the beginning of a new frame.

The arrival of an SOF packet at any device constitutes a regular clock signal that the
device can use for its own purposes.

To assist devices that may need longer periods of time, the SOF packet carries an 11-bit
frame number.

Following each SOF packet, the host carries out input and output transfers for
isochronous devices.

This means that each device will have an opportunity for an input or output transfer once
every 1 ms.

Electrical Characteristics:
Department of CSE,AITS-TIRUPATI 156

COMPUTER ORGANIZATION(20APC3007)

¢ The cables used for USB connections consist of four wires.
¢ Two are used to carry power, +5V and Ground.
¢ Thus, a hub or an I/O device may be powered directly from the bus, or it may
have its own external power connection.
¢ The other two wires are used to carry data.
¢ Different signaling schemes are used for different speeds of transmission.
¢ Atlow speed, 1s and Os are transmitted by sending a high voltage state (5V) on
one or the other o the two signal wires. For high-speed links, differentialtransmission is used

UNIT - 4: Pipelining, Large Computer Systems
Pipelining: Basic Concepts, Data Hazards, Instruction Hazards, Influence on Instruction Sets

Large Computer Systems: Forms of Parallel Processing, Array Processors, The Structure of General-Purpose
multiprocessors, Interconnection Networks.

Basic Concepts

Pipelining is a particularly effective way of organizing concurrent activity in a computer system. It is frequently
encountered in manufacturing plants, cars.

Consider how the idea of pipelining can be used in a computer. The processor executes a program by fetching and
executing instructions, one after the other. Let Fi and Ei refer to the fetch and execute steps for instruction Ii. An
execution of a program consists of a sequence of fetch and execute steps, as shown in Figure 8.1a.

Now consider a computer that has two separate hardware units, one for fetching instructions and another for executing
them, as shown in Figure 8.1b. The instruction fetched by the fetch unit is deposited in an intermediate storage buffer,
B1. This buffer is needed to enable the execution unit to execute the instruction while the fetch unit is fetching the
next instruction. The results of execution are deposited in the destination location specified by the instruction.

Department of CSE,AITS-TIRUPATI 157

COMPUTER ORGANIZATION(20APC3007)

— Time

Iy Ia Iy

-t ey Ez " E, ---
(8) Segquential exacution
Interstape buffer
Bi
Instruction x
Exccution
fewch >y > Tk

(b) Hardware organization

—_— Timc

Clock cycle | 2 3 4
Loastroction

y [=T =]

Iz F Eg

Iy Fs Es

(c} Pipelined execution

Figure B.1 Baosic idea of instruction pipelining.
The computer is controlled by a clock whose period is such that the fetch and execute steps of any instruction can
each be completed in one clock cycle. Operation of the computer proceeds as in Figure 8.1c, In the first clock cycle,
the fetch unit fetches an instruction 11 (step F1) and stores it in buffer B1 at the end of the clock cycle. In the second
clock cycle, the instruction fetch unit proceeds with the fetch operation for instruction 12 (step F2). Meanwhile, the
execution unit performs the operation specified by instruction 11, which is available to it in buffer B1 (step E1). By
the end of the second clock cycle, the execution of instruction I1 is completed and instruction 12 is available.
Instruction 12 is stored in B1, replacing 11 which is no longer needed. Step E2 is performed by the execution unit
during the third clock cycle, while instruction I3 is being fetched by the fetch unit. In this manner, both the fetch and
execute units are kept busy all the time.

The processing of an instruction need not be divided into only two steps. For example, a pipelined processor may
process each instruction in four steps, as follows:

F Fetch: read the instruction from the memory.

D Decode: decode the instruction and fetch the source operand(s). E

specified by the instruction.

w Write: store the result in the destination location.

For example, during clock cycle 4, the information in the buffers is as follows:

Department of CSE,AITS-TIRUPATI

Execute: perform the operation

158

COMPUTER ORGANIZATION(20APC3007)

I Buffer B1 holds instruction I3 which was fetched in cycle 3 and is being decoded by the instruction-
decoding unit.

I Buffer B2 holds both the source operands for instruction 12 and the specification of the operation to be
performed. This is the information produced by the decoding hardware in cycle 3. The buffer also holds the
information needed for the write step of instruction 12, (step W2). Even though it is not needed by stage E, this
information must be passed on to stage W in the following clock cycle to enable that stage to perform the required
Write operation.

I Buffer B3 holds the results produced by the execution unit and the destination information for instruction
I1.
Role of Cache Memory:

Pipelining is most effective in improving performance if the tasks being performed in different stages require about
the same amount of time.

This consideration is particularly important for the instruction fetch step, which is assigned one clock period in Figure
8.2a. The clock cycle has to be equal to or greater than the time needed to complete a fetch operation. However, the
access time of the main memory may be as much as ten times greater than the time needed to perform basic pipeline
stage operations inside the processor.

The use of cache memories solves the memory access problem. In particular, when a cache is included on the same
chip as the processor, access time to the cache is usually the same as the time needed to perform other basic operations
inside the processor. This makes it possible to divide instruction fetching and processing into steps that are more or
less equal in duration. Each

of these steps is performed by a different pipeline stage, and the clock period is chosen to correspond to the longest
one.

Department of CSE,AITS-TIRUPATI 159

COMPUTER ORGANIZATION(20APC3007)

——ae Time

Clockeycde | 2 3 4 5 6 7
Instruction

/I b, | E | w

] B D, E; W2

I F3 Dy By W;

I‘ P4 D4 E.‘ \V4

{a) Instruction execution dividad inta four steps

Interstage buffers

D : Decode
F: Fech instruction E: Execute W : Write
instruction and feich operation results
operands

Bl B2 B3

(b} Hardware organization
Figure 8.2 A 4stage pipeline.

PIPELINE PERFORMANCE:

For a variety of reasons, one of the pipeline stages may not be able to complete its processingtask for a given
instruction in the time allotted.

Clockeyde | 2 3 4 5 1] 7 8 9
Instrection

[T T]

' B 5 [w |

'~ [n] ___.[oTx]]
: non

Figure 8.2 Effect of on execution operafion toking mere thon ane clock cycle.

Pipelined operation in Figure 8.3 is said to have been stalled for two clock cycles. Normal
pipelined operation resumes in cycle 7.

> Any condition that causes the pipeline to stall is called a hazard.

Department of CSE,AITS-TIRUPATI 160

COMPUTER ORGANIZATION(20APC3007)

I A data hazard is any condition in which either the source or the destination operands of an instruction are
not available at the time expected in the pipeline. As a result some operation has to be delayed, and the pipeline
stalls.

I The pipeline may also be stalled because of a delay in the availability of an instruction. For example, this
may be a result of a miss in the cache, requiring the instruction to be fetched from the main memory. Such hazards
are often called control hazards or instruction hazards. The effect of a cache miss on pipelined operation is
illustrated in Figure 8.4. Instruction I; is fetched from the cache in cycle 1, and its execution proceeds normally.
However, the fetch operation for instruction I, which is started in cycle 2, results in a cache miss. The instruction
fetch unit must now suspend any further fetch re- Quests and wait for 1, to arrive. We assume that instruction 1, is
received and loaded into buffer B1 at the end of cycle 5. The pipeline resumes its normal operation at that point.

A third type of hazard that may be encountered in pipelined operation is known as a structural hazard. This is the
situation when two instructions require the use of a given hardware resource at the same time. The most common
case in which this hazard may arise is in access to memory.

An example of a structural hazard is shown in Figure 8,5. This figure shows how the load instruction

Load X(R1), R2

can be accommodated in our example 4-stage pipeline. The memory address, X+-[R1], is computed in step E, in
cycle 4, then memory access takes place in cycle 5. The operand read from memory is written into register R2 in
cycle 6. This means that the execution step of this instruction takes two clock cycles (cycles 4 and 5). It causes the
pipeline to stall for one cycle, because both instructions I, and I; require access to the register file in cycle 6. Even
though the instructions and their data are all available, the pipeline is stalled because one hardware resource, the
register file, cannot handle two operations at once.

e Timie

Clockeycle 1 2 3 & 5 6
Instruction

Iy Fy Dy Ey W,

I (Lead) F | D | BB | My | W

I F Dy | B W

Iy Fo | D By

Is Fg Dy

Figure 8.5 Effect of o Load instruction on pipeline fiming.
Department of CSE,AITS-TIRUPATI 161

COMPUTER ORGANIZATION(20APC3007)

DATA HAZARDS

A data hazard is a situation, in which the pipeline is stalled because the data to be operated on are delayed for some
reason.

Consider a program that contains two instructions, 11 followed by I2. When this program is executed in a pipeline,
the execution of 12 can begin before the execution of I1 is completed. This means that the results generated by I1
may not be available for use by 12. We must ensure that the results obtained when instructions are executed in a
pipelined processor are identical to those obtained when the same instructions are executed sequentially. The
potential for obtaining incorrect results when operations are performed concurrently can be demonstrated by a
simple example. Assume that A=5, and consider the following two operations:

A<3+A
B < 4*A

When these operations are performed in the order given, the result is B = 32. But if they are performed
concurrently, the value of A used in computing B would be the original value, 5, leading to an incorrect result. If
these two operations are performed by instructions in a program, then the instructions must be executed one after
the other, because the data used in the second instruction depend on the result of the first instruction. On the other
hand, the two operations

A <5*CB<20+C

can be performed concurrently, because these operations are independent.

When two operations depend on each other, they must be performed sequentially in the correct order.

—p Time
Clock cycle 1 2 3 4 5 6 7 8 9
Instruction
1; (Mul) FEID|E W
I; (Add) R |D Dy | B | Wa
I F Dy { B3 | W
I Fo Dy | B4 | W,

Figure 8.6 Pipeline stalled by data dependency between D, and W, .

The data dependency arises when the destination of one instruction is used as a source in the next instruction. For
example, the two instructions

Mul R2, R3, R4 Add R5, R4, R6

give rise to a data dependency. The result of the multiply instruction is placed into register R4, which in turn is one
of the two source operands of the Add instruction. Assuming that the multiply operation takes one clock cycle to
complete, execution would proceed as shown in Figure 8.6. As the Decode unit decodes the Add instruction in
cycle 3, it realizes that R4 is used as a source operand. Hence, the D step of that instruction cannot be completed
Department of CSE,AITS-TIRUPATI 162

COMPUTER ORGANIZATION(20APC3007)

until the W step of the multiply instruction has been completed. Completion of step D2 must be delayed to clock
cycle 5, and is shown as step D2A, in the figure. Instruction I3 is fetched in cycle 3, but its decoding must be
delayed because step D3 cannot precede D2. Hence, pipelined execution is stalled for two cycles.

OPERAND FORWARDING:

Figure 8.7a shows a part of the processor datapath involving the ALU and the register file. SRC1, SRC2, and
RSLT registers constitute the interstage buffers needed for pipelined operation, as illustrated in Figure 8.7b.

The data forwarding mechanism is provided by the blue connection lines. The two multiplexers connected at the
inputs to the ALU allow the data on the destination bus to be selected instead of the contents of either the SRC1 or
SRC2 register.

After decoding instruction 12 and detecting the data dependency, a decision is made to use data forwarding. The
operand not involved in the dependency, register R2, is read and loaded in register SRC1 in clock cycle 3. In the
next clock cycle, the product produced by instruction I1 is

available in register RSLT, and because of the forwarding connection, it can be used in step E2. Hence, execution
of 12, proceeds without interruption.

Soarce |
Soarce 2
| skc1 | | sec2 |
- 1
1 ; 31
Regivior 1
file f
|
“ I
]
I
l |
i RSLT
|
Destination
(a) Datapath
SRC1,SRC2 RSLT

Q[:> o { D Gegier i
o e

p
i

o l—:‘“:!fﬂlwm

{z) Postion cf the source and result inthe

L e P o

Figure 8.7 Operand lorwarding m o pipelined processcr.

Department of CSE,AITS-TIRUPATI 163

COMPUTER ORGANIZATION(20APC3007)

HANDLING DATA HAZARDS IN SOFTWARE:

The control hardware delays reading register R4 until cycle 5, thus introducing a 2-cycle stall unless operand
forwarding is used. An alternative approach is to leave the task of detecting data dependencies and dealing with
them to the software. In this case, the compiler can introduce the two-cycle delay needed between instructions 11
and 12 by inserting NOP (No-operation) instructions, as follows:

I1: Mul R2,R3,R4
NOP
NOP

I12: Add R5,R4,R6

If the responsibility for detecting such dependencies is left entirely to the software, the compiler must insert the NOP
instructions to obtain a correct result. This possibility illustrates the close link between the compiler and the hardware.
A particular feature can be either implemented in hardware or left to the compiler. Leaving tasks such as inserting
NOP instructions to the compiler leads to simpler hardware. Being aware of the need for a delay, the compiler can
attempt to reorder instructions to perform useful tasks in the NOP slots, and thus achieve better performance. On the
other hand, the insertion of NOP instructions leads to larger code size. Also, it is often the case that a given processor
architecture has several hardware implementations, offering different features. NOP instructions inserted to satisfy
the requirements of one implementation may not be needed and, hence, would lead to reduced performance on a
different implementation.

INSTRUCTION HAZARDS
UNCONDITIONAL BRANCHES:

Figure 8.8 shows a sequence of instructions being executed in a two-stage pipeline. instructions I1 to I3 are stored
at successive memory addresses, and 12 is a branch instruction. Let the branch target be instruction Ik. In clock
cycle 3, the fetch operation for instruction I3 is in progress at the same time that the branch instruction is being
decoded and the target address computed. In clock cycle 4, the processor must discard is, which has been
incorrectly fetched, and fetch instruction Ik. In the meantime, the hardware unit responsible for the Execute (E)
step must be told to do nothing during that clock period. Thus, the pipeline is stalled for one clock cycle.

The time lost as a result of a branch instruction is often referred to as the branch penalty. In Figure 8.8, the branch
penalty is one clock cycle. For a longer pipeline, the branch penalty may be higher. For example, Figure 8.9a
shows the effect of a branch instruction on a four-stage pipeline. We have assumed that the branch address is
computed in step E2. Instructions I3 and 14 must be discarded, and the target instruction, Ik, is fetched in clock
cycle 5. Thus, the branch penalty is two clock cycles.

Reducing the branch penalty requires the branch address to be computed earlier in the pipeline. Typically, the
instruction fetch unit has dedicated hardware to identify a branch instruction and compute the branch target address
as quickly as possible after an instruction is fetched. With this additional hardware, both of these tasks can be

Department of CSE,AITS-TIRUPATI 164

COMPUTER ORGANIZATION(20APC3007)

performed in step D2, leading to the sequence of events shown in Figure 8.9b. In this case, the branch penalty is
only one clock cycle.

—n Time

Clock eycle 1 2 3 4 5 6
Instruction

L Fy E,

I, (Branch) F, E, l_ Execution unit idle

T

I3- F3 X '

Iy Fy E;

it Fisr | Era

Figure 8.8 An idle cycle caused by o branch insiruction.

Clock cycle 1 2 3 4 5 3 7 8

n ERLIET R

12 (Branch) B

3 NER

. EAKL

2 ol el™]
b [N %

(a) Branch address computed in Execute stage

e ThtmE
Clock cycle 1 2 3 4 5 6 7
y [EIIEl]
T (Baanch) [N] %
: A
4 [Flelel]
Tisy ["'nl [D.nl l Et-vll

(o) Branch address computed in Decode stage
Figure B.9 Bronch timing.

Department of CSE,AITS-TIRUPATI 165

COMPUTER ORGANIZATION(20APC3007)

Instruction Queue und Prefetching:

Either a cache miss or a branch instruction stalls the pipeline for one or more clock cycles. To reduce the effect of
these interruptions, many processors employ sophisticated fetch units that can fetch instructions before they are
needed and put them in a queue. Typically, the instruction queue can store several instructions. A separate unit,
which we call the dispatch unit, takes instructions from the front of the queue and sends them to the execution unit.
The dispatch unit also performs the decoding function.

Instruction fetch umt

{ Instruction quene
F : Fetch e
| mstruction
L
D mw E : Execule W : Write
> instruction results
unit
- S

Figure 8.10 Use of on instruction queve in the hardware
organizofion of Figure 8.25.

To be effective, the fetch unit must have sufficient decoding and processing capability to recognize and execute
branch instructions. It attempts to keep the instruction queue filled at all times to reduce the impact of occasional
delays when fetching instructions. When the pipeline stalls because of a data hazard, for example, the dispatch unit
is not able to issue instructions from the instruction queue. However, the fetch unit continues to fetch instructions
and add them to the queue. Conversely, if there is a delay in fetching instructions because of a branch or a cache
miss, the dispatch unit continues to issue instructions from the instruction queue.

Figure 8.11 illustrates how the queue length changes and how it affects the relationship between different pipeline
stages. We have assumed that initially the queue contains one instruction. Every fetch operation adds one
instruction to the queue and every dispatch operation reduces the queue length by one. Hence, the queue length
remains the same for the first four clock cycles. (There is both an F and a D step in each of these cycles.) Suppose
that instruction |, introduces a 2-cycle stall. Since space is available in the queue, the fetch unit continues to fetch
instructions and the queue length rises to 3 in clock cycle 6.

Instruction I5 is a branch instruction. Its target instruction, Ik is fetched in cycle 7, and instruction 16 is discarded,
The branch instruction would normally cause a stall in cycle 7 as a result of discarding instruction I6. Instead,
instruction 14 is dispatched from the queue to the decoding

Department of CSE,AITS-TIRUPATI 166

COMPUTER ORGANIZATION(20APC3007)

stage. After discarding I6, the queue length drops to 1 in cycle 8. The queue length will be at this value until
another stall is encountered.

Now observe the sequence of instruction completions in Figure 8.11. Instructions I1, 12, I3, 14 and Ik, complete
execution in successive clock cycles.

The instruction fetch unit has executed the branch instruction (by computing the branch address) concurrently with
the execution of other instructions. This technique is referred to as branch folding.

——a» Time

Clockeycle 1 2 3 4 5 6 7 8 9 10
Queucicngth 1 i 1 1T 2 3 2 1 I i
y RID|E g]|E W
I E | by B W
L F; Dy | B | W3
L Fy Dy | By | Wy
I, (Branch) Fs | Ds

T - - - N

'I e ¥ X 8
Iy Fo | De | B | W
Leet Fret | Diet | Brar

Figure 8.11 Bronch timing in the presence of an instruction queve. Bronch target
address is computed in the D stoge.

CONDITIONAL BRANCHES AND BRANCH PREDICTION:

Branch instructions can be handled in several ways to reduce their negative impact on the rate of execution of
instructions.

Delayed Branch:

A technique called delayed branching can minimize the penalty incurred as a result of conditional branch
instructions. The instructions in the delay slots ate always fetched instructions. The instructions in the delay slots
ate always fetched. Therefore, we would like to arrange for them to be fully executed whether or not the branch is
taken. The objective is to be able to place useful instructions in these slots. If no useful instructions can be placed
in the delay slots, these slots must be filled with NOP instructions.

Department of CSE,AITS-TIRUPATI 167

COMPUTER ORGANIZATION(20APC3007)

Consider the instruction sequence given in Figure 8.12a. Register R2 is used as a counter to determine the number
of times the contents of register R1 are shifted left. For a processor with one delay slot, the instructions can be
reordered as shown in Figure 8.12b. The shift instruction is fetched while the branch instruction is being executed.
After evaluating the branch condition, the processor fetches the instruction at LOOP or at NEXT, depending on
whether the branch condition is true or false, respectively. In either case, it completes execution of the shift
instruction. The sequence of events during the last two passes in the loop is illustrated in Figure

8.13. Pipelined operation is not interrupted at any time, and there are no idle cycles. Logically, the program is
executed as if the branch instruction were placed after the shift instruction. That is, branching takes place one
instruction later than where the branch instruction appears in the instruction sequence in the memory, hence the
name “delayed branch.”

e Time
Clock cycle 1 2 3 4 s 6 7 8
LOGP Shift_teft Rl
Decremment R Decrement F E
Branch=0 LOOP
NEXT Add RiR3 Bmnch F E
(a) Original program ioop i rt
' i Decrement (Branch taken) F E
Loop Decrement R2
Branch=0 [ogp Bk F | &
Shift_left Rl
NEXT Add RIR3 Shift (delay slo) B E
(b) Reordered Instructions ARSI gt) e] e

Figure 8.12 Reordering of instructions for Figure 8,13 Execution fiming showing the dekay slot being filled during the last wo
a delcyed branch. passes through the loop in Figure B8.126,

The effectiveness of the delayed branch approach depends on how often it is possible to reorder instructions.

Branch Prediction:

Another technique for reducing the branch penalty associated with conditional branches is to attempt to predict
whether or not a particular branch will be taken. The simplest form of branch prediction is to assume that the
branch will not take place and to continue to fetch instructions in sequential address order. Until the branch
condition is evaluated, instruction execution along the predicted path must be done on a speculative basis.
Speculative execution means that instructions are executed before the processor is certain that they are in the
correct execution sequence. Hence, care must be taken that no processor registers or memory locations are updated
until it is confirmed that these instructions should indeed be executed. If the branch decision indicates

Department of CSE,AITS-TIRUPATI 168

COMPUTER ORGANIZATION(20APC3007)

otherwise, the instructions and all their associated data in the execution units must be purged, and the correct
instructions fetched and executed.

An incorrectly predicted branch is illustrated in Figure 8.14 for a four-stage pipeline.

e TirmE
Clock cycle 1 2 3 4 5 6
Instroction
I; (Compare) Fy Dy E W
I, (Branch>0) Fpb |DYP| B
Iy Fy Dy > i
L Fy %
L Fy Dy

Figure 8.14 Timing when a branch decision has been incotrectly
predicted as not aken,

The figure shows a Compare instruction followed by a Branch>0 instruction. Branch prediction takes place in cycle
3, while instruction 13 is being fetched. The fetch unit predicts that the branch will not be taken, and it continues to
fetch instruction 14 as 13 enters the Decode stage. The results of the compare operation are available at the end of
cycle 3. Assuming that they are forwarded immediately to the instruction fetch unit, the branch condition is
evaluated in cycle 4. At this point, the instruction fetch unit realizes that the prediction was incorrect, and the two
instructions in the execution pipe are purged. A new instruction, Ik, is fetched from the branch target address in
clock cycle 5.

If branch outcomes were random, then half the branches would be taken. Then the simple approach of assuming
that branches will not be taken would save the time lost to conditional branches 50 percent of the time. However,
better performance can be achieved if we arrange for some branch instructions to be predicted as taken and others
as not taken, depending on the expected program behavior.

A decision on which way to predict the result of the branch may be made in hardware by observing whether the
target address of the branch is lower than or higher than the address of the branch instruction. A more flexible
approach is to have the compiler decide whether a given branch instruction should be predicted taken or not taken.
The branch instructions of some processors, such as SPARC, include a branch prediction bit, which is set to 0 or 1
by the compiler to indicate the desired behavior. The instruction fetch unit checks this bit to predict whether the
branch will be taken or not taken.

Any approach that has this characteristic is called static branch prediction. Another approach in which the
prediction decision may change depending on execution history is called dynamic branch prediction.

Dynamic Branch Prediction:

Department of CSE,AITS-TIRUPATI 169

COMPUTER ORGANIZATION(20APC3007)

In dynamic branch prediction schemes, the processor hardware assesses the likelihood of a given branch being
taken by keeping track of branch decisions every time that instruction is executed.

In its simplest form, the execution history used in predicting the outcome of a given branch instruction is the result
of the most recent execution of that instruction. The processor assumes that the next time the instruction is
executed, the result is likely to be the same. Hence, the algorithm may be described by the two-state machine in
Figure 8.15a. The two states are:

LT: Branch is likely to be taken LNT: Branch is likely not to be taken

Suppose that the algorithm is started in state LNT. When the branch instruction is executed and if the branch is
taken, the machine moves to state LT. Otherwise, it remains in state LNT. The next time the same instruction is
encountered, the branch is predicted as taken if the corresponding state machine is in state L'T. Otherwise it is
predicted as not taken.

Branch taken (BT)

BNT |

Branch not taken (BNT)

(a) A 2-state aigorithm

BT

i
BNT |
_

BNT

BT

BNT

(D) A 4-state algorithm

Figure 8.15 Stote-machine representation of
branch-prediction cigerithms.

This simple scheme, which requires one bit of history information for each branch instruction, works well inside
program loops. Once a loop is entered, the branch instruction that controls looping will always yield the same result
until the last pass through the loop is reached. In the last pass, the branch prediction will turn out to be incorrect,
and the branch history state machine will be changed to the opposite state. Unfortunately, this means that the next
time this same loop is entered, and assuming that there will be more than one pass through the loop, the machine
will lead to the wrong prediction.

Department of CSE,AITS-TIRUPATI 170

COMPUTER ORGANIZATION(20APC3007)

Better performance can be achieved by keeping more information about execution history. An algorithm that uses 4
states, thus requiring two bits of history information for each branch instruction, is shown in Figure 8.15b. The four
states are:

ST: Strongly likely to be taken LT: Likely to be taken
LNT: Likely not to be taken

SNT: Strongly likely not to be taken

Again assume that the state of the algorithm is initially set to LNT. After the branch instruction has been executed,
and if the branch is actually taken, the state is changed to ST; otherwise, it is changed to SNT. As program
execution progresses and the same instruction is encountered again, the state of the branch prediction algorithm
continues to change as shown. When a branch instruction is encountered, the instruction fetch unit predicts that the
branch will be taken if the state is either LT or ST, and it begins to fetch instructions at the branch target address.
Otherwise, it continues to fetch instructions in sequential address order.

INFLUENCES ON INSTRUCTION SETS:

ADDRESSING MODES:

Addressing modes should provide the means for accessing a variety of data structures simply and efficiently.
Useful addressing modes include index, indirect, auto-increment, and auto- decrement. Many processors provide
various combinations of these modes to increase the flexibility of their instruction sets. Complex addressing modes,
such as those involving double indexing, are often encountered. In choosing the addressing modes to be
implemented in a pipelined processor, we must consider the effect of each addressing mode on instruction flow in
the pipeline. Two important considerations in this regard are the side effects of modes such as auto-increment and
auto decrement and the extent to which complex addressing modes cause the pipeline to stall. Another important
factor is whether a given mode is likely to be used by compilers. To compare various approaches, we assume a
simple model for accessing operands in the memory. The load instruction Load X(R1),R2 takes five cycles to
complete execution. The instruction

Load (R1),R2

can be organized to fit a four-stage pipeline because no address computation is required. Access to memory can
take place in stage E.

A more complex addressing mode may require several accesses to the memory to reach the named operand. For
example, The instruction

Load (X(R1)),R2
Department of CSE,AITS-TIRUPATI 171

COMPUTER ORGANIZATION(20APC3007)

may be executed as shown in Figure 8.16a, assuming that the index offset, X, is given in the instruction word. After
computing the address in cycle 3, the processor needs to access memory twice - first to read location X+[R1] in
clock cycle 4 and then to read location [X+[R1]] in cycle

1. If R2 is a source operand in the next instruction, that instruction would be stalled for three cycles, which
can be reduced to two cycles with operand forwarding, as shown.

— TiME
Clock cycle 1 2 3 4 5 6 [
Load F D X+[R1] [X+[R1]] [X+[R1]] w
Forward
g

Nexd instruction F D E w

(a) Complex addressing mode
Add 3 D X+[R1] w
Load F D X+[R1]) w
Load F D X +[R17]] w
Next instruction F D E W

(b) Simple addressing mode

Fig 8.16 Equivalent operations using complex and simple addressing modes

To implement the same Load operation using only simple addressing modes requires several instructions. For
example, on a computer that allows three operand addresses, we can use

Add #X,RI,R2 Load (R2),R2 Load (R2),R2

The Add instruction performs the operation R2 — X+ [R1]. The two Load instructions fetch the address and then
the operand from the memory. This sequence of instructions takes exactly the same number of clock cycles as the
original, single Load instruction, as shown in Figure 8.16b.

The addressing modes used in modern processors often have the following features:

. Access to an operand does not require more than one access to the memory.

Department of CSE,AITS-TIRUPATI 172

COMPUTER ORGANIZATION(20APC3007)

. Only load and store instructions access memory operands.
. The addressing modes used do not have side effects.

Three basic addressing modes that have these features are register, register indirect, and index. The first two require
no address computation. In the index mode, the address can be computed in one cycle, whether the index value is
given in the instruction or in a register.

Condition Codes:

In many processors, the condition code flags are stored in the processor status register. They are either set or cleared
by many instructions, so that they can be tested by subsequent conditional branch instructions to change the flow of
program execution. An optimizing compiler for a pipelined processor attempts to reorder instructions to avoid stalling
the pipeline when branches or data dependencies between successive instructions occur. In doing so, the compiler
must ensure that reordering does not cause a change in the outcome of a computation. The dependency introduced
by the condition-code flags reduces the flexibility available for the compiler to reorder instructions.

Consider the sequence of instructions in Figure 5.17a, and assume that the execution of the Compare and Branch=0
instructions proceeds as in Figure 8.14. The branch decision takes place in step E2 rather than D2 because it must
await the result of the Compare instruction. The execution time of the Branch instruction can be reduced by
interchanging the Add and Compare instructions, as shown in Figure 5.17b.

Add R1,R2
Compare R3,R4
Branch=0

(a) A program fragment

Compare R3,R4
Add R1,R2
Branch=0

(b) Instructions reordered

Figure5.17 Instruction reordering.

Condition codes can be handled in two ways:

First, to provide flexibility in reordering instructions, the condition-code flags should be affected by as few
instructions as possible. Second, the compiler should be able to specify in which instructions of a program the
condition codes are affected and in which they are not. An instruction set designed with pipelining in mind usually
provides the desired flexibility.

LARGE COMPUTER SYSTEMS

Department of CSE,AITS-TIRUPATI 173

COMPUTER ORGANIZATION(20APC3007)

FORMS OF PARALLEL PROCESSING

Two fundamental aspects of parallel processing are:

I First, the overall task has the property that some of its subtasks can be done in parallel by different hardware
components. For example, a processor computation and an I/O transfer are performed in parallel by the processor
and the DMA controller.

I Second, some means must exist for initiating and coordinating the parallel activity. Initiation occurs when
the processor sets up the DMA transfer and then continues with another computation. When the transfer is completed,
the coordination is achieved by the interrupt signal sent from the DMA controller to the processor. This allows the
processor to begin the computation that operates on the transferred data.

CLASSIFICATION OF PARALLEL STRUCTURES:

A general classification of parallel processing has been proposed by Flynn. They are:

SISD: A single-processor computer system is called a Single Instruction stream, Single Data stream (SISD) system.
A program executed by the processor constitutes the single instruction stream, and the sequence of data items that it
operates on constitutes the single data stream.

SIMD: A single stream of instructions is broadcast to a number of processors. Each processor operates on its own
data. This scheme, in which all processors execute the same program but operate on different data, is called a Single
Instruction stream, Multiple Data stream (SIMD) system.

MIMD: The multiple data streams are the sequences of data items accessed by the individual processors in their own
memories. The third scheme involves a number of independent processors, each executing a different program and
accessing its own sequence of data items. Such machines are called Multiple Instruction stream, Multiple Data stream
(MIMD)systems.

MISD: The fourth possibility is a Multiple instruction stream, Single Data stream (MISD) system. In such a system,
a common data structure is manipulated by separate processors, each executing a different program.

ARRAY PROCESSORS

The SIMD form of parallel processing, also called array processing, was the first form of parallel processing. A two-
dimensional grid of processing elements executes an instruction stream that is broadcast from a central control
processor. As each instruction is broadcast,all elements execute it simultaneously. Each processing element is
connected toits four nearest neighbors for purposes of exchanging data.

Department of CSE,AITS-TIRUPATI 174

COMPUTER ORGANIZATION(20APC3007)

- ""1 i...._ ...,.D
7 :
¥ ¥

S e o I

) 'y
¥ ¥

processor

Broadcast i '
INSrUctions i *

Grid of
processing elements

Figure 12.1 An arroy processor.

The grid of processing elements can be used to solve two dimensional problems. For example, if each element of the
grid represents a point in space, the array can be used to compute the temperature at points in the inferior of a
conducting plane. Assume that the edges of the plane are held at some fixed temperatures. An approximate solution
at the discrete points represented by the processing elements is derived as follows. The outer edges are initialized to
the specified temperatures. All interior points are initialized to arbitrary values, not necessarily the same. Iterations
are then executed in parallel at each element. Each iteration consists of calculating an improved estimate of the
temperature at a point by averaging the current values of its four nearest neighbors. The process stops when changes
in the estimates during successive iterations are less than some predefined small quantity.

Each element must be able to exchange values with each of its neighbors over the paths. Each processing element
has a few registers and some local memory to store data. It also has a register, which we can call the network register
that facilitates movement of values to and from its neighbors. The central processor can broadcast an instruction to
shift the values in the network registers one step up, down, left, or right. Each processing element also contains an
ALU to execute arithmetic instructions broadcast by the control processor. Using these basic facilities, a sequence of
instructions can be broadcast repeatedly to implement the iterative loop. The control processor must be able to
determine when each of the processing elements has developed its component of the temperature to the required
accuracy. To do this, each element sets an internal status bit to 1 to indicate this condition. The grid interconnections
include a facility that allows the controller to detect when all status bits are set at the end of iteration.

Array processors are highly specialized machines. They are well-suited to numerical problems that can be expressed
in matrix or vector format. Recall that super computers with vector architecture are also suitable for solving such
problems. A key difference between vector-based machines and array processors is that the former achieve high
performance through heavy use of pipelining, whereas the latter provide extensive parallelism by replication of
computing modules.

THE STRUCTURE OF GENERAL-PURPOSE MULTIPROCESSORS

There are three possible ways of implementing a multiprocessor system.

Department of CSE,AITS-TIRUPATI 175

COMPUTER ORGANIZATION(20APC3007)

Processors

P, S

1< PE—— #/.

M, - e . M,
Memorics
Figure 12.2 A UMA multiprocessor.
M, M, M,
! ¢ ‘s !
L L]
Py Mx‘! Pz § M, st Pa | M, P, Py P,

4 A
T [
| —_—

Q Interconnection network) (Interconnection network

Figure 12.3 A NUMA multiprocessor. Figure 124 A distributed memory system.

The most obvious scheme is given in Figure 12.2.An interconnection network permits n processors to access &
memories so that any of the processors can access any of the memories. The interconnection network may introduce
considerable delay between a processor and a memory. If this delay is the same for all accesses to memory, which
is common for this

organization, then such a machine is called a Uniform Memory Access (UMA) multiprocessor. Because of the
extremely short instruction execution times achievable by processors, the network delay in fetching instructions and
data from the memories is unacceptable if it is too long.

An attractive alternative, which allows a high computation rate to be sustained in all processors, is to attach the
memory modules directly to the processors. This organization is shown in Figure 12.3, In addition to accessing its
local memory, each processor can also access other memories over the network. Since the remote accesses pass
through the network, these accesses take considerably longer than accesses to the local memory. Because of this
difference in access times, such multiprocessors are called Non-Uniform Memory Access (NUMA) multiprocessors.

The organizations of Figures 12.2 and 12.3 provide a global memory, where any processor can access any memory
module without intervention by another processor.

A different way of organizing the system is shown in Figure 12.4. Here, all memory modules serve as private
memories for the processors that are directly connected to them. A processor cannot access a remote memory without
the cooperation of the remote processor. This cooperation takes place in the form of messages exchanged by the
processors. Such systems are often called distributed-memory systems with a message-passing protocol.

INTERCONNECTION NETWORKS

Department of CSE,AITS-TIRUPATI 176

COMPUTER ORGANIZATION(20APC3007)

The components that form a multiprocessor system are CPUs, IOPs connected to input output devices, and a memory
unit. The interconnection between the components can have different physical configurations, depending on the
number of transfer paths that are available between the processors and memory in a shared memory system o among
the processing elements in a loosely coupled system there are several physical forms available for establishing an
interconnection network.

Time-shared common bus Multiport memory Crossbar switch
Multistage switching network Hypercube system

Time Shared Common Bus: A common-bus multiprocessor system consists of a number of processors connected
through a common path to a memory unit.

Disadvantage: Only one processor can communicate with the memory or another processor at any given time. As a
consequence, the total overall transfer rate within the system is limited by the speed of the single path. A more
economical implementation of a dual bus structure is depicted in Fig., below. Part of the local memory may be
designed as a cache memory attached to the CPU.

' | tocal bus |
System bus
| | | |
Fig: Time shared common bus organization Local bus Local bus

Fig: System bus structure for multiprocessors

Multiport Memory:

A multiport memory system employs separate buses between each memory module and each CPU. The module must
have internal control logic to determine which port will have access to memory at any given time. Memory access
conflicts are resolved by assigning fixed priorities to each memory port.

Advantages: The high transfer rate can be achieved because of the multiple paths.

Disadvantage: It requires expensive memory control logic and a large number of cables and connections.

Department of CSE,AITS-TIRUPATI 177

COMPUTER ORGANIZATION(20APC3007)

2

lemory

A MM 1 MM 2 MM 3 MM 4

N

Fig: Multiport memory organization

Crossbar Switch: Consists of a number of cross points that are placed at intersections between processor buses and
memory module paths. The small square in each cross point is a switch that determines the path from a processor to
a memory module.

Advantages: Supports simultaneous transfers from all memory modules.

Disadvantage: The hardware required to implement the switch can become quite large and complex. Below fig.
shows the functional design of a crossbar switch connected to one memory module.

z
n

mory MM 1 MM 2 MM 3 MM 4
ules

5
=
(]
]
§
L

M
LJ
fan
J
e
L
M
L

Fig: Crossbar switch

Multistage Switching Network: The basic component of a multistage network is a two input, two-output
interchange switch as shown in Fig. below.

A 0o A 0
B 1 B 1
Aconnected to 0 Aconnected to 1
A 0 A 0
B 1 B 1

B connected to 0 B connected to 1

Department of CSE,AITS-TIRUPATI 178

COMPUTER ORGANIZATION(20APC3007)

Using the 2x2 switch as a building block, it is possible to build a multistage network to control the communication
between a number of sources and destinations. To see how this is done, consider the binary tree shown in Fig. below.
Certain request patterns cannot be satisfied simultaneously. i.e., if P1 000~011, then P2 100~111 One such topology
is the omega switching network shown in Fig. below

-

Fig: 8 x 8 Omega Switching Network

Some request patterns cannot be connected simultaneously. i.e., any two sources cannot be connected simultaneously
to destination 000 and 001. In a tightly coupled multiprocessor system, the source is a processor and the destination
is a memory module. In a loosely coupled multiprocessor system, both the source and destination are processing
elements.

Hypercube System:

The topology of an n-dimensional cube, called a hypercube, to implement a network that interconnects 2n nodes. In
addition to the communication circuits, each node usually includes a processor and a memory module as well as
some I/O capability.

Figure 12.7 shows a three-dimensional hypercube. The small circles represent the communication circuits in the
nodes. The functional units attached to each node are not shown in the figure. The edges of the cube represent
bidirectional communication links between neighboring nodes. In an n-dimensional hypercube, each node is directly
connected to n neighbors. A useful way to label the nodes is to assign binary addresses to them in such a way that
the addresses of any two neighbors differ in exactly one bit position, as shown in the figure.

Routing messages through the hypercube is particularly easy. If the processor at node Ni wishes to send a message
to node Nj it proceeds as follows. The binary addresses of the source, i, and the destination, j, are compared from
least to most significant bits. Suppose that they differ first in position p. Node Ni then sends the message to its
neighbor whose address, k, differs from i in bit position p. Node Nk forwards the message to the appropriate neighbor
Department of CSE,AITS-TIRUPATI 179

COMPUTER ORGANIZATION(20APC3007)

using the same address comparison scheme. The message gets closer to destination node Nj with each of these hops
from one node to another. For example, a message from node N2 to node N5 requires 3 hops, passing through nodes
N3 and N1. The maximum distance that any message needs to travel in an n- dimensional hypercube is n hops.

Scanning address patterns from right to left is only one of the methods that can be used to determine message routing.

Hypercube interconnection networks have been used in a number of machines. The better known examples include
Intel’s iPSC, which used a 7-dimensional cube to connect up to 128 nodes, and NCUBE’s NCUBE/ten, which had
up to 1024 nodes in 4 10-dimensional cube.

T Wl W
O <
N,
(1)
N, N, O S A
(e1o) (1o [
Ni
{101)
Tl
b,
h‘{.- ‘N' - -
©00) (100) Figure 128 A 2-dimensiona!
Figure 12.7 A 3-dimensicnal hypercube mesh nehwork
. network -
Source node 010
Destination node 001 011 o] (@ 111
Exclusive-OR on | AR
0 01 11 010 3
(o (o] la . ! le1110
..... = - | L& l . .
' (@ | le]101
001 l
CHfC e o] rake o]
8 00 10 000 100
One-cube Two-cube Thiea ciiba
Fig: Hypercube structures for n=1,2,3
TREE NETWORKS:

A hierarchically structured network implemented in the form of a tree is another interconnection topology. Figure
12.9a depicts a four-way tree that interconnects 16 modules. In this tree, each parent node allows communication
between two of its children at a time. An intermediate-level node, for example node A-in the figure, can provide a
connection from one of its child nodes to its parent. This enables two leaf nodes that are any distance apart to
communicate. Only one path at a time can be established through a given node in the tree.

A tree network performs well if there is a large amount of locality in communication, that is, if only a small portion
of network traffic goes through the single root node. If this is not the case, performance deteriorates rapidly because
the root node becomes a bottleneck.

Department of CSE,AITS-TIRUPATI 180

COMPUTER ORGANIZATION(20APC3007)

To reduce the possibility of a bottleneck, the number of links in the upper levels of a tree hierarchy can be increased.
This is done in a fat tree network, in which each node in the tree (except at the top level) has more than one parent.
An example of a fat tree is given in Figure 12.9b. In this case, each node has two parent nodes. A fat tree structure
was used in the CM-5 machine by Thinking Machines Corporation.

(b) Fat tree

Figure 12.9 Tree-bosed networks.

Department of CSE,AITS-TIRUPATI 181

COMPUTER ORGANIZATION(20APC3007)

> . -5 @
-. -f\v z I. ?}(L‘ﬁ‘«"ﬁi

(1@1_1\1"‘!;'\‘14
PO&"}&!{(J[E;-m < /u"i)(a\.b (J-". Dy ¢ [‘(‘(‘J{‘u ¥ 05

. lf“,‘.{
&m— i Prchifefune.
\—- : - . { ‘ VY ¢ L?_:"{{-{ l?i'vf €5 L t‘q(’(! d -~
. rj(-,..}.-ﬁ 1 &f { & “11 ALy Il P{" (_r_ I

Yo ° LUy (04

{ﬁ:— Iq‘)\)ﬁ’r!"‘l A A DR d_'\;‘

o | -
'_{-_.‘ AL M AL '_1,{

G e | ” .
O‘Y"?’J "T’L,f‘_“: L v‘Lhﬁ (L{ 0 'H {{/ L J". Gy _‘fﬁ‘ ©
¢/ L ¥

(\\,&D{ L= n‘; __{,’ A YLy
; ' _k‘ lqv\{‘(p.'i.l’) cw-.cﬁ '{té (r(_) /
wls given o |

\
g P o PAnl - 5 iy (G v
podomie of solorg
{

e

+tz f"{_’;‘ f

i) CQL',«.‘LQ-JW‘C’H L

. u—é"“(j weve. &

=2 (LA o) £n
ke Adake e _
g R - @LCQP[E‘}}} fo

- i i k
. SealaddlF G & e B, 1 Z_\’?:Md (oM T
; (dacremse Cn perforTomes ol
B e e - a_ﬁ)étnfi“"") va[yA7e m

L
I nfy’)f 1’._{/ C_ AMS'(' ,d
re M 4

(24 9eAN /1

esf

€5' - /]r / a}p’/&.) P-\./_OV ann },_')D(J--{A LA? _((‘4142!9;; 17L
et (owd be oved SHom & S thev j; . a/. ;23 ’
;ﬂfﬂ]ﬁﬁ'fb’ﬁ -Qr) !fﬂr" M*j (@ ke r-;{_t 74 o /L e f 2 .

; . lf‘"-"nLLé,
fﬁ('.-’] ./‘pw nmvnl € (("-"y y ¢ j) /’L-\t e

lo i | e 08 o Jewnnd 9[tood Couls

P 140, '767;1'.") O A {ﬁ(, 7% Y € N c:/ lAe ¥ A
|57 /Lﬂ_r.'“\("ﬂ(i‘.tﬂ.

Department of CSE,AITS-TIRUPATI 182

COMPUTER ORGANIZATION(20APC3007)

MLL{'{'?X) S O(PASOFX Sf Moz ({(u_/ﬁby\&f“fp,(/)q,
\ ot (Dr’"{'"i_:"
| ottt oY

I'Ja/
o .‘g:WF')- 3
[')V'C‘(,f './{ A . " f:c V'\c L‘f .’.":‘2,. ﬂ(w

D’\LLHl]-m/_f WMoY,
L ,_ff{f PHA-{)* Jiv rRio PO

e -
pevrorel corgpeeliv g o O 1/ =

) G S

| S Girfle orp i = |

f |
OV | f'- L NPT
(ceosl | | spd 4 b rpdin ey
| Se rﬁp rir.vw-

“aclh pe ’ f'.'_.rfmf-ﬂr-'":;’-’?

| : " n p:,n/ ,i""{
| Bty oftey pc's o5 ps

LAl

i .‘;rimﬁ with £o)s arount | - C‘-\P“H) pc UM

{ 45 AL qw:ﬁ de--/a/s“at

e
2l WerorY

- Qo

U Cpus »E N,,,;oc oo Baian
— 43 i (ol (-[._ﬁ,q(J M{_ﬂﬂt}“"j --'%f ‘)’ O/ l”)//- <3 —V!"
= A{J\Jf Ce A" —————— vl .=
/-ttj-\%'tr'\dﬁ

(e
_ Specd ¢ te W‘Tw
4 Ny el LA(Y(JP—«)

cpus
E Gn Mulkpounsy Spleen ol the
e . I l “V\Mftt‘j
LC"\ ') (’\Ol’n"{
4
il blo owdfproustons § AT Gty
- -; ,JJJ'.i;i-. XL '_;:"Y /‘v‘,u—"'"}‘f CM’AL& Y
LA el st L
- y v L ’,\L_:'L-_\.«'.»]
Mff’ (f;.f(}«.ﬁ/«— t*}":_[tf I 1u‘-h};(€ ﬂ(-l-m“ el [/
. ' -
- J | ;f w,ﬂM;rjf.{))
s hpAL 2 TR £ Cadd I)(’ ¢ hkod 285w AUy
/ i - o Al ¥~
2 Cachh pPE S do 7ot hove |
s?y own tdivdu A pmencries (('-n prmess PF Wi Syslen
,t[. (8/ -
</) [r(_} AL Y /)' _be}rmﬁ B N AprvarYwas Cadi=n 25 TN pe 'g not
= [operrrirel odsed) BN p(g mual | ~ nanla tory

Department of CSE,AITS-TIRUPATI 183

COMPUTER ORGANIZATION(20APC3007)

.m LLIR?*»'OUMWJS \ pT Cerat), Loy 4 @

QS) & I\j\'\H“j (W P[‘-"o l ¢ loore t_tj roupled o Alove in no
ch d Y @d i Lf)u'\rf“" >,
due k:,‘nn J;ﬁihom"\ ' yerourte K]

|
(B’\ U AMe b\{u(\-un'

(or LA & h =™

. » 1 ¥ { ,.1*1':'\\\\(J i }g J
d[lﬁj‘)"ff’# lé_@k} ' liq‘ .

(G BTV oRmMA mads! Diste bded
= K-)?C)ﬁg M“}};rpﬂ\{ub"f}'

k
c oM A [('mp:\;;}ﬂ(&)

tovrine K = 7 (‘ﬂ"trfug

\’\]r.; Al ((1\ (18 wlahe ﬂ) r? cod.

\i~ley Can e . (_[nf “ o

Ao ’MJ

(é:a)ﬂr/rf“

Cache to hovence g YrehorTgalion ———=ns

ay chite.
CCN’E”U’- o g LA B P“’OP“% *f o Shaved r\’wmm{fi :v “
f::c mer“*puu,s&m) Givieg ho olleniony Jo e Slw Ahat fthee
¢ a (('LLJ(Q Cepa o-’f Q\)Ev,(\j Mn@a’y ﬁ)Z)CO.FIC"l evenN ?1['ﬁ\u*ft__m

Cppfﬂ{ ém)& },p,.
\ mctm mﬂmwuj B

|

X=10

=] i
W Oohg me
)

() (chﬂ_(\ ﬂL{‘mL_J{ rff

g AL - . - ; sl

® G 'TH.Q_ Z Vo T A {‘[‘5}\ [¥ QASJ)'\l 1) ‘f"ﬂ)t éwﬁ\)
YJ'T(}‘.J’ ¥ oD | F)| la/IH Ve a Lfg "{ CD X V(lf.l 10 ¢ Gon')
OVV\C;‘ Epj:n_al.g WA (ae b O g\ ﬂtf] .

Department of CSE,AITS-TIRUPATI 184

er‘h'bbj

}- H‘T‘ﬁi‘.‘Q fjf--\-\lv (’\‘ Y e *-3"{ YL ‘4 rw\-\-(_n N esis

TR

-

| . v vabue ‘.
|2ke chre PR E Pr ta Al A0 snotsmm nwcf

.
i‘tjﬁc‘ Y UV 1_,(AD C{’('-) ! O Core ’/\.C’ I Y10mA fﬂi.j 2 ?_T \?) " '
/ |

‘A (!-uc.ll\r --[t,_;_ r“m;_n_-vs Aaccera '”\r-‘ < -ﬂn'fm :‘rm (oL ﬁ\p)
YN a-\f\()ﬂj 101'7-’\1 ol wall ¢ hede ol Hey date. D P o4t~ gL
’ L ‘\,\._# v, 0_'\'\1

ot fRe tack

r_ii He f{sd'a_ A /\ol ry@.AmJ’

(‘(ﬁ\n'} e, menadn

(Y ot el cony He ’

-—

&l |() C !)
c{ali'\ G LC Al ; ONNAL [r(@ 0! { AT

(Lbu LA 0 ‘nj .

>} ’}_],r
- P\ P-me@)vm The emmMHcmﬁ He P{@.MUJ S ahsut o

Ep/q PnCe WM

_ , covilarnA = (O
o -im {P‘D‘O M 59\' ‘E; b o apelll o
3 = LD

\'\)\.mj o DA c!‘v*—j 1

o difpererd ro @O
Cami aA (}_E‘Jru’z

' pro@ss o¥A
Fohaxende

- o
P - R

' & \ y e N H
UL U C_o.lh.c‘ (’o_f.ﬂu.ﬁ ¢ Ohevents ﬁvoé)(f.m« > ‘

[;;(:j [

Computer Organization(20APE3007)

‘_-\-\.
— T _gibfllf (ac [\f (._‘O[_f v¥ i e z—l ‘1{‘1,')\”)-“_;\04 G/’
2}

QY (WA« g
L") Kﬁh “‘f\{‘lb 3 CL"‘{‘ { (\wt_xj f) ((,k_:(_z‘(«:'l }
C-‘ i \ L‘_‘\'ti..' Lack ({.u W LI.FB)

Y o %, volrdale - ovile “fhﬂswg&

(3
() 1 = lJf‘t-_'— (’S;"\Ck.
L N
SIN) |
| \.C-.moikj
= oML ot)
YW CkkLLL tJ1>A9111{ (BN |
. j% o N C}ﬁ - e
o 4 o ottey (& *140
gg” wll be wpde
HonSa Tl\\l"‘“\vl ':t:il. ko
r].'.-\._r (f;ﬂl'],.— -
=y x=1)
=] Beul L;__J
I—T‘.J, L@ , ¥ =10 l g “
P P P
: : froad
M'H\ QJJU.L oy cacke “Hhen +oak UCJML A
U
a } W QAPAQIL o o |
\m’\‘\ {\\f’__l‘\"(\m—J \\"1“"“"‘") £ ft ,b- ; an VE ad 17
{d@td W L l.-mL.JI Cl\{} ' P ﬂ“wL.‘A\“
CMI ¥ L"_R'-;'-L fs{:lt 2
A"LL @f L‘L_ o (1) \ l'
L olads valaal w (mw_ -H\cd* Mim fxr no
? o
W >

d 1 { LJ tA%
P .5'-0'1" }[wA PG MZMOT)

e JF teplots o e
‘u f.rp:._*'!fll :,Q}UJ v\ -H.;g catwnl t

(l]ﬂi i Tle fﬂflf*ﬁ’ 4L 4o reemovy
v .‘64.” Haion r{,!.f/‘/.lu‘mle}

volus

N I
g (e bl

Department of CSE, AITS-Tirupati

Computer Organization(20APE3007)

~wivk
e e - ? PiacA Lile G_.- CM
o Ja 7 L

G \)z..O«u on te

r'! t@w L{f\nffr le
C A (/NN f.; \pm.mj { et

’ s & the > | \ E
. [:
, * M e My
e M e
Is’m—_‘f{JI I"C

-uf (v"ﬁ]

I

: upﬂ' Lo
Y s Nv=r] 8
o e JM et ome, M3
Sy ¢ cam— —lp
pALA J r};l [4—

— MM k=& A BA 2

¢ -___-l —

y I — / -

N vyt WY VSR (Y

~ C cm Y =5 x =8 x=§
v=§ X 2 \O ¥ =10

-)(.ﬁuJ(-:‘M oo Gav
= A ATV
Lt M T)

Computer Organization(20APE3007)

Mu H7 l/e¢ [f?'}/ Jed \:w/_ S)ymp Com)u{f A4,

V € C.’{T?\ ?)1 0044 'r;\‘j ’\'.\i) i{)(f)

X vecdoy
¥ Ve oy P\ o840y
M Vectoy s ¢ 1A .')
N ek ?:{: o oM
N Vedovig wng (.Uﬂ\f_)f‘u{ﬂﬂ’

o

o

x Ve cho Lwiefﬂ f'ga_a_.(m» dota tlovs qit 7 o paons
r,{w; m- .@‘@wﬁ(A DA (LA, Mu,ilj 1l Ve vy

4 r({ AL a,’\,[:_f ey 5:-{,1_-\’\(' d/ "(u (*_ ANE (] /p,x;_j a rjﬂ/y .Mﬁlu

'w(_,-u;“w\c,wf' b@{"&um SuCeesss e {fgwmfg (_'@Lﬂlf

Aes Hive

—

X e oy sy

—

vedov “a"?‘-g;f/b fex A : /ﬁu e denagl pi[ﬁeaﬂlg,/ Pw,ou;;sf’zk{j

iy ow: {))\;;y_vvb{ﬁ g A/MJ FerOUTUA ?mg&mﬂ&ﬁ'

L&»w-wts ol YWyL'A/éM Cownlsy £ Lss Ppﬁfmmfmﬁ

verduvy opery o Fioms .

>\ edn j)v\,u}r&-;"jv

— 38 oceens when Antheelic o &Jﬂhﬂ operchony

ol afn Ll O V2 Lov<.

Department of CSE, AITS-Tirupati

Computer Organization(20APE3007)

Y X

S \Q('t‘\ \ ¢ WA e A ("

-

WL E 8% Wedine ")“'“““‘ weoelechod i)1

’}i.\“ \{. \ R \\'\’.t")l\ \(i Bl | . i\ol \ “._,\u-i-}[\ N (.4”le

\\\\:‘Q ‘\\\.{ [\,‘ ‘f|||‘ Yyl / {vi fiy\.t)ﬂr; | /e

!“\.\\"i:\\
NNy O \," Wl Vs)
FLuy Vi -3V vy - W a ¥

\

Fa: VigVe -2\

b)) \ ¥ \{e\ \ .\{‘,\ :\ukl}\(.‘l\

| u“‘llltr!'.l by a
-\‘(\{\ln '\"'N“m{n Mo Y | J

‘: L AN \\.l\
/

N \ \\lk_\: Q‘ W \"‘? (:. l \;r

i;&\&
23 S X Ve

\L i e fend

. \\\\ .\\\,\'\\.,
p o \ L} \111 e ;‘\1{‘ o

\.\ -y | "1 " ‘ 'Y\J .
\r \'\..‘i-l-'l '.,\- \‘\ e lo'\“{] ¢ 1 \L L ﬁt\\ O
1 -~ . ‘\\ ~ {‘
AR ‘ |
R L B ‘“D\J ™ an. N-Vi
e | v
(\ \\ | \)} /
f ?\\ — \ | \Jf k-ttf\. ac\a,;l)
2 \
¥ i ~3 ™ L \J o \il.’)t
-
) veden - veduche) Tednhd, i
h v Nk,\j Al AAA WM Lawa (WAL
Lale BB s

Departi

Computer Organization(20APE3007)

(_G) C'\ Ci*]\ o cu\a(wg(_ 1,\.'“'(‘ N ta" \-;Q‘\—l (dl}) ‘_5

_:rw[; LM\ #\C’ﬁ aNe LLV;{ +o ’(,}@H&uv oy ‘:{clH-’V Ue,{j-‘/

(’Lf VWA t'\{“ "t\ﬂ“- (IL““‘LJ '{{\ﬁ}‘t\‘l\jwt_ﬂ 4((: L “\ﬁ—,_j ro Yo ler’\.}
l\

40 te _féwuw'ﬁd mapping
FaL VixV; o m (_Saﬁf*)

G__fjﬂiﬁw A QM oPMc_Hovl Heak Jdd«ﬁl fﬁvm Mmamiy o

MONZND QLE‘\M,QML ?f o SPMWL Veohry W'ﬂ‘ﬁ fndices

— Stadter dodt p2 Cf/)a’“"’“e /_wamf? ol PR
Vedby 0 a ApaAL ey whege ronve enhiey
0 cndireed
4 Mg o a[au(f)wj" y
T e ol raprvens O > €%

ﬁuMﬁ“‘W}W

. ‘ L}w:jrz/x&_ WLM
O V¢ Aoy 1o & AL'OY/{N o z”\j‘w

P Lo PV cndet (oYY)
(Af+ P . % vw%y)
Flo: Vi XVan DV [V, 4a 2

_gﬂffmn'-('f voreoy AAQ awy oY
Wy MY cmus e J-.o,fqd'\\-’)
a»}}_ .fl

ey Leagfd NE JI’JI' Y1 grerg ¥

29
yvsed oy R
f.;-gM\c) LA vAe d‘a'=W(£G
Cryr-v;{{ﬁ.f wrosvmave] N (o
. wwfg{,}?w‘?\"d

ohuis 0 G oop fo
I fu,a-aﬂ..-rj L *}-’U

fFaralc
Ay 5'1(_\,«.1; ‘,»_(‘Lf 721\ V
A n) - |

Department of CSE, AITS-Tirupati

2oy 1P A7 sy o G

@)

) v wsrnoad ~oYPs Y

Computer Organization(20APE3007)

syrapoed) C\'trvv.kf aof dm
et e A}:Wﬂ‘d e]
Cpriag Y 9p hypegdos

: “3)
f-' .)"FV\,—,:\,»[\',-‘J Lag H 'N-\B"f\ 3, g i U‘/ L_ T}

/
(rvg e g2 vy | 4]

’ o (5 aiGy v A
oo ananrnond oS

-~

|
| - N LP—')&

|
nad g

[. |
Jo vyep (F Al d
ok I/?

i L) Lo
Ao\) mop P95

Computer Organization(20APE3007)

\,-hjt)

lx::“t"c Jl-'\ s o ,"/ a ..

>
lll\n:\
-~
-
-
=
o —
—
A
-
-
e 4
i —
o~ -
e A
-t 4
</
= =
J o
—r
= A=Y
< —

_'\Jural.v' v rx; }.J A

oo _W
b

~m O %S.M»‘((c«;u

.%J

\ ey

DoYo

Depdl LITICIIL Ul Lo, ALLDT1HITUpALl

Comnnter Oroanizatinn(20APF007)

(}'\.-\‘.2 f/}(”u "y e xfﬂ"ﬂ/_\ 't./ Mal /(‘I'g}nLP LLQO—V’S

>
>~

(V) Desige choices n o pasl
PYOEMOY S Jew rofl (3”“'””01!6'(1' ("“/[’H"’ Shetf)P'm”o?

{ (&} | - © -
y' ooy Shuchoe 5 i shsbubed Memony Nganizukiorn
) \-ocol el Wilh each Hyutam oy

T Aevcovnec iy Qehomzt —y onast age L2 g o b 4o nrv
! 1YY . " a CaLA . - TO D¢
F- Py | poiak- toprial

f*rl‘(l.u' ‘ (\{(_L)’\ (L)"f’/;\ wﬁ‘] -{()(ci’ lj‘p- q‘?r{\mr
w’ [}u':fl [‘0“0 u *“‘(I{"' ey WM G ‘('r‘ Comvany
i _ ‘ ('“l-f oY) Sl)b‘f}'(‘l ;
~ sy vy o 5\\“‘\& b -3 4k
(m\\n ‘ U & 7] ﬂU.w bvonout F.{ (M[_)/ MPMD ‘MJ (?"P M D
Opmol{tm- ,
il fcormpolos

MM DMPID

ﬂi’(ﬁj[[r}s‘fm% J)

((rﬂ,\}’ﬂq SE‘CJ"‘OW’\

£ MO m?. DR IR = Q-MC

-
/

u\\ff‘c_f’. o\ g@lfc LY)

‘i:_fr‘\,\c, 7)) (Tntent

@ e P ast, waJ& ‘7"“‘4 Fc{iuw’. @é’wﬂ-ﬂpw»«d~ ‘

Fesst gereotion : b Bl TS
Cyo uJ-{Y& S‘ﬁk’ﬁ‘% % (o tech s Casmtc CUJO".» dnlel | PSCfy, Aime Fek
NCube / lo

Department of CSE, AITS-Tirupati

Computer Organization(20APE3007)

ek amd ‘
).,.r] H\l VER
B [. Pora MNoll ke [2 Sapernode 1000
k‘.“ r“\““‘ \\1:\}(.“‘ . °PS [2, s e 1 MiLLky f ’ l’
\ I

N mede 15 Oxi0a

2

?) .
i ses SR e A] TG A&
TR A lech's Mosa?c G J mochms, Gl § T
e el Sualervk 2 el

" f"""‘f”"“"’ . w.T.u..;,}

/ = v t
J Coemd — OENEN o O
(WA 5 v

medfum - -.1‘;1‘:11 &f\l«‘mg.

B ,’:\]"

AN .
| opnsrelion mulioe pulars 129 “‘";‘J"'“L“l o five g
.'Ilkj\'\k ‘_:](PR RS

:\",1(_.\4’} Ny

) . i ! 3 0. Huoow
| jﬂ(.\f’r\ ().«.1!1 Q‘.\U\wci ﬂ\L!J“':“U O'PI“WL v Can, Ler) J >

-—

tovwdotne Ao <elakive mczwf"{ S mlﬁrmwg mwi_

” 3o noand
R u.‘ov{iﬂh-wd In a \\fTO’C’Fm PYOM/\& R
1 | M Genrebseo| 2 anebin | 27 rmﬂh,,)
pE e
ijl(al_ M FLoPS(Salar) Dl. | 1;2 } 4o
| Node me LopS (Veder) LO 0o 20D
; Mool |memen fge(@md) | 0.5 ¢ 32
" 200 of podes (0 ' T T
(V’Pj preal o _i < : bY : ;e o l},?&?@
STSH)VO als LoPSC&me) by i I MOK
| gl‘
| ﬁH)"Fb“hé mELoPSCVector) 640 ol 200l
\ Memery £3e (inmB) 32 | Ik 32k
.-' | beest A!e{,f}%our o0 { ;E_‘_ |- e
.I Cor’*"mu‘mc“l" (en m‘?cwﬁ’rwﬂas) il
M“ﬁ o - lotad noele 5 o i
(bovD |
(Fn m:(vom'mi‘!_) |

== | |

Department of CSE, AITS-Tirupati

Computer Organization(20APE3007)

M&*Mﬂj'(l\c\\‘\‘“*? 1'\\0([&.[_1'\\!’\»«)' (; J,rnltf ¥ 7 ol
B ’ | ¢ K ’ Uwit of
"o ? ; ! l Aa ,:.',j ' : = Y v H
o 'II‘\I'L'l[J'7 \ ;--'”\P.lti\ \"‘-)iq\' | l _i ‘ \ (O Yt g -L]}
mis / 3
{ T (omd T B diidd
Pli"{ G\Q bt 5\\?7 ') o Yueval {)“fl
. [uﬂ.;._:

*U'r' f I‘f_fff,

(q P | y]] Pocliety
"\'\\.-‘,L‘f l# 1E k ' I‘ IJ f\L{ ('I\ - ‘
- Sined (ﬂw{ﬁ\ =~ Rexsage pa V’"’a (@
: L o Mmu [1Tt oy al 2 'r,),.'j o
ko rv:"-ﬁ a Speual wru 5’
P \ i o) ()t_l P{,(,’;gi
= flow C.*n%ﬁ'(d,{qq@t Sl | '.
v ¥ (AR urlilr’ Ly @
Fn(kc'{a

{1t
I'f"l'_rlﬂl: ‘)3/' "‘;

A0 i7
S QLY R

9 Anfts >~’,,| Rrr b, — 8§ 6 N

L =

=="2" Crowe €4 vuwod Qﬁ'}"‘ﬁ D

',’/{-,\ \101 L _,wn%hjg Rﬂu-}"-g ﬂ 0 D.’

(/) A pouvet i thi(bﬂ} Wic freesd Luﬁk il
/7 P‘GJ\) L ._.x,)\,ffp ’JJ-Jﬂ 5)

~
_ \

', T\)f}— / [| ;\ "}-D o) VWAL L’kﬂ‘g ’GD"F‘ A gOU'I(_Q w1Dae. J’L)

{ |
/ \‘ 7 ! a’ﬁ L8 |r_: V

s adieY node o wﬂjﬁ\ ‘f’ Nt Eff xk; peoli &

{
‘v/._‘)_'_./__'?,-]-./"-‘)'

Department of CSE, AITS-Tirupati
10

JF' N u}}\) A%V Y a.{ﬂak

™Ml P
e 9yd »°1 F [gay S

(i

i sy = (N : o
heg)wpepe® T gy = =k
p L9 U‘? f)"fd #a \":é“ J’] (_._-1

L:

=2

s

oY MR w0 oo

Computer Organization(20APE3007)

w0

FiLrs ”ﬁ et Y
X3 oWy S ‘-'13:1“0}) o di

- nw\lkvfi = \\l'..u

-

Qu,nmw o IR o A
opo AW WY O

. s . ﬁ \
pid po prawed dlo PP Je coralS AN
- VWA .&..-j.iﬁwci T W aea} S \ ¥
ppag N, 1S osip d o™l T
B 31 gpou oY P TWAARSS Wo Yok, {7
r . 1 o J 9 \!Fuv\

Fiav A e I gV ')iu' i,

v

w LY X 2
(™ -_-_fo\. -I\SJ\-

j; DUW'-LJ\. (9] *~J5~rk)ux}:r. JpPo
) WY Lv] u.u_uf rn“’_\\.«\ WA]] {» “{ aj \’r

(%% _)j;n._‘u\\ yo o

o

O'LFH?\A
XN G} fut_!n‘l\-n_

L

L;L}auk] ’J#’)I.L_}
' .;'.J(U W) (nu‘?’ . f)—i‘-\'} ,L rl“_'\x N DN 10

bapey paiab &gy op)

Department of CSE, AITS-Tirupati
11

Computer Organization(20APE3007)

? Tl w0 .L, AV 'g;_(‘\'\“f' V) {H“ﬁ) S g(\t_l“i e lt- n.L_o. 5} y (\(l,"f"\)

Aene Havor L.\) A Ge ') wom (0 3‘"/ Y t\ﬂ VA
(

amocke T
1’\.” 1.{_\' . l '!'I_‘-l 4 C‘il ._\.."i_l\.'.t‘ P ,{' ’1 e Iﬁ lﬂ'_h\{.l “ﬂ[LAA
‘] \‘;& N .-"\ ‘1 ng‘}\.‘l iAg

_f.,kLC. P\',(. {\ \ QU lx _){.A\Lgo;ifc)p ah Q”}j '*fﬂ """-“

\; NV :b“\ headev . ([LL! ‘He} (OHOWPI LEJ = (1/

- f;-\\h} -}1&, Lu:aa{.»—v ,f Z{‘{)<.m€>aM w&we llo. pmkﬁé
s srtep. e dobn (o ot fllole Jed

3

et L — Lot paclel S il
= £ Leghf flb

T.’_f - %’/"%XD %% — chammel pomduidk

3
Cbps)
D — Diareme.

DesBnar(ov)

ik \) 3 ey il 1003 ZJ
S HTHEHD |

Department of CSE, AITS-Tirupati
12

N

Compound
\

- ol
A Composil

(\MLIP‘?R‘J -'%11\.»'1 Q [Lﬂ')!ri-_j

".‘ 30 r\é‘ Y\ -

‘((aU.C"* .

,-1'(LT‘T x " i

(f’&ﬂ\vxmf Vecfor ‘[”’>fvr-__c-..s‘;m}‘

gl ; [(
- [i e lﬁ(Ve

Koo CevE),

Al ctuve

Computer Organization(20APE3007)

fos cpemnbiems

"' rﬂ J’f I_.—'Y‘, ’(__’J [

& Do ® 10 I=(, N
Load R, X(1)
|_oad ﬂ QQI, Y(:[‘)
mu\Hptj @I ?S
Add R2 R
Stove Y(TY,Ro
\O (onbnuL

+ \(Lrl) CM*J \fa) o {U-’O Couvce Uedtovs wifh
Uwﬂﬁ N o mm(ﬂd_
c&o\u;e_a{ COCQCL
| e loe Lood

ML- y & 1+N D —>V ood
e N-D DV Vel #iply
sy =S W Vedsr vt
ey
Pyl == N X
T M(YE L/'J“N’_D \}E,Jl” Lot
anﬂMLo«(_ oy o CQWF:

Y = BR ?C(N+ Y (1:N)
‘1@;3 = 8% (TYI2)

e Y

Department of CSE, AITS-Tirupati

13

Computer Organization(20APE3007)

; S l ,’V\D (i[‘\\\ {’1\\(‘;\ A —

e = T)
) (owln { Cual K

- ! e N -]
. \JK) I 7‘-\3 @ J P(_L] = W_——(’ -
| I-PW\!-C C)‘) [T\SU(- }/ ﬂ“f)'{' LJ L,”[’E)WC'MF f]
jpeme] [[mameg]f] ||)
- ’i |)

] r/

T Man Jen (02 b ot J

/Q) ,f)ﬁf‘\'fiifﬂuﬂ lf\MDCQﬂJ 5;{ QMO (Wf“jlwé

f) / ; A gﬂ_mm} i
SIMD Mac [iaart /Lwcﬂ/ hE o :]

I

e

T = @ / Cz B ’2)
TR lc
AN A O Q {)E QP . ™ |
e | % / JM O -(M{(/W\J CLY‘&J’%
- VI v [?C, ZLLI)

b & el pvwadesdt= ey GU to all PES
A "}oanM Sug et
My G 4 msAlR Sehoms

0 ,
0 5 o & e walind L ho

N

—

Department of CSE, AITS-Tirupati
14

Computer Organization(20APE3007)

: _i.“;.)l(3 (o Vine (‘f'(’ of n¢ f,ll}f"}:‘} [c {

R kW) }
| o QJ\GM"J’ MM drdetconnecly

X LQuged
2 cyombavs

{l\‘? v I'\\‘ﬂ*‘ rl:\l__l(:lﬂ {\‘\{' Mo

-J' : 1.('1.)('“ onnee (’g
1

N Divect nkevnne ks
— Rin |
e ’1'@2 AJ‘MDM;(M_LLP J'UY(J:EJU! .m”/&
— fhypey (whbe
s -.’T‘"‘hcﬁj\‘ , 4 L&' ?/’dﬂf‘{((} ﬁneLLﬂ/
_ pishfbuled ey o il
— Ow\ﬂda ool

~ T (D'fﬂm{ifﬁ@”m b’f) Hf' PW%OX mmd ftz My
"ﬁﬁ‘ﬁ“ﬂ °s achieved JfFWDUﬁA undexonveben agrfoorks

- :J{ PIICUTS o0 Moyoy TU{-Q G0 the Pg,{{{j\, MONCE (;-_f éc.({‘
(
M [WCL du:(fw TMMO"EI ﬁ‘-ﬂ(mi-

¢

2 haed RO BM
h_'_uu.— rmost oo?dﬂlj el Sekesconnecty one
— & 1}1%
P Crsoﬂ/ﬁbil"f/i
(w{é | L cAien ﬁ’f Pﬂ'Tan_? Cormmunicabicy)
o : g e ' _
y 4 bw 200 thal- conhily cucee fo

: o
oY 'to_r;]i%\;-_»{ WSty Ao hlw

Department of CSE, AITS-Tirupati

15

Computer Organization(20APE3007)

Sl kl-d ¢ howvacdon(A Ic m(s Wax €2 that Hhe,
(oMMt (c.\l-io\’) (O0S o) oNFe (ghm»pd b?] the (ﬁ_p urCeq
‘Uf\(lk cLye (t,ﬂ"ﬂ’\(‘ch o’ 4D ?K .

Qur ——)

Bav .,

— fwes e
o Tl o [m@_‘f, Sine
Comedad 0 a bw

Di ﬁgﬁ'}_{ e
‘H’_f(\ {1 hﬂ_ \Aﬁ ?f DLQJ):)U'd (ONTVL (.lﬂ fj "{o ﬂ'\ﬂ_a [9u5 (J'V')C%paw}
== Y SOl

n o A §ine
[O{\\Cﬂ\i(m {% £ @'f fle by a!.w w0

-r\»\.ﬂ_ud!_oﬁ a} ﬂ_,D_(ﬁCO‘gl*
mulbple dwics (am be g
WSty (e o dddsmal €53t -

. i (
Y fohen A ot e ghoed <o ot
TN s

i;u N “{)ﬂk’o‘ [2”"‘[02@_“_(% of Ho by,

18 e \

ﬂ(i\ Hove o MOTE "Q:O 9{ pTO(‘.GMOM (Ol’)ﬂe’&e 9[;?.

Wwud, Yan dho Prownoid Lvould ff-fo?uﬁ.n’rLj U_')—_(];i._l_
Q 7

‘m Y\Q Y0 -
Po~ (e Ao il o A 1
o —"

Department of CSE, AITS-Tirupati
16

Computer Organization(20APE3007)

C Y0 R bay /Skﬁ?"f N

= (T{ ﬂ"‘* Y, O YO0 H(h\\‘)") &F ._(?g-dﬁ‘t‘m_& (D‘rh'wdt‘.’f{l;

Wurer ave Yeplaed by Qankched {~M|”mm,f-d;
(P =2 =

o Cm{_‘%(" 1‘\'\1{@3 of dola f-\mm& o ﬁ_mrw_bao
o)
duoitss . SeRed 0w ted s

e et (Nw’\m{"j wed e Ox cjtam_lyl..y_g(_L}l l_t_;,'

(orA \‘\'-kwkt.s»—t*(‘ e Uiy ave W dsvecds c'no.q..
e wvda yepvuewdt W Auxteha)

- ARSI |
§ o (ﬂ [Py N
\—]—J T © (])

@ (Y

. Cwakeh
1 _ ¢ o] _. j il P’:}bﬁm

J \

Department of CSE, AITS-Tirupati

17

Computer Organization(20APE3007)

Www o Y SO
Lol 2 Can O by Qo

P IR0 Epauuojﬁa}uﬂ; porzp pron [y-,’wwwl@) 1OV —
- H\fw Py N
of o Fypoup 3 gy gy o 8 T
t 5 > 1 =
ﬁ?&?(,(u@ i o ¥ f”mud?#rgw] ‘TTB\AAT', FTPD T\"L
o P
) e
a W_I_?NUQ]
w0 v ppod oo
Y i -
L‘}_Pa}gar V2 CPWY’S . 203 ,pmuwww Poanp . gﬂ
pauwonnlqw Perd .
n o >
AT BE S L@ -\
JT WWG‘& acmp

)
f’TP{f‘?’)& wy) E FND F}aauuo)h)\w‘fl ﬂ[;\mv\‘aw J‘”T‘f‘l ‘,’*;ff".\}l

. NQQJZ'W EOW‘ ™ T WIS
gy w0 Pray pro PRI Y (1)

":
'f-.mmi)) h"ﬂguu(-l'nww ij [OML:; <l ?ﬂutrwulfud -

E Jr“:l Lh‘atw, K_J]I;)_}‘ k'{“}\ YW

apa

Department of CSE, AITS-Tirupati
18

Computer Organization(20APE3007)

i.'.'-f € :‘
{-.r". l’f‘ lfof'.l"l.fll

Rimg

- A 'nvuj (0 u,ch {u (a ‘sra DUJ ml{r’"} . S ”(‘Mm’-ﬁj
& (o wmu v Cadh oMy

- 3} e ome i POUOY Lty nO . 4 liocks £ 20
m N

_¥ -SN"\P‘EC W@L‘i@ hichae. et
¥ lon expensive D ’5

DaduU S
S s ad acewl—
(onMJs‘“ c{r:mm'v:

be %“olig e ottey P04 OY S

EJ*O ,

R Sore Py g,
« C\‘u[jf(l:tt_ -\Luzw taaly.

eAL% dfd M@MN
'_j‘,-ﬂ Aot Clﬁ’ﬂ '\J\M{" He Cmp(ru LKk hed 0ne me\(j
L
U - i
j 1LLW o e ’h frvt'CH\[:-",'},_, ’{n_ /‘LU.M.lgf ¥ ‘_t’.‘/ L\:-VLL) aye &_:1
Bd,
= \ L " : n - .-
(:-}mcj,- fonneddavity o) (o\M{XNWJ (RN n”j"
(') hadw _
s . ¢ o T)i; L /SL‘N LL\-M
= PMUTe £y ot AASVE J

Department of CSE, AITS-Tirupati
19

Computer Organization(20APE3007)

Department of CSE, AITS-Tirupati

Computer Organization(20APE3007)

Shudunve f'f e dimeingions) > f { /(/

e

v,

o s

¢ Miic'{__ | j “b@ kP

-

- ,]N; NE C{_;) no C_Q.EB PC'{ (onNnec 1{1’”) L:’/") Swﬂ-f L mvpj PMnyJ

— e E’{ Ny ic /Sbu L)‘UVe ?f Forﬂé’w ok ‘alexco ﬂn{“‘(_{/] ('of“r\ra:v\
i l‘_.-‘\f‘.c: :{_::g e d\-'--“’k_{‘fp g_w\ KA O‘VVNJ) C_Q”_p_(_ﬁfcﬁj Ef pm(_g_';mys z

Cack proakier gulaing an ineaning Lok, on oculgony

Lk awd o Auihely “j v'}] e
ik J\ G W\R‘L‘I‘l i (JI ‘{Aﬁl-('\;' (onne {-E ane_
v DWW } 'IL, ule cL - Ay ’:j (GF195'! Jx" {4

3

y ("'.,‘v’\is]] Y}l Y

Department of CSE, AITS-Tirupati
21

Computer Organization(20APE3007)

19‘(2}8&&&& f\\ﬂmﬁ (.mMLDQ_fu’ \L g{ (/
-é'—__ “(“\ Sihnded kaowd onoMb €3 Aﬁ’nﬁflﬂ% o o Shave
Nmmj oo bow - o “g}\m&n

got duiibubed pmony cmomber echor

oy
ks ohowe oy %W“é N‘QM\J e
Ualy,

uNL3 i

-

E/S;lA) :

S N

wh
(ormmuns Cabion oln proesovsd Eh possbe U
v\l Mm CQD V'\d_ (Ommum&_il_ [.\‘"Tt\

[

oW ATy

Department of CSE, AITS-Tirupati
22

Computer Organization(20APE3007)

Department of CSE, AITS-Tirupati
23

Computer Organization(20APE3007)

Department of CSE, AITS-Tirupati
24

