

Department of Artificial Intelligence

Academic Year 2023-24

II. B.Tech I Semster

Computer Organization
(20APC3006)

 Prepared By

 Mrs. S. Venkata Lakshmi ., M.Tech(Ph.D).

 Assistant Professor

 Department of CSE, AITS

Page 1

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES::TIRUPATI

II B.Tech II Semester

(19APC0506) Computer Organization
Course Objectives:

 To learn the fundamentals of computer organization and its relevance to classical and modern

problems of computer design

 To make the students understand the structure and behavior of various functional modules of a

computer.

 To understand the techniques that computers use to communicate with I/O devices

 To study the concepts of pipelining and the way it can speed up processing.

 To understand the basic characteristics of multiprocessors

Unit I:

Basic Structure of Computer: Computer Types, Functional Units, Basic operational Concepts, Bus

Structure, Software, Performance, Multiprocessors and Multicomputer.

Machine Instructions and Programs: Numbers, Arithmetic Operations and Programs, Instructions and

Instruction Sequencing, Addressing Modes, Basic Input/output Operations, Stacks and Queues,

Subroutines, Additional Instructions.

Unit II:

Arithmetic: Addition and Subtraction of Signed Numbers, Design and Fast Adders, Multiplication of

Positive Numbers, Signed-operand Multiplication, Fast Multiplication, Integer Division, Floating-Point

Numbers and Operations.

Basic Processing Unit: Fundamental Concepts, Execution of a Complete Instruction, Multiple-Bus

Organization, Hardwired Control, Multiprogrammed Control.

Unit III:

The Memory System: Basic Concepts, Semiconductor RAM Memories, Read-Only Memories, Speed,

Size and Cost, Cache Memories, Performance Considerations, Virtual Memories, Memory Management

Requirements, Secondary Storage.

Unit IV:

Input/output Organization: Accessing I/O Devices, Interrupts, Processor Examples, Direct Memory

Access, Buses, Interface Circuits, Standard I/O Interfaces.

Unit V:

Pipelining: Basic Concepts, Data Hazards, Instruction Hazards, Influence on Instruction Sets.

Large Computer Systems: Forms of Parallel Processing, Array Processors, The Structure of General-

Purpose, Interconnection Networks.

Textbook:

1. “Computer Organization”, Carl Hamacher, Zvonko Vranesic, Safwat Zaky, McGraw Hill Education,

5th Edition, 2013.

Reference Textbooks:

1. Computer System Architecture, M.Morris Mano, Pearson Education, 3rd Edition.

2. Computer Organization and Architecture, Themes and Variations, Alan Clements, CENGAGE

Learning.

3. Computer Organization and Architecture, Smruti Ranjan Sarangi, McGraw Hill Education.

4. Computer Architecture and Organization, John P.Hayes, McGraw Hill Education.

Course Outcomes:

 Ability to use memory and I/O devices effectively

 Able to explore the hardware requirements for cache memory and virtual memory

 Ability to design algorithms to exploit pipelining and multiprocessors

L T P C

3 0 0 3

S Venkata Lakshmi, Assistant Professor

Page 2

UNIT-I
Basic Structure of Computer: Computer Types, Functional Units, Basic operational Concepts, Bus

Structure, Software, Performance, Multiprocessors and Multicomputer.

Machine Instructions and Programs: Numbers, Arithmetic Operations and Programs, Instructions and

Instruction Sequencing, Addressing Modes, Basic Input/output Operations, Stacks and Queues,

Subroutines, Additional Instructions.

Basic Structure of Computer:

1.1 Computer types

A computer can be defined as a fast electronic calculating machine that accepts the (data)

digitized input information process it as per the list of internally stored instructions and produces

the resulting information. List of instructions are called programs & internal storage is called

computer memory.

The different types of computers are

1. Personal computers: - This is the most common type found in homes, schools, Business

offices etc., It is the most common type of desk top computers with processing and storage units

along with various input and output devices.

2. Note book computers: - These are compact and portable versions of PC

3. Work stations: - These have high resolution input/output (I/O) graphics capability, but with

same dimensions as that of desktop computer. These are used in engineering applications of

interactive design work.

4. Enterprise systems: - These are used for business data processing in medium to large

corporations that require much more computing power and storage capacity than work stations.

Internet associated with servers has become a dominant worldwide source of all types of

information.

5. Super computers: - These are used for large scale numerical calculations required in the

applications like weather forecasting etc.,

1.2 Functional unit:

A computer consists of five functionally independent main parts input, memory, arithmetic logic

unit (ALU), and output and control unit.

S Venkata Lakshmi, Assistant Professor

Page 3

Input device accepts the coded information as source program i.e. high level language. This is

either stored in the memory or immediately used by the processor to perform the desired

operations. The program stored in the memory determines the processing steps. Basically the

computer converts one source program to an object program. i.e. into machine language.

Finally the results are sent to the outside world through output device. All of these actions are

coordinated by the control unit.

Input unit: -

The source program/high level language program/coded information/simply data is fed to a

computer through input devices keyboard is a most common type. Whenever a key is pressed,

one corresponding word or number is translated into its equivalent binary code over a cable &

fed either to memory or processor. Joysticks, trackballs, mouse, scanners etc are other input

devices.

Memory unit: -

Its function is to store programs and data. There are two classes of storage, they are:

1. Primary memory

2. Secondary memory

1. Primary memory: - Is the one exclusively associated with the processor and operates at the

electronics speeds programs must be stored in this memory while they are being executed. The

memory contains a large number of semiconductors storage cells, each capable of storing one bit

of information. These cells are rarely read or written as individual cells but instead are processed

in groups of fixed size called words.

To provide easy access to a word in memory, a distinct address is associated with each word

location. Addresses are numbers that identify memory location. Number of bits in each word is

called word length of the computer. Programs must reside in the memory during execution.

Instructions and data can be written into the memory or read out under the control of processor.

Memory in which any location can be reached in a short and fixed amount of time after

specifying its address is called random-access memory (RAM).

The time required to access one word in called memory access time. Memory which is only

readable by the user and contents of which can’t be altered is called read only memory (ROM) it

contains operating system.

Caches are the small fast RAM units, which are coupled with the processor and are often

contained on the same IC chip to achieve high performance. Although primary storage is

essential it tends to be expensive.

S Venkata Lakshmi, Assistant Professor

Page 4

2. Secondary Memory: - Is used where large amounts of data & programs have to be stored,

particularly information that is accessed infrequently.

Examples: Magnetic disks & tapes, optical disks (ie CD-ROM’s), floppies etc.,

Arithmetic logic unit (ALU):-

Most of the computer operators are executed in ALU of the processor like addition, subtraction,

division, multiplication, etc. the operands are brought into the ALU from memory and stored in

high speed storage elements called register. Then according to the instructions the operation is

performed in the required sequence.

The control and the ALU are many times faster than other devices connected to a computer

system. This enables a single processor to control a number of external devices such as key

boards, displays, magnetic and optical disks, sensors and other mechanical controllers.

Output unit:-

These actually are the counterparts of input unit. Its basic function is to send the processed

results to the outside world.

Examples: Printer, speakers, monitor etc.,

Control unit:-

It effectively is the nerve center that sends signals to other units and senses their states. The

actual timing signals that govern the transfer of data between input unit, processor, memory and

output unit are generated by the control unit.

The operation of a computer can be summarized as follows:

 The computer accepts information in the form of programs and data through an input unit

and stores it in the memory.

 Information stored in the memory is fetched, under program controi, into an arithmetic

and logic unit, where it is processed.

 Processed information leaves the computer through an output unit.

 All activities inside the machine are directed by the control unit.

1.3 Basic operational concepts

To perform a given task an appropriate program consisting of a list of instructions is stored in the

memory. Individual instructions are brought from the memory into the processor, which executes

the specified operations. Data to be stored are also stored in the memory.

Examples: - Add LOCA, R0

This instruction adds the operand at memory location LOCA, to operand in register R0 & places

the sum into register. The original contents of location LOCA are preserved, whereas those of

RO are overwritten. This instruction requires the performance of several steps,

S Venkata Lakshmi, Assistant Professor

Page 5

1. First the instruction is fetched from the memory into the processor.

2. The operand at LOCA is fetched and added to the contents of R0

3. Finally the resulting sum is stored in the register R0

The preceding Add instruction combines a memory access operation with an ALU Operations. In

some other type of computers, these two types of operations are performed by separate

instructions for performance reasons.

Load LOCA, R1

Add R1, R0

The first of these instructions transfers the contents of memory location LOCA into processor

register R1, and the second instruction adds the contents of registers RI and RO and places the

sum into RO.

Transfers between the memory and the processor are started by sending the address of the

memory location to be accessed to the memory unit and issuing the appropriate control signals.

The data are then transferred to or from the memory.

The fig shows how memory & the processor can be connected. In addition to the ALU & the

control circuitry, the processor contains a number of registers used for several different purposes.

S Venkata Lakshmi, Assistant Professor

Page 6

The instruction register (IR):- Holds the instruction that is currently being executed. Its output

is available for the control circuits which generates the timing signals that control the various

processing elements in one execution of instruction.

The program counter PC:-

This is another specialized register that keeps track of execution of a program. It contains the

memory address of the next instruction to be fetched and executed. Besides IR and PC, there are

n-general purpose registers R0 through Rn-1.

The other two registers which facilitate communication with memory are:

1. MAR – (Memory Address Register):- It holds the address of the location to be accessed.

2. MDR – (Memory Data Register):- It contains the data to be written into or read out of the

address location.

Operating steps are

1. Programs reside in the memory & usually get these through the Input unit.

2. Execution of the program starts when the PC is set to point at the first instruction of the

program.

3. Contents of PC are transferred to MAR and a Read Control Signal is sent to the memory.

4. After the time required to access the memory elapses, the address word is read out of the

memory and loaded into the MDR.

5. Now contents of MDR are transferred to the IR & now the instruction is ready to be

decoded and executed.

6. If the instruction involves an operation by the ALU, it is necessary to obtain the required

operands.

7. An operand in the memory is fetched by sending its address to MAR & Initiating a read

cycle.

8. When the operand has been read from the memory to the MDR, it is transferred from

MDR to the ALU.

9. After one or two such repeated cycles, the ALU can perform the desired operation.

10. If the result of this operation is to be stored in the memory, the result is sent to MDR.

11. Address of location where the result is stored is sent to MAR & a write cycle is initiated.

12. The contents of PC are incremented so that PC points to the next instruction that is to be

executed.

Normal execution of a program may be preempted (temporarily interrupted) if some devices

require urgent servicing, to do this one device raises an Interrupt signal.

An interrupt is a request signal from an I/O device for service by the processor. The processor

provides the requested service by executing an appropriate interrupt service routine.

The Diversion may change the internal stage of the processor its state must be saved in the

memory location before interruption. When the interrupt-routine service is completed the state of

the processor is restored so that the interrupted program may continue.

S Venkata Lakshmi, Assistant Professor

Page 7

1.4 Bus STRUCTURES

To achieve a reasonable speed of operation, a computer must be organized so that all its units can

handle one full word of data at a given time. A group of lines that serve as a connecting port for

several devices is called a bus.

‘The simplest way to interconnect functional units is to use a single bus, as shown in Figure 1.3.

Ail units are connected to this bus. Because the bus can be used for only one transfer at a time,

only two units can actively use the bus at any given time. Bus control lines are used to arbitrate

multiple requests for use of one bus.

Single bus structure is

 Low cost

 Very flexible for attaching peripheral devices

Multiple bus structure certainly increases the performance but also increases the cost

significantly.

All the interconnected devices are not of same speed & time leads to a bit of a problem. This is

solved by using cache registers (ie buffer registers). These buffers are electronic registers of

small capacity when compared to the main memory but of comparable speed.

The instructions from the processor at once are loaded into these buffers and then the complete

transfer of data at a fast rate will take place.

1.5 Software

System software is a collection of programs that are executed as needed to perform functions

such as,

 Receiving and interpreting user commands

 Entering and editing application programs and storing them as files in secondary storage

devices

 Managing the storage and retrieval of files in secondary storage devices

 Running standard application programs such as word processors, spreadsheets, or games,

with data supplied by the user

 Controlling 1/O units to receive input information and produce output results

 Translating programs from source form prepared by the user into object form consisting

of machine instructions

S Venkata Lakshmi, Assistant Professor

Page 8

 Linking and running user-written application programs with existing standard library

routines, such as numerical computation packages

System software is thus responsible for the coordination of all activities in a computing system.

Application programs are usually written in a high-level programming language, such as C, C++,

Java, or FORTRAN, in which the programmer specifies mathematical or text-processing

operations.

A system software program called a compiler translates the high-level language program into a

suitable machine language program.

Another important system program is Text editor; it is used for entering and editing application

programs. The user of this program interactively executes commands that allow statements of a

source program entered at a keyboard to be accumulated in a file.

A file is simply a sequence of alphanumeric characters or binary data that is stored in memory or

in secondary storage. A file can be referred to by a name chosen by the user.

Operating system (OS) is a large program, or actually a collection of routines, that is used to

control the sharing of and interaction among various computer units as they execute application

programs. The OS routines perform the tasks required to assign computer resources to individual

application programs. These tasks include assigning memory and magnetic disk space to

program and data files, moving data between memory and disk units, and handling I/O

operations.

During the time period t0 to t1, OS routine initiates loading the application program from disk to

memory, waits until the transfer is completed, and then passes execution control to the

application program. A similar pattern of activity occurs during period t2, to t3 and period t4 to t5,

when the operating system transfers the data file from the disk and prints the results. At t5, the

operating system may load and execute another application program.

S Venkata Lakshmi, Assistant Professor

Page 9

Now, let us point out a way that computer resources can be used more efficiently if several

application programs are to be processed. Notice that the disk and the processor are idle during

most of the time period t4 to t5. The operating system can load the next program to be executed

into the memory from the disk while the printer is operating. Sirnilarly, during t0 to t1, the

operating system can arrange to print the previous program’s results while the current program is

being loaded from the disk.

Thus, the operating system manages the concurrent execution of several application programs to

make the best possible use of computer resources. This pattern of concurrent execution is called

multiprogramming or multitasking.

1.6 Performance

The most important measure of the performance of a computer is how quickly it can execute

programs. The speed with which a computer executes program is affected by the design of its

hardware. For best performance, it is necessary to design the compiles, the machine instruction

set, and the hardware in a coordinated way.

The total time required to execute the program is elapsed time is a measure of the performance of

the entire computer system. It is affected by the speed of the processor, the disk and the printer.

The time needed to execute a instruction is called the processor time.

Just as the elapsed time for the execution of a program depends on all units in a computer

system, the processor time depends on the hardware involved in the execution of individual

machine instructions. This hardware comprises the processor and the memory which are usually

connected by the bus as shown in the fig c.

The pertinent parts of the fig. 1.3 are repeated in fig. d which includes the cache memory as part

of the processor unit.

Let us examine the flow of program instructions and data between the memory and the

processor. At the start of execution, all program instructions and the required data are stored in

the main memory. As the execution proceeds, instructions are fetched one by one over the bus

into the processor, and a copy is placed in the cache later if the same instruction or data item is

needed a second time, it is read directly from the cache.

S Venkata Lakshmi, Assistant Professor

Page 10

The processor and relatively small cache memory can be fabricated on a single IC chip. The

internal speed of performing the basic steps of instruction processing on chip is very high and is

considerably faster than the speed at which the instruction and data can be fetched from the main

memory. A program will be executed faster if the movement of instructions and data between the

main memory and the processor is minimized, which is achieved by using the cache.

For example: Suppose a number of instructions are executed repeatedly over a short period of

time as happens in a program loop. If these instructions are available in the cache, they can be

fetched quickly during the period of repeated use. The same applies to the data that are used

repeatedly.

Processor clock:

Processor circuits are controlled by a timing signal called clock. The clock designer the regular

time intervals called clock cycles. To execute a machine instruction the processor divides the

action to be performed into a sequence of basic steps that each step can be completed in one

clock cycle. The length P of one clock cycle is an important parameter that affects the processor

performance.

Processor used in today’s personal computer and work station has a clock rates that range from a

few hundred million to over a billion cycles per second.

MULTIPROCESSORS AND MULTICOMPUTERS:

 Large computers that contain a number of processor units are called multiprocessor

system.

 These systems either execute a number of different application tasks in parallel or

execute subtasks of a single large task in parallel.

 All processors usually have access to all memory locations in such system & hence they

are called shared memory multiprocessor systems.

 The high performance of these systems comes with much increased complexity and cost.

 In contrast to multiprocessor systems, it is also possible to use an interconnected group of

complete computers to achieve high total computational power. These computers

normally have access to their own memory units when the tasks they are executing need

to communicate data they do so by exchanging messages over a communication network.

This properly distinguishes them from shared memory multiprocessors, leading to name

message-passing multi computer.

MACHINE INSTRUCTIONS AND PROGRAMS

2.1 NUMBERS, ARITHMETIC OPERATIONS, AND CHARACTERS

Computers are built using logic circuits that operate on information represented by two valued

electrical signals. We label the two values as 0 and 1; and we define the amount of information

represented by such a signal as a bit of information, where bit stands for binary digit. The most

natural way to represent a number in a computer system is by a string of bits, called a binary

number. A text character can also be represented by a string of bits called a character code.

S Venkata Lakshmi, Assistant Professor

Page 11

2.1.1 NUMBER REPRESENTATION

Consider an n-bit vector

B=bn-1 …. B1b0

Where bi=0 or 1for 0≤i ≤ n— 1. This vector can represent unsigned integer values V in the range

0 to 2
n
 -1, where

We obviously need to represent both positive and negative numbers. Three systems are used for

representing such numbers:

 Sign-and-magnitude

 1’s-complement

 2’s-complement

In all three systems, the leftmost bit is 0 for positive numbers and 1 for negative numbers. Fig

2.1 illustrates all three representations using 4-bit numbers. Positive values have identical

representations in al systems, but negative values have different representations. In the sign-and-

magnitude systems, negative values are represented by changing the most significant bit (b3 in

figure 2.1) from 0 to 1 in the B vector of the corresponding positive value. For example, +5 is

represented by 0101, and -5 is represented by 1101.

S Venkata Lakshmi, Assistant Professor

Page 12

In 1’s- complement representation, negative values are obtained by complementing each bit of

the corresponding positive number. Thus, the representation for -3 is obtained by complementing

each bit in the vector 0011 to yield 1100. Clearly, the same operation, bit complementing, is

done in converting a negative number to the corresponding positive value. Converting either way

is referred to as forming the 1’s-complement of a given number. Finally, in the 2’s-complement

system, forming the 2’s-complement of a number is done by subtracting that number from 2
n
.

Hence, the 2’s complement of a number is obtained by adding 1 to the 1’s complement of that

number.

Addition of Positive numbers:-

Consider adding two 1-bit numbers. The results are shown in figure 2.2. Note that the sum of 1

and 1 requires the 2-bit vector 10 to represent the value 2. We say that the sum is 0 and the carry-

out is 1. In order to add multiple-bit numbers, we use a method analogous to that used for manual

computation with decimal numbers. We add bit pairs starting from the low-order (right) and of

the bit vectors, propagating carries toward the high-order (left) end.

INSTRUCTIONS AND INSTRUCTION SEQUENCING

A computer must have instructions capable of performing four types of operations.

 Data transfers between the memory and the processor registers

 Arithmetic and logic operations on data

 Program sequencing and control

 I/O transfers

REGISTER TRANSFER NOTATION:-
Transfer of information from one location in the computer to another. Possible locations that

may be involved in such transfers are memory locations that may be involved in such transfers

are memory locations, processor registers, or registers in the I/O subsystem. Most of the time, we

identify a location by a symbolic name standing for its hardware binary address. For Example,

names for the addresses of memory locations may be LOC, PLACE, A, VAR2; processor

registers names may be R0, R5; and I/O register names may be DATAIN, OUTSTATUS, and

so on. The contents of a location are denoted by placing square brackets around the name of the

location. Thus, the expression

S Venkata Lakshmi, Assistant Professor

Page 13

Means that the contents of memory location LOC are transferred into processor register R1.

As another example, consider the operation that adds the contents of registers R1 and R2, and

then places their sum into register R3. This action is indicated as

This type of notation is known as Register Transfer Notation (RTN). Note that “the right-hand

side of an RTN expression always denotes a value, and the left-hand side is the name of a

location where the value is to be places, overwriting the old contents of that location”.

ASSEMBLY LANGUAGE NOTATION:-

Assembly language format is another type of notation to represent machine instructions and

programs. For example, an instruction that causes the transfer described above, from memory

location LOC to processor register R1, is specified by the statement

MOV LOC,R1

The contents of LOC are unchanged by the execution of this instruction, but the old contents of

register R1 are overwritten.

The second example of adding two numbers contained in processor registers R1 and R2 and

placing their sum in R3 can be specified by the assembly language statement

Add R1,R2,R3

BASIC INSTRUCTIONS:

The operation of adding two numbers is a fundamental capability in any computer. The

statement

C = A + B

In a high-level language program is a command to the computer to add the current values of the

two variables called A and B, and to assign the sum to a third variable, C. When the program

containing this statement is compiled, the three variables, A, B, and C, are assigned to distinct

locations in the memory. We will use the variable names to refer to the corresponding memory

location addresses. The contents of these locations represent the values of the three variables.

Hence, the above high-level language statement requires the action to take place in the computer.

To carry out this action, the contents of memory locations A and B are fetched from the memory

and transferred into the processor where their sum is computed. This result is then sent back to

the memory and stored in location C.

S Venkata Lakshmi, Assistant Professor

Page 14

Let us first assume that this action is to be accomplished by a single machine instruction.

Furthermore, assume that this instruction contains the memory addresses of the three operands,

A, B, and C. This three-address instruction can be represented symbolically as

Add A,B,C

Operands A and B are called the source operands, C is called the destination operand, and Add

is the operation to be performed on the operands. A general instruction of this type has the

format

Operation Source1, Source2, Destination

If k bits are needed for specify the memory address of each operand, the encoded form of the

above instruction must contain 3k bits for addressing purposes in addition to the bits needed to

denote the Add operation.

An alternative approach is to use a sequence of simpler instructions to perform the same task,

with each instruction having only one or two operands. Suppose that two- address instructions of

the form

Operation Source, Destination

are available. An Add instruction of this type is

Add A,B

which performs the operation B←[A]+[B]. When the sum is calculated, the result is sent to the

memory and stored in location B, replacing the original contents of this location. This means that

operand B is both a source and a destination.

A single two-address instruction cannot be used to solve our original problem, which is to add

the contents of locations A and B, without destroying either of them, and to place the sum in

location C. The problem can be solved by using another two-address instruction that copies the

contents of one memory location into another. Such an instruction is

Move B,C

Which performs the operations C ← [B], leaving the contents of location B unchanged. Using

only one-address instructions, the operation C← [A] + [B] can be performed by two instruction

sequence

Move B,C

Add A,C

Thus, the one-address instruction

Add A

means the following: Add the contents of memory location A to the contents of the accumulator

register and place the sum back into the accumulator. Let us also introduce the one-address

instructions

S Venkata Lakshmi, Assistant Professor

Page 15

Load A

And

Store A

The Load instruction copies the contents of memory location A into the accumulator, and the

Store instruction copies the contents of the accumulator into memory location A. Using only

one-address instructions, the operation C ← [A] + [B] can be performed by executing the

sequence of instructions

Load A

Add B

Store C

Some early computers were designed around a single accumulator structure. Most modern

computers have a number of general-purpose processor registers – typically 8 to 32, and even

considerably more in some cases. Access to data in these registers is much faster than to data

stored in memory locations because the registers are inside the processor.

Let Ri represent a general-purpose register. The instructions

Load A, Ri

Store Ri, A and

Add A, Ri

Are generalizations of the Load, Store, and Add instructions for the single-accumulator case, in

which register Ri performs the function of the accumulator.

When a processor has several general-purpose registers, many instructions involve only operands

that are in the register. In fact, in many modern processors, computations can be performed

directly only on data held in processor registers. Instructions such as

Add Ri, Rj

Or

Add Ri, Rj, Rk

In both of these instructions, the source operands are the contents of registers Ri and Rj. In the

first instruction, Rj also serves as the destination register, whereas in the second instruction, a

third register, Rk, is used as the destination.

It is often necessary to transfer data between different locations. This is achieved with the

instruction

Move Source, Destination

When data are moved to or from a processor register, the Move instruction can be used rather

than the Load or Store instructions because the order of the source and destination operands

determines which operation is intended. Thus,

S Venkata Lakshmi, Assistant Professor

Page 16

Move A, Ri

Is the same as

Load A, Ri

And

Move Ri, A

Is the same as

Store Ri, A

In processors where arithmetic operations are allowed only on operands that are processor

registers, the C = A + B task can be performed by the instruction sequence

Move A, Ri

Move B, Rj

Add Ri, Rj

Move Rj, C

In processors where one operand may be in the memory but the other must be in register, an

instruction sequence for the required task would be

Move A, Ri

Add B, Ri

Move Ri, C

The speed with which a given task is carried out depends on the time it takes to transfer

instructions from memory into the processor and to access the operands referenced by these

instructions. Transfers that involve the memory are much slower than transfers within the

processor.

We have discussed three-, two-, and one-address instructions. It is also possible to use

instructions in which the locations of all operands are defined implicitly. Such instructions are

found in machines that store operands in a structure called a pushdown stack. In this case, the

instructions are called zero-address instructions.

INSTRUCTION EXECUTION AND STRAIGHT-LINE SEQUENCING:

The three instructions of the program are in successive word locations, starting at location i.

Since each instruction is 4 bytes long, the second and third instructions start at addresses i + 4

and i + 8.

Let us consider how below program is executed. The processor contains a register called the

program counter (PC), which holds the address of the instruction to be executed next.

To begin executing a program, the address of its first instruction (i in our example) must be

placed into the PC. Then, the processor control circuits use the information in the PC to fetch

and execute instructions, one at a time, in the order of increasing addresses. This is called

straight-line sequencing. During the execution of each instruction, the PC is incremented by 4 to

point to the next instruction. Thus, after the Move instruction at location i + 8 is executed, the PC

S Venkata Lakshmi, Assistant Professor

Page 17

contains the value i + 12, which is the address of the first instruction of the next program

segment.

Executing a given instruction is a two-phase procedure: instruction fetch & instruction execute.

In the first phase the instruction is fetched from the memory location whose address is in the PC.

This instruction is placed in the instruction register (IR) in the processor.

At the start of the second phase the instruction in IR is examined to determine which operation is

to be performed.

BRANCHING:

Consider the task of adding a list of n numbers. The addresses of the memory locations

containing the n numbers are symbolically giver as NUM1, NUM2... NUMn and a separate Add

instruction is used to add each number to the contents of register R0. After all the numbers have

been added, the result is placed in memory location SUM.

The loop is a straight-line sequence of instructions executed as many times as needed. It starts at

location LOOP and ends at the instruction Branch>0. During each pass through this loop, the

address of the next list entry is determined, and that entry is fetched and added to RO.

S Venkata Lakshmi, Assistant Professor

Page 18

Assume that the number of entries in the list, 2, is stored in memory location N. Register R1 is

used as a counter to determine the number of times the loop is executed. Hence, the contents of

location N are leaded into register R1 at the beginning of the program. Then, within the body of

the loop, the instruction

Decrement R1

reduces the contents of RI by 1 each time through the Loop. Execution of the loop is repeated as

long as the result of the decrement operation is greater than zero.

Branch instruction loads a new value into the program counter. The processor fetches and

executes the instruction at this new address, called the branch target. Conditional branch

instruction causes a branch only if a specified condition is satisfied. If the condition is not

satisfied, the PC is incremented in the normal way, and the next instruction in sequential address

order is fetched and executed.

Branch>0 LOOP

The Move instruction is fetched and executed. It moves the final result from R0 into memory

location SUM.

CONDITION CODES:

The processor keeps track of information about the results of various operations for use by

subsequent conditional branch instructions. This is accomplished by recording the required

S Venkata Lakshmi, Assistant Professor

Page 19

information in individual bits, often called condition code flags. These flags are usually grouped

together in a special processor register called the condition code register or status register.

Individual condition code flags are set to 1 or cleared to 0, depending on the outcome of the

operation performed.

Four commonly used flags are:

Set to 1 if the result is negative; otherwise, cleared to 0N (negative)

Set to 1 if the result is 0; otherwise, cleared to 0Z (zero)

Set to 1 if arithmetic overflow occurs; otherwise, cleared to 0V (overfiow}

Set to 1 if a carry-out results from the operation; otherwise, cleared to 0C (carry)

The N and Z flags indicate whether the result of an arithmetic or logic operation is negative or

zero. The N and Z flags may also be affected by instructions that transfer data, such as Move,

Load, or Store.

The V flag indicates whether overflow has taken place. The processor sets the V flag to allow the

programmer to test whether overflow has occurred and branch to an appropriate routine that

corrects the problem. Instructions such as BranchlfOverfiow are provided for this purpose.

The C flag is set to 1 if a carry occurs from the most significant bit position during an arithmetic

operation. This flag makes it possible to perform arithmetic operations on operands that are

longer than the word length of the processor.

The instruction Branch>0, tests one or more of the condition flags.

GENERATING MEMORY ADDRESSES:

Suppose that a processor register, Ri, is used to hold the memory address of an operand, H it is

initially loaded with the address NUM1 before the loop is entered and is then incremented by 4

on each pass through the loop, it can provide the needed capability.

S Venkata Lakshmi, Assistant Professor

Page 20

ADDRESSING MODES:

The different ways in which the location of an operand is specified in an instruction are referred

to as addressing modes.

IMPLEMENTATION OF VARIABLES AND CONSTANTS:

Variables and constants are the simplest data types and are found in almost every computer

program. In assembly language, a variable is represented by allocating a register or a memory

location to hold its value. Thus, the value can be changed as needed using appropriate

instructions.

Register mode: The operand is the contents of a processor register; the name (address) of the

register is given in the instruction.

Absolute mode: The operand is in a memory location; the address of this location is given

explicitly in the instruction. (In some assembly languages, this mode is called Direct.)

The instruction

MOVE LOC, R2

uses these two modes. Processor registers are used as temporary storage locations where the data

in a register are accessed using the Register mode. The Absolute mode can represent global

variables in a program. A declaration such as

Integer A, B;

in a high-level language program will cause the compiler to allocate a memory location to each

of the variables A and B.

S Venkata Lakshmi, Assistant Professor

Page 21

Immediate mode: The operand is given explicitly in the instruction.

For example, the instruction

Move 200immediae, R0

places the value 200 in register R0.

The Immediate mode is only used to specify the value of a source operand.

A common convention is to use the sharp sign (#) in front of the value to indicate that this value

is to be used as an immediate operand.

Move #200, R0

Constant values are used frequently in high-level language programs.

For example, the statement

A=B+6

contains the constant 6, Assuming that A and B have been declared earlier as variables and may

be accessed using the Absolute mode, this statement may be compiled asfollows:

Move B,R1

Add #6,R1

Move R1,A

INDIRECTION AND POINTERS

In the addressing modes that follow, the instruction provides information from which the

memory address of the operand can be determined. We refer to this address as the effective

address (EA) of the operand.

Indirect mode: The effective address of the operand is the contents of a register or memory

location whose address appears in the instruction.

Indirection will be denoted by placing the name of the register or the memory address given in

the instruction in parentheses.

To execute the Add instruction in Figure 2.11a, the processor uses the value B, which is in

register R1, as the effective address of the operand. It requests a read operation from the memory

to read the contents of location B. The value read is the desired operand, which the processor

adds to the contents of register R0. Indirect addressing through a memory location is also

possible as shown in Figure 2.11b. In this case, the processor first reads the contents of memory

location A, and then requests a second read operation using the value B as an address to obtain

the operand.

S Venkata Lakshmi, Assistant Professor

Page 22

The register or memory location that contains the address of an operand is called a pointer.

For adding a list of numbers, indirect addressing can be used to access successive numbers in the

list, resulting in the program shown in Figure 2.12. Register R2 is used as a pointer to the

numbers in the list, and the operands are accessed indirectly through R2. The initialization

section of the program loads the counter value n from memory location N into R1 and uses the

immediate addressing mode to place the address value NUM1, which is the address of the first

number in the list, into R2. Then it clears R0 to 0. The first time through the loop, the instruction

Add (R2),R0

fetches the operand at location NUMI and adds it to R0. The second Add instruction adds 4 to

the contents of the pointer R2, so that it will contain the address value NUM2 when the above

instruction is executed in the second pass through the loop.

Consider the C-language statement

A=*B

where B is a pointer variable. This statement may be compiled into

Move B,R1

Move (R1),A

Using indirect addressing through memory, the same action can be achieved with

Move (B),A

INDEXING AND ARRAYS:

It is useful in dealing with lists and arrays.

Index mode: The effective address of the operand is generated by adding a constant value to the

contents of a register.

S Venkata Lakshmi, Assistant Professor

Page 23

The register used may be either a special register provided for this purpose, or, more commonly,

it may be any one of a set of general-purpose registers in the processor. In either case, it is

referred to as an index register.

Index mode can be indicated symbolically as

X(Ri)

where X denotes the constant value contained in the instruction and Ri is the name of the register

involved. The effective address of the operand is given by

EA =X+[Ri]

The contents of the index register are not changed in the process of generating the effective

address.

In an assembly language program, the constant X may be given cither as an explicit number or as

a symbolic name representing a numerical value.

In Figure 2.13a, the index register, Ri, contains the address of a memory location, and the value

X defines an offset (also called a displacement) from this address to the location where the

operand is found.

An alternative use is illustrated in Figure 2.13b. Here, the constant X corresponds to a memory

address, and the contents of the index register define the offset to the operand.

In either case, the effective address is the sum of two values; one is given explicitly in the

instruction, and the other is stored in a register.

S Venkata Lakshmi, Assistant Professor

Page 24

To see the usefulness of indexed addressing, consider a simple example involving a list of test

scores for students taking a given course. Assume that the list of scores, beginning at location

LIST, is structured as shown in Figure 2.14. A four-word memory block comprises a record that

stores the relevant information for each student. Each record consists of the student’s

identification number (ID), followed by the scores the student earned on three tests. There are n

students in the class, and the value n is stored in location N immediately in front of the list. The

addresses given in the figure for the student IDs and test scores assume that the memory is byte

addressable and that the word length is 32 bits

Each row contains the entries for one student, and the columns give the IDs and test scores.

In general, the Index mode facilitates access to an operand whose location is defined relative to a

reference point within the data structure in which the operand appears

Several variations of basic form provide for very efficient access to memory operands in

practical programming situations. For Example,

(Ri Rj)

The effective address is the sum of the contents of registers Ri and Rj. The second register is

usually called the base register.

S Venkata Lakshmi, Assistant Professor

Page 25

RELATIVE ADDRESSING:

Then, X(PC) can be used to address a memory location that is X bytes away from the location

presently pointed to by the program counter. Since the addressed location is identified “relative”

to the program counter, which always identifies the current execution point in a program, the

name Relative mode is associated with this type of addressing.

Relative mode: The effective address is determined by the Index mode using the program counter

in place of the general-purpose register Ri.

This mode can be used to access data operands. But, it’s most common use is to specify the

target address in branch instructions. An instruction such as

Branch>0 LOOP

causes program execution to go to the branch target location identified by the name LOOP if the

branch condition is satisfied.

APDITIONAL MODES:

Autoincrement mode: The effective address of the operand is the contents of a register specified

in the instruction. After accessing the operand, the contents of this register are automatically

incremented to point to the next item in a list.

Autoincrement mode can be denoted by putting the specified register in parentheses, to show that

the contents of the register are used as the effective address, followed by a plus sign to indicate

that these contents are to be incremented after the operand is accessed. Thus, the Autoincrement

mode is written as

S Venkata Lakshmi, Assistant Professor

Page 26

(Ri)+

Implicitly, the increment amount is 1 when the mode is given in this form.

Autodecrement mode: The contents of a register specified in the instruction are first

automatically decremented and are then used as the effective address of the operand.

Autodecrement mode can be denoted by putting the specified register in parentheses, preceded

by a minus sign to indicate that the contents of the register are to be decremented before being

used as the effective address. Thus, we write

-(Ri)

In this mode, operands are accessed in descending address order.

2.3 Basic input/output operations

We now examine the means by which data are transferred between the memory of a computer

and the outside world. Input/Output (I/O) operations are essential, and the way they are

performed can have a significant effect on the performance of the computer.

Consider a task that reads in character input from a keyboard and produces character output on a

display screen. A simple way of performing such I/O tasks is to use a method known as program-

controlled I/O. The rate of data transfer from the keyboard to a computer is limited by the typing

speed of the user, which is unlikely to exceed a few characters per second. The rate of output

transfers from the computer to the display is much higher. It is determined by the rate at which

characters can be transmitted over the link between the computer and the display device,

typically several thousand characters per second. However, this is still much slower than the

speed of a processor that can execute many millions of instructions per second. The difference in

speed between the processor and I/O devices creates the need for mechanisms to synchronize the

transfer of data between them.

S Venkata Lakshmi, Assistant Professor

Page 27

The keyboard and the display are separate device as shown in fig a. the action of striking a key

on the keyboard does not automatically cause the corresponding character to be displayed on the

screen. One block of instructions in the I/O program transfers the character into the processor,

and another associated block of instructions causes the character to be displayed.

Striking a key store the corresponding character code in an 8-bit buffer register associated with

the keyboard. Let us call this register DATAIN, as shown in fig a. To inform the processor that a

valid character is in DATAIN, a status control flag, SIN, is set to 1. A program monitors SIN,

and when SIN is set to 1, the processor reads the contents of DATAIN. When the character is

transferred to the processor, SIN is automatically cleared to 0. If a second character is entered at

the keyboard, SIN is again set to 1, and the processor repeats.

An analogous process takes place when characters are transferred from the processor to the

display. A buffer register, DATAOUT, and a status control flag, SOUT, are used for this

transfer. When SOUT equals 1, the display is ready to receive a character.

In order to perform I/O transfers, we need machine instructions that can check the state of the

status flags and transfer data between the processor and the I/O device. These instructions are

similar in format to those used for moving data between the processor and the memory. For

example, the processor can monitor the keyboard status flag SIN and transfer a character from

DATAIN to register R1 by the following sequence of operations.

2.4 Stacks and queues

A computer program often needs to perform a particular subtask using the familiar subroutine

structure. In order to organize the control and information linkage between the main program and

the subroutine, a data structure called a stack is used. This section will describe stacks, as well as

a closely related data structure called a queue.

Data operated on by a program can be organized in a variety of ways. We have already

encountered data structured as lists. Now, we consider an important data structure known as a

stack. A stack is a list of data elements, usually words or bytes, with the accessing restriction that

elements can be added or removed at one end of the list only. This end is called the top of the

stack, and the other end is called the bottom. Another descriptive phrase, last-in-first-out (LIFO)

stack, is also used to describe this type of storage mechanism; the last data item placed on the

S Venkata Lakshmi, Assistant Professor

Page 28

stack is the first one removed when retrieval begins. The terms push and pop are used to describe

placing a new item on the stack and removing the top item from the stack, respectively.

Fig b shows a stack of word data items in the memory of a computer. It contains numerical

values, with 43 at the bottom and -28 at the top. A processor register is used to keep track of the

address of the element of the stack that is at the top at any given time. This register is called the

stack pointer (SP). It could be one of the general-purpose registers or a register dedicated to this

function.

Another useful data structure that is similar to the stack is called a queue. Data are stored in and

retrieved from a queue on a first-in-first-out (FIFO) basis. Thus, if we assume that the queue

grows in the direction of increasing addresses in the memory, which is a common practice, new

data are added at the back (high-address end) and retrieved from the front (low-address end) of

the queue.

There are two important differences between how a stack and a queue are implemented. One end

of the stack is fixed (the bottom), while the other end rises and falls as data are pushed and

popped. A single pointer is needed to point to the top of the stack at any given time. On the other

hand, both ends of a queue move to higher addresses as data are added at the back and removed

from the front. So, two pointers are needed to keep track of the two ends of the queue.

Another difference between a stack and a queue is that, without further control, a queue would

continuously move through the memory of a computer in the direction of higher addresses. One

way to limit the queue to a fixed region in memory is to use a circular buffer. Let us assume that

memory addresses from BEGINNING to END are assigned to the queue. The first entry in the

queue is entered into location BEGINNING, and successive entries are appended to the queue by

entering them at successively higher addresses. By the time the back of the queue reaches END,

space will have been created at the beginning if some items have been removed from the queue.

Hence, the back pointer is reset to the value BEGINNING and the process continues. As in the

case of a stack, care must be taken to detect when the region assigned to the data structure is

either completely full or completely empty.

2.5 Subroutines

In a given program, it is often necessary to perform a particular subtask many times on different

data-values. Such a subtask is usually called a subroutine. For example, a subroutine may

evaluate the sine function or sort a list of values into increasing or decreasing order.

S Venkata Lakshmi, Assistant Professor

Page 29

It is possible to include the block of instructions that constitute a subroutine at every place where

it is needed in the program. However, to save space, only one copy of the instructions that

constitute the subroutine is placed in the memory, and any program that requires the use of the

subroutine simply branches to its starting location. When a program branches to a subroutine we

say that it is calling the subroutine. The instruction that performs this branch operation is named

a Call instruction.

After a subroutine has been executed, the calling program must resume execution, continuing

immediately after the instruction that called the subroutine. The subroutine is said to return to the

program that called it by executing a Return instruction.

The way in which a computer makes it possible to call and return from subroutines is referred to

as its subroutine linkage method. The simplest subroutine linkage method is to save the return

address in a specific location, which may be a register dedicated to this function. Such a register

is called the link register. When the subroutine completes its task, the Return instruction returns

to the calling program by branching indirectly through the link register.

The Call instruction is just a special branch instruction that performs the following operations

 Store the contents of the PC in the link register

 Branch to the target address specified by the instruction.

The Return instruction is a special branch instruction that performs the operation.

 Branch to the address contained in the link register.

SUBROUTINE NESTING AND THE PROCESSOR STACK:-

A common programming practice, called subroutine nesting, is to have one subroutine call

another. In this case, the return address of the second call is also stored in the link register,

destroying its previous contents. Hence, it is essential to save the contents of the link register in

some other location before calling another subroutine. Otherwise, the return address of the first

subroutine will be lost.

Subroutine nesting can be carried out to any depth. Eventually, the last subroutine called

completes its computations and returns to the subroutine that called it. The return address needed

for this first return is the last one generated in the nested call sequence. That is, return addresses

S Venkata Lakshmi, Assistant Professor

Page 30

are generated and used in a last-in-first-out order. This suggests that the return addresses

associated with subroutine calls should be pushed onto a stack. A particular register is designated

as the stack pointer, SP, to be used in this operation. The stack pointer points to a stack called the

processor stack. The Call instruction pushes the contents of the PC onto the processor stack and

loads the subroutine address into the PC. The Return instruction pops the return address from the

processor stack into the PC.

PARAMETER PASSING:-

When calling a subroutine, a program must provide to the subroutine the parameters, that is, the

operands or their addresses, to be used in the computation. Later, the subroutine returns other

parameters, in this case, the results of the computation. This exchange of information between a

calling program and a subroutine is referred to as parameter passing. Parameter passing may be

accomplished in several ways. The parameters may be placed in registers or in memory

locations, where they can be accessed by the subroutine. Alternatively, the parameters may be

placed on the processor stack used for saving the return address.

The purpose of the subroutines is to add a list of numbers. Instead of passing the actual list

entries, the calling program passes the address of the first number in the list. This technique is

called passing by reference. The second parameter is passed by value, that is, the actual number

of entries, n, is passed to the subroutine.

THE STACK FRAME:-

Now, observe how space is used in the stack in the example. During execution of the subroutine,

six locations at the top of the stack contain entries that are needed by the subroutine. These

locations constitute a private workspace for the subroutine, created at the time the subroutine is

entered and freed up when the subroutine returns control to the calling program. Such space is

called a stack frame.

S Venkata Lakshmi, Assistant Professor

Page 31

fig 2.27 shows an example of a commonly used layout for information in a stack frame. In

addition to the stack pointer SP, it is useful to have another pointer register, called the frame

pointer (FP), for convenient access to the parameters passed to the subroutine and to the local

memory variables used by the subroutine. These local variables are only used within the

subroutine, so it is appropriate to allocate space for them in the stack frame associated with the

subroutine. We assume that four parameters are passed to the subroutine, three local variables are

S Venkata Lakshmi, Assistant Professor

Page 32

used within the subroutine, and registers R0 and R1 need to be saved because they will also be

used within the subroutine.

The pointers SP and FP are manipulated as the stack frame is built, used, and dismantled for a

particular of the subroutine. We begin by assuming that SP point to the old top-of-stack (TOS)

element in fig b. Before the subroutine is called, the calling program pushes the four parameters

onto the stack. The call instruction is then executed, resulting in the return address being pushed

onto the stack. Now, SP points to this return address, and the first instruction of the subroutine is

about to be executed. This is the point at which the frame pointer FP is set to contain the proper

memory address. Since FP is usually a general-purpose register, it may contain information of

use to the Calling program. Therefore, its contents are saved by pushing them onto the stack.

Since the SP now points to this position, its contents are copied into FP.

Thus, the first two instructions executed in the subroutine are

Move FP, -(SP)

Move SP, FP

After these instructions are executed, both SP and FP point to the saved FP contents.

Subtract #12, SP

Finally, the contents of processor registers R0 and R1 are saved by pushing them onto the stack.

At this point, the stack frame has been set up as shown in the fig.

The subroutine now executes its task. When the task is completed, the subroutine pops the saved

values of R1 and R0 back into those registers, removes the local variables from the stack frame

by executing the instruction.

Add #12, SP

and pops the saved old value of FP back into FP. At this point, SP points to the return address, so

the Return instruction can be executed, transferring control back to the calling program.

ADDITIONAL INSTRUCTIONS

Logic instructions

Logic operations such as AND, OR, and NOT, applied to individual bits, are the basic building

blocks of digital circuits, as described. It is also useful to be able to perform logic operations is

software, which is done using instructions that apply these operations to all bits of a word or byte

independently and in parallel. For example, the instruction

Not dst
SHIFT AND ROTATE INSTRUCTIONS:-

There are many applications that require the bits of an operand to be shifted right or left some

specified number of bit positions. The details of how the shifts are performed depend on whether

the operand is a signed number or some more general binary-coded information. For general

operands, we use a logical shift. For a number, we use an arithmetic shift, which preserves the

sign of the number.

Logical shifts:-

Two logical shift instructions are needed, one for shifting left (LShiftL) and another for shifting

right (LShiftR). These instructions shift an operand over a number of bit positions specified in a

count operand contained in the instruction. The general form of a logical left shift instruction is

LShiftL count, dst
(a) Logical shift left LShiftL #2, R0

S Venkata Lakshmi, Assistant Professor

Page 33

(b) Logical shift right LShiftR #2, R0

(c) Arithmetic shift right AShiftR #2, R0

Rotate Operations:-

In the shift operations, the bits shifted out of the operand are lost, except for the last bit shifted

out which is retained in the Carry flag C. To preserve all bits, a set of rotate instructions can be

used. They move the bits that are shifted out of one end of the operand back into the other end.

Two versions of both the left and right rotate instructions are usually provided. In one version,

the bits of the operand are simply rotated. In the other version, the rotation includes the C flag.

(a) Rotate left without carry RotateL #2, R0

S Venkata Lakshmi, Assistant Professor

 Page 34

(b) Rotate left with carry RotateLC #2, R0

2.10.3 MULTIPLICATION AND DIVISION

‘Two signed integers can be multiplied or divided by machine instructions with the same format.

The instruction

Multiply Ri,Rj

performs the operation

, Assistant Professor

Page 35

The product of two n-bit numbers can be as large as 2n bits. A number of instruction sets have a

Multiply instruction that computes the lew-order n bits of the product and places i in register Rj,

as indicated. To accommodate the general 2n-bit product case, some processors produce the

product in two registers, usually adjacent registers Rj and R(j + 1), with the high-order half being

placed in register R(j + 1).

Some instruction sets provide a signed integer Divide instruction

Divide Ri,Rj

which performs the operation

placing the quotient in Rj. The remainder may be placed in R(j + 1), or it may be Lost.

-- END --

S Venkata Lakshmi, Assistant Professor

 Page 1

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES::TIRUPATI

II B.Tech II Semester

(19APC0506) Computer Organization

Course Objectives:

• To learn the fundamentals of computer organization and its relevance to classical and modern

problems of computer design

• To make the students understand the structure and behavior of various functional modules of a

computer.

• To understand the techniques that computers use to communicate with I/O devices

• To study the concepts of pipelining and the way it can speed up processing.

• To understand the basic characteristics of multiprocessors

Unit I:

Basic Structure of Computer: Computer Types, Functional Units, Basic operational Concepts, Bus

Structure, Software, Performance, Multiprocessors and Multicomputer.

Machine Instructions and Programs: Numbers, Arithmetic Operations and Programs, Instructions and

Instruction Sequencing, Addressing Modes, Basic Input/output Operations, Stacks and Queues,

Subroutines, Additional Instructions.

Unit II:

Arithmetic: Addition and Subtraction of Signed Numbers, Design and Fast Adders, Multiplication of

Positive Numbers, Signed-operand Multiplication, Fast Multiplication, Integer Division, Floating-Point

Numbers and Operations.

Basic Processing Unit: Fundamental Concepts, Execution of a Complete Instruction, Multiple-Bus

Organization, Hardwired Control, Multiprogrammed Control.

Unit III:

The Memory System: Basic Concepts, Semiconductor RAM Memories, Read-Only Memories, Speed,

Size and Cost, Cache Memories, Performance Considerations, Virtual Memories, Memory Management

Requirements, Secondary Storage.

Unit IV:

Input/output Organization: Accessing I/O Devices, Interrupts, Processor Examples, Direct Memory

Access, Buses, Interface Circuits, Standard I/O Interfaces.

Unit V:

Pipelining: Basic Concepts, Data Hazards, Instruction Hazards, Influence on Instruction Sets

Large Computer Systems: Forms of Parallel Processing, Array Processors, The Structure of General-

Purpose, Interconnection Networks.

Textbook:

1. “Computer Organization”, Carl Hamacher, Zvonko Vranesic, Safwat Zaky, McGraw Hill Education,

5th Edition, 2013.

Reference Textbooks:

1. Computer System Architecture, M.Morris Mano, Pearson Education, 3rd Edition.

2. Computer Organization and Architecture, Themes and Variations, Alan Clements, CENGAGE

Learning.

3. Computer Organization and Architecture, Smruti Ranjan Sarangi, McGraw Hill Education.

4. Computer Architecture and Organization, John P.Hayes, McGraw Hill Education.

Course Outcomes:

• Ability to use memory and I/O devices effectively

• Able to explore the hardware requirements for cache memory and virtual memory

• Ability to design algorithms to exploit pipelining and multiprocessors

L T P C

3 0 0 3

S Venkata Lakshmi, Assistant Professor

 Page 2

UNIT-II
Arithmetic: Addition and Subtraction of Signed Numbers, Design and Fast Adders, Multiplication of

Positive Numbers, Signed-operand Multiplication, Fast Multiplication, Integer Division, Floating-Point

Numbers and Operations.

Basic Processing Unit: Fundamental Concepts, Execution of a Complete Instruction, Multiple-Bus

Organization, Hardwired Control, Multiprogrammed Control.

Arithmetic

2.1 ADDITION AND SUBTRACTION OF SIGNED NUMBERS

Figure 6.1 shows the logic truth table for the sum and carry-out functions for adding equally

weighted bits x; and y, in two numbers X and Y, The figure also shows logic expressions for

these functions, along with an example of addition of the 4-bit unsigned numbers 7 and 6. Note

that each stage of the addition process must accommodate a carry-in bit. We use ci to represent

the carry-in to the ith stage, which is the same as the carry-out from the (i - 1) st stage.

The logic expression for si in Figure 6.1 can be implemented with a 3-input XOR gate, used in

Figure 6.2a as part of the logic required for a single stage of binary addition. The carry-out

function, ci+1, is implemented with a two-level AND-OR logic circuit. A convenient symbol for

the complete circuit for a single stage of addition, called a full adder (FA), is also shown in the

figure.

A cascaded connection of such n full adder blocks, as shown in Figure 6.2C, forms a parallel

adder & can be used to add two n-bit numbers. Since the carries must propagate, or ripple,

through this cascade, the configuration is called an n-bit ripple-carry adder.

The carry-in, Co, into the least-significant-bit (LSB) position [1st stage] provides a convenient

means of adding 1 to a number. Take for instance; forming the 2's- complement of a number

involves adding 1 to the 1’s-complement of the number. The carry signals are also useful for

interconnecting k adders to form an adder capable of handling input numbers that are kn bits

long, as shown in Figure 6.2c.

S Venkata Lakshmi, Assistant Professor

 Page 3

ADDITION/SUBTRACTION Logic UNIT:

The n-bit adder in Figure 6.28 can be used to add 2’s-complement numbers X and Y, where the

Xn-1 and yn-1 bits are the sign bits. Overflow can only occur when the signs of the two operands

are the same. In this case, overflow obviously occurs if the sign of the result is different,

therefore, a circuit to detect overflow can be added to the n-bit adder by implementing the logic

expression

S Venkata Lakshmi, Assistant Professor

 Page 4

Overflow can also occur when the carry bits c, and cn-1 are different. Therefore, a simpler

alternative circuit for detecting overflow can be obtained by implementing the expression cn

cn-1 with an XOR gate.

In order to perform the subtraction operation X - Y on 2’s-complement numbers X and Y, we

form the 2’s-compiement of Y and add it to X. The logic circuit network shown in Figure 6.3 can

be used to perform either addition or subtraction based on the value applied to the Add/Sub input

control line. This line is set to 0 for addition, applying the Y vector unchanged to one of the

adder inputs along with a carry-in signal, co, of 0, When the Add/Sub control line is set to 1, the

Y vector is 1’s-complemented (that is, bit complemented) by the XOR gates and co is set to 1 to

complete the 2’s-complementation of Y. An XOR gate can be added to Figure 6.3 to detect the

overflow condition cn cn-1.

6.2 DESIGN OF FAST ADDERS:

In an n-bit parallel adder (ripple-carry adder), there is too much delay in developing the outputs,

so through sn-1 and cn. On many occasions this delay is not acceptable; in comparison with the

speed of other processor components and speed of the data transfer between registers and cache

memories. The delay through a network depends on the integrated circuit technology used in

fabricating the network and on the number of gates in the paths from inputs to outputs

(propagation delay). The delay through any combinational logic network constructed from gates

in a particular technology is determined by adding up the number of logic-gate delays along the

longest signal propagation path through the network. In the case of the n-bit ripple-carry adder,

the longest path is from inputs x0, y0, and c0 at the least-significant-bit (LSB) position to outputs

cn and sn-1 at the most-significant-bit (MSB) position.

Using the logic implementation indicated in Figure 6.2a, cn-1 is available in 2(n—1) gate delays,

and sn-1 is one XOR gate delay later. The final carry-out, cn is available after 2n gate delays.

Therefore, if a ripple-carry adder is used to implement the addition/subtraction unit shown in

Figure-6.3, all sum bits are available in 2n gate delays, including the delay through the XOR

S Venkata Lakshmi, Assistant Professor

 Page 5

gates on the Y input. Using the implementation cn cn-1 for overflow, this indicator is available

after 2n+2 gate delays. In summary, in a parallel adder an nth stage adder cannot complete the

addition process before all its previous stages have completed the addition even with input bits

ready. This is because; the carry bit from previous stage has to be made available for addition of

the present stage.

In practice, a number of design techniques have been used to implement high- speed adders. In

order to reduce this delay in adders, an augmented logic gate network structure may be used. One

such method is to use circuit designs for fast propagation of carry signals (carry prediction).

Carry-Look ahead Addition:

As it is clear from the previous discussion that a parallel adder is considerably slow & a fast

adder circuit must speed up the generation of the carry signals, it is necessary to make the carry

input to each stage readily available along with the input bits.

This can be achieved either by propagating the previous carry or by generating a carry depending

on the input bits & previous carry. The logic expressions for si (sum) and ci+1 (carry-out) of stage

i are

The expressions Gi and Pi are called generate and propagate functions for stage i. If the generate

function for stage i is equal to 1, then ci+1 = 1, independent of the input carry, ci. This occurs

when both xi and yi are 1. The propagate function means that an input carry will produce an

output carry when either xi or yi or both equal to 1. Now, using Gi & Pi functions we can decide

carry for ith stage even before its previous stages have completed their addition operations. All Gi

and Pi functions can be formed independently and in parallel in only one gate delay after the Xi

and Yi inputs are applied to an n-bit adder. Each bit stage contains an AND gate to form Gi, an

OR gate to form Pi and a three-input XOR gate to form si. However, a much simpler circuit can

be derived by considering the propagate function as Pi = xi yi which differs from Pi = xi + yi

only when xi = yi =1 where Gi = 1 (so it does not matter whether Pi is 0 or 1). Then, the basic

diagram in Figure-6.4a can be used in each bit stage to predict carry ahead of any stage

completing its addition.

Consider the ci+1 expression

S Venkata Lakshmi, Assistant Professor

 Page 6

This is because, Ci = (Gi-1 + Pi-1Ci-1).

Further, Ci-1 = (Gi-2 + Pi-2Ci-2) and so on. Expanding in this fashion, the final carry expression can

be written as below;

Thus, all carries can be obtained in three gate delays after the input signals Xi, Yi and Cin are

applied at the inputs. This is because only one gate delay is needed to develop all Pi and Gi

signals, followed by two gate delays in the AND-OR circuit (SOP expression) for ci after a

further XOR gate delay, all sum bits are available. Therefore, independent of n, the number of

stages, the n-bit addition process requires only four gate delays.

S Venkata Lakshmi, Assistant Professor

 Page 7

Now, consider the design of a 4-bit parallel adder. The carries can be implemented as

The complete 4-bit adder is shown in Figure 6.4b where the B cell indicates Gi, Pi & Si

generator. The carries are implemented in the block labeled carry look-ahead logic. An adder

implemented in this form is called a carry look ahead adder. Delay through the adder is 3 gate

delays for all carry bits and 4 gate delays for all sum bits. In comparison, note that a 4-bit ripple-

carry adder requires 7 gate delays for S3(2n-1) and 8 gate delays(2n) for c4.

If we try to extend the carry lookahead adder of Figure 5b for longer operands, we run into a

problem of gate fan-in constraints. From the final expression for Ci+1 & the carry expressions for

a 4 bit adder, we see that the last AND gate and the OR gate require a fan-in of i + 2 in

generating cn-1. For c4 (i = 3)in the 4-bit adder, a fan-in of 5 is required. This puts the limit on

the practical implementation. So the adder design shown in Figure 4b cannot be directly

extended to longer operand sizes. However, if we cascade a number of 4-bit adders, it is possible

to build longer adders without the practical problems of fan- in. An example of a 16 bit carry

look ahead adder is as shown in figure. Eight 4-bit carry look-ahead adders can be connected as

in Figure-6.2 to form a 32-bit adder.

FIG: 16 bit carry-lookahead adder

S Venkata Lakshmi, Assistant Professor

 Page 8

6.3 MULTIPLICATION OF POSITIVE NUMBERS

Consider the multiplication of two integers as in Figure-6a in binary number system. This

algorithm applies to unsigned numbers and to positive signed numbers. The product of two n-

digit numbers can be accommodated in 2n digits, so the product of the two 4-bit numbers in this

example fits into 8 bits. In the binary system, multiplication by the multiplier bit ‘1’ means the

multiplicand is entered in the appropriate position to be added to the partial product. If the

multiplier bit is ‘0’, then 0s are entered, as indicated in the third row of the shown example.

Binary multiplication of positive operands can be implemented in a combinational (speed up)

two-dimensional logic array, as shown in Figure 6.6. Here, M- indicates multiplicand, Q-

indicates multiplier & P- indicates partial product. The basic component in each cell is a full

adder FA. The AND gate in each cell determines whether a multiplicand bit mj, is added to the

incoming partial-product bit, based on the value of the multiplier bit, qi. For i in the range of 0 to

3, if qi = 1, add the multiplicand (appropriately shifted) to the incoming partial product, PPi, to

generate the outgoing partial product, PP(i+ 1) & if qi = 0, PPi is passed vertically downward

unchanged. The initial partial product PPO is all 0s. PP4 is the desired product. The multiplicand

is shifted left one position per row by the diagonal signal path. Since the multiplicand is shifted

and added to the partial product depending on the multiplier bit, the method is referred as SHIFT

& ADD method. The multiplier array & the components of each bit cell are indicated in the

diagram, while the flow diagram shown explains the multiplication procedure.

S Venkata Lakshmi, Assistant Professor

 Page 9

Fig 6.6: Array multiplication of positive binary operands

The following SHIFT & ADD method flow chart depicts the multiplication logic for unsigned

numbers.

Despite the use of a combinational network, there is a considerable amount of delay associated

with the arrangement shown. Although the preceding combinational multiplier is easy to

S Venkata Lakshmi, Assistant Professor

 Page 10

understand, it uses many gates for multiplying numbers of practical size, such as 32- or 64-bit

numbers. The worst case signal propagation delay path is from the upper right corner of the array

to the high-order product bit output at the bottom left corner of the array. The path includes the

two cells at the right end of each row, followed by all the cells in the bottom row. Assuming that

there are two gate delays from the inputs to the outputs of a full adder block, the path has a total

of 6(n - 1) - 1 gate delays, including the initial AND gate delay in all cells, for the n x n array. In

the delay expression, (n-1) because, only the AND gates are actually needed in the first row of

the array because the incoming (initial) partial product PPO is zero

Multiplication can also be performed using a mixture of combinational array techniques (similar

to those shown in Figure 7) and sequential techniques requiring less combinational logic.

Multiplication is usually provided as an instruction in the machine instruction set of a processor.

High-performance processor (DS processors) chips use an appreciable area of the chip to

perform arithmetic functions on both integer and floating-point operands. Sacrificing an area on-

chip for these arithmetic circuits increases the speed of processing. Generally, processors built

for real time applications have an on-chip multiplier.

Another simplest way to perform multiplication is to use the adder circuitry in the ALU for a

number of sequential steps. The block diagram in Figure 8a shows the hardware arrangement for

sequential multiplication. This circuit performs multiplication by using single n-bit adder n times

to implement the spatial addition performed by the n rows of ripple-carry adders. Registers A

and Q combined to hold PPi while multiplier bit qi generates the signal Add/No-add. This signal

controls the addition of the multiplicand M to PPi to generate PP(i + 1). The product is computed

in n cycles. The partial product grows in length by one bit per cycle from the initial vector, PPO,

of n 0s in register A. The carry-out from the adder is stored in flip-flop C. To begin with, the

multiplier is loaded into register Q, the multiplicand into register M and registers C and A are

cleared to 0. At the end of each cycle C, A, and Q are shifted right one bit positions to allow for

growth of the partial product as the multiplier is shifted out of register Q. Because of this

shifting, multiplier bit qi, appears at the LSB position of Q to generate the Add/No-add signal at

the correct time, starting with qo during the first cycle, q1 during the second cycle, and so on.

S Venkata Lakshmi, Assistant Professor

 Page 11

After they are used, the multiplier bits are discarded by the right-shift operation. Note that the

carry-out from the adder is the leftmost bit of PP(i + 1), and it must be held in the C flip-flop to

be shifted right with the contents of A and Q. After n cycles, the high-order half-of- the product

is held in register A and the low-order half is in register Q. The multiplication example used

above is shown in Figure 8b as it would be performed by this hardware arrangement.

Fig: Sequential circuit binary multiplier.

Using this sequential hardware structure, it is clear that a multiply instruction takes much more

time to execute than an Add instruction. This is because of the sequential circuits associated in a

multiplier arrangement. Several techniques have been used to speed up multiplication; bit pair

recoding, carry save addition, repeated addition, etc.

6.4 SIGNED-OPERAND MULTIPLIATION:

Multiplication of 2's-complement signed operands, generating a double-length product is still

achieved by accumulating partial products by adding versions of the multiplicand as decided by

the multiplier bits. First, consider the case of a positive multiplier and a negative multiplicand.

When we add a negative multiplicand to a partial product, we must extend the sign-bit value of

the multiplicand to the left as far as the product will extend. In Figure 6.8, for example, the 5-bit

signed operand, - 13, is the multiplicand, and +11, is the 5 bit multiplier & the expected product -

143 is 10-bit wide. The sign extension of the multiplicand is shown in red color. Thus, the

hardware discussed earlier can be used for negative multiplicands if it provides for sign

extension of the partial products.

For a negative multiplier, a straightforward solution is to form the 2's- complement of both the

multiplier and the multiplicand and proceed as in the case of a positive multiplier. This is

possible because complementation of both operands does not change the value or the sign of the

product. In order to take care of both negative and positive multipliers, BOOTH algorithm can be

used.

S Venkata Lakshmi, Assistant Professor

 Page 12

Booth Algorithm

 The Booth algorithm generates a 2n-bit product and both positive and negative 2's-complement

n-bit operands are uniformly treated. To understand this algorithm, consider a multiplication

operation in which the multiplier is positive and has a single block of 1s, for example,

0011110(+30). To derive the product, as in the normal standard procedure, we could add four

appropriately shifted versions of the multiplicand,. However, using the Booth algorithm, we can

reduce the number of required operations by regarding this multiplier as the difference between

numbers 32 & 2 as shown below;

This suggests that the product can be generated by adding 25 times the multiplicand to the 2's-

complement of 21 times the multiplicand. For convenience, we can describe the sequence of

required operations by recoding the preceding multiplier as 0 +1000 - 10. In general, in the

Booth scheme, -1 times the shifted multiplicand is selected when moving from 0 to 1, and +1

times the shifted multiplicand is selected when moving from 1 to 0, as the multiplier is scanned

from right to left.

Figure 6.9 illustrates the normal and the Booth algorithms for the said example. The Booth

algorithm clearly extends to any number of blocks of 1s in a multiplier, including the situation in

which a single 1 is considered a block. See Figure 6.10 for another example of recoding a

multiplier. The case when the least significant bit of the multiplier is 1 is handled by assuming

that an implied 0 lies to its right. The Booth algorithm can also be used directly for negative

S Venkata Lakshmi, Assistant Professor

 Page 13

multipliers, as shown in Figure 6.11. To verify the correctness of the Booth algorithm for

negative multipliers, we use the following property of negative-number representations in the

2's-complement.

To demonstrate the correctness of the Booth algorithm for negative multipliers, we use the

following property of negative-number representations in the 2’s-complement system: Let the

leftmost 0 of a negative number, X, be at bit position k, that is,

S Venkata Lakshmi, Assistant Professor

 Page 14

The correctness of this expression for V(X) is shown by observing that if X is formed as the sum

of two numbers

then the top number is the 2’s-complement representation of -2k+1. The recoded multiplier now

consists of the part corresponding to the second number, with —1 added inposition k + 1. For

example, the multiplier 110110 is recoded as 0 -1 +10 -10.

The Booth technique for recoding multipliers is summarized in Figure 6.12. The transformation

011...110 => +100..,0—10 is called skipping over 1s. This term is derived from the case in which

the multiplier has its 1s grouped into a few contiguous blocks, Only a few versions of the shifted

multiplicand (the summands) must be added to generate the product, thus speeding up the

multiplication operation. However, in the worst case — that of alternating 1s and 0s in the

multiplier - each bit of the multiplier selects a summand, In fact, this results in more summands

than if the Booth algorithm were not used. A 16-bit, worst-case multiplier, an ordinary

multiplier, and a good multiplier are shown in Figure 6.13.

S Venkata Lakshmi, Assistant Professor

 Page 15

The Booth algorithm has two attractive features:

➢ First, it handles both positive and negative multipliers uniformly.

➢ Second, it achieves some efficiency in the number of additions required when the

multiplier has a few large blocks of 1s.

FAST MULIPLICATION:

There are two techniques for speeding up the multiplication operation. The first technique

guarantees that the maximum number of summands (versions of the multiplicand) that must be

added is n/2 for n-bit operands. The second technique reduces the time needed to add the

summands (carry-save addition of summands method).

Bit-Pair Recoding of Multipliers:

This bit-pair recoding technique halves the maximum number of summands. It is derived from

the Booth algorithm. Group the Booth-recoded multiplier bits in pairs, and observe the

following: The pair (+1 -1) is equivalent to the pair (0 +1). That is, instead of adding —1 times

the multiplicand M at shift position i to + 1 x M at position i + 1, the same result is obtained by

adding +1 x M at position I Other examples are: (+1 0) is equivalent to (0 +2),(-l +1) is

equivalent to (0 —1). and so on. Thus, if the Booth-recoded multiplier is examined two bits at a

time, starting from the right, it can be rewritten in a form that requires at most one version of the

multiplicand to be added to the partial product for each pair of multiplier bits. Figure 6.11a

shows an example of bit-pair recoding of the multiplier in Figure 6.11, and Figure 6.14b shows a

table of the multiplicand selection decisions for all possibilities.

The multiplication operation in Figure 6.11 is shown in Figure 6.15 as it would be computed

using bit-pair recoding of the multiplier.

S Venkata Lakshmi, Assistant Professor

 Page 16

S Venkata Lakshmi, Assistant Professor

 Page 17

CARRY-SAVE ADDITION OF SUMMANDS

Multiplication requires the addition of several summands. A technique called carry save addition

(CSA) speeds up the addition process. Consider the array for 4x4 multiplication shown in Figure

6.16a. This structure is the general array with the first row consisting of just the AND gates that

implement the bit products m3q0, m2q0, m1q0, and m0q0.

Instead of letting the carries ripple along the rows, they can be “saved” and introduced into the

next row, at the correct weighted positions, as shown in Figure 6.16b. This frees up an input to

three full adders in the first row. These inputs are used to introduce the third summand bit

products m2q2, m1q2, and m0q2.

S Venkata Lakshmi, Assistant Professor

 Page 18

Now, two inputs of each full adder in the second row are fed by sum and carry outputs from the

first row. ‘The third input is used to introduce the bit products m2q3, m1q3, and m0q3 of the

fourth summand. The high-order bit products m3q2 and m3q3 of the third and fourth summands

are introduced into the remaining free inputs at the left end in the second and third rows. The

saved carry bits and the sum bits from the second row are now added in the third row to produce

the final product bits.

Delay through the carry-save array is somewhat less than delay through the ripple-carry array.

This is because the S and C vector outputs from each row are produced in parallel in one full-

adder delay.

A more significant reduction in delay can be achieved as follows. Consider the addition of many

summands, as required in the multiplication of longer operands. We can group the summands in

threes and perform carry-save addition on each of these groups in parallel to generate a set of §

and C vectors in one full-adder delay. Next, we group all of the S and C vectors into threes, and

perform carry-save addition on them, generating a further set of S and C vectors in one more

full-adder delay. We continue with this process until there are only two vectors remaining. They

can then be added in a ripple-carry or a carry-lookahead adder to produce the desired product.

Consider the example of adding the six shifted versions of the multiplicand for the case of

multiplying two 6-bit unsigned numbers where all six bits of the multiplier are equal to 1. Such

an example is shown in Figure 6.17. The six summands, A, B,..., F are added by carry-save

addition in Figure 6.18. The, “blue boxes” in these two figures indicate the same operand bits,

and show how they are reduced to sum and carry bits in Figure 6.18 by carry-save addition.

Three levels of carry-save addition are performed, as shown schematically in Figure 6.19. It is

clear from this figure that the final two vectors S4, and C4, are available in three full-adder

delays after the six input summands are applied to level 1. The final regular addition operation

on S4, and C4, which produces the product, can be done with either a ripple-carry or a carry-

lookahead adder.

S Venkata Lakshmi, Assistant Professor

 Page 19

Summary of Fast Multiplication:

Bit-pair recoding of the multiplier, derived from the Booth algorithm, reduces the number of

summands by a factor of 2. These summands can then be reduced to only 2 by using a relatively

S Venkata Lakshmi, Assistant Professor

 Page 20

small number of carry-save addition steps. The final product can be generated by an addition

operation that uses a carry-lookahead adder.

All three of these techniques — bit-pair recoding of the multiplier, carry-save addition of the

summands, and lookahead addition have been used in various ways by the designers of high-

performance processors to reduce the time needed to perform multiplication.

INTEGER DIVISION:

Positive-number multiplication operation is done manually in the way it is done in a logic circuit.

A similar kind of approach can be used here in discussing integer division.

First, consider positive-number division. Figure 6.20 shows examples of decimal division and its

binary form of division. First, let us try to divide 2 by13, and it does not work. Next, let us try to

divide 27 by 13. Going through the trials, we enter 2 as the quotient and perform the required

subtraction. The next digit of the dividend, 4, is brought down, and we finish by deciding that 13

goes into 14 once and the remainder is 1. Binary division is similar to this, with the quotient bits

only 0 and 1.

A circuit that implements division by this longhand method operates as follows: It positions the

divisor appropriately with respect to the dividend and performs a subtraction. If the remainder is

zero or positive, a quotient bit of 1 is determined, the remainder is extended by another bit of the

dividend, the divisor is repositioned, and sub- traction is performed. On the other hand, if the

remainder is negative, a quotient bit of 0 is determined, the dividend is restored by adding back

the divisor, and the divisor H repositioned for another subtraction

S Venkata Lakshmi, Assistant Professor

 Page 21

RESTORING DIVISION

Figure 6.21 shows a logic circuit arrangement that implements restoring division. An n-bit

positive divisor is loaded into register M and an n-bit positive dividend is loaded into register Q

at the start of the operation. Register A is set to 0. After the division is complete, the n-bit

quotient is in register Q and the remainder is in register A. The required subtractions are

facilitated by using 2's complement arithmetic. The extra bit position at the left end of both A

and M accommodates the sign bit during subtractions.

The following algorithm performs restoring division.

1. Shift A and Q left one binary position.

2. Subtract M from A, and place the answer back in A.

3. If the sign of A is 1, set q0 to 0 and add M back to A (that is, restore A); otherwise, set q0to 1.

Figure 6.22 shows a 4-bit example as it would be processed by the circuit in Figure 6.21.

S Venkata Lakshmi, Assistant Professor

 Page 22

NONRESTORING DIVISION

The restoring-division algorithm can be improved by avoiding the need for restoring A after an

unsuccessful subtraction. Subtraction is said to be unsuccessful if the result is negative. Consider

the sequence of operations that takes place after the subtraction operation in the preceding

algorithm. If A is positive, we shift left and subtract M, that is, we perform 2A - M. If A is

negative, we restore it by performing A + M, and then we shift it left and subtract M. This is

equivalent to performing 2A + M. The q0 bit is appropriately set to 0 or 1 after the correct

operation has been performed.

Algorithm:

Step 1: Do the following n times:

1. If the sign of A is 0, shift A and Q left one bit position and subtract M from A; otherwise, shift

A and Q left and add M to A.

2. Now, if the sign of A is 0, set q0 to 1; otherwise, set q0 to 0.

Step 2: If the sign of A is 1, add M to A.

S Venkata Lakshmi, Assistant Professor

 Page 23

Step 2 is needed to leave the proper positive remainder in A at the end of the n cycles of Step 1.

The logic circuitry in Figure 16.21 can also be used to perform this algorithm. Note that the

Restore operations are no longer needed, and that exactly one Add or Subtract operation is

performed per cycle. Figure 6.23 shows how the division example in Figure 6.22 is executed by

the nonrestoring-division algorithm.

FLOATING-POINT NUMBERS AND OPERATIONS:

Floating – point arithmetic is an automatic way to keep track of the radix point. The discussion

so far was exclusively with fixed-point numbers which are considered as integers, that is, as

having an implied binary point at the right end of the number. It is also possible to assume that

the binary point is just to the right of the sign bit, thus representing a fraction or anywhere else

resulting in real numbers. In the 2's-complement system, the signed value F, represented by the

n-bit binary fraction

B = b0.b-1b-2 …..b-(n-1) is given by

F(B) = -b0*20 + b-1*2-1 +b-2*2-2 + ... + b-(n-1) x 2-(n-l)

Where the range of F is

-1 ≤ F ≤ 1 -2-(n-1)

Consider the range of values representable in a 32-bit, signed, fixed-point format. Interpreted as

integers, the value range is approximately 0 to ±2.15 x 109. If we consider them to be fractions,

the range is approximately ±4.55 x 10-10 to ±1. Neither of these ranges is sufficient for scientific

calculations, which might involve parameters like Avogadro's number (6.0247 * 1023 mole-1) or

Planck's constant (6.6254 * 10-27erg.s). Hence, we need to easily accommodate both very large

integers and very small fractions. To do this, a computer must be able to represent numbers and

operate on them in such a way that the position of the binary point is variable and is

automatically adjusted as computation proceeds. In such a case, the binary point is said to float,

and the numbers are called floating-point numbers. This distinguishes them from fixed-point

numbers, whose binary point is always in the same position.

Because the position of the binary point in a floating-point number is variable, it must be given

explicitly in the floating-point representation. For example, in the familiar decimal scientific

notation, numbers may be written as 6.0247 x 1023, 6.6254* 10-27, - 1.0341 x 102, -7.3000 x 10-14,

and so on. These numbers are said to be given to five significant digits. The scale factors (1023,

10-27, and so on) indicate the position of the decimal point with respect to the significant digits.

By convention, when the decimal point is placed to the right of the first (nonzero) significant

digit, the number is said to be normalized. Note that the base, 10, in the scale factor is fixed and

does not need to appear explicitly in the machine representation of a floating-point number. The

sign, the significant digits, and the exponent in the scale factor constitute the representation. We

are thus motivated to define a floating-point number representation as one in which a number is

represented by its sign, a string of significant digits, commonly called the mantissa, and an

exponent to an implied base for the scale factor.

S Venkata Lakshmi, Assistant Professor

 Page 24

IEEE STANDARD FOR FLOATING-POINT NUMBERS:

General form and size for floating-point numbers in the decimal system is:

Where Xi; and Yi; are decimal digits.

A standard for representing floating-point numbers in 32 bits has been developed and specified

in detail by the Institute of Electrical and Electronics Engineers (IEEE). The standard describes

both the representation and the way in which the four basic arithmetic operations are to be

performed. The 32-bit representation is given in Figure 6.24a. The sign of the number is given in

the first bit, followed by a representation for the exponent (to the base 2) of the scale factor.

Instead of the signed exponent, E, the value actually stored in the exponent field is an unsigned

integer E = E + 127.

This is called the excess-127 format. Thus, E is in the range 0 < E' < 255. The end values of this

range, 0 and 255, are used to represent special values. Therefore, the range of E’ for normal

values is 1 < E < 254. This means that the actual exponent, E, is in the range -126 ≤ E ≤ 127.

The last 23 bits represent the mantissa, Since binary normalization is used, the most significant

bit of the mantissa is always equal to 1. This bit is not explicitly represented, it is assumed to be

to-the immediate left of the binary point, Hence, the 23 bits stored in the M field actually

represent the fractional part of the mantissa, that is, the bits to the right of the binary point. An

example of a single-precision floating-point number is shown in Figure 6.24b.

S Venkata Lakshmi, Assistant Professor

 Page 25

The 32-bit standard representation in Figure 6.24a is called a single-precision representation

because it occupies a single 32-bit word. The scale factor has a range of 2-126 to 2+127, which is

approximately equal to 10±38, The 24-bit mantissa provides approximately the same precision as

a 7-digit decimal value.

To provide more precision and range for floating-point numbers, the IEEE standard also

specifies a double precision format, as shown in Figure 6.24c. The double-precision format has

increased exponent and mantissa ranges. The 11-bit excess-1023 exponent A’ has the range i < E'

< 2046 for normal values, with 0 and 2047 used to indicate special values, as before. Thus, the

actual exponent E is in the range -1022 < E < 1023, providing scale factors of 2-1022 to 21023. The

53-bit mantissa provides a precision equivalent to about 16 decimal digits.

Two basic aspects of operating with floating-point numbers:

First, if a number is not normalized, it can always be put in normalized form by shifting the

fraction and adjusting the exponent. Figure 6.25 shows an unnormalized value, 0.0010110... x 29,

and its normalized version, 1.0110... x 26. Since the scale factor is in the form 2i, shifting the

mantissa right or left by one bit position is compensated by an increase or a decrease of 1 in the

exponent, respectively. This is occurrence of underflow.

Second, as computations proceed, a number that does not fall in the representable range of

normal numbers might be generated. This is occurrence of overflow.

Special Values:

The end values 0 and 255 of the excess-127 exponent E are used to represent special values.

When E = 0 and the mantissa fraction M is zero, the value exact 0 is represented. When E = 255

S Venkata Lakshmi, Assistant Professor

 Page 26

and M = 0, the value ∞ is represented, where ∞ is the result of dividing a normal number by

zero. The sign bit is still part of these representations, so there are ±0 and ±∞ representations.

When E' = 0 and M # 0, denormal numbers are represented. Their -value is ±0.M x 2-126.

Therefore, they are smaller than the smallest normal number. The purpose of introducing

denormal numbers is to allow for gradual underflow, providing an extension of the range of

normal representable numbers that is useful in dealing with very small numbers in certain

situations. When E = 255 and M ≠ 0, the value represented is called Not Number (NaN).

Exceptions:

In conforming to the IEEE Standard, a processor must set exception flags if any of the following

occur in performing operations: underflow, overflow, and divide by zero, inexact, invalid.

Inexact is the name for a result that requires rounding in order to be represented in one of the

normal formats. An invalid exception occurs if operations such as 0/0 or √-1 are attempted.

When exceptions occur, the results are set to special values.

ARITHMETIC OPERATIONS ON FLOATING-POINT NUMBERS:

The rule for addition and subtraction can be stated as follows:

Add/Subtract Rule

1. Choose the number with the smaller exponent and shift its mantissa right a number of

steps equal to the difference in exponents.

2. Set the exponent of the result equal to the larger exponent.

3. Perform addition/subtraction on the mantissas and determine the sign of the result.

4. Normalize the resulting value, if necessary.

Multiplication and division are somewhat easier than addition and subtraction, in that no

alignment of mantissas is needed.

Multiply Rule

1. Add the exponents and subtract 127.

2. Multiply the mantissas and determine the sign of the result.

3. Normalize the resulting value, if necessary.

Divide Rule

1. Subtract the exponents and add 127.

2. Divide the mantissas and determine the sign of the result,

3. Normalize the resulting value, if necessary.

GUARD BITS AND TRUNCATION:

The mantissas of initial operands and final results are limited to 24 bits, including the implicit

leading 1, it is important to retain extra bits, often called guard bits.

Removing guard bits in generating a final result requires that the extended mantissa be truncated

to create a 24-bit number that approximates the longer version.

S Venkata Lakshmi, Assistant Professor

 Page 27

There are several ways to truncate.

➢ 1st method is to remove the guard bits and make no changes in the retained bits. This is

called chopping. The result of chopping is a biased approximation because the error range

is not symmetrical about 0.

➢ 2nd method is Von Neumann rounding. If the bits to be removed are all Os, they are

simply dropped, with no changes to the retained bits. However, if any of the bits to be

removed are 1, the least significant bit of the retained bits is set to 1. Although the range

of error is larger with this technique than it is with chopping, the maximum magnitude is

the same, and the approximation is unbiased because the error range is symmetrical about

0.

➢ The third truncation method is a rounding procedure. Rounding achieves the closest

approximation to the number being truncated and is an unbiased technique. The

procedure is as follows: A 1 is added to the LSB position of the bits to be retained if there

is a 1 in the MSB position of the bits being removed.

IMPLEMENTING FLOATING-POINT OPERATIONS

An example of the implementation of floating-point operations is shown in Figure 6.26. This is a

block diagram of a hardware implementation for the addition and subtraction of 32-bit floating-

point operands that have the format shown in Figure 6.24a.

1. In step 1, the sign is sent to the SWAP network in the upper right corner. If the sign is 0,

then EA, > EB, and the mantissas MA, and MB are sent straight through the SWAP

network. This results in MB, being sent to the SHIFTER, to be shifted n positions to the

right. The other mantissa, MA, is sent directly to the mantissa adder/subtractor. If the sign

is 1, then EA < EB and the mantissas are swapped before they are sent to the SHIFTER.

2. Step 2 is performed by the two-way multiplexer, MUX, near the bottom left corner of the

figure. The exponent of the result, E, is tentatively determined as E'A if EA ≥ EB, or EB

if EA < EB, based on the sign of the difference resulting from comparing exponents in

step 1.

3. Step 3 involves the major component, the mantissa adder/subtractor in the middle of the

figure. The CONTROL logic determines whether the mantissas are to be added or

subtracted. This is decided by the signs of the operands (SA, and SB) and the operation

(Add or Subtract) that is to be performed on the operands. The CONTROL logic also

determines the sign of the result, SR.

4. Step 4 of the Add/Subtract rule consists of normalizing the result of step 3, mantissa M.

The number of leading zeros in M determines the number of bit shifts, X, to be applied to

M. The normalized value is truncated to generate the 24-bit mantissa, MR, of the result.

The value X is also subtracted from the tentative result exponent E to generate the true

result exponent ER.

S Venkata Lakshmi, Assistant Professor

 Page 28

S Venkata Lakshmi, Assistant Professor

 Page 29

Part-II

BASIC PROCESSING UNIT

The heart of any computer is the central processing unit (CPU). The CPU executes all the

machine instructions and coordinates the activities of all other units during the execution of an

instruction. This unit is also called as the Instruction Set Processor (ISP). By looking at its

internal structure, we can understand how it performs the tasks of fetching, decoding, and

executing instructions of a program. The processor is generally called as the central processing

unit (CPU) or micro processing unit (MPU).An high-performance processor can be built by

making various functional units operate in parallel. High-performance processors have a

pipelined organization where the execution of one instruction is started before the execution of

the preceding instruction is completed. In another approach, known as superscalar operation,

several instructions are fetched and executed at the same time. Pipelining and superscalar

architectures provide a very high performance for any processor.

A typical computing task consists of a series of steps specified by a sequence of machine

instructions that constitute a program. A program is a set of instructions performing a meaningful

task. An instruction is command to the processor & is executed by carrying out a sequence of

sub-operations called as micro-operations. Figure1 indicates various blocks of a typical

processing unit. It consists of PC, IR, ID, MAR, MDR, a set of register arrays for temporary

storage, Timing and Control unit as main units.

7.1 FUNDAMENTAL CONCEPTS

Execution of a program by the processor starts with the fetching of instructions one at a time,

decoding the instruction and performing the operations specified. From memory, instructions are

fetched from successive locations until a branch or a jump instruction is encountered. The

processor keeps track of the address of the memory location containing the next instruction to be

fetched using the program counter (PC) or Instruction Pointer (IP). After fetching an instruction,

the contents of the PC are updated to point to the next instruction in the sequence. But, when a

branch instruction is to be executed, the PC will be loaded with a different (jump/branch

address).

S Venkata Lakshmi, Assistant Professor

 Page 30

Instruction register, IR is another key register in the processor, which is used to hold the op-

codes before decoding. IR contents are then transferred to an instruction decoder (ID) for

decoding. The decoder then informs the control unit about the task to be executed. The control

unit along with the timing unit generates all necessary control signals needed for the instruction

execution. Suppose that each instruction comprises 2 bytes, and that it is stored in one memory

word. To execute an instruction, the processor has to perform the following three steps:

1. Fetch the contents of the memory location pointed to by the PC. The contents of this

location are interpreted as an instruction code to be executed. Hence, they are loaded into

the IR/ID. Symbolically, this operation can be written as

IR ← [[PC]]

2. Assuming that the memory is byte addressable, increment the contents of the PC by 4,

that is, PC ←[PC] + 4

3. Carry out the actions specified by the instruction in the IR.

Figure 7.1 Single-bus organization of the datapath inside a processor.

In cases where an instruction occupies more than one word, steps 1 and 2 must be repeated as

many times as necessary to fetch the complete instruction. These two steps together are usually

referred to as the fetch phase; step 3 constitutes the execution phase.

To study these operations in detail, let us examine the internal organization of the processor. The

main building blocks of a processor are interconnected in a variety of ways. A very simple

organization is shown in Figure 7.1. A more complex structure that provides high performance

will be presented at the end.

S Venkata Lakshmi, Assistant Professor

 Page 31

Figure shows an organization in which the arithmetic and logic unit (ALU) and all the registers

are interconnected through a single common bus, which is internal to the processor. The data and

address lines of the external memory bus are shown in Figure 7.1 connected to the internal

processor bus via the memory data register, MDR, and the memory address register, MAR,

respectively. Register MDR has two inputs and two outputs. Data may be loaded into MDR

either from the memory bus or from the internal processor bus. The data stored in MDR may be

placed on either bus. The input of MAR is connected to the internal bus, and its output is

connected to the external bus. The control lines of the memory bus are connected to the

instruction decoder and control logic block. This unit is responsible for issuing the signals that

control the operation of all the units inside the processor and for interacting with the memory

bus.

The number and use of the processor registers R0 through R(n - 1) vary considerably from one

processor to another. Registers may be provided for general-purpose use by the programmer.

Some may be dedicated as special-purpose registers, such as index registers or stack pointers.

Three registers, Y, Z, and TEMP in Figure 7.1, have not been mentioned before. These registers

are transparent to the programmer, that is, the programmer need not be concerned with them

because they are never referenced explicitly by any instruction. They are used by the processor

for temporary storage during execution of some instructions. These registers are never used for

storing data generated by one instruction for later use by another instruction.

The multiplexer MUX selects either the output of register Y or a constant value 4 to be provided

as input A of the ALU. The constant 4 is used to increment the contents of the program counter.

We will refer to the two possible values of the MUX control input Select as Select4 and Select Y

for selecting the constant 4 or register Y, respectively.

As instruction execution progresses, data are transferred from one register to another, often

passing through the ALU to perform some arithmetic or logic operation. The instruction decoder

and control logic unit is responsible for implementing the actions specified by the instruction

loaded in the IR register. The decoder generates the control signals needed to select the registers

involved and direct the transfer of data. The registers, the ALU, and the interconnecting bus are

collectively referred to as the data path.

With few exceptions, an instruction can be executed by performing one or more of the following

operations in some specified sequence:

1. Transfer a word of data from one processor register to another or to the ALU

2. Perform an arithmetic or a logic operation and store the result in a processor register

3. Fetch the contents of a given memory location and load them into a processor register

4. Store a word of data from a processor register into a given memory location

REGISTER TRANSFERS:

Instruction execution involves a sequence of steps in which data are transferred from one

register to another. For each register, two control signals are used to place the contents of that

register on the bus or to load the data on the bus into the register. This is represented

symbolically in Figure 7.2. The input and output of register Ri are connected to the bus via

S Venkata Lakshmi, Assistant Professor

 Page 32

switches controlled by the signals Riin and Riout respectively. When Riin is set to 1, the data on

the bus are loaded into Ri. Similarly, when Riout, is set to 1, the contents of register Riout are

placed on the bus. While Riout is equal to 0, the bus can be used for transferring data from other

registers.

Suppose that we wish to transfer the contents of register RI to register R4. This can be

accomplished as follows:

1. Enable the output of register R1 by setting Rlout, to 1. This places the contents of R1 on

the processor bus.

2. Enable the input of register R4 by setting R4in to 1. This loads data from the processor

bus into register R4.

All operations and data transfers within the processor take place within time period defined by

the processor clock. The control signals that govern a particular transfer are asserted at the start

of the clock cycle. In our example, Rlout and R4in are set to 1. The registers consist of edge-

triggered flip-flops. Hence, at the next active edge of the clock, the flip-flops that constitute R4

will load the data present at their inputs. At the same time, the control signals Rlout and R4in will

return to 0. We will use this simple model of the timing of data transfers for the rest of this

chapter. However, we should point out that other schemes are possible. For example, data

transfers may use both the rising and falling edges of the clock. Also, when edge-triggered flip-

flops are not used, two or more clock signals may be needed to guarantee proper transfer of data.

This is known as multiphase clocking.

An implementation for one bit of register Ri is shown in Figure 7.3 as an example. A two-input

multiplexer is used to select the data applied to the input of an edge-triggered D flip-flop. When

the control input Riin is equal to 1, the multiplexer selects the data on the bus. This data will be

loaded into the flip-flop at the rising edge of the clock. When Riin is equal to 0, the multiplexer

feeds back the value currently stored in the flip-flop.

The Q output of the flip-flop is connected to the bus via a tri-state gate. When Riout, is equal to 0,

the gate's output is in the high-impedance (electrically disconnected) state. This corresponds to

the open-circuit state of a switch. When Riout = 1, the gate drives the bus to 0 or 1, depending on

the value of Q.

S Venkata Lakshmi, Assistant Professor

 Page 33

Figure 7.2 Input and output gating for the registers in Figure 7.1.

PERFORMING AN ARITHMETIC OR LOGIC OPERATION:

The ALU is a combinational circuit that has no internal storage. It performs arithmetic and logic

operations on the two operands applied to its A and B inputs. In Figures 7.1 and 7.2, one of the

operands is the output of the multiplexer MUX and the other operand is obtained directly from

the bus. The result produced by the ALU is stored temporarily in register Z. Therefore, a

sequence of operations to add the contents of register R1 to those of register R2 and store the

result in register R3 is

1. R1out, Yin

2. R2out, SelectY, Add, Zin

3. Zout,R3in

The signals whose names are given in any step are activated for the duration of the clock cycle

corresponding to that step. All other signals are inactive. Hence,

➢ In step 1, the output of register R1 and the input of register Y are enabled, causing the

contents of R1 to be transferred over the bus to Y.

➢ In step 2, the multiplexer’s Select signal is set to Select, causing the multiplexer to gate

the contents of register Y to input A of the ALU. At the same time, the contents of

register R2 are gated onto the bus and, hence, to input B. The function performed by the

ALU depends on the signals applied to its control lines. In this case, the Add line is set to

S Venkata Lakshmi, Assistant Professor

 Page 34

1, causing the output of the ALU to be the sum of the two numbers at inputs A and B.

This sum is loaded into register Z because its input control signal is activated.

➢ In step 3, the contents of register Z are transferred to the destination register, R3. This last

transfer cannot be carried out during step 2, because only one register output can be

connected to the bus during any clock cycle.

Fetching a word from Memory:

To fetch a word of information from memory, the processor has to specify the address of the

memory location where this information is stored and request a Read operation. This applies

whether the information to be fetched represents an instruction in a program or an operand

specified by an instruction. The processor transfers the required address to the MAR, whose

output is connected to the address lines of the memory bus, At the same time, the processor uses

the control lines of the memory bus to indicate that a Read operation is needed. When the

requested data are received from the memory they are stored in register MDR, from where they

can be transferred to other registers in the processor.

The connections for register MDR are illustrated in Figure 7.4. It has four control signals:

MDRin, and MDRout control the connection to the internal bus, and MDRinE and MDRoutE control

the connection to the external bus. The circuit in Figure 7.3 is easily modified to provide the

additional connections. A three-input multiplexer can be used, with the memory bus data line

connected to the third input. This input is selected when MDRinE=1. A second tri-state gate,

controlled by MDRoutE can be used to connect the output of the flip-flop to the memory bus.

During memory Read and Write operations, the timing of internal processor operations must be

coordinated with the response of the addressed device on the memory bus. The processor

completes one internal data transfer in one clock cycle. The speed of operation of the addressed

device, on the other hand, varies with the device.

A control signal called Memory-Function-Completed (MFC) is used for the processor waits until

it receives an indication that the requested Read operation has been completed. The addressed

device sets this signal to 1 to indicate that the contents of the specified location have been read

and are available on the data lines of the memory bus.

As an example of a read operation, consider the instruction Move (R1),R2. The actions needed to

execute this instruction are:

1. MAR ← [R1]

2. Start a Read operation on the memory bus

3. Wait for the MFC response from the memory

4. Load MDR from the memory bus

5. R2 ← [MDR]

For simplicity, let us assume that the output of MAR is enabled all the time. When a new address

is loaded into MAR, it will appear on the memory bus at the beginning of the next clock cycle, as

shown in Figure 7.5. A Read control signal is activated at the same time MAR is loaded. This

signal will cause the bus interface circuit to send a read command, MR, on the bus. With this

arrangement, we have combined actions 1 and 2 above into a single control step. Actions 3 and 4

can also be combined by activating control signal MDRinE while waiting for a response from the

S Venkata Lakshmi, Assistant Professor

 Page 35

memory. Thus, the data received from the memory are loaded into MDR at the end of the clock

cycle in which the MFC signal is received. In the next clock cycle, MDRout is activated to

transfer the data to register R2. This means that the memory read operation requires three steps,

which can be described by the signals being activated as follows:

1. R1out, MARin, Read

2. MDRinE, WMFC

3. MDRout, R2in

where WMFC is the control signal that causes the processor’s control circuitry to wait for the

arrival of the MFC signal.

Figure 7.5 shows that MDRinE is set to 1 for exactly the same period as the read command, MR.

STORING A WORD IN MEMORY

Writing a word into a memory location follows a similar procedure. The desired address is

loaded into MAR. Then, the data to be written are loaded into MDR, and a Write command is

issued. Hence, executing the instruction Move R2,(R1) requires the following sequence:

1. R1out, MARin

2. R2out, MDRin, Write

3. MDRoutE, WMFC

The Write control signal causes the memory bus interface hardware to issue a Write command

on the memory bus. The processor remains in step 3 until the memory operation is completed

and an MFC response is received.

S Venkata Lakshmi, Assistant Professor

 Page 36

7.2 EXECUTION OF A COMPLETE INSTRUCTION:

Consider the instruction

Add (R3), R1

which adds the contents of a memory location pointed to by R3 to register R1.

Executing this instruction requires the following actions:

1. Fetch the instruction.

2. Fetch the first operand (the contents of the memory location pointed to by R3).

3. Perform the addition.

4. Load the result into Rl.

Figure 7.6 gives the sequence of control steps required to perform these operations for the single-

bus architecture of Figure 7.1. Instruction execution proceeds as follows:

In step I, the instruction fetch operation is initiated by loading the contents of the PC into the

MAR and sending a Read request to the memory. The Select signal is set to Select4, which

causes the multiplexer MUX to select the constant 4. This value is added to the operand at input

B, which is the contents of the PC, and the result is stored in register Z. The updated value is

moved from register Z back into the PC during step 2, while waiting for the memory to respond.

In step 3, the word fetched from the memory is loaded into the IR.

Steps 1 through 3 constitute the instruction fetch phase, which is the same for all instructions.

The instruction decoding circuit interprets the contents of the IR at the beginning of step 4. This

enables the control circuitry to activate the control signals for steps 4 through 7, which constitute

the execution phase. The contents of register R3 are transferred to the MAR in step 4, and a

memory read operation is initiated.

Then the contents of Rl are transferred to register Y in step 5, to prepare for the addition

operation. When the Read operation is completed, the memory operand is available in register

MDR, and the addition operation is performed in step 6. The contents of MDR are gated to the

S Venkata Lakshmi, Assistant Professor

 Page 37

bus, and thus also to the B input of the ALU, and register Y is selected as the second input to the

ALU by choosing Select Y. The sum is stored in register Z, then transferred to Rl in step 7. The

End signal causes a new instruction fetch cycle to begin by returning to step 1.

This discussion accounts for all control signals in Figure 7.6 except Y in step 2. There is no need

to copy the updated contents of PC into register Y when executing the Add instruction. But, in

Branch instructions the updated value of the PC is needed to compute the Branch target address.

To speed up the execution of Branch instructions, this value is copied into register Y in step 2.

Since step 2 is part of the fetch phase, the same action will be performed for all instructions. This

does not cause any harm because register Y is not used for any other purpose at that time.

Branch Instructions:

A branch instruction replaces the contents of the PC with the branch target address. This address

is usually obtained by adding an offset X, which is given in the branch instruction, to the updated

value of the PC. Listing in figure 8 below gives a control sequence that implements an

unconditional branch instruction. Processing starts, as usual, with the fetch phase. This phase

ends when the instruction is loaded into the IR in step 3. The offset value is extracted from the IR

by the instruction decoding circuit, which will also perform sign extension if required. Since the

value of the updated PC is already available in register Y, the offset X is gated onto the bus in

step 4, and an addition operation is performed. The result, which is the branch target address, is

loaded into the PC in step 5.

The offset X used in a branch instruction is usually the difference between the branch target

address and the address immediately following the branch instruction.

For example, if the branch instruction is at location 2000 and if the branch target address is 2050,

the value of X must be 46. The reason for this can be readily appreciated from the control

sequence in Figure 7. The PC is incremented during the fetch phase, before knowing the type of

instruction being executed. Thus, when the branch address is computed in step 4, the PC value

used is the updated value, which points to the instruction following the branch instruction in the

memory.

S Venkata Lakshmi, Assistant Professor

 Page 38

Consider now a conditional branch. In this case, we need to check the status of the condition

codes before loading a new value into the PC. For example, for a Branch-on-negative

(Branch<0) instruction, step 4 is replaced with

Offset-field-of-IRout Add, Zin, If N = 0 then End

Thus, if N = 0 the processor returns to step 1 immediately after step 4. If N = 1, step 5 is

performed to load a new value into the PC, thus performing the branch operation.

MULTIPLE-BUS ORGANIZATION:

The resulting control sequences shown are quite long because only one data item can be

transferred over the bus in a clock cycle. To reduce the number of steps needed, most

commercial processors provide multiple internal paths that enable several transfers to take place

in parallel.

Figure 7.8 depicts a three-bus structure used to connect the registers and the ALU of a processor.

All general-purpose registers are combined into a single block called the register file. In VLSI

technology, the most efficient way to implement a number of registers is in the form of an array

of memory cells similar to those used in the implementation of random-access memories

(RAMs). The register file in Figure 7.8 is said to have three ports. There are two outputs,

allowing the contents of two different registers to be accessed simultaneously and have their

contents placed on buses A and B. The third port allows the data on bus C to be loaded into a

third register during the same clock cycle.

Buses A and B are used to transfer the source operands to the A and B inputs of the ALU, where

an arithmetic or logic operation may be performed. The result is transferred to the destination

over bus C. If needed, the ALU may simply pass one of its two input operands unmodified to bus

C. We will call the ALU control signals for such an operation R=A or R=B. The three-bus

arrangement obviates the need for registers Y and Z.

A second feature in Figure 7.8 is the introduction of the Incremental unit, which is used to

increment the PC by 4. The source for the constant 4 at the ALU input multiplexer is still useful.

It can be used to increment other addresses, such as the memory addresses in Load Multiple and

Store Multiple instructions.

S Venkata Lakshmi, Assistant Professor

 Page 39

Consider the three-operand instruction

Add R4,R5,R6

The control sequence for executing this instruction is given in Figure 7.9.

S Venkata Lakshmi, Assistant Professor

 Page 40

In step 1, the contents of the PC are passed through the ALU, using the R=B control signal, and

loaded into the MAR to start a memory read operation. At the same time the PC is incremented

by 4. Note that the value loaded into MAR is the original contents of the PC. The incremented

value is loaded into the PC at the end of the clock cycle and will not affect the contents of MAR.

In step 2, the processor waits for MFC and loads the data received into MDR, then transfers them

to IR in step 3. Finally, the execution phase of the instruction requires only one control step to

complete, step 4.

By providing more paths for data transfer a significant reduction in the number of clock cycles

needed to execute an instruction is achieved.

HARDWIRED CONTROL:

To execute instructions, the processor must have some means of generating the control signals

needed in the proper sequence. Computer designers use a wide variety of techniques to solve this

problem. The approaches used fall into one of two categories: hardwired control and micro

programmed control.

The required control signals are determined by the following information:

❖ Contents of the control step counter

❖ Contents of the instruction register

❖ Contents of the condition code flags

❖ External input signals, such as MFC and interrupt requests

To gain insight into the structure of the control unit, we start with a simplified view of the

hardware involved. The decoder/encoder block in Figure 7.10 is a combinational circuit that

generates the required control outputs, depending on the state of all its inputs. By separating the

decoding and encoding functions, we obtain the more detailed block diagram in Figure 7.11. The

S Venkata Lakshmi, Assistant Professor

 Page 41

step decoder provides a separate signal line for each step, or time slot, in the control sequence.

Similarly, the output of the instruction decoder consists of a separate line for each machine

instruction. For any instruction loaded in the IR, one of the output lines INS1 through INSm is set

to 1, and all other lines are set to 0. The input signals to the encoder block in Figure 7.11 are

combined to generate the individual control signals Yin, PCout, Add, End, and so on. An example

of how the encoder generates the Zin control signal for the processor organization in Figure 7.1 is

given in Figure 7.12. This circuit implements the logic function

Zin=T1+T6 - ADD + T4-BR+---

This signal is asserted during time slot T1 for all instructions, during T6 for an Add instruction,

during T4 for an unconditional branch instruction, and so on. The logic function for Zin is

derived from the control sequences in Figures 7.6 and 7.7. As another example, Figure 7.13 gives

a circuit that generates the End control signal from the logic function

End = T7 • ADD + T5 • BR + (T5 • N + T4 • N) • BRN + • • •

The End signal starts a new instruction fetch cycle by resetting the control step counter to its

starting value. Figure 7.11 contains another control signal called RUN. When set to 1, RUN

causes the counter to be incremented by one at the end of every clock cycle. When RUN is equal

to 0, the counter stops counting. This is needed whenever the WMFC signal is issued, to cause

the processor to wait for the reply from the memory.

The control hardware shown can be viewed as a state machine that changes from one state to

another in every clock cycle, depending on the contents of the instruction register, the condition

codes, and the external inputs. The outputs of the state machine are the control signals. The

sequence of operations carried out by this machine is determined by the wiring of the logic

S Venkata Lakshmi, Assistant Professor

 Page 42

elements, hence the name "hardwired." A controller that uses this approach can operate at high

speed. However, it has little flexibility, and the complexity of the instruction set it can implement

is limited.

MICROPROGRAMMED CONTROL:

Microprogrammed control signals are generated by a program similar to machine language

programs.

S Venkata Lakshmi, Assistant Professor

 Page 43

ALU is the heart of any computing system, while Control unit is its brain. The design of a

control unit is not unique; it varies from designer to designer. Some of the commonly used

control logic design methods are:

• Sequence Reg & Decoder method

• Hard-wired control method

• PLA control method

• Micro-program control method

Figure 7.15 An example of microinstructions for Figure 7.6.

A control word (CW) is a word whose individual bits represent the various control signals. Each

of the control steps in the control sequence of an instruction defines a unique combination of 1s

and 0s in the CW. A sequence of CWs corresponding to the control sequence of a machine

instruction constitutes the microroutine for that instruction, and the individual control words in

this microroutine are referred to as microinstructions.

The micro routines for all instructions in the instruction set of a computer are stored in a special

memory called the control store. The control unit can generate the control signals for any

instruction by sequentially reading the CWs of the corresponding micro routine from the control

store.

In Figure 7.16 to read the control words sequentially from the control store, a micro program

counter (μPC) is used. Every time a new instruction is loaded into the IR, the output of the block

labeled "starting address generator" is loaded into the μPC. The μPC is then automatically

incremented by the clock, causing successive microinstructions to be read from the control store.

Hence, the control signals are delivered to various parts of the processor in the correct sequence.

In microprogrammed control, an alternative approach to control unit is to use conditional branch

microinstructions. In addition to the branch address, these microinstructions specify which of the

external inputs, condition codes, or, possibly, bits of the instruction register should be checked as

a condition for branching to take place.

The instruction Branch <0 may now be implemented by a microroutine such as that shown in

Figure 7.17. After loading this instruction into IR, a branch microinstruction transfers control to

the corresponding microroutine, which is assumed to start at location 25 in the control store. This

S Venkata Lakshmi, Assistant Professor

 Page 44

address is the output of the starting address generator block in Figure 7.16. The microinstruction

at location 25 tests the N bit of the condition codes. If this bit is equal to 0, a branch takes place

to location 0 to fetch a new machine instruction. Otherwise, the microinstruction at location 26 is

executed to put the branch target address into register Z, as in step 4 in Figure 7.7. The

microinstruction in location 27 loads this address into the PC.

S Venkata Lakshmi, Assistant Professor

 Page 45

To support microprogram branching, the organization of the control unit should be modified as

shown in Figure 7.18. The starting address generator block of Figure 7.16 becomes the starting

and branch address generator. This block loads a new address into the μPC when a

microinstruction instructs it to do so. To allow implementation of a conditional branch, inputs to

this block consist of the external inputs and condition codes as well as the contents of the

instruction register. In this control unit, the μPC is incremented every time a new

microinstruction is fetched from the micro program memory, except in the following situations:

1. When a new instruction is loaded into the IR, the μPC is loaded with the starting address

of the micro routine for that instruction.

2. When a Branch microinstruction is encountered and the branch condition is satisfied, the

μPC is loaded with the branch address.

3. When an End microinstruction is encountered, the μPC is loaded with the address of the

first CW in the micro routine for the instruction fetch cycle.

S Venkata Lakshmi, Assistant Professor

Page 1

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES::TIRUPATI

II B.Tech II Semester

(19APC0506) Computer Organization
Course Objectives:

 To learn the fundamentals of computer organization and its relevance to classical and modern

problems of computer design

 To make the students understand the structure and behavior of various functional modules of a

computer.

 To understand the techniques that computers use to communicate with I/O devices

 To study the concepts of pipelining and the way it can speed up processing.

 To understand the basic characteristics of multiprocessors

Unit I:

Basic Structure of Computer: Computer Types, Functional Units, Basic operational Concepts, Bus

Structure, Software, Performance, Multiprocessors and Multicomputer.

Machine Instructions and Programs: Numbers, Arithmetic Operations and Programs, Instructions and

Instruction Sequencing, Addressing Modes, Basic Input/output Operations, Stacks and Queues,

Subroutines, Additional Instructions.

Unit II:

Arithmetic: Addition and Subtraction of Signed Numbers, Design and Fast Adders, Multiplication of

Positive Numbers, Signed-operand Multiplication, Fast Multiplication, Integer Division, Floating-Point

Numbers and Operations.

Basic Processing Unit: Fundamental Concepts, Execution of a Complete Instruction, Multiple-Bus

Organization, Hardwired Control, Multiprogrammed Control.

Unit III:

The Memory System: Basic Concepts, Semiconductor RAM Memories, Read-Only Memories, Speed,

Size and Cost, Cache Memories, Performance Considerations, Virtual Memories, Memory Management

Requirements, Secondary Storage.

Unit IV:

Input/output Organization: Accessing I/O Devices, Interrupts, Processor Examples, Direct Memory

Access, Buses, Interface Circuits, Standard I/O Interfaces.

Unit V:

Pipelining: Basic Concepts, Data Hazards, Instruction Hazards, Influence on Instruction Sets

Large Computer Systems: Forms of Parallel Processing, Array Processors, The Structure of General-

Purpose, Interconnection Networks.

Textbook:

1. “Computer Organization”, Carl Hamacher, Zvonko Vranesic, Safwat Zaky, McGraw Hill Education,

5th Edition, 2013.

Reference Textbooks:

1. Computer System Architecture, M.Morris Mano, Pearson Education, 3rd Edition.

2. Computer Organization and Architecture, Themes and Variations, Alan Clements, CENGAGE

Learning.

3. Computer Organization and Architecture, Smruti Ranjan Sarangi, McGraw Hill Education.

4. Computer Architecture and Organization, John P.Hayes, McGraw Hill Education.

Course Outcomes:

 Ability to use memory and I/O devices effectively

 Able to explore the hardware requirements for cache memory and virtual memory

 Ability to design algorithms to exploit pipelining and multiprocessors

L T P C

3 0 0 3

S Venkata Lakshmi, Assistant Professor

Page 2

UNIT-III
The Memory System: Basic Concepts, Semiconductor RAM Memories, Read-Only Memories, Speed,

Size and Cost, Cache Memories, Performance Considerations, Virtual Memories, Memory Management

Requirements, Secondary Storage.

THE MEMORY SYSTEM

SOME BASIC CONCEPTS

The maximum: size of the memory that can be used in any computer is determined by the

addressing scheme.

For example,

 16-bit computer that generates 16-bit addresses is capable of addressing up to 2
16

 = 64K

memory locations.

 32-bit addresses can utilize a memory that contains up to 2
32

 = 4G (giga) memory

locations.

 40-bit addresses can access up to 2
40

 = 1T (tera) locations.

The number of locations represents the size of the address space of the computer.

Most modern computers are byte addressable. The big-endian arrangement is used in the 68000

processor. The little-endian arrangement is used in Intel processors.

Word length of a computer is defined as the number of bits actually stored or retrieved in one

memory access.

Consider, for example, a byte addressable computer whose instructions generate 32-bit

addresses, When a 32-bit address is sent from the processor to the memory unit, the high-order

30 bits determine which word will be accessed. If a byte quantity is specified, the low-order 2

bits of the address specify which byte location is involved. In a Read operation, other bytes may

be fetched from the memory, but they are ignored by the processor. If the byte operation is a

Write, however, the control circuitry of the memory must ensure that the contents of other bytes

of the same word are not changed.

S Venkata Lakshmi, Assistant Professor

Page 3

Data transfer between the memory and the processor takes place through the use of two

processor registers, usually called MAR and MDR. If MAR is k bits long and MDR is n bits

long, then the memory unit may contain up to 2
k
 addressable locations. During a memory cycle,

n bits of data are transferred between the memory and the processor. This transfer takes place

over the processor bus, which has k address lines and n data lines. The bus also includes the

control lines Read/Write (R/W) and Memory Function Completed (MFC) for coordinating data

transfers. Other control lines may be added to indicate the number of bytes to be transferred.

The processor reads data from the memory by loading the address of the required memory

location into the MAR register and setting the R/W line to 1. The memory responds by placing

the data from the addressed location onto the data lines, and confirms this action by asserting the

MFC signal. Upon receipt of the MFC signal, the processor loads the data on the data lines into

the MDR register.

The processor writes data into a memory location by loading the address of this location into

MAR and loading the data into MDR. It indicates that a write operation is involved by setting the

R/W line to 0.

If read or write operations involve consecutive address locations is the main memory, then a

“block transfer” operation can be performed in which the only address sent to the memory is the

one that identifies the first location.

A useful measure of the speed of memory units is the time that elapses between the initiation of

an operation and the completion of that operation, for example, the time between the Read and

the MFC signals. This is referred to as the memory access time. Another important measure is

the memory cycle time, which is the minimum time delay required between the initiations of two

successive memory operations, for example, the time between two successive Read operations.

The cycle time is usually slightly longer than the access time, depending on the implementation

details of the memory unit.

A memory unit is called random-access memory (RAM) if any location can be accessed for a

Read or Write operation in some fixed amount of time that is independent of the location’s

address. This distinguishes such memory units from serial, or partly serial, access storage devices

such as magnetic disks and tapes. Access time on the latter devices depends on the address or

position of the data.

The processor of a computer can usually process instructions and data faster than they can be

fetched from a reasonably priced memory unit.

Cache memory is used to reduce the memory access time. This is a small, fast memory that is

inserted between the larger, slower main memory and the processor. It holds the currently active

segments of a program and their data.

Virtual memory is another important concept related to memory organization. The memory

control circuitry translates the address specified by the program into an address that can be used

to access the physical memory. In such a case, an address generated by the processor is referred

to as a virtual or logical address. The virtual address space is mapped onto the physical memory

S Venkata Lakshmi, Assistant Professor

Page 4

where data are actually stored. The mapping function is implemented by a special memory

control circuit, often called the memory management unit. This mapping function can be

changed during program execution according to system requirements.

Virtual memory is used to increase the apparent size of the physical memory.

SEMICONDUCTOR RAM MEMORIES

Semiconductor memories cycle times range from 100 ns to less than 10 ns. Because of rapid

advances in VLSI (Very Large Scale Integration} technology, the cost of semiconductor

memories has dropped dramatically.

INTERNAL ORGANIZATION OF MEMORY CHIPS:

Memory cells are usually organized in the form of an array, in which each cell is capable of

storing one bit of information. Each row of cells constitutes a memory word, and all cells of a

row are connected to a common line referred to as the word line, which is driven by the address

decoder on the chip. The cells in each column are connected to a Sense/Write circuit by two bit

lines, The Sense/Write circuits are connected to the data input/output lines of the chip, During a

Read operation, these circuits sense, or read, the information stored in the cells selected by a

word line and transmit this information to the output data lines. During a Write operation, the

Sense/Write circuits receive input information and store it in the cells of the selected word.

Figure 5.2 is an example of a very small memory chip consisting of 16 words of 8 bits each. This

is referred to as a 16 x 8 organization. The data input and the data output of each Sense/Write

circuit are connected to a single bidirectional data line that can be connected to the data bus of a

computer. Two control lines, R/W and CS, are provided in addition to address and data lines.

S Venkata Lakshmi, Assistant Professor

Page 5

The R/W (Read/Write) input specifies the required operation, and the CS (Chip Select) input

selects a given chip in a multichip memory system.

The memory circuit in Figure 5.2 stores 128 bits and requires 14 external connections for

address, data, and control lines. This circuit requires 14 external connections, and allowing 2 pins

for power supply and ground connections, can be manufactured in the form of a 16-pin chip. It

can store 16 x 8 = 128 bits.

Another type of organization for 1k x 1 format is shown below: This circuit can be organized as

a 128 x 8 memory, requiring a total of 19 external connections. Alternatively, the same number

of cells can be organized into a 1K x | format. In this case, a 10-bit address is needed, but there is

only one data line, resulting in 15 external connections. Figure 5.3 shows such an organization.

The required 10-bit address is divided into two groups of 5 bits each to form the row and column

addresses for the cell array. A row address selects a row of 32 cells, all of which are accessed in

parallel.

STATIC MEMORIES:

Memories that consist of circuits capable of retaining their state as long as power is applied are

known as static memories.

Figure 5.4 illustrates how a static RAM (SRAM) cell may be implemented. Two inverters are

cross-connected to form a latch. The latch is connected to two bit lines by transistors T1 and T2.

These transistors act as switches that can be opened or closed under control of the word line.

When the word line is at ground level, the transistors are turned off and the latch retains its state.

For example, let us assume that the cell is in state 1 if the logic value at point X is 1 and at point

Y is 0. This state is maintained as long as the signal on the word line is at ground level.

S Venkata Lakshmi, Assistant Professor

Page 6

Read Operation

In order to read the state of the SRAM cell, the word line is activated to close switches T1 and T2.

If the cell is in state 1, the signal on bit line b is high and the signal on bit line b is low. The

opposite is true if the cell is in state 0. Thus, b and b are complements of each other.

Sense/Write circuits at the end of the bit lines monitor the state of b and b and set the output

accordingly.

Write Operation

The state of the cell is set by placing the appropriate value on bit line b and its complement on b,

and then activating the word line. This forces the cell into the corresponding state. The required

signals on the bit lines are generated by the Sense/Write circuit.

S Venkata Lakshmi, Assistant Professor

Page 7

CMOS Cell:

In figure 5.5, Transistor pairs (T3, T5) and (T4, T6) form the inverters in the latch. For example, in

state 1, the voltage at point X is maintained high by having transistors T3 and T6 on, while T4 and

T5 are off. If T1 and T2 are turned on (closed), bit lines b and b will have high and low signals,

respectively.

The power supply voltage, Vsupply, is 5 V in older CMOS SRAMs of 3.3 V in new low-voltage

versions. Continuous power is needed for the cell to retain its state. If power is interrupted, the

cell's contents will be lost. When power is restored, the latch will settle into a stable state, but it

will not necessarily be the same state the cell was in before the interruption. Hence, SRAMs are

said to be volatile memories because their contents are lost when power is interrupted.

A major advantage of CMOS SRAMs is their very low power consumption because current

flows in the cell only when the cell is being accessed.

Static RAMs can be accessed very quickly. SRAMs are used in applications where speed is of

critical concern.

Static RAMs are fast, but they come at a high cost because their cells require several transistors.

ASYNCHRONOUS DRAMs:

Dynamic RAMs (DRAMs) are less expensive RAMs can be implemented if simpler cells are

used. However, such cells do not retain their state indefinitely.

Information is stored in a dynamic memory cell in the form of a charge on a capacitor, and this

charge can be maintained for only tens of milliseconds. Since the cell is required to store

information for a much longer time, its contents must be periodically refreshed by restoring the

capacitor charge to its full value.

After the transistor is turned off, the capacitor begins to discharge. This is caused by the

capacitor’s own leakage resistance and by the fact that the transistor continues to conduct a tiny

amount of current, measured in picoamperes, after it is turned off. Hence, the information stored

in the cell can be retrieved correctly only if it is read before the charge on the capacitor drops

below some threshold value. During a Read operation, the transistor in a selected cell is turned

on. A sense amplifier connected to the bit line detects whether the charge stored on the capacitor

is above the threshold value. If so, it drives the bit line to a full voltage that represents logic

value 1. This voltage recharges the capacitor to the full charge that corresponds to logic value 1.

If the sense amplifier detects that the charge on the capacitor is below the threshold value, it pulls

the bit line to ground level, which ensures that the capacitor will have no charge, representing

logic value 0. Thus, reading the contents of the cell automatically refreshes its contents. All cells

in a selected row are read at the same time, which refreshes the contents of the entire row.

A 16-megabit DRAM chip, configured as 2M x 8, is shown in Figure 5.7. The cells are

organized in the form of a 4K x 4K array. The 4096 cells in each row are divided into 512 groups

of 8, so that a row can store 512 bytes of data, Therefore, 12 address bits are needed to select a

S Venkata Lakshmi, Assistant Professor

Page 8

row. Another 9 bits are needed to specify a group of 8 bits in the selected row. Thus, a 21-bit

address is needed to access a byte in this memory. The high-order 12 bits and the low-order 9

bits of the address constitute the row and column addresses of a byte, respectively.

To reduce the number of pins needed for extremal connections, the row and column addresses

are multiplexed on 12 pins. During a Read or a Write operation, the row address is applied first.

It is loaded into the row address latch in response to a signal pulse on the Row Address Strobe

(RAS) input of the chip. Then a Read operation is initiated, in which all cells on the selected row

are read and refreshed. Shortly after the row address is loaded, the column address is applied to

the address pins and loaded into the column address latch under control of the Column Address

Strobe (CAS) signal. The information in this latch is decoded and the appropriate group of 8

Sense/Write circuits is selected. If the R/W control signal indicates a Read operation, the output

values of the selected circuits are transferred to the data lines, D7-0. For a Write operation, the

information on the D7-0 lines is transferred to the selected circuits.

Applying a row address causes all cells on the corresponding row to be read and refreshed during

both Read and Write operations. To ensure that the contents of a DRAM are maintained, each

row of cells must be accessed periodically. A refresh circuit usually performs this function

automatically. Many dynamic memory chips incorporate a refresh facility within the chips

themselves.

S Venkata Lakshmi, Assistant Professor

Page 9

A specialized memory controller circuit provides the necessary control signals, RAS and CAS,

that govern the timing. The processor must take into account the delay in the response of the

memory. Such memories are referred to as asynchronous DRAMS.

Because of their high density and low cost, DRAMs are widely used in the memory units of

computers. Available chips range in size from 1M to 256M bits, and even larger chips are being

developed. To reduce the number of memory chips needed in a given computer, a DRAM chip is

organized to read or write a number of bits in parallel.

Fast Page Mode

When the DRAM in Figure 5.7 is accessed, the contents of all 4096 cells in the selected row ate

sensed, but only 8 bits are placed on the data lines D7-0. This byte is selected by the column

address bits A8-0. A simple modification can make it possible to access the other bytes in the

same row without having to reselect the row. A latch can be added at the output of the sense

amplifier in each column. The application of a row address will load the latches corresponding to

all bits in the selected row. Then, it is only necessary to apply different column addresses to

place the different bytes on the data lines.

The most useful arrangement is to transfer the bytes in sequential order, which is achieved by

applying a consecutive sequence of column addresses under the control of successive CAS

signals. This scheme allows transferring a block of data at a much faster rate than can be

achieved for transfers involving random addresses. The block transfer capability is referred to as

the fast page mode feature.

SYNCHRONOUS DRAMS

DRAMs whose operation is directly synchronized with a clock signal, such memories are knows

as synchronous DRAMs (SDRAMs).

S Venkata Lakshmi, Assistant Professor

Page 10

The cell array is the same as in asynchronous DRAMs. The address and data connections are

buffered by means of registers. The output of each sense amplifier is connected to a latch. A

Read operation causes the contents of all cells in the selected row to be loaded into these latches.

But, if an access is made for refreshing purposes only, it will not change the contents of these

latches; it will merely refresh the contents of the cells. Data held in the latches that correspond to

the selected column(s) are transferred into the data output register, thus becoming available on

the data output pins.

SDRAMs have several different modes of operation, which can be selected by writing control

information into a mode register. For example, burst operations of different lengths can be

specified.

Figure 5.9 shows a timing diagram for a typical burst read of length 4. First, the row address is

latched under control of the RAS signal. The memory typically takes 2 or 3 clock cycles (we use

2 in the figure) to activate the selected row. Then, the column address is latched under control of

the CAS signal. After a delay of one clock cycle, the first set of data bits is placed on the data

lines. The SDRAM automatically increments the column address to access the next three sets of

bits in the selected row, which are placed on the data lines in the next 3 clock cycles.

SDRAMs have built-in refresh circuitry. A part of this circuitry is a refresh counter, which

provides the addresses of the rows that are selected for refreshing.

Commercial SDRAMs can be used with clock speeds above 100 MHz. These chips are designed

to meet the requirements of commercially available processors that are used in large volume.

Latency and Bandwidth:

A good indication of the performance of a computer system is given by two parameters: latency

and bandwidth.

S Venkata Lakshmi, Assistant Professor

Page 11

The term memory latency is used to refer to the amount of time it takes to transfer a word of data

to or from the memory. In the case of reading or writing a single word of data, the latency

provides a complete indication of memory performance. But, in the case of burst operations that

transfer a block of data, the time needed to complete the operation depends also on the rate at

which successive words can be transferred and on the size of the block.

In block transfers, the term latency is used to denote the time if takes to transfer the first word of

data. This time is usually substantially longer than the time needed to transfer each subsequent

word of a block.

When transferring blocks of data, since blocks can be variable in size, it is useful to define a

performance measure in terms of the number of bits or bytes that can be transferred in one

second. This measure is often referred to as the memory bandwidth. This measure is often

referred to as the memory bandwidth. The bandwidth of a memory unit (consisting of one or

more memory chips) depends on the speed of access to the stored data and on the number of bits

that can be accessed in parallel. The effective bandwidth in a computer system also depends on

the transfer capability of the links that connect the memory and the processor, typically the speed

of the bus.

The bandwidth clearly depends on the speed of access and transmission along a single wire, as

well as on the number of bits that can be transferred in parallel, namely the number of wires.

Thus, the bandwidth is the product of the rate at which data are transferred (and accessed) and

the width of the data bus.

Double-Data-Rate SDRAM:

The standard SDRAM performs all actions on the rising edge of the clock signal. A similar

SDRAM memory device is available, which accesses the cell array in the same way, but

transfers data on both edges of the clock. The latency of these devices is the same as for standard

SDRAMs. But, since they transfer data on both edges of the clock, their bandwidth is essentially

doubled for long burst transfers. Such devices are known as double-data-rate SDRAMs (DDR

SDRAMs).

To make it possible to access the data at a high enough rate, the cell array is organized in two

banks. Each bank can be accessed separately. Consecutive words of a given block are stored in

different banks. Such interleaving of words allows simultaneous access to two words that are

transferred on successive edges of the clock.

DDR SDRAMs and standard SDRAMs are most efficiently used in applications where block

transfers are prevalent.

STRUCTURE OF LARGER MEMORIES

Static Memory Systems:

Consider a memory consisting of 2M (2,097,152) words of 32 bits each. Figure 5.10 shows how

we can implement this memory using 512K x 8 static memory chips. Each column in the figure

S Venkata Lakshmi, Assistant Professor

Page 12

consists of four chips, which implement one byte position. Four of these sets provide the

required 2M x 32 memory. Each chip has a control input called Chip Select. When this input is

set to 1, it enables the chip to accept data from or to place date on its data lines. The data output

for each chip is of the three-state type. Only the selected chip places data on the data output line,

while all other outputs are in the high-impedance state. Twenty one address bits are needed to

select a 32-bit word in this memory. The high-order 2 bits of the address are decoded to

determine which of the four Chip Select control signals should be activated and the remaining 19

address bits are used to access specific byte locations inside each chip of the selected row. The

R/W inputs of all chips are tied together to provide a common Read/Write control.

S Venkata Lakshmi, Assistant Professor

Page 13

Dynamic Memory Systems:

Physical implementation of large dynamic memory systems is often done more conveniently in

the form of memory modules.

A large memory leads to better performance because more of the programs and data used in

processing can be held in the memory, thus reducing the frequency of accessing the information

in secondary storage. However, if a large memory is built by placing DRAM chips directly on

the main system printed-circuit board that contains the processor, often referred to as a

motherboard, it will occupy an unacceptably large amount of space on the board. These

packaging considerations have led to the development of larger memory units known as SIMMs

(Single In-line Memory Modules) and DIMMs (Dual In-line Memory Modules). SIMMs and

DIMMs of different sizes are designed to use the same size socket. Such modules occupy a

smaller amount of space on a motherboard, and they allow easy expansion by replacement if a

larger module uses the same socket as the smaller one.

MEMORY SYSTEM CONSIDERS TIONS:

The choice of a RAM chip for a given application depends on several factors. Foremost among

these factors are the cost, speed, power dissipation, and size of the chip.

Static RAMs are generally used only when very fast operation is the primary requirement. They

are used mostly in cache memories.

Dynamic RAMs are the predominant choice for implementing computer main memories. The

high densities achievable in these chips make large memories economically feasible.

Memory Controller:

To reduce the number of pins, the dynamic memory chips use multiplexed address inputs.

The address is divided into two parts.

The high-order address bits, which select a row in the cell array, are provided first and latched

into the memory chip under control of the RAS signal.

Then, the low-order address bits, which select a column, are provided on the same address pins

and latched using the CAS signal.

A typical processor issues all bits of an address at the same time. The required multiplexing of

address bits is usually performed by a memory controller circuit, which is interposed between the

processor and the dynamic memory.

The controller accepts a complete address and the R/W signal from the processor, under control

of a Request signal which indicates that a memory access operation is needed. The controller

then forwards the row and column portions of the address to the memory and generates the RAS

and CAS signals. Thus, the controller provides the RAS-CAS timing, in addition to its address

multiplexing function. It also sends the R/W and CS signals to the memory.

S Venkata Lakshmi, Assistant Professor

Page 14

The CS signal is usually active low; hence it is shown as CS. Data lines are connected directly

between the processor and the memory.

When used with DRAM chips, which do not have self-refreshing capability, the memory

controller has to provide all the information needed to control the refreshing process. It contains

a refresh counter that provides successive row addresses. Its function is to cause the refreshing of

all rows to be done within the period specified for a particular device.

Refresh Overhead:

All dynamic memories have to be refreshed. In older DRAMs, a typical period for refreshing all

rows was 16ms. In typical SDRAMs, a typical period is 64ms.

Consider an SDRAM whose cells are arranged in 8K (=8192) rows. Suppose that it takes four

clock cycles to access (read) each row. Then, it takes 8192 x 4 = 32,768 cycles to refresh all

rows. At a clock rate of 133 MHz, the time needed to refresh all rows is 32,768/ (133 x 10
6
) =

246 x 10
-6

 seconds. Thus, the refreshing process occupies 0.246ms in each 64-ms time interval.

Therefore, the refresh overhead is 0.246/64 = 0.0038, which is less than 0.4 percent of the total

time available for accessing the memory.

RAMBUS MEMORY:

The performance of a dynamic memory is characterized by its latency and bandwidth. The only

way to increase the amount of data that can be transferred on a speed-limited bus is to increase

the width of the bus by providing more data lines, thus widening the bus.

A very wide bus is expensive and requires a lot of space on a motherboard. An alternative

approach is to implement a narrow bus that is much faster. This approach was used by Rambus

Inc. to develop a proprietary design known as Rambus. The key feature of Rambus technology is

a fast signaling method used to transfer information between chips.

S Venkata Lakshmi, Assistant Professor

Page 15

Differential signaling and high transmission rates require special techniques for the design of

wire connections that serve as communication links. Rambus provides a complete specification

for the design of such communication links, called the Rambus channel.

Rambus requires specially designed memory chips. These chips use cell arrays based on the

standard DRAM technology. Multiple banks of ceil arrays are used to access more than one word

at a time, Circuitry needed to interface to the Rambus Channel is included on the chip. Such

chips are known as Rambus DRAMs (RDRAMs).

The original specification of Rambus provided for a channel consisting of 9 data lines and a

number of control and power supply lines. Eight of the data lines are intended for transferring a

byte of data. The ninth data line can be used for purposes such as parity checking. Subsequent

specifications allow for additional channels. A two-channel Rambus, also known as Direct

RDRAM, has 18 data lines intended to transfer two bytes of data at a time. There are no separate

address lines.

Communication between the processor, or some other device that can serve as a master, and

RDRAM modules, which serve as slaves, is carried out by means of packets transmitted on the

data lines. There are three types of packets: request, acknowledge, and data. A request packet

issued by the master indicates the type of operation that is to be performed. It contains the

address of the desired memory location and includes an 8-bit count that specifies the number of

bytes involved in the transfer. The operation types include memory reads and writes, as well as

reading and writing of various control registers in the RDRAM chips. When the master issues a

request packet, the addressed slave responds by returning a positive acknowledgement packet if

it can immediately satisfy the request. Otherwise, the slave indicates that itis “busy” by

returning a negative acknowledgement packet, in which case the master will try again.

READ-ONLY MEMORIES:

The contents of non-volatile memory can be read as if they were SRAM or DRAM memories.

But, a special writing process is needed to place the information into this memory. Since its

normal operation involves only reading of stored data, a memory of this type is called read-only

memory (ROM).

ROM

A logic value 0 is stored in the cell if the transistor is connected to ground at point P; otherwise,

a 1 is stored. The bit line is connected through a resistor to the power supply. To read the state of

the cell, the word line is activated. Thus, the transistor switch is closed and the voltage on the bit

line drops to near zero if there is a connection between the transistor and ground. If there is no

connection to ground, the bit line remains at the high voltage, indicating a 1. A sense circuit at

the end of the bit line generates the proper output value. Data are written into a ROM when it is

manufactured.

S Venkata Lakshmi, Assistant Professor

Page 16

PROM:

Some ROM designs allow the data to be loaded by the user, thus providing a programmable

ROM (PROM). Programmability is achieved by inserting a fuse at point P in Figure 5.12. Before

it is programmed, the memory contains all 0s. The user can insert 1s at the required locations by

burning out the fuses at these locations using high-current pulses. Of course, this process is

irreversible.

PROMs provide flexibility and convenience. PROMs provide a faster and considerably less

expensive approach because they can be programmed directly by the user.

EPROM:

Another type of ROM chip allows the stored data to be erased and new data to be loaded. Such

an erasable, reprogrammable ROM is usually called an EPROM. Since EPROMs are capable of

retaining stored information for a long time, they can be used in place of ROMs while software is

being developed.

The important advantage of EPROM chips is that their contents can be erased and

reprogrammed. Erasure requires dissipating the charges trapped in the transistors of memory

cells; this can be done by exposing the chip to ultraviolet light. For this reason, EPROM chips

are mounted in packages that have transparent windows.

EEPROM:

A significant disadvantage of EPROMs is that a chip must be physically removed from the

circuit for reprogramming and that its entire contents are erased by the ultraviolet light. It is

possible to implement another version of erasable PROMs that can be both programmed and

erased electrically. Such chips, called EEPROMs, do not have to be removed for erasure.

Moreover, it is possible to erase the cell contents selectively. The only disadvantage of

EEPROMs is that different voltages are needed for erasing, writing, and reading the stored data.

S Venkata Lakshmi, Assistant Professor

Page 17

Flash Memory:

In EEPROM it is possible to read and write the contents of a single cell. In a flash device it is

possible to read the contents of a single cell, but it is only possible to write an entire block of

cells. Prior to writing, the previous contents of the block are erased. Flash devices have greater

density, which leads to higher capacity and a lower cost per bit. They require a single power

supply voltage, and consume less power in their operation.

Flash memory consumes low power.

Applications:

Typical applications include hand-held computers, cell phones, digital cameras, and MP3 music

players. In hand-held computers and cell phones, flash memory holds the software needed to

operate the equipment, thus obviating the need for a disk drive. In digital cameras, flash memory

is used to store picture image data. In MP3 players, flash memory stores the data that represent

sound. Cell phones, digital cameras, and MP3 players are good examples of embedded systems,

There are two popular choices for the implementation of larger modules: flash cards and flash

drives.

Flash Cards:

One way of constructing a larger module is to mount flash chips on a small card. Such flash

cards have a standard interface that makes them usable in a variety of products. A card is simply

plugged into a conveniently accessible slot.

Flash Drives:

The storage capacity of flash drives is significantly lower. Currently, the capacity of flash drives

is less than one gigabyte. In contrast, hard disks can store many gigabytes.

The fact that flash drives are solid state electronic devices that have no movable parts provides

some important advantages. They have shorter seek and access times, which results in faster

response. They have lower power consumption.

The disadvantages of flash drives vis-a-vis hard disk drives are their smaller capacity and higher

cost per bit. Disks provide an extremely low cost per bit. Another disadvantage is that the flash

memory will deteriorate after it has been written a number of times.

SPEED, SIZE, AND COST

A very fast memory can be implemented if SRAM chips are used. But these chips are expensive

because their basic cells have six transistors, which preclude packing a very large number of

cells onto a single chip. The alternative is to use Dynamic RAM chips, which have much simpler

basic cells and thus are much less expensive, but such memories are significantly slower.

S Venkata Lakshmi, Assistant Professor

Page 18

Secondary storage, mainly magnetic disks, is used to implement large memory spaces. Very

large disks are available at a reasonable price, and they are used extensively in computer

systems. However, they are much slower than the semiconductor memory units.

“A huge amount of cost-effective storage can be provided by magnetic disks. A large, yet

affordable, main memory can be built with dynamic RAM technology”. This leaves SRAMs to be

used in smaller units where speed is of the essence, such as in cache memories.

The entire computer memory can be viewed as the hierarchy. The fastest access is to data held in

processor registers. Therefore, if we consider the registers to be part of the memory hierarchy,

then the processor registers are at the top in terms of the speed of access.

At the next level of the hierarchy is a relatively small amount of memory that can be

implemented directly on the processor chip. This memory, called a processor cache, holds copies

of instructions and data stored in a much larger memory that is provided externally.

There are often two levels of caches.

A primary cache is always located on the processor chip. This cache is small because it competes

for space on the processor chip, which must implement many other functions. The primary cache

is referred to as level 1 (L1) cache. A larger, secondary cache is placed between the primary

cache and the rest of the memory. It is referred to as level 2 (L2) cache.

The next level in the hierarchy is called the main

memory. This rather large memory is implemented

using dynamic memory components, typically in the

form of SIMMs, DIMMs, or RIMMs. The main

memory is much larger but significantly slower than

the cache memory. In a typical computer, the access

time for the main memory is about ten times longer

than the access time for the L1 cache.

Disk devices provide a huge amount of inexpensive

storage. They are very slow compared to the

semiconductor devices used to implement the main

memory.

CACHE MEMORIES

Fast cache memory essentially makes the main memory appear to the processor to be faster than

it really is.

The effectiveness of the cache mechanism is based on a property of computer programs called

locality of reference.

S Venkata Lakshmi, Assistant Professor

Page 19

Many instructions in localized areas of the program are executed repeatedly during some time

period, and the remainder of the program is accessed relatively infrequently. This is referred to

as locality of reference. It manifests itself in two ways: temporal and spatial. The first means that

a recently executed instruction is likely to be executed again very soon. The spatial aspect means

that instructions in close proximity to a recently executed instruction are also likely to be

executed soon.

The temporal aspect of the locality of reference suggests that whenever an information item

(instruction or data) is first needed, this item should be brought into the cache where it will

hopefully remain until it is needed again. The spatial aspect suggests that instead of fetching just

one item from the main memory to the cache, it is useful to fetch several items that reside at

adjacent addresses as well. The term block to refer to a set of contiguous address locations of

some size, another term that is often used to refer to a cache block is cache line.

In above figure, when a Read request is received from the processor, the contents of a block of

memory words containing the location specified are transferred into the cache one word at a

time. Subsequently, when the program references any of the locations in this block, the desired

contents are read directly from the cache. Usually, the cache memory can store a reasonable

number of blocks at any given time, but this number is small compared to the total number of

blocks in the main memory. The correspondence between the main memory blocks and those in

the cache is specified by a mapping function. When the cache is full and a memory word

(instruction or data) that is not in the cache is referenced, the cache control hardware must decide

which block should be removed to create space for the new block that contains the referenced

word. The collection of rules for making this decision constitutes the replacement algorithm.

The processor does not need to know explicitly about the existence of the cache. It simply issues

Read and Write requests using addresses that refer to locations in the memory. The cache control

circuitry determines whether the requested word currently exists in the cache. If it does, the Read

or Write operation is performed on the appropriate cache location. In this case, a read or write hit

is said to have occurred.

 In a Read operation, the main memory is not involved.

 For a Write operation, the system can proceed in two ways. In the first technique, called the

write-through protocol, the cache location and the main memory location are updated

simultaneously. The second technique is to update only the cache location and to mark it as

updated with an associated flag bit, often called the dirty or modified bit.

S Venkata Lakshmi, Assistant Professor

Page 20

The main memory location of the word is updated later, when the block containing this marked

word is to be removed from the cache to make room for a new block. This technique is known as

the write-back, or copy-back, protocol. The write-through protocol is simpler, but it results in

unnecessary Write operations in the main memory when a given cache word is updated several

times during its cache residency. Note that the write-back protocol may also result in

unnecessary Write operations because when a cache block is written back to the memory all

words of the block are written back, even if only a single word has been changed while the block

was in the cache.

When the addressed word in a Read operation is not in the cache, a read miss occurs. The block

of words that contains the requested word is copied from the main memory into the cache. After

the entire block is loaded into the cache, the particular word requested is forwarded to the

processor. Alternatively, this word may be sent to the processor as soon as it is read from the

main memory. The latter approach, which is called load-through, or early restart, reduces the

processor's waiting period somewhat, but at the expense of more complex circuitry.

During a Write operation, if the addressed word is not in the cache, a write miss occurs. Then, if

the write-through protocol is used, the information is written directly into the main memory. In

the case of the write-back protocol, the block containing the addressed word is first brought into

the cache, and then the desired word in the cache is overwritten with the new information.

MAPPING FUNCTIONS:

Consider a cache consisting of 128 blocks of 16 words each, for a total of 2048 (2K) words, and

assume that the main memory is addressable by 2 16-bit address. The main memory has 64K

words, which we will view as 4K blocks of 16 words each. For simplicity, we will assume that

consecutive addresses refer to consecutive words.

Direct Mapping:

The simplest way to determine cache locations in which to store memory blocks is the direct-

mapping technique. In this technique, block j of the main memory maps onto block j modulo 128

of the cache. Thus, whenever one of the main memory blocks 0, 128, 256,... is loaded in the

cache, it is stored in cache block 0. Blocks 1, 129, 257,... are stored in cache block 1, and so on.

Since more than one memory block is mapped onto a given cache block position, contention may

arise for that position even when the cache is not full. For example, instructions of a program

may start in block 1 and continue in block 129, possibly after a branch. As this program is

executed, both of these blocks must be transferred to the block-1 position in the cache.

Contention is resolved by allowing the new block to overwrite the currently resident block. In

this case, the replacement algorithm is trivial.

Placement of a block in the cache is determined from the memory address. The memory address

can be divided into three fields, as shown in Figure 5.15,

 The low-order 4 bits select one of 16 words in a block. When a new block enters the

cache, the 7-bit cache block field determines the cache position in which this block must

be stored.

S Venkata Lakshmi, Assistant Professor

Page 21

 The high-order 5 bits of the memory address of the block are stored in 5 tag bits

associated with its location in the cache. They identify which of the 32 blocks that are

mapped into this cache position are currently resident in the cache.

 As execution proceeds, the 7-bit cache block field of each address generated by the

processor points to a particular block location in the cache.
The high-order 5 bits of the address are compared with the tag bits associated with that cache location. If

they match, then the desired word is in that block of the cache. If there is no match, then the block

containing the required word must first be read from the main memory and loaded into the cache.

The direct-mapping technique is easy to implement, but it is not very flexible.

Associative Mapping:

In this mapping method, a main memory block can be placed into any cache block position. In

this case, 12 tag bits are required to identify a memory block when it is resident in the cache. The

tag bits of an address received from the processor are compared to the tag bits of each block of

the cache to see if the desired block is present. This is called the associative-mapping technique.

It gives complete freedom in choosing the cache location in which to place the memory block.

Thus, the space in the cache can be used more efficiently. A new block that has to be brought

into the cache has to replace (eject) an existing block only if the cache is full. The cost of an

associative cache is higher than the cost of a direct-mapped cache because of the need to search

all 128 tag patterns to determine whether a given block is in the cache. A search of this kind is

called an associative search. For performance reasons, the tags must be searched in parallel.

S Venkata Lakshmi, Assistant Professor

Page 22

Set-Associative Mapping:

Blocks of the cache are grouped into sets, and the mapping allows a block of the main memory

to reside in any block of a specific set. Hence, the contention problem of the direct method is

eased by having a few choices for block placement. At the same time, the hardware cost is

reduced by decreasing the size of the associative search. An example of this set-associative-

mapping technique is shown in Figure 5.17 for a cache with two blocks per set. In this case,

memory blocks 0, 64, 128,...., 4032 map into cache set 0, and they can occupy either of the two

block positions within this set. Having 64 sets means that the 6-bit set field of the address

determines which set of the cache might contain the desired block. The tag field of the address

must then be associatively compared to the tags of the two blocks of the set to check if the

desired block is present. This two-way associative search is simple to implement.

The number of blocks per set is a parameter that can be selected to suit the requirements of a

particular computer.

A cache that has k blocks per set is referred to as a k-way set-associative cache.

The control bit, valid bit indicates whether the block contains valid data.

S Venkata Lakshmi, Assistant Professor

Page 23

REPLACEMENT ALGORITHMS

In a direct-mapped cache, the position of each block is predetermined; hence, no replacement

strategy exists. In associative and set-associative caches there exists some flexibility. When a

new block is to be brought into the cache and all the positions that it may occupy are full, the

cache controller must decide which of the old blocks to overwrite. When a block is to be

overwritten, it is sensible to overwrite the one that has gone the longest time without being

referenced. This block is called the least recently used (LRU) block, and the technique is called

the LRU replacement algorithm.

To use the LRU algorithm, the cache controller must track references to all blocks as

computation proceeds. Suppose it is required to track the LRU block of a four-block set in a set-

associative cache. A 2-bit counter can be used for each block. When a hit occurs, the counter of

the block that is referenced is set to 0. Counters with values originally lower than the referenced

one are incremented by one, and all others remain unchanged. When a miss occurs and the set is

not full, the counter associated with the new block loaded from the main memory is set to 0, and

the values of all other counters are increased by one. When a miss occurs and the set is fall, the

block with the counter value 3 is removed, the new block is put in its place, and its counter is set

S Venkata Lakshmi, Assistant Professor

Page 24

to 0. The other three block counters are incremented by one, it can be easily verified that the

counter values of occupied blocks are always distinct.

The LRU algorithm has been used extensively. Performance of the LRU algorithm can be

improved by introducing a small amount of randomness in deciding which block to replace.

PERFORMANCE CONSIDERATIONS

Two key factors in the commercial success of a computer are performance and cost; the best

possible performance at the lowest cost is the objective. The challenge in considering design

alternatives is to improve the performance without increasing the cost. A common measure of

success is the price/performance ratio.

Performance depends on how fast machine instructions can be brought into the processor for

execution and how fast they can be executed. The main purpose of the memory hierarchy is to

create a memory that the processor sees as having a short access time and 2 large capacities.

Each level of the hierarchy plays an important role. It is beneficial if transfers to and from the

faster units can be done at a rate equal to that of the faster unit. This is not possible if both the

slow and the fast units are accessed in the same manner, but it can be achieved when parallelism

is used in the organization of the slower unit. An effective way to introduce parallelism is to use

an interleaved organization.

INTERLEAVING:

If the main memory of a computer is structured as a collection of physically separate modules,

each with its own address buffer register (ABR) and data buffer register (DBR), memory access

operations may proceed in more than one module at the same time. Thus, the aggregate rate of

transmission of words to and from the main memory system can be increased.

How individual addresses are distributed over the modules is critical in determining the average

number of modules that can be kept busy as computations proceed. Two methods of address

layout are indicated in Figure 5.25. In the first case, the memory address generated by the

processor is decoded as shown in Figure 5.25a. The high-order & bits name one of n modules,

and the low-order m bits name a particular word in that module. When consecutive locations are

accessed, as happens when a block of data is transferred to a cache, only one module is involved.

At the same time, however, devices with direct memory access (DMA) ability may be accessing

information in other memory modules.

The second and more effective way to address the modules is shown in Figure 5.25b. It is called

memory interleaving. The low-order & bits of the memory address select a module, and the high-

order m bits name a location within that module. In this way, consecutive addresses are located

in successive modules. Thus, any component of the system that generates requests for access to

consecutive memory locations can keep several modules busy at any one time. This results in

both faster accesses to a block of data and higher average utilization of the memory system as a

whole. To implement the interleaved structure, there must be 2 modules; otherwise, there will be

gaps of nonexistent locations in the memory address space.

S Venkata Lakshmi, Assistant Professor

Page 25

Example 1:

The effect of interleaving is substantial. Consider the time needed to transfer 2 block of data

from the main memory to the cache when a read miss occurs. Suppose that a cache with 8-word

blocks is used, similar to our examples in Section 5.5, On a read miss, the block that contains the

desired word must be copied from the memory into the cache. Assume that the hardware has the

following properties. It takes one clock cycle to send an address to the main memory. The

memory is built with relatively slow DRAM chips that allow the first word to be accessed in 8

cycles, but subsequent words of the block are accessed in 4 clock cycles per word. (Recall from

Section 5.2.3 that, when consecutive locations in a DRAM are read from a given row of cells, the

row address is decoded only once. Addresses of consecutive columns of the array are then

applied to access the desired words, which takes only half the time per access.) Also, one clock

cycle is needed to send one word to the cache.

If a single memory module is used, then the time needed to load the desired block into the cache

is

1+8+(7*4)+1=38 cycles

Suppose now that the memory is constructed as four interleaved modules, using the scheme in

Figure 5.25b, When the starting address of the block arrives at the memory, all four modules

S Venkata Lakshmi, Assistant Professor

Page 26

begin accessing the required data, using the high-order bits of the address. After 8 clock cycles,

each module has one word of data in its DBR. These words are transferred to the cache, one

word at a time, during the next 4 clock cycles. During this time, the next word in each module is

accessed. Then it takes another 4 cycles to transfer these words to the cache. Therefore, the total

time needed to load the block from the interleaved memory is

1+8+4+4=17 cycles

Thus, interleaving reduces the block transfer time by more than a factor of 2.

HIT RATE AND MISS PENALTY

A successful access to data in a cache is called a hit. The number of hits stated as a fraction of all

attempted accesses is called the hit rate, and the miss rate is the number of misses stated as a

fraction of attempted accesses.

High hit rates, well over 0.9, are essential for high-performance computers.

Performance is adversely affected by the actions that must be taken after a miss. The extra time

needed to bring the desired information into the cache is called the miss penalty. This penalty is

ultimately reflected in the time that the processor is stalled because the required instructions or

data are not available for execution. In general, the miss penalty is the time needed to bring a

block of data from a slower unit in the memory hierarchy to a faster unit. The miss penalty is

reduced if efficient mechanisms for transferring data between the various units of the hierarchy

are implemented.

Example 2:

Consider now the impact of the cache on the overall performance of the computer. Let h be the

hit rate, M the miss penalty, that is, the time to access information in the main memory, and C

the time to access information in the cache. The average access time experienced by the

processor is

tave = hC+(1-h)M

We use the same parameters as in Example 5.1. If the computer has no cache, then, using a fast

processor and a typical DRAM main memory, it takes 10 clock cycles for each memory read

access. Suppose the computer has a cache that holds 8-word blocks and an interleaved main

memory. Then, as we showed in Section 5.6.1, 17 cycles are needed to load a block into the

cache. Assume that 30 percent of the instructions in a typical program perform a read or a write

operation, which means that there are 130 memory accesses for every 100 instructions executed.

Assume that the hit rates in the cache are 0.95 for instructions and 0.9 for data. Let us further

assume that the miss penalty is the same for both read and write accesses. Then, a rough

estimate of the improvement in performance that results from using the cache can be obtained as

follows:

S Venkata Lakshmi, Assistant Professor

Page 27

This result suggests that the computer with the cache performs five times better.

It is also interesting to consider how effective this cache is compared to an ideal cache that has a

hit rate of 100 percent (in which case, all memory references take one cycle). Our rough estimate

of relative performance for these caches is

How can the hit rate be improved?

 To make the cache larger, but this entails increased cost

 Another possibility is to increase the block size while keeping the total cache size

constant, to take advantage of spatial locality, If all items in a larger block are needed in a

computation, then it is better to load these items into the cache as a consequence of a

single miss, rather than loading several smaller blocks as a result of several misses. The

efficiency of parallel access to blocks in an interleaved memory is the basic reason for

this advantage.

The miss penalty increases as the block size increases. Since the performance of a computer is

affected positively by increased hit rate and negatively by increased miss penalty, the block sizes

that are neither very small nor very large give the best results.

Finally, we note that the miss penalty can be reduced if the load-through approach is used when

loading new blocks into the cache. Then, instead of waiting for the completion of the block

transfer, the processor can continue as soon as the required word is loaded in the cache.

CACHES ON THE PROCESSOR CHIP:

From the speed point of view, the optimal place for a cache is on the processor chip.

All high-performance processor chips include some form of a cache. Some manufacturers have

chosen to implement two separate caches, one for instructions and another for data, as in the

68040, Pentium III, and Pentium 4 processors. Others have implemented a single cache for both

instructions and data, as in the ARM710T processor.

A combined cache for instructions and data is likely to have a somewhat better hit rate because it

offers greater flexibility in mapping new information into the cache. However, if separate caches

are used, it is possible to access both caches at the same time, which leads to increased

parallelism and, hence, better performance. The disadvantage of separate caches is that the

increased parallelism comes at the expense of more complex circuitry.

In high-performance processors two levels of caches are normally used, The L1 cache(s) is on

the processor chip. The L2 cache, which is much larger, may be implemented externally using

SRAM chips.

If both L1 and L2 caches are used, the L1 cache should be designed to allow very fast access by

the processor because its access time will have a large effect on the clock rate of the processor. A

S Venkata Lakshmi, Assistant Professor

Page 28

practical way to speed up access to the cache is to access more than one word simultaneously

and then let the processor use them one at a time,

The L2 cache can be slower, but it should be much larger to ensure a high hit rate. Its speed is

less critical because it only affects the miss penalty of the L1 cache. A workstation computer

may include an L1 cache with the capacity of tens of kilobytes and an L2 cache of several

megabytes.

Including an L2 cache further reduces the impact of the main memory speed on the performance

of a computer. The average access time experienced by the processor in a system with two levels

of caches is

tave=h1C1+(1-h1)h2C2+(1-h1)(1-h2)M

Where

h1 is the hit rate in the L1 cache.

h2 is the hit rate in the L2 cache.

C1 is the time to access information in the LI cache.

C2 is the time to access information in the L2 cache.

M is the time to access information in the main memory

The number of misses in the L2 cache, given by the term (1-h1) (1-h2), should be low. If both h1

and h2 are in the 90 percent range, then the number of misses will be less than 1 percent of the

processor’s memory accesses. Thus, the miss penalty M will be less critical from a performance

point of view.

OTHER ENHANCEMENTS

Write Buffer:

To improve performance, a write buffer can be included for temporary storage of write requests.

The processor places each write request into this buffer and continues execution of the next

instruction. The write requests stored in the write buffer are sent to the main memory whenever

the memory is not responding to read requests. Note that it is important that the read requests be

serviced immediately because the processor usually cannot proceed without the data that are to

be read from the memory. Hence, these requests are given priority over write requests.

The write buffer may hold a number of write requests. Thus, it is possible that a subsequent read

request may refer to data that are still in the write buffer. To ensure correct operation, the

addresses of data to be read from the memory are compared with the addresses of the data in the

write buffer. In case of a match, the data in the write buffer are used.

A different situation occurs with the write-back protocol. In this case, the write operations are

simply performed on the corresponding word in the cache. But consider what happens when a

S Venkata Lakshmi, Assistant Professor

Page 29

new block of data is to be brought into the cache as a result of a read miss, which replaces an

existing block that has some dirty data. The dirty block has to be written into the main memory.

If the required write-back is performed first, then the processor will have to wait longer for the

new block to be read into the cache. It is more prudent to read the new block first. This can be

arranged by providing a fast write buffer for temporary storage of the dirty block that is ejected

from the cache while the new block is being read. Afterward, the contents of the buffer are

written into the main memory. Thus, the write buffer also works well for the write-back protocol.

Prefetching:

To avoid stalling the processor, it is possible to prefetch the data into the cache before they are

needed; the simplest way to do this is through software. A special prefetch instruction may be

provided in the instruction set of the processor. Executing this instruction causes the addressed

data to be loaded into the cache, as in the case of a read miss. A prefetch instruction is inserted in

a program to cause the data to be loaded in the cache by the time they are needed in the program.

The hope is that prefetching will take place while the processor is busy executing instructions

that do not result in a read miss, thus allowing accesses to the main memory to be overlapped

with computation in the processor.

Prefetch instructions can be inserted into a program either by the programmer or by the compiler.

Software prefetching entails a certain overhead because inclusion of prefetch instructions

increases the length of programs.

Prefetching can also be done through hardware. This involves adding circuitry that attempts to

discover a pattern in memory references and then prefetches data according to this pattern.

Intel’s Pentium 4 processor has facilities for prefetching information into its caches using both

software and hardware approaches.

Lockup-Free Cache:

If the action of prefetching stops other accesses to the cache until the prefetch is completed. A

cache of this type is said to be locked while it services a miss.

A cache that can support multiple outstanding misses is called lockup-free. Since it can service

only one miss at a time, it must include circuitry that keeps track of all outstanding misses.

VIRTUAL MEMORIES

Techniques that automatically move program and data blocks into the physical main memory

when they are required for execution are called virtual-memory techniques. The binary addresses

that the processor issues for either instructions or data are called virtual or logical addresses.

These addresses are translated into physical addresses by a combination of hardware and

software components. If a virtual address refers to a part of the program or data space that is

currently in the physical memory, then the contents of the appropriate location in the main

memory are accessed immediately. If the referenced address is not in the main memory, its

contents must be brought into a suitable location in the memory before they can be used.

S Venkata Lakshmi, Assistant Professor

Page 30

A special hardware unit, called the Memory Management Unit (MMU), translates virtual

addresses into physical addresses. When the desired data (or instructions) are in the main

memory, these data are fetched. If the data are not in the main memory, the MMU causes the

operating system to bring the data into the memory from the disk. Transfer of data between the

disk and the main memory is performed using the DMA scheme.

ADDRESS TRANSLATION:

A simple method for translating virtual addresses into physical addresses is to assume that all

programs and data are composed of fixed-length units called pages, each of which consists of a

block of words that occupy contiguous locations in the main memory. Pages commonly range

from 2K to 16K bytes in length.

Pages should not be too small, because the access time of a magnetic disk is much longer

(several milliseconds) than the access time of the main memory. The reason for this is that it

takes a considerable amount of time to locate the data on the disk, but once located, the data can

be transferred at a rate of several megabytes per second. On the other hand, if pages are too large

it is possible that a substantial portion of a page may not be used, yet this unnecessary data will

occupy valuable space in the main memory.

The cache bridges the speed pap between the processor and the main memory and is

implemented in hardware. The virtual-memory mechanism bridges the size and speed gaps

between the main memory and secondary storage and is usually implemented in part by software

techniques.

A virtual-memory address translation method based on the concept of fixed-length pages is

shown schematically in Figure 5.27, Each virtual address generated by the processor, whether it

is for an: instruction fetch or an operand fetch/store operation, is interpreted as a virtual page

number (high-order bits) followed by an offset (low-order bits) that specifies the location of a

S Venkata Lakshmi, Assistant Professor

Page 31

particular byte (or word) within a page. Information about the main memory location of each

page is kept in a page table. This information includes the main memory address where the page

is stored and the current status of the page. An area in the main memory that can hold one page is

called a page frame. The starting address of the page table is kept in a page table base register.

By adding the virtual page number to the contents of this register, the address of the

corresponding entry in the page table is obtained. The contents of this location give the starting

address of the page if that page currently resides in the main memory.

Each entry in the page table also includes some control bits that describe the status of the page

while it is in the main memory. One bit indicates the validity of the page, that is, whether the

page is actually loaded in the main memory. Another bit indicates whether the page has been

modified during its residency in the memory.

The page table information is used by the MMU for every read and write access, so ideally, the

page table should be situated within the MMU. A copy of a small portion of the page table can

be accommodated within the MMU. This portion consists of the page table entries that

correspond to the most recently accessed pages. A small cache, usually called the Translation

Lookaside Buffer (TLB) is incorporated into the MMU for this purpose.

When the operating system changes the contents of page tables, it must simultaneously invalidate

the corresponding entries in the TLB. When an entry is invalidated, the TLB will acquire the new

information as part of the MMU’s normal response to access misses.

Address translation proceeds as follows. Given a virtual address, the MMU looks in the TLB for

the referenced page. If the page table entry for this page is found in the TLB, the physical

address is obtained immediately. If there is a miss in the TLB, then the required entry is obtained

from the page table in the main memory and the TLB is updated.

S Venkata Lakshmi, Assistant Professor

Page 32

When a program generates an access request to a page that is not in the main memory, a page

fault is said to have occurred. The whole page must be brought from the disk into the memory

before access can proceed. A page fault occurs when some instruction accesses a memory

operand that is not in the main memory, resulting in an interruption before the execution of this

instruction is completed. Hence, when the task resumes, either the execution of the interrupted

instruction must continue from the point of interruption, or the instruction must be restarted.

If a new page is brought from the disk when the main memory is full, it must replace one of the

resident pages by using replacement algorithms.

A modified page has to be written back to the disk before it is removed from the main memory

MEMORY MANAGEMENT REQUIREMENTS:

Management routines are part of the operating system of the computer. It is convenient to

assemble the operating system routines into a virtual address space, called the system space,

which is separate from the virtual space in which user application programs reside is called the

user space. By changing the contents of this register, the operating system can switch from one

space to another.

In any computer system in which independent user programs coexist in the main memory, the

notion of protection must be addressed, No program should be allowed to destroy either the data

or instructions of other programs in the memory.

Such protection can be provided in several ways:

S Venkata Lakshmi, Assistant Professor

Page 33

The processor has two states, the supervisor state and the user state. As the names suggest, the

processor is usually placed in the supervisor state when operating system routines are being

executed and in the user state to execute user programs. In the user state, some machine

instructions cannot be executed. These privileged instructions, which include such operations as

modifying the page table base register, can only be executed while the processor is in the

supervisor state. Hence, a user program is prevented from accessing the page tables of other user

spaces or of the system space.

SECONDARY STORAGE

MAGNETIC HARD DISK:

The storage medium in a magnetic-disk system consists of one or more disks mounted on a

common spindle. A thin magnetic film is deposited on each disk, usually on both sides; the disks

are placed in a rotary drive so that the magnetized surfaces move in close proximity to read/write

heads, as shown in Figure 5.29a, the disks rotate at a uniform speed. Each head consists of a

magnetic yoke and a magnetizing coil, as indicated in Figure 5.29b.

Digital information can be stored on the magnetic film by applying current pulses of suitable

polarity to the magnetizing coil. This causes the magnetization of the film in the area

immediately underneath the head to switch to a direction parallel to the applied field. The same

head can be used for reading the stored information. Only changes in the magnetic field under

the head can be sensed during the Read operation. Therefore, if the binary states 0 and 1 are

represented by two opposite states of magnetization, a voltage is induced in the head only at 0-

to-1 and at 1-to-0 transitions in the bit stream. A long string of 0s or 1s causes an induced voltage

only at the beginning and end of the string. To determine the number of consecutive 0s or 1s

stored, a clock must provide information for synchronization.

In phase encoding or Manchester encoding changes in magnetization occur for each data bit, as

shown in the figure. The drawback of Manchester encoding is its poor bit-storage density. We

use the Manchester encoding example to illustrate how a self-clocking scheme may be

implemented, because it is easy to understand.

Read/write heads must be maintained at a very small distance from the moving disk surfaces in

order to achieve high bit densities and reliable read/write operations. When the disks are moving

at their steady rate, air pressure develops between the disk surface and the head and forces the

head away from the surface.

In most modern disk units, the disks and the read/write heads are placed in a sealed, air-filtered

enclosure. This approach is known as Winchester technology.

S Venkata Lakshmi, Assistant Professor

Page 34

Organization and Accessing of Data on a Disk:

The organization of data on a disk is illustrated in Figure 5.30. Each surface is divided into

concentric tracks, and each track is divided into sectors. The set of corresponding tracks on all

surfaces of a stack of disks forms a logical cylinder. The data on all tracks of a cylinder can be

accessed without moving the read/write heads. The data are accessed by specifying the surface

number, the track number, and the sector number. The Read and Write operations start at sector

boundaries.

S Venkata Lakshmi, Assistant Professor

Page 35

Data bits are stored serially on each track. Each sector usually contains 512 bytes of data, but

other sizes may be used. The data are preceded by a sector header that contains identification

(addressing) information used to find the desired sector on the selected track. Following the data,

there are additional bits that constitute an error correcting code (ECC). The ECC bits are used to

detect and correct errors that may have occurred in writing or reading of the 512 data bytes. To

easily distinguish between two consecutive sectors, there is a small intersector gap.

An unformatted disk has no information on its tracks. The formatting process divides the disk

physically into tracks and sectors. This process may discover some defective sectors or even

whole tracks; the disk controller keeps a record of such defects and excludes them from use.

Access Time:

There are two components involved in the time delay between receiving an address and the

beginning of the actual data transfer. The first, called the seek time, is the time required to move

the read/write head to the proper track. The second component is the rotational delay, also called

latency time. This is the amount of time that elapses after the head is positioned over the correct

track until the starting position of the addressed sector passes under the read/write head. The sum

of these two delays is called the disk access time.

Data Buffer/Cache:

The SCSI bus is capable of transferring data at much higher rates than the rate at which data can

be read from disk tracks. An efficient way to deal with the possible differences in transfer rates

between the disk and the SCSI bus is to include a data buffer in the disk unit. This buffer is a

semiconductor memory, capable of storing a few megabytes of data. The requested data are

transferred between the disk tracks and the buffer at a rate dependent on the rotational speed of

the disk. Transfers between the data buffer and other devices connected to the bus, normally the

main memory, can then take place at the maximum rate allowed by the bus.

The data buffer can also be used to provide a caching mechanism for the disk. When a read

request arrives at the disk, the controller can first check to see if the desired data are already

available in the cache (buffer). If so, the data can be accessed and placed on the SCSI bus in

microseconds rather than milliseconds. Otherwise, the data are read from a disk track in the usual

way and stored in the cache.

Disk Controller:

Operation of a disk drive is controlled by a disk controller circuit, which also provides an

interface between the disk drive and the bus that connects it to the rest of the computer system.

The disk controller may be used to control more than one drive. Figure 5.31 shows a disk

controller which controls two disk drives.

A disk controller that is connected directly to the processor system bus, or to an expansion bus

such as PCI, contains a number of registers that can be read and written by the operating system.

The disk controller uses the DMA scheme to transfer data between the disk and the main

memory.

S Venkata Lakshmi, Assistant Professor

Page 36

The OS initiates the transfers by issuing Read and Write requests, which entail loading the

controller’s registers with the necessary addressing and control information, typically:

Main memory address- The address of the first main memory location of the block of words

involved in the transfer.

Disk address- The location of the sector containing the beginning of the desired block of words

Word count- The number of words in the block to be transferred

The disk address issued by the OS is a logical address. The corresponding physical address on

the disk may be different.

On the disk drive side, the controller's major functions are:

Seek— Causes the disk drive to move the read/write head from its current position to the desired

track,

Read — Initiates a Read operation, starting at the address specified in the disk address register.

Data read serially from the disk are assembled into words and placed into the data buffer for

transfer to the main memory. The number of words is determined by the word count register.

Write — Transfers data to the disk, using a control method similar to that for the Read

operations.

Error checking - Computes the error correcting code (ECC) value for the data read from 2 given

sector and compares it with the corresponding ECC value read from the disk. In case of a

mismatch, it corrects the error if possible; otherwise, it raises an interrupt to inform the OS that

an error has occurred, During 2 write operation, the controller computes the ECC value for the

data to be written and stores this value on the disk.

Software and Operating System implications:

When the power is turned on again, the OS has to be loaded into the main memory, which takes

place as part of a process known as booting. To initiate booting, a tiny part of main memory is

implemented as a nonvolatile ROM. This ROM stores a small monitor program that can read and

S Venkata Lakshmi, Assistant Professor

Page 37

write main memory locations as well as read one block of data stored on the disk at address 0.

This block, referred to as the boot block, contains a loader program.

Floppy Disks:

Floppy disks are smaller, simpler, and cheaper disk units that consist of a flexible, removable,

plastic diskette coated with magnetic material. The diskette is enclosed in a plastic jacket, which

has an opening where the read/write head makes contact with the diskette. A hole in the center of

the diskette allows a spindle mechanism in the disk drive to position and rotate the diskette

One of the simplest schemes used in the first floppy disks for recording data is phase or

Manchester encoding mentioned earlier. Disks encoded in this way are said to have single

density. A more complicated variant of this scheme, called double density, is most often used in

current standard floppy disks. It increases the storage density by a factor of 2 but also requires

more complex circuits in the disk controller.

Main feature of floppy disks is their low cost and shipping convenience. However, they have

much smaller storage capacities, longer access times, and higher failure rates than hard disks.

Current standard floppy disks are 3.25 inches in diameter and store 1.44 or 2 Mbytes of date.

Larger super-floppy disks are also available.

RAID Disk Arrays:

In 1988, researchers at the University of California-Berkeley proposed a storage system based on

multiple disks. They called it RAID, for Redundant Array of Inexpensive Disks. Using multiple

disks also makes it possible to improve the reliability of the overall system. Six different

configurations were proposed. They are known as RAID levels even though there is no hierarchy

involved.

RAID0 is the basic configuration intended to enhance performance. A single large file is stored

in several separate disk units by breaking the file up into a number of smaller pieces and storing

these pieces on different disks. This is called data striping. When the file is accessed for a read,

all disks can deliver their data in parallel. In fact, since each disk operates independently of the

others, access times vary, and buffering of the accessed pieces of data is needed so that the

complete file can be reassembled and sent to the requesting processor as a single entity.

RAID 1 is intended to provide better reliability by storing identical copies of data on two disks

rather than just one. The two disks are said to be mirrors of each other. Then, if one disk drive

fails, all read and write operations are directed to its mirror drive. This is a costly way to improve

the reliability because all disks are duplicated.

RAID 2, RAID 3, and RAID 4 levels achieve increased reliability through various parity

checking schemes without requiring a full duplication of disks. All of the parity information is

kept on one disk.

RAID 5 also makes use of a parity-based error-recovery scheme. However, the parity

information is distributed among all disks, rather than being stored on one disk.

S Venkata Lakshmi, Assistant Professor

Page 38

Some hybrid arrangements have subsequently been developed. For example, RAID 10 is an

array that combines the features of RAID 0 and RAID 1.

OPTICAL DISKS:

The first generation of CDs was developed in the mid-1980s by the Sony and Philips companies.

To provide high-quality sound recording and reproduction, 16-bit samples of the analog signal

are taken at a rate of 44,100 samples per second.

CD Technology:

The optical technology that is used for CD systems is based on a laser light source. A laser beam

is directed onto the surface of the spinning disk. Physical indentations in the surface are arranged

along the tracks of the disk. They reflect the focused beam toward a photodetector, which detects

the stored binary patterns.

The laser emits a coherent light beam that is sharply focussed on the surface of the disk.

Coherent light consists of synchronized waves that have the same wavelength. If a coherent light

beam is combined with another beam of the same kind, and the two beams are in phase, then the

result will be a brighter beam. But, if the waves of the two beams are 180 degrees out of phase,

they will cancel each other. Thus, if a photodetector is used to detect the beams, it will detect a

bright spot in the first case and a dark spot in the second case.

A cross-section of a small portion of a CD is shown in Figure 5.32a. The bottom layer is

polycarbonate plastic, which functions as a clear glass base. The surface of this plastic is

programmed to store data by indenting it with pits. The unindented parts are called ands, A thin

layer of reflecting aluminum material is placed on top of a programmed disk. The aluminum is

then covered by a protective acrylic. Finally, the topmost layer is deposited and stamped with a

label. The total thickness of the disk is 1.2mm.

Figure 5.32b shows what happens as the laser beam scans across the disk and encounters a

transition from a pit to a land. ‘Three different positions of the laser source and the detector are

shown, as would occur when the disk is rotating. When the light reflects solely from the pit, or

solely from the land, the detector will see the reflected beam as a bright spot. But, a different

situation arises when the beam moves through the edge where the pit changes to the land, and

vice versa.

Figure 5.32c depicts several transitions between lands and pits. If each transition, detected as a

dark spot, is taken to denote the binary value 1, and the flat portions represent 0s.

CD is 120 mm in diameter. There is a 15-mm hole in the center. Data are stored on tracks that

cover the area from 25-mm radius to 58-mm radius. The space between the tracks is 1.6 microns.

Pits are 0.5 microns wide and 0.8 to 3 microns long. There are more than 15,000 tracks on a disk.

S Venkata Lakshmi, Assistant Professor

Page 39

CD-ROM:

CD-ROMs contents can only be read, as with semiconductor ROM chips.

Stored data are organized on CD-ROM tracks in the form of blocks that are called sectors. There

are several different formats for a sector. One format, known as Mode 1, uses 2352-byte sectors.

There is a 16-byte header that contains a synchronization field used to detect the beginning of the

sector and addressing information used to identify the sector. This is followed by 2048 bytes of

stored data. At the end of the sector, there are 288 bytes used to implement the error-correcting

scheme. The number of sectors per track is variable; there are more sectors on the longer outer

tracks.

Error detection and correction is done at more than one level. Each byte of stored information is

encoded using a 14-bit code that has some error-correcting capability. This code can correct

single-bit errors. Errors that occur in short bursts, affecting several bits, are detected and

corrected using the error-checking bits at the end of the sector.

S Venkata Lakshmi, Assistant Professor

Page 40

CD-ROM drives operate at a number of different rotational speeds. The basic speed, known as

1X, is 75 sectors per second. This provides a data rate of 153,600 bytes/s (150 Kbytes/s), using

the Mode 1 format. With this speed and format, a CD-ROM based on the standard CD designed

for 75 minutes of music has a data storage capacity of about 650 Mbytes. Note that the speed of

the drive affects only the data transfer rate bat not the storage capacity of the disk. A 40X CD-

ROM has a data transfer rate that is 40 times higher than that of the 1X CD-ROM.

The importance of CD ROMs for computer systems stems from their large storage capacity and

fast access times compared to other inexpensive portable media, such as floppy disks and

magnetic tapes. They are widely used for the distribution of software, databases, large texts

(books), application programs, and video games.

CD-Recordables:

CD-R was developed in the late 1990s on which data can be easily recorded by a computer user.

A spiral track is implemented on a disk during the manufacturing process. A laser in a CD-R

drive is used to burn pits into an organic dye on the track. When a burned spot is heated beyond a

critical temperature, it becomes opaque. Such burned spots reflect less light when subsequently

read. The written data are stored permanently. Unused portions of a disk can be used to store

additional data at a later time.

CD-ReWritables:

The most flexible CDs are those that can be written multiple times by the user. They are known

as CD-RWs (CD-ReWritables).

The basic structure of CD-RWs is similar to the structure of CD-Rs. Instead of using an organic

dye in the recording layer, an alloy of silver, indium, antimony and tellurium is used.

The CD-RW drive uses three different laser powers. The highest power is used to record the pits.

The middle power is used to put the alloy into its crystalline state; it is referred to as the “erase

power.” The lowest power is used to read the stored information. There is a limit on how many

times a CD-RW disk can be rewritten. Presently, this can be done up to 1000 times.

CD-RWs can be used for low-volume distribution of information, just like CD-Rs. The CD-RW

drives are now fast enough to be used for daily hard disk backup purposes.

DVD Technology:

The first DVD standard was defined in 1996 by a consortium of companies. The objective is to

be able to store a full-length movie on one side of a DVD disk.

The physical size of a DVD disk is the same as for CDs. The disk is 1.2 mm thick, and itis 120

mm in diameter. Its storage capacity is made much larger than that of CDs by several design

changes:

S Venkata Lakshmi, Assistant Professor

Page 41

 A red light laser with a wavelength of 635 nm is used instead of the infrared light laser

used in CDs, which has a wavelength of 780 nm. The shorter wavelength makes it

possible to focus the light to a smaller spot.

 Pits are smaller, having a minimum length of 0.4 micron.

 Tracks are placed closer together; the distance between tracks is 0.74 micron

Using these improvements leads to a DVD capacity of 4.7 Gbytes.

The single-layered single-sided disk, defined in the standard as DVD-5. A double-layered disk

makes use of two layers on which tracks are implemented on top of each other. The first layer is

the clear base, as in CD disks. But, instead of using reflecting aluminum, the lands and pits of

this layer are covered by a translucent material that acts as a semireflector. The surface of this

material is then also programmed with indented pits to store data. A reflective material is placed

on top of the second layer of pits and lands. The disk is read by focusing the laser beam on the

desired layer. When the bear is focused on the first layer, sufficient light is reflected by the

translucent material to detect the stored binary patterns. When the beam is focused on the second

layer, the light reflected by the reflective material corresponds to the information stored on this

layer. In both cases, the layer on which the beam is not focused reflects a much smaller amount

of light, which is eliminated by the detector circuit as noise. The total storage capacity of both

layers is 8.5 Gbytes. This disk is called DVD-9 in the standard.

Two single-sided disks can be put together to form a sandwich-like structure where the top disk

is turned upside down. This can be done with single-layered disks, as specified in DVD-10,

giving a composite disk with a capacity of 9.4 Gbytes. It can also be done with the double-

layered disks, as specified in DVD-18, yielding a capacity of 17 Gbytes.

DVD-RAM:

A rewritable version of DVD devices, known as DVD-RAM, has also been developed. It

provides a large storage capacity. Its only disadvantages are the higher price and the relatively

slow writing speed. To ensure that the data have been recorded correctly on the disk, a process

known as write verification is performed. This is done by the DVD-RAM drive, which reads the

stored contents and checks them against the original data

MAGNETIC TAPE SYSTEMS:

Magnetic tapes are suited for off-line storage of large amounts of data. They are typically used

for hard disk backup purposes and for archival storage.

Data on the tape are organized in the form of records separated by gaps, as shown in Figure 5.33.

Tape motion is stopped only when a record gap is underneath the read/write heads. The record

gaps are long enough to allow the tape to attain its normal speed before the beginning of the next

record is reached. Gaps are identified as areas where there is no change in magnetization. This

allows record gaps to be detected independently of the recorded data. To help users organize

large amounts of data, a group of related records is called a file. The beginning of a file is

identified by a file mark, as shown in Figure 5.33. The file mark is a special single- or multiple

character record, usually preceded by a gap longer than the interrecord gap.

S Venkata Lakshmi, Assistant Professor

Page 42

The first record following a file mark can be used as a header or identifier for this file. This

allows the user to search a tape containing a large number of files for a particular file.

The controller of a magnetic tape drive enables the execution of a number of control commands

in addition to read and write commands. Control commands include the following operations:

 Rewind tape

 Rewind and unload tape

 Erase tape

 Write tape mark

 Forward space one record

 Backspace one record

 Forward space one file

 Backspace one file

The tape mark referred to in the operation “Write tape mark” is similar to a file mark except that

it is used for identifying the beginning of the tape. The end of the tape is sometimes identified by

the EOT (end of tape) character.

Two methods of formatting and using tapes are available. In the first method, the records are

variable in length. This allows efficient use of the tape, but it does not permit updating or

overwriting of records in place. The second method is to use fixed-length records. In this case, it

is possible to update records in place.

Cartridge Tape System:

Tape systems have been developed for backup of on-line disk storage. One such system uses an

8-mm video format tape housed in a cassette. These units are called cartridge tapes. They have

capacities in the range of 2 to 5 gigabytes and handle data transfers at the rate of a few hundred

kilobytes per second. Reading and writing is done by a helical scan system operating across the

tape. Bit densities of tens of millions of bits per square inch are achievable.

S Venkata Lakshmi, Assistant Professor

Page 1

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES::TIRUPATI

II B.Tech II Semester

(19APC0506) Computer Organization
Course Objectives:

 To learn the fundamentals of computer organization and its relevance to classical and modern

problems of computer design

 To make the students understand the structure and behavior of various functional modules of a

computer.

 To understand the techniques that computers use to communicate with I/O devices

 To study the concepts of pipelining and the way it can speed up processing.

 To understand the basic characteristics of multiprocessors

Unit I:

Basic Structure of Computer: Computer Types, Functional Units, Basic operational Concepts, Bus

Structure, Software, Performance, Multiprocessors and Multicomputer.

Machine Instructions and Programs: Numbers, Arithmetic Operations and Programs, Instructions and

Instruction Sequencing, Addressing Modes, Basic Input/output Operations, Stacks and Queues,

Subroutines, Additional Instructions.

Unit II:

Arithmetic: Addition and Subtraction of Signed Numbers, Design and Fast Adders, Multiplication of

Positive Numbers, Signed-operand Multiplication, Fast Multiplication, Integer Division, Floating-Point

Numbers and Operations.

Basic Processing Unit: Fundamental Concepts, Execution of a Complete Instruction, Multiple-Bus

Organization, Hardwired Control, Multiprogrammed Control.

Unit III:

The Memory System: Basic Concepts, Semiconductor RAM Memories, Read-Only Memories, Speed,

Size and Cost, Cache Memories, Performance Considerations, Virtual Memories, Memory Management

Requirements, Secondary Storage.

Unit IV:

Input/output Organization: Accessing I/O Devices, Interrupts, Processor Examples, Direct Memory

Access, Buses, Interface Circuits, Standard I/O Interfaces.

Unit V:

Pipelining: Basic Concepts, Data Hazards, Instruction Hazards, Influence on Instruction Sets

Large Computer Systems: Forms of Parallel Processing, Array Processors, The Structure of General-

Purpose, Interconnection Networks.

Textbook:

1. “Computer Organization”, Carl Hamacher, Zvonko Vranesic, Safwat Zaky, McGraw Hill Education,

5th Edition, 2013.

Reference Textbooks:

1. Computer System Architecture, M.Morris Mano, Pearson Education, 3rd Edition.

2. Computer Organization and Architecture, Themes and Variations, Alan Clements, CENGAGE

Learning.

3. Computer Organization and Architecture, Smruti Ranjan Sarangi, McGraw Hill Education.

4. Computer Architecture and Organization, John P.Hayes, McGraw Hill Education.

Course Outcomes:

 Ability to use memory and I/O devices effectively

 Able to explore the hardware requirements for cache memory and virtual memory

 Ability to design algorithms to exploit pipelining and multiprocessors

L T P C

3 0 0 3

S Venkata Lakshmi, Assistant Professor

Page 2

Unit IV:

Input/output Organization: Accessing I/O Devices, Interrupts, Processor Examples, Direct Memory

Access, Buses, Interface Circuits, Standard I/O Interfaces.

INPUT/OUTPUT ORGANIZATION

ACCESSING I/O DEVICES

A simple arrangement to connect I/O devices to a computer is to use a single bus arrangement.

The bus enables all the devices connected to it to exchange information. Typically, it consists of

three sets of lines used to carry address, data, and control signals. Each I/O device is assigned a

unique set of addresses. When the processor places a particular address on the address lines, the

device that recognizes this address responds to the commands issued on the control lines. The

processor requests either a read or a write operation, and the requested data are transferred over

the data lines. When I/O devices and the memory share the same address space, the arrangement

is called memory-mapped I/O.

With memory-mapped I/O, any machine instruction that can access memory can be used to

transfer data to or from an I/O device.

For example, if DATAIN is the address of the input buffer associated with the keyboard, the

instruction

Move DATAIN,R0

Reads the data from DATAEN and stores them into processor register R0.

Similarly, the instruction

Move R0, DATAOUT

Sends the contents of register R0 to location DATAOUT, which may be the output data buffer of

a display unit or a printer.

Figure 4.2 illustrates the hardware required to connect an I/O device to the bus. The address

decoder enables the device to recognize its address when this address appears on the address

lines. The data register holds the data being transferred to or from the processor. The status

register contains information relevant to the operation of the I/O device. Both the data and status

S Venkata Lakshmi, Assistant Professor

Page 3

registers are connected to the data bus and assigned unique addresses. The address decoder, the

data and status registers, and the control circuitry required to coordinate I/O transfers constitute

the device's interface circuit.

For an input device such as a keyboard, a status flag, SIN, is included in the interface circuit as

part of the status register. This flag is set to 1 when a character is entered at the keyboard and

cleared to 0 once this character is read by the processor. Hence, by checking the SIN flag, the

software can ensure that it is always reading valid data. A similar procedure can be used to

control output operations using an output status flag, SOUT.

Example: Let us consider a simple example of 1/O operations involving a keyboard and a display

device in a computer system. The four registers shown in Figure 4.3 are used in the data transfer

operations. Register STATUS contains two control flags, SIN and SOUT, which provide status

information for the keyboard and the display unit, respectively. The two flags KIRQ and DIRQ

in this register are used in conjunction with interrupts. Data from the keyboard are made

available in the DATAIN register, and data sent to the display are stored in the DATAOUT

register.

In program-controlled I/O the processor repeatedly checks a status flag to achieve the required

synchronization between the processor and an input or output device. We say that the processor

polls the device.

There are two other commonly used mechanisms for implementing I/O operations: interrupts

and direct memory access. In the case of interrupts, synchronization is achieved by having the

I/O device send a special signal over the bus whenever it is ready for a data transfer operation.

Direct memory access is a technique used for high-speed I/O devices. It involves having the

device interface transfer data directly to or from the memory, without continuous involvement by

the processor.

S Venkata Lakshmi, Assistant Professor

Page 4

INTERRUPTS

There are many situations where other tasks can be performed while waiting for an I/O device to

become ready. To allow this to happen, we can arrange for the I/O device to alert the processor

when it becomes ready. It can do so by sending a hardware signal called an interrupt to the

processor. At least one of the bus control lines, called an interrupt-request line, is usually

dedicated for this purpose. Since the processor is no longer required to continuously check the

status of external devices, it can use the waiting period to perform other useful functions, Indeed,

by using interrupts, such waiting periods can ideally be eliminated,

The routine executed in response to an interrupt request is called the interrupt-service routine.

In above figure, the processor first completes execution of instruction i. Then, it loads the

program counter with the address of the first instruction of the interrupt-service routine. For the

time being, let us assume that this address is hardwired in the processor. After execution of the

interrupt-service routine, the processor has to come back to instruction i + 1. Therefore, when an

interrupt occurs, the current contents of the PC, which point to instruction i + 1, must be put in

temporary storage in a known location. A Return- from-interrupt instruction at the end of the

interrupt-service routine reloads the PC from that temporary storage location, causing execution

to resume at instruction i + 1.

The processor must inform the device that its request has been recognized so that it may remove

its interrupt-request signal. This may be accomplished by means of a special control signal on the

bus. An interrupt-acknowledge signal, used in some of the interrupt schemes serves this

function. The execution of an instruction in the interrupt-service routine that accesses a status or

data register in the device interface implicitly informs the device that its interrupt request has

been recognized.

The task of saving and restoring information can be done automatically by the processor or by

program instructions. Most modern processors save only the minimum amount of information

needed to maintain the integrity of program execution. This is because the process of saving and

S Venkata Lakshmi, Assistant Professor

Page 5

restoring registers involves memory transfers that increase the total execution time, and hence

represent execution overhead. Saving registers also increases the delay between the time an

interrupt request is received and the start of execution of the interrupt-service routine. This delay

is called interrupt latency.

Interrupts enable transfer of control from one program to another to be initiated by an event

external to the computer. Execution of the interrupted program resumes after the execution of the

interrupt-service routine has been completed. The concept of interrupts is used in operating

systems and in many control applications where processing of certain routines must be

accurately timed relative to external events. The latter type of application is referred to as real-

time processing.

Interrupt Hardware:

A single interrupt-request line may be used to serve n devices as in below figure.

All devices are connected to the line via switches to ground. To request an interrupt, a device

closes its associated switch. Thus, if all interrupt-request signals INTR1, to INTRn, are inactive,

that is, if all switches are open, the voltage on the interrupt-request line will be equal to Vdd. This

is the inactive state of the line. When a device requests an interrupt by closing its switch, the

voltage on the line drops to 0, causing the interrupt-request signal, INTR, received by the

processor to go to 1. Since the closing of one or more switches will cause the line voltage to drop

to 0, the value of INTR is the logical OR of the requests from individual devices, that is,

INTR=INTR1+…..+INTRn

It is customary to use the complemented form, INTR, to name the interrupt-request signal on the

common line, because this signal is active when in the low-voltage state.

Special gates in above figure, known as open-collector (for bipolar circuits) or open-drain (for

MOS circuits) are used to drive the INTR line. The output of an open-collector or an open-drain

gate is equivalent to a switch to ground that is open when the gate’s input is in the 0 state and

closed when it is in the 1 state. Resistor R is called a pull-up resistor because it pulls the line

voltage up to the high-voltage state when the switches are open.

S Venkata Lakshmi, Assistant Professor

Page 6

ENABLING AND DISABLING INTERRUPTS:

The arrival of an interrupt request from an external device causes the processor to suspend the

execution of one program and start the execution of another. Because interrupts can arrive at any

time, they may alter the sequence of events from that envisaged by the programmer.

When a device activates the interrupt-request signal, it keeps this signal activated until it learns

that the processor has accepted its request, This means that the interrupt- request signal will be

active during execution of the interrupt-service routine, perhaps until an instruction is reached

that accesses the device in question. This means that the interrupt- request signal will be active

during execution of the interrupt-service routine, perhaps until an instruction is reached that

accesses the device in question. It is essential to ensure that this active request signal does not

lead to successive interruptions, causing the system to enter an infinite loop from which it cannot

recover.

Several mechanisms are available to solve this problem. Among them three possibilities are

here:

 The first possibility is to have the processor hardware ignore the interrupt-request line

until the execution of the first instruction of the interrupt-service routine has been

completed. Then, by using an Interrupt-disable instruction as the first instruction in the

interrupt-service routine, the programmer can ensure that no further interruptions will

occur until an Interrupt-enable instruction is executed. Typically, the Interrupt- enable

instruction will be the last instruction in the interrupt-service routine before the Return-

from-interrupt instruction.

 The second option, which is suitable for a simple processor with only one interrupt-

request line, is to have the processor automatically disable interrupts before starting the

execution of the interrupt-service routine. After saving the contents of the PC and the

processor status register (PS) on the stack, the processor performs the equivalent of

executing an Interrupt-disable instruction. It is often the case that one bit in the PS

register, called Interrupt-enable, indicates whether interrupts are enabled. An interrupt

request received while this bit is equal to 1 will be accepted. After saving the contents of

the PS on the stack, with the Interrupt-enable bit equal to 1, the processor clears the

Interrupt-enable bit in its PS register, thus disabling further interrupts. When a Return-

from-interrupt instruction is executed, the contents of the PS are restored from the stack,

setting the Interrupt-enable bit back to 1.

 In the third option, the processor has a special interrupt-request line for which the

interrupt-handling circuit responds only to the leading edge of the signal. Such a line is

said to be edge-triggered. In this case, the processor will receive only one request,

regardless of how long the line is activated.

Before proceeding to study more complex aspects of interrupts, let us summarize the sequence of

events involved in handling an interrupt request from a single device. Assuming that interrupts

are enabled, the following is a typical scenario:

1. The device raises an interrupt request.

S Venkata Lakshmi, Assistant Professor

Page 7

2. The processor interrupts the program currently being executed.

3. Interrupts are disabled by changing the control bits in the PS (except in the case of edge-

triggered interrupts).

4. The device is informed that its request has been recognized, and in response, it

deactivates the interrupt-request signal.

5. The action requested by the interrupt is performed by the interrupt-service routine.

6. Interrupts are enabled and execution of the interrupted program is resumed.

HANDLING MULTIPLE DEVICES:

Let us now consider the situation where a number of devices capable of initiating interrupts are

connected to the processor. Because these devices are operationally independent, there is no

definite order in which they will generate interrupts, For example, device X may request an

interrupt while an interrupt caused by device Y is being serviced, or several devices may request

interrupts at exactly the same time. This gives rise to a number of questions:

1. How can the processor recognize the device requesting an interrupt?

2. Given that different devices are likely to require different interrupt-service routines, how

can the processor obtain the starting address of the appropriate routine in each case?

3. Should a device be allowed to interrupt the processor while another interrupt is being

serviced?

4. How should two or more simultaneous interrupt requests be handled?

If two devices have activated the line at the same time, it must be possible to break the tie and

select one of the two requests for service. When the interrupt- service routine for the selected

device has been completed, the second request can be serviced.

The information needed to determine whether a device is requesting an interrupt is available in

its status register. When a device raises an interrupt request, it sets to 1 one of the bits in its

status register, which we will call the IRQ bit. The simplest way to identify the interrupting

device is to have the interrupt-service routine poll all the I/O devices connected to the bus. The

first device encountered with its IRQ bit set is the device that should be serviced. An appropriate

subroutine is called to provide the requested service.

The polling scheme is easy to implement. Its main disadvantage is the time spent interrogating

the IRQ bits of all the devices that may not be requesting any service. An alternative approach is

to use vectored interrupts.

Vectored Interrupts:

In vectored interrupts approach, to reduce the time involved in the polling process, a device

requesting an interrupt may identify itself directly to the processor. Then, the processor can

immediately start executing the corresponding interrupt-service routine.

A device requesting an interrupt can identify itself by sending a special code to the processor

over the bus. This enables the processor to identify individual devices even if they share a single

interrupt-request line. The code supplied by the device may represent the starting address of the

S Venkata Lakshmi, Assistant Professor

Page 8

interrupt-service routine for that device. The code length is typically in the range of 4 to 8 bits.

The remainder of the address is supplied by the processor based on the area in its memory where

the addresses for interrupt-service routines are located.

The location pointed to by the interrupting device is used to store the starting address of the

interrupt-service routine. The processor reads this address, called the interrupt vector, and loads

it into the PC. The interrupt vector may also include a new value for the processor status register.

In most computers, I/0 devices send the interrupt-vector code over the data bus, using the bus

control signals to ensure that devices do not interfere with each other. When a device sends an

interrupt request, the processor may not be ready to receive the interrupt-vector code

immediately. The interrupting device must wait to put data on the bus only when the processor js

ready to receive it, When the processor is ready to receive the interrupt-vector code, if activates

the interrupt-acknowledge line, INTA. The I/O device responds by sending its interrupt- vector

code and turning off the INTR signal.

Interrupt Nesting:

I/O devices should be organized in a priority structure. An interrupt request from a high-priority

device should be accepted while the processor is servicing another request from a lower-priority

device.

A multiple-level priority organization means that during execution of an interrupt service

routine, interrupt requests will be accepted from some devices but not from others, depending

upon the device's priority. To implement this scheme, we can assign a priority level to the

processor that can be changed under program control. The priority level of the processor is the

priority of the program that is currently being executed. The processor accepts interrupts only

from devices that have priorities higher than its own. At the time the execution of an interrupt-

service routine for some device is started, the priority of the processor is raised to that of the

device. This action disables interrupts from devices at the same level of priority or lower.

The processor's priority is usually encoded in a few bits of the processor status word. It can be

changed by program instructions that write into the PS. These are privileged instructions, which

can be executed only while the processor is running in the supervisor mode. The processor is in

the supervisor mode only when executing operating system routines. It switches to the user mode

before beginning to execute application programs. Thus, a user program cannot accidentally, or

intentionally, change the priority of the processor and disrupt the system’s operation. An attempt

to execute a privileged instruction while in the user mode leads to a special type of interrupt

called a privilege exception.

A multiple-priority scheme can be implemented easily by using separate interrupt- Request and

interrupt-acknowledge lines for each device, as shown in above figure.

Each of the interrupt-request lines is assigned a different priority level. Interrupt requests

received over these lines are sent to a priority arbitration circuit in the processor. A request is

accepted only if it has a higher priority level than that currently assigned to the processor.

S Venkata Lakshmi, Assistant Professor

Page 9

Simultaneous Requests:

In this case, priority is determined by the order in which the devices are polled. When vectored

interrupts are used, we must ensure that only one device is selected to send its interrupt vector

code. A widely used scheme is to connect the devices to form a daisy chain, as shown in Figure

4.8a. The interrupt-request line INTR is common to all devices. The interrupt-acknowledge line,

INTA, is connected in a daisy-chain fashion, such that the INTA signal propagates serially

through the devices. When several devices raise an interrupt request and the INTR line is

activated, the processor responds by setting the INTA line to 1. This signal is received by device

1. Device 1 passes the signal on to device 2 only if it does not require any service. If device 1 has

a pending request for interrupt, it blocks the INTA signal and proceeds to put its identifying code

on the data lines. Therefore, in the daisy-chain arrangement, the device that is electrically closest

to the processor has the highest priority. The second device along the chain has second highest

priority, and so on.

In Figure 4.8(b), Devices are organized in groups, and each group is connected at a different

priority Level. Within a group, devices are connected in a daisy chain. This organization is used

in many computer systems.

S Venkata Lakshmi, Assistant Professor

Page 10

CONTROLLING DEVICE REQUESTS:

A mechanism is needed in the interface circuits of individual devices to control whether a device

is allowed to generate an interrupt request.

The control needed is usually provided in the form of an interrupt-enable bit in the device’s

interface circuit. The keyboard interrupt-enable, KEN, and display interrupt- enable, DEN, flags

in register CONTROL. If either of these flags is set, the interface circuit generates an interrupt

request whenever the corresponding status flag in register STATUS is set. At the same time, the

interface circuit sets bit KIRQ or DIRQ to indicate that the keyboard or display unit,

respectively, is requesting an interrupt. If an interrupt-enable bit is equal to 0, the interface circuit

will not generate an interrupt request, regardless of the state of the status flag.

To summarize, there are two independent mechanisms for controlling interrupt requests. At the

device end, an interrupt-enable bit in a control register determines whether the device is allowed

to generate an interrupt request. At the processor end, either an interrupt enable bit in the PS

register or a priority structure determines whether a given interrupt request will be accepted.

S Venkata Lakshmi, Assistant Professor

Page 11

EXCEPTIONS:

An interrupt is an event that causes the execution of one program to be suspended and the

execution of another program to begin.

The term exception is often used to refer to any event that causes an interruption.

Other kinds of exceptions:

Recovers from Errors:

Computers use a variety of techniques to ensure that all hardware components are operating

properly. For example, many computers include an error-checking code in the main memory,

which allows detection of errors in the stored data. If an error occurs, the control hardware

detects it and informs the processor by raising an interrupt.

The processor may also interrupt a program if it detects an error or an unusual condition while

executing the instructions of this program.

When exception processing is initiated as a result of such errors, the processor proceeds in

exactly the same manner as in the case of an I/O interrupt request. It suspends the program being

executed and starts an exception-service routine. This routine takes appropriate action to recover

from the error, if possible, or to inform the user about it. However, when an interrupt is caused

by an error, execution of the interrupted instruction cannot usually be completed, and the

processor begins exception processing immediately.

Debugging:

System software usually includes a program called a debugger, which helps the programmer find

errors in a program. The debugger uses exceptions to provide two important facilities called

trace and breakpoints.

When a processor is operating in the trace mode, an exception occurs after execution of every

instruction, using the debugging program as the exception-service routine. The debugging

program enables the user to examine the contents of registers, memory locations, and so on. On

return from the debugging program, the next instruction in the program being debugged is

executed, and then the debugging program is activated again. The trace exception is disabled

during the execution of the debugging program.

Breakpoints provide a similar facility, except that the program being debugged is interrupted

only at specific points selected by the user. An instruction called Trap or Software-interrupt is

usually provided for this purpose. Execution of this instruction results in exactly the same actions

as when a hardware interrupt request is received. While debugging a program, the user may wish

to interrupt program execution after instruction i. The debugging routine saves instruction i + 1

and replaces it with a software interrupt instruction. When the program is executed and reaches

that point, it is interrupted and the debugging routine is activated. This gives the user a chance to

examine memory and register contents, When the user is ready to continue executing the

S Venkata Lakshmi, Assistant Professor

Page 12

program being debugged, the debugging routine restores the saved instruction that was at

location i + 1 and executes a Return-from-interrupt instruction.

Privilege Exception:

To protect the operating system of a computer from being corrupted by user pro- grams, certain

instructions can be executed only while the processor is in the supervisor mode. These are called

privileged instructions. An attempt to execute such an instruction will produce a privilege

exception, causing the processor to switch to the supervisor mode and begin executing an

appropriate routine in the operating system.

DIRECT MEMORY ACCESS

A special control unit may be provided to allow transfer of a block of data directly between an

external device and the main memory, without continuous intervention by the processor. This

approach is called direct memory access, or DMA.

DMA transfers are performed by a control circuit that is part of the 1/0 device interface, called

DMA controller. The DMA controller performs the functions that ‘would normally be carried out

by the processor when accessing the main memory. For each word transferred, it provides the

memory address and all the bus signals that control data transfer. Since it has to transfer blocks

of data, the DMA controller roust increment the memory address for successive words and keep

track of the number of transfers.

To initiate the transfer of a block of words, the processor sends the starting address, the number

of words in the block, and the direction of the transfer. On receiving this information, the DMA

controller proceeds to perform the requested operation. When the entire block has been

transferred, the controller informs the processor by raising an interrupt signal.

I/O operations are always performed by the operating system of the computer in response to a

request from an application program. The OS is also responsible for suspending the execution of

one program and starting another. Thus, for an I/O operation involving DMA, the OS puts the

program that requested the transfer in the Blocked state, initiates the DMA operation, and starts

the execution of another program. When the transfer is completed; the DMA controller informs

the processor by sending an interrupt request. In response, the OS puts the suspended program in

the Runnable state so that it can be selected by the scheduler to continue execution.

Below diagram shows an example of the DMA controller registers that are accessed by the

processor to initiate transfer operations. Two registers are used for storing the starting address

and the word count. The third register contains status and control flags. The R/W bit determines

the direction of the transfer. When this bit is set to 1 by a program instruction, the controller

performs a read operation, that is, it transfers data from the memory to the I/O device.

Otherwise, it performs a write operation.

S Venkata Lakshmi, Assistant Professor

Page 13

When the controller has completed transferring a block of data and is ready to receive another

command, it sets the Done flag to 1. Bit 30 is the Interrupt-enable flag, IE. When this flag is set

to 1, it causes the controller to raise an interrupt after it has completed transferring a block of

data. Finally, the controller sets the IRQ bit to 1 when it has requested an interrupt.

Above diagram shows how DMA controllers may be used. A DMA controller connects a high-

speed network to the computer bus. The disk controller, which controls two disks, also has DMA

capability and provides two DMA channels. It can perform two independent DMA operations, as

if each disk had its own DMA controller. The registers needed to store the memory address, the

word count, and so on are duplicated, so that one set can be used with each device.

S Venkata Lakshmi, Assistant Professor

Page 14

To start a DMA transfer of a block of data from the main memory to one of the disks, a program

writes the address and word count information into the registers of the corresponding channel of

the disk controller. It also provides the disk controller with information to identify the data for

future retrieval. If the IE bit is set, the controller sends an interrupt request to the processor and

sets the IRQ bit. The status register can also be used to record other information, such as whether

the transfer took place correctly or errors occurred.

Memory accesses by the processor and the DMA controllers are interwoven. Re- quests by DMA

devices for using the bus are always given higher priority than processor requests. Among

different DMA devices, top priority is given to high-speed peripherals such as a disk, a high-

speed network interface, or a graphics display device. Since the processor originates most

memory access cycles, the DMA controller can be said to “steal” memory cycles from the

processor. Hence, this interweaving technique is usually called cycle stealing. Alternatively, the

DMA controller may be given exclusive access to the main memory to transfer a block of data

without interruption. This is known as block or burst mode.

BUS ARBITRATION:

The device that is allowed to initiate data transfers on the bus at any given time is called the bus

master. When the current master relinquishes control of the bus, another device can acquire this

status. Bus arbitration is the process by which the next device to become the bus master is

selected and bus mastership is transferred to it. The selection of the bus master must take into

account the needs of various devices by establishing a priority system for gaining access to the

bus.

There are two approaches to bus arbitration: centralized and distributed. In centralized

arbitration, a single bus arbiter performs the required arbitration. In distributed arbitration, all

devices participate in, the selection of the next bus master.

Centralized Arbitration:

The bus arbiter may be the processor or a separate unit connected to the bus. Figure 4.20

illustrates a basic arrangement in which the processor contains the bus arbitration circuitry. In

this case, the processor is normally the bus master unless it grants bus mastership to one of the

DMA controllers. A DMA controller indicates that it needs to become the bus master by

activating the Bus-Request line, BR. The signal on the Bus-Request line is the logical OR of the

bus requests from all the devices connected to it. When Bus-Request is activated, the processor

activates the Bus-Grant signal, BG1, indicating to the DMA controllers that they may use the bus

when it becomes free. This signal is connected to all DMA controllers using a daisy-chain

arrangement. Thus, if DMA controller1 is requesting the bus, it blocks the propagation of the

grant signal to other devices. Otherwise, it passes the grant downstream by asserting BG2. The

current bus master indicates to all devices that it is using the bus by activating another open-

collector line called Bus- Busy, BBSY, Hence, after receiving the Bus-Grant signal, a DMA

controller waits for Bus-Busy to become inactive, then assumes mastership of the bus. At this

time, it activates Bus-Busy to prevent other devices from using the bus at the same time.

S Venkata Lakshmi, Assistant Professor

Page 15

The timing diagram in Figure 4.21 shows the sequence of events for the devices in Figure 4.20 as

DMA controller 2 requests and acquires bus mastership and later releases the bus. During its

tenure as the bus master, it may perform one or more data transfer operations, depending on

whether it is operating in the cycle stealing or block mode. After it releases the bus, the processor

resumes bus mastership.

The arbiter circuit ensures that only one request is granted at any given time, according to a

predefined priority scheme. For example, if there are four bus request lines, BR1 through BR4, a

fixed priority scheme may be used in which BR1 is given top priority and BR4 is given lowest

priority. Alternatively, a rotating priority scheme may be used to give all devices an equal

chance of being serviced. Rotating priority means that after a request on line BR1 is granted, the

priority order becomes 2, 3, 4, and 1.

Distributed Arbitration:

Distributed arbitration means that all devices waiting to use the bus have equal responsibility in

carrying out the arbitration process, without using central arbiter. A simple method for

distributed arbitration is illustrated in Figure 4.22. Each device on the bus is assigned a 4-bit

identification number. When one or more devices request the bus, they assert the Start-

Arbitration signal and place their 4-bit ID numbers on four open-collector fines, ARB0 through

ARB3. A winner is selected as a result of the interaction among the signals transmitted over

these lines by all contenders. The net outcome is that the code on the four lines represents the

request that has the highest ID number.

S Venkata Lakshmi, Assistant Professor

Page 16

The drivers are of the open-collector type. Hence, if the input to one driver is equal to one and

the input to another driver connected to the same bus line is equal to 0 the bus will be in the low-

voltage state. In other words, the connection performs an OR function in which logic 1 wins.

Assume that,

 Device A has the ID 5 and wants to request the bus: Transmits the pattern 0101 on the

arbitration lines.

 Device B has the ID 6 and wants to request the bus: Transmits the pattern 0110 on the

arbitration lines.

 Pattern that appears on the arbitration lines is the logical OR of the patterns: Pattern 0111

appears on the arbitration lines

Arbitration process:

 Each device compares the pattern that appears on the arbitration lines to its own ID,

starting with MSB.

 If it detects a difference, it transmits 0s on the arbitration lines for that and all lower bit

positions.

 Device A compares its ID 5 with a pattern 0101 to pattern 0111.

 It detects a difference at bit position 0, as a result, it transmits a pattern 0100 on the

arbitration lines.

 The pattern that appears on the arbitration lines is the logical-OR of 0100 and 0110,

which is 0110.

 This pattern is the same as the device ID of B, and hence B has won the arbitration

S Venkata Lakshmi, Assistant Professor

Page 17

BUSES

The processor, main memory, and I/O devices can be interconnected by means of a common bus

whose primary function is to provide a communications path for the transfer of data.

The bus lines used for transferring data may be grouped into three types: data, address, and

control lines. The control signals specify whether a read or a write operation is to be performed.

Usually, a single an R/W line is used. It specifies Read when set to 1 and Write when set to 0.

When several operand sizes are possible, such as byte, word, or long word, the required size of

data is indicated.

The bus control signals also carry timing information. They specify the times at which the

processor and the I/O devices may place data on the bus or receive data from the bus. A variety

of schemes have been devised for the timing of data transfers over a bus. These can be broadly

classified as either synchronous or asynchronous schemes.

In any data transfer operation, one device plays the role of a master. This is the device that

initiates data transfers by issuing read or write commands on the bus; hence, it may be called an

initiator. Normally, the processor acts as the master, but other devices with DMA capability may

also become bus masters. The device addressed by the master is referred to as a slave or target.

SYNCHRONOUS BUS:

In a synchronous bus, all devices derive timing information from a common clock line. Equally

spaced pulses on this line define equal time intervals. In the simplest form of a synchronous bus,

each of these intervals constitutes a bus cycle during which one data transfer can take place. In

below figure, the address and data lines in this and subsequent figures are shown as high and low

at the same time. This is a common convention indicating that some lines are high and some low,

depending on the particular address or data pattern being transmitted. The crossing points

indicate the times at which these patterns change. A signal line in an indeterminate or high

impedance state is represented by an intermediate level half-way between the low and high

signal levels.

Let us consider the sequence of events during an input (read) operation. At time t0, the master

places the device address on the address lines and sends an appropriate command on the control

lines. In this case, the command will indicate an input operation and specify the length of the

operand to be read, if necessary. Information travels over the bus at a speed determined by its

physical and electrical characteristics. The clock pulse width, t1-t0, must be longer than the

maximum propagation delay between two devices connected to the bus. It also has to be long

enough to allow all devices to decode the address and control signals so that the addressed device

(the slave) can respond at time t1. It is important that slaves take no action or place any data on

the bus before t1. The addressed slave places the requested input data on the data lines at time t1.

S Venkata Lakshmi, Assistant Professor

Page 18

At the end of the clock cycle, at time t2, the master strobes the data on the data lines into its input

buffer. In this context, “strobe” means to capture the values of the data at a given instant and

store them into a buffer.

Figure 4.24 gives a more realistic picture of what happens in practice. It shows two views of

each signal, except the clock. Because signals take time to travel from one device to another, a

given signal transition is seen by different devices at different times. One view shows the signal

as seen by the master and the other as seen by the slave.

The master

sends the address and command signals on the rising edge at the beginning of clock period 1 (t0).

However, these signals do not actually appear on the bus until tAM, largely due to the delay in the

bus driver circuit. A while later, at tAS, the signals reach the slave. The slave decodes the address

and at t1, sends the requested data. Here again, the data signals do not appear on the bus until tDS.

They travel toward the master and arrive at tDM. At t2, the master loads the data into its input

S Venkata Lakshmi, Assistant Professor

Page 19

buffer. Hence the period t2-tDM is the setup time for the master’s input buffer. The data must

continue to be valid after t2 for a period equal to the hold time of that buffer.

Multiple-Cycle Transfers:

Most buses incorporate control signals that represent a response from the device. These signals

inform the master that the slave has recognized its address and that it is ready to participate in a

data-transfer operation. They also make it possible to adjust the duration of the data-transfer

period to suit the needs of the participating devices. To simplify this process, a high-frequency

clock signal is used such that a complete data transfer cycle would span several clock cycles.

Then, the number of clock cycles involved can vary from one device to another.

An example of this approach is shown in Figure 4.25. During clock cycle 1, the master sends

address and command information on the bus, requesting a read operation. The slave receives

this information and decodes it. On the following active edge of the clock, that is, at the

beginning of clock cycle 2, it makes a decision to respond and begins to access the requested

data. The data become ready and are placed on the bus in clock cycle 3. At the same time, the

slave asserts a control signal called Slave-ready. The master has been waiting for this signal,

strobes the data into its input buffer at the end of clock cycle 3. The bus transfer operation is now

complete, and the master may send a new address to start anew transfer in clock cycle 4.

The Slave-ready signal is an acknowledgment from the slave to the master, con- firming that

valid data have been sent. In the example in Figure 4.25, the slave responds in cycle 3. Another

device may respond sooner or later. The Slave-ready signal allows the duration of a bus transfer

to change from one device to another. If the addressed device does not respond at all, the master

waits for some predefined maximum number of clock cycles, and then aborts the operation. This

could be the result of an incorrect address or a device malfunction.

S Venkata Lakshmi, Assistant Professor

Page 20

ASYNCHRONOUS BUS:

An alternative scheme for controlling data transfers on the bus is based on the use of a

handshake between the master and the slave. Here, two timing control lines Master-ready and

slave-ready play a vital role. The first is asserted by the master to indicate that it is ready for a

transaction, and the second is a response from the slave.

In principle, a data transfer controlled by a handshake protocol proceeds as follows. The master

places the address and command information on the bus. Then it indicates to all devices that it

has done so by activating the Master-ready line. This causes all devices on the bus to decode the

address. The selected slave performs the required operation and informs the processor it has done

so by activating the Slave-ready line. The master waits for Slave-ready to become asserted

before it removes its signals from the bus. In the case of a read operation, it also strobes the data

into its input buffer

An example of the timing of an input data transfer using the handshake scheme is given in Figure

4.26, which depicts the following sequence of events:

t0 — The master places the address and command information on the bus, and all devices on the

bus begin to decode this information.

t1 — The master sets the Master-ready line to 1 to inform the I/O devices that the address and

command information is ready. The delay t1- t0 is intended to allow for any skew that may occur

on the bus. Skew occurs when two signals simultaneously transmitted from one source arrive at

the destination at different times.

t2 — The selected slave, having decoded the address and command information, performs the

required input operation by placing the data from its data register on the data lines. At the same

time, it sets the Slave-ready signal to 1.

t3 — The Slave-ready signal arrives at the master, indicating that the input data are available on

the bus.

T4 — The master removes the address and command information from the bus. The delay

between t3 and t4 is again intended to allow for bus skew. Erroneous addressing may take place if

the address, as seen by some device on the bus, starts to change while the Master-ready signal is

still equal to 1.

t5 - When the device interface receives the 1 to 0 transition of the Master-ready signal, it removes

the data and the Slave-ready signal from the bus. This completes the input transfer.

The timing for an output operation, illustrated in Figure 4.27

S Venkata Lakshmi, Assistant Professor

Page 21

Difference between Synchronous and Asynchronous Bus:

The choice of a particular design involves trade-offs among factors such as:

 Simplicity of the device interface

 Ability to accommodate device interfaces that introduce different amounts of delay.

 Total time required for a bus transfer.

 Ability to detect errors resulting from addressing a nonexistent device or from an

interface malfunction.

The main advantage of the asynchronous bus is that the handshake process eliminates the need

for synchronization of the sender and receiver clocks, thus simplifying timing design. Delays,

whether introduced by the interface circuits or by propagation over the bus wires, are readily

accommodated.

For a synchronous bus, clock circuitry must be designed carefully to ensure proper

synchronization, and delays must be kept within strict bounds.

The rate of data transfer on an asynchronous bus controlled by a full handshake is limited by the

fact that each transfer involves two round-trip delays.

On synchronous buses, the clock period need only accommodate one end-to-end propagation

delay. Hence, faster transfer rates can be achieved. To accommodate a slow device, additional

clock cycles are used, as described above. Most of today’s high-speed buses use this approach.

INTERFACE CIRCUITS

An I/O interface consists of the circuitry required to connect an I/O device to a computer bus. On

one side of the interface we have the bus signals for address, data, and control. On the other side

we have a data path with its associated controls to transfer data between the interface and the I/O

device. This side is called a port, and it can be classified as either a parallel or a serial port.

S Venkata Lakshmi, Assistant Professor

Page 22

 A parallel port transfers data in the form of a number of bits, typically 8 or 16,

simultaneously to or from the device.

 A serial port transmits and receives data one bit at a time.

I/O interface does the following:

1. Provides a storage buffer for at least one word of data (or one byte, in the case of byte-

oriented devices)

2. Contains status flags that can be accessed by the processor to determine whether the

buffer is full (for input) or empty (for output)

3. Contains address-decoding circuitry to determine when it is being addressed by the

processor

4. Generates the appropriate timing signals required by the bus control scheme

5. Performs any format conversion that may be necessary to transfer data between the bus

and the I/O device, such as parallel-serial conversion in the case of a serial port

PARALLEL PORT:

Here,

• Keyboard is connected to a processor using a parallel port.

• Processor is 32-bits and uses memory-mapped I/O and the asynchronous bus protocol.

• On the processor side of the interface we have:

 - Data lines.

 - Address lines

 - Control or R/W line.

 - Master-ready signal and

 - Slave-ready signal

Above diagram shows the hardware components needed for connecting a keyboard to a

processor. A typical keyboard consists of mechanical switches that are normally open. When a

key is pressed, its switch closes and establishes a path for an electrical signal. This signal is

detected by an encoder circuit that generates the ASCII code for the corresponding character. A

S Venkata Lakshmi, Assistant Professor

Page 23

difficulty with such push-button switches is that the contacts bounce when a key is pressed.

Bouncing can be eliminated in two ways:

A simple debouncing circuit can be included, or a software approach can be used. When

debouncing is implemented in software, the I/O routine that reads a character from the keyboard

wait long enough to ensure that bouncing has subsided. Above Figure illustrates the hardware

approach; debouncing circuits are included as a part of the encoder block.

The output of the encoder consists of the bits that represent the encoded character and one

control signal called Valid, which indicates that a key is being pressed. This information is sent

to the interface circuit, which contains a data register, DATAIN, and a status flag, SIN.

 When a key is pressed, the Valid signal changes from 0 to 1, causing the ASCII code to

be loaded into DATAIN and SIN to be set to 1.

 The status flag SIN is cleared to 0 when the processor reads the contents of the DATAIN

register.

The interface circuit is connected to an asynchronous bus on which transfers are controlled using

the handshake signals Master-ready and Slave-ready. The third control line, R/W distinguishes

read and write transfers.

Input Interface:

Figure 4.29 shows a suitable circuit for an input interface. The output lines of the DATAIN

register are connected to the data lines of the bus by means of three-state drivers, which are

turned on when the processor issues a read instruction with the address that selects this register.

The SIN signal is generated by a status flag circuit. This signal is also sent to the bus through a

three-state driver. It is connected to bit B0, which means it will appear as bit 0 of the status

register. Other bits of this register do not contain valid information. An address decoder is used

to select the input interface when the high-order 31 bits of an address correspond to any of the

addresses assigned to this interface. Address bit A0 determines whether the status or the data

registers is to be read when the Master-ready signal is active. The control handshake is

accomplished by activating the Slave-ready signal when either Read-status or Read-data is equal

to 1.

S Venkata Lakshmi, Assistant Professor

Page 24

Output Interface:

Here,

• Printer is connected to a processor using a parallel port.

• Processor is 32 bits, uses memory-mapped I/O and asynchronous bus protocol.

• On the processor side:

 - Data lines.

 - Address lines

 - Control or R/W line.

 - Master-ready signal and

 - Slave-ready signal.

S Venkata Lakshmi, Assistant Professor

Page 25

The printer operates under control of the handshake signals Valid and Idle. When it is ready to

accept a character, the printer asserts its Idle signal. The interface circuit can then place a new

character on the data lines and activate the Valid signal. In response, the printer starts printing

the new character and negates the Idle signal, which in turn causes the interface to deactivate the

Valid signal.

The interface contains a-data register, DATAOUT, and a status flag, SOUT. The SOUT flag is

set to 1 when the printer is ready to accept another character, and it is cleared to 0 when a new

character is loaded into DATAOUT by the processor.

The input and output interfaces just described can be combined into a single interface, as shown

in below diagram. The overall interface is selected by the high-order 30 bits of the address.

Address bits Al and A0 select one of the three addressable locations in the interface, namely, the

two data registers and the status register. The status register contains the flags SIN and SOUT in

bits 0 and 1, respectively. Labels RS1 and RS0 (for Register Select) are used to denote the two

inputs that determine the register being selected.

General-purpose parallel interface circuit that can be configured in a variety of ways is shown

below. Data lines P7 through P0 can be used for either input or output purposes. For increased

flexibility, the circuit makes it possible for some lines to serve as inputs and some lines to serve

S Venkata Lakshmi, Assistant Professor

Page 26

as outputs, under program control. The DATAOUT register is connected to these lines via three-

state drivers that are controlled by a data direction register, DDR. The processor can write any 8-

bit pattern into DDR. For a given bit, if the DDR value is 1, the corresponding data line acts as

an output line; otherwise, it acts as an input line.

Two lines, C1 and C2, are provided to control the interaction between the interface circuit and

the I/O device it serves. Line C2 is bidirectional to provide several different modes of signaling,

including the handshake. The Ready and Accept lines are the handshake control lines on the

processor bus side, and hence would be connected to Master-ready and Slave-ready. The input

signal My-address should be connected to the output of an address decoder that recognizes the

address assigned to the interface. There are three register select lines, allowing up to eight

registers in the interface, input and output data, data direction, and control and status registers for

various modes of operation. An interrupt request output, INTR, is also provided.

Serial Port:

A serial port is used to connect the processor to I/O devices that require transmission of data one

bit at a time. The key feature of an interface circuit for a serial port is that it is capable of

communicating in a bit-serial fashion on the device side and in a bit-parallel fashion on the bus

side. The transformation between the parallel and serial formats is achieved with shift registers

that have parallel access capability. A block diagram of a typical serial interface is shown in

Figure 4.37. It includes the familiar DATAIN and DATAOUT registers. The input shift register

accepts bit-serial input from the I/0 device. When all 8 bits of data have been received, the

contents of this shift register are loaded in parallel into the DATAIN register. Similarly, output

data in the DATAQUT register are loaded into the output shift register, from which the bits are

shifted out and sent to the I/O device.

The SIN flag is set to 1 when new data are loaded in DATAIN; it is cleared to 0 when the

processor reads the contents of DATAIN. As soon as the data are transferred from the input shift

register into the DATAIN register, the shift register can start accepting the next 8-bit character

from the I/0 device. The SOUT flag indicates whether the output buffer is available. It is cleared

to 0 when the processor writes new data into the DATAOUT register and set to | when data are

transferred from DATAOUT into the output shift register.

The double buffering used in the input and output paths is important. A simpler interface could

be implemented by turning DATAIN and DATAOUT into shift registers and eliminating the

shift registers in Figure 4.37. With the double buffer, the transfer of the second character can

begin as soon as the first character is loaded from the shift register into the DATAIN register.

Because it requires fewer wires, serial transmission is convenient for connecting devices that are

physically far away from the computer. The speed of transmission, often given as a bit rate,

depends on the nature of the devices connected.

S Venkata Lakshmi, Assistant Professor

Page 27

Several standard serial interfaces have been developed:

 Universal Asynchronous Receiver Transmitter (UART) for low-speed serial devices.

 RS-232-C for connection to communication links.

STANDARD I/O INTERFACES

 I/O device is connected to a computer using an interface circuit.

 Do we have to design a different interface for every combination of an I/O device and a

computer?

 A practical approach is to develop standard interfaces and protocols.

 A personal computer has:

 A motherboard which houses the processor chip, main memory and some I/O interfaces.

 A few connectors into which additional interfaces can be plugged.

 Processor bus is defined by the signals on the processor chip. Devices which require high-

speed connection to the processor are connected directly to this bus. Because of electrical

reasons only a few devices can be connected directly to the processor bus. Motherboard

usually provides another bus that can support more devices. Processor bus and the other bus

(called as expansion bus) are interconnected by a circuit called “bridge”. Devices connected

to the expansion bus experience a small delay in data transfers.

 Design of a processor bus is closely tied to the architecture of the processor.

 No uniform standard can be defined.

 Expansion bus however can have uniform standard defined.

A number of standards have been developed for the expansion bus.

 Some have evolved by default.

S Venkata Lakshmi, Assistant Professor

Page 28

 For example, IBM’s Industry Standard Architecture.

Three widely used bus standards:

 PCI (Peripheral Component Interconnect)

 SCSI (Small Computer System Interface)

 USB (Universal Serial Bus)

PCI BUS:

 Peripheral Component Interconnect

 Introduced in 1992

 Low-cost bus

 Processor independent

 Plug-and-play capability

 In today’s computers, most memory transfers involve a burst of data rather than just one

word. The PCI is designed primarily to support this mode of operation.

 The bus supports three independent address spaces: memory, I/O, and configuration.

 We assumed that the master maintains the address information on the bus until data

transfer is completed. But, the address is needed only long enough for the slave to be

selected. Thus, the address is needed on the bus for one clock cycle only, freeing the

S Venkata Lakshmi, Assistant Professor

Page 29

address lines to be used for sending data in subsequent clock cycles. The result is a

significant cost reduction.

 A master is called an initiator in PCI terminology. The addressed device that responds to

read and write commands is called a target.

Data Transfer:

Data are transferred between the cache and the main memory in bursts of several words each.

The words involved in such a transfer are stored at successive memory locations. When the

processor (actually the cache controller) specifies an address and requests a read operation from

the main memory, the memory responds by sending a sequence of data words starting at that

address. Similarly, during a write operation, the processor sends a memory address followed by a

sequence of data words, to be written in successive memory locations starting at that address.

The PCI is designed primarily to support this mode of operation. A read or a write operation

involving a single word is simply treated as a burst of length one.

The bus supports three independent address spaces: memory, J/O, and configuration. The first

two are self-explanatory. The I/O address space is intended for use with processors, such as

Pentium, that have a separate I/O address space.

As in below diagram, The PCI bridge provides a separate physical connection for the main

memory. For electrical reasons, the bus may be further divided into segments connected via

bridges.

S Venkata Lakshmi, Assistant Professor

Page 30

A complete transfer operation on the bus, involving an address and a burst of data, is called a

transaction. Individual word transfers within a transaction are called phases.

‘The sequence of events on the bus is shown in Figure 4.40.

Fig: 4.40 A read operation of the PCI bus

In clock cycle 1, the processor asserts FRAME# to indicate the beginning of a transaction. At the

same time, it sends the address on the AD lines and a command on the C/BE# lines. The

S Venkata Lakshmi, Assistant Professor

Page 31

command indicates that a read operation is requested and that the memory address space is being

used.

Clock cycle 2 is used to turn the AD bus lines around. The processor removes the address and

disconnects its drivers from the AD lines. The selected target enables its drivers on the AD lines,

and fetches the requested data to be placed on the bus during clock cycle 3. It asserts DEVSEL#

and maintains it in the asserted state until the end of the transaction.

The C/BE# lines, which were used to send a bus command in clock cycle 1, are used for a

different purpose during the rest of the transaction. Each of these four lines is associated with

one byte on the AD lines. The initiator sets one or more of the C/BE# lines to indicate which

byte lines are to be used for transferring data.

During clock cycle 3, the initiator asserts the initiator ready signal, IRDY#, to indicate that it is

ready to receive data. If the target has data ready to send at this time, it asserts target ready,

TRDY#, and sends a word of data. The initiator loads the data into its input buffer at the end of

the clock cycle. The target sends three more words of data in clock cycles 4 to 6.

The initiator uses the FRAME# signal to indicate the duration of the burst. It negates this signal

during the second last word of the transfer. Since it wishes to read four words, the initiator

negates FRAME# during clock cycle 5, the cycle in which it receives the third word. After

sending the fourth word in clock cycle 6, the target disconnects its drivers and negates

DEVSEL# at the beginning of clock cycle 7.

Device Configuration:

 When an I/O device is connected to a computer, several actions are needed to configure

both the device and the software that communicates with it.

 PCI incorporates in each I/O device interface a small configuration ROM memory that

stores information about that device.

 The configuration ROMs of all devices are accessible in the configuration address space.

The PCI initialization software reads these ROMs and determines whether the device is a

printer, a keyboard, an Ethernet interface, or a disk controller. It can further learn bout

various device options and characteristics.

 Devices are assigned addresses during the initialization process.

 This means that during the bus configuration operation, devices cannot be accessed based

on their address, as they have not yet been assigned one.

 Hence, the configuration address space uses a different mechanism. Each device has an

input signal called Initialization Device Select, IDSEL#

Electrical characteristics:

 PCI bus has been defined for operation with either a 5 or 3.3 V power supply

SCSI BUS:

 The acronym SCSI stands for Small Computer System Interface.

 It refers to a standard bus defined by the American National Standards Institute (ANSI)

under the designation X3.131 .

S Venkata Lakshmi, Assistant Professor

Page 32

 In the original specifications of the standard, devices such as disks are connected to a

computer via a 50-wire cable, which can be up to 25 meters in length and can transfer

data at rates up to 5 megabytes/s.

 The SCSI bus standard has undergone many revisions, and its data transfer capability has

increased very rapidly, almost doubling every two years.

 SCSI-2 and SCSI-3 have been defined, and each has several options.

 Because of various options SCSI connector may have 50, 68 or 80 pins.

 Devices connected to the SCSI bus are not part of the address space of the processor

 The SCSI bus is connected to the processor bus through a SCSI controller. This controller

uses DMA to transfer data packets from the main memory to the device, or vice versa.

 A packet may contain a block of data, commands from the processor to the device, or

status information about the device.

 A controller connected to a SCSI bus is one of two types – an initiator or a target.

 An initiator has the ability to select a particular target and to send commands specifying

the operations to be performed. The disk controller operates as a target. It carries out the

commands it receives from the initiator.

 The initiator establishes a logical connection with the intended target.

 Once this connection has been established, it can be suspended and restored as needed to

transfer commands and bursts of data.

 While a particular connection is suspended, other device can use the bus to transfer

information.

 This ability to overlap data transfer requests is one of the key features of the SCSI bus

that leads to its high performance.

 Data transfers on the SCSI bus are always controlled by the target controller.

 To send a command to a target, an initiator requests control of the bus and, after winning

arbitration, selects the controller it wants to communicate with and hands control of the

bus over to it.

 Then the controller starts a data transfer operation to receive a command from the

initiator.

 Assume that processor needs to read block of data from a disk drive and that data are

stored in disk sectors that are not contiguous.

 The processor sends a command to the SCSI controller, which causes the following

sequence of events to take place:

S Venkata Lakshmi, Assistant Professor

Page 33

 The SCSI controller, acting as an initiator, contends for control of the bus.

 When the initiator wins the arbitration process, it selects the target controller and hands

over control of the bus to it.

 The target starts an output operation (from initiator to target); in response to this, the

initiator sends a command specifying the required read operation.

 The target, realizing that it first needs to perform a disk seek operation, sends a

message to the initiator indicating that it will temporarily suspend the connection

between them. Then it releases the bus.

 The target controller sends a command to the disk drive to move the read head to the

first sector involved in the requested read operation. Then, it reads the data stored in

that sector and stores them in a data buffer. When it is ready to begin transferring data

to the initiator, the target requests control of the bus. After it wins arbitration, it

reselects the initiator controller, thus restoring the suspended connection.

 The target transfers the contents of the data buffer to the initiator and then suspends the

connection again

 The target controller sends a command to the disk drive to perform another seek

operation. Then, it transfers the contents of the second disk sector to the initiator as

before. At the end of this transfer, the logical connection between the two controllers is

terminated.

 As the initiator controller receives the data, it stores them into the main memory using

the DMA approach.

 The SCSI controller sends as interrupt to the processor to inform it that the requested

operation has been completed

S Venkata Lakshmi, Assistant Professor

Page 34

Main Phases involved:

Arbitration

 A controller requests the bus by asserting BSY and by asserting it’s associated data line

 When BSY becomes active, all controllers that are requesting bus examine data lines

Selection

 Controller that won arbitration selects target by asserting SEL and data line of target.

After that initiator releases BSY line.

 Target responds by asserting BSY line

 Target controller will have control on the bus from then

Information Transfer

 Handshaking signals are used between initiator and target

 At the end target releases BSY line

Reselection

When a logical connection is suspended and the target is ready to restore it, the target must first

gain control of the bus.

UNIVERSAL SERIAL BUS (USB):

 Universal Serial Bus (USB) is an industry standard developed through a collaborative

effort of several computer and communication companies, including Compaq, Hewlett-

Packard, Intel, Lucent, Microsoft, Nortel Networks, and Philips.

 Speed

 Low-speed(1.5 Mb/s)

 Full-speed(12 Mb/s)

 High-speed(480 Mb/s)

 Port Limitation

 Device Characteristics

 Plug-and-play

S Venkata Lakshmi, Assistant Professor

Page 35

Universal Serial Bus tree structure:

 To accommodate a large number of devices that can be added or removed at any time, the

USB has the tree structure as shown in the figure.

 Each node of the tree has a device called a hub, which acts as an intermediate control

point between the host and the I/O devices. At the root of the tree, a root hub connects the

entire tree to the host computer. The leaves of the tree are the I/O devices being served

(for example, keyboard, Internet connection, speaker, or digital TV)

 In normal operation, a hub copies a message that it receives from its upstream connection

to all its downstream ports. As a result, a message sent by the host computer is broadcast

to all I/O devices, but only the addressed device will respond to that message. However, a

message from an I/O device is sent only upstream towards the root of the tree and is not

seen by other devices. Hence, the USB enables the host to communicate with the I/O

devices, but it does not enable these devices to communicate with each other.

Addressing:

 When a USB is connected to a host computer, its root hub is attached to the processor

bus, where it appears as a single device. The host software communicates with individual

devices attached to the USB by sending packets of information, which the root hub

forwards to the appropriate device in the USB tree.

 Each device on the USB, whether it is a hub or an I/O device, is assigned a 7-bit address.

This address is local to the USB tree and is not related in any way to the addresses used

on the processor bus.

 A hub may have any number of devices or other hubs connected to it, and addresses are

assigned arbitrarily. When a device is first connected to a hub, or when it is powered on,

S Venkata Lakshmi, Assistant Professor

Page 36

it has the address 0. The hardware of the hub to which this device is connected is capable

of detecting that the device has been connected, and it records this fact as part of its own

status information. Periodically, the host polls each hub to collect status information and

learn about new devices that may have been added or disconnected.

 When the host is informed that a new device has been connected, it uses a sequence of

commands to send a reset signal on the corresponding hub port, read information from

the device about its capabilities, send configuration information to the device, and assign

the device a unique USB address. Once this sequence is completed the device begins

normal operation and responds only to the new address.

USB Protocols:

 All information transferred over the USB is organized in packets, where a packet consists

of one or more bytes of information. There are many types of packets that perform a

variety of control functions.

 The information transferred on the USB can be divided into two broad categories: control

and data.

 Control packets perform such tasks as addressing a device to initiate data

transfer, acknowledging that data have been received correctly, or indicating an

error.

 Data packets carry information that is delivered to a device.

 A packet consists of one or more fields containing different kinds of information. The

first field of any packet is called the packet identifier, PID, which identifies the type of

that packet.

 They are transmitted twice. The first time they are sent with their true values, and the

second time with each bit complemented

 The four PID bits identify one of 16 different packet types. Some control packets, such as

ACK (Acknowledge), consist only of the PID byte.

S Venkata Lakshmi, Assistant Professor

Page 37

Isochronous Traffic on USB:

 One of the key objectives of the USB is to support the transfer of isochronous data.

 Devices that generate or receive isochronous data require a time reference to control the

sampling process.

 To provide this reference. Transmission over the USB is divided into frames of equal

length.

 A frame is 1ms long for low-and full-speed data.

 The root hub generates a Start of Frame control packet (SOF) precisely once every 1 ms

to mark the beginning of a new frame.

 The arrival of an SOF packet at any device constitutes a regular clock signal that the

device can use for its own purposes.

 To assist devices that may need longer periods of time, the SOF packet carries an 11-bit

frame number.

 Following each SOF packet, the host carries out input and output transfers for

isochronous devices.

 This means that each device will have an opportunity for an input or output transfer once

every 1 ms.

S Venkata Lakshmi, Assistant Professor

Page 38

Electrical Characteristics:

 The cables used for USB connections consist of four wires.

 Two are used to carry power, +5V and Ground.

 Thus, a hub or an I/O device may be powered directly from the bus, or it may

have its own external power connection.

 The other two wires are used to carry data.

 Different signaling schemes are used for different speeds of transmission.

 At low speed, 1s and 0s are transmitted by sending a high voltage state (5V) on

one or the other o the two signal wires. For high-speed links, differential

transmission is used.

S Venkata Lakshmi, Assistant Professor

 Page 1

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES::TIRUPATI

II B.Tech II Semester

(19APC0506) Computer Organization

Course Objectives:

• To learn the fundamentals of computer organization and its relevance to classical and modern

problems of computer design

• To make the students understand the structure and behavior of various functional modules of a

computer.

• To understand the techniques that computers use to communicate with I/O devices

• To study the concepts of pipelining and the way it can speed up processing.

• To understand the basic characteristics of multiprocessors

Unit I:

Basic Structure of Computer: Computer Types, Functional Units, Basic operational Concepts, Bus

Structure, Software, Performance, Multiprocessors and Multicomputer.

Machine Instructions and Programs: Numbers, Arithmetic Operations and Programs, Instructions and

Instruction Sequencing, Addressing Modes, Basic Input/output Operations, Stacks and Queues,

Subroutines, Additional Instructions.

Unit II:

Arithmetic: Addition and Subtraction of Signed Numbers, Design and Fast Adders, Multiplication of

Positive Numbers, Signed-operand Multiplication, Fast Multiplication, Integer Division, Floating-Point

Numbers and Operations.

Basic Processing Unit: Fundamental Concepts, Execution of a Complete Instruction, Multiple-Bus

Organization, Hardwired Control, Multi-programmed Control.

Unit III:

The Memory System: Basic Concepts, Semiconductor RAM Memories, Read-Only Memories, Speed,

Size and Cost, Cache Memories, Performance Considerations, Virtual Memories, Memory Management

Requirements, Secondary Storage.

Unit IV:

Input/output Organization: Accessing I/O Devices, Interrupts, Processor Examples, Direct Memory

Access, Buses, Interface Circuits, Standard I/O Interfaces.

Unit V:

Pipelining: Basic Concepts, Data Hazards, Instruction Hazards, Influence on Instruction Sets

Large Computer Systems: Forms of Parallel Processing, Array Processors, The Structure of General-

Purpose, Interconnection Networks.

Textbook:

1. “Computer Organization”, Carl Hamacher, Zvonko Vranesic, Safwat Zaky, McGraw Hill Education,

5th Edition, 2013.

Reference Textbooks:

1. Computer System Architecture, M.Morris Mano, Pearson Education, 3rdEdition.

2. Computer Organization and Architecture, Themes and Variations, Alan Clements, CENGAGE

Learning.

3. Computer Organization and Architecture, Smruti Ranjan Sarangi, McGraw HillEducation.

4. Computer Architecture and Organization, John P.Hayes, McGraw Hill Education.

Course Outcomes:

• Ability to use memory and I/O devices effectively

• Able to explore the hardware requirements for cache memory and virtualmemory

• Ability to design algorithms to exploit pipelining and multiprocessors

L T P C

3 0 0 3

S Venkata Lakshmi, Assistant Professor

 Page 2

Unit V:

Pipelining: Basic Concepts, Data Hazards, Instruction Hazards, Influence on Instruction Sets

Large Computer Systems: Forms of Parallel Processing, Array Processors, The Structure of General-

Purpose, Interconnection Networks.

Pipelining

Basic Concepts

Pipelining is a particularly effective way of organizing concurrent activity in a computer system.

It is frequently encountered in manufacturing plants, cars.

Consider how the idea of pipelining can be used in a computer. The processor executes a

program by fetching and executing instructions, one after the other. Let Fi and Ei refer to the

fetch and execute steps for instruction Ii. An execution of a program consists of a sequence of

fetch and execute steps, as shown in Figure 8.1a.

Now consider a computer that has two separate hardware units, one for fetching instructions and

another for executing them, as shown in Figure 8.1b. The instruction fetched by the fetch unit is

deposited in an intermediate storage buffer, B1. This buffer is needed to enable the execution

unit to execute the instruction while the fetch unit is fetching the next instruction. The results of

execution are deposited in the destination location specified by the instruction.

S Venkata Lakshmi, Assistant Professor

 Page 3

The computer is controlled by a clock whose period is such that the fetch and execute steps of

any instruction can each be completed in one clock cycle. Operation of the computer proceeds as

in Figure 8.1c, In the first clock cycle, the fetch unit fetches an instruction 11 (step F1) and stores

it in buffer B1 at the end of the clock cycle. In the second clock cycle, the instruction fetch unit

proceeds with the fetch operation for instruction I2 (step F2). Meanwhile, the execution unit

performs the operation specified by instruction I1, which is available to it in buffer B1 (step E1).

By the end of the second clock cycle, the execution of instruction I1 is completed and instruction

I2 is available. Instruction I2 is stored in B1, replacing I1 which is no longer needed. Step E2 is

performed by the execution unit during the third clock cycle, while instruction I3 is being fetched

by the fetch unit. In this manner, both the fetch and execute units are kept busy all the time.

The processing of an instruction need not be divided into only two steps. For example, a

pipelined processor may process each instruction in four steps, as follows:

F Fetch: read the instruction from the memory.

D Decode: decode the instruction and fetch the source operand(s).

E Execute: perform the operation specified by the instruction.

W Write: store the result in the destination location.

For example, during clock cycle 4, the information in the buffers is as follows:

➢ Buffer B1 holds instruction I3 which was fetched in cycle 3 and is being decoded by the

instruction-decoding unit.

➢ Buffer B2 holds both the source operands for instruction I2 and the specification of the

operation to be performed. This is the information produced by the decoding hardware in

cycle 3. The buffer also holds the information needed for the write step of instruction I2,

(step W2). Even though it is not needed by stage E, this information must be passed on to

stage W in the following clock cycle to enable that stage to perform the required Write

operation.

➢ Buffer B3 holds the results produced by the execution unit and the destination

information for instruction I1.

Role of Cache Memory:

Pipelining is most effective in improving performance if the tasks being performed in different

stages require about the same amount of time.

This consideration is particularly important for the instruction fetch step, which is assigned one

clock period in Figure 8.2a. The clock cycle has to be equal to or greater than the time needed to

complete a fetch operation. However, the access time of the main memory may be as much as

ten times greater than the time needed to perform basic pipeline stage operations inside the

processor.

The use of cache memories solves the memory access problem. In particular, when a cache is

included on the same chip as the processor, access time to the cache is usually the same as the

time needed to perform other basic operations inside the processor. This makes it possible to

divide instruction fetching and processing into steps that are more or less equal in duration. Each

S Venkata Lakshmi, Assistant Professor

 Page 4

of these steps is performed by a different pipeline stage, and the clock period is chosen to

correspond to the longest one.

PIPELINE PERFORMANCE:

For a variety of reasons, one of the pipeline stages may not be able to complete its processing

task for a given instruction in the time allotted.

Pipelined operation in Figure 8.3 is said to have been stalled for two clock cycles. Normal

pipelined operation resumes in cycle 7.

➢ Any condition that causes the pipeline to stall is called a hazard.

S Venkata Lakshmi, Assistant Professor

 Page 5

➢ A data hazard is any condition in which either the source or the destination operands of

an instruction are not available at the time expected in the pipeline. As a result some

operation has to be delayed, and the pipeline stalls.

➢ The pipeline may also be stalled because of a delay in the availability of an instruction.

For example, this may be a result of a miss in the cache, requiring the instruction to be

fetched from the main memory. Such hazards are often called control hazards or

instruction hazards. The effect of a cache miss on pipelined operation is illustrated in

Figure 8.4. Instruction I; is fetched from the cache in cycle 1, and its execution proceeds

normally. However, the fetch operation for instruction I, which is started in cycle 2,

results in a cache miss. The instruction fetch unit must now suspend any further fetch re-

Quests and wait for 1, to arrive. We assume that instruction 1, is received and loaded into

buffer B1 at the end of cycle 5. The pipeline resumes its normal operation at that point.

A third type of hazard that may be encountered in pipelined operation is known as a structural

hazard. This is the situation when two instructions require the use of a given hardware resource

at the same time. The most common case in which this hazard may arise is in access to memory.

An example of a structural hazard is shown in Figure 8,5. This figure shows how the load

instruction

Load X(R1), R2

can be accommodated in our example 4-stage pipeline. The memory address, X+-[R1], is

computed in step E, in cycle 4, then memory access takes place in cycle 5. The operand read

from memory is written into register R2 in cycle 6. This means that the execution step of this

instruction takes two clock cycles (cycles 4 and 5). It causes the pipeline to stall for one cycle,

because both instructions I, and I; require access to the register file in cycle 6. Even though the

instructions and their data are all available, the pipeline is stalled because one hardware resource,

the register file, cannot handle two operations at once.

S Venkata Lakshmi, Assistant Professor

 Page 6

DATA HAZARDS

A data hazard is a situation, in which the pipeline is stalled because the data to be operated on

are delayed for some reason.

Consider a program that contains two instructions, I1 followed by I2. When this program is

executed in a pipeline, the execution of I2 can begin before the execution of I1 is completed. This

means that the results generated by I1 may not be available for use by I2. We must ensure that the

results obtained when instructions are executed in a pipelined processor are identical to those

obtained when the same instructions are executed sequentially. The potential for obtaining

incorrect results when operations are performed concurrently can be demonstrated by a simple

example. Assume that A=5, and consider the following two operations:

A←3+A

B←4*A

When these operations are performed in the order given, the result is B = 32. But if they are

performed concurrently, the value of A used in computing B would be the original value, 5,

leading to an incorrect result. If these two operations are performed by instructions in a program,

then the instructions must be executed one after the other, because the data used in the second

instruction depend on the result of the first instruction. On the other hand, the two operations

A←5*C

B←20+C

can be performed concurrently, because these operations are independent.

When two operations depend on each other, they must be performed sequentially in the correct

order.

S Venkata Lakshmi, Assistant Professor

 Page 7

The data dependency arises when the destination of one instruction is used as a source in the

next instruction. For example, the two instructions

Mul R2, R3, R4

Add R5, R4, R6

give rise to a data dependency. The result of the multiply instruction is placed into register R4,

which in turn is one of the two source operands of the Add instruction. Assuming that the

multiply operation takes one clock cycle to complete, execution would proceed as shown in

Figure 8.6. As the Decode unit decodes the Add instruction in cycle 3, it realizes that R4 is used

as a source operand. Hence, the D step of that instruction cannot be completed until the W step

of the multiply instruction has been completed. Completion of step D2 must be delayed to clock

cycle 5, and is shown as step D2A, in the figure. Instruction I3 is fetched in cycle 3, but its

decoding must be delayed because step D3 cannot precede D2. Hence, pipelined execution is

stalled for two cycles.

OPERAND FORWARDING:

Figure 8.7a shows a part of the processor

datapath involving the ALU and the register file.

SRC1, SRC2, and RSLT registers constitute the

interstage buffers needed for pipelined operation,

as illustrated in Figure 8.7b.

The data forwarding mechanism is provided by

the blue connection lines. The two multiplexers

connected at the inputs to the ALU allow the data

on the destination bus to be selected instead of

the contents of either the SRC1 or SRC2 register.

After decoding instruction I2 and detecting the

data dependency, a decision is made to use data

forwarding. The operand not involved in the

dependency, register R2, is read and loaded in

register SRC1 in clock cycle 3. In the next clock

cycle, the product produced by instruction I1 is

S Venkata Lakshmi, Assistant Professor

 Page 8

available in register RSLT, and because of the forwarding connection, it can be used in step E2.

Hence, execution of I2, proceeds without interruption.

HANDLING DATA HAZARDS IN SOFTWARE:

The control hardware delays reading register R4 until cycle 5, thus introducing a 2-cycle stall

unless operand forwarding is used. An alternative approach is to leave the task of detecting data

dependencies and dealing with them to the software. In this case, the compiler can introduce the

two-cycle delay needed between instructions I1 and I2 by inserting NOP (No-operation)

instructions, as follows:

I1: Mul R2,R3,R4

 NOP

 NOP

I2: Add R5,R4,R6

If the responsibility for detecting such dependencies is left entirely to the software, the compiler

must insert the NOP instructions to obtain a correct result. This possibility illustrates the close

link between the compiler and the hardware. A particular feature can be either implemented in

hardware or left to the compiler. Leaving tasks such as inserting NOP instructions to the

compiler leads to simpler hardware. Being aware of the need for a delay, the compiler can

attempt to reorder instructions to perform useful tasks in the NOP slots, and thus achieve better

performance. On the other hand, the insertion of NOP instructions leads to larger code size. Also,

it is often the case that a given processor architecture has several hardware implementations,

offering different features. NOP instructions inserted to satisfy the requirements of one

implementation may not be needed and, hence, would lead to reduced performance on a different

implementation.

INSTRUCTION HAZARDS

UNCONDITIONAL BRANCHES:

Figure 8.8 shows a sequence of instructions being executed in a two-stage pipeline. instructions

I1 to I3 are stored at successive memory addresses, and I2 is a branch instruction. Let the branch

target be instruction Ik. In clock cycle 3, the fetch operation for instruction I3 is in progress at the

same time that the branch instruction is being decoded and the target address computed. In clock

cycle 4, the processor must discard is, which has been incorrectly fetched, and fetch instruction

Ik. In the meantime, the hardware unit responsible for the Execute (E) step must be told to do

nothing during that clock period. Thus, the pipeline is stalled for one clock cycle.

The time lost as a result of a branch instruction is often referred to as the branch penalty. In

Figure 8.8, the branch penalty is one clock cycle. For a longer pipeline, the branch penalty may

be higher. For example, Figure 8.9a shows the effect of a branch instruction on a four-stage

pipeline. We have assumed that the branch address is computed in step E2. Instructions I3 and I4

S Venkata Lakshmi, Assistant Professor

 Page 9

must be discarded, and the target instruction, Ik, is fetched in clock cycle 5. Thus, the branch

penalty is two clock cycles.

Reducing the branch penalty requires the branch address to be computed earlier in the pipeline.

Typically, the instruction fetch unit has dedicated hardware to identify a branch instruction and

compute the branch target address as quickly as possible after an instruction is fetched. With this

additional hardware, both of these tasks can be performed in step D2, leading to the sequence of

events shown in Figure 8.9b. In this case, the branch penalty is only one clock cycle.

S Venkata Lakshmi, Assistant Professor

 Page 10

Instruction Queue und Prefetching:

Either a cache miss or a branch instruction stalls the pipeline for one or more clock cycles. To

reduce the effect of these interruptions, many processors employ sophisticated fetch units that

can fetch instructions before they are needed and put them in a queue. Typically, the instruction

queue can store several instructions. A separate unit, which we call the dispatch unit, takes

instructions from the front of the queue and sends them to the execution unit. The dispatch unit

also performs the decoding function.

To be effective, the fetch unit must have sufficient decoding and processing capability to

recognize and execute branch instructions. It attempts to keep the instruction queue filled at all

times to reduce the impact of occasional delays when fetching instructions. When the pipeline

stalls because of a data hazard, for example, the dispatch unit is not able to issue instructions

from the instruction queue. However, the fetch unit continues to fetch instructions and add them

to the queue. Conversely, if there is a delay in fetching instructions because of a branch or a

cache miss, the dispatch unit continues to issue instructions from the instruction queue.

Figure 8.11 illustrates how the queue length changes and how it affects the relationship between

different pipeline stages. We have assumed that initially the queue contains one instruction.

Every fetch operation adds one instruction to the queue and every dispatch operation reduces the

queue length by one. Hence, the queue length remains the same for the first four clock cycles.

(There is both an F and a D step in each of these cycles.) Suppose that instruction |, introduces a

2-cycle stall. Since space is available in the queue, the fetch unit continues to fetch instructions

and the queue length rises to 3 in clock cycle 6.

Instruction I5 is a branch instruction. Its target instruction, Ik is fetched in cycle 7, and instruction

I6 is discarded, The branch instruction would normally cause a stall in cycle 7 as a result of

discarding instruction I6. Instead, instruction I4 is dispatched from the queue to the decoding

S Venkata Lakshmi, Assistant Professor

 Page 11

stage. After discarding I6, the queue length drops to 1 in cycle 8. The queue length will be at this

value until another stall is encountered.

Now observe the sequence of instruction completions in Figure 8.11. Instructions I1, I2, I3, I4 and

Ik, complete execution in successive clock cycles.

The instruction fetch unit has executed the branch instruction (by computing the branch address)

concurrently with the execution of other instructions. This technique is referred to as branch

folding.

Note that branch folding occurs only if at the time a branch instruction is encountered, at least

one instruction is available in the queue other than the branch instruction.

CONDITIONAL BRANCHES AND BRANCH PREDICTION:

Branch instructions can be handled in several ways to reduce their negative impact on the rate of

execution of instructions.

Delayed Branch:

A technique called delayed branching can minimize the penalty incurred as a result of

conditional branch instructions. The instructions in the delay slots ate always fetched

instructions. The instructions in the delay slots ate always fetched. Therefore, we would like to

arrange for them to be fully executed whether or not the branch is taken. The objective is to be

able to place useful instructions in these slots. If no useful instructions can be placed in the delay

slots, these slots must be filled with NOP instructions.

S Venkata Lakshmi, Assistant Professor

 Page 12

Consider the instruction sequence given in Figure 8.12a. Register R2 is used as a counter to

determine the number of times the contents of register R1 are shifted left. For a processor with

one delay slot, the instructions can be reordered as shown in Figure 8.12b. The shift instruction is

fetched while the branch instruction is being executed. After evaluating the branch condition, the

processor fetches the instruction at LOOP or at NEXT, depending on whether the branch

condition is true or false, respectively. In either case, it completes execution of the shift

instruction. The sequence of events during the last two passes in the loop is illustrated in Figure

8.13. Pipelined operation is not interrupted at any time, and there are no idle cycles. Logically,

the program is executed as if the branch instruction were placed after the shift instruction. That

is, branching takes place one instruction later than where the branch instruction appears in the

instruction sequence in the memory, hence the name “delayed branch.”

The effectiveness of the delayed branch approach depends on how often it is possible to reorder

instructions.

Branch Prediction:

Another technique for reducing the branch penalty associated with conditional branches is to

attempt to predict whether or not a particular branch will be taken. The simplest form of branch

prediction is to assume that the branch will not take place and to continue to fetch instructions in

sequential address order. Until the branch condition is evaluated, instruction execution along the

predicted path must be done on a speculative basis. Speculative execution means that instructions

are executed before the processor is certain that they are in the correct execution sequence.

Hence, care must be taken that no processor registers or memory locations are updated until it is

confirmed that these instructions should indeed be executed. If the branch decision indicates

S Venkata Lakshmi, Assistant Professor

 Page 13

otherwise, the instructions and all their associated data in the execution units must be purged,

and the correct instructions fetched and executed.

An incorrectly predicted branch is illustrated in Figure 8.14 for a four-stage pipeline.

The figure shows a Compare instruction followed by a Branch>0 instruction. Branch prediction

takes place in cycle 3, while instruction 13 is being fetched. The fetch unit predicts that the

branch will not be taken, and it continues to fetch instruction I4 as I3 enters the Decode stage. The

results of the compare operation are available at the end of cycle 3. Assuming that they are

forwarded immediately to the instruction fetch unit, the branch condition is evaluated in cycle 4.

At this point, the instruction fetch unit realizes that the prediction was incorrect, and the two

instructions in the execution pipe are purged. A new instruction, Ik, is fetched from the branch

target address in clock cycle 5.

If branch outcomes were random, then half the branches would be taken. Then the simple

approach of assuming that branches will not be taken would save the time lost to conditional

branches 50 percent of the time. However, better performance can be achieved if we arrange for

some branch instructions to be predicted as taken and others as not taken, depending on the

expected program behavior.

A decision on which way to predict the result of the branch may be made in hardware by

observing whether the target address of the branch is lower than or higher than the address of the

branch instruction. A more flexible approach is to have the compiler decide whether a given

branch instruction should be predicted taken or not taken. The branch instructions of some

processors, such as SPARC, include a branch prediction bit, which is set to 0 or 1 by the

compiler to indicate the desired behavior. The instruction fetch unit checks this bit to predict

whether the branch will be taken or not taken.

S Venkata Lakshmi, Assistant Professor

 Page 14

Any approach that has this characteristic is called static branch prediction. Another approach in

which the prediction decision may change depending on execution history is called dynamic

branch prediction.

Dynamic Branch Prediction:

In dynamic branch prediction schemes, the processor hardware assesses the likelihood of a given

branch being taken by keeping track of branch decisions every time that instruction is executed.

In its simplest form, the execution history used in predicting the outcome of a given branch

instruction is the result of the most recent execution of that instruction. The processor assumes

that the next time the instruction is executed, the result is likely to be the same. Hence, the

algorithm may be described by the two-state machine in Figure 8.15a. The two states are:

LT: Branch is likely to be taken

LNT: Branch is likely not to be taken

Suppose that the algorithm is started in state LNT. When the branch instruction is executed and

if the branch is taken, the machine moves to state LT. Otherwise, it remains in state LNT. The

next time the same instruction is encountered, the branch is predicted as taken if the

corresponding state machine is in state LT. Otherwise it is predicted as not taken.

S Venkata Lakshmi, Assistant Professor

 Page 15

This simple scheme, which requires one bit of history information for each branch instruction,

works well inside program loops. Once a loop is entered, the branch instruction that controls

looping will always yield the same result until the last pass through the loop is reached. In the

last pass, the branch prediction will turn out to be incorrect, and the branch history state machine

will be changed to the opposite state. Unfortunately, this means that the next time this same loop

is entered, and assuming that there will be more than one pass through the loop, the machine will

lead to the wrong prediction.

Better performance can be achieved by keeping more information about execution history. An

algorithm that uses 4 states, thus requiring two bits of history information for each branch

instruction, is shown in Figure 8.15b. The four states are:

 ST: Strongly likely to be taken

 LT: Likely to be taken

 LNT: Likely not to be taken

 SNT: Strongly likely not to be taken

Again assume that the state of the algorithm is initially set to LNT. After the branch instruction

has been executed, and if the branch is actually taken, the state is changed to ST; otherwise, it is

changed to SNT. As program execution progresses and the same instruction is encountered

again, the state of the branch prediction algorithm continues to change as shown. When a branch

instruction is encountered, the instruction fetch unit predicts that the branch will be taken if the

state is either LT or ST, and it begins to fetch instructions at the branch target address.

Otherwise, it continues to fetch instructions in sequential address order.

INFLUENCES ON INSTRUCTION SETS:

ADDRESSING MODES:

Addressing modes should provide the means for accessing a variety of data structures simply and

efficiently. Useful addressing modes include index, indirect, auto-increment, and auto-

decrement. Many processors provide various combinations of these modes to increase the

flexibility of their instruction sets. Complex addressing modes, such as those involving double

indexing, are often encountered. In choosing the addressing modes to be implemented in a

pipelined processor, we must consider the effect of each addressing mode on instruction flow in

the pipeline. Two important considerations in this regard are the side effects of modes such as

auto-increment and auto decrement and the extent to which complex addressing modes cause the

pipeline to stall. Another important factor is whether a given mode is likely to be used by

compilers. To compare various approaches, we assume a simple model for accessing operands in

the memory. The load instruction Load X(R1),R2 takes five cycles to complete execution. The

instruction

Load (R1),R2

S Venkata Lakshmi, Assistant Professor

 Page 16

can be organized to fit a four-stage pipeline because no address computation is required. Access

to memory can take place in stage E.

A more complex addressing mode may require several accesses to the memory to reach the

named operand. For example, The instruction

Load (X(R1)),R2

may be executed as shown in Figure 8.16a, assuming that the index offset, X, is given in the

instruction word. After computing the address in cycle 3, the processor needs to access memory

twice - first to read location X+[R1] in clock cycle 4 and then to read location [X+[R1]] in cycle

5. If R2 is a source operand in the next instruction, that instruction would be stalled for three

cycles, which can be reduced to two cycles with operand forwarding, as shown.

Fig 8.16 Equivalent operations using complex and simple addressing modes

To implement the same Load operation using only simple addressing modes requires several

instructions. For example, on a computer that allows three operand addresses, we can use

 Add #X,RI,R2

Load (R2),R2

Load (R2),R2

The Add instruction performs the operation R2 ← X+ [R1]. The two Load instructions fetch the

address and then the operand from the memory. This sequence of instructions takes exactly the

same number of clock cycles as the original, single Load instruction, as shown in Figure 8.16b.

S Venkata Lakshmi, Assistant Professor

 Page 17

The addressing modes used in modern processors often have the following features:

• Access to an operand does not require more than one access to the memory.

• Only load and store instructions access memory operands.

• The addressing modes used do not have side effects.

Three basic addressing modes that have these features are register, register indirect, and index.

The first two require no address computation. In the index mode, the address can be computed in

one cycle, whether the index value is given in the instruction or in a register.

Condition Codes:

In many processors, the condition code flags are stored in the processor status register. They are

either set or cleared by many instructions, so that they can be tested by subsequent conditional

branch instructions to change the flow of program execution. An optimizing compiler for a

pipelined processor attempts to reorder instructions to avoid stalling the pipeline when branches

or data dependencies between successive instructions occur. In doing so, the compiler must

ensure that reordering does not cause a change in the outcome of a computation. The dependency

introduced by the condition-code flags reduces the flexibility available for the compiler to

reorder instructions.

Consider the sequence of instructions in Figure 5.17a, and assume that the execution of the

Compare and Branch=0 instructions proceeds as in Figure 8.14. The branch decision takes place

in step E2 rather than D2 because it must await the result of the Compare instruction. The

execution time of the Branch instruction can be reduced by interchanging the Add and Compare

instructions, as shown in Figure 5.17b

Condition codes can be handled in two ways:

First, to provide flexibility in reordering instructions, the condition-code flags should be affected

by as few instructions as possible. Second, the compiler should be able to specify in which

instructions of a program the condition codes are affected and in which they are not. An

instruction set designed with pipelining in mind usually provides the desired flexibility.

S Venkata Lakshmi, Assistant Professor

 Page 18

LARGE COMPUTER SYSTEMS

FORMS OF PARALLEL PROCESSING

Two fundamental aspects of parallel processing are:

➢ First, the overall task has the property that some of its subtasks can be done in parallel by

different hardware components. For example, a processor computation and an I/O

transfer are performed in parallel by the processor and the DMA controller.

➢ Second, some means must exist for initiating and coordinating the parallel activity.

Initiation occurs when the processor sets up the DMA transfer and then continues with

another computation. When the transfer is completed, the coordination is achieved by the

interrupt signal sent from the DMA controller to the processor. This allows the processor

to begin the computation that operates on the transferred data.

CLASSIFICATION OF PARALLEL STRUCTURES:

A general classification of parallel processing has been proposed by Flynn.

They are:

SISD: A single-processor computer system is called a Single Instruction stream, Single Data

stream (SISD) system. A program executed by the processor constitutes the single instruction

stream, and the sequence of data items that it operates on constitutes the single data stream.

SIMD: A single stream of instructions is broadcast to a number of processors. Each processor

operates on its own data. This scheme, in which all processors execute the same program but

operate on different data, is called a Single Instruction stream, Multiple Data stream (SIMD)

system.

MIMD: The multiple data streams are the sequences of data items accessed by the individual

processors in their own memories. The third scheme involves a number of independent

processors, each executing a different program and accessing its own sequence of data items.

Such machines are called Multiple Instruction stream, Multiple Data stream (MIMD)systems.

MISD: The fourth possibility is a Multiple instruction stream, Single Data stream (MISD)

system. In such a system, a common data structure is manipulated by separate processors, each

executing a different program.

ARRAY PROCESSORS

The SIMD form of parallel processing, also called array processing, was the first form of

parallel processing. A two-dimensional grid of processing elements executes an instruction

stream that is broadcast from a central control processor. As each instruction is broadcast,all

elements execute it simultaneously. Each processing element is connected toits four nearest

neighbors for purposes of exchanging data.

S Venkata Lakshmi, Assistant Professor

 Page 19

The grid of processing elements can be used to solve two dimensional problems. For example, if

each element of the grid represents a point in space, the array can be used to compute the

temperature at points in the inferior of a conducting plane. Assume that the edges of the plane are

held at some fixed temperatures. An approximate solution at the discrete points represented by

the processing elements is derived as follows. The outer edges are initialized to the specified

temperatures. All interior points are initialized to arbitrary values, not necessarily the same.

Iterations are then executed in parallel at each element. Each iteration consists of calculating an

improved estimate of the temperature at a point by averaging the current values of its four

nearest neighbors. The process stops when changes in the estimates during successive iterations

are less than some predefined small quantity.

Each element must be able to exchange values with each of its neighbors over the paths. Each

processing element has a few registers and some local memory to store data. It also has a

register, which we can call the network register that facilitates movement of values to and from

its neighbors. The central processor can broadcast an instruction to shift the values in the

network registers one step up, down, left, or right. Each processing element also contains an

ALU to execute arithmetic instructions broadcast by the control processor. Using these basic

facilities, a sequence of instructions can be broadcast repeatedly to implement the iterative loop.

The control processor must be able to determine when each of the processing elements has

developed its component of the temperature to the required accuracy. To do this, each element

sets an internal status bit to 1 to indicate this condition. The grid interconnections include a

facility that allows the controller to detect when all status bits are set at the end of iteration.

Array processors are highly specialized machines. They are well-suited to numerical problems

that can be expressed in matrix or vector format. Recall that super computers with vector

architecture are also suitable for solving such problems. A key difference between vector-based

machines and array processors is that the former achieve high performance through heavy use of

pipelining, whereas the latter provide extensive parallelism by replication of computing modules

S Venkata Lakshmi, Assistant Professor

 Page 20

THE STRUCTURE OF GENERAL-PURPOSE MULTIPROCESSORS

There are three possible ways of implementing a multiprocessor system.

The most obvious scheme is given in Figure 12.2.An interconnection network permits n

processors to access & memories so that any of the processors can access any of the memories.

The interconnection network may introduce considerable delay between a processor and a

memory. If this delay is the same for all accesses to memory, which is common for this

S Venkata Lakshmi, Assistant Professor

 Page 21

organization, then such a machine is called a Uniform Memory Access (UMA) multiprocessor.

Because of the extremely short instruction execution times achievable by processors, the network

delay in fetching instructions and data from the memories is unacceptable if it is too long.

An attractive alternative, which allows a high computation rate to be sustained in all processors,

is to attach the memory modules directly to the processors. This organization is shown in Figure

12.3, In addition to accessing its local memory, each processor can also access other memories

over the network. Since the remote accesses pass through the network, these accesses take

considerably longer than accesses to the local memory. Because of this difference in access

times, such multiprocessors are called Non-Uniform Memory Access (NUMA) multiprocessors.

The organizations of Figures 12.2 and 12.3 provide a global memory, where any processor can

access any memory module without intervention by another processor.

A different way of organizing the system is shown in Figure 12.4. Here, all memory modules

serve as private memories for the processors that are directly connected to them. A processor

cannot access a remote memory without the cooperation of the remote processor. This

cooperation takes place in the form of messages exchanged by the processors. Such systems are

often called distributed-memory systems with a message-passing protocol.

INTERCONNECTION NETWORKS

The components that form a multiprocessor system are CPUs, IOPs connected to input output

devices, and a memory unit. The interconnection between the components can have different

physical configurations, depending on the number of transfer paths that are available between the

processors and memory in a shared memory system o among the processing elements in a

loosely coupled system there are several physical forms available for establishing an

interconnection network.

Time-shared common bus

Multiport memory

Crossbar switch

Multistage switching network

Hypercube system

Time Shared Common Bus: A common-bus multiprocessor system consists of a number of

processors connected through a common path to a memory unit.

Disadvantage: Only one processor can communicate with the memory or another processor at

any given time. As a consequence, the total overall transfer rate within the system is limited by

the speed of the single path. A more economical implementation of a dual bus structure is

depicted in Fig., below. Part of the local memory may be designed as a cache memory attached

to the CPU.

S Venkata Lakshmi, Assistant Professor

 Page 22

Fig: System bus structure for multiprocessors

Multiport Memory:

A multiport memory system employs separate buses between each memory module and each

CPU. The module must have internal control logic to determine which port will have access to

memory at any given time. Memory access conflicts are resolved by assigning fixed priorities to

each memory port.

Advantages: The high transfer rate

can be achieved because of the

multiple paths.

Disadvantage: It requires expensive

memory control logic and a large

number of cables and connections

S Venkata Lakshmi, Assistant Professor

 Page 23

Crossbar Switch: Consists of a number of cross points that are placed at intersections between

processor buses and memory module paths. The small square in each cross point is a switch that

determines the path from a processor to a memory module.

Advantages: Supports simultaneous transfers from all memory modules.

Disadvantage: The hardware required to implement the switch can become quite large and

complex. Below fig. shows the functional design of a crossbar switch connected to one memory

module.

Multistage Switching Network: The basic component of a multistage network is a two input,

two-output interchange switch as shown in Fig. below.

Using the 2x2 switch as a building block, it is possible to build a multistage network to control

the communication between a number of sources and destinations. To see how this is done,

consider the binary tree shown in Fig. below. Certain request patterns cannot be satisfied

simultaneously. i.e., if P1 000~011, then P2 100~111 One such topology is the omega switching

network shown in Fig. below

S Venkata Lakshmi, Assistant Professor

 Page 24

Some request patterns cannot be connected simultaneously. i.e., any two sources cannot be

connected simultaneously to destination 000 and 001. In a tightly coupled multiprocessor system,

the source is a processor and the destination is a memory module. In a loosely coupled

multiprocessor system, both the source and destination are processing elements.

Hypercube System:

The topology of an n-dimensional cube, called a hypercube, to implement a network that

interconnects 2n nodes. In addition to the communication circuits, each node usually includes a

processor and a memory module as well as some I/O capability.

Figure 12.7 shows a three-dimensional hypercube. The small circles represent the

communication circuits in the nodes. The functional units attached to each node are not shown in

the figure. The edges of the cube represent bidirectional communication links between

neighboring nodes. In an n-dimensional hypercube, each node is directly connected to n

neighbors. A useful way to label the nodes is to assign binary addresses to them in such a way

that the addresses of any two neighbors differ in exactly one bit position, as shown in the figure.

S Venkata Lakshmi, Assistant Professor

 Page 25

Routing messages through the hypercube is particularly easy. If the processor at node Ni wishes

to send a message to node Nj it proceeds as follows. The binary addresses of the source, i, and

the destination, j, are compared from least to most significant bits. Suppose that they differ first

in position p. Node Ni then sends the message to its neighbor whose address, k, differs from i in

bit position p. Node Nk forwards the message to the appropriate neighbor using the same address

comparison scheme. The message gets closer to destination node Nj with each of these hops from

one node to another. For example, a message from node N2 to node N5 requires 3 hops, passing

through nodes N3 and N1. The maximum distance that any message needs to travel in an n-

dimensional hypercube is n hops.

Scanning address patterns from right to left is only one of the methods that can be used to

determine message routing.

Hypercube interconnection networks have been used in a number of machines. The better known

examples include Intel’s iPSC, which used a 7-dimensional cube to connect up to 128 nodes, and

NCUBE’s NCUBE/ten, which had up to 1024 nodes in 4 10-dimensional cube.

S Venkata Lakshmi, Assistant Professor

 Page 26

TREE NETWORKS:

A hierarchically structured network implemented in the form of a tree is another interconnection

topology. Figure 12.9a depicts a four-way tree that interconnects 16 modules. In this tree, each

parent node allows communication between two of its children at a time. An intermediate-level

node, for example node A-in the figure, can provide a connection from one of its child nodes to

its parent. This enables two leaf nodes that are any distance apart to communicate. Only one path

at a time can be established through a given node in the tree.

A tree network performs well if there is a large amount of locality in communication, that is, if

only a small portion of network traffic goes through the single root node. If this is not the case,

performance deteriorates rapidly because the root node becomes a bottleneck.

To reduce the possibility of a bottleneck, the number of links in the upper levels of a tree

hierarchy can be increased. This is done in a fat tree network, in which each node in the tree

(except at the top level) has more than one parent. An example of a fat tree is given in Figure

12.9b. In this case, each node has two parent nodes. A fat tree structure was used in the CM-5

machine by Thinking Machines Corporation.

S Venkata Lakshmi, Assistant Professor

