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Introduction

A database-management system (DBMS) is a collection of interrelated data and
a set of programs to access that data. The collection of data, usually referred to as the
database, contains information relevant to an enterprise. The primary goal of a DBMS
is to provide a way to store and retrieve database information that is both convenient
and efficient.

Database systems are designed to manage large bodies of information. In
addition, the database system must ensure the safety of the information stored,
despite system crashes or attempts at unauthorized access.

Database-System Applications

Databases are widely used. Here are some representative applications:
¢ Enterprise Information
o Sales: For customer, product, and purchase information.

o Accounting: For payments, receipts, account balances, assets and other
accounting information.

o Human resources: For information about employees, salaries, payroll taxes,
and benefits, and for generation of paychecks.

o Manufacturing: For management of the supply chain and for tracking
production of items in factories, inventories of items in warehouses and stores, and
orders for items.

° Online retailers: For sales data noted above plus online order tracking,
generation of recommendation lists, and maintenance of online product evaluations.

e Banking and Finance

° Banking: For customer information, accounts, loans, and banking transactions.



o Credit card transactions: For purchases on credit cards and generation of
monthly statements.

o Finance: For storing information about holdings, sales, and purchases of
financial instruments such as stocks and bonds; also, for storing real-time market data
to enable online trading by customers and automated trading by the firm.

¢ Universities: For student information, course registrations, and grades (in addition
to standard enterprise information such as human resources and accounting).

e Airlines: For reservations and schedule information. Airlines were among the first
to use databases in a geographically distributed manner.

e Telecommunication: For keeping records of calls made, generating monthly bills,
maintaining balances on prepaid calling cards, and storing information about the
communication networks.

Purpose of Database Systems

The file-processing system is supported by a conventional operating system.
The system stores permanent records in various files, and it needs different
application programs to extract records from, and add records to, the appropriate
files. Before database management systems (DBMSs) were introduced, organizations
usually stored information in such systems.

Keeping organizational information in a file-processing system has a number of
major disadvantages:

e Data redundancy and inconsistency: the same information may be
duplicated in several places (files). For example, if a student has a double major (say,
music and mathematics) the address and telephone number of that student may
appear in a file that consists of student records of students in the Music department
and in a file that consists of student records of students in the mathematics
department. This redundancy leads to higher storage and access cost. In addition, it
may lead to data inconsistency; that is, the various copies of the same data may no
longer agree.

e Difficulty in accessing data: The point here is that conventional file-processing
environments do not allow needed data to be retrieved in a convenient and efficient
manner. More responsive data-retrieval systems are required for general use.

e Data isolation: Because data are scattered in various files, and files may be in
different formats, writing new application programs to retrieve the appropriate data
is difficult.



¢ Integrity problems: The data values stored in the database must satisfy certain
types of consistency constraints. Suppose also that the university requires that the
account balance of a department may never fall below zero. Developers enforce these
constraints in the system by adding appropriate code in the various application
programs.

e Atomicity problems: A computer system, like any other device, is subject to
failure. In many applications, it is crucial that, if a failure occurs, the data be restored
to the consistent state that existed prior to the failure.

e Concurrent-access anomalies: For the sake of overall performance of the
system and faster response, many systems allow multiple users to update the data
simultaneously.

e Security problems: Not every user of the database system should be able to
access all the data. For example, in a university, payroll personnel need to see only
that part of the database that has financial information. They do not need access to
information about academic records. But, since application programs are added to the

file-processing system in an ad hoc manner, enforcing such security constraints is
difficult.

View of Data

A database system is a collection of interrelated data and a set of programs that
allow users to access and modify these data. A major purpose of a database system is
to provide users with an abstract view of the data. That is, the system hides certain
details of how the data are stored and maintained.

Data Abstraction:

For the system to be usable, it must retrieve data efficiently. Developers hide
the complexity from users through several levels of abstraction, to simplify users’
interactions with the system:

¢ Physical level. The lowest level of abstraction describes how the data are
actually stored. The physical level describes complex low-level data structures in
detail.

e Logical level. The next-higher level of abstraction describes what data are
stored in the database, and what relationships exist among those data. The logical
level thus describes the entire database in terms of a small number of relatively simple
structures. Although implementation of the simple structures at the logical level may



involve complex physical-level structures, the user of the logical level does not need
to be aware of this complexity. This is referred to as physical data independence.
Database administrators, who must decide what information to keep in the database,
use the logical level of abstraction.

¢ View level. The highest level of abstraction describes only part of the entire
database. Even though the logical level uses simpler structures, complexity remains
because of the variety of information stored in a large database.
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For example, we may describe a record as follows:
type instructor = record
ID : char (5);
name : char (20);
dept_name : char (20);
salary : numeric (8,2);

end;

This code defines a new record type called instructor with four fields. Each field has a
name and a type associated with it. A university organization may have several such
record types, including

e department, with fields dept_name, building, and budget
e course, with fields course_id, title, dept_name, and credits
e student, with fields ID, name, dept_name, and tot_cred

At the physical level, an instructor, department, or student record can be
described as a block of consecutive storage locations. The compiler hides this level of
detail from programmers.



At the logical level, each such record is described by a type definition, as in the
previous code segment, and the interrelationship of these record types is defined as
well.

Finally, at the view level, computer users see a set of application programs that
hide details of the data types. At the view level, several views of the database are
defined, and a database user sees some or all of these views. In addition to hiding
details of the logical level of the database, the views also provide a security mechanism
to prevent users from accessing certain parts of the database.

Instances and Schemas:

The collection of information stored in the database at a particular moment is
called an instance of the database. The overall design of the database is called the
database schema. Schemas are changed infrequently, if at all.

The physical schema describes the database design at the physical level, while
the logical schema describes the database design at the logical level. A database may
also have several schemas at the view level, sometimes called subschemas, that
describe different views of the database. Application programs are said to exhibit
physical data independence if they do not depend on the physical schema, and thus
need not be rewritten if the physical schema changes.

Data Models:

The data model: a collection of conceptual tools for describing data, data
relationships, data semantics, and consistency constraints. A data model provides a
way to describe the design of a database at the physical, logical, and view levels.

The data models can be classified into four different categories:

¢ Relational Model: The relational model uses a collection of tables to represent both
data and the relationships among those data. Each table has multiple columns, and
each column has a uniqgue name. Tables are also known as relations. The relational
model is an example of a record-based model. Record-based models are so named
because the database is structured in fixed-format records of several types. Each table
contains records of a particular type. Each record type defines a fixed number of fields,
or attributes. The columns of the table correspond to the attributes of the record type.
The relational data model is the most widely used data model, and a vast majority of
current database systems are based on the relational model.

e Entity-Relationship Model: The entity-relationship (E-R) data model uses a
collection of basic objects, called entities, and relationships among these objects. An
entity is a “thing” or “object” in the real world that is distinguishable from other
objects. The entity-relationship model is widely used in database design.



¢ Object-Based Data Model: Object-oriented programming (especially in Java, C++,
or C#) has become the dominant software-development methodology. This led to the
development of an object-oriented data model that can be seen as extending the E-R
model with notions of encapsulation, methods (functions), and object identity. The
object-relational data model combines features of the object-oriented data model and
relational data model.

e Semistructured Data Model: The semistructured data model permits the
specification of data where individual data items of the same type may have different
sets of attributes. This is in contrast to the data models mentioned earlier, where every
data item of a particular type must have the same set of attributes. The Extensible
Markup Language (XML) is widely used to represent semistructured data.

Historically, the network data model and the hierarchical data model pre ceded
the relational data model. These models were tied closely to the underlying
implementation, and complicated the task of modeling data.

Database Languages

A data-manipulation language (DML) is a language that enables users to access or
manipulate data as organized by the appropriate data model. The types of access
are:

e Retrieval of information stored in the database

e Insertion of new information into the database

e Deletion of information from the database

e Modification of information stored in the database
There are basically two types:

e Procedural DMLs require a user to specify what data are needed and how to get those
data.

¢ Declarative DMLs (also referred to as nonprocedural DMLs) require a user to
specify what data are needed without specifying how to get those data.

A query is a statement requesting the retrieval of information. The portion of a
DML that involves information retrieval is called a query language. Although
technically incorrect, it is common practice to use the terms query language and data-
manipulation language synonymously.

Data-Definition Language:

We specify a database schema by a set of definitions expressed by a special
language called a data-definition language (DDL). We specify the storage structure and



access methods used by the database system by a set of statements in a special type
of DDL called a data storage and definition language.

The data values stored in the database must satisfy certain consistency
constraints. For example, suppose the university requires that the account balance of
a department must never be negative. The DDL provides facilities to specify such
constraints. The database system checks these constraints every time the database is
updated.

Database systems implement integrity constraints that can be tested with
minimal overhead:

e Domain Constraints: A domain of possible values must be associated with
every attribute (for example, integer types, character types, date/time types).
Declaring an attribute to be of a particular domain acts as a constraint on the values
that it can take. Domain constraints are the most elementary form of integrity
constraint. They are tested easily by the system whenever a new data item is entered
into the database.

¢ Referential Integrity. There are cases where we wish to ensure that a value
that appears in one relation for a given set of attributes also appears in a certain set
of attributes in another relation (referential integrity). For example, the department
listed for each course must be one that actually exists. More precisely, the dept name
value in a course record must appear in the dept name attribute of some record of the
department relation. Database modifications can cause violations of referential
integrity. When a referential-integrity constraint is violated, the normal procedure is
to reject the action that caused the violation.

e Assertions: An assertion is any condition that the database must always
satisfy. Domain constraints and referential-integrity constraints are special forms of
assertions. However, there are many constraints that we cannot express by using only
these special forms. For example, “Every department must have at least five courses
offered every semester” must be expressed as an assertion. When an assertion is
created, the system tests it for validity. If the assertion is valid, then any future
modification to the database is allowed only if it does not cause that assertion to be
violated.

e Authorization: We may want to differentiate among the users as far as the
type of access they are permitted on various data values in the database. These
differentiations are expressed in terms of authorization, the most common being: read
authorization, which allows reading, but not modification, of data; insert
authorization, which allows insertion of new data, but not modification of existing



data; update authorization, which allows modification, but not deletion, of data; and
delete authorization, which allows deletion of data. We may assign the user all, none,
or a combination of these types of authorization.

The DDL, just like any other programming language, gets as input some
instructions (statements) and generates some output. The output of the DDL is placed
in the data dictionary, which contains metadata— that is, data about data. The data
dictionary is considered to be a special type of table that can only be accessed and
updated by the database system itself (not a regular user). The database system
consults the data dictionary before reading or modifying actual data.

Relational Databases

A relational database is based on the relational model and uses a collection of
tables to represent both data and the relationships among those data.

Table:

Each table has multiple columns and each column has a unique name.

The first table, the instructor table, shows, for example, that an instructor
named Einstein with ID 22222 is a member of the Physics department and has an
annual salary of $95,000. The
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second table, department, shows, for example, that the Biology department is located
in the Watson building and has a budget of $90,000. Of course, a real-world university
would have many more departments and instructors.
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The relational model is an example of a record-based model. Record-based
models are so named because the database is structured in fixed-format records of
several types. Each table contains records of a particular type. Each record type defines
a fixed number of fields, or attributes. The columns of the table correspond to the
attributes of the record type.

Data-Manipulation Language:

The SQL query language is nonprocedural. A query takes as input several tables
(possibly only one) and always returns a single table. Here is an example of an SQL
query that finds the names of all instructors in the History department:

SQL> select instructor.name from instructor where instructor.dept_name = "History’;

The query specifies that those rows from the table instructor where the
dept_name is History must be retrieved, and the name attribute of these rows must
be displayed.

Queries may involve information from more than one table. For instance, the
following query finds the instructor ID and department name of all instructors
associated with a department with budget of greater than $95,000.

SQL> select instructor.ID, department.dept_name from instructor, department where
instructor.dept_name= department.dept_name and department.budget > 95000;

UNIT-1



Data-Definition Language:

SQL provides a rich DDL that allows one to define tables, integrity constraints,
assertions, etc. For instance, the following SQL DDL statement defines the
department table:

SQL> create table department (dept_name char (20), building char (15), budget

numeric (12,2)); Database Access from Application Programs:

There are some computations that are possible using a general-purpose
programming language but are not possible using SQL. SQL also does not support
actions such as input from users, output to displays, or communication over the
network. Such computations and actions must be written in a host language, such as
C, C++, or Java, with embedded SQL queries that access the data in the database.
Application programs are programs that are used to interact with the database in this
fashion.

To access the database, DML statements need to be executed from the host
language. There are two ways to do this:

* By providing an application program interface (set of procedures) that can
be used to send DML and DDL statements to the database and retrieve the results.

The Open Database Connectivity (ODBC) standard for use with the C language
is a commonly used application program interface standard. The Java Database
Connectivity (JDBC) standard provides corresponding features to the Java language.

e By extending the host language syntax to embed DML calls within the host
language program. Usually, a special character prefaces DML calls, and a preprocessor,
called the DML precompiler, converts the DML statements to normal procedure calls
in the host language.

Database Design

Database design mainly involves the design of the database schema. The design
of a complete database application environment that meets the needs of the
enterprise being modeled requires attention to a broader set of issues.

Design Process:

The initial phase of database design, then, is to characterize fully the data needs
of the prospective database users. The database designer needs to interact extensively
with domain experts and users to carry out this task. The outcome of this phase is a
specification of user requirements.

Next, the designer chooses a data model, and by applying the concepts of the



chosen data model, translates these requirements into a conceptual schema of the
database. The schema developed at this conceptual-design phase provides a detailed
overview of the enterprise. The designer reviews the schema to confirm that all data
requirements are indeed satisfied and are not in conflict with one another. The
designer can also examine the design to remove any redundant features.

A fully developed conceptual schema indicates the functional requirements of
the enterprise. In a specification of functional requirements, users describe the
kinds of operations (or

transactions) that will be performed on the data. Example operations include
modifying or updating data, searching for and retrieving specific data, and deleting
data. At this stage of conceptual design, the designer can review the schema to ensure
it meets functional requirements.

The process of moving from an abstract data model to the implementation of
the database proceeds in two final design phases. In the logical-design phase, the
designer maps the high-level conceptual schema onto the implementation data model
of the database system that will be used. The designer uses the resulting system-
specific database schema in the subsequent physical-design phase, in which the
physical features of the database are specified.

Database Design for a University Organization:

* The university is organized into departments. Each department is identified by a
unique name (dept name), is located in a particular building, and has a budget.

e Each department has a list of courses it offers. Each course has associated with it a
course id, title, dept name, and credits, and may also have associated prerequisites.

e Instructors are identified by their unique ID. Each instructor has name, associated
department (dept name), and salary.

e Students are identified by their unique ID. Each student has a name, an associated
major department (dept name), and tot cred (total credit hours the student earned
thus far).

¢ The university maintains a list of classrooms, specifying the name of the building,
room number, and room capacity.

¢ The university maintains a list of all classes (sections) taught. Each section is identified
by a course id, sec id, year, and semester, and has associated with it a semester, year,
building, room number, and time slot id (the time slot when the class meets).

* The department has a list of teaching assignments specifying, for each instructor,
the sections the instructor is teaching.



* The university has a list of all student course registrations, specifying, for each
student, the courses and the associated sections that the student has taken
(registered for).

The Entity-Relationship Model:

The entity-relationship (E-R) data model uses a collection of basic objects,
called entities, and relationships among these objects. An entity is a “thing” or “object”
in the real world that is distinguishable from other objects. For example, each person
is an entity, and bank accounts can be considered as entities.

Entities are described in a database by a set of attributes. For example, the
attributes dept_name, building, and budget may describe one particular department
in a university, and they form attributes of the department entity set. Similarly,
attributes ID, name, and salary may describe an instructor entity.

A relationship is an association among several entities. For example, a member
relationship associates an instructor with her department. The set of all entities of the
same type and the set of all relationships of the same type are termed an entity set
and relationship set, respectively. The overall logical structure (schema) of a database
can be expressed graphically by an entity

relationship (E-R) diagram. There are several ways in which to draw these diagrams. One
of the most

popular is to use the Unified Modeling Language (UML). In the notation we use,
which is based on UML, an E-R diagram is represented as follows:
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Figure 1.3 A sample E-R diagram
¢ Entity sets are represented by a rectangular box with the entity set name in the
header and the attributes listed below it.

¢ Relationship sets are represented by a diamond connecting a pair of related entity
sets. The name of the relationship is placed inside the diamond.

One important constraint is mapping cardinalities, which express the number
of entities to which another entity can be associated via a relationship set.

Normalization:

The goal is to generate a set of relation schemas that allows us to store
information without unnecessary redundancy, yet also allows us to retrieve



information easily. The approach is to design schemas that are in an appropriate
normal form. The most common approach is to use functional dependencies.

Among the undesirable properties that a bad design may have are:

e Repetition of information
¢ Inability to represent certain information
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Notice that there are two rows in faculty that contain repeated information
about the History department, specifically, that department’s building and budget.
The repetition of information in our alternative design is undesirable.

The null value indicates that the value does not exist (or is not known). An
unknown value may be either missing (the value does exist, but we do not have that
information) or not known (we do not know whether or not the value actually exists).

A database system is partitioned into modules that deal with each of the
responsibilities of the overall system. The functional components of a
database system can be broadly divided into the -

e storage manager and
e the query processor components.

The storage manager:

e The storage manager is the component of a database system that
provides the interface between the low-level data stored in the
database and the application programs and queries submitted to the
system.

e The storage manager is responsible for the interaction with the file
manager.

e The storage manager translates the various DML statements into low-
level file-system commands.

e The storage manager is responsible for storing, retrieving, and updating
data in the database.

The storage manager components include:-



e Authorization and integrity manager - it tests for the satisfaction of integrity
constraints and checks the authority of users to access data.

e Transaction manager - it ensures that the database remains in a consistent
(correct) state despite system failures, and that concurrent transaction executions
proceed without conflicting.

¢ File manager- it manages the allocation of space on disk storage and the data
structures used to represent information stored on disk.

e Buffer manager- it is responsible for fetching data from disk storage into main
memory, and deciding what data to cache in main memory. The buffer manager is
a critical part of the database system, since it enables the database to handle data
sizes that are much larger than the size of main memory.

The storage manager implements several data structures as part of the phys ical
system implementation:-

e Data files, which store the database itself.

e Data dictionary, which stores metadata about the structure of the database, in
particular the schema of the database.

e Indices, which can provide fast access to data items. Like the index in this
textbook, a database index provides pointers to those data items that hold a
particular value.

The Query Processor:
e The query processor is important because it helps the database system
to simplify and facilitate access to data.
e The query processor allows database users to obtain good
performance while being able to work at the view level and not be
burdened with understanding the physical-level.

The query processor components include:-

e DDL interpreter, which interprets DDL statements and records the
definitions in the data dictionary.

e DML compiler, which translates DML statements in a query language into
an evaluation plan consisting of low-level instructions that the query
evaluation engine understands.

e Query evaluation engine, which executes low-level instructions
generated by the DML compiler.

A query can usually be translated into any of a number of alternative
evaluation plans that all give the same result. The DML compiler also
performs query optimization; that is, it picks the lowest cost evaluation
plan from among the alternatives.



A transaction is a collection of operations that performs a single logical
function in a database application.

Each transaction is a unit of both atomicity and consistency. Thus, we require
that transactions do not violate any database consistency constraints.

-Atomicity : all-or-none requirement.

Ex: a funds transfer, as in which one department account (say A) is debited
and another department account (say B) is credited. Clearly, it is essential
that either both the credit and debit occur, or that neither occur.

- Consistency : requirement of correctness.

Ex: it is essential that the execution of the funds transfer preserve the
consistency of the database. That is, the value of the sum of the balances of
A and B must be preserved.

-Durability : requirement of persistence.

Ex: Finally, after the successful execution of a funds transfer, the new values
of the balances of accounts A and B must persist, despite the possibility of
system failure.

Ensuring the atomicity and durability properties is the responsibility of the
database system itself—specifically, of the recovery manager.

-Because of various types of failure, a transaction may not always complete
its execution successfully. If we are to ensure the atomicity property, a failed
transaction must have no effect on the state of the database.

-The database must be restored to the state in which it was before the transaction
in question started executing. The database system must therefore perform
failure recovery, that is, detect system failures and restore the database to the
state that existed prior to the occurrence of the failure.

- concurrency-control manager :- to control the interaction among the concurrent
transactions, to ensure the consistency of the database.

-transaction manager :- consists of the concurrency-control manager and the
recovery manager.

The architecture of a database system is greatly influenced by the underlying
computer system on which the database system runs. Database systems can be
centralized, or client-server, where one server machine executes work on behalf
of multiple client machines.

-We can therefore differentiate between client machines, on which remote



database users work, and server machines, on which the database system runs.
-Application program interface standards like ODBC and JDBC are used for
interaction between the client and the server.

-~ ‘ Ps . r ™~ p \
neEive users so phusticated
scatxon Mabase
(uliass, gy } PP o nh:mian Mors
web tsers) PO {analysts) i .
s Wik s e
7 application ™ 7 sppix J(A\Wl—\‘.‘ c gquery (f{dmﬂ'\lxﬁjhn;i\l
\_‘_;ig:'x':u:_/.’ '\.__‘:Lll?p‘zalilg_,.-" N l:»::lj -_(,x‘ LR l:‘,l,_ -_‘_,'
------ R T T L
: [ Jer and | — |
' jcompilerand | I - § !
; —_ Hnker r /:l DML guurnies iD(. L interpretes '
pr s '
; e I H
: appication > :
- program | -~ DML compiler !
: obgect code and organizer '
' SEp— — T
'
[ query evaluation
- L . - .
coggine i
T e — GULTV Procasasur
' S 4 o S S — . ¥ 3

~ 4 S - —

| butfer manager ] [ file manager ] JUUK.'IM‘U'AJII Lransactson
= 3 4 ared Integrity manager
W\ A manager
\ / J

parnt . / sturage manager |

AL -
\ \ D e 7
"] f e
R A [
—— : f 1
\ ‘," Y Jdisk storage
| ,-‘. trcddsces I | [ fata dxctionary ]
\ / ‘ —

ld.olu ’1 statisticad Jata l

Figure 1.5 System structure

-Database applications are usually partitioned into two or three parts, as in
Figure 1.6. In a two-tier architecture, the application resides at the client
machine, where it invokes database system functionality at the server
machine through query language statements.

-In contrast, in a three-tier architecture, the client machine acts as merely a front
end and does not contain any direct database calls. Instead, the client
communicates with an application server, usually through a forms interface.The
application server in turn communicates with a database system to access data.
-Three-tier applications are more appropriate for large applications, and for
applications that run on the World Wide Web.
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Figure 1.6 Two-tier and three-tier architectures.

The term data mining refers loosely to the process of semi automatically analyzing
large databases to find useful patterns.

Ex: Like knowledge discovery in artificial intelligence (also called machine learning)
or statistical analysis, data mining attempts to discover rules and patterns from
data.

“data mining deals with “knowledge discovery in databases.”
-Some types of knowledge discovered from a database can be represented by a
set of rules.

Ex: The following is an example of a rule, stated informally: “Young women with
annual incomes greater than $50,000 are the most likely people to buy small
sports cars.” Of course such rules are not universally true, but rather have
degrees of “support” and “confidence.”

-Usually there is a manual component to data mining, consisting of
preprocessing data to a form acceptable to the algorithms, and
postprocessing of discovered patterns to find novel ones that could be
useful. There may also be more than one type of pattern that can be
discovered from a given database, and manual interaction may be needed to
pick useful types of patterns.

Several application areas for database systems are limited by the restrictions
of the relational data model. As a result, researchers have developed several
data models to deal with these application domains, including object-based
data models and semistructured data models.



o Object-Based Data Models: Object-oriented programming has become the
dominant software-development methodology. This led to the
development of an object-oriented data model that can be seen as
extending the E-R model with notions of encapsulation, methods
(functions), and object identity. Inheritance, object identity, and
encapsulation (information hiding), with methods to provide an interface to
objects, are among the key concepts of object-oriented programming that
have found applications in data modeling.

e Semistructured Data Models : Semistructured data models permit the
specification of data where individual data items of the same type may have
different sets of attributes. This is in contrast with the data models
mentioned earlier, where every data item of a particular type must have
the same set of attributes.

-The XML language was initially designed as a way of adding markup
information to text documents.XML provides a way to represent data that
have nested structure, and furthermore allows a great deal of flexibility in
structuring of data, which is important for certain kinds of nontraditional
data.

A primary goal of a database system is to retrieve information from and store
new information in the database. People who work with a database can be
categorized as database users or database administrators.

Database Users:

There are four different types of database-system users, differentiated by the
way they expect to interact with the system.

Naive users:

These users are also called Unsophisticated Users. They don’t have any type of
knowledge with the system. These users interact with the system by invoking
one of the application programs that have been written previously. For
example, a bank teller who needs to transfer $50 from account A to account B
invokes a program called transfer. This program asks the teller for the amount
of money to be transferred, the account from which the money is to be
transferred, and the account to which the money is to be transferred.

Application programmers:

These users are computer professionals who write application programs.
Application Programmers can choose from many tools to develop user
interfaces. Rapid application development (RAD) tools are tools that enable an



application programmer to construct forms and reports without writing a
program. There are also special types of programming languages that combine
imperative control structures (for example, for loops, while loops and if-then-
else statements) with statements of the data manipulation language.

Sophisticated users:

These users are interacting with the system without writing programs. Instead,
they form their requests in a database query language. They submit each such
query to a query processor, whose function is to break down DML statements
into instructions that the storage manager understands. Analysts who submit
queries to explore data in the database fall in this category. Online analytical
processing (OLAP) tools simplify analysts’ tasks by letting them view summaries
of data in different ways.

Specialized users:

These users are sophisticated users who write specialized database applications
that do not fit into the traditional data-processing framework. Among these
applications are computer-aided design systems, knowledge base and expert
systems, systems that store data with complex data types (for example,
graphics data and audio data), and environment-modeling systems. And these
users write specialized application program for queries, which cannot be
answered directly.

Database Administrator:

One of the main reasons for using DBMSs is to have central control of both the
data and the programs that access those data. A person who has such central
control over the system is called a database administrator (DBA). The functions
of a DBA include:

e Schema definition: The DBA creates the original database schema by
executing a set of data definition statements in the DDL.

e Storage structure and access-method definition.

e Schema and physical-organization modification: The DBA carries out
changes to the schema and physical organization to reflect the changing needs
of the organization, or to alter the physical organization to improve
performance.

e Granting of authorization for data access: By granting different types of
authorization, the database administrator can regulate which parts of the
database various users can access. The authorization information is keptin a
special system structure that the database system consults whenever someone



attempts to access the data in the system.

* Routine maintenance: Examples of the database administrator’s routine
maintenance activities are:

-Periodically backing up the database, either onto tapes or onto remote
servers, to prevent loss of data in case of disasters such as flooding.

-Ensuring that enough free disk space is available for normal operations, and
upgrading disk space as required.

-Monitoring jobs running on the database and ensuring that performance is not
degraded by very expensive tasks submitted by some users.

A relational database consists of a collection of tables, each of which is assigned a
unigue name. For example, consider the instructortable of Figure 2.1, which stores
information about instructors. The table has four column headers: ID, name, dept
name, and salary. Each row of this table records information about an instructor,
consisting of the instructor’s ID, name, dept name, and salary.

D | Hnane

dept_name

| salary

10101 Srinivasan | Comp. Sci. | 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 | Gold Physics 57000
45565 Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance S0000
76766 Crick Biology 72000
83821 Brandt Cump. Sci. | 92000
98345 Kim Elec. Eng. S0000
Figure 2.1 The instructor relation.

In general, a row in a table represents a relationship among a set of values.
Since a table is a collection of such relationships, there is a close
correspondence between the concept of table and the mathematical
concept of relation, from which the relational data model takes its name.

e Tuple : a tuple is simply a sequence (or list) of values. A relationship
between n values is represented mathematically by an n-tuple of
values, i.e., a tuple with n values, which corresponds to a row in a
table.

e Relation : in the relational model the term relation is used to refer to a



table, while the term tuple is used to refer to a row.
e Attribute : the term attribute refers to a column of a table.

Ex: Figure 2.1, we can see that the relation instructor has four attributes: ID,
name, dept name, and salary.

e relation instance : the term relation instance to refer to a specific instance
of a relation, i.e., containing a specific set of rows.
Ex: The instance of the instructor shown in Figure 2.1 has 12 tuples,
corresponding to 12 instructors.
-For each attribute of a relation, there is a set of permitted values, called
the
domain of that attribute. A domain is atomic if elements of the domain are
considered to be indivisible units. For example, suppose the table instructor
had an attribute phone number,
which can store a set of phone numbers corresponding to the instructor.
Then the
domain of phone number would not be atomic, since an element of the
domainis a
set of phone numbers.

e null value : The null value is a special value that signifies that the value is
unknown or
does not exist.

Database schema: it is the logical design of the database.

Database instance: it is a snapshot of the data in the database at a given instant
in time.

-the concept of a relation schema corresponds to the programming-language
notion of type definition. A relation schema consists of a list of attributes and
their corresponding domains.

-The concept of a relation instance corresponds to the programming-language
notion of a value of a variable. The value of a given variable may change with
time.

Although it is important to know the difference between a relation schema and
a relation instance, we often use the same name, such as instructor, to refer to
both the schema and the instance.



| dept name ‘ building ‘ budget |

Biology Watson 90000
Comp. Sci. | Taylor 100000
Elec. Eng. | Taylor 85000
Finance Painter | 120000
History Painter | 50000
Music Packard | 80000
Physics Watson 70000

Figure 25 The department relation.

Consider the department relation of Figure 2.5. The schema for that relation is

department (dept name, building, budget)

Note that the attribute dept name appears in both the instructor schema and
the department schema. This duplication is not a coincidence. Rather, using
common attributes in relation schemas is one way of relating tuples of distinct
relations.

-Let us continue with our university database example. Each course in a
university may be offered multiple times, across different semesters, or even
within a semester. We need a relation to describe each individual offering, or
section, of the class. The schema is

section (course id, sec id, semester, year, building, room number, time slot
id)

coursedd  secid | semester  year | building | roomnumber  time_slot_id |

BIO-101 1 Summer | 2009 | Painter 514 B
BIO-301 1 Summer | 2010 | Painter 514 A
CS-101 1 Fall 2009 | Packard 101 H
CS5-101 1 Spring 2010 | Packard 101 P
CS-190 1 Spring 2009 | Taylor 3128 E
CS-190 2 Spring 2009 | Taylor 3128 A
(S-315 1 Spring 2010 | Watson 120 D
CS-319 1 Spring 2010 | Watson 100 B
CS5-319 2 Spring 2010 | Taylor 3128 C
CS-347 1 Fall 2009 | Taylor 3128 A
EE-181 1 Spring 2009 | Taylor 3128 C
FIN-201 1 Spring 2010 | Packard 101 B
HIS-351 i Spring 2010 | Painter 514 C
MU-199 1 Spring 2010 | Packard 101 D
PHY-101 1 Fall 2009 | Watson 100 A

Figure 2.6 The section relation.

Figure 2.6 shows a sample instance of the section relation. We need a relation
to describe the association between instructors and the class sections that they
teach. The relation schema to describe this association is

teaches (ID, course id, sec id, semester, year)



A key is a minimal set of attributes whose values uniquely identify an entity in
the set. There could be more than one candidate key, and then we select any of
them as the Primary Key. So for each entity set we choose a key. And the set of
attributes contains a key. The key attribute is represented with underline. Each
attribute in the primary key is underlined.

The values of the attribute values of a tuple must be such that they can
uniquely identify the tuple. In other words, no two tuples in a relation are
allowed to have exactly the same value for all attributes.

e A superkey is a set of one or more attributes that, taken collectively,
allow us to uniquely identify a tuple in the relation.

e ltis possible that several distinct sets of attributes could serve as a
candidate key.

e The term primary key to denote a candidate key that is chosen by the
database designer as the principal means of identifying tuples within a
relation. Any two individual tuples in the relation are prohibited from
having the same value on the key attributes at the same time.

e Arelation, say rl, may include among its attributes the primary key of
another relation, say r2.

This attribute is called a foreign key from r1, referencing r2. The relation rl is
also called the referencing relation of the foreign key dependency, and r2 is
called the referenced relation of theforeign key.
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Figure 2.8 Schema diagram for the university database.

A database schema, along with primary key and foreign key dependencies,
can be depicted by schema diagrams. Figure 2.8 shows the schema diagram
for our university organization.

- Each relation appears as a box, with the relation name at the top in blue,
and the attributes listed inside the box.

® Primary key attributes are shown underlined.

e Foreign key dependencies appear as arrows from the foreign key
attributes of the referencing relation to the primary key of the
referenced relation.

A query language is a language in which a user requests information from the
database. These languages are usually on a level higher than that of a standard
programming language. Query languages can be categorized as

- procedural : In a procedural language, the user instructs the system to
perform a sequence of operations on the database to compute the desired
result.

-nonprocedural : In a nonprocedural language, the user describes the desired
information without giving a specific procedure for obtaining that information

Query languages used in practice include elements of both the procedural and
the nonprocedural approaches.



e The join operation allows the combining of two relations by merging pairs
of tuples, one from each relation, into a single tuple.

e a natural join, a tuple from the instructor relation matches a tuple in the
department relation if the values of their dept name attributes are the

same.
ID name salary dept_name building budget
10101 Srinivasan 65000 Comp. Sci. Taylor 100000
12121 Wu 90000 Finance Painter 120000
15151 Mozart 40000 Music Packard 80000
22222 Einstein 95000 Physics Watson 70000
32343 El Said 60000 History Painter 50000
33456 Gold 87000 Physics Watson 70000
45565 Katz 75000 Comp. Sci. Taylor 100000
58583 Califieri 62000 History Painter 50000
76543 Singh 80000 Finance Painter 120000
76766 Crick 72000 Biology Watson 90000
83821 Brandt 92000 Comp. Sci. Taylor 100000
98345 Kim 80000 Elec. Eng. Taylor 85000

Figure 2.12 Result of natural join of the instructor and department relations.

Figure 2.12 shows an example

of joining the tuples from the instructor and department tables with the
new tuples

showing the information about each instructor and the department in
which she

is working. This result was formed by combining each tuple in the
instructor

relation with the tuple in the department relation for the instructor’s
department.

e The Cartesian product operation combines tuples from two relations,
but unlike the join operation, its result contains all pairs of tuples from
the two relations, regardless of whether their attribute values match.

e The union operation performs a set union of two “similarly structured”
tables (say a table of all graduate students and a table of all
undergraduate students). For example, one can obtain the set of all
students in a department. Other set operations, such as intersection
and set difference can be performed as well.

ID name deptname | salary

12121 | Wu Finance 90000
22222 | Einstein Fh}”&iitﬁ 95000
33456 | Gold Physics 87000
83821 | Brandt | Comp.Sci. | 92000

Figure 2.10 Result of query selecting instructor tuples with salary greater than $85000.

The most frequent operation is the selection of specific tuples from a single
relation (say instructor) that satisfies some particular predicate (say salary



>$85,000). The result is a new relation that is a subset of the original relation
(instructor). For example, if we select tuples from the instructor relation of
Figure 2.1,satisfying the predicate “salary is greater than $85000”, we get the
result shown in Figure 2.10.

RELATIONAL ALGEBRA

The relational algebra defines a set of operations on relations, paralleling the
usual algebraic operations such as addition, subtraction or multiplication, which
operate on numbers. Just as algebraic operations on numbers take one or more
numbers as input and return a number as output, the relational algebra op-
erations typically take one or two relations as input and return a relation as
output.

Relational algebra is covered in detail in Chapter 6, but we outline a few of
the operations below.

l Symbol (Name) I ExamEle of Use l

o "salary »_“w(lush uctor)

(Selection) Return rows of the input relation that satisfy
the predicate.

n Mp e (instructor)

(Projection) Output specified attributes from all rows of

the input relation. Remove duplicate tuples
from the output.

M mstructor MW department

(Natural join) Output pairs of rows from the two input rela-
tions that have the same value on all attributes
that have the same name.

X mstructor x department

(Cartesian product) | Output all pairs of rows from the two input
relations (regardless of whether or not they
have the same values on common attributes)
N, . (mstructor) U I, (student)

(Union) Output the union of tuples from the two input
relations.

The relational algebra provides a set of operations that take one or more
relations as input and return a relation as an output. Practical query languages
such as SQL are based on the relational algebra, but add a number of useful
syntactic features.
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| ID name ‘ dept_name | salary |
10101 | Srinivasan | Comp.Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000

Figure 2.1 The instructor relation.

coursedd  secid

semester | year | building

CS5-101
CS-101
C5-190
C5-190
CS-315
CS-319
CS-319
CS-347
EE-181

BIO-101
BIO-301

FIN-201
HIS-351
MU-199
PHY-101

—

= e e R R R e e

Summer
Summer
Fall
Spring
Spring
Spring
Spring
Spring
Spring
Fall
Spring
Spring
Spring
Spring
Fall

2009
2010
2009
2010
2009
2009
2010
2010
2010
2009
2009
2010
2010
2010
2009

Painter
Painter
Packard
Packard
Taylor
Taylor
Watson
Watson
Taylor
Taylor
Taylor
Packard
Painter
Packard

Watson

coursedd | title dept_name credits

BIO-101 Intro. to Biology Biology 4

BIO-301 | Genetics Biology 4

BIO-399 | Computational Biology Biology 3

C5-101 Intro. to Computer Science | Comp. Sci. 4

CS-190 Game Design Comp. Sci. 4

CS-315 Robotics Comp. Sci. 3

Cs-319 Image Processing Comp. Sci. 3

CS-347 Database System Concepts | Comp. Sci. 3

EE-181 Intro. to Digital Systems Elec. Eng. 3

FIN-201 Investment Banking Finance 3

HIS-351 | World History History 3

MU-199 | Music Video Production Music 3

PHY-101 | Physical Principles Physics 4

Figure 2.2 The course relation.
room_number  time_slot_id ‘ dept_name ‘ buifdfng | budget |

514 B
514 A Biology Watson 90000
e ? Comp. Sci. | Taylor 100000
3128 E Elec. Eng. Taylor 85000
311223 g Finance Painter 120000
7o . History Painter | 50000
3128 C Music Packard 80000
3128 A - .
b G Physics Watson 70000
101 B
514 C
}8[1) E Figure 2.5 The department relation.

Figure 2.6 The section relation.

D course_id | secid | semester ‘ year |
10101 | CS-101 1 Fall 2009
10101 | CS-315 1 Spring 2010
10101 | CS-347 1 Fall 2009
12121 | FIN-201 1 Spring 2010
15151 | MU-199 1 Spring 2010
22222 | PHY-101 1 Fall 2009
372343 HIS-351 1 ﬂpring 2010
45565 | CS-101 1 Spring 2010
45565 | (CS-319 1 Spring 2010
76766 | BIO-101 1 Summer | 2009
76766 | BIO-301 1 Summer | 2010
83821 | CS-190 i Spring 2009
83821 | CS-190 2 Spring 2009
83821 | CS-319 2 Spring 2010
98345 | EE-181 1 Sp ring 2009

Figure 2.7 The feaches relation.
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UNIT-2

Overview of the SQL Query Language

IBM developed the original version of SQL, originally called Sequel, as part of the System R
project in the early 1970s. The Sequel language has evolved since then, and its name has changed to SQL
(Structured Query Language).

In 1986, the American National Standards Institute (ANSI) and the International Organization for
Standardization (ISO) published an SQL standard, called SQL-86. ANSI published an extended standard
for SQL, SQL-89, in 1989. The next version of the standard was SQL-92 standard, followed by SQL:1999,
SQL:2003, SQL:2006, and most recently SQL:2008.

The SQL language has several parts:

» Data-definition language (DDL). The SQL DDL provides commands for defining relation schemas,
deleting relations, and modifying relation schemas.

¢ Data-manipulation language (DML). The SQL DML provides the ability to query information from the
database and to insert tuples into, delete tuples from, and modify tuples in the database.

¢ Integrity. The SQL DDL includes commands for specifying integrity constraints that the data stored in
the database must satisfy. Updates that violate integrity constraints are disallowed.

¢ View definition. The SQL DDL includes commands for defining views.

e Transaction control. SQL includes commands for specifying the beginning and ending of
transactions.

¢ Embedded SQL and dynamic SQL. Embedded and dynamic SQL define how SQL statements can be
embedded within general-purpose programming languages, such as C, C++, and Java.

e Authorization. The SQL DDL includes commands for specifying access rights to relations and views.

SQL Data Definition

The set of relations in a database must be specified to the system by means of a data-definition
language (DDL). The SQL DDL allows specification of not only a set of relations, but also information
about each relation, including:

¢ The schema for each relation.

* The types of values associated with each attribute.

¢ The integrity constraints.

¢ The set of indices to be maintained for each relation.

¢ The security and authorization information for each relation.

¢ The physical storage structure of each relation on disk.

Basic Types:

The SQL standard supports a variety of built-in types, including:
¢ char(n): A fixed-length character string with user-specified length n. The full form, character, can be
used instead.
e varchar(n): A variable-length character string with user-specified maximum length n. The full form,
character varying, is equivalent.
e int: An integer (a finite subset of the integers that is machine dependent). The full form, integer, is
equivalent.
e smallint: A small integer (a machine-dependent subset of the integer type).
e numeric(p, d): A fixed-point number with user-specified precision. The number consists of p digits
(plus a sign), and d of the p digits are to the right of the decimal point. Thus, numeric(3,1) allows 44.5 to
be stored exactly, but neither 444.5 or 0.32 can be stored exactly in a field of this type.
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e real, double precision: Floating-point and double-precision floating-point numbers with machine-
dependent precision.

e float(n): A floating-point number, with precision of at least n digits.

Basic Schema Definition:

create table command:
The general form of the create table command is:
SQL>create table r (A1 D1, A2 D2, ..., An Dn, integrity-constraint1i, ..., integrity-constraintk );

Where r is the name of the relation, each Ai is the name of an attribute in the schema of relation
r, and Di is the domain of attribute Ai ; that is, Di specifies the type of attribute Ai along with optional
constraints that restrict the set of allowed values for Ai .

The semicolon shown at the end of the create table statements, as well as at the end of other
SQL statements.

The following command creates a relation department in the database.
SQL>create table department (dept_name varchar (20), building varchar (15), budget numeric (12,2),
primary key (dept_name));

SQL supports a number of different integrity constraints. In this section, we discuss only a few of
them:

e primary key (Aj1, Aj2,..., Ajm ): The primary-key specification says that attributes Aj1, Aj2
,..., Ajm form the primary key for the relation. The primary key attributes are required to be nonnull and
unique; that is, no tuple can have a null value for a primary-key attribute, and no two tuples in the
relation can be equal on all the primary-key attributes. Although the primary-key specification is
optional, it is generally a good idea to specify a primary key for each relation.

Example:
SQL>create table department (dept_name varchar (20), building varchar (15), budget numeric (12,2),
primary key (dept)_name));

e foreign key (Akl1, Ak2 ,..., Akn )references s: The foreign key specification says that the
values of attributes (Ak1, Ak2 ,..., Akn ) for any tuple in the relation must correspond to values of the
primary key attributes of some tuple in relation s.

Example:
SQL>create table course (course_id varchar (7), title varchar (50), dept_name varchar (20), credits
numeric (2,0), primary key (course_id), foreign key (dept_name) references department);

¢ not null: The not null constraint on an attribute specifies that the null value is not allowed for
that attribute; in other words, the constraint excludes the null value from the domain of that attribute.
Example:
SQL>create table instructor (ID varchar (5), name varchar (20) not null, dept_name varchar (20),
salary numeric (8,2), primary key (ID), foreign key (dept_name) references department);

Other examples: SQL data definition for part of the university database.
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SQL>create table section (course_id varchar (8), sec_id varchar (8), semester varchar (6), year numeric
(4,0), building varchar (15), room_number varchar (7), time_slot_id varchar (4), primary key
(course_id, sec_id, semester, year), foreign key (course_id) references course);

SQL>create table teaches (ID varchar (5), course_id varchar (8), sec_id varchar (8), semester varchar
(6), year numeric (4,0), primary key (ID, course_id, sec_id, semester, year), foreign key (course_id,
sec_id, semester, year) references section, foreign key (ID) references instructor);

A newly created relation is empty initially. We can use the insert command to load data into the
relation.
SQL>insert into instructor values (10211, ’Smith’, ’Biology’, 66000);

We can use the delete command to delete tuples from a relation. The command
SQlL>delete from student;

The drop table command deletes all information about the dropped relation from the database.
The command
SQL>drop table r;
It deletes not only all tuples of r, but also the schema for r.
SQlL>delete from r;
It deletes all tuplesinr.

We use the alter table command to add attributes to an existing relation.

alter table r add A D;

where r is the name of an existing relation, A is the name of the attribute to be added, and D is
the type of the added attribute. We can drop attributes from a relation by the command

alter table r drop A;

Basic Structure of SQL Queries
The basic structure of an SQL query consists of three clauses:
® select,
e from, and
® where
The query takes as its input the relations listed in the from clause, operates on them as specified
in the where and select clauses, and then produces a relation as the result.

The role of each clause is as follows:

* The select clause is used to list the attributes desired in the result of a query.

¢ The from clause is a list of the relations to be accessed in the evaluation of the query.

* The where clause is a predicate involving attributes of the relation in the from clause.

A typical SQL query has the form

select Al, A2,..., An fromrl, r2,...,rm where P;

Each Ai represents an attribute, and each ri a relation. P is a predicate. If the where clause is
omitted, the predicate P is true.

Queries on a Single Relation:

Let us consider a simple query using our university example,
Q: “Find the names of all instructors.”

SQL>select name from instructor;
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name

Srinivasan
Wu
Mozart
Einstein
El Said
Gold
Katz
Califieri
Singh
Crick
Brandt
Kim

Figure 3.2 Result of “select name from instructor”.

Instructor names are found in the instructor relation, so we put that relation in the from clause.
The instructor’s name appears in the name attribute, so we put that in the select clause.

Q: “Find the department names of all instructors.”
SQlL>select dept_name from instructor;

Comp. Sci.
Finance
Music
Physics
History
Physics
Comp. Sci.
History
Finance
Biology
Comp. Sci.
Elec. Eng.

Figure 3.3 Result of “select deptname from instructor”.

In those cases where we want to force the elimination of duplicates, we insert the keyword
distinct after select.
SQL>select distinct dept_name from instructor;

SQL allows us to use the keyword all to specify explicitly that duplicates are not removed:
SQL>select all dept_name from instructor;
Since duplicate retention is the default, we shall not use all in our examples.

The select clause may also contain arithmetic expressions involving the operators +, -, *, and /
operating on constants or attributes of tuples. For example, the query:
SQL>select ID, name, dept_name, salary * 1.1 from instructor;

Q: “Find the names of all instructors in the Computer Science department who have salary greater
than $70,000.”
SQL>select name from instructor where dept_name =’Comp. Sci.” and salary > 70000;

name

Katz
Brandt

Figure 3.4 Result of “Find the names of all instructors in the Computer Science department
who have salary greater than $70,000."
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SQL allows the use of the logical connectives and, or, and not in the where clause. The operands
of the logical connectives can be expressions involving the comparison operators <=, >, >=, =, and <>.

Queries on Multiple Relations:

Queries often need to access information from multiple relations. An an example, suppose we
want to answer the query “Retrieve the names of all instructors, along with their department names
and department building name.”

Looking at the schema of the relation instructor, we realize that we can get the department
name from the attribute dept_name, but the department building name is present in the attribute
building of the relation department. To answer the query, each tuple in the instructor relation must be
matched with the tuple in the department relation whose dept_name value matches the dept_name
value of the instructor tuple.

The above query can be written in SQL as
SQlL>select name, instructor.dept_name, building from instructor, department where
instructor.dept_name= department.dept_name;

| name dept_name ‘ building |

Srinivasan | Comp. Sci. | Taylor
Wu Finance Painter
Mozart Music Packard
Einstein Physics Watson
El Said History Painter
Gold Physics Watson
Katz Comp. Sci. | Taylor
Califieri History Painter
Singh Finance Painter
Crick Biology Watson
Brandt Comp. Sci. | Taylor
Kim Elec. Eng. Taylor

Figure 3.5 The result of “Retrieve the names of all instructors, along with their department
names and department building name.”

Note that the attribute dept_name occurs in both the relations instructor and department, and
the relation name is used as a prefix (in instructor.dept_name, and department.dept_name) to make
clear to which attribute we are referring.

The from clause by itself defines a Cartesian product of the relations listed in the clause. It is
defined formally in terms of set theory, but is perhaps best understood as an iterative process that
generates tuples for the result relation of the from clause.

for each tuple t1 in relation rl

for each tuple t2 in relation r2

for each tuple tm in relation rm
Concatenate t1, t2,..., tm into a single tuple t
Add t into the result relation
For example, the relation schema for the Cartesian product of relations instructor and teaches
is:
(instructor.ID, instructor.name, instructor.dept_name, instructor.salary teaches.ID,
teaches.course_id, teaches.sec_id, teaches.semester, teaches.year)

We can then write the relation schema as:
(instructor.ID, name, dept_name, salary teaches.ID, course_id, sec_id, semester, year)
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To illustrate, consider the instructor relation in Figure 2.1 and the teaches relation in Figure 2.7.
Their Cartesian product is shown in Figure 3.6, which includes only a portion of the tuples that make up
the Cartesian product result.

inst.ID | mame dept_name | salary | fenches.ID | course_id | secid semester | year
10101 | Srinivasan | Physics  |95000] 10101 [Cs-101 1 |Fall 2009
10101 | Srinivasan | Physics  |95000] 10101 |Cs-315 1 [Spring |2010
10101 | Srinivasan | Physics  |95000] 10101 |CS5-347 1 |[Fall 2009
10101 | Srinivasan | Physics  |95000] 10101 |FN-201 1 |[Spring |2010
10101 | Srinivasan | Physics  |95000 15151 |mMU-199 | 1 |Spring |2010
10101 | Srinivasan | Physics  |95000] 22222 |PHY-101] 1 (Fall 2009
12121 | Wu Physics |95000] 10101 |CS-101 1 |[Fall 2009
12121 | Wu Physics 95000 10101 |Cs-315 1 [Spring |2010
12121 | Wu Physics |95000] 10101 |Cs-347 1 |[Fall 2009
12121 | Wu Physics  |95000] 10101 |FIN-201 1 [Spring |2010
12121 | Wu Physics |95000] 15151 |MU-199 | 1 |Spring |2010
12121 | Wu Physics |95000| 22222 |PHY-101| 1 (Fall 2009
15151 | Mozart Physics |95000] 10101 |cs-101 1 |[Fall 2009
15151 | Mozart Physics |95000] 10101 JCs-315 1 [Spring |2010
15151 | Mozart Physics |95000] 10101 |CS-347 1 |[Fall 2009
15151 | Mozart Physics |95000] 10101 |FIN-201 1 |[Spring |2010
15151 | Mozart Physics |95000] 15151 |MU-199 | 1 |Spring |2010
15151 | Mozart Physics 95000 22222 |PHY-101] 1 |Fall 2009
22222 |Einstein  [Physics  |95000] 10101 |Cs-101 1 |[Fall 2009
22222 |Einstein  [Physics |95000] 10101 |Cs-315 1 |[Spring |2010
22222 |Einstein  [Physics  |95000] 10101 |Cs-347 1 |[Fall 2009
22222 |Einstein  (Physics |95000] 10101 |FIN-201 1 [Spring |2010
22222 |Einstein  [Physics |95000] 15151 |MU-199 | 1 (Spring |2010
22222 |Einstein  [Physics |95000] 22222 |PHY-101] 1 (Fall 2009

Figure 3.6 The Cartesian product of the mstructor relation with the teaches relation.

The Cartesian product by itself combines tuples from instructor and teaches that are unrelated
to each other. Each tuple in instructor is combined with every tuple in teaches, even those that refer to
a different instructor. The result can be an extremely large relation, and it rarely makes sense to create
such a Cartesian product.

We would expect a query involving instructor and teaches to combine a particular tuple t in
instructor with only those tuples in teaches that refer to the same instructor to which t refers. That is,
we wish only to match teaches tuples with instructor tuples that have the same ID value. The following
SQL query ensures this condition, and outputs the instructor name and course identifiers from such
matching tuples.

SQlL>select name, course_id from instructor, teaches where instructor.ID= teaches.ID;

If we only wished to find instructor names and course identifiers for instructors in the Computer
Science department, we could add an extra predicate to the where clause, as shown below.

SQL>select name, course_id from instructor, teaches where instructor.ID= teaches.ID and
instructor.dept_name = ’Comp. Sci.’;
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nanie course_id
Srinivasan | CS-101
Srinivasan | CSs-315
Srinivasan | C5-347
Wu FIN-201
Mozart MU-199
Einstein PHY-101
El Said HIS-351
Katz Cs-101
Katz Cs-319
Crick BIO-101
Crick BIO-301
Brandt C8-190
Brandt CS-190
Brandt C8-319
Kim EE-181

Figure 3.7 Result of “For all instructors in the university who have taught some course, find
their names and the course ID of all courses they taught.”

1. Generate a Cartesian product of the relations listed in the from clause
2. Apply the predicates specified in the where clause on the result of Step 1.
3. For each tuple in the result of Step 2, output the attributes (or results of expressions) specified in the
select clause.

The above sequence of steps helps make clear what the result of an SQL query should be, not
how it should be executed.

The Natural Join:

The natural join operation operates on two relations and produces a relation as the result.
Consider the query “For all instructors in the university who have taught some course, find their
names and the course ID of all courses they taught”, which we wrote earlier as:

SQL>select name, course_id from instructor, teaches where instructor.ID= teaches.ID;

This query can be written more concisely using the natural-join operation in SQL as:
SQL>select name, course_id from instructor natural join teaches;
Both of the above queries generate the same result.

A from clause in an SQL query can have multiple relations combined using natural join, as shown
here:
select A1, A2,..., An from rl natural join r2 natural join ... natural join rm where P;

More generally, a from clause can be of the form
fromE1, E2,..., En

where each Ei can be a single relation or an expression involving natural joins. For example,
suppose we wish to answer the query “List the names of instructors along with the the titles of courses
that they teach.” The query can be written in SQL as follows:

SQL>select name, title from instructor natural join teaches, course where teaches.course_id=
course.course_id;
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Additional Basic Operations
There are number of additional basic operations that are supported in SQL.

The Rename Operation:

SQL provides a way of renaming the attributes of a result relation. It uses the as clause, taking
the form:

old-name as new-name

The as clause can appear in both the select and from clauses

For example, if we want the attribute name name to be replaced with the name
instructor_name, we can rewrite the preceding query as:

SQlL>select name as instructor_name, course_id from instructor, teaches where
instructor.ID= teaches.ID;

To illustrate, we rewrite the query “For all instructors in the university who have taught some
course, find their names and the course ID of all courses they taught.”

SQL>select T.name, S.course_id from instructor as T, teaches as S where T.ID=S.ID;

Q: “Find the names of all instructors whose salary is greater than at least one instructor in the Biology
department.”

SQL>select distinct T.name from instructor as T, instructor as S where T.salary > S.salary and
S.dept_name ='Biology’;

String Operations:
SQL specifies strings by enclosing them in single quotes, for example, ‘Computer’.
Pattern matching can be performed on strings, using the operator like.

We describe patterns by using two special characters:

e Percent (%): The % character matches any substring.

e Underscore ( _): The character matches any character.

Patterns are case sensitive; that is, uppercase characters do not match lowercase characters, or
vice versa. To illustrate pattern matching, we consider the following examples:
¢ ’Intro%’ matches any string beginning with “Intro”.
e '%Comp%’ matches any string containing “Comp” as a substring, for example, ’Intro. to
Computer Science’, and ‘Computational Biology’.
¢ ' " matches any string of exactly three characters.
¢’ %’ matches any string of at least three characters.

SQL expresses patterns by using the like comparison operator.
Q: “Find the names of all departments whose building name includes the substring ‘Watson’.”
SQL>select dept_name from department where building like "%Watson%’;

We define the escape character for a like comparison using the escape keyword. To illustrate,
consider the following patterns, which use a backslash (\) as the escape character:

o like 'ab\%cd%’ escape "\’ matches all strings beginning with “ab%cd”.

o like ab\\cd%’ escape '\’ matches all strings beginning with “ab\cd”.
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Attribute Specification in Select Clause:
The asterisk symbol “ * ” can be used in the select clause to denote “all attributes.”
Thus, the use of instructor.* in the select clause of the query:

SQL>select instructor.* from instructor, teaches where instructor.ID= teaches.ID;

indicates that all attributes of instructor are to be selected. A select clause of the form select *
indicates that all attributes of the result relation of the from clause are selected.

Ordering the Display of Tuples:

The order by clause causes the tuples in the result of a query to appear in sorted order. To list in
alphabetic order all instructors in the Physics department, we write:
SQL>select name from instructor where dept_name =’Physics’ order by name;

By default, the order by clause lists items in ascending order. To specify the sort order, we may
specify desc for descending order or asc for ascending order.

Suppose that we wish to list the entire instructor relation in descending order of salary.
SQL>select * from instructor order by salary desc, name asc;

Where Clause Predicates:

SQL includes a between comparison operator to simplify where clauses that specify that a value
be less than or equal to some value and greater than or equal to some other value. If we wish to find the
names of instructors with salary amounts between $90,000 and $100,000, we can use the between
comparison to write:

SQL>select name from instructor where salary between 90000 and 100000;
instead of:
SQL>select name from instructor where salary <= 100000 and salary >= 90000;
Similarly, we can use the not between comparison operator.
Q:“Find the instructor names and the courses they taught for all instructors in the Biology department
who have taught some course.”

SQL>select name, course_id from instructor, teaches where instructor.ID= teaches.ID and dept_name
="Biology’;

Q: “Find the instructor names and the courses they taught for all instructors in the Biology
department who have taught some course.”

We show below the modified form of the SQL query that does not use natural join.
SQL>select name, course_id from instructor, teaches where instructor.ID= teaches.ID and dept_name
=Biology’;

Thus, the preceding SQL query can be rewritten as follows:

SQL>select name, course_id from instructor, teaches where (instructor.ID, dept_name) = (teaches.ID,
'Biology’);
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Set Operations
The SQL operations union, intersect, and except operate on relations and correspond to the
mathematical set-theory operations U, N, and —. We shall now construct queries involving the union,
intersect, and except operations over two sets.
* The set of all courses taught in the Fall 2009 semester:
SQL>select course_id from section where semester ="Fall’ and year= 2009;
Cs-101

C5-347
PHY-101

Figure 3.9 The 1 relation, listing courses taught in Fall 2009.

¢ The set of all courses taught in the Spring 2010 semester:

SQL>select course_id from section where semester = ’Spring’ and year= 2010;
course_id
CS-101
Cs-315
€s-319
CS-319
FIN-201
HIS-351
MU-199

Figure 3.10 The ¢2 relation, listing courses taught in Spring 2010.

we shall refer to the relations obtained as the result of the preceding queries as c1 and c2, respectively.

The Union Operation:
To find the set of all courses taught either in Fall 2009 or in Spring 2010, or both, we write:

SQL>(select course_id from section where semester = ’Fall’ and year= 2009) union (select course_id
from section where semester =’Spring’ and year= 2010);

course_id

Cs-101
Cs-315
Cs-319
Cs-347
FIN-201
HIS-351
MU-199
PHY-101

Figure 3.11 The result relation for ¢1 union ¢2.

The union operation automatically eliminates duplicates.

If we want to retain all duplicates, we must write union all in place of union:

SQL>(select course_id from section where semester = ’Fall’ and year= 2009) union all (select course_id
from section where semester =’Spring’ and year= 2010);
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The Intersect Operation:
To find the set of all courses taught in the Fall 2009 as well as in Spring 2010 we write:

SQL>(select course_id from section where semester = ’Fall’ and year= 2009) intersect (select course_id
from section where semester = ’Spring’ and year= 2010);

Figure 3.12 The result relation for c1 intersect c2.

The intersect operation automatically eliminates duplicates.
If we want to retain all duplicates, we must write intersect all in place of intersect:

SQL>(select course_id from section where semester = ’Fall’ and year= 2009) intersect all (select
course_id from section where semester =’Spring’ and year= 2010);

The Except Operation:

To find all courses taught in the Fall 2009 semester but not in the Spring 2010 semester, we
write:
SQL>(select course_id from section where semester = ’Fall’ and year= 2009) except (select course_id
from section where semester =’Spring’ and year= 2010);

course_id

CS-347
PHY-101

Figure 3.13 The result relation for c1 except c2.

The operation automatically eliminates duplicates in the inputs before performing set difference.

If we want to retain duplicates, we must write except all in place of except:
SQL>(select course_id from section where semester = ’Fall’ and year= 2009) except all (select
course_id from section where semester =’Spring’ and year= 2010);

Null Values

Null values present special problems in relational operations, including arithmetic operations,
comparison operations, and set operations.

The result of an arithmetic expression (involving, for example +, —, *, or /) is null if any of the
input values is null. For example, if a query has an expression r.A+ 5, and r.A is null for a particular tuple,
then the expression result must also be null for that tuple.

Comparisons involving nulls are more of a problem. For example, consider the comparison “1 <
null”.

Since the predicate in a where clause can involve Boolean operations such as and, or, and not
on the results of comparisons, the definitions of the Boolean operations are extended to deal with the

value unknown.
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e and: The result of true and unknown is unknown, false and unknown is false, while unknown
and unknown is unknown.

® or: The result of true or unknown is true, false or unknown is unknown, while unknown or
unknown is unknown.

e not: The result of not unknown is unknown.

SQL uses the special keyword null in a predicate to test for a null value. Thus, to find all
instructors who appear in the instructor relation with null values for salary, we write:
SQL>select name from instructor where salary is null;

Aggregate Functions

Aggregate functions are functions that take a collection (a set or multiset) of values as input and return a
single value. SQL offers five built-in aggregate functions:

e Average: avg

e Minimum: min

e Maximum: max

¢ Total: sum

e Count: count

The input to sum and avg must be a collection of numbers, but the other operators can operate
on collections of nonnumeric data types, such as strings, as well.

Basic Aggregation:

Q:“Find the average salary of instructors in the Computer Science department.” We write this query as
follows:
SQL>select avg (salary) from instructor where dept_name="Comp. Sci.’;

we can give a meaningful name to the attribute by using the as clause as follows:
SQL>select avg (salary) as avg_salary from instructor where dept_name="Comp. Sci.’;

Q:“Find the total number of instructors who teach a course in the Spring 2010 semester.”
SQL>select count (distinct ID) from teaches where semester = ’Spring’ and year = 2010;

We use the aggregate function count frequently to count the number of tuples in a relation.
Q:”find the number of tuples in the course relation”, we write:
SQL>select count (*) from course;

SQL does not allow the use of distinct with count (*). It is legal to use distinct with max and min,
even though the result does not change. We can use the keyword all in place of distinct to specify
duplicate retention, but, since all is the default, there is no need to do so.

Aggregation with Grouping:

There are circumstances where we would like to apply the aggregate function not only to a
single set of tuples, but also to a group of sets of tuples; we specify this wish in SQL using the group by
clause.

The attribute or attributes given in the group by clause are used to form groups. Tuples with the
same value on all attributes in the group by clause are placed in one group.
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| 1D | name | deptname | salary |
76766 | Crick Biology 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. [ 65000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000
12121 | Wu Finance 90000
76543 | Singh Finance 80000
32343 | ElSaid History 60000
58583 | Califieri History 62000
15151 [ Mozart Music 40000
33456 | Gold Physics 87000
22222 | Einstein Physics 95000

Figure 3.14 Tuples of the instructor relation, grouped by the dept_name attribute.

As an illustration, consider the query “Find the average salary in each department.” We write
this query as follows:

SQL>select dept_name, avg (salary) as avg_salary from instructor group by dept_name;

dept_name avg_salary |

Biology 72000
Comp. Sci. | 77333
Elec. Eng. [ 80000
Finance 85000
History 61000
Music 40000
Physics 91000

Figure 3.15 The result relation for the query “Find the average salary in each department™.

Q: “Find the number of instructors in each department who teach a course in the Spring 2010
semester.”

SQL>select dept_name, count (distinct /D) as instr_count from instructor natural join teaches where
semester ='Spring’ and year = 2010 group by dept_name;

dept_name instr_count
Comp. Sci. 3
Finance 1
History 1
Music 1

Figure 3.16 The result relation for the query “Find the number of instructors in each
department who teach a course in the Spring 2010 semester.”

The Having Clause:

At times, it is useful to state a condition that applies to groups rather than to tuples.

For example, we might be interested in only those departments where the average salary of the
instructors is more than $42,000.

This condition does not apply to a single tuple; rather, it applies to each group constructed by
the group by clause. To express such a query, we use the having clause of SQL. SQL applies predicates in
the having clause after groups have been formed, so aggregate functions may be used.We express this
query in SQL as follows:

SQL>select dept_name, avg (salary) as avg_salary from instructor group by dept_name
having avg (salary) > 42000;
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| dept_namie | avglavg salary) I
Physics 91000
Elec. Eng. 80000
Finance 85000
Comp. Sci. 77333
Hioiné_?‘_\; 72000
History 61000

Figure 3.17 The result relation for the query “Find the average salary of instructors in those
departments where the average salary is more than $42,000.”

The meaning of a query containing aggregation, group by, or having clauses is defined by the
following sequence of operations:
1. As was the case for queries without aggregation, the from clause is first evaluated to get a relation.
2. If a where clause is present, the predicate in the where clause is applied on
the result relation of the from clause.
3. Tuples satisfying the where predicate are then placed into groups by the group by clause if it is present. If
the group by clause is absent, the entire set of tuples satisfying the where predicate is treated as being in
one group.
4. The having clause, if it is present, is applied to each group; the groups that do not satisfy the having clause
predicate are removed.
5. The select clause uses the remaining groups to generate tuples of the result of the query, applying the
aggregate functions to get a single result tuple for each group.

Q: “For each course section offered in 2009, find the average total credits (tot cred) of all students enrolled in
the section, if the section had at least 2 students.”

SQL>select course_id, semester, year, sec_id, avg (tot cred) from takes natural join student

where year = 2009 group by course_id, semester, year, sec_id having count (/D) >= 2;

Aggregation with Null and Boolean Values:

Null values, when they exist, complicate the processing of aggregate operators.
For example, assume that some tuples in the instructor relation have a null value for salary.
SQL> select sum (salary) from instructor;

The salL standard says that the sum operator should ignore null values in its input.

NOTE: All aggregate functions except count (*) ignore null values in their input collection.

Nested Subqueries

A subquery is a select-from-where expression that is nested within another query. A common use of
subqueries is to perform tests for set membership, make set comparisons, and determine set cardinality, by
nesting subqueries in the where clause.

Set Membership:
The in connective tests for set membership, where the set is a collection of values produced by
a select clause. The not in connective tests for the absence of set membership.

Q: “Find all the courses taught in the both the Fall 2009 and Spring 2010 semesters.”

Dept of CSE, AITS, TIRUPATI Page 15



UNIT-2

SQL> select distinct course_id from section where semester = 'Fall’ and year= 2009 and course_id in
(select course_id from section where semester =’'Spring’ and year= 2010);

We use the not in construct in a way similar to the in construct. For example, to find all the
courses taught in the Fall 2009 semester but not in the Spring 2010 semester, we can write:

SQL> select distinct course_id from section where semester = 'Fall’ and year= 2009 and
course_id not in (select course_id from section where semester = 'Spring’ and year= 2010);

Q: List the names of instructors whose names are neither “Mozart” nor “Einstein”.
SQL> select distinct name from instructor where name not in ("Mozart’, ’Einstein’);

Q:“find the total number of (distinct) students who have taken course sections taught by the instructor
with /D 110011” as follows:

SQL> select count (distinct /D)

from takes

where (course id, sec id, semester, year) in (select course id, sec id, semester, year

from teaches

where teaches.ID=10101);

Set Comparison:
The ability of a nested subquery to compare sets, consider the query “Find the names of all
instructors whose salary is greater than at least one instructor in the Biology department.”

SQL> select distinct T.name from instructor as T, instructor as S where T.salary > S.salary and
S.dept_name ='Biology’;

The phrase “greater than at least one” is represented in SQL by > some.

SQL> select name from instructor where salary > some (select salary from instructor where dept_name
='Biology’);

SQL also allows < some, <= some, >= some, = some, and <> some comparisons. As an exercise,
verify that = some is identical to in, whereas <> some is not the same as not in.

Q:”find the names of all instructors that have a salary value greater than that of each instructor in the
Biology department”. The construct > all corresponds to the phrase “greater than all.”

SQL> select name from instructor where salary > all (select salary from instructor where dept_name =
'Biology’);

As it does for some, SQL also allows < all, <= all, >= all, = all, and <> all comparisons. As an
exercise, verify that <> all is identical to not in, whereas = all is not the same as in.

Q: “Find the departments that have the highest average salary.”
SQL> select dept_name from instructor group by dept_name having avg (salary) >= all (select avg
(salary) from instructor group by dept_name);
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Test for Empty Relations:
SQL includes a feature for testing whether a subquery has any tuples in its result. The exists
construct returns the value true if the argument subquery is nonempty.

Using the exists construct, we can write the query “Find all courses taught in both the Fall 2009
semester and in the Spring 2010 semester” in still another way:

SQL> select course_id from section as S where semester = 'Fall’ and year= 2009 and
exists (select * from section as T where semester = 'Spring’ and year= 2010 and S.course id=
T.course_id);

The above query also illustrates a feature of SQL where a correlation name from an outer query
(S in the above query), can be used in a subquery in the where clause. A subquery that uses a correlation
name from an outer query is called a correlated subquery.

We can test for the nonexistence of tuples in a subquery by using the not exists construct.We
can use the not exists construct to simulate the set containment (that is, superset) operation:We
canwrite “relation Acontains relation B” as “not exists (B except A).”

Q: “Find all studentswho have taken all courses offered in the Biology department.” Using the except
construct:

SQL> select distinct S./D, S.name from student as S where not exists ((select course id from course
where dept_name ='Biology’) except (select T.course id from takes as T where S.ID = T.ID));

Test for the Absence of Duplicate Tuples:

SQL includes a boolean function for testing whether a subquery has duplicate tuples in its result.
The unique construct9 returns the value true if the argument subquery contains no duplicate tuples.
Using the unique construct, we can write the query “Find all courses that were offered at most once in
2009” as follows:
SQL>select T.course id from course as T where unique (select R.course_id from section as R where
T.course_id= R.course_id and R.year = 2009);

An equivalent version of the above query not using the unique construct is:
SQL> select T.course_id from course as T where 1 <= (select count(R.course_id) from section as R
where T.course id= R.course_id and R.year = 2009);

We can test for the existence of duplicate tuples in a subquery by using the not unique construct.

Q: “Find all courses that were offered at least twice in 2009” as follows:
SQL> select T.course_id from course as T where not unique (select R.course_id from section as R
where T.course_id= R.course_id and R.year = 2009);

Subqueries in the From Clause:

SQL allows a subquery expression to be used in the from clause. Consider the query “Find the
average instructors’ salaries of those departments where the average salary is greater than $42,000.”
SQL> select dept_name, avg_salary from (select dept_name, avg (salary) as avg_salary from instructor
group by dept_name) where avg_salary > 42000;
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We can give the subquery result relation a name, and rename the attributes, using the as clause,
as illustrated below.
SQL> select dept_name, avg_salary from (select dept_name, avg (salary) from instructor
group by dept_name) as dept_avg (dept_name, avg_salary) where avg_salary > 42000;

The subquery result relation is named dept avg, with the attributes dept name and avg_salary.

As another example, suppose we wish to find the maximum across all departments of the total
salary at each department.
SQL> select max (tot_salary) from (select dept_name, sum(salary) from instructor group by dept_name)
as dept_total (dept_name, tot_salary);

A subquery in the from clause that is prefixed by the lateral keyword to access attributes of
preceding tables or subqueries in the from clause. For example, if we wish to print the names of each
instructor, along with their salary and the average salary in their department, we could write the query
as follows:

SQL> select name, salary, avg_salary from instructor 11, lateral (select avg(salary) as avg_salary from
instructor 12 where /12.dept_name= |1.dept_name);

The with Clause:

The with clause provides away of defining a temporary relation whose definition is available
only to the query in which the with clause occurs. Consider the following query, which finds those
departments with the maximum budget.

SQL> with max_budget (value) as (select max(budget) from department) select budget from
department, max budget where department.budget = max_budget.value;

Scalar Subqueries:

wherever an expression returning a value is permitted, provided the subquery returns only one
tuple containing a single attribute; such subqueries are called scalar subqueries.
For Example: “ lists all departments along with the number of instructors in each department:

SQL> select dept name, (select count(*) from instructor where department.dept name =
instructor.dept_name) as num_instructors from department;

Modification of the Database
Now, we show how to add, remove, or change information with sQL.
Deletion:
A delete request is expressed in much the same way as a query. We can delete only whole
tuples; we cannot delete values on only particular attributes. SQL expresses a deletion by

delete from r where P;
Note that a delete command operates on only one relation. If we want to delete tuples from several

relations, we must use one delete command for each relation. The predicate in the where clause may be
as complex as a select command’s where clause. At the other extreme, the where clause may be empty.
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Q: Delete all tuples in the instructor relation pertaining to instructors in the Finance department.
SQL> delete from instructor where dept name= ’Finance’;

Q: Delete all instructors with a salary between $13,000 and $15,000.

SQL> delete from instructor where salary between 13000 and 15000;

although we may delete tuples from only one relation at a time, we may reference any number of
relations in a select-from-where nested in the where clause of a delete. The delete request can contain a
nested select that references the relation from which tuples are to be deleted. For example, suppose
that we want to delete the records of all instructors with salary below the average at the university. We
could write:

SQL> delete from instructor where salary< (select avg (salary) from instructor);

Insertion:

Insertion To insert data into a relation, we either specify a tuple to be inserted or write a query whose
result is a set of tuples to be inserted. Obviously, the attribute values for inserted tuples must be
members of the corresponding attribute’s domain. Similarly, tuples inserted must have the correct
number of attributes. The simplest insert statement is a request to insert one tuple. Suppose that we
wish to insert the fact that there is a course CS-437 in the Computer Science department with title
“Database Systems”, and 4 credit hours. We write:

SQL> insert into course values ('CS-437’, 'Database Systems’, 'Comp. Sci.’, 4);

SQL allows the attributes to be specified as part of the insert statement. For example, the following SQL
insert statements are identical in function to the preceding one:

SQL> insert into course (course_id, title, dept name, credits) values ('CS-437’, 'Database Systems’,
"Comp. Sci.’, 4);

SQL> insert into course (title, course_ id, credits, dept name) values ('Database Systems’, 'CS-437’, 4,
"Comp. Sci.’);

More generally, we might want to insert tuples on the basis of the result of a query. Suppose that we
want to make each student in the Music department who has earned more than 144 credit hours, an
instructor in the Music department, with a salary of $18,000. We write:

SQL> insert into instructor select ID, name, dept name, 18000 from student where dept name = 'Music’
and tot cred > 144;

the insert statement considered only examples in which a value is given for every attribute in inserted
tuples. It is possible for inserted tuples to be given values on only some attributes of the schema. The
remaining attributes are assigned a null value denoted by null. Consider the request:
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SQL>insert into student values ('3003’, ‘Green’, ‘Finance’, null);

The tuple inserted by this request specified that a student with ID “3003” is in the Finance department,
but the tot cred value for this student is not known. Consider the query:

SQL>select student from student where tot cred > 45;
Since the tot cred value of student “3003” is not known, we cannot determine whether it is greater than

45.

Updates:

In certain situations, we may wish to change a value in a tuple without changing all values in the tuple.
For this purpose, the update statement can be used. As we could for insert and delete, we can choose
the tuples to be updated by using a query. Suppose that annual salary increases are being made, and
salaries of all instructors are to be increased by 5 percent. We write:

update instructor set salary= salary * 1.05;

The preceding update statement is applied once to each of the tuples in instructor relation. If a salary
increase is to be paid only to instructors with salary of less than $70,000, we can write:

update instructor set salary = salary * 1.05 where salary < 70000;

Q:Give a 5 percent salary raise to instructors whose salary is less than average.
SQL>update instructor set salary = salary * 1.05 where salary < (select avg (salary) from instructor);

SQL provides a case construct that we can use to perform both the updates with a single update
statement, avoiding the problem with the order of updates

SQL>update instructor
set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end

The general form of the case statement is as follows. case when predl then resultl when pred2 then
result2 ... when predn then resultn else result 0 end

The general form of the case statement is as follows:

case
when predl then resultl
when pred?2 then result2 ...
when predn then resultn
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else result0
end

Scalar subqueries are also useful in SQL update statements, where they can be used in the set clause.
Consider an update where we set the tot cred attribute of each student tuple to the sum of the credits
of courses successfully completed by the student. We assume that a course is successfully completed if
the student has a grade that is not 'F’ or null. To specify this update, we need to use a subquery in the
set clause, as shown below:

SQL>update student S set tot cred = ( select sum(credits) from takes natural join course where S./D=
takes.ID and takes.grade <>'F’ and takes.grade is not null);

we could use another update statement to replace null values by 0; a better alternative is to replace the
clause “select sum(credits)” in the preceding subquery by the following select clause using a case
expression:
SQL> select case

when sum(credits) is not null then sum(credits)

else0
end

Joint Expressions
The natural join: operation operates on two relations and produce a relation as the result.
“for all instructors in the university who have taught some course, find their names and the course
ID of all courses they taught”
SQL> select name, course_id from instructor, teaches where instructor.|D=teaches.ID;
SQL> select name, course_id from instructor natural join teaches;
Both of the above queries generate the same result.
A from clause in SQL query can have multiple relations combined using natural join as shown here:
SQL> SELECT al,a2,...an FROM r1 NATURAL JOIN r2 NATURAL JOIN..... NATURAL JOIN rm WHERE P;

Q: “ list the names of instructors along with the titles of course that they teach.”

SQL>SELECT name, title FROM instructor NATURAL JOIN teaches, course WHERE teaches.course_id
= course.course_id;

The operation JOIN .. USING:
Consider the operation: r1 JOIN r2 USING (a1, a2);

SQL>SELECT name, title FROM (instructor NATURAL JOIN teaches) JOIN course USING (course_id);

SQL>SELECT * FROM instructor JOIN teaches;
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SQL>SELECT * FROM instructor JOIN teaches USING (course_id);

We can retrieve data from more than one tables using the JOIN statement. There are mainly 4 different
types of JOINS in SQL server.

INNER JOIN/simple join

LEFT OUTER JOIN/LEFT JOIN
RIGHT OUTER JOIN/RIGHT JOIN
FULL OUTER JOIN

INNER JOIN

This type of SQL server JOIN returns rows from all tables in which the join condition is true. It takes the
following syntax:

SELECT columns FROM table_1 INNER JOIN table_2 ON table_1.column = table_2.column;
We will use the following two tables to demonstrate this:

Students Table:

Fee table:
admission  firstName  lastMame age

1 3421]' Micholas  Samuel 14 admission  course amournt_paid
2 380 Joel John 15 1 13380 | Dlectrical 20000

3 U Japheth  Becky 16 2 30 IcT 15000

4 3398 George Joshua 14 3 3398 Commerce 13000

b 3386 John Luchky 15 4 3410 HR 12000

k& 03 Simon Dan 13

7 2400 Calton Becham 16

The following command demonstrates an INNER JOIN in SQL server with example:

SELECT Students.admission, Students.firstName, Students.lastName, Fee.amount_paid
FROM Students

INNER JOIN Fee

ON Students.admission = Fee.admission

The command returns the following:

admission  fistName lastMame amount_paid

1 Micholas  Samuel 15000
2 330 Joel John 20000
3 310 Japheth  Bechy 12000
4 3358 George Joshua 13000

We can tell the students who have paid their fee. We used the column with common values in both
tables, which is the admission column.
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LEFT OUTER JOIN

This type of join will return all rows from the left-hand table plus records in the right-hand table with
matching values. For example:

SELECT Students.admission, Students.firstName, Students.lastName, Fee.amount_paid
FROM Students

LEFT OUTER JOIN Fee

ON Students.admission = Fee.admission

The code returns the following:

firstMame lastMame amourt_paid
icholas  Samuel 15000
3380 Joel John 20000

1

2

3 M0 Japheth  Becky 12000
4 3358 Geonge Joshua 13000
5 3386 John Lucky MULL
6 3403 Simon Dan NULL
7 00 Calton Becham  MULL

The records without matching values are replaced with NULLs in the respective columns.

RIGHT OUTER JOIN

This type of join returns all rows from the right-hand table and only those with matching values in the
left-hand table. For example:

SELECT Students.admission, Students.firstName, Students.lastName, Fee.amount_paid
FROM Students

RIGHT OUTER JOIN Fee

ON Students.admission = Fee.admission

The statement for OUTER JOINS SQL server returns the following:

admission  firstMame lastMame amount_paid

1 i3380 | Joel John 20000
2 3430 Micholas  Samusl 15000
3 3358 George Joshua 13000
4 30 Japheth  Becky 12000

The reason for the above output is that all rows in the Fee table are available in the Students table when
matched on the admission column.
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FULL OUTER JOIN

This type of join returns all rows from both tables with NULL values where the JOIN condition is not true.
For example:

SELECT Students.admission, Students.firstName, Students.lastName, Fee.amount_paid
FROM Students

FULL OUTER JOIN Fee

ON Students.admission = Fee.admission

The code returns the following result for FULL OUTER JOINS queries in SQL:

admission  fistName lastMame amourt_paid

1 {3420 { MNicholas ~ Samusl 15000
2 3m0 Joel Jobn 20000
3 3410 Japheth  Becky 12000
4 3358 Geonge Joshua 13000
by 3386 John Lucky MULL
& 3403 Simon Dan MULL
7 3400 Calton Becham  MULL

Join Types and Conditions:

To distinguish normal joins from outer joins, normal joins are called inner joins in SQL. The
default join type, when the join clause is used without the outer prefix is the inner join. Thus,
SQL>select * from student join takes using (ID);
is equivalent to:
SQL>select * from student inner join takes using (ID);
Similarly, natural join is equivalent to natural inner join.

Views
SQL allows a “virtual relation” to be defined by a query, and the relation conceptually contains
the result of the query. The virtual relation is not precomputed and stored, but instead is computed by
executing the query whenever the virtual relation is used.
Any such relation that is not part of the logical model, but is made visible to a user as a virtual
relation, is called a view.
View Definition:

We define a view in SQL by using the create view command. To define a view, we must give the view a
name and must state the query that computes the view. The form of the create view command is:

create view v as <query expression>;
where is any legal query expression. The view name is represented by v.
EXAMPLE:
The clerk should not be authorized to access the instructor relation. Instead, a view relation
faculty can be made available to the clerk, with the view defined as follows:
SQL>create view faculty as select ID, name, dept_name from instructor;
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To create a view that lists all course sections offered by the Physics department in the Fall 2009
semester with the building and room number of each section, we write:
SQL>create view physics_fall_2009 as
select course.course_id, sec_id, building, room_number
from course, section
where course.course_id = section.course_id
and course.dept_name = 'Physics’
and section.semester = "Fall’
and section.year =’2009’;

Using Views in SQL Queries:

Using the view physics fall 2009, we can find all Physics courses offered in the Fall 2009
semester in the Watson building by writing:

SQL>select course id from physics_fall_2009 where building="Watson’;

View names may appear in a query any place where a relation name may appear, The attribute names
of a view can be specified explicitly as follows:
SQL>create view departments_total_salary(dept_name, total_salary) as

select dept_name, sum (salary)

from instructor

group by dept_name;
One view may be used in the expression defining another view. For example, we can define a view
physics fall 2009 watson that lists the course ID and room number of all Physics courses offered in the
Fall 2009 semester in the Watson building as follows:
SQL>create view physics_fall_2009 watson as

select course_id, room_number

from physics_fall_2009

where building="Watson’;

Materialized Views:

If the actual relations used in the view definition change, the view is kept up-to-date. Such views
are called materialized views.
The process of keeping the materialized view up-to-date is called materialized view maintenance (or
often, just view maintenance).

Update of a View:

Although views are a useful tool for queries, they present serious problems if we express
updates, insertions, or deletions with them. The difficulty is that a modification to the database
expressed in terms of a view must be translated to a modification to the actual relations in the logical
model of the database. Suppose the view faculty, which we saw earlier, is made available to a clerk.
Since we allow a view name to appear wherever a relation name is allowed, the clerk can write:

SQL>insert into faculty values (’30765’, 'Green’, ’Music’);
However, to insert a tuple into instructor, we must have some value for salary. There are two
reasonable approaches to dealing with this insertion:
¢ Reject the insertion, and return an error message to the user.
e Insert a tuple ('30765’, 'Green’, "Music’, null) into the instructor relation.

In general, an SQL view is said to be updatable (that is, inserts, updates or deletes can be applied
on the view) if the following conditions are all satisfied by the query defining the view:
¢ The from clause has only one database relation.
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* The select clause contains only attribute names of the relation, and does not have any expressions,
aggregates, or distinct specification.

¢ Any attribute not listed in the select clause can be set to null; that is, it does not have a not null
constraint and is not part of a primary key.

¢ The query does not have a group by or having clause.

Under these constraints, the update, insert, and delete operations would be allowed on the following
view:
SQL>create view history_instructors as

select * from instructor where dept_name="History’;

Transactions

A transaction consists of a sequence of query and/or update statements. The SQL standard
specifies that a transaction begins implicitly when an SQL statement is executed. One of the following
SQL statements must end the transaction:

e Commit work commits the current transaction; that is, it makes the updates performed by
the transaction become permanent in the database. After the transaction is committed, a new
transaction is automatically started.

e Rollback work causes the current transaction to be rolled back; that is, it undoes all the
updates performed by the SQL statements in the transaction. Thus, the database state is restored to
what it was before the first statement of the transaction was executed.

Once a transaction has executed commit work, its effects can no longer be undone by rollback work.

For instance, consider a banking application, where we need to transfer money from one bank account
to another in the same bank. To do so, we need to update two account balances, subtracting the
amount transferred from one, and adding it to the other. If the system crashes after subtracting the
amount from the first account, but before adding it to the second account, the bank balances would be
inconsistent. A similar problem would occur, if the second account is credited before subtracting the
amount from the first account, and the system crashes just after crediting the amount.

Integrity Constraints

Integrity constraints ensure that changes made to the database by authorized users do not
result in a loss of data consistency. Thus, integrity constraints guard against accidental damage to the
database. Examples of integrity constraints are:
¢ An instructor name cannot be null.
¢ No two instructors can have the same instructor ID.

e Every department name in the course relation must have a matching department name in the
department relation.
¢ The budget of a department must be greater than $0.00.

Integrity constraints are usually identified as part of the database schema design process, and
declared as part of the create table command used to create relations. However, integrity constraints
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can also be added to an existing relation by using the command alter table table-name add constraint,
where constraint can be any constraint on the relation. When such a command is executed, the system
first ensures that the relation satisfies the specified constraint. If it does, the constraint is added to the
relation; if not, the command is rejected.

Constraints on a Single Relation:

The create table command may also include integrity-constraint statements. In addition to the
primary-key constraint, there are a number of other ones that can be included in the create table
command. The allowed integrity constraints include
¢ not null
® unique
e check(<predicate>)

We cover each of these types of constraints in the following sections.

Not Null Constraint:

Consider a tuple in the student relation where name is null. Such a tuple gives student
information for an unknown student; thus, it does not contain useful information. Similarly, we would
not want the department budget to be null. In cases such as this, we wish to forbid null values, and we
can do so by restricting the domain of the attributes name and budget to exclude null values, by
declaring it as follows:
name varchar(20) not null
budget numeric(12,2) not null

Unique Constraint:
SQL also supports an integrity constraint:

unique (Aj1, Aj2,..., Ajm)
The unique specification says that attributes Ajl , Aj2 ,..., Ajm form a candidate key; that is, no two
tuples in the relation can be equal on all the listed attributes. However, candidate key attributes are
permitted to be null unless they have explicitly been declared to be not null. Recall that a null value does
not equal any other value.

The check Clause:

A common use of the check clause is to ensure that attribute values satisfy specified conditions, in effect
creating a powerful type system. For instance, a clause check (budget > 0) in the create table command
for relation department would ensure that the value of budget is nonnegative. As another example,
consider the following:

SQL>create table_section (course_id varchar (8), sec_id varchar (8), semester varchar (6), year
numeric (4,0), building varchar (15), room_number varchar (7), time_slot_id varchar (4), primary key
(course_id, sec_id, semester, year), check (semester in (Fall’, "Winter’, 'Spring’, ’Summer’)));

Here, we use the check clause to simulate an enumerated type, by specifying that semester must be one
of ‘Fall’, "Winter’, ‘Spring’, or ‘'Summer’.

Referential Integrity:
Often, we wish to ensure that a value that appears in one relation for a given set of attributes also
appears for a certain set of attributes in another relation. This condition is called referential integrity.
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More generally, let rl1 and r2 be relations whose set of attributes are R1 and R2, respectively,
with primary keys K1 and K2. We say that a subset of R2 is a foreign key referencing K1 in relation r1 if it
is required that, for every tuple t2 in r2, there must be a tuple t1 in rl such that t1.K1 = t2.a.
Requirements of this form are called referential-integrity constraints, or subset dependencies.28
We can use the following short form as part of an attribute definition to declare that the attribute forms
a foreign key:

dept_name varchar(20) references department
EXAMPLES:
SQL>create table department

(dept_name varchar (20),

building varchar (15),

budget numeric (12,2) check (budget > 0),

primary key (dept name));

SQL>create table course

(course_id varchar (8),

title varchar (50),

dept_name varchar (20),

credits numeric (2,0) check (credits > 0),

primary key (course_id),

foreign key (dept_name) references department);

Consider this definition of an integrity constraint on the relation course:
create table course
(..
foreign key (dept_name) references department
on delete cascade
on update cascade,
- );
Because of the clause on delete cascade associated with the foreign-key declaration, if a delete of a
tuple in department results in this referential-integrity constraint being violated, the system does not
reject the delete. Instead, the delete “cascades” to the course relation, deleting the tuple that refers to
the department that was deleted.

Integrity Constraint Violation During a Transaction:

Transactions may consist of several steps, and integrity constraints may be violated temporarily
after one step, but a later step may remove the violation.

To handle such situations, the SQL standard allows a clause initially deferred to be added to a
constraint specification; the constraint would then be checked at the end of a transaction, and not at
intermediate steps. A constraint can alternatively be specified as deferrable, which means it is checked
immediately by default, but can be deferred when desired. For constraints declared as deferrable,
executing a statement set constraints constraint-list deferred as part of a transaction causes the
checking of the specified constraints to be deferred to the end of that transaction.

Complex Check Conditions and Assertions:
As defined by the SQL standard, the predicate in the check clause can be an arbitrary predicate,
which can include a subquery.
check (time_slot_id in (select time_slot_id from time_slot))
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An assertion is a predicate expressing a condition that we wish the database always to satisfy.
Domain constraints and referential-integrity constraints are special forms of assertions.

However, there are many constraints that we cannot express by using only these special forms.
Two examples of such constraints are:
¢ For each tuple in the student relation, the value of the attribute tot cred must equal the sum of credits
of courses that the student has completed successfully.
¢ An instructor cannot teach in two different classrooms in a semester in the same time slot.

An assertion in SQL takes the form:
create assertion <assertion-name> check <predicate>;

An assertion example:
SQL>create assertion credits_earned_constraint check
(not exists (select ID
from student
where tot_cred <> (select sum(credits)
from takes natural join course
where student.|D= takes.ID
and grade is not null and grade<>F’)

SQL Data Types and Schemas

we covered a number of built-in data types supported in SQL, such as integer types, real types,
and character types.

Date and Time Types in SQL:

The SQL standard supports several data types relating to dates and times:
o date: A calendar date containing a (four-digit) year, month, and day of the month.
¢ time: The time of day, in hours, minutes, and seconds. A variant, time(p), can be used to specify the
number of fractional digits for seconds (the default being 0). It is also possible to store time-zone
information along with the time by specifying time with timezone.
¢ timestamp: A combination of date and time. A variant, timestamp(p), can be used to specify the
number of fractional digits for seconds (the default here being 6). Time-zone information is also stored if
with timezone is specified.
Date and time values can be specified like this:

date '2001-04-25’

time '09:30:00’

timestamp '2001-04-25 10:29:01.45’

Default Values:
SQL allows a default value to be specified for an attribute as illustrated by the following create
table statement:
SQL>create table student
(ID varchar (5),
name varchar (20) not null,
dept_name varchar (20),
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tot_cred numeric (3,0) default O, primary key (ID));

The default value of the tot cred attribute is declared to be 0. As a result, when a tuple is
inserted into the student relation, if no value is provided for the tot cred attribute, its value is set to O.
The following insert statement illustrates how an insertion can omit the value for the tot cred attribute.

SQL>insert into student(ID, name, dept_name) values ('12789’, 'Newman’, "Comp. Sci.’);

Index Creation:

An index on an attribute of a relation is a data structure that allows the database system to find
those tuples in the relation that have a specified value for that attribute efficiently, without scanning
through all the tuples of the relation.

For example, if we create in index on attribute ID of relation student, the database system can
find the record with any specified ID value, such as 22201, or 44553, directly, without reading all the
tuples of the student relation. An index can also be created on a list of attributes, for example on
attributes name, and dept_name of student.

Syntax:

create index studentID_index on student(ID);
The above statement creates an index named studentlD _index on the attribute ID of the relation
student.

Large-Object Types:

Many current-generation database applications need to store attributes that can be large (of the
order of many kilobytes), such as a photograph, or very large (of the order of many megabytes or even
gigabytes), such as a high-resolution medical image or video clip.

SQL therefore provides large-object data types for character data (clob) and binary data (blob).
The letters “lob” in these data types stand for “Large OBject.”

For example, we may declare attributes

book review clob(10KB)

image blob(10MB)

movie blob(2GB)

It is inefficient or impractical to retrieve an entire large object into memory. Instead, an application
would usually use an SQL query to retrieve a “locator” for a large object and then use the locator to
manipulate the object from the host language in which the application itself is written. For instance, the
JDBC application program interface permits a locator to be fetched instead of the entire large object;
the locator can then be used to fetch the large object in small pieces, rather than all at once, much like
reading data from an operating system file using a read function call.

User-Defined Types:
SQL supports two forms of user-defined data types.
i) distinct types.
ii) structured data types, allows the creation of complex data types with nested record
structures, arrays, and multisets.
The create type clause can be used to define new types. For example, the statements:
create type Dollars as numeric(12,2) final;
create type Pounds as numeric(12,2) final;
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define the user-defined types Dollars and Pounds to be decimal numbers with a total of 12 digits, two of
which are placed after the decimal point. The newly created types can then be used, for example, as
types of attributes of relations. For example, we can declare the department table as:
SQL>create table department (dept name varchar (20),

building varchar (15),

budget Dollars);
As a result of strong type checking, the expression (department.budget+20) would not be accepted since
the attribute and the integer constant 20 have different types. Values of one type can be cast (that is,
converted) to another domain, as illustrated below: *

cast (department.budget to numeric(12,2))
SQL provides drop type and alter type clauses to drop or modify types that have been created earlier.

SQL had a similar but subtly different notion of domain (introduced in SQL-92), which can add integrity
constraints to an underlying type. For example, we could define a domain DDollars as follows.

create domain DDollars as numeric(12,2) not nuli;
The domain DDollars can be used as an attribute type, just as we used the type Dollars. However, there
are two significant differences between types and domains:

1. Domains can have constraints, such as not null, specified on them, and can have default values
defined for variables of the domain type, whereas userdefined types cannot have constraints or default
values specified on them. User-defined types are designed to be used not just for specifying attribute
types, but also in procedural extensions to SQL where it may not be possible to enforce constraints.

2. Domains are not strongly typed. As a result, values of one domain type can be assigned to values of
another domain type as long as the underlying types are compatible.

When applied to a domain, the check clause permits the schema designer to specify a predicate that
must be satisfied by any attribute declared to be from this domain. For instance, a check clause can
ensure that an instructor’s salary domain allows only values greater than a specified value:

SQL>create domain YearlySalary numeric(8,2) constraint salary_value_test check(value >= 29000.00);

As another example, a domain can be restricted to contain only a specified set of values by using the in
clause:

SQL>create domain degree_level varchar(10) constraint degree_level_test check (value in (Bachelors’,
"Masters’, or 'Doctorate’));

Create Table Extensions:
Applications often require creation of tables that have the same schema as an existing table.
SQL provides a create table like extension to support this task:
SQL>create table temp_instructor like instructor;
The above statement creates a new table temp instructor that has the same schema as instructor.
When writing a complex query, it is often useful to store the result of a query as a new table; the table is
usually temporary.
For example the following statement creates a table t1 containing the results of a query.
SQL>create table t1 as (select * from instructor where dept_name=’Music’) with data;
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Authorization

We may assign a user several forms of authorizations on parts of the database. Authorizations on data
include:

e Authorization to read data.

e Authorization to insert new data.

¢ Authorization to update data.

¢ Authorization to delete data.

Each of these types of authorizations is called a privilege.

When a user submits a query or an update, the SQL implementation first checks if the query or update is
authorized, based on the authorizations that the user has been granted. If the query or update is not
authorized, it is rejected.

Granting and Revoking of Privileges:

The SQL standard includes the privileges select, insert, update, and delete. The privilege all
privileges can be used as a short form for all the allowable privileges. A user who creates a new relation
is given all privileges on that relation automatically.

The SQL data-definition language includes commands to grant and revoke privileges. The grant
statement is used to confer authorization. The basic form of this statement is:

grant <privilege list>

on< relation name or view name>

To< user/role list>

The select authorization on a relation is required to read tuples in the relation. The following grant

statement grants database users Amit and Satoshi select authorization on the department relation:
grant select on department to Amit, Satoshi;

This allows those users to run queries on the department relation.

The update authorization on a relation allows a user to update any tuple in the relation. The update
authorization may be given either on all attributes of the relation or on only some.
This grant statement gives users Amit and Satoshi update authorization on the budget attribute of the
department relation:

grant update (budget) on department to Amit, Satoshi;

The insert authorization on a relation allows a user to insert tuples into the relation.

The delete authorization on a relation allows a user to delete tuples from a relation.

The user name public refers to all current and future users of the system. Thus, privileges granted to
public are implicitly granted to all current and future users.

To revoke an authorization, we use the revoke statement. It takes a form almost identical to that of
grant:

revoke < privilege list>

on< relation name or view name>

from< user/role list>;

Thus, to revoke the privileges that we granted previously, we write
revoke select on department from Amit, Satoshi;
revoke update (budget) on department from Amit, Satoshi;
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Revocation of privileges is more complex if the user from whom the privilege is revoked has granted the
privilege to another user.

Roles:

Consider the real-world roles of various people in a university. Each instructor must have the
same types of authorizations on the same set of relations. Whenever a new instructor is appointed, she
will have to be given all these authorizations individually.

The notion of roles captures this concept. A set of roles is created in the database. Authorizations can be
granted to roles, in exactly the same fashion as they are granted to individual users.

In our university database, examples of roles could include instructor, teaching assistant, student, dean,
and department chair.

Roles can be created in SQL as follows:
create role instructor;
Roles can then be granted privileges just as the users can, as illustrated in this statement:
grant select on takes to instructor;
Roles can be granted to users, as well as to other roles, as these statements show:
grant dean to Amit;
create role dean;
grant instructor to dean;
grant dean to Satoshi;

Thus the privileges of a user or a role consist of:
o All privileges directly granted to the user/role.
o All privileges granted to roles that have been granted to the user/role.

Authorization on Views:
This view can be defined in SQL as follows:
SQL>create view geo_instructor as (select * from instructor where dept_name ='Geology’);

Suppose that the staff member issues the following SQL query:
SQL>select * from geo_instructor;

Clearly, the staff member is authorized to see the result of this query. A user who creates a view does
not necessarily receive all privileges on that view. She receives only those privileges that provide no
additional authorization beyond those that she already had. For example, a user who creates a view
cannot be given update authorization on a view without having update authorization on the relations
used to define the view.

Authorizations on Schema:

The SQL standard specifies a primitive authorization mechanism for the database schema: Only the
owner of the schema can carry out any modification to the schema, such as creating or deleting
relations, adding or dropping attributes of relations, and adding or dropping indices.

However, SQL includes a references privilege that permits a user to declare foreign keys when
creating relations. The SQL references privilege is granted on specific attributes in a manner like that for
the update privilege. The following grant statement allows user Mariano to create relations that
reference the key branch name of the branch relation as a foreign key: *
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SQL>grant references (dept_name) on department to Mariano;

Transfer of Privileges:

A user who has been granted some form of authorization may be allowed to pass on this
authorization to other users.

For example, if we wish to allow Amit the select privilege on department and allow Amit to
grant this privilege to others, we write:
SQL>grant select on department to Amit with grant option;

Assume that, initially, the database administrator grants update authorization on teaches to
users U1, U2, and U3, who may in turn pass on this authorization to other users. The passing of a specific
authorization from one user to another can be represented by an authorization graph. The nodes of this
graph are the users.

Consider the graph for update authorization on teaches. The graph includes an edge Ui - Uj if
user Ui grants update authorization on teaches to Uj . The root of the graph is the database
administrator.

Uy ————

N

U,

Figure 4.10 Authorization-grant graph (U, Us. ..., Us are users and DBA refers to the
database administrator).

Observe that user U5 is granted authorization by both U1 and U2; U4 is granted authorization by only
ul.

Revoking of Privileges:

Revocation of a privilege from a user/role may cause other users/roles also to lose that
privilege. This behavior is called cascading revocation. In most database systems, cascading is the default
behavior. However, the revoke statement may specify restrict in order to prevent cascading revocation:
SQL>revoke select on department from Amit, Satoshi restrict;

The following revoke statement revokes only the grant option, rather than the actual select
privilege:

SQL>revoke grant option for select on department from Amit;
Note that some database implementations do not support the above syntax; instead, the privilege itself
can be revoked, and then granted again without the grant option.

To grant a privilege with the grantor set to the current role associated with a session, we can add the
clause:

granted by current_role

to the grant statement, provided the current role is not null.
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Advanced SQL

Accessing SQL From a Programming Language

SQL provides a powerful declarative query language. Writing queries in SQL is usually much
easier than coding the same queries in a general-purpose programming language. However, a database
programmer must have access to a general-purpose programming language for at least two reasons:

1. Not all queries can be expressed in SQL, since SQL does not provide the full expressive power
of a general-purpose language. That is, there exist queries that can be expressed in a language such as C,
Java, or Cobol that cannot be expressed in SQL. To write such queries, we can embed SQL within a more
powerful language.

2. Nondeclarative actions—such as printing a report, interacting with a user, or sending the

results of a query to a graphical user interface—cannot be done from within SQL. Applications usually
have several components, and querying or updating data is only one component; other components are
written in general-purpose programming languages. For an integrated application, there must be a
means to combine SQL with a general-purpose programming language.

There are two approaches to accessing SQL from a general-purpose programming language:

® Dynamic SQL: A general-purpose program can connect to and communicate with a database server
using a collection of functions (for procedural languages) or methods (for object-oriented languages).
Dynamic SQL allows the program to construct an SQL query as a character string at runtime, submit the
query, and then retrieve the result into program variables a tuple at a time. The dynamic SQL
component of SQL allows programs to construct and submit SQL queries at runtime.

¢ Embedded SQL: Like dynamic SQL, embedded SQL provides a means by which a program can
interact with a database server. However, under embedded SQL, the SQL statements are identified at
compile time using a preprocessor. The preprocessor submits the SQL statements to the database
system for precompilation and optimization; then it replaces the SQL statements in the application
program with appropriate code and function calls before invoking the programming-language compiler.

JDBC (Java Database Connectivity):

The JDBC standard defines an application program interface (API) that Java programs can use to
connect to database servers.
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public static void JDBCexample(String userid, String passwd)
{

try

{

Class.forName ("oracle.jdbec.driver.OracleDriver");

Connection conn = DriverManager.getConnection(
"idbc:oracle:thin:@db.yale.edu:1521:univdb”,
userid, passwd);

Statement stmt = conn.createStatement();

try {
stmt.executeUpdate(
"insert into instructor values('77987’, 'Kim’, "Physics’, 98000)");
} catch (SQLException sqle)
{
System.out.printin("Could not insert tuple. " + sqle);
ResultSet rset = stmt.executeQuery(
"select dept_name, avg (salary) "+
“ from instructor "+
" group by deptname");
while (rset.next()) {
System.out.printin(rset.getString("deptname”) + * * +
rset.getFloat(2));

stmt.close();
conn.close();

catch (Exception sgle)

System.out.printin("Exception : " + sqle);

An Example of JDBC code

The Java program must import java.sgl.*, which contains the interface definitions for the functionality
provided by JDBC.

Connecting to the Database:

A connection is opened using the getConnection method of the DriverManager class (within java.sql).
This method takes three parameters.

¢ The first parameter to the getConnection call is a string that specifies the URL, or machine name,
where the server runs (in our example, db.yale.edu), along with possibly some other information such as
the protocol to be used to communicate with the database (in our example, jdbc:oracle:thin:; we shall
shortly see why this is required), the port number the database system uses for communication (in our
example, 2000), and the specific database on the server to be used (in our example, univdb). Note that
JDBC specifies only the API, not the communication protocol. A JDBC driver may support multiple
protocols, and we must specify one supported by both the database and the driver. The protocol details
are vendor specific.

¢ The second parameter to getConnection is a database user identifier, which is a string.

¢ The third parameter is a password, which is also a string. (Note that the need to specify a password
within the JDBC code presents a security risk if an unauthorized person accesses your Java code.)

In our example in the figure, we have created a Connection object whose handle is conn.
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Shipping SQL Statements to the Database System:

Once a database connection is open, the program can use it to send SQL statements to the
database system for execution. This is done via an instance of the class Statement. A Statement object is
not the SQL statement itself, but rather an object that allows the Java program to invoke methods that
ship an SQL statement given as an argument for execution by the database system.

Our example creates a Statement handle (stmt) on the connection conn. To execute a
statement, we invoke either the executeQuery method or the executeUpdate method, depending on
whether the SQL statement is a query (and, thus, returns a result set) or nonquery statement such as
update, insert, delete, create table, etc. In our example, stmt.executeUpdate executes an update
statement that inserts into the instructor relation. It returns an integer giving the number of tuples
inserted, updated, or deleted. For DDL statements, the return value is zero. The try { ... } catch { ... }
construct permits us to catch any exceptions (error conditions) that arise when JDBC calls are made, and
print an appropriate message to the user.

Retrieving the Result of a Query:

The example program executes a query by using stmt.executeQuery. It retrieves the set of tuples in the
result into a ResultSet object rset and fetches them one tuple at a time. The next method on the result
set tests whether or not there remains at least one unfetched tuple in the result set and if so, fetches it.
The return value of the next method is a Boolean indicating whether it fetched a tuple. Attributes from
the fetched tuple are retrieved using various methods whose names begin with get. The method
getString can retrieve any of the basic SQL data types (converting the value to a Java String object), but
more restrictive methods such as getFloat can be used as well. The argument to the various get methods
can either be an attribute name specified as a string, or an integer indicating the position of the desired
attribute within the tuple. Figure 5.1 shows two ways of retrieving the values of attributes in a tuple:
using the name of the attribute (dept name) and using the position of the attribute (2, to denote the
second attribute).

Prepared Statements:

We can create a prepared statement in which some values are replaced by “?”, thereby specifying that
actual values will be provided later. The database system compiles the query when it is prepared. Each
time the query is executed (with new values to replace the “?”s), the database system can reuse the
previously compiled form of the query and apply the new values.
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PreparedStatement pStmt = conn.prepareStatement(
“insert into instructor values(?,?,2,7)");

pStmt.setString(1, "88877");

pStmt.setString(2, "Perry");

pStmt.setString(3, "Finance");

pStmt.setint(4, 125000);

pStmt.executeUpdate();

pStmt.setString(1, "88878");

pStmt.executeUpdate();

Figure 5.2 Prepared statements in JDBC code.
The prepareStatement method of the Connection class submits an SQL statement for compilation. It
returns an object of class PreparedStatement. At this point, no SQL statement has been executed. The
executeQuery and executeUpdate methods of PreparedStatement class do that. But before they can be
invoked, we must use methods of class PreparedStatement that assign values for the “?” parameters.

The setString method and other similar methods such as setInt for other basic SQL types allow us to
specify the values for the parameters.

In our example, suppose that the values for the variables ID, name, dept name, and salary have been
entered by a user, and a corresponding row is to be inserted into the instructor relation. Suppose that,
instead of using a prepared statement, a query is constructed by concatenating the strings using the
following Java expression:

mr rn mry n
’

"insert into instructor values(’ " + ID + +name+"’,"+"’ +deptname+"’, "’ balance +")"
and the query is executed directly using the executeQuery method of a Statement object.

Suppose a Java program inputs a string name and constructs the query:

nm mn

"select * from instructor where name =’" + name +
If the user, instead of entering a name, enters:

X or’Y' ="Y
then the resulting statement becomes:

"select * from instructor where name ="" + "X’ or 'Y’ =’Y" + ™"
which is:

select * from instructor where name =’X or’Y’ =Y’

The input string would have escape characters inserted, so the resulting query becomes:

"select * from instructor where name =’X\’ or 'Y\’ =\'Y’
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which is harmless and returns the empty relation.

Callable Statements:

JDBC also provides a CallableStatement interface that allows invocation of SQL stored procedures and
functions (described later, in Section 5.2). These play the same role for functions and procedures as
prepareStatement does for queries.

CallableStatement cStmt1 = conn.prepareCall("{? = call some function(?)}");
CallableStatement cStmt2 = conn.prepareCall("{call some procedure(?,?)}");

The data types of function return values and out parameters of procedures must be registered using the
method registerOutParameter(), and can be retrieved using get methods similar to those for result sets.
See a JDBC manual for more details.

Metadata Features:

The Java code segment below uses JDBC to print out the names and types of all columns of a result set.
The variable rs in the code below is assumed to refer to a ResultSet instance obtained by executing a

query.

ResultSetMetaData rsmd = rs.getMetaData();

for(inti=1; i <= rsmd.getColumnCount(); i++) {
System.out.printIn(rsmd.getColumnName(i));
System.out.printin(rsmd.getColumnTypeName(i));

}

The getColumnCount method returns the arity (number of attributes) of the result relation.
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DatabaseMetaData dbmd = conn.getMetaData();
ResultSet rs = dbmd.getColumns(null, "univdb", "department”, "%");
// Arguments to getColumns: Catalog, Schema-pattern, Table-pattern,

I and Column-Pattern
// Returns: One row for each column; row has a number of attributes
1 such as COLUMN_NAME, TYPE_NAME

while( rs.next()) {
System.out.printin(rs.getString("COLUMN_NAME"),
rs.getString("TYPE_NAME");

Figure 5.3 Finding column information in JDBC using DatabaseMetaData.

Other Features:

JDBC provides a number of other features, such as updatable result sets. It can create an updatable
result set from a query that performs a selection and/or a projection on a database relation.

The method setAutoCommit() in the JDBC Connection interface allows this behavior to be turned on or
off. Thus, if conn is an open connection, conn.setAutoCommit(false) turns off automatic commit.
Transactions must then be committed or rolled back explicitly using either conn.commit() or
conn.rollback(). conn.setAutoCommit(true) turns on automatic commit.

To fetch large objects, the ResultSet interface provides methods getBlob() and getClob() that are similar
to the getString() method, but return objects of type Blob and Clob, respectively.

Conversely, to store large objects in the database, the PreparedStatement class permits a database
column whose type is blob to be linked to an input stream (such as a file that has been opened) using
the method setBlob(int parameterindex, InputStream inputStream).

JDBC includes a row set feature that allows result sets to be collected and shipped to other applications.
Row sets can be scanned both backward and forward and can be modified.

ODBC:

The Open Database Connectivity (ODBC) standard defines an API that applications can use to open a
connection with a database, send queries and updates, and get back results. Applications such as
graphical user interfaces, statistics packages, and spreadsheets can make use of the same ODBC API to
connect to any database server that supports ODBC.
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void ODBCexample()
{
RETCODE error;
HENV env; /* environment */
HDBC conn; /* database connection */
SQLAllocEnv(&env);
SQLAllocConnect(env, &conn);
SQLConnect(conn, "db.yale.edu”, SQLNTS, "avi", SQLNTS,
"avipasswd", SQLNTS);
{
char deptname[80];
float salary;
int lenOut1, lenOut2;
HSTMT stmt;
char * sqglquery = “select dept_name, sum (salary)
from instructor
group by dept_name";
SQLAllocStmt(conn, &stmt);
error = SQLExecDirect(stmt, sglquery, SQLNTS);
if (error == SQL_SUCCESS) {
SQLBindCol(stmt, 1, SQL.C_CHAR, deptname , 80, &lenOut1);
SQLBindCol(stmt, 2, SQL.C_FLOAT, &salary, 0 , &lenOut2);
while (SQLFetch(stmt) == SQL.SUCCESS) {
printf (" %s %g\n", depthname, salary);
}

}
SQLFreeStmt(stmt, SQL_LDROP);
}

SQLDisconnect(conn);
SQLFreeConnect(conn);
SQLFreeEnv(env);

Figure 5.4 ODBC code example.

Figure 5.4 shows an example of C code using the ODBC API. The first step in using ODBC to communicate
with a server is to set up a connection with the server. To do so, the program first allocates an SQL
environment, then a database connection handle. ODBC defines the types HENV, HDBC, and RETCODE.
The program then opens the database connection by using SQLConnect.

Once the connection is set up, the program can send SQL commands to the database by using
SQLExecDirect.

The SQLFetch statement is in a while loop that is executed until SQLFetch returns a value other than SQL
SUCCESS.

The ODBC standard defines conformance levels, which specify subsets of the functionality defined by
the standard. An ODBC implementation may provide only core level features, or it may provide more
advanced (level 1 or level 2) features. Level 1 requires support for fetching information about the
catalog, such as information about what relations are present and the types of their attributes. Level 2
requires further features, such as the ability to send and retrieve arrays of parameter values and to
retrieve more detailed catalog information.

The SQL standard defines a call level interface (CLI) that is similar to the ODBC interface.

Embedded SQL:

The SQL standard defines embeddings of SQL in a variety of programming languages, such as C, C++,
Cobol, Pascal, Java, PL/I, and Fortran. A language in which SQL queries are embedded is referred to as a
host language, and the SQL structures permitted in the host language constitute embedded SQL.
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To identify embedded SQL requests to the preprocessor, we use the EXEC SQL statement; it has the
form:

EXEC SQL< embedded SQL statement>;

Before executing any SQL statements, the program must first connect to the database. This is done
using:

EXEC SQL connect to server user user-name using password;
Here, server identifies the server to which a connection is to be established.
The syntax for declaring the variables, however, follows the usual host language syntax.

EXEC SQL BEGIN DECLARE SECTION;
int credit amount;
EXEC SQL END DECLARE SECTION;

we wish to find the names of all students who have taken more than credit amount credit hours. We can
write this query as follows:
EXEC sQL

declare c cursor for

select ID, name

from student

where tot_cred > :credit amount;
The variable c in the preceding expression is called a cursor for the query. We use this variable to
identify the query. We then use the open statement, which causes the query to be evaluated.
The open statement for our sample query is as follows:

EXEC SQL open c;
For our example query, we need one variable to hold the ID value and another to hold the name value.
Suppose that those variables are si and sn, respectively, and have been declared within a DECLARE
section. Then the statement:

EXEC SQL fetch c into :si, :sn;

We must use the close statement to tell the database system to delete the temporary relation that held
the result of the query. For our example, this statement takes the form

EXEC SQL close c;
A database-modification request takes the form
EXEC SQL < any valid update, insert, or delete>;

Database relations can also be updated through cursors. For example, if we want to add 100 to the
salary attribute of every instructor in the Music department, we could declare a cursor as follows.
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EXEC sQL
declare c cursor for
select *
from instructor
where dept name= ‘Music’ for update;

after fetching each tuple we execute the following code:
EXEC SQL
update instructor
set salary = salary + 100
where current of c;
Transactions can be committed using EXEC SQL COMMIT, or rolled back using EXEC SQL ROLLBACK.

Functions and Procedures

Procedures and functions allow “business logic” to be stored in the database, and executed from SQL
statements. While such business logic can be encoded as programming-language procedures stored
entirely outside the database, defining them as stored procedures in the database has several
advantages.

For example, the procedural languages supported by Oracle (PL/SQL), Microsoft SQL Server
(TransactSQL), and PostgreSQL (PL/pgSQL) all differ from the standard syntax we present here.

create function dept_count(dept_name varchar(20))
returns integer
begin
declare d_count integer;
select count(*) into d_count
from instructor
where instructor.dept_name= dept_name
return d_count;
end

Figure 5.5 Function defined in SQL.

Declaring and Invoking SQL Functions and Procedures:
This function can be used in a query that returns names and budgets of all departments with more than

12 instructors:
SQL>select dept_name, budget from instructor where dept_count(dept_name) > 12;
The SQL standard supports functions that can return tables as results; such functions are called table

functions.

The function can be used in a query as follows:
SQL>select * from table(instructor_of(’Finance’));
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create function instructors_of (depi_name varchar(20))
returns table (
ID varchar (5),
name varchar (20),
dept name varchar (20),
salary numeric (8,2))
return table
(select ID, nante, dept_name, salary
from instructor
where instructor.dept.name = instructor.of.depl_name);

Figure 5.6 Table function in SQL.
SQL also supports procedures. The dept_count function could instead be written as a procedure:

create procedure depf_count_proc(in dept name varchar(20),
out d_count integer)

begin

select count(*) into d_count

from instructor

where instructor dept_name= dept_count_proc.dept_name
end

The keywords in and out indicate, respectively, parameters that are expected to have values assigned to
them and parameters whose values are set in the procedure in order to return results. Procedures can
be invoked either from an SQL procedure or from embedded SQL by the call statement:

declare d_count integer;

call dept_count_proc(’Physics’, d count);

Language Constructs for Procedures and Functions:
SQL supports constructs that give it almost all the power of a general-purpose programming language.
The part of the SQL standard that deals with these constructs is called the Persistent Storage Module
(PSM).
SQL:1999 supports the while statements and the repeat statements by the following syntax:

while boolean expression do

sequence of statements;
end while

repeat

sequence of statements;
until boolean expression
end repeat

There is also a for loop that permits iteration over all results of a query:

declare n integer default 0;

forr as
select budget from department
where dept_name = ‘Music’
do
set n = n— r.budget
end for
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The conditional statements supported by SQL include if-then-else statements
by using this syntax:

if boolean expression

then statement or compound statement
elseif boolean expression

then statement or compound statement
else statement or compound statement
end if

The SQL procedural language also supports the signaling of exception conditions, and declaring of
handlers that can handle the exception, as in this code:

declare out_of_classroom_seats condition
declare exit handler for out_of classroom_seats
begin

sequence of statements

end

External Language Routines:

External procedures and functions can be specified in this way (note that the exact syntax depends on
the specific database system you use):

create procedure dept_count_proc( in depf_name varchar(20),
out count integer)

language C

external name ' /usr/avi/bin/dept.count_proc’

create function dept.count (dept_name varchar(20))
returns integer

language C

external name ’/usr/avi/bin/dept_count’

If the code is written in a “safe” language such as Java or C#, there is another possibility:
executing the code in a sandbox within the database query execution process itself. The sandbox allows
the Java or C# code to access its own memory area, but prevents the code from reading or updating the
memory of the query execution process, or accessing files in the file system.

Several database systems today support external language routines running in a sandbox within
the query execution process. For example, Oracle and IBM DB2 allow Java functions to run as part of the
database process. Microsoft SQL Server allows procedures compiled into the Common Language
Runtime (CLR) to execute within the database process; such procedures could have been written, for
example, in C# or Visual Basic. PostgreSQL allows functions defined in several languages, such as Perl,
Python, and Tcl.
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Triggers

A trigger is a statement that the system executes automatically as a side effect of a modification
to the database. To design a trigger mechanism, we must meet two requirements:
1. Specify when a trigger is to be executed. This is broken up into an event that causes the trigger to be
checked and a condition that must be satisfied for trigger execution to proceed.
2. Specify the actions to be taken when the trigger executes.

Need for Triggers:

Triggers can be used to implement certain integrity constraints that cannot be specified using the
constraint mechanism of SQL.

As an illustration, we could design a trigger that, whenever a tuple is inserted into the takes relation,
updates the tuple in the student relation for the student taking the course by adding the number of
credits for the course to the student’s total credits.

Triggers in SQL:

create trigger timeslot_checkl after insert on section
referencing new row as nrow
for each row
when (nrow.time_slot_id not in (
select time_slot_id
from timeslot)) /* timeslotid not present in timeslot */
begin
rollback
end;

create trigger fimeslot_check? after delete on timeslot
referencing old row as orow
for each row
when (orow.timeslot_id not in (
select timeslotid
from time_slot) /* last tuple for time_slot_id deleted from time_slot */
and orow.time_slot_id in (
select time_slot_id
from section)) /* and time_slot_id still referenced from section*/
begin
rollback
end;

Figure 5.8 Using triggers to maintain referential integrity.

For example, to specify that a trigger executes after an update to the grade attribute of the takes
relation, we write:

after update of takes on grade
The referencing old row as clause can be used to create a variable storing the old value of an updated or
deleted row. The referencing new row as clause can be used with updates in addition to inserts.
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create trigger credits_earned after update of takes on (grade)
referencing new row as nrow
referencing old row as orow
for each row
when nrow.grade <> 'F’ and nrow.grade is not null
and (orow.grade = 'F’ or orow.grade is null)
begin atomic
update student
set tot_cred= tot_cred+
(select credits
from course
where course.course_id= nrow.course_id)
where student.id = nrow.id;
end;

Figure 5.9 Using a trigger to maintain credits_ecarned values.

create trigger setnull before update on fakes
referencing new row as nrow
for each row
when (nrow.grade = ")
begin atomic
set nrow.grade = null;
end;

Figure 5.10 Example of using set to change an inserted value.

create trigger reorder after update of amount on tnventory
referencing old row as orow, new row as 1nrow
for each row
when nrow.level <= (select level
from minlevel
where minlevel.item = orow.item)
and orow.level > (select level
from minlevel
where minlevel.item = orow.item)
begin atomic
insert into orders
(select item, amount
from reorder
where reorder.item = orow.item);
end;

Figure 5.11 Example of trigger for reordering an item.

Triggers can be disabled or enabled; by default they are enabled when they are created, but can be
disabled by using alter trigger trigger name disable (some databases use alternative syntax such as
disable trigger trigger name). A trigger can instead be dropped, which removes it permanently, by using
the command drop trigger trigger name.

When Not to Use Triggers:

For example, we could implement the on delete cascade feature of a foreign-key constraint by using a
trigger, instead of using the cascade feature.
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Modern database systems, however, provide built-in facilities for database replication, making
triggers unnecessary for replication in most cases.

Another problem with triggers lies in unintended execution of the triggered action when data
are loaded from a backup copy,6 or when database updates at a site are replicated on a backup site. In
such cases, the triggered action has already been executed, and typically should not be executed again.
When loading data, triggers can be disabled explicitly.

As an alternative, some database systems allow triggers to be specified as not for replication,
which ensures that they are not executed on the backup site during database replication.

Triggers should be written with great care, since a trigger error detected at runtime causes the
failure of the action statement that set off the trigger.

Triggers can serve a very useful purpose, but they are best avoided when alternatives exist.
Many trigger applications can be substituted by appropriate use of stored procedures.

Recursive Queries

Suppose now that we want to find out which courses are a prerequisite whether directly or
indirectly, for a specific course—say, CS-347. That is, we wish to find a course that is a direct
prerequisite for CS-347, or is a prerequisite for a course that is a prerequisite for CS-347, and so on.

The transitive closure of the relation prereq is a relation that contains all pairs (cid, pre) such
that pre is a direct or indirect prerequisite of cid. There are numerous applications that require
computation of similar transitive closures on hierarchies.

Transitive Closure Using Iteration:

One way to write the above query is to use iteration: First find those courses that are a direct
prerequisite of CS-347, then those courses that are a prerequisite of all the courses under the first set,
and so on. This iterative process continues until we reach an iteration where no courses are added.

Figure 5.13 shows a function findAllPrereqgs(cid) to carry out this task; the function takes the
course id of the course as a parameter (cid), computes the set of all direct and indirect prerequisites of
that course, and returns the set. The procedure uses three temporary tables:

e c_prereq: stores the set of tuples to be returned.
* new_c_prereq: stores the courses found in the previous iteration.
e temp: used as temporary storage while sets of courses are manipulated

Note that SQL allows the creation of temporary tables using the command create temporary
table; such tables are available only within the transaction executing the query, and are dropped when
the transaction finishes.
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create function findAllPreregs(cid varchar(8))
—— Finds all courses that are prerequisite (directly or indirectly) for cid
returns table (course_id varchar(8))
——The relation prereq(coursedd, prereqid) specifies which course is
——directly a prerequisite for another course.
begin
create temporary table c_prereq (courseid varchar(8));
— — table c_prereq stores the set of courses to be returned
create temporary table new_c_prereq (course_id varchar(8));
— — table new_c_prereq contains courses found in the previous iteration
create temporary table temp (coursedd varchar(8));
——table temp is used to store intermediate results
insert into new_c_prereq
select prereqid
from prereg
where course_id = cid;
repeat
insert into c_prereq
select course_id
from new_c_prereq;

insert into temp
(select prereq.course_id
from new_c_prereq, prereq
where new_c_prereq.course_id = prereq.prevreqid

except (
select courseid
from c_prereq
%
delete from new_c_prereq;
insert into new_r_prereg
select *
from temp;
delete from temp;

until not exists (select * from new_c_prereq)
end repeat;
return table c_prereq;

end

Figure 5.13 Finding all prerequisites of a course.

The procedure inserts all direct prerequisites of course cid into new c_prereq before the repeat
loop. The repeat loop first adds all courses in new c_prereq to c_prereq . Next, it computes
prerequisites of all those courses in new c_prereq , except those that have already been found to be
prerequisites of cid, and stores them in the temporary table temp. Finally, it replaces the contents of
new c_prereq by the contents of temp. The repeat loop terminates when it finds no new (indirect)
prerequisites.

Figure 5.14 shows the prerequisites that would be found in each iteration, if the procedure were
called for the course named CS-347.
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Iteration Number | Tuples in c1

( )
(CS-301), (CS-201)
(CS-301), (CS-201)

(CS-301), (CS-201), (CS-101)
(CS-301), (CS-201), (CS-101)

D= LN = O

Figure 5.14 Prerequisites of CS-347 in iterations of function find AllPreregs.

Recursion in SQL:

We can use recursion to define the set of courses that are prerequisites of a particular course,
say CS-347, as follows. The courses that are prerequisites (directly or indirectly) of CS-347 are:
1. Courses that are prerequisites for CS-347.
2. Courses that are prerequisites for those courses that are prerequisites (directly or indirectly) for CS-
347.

Any recursive view must be defined as the union of two subqueries: a base query that is
nonrecursive and a recursive query that uses the recursive view. In the example in Figure 5.15, the base
query is the select on prereq while the recursive query computes the join of prereq and rec prereq.

with recursive c_prereq(course_id, prereq_id) as (
select course_id, prereg_id
from prereq
union
select prereq.prereqid, c_prereq.course_id
from prereq, c_prereq
where prereq.courseid = c_prereq.prereqid

)

select x
from c_prereg;

Figure 5.15 Recursive query in SQL.

In particular, recursive queries should not use any of the following constructs, since they would
make the query nonmonotonic:
¢ Aggregation on the recursive view.
* not exists on a subquery that uses the recursive view.
» Set difference (except) whose right-hand side uses the recursive view.
SQL also allows creation of recursively defined permanent views by using create recursive view in place
of with recursive.
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OLAP**

An online analytical processing (OLAP) system is an interactive system that permits an analyst to
view different summaries of multidimensional data. The word online indicates that an analyst must be
able to request new summaries and get responses online, within a few seconds, and should not be
forced to wait for a long time to see the result of a query.

There are many OLAP products available, including some that ship with database products such
as Microsoft SQL Server, and Oracle, and other standalone tools.

Online Analytical Processing:

Consider an application where a shop wants to find out what kinds of clothes are popular. Let us
suppose that clothes are characterized by their item name, color, and size, and that we have a relation
sales with the schema.

sales (item_name, color, clothes_size, quantity)

Suppose that item name can take on the values (skirt, dress, shirt, pants), color can take on the values
(dark, pastel, white), clothes size can take on values (small, medium, large), and quantity is an integer
value representing the total number of items of a given {item name, color, clothes size }. An instance of
the sales relation is shown in Figure 5.16.

item_tame | color clothes size  quantity
skirt dark small 2
skirt dark medium 5
skirt dark large 1
skirt pastel | small 11
skirt pastel | medium 9
skirt pastel | large 15
skirt white small 2
skirt white medium 5
skirt white large 3
dress dark small 2
dress dark medium 6
dress dark large 12
dress pastel | small B!
dress pastel | medium 3
dress pastel | large 3
dress white small 2
dress white medium 3
dress white | large 0
shirt dark small 2
shirt dark medium 6
shirt dark large 6
shirt pastel | small 4
shirt pastel | medium 1
shirt pastel | large 2
shirt white small 17
shirt white medium 1
shirt white | large 10
pants dark small 14
pants dark medium 6
pants dark large 0
pants pastel | small 1
pants pastel | medium 0
pants pastel | large 1
pants white | small 3
pants white medium 0
pants white large 2

Figure 5.16 An example of sales relation.
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Given a relation used for data analysis, we can identify some of its attributes as measure
attributes, since they measure some value, and can be aggregated upon. For instance, the attribute
qguantity of the sales relation is a measure attribute, since it measures the number of units sold. Some
(or all) of the other attributes of the relation are identified as dimension attributes, since they define the
dimensions on which measure attributes, and summaries of measure attributes, are viewed. In the sales
relation, item name, color, and clothes size are dimension attributes.

Data that can be modeled as dimension attributes and measure attributes are called
multidimensional data.

The table shows total quantities for different combinations of item name and color. The value of
clothes size is specified to be all, indicating that the displayed values are a summary across all values of
clothes size (that is, we want to group the “small”, “medium”, and “large” items into one single group.
The table in Figure 5.17 is an example of a cross-tabulation (or cross-tab, for short), also referred to as a
pivot-table. In general, a cross-tab is a table derived from a relation (say R), where values for one
attribute of relation R (say A) form the row headers and values for another attribute of relation R (say B)
form the column header. For example, in Figure 5.17, the attribute item name corresponds to A(with

values “dark”, “pastel”, and “white”), and the attribute color corresponds to to B (with attributes “skirt”,
“dress”, “shirt”, and “pants”). Each cell in the pivot-table can be identified by (ai, b j), where ai is a value

for Aand b j a value for B.

clothes_size

color
dark | pastel | white | total
skirt 8 35 10 53
item_name | dress 20 10 5 35
shirt 14 7 28 49
pants 20 2 5 27
total 62 54 48 164

Figure 5.17 Cross tabulation of sales by itemi_name and color.

2 5 3 1 11
47 e 108
2 8 5 7 /2
/16
dark 8 20 | 14 20 62 4
34
] 18
S pastel | 35 10 7 2 54 9
et / 45
white | 10 8 | 28 | 5 | 48 42
o small
medium .3
all |53 | 35 | 49 | 27 | 164 large o7
all \3\\\

- : ¢
skirt dress shirt pants all

item_name

Figure 5.18 Three-dimensional data cube.
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The generalization of a cross-tab, which is two-dimensional, to n dimensions can be visualized as
an n-dimensional cube, called the data cube. Figure 5.18 shows a data cube on the sales relation. The
data cube has three dimensions, item name, color, and clothes size, and the measure attribute is
qguantity. Each cell is identified by values for these three dimensions.

In the example of Figure 5.18, there are 3 colors, 4 items, and 3 sizes resulting in a cube size of
3 x 4 x 3 = 36. Including the summary values, we obtain a 4 x 5 x 4 cube, whose size is 80. In fact, for a
table with n dimensions, aggregation can be performed with grouping on each of the 2n subsets of the n
dimensions.

The operation of changing the dimensions used in a cross-tab is called pivoting. OLAP systems
allow an analyst to see a cross-tab on item name and color for a fixed value of clothes size, for example,
large, instead of the sum across all sizes. Such an operation is referred to as slicing, since it can be
thought of as viewing a slice of the data cube. The operation is sometimes called dicing, particularly
when values for multiple dimensions are fixed.

OLAP systems permit users to view data at any desired level of granularity. The operation of
moving from finer-granularity data to a coarser granularity (by means of aggregation) is called a rollup.
In our example, starting from the data cube on the sales table, we got our example cross-tab by rolling
up on the attribute clothes size. The opposite operation—that of moving from coarser-granularity data
to finer-granularity data—is called a drill down. Clearly, finer-granularity data cannot be generated from
coarse-granularity data; they must be generated either from the original data, or from even finer-
granularity summary data.

The different levels of detail for an attribute can be organized into a hierarchy. Figure 5.19a
shows a hierarchy on the datetime attribute.

Year
Quarter
Region
Day of week Month
\ o y
et Country
N ’/f -
Hour of day Date
N ; /.-/ State
/
DateTime City
(@) Time Hierarchy (b) Location Hierarchy

Figure 5.19 Hierarchies on dimensions.

Cross-Tab and Relational Tables:

A cross-tab with summary rows/columns can be represented by introducing a special value all to
represent subtotals, as in Figure 5.21. The SQL standard actually uses the null value in place of all, but to
avoid confusion with regular null values, we shall continue to use all.
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clothes_size:

category item_name color

dark| pastel| white| total
womenswear | skirt 8 8 10 | 53
dress 20 20 5| 35
subtotal | 28 28 15 88
menswear pants 14 14 28 | 49
shirt 20 20 5 | 27
subtotal | 34 34 33 76
total 62 62 48 164

Figure 5.20 Cross tabulation of sales with hierarchy on itemame.

The SQL standard actually uses the null value in place of all, but to avoid confusion with regular null
values, we shall continue to use all.

[ item_name | color clothes size | quantity |
skirt dark all 8
skirt pastel all 35
skirt white all 10
skirt all all 53
dress dark all 20
dress pastel all 10
dress white all 5
dress all all 35
shirt dark all 14
shirt pastel all 74
shirt white all 28
shirt all all 49
pants dark all 20
pants pastel all 2
pants white all 5
pants all all 27
all dark all 62
all pastel all 54
all white all 48
all all all 164

Figure 5.21 Relational representation of the data in Figure 5.17.

OLAP in SQL:

Several SQL implementations, such as Microsoft SQL Server, and Oracle, support a pivot clause
in SQL, which allows creation of cross-tabs. Given the sales relation from Figure 5.16, the query:

select *
from sales
pivot (
sum(quantity)
for color in ('dark’,pastel’,' white’)
)

order by iten_name;
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[ item_name | clothessize | dark | pastel | white
skirt small 2 11 2]
skirt medium 5 9 5
skirt large 1 15 3
dress small 2 4 2
dress medium 6 3 3
dress large 12 3 0
shirt small 2 4 17
shirt medium 3] 1 1
shirt large 6 2 10
pants small 14 1 3
pants medium 6 0 0
pants large 0 1 2

Figure 5.22 Result of SAOL pivot operation on the sales relation of Figure 5.16.

Consider again our retail shop example and the relation:

sales (item_name, color, clothes_size, quantity)
We can find the number of items sold in each item name by writing a simple group by query:
SQL>select item_name, sum(quantity) from sales group by item_name;
For example, we can find a breakdown of sales by item-name and color by writing:
SQL>select item_name, color, sum(quantity) from sales group by item_name, color;

[ item_name | color quantity
skirt dark ]
skirt pastel 35
skirt white 10
dress dark 20
dress pastel 10
dress white 5
shirt dark 14
shirt pastel 7
shirt white 28
pants dark 20
pants pastel 2
pants white 5

Figure 5.24 Query result.

{ (item_name, color, clothes_size), (item_name, color), (item_name, clothes_size),
(color, clothes_size), (itemname), (color), (clothes_size), () }

The cube construct allows us to accomplish this in one query:
SQL>select item_name, color, clothes_size, sum(quantity)
from sales
group by cube(item name, color, clothes size);
The above query produces a relation whose schema is:
(item_name, color, clothes_size, sum(quantity))
It also uses all in place of null so as to be more readable to the average user. To generate that relation in
SQL, we arrange to substitute all for null. The query:
SQL>select item_name, color, sum(quantity) from sales group by cube(item_name, color);
The rollup construct is the same as the cube construct except that rollup generates fewer group
by queries.
SQL>select item_name, color, clothes_size, sum(quantity)
from sales
group by rollup(item_name, color, clothes_size);
group by rollup(item name, color, clothes size) generates only 4 groupings:
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{ (item_name, color, clothes_size), (item_name, color), (item_name), () }
Multiple rollups and cubes can be used in a single group by clause. For instance, the following query:
SQL>select item_name, color, clothes_size, sum(quantity)
from sales group by rollup(item_name), rollup(color, clothes_size);
generates the groupings:
{ (item_name, color, clothes_size), (item_name, color), (item_name), (color, clothes_size), (color), () }

Formal Relational Query Languages

The Relational Algebra

The relational algebra is a procedural query language. It consists of a set of operations that take
one or two relations as input and produce a new relation as their result. The fundamental operations in
the relational algebra are select, project, union, set difference, Cartesian product, and rename. In
addition to the fundamental operations, there are several other operations—namely, set intersection,
natural join, and assignment. We shall define these operations in terms of the fundamental operations.
Fundamental Operations:

The select, project, and rename operations are called unary operations, because they operate
on one relation. The other three operations operate on pairs of relations and are, therefore, called
binary operations.

The Select Operation:

The select operation selects tuples that satisfy a given predicate. We use the lowercase Greek letter
sigma (o) to denote selection. The predicate appears as a subscript to o . The argument relation is in
parentheses after the 0 .56

‘ 1D name | dept_name | salary |
10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000

Figure 6.1 The instructor relation.

Thus, to select those tuples of the instructor relation where the instructor is in the “Physics”
department, we write:

O dept name = “Physics” (inStrUCtOr )
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| ID | name | deptname | salary |

22222 | Einstein | Physics 95000
33456 | Gold Physics 87000

Figure 6.2 Result of 0, ume = Physics” (instructor).
We can find all instructors with salary greater than $90,000 by writing:

O salary>90000 (instructor)
In general, we allow comparisons using =, =, , and 2 in the selection predicate. Furthermore, we can
combine several predicates into a larger predicate by using the connectives and (A), or (V), and not (-).
Thus, to find the instructors in Physics with a salary greater than $90,000, we write:

o dept_name = “Physics” A salary>90000 (inStrUCtor )
The Project Operation:
Suppose we want to list all instructors’ ID, name, and salary, but do not care about the dept name. The
project operation allows us to produce this relation. The project operation is a unary operation that
returns its argument relation, with certain attributes left out. Projection is denoted by the uppercase
Greek letter pi (). We list those attributes that we wish to appear in the result as a subscript to . The
argument relation follows in parentheses. We write the query to produce such a list as:57

T ID, name, salary (inStrUCtor )

| ID | name | salary |
10101 | Srinivasan | 65000
12121 | Wu 90000
15151 | Mozart 40000
22222 | Einstein 95000
32343 | El Said 60000
33456 | Gold 87000
45565 | Katz 75000
58583 | Califieri 62000
76543 | Singh 80000
76766 | Crick 72000
83821 | Brandt 92000
98345 | Kim 80000
Figure 6.3 Result of [T .. suier (instructor).

Composition of Relational Operations:
The fact that the result of a relational operation is itself a relation is important. Consider the more
complicated query “Find the name of all instructors in the Physics department.” We write:

T name (O dept_name = “Physics” (instructor))
In general, since the result of a relational-algebra operation is of the same type (relation) as its inputs,
relational-algebra operations can be composed together into a relational-algebra expression. Composing
relational-algebra operations into relational-algebra expressions is just like composing arithmetic
operations (such as +, -, *, and +) into arithmetic expressions.

The Union Operation:
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Consider a query to find the set of all courses taught in the Fall 2009 semester, the Spring 2010
semester, or both. The information is contained in the section relation.

T course_id (0 semester = “Fall” A year=2009 (SeCtion))
To find the set of all courses taught in the Spring 2010 semester, we write:

T course_id (0' semester = “Spring” A year=2010 (SeCtion))
To answer the query, we need the union of these two sets; that is, we need all section IDs that appear in
either or both of the two relations.

by the binary operation union, denoted, as in set theory, by U. So the expression needed is:
TU course_id (O semester = “Fall” A year=2009 (section)) U

TU course_id (O semester = “Spring” A year=2010 (Section))

[Tcoursedd
Cs-101
Cs-315
s-319
CS-347
FIN-201
HIs-351
MU-199

| PHY-101

Figure 6.5 Courses offered in either Fall 2009, Spring 2010 or both semesters.

Therefore, for a union operation r U s to be valid, we require that two conditions hold:

1. The relations r and s must be of the same arity. That is, they must have the same number of
attributes.

2. The domains of the ith attribute of r and the ith attribute of s must be the same, for all i.

The Set-Difference Operation:

The set-difference operation, denoted by -, allows us to find tuples that are in one relation but are not
in another. The expression r — s produces a relation containing those tuples in r but not in s.

We can find all the courses taught in the Fall 2009 semester but not in Spring 2010 semester by writing:

TU course_id (O semester = “Fall” A year=2009 (Section)) -

T course_id (0 semester = “Spring” A year=2010 (Sec'tion))

C5-347
PHY-101

Figure 6.6 Courses offered in the Fall 2009 semester but not in Spring 2010 semester.
The Cartesian-Product Operation:
The Cartesian-product operation, denoted by a cross (x), allows us to combine information from any two
relations. We write the Cartesian product of relations rl and r2 as rl x r2.
For example, the relation schema for r = instructor x teaches is:
(instructor.ID, instructor.name, instructor.dept_name, instructor.salary
teaches.ID, teaches.course_id, teaches.sec_id, teaches.semester, teaches.year)
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With this schema, we can distinguish instructor.ID from teaches.ID. For those attributes that appear in
only one of the two schemas, we shall usually drop the relation-name prefix. This simplification does not
lead to any ambiguity. We can then write the relation schema for r as:

(instructor.ID, name, dept_name, salary

teaches.ID, course_id, sec_id, semester, year)

In general, if we have relations r1(R1) and r2(R2), then rl x r2 is a relation whose schema is the
concatenation of R1 and R2. Relation R contains all tuples t for which there is a tuple t1 in rl and a tuple
t2 in r2 for which t[R1] = t1[R1] and t[R2] = t2[R2].

Suppose that we want to find the names of all instructors in the Physics department together
with the course id of all courses they taught. We need the information in both the instructor relation
and the teaches relation to do so. If we write:

O dept_name = “Physics”(instructor x teaches)

tuple in O dept_name = “Physics”(instructor x teaches) that contains his name, and which satisfies
instructor.ID = teaches.ID. So, if we write:

TU instructor .ID = teaches.ID (0 dept_name = ”Physics"(inStrUCtor X teaChES))

Finally, since we only want the names of all instructors in the Physics department together with the
course id of all courses they taught, we do a projection:

TU name, course_id( Ginstructor .ID = teaches.ID (O dept_name = "Physics”(inStrUCtor x teaches)))

| name | courseid |
| Einstein [ PHY-101 |

Figure 6.10 Result of

M ine, coursecid (Finstructor 1D = teaches 10 (T depiname = “Physics™(instructor x teaches))).

The Rename Operation:

The rename operator, denoted by the lowercase Greek letter rho (p), lets us do this. Given a
relational-algebra expression E, the expression px (E) returns the result of expression E under the name
X.

A relation r by itself is considered a (trivial) relational-algebra expression. Thus, we can also
apply the rename operation to a relation r to get the same relation under a new name. A second form of
the rename operation is as follows: Assume that a relational algebra expression E has arity n. Then, the
expression px(A1,A2,...,An) (E) returns the result of expression E under the name x, and with the
attributes renamed to A1, A2,..., An.

Formal Definition of the Relational Algebra:

A basic expression in the relational algebra consists of either one of the following:
¢ Arelation in the database

¢ A constant relation

A constant relation is written by listing its tuples within { },

for example { (22222, Einstein, Physics, 95000), (76543, Singh, Finance, 80000) }.
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A general expression in the relational algebra is constructed out of smaller subexpressions. Let E1 and E2
be relational-algebra expressions. Then, the following are all relational-algebra expressions:

eE1UE2

*E1-E2

e E1xE2

® Op(E1), where P is a predicate on attributes in E1
¢ TUs(E1), where Sis a list consisting of some of the attributes in E1

* Px (E1), where x is the new name for the result of E160

Additional Relational-Algebra Operations:
The Set-Intersection Operation: The first additional relational-algebra operation that we shall define is
set intersection (N). Suppose that we wish to find the set of all courses taught in both the Fall 2009 and
the Spring 2010 semesters. Using set intersection, we can write

TU course_id( Osemester = “Fall” A year=2009 (S€ction)) n

I course_id( Osemester = “Spring” A year=2010 (section))
Note that we can rewrite any relational-algebra expression that uses set intersection by replacing the
intersection operation with a pair of set-difference operations as:

rns=r-(r-s)
It is simply more convenient to write r N s than to write r — (r - s).
The Natural-Join Operation:
The natural join is a binary operation that allows us to combine certain selections and a Cartesian
product into one operation. It is denoted by the join symbol X.
“Find the names of all instructors together with the course id of all courses they taught.” We express
this query by using the natural join as follows:
TU name, course_id( iNnstructor X teaches)

The theta join operation is a variant of the natural-join operation that allows us to combine a selection
and a Cartesian product into a single operation. Consider relations r(R) and s(S), and let © be a predicate

on attributes in the schema R U S. The theta join operation I M ¢ S is defined as follows:

rNGS=09(rXS)
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DATABASE DESIGN AND E-R MODEL

3.1 Overview of the Design Process

The task of creating a database application is a complex one, involving design of the

database schema, design of the programs that access and update the data, and design of a security
scheme to control access to data.

>
>

>

The needs of the users play a central role in the design process.

The design of a complete database application environment that meets the needs of the
enterprise being modeled requires attention to a broad set of issues.

These additional aspects of the expected use of the database influence a variety of design
choices at the physical, logical, and view levels.

3.1.1 Design Phases

For small applications, it may be feasible for a database designer who understands the

application requirements to decide directly on the relations to be created, their attributes, and
constraints on the relations.

>

The database designer must interact with users of the application to understand the needs
of the application, represent them in a high-level fashion that can be understood by the
users, and then translate the requirements into lower levels of the design.

A high-level data model serves the database designer by providing a conceptual
framework in which to specify, in a systematic fashion, the data requirements of the
database users, and a database structure that fulfills these requirements.

In Initial Phase, the database designer needs to interact extensively with domain experts
and users to carry out this task. The outcome of this phase is a specification of user
requirements.

Next, the designer chooses a data model and, by applying the concepts of the chosen data
model, translates these requirements into a conceptual schema of the database. The
schema developed at this conceptual-design phase provides a detailed overview of the
enterprise.

The entity-relationship model is typically used to represent the conceptual design.

The conceptual schema specifies the entities that are represented in the database, the
attributes of the entities, the relationships among the entities, and constraints on the ER.
The conceptual-design phase results in the creation of an entity-relationship diagram that
provides a graphic representation of the schema.

A fully developed conceptual schema also indicates the functional requirements of the
enterprise. In a specification of functional requirements, users describe the kinds of
operations (or transactions) that will be performed on the data.

The process of moving from an abstract data model to the implementation of the database
proceeds in two final design phases.




¢ In the logical-design phase, the designer maps the high-level conceptual schema
onto the implementation data model of the database system that will be used.
mapping the conceptual schema defined using the entity-relationship model into
a relation schema.

e Finally, the designer uses the resulting system-specific database schema in the
subsequent physical-design phase. These features include the form of file or-
ganization and choice of index structures.

3.1.2 Design Alternatives

A major part of the database design process is deciding how to represent in the design the
various types of ‘things’ such as people, places, products, and the like. We use the term ‘Entity’
to refer to any such distinctly identifiable item.

In designing a database schema, we must ensure that we avoid two major pitfalls are:

1) Redundancy: A bad design may repeat information. Redundancy can also occur in a
relational schema. The biggest problem with such redundant representation of
information is that the copies of a piece of information can become inconsistent, if the
information is updated without taking precautions to update all copies of the information.

2) Incompleteness: A bad design may make certain aspects of the enterprise difficult or
impossible to model. We might try to make do with the problematic design by storing
null values for the section information. Such a work is not only unattractive but may be
prevented by primary-key constraints.

Avoiding bad designs is not enough. There may be a large number of good designs from
which we must choose. need to make choices such as this for the large number of entities and
relationships in a real-world enterprise, it is not hard to see that database design can be a
challenging problem. So that it requires a combination of both science and “good taste.”

3.2 The Entity- Relationship Model

The entity-relationship (E-R) data model was developed to facilitate database design by
allowing specification of an enterprise schema that represents the overall logical structure of a
database.

» The E-R model is very useful in mapping the meanings and interactions of real-world
enterprises onto a conceptual schema & many database-design tools draw on concepts
from the E-R model.

» The E-R data model has three basic concepts: entity sets, relationship sets, and attributes.

» The E-R model also has an associated diagrammatic representation of the E-R diagram.

3.2.1 Entity Sets

An entity is a “thing” or “object” in the real world that is distinguishable from all other

objects.

Ex: Each person in a university is an entity.




An entity has a set of properties, and the values for some set of properties may uniquely
identify an entity.

For instance, a person may have a person id property whose value uniquely identifies that
person. Thus, the value 677-89-9011 for person id would uniquely identify one particular
person in the university.

An entity set is a set of entities of the same type that share the same properties, or
attributes.

Ex: The entity set student might represent the set of all students in the university.

In the process of modeling, we often use the term entity set in the abstract, without
referring to a particular set of individual entities.

An entity is represented by a set of attributes. Attributes are descriptive properties
possessed by each member of an entity set. The designation of an attribute for an entity
set expresses that the database stores similar information concerning each entity in the
entity set.

Each entity has a value for each of its attributes.

A database thus includes a collection of entity sets, each of which contains any number of
entities of the same type.

[ 76766 | Crick ] [ 98988 | Tanaka |
[ 45565 | Katz | [ 12345 | Shankar |
| 10101 [ Srinivasan | [ 00128 | Zhang |
[ 98345 | Kim | [ 76543 | Brown |
[ 76543 | Singh | [ 76653 | Aoi |
[ 22222 [ Einstein | [ 23121 | Chavez |

| 44553 [ Peltier |

Instructor Student

Figure: Entity sets instructor and student.

University database that consists of two entity sets: instructor and student.

In the above figure, some of the attributes of the two entity sets are shown. A database for
a university may include a “number of other entities sets”. It may also include Course
entity sets.

3.2.2 Relationship sets

> A relationship is an association among several entities.

Ex: we can define a relationship advisor that associates instructor Katz with student
Shankar. This relationship specifies that Katz is an advisor to student Shankar.




» A relationship set is a set of relationships of the same type. Formally, it is a
mathematical relation on n > 2 (possibly non distinct) entity sets. If E1, E2, .. ., En are
entity sets, then a relationship set R is a subset of

{(el,e2...en)|el €El,e2 € E2,...,en € En}
Where (el, €2, . . ., en) is a relationship.

» The association between entity sets is referred to as participation; that is, the entity sets
El, E2,. .. En participates in relationship set R.

» A relationship instance in an E-R schema represents an association between the named
entities in the real-world enterprise that is being modeled.

» The function that an entity plays in a relationship is called that entity’s role.

|76766 | Crick
| 45565 | Katz

98988 | Tanaka
I 12345 |Shankar

| |
| |
r\
| 10101 | Srinivasan }\’1 00128 |Zhang |
- |
5 |
3 |
|

[98345 [ Kim \1 76543 |Brown
76543 [ Singh | Aoi

\{ 76653
[22222 [ Einstein \ﬁ 23121 [Chavez
instriuctor 4 44553 | Pelter

student

Figure 7.2 Relationship set advisor.

» In this type of relationship set, sometimes called a recursive relationship set, explicit role
names are necessary to specify how an entity participates in a relationship instance.

» A relationship may also have attributes called descriptive attributes.

» The instructor and student entity sets participate in the relationship set advisor.
Additionally, suppose each student must have another instructor who serves as a
department advisor (undergraduate or graduate). Then the instructor and student entity
sets may participate in another relationship set, dept advisor. The relationship sets advisor
and dept advisor provide examples of a binary relationship set—that is, one that involves
two entity sets. Most of the relationship sets in a database system are binary.

» The number of entities sets that participate in a relationship set is the degree of the
relationship set. A binary relationship set is of degree 2; a ternary relationship set is of
degree 3.

3.2.3 Attributes

» For each attribute, there is a set of permitted values, called the domain, or value set, of
that attribute. The domain of attribute course id might be the set of all text strings of a
certain length.

» An attribute of an entity set is a function that maps from the entity set into a domain.
Since an entity set may have several attributes, each entity can be described by a set of
(attribute, data value) pairs, one pair for each attribute of the entity set.




Ex: A particular instructor entity may be described by the set {(ID, 76766), (name,
Crick), (dept name, Biology), (salary, 72000)}.

An attribute, as used in the E-R model, can be characterized by the following attribute
types.

Simple and Composite Attributes: The attributes have been simple; that is, they have
not been divided into subparts. Composite_attributes, can be divided into subparts (that
is, other attributes).

Ex: An attribute name could be structured as a composite attribute consisting of first
name, middle initial, and last name.

Composite attribute may appear as a hierarchy. In the composite attribute address, its
component attribute street can be further divided into street number, street name, and
apartment number.

Single-valued and Multivalued Attributes: The attributes in our examples all have a
single value for a particular entity. For instance, the student ID attribute for a specific
student entity refers to only one student ID. Such attributes are said to be single valued.
There may be instances where an attribute has a set of values for a specific entity.

comp nsite name adidress
attributes

first_name  middle_initial  last_name street  city  stafe  postal_code

component
attributes

street_number  streel_nmme cl.lt,?c!."E.'.f.'c‘.'n'f_.'f.'r.'?.'b-:‘."

Figure: Composite attributes instructor name and address.

An instructor may have zero, one, or several phone numbers, and different instructors
may have different numbers of phones. This type of attribute is said to be multivalued.
Where appropriate, upper and lower bounds may be placed on the number of values in a
multivalued attribute.

Derived Attribute: The value for this type of attribute can be derived from the values of

other related attributes or entities.

For instance, let us say that the instructor entity set has an attribute students advised,
which represents how many students an instructor advises. We can derive the value for
this attribute by counting the number of student entities associated with that instructor.

Null Attribute: An attribute takes a null value when an entity does not have a value for
it. The null value may indicate “not applicable”—that is, that the value does not

exist for the entity.

Ex: One may have no middle name. Null can also designate that an attribute value is
unknown. An unknown value may be either missing or unknown.




3.3 Constraints

An E-R enterprise schema may define certain constraints to which the contents of a
database must conform. In this section, we examine mapping cardinalities and participation
constraints.

3.3.1 Mapping Cardinalities:

Mapping cardinalities, or cardinality ratios, express the number of entities to which
another entity can be associated via a relationship set.

» Mapping cardinalities are most useful in describing binary relationship sets, although
they can contribute to the description of relationship sets that involve more than two
entity sets.

» In this section, we shall concentrate on only binary relationship sets.

» For a binary relationship set R between entity sets A and B, the mapping cardinality must
be one of the following:

e One-to-one: An entity in A is associated with at most one entity in B, and an
entity in B is associated with at most one entity in A. (See Figure 7.5a.)

e One-to-many: An entity in A is associated with any number (zero or more) of
entities in B. An entity in B, however, can be associated with at most one entity
in A. See the below Figure.
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Figure: Mapping cardinalities. (a)One-to-one, (b) one-to-many.
Ex: Consider the advisor relationship set. If, in a particular university, a student
can be advised by only one instructor, and an instructor can advise several
Students, then the relationship set from instructor to student is one-to-many. If a
student can be advised by several instructors (as in the case of students advised
jointly), the relationship set is many-to-many.

3.3.2 Participation Constraints

The participation of an entity set E in a relationship set R is said to be total if every entity
in E participates in at least one relationship in R. If only some entities in E participate in
relationships in R, the participation of entity set E in relationship R is said to be partial.




In the above figure (a) the participation of B in the relationship set is total while the

participation of A in the relationship set is partial. In Figure (b), the participation of both A and B
in the relationship set are total.

3.3.3 Keys

The way to specify how entities within a given entity set are distinguished. Conceptually,

individual entities are distinct; from a database perspective, however, the differences among
them must be expressed in terms of their attributes.

>
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The values of the attribute values of an entity must be such that they can uniquely
identify the entity. In other words, no two entities in an entity set are allowed to have
exactly the same value for all attributes.
The notion of a key for a relation schema, as defined directly to entity sets.
A key for an entity is a set of attributes that suffice to distinguish entities from each other.
The concepts of super key, candidate key, and primary key are applicable to entity sets
just as they are applicable to relation schemas.
Keys also help to identify relationships uniquely, and distinguish relationships from each
other.
Keys also help to identify relationships uniquely, and distinguish relationships from each
other.
Let R be a relationship set involving entity sets E1, E2, . . . , En. Let primary key( Ei )
denote the set of attributes that forms the primary key for entity set Ei . Assume for now
that the attribute names of all primary keys are unique. The composition of the primary
key for a relationship set depends on the set of attributes associated with the relationship
set R.
If the relationship set R has no attributes associated with it, then the set of attributes
describes an individual relationship in set R.
Primary-key (E1) U primary-key(E2) U - -+ U primary-key(En)
If the relationship set R has attributes al, a2. . . am associated with it, then the set of
attributes describes an individual relationship in set R.
primary-key(E1) U primary-key(E2) U- - - U primary-key(En) U {al, a2, ..., am}
In both of the above cases, the set of attributes forms a super key for the relationship set.
primary-key (E1) U primary-key(E2) U - -+ U primary-key(En)
If the attribute names of primary keys are not unique across entity sets, the attributes are
renamed to distinguish them.
If an entity set participates more than once in a relationship set the role name is used
instead of the name of the entity set, to form a unique attribute name.
The structure of the primary key for the relationship set depends on the mapping
cardinality of the relationship set.
For one-to-one relationships either candidate key can be used as the primary key. For
non-binary relationships if no cardinality constraints are present then the super key
formed.
The choice of the primary key is more complicated if cardinality constraints are present.

3.4 Removing Redundant Attributes in Entity Sets

Once the entities and their corresponding attributes are chosen, the relationship sets

among the various entities are formed. These relationship sets may result in a situation where




attributes in the various entity sets are redundant and need to be removed from the original entity
sets.
consider the entity sets instructor and department:
* The entity set instructor includes the attributes ID, name, dept name, and salary, with ID
forming the primary key.
» The entity set department includes the attributes dept name, building, and budget, with dept
name forming the primary key.
We model the fact that each instructor has an associated department using a relationship
set inst dept relating instructor and department.
The attribute dept name appears in both entity sets. Since it is the primary key for the
entity set department, it is redundant in the entity set instructor and needs to be removed.
Removing the attribute dept name from the instructor entity set may appear rather
unintuitive, since the relation instructor had an attribute dept name.When we create a relational
schema from the E-R diagram, the attribute dept name in fact gets added to the relation
instructor, but only if each instructor has at most one associated department. If an instructor has
more than one associated department, the relationship between instructors and departments is
recorded in a separate relation inst_dept.
Suppose we model entity sets section and time slot as follows:
» The entity set section includes the attributes course id, sec_id, semester, year, building, room
number, and time slot id, with (course id, sec id, year, semester) forming the primary key.
* The entity set time slot includes the attributes time slot id, which is the primary key, and a
multivalued composite attribute {(day, start time, end time)}.
These entities are related through the relationship set sec_time slot.
The attribute time slot id appears in both entity sets. Since it is the primary key for the
entity set time slot, it is redundant in the entity set section and needs to be removed.
A good entity-relationship design does not contain redundant attributes. For our
university example, we list the entity sets and their attributes below, with primary keys.
* classroom: with attributes (building, room number, capacity).
* department: with attributes (dept name, building, budget).
* course: with attributes (course id, title, credits).
* instructor: with attributes (ID, name, salary).
* section: with attributes (course id, sec id, semester, year).
* student: with attributes (ID, name, tot cred).
* time slot: with attributes (time slot id, {(day, start time, end time) }).
The relationship sets in our design are listed below:
* inst dept: relating instructors with departments.
* stud dept: relating students with departments.
» teaches: relating instructors with sections.
» takes: relating students with sections, with a descriptive attribute grade.
* course dept: relating courses with departments.
* sec course: relating sections with courses.
* sec class: relating sections with classrooms.
* sec time slot: relating sections with time slots.
» advisor: relating students with instructors.
* prereq: relating courses with prerequisite courses.
You can verify that none of the entity sets has any attribute that is made redundant by one
of the relationship sets. The above design, but with several attributes in the relational design
replaced by relationships in the E-R design.




3.5 Atomic Domains & Normal Forms

The E-R model allows entity sets and relationship sets to have attributes that have some degree of

substructure. Specifically, it allows multivalued attributes such as phone number in and composite attributes
(such as an attribute address with component attributes street, city, state, and zip).

A domain is atomic if elements of the domain are considered to be indivisible units. We

say that a relation schema R is in First Normal Form (1NF) if the domains of all attributes of R
are atomic.

» A set of names is an example of a non-atomic value. For example, if the schema of a

relation employee included attribute children whose domain elements are sets of names,
the schema would not be in first normal form.

Composite attributes, such as an attribute address with component attributes street, city,
state, and zip also have non atomic domains.

Integers are assumed to be atomic, so the set of integers is an atomic domain; however,
the set of all sets of integers is a non-atomic domain.

The domain of all integers would be non-atomic if we considered each integer to be an
ordered list of digits.

If a relation schema had an attribute whose domain consists of identification numbers
encoded as above, the schema would not be in first normal form.

The course schema stores the department name as a separate attribute, and the database
application can use this attribute value to find the department of a course, instead of
interpreting particular characters of the course identifier. Thus, our university schema can
be considered to be in first normal form.

The use of set-valued attributes can lead to designs with redundant storage of data, which
in turn can result in inconsistencies.

Some types of non-atomic values can be useful, they should be used with care. For
example, composite-valued attributes are often useful, and set valued attributes are also
useful in many cases, which is why both are supported in the E-R model.

In many domains where entities have a complex structure, forcing a first normal form
representation represents an unnecessary burden on the application programmer, who has
to write code to convert data into atomic form.

3.5.1 Normalization

Normalization is the process of reducing data redundancy in a table and improving data

integrity. Then why do you need it? If there is no normalization in SQL, there will be many
problems, such as:

Insert Anomaly: This happens when we cannot insert data into the table without another.
Update Anomaly: This is due to data inconsistency caused by data redundancy and data

update.

Delete exception: Occurs when some attributes are lost due to the deletion of other

attributes.

» Normalization is the process of organizing data in a proper manner.
» It is used to minimize the duplication of various relationships in the database.

It is also used to troubleshoot exceptions such as inserts, deletes, and updates in the
table.
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It helps to split a large table into several small, normalized tables.

Relational links and links are used to reduce redundancy.

Normalization, also known as database normalization or data normalization, is an
important part of relational database design because it helps to improve the speed,
accuracy, and efficiency of the database

Normalization is a stepwise formal process that allows us to decompose database tables
in such a way that both data dependency and update anomalies are minimized.

It makes use of functional dependency that exists in the table and primary key or
candidate key in analyzing the tables.

Normal forms were initially proposed called “First Normal Form” (INF), “Second
Normal Form” (2NF), and “Third Normal Form” (3NF).

Subsequently, R, Boyce, and E. F. Codd introduced a stronger definition of 3NF
called “Boyce-Codd Normal Form”. With the exception of INF, all these normal
forms are based on functional dependency among the attributes of a table.

Higher normal forms that go beyond BCNF were introduced later such as “Fourth
Normal Form”(4NF) and “Fifth Normal Form” (5NF).
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Summarize on Normalization in Nutshell

Normal Test Normalization
Form
Relation should have no Form name relation for
INF non-atomic attributes or each non-atomic
nested relations. attribute  or  nested
relation.
For  relations  where Decompose and set up a
2NF primary key contains new relation for each
multiple attributes, no partial key with its
non-key attributes should dependent  attributes.
be functionally dependent Make sure to keep a
on a part of the primary relation with the
key. original primary key
and any attributes that
are fully functionally
dependent on it.
Relation should not have Decompose and
a non-key attribute set up a relation
functionally  determined that includes the
by  another  non-key non-key
3NF attribute (or by a sets of attribute(s) that
non-key attributes) i.e., functionally
there should be no determine(s)
transitive dependency of a other non-key
non-key attribute of the attribute(s).
primary key.
Relation should not have Make sure that the left
any attribute in side of every functional
Boyce Functional Dependency dependency is a
Codd which is non-prime, the candidate key.
attribute  that  doesn’t
occur in any candidate
key.
The relation should not Decompose the table
have a multi-value into two sub tables.
dependency means it
4NF occur when two attributes
of a table are independent
of each other but both
depend on a third
attribute.
The relation should not Decompose all  the
have join dependency tables into as many as
means if a table can be possible numbers in
recreated by  joining order to avoid
SNF multiple tables and each dependency.
of the tables has a subset
of the attributes of the
table, then the table is in
Join Dependency.




3.5.2 First Normal Form

If a relation contains composite or multi-valued attribute, it violates first normal form
or a relation is in first normal form if it does not contain any composite or multi-valued
attribute. A relation is in first normal form if every attribute in that relation is singled valued
attribute.

3.5.3 Second Normal Form

ID Name Course
1 Anjali C1

1 Anjali C2

2 Honey C3

3 Vardhan C2

3 Vardhan C3

Ex:1 Relation STUDENT in table 1 is not in INF because of multi-valued attribute
STUD_PHONE. Its decomposition into 1NF has been shown in table 2.
STUD_NO STUD_NAME STUD_PHONE STUD_STATE | STUD_COUNTRY
1 RAM 9716271721, HARYAMA INDIA
9871717178
2 RAM 9898297281 PUNJAB INDIA
3 SURESH PlTINJJI\B_ | II\_IDIA
Table 1
Conversion to first normal form

5TUD_NO STUD_NAME STUD_PHONE S5TUD_STATE S5TUD_COUNTRY
1 I f\‘_ﬁ}!\f’l 9?162?1_?2 : |f H_A_R_Y.EN-D‘ lEQI_A
1 RAM 9871717178 HARYAMNA INDIA
2 RAM 9898297281 PUNJAB INDILA
3 _ SURESH | PUNIAB | INDIA

Table 2

Ex:2

ID Name Course

1 Anjali CIl, C2

2 Honey C3

3 Vardhan C2,C3

In the above table Course 1s a multi-valued attribute so it is not in 1NF. Below Table is in 1NF
as there is no multi-valued attribute.

In Second Normal Form, a relation must be in first normal form and relation must not

contain any partial dependency.




A relation is in 2NF if it has No Partial Dependency, i.e., no non-prime attribute
(attributes which are not part of any candidate key) is dependent on any proper subset of any
candidate key of the table.

Partial Dependency: If the proper subset of candidate key determines non-prime attribute, it
is called “partial dependency”.
Ex:1 Consider table-3 as following below.

Stud No Course No Course-Fee
1 Cl 1000
2 C2 1500
1 C4 2000
4 C3 1000
4 Cl 1000
2 C5 2000

{Note that, there are many courses having the same course fee. }

Here,
COURSE FEE cannot alone decide the value of COURSE NO or STUD NO;
COURSE FEE together with STUD NO cannot decide the value of COURSE NO;
COURSE FEE together with COURSE NO cannot decide the value of STUD NO;
Hence,

COURSE FEE would be a non-prime attribute, as it does not belong to the one only
candidate key {STUD NO, COURSE NO};

But, COURSE NO -> COURSE FEE, i.e., COURSE FEE is dependent on COURSE NO,
which is a proper subset of the candidate key. Non-prime attribute COURSE FEE is
dependent on a proper subset of the candidate key, which is a partial dependency and so
this relation is not in 2NF.

To convert the above relation to 2NF,
we need to split the table into two tables such as

Table 1: STUD NO, COURSE _NO
Table 2: COURSE NO, COURSE FEE

Table 1 Table2
Stud No Course No Course No Course Fee
1 Cl Cl 1000
2 C2 C2 1500
1 C4 C3 1000
4 C3 C4 2000
4 Cl C5 2000

NOTE: 2NF tries to reduce the redundant data getting stored in memory. For instance, if
there are 100 students taking C1 course, we don’t need to store its Fee as 1000 for all the




100 records, instead, once we can store it in the second table as the course fee for C1 is
1000.
Ex:2 Consider following functional dependencies in relation R (A, B, C, D)
AB -> C [A and B together determine C]

BC -=> D [B and C together determine D]

In the above relation, AB is the only candidate key and there is no partial dependencys, i.e.,
any proper subset of AB doesn’t determine any non-prime attribute.

Ex:2 Consider following functional dependencies in relation R (A, B, C, D)
AB -> C [A and B together determine C]

BC -> D [B and C together determine D]

In the above relation, AB is the only candidate key and there is no partial dependencys, i.e.,
any proper subset of AB doesn’t determine any non-prime attribute.

3.5.4 Third Normal Form

A relation is in third normal form, if there is no transitive dependency for non-prime
attributes as well as it is in second normal form.
A relation is in 3NF if at least one of the following condition holds in every non-trivial function
dependency X —>Y
1. Xis a super key.
2. Y is a prime attribute (each element of Y is part of some candidate key).

§TUD_NO

STUD_NAME

STUD STATE

STUD_COUNTRY

1
L

RAM
HAM

HARYANA
PUNIAH

[NDIA
[NDIA

STUD AGE

19

3

SURESH

FUNIAR

INDIA

k11

Table 4

Transitive dependency — If A->B and B->C are two FDs then A->C is called “transitive
dependency”.

Ex:1 In relation STUDENT given in Table 4,

FD set: {STUD NO -> STUD_NAME, STUD NO -> STUD STATE, STUD STATE ->
STUD COUNTRY, STUD NO -> STUD_AGE}
Candidate Key: {STUD NO}

For this relation in table 4, STUD NO -> STUD STATE and STUD STATE ->
STUD_COUNTRY are true. So, STUD COUNTRY is transitively dependent on STUD NO.
It violates the third normal form. To convert it in third normal form, we will decompose the
relation

STUDENT (STUD NO, STUD NAME, STUD PHONE, STUD STATE,
STUD COUNTRY STUD AGE) as:




STUDENT (STUD NO, STUD NAME, STUD PHONE, STUD STATE, STUD AGE)
STATE_COUNTRY (STATE, COUNTRY)

Ex:2 — Consider relation R(A, B, C, D, E)

A->BC,

CD->E,

B->D,

E->A
All possible candidate keys in above relation are {A, E, CD, BC} All attributes are on right
sides of all functional dependencies are prime.

3.5.5 Boyce-Codd Normal Form (BCNF)

A relation R is in BCNF if R is in Third Normal Form and for every FD, LHS is super
key. A relation is in BCNF iff in every non-trivial functional dependency X — Y, X is a super
key.

EL}:II Find the highest normal form of a relation R (A, B, C, D, E) with FD set as {BC->D, AC-
>BE,B->E}.

Step:1 As we can see, (AC)+ ={A,C,B,E,D} but none of its subset can determine all attribute
of relation, So AC will be candidate key. A or C can’t be derived from any other attribute of
the relation, so there will be only 1 candidate key {AC}.

Step:2 Prime attributes are those attributes that are part of candidate key {A, C} in this
example and others will be non-prime {B, D, E} in this example.

Step:3 The relation R is in Ist normal form as a relational DBMS does not allow multi-valued
or composite attribute.

The relation is in 2nd normal form because BC->D is in 2nd normal form (BC is not a
proper subset of candidate key AC) and AC->BE is in 2nd normal form (AC is candidate key)
and B->E is in 2nd normal form (B is not a proper subset of candidate key AC).

The relation is not in 3rd normal form because in BC->D (neither BC is a super key nor
D is a prime attribute) and in B->E (neither B is a super key nor E is a prime attribute) but to
satisfy 3rd normal for, either LHS of an FD should be super key or RHS should be prime
attribute. So, the highest normal form of relation will be 2nd Normal form.

EX: 2 Consider the relation R (A, B, C)

A->BC
B>
A and B both are super keys so above relation is in BCNF.

Key Points on Normal Forms:

1. BCNEF is free from redundancy.

2. Ifarelation is in BCNF, then 3NF is also satisfied.

3. [If all attributes of relation are prime attribute, then the relation is always in 3NF.
4. A relation in a Relational Database is always and at least in 1NF form.




W

Every Binary Relation (a Relation with only 2 attributes) is always in BCNF.

If a Relation has only singleton candidate keys (i.e., every candidate key consists of only 1
attribute), then the Relation is always in 2NF (because no Partial functional dependency
possible).

Sometimes going for BCNF form may not preserve functional dependency. In that case go
for BCNF only if the lost FD(s) is not required, else normalize till 3NF only.

There are many more Normal forms that exist after BCNF, like 4NF and more. But in real
world database systems it’s generally not required to go beyond BCNF.
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UNIT-4

Query Processing: Overview, Measures of Query cost, Selection operation, sorting, Join
Operation, other operations, Evaluation of Expressions.

Query optimization: Overview, Transformation of Relational Expressions, Estimating statistics
of Expression results, Choice of Evaluation Plans, Materialized views, Advanced Topics in Query
Optimization.

TU O salary<75000 (nsalary(inStrUCtor))
n salary(o salary<75000 (instructor))

Query Processing

Query processing refers to the range of activities involved in extracting data from a database.
The activities include translation of queries in high-level database languages into expressions
that can be used at the physical level of the file system, a variety of query-optimizing
transformations, and actual evaluation of queries.

Overview

relational-algebra
expression

parser and
translator

query
output

statistics
about data

Figure 12.1 Steps in query processing.

The steps involved in processing a query appear in Figure 12.1. The basic steps are:
1. Parsing and translation.

2. Optimization.

3. Evaluation.

Thus, the first action the system must take in query processing is to translate a given query into
its internal form. In generating the internal form of the query, the parser checks the syntax of
the user’s query, verifies that the relation names appearing in the query are names of the
relations in the database, and so on. The system constructs a parse-tree representation of the
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query, which it then translates into a relational-algebra expression. If the query was
expressed in terms of a view, the translation phase also replaces all uses of the view by the
relational-algebra expression that defines the view.

consider the query:
SQL> select salary from instructor where salary < 75000;

This query can be translated into either of the following relational-algebra
expressions:

O salary<75000 (T[salary( instructo r))

T salary(O salary<75000 (instructor))

A relational algebra operation annotated with instructions on how to evaluate it is called an
evaluation primitive. A sequence of primitive operations that can be used to evaluate a query is
a query-execution plan or query-evaluation plan. Figure 12.2 illustrates an evaluation plan for
our example query, in which a particular index (denoted in the figure as “index 1”) is specified
for the selection operation. The query-execution engine takes a query-evaluation plan,
executes that plan, and returns the answers to the query.

T salary

= salary < 75000; use index 1

instructor

Figure 12.2 A query-evaluation plan.

It is the responsibility of the system to construct a queryevaluation plan that minimizes the cost
of query evaluation; this task is called query optimization.

Measures of Query Cost

There are multiple possible evaluation plans for a query, and it is important to be able to
compare the alternatives in terms of their (estimated) cost, and choose the best plan. To do so,
we must estimate the cost of individual operations, and combine them to get the cost of a
qguery evaluation plan.

The cost of query evaluation can be measured in terms of a number of different resources,
including disk accesses, CPU time to execute a query, and, in a distributed or parallel database
system, the cost of communication.
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We use the number of block transfers from disk and the number of disk seeks to estimate the
cost of a query-evaluation plan. If the disk subsystem takes an average of ttseconds to transfer
a block of data, and has an average block-access time (disk seek time plus rotational latency) of
ts seconds, then an operation that transfers b blocks and performs S seeks would take b * tr + S
* ts seconds. The values of tt and ts must be calibrated for the disk system used, but typical
values for high-end disks today would be ts = 4 milliseconds and tr = 0.1 milliseconds, assuming
a 4-kilobyte block size and a transfer rate of 40 megabytes per second.

The response time for a query-evaluation plan (that is, the wall-clock time required to execute
the plan), assuming no other activity is going on in the computer, would account for all these
costs, and could be used as a measure of the cost of the plan. Unfortunately, the response time
of a plan is very hard to estimate without actually executing the plan, for the following reasons:

1. The response time depends on the contents of the buffer when the query begins execution;
this information is not available when the query is optimized, and is hard to account for even if
it were available.

2. In a system with multiple disks, the response time depends on how accesses are distributed
among disks, which is hard to estimate without detailed knowledge of data layout on disk.

As a result, instead of trying to minimize the response time, optimizers generally try to
minimize the total resource consumption of a query plan. Our model of estimating the total
disk access time (including seek and data transfer) is an example of such a resource
consumption—based model of query cost.

Selection Operation

In query processing, the file scan is the lowest-level operator to access data. File scans are search
algorithms that locate and retrieve records that fulfill a selection condition. In relational systems, a file
scan allows an entire relation to be read in those cases where the relation is stored in a single,
dedicated file.

Selections Using File Scans and Indices:

Consider a selection operation on a relation whose tuples are stored together in one file. The
most straightforward way of performing a selection is as follows:

e Al (linear search). In a linear search, the system scans each file block and tests all records to
see whether they satisfy the selection condition. An initial seek is required to access the first
block of the file. In case blocks of the file are not stored contiguously, extra seeks may be
required, but we ignore this effect for simplicity.

Search algorithms that use an index are referred to as index scans. We use the selection
predicate to guide us in the choice of the index to use in processing the query. Search
algorithms that use an index are:

e A2 (primary index, equality on key). For an equality comparison on a key attribute with a
primary index, we can use the index to retrieve a single record that satisfies the corresponding
equality condition.

¢ A3 (primary index, equality on nonkey). We can retrieve multiple records by using a primary
index when the selection condition specifies an equality comparison on a nonkey attribute, A.
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The only difference from the previous case is that multiple records may need to be fetched.
However, the records must be stored consecutively in the file since the file is sorted on the
search key.

e A4 (secondary index, equality). Selections specifying an equality condition can use a
secondary index. This strategy can retrieve a single record if the equality condition is on a key;
multiple records may be retrieved if the indexing field is not a key.

In the first case, only one record is retrieved. The time cost in this case is the same as that for a
primary index (case A2).

In the second case, each record may be resident on a different block, which may result in one
I/O operation per retrieved record, with each |/O operation requiring a seek and a block
transfer. The worst-case time cost in this case is (hi + n) * (ts + tr ), where n is the number of
records fetched, if each record is in a different disk block, and the block fetches are randomly
ordered.

In certain algorithms, including A2, the use of a B+ -tree file organization can save one access
since records are stored at the leaf-level of the tree.

Selections Involving Comparisons:

Consider a selection of the form OASV(I'). We can implement the selection either by using
linear search or by using indices in one of the following ways:4

e A5 (primary index, comparison). A primary ordered index (for example, a primary B+-tree
index) can be used when the selection condition is a comparison. For comparison conditions of
the form A > v or A > v, a primary index on Acan be used to direct the retrieval of tuples, as
follows: For A > v, we look up the value v in the index to find the first tuple in the file that has a
value of A = v. A file scan starting from that tuple up to the end of the file returns all tuples that
satisfy the condition. For A > v, the file scan starts with the first tuple such that A > v. The cost
estimate for this case is identical to that for case A3.

® A6 (secondary index, comparison). We can use a secondary ordered index to guide retrieval
for comparison conditions involving . The lowest-level index blocks are scanned, either from
the smallest value up to v (for < and <), or from v up to the maximum value (for > and 2).
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Algorithm Cost Reason
A1l | Linear Search ts + b, xtr | One initial seek plus b, block transfers,
where b, denotes the number of blocks
in the file.

Al | Linear Search, | Average Since at most one record satisfies con-
Equality on case ts + | dition, scan can be terminated as soon
Key (b, /2) * tr as the required record is found. In the

worst case, b, blocks transfers are still
required.

A2 | Primary (h; + 1) = | (Where h; denotes the height of the in-
Bt-tree Index, (tr + ts5) dex.) Index lookup traverses the height
Equality on of the tree plus one 1/0 to fetch the
Key record; each of these 1/O operations re-

quires a seek and a block transfer.

A3 | Primary h; %= (tr + | One seek for each level of the tree, one
BT -tree Index, ts) + b x tr seek for the first block. Here b is the
Equality on number of blocks containing records
Nonkey with the specified search key, all of

which are read. These blocks are leaf
blocks assumed to be stored sequen-
tially (since it is a primary index) and
don’t require additional seeks.
A4 [ Secondary (hi + 1) = | This case is similar to primary index.
Bt-tree Index, | (tr +1ts)
Equality on
Key
A4 [ Secondary (hi + n) x| (Where n is the number of records
Bt-tree Index, | (tr +ts) fetched.) Here, cost of index traversal
Equality on is the same as for A3, but each record
Nonkey may be on a different block, requiring a
seek per record. Cost is potentially very
high if n is large.

A5 | Primary hi = (tr + |ldentical to the case of A3, equality on
B*-tree Index, |ts)+b*tr |nonkey.

Comparison

A6 | Secondary (hi + n) = |Identical to the case of A4, equality on
BT-tree Index, | (i7 + Ls) nonkey.
Comparison

Figure 12.3 Cost estimates for selection algorithms.

Implementation of Complex Selections:

So far, we have considered only simple selection conditions of the form A op B, where op is an
equality or comparison operation. We now consider more complex selection predicates.

¢ Conjunction: A conjunctive selection is a selection of the form:
Ty Ao -7, ()
® Disjunction: A disjunctive selection is a selection of the form:

Op, vugv-..\.;u.?(?')
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A disjunctive condition is satisfied by the union of all records satisfying the individual, simple
conditions 6; .6

e Negation: The result of a selection O _g (r) is the set of tuples of r for which the condition g
evaluates to false. In the absence of nulls, this set is simply the set of tuples in r that are not in

Ool(r).6

e A7 (conjunctive selection using one index). We first determine whether an access path is
available for an attribute in one of the simple conditions. If one is, one of the selection
algorithms A2 through A6 can retrieve records satisfying that condition. We complete the
operation by testing, in the memory buffer, whether or not each retrieved record satisfies the
remaining simple conditions.

e A8 (conjunctive selection using composite index). An appropriate composite index (that is,
an index on multiple attributes) may be available for some conjunctive selections. If the
selection specifies an equality condition on two or more attributes, and a composite index
exists on these combined attribute fields, then the index can be searched directly. The type of
index determines which of algorithms A2, A3, or A4 will be used.

e A9 (conjunctive selection by intersection of identifiers). Another alternative for
implementing conjunctive selection operations involves the use of record pointers or record
identifiers. This algorithm requires indices with record pointers, on the fields involved in the
individual conditions.

The cost of algorithm A9 is the sum of the costs of the individual index scans, plus the cost of
retrieving the records in the intersection of the retrieved lists of pointers. This cost can be
reduced by sorting the list of pointers and retrieving records in the sorted order.

e A10 (disjunctive selection by union of identifiers). If access paths are available on all the
conditions of a disjunctive selection, each index is scanned for pointers to tuples that satisfy the
individual condition. The union of all the retrieved pointers yields the set of pointers to all
tuples that satisfy the disjunctive condition. We then use the pointers to retrieve the actual
records.

Sorting

Sorting of data plays an important role in database systems for two reasons. First, SQL queries
can specify that the output be sorted. Second, and equally important for query processing,
several of the relational operations, such as joins, can be implemented efficiently if the input
relations are first sorted.

External Sort-Merge Algorithm:

Sorting of relations that do not fit in memory is called external sorting. The most commonly
used technique for external sorting is the external sort—-merge algorithm. We describe the
external sort—merge algorithm next. Let M denote the number of blocks in the main-memory
buffer available for sorting, that is, the number of disk blocks whose contents can be buffered
in available main memory.
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1. In the first stage, a number of sorted runs are created; each run is sorted, but contains only
some of the records of the relation.
1=0;
repeat
read M blocks of the relation, or the rest of the relation,
whichever is smaller;
sort the in-memory part of the relation;
write the sorted data to run file R;;
i=i+1;
until the end of the relation

2. In the second stage, the runs are merged. Suppose, for now, that the total number of runs,
N, is less than M, so that we can allocate one block to each run and have space left to hold one
block of output. The merge stage operates as follows:

read one block of each of the N files R; into a buffer block in memory;
repeat
choose the first tuple (in sort order) among all buffer blocks;
write the tuple to the output, and delete it from the buffer block;
if the buffer block of any run R; is empty and not end-of-file(R;)
then read the next block of R; into the buffer block;
until all input buffer blocks are empty

The output of the merge stage is the sorted relation. The output file is buffered to reduce the
number of disk write operations. The preceding merge operation is a generalization of the two-
way merge used by the standard in-memory sort— merge algorithm; it merges N runs, so it is
called an N-way merge.

a |19 7 i

g (24 d |31 5 bl 14 a | 14|
3 ;9 g |24 L < 33 a | 19|
21 = ia 7 al= «.\I b | 14|

c |33 | \ c |33

iz e |16 |

b |14 2| 24 \ d| 7|
e |16 £ o . \_ | d]21
r 16 d (21 / d 31
a |21 Sl 3 1; l( e [16]
m| 3 | ) P | e
L d| 21 . 1

P 2 K—)— — m 3
alz ae [ 2 p| 2|
a |14 a7z — [Blia r | 16|

16
> r
initial E sorted
relation runs runs output
create merge merge
runs pass—1 pass—2

Figure 12.4 External sorting using sort—merge.

In this case, the merge operation proceeds in multiple passes. Since there is enough memory
for M - 1 input buffer blocks, each merge can take M - 1 runs as input.

The initial pass functions in this way: It merges the first M - 1 runs (as described in item 2
above) to get a single run for the next pass. Then, it merges the next M - 1 runs similarly, and
so on, until it has processed all the initial runs. At this point, the number of runs has been
reduced by a factor of M - 1. If this reduced number of runs is still greater than or equal to M,
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another pass is made, with the runs created by the first pass as input. Each pass reduces the
number of runs by a factor of M - 1. The passes repeat as many times as required, until the
number of runs is less than M; a final pass then generates the sorted output.

Cost Analysis of External Sort-Merge:

We compute the disk-access cost for the external sort—merge in this way: Let b, denote the
number of blocks containing records of relation r. The first stage reads every block of the
relation and writes them out again, giving a total of 2br block transfers. The initial number of
runs is [log m-1 br /M]. Since the number of runs decreases by a factor of M - 1 in each merge
pass, the total number of merge passes required is [log m-1(br /M)]. Each of these passes reads
every block of the relation once and writes it out once, with two exceptions. First, the final pass
can produce the sorted output without writing its result to disk. Second, there may be runs that
are not read in or written out during a pass— for example, if there are M runs to be merged in
a pass, M - 1 are read in and merged, and one run is not accessed during the pass. Ignoring the
(relatively small) savings due to the latter effect, the total number of block transfers for
external sorting of the relation is:

br (2[log m-a(br /M)]+1

Applying this equation to the example in above Figure 12.4, we get a total of 12 * (4 + 1) = 60
block transfers.

The total number of seeks is then:

2[br /M1 + Tbr /bs1(2[l0gy_ (br/ M)] - 1)

Applying this equation to the example in above Figure 12.4, we get a total of 8 + 12 * (2 * 2 - 1)
= 44 disk seeks if we set the number of buffer blocks per run, b, to 1.

Join Operation

In this section, we study several algorithms for computing the join of relations, and we analyze
their respective costs.

We use the term equi-join to refer to a join of the r . 4. 5z s form

where A and B are attributes or sets of attributes of relations r and s, respectively. We use as a
running example the expression:

student X takes

We assume the following information about the two relations:

e Number of records of student: ng,4.,; = 5, 000.
e Number of blocks of student: bgygen: = 100.

e Number of records of takes: 1. = 10, 000.

® Number of blocks of takes: b;.s = 400.
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Nested-Loop Join:

Figure 12.5 shows a simple algorithm to compute the theta join, r Xe s, of two relations r and s.
This algorithm is called the nested-loop join algorithm, since it basically consists of a pair of
nested for loops. Relation r is called the outer relation and relation s the inner relation of the
join, since the loop for r encloses the loop for s. The algorithm uses the notation t, - ts, where tr
and ts are tuples; t; -ts denotes the tuple constructed by concatenating the attribute values of
tuples tr and t5.9

for each tuple #, in r do begin
for each tuple £; in s do begin
test pair (f;, ;) to see if they satisfy the join condition 6
if they do, add t, - f; to the result;
end
end

Figure 12.5 Nested-loop join.

Now consider the natural join of student and takes. Assume for now that we have no indices
whatsoever on either relation, and that we are not willing to create any index. We can use the
nested loops to compute the join; assume that student is the outer relation and takes is the
inner relation in the join. We will have to examine 5000 * 10, 000 = 50 * 106 pairs of tuples. In
the worst case, the number of block transfers is 5000 * 400+100 = 2,000,100, plus 5000+100 =
5100 seeks. In the best case scenario, however, we can read both relations only once, and
perform the computation. This computation requires at most 100 + 400 = 500 block transfers,
plus 2 seeks—a significant improvement over the worst-case scenario. If we had used takes as
the relation for the outer loop and student for the inner loop, the worst-case cost of our final
strategy would have been 10,000 * 100 + 400 = 1,000,400 block transfers, plus 10,400 disk
seeks. The number of block transfers is significantly less, and although the number of seeks is
higher, the overall cost is reduced, assuming ts = 4 milliseconds and tr = 0.1 milliseconds.

Block Nested-Loop Join:

block nested-loop join, which is a variant of the nested-loop join where every block of the inner
relation is paired with every block of the outer relation. Within each pair of blocks, every tuple
in one block is paired with every tuple in the other block, to generate all pairs of tuples. As
before, all pairs of tuples that satisfy the join condition are added to the result.

The primary difference in cost between the block nested-loop join and the basic nested-loop
join is that, in the worst case, each block in the inner relation s is read only once for each block
in the outer relation, instead of once for each tuple in the outer relation. Thus, in the worst
case, there will be a total of br * bs + br block transfers, where br and bs denote the number of
blocks containing records of r and s, respectively. Each scan of the inner relation requires one
seek, and the scan of the outer relation requires one seek per block, leading to a total of 2 * br
seeks.

In the worst case, we have to read each block of takes once for each block of student. Thus, in
the worst case, a total of 100 * 400 + 100 = 40,100 block transfers plus 2+x100 = 200 seeks are
required. This cost is a significant improvement over the 5000+%400+100 = 2,000,100 block
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transfers plus 5100 seeks needed in the worst case for the basic nested-loop join. The best-case
cost remains the same—namely, 100 + 400 = 500 block transfers and 2 seeks.

Indexed Nested-Loop Join:

In a nested-loop join, if an index is available on the inner loop’s join attribute, index lookups
can replace file scans. For each tuple tr in the outer relation r, the index is used to look up
tuples in s that will satisfy the join condition with tuple t..

This join method is called an indexed nested-loop join; it can be used with existing indices, as
well as with temporary indices created for the sole purpose of evaluating the join. Looking up
tuples in s that will satisfy the join conditions with a given tuple t, is essentially a selection on s.
For example, consider student X takes. Suppose that we have a student tuple with ID “00128".
Then, the relevant tuples in takes are those that satisfy the selection “ID = 00128".

For example, consider an indexed nested-loop join of student X takes, with student as the
outer relation. Suppose also that takes has a primary B+-tree index on the join attribute ID,
which contains 20 entries on average in each index node. Since takes has 10,000 tuples, the
height of the tree is 4, and one more access is needed to find the actual data. Since n student is
5000, the total cost is 100+5000 * 5 = 25,100 disk accesses, each of which requires a seek and a
block transfer. In contrast, as we saw before, 40,100 block transfers plus 200 seeks were
needed for a block nested loop join.

Merge Join:

The merge-join algorithm (also called the sort-merge-join algorithm) can be used to compute
natural joins and equi-joins. Let r(R) and s(S) be the relations whose natural join is to be
computed, and let R n S denote their common attributes. Suppose that both relations are
sorted on the attributes R n S. Then, their join can be computed by a process much like the
merge stage in the merge —sort algorithm.

e Merge-Join Algorithm:

pr = address of first tuple of 7;
ps = address of first tuple of s;
while (s # null and pr # null) do
begin
t; := tuple to which ps points;
55 - {i:; ]f;
set ps to point to next tuple of s;
done := false;
while (not done and ps # null) do
begin
;" := tuple to which ps points;
if (t'[JomAttrs] = t[JoinAttrs))
then begin
S=5 UL
set ps to point to next tuple of s;
end
else done := true;
end
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t, := tuple to which pr points;
while (pr # null and £, [JoinAttrs] < t[JoinAttrs]) do
begin
set pr to point to next tuple of ;
; := tuple to which pr points;
end
while (pr # null and ¢, [JoinAttrs] = & [JoinAttrs]) do
begin
foreach t, in S, do
begin
add & X £, to result;
end
set pr to point to next tuple of ;
; := tuple to which pr points;
end
end.

Figure 12.7 Merge join.
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Figure 12.8 Sorted relations for merge join.

Figure 12.8 shows two relations that are sorted on their join attribute al. It is instructive to go
through the steps of the merge-join algorithm on the relations shown in the figure.

e Cost Analysis:

JSuppose the relations are not sorted, and the memory size is the worst case,
only three blocks. The cost is as follows:

1. Using the formulae that we developed in Section 12.4, we can see that sorting
relation fakes requires [log, ,(400/3)1 = 8 merge passes. Sorting of relation
takes then takes 400 x (2[log, ,(400/3)1 + 1), or 6800, block transfers, with
400 more transfers to write out the result. The number of seeks required is
2 % [400/3] + 400 % (2 * 8 — 1) or 6268 seeks for sorting, and 400 seeks for
writing the output, for a total of 6668 seeks, since only one buffer block is
available for each run.

Similarly, sorting relation student takes [log, ,(100/3)] = 6 merge passes
and 100 * (2[log, ,(100/3)] + 1), or 1300, block transfers, with 100 more
transfers to write it out. The number of seeks required for sorting student is
2% [100/37 4+ 100 % (2 # 6 — 1) = 1164, and 100 seeks are required for writing
the output, for a total of 1264 seeks.

3. Finally, merging the two relations takes 400 4- 100 = 500 block transfers and
500 seeks.

ra
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Thus, the total cost is 9100 block transfers plus 8932 seeks if the relations are not
sorted, and the memory size is just 3 blocks.

With a memory size of 25 blocks, and the relations not sorted, the cost of
sorting followed by merge join would be as follows:

1. Sorting the relation takes can be done with just one merge step, and takes
a total of just 400  (2[log,,(400/25)] + 1) = 1200 block transfers. Similarly,
sorting student takes 300 block transfers. Writing the sorted output to disk
requires 400 + 100 = 500 block transfers, and the merge step requires 500
block transfers to read the data back. Adding up these costs gives a total
cost of 2500 block transfers.

2. If we assume that only one buffer block is allocated for each run, the number
of seeks required in this case is 2% [400/251 44004400 = 832 seeks for sorting
takes and writing the sorted output to disk, and similarly 2% [100/25]+100+
100 = 208 for student, plus 400 + 100 seeks for reading the sorted data in the
merge-join step. Adding up these costs gives a total cost of 1640 seeks.

e Hybrid Merge Join:

To avoid this cost, we can use a hybrid merge-join technique that combines indices with merge
join. Suppose that one of the relations is sorted; the other is unsorted, but has a secondary B+-
tree index on the join attributes. The hybrid merge-join algorithm merges the sorted relation
with the leaf entries of the secondary B+-tree index. The result file contains tuples from the
sorted relation and addresses for tuples of the unsorted relation. The result file is then sorted
on the addresses of tuples of the unsorted relation, allowing efficient retrieval of the
corresponding tuples, in physical storage order, to complete the join.

e Hash Join:

Like the merge-join algorithm, the hash-join algorithm can be used to implement natural joins
and equi-joins. In the hash-join algorithm, a hash function h is used to partition tuples of both
relations. The basic idea is to partition the tuples of each of the relations into sets that have the
same hash value on the join attributes. We assume that:

® hisahash function mapping JoinAttrs values to {0, 1,..., 1}, where JoinAttrs
denotes the common attributes of r and s used in the natural join.

® 1y, 11,....1Iy, denote partitions of r tuples, each initially empty. Each tuple
t, € r is put in partition r;, where i = h(t, [JoinAttrs]).

® 5,51, ..., Sy, denote partitions of s tuples, each initially empty. Each tuple £ € s
is put in partition s;, where i = h(t;[JoinAttrs]).

e Basics:

For example, if d is a tuple in student, c a tuple in takes, and h a hash function on the ID
attributes of the tuples, then d and ¢ must be tested only if h(c) = h(d). If h(c) = h(d), then c and
d must have different values for ID. However, if h(c) # h(d), we must test c and d to see
whether the values in their join attributes are the same, since it is possible that c and d have
different iids that have the same hash value.
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/* Partition s */
for each tuple £ in s do begin
i := h(t;[JoinAttrs]);
H = H; U {t};
end
/* Partitionr */
for each tuple f, in r do begin
i:= h(t,[JoinAttrs]);
H=H, U{t}
end
/* Perform join on each partition */
fori := 0 to n, do begin
read H;, and build an in-memory hash index on it;
for each tuple £, in H, do begin
probe the hash index on H,, to locate all tuples £,
such that L [JoinAttrs] = t.[JoinAttrs];
for each matching tuple f; in H;; do begin
add t, ™ {; to the result;
end
end
end

Figure 12.10 Hash join.
e Recursive Partitioning:

The hash function used in a pass is, of course, different from the one used in the previous pass.
The system repeats this splitting of the input until each partition of the build input fits in
memory. Such partitioning is called recursive partitioning.

¢ Handling of Overflows:

Hash-table overflow occurs in partition i of the build relation s if the hash index on sj is larger
than main memory. Hash-table overflow can occur if there are many tuples in the build relation
with the same values for the join attributes, or if the hash function does not have the
properties of randomness and uniformity. In either case, some of the partitions will have more
tuples than the average, whereas others will have fewer; partitioning is then said to be skewed.

The number of partitions is therefore increased by a small value, called the fudge factor.

Hash-table overflows can be handled by either overflow resolution or overflow avoidance.
Overflow resolution is performed during the build phase, if a hash-index overflow is detected.
Overflow resolution proceeds in this way: If s;, for any i, is found to be too large, it is further
partitioned into smaller partitions by using a different hash function. Similarly, ri is also
partitioned using the new hash function, and only tuples in the matching partitions need to be
joined.

In contrast, overflow avoidance performs the partitioning carefully, so that overflows never
occur during the build phase. In overflow avoidance, the build relation s is initially partitioned
into many small partitions, and then some partitions are combined in such a way that each
combined partition fits in memory. The probe relation r is partitioned in the same way as the
combined partitions on s, but the sizes of ri do not matter.
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e Cost of Hash Join:

a hash join is estimated to require:
3(by + bs) + 4my,

block transfers. The overhead 4m;, is usually quite small compared to b, + b,,
and can be ignored.

* Assuming b; blocks are allocated for the input buffer and each output buffer,
partitioning requires a total of 2([b, /by, + [bs /by 1) seeks. The build and probe
phases require only one seek for each of the n, partitions of each relation,
since each partition can be read sequentially. The hash join thus requires
2([by /by + [bs/bp]) + 21, seeks.

Now consider the case where recursive partitioning is required. Each pass
reduces the size of each of the partitions by an expected factor of M — 1; and
passes are repeated until each partition is of size at most M blocks. The expected
number of passes required for partitioning s is therefore [log,, ,(bs) — 1].

® Since, in each pass, every block of s is read in and written out, the total block
transfers for partitioning of s is 2bs[log,, ,(bs) — 1]. The number of passes
for partitioning of r is the same as the number of passes for partitioning of s,
therefore the join is estimated to require:

2(b; +bs)[log,, (bs) =11+ b, + bs

block transfers.

¢ Again assuming b, blocks are allocated for buffering each partition, and
ignoring the relatively small number of seeks during the build and probe
phase, hash join with recursive partitioning requires:

2( rbr/bﬂ BE Tbs/bb-DrlOqu(bs) —d]

disk seeks.
e Hybrid Hash Join:

The hybrid hash-join algorithm performs another optimization; it is useful when
memory sizes are relatively large, but not all of the build relation fits in memory.
The partitioning phase of the hash-join algorithm needs a minimum of one block
of memory as a buffer for each partition that is created, and one block of memory
as an input buffer. To reduce the impact of seeks, a larger number of blocks would
be used as a buffer; let b, denote the number of blocks used as a buffer for the
input and for each partition. Hence, a total of (1, + 1) * by blocks of memory are
needed for partitioning the two relations. If memory is larger than (1, + 1) * by,
we can use the rest of memory (M — (1, + 1) by, blocks) to buffer the first partition
of the build input (that is, sp), so that it will not need to be written out and read
back in. Further, the hash function is designed in such a way that the hash index
on sy fits in M — (1, + 1) * b, blocks, in order that, at the end of partitioning of s,
sp is completely in memory and a hash index can be built on s.
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e Complex Joins:

Consider the fE)llowing join with a conjunctive condition:

r Ngl AbpA-AD, S

One or more of the join techniques described earlier may be applicable for joins
on the individual conditions r My, s, r Xy, s, r Xy, s, and so on. We can compute
the overall join by first computing the result of one of these simpler joins r X, s;
each pair of tuples in the intermediate result consists of one tuple from r and one
from s. The result of the complete join consists of those tuples in the intermediate
result that satisfy the remaining conditions:

B s By By ¢ e se B,

These conditions can be tested as tuples in r M s are being generated.

A join whose condition is disjunctive can be computed in this way. Consider:

r Mﬂ]\/ﬂg\/---\/[‘}“ 5
The join can be computed as the union of the records in individual joins r K, s:

(T Mﬁl S)U(r MQZS)U"'U(Y Nﬂu S)

Other Operations

Duplicate Elimination:

We can implement duplicate elimination easily by sorting. Identical tuples will appear adjacent
to each other as a result of sorting, and all but one copy can be removed. With external sort—
merge, duplicates found while a run is being created can be removed before the run is written
to disk, thereby reducing the number of block transfers. The remaining duplicates can be
eliminated during merging, and the final sorted run has no duplicates. The worst-case cost
estimate for duplicate elimination is the same as the worst-case cost estimate for sorting of the
relation. We can also implement duplicate elimination by hashing, as in the hash-join
algorithm.

Projection:

We can implement projection easily by performing projection on each tuple, which gives a
relation that could have duplicate records, and then removing duplicate records. If the
attributes in the projection list include a key of the relation, no duplicates will exist; hence,
duplicate elimination is not required. Generalized projection can be implemented in the same
way as projection.

Set Operations:

Hashing provides another way to implement these set operations. The first step in each case is
to partition the two relations by the same hash function, and thereby create the partitions
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ro,f1,...,fnh and so,s1,...,Snh . Depending on the operation, the system then takes these steps on
each partitioni=0, 1,..., nn:

erUs

1. Build an in-memory hash indexon ;.

2. Add the tuples in si to the hash index only if they are not already present.
3. Add the tuples in the hash index to the result.

erns

1. Build an in-memory hash index on r;.

2. For each tuple in si, probe the hash index and output the tuple to the result only if it is
already present in the hash index.

er-s
1. Build an in-memory hash index on r;.

2. For each tuple in si, probe the hash index, and, if the tuple is present in the hash index,
delete it from the hash index.

3. Add the tuples remaining in the hash index to the result.

Outer Join:

Recall the outer-join operations described in Section 4.1.2. For example, the natural
left outer join takes 3X student contains the join of takes and student, and, in
addition, for each takes tuple t that has no matching tuple in student (that is,
where ID is not in student), the following tuple t; is added to the result. For all
attributes in the schema of takes, tuple t; has the same values as tuple t. The
remaining attributes (from the schema of student) of tuple #; contain the value
null.
We can implement the outer-join operations by using one of two strategies:

1. Compute the corresponding join, and then add further tuples to the join
result to get the outer-join result. Consider the left outer-join operation and
two relations: 7 (R) and s(S). To evaluate r ¥y s, we first compute r My s,
and save that result as temporary relation ;. Next, we compute r — IIr(g1)
to obtain those tuples in r that do not participate in the theta join. We can use
any of the algorithms for computing the joins, projection, and set difference
described earlier to compute the outer joins. We pad each of these tuples
with null values for attributes from s, and add it to g, to get the result of the
outer join.

The right outer-join operation r MCg s is equivalent to s IXy r, and can
therefore be implemented in a symmetric fashion to the left outer join. We
can implement the full outer-join operation r 2Ly s by computing the join
r M s, and then adding the extra tuples of both the left and right outer-join
operations, as before.

2. Modify the join algorithms. It is easy to extend the nested-loop join algo-
rithms to compute the left outer join: Tuples in the outer relation that do not
match any tuple in the inner relation are written to the output after being
padded with null values. However, it is hard to extend the nested-loop join
to compute the full outer join.

Dept of CSE, AITS, TIRUPATI




UNIT-4 Query Processing, Query optimization

Aggregation:

Recall the aggregation function (operator). For example, the function
SQL> select dept_name, avg (salary) from instructor group by dept_name;
computes the average salary in each university department.

The cost estimate for implementing the aggregation operation is the same as the cost of
duplicate elimination, for aggregate functions such as min, max, sum, count, and avg.

Evaluation of Expressions

We consider both the materialization approach and the pipelining approach.
Materialization:

It is easiest to understand intuitively how to evaluate an expression by looking at a pictorial
representation of the expression in an operator tree. Consider the expression:

I name (Uf, uilding =*“Watson” ( de p artment ) M anstructor )

I1

nanie
X

T

G, ... " . instructor
building = “Watson

department

Figure 12.11 Pictorial representation of an expression.

If we apply the materialization approach, we start from the lowest-level operations in the
expression (at the bottom of the tree). In our example, there is only one such operation: the
selection operation on department. The inputs to the lowest-level operations are relations in
the database. We execute these operations by the algorithms that we studied earlier, and we
store the results in temporary relations. We can use these temporary relations to execute the
operations at the next level up in the tree, where the inputs now are either temporary relations
or relations stored in the database. In our example, the inputs to the join are the instructor
relation and the temporary relation created by the selection on department. The join can now
be evaluated, creating another temporary relation.

Double buffering (using two buffers, with one continuing execution of the algorithm while the
other is being written out) allows the algorithm to execute more quickly by performing CPU

Dept of CSE, AITS, TIRUPATI




UNIT-4 Query Processing, Query optimization

activity in parallel with I/O activity. The number of seeks can be reduced by allocating extra
blocks to the output buffer, and writing out multiple blocks at once.

Pipelining:

We can improve query-evaluation efficiency by reducing the number of temporary files that are
produced. We achieve this reduction by combining several relational operations into a pipeline
of operations, in which the results of one operation are passed along to the next operation in
the pipeline. Evaluation as just described is called pipelined evaluation.

Creating a pipeline of operations can provide two benefits:

1. It eliminates the cost of reading and writing temporary relations, reducing the cost of query
evaluation.

2. It can start generating query results quickly, if the root operator of a query evaluation plan is
combined in a pipeline with its inputs. This can be quite useful if the results are displayed to a
user as they are generated, since otherwise there may be a long delay before the user sees any
query results.

¢ Implementation of Pipelining:

We can implement a pipeline by constructing a single, complex operation that combines the
operations that constitute the pipeline. Although this approach may be feasible for some
frequently occurring situations, it is desirable in general to reuse the code for individual
operations in the construction of a pipeline.

Pipelines can be executed in either of two ways:

1. In a demand-driven pipeline, the system makes repeated requests for tuples from the
operation at the top of the pipeline. Each time that an operation receives a request for tuples,
it computes the next tuple (or tuples) to be returned, and then returns that tuple. If the inputs
of the operation are not pipelined, the next tuple(s) to be returned can be computed from the
input relations, while the system keeps track of what has been returned so far. If it has some
pipelined inputs, the operation also makes requests for tuples from its pipelined inputs. Using
the tuples received from its pipelined inputs, the operation computes tuples for its output, and
passes them up to its parent.

2. In a producer-driven pipeline, operations do not wait for requests to produce tuples, but
instead generate the tuples eagerly. Each operation in a producer-driven pipeline is modeled as
a separate process or thread within the system that takes a stream of tuples from its pipelined
inputs and generates a stream of tuples for its output.

e Evaluation Algorithms for Pipelining:

The indexed nested loops join algorithm can output result tuples as it gets tuples for the outer
relation. It is therefore said to be pipelined on its outer (left-hand side) relation, although it is
blocking on its indexed (right-hand side) input, since the index must be fully constructed before
the indexed nested-loop join algorithm can execute.

Hybrid hash join can be viewed as partially pipelined on the probe relation, since it can output
tuples from the first partition as tuples are received for the probe relation. However, tuples
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that are not in the first partition will be output only after the entire pipelined input relation is
received.

The double-pipelined join algorithm in Figure 12.12 assumes that both inputs fit in memory. In
case the two inputs are larger than memory, it is still possible to use the double-pipelined join
technique as usual until available memory is full.

Query Optimization

Query optimization is the process of selecting the most efficient query-evaluation plan from
among the many strategies usually possible for processing a given query, especially if the query
is complex.

Overview

Consider the following relational-algebra expression, for the query “Find the names of all
instructors in the Music department together with the course title of all the courses that the
instructors teach.”

Hnnrﬂ.r’.ﬁﬂf’ (O-(f’.ﬂptr.l.n.mff:"‘Music" (ET!.-St?"UCtO'T‘ A (tﬁﬂ(lh.-BS A Hr:nu.-r'.‘;f-;m’..ﬁﬁti’.e(CO'U'TSB))))
name, title

. nanie, title
dept_name = Music

)
|
(8]
|

™ X
A &

instructor X Gda’pt_nnmrz = Music X \
teaches instructor teaches N —
‘ course_id, title | course_ia, title
course course
(a) Initial expression tree (b) Transformed expression tree

Figure 13.1 Equivalent expressions.

By reducing the number of tuples of the instructor relation that we need to access, we reduce
the size of the intermediate result. Our query is now represented by the relational-algebra
expression:

I1 name,title ((Udepf_n ame = “Music” (ZTLS tructo T)) M (teaches XTI course_id , title ( course )))

which is equivalent to our original algebra expression, but which generates smaller
intermediate relations. Figure 13.1 depicts the initial and transformed expressions.
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(sort to remove duplicates)
name, title

I1
[x] (merge join)

pipeline \PiPC“NC

sort,

sort;, Pl (hash join)

‘ pipeline N‘lpt‘]ll‘lk‘

Gdepf_nmm‘ = Music 11 course_id, title
(use index 1) .

instructor teaches course

Figure 13.2 An evaluation plan.

Generation of query-evaluation plans involves three steps:
(1) generating expressions that are logically equivalent to the given expression.

(2) annotating the resultant expressions in alternative ways to generate alternative query-evaluation
plans, and

(3) estimating the cost of each evaluation plan, and choosing the one whose estimated cost is the least.

Transformation of Relational Expressions

Two relational-algebra expressions are said to be equivalent if, on every legal database
instance, the two expressions generate the same set of tuples. (Recall that a legal database
instance is one that satisfies all the integrity constraints specified in the database schema.)
Note that the order of the tuples is irrelevant; the two expressions may generate the tuples in
different orders, but would be considered equivalent as long as the set of tuples is the same.

Equivalence Rules:

An equivalence rule says that expressions of two forms are equivalent. We can
replace an expression of the first form by an expression of the second form, or vice
versa—that is, we can replace an expression of the second form by an expression
of the first form—since the two expressions generate the same result on any
valid database. The optimizer uses equivalence rules to transform expressions
into other logically equivalent expressions.

We now list a number of general equivalence rules on relational-algebra
expressions. Some of the equivalences listed appear in Figure 13.3. We use 0, 61, 6,
and so on to denote predicates, L1, L, L3, and so on to denote lists of attributes,
and E, Eq, E;, and so on to denote relational-algebra expressions. A relation
name 7 is simply a special case of a relational-algebra expression, and can be used
wherever E appears.
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1. Conjunctive selection operations can be deconstructed into a sequence of individual
selections. This transformation is referred to as a cascade of o.

Uﬂlf\ﬂz(E) — Uﬁl(gﬂz(E))

2. Selection operations are commutative.

0o, (0%, (E)) = 0,(0%,(E))

3. Only the final operations in a sequence of projection operations are needed; the others can be
omitted. This transformation can also be referred to as a cascade of .

nL](an(- .- (HLH(E)) .- )) = HL1(E)
4. Selections can be combined with Cartesian products and theta joins.
a. op(E1 x Ep) = Eq Mg Ep

This expression is just the definition of the theta join.

b. 0y (Eq X, E2) = E; Mg e, E2
5. Theta-join operations are commutative.

El Nﬂ E2 — E2 Ng El

Recall that the natural-join operator is simply a special case of the theta-join operator; hence,
natural joins are also commutative.

6. a. Natural-join operations are associative.
(E1 ™ Ep) X E3z = E1 X (Ex X Ej)
b. Theta joins are associative in the following manner:
(E1 Mg, Ez) Wgne, E3 = Eq Mg ne, (E2 Mg, E3)

where 62 involves attributes from only E2 and E3. Any of these conditions may be empty;
hence, it follows that the Cartesian product (x) operation is also associative. The commutativity
and associativity of join operations are important for join reordering in query optimization.

7. The selection operation distributes over the theta-join operation under the following two
conditions:

a. It distributes when all the attributes in selection condition ©0 involve only the attributes of
one of the expressions (say, E1) being joined.

oo, (E1 Mo E2) = (09,(E1)) X E>

b. It distributes when selection condition ©1 involves only the attributes of E1 and ©2 involves
only the attributes of E2.

0o, 06, (E1 Mg E2) = (09,(E1)) Mg (04,(E2))

8. The projection operation distributes over the theta-join operation under the following
conditions.
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a. Let Ly and L»> be attributes of E; and E», respectively. Suppose that
the join condition 8 involves only attributes in L1 U L;. Then,

My,ur,(E1 Ne Ez) = (I, (E1)) Ne (IM1,(E2))

b. Consider a join Eq Ky E,. Let L1 and L, be sets of attributes from E;
and E,, respectively. Let L3 be attributes of E; that are involved in join
condition 0, but are notin L., U L, and let L4 be attributes of E> that
are involved in join condition 0, but are not in L1 U L». Then,

ITr,ur,(E1 Me Ez) = Iy ,ur,((TTL,ur,(E1)) Me (Ir,ur,(E2)))
9. The set operations union and intersection are commutative.

Ei UEs = Es'U £5

Bi NiEs = BN Ei
Set difference is not commutative.

10. Set union and intersection are associative.

By Edu By = BywnidEs v B

(E; N E;) N Es = E; N (Ez2 N Ej)

11. The selection operation distributes over the union, intersection, and set difference
operations.

op(E1 — E;) = op(E1) — op(Ey)
Similarly, the preceding equivalence, with - replaced with either U or n, also holds. Further:
G'p(El —_ Ez) = GP(E]) — Ez

The preceding equivalence, with — replaced by N, also holds, but does not hold if - is replaced
by U.

12. The projection operation distributes over the union operation.
ML(E1 U Ep) = (ML(Eq)) U (ML(E))
Examples of Transformations:

We now illustrate the use of the equivalence rules. We use our university example with the
relation schemas:

instructor(ID, name, dept_name, salary)
teaches(ID, course_id, sec_id, semester, year)
course(course_id, title, dept_name, credits)

In our example, the expression:
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M pame, title (Udept_mmze —Music> (#nstructor W (teaches M TI course_id, title (course))))

was transformed into the following expression:

I name, title ((G-df:pt_nmm: = “Music” (iTLS tTUCtOT)) X (teaches X IT course_id, title ( course )))

which is equivalent to our original algebra expression, but generates smaller intermediate
relations.

Multiple equivalence rules can be used, one after the other, on a query or on parts of the
guery. As an illustration, suppose that we modify our original query to restrict attention to
instructors who have taught a course in 2009. The new relational-algebra query is:

Hnmne,tiil(ﬂ (Udepf_'rmme =“Music” A year = 2009
(instructor M (teaches X I urseid. titte(course))))

We cannot apply the selection predicate directly to the instructor relation, since the
predicate involves attributes of both the instructor and teaches relations. However,
we can first apply rule 6.a (associativity of natural join) to transform the join
instructor X (teaches W T urseid titie(course)) into (instructor ™ teaches) ™
I1 course.id, title ( cours 6):

Hname, title (G-df:pf_nmne ="Music” A year = 2009
((instructor N teaches) X I purse id titie(COUTSE)))

Then, using rule 7.a, we can rewrite our query as:

Hname.title ((Udept_na-me =“Music” A year = 2009
(instructor M teaches)) ™M I ourse id titte (course))

Let us examine the selection subexpression within this expression. Using
rule 1, we can break the selection into two selections, to get the following subex-
pression:

Odept_name = “Music” (Gyf:m‘ = 2009 (in°gtru0t0r o teac}ws))

Both of the preceding expressions select tuples with dept_name = “Music”
and course_id = 2009. However, the latter form of the expression provides a new

opportunity to apply Rule 7.a (“perform selections early”), resulting in the subex-
pression:

O deptname = “Music” (instructor) M ayeq, = 2000 (teaches)
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Now consider the following form of our example query:

11 g
l_|[name, title ‘ name, title
c X
dept_name = Music
A year = 2009
[><] / \ 1 course_id, title
. / \Dq Gdn’pf_rmme = Music Gyem' =2009
instructor / \
teaches e instructor teaches course
I course_id, title
course
(a) Initial expression tree (b) Tree after multiple transformations

Figure 13.4 Multiple transformations.

n'n,(ma.e.tztle ((Udepf_nmme = “Music” (inStTUCtOT) X teaches) X Hmumf:_id. mgg(CO’UJ?”SB))

When we compute the subexpression:

(Udcpf_nmm:=“Music” (inStTUCtOT) X teaChes)

we obtain a relation whose schema is:

(ID, name, dept_name, salary, course_id, sec_id, semester, year)

we can modify the expression to:

I1 name, title (( M ame, course.id ((Udflpt_-n(ms,e = “Music” (inStTUCtOT)) M teaches )

The projection IT,ume, course.id Teduces the size of the intermediate join results.

Join Ordering:

A good ordering of join operations is important for reducing the size of temporary results;
hence, most query optimizers pay a lot of attention to the join order. In equivalence rule 6.a,
the natural-join operation is associative. Thus, for all relations r1, r2, and r3:
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(Tl X Tz) [><|T3 =" X (?"2 X T3)

Although these expressions are equivalent, the costs of computing them may
differ. Consider again the expression:

nnmn.(?.t:étlﬁ ((U(lept_nume=“Music” (iﬂ,StT”U.CtOT)) X teaches M ncourse_id.titlﬁ(course))

We could choose to compute teaches X I pyrse_ia. 1isie (course) first, and then to join
the result with:

O dept_name = “Music” (’LnStT"U,CtOT')

However, teaches M Il qupseid, e (course) is likely to be a large relation, since
it contains one tuple for every course taught. In contrast:

O dept_name = “Music” (inst’ructor) M teaches

There are other options to consider for evaluating our query. We do not care
about the order in which attributes appear in a join, since it is easy to change the
order before displaying the result. Thus, for all relations r; and r»:

r1I><ir2 = TzNI’]

That is, natural join is commutative (equivalence rule 5).
Using the associativity and commutativity of the natural join (rules 5 and 6),
consider the following relational-algebra expression:

(enstructor ™ I purseid. title(course)) M teaches

instructor, so the join is just a Cartesian product. If there are a tuples in instructor
and b tuples in 1 pyrse_id, ritie (course), this Cartesian product generates a * b tuples,
one for every possible pair of instructor tuple and course (without regard for
whether the instructor taught the course). This Cartesian product would produce
a very large temporary relation. However, if the user had entered the preceding
expression, we could use the associativity and commutativity of the natural join
to transform this expression to the more efficient expression:

(instructor ™ teaches) ™M I purseid. titie( cOuTSE)

Enumeration of Equivalent Expressions:
Optimizers can greatly reduce both the space and time cost, using two key ideas.

1. If we generate an expression E’ from an expression E1 by using an equivalence rule on
subexpression ei, then E’ and E1 have identical subexpressions.
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procedure genAllEquivalent(E)
EQ={E}
repeat
Match each expression E; in EQ with each equivalence rule R;
if any subexpression e; of E; matches one side of R;
Create a new expression E’ which is identical to E;, except that
e; is transformed to match the other side of R;
Add E’ to EQ if it is not already present in EQ
until no new expression can be added to EQ

Figure 13.5 Procedure to generate all equivalent expressions.

except for ei and its transformation. Even ei and its transformed version usually share many
identical subexpressions. Expression-representation techniques that allow both expressions to
point to shared subexpressions can reduce the space requirement significantly. 2. It is not
always necessary to generate every expression that can be generated with the equivalence
rules. If an optimizer takes cost estimates of evaluation into account, it may be able to avoid
examining some of the expressions.’

Estimating Statistics of Expression Results

The cost of an operation depends on the size and other statistics of its inputs. Given an expression such
as a X (b M c) to estimate the cost of joining a with (b X c), we need to have estimates of statistics such
as the size of b M c.

e C(Catalog Information:
The database-system catalog stores the following statistical information about database relations:

® 1n,, the number of tuples in the relation r.
® b,, the number of blocks containing tuples of relation r.
® [, the size of a tuple of relation r in bytes.

® f,, the blocking factor of relation r —that is, the number of tuples of relation
r that fit into one block.

e V(A,r), thenumber of distinct values that appear in the relation r for attribute
A.This value is the same as the size of I 4(r). If Ais a key for relationr, V(A, r)
is #1,.
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The last statistic, V(A, r), can also be maintained for sets of attributes, if desired,
instead of just for individual attributes. Thus, given a set of attributes, A, V(A, r)
is the size of IT 4(r).

If we assume that the tuples of relation r are stored together physically in a
file, the following equation holds:

Statistics about indices, such as the heights of B*-tree indices and number of leaf
pages in the indices, are also maintained in the catalog.

For instance, most databases store the distribution of values for each attribute as a histogram:
in a histogram the values for the attribute are divided into a number of ranges, and with each
range the histogram associates the number of tuples whose attribute value lies in that range.
Figure 13.6 shows an example of a histogram for an integer-valued attribute that takes values
in the range 1 to 25.

As an example of a histogram, the range of values for an attribute age of a relation person
could be divided into 0-9, 10-19, . . ., 90-99 (assuming a maximum age of 99). With each
range we store a count of the number of person tuples whose age values lie in that range, and
the number of distinct age values that lie in that range.

There are several types of histograms used in database systems. For example, an equi-width
histogram divides the range of values into equal-sized ranges, whereas an equi-depth
histogram adjusts the boundaries of the ranges such that each range has the same number of
values.

=
= o

5]
=

frequency

20

—_
=

1-5 6-10 11-15 16-20 21-25

value
Figure 13.6 Example of histogram.

Selection Size Estimation:

The size estimate of the result of a selection operation depends on the selection predicate. We
first consider a single equality predicate, then a single comparison predicate, and finally
combinations of predicates.

® 0 A-a (r): If we assume uniform distribution of values (that is, each value appears with equal
probability), the selection result can be estimated to have nr /V(A,r) tuples, assuming that the
value a appears in attribute A of some record of r. The assumption that the value a in the
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selection appears in some record is generally true, and cost estimates often make it implicitly.
However, it is often not realistic to assume that each value appears with equal probability. The
course id attribute in the takes relation is an example where the assumption is not valid. It is
reasonable to expect that a popular undergraduate course will have many more students than
a smaller specialized graduate course. Therefore, certain course id values appear with greater
probability than do others.

® O a<v (r): Consider a selection of the form O a<(r). If the actual value used in the comparison
(v) is available at the time of cost estimation, a more accurate estimate can be made. The
lowest and highest values (min(A,r) and max(A,r)) for the attribute can be stored in the catalog.
Assuming that values are uniformly distributed, we can estimate the number of records that
will satisfy the condition A< v as 0 if v< min(A,r), as nr if v max(A,r), and:

v —min(A,r)

. max(A, r) — min(A, r)
e Complex selections:
o Conjunction: A conjunctive selection is a selection of the form:
06, ABA---AB, (?’)

We can estimate the result size of such a selection: For each 6;, we estimate
the size of the selection oy, (1), denoted by s;, as described previously. Thus,
the probability that a tuple in the relation satisfies selection condition 6; is
8; [ 1.

we estimate the number of tuples in the full selection as:

S]1 %Sy %k --- %Sy,

n, *x -
1,
o Disjunction: A disjunctive selection is a selection of the form:
O6,v6,v--ve, (1)
A disjunctive condition is satisfied by the union of all records satisfying
the individual, simple conditions 6;.
As before, let s; /1, denote the probability that a tuple satisfies condition

0;. The probability that the tuple will satisfy the disjunction is then 1 minus
the probability that it will satisfy none of the conditions:

51 S2 Sp
Pl o N R Y o o B e
(-2 -Zyseni -2

Multiplying this value by n, gives us the estimated number of tuples that
satisfy the selection.
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o Negation: In the absence of nulls, the result of a selection o4(r) is simply
the tuples of r that are not in oy(r). We already know how to estimate
the number of tuples in oy(r). The number of tuples in o-4(r) is therefore
estimated to be n(r) minus the estimated number of tuples in oy(r).

Join Size Estimation:

In this section, we see how to estimate the size of the result of a join.
The Cartesian product r x s contains n, *n, tuples. Each tuple of r x s occupies
I, +I; bytes, from which we can calculate the size of the Cartesian product.
Estimating the size of a natural join is somewhat more complicated than
estimating the size of a selection or of a Cartesian product. Let 7(R) and s(S) be
relations.

e [f RN S = h—thatis, the relations have no attribute in common—thenr X s
is the same asr x s, and we can use our estimation technique for Cartesian
products.

* If R N Sisakey for R, then we know that a tuple of s will join with at most
one tuple from r. Therefore, the number of tuples in 7 M s is no greater than
the number of tuples in s. The case where R N Sis a key for S is symmetric
to the case just described. If RN S forms a foreign key of S, referencing R, the
number of tuples in 7 X 5 is exactly the same as the number of tuples in s.

e The most difficult case is when RN S is a key for neither R nor S. In this
case, we assume, as we did for selections, that each value appears with equal
probability. Consider a tuple t of r, and assume R N S = {A}. We estimate
that tuple t produces:

Mg

V(A,s)

tuples in r X s, since this number is the average number of tuples in s with a
given value for the attributes A. Considering all the tuples in 7, we estimate
that there are:

Ny * Hg

V(A,s)

tuplesinr X s. Observe that, if we reverse the roles of r and s in the preceding
estimate, we obtain an estimate of:

My * Hg

V(A1)
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To illustrate all these ways of estimating join sizes, consider the expression:
student ™ takes
Assume the following catalog information about the two relations:
Nstudent = S000.
® fauden: = 50, which implies that bgygene = 5000/50 = 100.
® My = 10000.
® fikes = 25, which implies that by, = 10000/25 = 400.

e V(ID, takes) = 2500, which implies that only half the students have taken
any course (this is unrealistic, but we use it to show that our size estimates
are correct even in this case), and on average, each student who has taken a
course has taken four courses.

Size Estimation for Other Operations:

We outline below how to estimate the sizes of the results of other relational-algebra
operations.

® Projection: The estimated size (number of records or number of tuples) of a
projection of the form I 4(r) is V(A, r), since projection eliminates duplicates.

® Aggregation: The size of 4Gr(r) is simply V(A, r), since there is one tuple in
4G (r) for each distinct value of A.

® Set operations: If the two inputs to a set operation are selections on the same
relation, we can rewrite the set operation as disjunctions, conjunctions, or
negations. For example, oy, (r) U 04,(r) can be rewritten as op,vg,(r). Simi-
larly, we can rewrite intersections as conjunctions, and we can rewrite set
difference by using negation, so long as the two relations participating in
the set operations are selections on the same relation. We can then use the
estimates for selections involving conjunctions, disjunctions, and negation in
Section 13.3.2.

If the inputs are not selections on the same relation, we estimate the sizes
this way: The estimated size of r U s is the sum of the sizes of r and s. The
estimated size of r N s is the minimum of the sizes of r and s. The estimated
size of r — s is the same size as r. All three estimates may be inaccurate, but
provide upper bounds on the sizes.

® Outer join: The estimated size of r 3X s is the size of r M s plus the size of
r; that of r XC s is symmetric, while that of r 2xC s is the size of r X s plus
the sizes of » and s. All three estimates may be inaccurate, but provide upper
bounds on the sizes.
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Estimation of Number of Distinct Values:

For selections, the number of distinct values of an attribute (or set of attributes)
Ain the result of a selection, V(A, ay(r)), can be estimated in these ways:

e If the selection condition 6 forces A to take on a specified value (e.g., A = 3),
V(A o(r)) = 1.

e If 6 forces A to take on one of a specified set of values (e.g., (A=1Vv A=
3v A=4)),then V(A, oy(r)) is set to the number of specified values.

e If the selection condition 0 is of the form A op v, where op is a comparison
operator, V(A, ay(r)) is estimated to be V(A, r) x s, where s is the selectivity
of the selection.

¢ Inall other cases of selections, we assume that the distribution of A values is
independent of the distribution of the values on which selection conditions
are specified, and we use an approximate estimate of min(V(A, r), #15,()). A
more accurate estimate can be derived for this case using probability theory,
but the above approximation works fairly well.

For joins, the number of distinct values of an attribute (or set of attributes) A
in the result of a join, V(A, r X's), can be estimated in these ways:

o If all attributes in A are fromyr, V(A,r X s) is estimated as min(V (A, 1), #,5:),
and similarly if all attributes in A are from s, V(A,r X s) is estimated to be
min(V (A, s), fyss)-

e If Acontains attributes Al fromr and A2 from s, then V(A, r K s) is estimated
as:

min(V(AL, r) « V(A2 — Al,s), V(A1 — A2, r) x V(A2, 5), Hrms)

Choice of Evaluation Plans

Generation of expressions is only part of the query-optimization process, since each operation
in the expression can be implemented with different algorithms. An evaluation plan defines
exactly what algorithm should be used for each operation, and how the execution of the
operations should be coordinated.

A cost-based optimizer explores the space of all query-evaluation plans that are equivalent to
the given query, and chooses the one with the least estimated cost.

Cost-Based Join Order Selection:
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For a complex join query, the number of different query plans that are equiv-
alent to the query can be large. As an illustration, consider the expression:

P‘]erm---ml‘”

where the joins are expressed without any ordering. With n = 3, there are 12
different join orderings:

r1 ¥ (?‘2 X ?‘3) r1 X (}'3 Iy 1‘2) (}‘2 X }‘3) X r1 (I‘3 X ?‘2) 1+ 1
FQ_N(HNI’:),) FEN(?’Q,MI‘]) (T1NT3)M}'2 (}’3Nf’1)NI‘2
F‘gN(F-] M?‘z) r;M(rZMrl) (}‘1 Mrz)Mh (I‘zM?‘])NI‘:;

In general, with n relations, there are (2(n — 1))!/(n — 1)! different join orders.
(We leave the computation of this expression for you to do in Exercise 13.10.)
For joins involving small numbers of relations, this number is acceptable; for
example, with n = 5, the number is 1680. However, as n increases, this number
rises quickly. With n = 7, the number is 665,280; with n = 10, the number is
greater than 17.6 billion!

Cost-Based Optimization with Equivalence Rules:

The procedure for generating equivalent expressions can be modified to generate all possible
evaluation plans as follows: A new class of equivalence rules, called physical equivalence rules,
is added that allows a logical operation, such as a join, to be transformed to a physical
operation, such as a hash join, or a nested-loops join. By adding such rules to the original set of
equivalence rules, the procedure can generate all possible evaluation plans. The cost
estimation techniques we have seen earlier can then be used to choose the optimal (that is, the
least-cost) plan.

To make the approach work efficiently requires the following:

1. A space-efficient representation of expressions that avoids making multiple
copies of the same subexpressions when equivalence rules are applied.

N

Efficient techniques for detecting duplicate derivations of the same expres-
sion.

3. A form of dynamic programming based on memoization, which stores the
optimal query evaluation plan for a subexpression when it is optimized for
the first time; subsequent requests to optimize the same subexpression are
handled by returning the already memoized plan.

4. Techniques that avoid generating all possible equivalent plans, by keeping
track of the cheapest plan generated for any subexpression up to any point
of time, and pruning away any plan that is more expensive than the cheapest
plan found so far for that subexpression.

Heuristics in Optimization:
An example of a heuristic rule is the following rule for transforming relational algebra queries:

¢ Perform selection operations as early as possible.
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A heuristic optimizer would use this rule without finding out whether the cost is reduced by this
transformation.

¢ Perform projections early.

It is usually better to perform selections earlier than projections, since selections have the potential to
reduce the sizes of relations greatly, and selections enable the use of indices to access tuples. An
example similar to the one used for the selection heuristic should convince you that this heuristic does
not always reduce the cost.

Most practical query optimizers have further heuristics to reduce the cost of optimization. For example,
many query optimizers, such as the System R optimizer,3 do not consider all join orders, but rather
restrict the search to particular kinds of join orders. The System R optimizer considers only those join
orders where the right operand of each join is one of the initial relations r1,...,rn. Such join orders are
called left-deep join orders. Left-deep join orders are particularly convenient for pipelined evaluation,
since the right operand is a stored relation, and thus only one input to each join is pipelined.

M X

VR N/ Sy

/ ><1/\ \r4 [><1/ \)3 ,.4/ \;)
X r3 / \

(a) Left-deep join tree (b) Non-left-deep join tree

Figure 13.8 Left-deep join trees.

Optimizing Nested Subqueries™*:

The parameters are the variables from an outer level query that are used in the nested
subquery (these variables are called correlation variables). For instance, suppose we have the
following query, to find the names of all instructors who taught a course in 2007:

select name
from instructor
where exists (select *
from teaches
where instructor.ID = teaches.ID
and teaches.year = 2007);

Conceptually, the subquery can be viewed as a function that takes a parameter
(here, instructor.ID) and returns the set of all courses taught in 2007 by instructors
(with the same ID).

This technique for evaluating a query with a nested subquery is called correlated evaluation.

Correlated evaluation is not very efficient, since the subquery is separately evaluated for each
tuple in the outer level query. A large number of random disk 1/O operations may result.
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As an example of transforming a nested subquery into a join, the query in the preceding
example can be rewritten as:

select name
from instructor, teaches
where instructor.ID = teaches.ID and teaches.year = 2007;

In the example, the nested subquery was very simple. In general, it may not be possible to
directly move the nested subquery relations into the from clause of the outer query. Instead,
we create a temporary relation that contains the results of the nested query without the
selections using correlation variables from the outer query, and join the temporary table with
the outer level query. For instance, a query of the form:

select . ..

from [

where P, and exists (select *
from [,
where P);

where P, is a conjunction of simpler predicates, can be rewritten as:

create table f; as
select distinct V
from L»>
where P};
select . ..
from L 1. b
where P; and P5;

In our example, the original query would have been transformed to:

create table t; as
select distinct ID
from teaches
where year = 2007;
select name
from instructor, t
where t,.ID = instructor.ID;

Materialized Views**

When a view is defined, normally the database stores only the query defining the view. In
contrast, a materialized view is a view whose contents are computed and stored. Materialized
views constitute redundant data, in that their contents can be inferred from the view definition
and the rest of the database contents.

Materialized views are important for improving performance in some applications. Consider
this view, which gives the total salary in each department:

create view department_total_salary(dept_name, total_salary) as
select dept_name, sum (salary)

from instructor

group by dept_name;

Dept of CSE, AITS, TIRUPATI




UNIT-4 Query Processing, Query optimization

View Maintenance:

The task of keeping a materialized view up-to-date with the underlying data is known as view
maintenance.

A better option is to modify only the affected parts of the materialized view, which is known as
incremental view maintenance.

Most database systems perform immediate view maintenance; that is, incremental view
maintenance is performed as soon as an update occurs, as part of the updating transaction.

Some database systems also support deferred view maintenance, where view maintenance is
deferred to a later time; for example, updates may be collected throughout a day, and
materialized views may be updated at night. This approach reduces the overhead on update
transactions.

Incremental View Maintenance:

The changes to a relation that can cause a materialized view to become outof-date are inserts, deletes,
and updates.

e Join Operation:

Consider the materialized view v = r X s. Suppose we modify r by inserting a
set of tuples denoted by i,. If the old value of r is denoted by r°/, and the new
value of r by r"™¥, r"e® = rold U, Now, the old value of the view, v*, is given by
ro' X s, and the new value v™" is given by " X s. We can rewrite r"" X s as
(r'd U i,) X s, which we can again rewrite as (r°" x4 s) U (i, ™M s). In other words:

Y — vm'd U (Ir % S)
Thus, to update the materialized view v, we simply need to add the tuples i, M s

to the old contents of the materialized view. Inserts to s are handled in an exactly
symmetric fashion.

Now suppose 7 is modified by deleting a set of tuples denoted by 4,. Using
the same reasoning as above, we get:

prew — Um’rr’ _ (di % S)

Deletes on s are handled in an exactly symmetric fashion.
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e Selection and Projection Operations:

Consider a view v = oy(r). If we modify r by inserting a set of tuples i,, the new
value of v can be computed as:

plew — L_‘mfrf U U—(I("TJ‘)

Similarly, if r is modified by deleting a set of tuples d,, the new value of v can be
computed as:

plew — yold _ ()’Q(d.,-)

Projection is a more difficult operation with which to deal. Consider a ma-
terialized view v = [14(r). Suppose the relation r is on the schema R = (A, B),
and r contains two tuples (a. 2) and (a. 3). Then, I14(r) has a single tuple (a). If

we delete the tuple (a, 2) from r, we cannot delete the tuple (a) from IT 4(r): If we
did so, the result would be an empty relation, whereas in reality IT4(r) still has a
single tuple (a). The reason is that the same tuple (@) is derived in two ways, and
deleting one tuple from r removes only one of the ways of deriving (2); the other
is still present.

e Aggregation Operations:

Aggregation operations proceed somewhat like projections. The aggregate operations in SQL
are count, sum, avg, min, and max:

¢ count: Consider a materialized view v = aGeount(g)(r), which computes the
count of the attribute B, after grouping r bv attribute A.

¢ sum: Consider a materialized view v = 4G (B)(7)-

* avg: Consider a materialized view v = 4Gaug(5)(r).

* min, max: Consider a materialized view v = 4Guin5)(r). (The case of max is
exactly equivalent.)

Other Operations:

The set operation intersection is maintained as follows: Given materialized view v=r n s, when
a tuple is inserted in r we check if it is present in s, and if so we add it to v. If a tuple is deleted
from r, we delete it from the intersection if it is present. The other set operations, union and
set difference, are handled in a similar fashion;

Handling Expressions:

So far we have seen how to update incrementally the result of a single operation.
To handle an entire expression, we can derive expressions for computing the
incremental change to the result of each subexpression, starting from the smallest
subexpressions.

For example, suppose we wish to incrementally update a materialized view
E; W E; when a set of tuples i, is inserted into relation r. Let us assume r is
used in E; alone. Suppose the set of tuples to be inserted into E; is given by
expression D;. Then the expression D; X E, gives the set of tuples to be inserted
into E; M Es.
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e Query Optimization and Materialized Views:

Query optimization can be performed by treating materialized views just like regular relations.
However, materialized views offer further opportunities for optimization:

® Rewriting queries to use materialized views:

* Replacing a use of a materialized view with the view definition:

e Materialized View and Index Selection:

Another related optimization problem is that of materialized view selection, namely, “What is
the best set of views to materialize?” This decision must be made on the basis of the system
workload, which is a sequence of queries and updates that reflects the typical load on the
system. One simple criterion would be to select a set of materialized views that minimizes the
overall execution time of the workload of queries and updates, including the time taken to
maintain the materialized views.

Indices are just like materialized views, in that they too are derived data, can speed up queries,
and may slow down updates. Thus, the problem of index selection is closely related to that of
materialized view selection, although it is simpler.

Advanced Topics in Query Optimization**

e Top-K Optimization:

Many queries fetch results sorted on some attributes, and require only the top K results for some K.
Sometimes the bound K is specified explicitly. For example, some databases support a limit K clause
which results in only the top K results being returned by the query.

e Join Minimization:

When queries are generated through views, sometimes more relations are joined than are
needed for computation of the query. For example, a view v may include the join of instructor
and department, but a use of the view v may use only attributes from instructor. The join
attribute dept name of instructor is a foreign key referencing department. Assuming that
instructor.dept name has been declared not null, the join with department can be dropped,
with no impact on the query. For, under the above assumption, the join with department does
not eliminate any tuples from instructor, nor does it result in extra copies of any instructor
tuple.

Dropping a relation from a join as above is an example of join minimization. In fact, join
minimization can be performed in other situations as well. See the bibliographical notes for
references on join minimization.

Optimization of Updates:

Update queries often involve subqueries in the set and where clauses, which must also be
taken into account in optimizing the update. Updates that involve a selection on the updated
column (e.g., give a 10 percent salary raise to all employees whose salary is > $100,000) must
be handled carefully. If the update is done while the selection is being evaluated by an index
scan, an updated tuple may be reinserted in the index ahead of the scan and seen again by the
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scan; the same employee tuple may then get incorrectly updated multiple times (an infinite
number of times, in this case).

The problem of an update affecting the execution of a query associated with the update is
known as the Halloween problem (named so because it was first recognized on a Halloween
day, at IBM).

e Multiquery Optimization and Shared Scans:

Complex queries may in fact have subexpressions repeated in different parts of the query,
which can be similarly exploited, to reduce query evaluation cost. Such optimization is known
as multiquery optimization.

Common subexpression elimination optimizes subexpressions shared by different expressions
in a program, by computing and storing the result, and reusing it wherever the subexpression
occurs. Common subexpression elimination is a standard optimization applied on arithmetic
expressions by programming language compilers.

The shared-scan optimization works as follows: Instead of reading the relation repeatedly from
disk, once for each query that needs to scan a relation, data are read once from disk, and
pipelined to each of the queries. The shared-scan optimization is particularly useful when
multiple queries perform a scan on a single large relation (typically a “fact table”).

e Parametric Query Optimization:

In parametric query optimization, a query is optimized without being provided specific values
for its parameters, for example, dept name in the preceding example. The optimizer then
outputs several plans, each optimal for a different parameter value. A plan would be output by
the optimizer only if it is optimal for some possible value of the parameters. The set of
alternative plans output by the optimizer are stored. When a query is submitted with specific
values for its parameters, instead of performing a full optimization, the cheapest plan from the
set of alternative plans computed earlier is used. Finding the cheapest such plan usually takes
much less time than reoptimization.
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Transaction Management, Concurrency control and Recovery System

Transaction Management: Transactions: Concept, A Simple Transactional Model, Storage
Structures, Transaction Atomicity and Durability, Transaction Isolation, Serializability, Isolation
and Atomicity, Transaction Isolation Levels, Implementation of Isolation Levels, Transactions as
SQL Statements.

Concurrency Control: Lock-based Protocols, Deadlock Handling, Multiple granularity,
Timestamp-based Protocols, and Validation-based Protocols.

Recovery System: Failure Classification, Storage, Recovery and Atomicity, Recovery Algorithm,
Buffer Management, Failure with Loss of Nonvolatile Storage, Early Lock Release and Logical
Undo Operations.

Transactions

Collections of operations that form a single logical unit of work are called transactions. A
database system must ensure proper execution of transactions despite failures—either the
entire transaction executes, or none of it does. Furthermore, it must manage concurrent
execution of transactions in a way that avoids the introduction of inconsistency.

Transaction Concept

A transaction is a unit of program execution that accesses and possibly updates various data
items. Usually, a transaction is initiated by a user program written in a high-level data-
manipulation language (typically SQL), or programming language (for example, C++, or Java),
with embedded database accesses in JDBC or ODBC. A transaction is delimited by statements
(or function calls) of the form begin transaction and end transaction. The transaction consists of
all operations executed between the begin transaction and end transaction.

The database system maintain the following properties of the transactions:

e Atomicity. Either all operations of the transaction are reflected properly in the database, or
none are.

e Consistency. Execution of a transaction in isolation (that is, with no other transaction
executing concurrently) preserves the consistency of the database.

e |solation. Even though multiple transactions may execute concurrently, the system
guarantees that, for every pair of transactions Ti and Tj, it appears to Ti that either Tj finished
execution before Ti started or Tj started execution after Ti finished. Thus, each transaction is
unaware of other transactions executing concurrently in the system.




e Durability. After a transaction completes successfully, the changes it has made to the
database persist, even if there are system failures.

These properties are often called the ACID properties; the acronym is derived from the first
letter of each of the four properties.

A Simple Transaction Model

We shall illustrate the transaction concept using a simple bank application consisting of several
accounts and a set of transactions that access and update those accounts. Transactions access
data using two operations:

¢ read(X), which transfers the data item X from the database to a variable, also called X, in a
buffer in main memory belonging to the transaction that executed the read operation.

e write(X), which transfers the value in the variable X in the main-memory buffer of the
transaction that executed the write to the data item X in the database.

Let Ti be a transaction that transfers $50 from account A to account B. This transaction can be
defined as:

T;: read(A);
A=A -50;
write(A);
read(B);

B :=B + 50;
write(B).

Let us now consider each of the ACID properties.

e Consistency: The consistency requirement here is that the sum of A and B be unchanged by
the execution of the transaction. Without the consistency requirement, money could be
created or destroyed by the transaction! It can be verified easily that, if the database is
consistent before an execution of the transaction, the database remains consistent after the
execution of the transaction.

e Atomicity: Suppose that, just before the execution of transaction Ti, the values of accounts
A and B are $1000 and $2000, respectively. Now suppose that, during the execution of
transaction Ti , a failure occurs that prevents Ti from completing its execution successfully.
Further, suppose that the failure happened after the write(A) operation but before the write(B)
operation. In this case, the values of accounts A and B reflected in the database are $950 and
$2000. The system destroyed S50 as a result of this failure. In particular, we note that the sum
A + Bis no longer preserved.

e Durability: Once the execution of the transaction completes successfully, and the user who
initiated the transaction has been notified that the transfer of funds has taken place, it must be




the case that no system failure can result in a loss of data corresponding to this transfer of
funds. The durability property guarantees that, once a transaction completes successfully, all
the updates that it carried out on the database persist, even if there is a system failure after the
transaction completes execution.

We can guarantee durability by ensuring that either:

1. The updates carried out by the transaction have been written to disk before the transaction
completes.

2. Information about the updates carried out by the transaction and written to disk is sufficient
to enable the database to reconstruct the updates when the database system is restarted after
the failure.

e |solation: Even if the consistency and atomicity properties are ensured for each transaction,
if several transactions are executed concurrently, their operations may interleave in some
undesirable way, resulting in an inconsistent state.

For example, as we saw earlier, the database is temporarily inconsistent while the transaction
to transfer funds from A to B is executing, with the deducted total written to A and the
increased total yet to be written to B. If a second concurrently running transaction reads A and
B at this intermediate point and computes A+B, it will observe an inconsistent value.
Furthermore, if this second transaction then performs updates on A and B based on the
inconsistent values that it read, the database may be left in an inconsistent state even after
both transactions have completed.

Storage Structure

¢ Volatile storage. Information residing in volatile storage does not usually survive system
crashes. Examples of such storage are main memory and cache memory. Access to volatile
storage is extremely fast, both because of the speed of the memory access itself, and because it
is possible to access any data item in volatile storage directly.

¢ Nonvolatile storage. Information residing in nonvolatile storage survives system crashes.
Examples of nonvolatile storage include secondary storage devices such as magnetic disk and
flash storage, used for online storage, and tertiary storage devices such as optical media, and
magnetic tapes, used for archival storage. At the current state of technology, nonvolatile
storage is slower than volatile storage, particularly for random access. Both secondary and
tertiary storage devices, however, are susceptible to failure which may result in loss of
information.

e Stable storage. Information residing in stable storage is never lost (never should be taken
with a grain of salt, since theoretically never cannot be guaranteed—for example, it is possible,
although extremely unlikely, that a black hole may envelop the earth and permanently destroy
all data!). Although stable storage is theoretically impossible to obtain, it can be closely
approximated by techniques that make data loss extremely unlikely. To implement stable
storage, we replicate the information in several nonvolatile storage media (usually disk) with
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independent failure modes. Updates must be done with care to ensure that a failure during an
update to stable storage does not cause a loss of information.

Transaction Atomicity and Durability

A transaction may not always complete its execution successfully. Such a transaction is termed
aborted.

Once the changes caused by an aborted transaction have been undone, we say that the
transaction has been rolled back. It is part of the responsibility of the recovery scheme to
manage transaction aborts. This is done typically by maintaining a log.

A transaction that completes its execution successfully is said to be committed. A committed
transaction that has performed updates transforms the database into a new consistent state,
which must persist even if there is a system failure.

Once a transaction has committed, we cannot undo its effects by aborting it. The only way to
undo the effects of a committed transaction is to execute a compensating transaction.

We need to be more precise about what we mean by successful completion of a transaction.
We therefore establish a simple abstract transaction model. A transaction must be in one of the
following states:

e Active, the initial state; the transaction stays in this state while it is executing.
¢ Partially committed, after the final statement has been executed.
¢ Failed, after the discovery that normal execution can no longer proceed.

e Aborted, after the transaction has been rolled back and the database has been restored to
its state prior to the start of the transaction.

e Committed, after successful completion.

Figure 14.1 State diagram of a transaction.

The state diagram corresponding to a transaction appears in Figure 14.1. We say that a
transaction has committed only if it has entered the committed state.




Similarly, we say that a transaction has aborted only if it has entered the aborted state. A
transaction is said to have terminated if it has either committed or aborted. A transaction starts
in the active state. When it finishes its final statement, it enters the partially committed state.
At this point, the transaction has completed its execution, but it is still possible that it may have
to be aborted, since the actual output may still be temporarily residing in main memory, and
thus a hardware failure may preclude its successful completion.

A transaction enters the failed state after the system determines that the transaction can no
longer proceed with its normal execution (for example, because of hardware or logical errors).
Such a transaction must be rolled back. Then, it enters the aborted state. At this point, the
system has two options:

e |t can restart the transaction, but only if the transaction was aborted as a result of some
hardware or software error that was not created through the internal logic of the transaction. A
restarted transaction is considered to be a new transaction.

e |t can kill the transaction. It usually does so because of some internal logical error that can be
corrected only by rewriting the application program, or because the input was bad, or because
the desired data were not found in the database.

Transaction Isolation

Transaction-processing systems usually allow multiple transactions to run concurrently. it is far
easier to insist that transactions run serially— that is, one at a time, each starting only after the
previous one has completed. However, there are two good reasons for allowing concurrency:

e Improved throughput and resource utilization. A transaction consists of many steps.
Some involve 1/O activity; others involve CPU activity. The CPU and the disks in a computer
system can operate in parallel. Therefore, 1/0 activity can be done in parallel with processing at
the CPU. The parallelism of the CPU and the I/O system can therefore be exploited to run
multiple transactions in parallel. While a read or write on behalf of one transaction is in
progress on one disk, another transaction can be running in the CPU, while another disk may be
executing a read or write on behalf of a third transaction. All of this increases the throughput of
the system— that is, the number of transactions executed in a given amount of time.
Correspondingly, the processor and disk utilization also increase; in other words, the processor
and disk spend less time idle, or not performing any useful work.

¢ Reduced waiting time. There may be a mix of transactions running on a system, some short
and some long. If transactions run serially, a short transaction may have to wait for a preceding
long transaction to complete, which can lead to unpredictable delays in running a transaction. If
the transactions are operating on different parts of the database, it is better to let them run
concurrently, sharing the CPU cycles and disk accesses among them. Concurrent execution
reduces the unpredictable delays in running transactions. Moreover, it also reduces the average
response time: the average time for a transaction to be completed after it has been submitted.

The motivation for using concurrent execution in a database is essentially the same as the
motivation for using multiprogramming in an operating system. The database system must




control the interaction among the concurrent transactions to prevent them from destroying the
consistency of the database. It does so through a variety of mechanisms called concurrency-
control schemes.

Let T1 and T2 be two transactions that transfer funds from one account to another. Transaction
T1 transfers S50 from account A to account B. It is defined as:

Ti: read(A);
A=A —50;
write(A);
read(B);

B :=B + 50;
write(B).

Transaction T2 transfers 10 percent of the balance from account A to account B. It is defined as:

T>: read(A);
temp :=A*0.1;
A=A — temp;
write(A);
read(B);
B := B + temp;
write(B).

Suppose the current values of accounts A and B are $1000 and $2000, respectively.

T T

read(A)

A:=A-50

write(A)

read(B)

B:=E+50

write(B)

commit
read(A)
temp :=A % 0.1
A=A —temp
write(A)
read(B)
B :=B + temp
write(B)
commit

Figure 14.2 Schedule 1 — a serial schedule in which T; is followed by T,.

Suppose also that the two transactions are executed one at a time in the order T1 followed by
T2. This execution sequence appears in Figure 14.2. In the figure, the sequence of instruction
steps is in chronological order from top to bottom, with instructions of T1 appearing in the left
column and instructions of T2 appearing in the right column. The final values of accounts A and
B, after the execution in Figure 14.2 takes place, are $855 and $2145, respectively. Thus, the




total amount of money in accounts A and B— that is, the sum A + B—is preserved after the
execution of both transactions.

Ty T

read(A)
temp == A % 0.1
A=A — temp
write(A)
read(B)
B :=B + temp
write(B)
commit

read(A)

A:=A-50

write(A)

read(B)

B:=B + 50

write(B)

commit

Figure 14.3 Schedule 2 — a serial schedule in which T3 is followed by T;.

Similarly, if the transactions are executed one at a time in the order T2 followed by T1, then the
corresponding execution sequence is that of Figure 14.3. Again, as expected, the sum A + B is
preserved, and the final values of accounts A and B are $850 and $2150, respectively.

The execution sequences just described are called schedules. They represent the chronological
order in which instructions are executed in the system. These schedules are serial: Each serial
schedule consists of a sequence of instructions from various transactions, where the
instructions belonging to one single transaction appear together in that schedule. Recalling a
well-known formula from combinatorics, we note that, for a set of n transactions, there exist n
factorial (n!) different valid serial schedules.

T T;

read(A)

A=A-50

write(A)
read(A)
temp = A x 0.1
A=A — temp
write(A)

read(B)

B:=B+50

write(B)

commit
read(B)
B =B + temp
write(B)
commit

Figure 14.4 Schedule 3 — a concurrent schedule equivalent to schedule 1.

The two transactions are executed concurrently. One possible schedule appears in Figure 14.4.
After this execution takes place, we arrive at the same state as the one in which the
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transactions are executed serially in the order T1 followed by T2. The sum A + B is indeed
preserved.

T T

read(A)

A:=A—-50
read(A)
temp := A 0.1
A=A — temp
write(A)
read(B)

write(A)

read(B)

B:=B+ 50

write(B)

commit
B:=B + temp
write(B)
commit

Figure 14.5 Schedule 4 —a concurrent schedule resulting in an inconsistent state.

Not all concurrent executions result in a correct state. To illustrate, consider the schedule of
Figure 14.5. After the execution of this schedule, we arrive at a state where the final values of
accounts A and B are $950 and $2100, respectively. This final state is an inconsistent state,
since we have gained $50 in the process of the concurrent execution. Indeed, the sum A + B is
not preserved by the execution of the two transactions.

Serializability

In this section, we discuss different forms of schedule equivalence, but focus on a particular
form called conflict serializability.

Let us consider a schedule S in which there are two consecutive instructions, | and J , of
transactions Ti and Tj , respectively (i = j). If | and J refer to different data items, then we can
swap | and J without affecting the results of any instruction in the schedule. However, if | and J
refer to the same data item Q, then the order of the two steps may matter. Since we are
dealing with only read and write instructions, there are four cases that we need to consider:8

1. 1 = read(Q), J = read(Q). The order of | and J does not matter, since the same value of Q is
read by Tiand Tj, regardless of the order.

2. 1 = read(Q), J = write(Q). If | comes before J, then Ti does not read the value of Q that is
written by Tj in instruction J . If J comes before |, then Ti reads the value of Q that is written by
Tj . Thus, the order of | and J matters.

3. | = write(Q), J = read(Q). The order of | and J matters for reasons similar to those of the
previous case.




4. | = write(Q), J = write(Q). Since both instructions are write operations, the order of these
instructions does not affect either Ti or Tj . However, the value obtained by the next read(Q)
instruction of S is affected, since the result of only the latter of the two write instructions is
preserved in the database. If there is no other write(Q) instruction after | and J in S, then the
order of | and J directly affects the final value of Q in the database state that results from
schedule S.

We say that | and J conflict if they are operations by different transactions on the same data item, and at
least one of these instructions is a write operation.

To illustrate the concept of conflicting instructions, we consider schedule 3in Figure 14.6. The write(A)
instruction of T1 conflicts with the read(A) instruction of T2. However, the write(A) instruction of T2
does not conflict with the read(B) instruction of T1, because the two instructions access different data
items.

T I5)
read(A)
write(A)
read(A)
write(A)
read(B)
write(B)
read(B)
write(B)

Figure 14.6 Schedule 3 —showing only the read and write instructions

ith the read(B) instruction of T1, we can swap these instructions to generate an equivalent
schedule, schedule 5, in Figure 14.7. Regardless of the initial system state, schedules 3 and 5
both produce the same final system state.

I I
read(A)
write(A)
read(A)
read(B)
write(A)
write(B)
read(B)
write(B)

Figure 14.7 Schedule 5 — schedule 3 after swapping of a pair of instructions.

Since the write(A) instruction of T2 in schedule 3 of Figure 14.6 does not conflict with the
read(B) instruction of T1, we can swap these instructions to generate an equivalent schedule,
schedule 5, in Figure 14.7. Regardless of the initial system state, schedules 3 and 5 both
produce the same final system state. We continue to swap nonconflicting instructions:
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e Swap the read(B) instruction of T1 with the read(A) instruction of T2.
e Swap the write(B) instruction of T1 with the write(A) instruction of T2.
e Swap the write(B) instruction of T1 with the read(A) instruction of T2.

The final result of these swaps, schedule 6 of Figure 14.8, is a serial schedule. Note that
schedule 6 is exactly the same as schedule 1, but it shows only the read and write instructions.
Thus, we have shown that schedule 3 is equivalent to a serial schedule. This equivalence implies
that, regardless of the initial system state, schedule 3 will produce the same final state as will
some serial schedule.

If a schedule S can be transformed into a schedule S' by a series of swaps of nonconflicting
instructions, we say that Sand S' are conflict equivalent.

L |
read(Q)
write(Q)
write(Q)

Figure 14.9 Schedule 7.

The concept of conflict equivalence leads to the concept of conflict serializability. We say that a
schedule S is conflict serializable if it is conflict equivalent to a serial schedule. Thus, schedule 3
is conflict serializable, since it is conflict equivalent to the serial schedule 1. Finally, consider
schedule 7 of Figure 14.9; it consists of only the significant operations (that is, the read and
write) of transactions T3 and T4. This schedule is not conflict serializable, since it is not
equivalent to either the serial schedule <T3,T4> or the serial schedule <T4,T3>.

We now present a simple and efficient method for determining conflict serializability of a
schedule. Consider a schedule S. We construct a directed graph, called a precedence graph,
from S. This graph consists of a pair G = (V, E), where V is a set of vertices and E is a set of
edges. The set of vertices consists of all the transactions participating in the schedule. The set
of edges consists of all edges Ti = Tj for which one of three conditions holds:

1. Ti executes write(Q) before Tj executes read(Q).
2. Ti executes read(Q) before Tj executes write(Q).
3. Ti executes write(Q) before Tj executes write(Q).

If an edge Ti = Tj exists in the precedence graph, then, in any serial schedule S’ equivalent to S,

Ti must appear before Tj .
@&© @O
(a) (b)

Figure 14.10 Precedence graph for (a) schedule 1 and (b) schedule 2.
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For example, the precedence graph for schedule 1 in Figure 14.10a contains the single edge T1
- T2, since all the instructions of T1 are executed before the first instruction of T2 is executed.
Similarly, Figure 14.10b shows the precedence graph for schedule 2 with the single edge T2 -
T1, since all the instructions of T2 are executed before the first instruction of T1 is executed.

Figure 14.11 Precedence graph for schedule 4.

The precedence graph for schedule 4 appears in Figure 14.11. It contains the edge T1 - T2,
because T1 executes read(A) before T2 executes write(A). It also contains the edge T2 - T1,
because T2 executes read(B) before T1 executes write(B). If the precedence graph for S has a
cycle, then schedule S is not conflict serializable.

If the graph contains no cycles, then the schedule S is conflict serializable.

A serializability order of the transactions can be obtained by finding a linear order consistent
with the partial order of the precedence graph. This process is called topological sorting.

Figure 14.12 lllustration of topological sorting.

There are, in general, several possible linear orders that can be obtained through a topological
sort. For example, the graph of Figure 14.12a has the two acceptable linear orderings shown in
Figures 14.12b and 14.12c.
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Cycle-detection algorithms, such as those based on depth-first search, require on the order of
n? operations, where n is the number of vertices in the graph (that is, the number of
transactions).

T Ts

read(A)

A=A-50

write(A)
read(B)
B:=B—-10
write(B)

read(B)

B:=B+ 50

write(B)
read(A)
A=A+10
write(A)

Figure 14.13 Schedule 8.

It is possible to have two schedules that produce the same outcome, but that are not conflict equivalent.
For example, consider transaction T5, which transfers $10 from account B to account A. Let schedule 8
be as defined in Figure 14.13. We claim that schedule 8 is not conflict equivalent to the serial schedule
<T1,T5>, since, in schedule 8, the write(B) instruction of T5 conflicts with the read(B) instruction of T1.
This creates an edge T5 - T1 in the precedence graph. Similarly, we see that the write(A) instruction of
T1 conflicts with the read instruction of T5 creating an edge T1 - T5. This shows that the precedence
graph has a cycle and that schedule 8 is not serializable. However, the final values of accounts A and B
after the execution of either schedule 8 or the serial schedule <T1,T5> are the same—S$960 and $2040,
respectively.

Transaction Isolation and Atomicity

If a transaction Ti fails, for whatever reason, we need to undo the effect of this transaction to
ensure the atomicity property of the transaction. In a system that allows concurrent execution,
the atomicity property requires that any transaction Tj that is dependent on Ti (that is, Tj has
read data written by Ti) is also aborted. To achieve this, we need to place restrictions on the
type of schedules permitted in the system.

e Recoverable Schedules:

Consider the partial schedule 9 in Figure 14.14, in which T7 is a transaction that performs only
one instruction: read(A). We call this a partial schedule because we have not included a commit
or abort operation for T6. Notice that T7 commits immediately after executing the read(A)
instruction. Thus, T7 commits while T6 is still in the active state. Now suppose that T6 fails
before it commits. T7 has read the value of data item A written by T6. Therefore, we say that T7
is dependent on T6. Because of this, we must abort T7 to ensure atomicity. However, T7 has
already committed and cannot be aborted. Thus, we have a situation where it is impossible to
recover correctly from the failure of T6.
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va T7
read(A)
write(A)
read(A)
commit
read(B)

Figure 14.14 Schedule 9, a nonrecoverable schedule.

Schedule 9 is an example of a nonrecoverable schedule. A recoverable schedule is one where,
for each pair of transactions Ti and Tj such that Tj reads a data item previously written by Ti,
the commit operation of Ti appears before the commit operation of Tj . For the example of
schedule 9 to be recoverable, T7 would have to delay committing until after T6 commits.

e Cascadeless Schedules:

Even if a schedule is recoverable, to recover correctly from the failure of a transaction Ti , we
may have to roll back several transactions. Such situations occur if transactions have read data
written by Ti . As an illustration, consider the partial schedule of Figure 14.15. Transaction T8
writes a value of A that is read by transaction T9. Transaction T9 writes a value of A that is read
by transaction T10. Suppose that, at this point, T8 fails. T8 must be rolled back. Since T9 is
dependent on T8, T9 must be rolled back. Since T10 is dependent on T9, T10 must be rolled
back. This phenomenon, in which a single transaction failure leads to a series of transaction
rollbacks, is called cascading rollback.

Cascading rollback is undesirable, since it leads to the undoing of a significant amount of work.
It is desirable to restrict the schedules to those where cascading rollbacks cannot occur. Such
schedules are called cascadeless schedules. Formally, a cascadeless schedule is one where, for
each pair of transactions Ti and Tj such that Tj reads a data item previously written by Ti, the
commit operation of Ti appears before the read operation of Tj . It is easy to verify that every
cascadeless schedule is also recoverable.

Transaction Isolation Levels
The isolation levels specified by the SQL standard are as follows:

e Serializable usually ensures serializable execution. However, as we shall explain shortly,
some database systems implement this isolation level in a manner that may, in certain cases,
allow nonserializable executions.

e Repeatable read allows only committed data to be read and further requires that, between two
reads of a data item by a transaction, no other transaction is allowed to update it. However, the
transaction may not be serializable with respect to other transactions. For instance, when it is searching
for data satisfying some conditions, a transaction may find some of the data inserted by a committed
transaction, but may not find other data inserted by the same transaction.

e Read committed allows only committed data to be read, but does not require repeatable reads.
For instance, between two reads of a data item by the transaction, another transaction may have
updated the data item and committed.
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e Read uncommitted allows uncommitted data to be read. It is the lowest isolation level allowed
by SQL.

All the isolation levels above additionally disallow dirty writes, that is, they disallow writes to a
data item that has already been written by another transaction that has not yet committed or
aborted.

Implementation of Isolation Levels

There are various concurrency-control policies that we can use to ensure that, even when
multiple transactions are executed concurrently, only acceptable schedules are generated,
regardless of how the operating system time-shares resources (such as CPU time) among the
transactions.

As a trivial example of a concurrency-control policy, consider this: A transaction acquires a lock
on the entire database before it starts and releases the lock after it has committed. While a
transaction holds a lock, no other transaction is allowed to acquire the lock, and all must
therefore wait for the lock to be released. As a result of the locking policy, only one transaction
can execute at a time. Therefore, only serial schedules are generated. These are trivially
serializable, and it is easy to verify that they are recoverable and cascadeless as well.

e Locking:

Further improvements to locking result if we have two kinds of locks: shared and exclusive.
Shared locks are used for data that the transaction reads and exclusive locks are used for those
it writes. Many transactions can hold shared locks on the same data item at the same time, but
a transaction is allowed an exclusive lock on a data item only if no other transaction holds any
lock (regardless of whether shared or exclusive) on the data item. This use of two modes of
locks along with two-phase locking allows concurrent reading of data while still ensuring
serializability.

e Timestamps:

Another category of techniques for the implementation of isolation assigns each transaction a
timestamp, typically when it begins. For each data item, the system keeps two timestamps. The
read timestamp of a data item holds the largest (that is, the most recent) timestamp of those
transactions that read the data item. The write timestamp of a data item holds the timestamp
of the transaction that wrote the current value of the data item. Timestamps are used to
ensure that transactions access each data item in order of the transactions’ timestamps if their
accesses conflict. When this is not possible, offending transactions are aborted and restarted
with a new timestamp.

e Multiple Versions and Snapshot Isolation:

There are a variety of multiversion concurrency control techniques. One in particular, called
snapshot isolation, is widely used in practice.
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In snapshot isolation, we can imagine that each transaction is given its own version, or
snapshot, of the database when it begins. It reads data from this private version and is thus
isolated from the updates made by other transactions. If the transaction updates the database,
that update appears only in its own version, not in the actual database itself. Information about
these updates is saved so that the updates can be applied to the “real” database if the
transaction commits.

Snapshot isolation ensures that attempts to read data never need to wait (unlike locking).
Read-only transactions cannot be aborted; only those that modify data run a slight risk of
aborting. Since each transaction reads its own version or snapshot of the database, reading
data does not cause subsequent update attempts by other transactions to wait (unlike locking).
Since most transactions are read-only (and most others read more data than they update), this
is often a major source of performance improvement as compared to locking.

Transactions as SQL Statements

In our simple model, we assumed a set of data items exists. While our simple model allowed
data-item values to be changed, it did not allow data items to be created or deleted. In SQL,
however, insert statements create new data and delete statements delete data. These two
statements are, in effect, write operations, since they change the database, but their
interactions with the actions of other transactions are different from what we saw in our simple
model. As an example, consider the following SQL query on our university database that finds
all instructors who earn more than $90,000.

SQL> select ID, name from instructor where salary > 90000;

Now assume that around the same time we are running our query, another user inserts a new instructor
named “James” whose salary is $100,000.

SQL> insert into instructor values ('11111’, ‘James’, ‘Marketing’, 100000);

In a concurrent execution of these transactions, it is intuitively clear that they conflict, but this
is a conflict not captured by our simple model. This situation is referred to as the phantom
phenomenon, because a conflict may exist on “phantom” data.

Let us consider again the query:
SQL> select ID, name from instructor where salary> 90000;

and the following SQL update:

SQL> update instructor set salary = salary * 0.9 where name = "Wu’;

In our example query above, the predicate is “salary > 90000”, and an update of Wu'’s salary
from $90,000 to a value greater than $90,000, or an update of Einstein’s salary from a value
greater that $90,000 to a value less than or equal to $90,000, would conflict with this predicate.
Locking based on this idea is called predicate locking.
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Concurrency Control

When several transactions execute concurrently in the database, however, the isolation
property may no longer be preserved. To ensure that it is, the system must control the
interaction among the concurrent transactions; this control is achieved through one of a variety
of mechanisms called concurrency control schemes.

Lock-Based Protocols

One way to ensure isolation is to require that data items be accessed in a mutually exclusive
manner; that is, while one transaction is accessing a data item, no other transaction can modify
that data item. The most common method used to implement this requirement is to allow a
transaction to access a data item only if it is currently holding a lock on that item.

e Locks

There are various modes in which a data item may be locked. In this section, we restrict our
attention to two modes:

1. Shared. If a transaction Ti has obtained a shared-mode lock (denoted by S) on item Q, then Ti
can read, but cannot write, Q.

2. Exclusive. If a transaction Ti has obtained an exclusive-mode lock (denoted by X) on item Q,
then Ti can both read and write Q.

We require that every transaction request a lock in an appropriate mode on data item Q,
depending on the types of operations that it will perform on Q. The transaction makes the
request to the concurrency-control manager. The transaction can proceed with the operation
only after the concurrency-control manager grants the lock to the transaction. The use of these
two lock modes allows multiple transactions to read a data item but limits write access to just
one transaction at a time.

3 X

true false

X | false | false

Figure 15.1 Lock-compatibility matrix comp.

To state this more generally, given a set of lock modes, we can define a compatibility function
on them as follows: Let A and B represent arbitrary lock modes. Suppose that a transaction Ti
requests a lock of mode A on item Q on which transaction Tj (Ti # Tj) currently holds a lock of
mode B. If transaction Ti can be granted a lock on Q immediately, in spite of the presence of the
mode B lock, then we say mode A is compatible with mode B. Such a function can be
represented conveniently by a matrix. The compatibility relation between the two modes of
locking discussed in this section appears in the matrix comp of Figure 15.1. An element comp(A,
B) of the matrix has the value true if and only if mode A is compatible with mode B.16
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A transaction requests a shared lock on data item Q by executing the lockS(Q) instruction.
Similarly, a transaction requests an exclusive lock through the lock-X(Q) instruction. A
transaction can unlock a data item Q by the unlock(Q) instruction.

To access a data item, transaction Ti must first lock that item. If the data item is already locked
by another transaction in an incompatible mode, the concurrencycontrol manager will not
grant the lock until all incompatible locks held by other transactions have been released. Thus,
Ti is made to wait until all incompatible locks held by other transactions have been released.

Transaction Ti may unlock a data item that it had locked at some earlier point. Note that a
transaction must hold a lock on a data item as long as it accesses that item. Moreover, it is not
necessarily desirable for a transaction to unlock a data item immediately after its final access of
that data item, since serializability may not be ensured.

Let A and B be two accounts that are accessed by transactions T1 and T2. Transaction T1
transfers $50 from account B to account A (Figure 15.2). Transaction T2 displays the total
amount of money in accounts A and B—that is, the sum A + B (Figure 15.3).

Ty: lock-X(B); . i ;
B T5: lock S({l),
B:=B — 50; read(A)’
write(B); unlock(A);
unlock(B); lock-S(B);
lock-X(A); read(B);
o
wr‘ite(A); ’ display(A + B).
unlock(A).

Figure 15.3 Transaction T-.
Figure 15.2 Transaction T;.

Suppose that the values of accounts A and B are $100 and $200, respectively. If these two
transactions are executed serially, either in the order T1, T2 or the order T2, T1, then
transaction T2 will display the value $300. If, however, these transactions are executed
concurrently, then schedule 1, in Figure 15.4, is possible. In this case, transaction T2 displays
$250, which is incorrect. The reason for this mistake is that the transaction T1 unlocked data
item B too early, as a result of which T2 saw an inconsistent state.




T Tz concmreny-control manager
lock-X(B)
grant-X(B, Ty)
read(B)
B:=B-50
write( B)
unlock(B)
lock-S(A)
grant-S(A, Tz)
read(A)
unlock(A)
lock-S(B)
grant-S(B, Tz)
read(B)
unlock(B)
display(A + B)
lock-X(A)
grant-X(A, T1)
read(A)
A=A-50
write(A)
unlock(A)

Figure 15.4 Schedule 1.
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Suppose now that unlocking is delayed to the end of the transaction. Transaction T3 corresponds to T1
with unlocking delayed (Figure 15.5). Transaction T4 corresponds to T2 with unlocking delayed (Figure

15.6).

Ts: lock-X(B);
read(B);
B:=B - 50;
write(B);
lock-X(A);
read(A);
A=A+ 50;
write(A);
unlock(B);
unlock(A).

Figure 15.5 Transaction T3 (transaction T; with unlocking delayed).

Ty lock-S(A);
read(A);
lock-S(B);
read(B);
display(A + B);
unlock(A);
unlock(B).

Figure 15.6 Transaction T; (transaction T> with unlocking delayed).

Unfortunately, locking can lead to an undesirable situation. Consider the partial schedule of
Figure 15.7 for T3 and T4. Since T3 is holding an exclusive mode lock on B and T4 is requesting a
shared-mode lock on B, T4 is waiting for T3 to unlock B. Similarly, since T4 is holding a shared
mode lock on A and T3 is requesting an exclusive-mode lock on A, T3 is waiting for T4 to unlock
A. Thus, we have arrived at a state where neither of these transactions can ever proceed with
its normal execution. This situation is called deadlock. When deadlock occurs, the system must
roll back one of the two transactions. Once a transaction has been rolled back, the data items
that were locked by that transaction are unlocked. These data items are then available to the
other transaction, which can continue with its execution.
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T3 | T;

lock-X(B)

read(B)

B:=B—50

write(B)
lock-S(A)
read(A)
lock-S(B)

lock-X(A)

Figure 15.7 Schedule 2.

e Granting of Locks:

Suppose a transaction T2 has a shared-mode lock on a data item, and another transaction T1
requests an exclusive-mode lock on the data item. Clearly, T1 has to wait for T2 to release the
shared-mode lock. Meanwhile, a transaction T3 may request a shared-mode lock on the same
data item. The lock request is compatible with the lock granted to T2, so T3 may be granted the
shared-mode lock. At this point T2 may release the lock, but still T1 has to wait for T3 to finish.
But again, there may be a new transaction T4 that requests a shared-mode lock on the same
data item, and is granted the lock before T3 releases it. In fact, it is possible that there is a
sequence of transactions that each requests a shared-mode lock on the data item, and each
transaction releases the lock a short while after it is granted, but T1 never gets the exclusive-
mode lock on the data item. The transaction T1 may never make progress, and is said to be
starved.

We can avoid starvation of transactions by granting locks in the following manner: When a
transaction Ti requests a lock on a data item Q in a particular mode M, the concurrency-control
manager grants the lock provided that:

1. Thereis no other transaction holding a lock on Q in a mode that conflicts with M.
2. There is no other transaction that is waiting for a lock on Q and that made its lock

request before Ti. Thus, a lock request will never get blocked by a lock request that is
made later.

e The Two-Phase Locking Protocol:

One protocol that ensures serializability is the two-phase locking protocol. This protocol
requires that each transaction issue lock and unlock requests in two phases:

1. Growing phase. A transaction may obtain locks, but may not release any lock.
2. Shrinking phase. A transaction may release locks, but may not obtain any new locks.

Initially, a transaction is in the growing phase. The transaction acquires locks as needed. Once
the transaction releases a lock, it enters the shrinking phase, and it can issue no more lock
requests.
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For example, transactions T3 and T4 are two phase. On the other hand, transactions T1 and T2
are not two phase. Note that the unlock instructions do not need to appear at the end of the
transaction. For example, in the case of transaction T3, we could move the unlock(B) instruction
to just after the lock-X(A) instruction, and still retain the two-phase locking property.

Cascading rollback may occur under two-phase locking. As an illustration, consider the partial
schedule of Figure 15.8. Each transaction observes the two-phase locking protocol, but the
failure of T5 after the read(A) step of T7 leads to cascading rollback of T6 and T7.

Cascading rollbacks can be avoided by a modification of two-phase locking called the strict two-
phase locking protocol. This protocol requires not only that locking be two phase, but also that
all exclusive-mode locks taken by a transaction be held until that transaction commits.

Another variant of two-phase locking is the rigorous two-phase locking protocol, which requires
that all locks be held until the transaction commits.

T5 T T;
lock-X(A)
read(A)
lock-S(B)
read(B)
write(A)
unlock(A)
lock-X(A)
read(A)
write(A)
unlock(A)
lock-S(A)
read(A)

Figure 15.8 Partial schedule under two-phase locking.

¢ Implementation of Locking:

A lock manager can be implemented as a process that receives messages from transactions and
sends messages in reply. The lock-manager process replies to lock-request messages with lock-
grant messages, or with messages requesting rollback of the transaction (in case of deadlocks).
Unlock messages require only an acknowledgment in response, but may result in a grant
message to another waiting transaction.

The lock manager uses this data structure: For each data item that is currently locked, it
maintains a linked list of records, one for each request, in the order in which the requests
arrived. It uses a hash table, indexed on the name of a data item, to find the linked list (if any)
for a data item; this table is called the lock table. Each record of the linked list for a data item
notes which transaction made the request, and what lock mode it requested. The record also
notes if the request has currently been granted.

Figure 15.10 shows an example of a lock table. The table contains locks for five different data
items, 14, 17, 123, 144, and 1912. The lock table uses overflow chaining, so there is a linked list of
data items for each entry in the lock table. There is also a list of transactions that have been
granted locks, or are waiting for locks, for each of the data items. Granted locks are the
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rectangles filled in a darker shade, while waiting requests are the rectangles filled in a lighter
shade. We have omitted the lock mode to keep the figure simple. It can be seen, for example,
that T23 has been granted locks on 1912 and 17, and is waiting for a lock on 14.

7 123

[ ] |
] 23 1 T8 T2
L 1912
= » |
| 23
|| 14

s 1
| T T23
—| 144

4+ |

e . granted

o - l__ waiting

TH

Figure 15.10 Lock table.

The lock manager processes requests this way:

¢ When a lock request message arrives, it adds a record to the end of the linked list for the data item, if
the linked list is present. Otherwise it creates a new linked list, containing only the record for the
request.

It always grants a lock request on a data item that is not currently locked. But if the transaction requests
a lock on an item on which a lock is currently held, the lock manager grants the request only if it is
compatible with the locks that are currently held, and all earlier requests have been granted already.
Otherwise, the request has to wait.

¢ When the lock manager receives an unlock message from a transaction, it deletes the record for that
data item in the linked list corresponding to that transaction. It tests the record that follows, if any, as
described in the previous paragraph, to see if that request can now be granted. If it can, the lock
manager grants that request, and processes the record following it, if any, similarly, and so on.

¢ If a transaction aborts, the lock manager deletes any waiting request made by the transaction. Once
the database system has taken appropriate actions to undo the transaction it releases all locks held by
the aborted transaction.

e Graph-Based Protocols:

To acquire such prior knowledge, we impose a partial ordering = on the set D = {d1, d2,..., dh}
of all data items. If di = dj, then any transaction accessing both di and dj must access di before
accessing dj .
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The partial ordering implies that the set D may now be viewed as a directed acyclic graph,
called a database graph.

In the tree protocol, the only lock instruction allowed is lock-X. Each transaction Ti can lock a
data item at most once, and must observe the following rules:

1. The first lock by Ti may be on any data item.

2. Subsequently, a data item Q can be locked by Ti only if the parent of Q is currently locked by
Ti.

3. Data items may be unlocked at any time.
4. A data item that has been locked and unlocked by Ti cannot subsequently be relocked by Ti .

To illustrate this protocol, consider the database graph of Figure 15.11. The following four
transactions follow the tree protocol on this graph. We show only the lock and unlock
instructions:

v
Figure 156.11 Tree-structured database graph.

Tip: lock-X(B); lock-X(E); lock-X(D); unlock(B); unlock(E); lock-X(G);
unlock(D); unlock(G).

Ti1: lock-X(D); lock-X(H); unlock(D); unlock(H).

Ti2: lock-X(B); lock-X(E); unlock(E); unlock(B).

Tia: lock-X(D); lock-X(H); unlock(D); unlock(H).

One possible schedule in which these four transactions participated appears in Figure 15.12.
Note that, during its execution, transaction T10 holds locks on two disjoint subtrees.

Observe that the schedule of Figure 15.12 is conflict serializable. It can be shown not only that
the tree protocol ensures conflict serializability, but also that this protocol ensures freedom
from deadlock.
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T]ll ITll TIZ TIS
lock-X(B)

lock-x(D)
lock-x(H)
unlock(D)
lock-X(E)
lock-X(D)
unlock(B)
unlock(E)
lock-X(B)
lock-X(E)
unlock(H)
lock-X(G)
unlock(D)
lock-X([)
lock-X(H)
unlock(D)
unlock(H)
unlock(E)
unlock(B)
unlock(G)

Figure 15.12 Serializable schedule under the tree protocol.

Deadlock Handling

A system is in a deadlock state if there exists a set of transactions such that every transaction in
the set is waiting for another transaction in the set. More precisely, there exists a set of waiting
transactions {T0, T1,..., Tn} such that TO is waiting for a data item that T1 holds, and T1 is
waiting for a data item that T2 holds, and ..., and Tn-1 is waiting for a data item that Tn holds,
and Tn is waiting for a data item that TO holds. None of the transactions can make progress in
such a situation.

There are two principal methods for dealing with the deadlock problem. We can use a deadlock
prevention protocol to ensure that the system will never enter a deadlock state. Alternatively,
we can allow the system to enter a deadlock state, and then try to recover by using a deadlock
detection and deadlock recovery scheme.

e Deadlock Prevention:
Two different deadlock-prevention schemes using timestamps have been proposed:

1. The wait—die scheme is a nonpreemptive technique. When transaction Ti requests a data
item currently held by Tj, Ti is allowed to wait only if it has a timestamp smaller than that of Tj
(thatis, Tiis older than Tj). Otherwise, Ti is rolled back (dies).

For example, suppose that transactions T14, T15, and T16 have timestamps 5, 10, and 15,
respectively. If T14 requests a data item held by T15, then T14 will wait. If T24 requests a data
item held by T15, then T16 will be rolled back.

2. The wound—wait scheme is a preemptive technique. It is a counterpart to the wait—die
scheme. When transaction Ti requests a data item currently held by Tj, Ti is allowed to wait
only if it has a timestamp larger than that of Tj (that is, Ti is younger than Tj). Otherwise, Tj is
rolled back (Tj is wounded by Ti).
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Returning to our example, with transactions T14, T15, and T16, if T14 requests a data item held
by T15, then the data item will be preempted from T15, and T15 will be rolled back. If T16
requests a data item held by T15, then T16 will wait.

The major problem with both of these schemes is that unnecessary rollbacks may occur.

Another simple approach to deadlock prevention is based on lock timeouts. In this approach, a
transaction that has requested a lock waits for at most a specified amount of time. If the lock
has not been granted within that time, the transaction is said to time out, and it rolls itself back
and restarts. If there was in fact a deadlock, one or more transactions involved in the deadlock
will time out and roll back, allowing the others to proceed. This scheme falls somewhere
between deadlock prevention, where a deadlock will never occur, and deadlock detection and
recovery.

Deadlock Detection and Recovery:

e Deadlock Detection:

Deadlocks can be described precisely in terms of a directed graph called a waitfor graph. This
graph consists of a pair G = (V, E), where V is a set of vertices and E is a set of edges. The set of
vertices consists of all the transactions in the system. Each element in the set E of edges is an
ordered pair Ti > Tj . If Ti > Tjis in E, then there is a directed edge from transaction Ti to Tj,
implying that transaction Ti is waiting for transaction Tj to release a data item that it needs.

When transaction Ti requests a data item currently being held by transaction Tj, then the edge
Ti & Tj is inserted in the wait-for graph. This edge is removed only when transaction Tj is no
longer holding a data item needed by transaction Ti .

To illustrate these concepts, consider the wait-for graph in Figure 15.13, which depicts the
following situation:

* Transaction T17 is waiting for transactions T18 and T19.

e Transaction T19 is waiting for transaction T18.

e Transaction T18 is waiting for transaction T20.

Since the graph has no cycle, the system is not in a deadlock state.

Suppose now that transaction T20 is requesting an item held by T19. The edge T20 - T19 is
added to the wait-for graph, resulting in the new system state in Figure 15.14. This time, the
graph contains the cycle:  T18 - T20 > T19 - T18

implying that transactions T18, T19, and T20 are all deadlocked.
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Figure 15.14 Wait-for graph with a cycle.

Recovery from Deadlock:

When a detection algorithm determines that a deadlock exists, the system must recover from
the deadlock. The most common solution is to roll back one or more transactions to break the
deadlock. Three actions need to be taken:

1. Selection of a victim. Given a set of deadlocked transactions, we must determine which
transaction (or transactions) to roll back to break the deadlock. We should roll back those
transactions that will incur the minimum cost. Many factors may determine the cost of a
rollback, including:

a. How long the transaction has computed, and how much longer the transaction will compute
before it completes its designated task.

b. How many data items the transaction has used.

c. How many more data items the transaction needs for it to complete. d. How many
transactions will be involved in the rollback.

2. Rollback. Once we have decided that a particular transaction must be rolled back, we must
determine how far this transaction should be rolled back.

The simplest solution is a total rollback: Abort the transaction and then restart it. However, it is
more effective to roll back the transaction only as far as necessary to break the deadlock. Such
partial rollback requires the system to maintain additional information about the state of all the
running transactions.

3. Starvation. In a system where the selection of victims is based primarily on cost factors, it
may happen that the same transaction is always picked as a victim. As a result, this transaction
never completes its designated task, thus there is starvation. We must ensure that a transaction
can be picked as a victim only a (small) finite number of times. The most common solution is to
include the number of rollbacks in the cost factor.

Multiple Granularity

What is needed is a mechanism to allow the system to define multiple levels of granularity. This
is done by allowing data items to be of various sizes and defining a hierarchy of data
granularities, where the small granularities are nested within larger ones. Such a hierarchy can
be represented graphically as a tree. A nonleaf node of the multiple-granularity tree represents
the data associated with its descendants. In the tree protocol, each node is an independent
data item.
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Figure 15.15 Granularity hierarchy.

As an illustration, consider the tree of Figure 15.15, which consists of four levels of nodes. The
highest level represents the entire database. Below it are nodes of type area; the database
consists of exactly these areas. Each area in turn has nodes of type file as its children. Each area
contains exactly those files that are its child nodes. No file is in more than one area. Finally,
each file has nodes of type record. As before, the file consists of exactly those records that are
its child nodes, and no record can be present in more than one file.

Each node in the tree can be locked individually. As we did in the twophase locking protocol, we
shall use shared and exclusive lock modes. When a transaction locks a node, in either shared or
exclusive mode, the transaction also has implicitly locked all the descendants of that node in
the same lock mode. For example, if transaction Ti gets an explicit lock on file Fc of Figure
15.15, in exclusive mode, then it has an implicit lock in exclusive mode on all the records
belonging to that file. It does not need to lock the individual records of Fc explicitly.

e intention lock modes:

If a node is locked in an intention mode, explicit locking is done at a lower level of the tree (that
is, at a finer granularity). Intention locks are put on all the ancestors of a node before that node
is locked explicitly. Thus, a transaction does not need to search the entire tree to determine
whether it can lock a node successfully. A transaction wishing to lock a node—say, Q—must
traverse a path in the tree from the root to Q. While traversing the tree, the transaction locks
the various nodes in an intention mode.

There is an intention mode associated with shared mode, and there is one with exclusive
mode.

intention-shared (IS) mode: If a node is locked in intention-shared (IS) mode, explicit locking is
being done at a lower level of the tree, but with only shared-mode locks.

intention-exclusive (IX) mode: Similarly, if a node is locked in intention-exclusive (IX) mode,
then explicit locking is being done at a lower level, with exclusive-mode or shared-mode locks.

shared and intention-exclusive (SIX) mode: Finally, if a node is locked in shared and intention-
exclusive (SIX) mode, the subtree rooted by that node is locked explicitly in shared mode, and
that explicit locking is being done at a lower level with exclusive-mode locks.

The compatibility function for these lock modes is in Figure 15.16.
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IS X S SIX X
IS true true true true false
X true true false false false
5 true false true false false
SIX true false false false false
X false false false false false

Figure 15.16 Compatibility matrix.

The multiple-granularity locking protocol uses these lock modes to ensure serializability. It
requires that a transaction Ti that attempts to lock a node Q must follow these rules:

1. Transaction Ti must observe the lock-compatibility function of Figure 15.16.
2. Transaction Ti must lock the root of the tree first, and can lock it in any mode.

3. Transaction Ti can lock a node Qin S or IS mode only if Ti currently has the parent of Q locked
in either IX or IS mode.

4. Transaction Ti can lock a node Q in X, SIX, or IX mode only if Ti currently has the parent of Q
locked in either IX or SIX mode.

5. Transaction Ti can lock a node only if Ti has not previously unlocked any node (that is, Ti is
two phase).

6. Transaction Ti can unlock a node Q only if Ti currently has none of the children of Q locked.

Observe that the multiple-granularity protocol requires that locks be acquired in top-down
(root-to-leaf) order, whereas locks must be released in bottom-up (leaf-to-root) order.

Timestamp-Based Protocols

Timestamps:

With each transaction Ti in the system, we associate a unique fixed timestamp, denoted by
TS(Ti). This timestamp is assigned by the database system before the transaction Ti starts
execution. If a transaction Ti has been assigned timestamp TS(Ti), and a new transaction Tj
enters the system, then TS(Ti) < TS(Tj).

There are two simple methods for implementing this scheme:

1. Use the value of the system clock as the timestamp; that is, a transaction’s timestamp is
equal to the value of the clock when the transaction enters the system.

2. Use a logical counter that is incremented after a new timestamp has been assigned; that is, a
transaction’s timestamp is equal to the value of the counter when the transaction enters the
system.
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The timestamps of the transactions determine the serializability order. Thus, if TS(Ti) < TS(Tj),
then the system must ensure that the produced schedule is equivalent to a serial schedule in
which transaction Ti appears before transaction Tj .

To implement this scheme, we associate with each data item Q two timestamp values:

e W-timestamp(Q) denotes the largest timestamp of any transaction that executed write(Q)
successfully.

e R-timestamp(Q) denotes the largest timestamp of any transaction that executed read(Q)
successfully.

These timestamps are updated whenever a new read(Q) or write(Q) instruction is executed.

The Timestamp-Ordering Protocol: The timestamp-ordering protocol ensures that any
conflicting read and write operations are executed in timestamp order. This protocol operates
as follows:

1. Suppose that transaction Ti issues read(Q).

a. If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q that was already overwritten.
Hence, the read operation is rejected, and Ti is rolled back.

b. If TS(Ti) > W-timestamp(Q), then the read operation is executed, and R-timestamp(Q) is set
to the maximum of R-timestamp(Q) and TS(Ti).

2. Suppose that transaction Ti issues write(Q).

a. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed previously,
and the system assumed that that value would never be produced. Hence, the system rejects
the write operation and rolls Ti back.

b. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q. Hence, the
system rejects this write operation and rolls Ti back.

c. Otherwise, the system executes the write operation and sets W-timestamp(Q) to TS(Ti).

To illustrate this protocol, we consider transactions T25 and T26. Transaction T25 displays the
contents of accounts A and B:

Tos: read(B);
read(A);
display(A + B).

Transaction Tog transfers $50 from account B to account A, and then displays the
contents of both:

Tse: read(B);
B:=B — 5(;
write(B);
read(A);
A=A +50;
write(A);
display(A + B).
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In presenting schedules under the timestamp protocol, we shall assume that a transaction is
assigned a timestamp immediately before its first instruction. Thus, in schedule 3 of Figure
15.17, TS(T25) < TS(T26), and the schedule is possible under the timestamp protocol.

Tl:'\ TZ{:
read(B)
read(B)
B:=E—50
write(B)
read(A)
read(A)
display(A + B)
A=A+50
write(A)
display(A + B)

Figure 15,17 Schedule 3,

Thomas’ Write Rule:
The modification to the timestamp-ordering protocol, called Thomas’ write rule, is this:
Suppose that transaction Ti issues write(Q).

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was previously needed, and it had
been assumed that the value would never be produced. Hence, the system rejects the write operation
and rolls Ti back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q. Hence, this write
operation can be ignored.

3. Otherwise, the system executes the write operation and sets W-timestamp(Q) to TS(Ti).

Validation-Based Protocols

The validation protocol requires that each transaction Ti executes in two or three different
phases in its lifetime, depending on whether it is a read-only or an update transaction. The
phases are, in order:

1. Read phase. During this phase, the system executes transaction Ti . It reads the values of the
various data items and stores them in variables local to Ti . It performs all write operations on
temporary local variables, without updates of the actual database.

2. Validation phase. The validation test (described below) is applied to transaction Ti . This
determines whether Ti is allowed to proceed to the write phase without causing a violation of
serializability. If a transaction fails the validation test, the system aborts the transaction.

3. Write phase. If the validation test succeeds for transaction Ti , the temporary local variables
that hold the results of any write operations performed by Ti are copied to the database. Read-
only transactions omit this phase.
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Each transaction must go through the phases in the order shown. However, phases of
concurrently executing transactions can be interleaved.

To perform the validation test, we need to know when the various phases of transactions took
place. We shall, therefore, associate three different timestamps with each transaction Ti :

1. Start(Ti), the time when Ti started its execution.
2. Validation(Ti), the time when Ti finished its read phase and started its validation phase.
3. Finish(Ti), the time when Ti finished its write phase.

The validation test for transaction Ti requires that, for all transactions Tk with TS(Tk ) < TS(Ti),
one of the following two conditions must hold:

1. Finish(Tk ) < Start(Ti). Since Tk completes its execution before Ti started, the serializability
order is indeed maintained.

2. The set of data items written by Tk does not intersect with the set of data items read by Ti,
and Tk completes its write phase before Ti starts its validation phase (Start(Ti) < Finish(Tk ) <
Validation(Ti)). This condition ensures that the writes of Tk and Ti do not overlap. Since the
writes of Tk do not affect the read of Ti, and since Ti cannot affect the read of Tk , the
serializability order is indeed maintained.

As an illustration, consider again transactions T25 and T26. Suppose that TS(T25) < TS(T26).
Then, the validation phase succeeds in the schedule 6 in Figure 15.19. Note that the writes to
the actual variables are performed only after the validation phase of T26. Thus, T25 reads the
old values of B and A, and this schedule is serializable.

Tz: Tl(v,

read(B)
read(B)
B:=B-50
read(A)
A=A+50

read(A)

< validate>

display(A + B)
< validate>
write(B)
write(A)

Figure 15.19 Schedule 8, a schedule produced by using validation.
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Recovery System

An integral part of a database system is a recovery scheme that can restore the database to the
consistent state that existed before the failure. The recovery scheme must also provide high
availability; that is, it must minimize the time for which the database is not usable after a
failure.

Failure Classification

There are various types of failure that may occur in a system, each of which needs to be dealt
with in a different manner. In this chapter, we shall consider only the following types of failure:

e Transaction failure. There are two types of errors that may cause a transaction to fail:

o Logical error. The transaction can no longer continue with its normal execution
because of some internal condition, such as bad input, data not found, overflow, or resource
limit exceeded.

o System error. The system has entered an undesirable state (for example, deadlock), as
a result of which a transaction cannot continue with its normal execution. The transaction,
however, can be reexecuted at a later time.

e System crash. There is a hardware malfunction, or a bug in the database software or the
operating system, that causes the loss of the content of volatile storage, and brings transaction
processing to a halt. The content of nonvolatile storage remains intact, and is not corrupted.

e Disk failure. A disk block loses its content as a result of either a head crash or failure during a
data-transfer operation. Copies of the data on other disks, or archival backups on tertiary
media, such as DVD or tapes, are used to recover from the failure.

Recovery algorithms, have two parts:

1. Actions taken during normal transaction processing to ensure that enough information exists
to allow recovery from failures.

2. Actions taken after a failure to recover the database contents to a state that ensures
database consistency, transaction atomicity, and durability.

Storage
We identified three categories of storage:
e Volatile storage
* Nonvolatile storage

e Stable storage
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Stable storage or, more accurately, an approximation thereof, plays a critical role in recovery
algorithms.

Stable-Storage Implementation:

we discuss how storage media can be protected from failure during data transfer. Block transfer
between memory and disk storage can result in:

¢ Successful completion. The transferred information arrived safely at its destination.

e Partial failure. A failure occurred in the midst of transfer, and the destination block has
incorrect information.

¢ Total failure. The failure occurred sufficiently early during the transfer that the destination
block remains intact.

We require that, if a data-transfer failure occurs, the system detects it and invokes a recovery
procedure to restore the block to a consistent state. To do so, the system must maintain two
physical blocks for each logical database block; in the case of mirrored disks, both blocks are at
the same location; in the case of remote backup, one of the blocks is local, whereas the other is
at a remote site. An output operation is executed as follows:

1. Write the information onto the first physical block.

2. When the first write completes successfully, write the same information onto the second
physical block.

3. The output is completed only after the second write completes successfully.

Data Access:

The database is partitioned into fixed-length storage units called blocks. Blocks are the units of data
transfer to and from disk, and may contain several data items.

Transactions input information from the disk to main memory, and then output the information back
onto the disk. The input and output operations are done in block units. The blocks residing on the disk
are referred to as physical blocks; the blocks residing temporarily in main memory are referred to as
buffer blocks. The area of memory where blocks reside temporarily is called the disk buffer.

Block movements between disk and main memory are initiated through the following two operations:
1. input(B) transfers the physical block B to main memory.

2. output(B) transfers the buffer block B to the disk, and replaces the appropriate physical block there.
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Figure 16.1 Block storage operations.
We transfer data by these two operations:
1. read(X) assigns the value of data item X to the local variable xi . It executes this operation as follows:
a. If block BX on which X resides is not in main memory, it issues input(BX).
b. It assigns to xi the value of X from the buffer block.

2. write(X) assigns the value of local variable xi to data item X in the buffer block. It executes this
operation as follows:

a. If block BX on which X resides is not in main memory, it issues input(BX).

b. It assigns the value of xi to X in buffer BX.

Recovery and Atomicity

Our goal is to perform either all or no database modifications made by Ti . However, if Ti
performed multiple database modifications, several output operations may be required, and a
failure may occur after some of these modifications have been made, but before all of them are
made.

Log Records:

The most widely used structure for recording database modifications is the log. The log is a
sequence of log records, recording all the update activities in the database.

There are several types of log records. An update log record describes a single database write.
It has these fields:

¢ Transaction identifier, which is the unique identifier of the transaction that performed the
write operation.

¢ Data-item identifier, which is the unique identifier of the data item written. Typically, it is the
location on disk of the data item, consisting of the block identifier of the block on which the
data item resides, and an offset within the block.
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¢ Old value, which is the value of the data item prior to the write.
® New value, which is the value that the data item will have after the write.

We represent an update log record as, indicating that transaction Ti has performed a write on
data item Xj . Xj had value V1 before the write, and has value V2 after the write. Other special
log records exist to record significant events during transaction processing, such as the start of
a transaction and the commit or abort of a transaction. Among the types of log records are:

e <Ti start>. Transaction Ti has started.
¢ <Ti commi0074>. Transaction Ti has committed.

e <Ti abort>. Transaction Ti has aborted.

Database Modification:
we need to consider the steps a transaction takes in modifying a data item:
1. The transaction performs some computations in its own private part of main memory.

2. The transaction modifies the data block in the disk buffer in main memory holding the data
item.

3. The database system executes the output operation that writes the data block to disk.
This allows the system to perform undo and redo operations as appropriate.
¢ Undo using a log record sets the data item specified in the log record to the old value.

e Redo using a log record sets the data item specified in the log record to the new value.

Concurrency Control and Recovery:

If the concurrency control scheme allows a data item X that has been modified by a transaction
T1 to be further modified by another transaction T2 before T1 commits, then undoing the
effects of T1 by restoring the old value of X (before T1 updated X) would also undo the effects
of T2. To avoid such situations, recovery algorithms usually require that if a data item has been
modified by a transaction, no other transaction can modify the data item until the first
transaction commits or aborts.

Transaction Commit:

We say that a transaction has committed when its commit log record, which is the last log
record of the transaction, has been output to stable storage; at that point all earlier log records
have already been output to stable storage. If a system crash occurs before a log record < Ti
commit> is output to stable storage, transaction Ti will be rolled back. Thus, the output of the
block containing the commit log record is the single atomic action that results in a transaction
getting committed.
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Using the Log to Redo and Undo Transactions:

Consider our simplified banking system. Let TO be a transaction that transfers $50 from account A to
account B:

<[ start>

<Ty, A, 1000, 950>
<T,, B, 2000, 2050>
<T, commit>

<T; start>

<Ty, C, 700, 600>
<T, commit>

Figure 16.2 Portion of the system log corresponding to T; and T,.

To: read(A);
A=A —-50;
write(A);
read(B);
B:=B +50;
write(B).

Let T; be a transaction that withdraws $100 from account C:
Ti: read(C);

C:=C-100;
write(C).

The recovery scheme uses two recovery procedures. Both these procedures make use of the log
to find the set of data items updated by each transaction Ti, and their respective old and new
values.

* redo(Ti) sets the value of all data items updated by transaction Ti to the new values.

e undo(Ti) restores the value of all data items updated by transaction Ti to the old values.

Checkpoints:

a simple checkpoint scheme that (a) does not permit any updates to be performed while the checkpoint
operation is in progress, and (b) outputs all modified buffer blocks to disk when the checkpoint is
performed. We discuss later how to modify the checkpointing and recovery procedures to provide more
flexibility by relaxing both these requirements.

A checkpoint is performed as follows:
1. Output onto stable storage all log records currently residing in main memory.
2. Output to the disk all modified buffer blocks.

3. Output onto stable storage a log record of the form < checkpoint L>, where L is a list of transactions
active at the time of the checkpoint.

The redo or undo operations need to be applied only to transactions in L, and to all transactions that
started execution after the <checkpoint L> record was written to the log. Let us denote this set of
transactions as T.
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e For all transactions Tk in T that have no <Tk commit> record or < Tk abort> record in the log, execute
undo(Tk ).

¢ For all transactions Tk in T such that either the record <Tk commit> or the record <Tk abort> appears
in the log, execute redo(Tk ).

Recovery Algorithm

Transaction Rollback:

First consider transaction rollback during normal operation (that is, not during recovery from a
system crash). Rollback of a transaction Ti is performed as follows:

1. The log is scanned backward, and for each log record of Ti of the form <Ti, Xj, V1, V2> that is
found:

a. The value V1 is written to data item Xj, and

b. A special redo-only log record Ti, Xj, V1> is written to the log, where V1 is the value being
restored to data item Xj during the rollback. These log records are sometimes called
compensation log records. Such records do not need undo information, since we never need to
undo such an undo operation. We shall explain later how they are used.

2. Once the log record <Ti start> is found the backward scan is stopped, and a log record <Ti
abort> is written to the log.

Recovery After a System Crash

Recovery actions, when the database system is restarted after a crash, take place in two
phases:

1. In the redo phase, the system replays updates of all transactions by scanning the log forward
from the last checkpoint. The log records that are replayed include log records for transactions
that were rolled back before system crash, and those that had not committed when the system
crash occurred. further, such incomplete transactions would have neither a nor a <Ti commit>
record in the log.

The specific steps taken while scanning the log are as follows:

a. The list of transactions to be rolled back, undo-list, is initially set to the list L in the
<checkpoint L> log record.

b. Whenever a normal log record of the form <Ti, Xj, V1, V2>, or a redo-only log record of the
form <Ti, Xj, V2> is encountered, the operation is redone; that is, the value V2 is written to data
item Xj .

c. Whenever a log record of the form < Ti start> is found, Ti is added to undo-list.

d. Whenever a log record of the form <Ti abort> or is found, Ti is removed from undo-list.
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2. In the undo phase, the system rolls back all transactions in the undo-list. It performs rollback
by scanning the log backward from the end.

a. Whenever it finds a log record belonging to a transaction in the undo list, it performs undo
actions just as if the log record had been found during the rollback of a failed transaction.

b. When the system finds a <Ti start> log record for a transaction Ti in undo-list, it writes a <Ti
abort> log record to the log, and removes Ti from undo-list.

c. The undo phase terminates once undo-list becomes empty, that is, the system has found <Ti
start> log records for all transactions that were initially in undo-list.

After the undo phase of recovery terminates, normal transaction processing can resume.

Buffer Management

Log-Record Buffering:

As a result of log buffering, a log record may reside in only main memory (volatile storage) for a
considerable time before it is output to stable storage. Since such log records are lost if the
system crashes, we must impose additional requirements on the recovery techniques to ensure
transaction atomicity:

e Transaction Ti enters the commit state after the <Ti commit> log record has been output to
stable storage.

* Before the <Ti commit> log record can be output to stable storage, all log records pertaining
to transaction Ti must have been output to stable storage.

» Before a block of data in main memory can be output to the database (in nonvolatile storage),
all log records pertaining to data in that block must have been output to stable storage.

This rule is called the write-ahead logging (WAL) rule.

Writing the buffered log to disk is sometimes referred to as a log force.

Database Buffering:

One might expect that transactions would force-output all modified blocks to disk when they
commit. Such a policy is called the force policy. The alternative, the no-force policy, allows a
transaction to commit even if it has modified some blocks that have not yet been written back
to disk.

Similarly, one might expect that blocks modified by a transaction that is still active should not
be written to disk. This policy is called the no-steal policy. The alternative, the steal policy,
allows the system to write modified blocks to disk even if the transactions that made those
modifications have not all committed.

Operating System Role in Buffer Management:
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We can manage the database buffer by using one of two approaches:

1. The database system reserves part of main memory to serve as a buffer that it, rather than
the operating system, manages. The database system manages data-block transfer in
accordance with the requirements.

2. The database system implements its buffer within the virtual memory provided by the
operating system. Since the operating system knows about the memory requirements of all
processes in the system, ideally it should be in charge of deciding what buffer blocks must be
force-output to disk, and when. But, to ensure the write-ahead logging requirements in Section
16.5.1, the operating system should not write out the database buffer pages itself, but instead
should request the database system to force-output the buffer blocks. The database system in
turn would force-output the buffer blocks to the database, after writing relevant log records to
stable storage.

Fuzzy Checkpointing:

The checkpointing technique described in Section 16.3.6 requires that all updates to the
database be temporarily suspended while the checkpoint is in progress. If the number of pages
in the buffer is large, a checkpoint may take a long time to finish, which can result in an
unacceptable interruption in processing of transactions.

To avoid such interruptions, The checkpointing technique can be modified to permit updates to
start once the checkpoint record has been written, but before the modified buffer blocks are
written to disk. The checkpoint thus generated is a fuzzy checkpoint.

Failure with Loss of Nonvolatile Storage

Until now, we have considered only the case where a failure results in the loss of information
residing in volatile storage while the content of the nonvolatile storage remains intact.
Although failures in which the content of nonvolatile storage is lost are rare, we nevertheless
need to be prepared to deal with this type of failure. In this section, we discuss only disk
storage. Our discussions apply as well to other nonvolatile storage types.

The basic scheme is to dump the entire contents of the database to stable storage
periodically—say, once per day. For example, we may dump the database to one or more
magnetic tapes. If a failure occurs that results in the loss of physical database blocks, the
system uses the most recent dump in restoring the database to a previous consistent state.
Once this restoration has been accomplished, the system uses the log to bring the database
system to the most recent consistent state.

One approach to database dumping requires that no transaction may be active during the
dump procedure, and uses a procedure similar to checkpointing:

1. Output all log records currently residing in main memory onto stable storage.
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2. Output all buffer blocks onto the disk.

3. Copy the contents of the database to stable storage.

4. Output a log record onto the stable storage.

Steps 1, 2, and 4 correspond to the three steps used for checkpoints.

A dump of the database contents is also referred to as an archival dump, since we can archive
the dumps and use them later to examine old states of the database. Dumps of a database and
checkpointing of buffers are similar.

Most database systems also support an SQL dump, which writes out SQL DDL statements and
SQL insert statements to a file, which can then be reexecuted to re-create the database. Such
dumps are useful when migrating data to a different instance of the database, or to a different
version of the database software, since the physical locations and layout may be different in the
other database instance or database software version.

Fuzzy dump schemes have been developed that allow transactions to be active while the dump
is in progress. They are similar to fuzzy-checkpointing schemes; see the bibliographical notes for
more details.

Early Lock Release and Logical Undo Operations

Logical Operations:

The insertion and deletion operations are examples of a class of operations that require logical
undo operations since they release locks early; we call such operations logical operations. Such
early lock release is important not only for indices, but also for operations on other system data
structures that are accessed and updated very frequently; examples include data structures
that track the blocks containing records of a relation, the free space in a block, and the free
blocks in a database. If locks were not released early after performing operations on such data
structures, transactions would tend to run serially, affecting system performance.

Logical Undo Log Records:

To allow logical undo of operations, before an operation is performed to modify an index, the
transaction creates a log record <Ti, Oj, operation-begin>, where Oj is a unique identifier for the
operation instance.5 While the system is executing the operation, it creates update log records
in the normal fashion for all updates performed by the operation. Thus, the usual old-value and
new-value information is written out as usual for each update performed by the operation; the
old-value information is required in case the transaction needs to be rolled back before the
operation completes. When the operation finishes, it writes an operation-end log record of the
form <Ti, Oj, operation-end, U>, where the U denotes undo information.

For example, if the operation inserted an entry in a B+-tree, the undo information U would
indicate that a deletion operation is to be performed, and would identify the B+-tree and what
entry to delete from the tree. Such logging of information about operations is called logical
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logging. In contrast, logging of old-value and new-value information is called physical logging,
and the corresponding log records are called physical log records.

Data structures such as B+-trees would not be in a consistent state, and neither logical redo nor
logical undo operations can be performed on an inconsistent data structure. To perform logical
redo or undo, the database state on disk must be operation consistent, that is, it should not
have partial effects of any operation.

An operation is said to be idempotent if executing it several times in a row gives the same
result as executing it once. Operations such as inserting an entry into a B+-tree may not be
idempotent, and the recovery algorithm must therefore make sure that an operation that has
already been performed is not performed again.

Transaction Rollback With Logical Undo:

When rolling back a transaction Ti , the log is scanned backwards, and log records
corresponding to Ti are processed as follows:

1. Physical log records encountered during the scan are handled as described earlier, except
those that are skipped as described shortly. Incomplete logical operations are undone using the
physical log records generated by the operation.

2. Completed logical operations, identified by operation-endrecords, are rolled back differently.
Whenever the system finds a log record <Ti, Oj, operationend, U>, it takes special actions:

a. It rolls back the operation by using the undo information U in the log record. It logs the
updates performed during the rollback of the operation just like updates performed when the
operation was first executed.

At the end of the operation rollback, instead of generating a log record <Ti, Oj , operation-end,
U>, the database system generates a log record <Ti, Oj, operation-abort>.

b. As the backward scan of the log continues, the system skips all log records of transaction Ti
until it finds the log record <Ti, Oj, operationbegin>. After it finds the operation-begin log
record, it processes log records of transaction Ti in the normal manner again.

3. If the system finds a record <Ti, Oj , operation-abort>, it skips all preceding records (including
the operation-end record for Qj) until it finds the record <Ti, Oj , operation-begin>.

4. As before, when the <Ti start> log record has been found, the transaction rollback is
complete, and the system adds a record <Ti abort> to the log.’

Concurrency Issues in Logical Undo:

As mentioned earlier, it is important that the lower-level locks acquired during an operation are
sufficient to perform a subsequent logical undo of the operation; otherwise concurrent operations that
execute during normal processing may cause problems in the undo-phase. For example, suppose the
logical undo of operation O1 of transaction T1 can conflict at the data item level with a concurrent
operation 02 of transaction T2, and O1 completes while 02 does not. Assume also that neither
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transaction had committed when the system crashed. The physical update log records of 02 may appear
before and after the operation-end record for O1, and during recovery updates done during the logical
undo of O1 may get fully or partially overwritten by old values during the physical undo of 02. This
problem cannot occur if O1 had obtained all the lower-level locks required for the logical undo of 01,
since then there cannot be such a concurrent 02.




