UNIT-1

source coding systems

Communication system converts information into electrical
electromagnetic/optical signals appropriate for the transmission medium.

Analog systems convert analog message into signals that can propagate through
the channel.

Digital systems convert bits(digits, symbols) into signals
» Computers naturally generate information as characters/bits
» Most information can be converted into bits

> Analog signals converted to bits by sampling and quantizing (A/D
conversion)

Digital techniques need to distinguish between discrete symbols allowing
regeneration versus amplification

Good processing techniques are available for digital signals, such as medium.
» Data compression (or source coding)
» Error Correction (or channel coding)(A/D conversion)
» Equalization
> Security
» Easy to mix signals and data using digital techniques
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Figure 1.1 Pulse degradation and regeneration.




Elements of Digital Communication Systems:

1.
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Fig. 1 Elements of Digital Communication Systems

Information Source and Input Transducer:

The source of information can be analog or digital, e.g. analog: audio or video
signal, digital: like teletype signal. In digital communication the signal produced by
this source is converted into digital signal which consists of 1's and 0’s. For this we
need a source encoder.

Source Encoder:

In digital communication we convert the signal from source into digital signal
as mentioned above. The point to remember is we should like to use as few binary
digits as possible to represent the signal. In such a way this efficient representation
of the source output results in little or no redundancy. This sequence of binary digits
is called information sequence.

Source Encoding or Data Compression: the process of efficiently converting
the output of whether analog or digital source into a sequence of binary digits is
known as source encoding.




Channel Encoder:

The information sequence is passed through the channel encoder. The
purpose of the channel encoder is to introduce, in controlled manner, some
redundancy in the binary information sequence that can be used at the receiver to
overcome the effects of noise and interference encountered in the transmission on
the signal through the channel.

For example take k bits of the information sequence and map that k bits to
unigue n bit sequence called code word. The amount of redundancy introduced is
measured by the ratio n/k and the reciprocal of this ratio (k/n) is known as rate of
code or code rate.

Digital Modulator:

The binary sequence is passed to digital modulator which in turns convert the
sequence into electric signals so that we can transmit them on channel (we will see
channel later). The digital modulator maps the binary sequences into signal wave
forms , for example if we represent 1 by sin x and 0 by cos x then we will transmit sin
x for 1 and cos x for 0. ( a case similar to BPSK)

Channel:

The communication channel is the physical medium that is used for
transmitting signals from transmitter to receiver. In wireless system, this channel
consists of atmosphere , for traditional telephony, this channel is wired , there are
optical channels, under water acoustic channels etc.We further discriminate this
channels on the basis of their property and characteristics, like AWGN channel etc.
Digital Demodulator:

The digital demodulator processes the channel corrupted transmitted
waveform and reduces the waveform to the sequence of numbers that represents
estimates of the transmitted data symbols.

Channel Decoder:

This sequence of numbers then passed through the channel decoder which
attempts to reconstruct the original information sequence from the knowledge of
the code used by the channel encoder and the redundancy contained in the received
data

Note: The average probability of a bit error at the output of the decoder is a

measure of the performance of the demodulator — decoder combination.

8. Source Decoder:

At the end, if an analog signal is desired then source decoder tries to decode
the sequence from the knowledge of the encoding algorithm. And which results in
the approximate replica of the input at the transmitter end.




9. Output Transducer:

Finally we get the desired signal in desired format analog or digital.

Advantages of digital communication:

Can withstand channel noise and distortion much better as long
as the noise and the distortion are within limits.

Regenerative repeaters prevent accumulation of noise along the
path.

Digital hardware implementation is flexible.

Digital signals can be coded to yield extremely low error rates,
high fidelity and well as privacy.

Digital communication is inherently more efficient than analog in
realizing the exchange of SNR for bandwidth.

It is easier and more efficient to multiplex several digital signals.

Digital signal storage is relatively easy and inexpensive.

Reproduction with digital messages is extremely reliable without
deterioration.

The cost of digital hardware continues to halve every two or
three years, while performance or capacity doubles over the
same time period.

Disadvantages

TDM digital transmission is not compatible with the FDM

A Digital system requires large bandwidth.




Introduction to Pulse Modulation

What is the need for Pulse Modulation?

e Many Signals in Modern Communication Systems are digital

e Also, analog signals are transmitted digitally.

e Reduced distortion and improvement in signal to noise ratios.
e PAM, PWM, PPM, PCM and DM.

e In CW modulation schemes some parameter of modulated wave varies continuously with
message.

e |n Analog pulse modulation some parameter of each pulse is modulated by a particular
sample value of the message.
® Pulse modulation is of two types
o Analog Pulse Modulation
= Pulse Amplitude Modulation (PAM)
= Pulse width Modulation (PWM)
= Pulse Position Modulation (PPM)
o Digital Pulse Modulation
" Pulse code Modulation (PCM)
= Delta Modulation (DM)

PULSE MODULATION

Pulse Amplitude Modulation
Pulse Width Modulation

Pulse Position Modulation

Pulse Code Modulation B el

Delta Modulation ln

Pulse Code Modulation:

Three steps involved in conversion of analog signal to digital signal

e Sampling
e Quantization
e Binary encoding
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Fig. 2 Conversion of Analog Signal to Digital Signal
Note: Before sampling the signal is filtered to limit bandwidth.
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Sampling:

Fig. 3 Elements of PCM System

e Process of converting analog signal into discrete signal.
e Sampling is common in all pulse modulation techniques




e The signal is sampled at regular intervals such that each sample is proportional to
amplitude of signal at that instant

e Analog signal is sampled every Ts Secs, called sampling interval. fs=1/Tsis called
sampling rate or sampling frequency.

e fs=2fmis Min. sampling rate called Nyquist rate. Sampled spectrum (w) is repeating
periodically without overlapping.

e Original spectrum is centered at w=0 and having bandwidth of wm. Spectrum can be
recovered by passing through low pass filter with cut-off wm.

e For fs<2fmsampled spectrum will overlap and cannot be recovered back. This is
called aliasing.

Sampling methods:

e |deal— Animpulse at each sampling instant.
e Natural — A pulse of Short width with varying amplitude.
e Flat Top — Uses sample and hold, like natural but with single amplitude value.

Amplitude Amplitude
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Analog signal
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P \yianes

a. ldeal sampllng b. Natural sampling

Analog signal
H H Time
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Amplitude

¢ Flat—top sampling
Fig. 4 Types of Sampling

Sampling of band-pass Signals:

e Aband-pass signal of bandwidth 2f, can be completely recovered from its samples.
Min. sampling rate =2xBandwidth
=2x2fm=4fm
e Range of minimum sampling frequencies is in the range of 2xBW to 4xBW

Instantaneous Sampling or Impulse Sampling:

e Sampling function is train of spectrum remains constant impulses throughout
frequency range. It is not practical.




Natural sampling:

e The spectrum is weighted by a sinc function.
e Amplitude of high frequency components reduces.

Flat top sampling:

e Here top of the samples remains constant.
e Inthe spectrum high frequency components are attenuated due sinc pulse roll off.

This is known as Aperture effect.
e If pulse width increases aperture effect is more i.e. more attenuation of high

frequency components.

Sampling Theorem:

Statement of sampling theorem

1) A band limited signal of finite energy, which has no frequency components
higher than W Hertz, is completely described by specifying the values of the

signal at instants of time separated by Z—IW seconds and

2) A band limited signal of finite energy, which has no frequency components
higher than W Hertz, may be completely recovered from the knowledge of its

samples taken at the rate of 2W samples per second.

The first part of above statement tells about sampling of the signal and second
part tells about reconstruction of the signal. Above statement can be combined and

stated alternately as follows :
A continuous time signal can be completely represented in its samples and recovered back
if the sampling frequency is twice of the highest frequency content of the signal. i.e.,
2 2W
Here f; is the sampling frequency and
W is the higher frequency content
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Proof of sampling theorem

There are two parts : (I) Representation of x{f) in terms of its samples
(IT) Reconstruction of x(f) from its samples.

Part I : Representation of x{f) in its samples x(nT)

aStgp,f_l;:' Define xg(f)

Step 2 : Fourier transform of xg(f) i.e. X5(f)
SteRS : Relation between X(f) and X5(f)
Step 4 : Relation between x() and x(nT;)

el
Step 1 : Define x3(t)
The sampled signal x5(f) is given as,
xs(f) = Y A)8(t-nTy) 2o |
n= — oo

Here observe that xz(t) is the product of x5 and impulse train §(f) as shown in
above fig In the above equation §(t-nT,) indicates the samples placed at T, +2T,
%37 ... and so on.

Step 2 : FT of x(t) i.e. X5(f)
Taking FT of equation (1.3.1).

Xs(f) = FI‘{ ix(t)&(t—n'l's)}

= FT {Product of xf) and impulse train}

We know that FT of product in time domain becomes convolution in frequency
domain. i.e.,

Xs(f) = FT () * FTO(E-nT,))  ceeeeeeeoeem 2
By definitions, x(t) «—— X(f) and
8(t-nT,) 1 f, f;s(f-nfs)

n=-—oe

Hence equation (1.3.2) becomes,

Xs() = XP*f 38(F-nf)

Since convolution is linear,

Xst) = fi SX()*8(f-nfy)




= % ix(f-nfs) By shifting property of impulse function

= o fo XOF=2fs) +fs X(f = fo) + fs X(N)+ fo X(f = o) + fs X(f =~ 2f) -

Comments

(i) The RHS of above equation shows that X(f) is placed
at tf, +2f, , £3f,

(ii) This means X(f) is periodic in f,.
(iii) If sampling frequency is f; = 2W, then the spectrums X(f) just touch

each other.
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Fig. 6 Spectrum of original signal and sampled signal

Step 3 : Relation between X(f) and X 5(f)
Important assumption : Let us assume that f; = 2W, then as per above diagram.

Xs(H = £ X(H for-W<f<Wandf, = 2W
ol

or X() = ~X50) . 3
s

Step 4 : Relation between x(t) and x(nT)

DTFTis, X(Q) = Y x(n)e /"
nH=—eco

X(f) = Y dme /2% i i

n= —oo




In above equation 'f' is the frequency of DT signal. If we replace X(f) by Xj3(f),
then 'f' becomes frequency of CT signal. i.e.,
T
~j2n
Xs() = Same k'

Nn=— oo

In above equation 'f is frequency of CT signal. And }_}; = Frequency of DT signal
s

in equation 4 Since x(n) = x(nTy), i.e. samples of x(f), then we have,
Xs() = Y HAnT,)e %% since ?1- =T,

N=—oo s

Putting above expression in equation 3,

X)) = = E:c(nT)e j2nfnT
f o
Inverse Fourier Transform (IFT) of above equation gives x(f) i.e.,
xt) = IFT{— Ex(nT)e j2nfns ol D
i

Comments :
i) Here x(t) is represented completely in terms of x(nT).

ii) Above equation holds for f; = 2W. This means if the samples are taken at the
rate of 2W or higher, x(f) is completely represented by its samples.

iii) First part of the sampling theorem is proved by above two comments.
Part II : Reconstruction of x(¢) from its samples

Ste_p.:i : Take inverse Fourier transform of X(f) which is in terms of X3(f).
Step 2 : _Sh_ow that x(f) is obtained back with the help of interpolation function.

Step 1: The IFT of equation 5  becomes,
xt) = I {71- Ex(nTs)e"iZRInT_é}eiuﬂ df

-0 n=-oo

Here the integration can be taken from -W<f<W. Since X(f) = -l—Xs(f) for
s
~-W<f<W. (See Fig.6 ).
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ix(n-z;)e-ﬂnfn'l; ei28ft gf
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Interchanging the order of summation and integration,

x(t)

]

EI(’!T) I e}21tf(l nTs)df

n=-—oe -W

ei2nf(t-nTy) TV
Ex( T)f []Zn(t nT)]

SAoy) 2 TIRGE-nTy)

n==—oco

1 {equW(! -nTg) _ o= j2xW(t-nT;) }

1 sin2nW(t-nT,)
n_zf’,‘f L) Ty

. sin(2Wt-2W nT,)
-”_Z_f"Ts) x(Lt-finTy)

Heref,=2W,hmceT,=j%=-21—w.Simplifyingaboveequation,
sinn(2Wt-n)

xt) = E "("Ts)—nm

sinmtO

=0 = sinc B

ix(nT,)sinc(ZWt—n) since

Step 2 : Let us interpret the above equation. Expanding we get,
x{t) = -+x(~2T;)sinc(2Wi+2)+ x(~T;) sinc(2W t+1) +x(0) sinc(2W ) + X(T;) sinc(2W £ =1) ++--
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Fig. 7 (a) Sampled version of signal x(t)
(b) Reconstruction of x(t) from its samples

Comments :

i) The samples x(nT;) are weighted by sinc functions.

ii) The sinc function is the interpolating function. Fig.7 shows, how x(f) is

interpolated.

Step 3 : Reconstruction of x(t) by lowpass filter

When the interpolated signal of equation 6 is passed through the lowpass
filter of bandwidth ~-W<f<W, then the reconstructed waveform shown in above
Fig.  7(b) is obtained. The individual sinc functions are interpolated to get smooth
x(t).

12




PCM Generator:

The pulse code modulator technique samples the input signal x(f) at frequency
fs 22W. This sampled 'Variable amplitude' pulse is then digitized by the analog to
digital converter. The parallel bits obtained are converted to a serial bit stream.
Fig. 8 shows the PCM generator.

v digits

. e
x(t) Lowpass x(nTg) | q-tevel |79 Binary Parallel | PCM
—»{ fiter L—»! SH quantizer "] encoder =1 1o serial —>
fo=W (digitizer) »| converter | r=vf

@-——D Timer

fg22w

Fig. 8 PCM generator

In the PCM generator of above figure, the signal x(f) is first passed through the
lowpass filter of cutoff frequency ‘W' Hz. This lowpass filter blocks all the frequency
components above 'W' Hz. Thus x(t) is bandlimited to ‘W' Hz. The sample and hold
circuit then samples this signal at the rate of f,. Sampling frequency f; is selected
sufficiently above Nyquist rate to avoid aliasing i.e.,

f 2 2W

In Fig. 8 output of sample and hold is called x(nT;). This x(nT;) is discrete in
time and continuous in amplitude. A g-level quantizer compares input x(n T;) with its
fixed digital levels. It assigns any one of the digital level to x(nT;) with its fixed
digital levels. It then assigns any one of the digital level to x(nT;) which results in
minimum distortion or error. This error is called quantization error. Thus output of
quantizer is a digital level called x, (n T).

Now coming back to our discussion of PCM generation, the quantized signal level
x,(nT;) is given to binary encoder. This encoder converts input signal to 'v' digits
binary word. Thus x, (nT;) is converted to 'V' binary bits. The encoder is also called
digitizer.

It is not possible to transmit each bit of the binary word separately on
transmission line. Therefore 'v' binary digits are converted to serial bit stream to
generate single baseband signal. In a parallel to serial converter, normally a shift
register does this job. The output of PCM generator is thus a single baseband signal of
binary bits.

An oscillator generates the clocks for sample and hold an parallel to serial
converter. In the pulse code modulation generator discussed above ; sample and hold,
quantizer and encoder combinely form an analog to digital converter.

13




Transmission BW in PCM:

Let the quantizer use "2’ number of binary digits to represent each level. Then the
number of levels that can be represented by 'z” digits will be,

q =2 1
Here ‘g’ represents total number of digital levels of g-level quantizer.
For example if v =3 bits, then total number of levels will be,

q = 23 =8levels

Each sample is converted to '2' binary bits. i.e. Number of bits per sample = v
We know that, Number of samples per second = f;
. Number of bits per second is given by,

(Number of bits per second) = (Number of bits per samples)
' x (Number of samples per second)
= v bits per sample x f; samples per second ... 2

The number of bits per second is also called signaling rate of PCM and is denoted
by 'r' ie,

Signaling rate in PCM : r = v f; 3

Here f, 2 2W.

Bandwidth needed for PCM transmission will be given by half of the signaling
rate i.e.,

(

Br2yr W
Transmission Bandwidth of PCM :  {By 27 0f, Since f, 22W . 5
BTZUW - 6
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PCM Receiver:

Fig. 9 (a) shows the block diagram of PCM receiver and Fig. 9 (b) shows the
reconstructed signal. The regenerator at the start of PCM receiver reshapes the pulses
and removes the noise. This signal is then converted to parallel digital words for each
sample.

v digits
PCM+ Noise pcm| Serial Digital xq(t) | Lowpass | yg(t)
i Regenerator }— to parallel] toanalog — S/H —»] filter }—
T converter] - converter fo=W
M ol Timer (a)
Xq(t)
L0~
5/q- x(1) ’/ —ac ‘
x(KT,) / Q\
\
3/q- / \
q / \ )
II \\
,I
1 I q ] A \\s
o Ll ’1 L Ll Ll L] 1 ] ’ t
W 3 KT
-1 [ q R -—m—

Fig. 9 (a) PCM receiver
(b) Reconstructed waveform

The digital word is converted to its analog value x, (f) along with sample and
hold. This signal, at the output of S/H is passed through lowpass reconstruction filter
to get vy, (). As shown in reconstructed signal of Fig. 9 (b), it is impossible to
reconstruct exact original signal x(f) because of permanent quantization error
introduced during quantization at the transmitter. This quantization error can be
reduced by increasing the binary levels. This is equivalent to increasing binary digits
(bits) per sample. But increasing bits 'v' increases the signaling rate as well as
transmission bandwidth as we have seen in equation 3 and equation 6.
Therefore the choice of these parameters is made, such that noise due to quantization
error (called as quantization noise) is in tolerable limits.

Quantization

e The quantizing of an analog signal is done by discretizing the signal with a number of
guantization levels.
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e Quantization is representing the sampled values of the amplitude by a finite set of
levels, which means converting a continuous-amplitude sample into a discrete-time
signal

e Both sampling and quantization result in the loss of information.

e The quality of a Quantizer output depends upon the number of quantization levels
used.

e The discrete amplitudes of the quantized output are called as representation levels
or reconstruction levels.

e The spacing between the two adjacent representation levels is called a quantum or
step-size.

e There are two types of Quantization

o Uniform Quantization
o Non-uniform Quantization.

e The type of quantization in which the quantization levels are uniformly spaced is

termed as a Uniform Quantization.

e The type of quantization in which the quantization levels are unequal and mostly the
relation between them is logarithmic, is termed as a Non-uniform Quantization.

Uniform Quantization:

* There are two types of uniform quantization.
— Mid-Rise type
— Mid-Tread type.
* The following figures represent the two types of uniform quantization.

Qutput level Output level
ot
A=
1+
rL ot
; . 2 | | Input
4 3 | l Input : ¥
: + t 1 i 3 4 level
J ' 0 2 4 level
i ->2 — ‘!
T 44
Fig 1 : Mid-Rise type Uniform Quantization Fig 2 : Mid-Tread type Uniform Quantization

* The Mid-Rise type is so called because the origin lies in the middle of a raising part of
the stair-case like graph. The quantization levels in this type are even in number.

* The Mid-tread type is so called because the origin lies in the middle of a tread of the
stair-case like graph. The quantization levels in this type are odd in number.

* Both the mid-rise and mid-tread type of uniform quantizer is symmetric about the
origin.
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Quantization Noise and Signal to Noise ratio in PCM System:
Derivation of Quantization Error/Noise or Noise Power for Uniform (Linear) Quantization
Step 1 : Quantization Error

Because of quantization, inherent errors are introduced in the signal. This error is
cailed quantization error. We have defined quantization error as,

e = x,(nT)-x(nT) e (1)
Step 2 : Step size

Let an input x(n 7}) be of continuous amplitude in the range —x,,, 10 + X0, -
Therefore the total amplitude range becomes,
Total amplitude range = x5y = (= Xmax) @
= 2 Xmax

If this amplitude range is divided into 'q’ levels of quantizer, then the step size '8
is given as,

5 = .1:_'“;‘_“-_-_(: :T,!”\.:)
q
= _Z_Xmﬂ" ------------------ (3)
fq

If signal x(f) is normalized to minimum and maximum values equal to 1, then

Xmax = 1

g = A1 — Z))

Therefore step size will be,

3 = % (for normalized signal) (5)

Step 3 : Pdf of Quantization error

If step size '8 is sufficiently small, then it is reasonable to assume that the

quantization error '€’ will be uniformly distributed random variable. The maximum
quantization error is given by

Eiay 'm &g‘ ........................... 6)
; S 0  sssossasscaeas
1Le. = -i 2 € max 2 i (7)
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8) quantization error is uniformly distributed random

Thus over the interval (—g, 3

variable.

fx(x)A fe © A

I—l

o
|
)

Y
Y

(a) (b)

Fig. 10 (a) Uniform distribution
(b) Uniform distribution for quantization error

In above figure, a random variable is said to be uniformly distributed over an
interval (a, b). Then PDF of 'X' is given by, (from equation of Uniform PDF).

0 for x<a
fro(®) = ﬁ for a<x<b
0 N R 0 e (8)

Thus with the help of above equation we can define the probability density
function for quantization error "¢’ as,

0 for esg
1 d )
L@ = {3 Jor -3<es3

o
¥
m
\
|

5 ©)
2
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Step 4 : Noise Power
quantization error 'e' has zero average value.
That is mean "m. ' of the quantization error is zero.
The signal to quantization noise ratio of the quantizer is defined as,
S Signal power (normalized)
N ~ Noise power (normalized) .

If type of signal at input i.e., x(f) is known, then it is possible to calculate signal
power.

The noise power is given as,
V2.
Noise power = % - (11)

Here V2. is the mean square value of noise voltage. Since noise is defined by
random variable ‘e’ and PDF f; (g), its mean square value is given as,
mean square value = E[g2] = g2 w12

The mean square value of a random variable ‘X' is given as,

E[X2]= I x? fy(x)dx By definition . (13)

—

X2

Here E[e?]

I g? fe () de w (14)

From equation 9  we can write above equation as,
8/2

E[e?] = I 2 x%de
-8/2
) l[g]m =1[(15/2)3 +(:5/2)3]
8| 3 — b 3 3
T 338 8| 12 =
. From equation 1.8.25, the mean square value of noise voltage is,

2

3
= mean square value = vl

2
noise
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When load resistance, R =1 ohm, then the noise power is normalized i.e.,
2

Ve

Noise power (normalized) = %“ [with R=1 in equation11 ]
_ (%12 8
S 12

Thus we have,

Normalized noise power
2

or Quantization noise power = % ; For linear quantization.

or Quantization error (in terms of power) v (16)

Derivation of Maximum Signal to Quantization Noise Ratio for Linear Quantization:
signal to quantization noise ratio is given as,
S _ Normalized signal power
N =~ Normalized noise power

Normalized signal power
o R WY - (@7
(8° /12
The number of bits ‘' and quantization levels 'q" are related as,
q =2 . (18)
Putting this value in equation (3) we have,
- 2 xmax
% = o - (19)
Putting this value in equation 1.8.30 we get,
S§ _ Normalized signal power
N 2
(—2 Xmax ] +12
20
Let normalized signal power be denoted as 'P'.
- W
N~ 12, 1 %
2 12
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This is the required relation for maximum signal to quantization noise ratio. Thus,

. . .. . . S 3P
Maximum signal to quantization noise ratio : — =—— 2%
gn q N xtzn N - (20)

This equation shows that signal to noise power ratio of quantizer increases
exponentially with increasing bits per sample.

If we assume that input x(f) is normalized, i.e.,

Xz & i1 - (21)

Then signal to quantization noise ratio will be,

S - 3x2%xp

;Y 2 - (22)
If the destination signal power 'P' is normalized, i.e.,

Ps<1 . (23)
Tien: the signal to noise ratio is given as,

% < 3x2% w (24)

Since x., =1andP <1, the signal to noise ratio given by above equation is
normalized.

Expressing the signal to noise ratio in decibels,

i

10log g [% )dB since power ratio.

A

10l0g o [3%2%]
< (48+60)dB

Thus,

Signal to Quantization noise ratio

Z|w»n

for normalized values of power : ( )dB <(4.8+6v)dB

'P' and amplitude of input x (t) - (25)

Non-Uniform Quantization:

In non-uniform quantization, the step size is not fixed. It varies according to certain
law or as per input signal amplitude. The following fig shows the characteristics of Non
uniform quantizer.
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In this figure observe that step size is small at low input signal levels. Hence
quantization error is also small at these inputs. Therefore signal to quantization noise
power ratio is improved at low signal levels. Stepsize is higher at high input levels.
Hence signal to noise power ratio remains almost same throughout the dynamic range

of quantizer.

Companding PCM System:

* Non-uniform quantizers are difficult to make and expensive.
* Analternative is to first pass the speech signal through nonlinearity before

guantizing with a uniform quantizer.

* The nonlinearity causes the signal amplitude to be compressed.

The input to the quantizer will have a more uniform distribution.

* Atthe receiver, the signal is expanded by an inverse to the nonlinearity.
* The process of compressing and expanding is called Companding.

O/P. Voltage of
Compander

Compression

{Expansion

Expans:ion
1N

Compression

I/P. Voltage of
Compander
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Compressor Uniform Quantizer Expander
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The 3 stages combine to
give the characteristics of a
Non-uniform quantizer

u - Law Companding for Speech Signals

Normally for speech and music signals a p - law compression is used. This
compression is defined by the following equation,

In(l+p|x|)

Z(x) = (Sgnx) n{+m)

[x]<1 v (13

Below Fig shows the variation of signal to noise ratio with respect to signal level
without companding and with companding.

50+
T With compandin/
40

o]

Without compandi
20+ .

T T T T e
-40 -30 -20 -10 0
Signal level dB —»

Fig. 11 PCM performance with p - law companding
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It can be observed from above figure that signal to noise ratio of PCM remains
almost constant with companding.

A-Law for Companding

The A law provides piecewise compressor characteristic. It has linear segment for
low level inputs and logarithmic segment for high level inputs. It is defined as,

Alx| 1
i Y for OSMSZ
7 | 14In(A|x]) 1 e

1 qx<1
il X g

When A = 1, we get uniform quantization. The practical value for A is 87.56. Both
A-law and p-law companding is used for PCM telephone systems.

Signal to Noise Ratio of Companded PCM

The signal to noise ratio of companded PCM is given as,

S _  3q?
N (In(+p)? -

Here q = 27 is number of quantization levels.

0 0.2 04 0.6 0s |

Differential Pulse Code Modulation (DPCM):

Redundant Information in PCM:

The samples of a signal are highly corrected with each other. This is because any
signal does not change fast. That is its value from present sample to next sample does
not differ by large amount. The adjacent samples of the signal carry the same
information with little difference. When these samples are encoded by standard PCM
system, the resulting encoded signal contains redundant information.
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Fig. shows a continuous time signal x(f) by dotted line. This signal is
sampled by flat top sampling at intervals T, 2T}, 3T; ....nT,. The sampling frequency is
selected to be higher than nyquist rate. The samples are encoded by using 3 bit
(7 levels) PCM. The sample is quantized to the nearest digital level as shown by small

I
bits (lavels)
7 (1)
o s 835 _
6 (110) e 2 [ -
s . wre 2
5(101) T o ¥.97 &
g ¢ N
4 (100)- g o
3(011)
2 (010)
1 {001)-
-
0 (000) T, 2T, 3T, 4T, 5T, 6T, 7T, 8T, oT, 10T,
X(nT,)

Fig. Redundant information in PCM

circles in the diagram. The encoded binary value of each sample is written on the top
of the samples. We can see from Fig. that the samples taken at 4T, 5T, and 6T
are encoded to same value of (110). This information can be carried only by one
sample. But three samples are carrying the same information means it is redundant.
Consider another example of samples taken at 97, and107T,. The difference between
these samples is only due to last bit and first two bits are redundant, since they do

not change.
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Principle of DPCM

If this redundancy is reduced, then overall bit rate will decrease and number of
bits required to transmit one sample will also be reduced. This type of digital pulse
modulation scheme is called Differential Pulse Code Modulation.

DPCM Transmitter

The differential pulse code modulation works on the principle of prediction. The
value of the present sample is predicted from the past samples. The prediction may
not be exact but it is very close to the actual sample value. Fig. shows the
transmitter of Differential Pulse Code Modulation (DPCM) system. The sampled signal
is denoted by x(nT,) and the predicted signal is denoted by ¥(nT,). The comparator
finds out the difference between the actual sample value x(nT.) and predicted sample
value %(nT,). This is called error and it is denoted by ¢(n T,). It can be defined as,

e(nT,) = x(nT)-x(nT))

Comparator
Sampled

+ e{nT,) e fnT,.)
x(nT,) - signal

QUnT,)
- Prediction
fitter xg(nTg)
Fig. Differential pulse code modulation transmitter

Thus error is the difference between unquantized input sample x(nT,) and
prediction of it X¥(nT,). The predicted value is produced by using a prediction filter.
The quantizer output signal ¢, (2 T;) and previous prediction is added and given as
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input to the prediction filter. This signal is called x, (nT;). This makes the prediction
more and more close to the actual sampled signal. We can see that the quantized error
signal e, (n 1) is very small and can be encoded by using small number of bits. Thus
number of bits per sample are reduced in DPCM.

The quantizer output can be wrilten as,

cgnTy) = enT)+qnTy) (2)
Here 4(nT) is the quantization error. As shown in Fig. the prediction filter
input x, (nT,) is obtained by sum ¥(n T.) and quantizer output ie.,
Xp(nTo) = X(nT)+e,(n Ty e, (3)
Putting the value of ¢, (1 T;) from equation 2 in the above equation we get,
X (nT) = ¥mT)+emT)+qnT) (4)
Equation 1 is written as,
e(nT,) = x(nT,)-x(nT,)
e(nT)+x(nT) = x(nTy)y (5)
-, Putting the value of ¢(nT,) + ¥(n T,) from above equation into equation 4 we
get,
xynle) = x(nT)+qnTy) (6)

Thus the quantized version of the signal x,(nT;) is the sum of original sample
value and quantization error q(nT.). The quantization error can be positive or
negative. Thus equation 6 does not depend on the prediction filter characteristics.

Reconstruction of DPCM Signal
Fig. shows the block diagram of DPCM receiver.

DPCM
input

== Culput

Prediction |
filter

Fig. DPCM receiver

The decoder first reconstructs the quantized error signal from incoming binary
signal. The prediction filter output and quantized error signals are summed up to give
the quantized version of the original signal. Thus the signal at the receiver differs
from actual signal by quantization error gq(nT,), which is introduced permanently in
the reconstructed signal.

Line Coding:

In telecommunication, a line code is a code chosen for use within a communications
system for transmitting a digital signal down a transmission line. Line coding is often used
for digital data transport.

The waveform pattern of voltage or current used to represent the 1s and Os of a
digital signal on a transmission link is called line encoding. The common types of
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line encoding are unipolar, polar, bipolar and Manchester encoding. Line codes are used
commonly in computer communication networks over short distances.

NRZ-L

NRZ-M

NRZ-S

RZ

Biphase-L

Biphase-M

Biphase—-8
Differential
Manchester

Bipolar

Signal Comments

NRZ-L Non-return to zero level. This is the standard positive logic
signal format used in digital circuits.

1 forces a high level

0 forces a low level

NRZ-M Non return to zero mark

1 forces a transition

(0 does nothing

NRZ-S Non return to zero space

1 does nothing

0 forces a transition

RZ Return to zero

1 goes high for half the bit period

0 does nothing

Biphase-L Manchester. Two consecutive bits of the same type force a
transition at the beginning of a bit period.

1 forces a negative transition in the middle of the bit

() forces a positive transition in the middle of the bit
Biphase-M There is always a transition at the beginning of a bit period.
1 forces a transition in the middle of the bit

() does nothing

Biphase-S There is always a transition at the beginning of a bit period.
1 does nothing

0 forces a transition in the middle of the bit

Differential There is always a transition in the middle of a bit period.
Manchester 1 does nothing

() forces a transition at the beginning of the bit

Bipolar The positive and negative pulses alternate.

1 forces a positive or negative pulse for half the bit period
0 does nothing
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Time Division Multiplexing:

The sampling theorem provides the basis for transmitting the information contained in a
band-limited message signal () as a sequence of samples of #(t) taken uniformly at a
rate that is usually slightly higher than the Nyquist rate. An important feature of the
sampling process is a conservation of time. That is, the transmission of the message samples
engages the communication channel for only a fraction of the sampling interval on a
periodic basis, and in this way some of the time interval between adjacent samples is cleared
for use by other independent message sources on a time-shared basis. We thereby obtain
a time-division multiplex (TDM) system, which enables the joint utilization of a common
communication channel by a plurality of independent message sources without mutual
interference among them.

The concept of TDM is illustrated by the block diagram shown in Figure Each
input message signal is first restricted in bandwidth by a low-pass anti-aliasing filter to
remove the frequencies that are nonessential to an adequate signal representation. The
low-pass filter outputs are then applied to a commutator, which is usually implemented
using electronic switching circuitry. The function of the commutator is twofold: (1) to take
a narrow sample of each of the N input messages at a rate f, that is slightly higher than
2W, where W is the cutoff frequency of the anti-aliasing filter, and (2) to sequentially
interleave these N samples inside the sampling interval T;. Indeed, this latter function is
the essence of the time-division multiplexing operation. Following the commutation pro-
cess, the multiplexed signal is applied to a pulse modulator, the purpose of which is to
transform the multiplexed signal into a form suitable for transmission over the common
channel. It is clear that the use of time-division multiplexing introduces a bandwidth ex-
pansion factor N, because the scheme must squeeze N samples derived from N independent
message sources into a time slot equal to one sampling interval. At the receiving end of
the system, the received signal is applied to a pulse demodulator, which performs the
reverse operation of the pulse modulator. The narrow samples produced at the pulse de-
modulator output are distributed to the appropriate low-pass reconstruction filters by
means of a decommutator, which operates in synchronism with the commutator in the
transmitter. This synchronization is essential for a satisfactory operation of the system.

The way this synchronization is implemented depends naturally on the method of pulse
modulation used to transmit the multiplexed sequence of samples.

The TDM system is highly sensitive to dispersion in the common channel, that is, to
variations of amplitude with frequency or lack of proportionality of phase with frequency.
Accordingly, accurate equalization of both magnitude and phase responses of the channel
i necessary to ensure a satisfactory operation of the system;
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= Clack pulses Clock pulses

FIGURE Block diagram of TDM system.

TDM is immune to nonlinearities in the channel as a source of crosstalk. The reason
for this behaviour is that different message signals are not simultaneously applied to the
channel.

Introduction to Delta Modulation

PCM transmits all the bits which are used to code the

sample. Hence signaling rate and transmission channel bandwidth are large in PCM.
To overcome this problem Delta Modulation is used.

Delta Modulation

Operating Principle of DM

Delta modulation transmits only one bit per sample. That is the present sample
value is compared with the previous sample value and the indicationwhether the
amplitude is increased or decreased is sent. Input signal x(f) is approximated to step
signal by the delta modulator. This step size is fixed . The difference between the
input signal x(f) and staircase approximated signal confined to two levels, ie.
+8and = 8. If the difference is positive, then approximated signal is increased by one
step i.e. '&. If the difference is negative, then approximated signal is reduced by '&.
When the step is reduced, ‘0’ is transmitted and if the step is increased, ‘1’ is
transmitted. Thus for each sample, only one binary bit is transmitted. Fig. shows
the analog signal x(f) and its staircase approximated signal by the delta modulator.
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Fig. Delta modulation waveform

The principle of delta modulation can be explained by the following set of
equations. The error between the sampled value of x(f) and last approximated sample
is given as,

e(nTy) = x(nT,)-%(nT,) (1)
Here, e(nT.) = Error at present sample
x(nT,) = Sampled signal of x(!)
X¥(nT,) = Last sample approximation of the staircase waveform.
We can call u(nT,) as the present sample approximation of staircase output.
Then, u[(n-1)T,] = x(nT,) e (2)
= Last sample approximation of staircase waveform.

Let the quantity b (nT,) be defined as,
b(nT,) = dsgnle(nT,)] el 3)

That is depending on the sign of error ¢(nT,) the sign of step size & will be
decided. In other words,

b(nT,) = +5 if  x(nT,) = ¥nT.)
= -3 if  x(nT,) < ¥nT,) )
If b(nT,) = +5; binary ‘1’ is transmitted

and if b(nT,) -3 ; binary ‘0 is transmitted.

T, = Sampling interval.

I
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DM Transmitter
Fig. (a) shows the transmitter based on equations 3to 5.
The summer in the accumulator adds quantizer output (£8) with the previous
sample approximation. This gives present sample approximation. i.e.,
u(nT,) =u(nT, -T,)+[+8] or
= ul[(n-1)T,]+b(nT,) .. ( 5)
The previous sample approximation uf(n-1)7T,] is restored by delaying one

sample period T,. The sampled input signal x(nT,) and staircase approximated signal
¥(nT,) are subtracted to get error signal e(nT.).

s o Error
amp alkT
input  + T r e bikT,) N
“"’@.)—__’"quanu:er *= Qutput
LA ¢ vs
O L O S
] ]
' k-1)T +
E ultk-1) Tg) +é_) +i-=—— Summer
1 '
] ]
i Delay 1
: T:., l.I{kTE:l :
R
Accumulator
{a)
Accumulator

Input Lowpass | g Output

fittar

Fig. (a) Delta modulation transmitter and
{b) Deita modulation receiver

32




Depending on the sign of e(nT_) one bit quantizer produces an output step of +&
or - 6. If the step size is +§, then binary ‘1’ is transmitted and if it is -, then binary
‘0" is transmitted.

DM Receiver

At the receiver shown in Fig. (b), the accumulator and low-pass filter are
used. The accumulator generates the staircase approximated signal output and is
delayed by one sampling period T,. It is then added to the input signal. If input is
binary ‘1’ then it adds +& step to the previous output (which is delayed). If input is
binary ‘0" then one step '8 is subtracted from the delayed signal. The low-pass filter
has the cutoff frequency equal to highest frequency in x(f). This filter smoothen the
staircase signal to reconstruct x (f).

Advantages and Disadvantages of Delta Modulation

Advantages of Delta Modulation
The delta modulation has following advantages over PCM,

1. Delta modulation transmits only one bit for one sample. Thus the signaling
rate and transmission channel bandwidth is quite small for delta modulation.

2. The transmitter and receiver implementation is very much simple for delta
modulation. There is no analog to digital converter involved in delta

modulation.

Disadvantages of Delta Modulation

Granular noisa

Slope - overioad N
distartion 4

Staircase  f®
approgimation=—" - g e
uit) : T
Fig. Quantization errors in delta modulation

The delta modulation has two drawbacks -
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Slope Overload Distortion (Startup Error)

This distortion arises because of the large dynamic range of the input signal.

As can be seen from Fig. the rate of rise of input signal x(f) is so high that
the staircase signal cannot approximate it, the step size 'd' becomes too small for
staircase signal u(f) to follow the steep segment of x(f). Thus there is a large error
between the staircase approximated signal and the original input signal x(t). This error
is called slope overload distortion. To reduce this error, the step size should be increased
when slope of signal of x(¢) is high.

Since the step size of delta modulator remains fixed, its maximum or minimum
slopes occur along straight lines. Therefore this modulator is also called Linear Delta
Modulator (LDM).

Granular Noise (Hunting)

Granular noise occurs when the step size is too large compared to small variations
in the input signal. That is for very small variations in the input signal, the staircase

signal is changed by large amount () because of large step size. Fig shows that
when the input signal is almost flat, the staircase signal u (f) keeps on oscillating by £
around the signal. The error between the input and approximated signal is called
granular noise. The solution to this problem is to make step size small.

Thus large step size is required to accommodate wide dynamic range of the input
signal (to reduce slope overload distortion) and small steps are required to reduce
granular noise, Adaptive delta modulation is the modification to overcome these
errors.

Adaptive Delta Modulation

Operating Principle

To overcome the quantization errors due to slope overload and granular noise, the
step size (3) is made adaptive to variations in the input signal x(f). Particularly in the
steep segment of the signal x(t), the step size is increased. When the input is varying
slowly, the step size is reduced. Then the method is called Adaptive Delta Modulation
(ADM).

The adaptive delta modulators can take continuous changes in step size or discrete
changes in step size.

Transmitter and Receiver

Fig. (a) shows the transmitter and (b) shows receiver of adaptive delta
modulator. The logic for step size control is added in the diagram. The step size
increases or decreases according to certain rule depending on one bit quantizer output.
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Fig. Adaptive delta modulator (a) Transmitter (b) Receiver

For example if one bit quantizer output is high (1), then step size may be doubled for
next sample. If one bit quantizer output is low, then step size may be reduced by one

step. Fig. shows the waveforms of adaptive delta modulator and sequence of bits
transmitted.
In the receiver of adaptive delta modulator shown in Fig. (b) the first part

generates the step size from each incoming bit. Exactly the same process is followed as
that in transmitter. The previous input and present input decides the step size. It is
then given to an accumulator which builds up staircase waveform. The low-pass filter
then smoothens out the staircase waveform to reconstruct the smooth signal.

] i e
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Fig. Waveforms of adaptive delta modulation
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Advantages of Adaptive Delta Modulation
Adaptive delta modulation has certain advantages over delta modulation. i.e.,

1. The signal to noise ratio is better than ordinary delta modulation because of
the reduction in slope overload distortion and granular noise.

2. Because of the variable step size, the dynamic range of ADM is wide.
3. Utilization of bandwidth is better than delta modulation.

Plus other advantages of delta modulation are, only one bit per sample is required
and simplicity of implementation of transmitter and receiver.

Condition for Slope overload distortion occurrence:

Slope overload distortion will occur if

&
Am > 3T,

where T, is the sampling period.

Let the sine wave be represented as,
x() = A, sin(2nf, b
Slope of x() will be maximum when derivative of x(f) with respect to ‘t" will be
maximum. The maxirnum slope of delta modulator is given

Step size
Sampling period

Max. slupe =

e (1)
T,

Slope overload distortion will take place if slope of sine wave is greater than slope
of delta modulator i.e.

d &
mlﬁ 1{4 > =

max]% Ay, sin(2nf, f* >

i

o

max|A,, 2nf,, cos(2mfy, 1) >

Ay 2nf, >

or
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Expression for Signal to Quantization Noise power ratio for Delta
Modulation:

To obtain signal power :
slope overload distortion will not occur if
< 5
m 2nf,. T,
Here A, is peak amplitude of sinusoided signal
& is the step size
fin is the signal frequency and
T, is the sampling period.
From above equation, the maximum signal amplitude will be,

A

&
Ay = g=o== s 1
il 2#‘“.']"5 { }
Signal power is given as,
va
F=%

Here V is the rms value of the signal. Here V = %— Hence above equation

becomes,

- () ox

Mormalized signal power is obtained by taking R = 1. Hence,
AZ

P =
2

Putting for A, from equation 1

P Jn
“Segm o e @
This is an expression for signal power in delta modulation.
(ii) To obtain noise power

We know that the maximum
quantization error in delta
modulation is equal to step size
6. Let the quantization error be
uniformly distributed over an
interval [-8,8] This is shown in
Fig. From this figure the

-5 5 PDF of quantization error can be
expressed as,
Fig. Uniform distribution of quantization error

f.(e)
I-

1_ .1
5-(-08) 25

P
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0 for e<d
£.() = ;5 for -8<e<d
0 for e>d

The noise power is given as,

2.
noise

Noise power = —R

Here V2.  is the mean square value of noise voltage. Since noise is defined by

random variable €' and PDF f, (g), its mean square value is given as,
mean square value = E[e2]=¢?

mean square value is given as,

E[e?] = }"Ezf; (€)de

From equation 3

E[e?] =

1
Ry
m

(]
J
&

Hence noise power will be,
. 52
noise power = ey /R
Normalized noise power can be obtained with R = 1. Hence,

2
noise power = % ............... (=)
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This noise power is uniformly

S(f) distributed over —f, to f; range. This is
i illustrated in Fig. At the output of
A delta modulator receiver there is
£ lowpass reconstruction filter whose
S cutoff frequency is 'W'. This cutoff
frequency is equal to highest signal

t frequency. The reconstruction filter
passes part of the noise power at the

output as Fig. From the geometry
Fig. PSD of noise of Fig. _ output noise power will
be,

Output noise power= E:'u'u:li.'s'.ae power = Wy

2 53
We know that f; = Tl'_‘ hence above equation becomes,
L]

WIS2 (6)
3

Cutput noise power=

(lil) To obtain signal to noise power ratio
Signal to noise power ratio at the output of delta modulation receiver is given as,

S _ Normalized signal power

N Normalized noise power

From equation 2.  and equation &

32
S _ BmfiTd
N WT.52
3

S_ 3 | (7)
N Sr2WfAT,

This is an expression for signal to noise power ratio in delta modulation.




comparison of all modulations:

S. Parameter Pulse Code Delta modulation Adaptive Delta Differential Pulse Code
No.| of comparison Modulation (PCM) (DM) Modulation (ADM) Modulation (DPCM)
Number of bits.

It can use 4, 8 or 16 bits
per sample,

It uses only one bit for one

sample.

Only one bit is used to
encode one sample.

E—

Bits can be more than one
but are less than PCM.

2. ' .
Levels and step size | The number of levels de- Step size is kept fixed and | According to the signal | Here, Fixed number of
pend on number of bits.| cannot be varied. variation, step size varies | levels are used.
Level size is kept fixed. - (i.e. Adapted).
3. Quan?izatifm error | Quantization error de-| Slope overload distor-tion | Quantization noise is| Slope overload distor-tior
and distortion pends on number of levels| and granular noise are | present but other errors | and quantization noise is
used. present. are absent. present.
4. | Transmission Highest bandwidth is re:| Lowest bandwidth is re- | Lowest bandwidth is re- | Bandwidth required &
bandwidth quired since number of| quired. quired. lower than PCM.
bits are high y
5. | Feedback There is no feedback in| Feedback exists in trans- | Feedback exists. Here, Feedback exists.
l transmitter or receiver. mitter.
\ 6. | Complexity of im- | System complex. Simple. Simple. Simple

plementation
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UNIT2
BASEBAND PULSE TRANSMISSION

Introduction

Consider that a binary encoded signal consists of a time sequence of voltage levels +Vor—V. If there is
a guard interval between the bits, the signal forms a sequence of positive andnegative pulses, in either
case there is no particular interest in preserving the waveform of the signal after reception .we are
interested only in knowing within each bit interval whether the transmitted voltage was +V or —V.
With noise present, the receives signal and noise togetherwill yield sample values generally different
from V. In this case, what deduction shall we make from the sample value concerning the transmitted

bit.

[ )

Suppose that the noise is gaussian and therefore the noise voltage has a
probability density which is entirely symmetrical with respect to zero volts. Then
the probability that the noise has increased the sample value is the same as the
probability that the noise has decreased the sample value. It then seems entirely
rcasonable that we can do no better than to assume that if the sample value is
positive the transmitted level was + V. and if the sample value is negative the
transmitted level was — V. It is, of course, possible that at the sampling time the
noisc voltage may be of magnitude larger than V and of a polarity opposite Lo
the polarity assigned to the transmitted bit. In this case an error will be made as
indicated in Fig. 11.1-1. Here the transmitted bit is represented by the voliage
+ Fwhich is sustained over an interval 7 from r, to t,. Noise has been superim-
posed on the level + V so that the voltage v represents the reccived signal and
noise. If now the sampling should happen to take place at a time 7 = 1, 4+ Az, an
error will have been made.

We can reduce the probability of error by processing the received signal plus
noise in such a manner that we are then able to find a samplec time where the
sample voltage due to the signal is emphasized relative to the sample voltage due
to the noise. Such a processer (receiver) is shown in Fig. 11.1-2. The signal input
during a bit interval is indicated. As a matter of convenience we have set t = 0 at
the beginning of the interval. The waveform of the signal s(¢) before ¢t = 0 and
after ¢+t = 7 has not been indicated since, as will appear, the operation of the
receiver during each bit interval is independent of the waveform during past
and future bit intervals.

The signal s(r) with added white gaussian noisc n(t) of power spectral density
n/2 is presented to an integrator. At time 7 = 0 4+ we require that capacitor C be
uncharged. Such a discharged condition may be ensured by a brief closing of
switch SW, at time 7 = 0 — | thus relieving C of any charge it may have acquired
during the previous interval. The sample is taken at the output of the integrator
by closing this sampling switch SW, . This sample is taken at the end of the bit
interval, at ¢t = 7. The signal processing indicated in Fig. 11.1-2 is described by
the phrase inrtegrate and dump, the term dump referring to the abrupt discharge of
the capacitor after each sampling.

33




The probability of error pe, as given in eq.(11.2-3),is plotted in fig.11.2-2.note that pe decreases
rapidly as Es/n increases. The maximum value of pe IS %2.thus ,even if the signal is entirely lost in
the noise so that any determination of the receiver is a sheer guess, the receiver cannot bi wrong
more than half the time on the average.

THE OPTIMUM FILTER:

In the receiver system of Fig 11.1-2, the signal was passed through a filter(integrator),so that at the
sampling time the signal voltage might be emphasized in comparison with the noise voltage. We are
naturally led to risk whether the integrator is the optimum filter for the purpose of minimizing the
probability of error. We shall find that the received signal contemplated in system of fig 11.1-2 the
integrator is indeed the optimum filter. However, before returning specifically to the integrator
receiver.

We assume that the received signal is a binary waveform. One binary digit is represented by
a signal waveformS; (t) which persists for time T, while the4 other bit is represented by the
waveform S(t) which also lasts for an interval T. For example, in the transmission at baseband, as
shown in fig 11.1-2 S;(t)=+V; for other modulation systems, different waveforms are transmitted.
for example for PSK signaling , S1(t)=Acoswot and Sx(t)=-Acoswot;while for FSK,
S1(t)=Acos(wo-ot.

As shown in Fig. 11.3-1 the input, which is s,(r) or s,(r). is corrupted by the
addition of noise n(z). The noise is gaussian and has a spectral density G{f). [In
most cases of interest the noise is white, so that G(f) = /2. However, we shall
assume the more general possibility, since it introduces no complication to do
so.] The signal and noise are filtered and then sampled at the end of each bit
interval. The output sample is either v (7T) = s_,(7T) + nAT) or v AT) = s5_.(T)
+ n (7). We assume that immediately after cach sample, every energy-storing
element in the filter has been discharged.

We have already considered in Sec. 2.22, the matter of signal determination
in the presence of noise. Thus, we note that in the abscnce of noise the output
sample would be v (7T) = 5_,(7) or s_,(T). When noise is present we have shown
that to minimize the probability of error one should assume that s,(r) has been
transmitted if v (7T) is closer to s,,(7T) than to s5,,(7). Similarly, we assume s,(r)
has been transmitted if v (7)) is closer to s,,(T). The decision boundary is there-
fore midway between s,,(7) and s,,(7). For example, in the bascband system of
Fig. 11.1-2, where s,((7) = VT /t and 5.,(7T) = — VT/tr. the decision boundary is
v (T) = 0. In gencral, we shall take the decision boundary to be

1.
3 (11.3-1)

v(T) =

The probability of error for this general case may be deduced as an extension
of the considerations used in the baseband case. Suppose that s,,(7T) = s_,(7) and
that s,(r) was transmitted. If, at the sampling time, the noise n (7)) is positive and
larger in magnitude than the voltage difference 4[5, (T) + 5,.:(7)] — s.(7T) an
cerror will have been made. That is, an error [we decide that s,(7) is transmitted
rather than s,(r)] will result if

sol(T) — 5.2( T)

3.
3 (11.3-2)

nfT) =
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Matchedfilter

A filter whose impulse response is time-reversed and delayed version of the input signal is
saidto be matched. Correspondingly , the optimum receiver based on this is referred as the matched

filterreceiver.

o (F-t) — T X\
Received S ( 2
Signal X{t] @,(T—t) e 20N, CRasnion
| Ve Vector x
: |
@y (T=t) ?— Xy /
Sample att=T
Matched
Fllters
Sample
Att=T
®(t) Known Signal Impulse L.
—*| Response hit)

White Noise wit)

®(t)=inputsignal

h(t)=impulseresponse

W(t)=white noise
Theimpulseresponseofthematchedfilteristime-reversedanddelayedversionofthe

Output
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inputsignal.
Properties of Matchedfilter

PROPERTY1:The spectrum of the output signal of a matched filter with the matched signal as
inputis,except fo r a time delayfactor,proportional to the energy spectral density of the input signal.
PROPERTY2:The output signal of a Matched Filter is proportional to a shifted version of the
autocorrelation function of the input signal to which the filter is matched.

PROPERTY3:The output Signal to Noise Ratio of a Matched filter depends onlyon the ratio of the
signal energy to the power spectral density of the white noise at the filter input.

PROPERTY 4: The Matched Filtering operation may be separated into two matching conditions
;namely spectral phase matching that produces the desired output peak at time T,and the spectral
amplitude matching that gives this peak value its optimum signal to noise density ratio.

THEOPTIMUMFILTER:

In the receiver system of Fig 11.1-2, the signal was passed through a filter(integrator),so that at
thesamplingtimethesignalvoltagemightbeemphasizedincomparisonwiththe
noisevoltage.Wearenaturally led to risk whether the integrator is the optimum filter for the purpose of
minimizing theprobability of error. We shall find that the received signal contemplated in system of fig
11.1-2 theintegrator is indeed the optimum filter. However, before returning specifically to the

integratorreceiver.

We assume that the received signal is a binary waveform. One binary digit is
representedby a signal waveformS; (t) which persists for time T, while the4 other bit is
represented by thewaveformS;(t)whichalso lasts
foranintervalT.Forexample,inthetransmissionatbaseband,asshown in fig 11.1-2 S1(t)=+V; for other
modulation systems, different waveforms are transmitted.forexample
forPSKsignaling,S1(t)=AcoswotandS,(t)=-Acoswot;whileforFSK,S1(t)=Acos(wo:q)t.

5,4(T) + 5,,(T)

1.",( 7" - 2

(11.3-1)
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Henceprobabilityoferroris

@ e AT 22
P,= J’. = dn(T) (11.3-3)

L
WD -sTi2 /200l

Gaussian noise, n(?)
Spectral density, G, (f)

a(t) Sample 1, (T) 40 (T)
or o—ﬂé)——o Filter ";_" Lo 4(Th= { " o
o Pl T 48, (T)

sl

Figure 11.3-1 A receiver for binary coded signalling.
If we make the substitution x = n,,(’r)/\/in,,. Eq. (11.3-3) becomes

P,:li e * dx (11.3-4a)
2 \/’_' 5T — %t TW2 /2,
P, = LI [‘"“T’ — Seal r)] (11.3-ah)
2 2\/511’0
Note that for the case 5,,(T) = VT /r and s5_,(7T) = — V T/r, and, using Eq. (11.1-

4), Eq. (11.3-4b) reduces to Eq. (11.2-3) as expected.

The complementary error function is a monotonically decreasing function of
its argument. (See Fig. 11.2-2) Hence, as is to be anticipated, P, decreases as the
difference s5,,(7T) — 5,,(7T) becomes larger and as the rms noise voltage o, becomes
smaller. The optimum filter, then, is the filter which maximizes the ratio

o Se1lT) — 5,2(T) (11.3-5)

Ty

We now calculate the transfer function H( /) of this optimum filter. As a matter of
mathematical convenience we shall actually maximize 2 rather than ».

Calculation of the Optimum-Filter Transfer Function H([)

The fundamental requirement we make of a binary encoded data receiver is that
it distinguishes the voltages s,(t) + n(r) and s,(z) + n(r). We have seen that the
ability of the receiver to do so depends on how large a particular receiver can
make p. It is important to note that y is proportional not to s,(f) nor to s,(r), but
rather to the difference between them. For example, in the baseband system we
represented the signals by voltage levels + V and — V. But clearly, if our only
interest was in distinguishing levels, we would do just as well to use + 2 volts and
O volt, or + R volts and + 6 volts, etc. (The + V and — V levels, however. have
the advantage of requiring the least average power to be transmitted.) Hence,
while s,{r} or s.(t) is the received signal, the signal which is to be compared with
the noise, i.e., the signal which is relevant in all our error-probability calculations,
is the difference signal

pir) = s,(t) — s.(1) (11.2-6)

Thus, for the purpose of calculating the minimum error probability, we shall
assume that the input signal to the optimum filter is p{¢). The corresponding
output signal of the filter is then

Polt) = 5,,(t) — s5,5(1) (11.3-7)
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We shall let P(f) and P, f) be the Fourier transforms, respectively, of p{r} and
Palr).
If H( () is the transfer function of the fiiter,

PAf)= H()P([) (11.3-8)
and PAT) = J‘m P )2 Ty df = J‘Q H( )P f)e’*~IT df (11.3-9)

- an

The input noise to the optimum filter is n(r). The output noise is n(r) which
has a power spectral density G, (f) and is rclated to the power spectral density of
the input noise G () by

G.(f)=1H(NIPGA) (11.3-10)

Using Parseval's theorem (Eq. 1.13-5), we find that the normalized output noise
power, i.e., the noise variance a2, is

af-J‘w G.,(f)‘!f—f | H{N PG df (11.3-11)
From Eqs. (11.3-9) and (11.3-11) we now find that
),2 a— p}(’I‘) — U?x» H(,f)P(fklz", dﬂz (l , 3-12)
a? §= T HUN PG AS) df '

Equation (11.3-12) is unaltered by the inclusion or deletion of the absolute value
sign in the numerator since the quantity within the magnitude sign p(7T) is a
positive real number. The sign has been included, however, in order to allow
further development of the equation through the use of the Schwarz inequality.

The Schwarz inequality states that given arbitrary complex functions X{( /)
and Y(f) of a common variable £, then

2 o a
Sf |X(.f)lzdfj LY(N)? dr (11.3-13)

- 4]

r X(NYLS) df

The equal sign applies when
X(f)=KY*)) (11.2-14)
where K is an arbitrary constant and Y*( () is the complex conjugate of Y( /).

We now apply the Schwarz inequality to Eq. (11.3-12) by making the identifi-
cation

X()=JGAN H(S) (11.3-15)
and Y(f) = ﬁ P(f)ei?=TS (11.3-16)

Using Eqgs. (11.3-15) and (11.3-16) and using the Schwarz inequality, Eq.(11.3-13),
we may rewrite Eq. (11.3-12) as

2 =. X(NY(N) df? ='
HD L XOMO [ e wisn
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or. using Eq. (11.3-16),

2 oo = 2

ra(T) 2 % L PNI*
—-—63 SJ._{ | YN df_J._m—G,.(f) dar (11.3-18)
The ratio pX(T)/ol will attain its maximum value when the equal sign in
Eq. (11.2-18) may be employed as is the case when X(f) = KY*(f). We then find
from Eqgs. (11.3-15) and (11.3-16) that the optimum filter which yields such a

maximum ratio p2{7)/a2? has a transfer function

= m - j2mST 1-19
H() = K GuAD € (11.3-19)
Correspondingly, the maximum ratio is, from Eq. (11.3-18),
P3| _ [~ LA
[ oz ].._. 3 f_ . Gun Y (11.3-20)

In succeeding sections we shall have occasion to apply Egs. (11.13-19) and
(11.13-20) to a number of cases of interest.

I1.4a WHITE NOISE: THE MATCHED FILTER

An optimum filter which yiclds a maximum ratio p2(T) a2 is called a matched
filter when the input noise is white. In this case G (f) = n/2, and Eq. (11.3-19)
hecomes

P, prasr
n/2

The impulsive response of this filter, 1.e, the responsc of the filter to a unit
strength impulse applied at ¢t = 0, 1s

H(f)= K (11.4-1)

h(r) = % ~'[H()] = 27" J T Pe(f)eirsTeinrt gp (11.4-2a)
. .27K_ I‘. P.(fk!}l]"—f) df (l '.4'2b)

A physically realizable filter will have an impulse response which is real, i.e., not
complex. Therefore hi(r) = h*(r). Replacing the right-hand member of Eq. (11.4-258)
by its complex conjugate, an operation which Icaves the equation unaltered, we
have

h(‘) 2 —2;:5 J‘en P(f)t’z.!(r-" df (l I.4-Ba)

= % T —1) (11.4-3b)

Finally, since p(t) = s,(r) — s,(t) [sce Eq. (11.3-6)], we have

h(1)=g;:£[s,(T—r)—s,(T—r)] (11.4-4)
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The significance of these results for the matched filter may be more readily
appreciated by applyving them to a specific example. Consider then, as in
Fig. 11.4-1a, that s5,{r) is a triangular waveform of duration 7, while s, {7}, as
shown in Fig 11.4-15, is of identical form cxcept of reversed polarity. Then p(r) is
as shown in Fig. 11.4-lc. and p{ — 1) appears in Fig. 11.4-1d. The waveform p{ —r)
is the waveform p{7) rotated around the axis ¢t = 0. Finally, the waveform p{ T — 1)
called for as the impulse response of the filter in Eq. (11.4-3b) is this rotated
waveform p{ —r) translated in the positive ¢ direction by amount 7. This last
transiation ensures that #{¢) = O for t = O as is required for a causal filter.

In general, the impulsive response of the matched filter consists of p(t) rotated about
t=0andthendelayedlongenough(i.e., atimeT)tomakethefilterrealizable.Wemaynoteinpassing,that
any additional delay that a filter might introduce would in no way interfere with theperformance
of the filter ,for both signal and noise would be delayed by the same amount, and atthe sampling
time (which would need similarity to be delayed)the ratio of signal to noise
wouldremainunaltered.

(0
Q pemm——
(a)
T t
(0 r
t
(5
— ke
PUE) = sy () -0y(1)
YV ——
(e)
¢ t
pl—1)
""" '{ 2a
(d)
-T t
p(T-1)
2a -

(e) Figure 11.4-1 The signals (a) s,(7), (B) 5,(1), and
(e) plr) = 5,(1) — s,(t). (d) plr) rorated about the
axis t = 0. (¢) The waveform in {d) translated 10
the right by amount T

I1.S PROBABILITY OF ERROR OF THE MATCHED FILTER

The probability of error which results when employing a matched filter, may be
found by evaluating the maximum signal-to-noise ratio [pX(TVWa2],... given by
Eq. (11.3-20). With G () = n/2. Eq. (11.3-20) becomes

IT 2 s
[p::z)] =;J’ | PO df (11.5-1)
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From parseval's theorem we have

- - T
J | PO df = j pi(1) dt = f pi(1) dt {11.5-2)
X - 0

In the last integral in Eq. (11.5-2), the limits take account of the fact that p(r) per-
sists for only a time 7. With p(r) = 5,(¢) — s.(tr). and using Eq. (11.5-2), we may
write Eq. (11.5-1) as
2 T
Al 2
[” ,T)] =2 I [s4(1) — s5(0)]? dt (11.5-3a)
0

Gy

2 v i R T T
= 2 [L si(e) dt + J; sinde =2 J. s4(0s5(0) dt (11.5-3b)
o

2
=2 (En + Eq = 2E,0) (11.5-3¢)

Here E,, and E,; are the energies, respectively, in s,(r) and s,(z), while E_,, is the

cnergy due 1o the correlation between s,(r) and s,(1).
Supposc that we have selected s5,(r), and let s,{z) have an energy E_, . Then it
can be shown that if s5(¢) is to have the same energy, the optimum choice of s,(1)

s
si(t) = —5,(1) (11.5-4)
Tl:e ch_nicc is optimum in that it yields a maximum output signal p(7) for a
given signal energy. Letting s,(f) = — s,(r), we find
E,=E,,=—E,=E,

2
[E] .t s

2
9, n

Rewriting Eq. (11.3-4b) using p(T) = s5,,(T) — 5,,(T), we have

L e B b 8 pATY]'"?
P = 3 erfc [-——————-2\/5 a,.] =3 erfc [ 807 ] (11.5-6)

Combining Eq. (11.5-6) with (11.5-5), we find that the minimum error probability
(P, corresponding to a maximum value of pX( TVl is

! I [pd(T) "
e o 7
(Prin 3 erfc { 8[ p ].‘"} (11.5-7
1/2
= % erfc (%) (11.5-8)

We note that Eq. (11.5-8) establishes more generaliy the idea that the error
probability depends only on the signal energy and not on the signal waveshape.
Previously we had established this point only for signals which had constant

voltage levels.
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We note also that Eq. (11.5-8) gives (FP),,,,, for the case of the matched filter
and when s,(r) = —s.it). In Scc. 11.2 we considered the casec when s,(7) = + V
and s.(r) = — V¥V and the fhlter employved was an intcgralor_'. Th_ere we found
[Eq- (11.2-3)] that the result for P_ was identical with {P_),.;. given in Eq. (11.5-8),
This agreement lcads us to suspect that for an input signal where s,(r) = + ¥ and

£:(t) = — V', the integrator is the matched filter. Such is indeced the case, For when
we have
si(=V 0=t<T (11.5-9a)
(11.5-9h)

S,(') = ) lA L -
the impulse Sl T) = T ,[, SO0 = (0] digom Eq. (11.4-4), (11.6-1)
M')=2TK [T — 1) = s:(T —1)] (11.5-10)

The quantity s,(T — 1) — 5:(T — r) is a pulse of amplitude 2V extending from
t = 0tor =T and may be rewritten, with «(r) the unit step.

h(l)=2TK(2V)[u(l)—u(x—T)] (11.5-11)

The constant factor of proportionality 4K V/n in the expression for A(r) (that is,
the gain of the filter) has no effect on the probability of error since _thc gain affects
signal and noise alike. We may thercfore select the coceflicient K in Eq. (11.5-11)
so that 4K V/n = 1. Then the inverse transform of k(r). that is, the transfer func-
tion of the filter, becomes, with s the Laplace transform variable,

—aT

H(s) =—:~'" (11.5-12)

5

The first term in Eq. (11.5-12) represents an integration beginning at ¢ = 0,
while the second term represents an integration with reversed polarity beginning
at ¢+ = T. The overall response of the matched filter is an integration from 7 = 0
to r= T and a zero response thereafter. In a physical system, as already
described. we achieve the effect of a zero response after ¢t = T by sampling at
f = T. so that so far as the dectermination of one bit is concerned we ignore the
response after r = 7T,

COHERENT RECEPTION:CORRELATION:

We discuss now an alternative type of receiving system which, as we shall see, is
identical in performance with the matched filter receiver. Again, as shown in
Fig. 11.6-1, the input is a binary data waveform s4(2) or sy(¢) corrupted by noise
7(r). The bit Iength is 7. The received signal plus noise vA¢) is multiplied by a
locally generated waveform s,(r) — s.(7). The output of the multiplier is passed
through an integrator whose output is sampled at ¢ — 7. As before, immediately
after each sampling, at the beginning of each new bit interval, all energy-storing
clements in the integrator are discharged. This type of receiver is called a correla-
7or, since we are correlating the received signal and noise with the waveform S.(1)
— s,{r)
The output signal and noise of the correlator shown in Fig. 11.6-1 are
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T
n(T) = % L n(t)[s (1) — s,(1)] dt
(11.6-2)

Where si(t) is either si(t)orsa(t),and wthere m is the constant of the integrator(i.e.,the
integratoroutput is 1/m times the integral of its input).we now compare these outputs with the
matchedfilter outputs.

Local signal
s (t)— 92 1(1)
Input 2L
RGELIT) ¢ / = (Th+
v (1) - { Lo Integrator - ""(T) -0 (T)
-,tmnu) el .f';""'r -.,:crnn.(ﬂ
. — —
Correlator

Fig:11.6-1Coherentsystemofsignalreception

Ifh(t)isthe impulsiveresponseofthematched filter,thenthe outputofthe matchedfiltervo(t)
canbefoundusingtheconvolutionintegral.wehave

o T
v (t) = f v{Ah(t — A) di = J’ v{Ah(t — 2) di
0

(11.6-3)
The limits on the integral have been charged to 0 and T since we are interested in the
filterresponse to a bit which extends only over that interval. Using Eq.(11.4-4) which gives h(t) for
thematchedfilter,wehave

2K
h(t) = — [s(T — 1) — ss(T —
=R BT=e=Rr=a (11.6-4)

-
so that Mt - 7) = % [5(T =t 4+ D =sAT -t + 1] (116'5)

sub11.6-5in11.6-3

2K T
v (1) = % i- AN S (T —t + A) —sAT — ¢t + 2)] dA
-0

Since v{A) = 542) + n(2), and v,(t) = s,(1) + n,(1), setting t = T yields
T

2K
sT) =" [ sAAs,(A) — 55(2)] d2

o0

where s{2) is equal to 5,(4) or s,(4). Similarly we find that

2K [T
n(T) = T J; n(2)[s,(2) — s5(4)] d4
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Nyquist’s criterion for distortionless baseband binary transmission:

Raised cosine response meets the Nyquist ISI criterion. Consecutive raised-cosine
impulses demonstrate the zero 1SI property between transmitted symbols at the sampling
instants. Att=0 the middle pulse is at its maximum and the sum of other impulsesis zero.

In communications, the Nyquist ISI criterion describes the conditions which, when
satisfied by acommunication channel (including responses of transmit and receive filters), result
in no inter symbol interference or ISI. It provides a method for constructing band-limited
functions to overcome the effects of inter symbol interference.

Correlative coding-duo binary

The following figure shows the duo binary signaling scheme

a, .._{’T“\ el Level b, T Ya 5 ésn ;} " Duobinary
ir " Converter | ! r‘\i[/' »  Sine(VD) i decoder
e 2 =
: P 5 v ba
; Delay i Delay i
E T B T : Postcoder
Precoder Duobinary Encoder A
a

T

The receiver consists of duo binary decoder and a post coder(invert of pre coder)

Modified duo binary signaling scheme:

Modified Duo binary Signaling is an extension of duo binary signaling
ModifiedDuobinarysignalinghas theadvantageofzeroPSDatlowfrequencies.

o 3 A s X Modified
Level $ive n i =0 Sinc(/1) = —» Duobinary

Converter |1 © e : decoder
| | “LE
v : b
A ' i i
- Delay :

N

A J

ad
“

—~ 2 27 : Postcoder
Precoder Modified A
Duobinary Encoder An

Modified DuobinarySignaling is an extension of duobinarysignaling. It has the advantage of zero PSD at
low frequencies (especially at DC ) that is suitable for channels with poor DC response. It correlates two
symbols that are 2T time instants apart, whereas in duobinarysignaling, symbols that are 1T apart are
correlated.

The general condition to achieve zero 1Sl is given by
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I. n=10

Pt =1 n 0

As discussed in a previous article, in correlative coding , the requirement of zero ISI condition is relaxed
as a controlled amount of ISl is introduced in the transmitted signal and is counteracted in the receiver
side

In the case of modified duobinarysignaling, the above equation is modified as

1, n=0,2

p(nT) 0, otherwise

which states that the ISI is limited to two alternate samples. Here a controlled or “deterministic” amount
of ISI is introduced and hence its effect can be removed upon signal detection at the receiver.

Encoding Process:

1) an = binary input bit; an € {0,1}.
2) bn = NRZ polar output of Level converter in the precoder and is given by,

b — —d? Ef [1;;:[]
"ld, ifa=1

whereax is the precoded output (before level converter).
3) yn can be represented as

Note that the samples b, are uncorrelated ( i.e either +d for “1” or -d for “0” input). On the other-hand,the
samples yn are correlated ( i.e. there are three possible values +2d,0,-2d depending on ak and ax-).
Meaning that the modified duobinary encoding correlates present sample ax and the previous input sample
ak-2.

4) From the diagram,impulse response of the modified duobinary encoder is computed as

hit) = sfnc( ﬂ)

] — smc( =

i

Decoding Process:

5) The receiver consists of a modified duobinary decoder and a postcoder (inverse of precoder). The
decoder implements the following equation (which can be deduced from the equation given under step 3
(see above))

e

bn = UYn — E?n.—i
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This equation indicates that the decoding process is prone to error propagation as the estimate of present
sample relies on the estimate of previous sample. This error propagation is avoided by using a precoder
before modified-duobinary encoder at the transmitter and a postcoder after the modified-duobinary
decoder. The precoder ties the present sample and the sample that precedes the previous sample (

correlates these two samples) and the postcoder does the reverse process.

The entire process of modified-duobinary decoding and the postcoding can be combined together as one
algorithm. The following decision rule is used for detecting the original modified-duobinary signal
samples {an} from {yn}

Partial response signaling

Partial response signalling(PRS), also known as correlative coding. From a practical point of
view,the back ground of this technique is related to the Nyquist criterion.

BasebandM-arrayP AMtransmission:

In a baseband Mary PAM system,the pulse amplitude modulator produces M possible amplitude levels
with M>2. In an M-ary system, the information source emits a sequence of symbols from an alphabet
that consists o f M symbols.

Eyediagrams

The quality of digital transmission systems are evaluated using the bit error rate. Degradation
ofqualityoccursineachprocessmodulation,transmission,anddetection. Theeyepatternisexperimentalmetho
d that contains all the information concerning the degradation of quality. Therefore, carefulanalysisof
the eye pattern is important in analyzing and degradation mechanism.
Eye patterns can be observed using an oscilloscope. The received wave is applied to the vertical
deflection plates of an oscilloscope and the sawtooth wave at a rate equal to transmitted

symbol rate is applied to the horizontal deflection plates, resulting display is eye pattern as

it resembles humaneye.

46




Best sampling
time
' Distortion at
sampling time

Slope = sensitivity to
tming error

Margin over
noise

Distortion of
2810 -CTOSSINGS

Time interval over
which the wave can
be sampled

Interpretation of eye pattern

a7




UNIT Il
SIGNAL SPACE ANALYSIS

Introduction

space analysis provides a mathematically elegant and highly insightful tool for the study
of digital signal transmission. Signal space analysis permits a general geometric
framework for the interpretation of digital signaling that includes both baseband and
bandpass signaling schemes.

The transmitter takes the message source output mi and codes it into a distinct signal
si(t) suitable for transmission over the communications channel. The transmission
channel is perturbed by zero-mean additive white Gaussian noise (AWGN).

The AWGN channel is one of the simplest mathematical models for various physical
communications channels.

The received signal r(t) is given by

r(t)=si(t)+n(t) for O<t<T

The receiver has the task of observing the received signal r(t) for a duration of T
seconds and making the best estimate of the transmitted signal si(t). However, owing
to the presence of channel noise, the decision making process is statistical in nature
withthe result that the receiver will make occasional errors

The key to analyzing and understanding the performance of digital transmission is the
realization that signals used in communications can be expressed and visualized graphically. Thus, we
need to understand signal space concepts as applied to digital communications

We consider the following model of a generic transmission system (digital source):

* A message source transmits 1 symbol every T sec
» Symbols belong to an alphabet M (m1, my, ...mu)
* Binary — symbols are Os and 1s
* Quaternary PCM — symbols are 00, 01, 10, 11

m, 5;(1) x(1) n’= estimate of  m;

Message Transmitter Channel Receiver

source

Transmitter takes the symbol (data) m; (digital message source output) and encodes it into a distinct
signal si(t).

The signal si(t) occupies the whole slot T allotted to symbol m;.

si(t) is a real valued energy signal.

E. =

s2(Ode, i=1,2, . M (5.2)

© Loy

Linear, wide enough to accommodate the signal si(t) with no or negligible distortion
Channel noise, is w(t) is a zero-mean white Gaussian noise process — AWGN

o additive noise

o received signal may be expressed as:
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0<t<T
x(0) = 5,() + w(o), {i—l 5 M} G-3)

GEOMETRIC REPRESENTATION OF SIGNALS:

» Torepresent any set of M energy signals {si(t)} as linear combinations of N orthogonal basis
functions, where N <M
» Real value energy signals si(t), s2(t),..sm(t), each of duration T sec

0<t<T

si(t)=_2_:si,,-¢j(t), 12w ©

» The set of coefficients can be viewed as a N-dimensional vector, denoted by s;
» Bears a one-to-one relationship with the transmitted signal si(t)

T
f dt  p—= Sj1
0

k(1)

fo(1)

T
j dt p—==SiN
0

SiN

T (2) Ty ()
where, @ ®
a) Synthesizer for generating the signal si(t).
b) Analyzer for generating the set of signal vectors {si}.
» The signal vector s;concept can be extended to 2D, 3D etc. N-dimensional Euclidian space
» Provides mathematical basis for the geometric representation of energy signals that is used in noise
analysis
» Allows definition of
o Length of vectors (absolute value)
> Angles between vectors

o Squared value (inner product of s; with itself)

2 T
— 5 5

N

— 2

_Z: S5,
J=1

s

i

™
I

-
N

> 25> -9
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Each signal in the set si(t) is completely determined by the vector of its coefficients

Sa

Sz

s, = , i=12...M (5.8

F

SCHWARTZ INEQUALITY

(_[: s, (I)s, (r)di‘)z — (J'_‘: s2 (r)dir) (_[_': s2 (r)dar) (5.16)

Gram- Schmidt orthogonalization procedure:

Suppose we are given a signal set

{s1(t),s2(t)... ...... sm(t})
Find the orthogonal basis functions for this signal set

{da(t), o(t).......... dr(t})
Where K<M
Step 1: Construct the First Basis Function

Compute the energy in signal 1: -
Ei= J__ s2(t)dt

B(t) = 1/VE154(t)
S1(t)=Suda(t)=VE1 $a(t)
Su=[ S1(t) d2(t)= VE
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Step 2: Construct the Second Basis Function

Compute correlation between signal 2 and basic function 1

Su= [ s2(D)d1(t)dt
subtract off the correlation portion
g2(t)= Sa(t)-S21(t)da(t)
compute the energy in the remaining portion
Ep=J_, g(®)%dt
Normalize th remaining portion
$2(t)=(1/VEg2)ga(t)
Soo= [ s2(t)b2(t)dt =VEg2
Step 3: Construct Successive Basis Functions
For signal Sk(t) , compute

o sk(t)di(t)dt

Ski: _

[ee]

Energy of the K" function
Eg= | gk(t)2dt

(1) = (1/VEg)gk(t)

Sw(t) = [ sk()dk(t)dt  =VEgk

Conversion of the Continuous AWGN channel into a vector channel:

Most analyzed, digital communication channel is the AWGN channel. This channel passes the sum
of the modulated signal x(t) and an uncorrelated Gaussian noise n(t) to the output. The Gaussian noise is

assumed to be uncorrelated with itself (or “white”)

P Suppose that the si(t) is not any signal, but specifically the signal at the receiver side, defined in accordance

with an AWGN channel:
» So the output of the correlator can be defined as:
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x(2) = 5; () +w(?), X. = ITx(f)¢(t)‘:ft

0<t<T _
_ (528) Szt %
1=1,2,.....M j=1L2.,.....N (5.29)
#2(7)
x(2) —(=) -— (7))

The analysis can thus convert the continuous channel
y(t) = x(t) + n(t)
to a discrete vector channel model,
y=x+n

49




Coherent detection of signals in noise
Correlation receiver

The principle on which the cross-correlation receiver operates is that, for two random
time-varying signals, V1(t) and V2(t), the cross-correlation function

f0-f . V1(OV2(t— T)dt

V1(t) and V2(t) are the voltages

Correlation Demodulator

1
I
15 an f—et o -
S2(0 i
I
' =
Received —’é—‘ ,fg( J —"?VO—2>
signal u
(1) '
5 ~ Ta detect
. '
- )
- )
I
i
TIN@ i
]
T3¢ an |—et o
1
Sanflple,
atds=—T"
Noise components
T
Mk = [, r(Ofk(®)dt

= fOT Sm(t)fk(t)dt + fOT n(O)tk(t)dt

= Smk+nk
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Correlator outputs

E(nimy = [, [E [()) N(D)] fi(t) fm(t)dt dr

T
= 1/2No [ fk(t)fm(t)drt
0
m =Kk
m#k

Eqivalance of Correlation and Matched Filter Receiver

.
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Received FAT—1) —04)'0—“>
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Sample
att=T
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Received
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1
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h(t)=a,(T -t)

['e]

yj(t)= J-x(z')CDj(T —t+z')dz'

—00

yj<t>=_Tx<r>q>j<r>dr

» From the definition of the matched filter, we can incorporate the impulse h;(t) and the input signal j(t) so
that:

Then, the output becomes:

Sampling att =T, we get:

v v

» So we can see that the detector part of the receiver may be implemented using either matched filters or
correlators. The output of each correlator is equivalent to the output of a corresponding matched filter when
sampledatt=T.

Matched filters

T, b=0orm= I

fal
| %
Ot
M
-
o>
]
=]
=3
Il
[ 3%

Correlators
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PROBABILITY OF ERROR:

Consider the received signal waveform for the bit transmitted between time 0 and time T .
Due to the presence of noise the actual waveform y.t/ at the receiver is

y(®) = f(t) + n(t),

where f (1) is the ideal noise-free signal.

In the case described the signal f (t) is
f (t) = 0 symbol 0 transmitted (signal absent)
1 symbol 1 transmitted (signal present).
Signal constellation diagram

A constellation diagram is a representation of a signal modulated by a digital modulation scheme
such as quadrature amplitude modulation or phase-shift keying. It displays the signal as a two-
dimensional X-Y plane scatter diagram in the complex plane at symbol sampling instants

Q

l 010
o011 o 110

%5 D
001é ,.' 111
=1

000O e e 101
ilOO

A constellation diagram for Gray encoded 8-PSK
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UNIT 4
PASSBAND DATA TRANSMISSION
Introduction
Types of Digital /modulation Techniques

Digital Modulation Technique

Coherd’t/\l\lmf- Coherent
]

Binary M - ary Hybrid Binary M - ary
(ni =2 (m)=2

* ASK  M-ary »\%K M-ary APK 3 AiK M-ary AéK
*FSK  M-ary FSK M-ary QAM *FSK M-ary ESK
*PSK  M-ary PSK * DPSK M-arv.DPSK

vi)=Vsin(2n - fr+ 6)

bl

ASK FSK PSK

\‘ QAM "

Referring to the above equation

If the information signal is digital and the amplitude of the carrier is varied proportional to
the information signal, a digitally modulated signal called amplitude shift keying (ASK)

If the frequency (f) is varied proportional to the information signal, frequency
shift keying (FSK) is produced and

If the phase of the carrier (0) is varied proportional to the information signal, phase shift keying
(PSK) is produced.

If both the amplitude and the phase are varied proportional to the information signal,
quadrature amplitude modulation(QAM) results.

ASK, FSK, PSK, and QAM are all forms of digital modulation

Pass band transmission model

The incoming data stream is modulated onto a carrier with fixed frequency and then transmitted ove

a band-pass channel is called pass band Transmission

There are three basic signaling schemes used in pass band data transmissiom
Amplitude-shift keying (ASK)
Frequency-shift keying (FSK)
Phase-shift keying (PSK)
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AMPLITUDE-SHIFT KEYING

The simplest digital modulation technique is amplitude-shift keying (ASK), where a binary
information signal directly modulates the amplitude of an analog carrier.

ASK is similar to standard amplitude modulation except there are only two output amplitudes
possible. Amplitude-shift keying is sometimes called digital amplitude modulation (DAM).

Mathematically, amplitude-shift keying is
Vask(t) = {1+Vm(t)}A/2 cos(wct)]

where
Vask(t) = amplitude-shift keying wave
Vm(t = digital information (modulating) signal (volts) A/2 =unmodulated carrier amplitude (v)

wc= analog carrier radian frequency (radians per second, 2mfct)
[vm(t)] is a normalized binary waveform, where+ 1V =logic 1and -1V = logic 0

Thus, the modulated wave vask(t), is either A cos(mct) or 0. Hence, the carrier is either "on"or "off,
That’s why amplitude-shift keying is referred to as on-off keying(OOK)

. ‘”‘"""‘L ]
Binary ;
input _{ A

(a)

n

2 AN AAA—

The rate of change of the ASK waveform (baud) is the same as the rate of change of the binary input
(bps).

| |
I I
I |
I |
I |

ASK TRANSMITTER:
Mixer

Modulation signal ASK modulated wave
m(t) Sask(t)

Carrier wave

C(t)
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The input binary sequence is applied to the product modulator. The product modulator amplitude
modulates the sinusoidal carrier .it passes the carrier when input bit is ‘1’ .it blocks the carrier
when input bit is ‘0.

PHASE SHIFT KEYING:

The phase of the output signal gets shifted depending upon the input. These are mainly of two

types, namely BPSK and QPSK, according to the number of phase shifts. The other one is DPSK

Phase shift keying (PSK)
which changes the phase according to the previous value.

Phase Shift Keying (PSK) is the digital modulation technique in which the phase of the carrier
signal is changed by varying the sine and cosine inputs at a particular time. PSK technique is widely
used for wireless LANs, bio-metric, contactless operations, along with RFID and Bluetooth

communications.
PSK is of two types, depending upon the phases the signal gets shifted. They are -

Binary Phase Shift Keying (BPSK)

This is also called as 2-phase PSK (or) Phase Reversal Keying. In this technique, the sine wave

carrier takes two phase reversals such as 0° and 180°.

BPSK is basically a DSB-SC (Double Sideband Suppressed Carrier) modulation scheme, for message

being the digital information.

Following is the image of BPSK Modulated output wave along with its in
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Binary Phase-Shift Keying

The simplest form of PSK is binary phase-shift keying (BPSK), where N = 1 and M = 2.Therefore,
with BPSK, two phases (2 = 2) are possible for the carrier.One phase represents a logic 1, and the
other phase represents a logic 0. As the input digital signal changes state (i.e., froma 1toa 0 or
from a 0 to a 1), the phase of the output carrier shifts between two angles that are separated by
180°.

Hence, other names for BPSK are phase reversal keying (PRK) and biphase modulation. BPSK is
a form of square-wave modulation of a continuous wave (CW) signal.

FREQUENCY SHIFT KEYING
The frequency of the output signal will be either high or low, depending upon the input data

applied.

Frequency Shift Keying (FSK) is the digital modulation technique in which the frequency of the
carrier signal varies according to the discrete digital changes. FSK is a scheme of frequency

modulation.

Following is the diagram for FSK modulated waveform along with its input.
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1v

37—

Input binary sequence time
1v
Ov
-1v time
f1 f2

FSK Modulated output wave

The output of a FSK modulated wave is high in frequency for a binary HIGH input and is low in

frequency for a binary LOW input. The binary 1s and Os are called Mark and Space frequencies.

FSK is a form of constant-amplitude angle modulation similar to standard frequency modulation
(FM) except the modulating signal is a binary signal that varies between two discrete voltage levels
rather than a continuously changing analog waveform.Consequently, FSK is sometimes called

binary FSK (BFSK). The general expression for FSK is

Wl = ¥, os{ 2, 4 1,0 )|

where
vsk(t) = binary FSK waveform
V.= peak analog carrier amplitude (volts)

fc=analog carrier center frequency(hertz)
f=peak change (shift)in the analog carrier frequency(hertz)
Vm(t) = binary input (modulating) signal (volts)

The modulating signal is a normalized binary waveform where alogic1=+ 1V andalogic0=-1

V. Thus, for a logic | input, vm(t) a logic 0 input, vm(t) = -1, Equation
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becomes

With binary FSK, the carrier center frequency (fc) is shifted (deviated) up and down in the

frequency domain by the binary input signal

QUADRATURE PHASE SHIFT KEYING (QPSK):
This is the phase shift keying technique, in which the sine wave carrier takes four phase reversals

such as 0°, 90°, 180°, and 270°.

If this kind of techniques are further extended, PSK can be done by eight or sixteen values also,
depending upon the requirement. The following figure represents the QPSK waveform for two bits
input, which shows the modulated result for different instances of binary inputs.

Carrier / Channel

Modulating value from tivo bits
0 2 1 3
(00) (10) (01) (12)

Modulated
Result

QPSK is a variation of BPSK, and it is also a DSB-SC (Double Sideband Suppressed Carrier)
modulation scheme, which sends two bits of digital information at a time, called as bigits.
Instead of the conversion of digital bits into a series of digital stream, it converts them into bit-
pairs. This decreases the data bit rate to half, which allows space for the other users.
QPSK transmitter.
A block diagram of a QPSK modulator is shown in Figure 2-17Two bits (a dibit) are clocked

into the bit splitter. After both bits have been serially inputted, they are simultaneously parallel
outputted.

The | bit modulates a carrier that is in phase with the reference oscillator (hence the name
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"I'" for "in phase" channel), and theQ bit modulate, a carrier that is 90° out of phase.

For a logic1 =+ 1V and a logic 0= - 1V, two phases are possible at the output of the | balanced
modulator (+sin wct and - sin Wct), and two phases are possible at the output of the Q balanced
modulator (+cos wct), and (-cos wct).

When the linear summer combines the two quadrature (90° out of phase) signals, there are four
possible resultant phasors given by these expressions: + sin Wt + cos Wct, + sin Wct - cos Wct, -sin
Wct + cos wct, and -sin Wt - cos wt.

I channel f,/2 Balanced %+ sin wt
Logic 1 = +1V modulator
LogicO=-1V

B8i i v Bandpass
"d..’;"'?:’“ sin ot filter

Reference
carrier
oscillator
1 (sin o) QPSK

lB“ Lim.r
summer
Q

A
S0° phase [
shift
Bit Bandpass

clock cOs wct filter
Logic 1 =+1V
LogicO=-1V Balanced
-—_ me
Q channel fi,/2 modulator +C0S it

FIGURE 2-17 QPSK modulator

QPSK RECEIVER:

The block diagram of a QPSK receiver is shown in Figure 2-21

The power splitter directs the input QPSK signal to the | and Q product detectors and the carrier
recovery circuit. The carrier recovery circuit reproduces the original transmit carrier oscillator
signal. The recovered carrier must be frequency and phase coherent with the transmit reference
carrier. The QPSK signal is demodulated in the | and Q product detectors, which generate the
original | and Q data bits. The outputs of the product detectors are fed to the bit combining
circuit, where they are converted from parallel | and Q data channels to a single binary output
data stream. The incoming QPSK signal may be any one of the four possible output phases shown
in Figure 2-

18. To illustrate the demodulation process, let the incoming QPSK signal be -sin wct + cos wct.
Mathematically, the demodulation process is as follows.
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1Channel Product (oln @t (-ein ot « cos at) =172V Bogic 0)
LPF
—in @et + CO® met detector
~8in @t + COs ml sin ot
nput Power Carvior
;:‘S: PF splitter win T
|°| 1 I T binary
deta
+90*
]
o~ l Clock
recovery
~3in ot + COS et Product
e LPF
Q channel (cos act) (-sin et » 008 & t) +12V (logic 1)

FIGURE 2-21 QPSK receiver

DIFFERENTIAL PHASE SHIFT KEYING (DPSK):

In DPSK (Differential Phase Shift Keying) the phase of the modulated signal is shifted relative to
the previous signal element. No reference signal is considered here. The signal phase follows the
high or low state of the previous element. This DPSK technique doesn’t need a reference

oscillator.

The following figure represents the model waveform of DPSK.

0 0 1 1 0 1 0 0 0 1 0

It is seen from the above figure that, if the data bit is LOW i.e., O, then the phase of the signal is
not reversed, but is continued as it was. If the data is HIGH i.e., 1, then the phase of the signal is

reversed, as with NRZI, invert on 1 (a form of differential encoding).
If we observe the above waveform, we can say that the HIGH state represents an M in the

modulating signal and the LOW state represents a W in the modulating signal.

The word binary represents two-bits. M simply represents a digit that corresponds to the number
of conditions, levels, or combinations possible for a given number of binary variables.
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This is the type of digital modulation technique used for data transmission in which instead of one-
bit, two or more bits are transmitted at a time. As a single signal is used for multiple bit
transmission, the channel bandwidth is reduced.

DBPSK TRANSMITTER.:

Figure 2-37a shows a simplified block diagram of a differential binary phase-shift keying
(DBPSK) transmitter. An incoming information bit is XNORed with the preceding bit prior to
entering the BPSK modulator (balanced modulator).

For the first data bit, there is no preceding bit with which to compare it. Therefore, an initial
reference bit is assumed. Figure 2-37b shows the relationship between the input data, the XNOR
output data, and the phase at the output of the balanced modulator. If the initial reference bit is
assumed a logic 1, the output from the XNOR circuit is simply the complement of that shown.

In Figure 2-37b, the first data bit is XNORed with the reference bit. If they are the same, the XNOR
output is a logic 1; if they are different, the XNOR output is a logic 0. The balanced modulator
operates the same as a conventional BPSK modulator; a logic | produces +sin wct at the output,
and A logic 0 produces —sin wct at the output.

O
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FIGURE 2-37 DBPSK modulator (a) block diagram (b) timing diagram

BPSK RECEIVER:

Figure 9-38 shows the block diagram and timing sequence for a DBPSK receiver. The received
signal is delayed by one bit time, then compared with the next signaling element in the balanced
modulator. If they are the same. J logic 1(+ voltage) is generated. If they are different, a logic O (-
voltage) is generated. [f the reference phase is incorrectly assumed, only the first demodulated bit
is in error. Differential encoding can be implemented with higher-than-binary digital modulation
schemes, although the differential algorithms are much more complicated than for DBPS K.

The primary advantage of DBPSK is the simplicity with which it can be implemented. With
DBPSK, no carrier recovery circuit is needed. A disadvantage of DBPSK is, that it requires between
1 dB and 3 dB more signal-to-noise ratio to achieve the same bit error rate as that of absolute PSK
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BPF I

Carrier Bit
clock

FIGURE 2-BPSK demodulator: (a) block diagram

COHERENT RECEPTION OF FSK:

The coherent demodulator for the coherent FSK signal falls in the general form of coherent
demodulators described in Appendix B. The demodulator can be implemented with two
correlators as shown in Figure 3.5, where the two reference signals are cos(27r f t) and cos(27r fit).
They must be synchronized with the received signal. The receiver is optimum in the sense that it
minimizes the error probability for equally likely binary signals. Even though the receiver is
rigorously derived in Appendix B, some heuristic explanation here may help understand its
operation. When s 1 (t) is transmitted, the upper correlator yields a signal 1 with a positive signal
component and a noise component. However, the lower correlator output 12, due to the signals'
orthogonality, has only a noise component. Thus the output of the summer is most likely above
zero, and the threshold detector will most likely produce a 1. When s2(t) is transmitted, opposite
things happen to the two correlators and the threshold detector will most likely produce a 0.
However, due to the noise nature that its values range from -00 to m, occasionally the noise
amplitude might overpower the signal amplitude, and then detection errors will happen. An
alternative to Figure 3.5 is to use just one correlator with the reference signal cos (27r f t) - cos(2s
f2t) (Figure 3.6). The correlator in Figure

can be replaced by a matched filter that matches cos(27r fit) - cos(27r f2t) (Figure 3.7). All

implementations are equivalent in terms of error performance (see Appendix B). Assuming an

AWGN channel, the received signal is

r(t) = s;(t) +n(t), i=1.2

[4e]




where n(t) is the additive white Gaussian noise with zero mean and a two-sided power spectral

density A',/2. From (B.33) the bit error probability for any equally likely binary signals is

= prem——
_ E\ + Ey - 2ph,VE B3
Py=0Q

2N,

where No/2 is the two-sided power spectral density of the additive white Gaussian noise. For

Sunde's FSK signals El = Ez = Eb, pl2 = 0 (orthogonal). thus the error probability is

f@)

Pb = Q (\/ N

where Eb = A2T/2 is the average bit energy of the FSK signal. The above Pb is plotted in Figure 3.8

where Pb of noncoherently demodulated FSK, whose expression will be given shortly, is also

(k+D)T 7y
I dt
kT
Threshold
cos(2nfit) N Detector
r(t) [ 1
0
cos(2nfat) _
(k+1)T l)
[
kT

plotted for comparison.
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6.1:1!‘.‘}61'0( Probability of ASK
Amplitude Shift Keying (ASK), some number of carrier cycles are transmitted to
send ‘1" and no signal is transmitted for binary ‘0. Thus,

Bmary ' = Xy(f) = \.TPT oos(2xfot) and

Binary '0'= x;(f) = 0 (ie. no signal) w (5.13.1)
2
Here F; is the normalized power of the signal in 1Q load. ie. power P, =-“-12-.
Hence A =,2P,. Therefore in above equation for x {t) amplitude ‘A’ is replaced by
V2F;.
We know that the probability of error of the optimum filter is given as,

-

P, = %egc{fv.%‘fﬂ} . (5.132)

Here

M-xe M) _ 7 IXAOP?
[xm oIoa ] &Isui(f)df

The above equations can be applied to matched filter when we consider white
Gaussian noise. The power spectral density of white Gaussian noise is given as,

N

—ryry

Putting this value of S, (f) in above equations we get,

[ 01 (T) = xp3 (1)) TIX(HR
o ) = No  §
- 3

max

- N 2
&l I'X(f” df =5133)
Parseval’s power theorem states that,
[IX(DRaf = [22@mar

Hence equation 5.13.3 becomes,
{xm (T) - x M7?

2 7.2
= oF - J’x (f) dt

max
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We know that x(f) is present from 0 to T. Hence limits in above equation can be
changed as follows :

[Im (T)-xg2 DT

5 T
= = WI x2 () dt . (5.134)
0

We know that x(¢) = x; (f) — x5 (f). For ASK x; (f) is zero, hence x(f) = x; (f). Hence
above equation becomes,

2 T
[ X (T);Ica (T)] \ijx (£) d#
X : 0

Putting equation of x, (f) from equation 5.13.1 in above equation we get,

[ xp (T) - xg2 {Tﬂ2
}_ a

2% P s 2
= N g [\xzp‘ cos(ZH,fOr)j dt

max

7
4P, 2
- “‘_oj cos* (2xf, f) dt

o

We know that cos? 8 =

[-Tm M-xe M) _ 4B | I 1+cosdnfyt

| i A
(8] Jmax .\(' 0 -

PR [
= —Efj' de cos 4nf,tdt
0 0

1

- ,\—vgﬁ[‘lo T

2P, J sin dn fo /i .
| 1Sty adtode?! [ Jicd) | - {5135

No lT “ i o {5.13.5)

We know that T is the bit period and in this one bit period, the carrier has integer
number of cycles. Thus the product f; T is an integer. This is illustrated in Fig. 5.13.1
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Fig. 5.13.1 In one bit period T, the
carrier completes Its two cycles, The
carrier has frequency f,. From figure we can

: write,
(WO

fo fo
[ T it
b fo
parnod s fo¥ = 2 (integer no. of cycles)

As shown in above figure, the carrier completes two cycles in one bit duration.
Hence

HT =2
Therefore, in general if carrier completes k' number of cycles, then,

foT = &k (Here k is an integer)
Therefore the sine term in equation 5.13.5 becomes, sindnk and k is integer.
For all integer values of k, sin 4=k « 0. Hence equation 5.13.5 becomes,

[ a1 (T)-Xoa(n]z _ 2T
max

.. (5.13.
a No (1385)

= = \i _ND e (5137)

Putting this value in equation 5.132 we get error probability of ASK using
matched filter detection as,

[Xm (T) = Xeo (T)] 25T
maXx

1 .17 BRETFY A BT
P, = =erfe C 2 erfe (=5
e = 372G VMo | = 27N,

Here P, T =E i.e. energy of one bit hence above equation becomes,

Error probability of ASK : P, = * erfc \-“i,o . (5.13.8)

This is the expression for error probability of ASK using matched filter detection.
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Error Probability of Binary FSK

The observation vector x has two elements x; and x, that are defined by, respectively,

L
X, = L x(t)p4(t) dt (6.92)

Ty
x; = fo x(t)bo(t) di (6.93)

where x(t) is the received signal, the form of which depends on which symbol was.t_ra:;ls‘
mitted. Given that symbol 1 was transmitted, x(t) equals s,(t) + w(t), where w(t) 1s the
sample function of a white Gaussian noise process of zero mean and power spectral density
Ny/2. If, on the other hand, symbol 0 was transmitted, x(¢) equals s(£) + w(?). I
Now, applying the decision rule of Equation (5.59), we find that .tbe obscryaf_}z':
space is partitioned into two decision regions, labeled Z, and Z, in Figure 6'.23. ;
decision boundary, separating region Z, from region Z, is the perpendicular bisector

the line joining the two message points. The receiver decides in favor of symbol 1 if the
received signal point represented by the observation vector x falls inside region Z,. This
occurs when x; > x,. If, on the other hand, we have x; < x,, the received signal point
falls inside region Z,, and the receiver decides in favor of symbol 0. On the decision
boundary, we have x; = x;, in which case the receiver makes a random guess in favor of
symbol 1 or 0.

Define a new Gaussian random variable Y whose sample value y is equal to the
difference between x and x,; that is, '

y=2% "X (6.94)

The mean value of the random variable Y depends on which binary symbol was trans-
mitted. Given that symbol 1 was transmitted, the Gaussian random variables X, and X,
whose sample values are denoted by x, and x, have mean values equal to VE, and zero,

respectively. Correspondingly, the conditional mean of the random variable Y, given that
symbol 1 was transmitted, is

E[Y|1] = E[X,|1] - E[X,!1]
6.95
— E (6.95)
On the other hand, given that symbol 0 was transmitted, the random variables X, and X,

have mean values equal to zero and VE,, respectively. Correspondingly, the conditional
mean of the random variable Y, given that symbol 0 was transmitted, is
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E[Y|0] = E[X,|0] — E[X;|0]
6.96
= —VE, oty
The variance of the random variable Y is independent of which binary symbol was trans-

mitted. Since the random variables X, and X, are statistically independent, each with a
variance equal to Ny/2, it follows that

var[Y] = var[X;] + var[X,]

Suppose we know that symbol 0 was transmitted. The conditional probability density
function of the random variable Y is then given by

fr(y]|0) = 1 e [_—()’ r \/E;)Z]
g V2aNg P 2N,

(6.97)

(6.98)

Since the condition x, > x;, or equivalently, y > 0, corresponds to the receiver making a
decision in favor of symbol 1, we deduce that the conditional probability of error, given
that symbol 0 was transmitted, is

P10 = P(y > 0|symbol 0 was sent)

= | Aisl0rdy (6.99)
e f _{y + VE)? r
\’Z’H'No 0 =2 2-IqO y
y + VE,
e —— b (6.100)
V2N,

Then, changing the variable of integration from y to z, we may rewrite Equation (6.99)
as follows:

1 o
SRV AAN o

. W, (6.101
l crfc( /B ) )
2 Y 2N,

Similarly, we may show the poy, the conditional probability of error given that SY{Ilbol 1
was transmitted, has the same value as in Equation (6.101). A_ccordmgly, averaging p,
and po1, we find that the average probability of bit error or, equivalently, the bit error gy,
for coberent binary FSK is (assuming equiprobable symbols)

exp(—z?) dz
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Lot [Ee
P, =3 erfc( \/ 2N0> (6.102)

Comparing Equations (6.20) and (6.102), we sec that, in a coherent binary Sk
system, we have to double the bit energy-to-noise density ratio, E,/No, to maintain the
same bit error rate as in a coherent binary PSK system. This result is in perfect accord with
the signal-space diagrams of Figures 6.3 and 6.25, where we see that in a binary PSK
system the Euclidean distance between the two message points is equal to 2VE,, wheress
in a binary FSK system the corresponding distance is \/2E,. For a prescribed E,, the
minimum distance d,.;, in binary PSK is therefore 1/2 times that in binary FSK. Recall
from Chapter 5 that the probability of error decreases exponentially as dZ., hence the
difference between the formulas of Equations (6.20) and (6.102).

Error Probability of QPSK
In a coherent QPSK system, the received signal x(z) is defined by

0=t=T
x(t) = s;(t) + wit), {’_ 1234 (6.28)

where w(t) is the sample function of a white Gaussian noise process of zero mean and
power spectral density No/2. Correspondingly, the observation vector x has two elements,
x, and x,, defined by

T
X = J:) x(t)d).l(t) dt
= VE cos[(Zi - 1) "ZT] + W, (6.29)

e
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r'T

X3 = Jo x(t),(t) dt
-VE sin[(Zi ) -;—’] + W, (6.30)

[E

=-T-\/E'+w2

Thus the observable elements x; and x; are sample values of independent Gaussian random
variables with mean values equal to +V/E/2 and ¥VE/2, respectively, and with a common
variance equal to Ny/2.

The decision rule is now simply to decide that s;(¢) was transmitted if the received
signal point associated with the observation vector x falls inside region Z,, decide that
s,(t) was transmitted if the received signal point falls inside region Z,, and so on. An
erroneous decision will be made if, for example, signal s4(#) is transmitted but the noise
w(t) is such that the received signal point falls outside region Z,.

To calculate the average probability of symbol errot, we note from Equation (6.24]
that a coherent QPSK system is in fact equivalent to two coherent binary PSK system:s
working in parallel and using two carriers that are in phase quadrature; this is merely a
statement of the quadrature-carrier multiplexing property of coherent QPSK. The in-phase
channel output x; and the quadrature channel output x, (ie., the two elements of the
observation vector X) may be viewed as the individual outputs of the two coherent binary
PSK systems. Thus, according to Equations (6.29) and (6.30), these two binary PSK sys-
tems may be characterized as follows:

¥ The signal energy per bit is E/2,
» The noise spectral density is Ny/2.

Hence, using Equation (6.20) for the average probability of bit error of a coherent binary
PSK system, we may now state that the average probability of bit error in each channel of
the coherent QPSK system is

—
erfc( \;F_IZ)
M (6.31)

l’ E
erfc(\/ ZNO)

P =

B B[
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P.=(1-P)
1 ([E\]
- [l "B "“( z—No)] (6:32)

vl ) b )

The average probability of symbol error for coherent QPSK is therefore

,=1-P,

[r— = 6‘
2 crfc(v/%) - % erfcz(\fﬁr—) ( )
0 0

In the region where (E/2Ny) >> 1, we may ignore the quadratic term on the right-hang
side of Equation (6.33), so we approximate the formula for the average probability o
symbol error for coherent QPSK as

[E
P, = erfc(\/z—No) (6.34)

The formula of Equation (6.34) may also be derived in another insightful way, using
the signal-space diagram of Figure 6.6. Since the four message points of this diagram ar,
circularly symmetric with respect to the origin, we may apply Equation (5.92), reproduced
here in the form

4
P = % Zﬁ erfc(Z\Ci/‘;\_I(,) for all 7 (6.35)
ki

Consider, for example, message point 7, (corresponding to dibit 10) chosen as the trans.
mitted message point. The message points 71, and 71, (corresponding to dibits 00 and 11)
are the closest to 71,. From Figure 6.6 we readily find that 7, is equidistant from 1, and
m, in a Euclidean sense, as shown by

d]2 - d14 = \/ﬁ
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Decision
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Zy EI Zy
|
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Message 01 Mes§age
point { point
i

FiGURE 6.3 Signal-space diagram for coherent binary PSK system. The waveforms depicting the
transmitted signals s, (t) and s;(t), displayed in the inserts, assume n. = 2.
Another important point to note is that the bit errors in the in-phase and quadrature
channels of the coherent QPSK system are statistically independent. The in-phase channel
makes a decision on one of the two bits constituting a symbol (dibit) of the QPSK signal,
and the quadrature channel takes care of the other bit. Accordingly, the average probability

of a correct decision resulting from the combined action of the two channels working
together is

Signal Space of BPSK:

Decision

boundary
|
| ;
Region ] Region
~ Z, |I Z;
|
-+E )

i —L &
Message 01 Message
point I point
| 1

l

FIGURE 6.3 Signal-space diagram for coherent binary PSK system. The waveforms depicting the
transmitted signals s, (t) and s3(2), displayed in the inserts, assume #2. = 2
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Power spectrum of BPSK:
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= \ Binary PSK
N .
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Normalized frequency, T3

FIGURE 6.5 Power spectra of binary PSK and FSK signals.

Power spectrum of QPSK:

1.0

o
o

Normalized power speciral density, S5(f)/4E,

@
=
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FiGURE 6.}0 Possible paths for switching between the message points in (z) QPSK and
(b} offset QPSK.
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FIGURE 6.11 Two commonly used signal constellations for QPSK; the arrows indicate the paths
along which the QPSK modulator can change its state.
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Comparisons between Modulation Techniques:
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the eSS | cos (20t + bm) cos (2fgt) {2l + A1) 1] cos (2, 1) sin 2t cos ()
| cos (Zfgt Zhgt + (2m+1) = o * i fof 0+ (1) (24
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Channel Coding
Error Detection & Correction
Environmental interference and physical defects in the communication medium can cause
random bit errors during data transmission. Error coding is a method of detecting and correcting the errors

Types of Errors

1.Single-bit error
The term single- bit error means that only one bit of given data unit (such as a byte,
character, or data unit) is changed from 1 to 0 or from 0 to 1 as shown in Fig. 3.2.1.

[ of 1] of 1f 1l 1] o] o 1] of 1f ol 1| 1f 1] 0 Sent

v

L of 1f of 1f of 1f of of 1] of 1f of 1f 1] 1] 0 Received|

2.Burst error
The term burst error means that two or more bits in the data unit have changed from 0 to
1 or vice-versa. Burst error doesn’t necessary means that error occurs in
consecutive bits. The length of the burst error is measured from the first corrupted bit to
the last corrupted bit. Some bits in between may not be corrupted.

o 11 of 11 11 11 Of O 11 Of 1 0] 11 1] 1] O Sent

Iy

Ol Q1 Pop aqai1ij1 gqi1ijl1 10 Received

< >

Length of burst (6 bits)
Error Detecting Codes

Basic approach used for error detection is the use of redundancy, where additional
bits are added to facilitate detection and correction of errors.
Popular techniques are:
« Simple Parity check
» Two-dimensional Parity check
* Checksum
« Cyclic redundancy check

Error Correcting Codes

Error Correction can be handled in two ways.
1.0ne is when an error is discovered; the receiver can have the sender retransmit the
entire data unit. This is known as backward error correction.
2. Inthe other, receiver can use an error-correcting code, which automatically
corrects certain errors. This is known as forward error correction

Hamming Code
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2" >= d+r+1( to find redundant bits)
Example

Ifd is 7, then the smallest value of r that satisfies the above relation is 4. So the
total bits, which are to be transmitted is 11 bits (d+r = 7+4 =11).

11 10 9 8 7 6 5 B

(V]
(8]
[

[ d [d [d [ r

@ Jd 4 [r  [d_ ] r
\ ////»

Redundant bits
Positions of redundancy bits in hamming code

Basic approach for error detection by using Hamming code is as follows:

* To each group of m information bits k parity bits are added to form (m+k) bit
code as shown in above Fig

« Location of each of the (m+k) digits is assigned a decimal value.

» The k parity bits are placed in positions 1, 2, ..., 2k-1 positions.—K parity checks
are performed on selected digits of each codeword.

« At the receiving end the parity bits are recalculated. The decimal value of the k
parity bits provides the bit-position in error, if any.

=g Position number
Error position e s
7 6 5 4 3 2 1
0 (no error) 00O
d, d; d d
4 Gz Oy Iy 1 T2 Iy 1 001
ry —> 1,8, 5.7 2 010
S=1 3 011
- S f’ g’g’; a 100
A 2 5 101
7 6 5 4 3 2 1 : s
d,d;d;, r, d; r» 1y

[AToJa I Jo I T ] bData1010
[1]Jof1 | Jo] o] Adding ry
[1]Jo 1] Jo]| 1] 0] Addingr,
[1]o |1 JoJo] 1] 0] Addingr,
|1 ]o |1 |o]Jo ]| 1] 0] Datasent

corrupted
[1]1]l1]o] o] 1] 0] Received Data
7 S Y Y S
N N ] |
o g 1
Eyror position = 6 Cy €. 06,

1 1 0O
L1]oJ1]oJo]1]0] corrected data

Repetition & Parity Check Codes
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Repetition code is one of the most basic error-correcting codes. In order to transmit a message over a
noisy channel that may corrupt the transmission in a few places, the idea of the repetition code is to just
repeat the message several times.

Parity check is a simple way to add redundancy bits to the packets such that the total number of 1's is
even (or odd).Single parity check: a single bit is appended to the end of each frame, the bit is 1 if the data
portion of the frame has odd number of 1's. Otherwise, it is 0
Interleaving

Interleaving is a technique for making forward error correction more robust with respect to burst
errors

Hamming distance

The error correction capability of a block code is directly related to the “Hamming distance” between
each of the codewords. The Hamming distance between n-bit codewords v1 and v2 is defined

d(vi,v2) =X} XOR(v1(D),v2(1))
This is simply the number of bits in which v1 and v2 are different.
Example: v1 = 011011 and v2 = 110001. An XOR of these codewords gives
XOR(v1, v2) =101010. Hence the Hamming distance d(v1, v2) = 3.
Forward Error Correction (FEC) Systems

Forward error correction (FEC) or channel coding is a technique used for controlling
errors in data transmission over unreliable or noisy communication channels.

Automatic Retransmission Query (ARQ) Systems

Automatic repeat request (ARQ), also known as automatic repeat query, is an error-
control method for data transmission that uses acknowledgements (messages sent by the receiver
indicating that it has correctly received a packet) and timeouts (specified periods of time allowed to elapse
before an acknowledgment is to be received) to achieve reliable data transmission over an unreliable
service.

If the sender does not receive an acknowledgment before the timeout, it usually re-transmits the
packet until the sender receives an acknowledgment or exceeds a predefined number of retransmissions.

The types of ARQ protocols include
Stop-and-wait ARQ
Go-Back-N ARQ and
Selective Repeat ARQ/Selective Reject ARQ.

Coding  theory is concerned with  the  transmission  of data
across noisy channels and the recovery of corrupted messages. It has found

74



https://en.wikipedia.org/wiki/Error-correcting_code
https://en.wikipedia.org/wiki/Forward_error_correction#Interleaving
https://en.wikipedia.org/wiki/Error_control
https://en.wikipedia.org/wiki/Error_control
https://en.wikipedia.org/wiki/Data_transmission
https://en.wikipedia.org/wiki/Communication_channel
https://en.wikipedia.org/wiki/Error_control
https://en.wikipedia.org/wiki/Error_control
https://en.wikipedia.org/wiki/Data_transmission
https://en.wikipedia.org/wiki/Acknowledgement_(data_networks)
https://en.wikipedia.org/wiki/Packet_(information_technology)
https://en.wikipedia.org/wiki/Timeout_(computing)
https://en.wikipedia.org/wiki/Reliability_(computer_networking)
https://en.wikipedia.org/wiki/Retransmission_(data_networks)
https://en.wikipedia.org/wiki/Stop-and-wait_ARQ
https://en.wikipedia.org/wiki/Go-Back-N_ARQ
https://en.wikipedia.org/wiki/Selective_Repeat_ARQ

widespread  applications in  electrical engineering, digital communication,
mathematics and computer science. The transmission of the data over the channel depends
upon two parameters. They are transmitted power and channel bandwidth. The power
spectral density of channel noise and these two parameters determine signal to noise power
ratio.

The signal to noise power ratio determine the probability of error of the modulation
scheme. Errors are introduced in the data when it passes through the channel. The channel
noise interferes the signal. The signal power is reduced. For the given signal to noise ratio,
the error probability can be reduced further by using coding techniques. The coding
techniques also reduce signal to noise power ratio for fixed probability of error.

Principle of block coding

For the block of k message bits, (n-k) parity bits or check bits are added. Hence
the total bits at the output of channel encoder are ‘n’. Such codes are called (n,k)block
codes.Figure illustrates this concept.

Message block Code block
Channel
input EANOCDRR
Message
Message Check bits
— G
k bits k (n-k)

< nbits |

Figure: Functional block diagram of block coder

Linear Block Codes
A code is linear if the sum of any two code vectors produces another code vector.

This shows that any code vector can be expressed as a linear combination of other code
vectors. Consider that the particular code vector consists of m1,m2, m3,...mk message bits
and c1,c2,c3...cq check bits. Then this code vector can be writtenas,

X=(m1,m2,m3,...mkc1,c2,c3
...cq) Here g=n-k
Whereq are the number of redundant bits added by the

encoder. Code vector can also be written as
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X=(M/C)
Where M= k-bit message vector
C= g-bit check vector

The main aim of linear block code is to generate check bits and this check bits are
mainly used for error detection and correction.

Example :

The (7, 4) linear code has the following matrix as a generator matrix

(g, ] [1 1 0o 1 0 0 O]
O 1 1 0 1 0 O
G — g1 _
g, 1 1 1 0 O 1 o
g, ] |1 0 1 0 O O 1|

Ifu=(1101)isthe message to be encoded, its corresponding code word would be
v=1l-g,+1-g,+0-g, +1-g,

—(1101000)+(0110100)+(1010001)
—(0001101)

A linear systematic (n, k) code is completely specified by ak x n matrix G of the
following form

F P matrix —+7 k x k identity matrix —
(g | [P0 Poa - - - Powsa | 1 0 0 . . . 0]
g Pro Pu - e - Py | @ 1 & =« = =« D
gl p?{] p}l g = 3 Pl,,_;{_i | 0 0 ]. - = . 0
G = = |
|
|
1 8x1 ]| | Prao Pra1x - - - Pran-ia | 0 0 0 0 0 O 1_

where p,, =0or 1

Let u=(uQ, uil, ..., uk-1) be the message to be encoded.The corresponding code word
is

VvV = (1,)0 5V 5 Wy sy Wiy, )

= (Uo>Uy>---> U 1) - G
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The components of v are

Wy s U forO0<i<k

Vi =UgPo;+ Uy Py 00 sl Pry for 0 < j<n-k

The n — k equations given by above equation are called parity-check equations of the
code

Example for Codeword

The matrix G given by

e, ] [1 1 0 1 0 0 O]
O 1 1 0 1 0 O
G — 21 _
g, 1 1 1 0 O 1 O
g, [1 0 1 0 0 O 1|

Let u = (u0, ul, u2, ul) be the message to be encoded and v = (v0, v1, v2, v3, V4,

V5,V6) be the corresponding code word
Solution :

]
1
v=u-G =y, 1, 1;)- i
1

Q = O ©
= i == R =

0]
1
o
o

o o =

1
1
1
O

1
0
1

1

By matrix multiplication, the digits of the code word v can be determined.

Ve — U3
Vo = U,
Vv, = i,
V3 = Uy
Vv, = i, + 1, + g
Vv, = ey + 24, + e,
Vo = Uy + 1, + Ly
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The code word corresponding to the message (101 1)1s(100101 1)

If the generator matrix of an (n, k) linear code is in systematic form, the parity-
check matrix may take the following form

Hi= [In—k PT]

1 0O O o Poo Pio - - - Prio

o 1 o o Po1 P - - - Pria

0O 0 1 0  po P> - Pias
_O 0 o0 . - - 1 Ponk1  Pinik: - . - Prink |

Encoding circuit for a linear systematic (n,k) code is shown below.

0O To channel

Message register

Input u [
O —l g uy uy LR Ug_y

O To channel

Figure: Encoding Circuit

For the block of k=4 message bits, (n-k) parity bits or check bits are added. Hence
the total bits at the output of channel encoder are n=7. The encoding circuit for (7, 4)

systematic code is shown below.
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Figure: Encoding Circuit for (7,4) code

Syndrome and Error Detection

Letv=(vQ, v1, ..., vn-1) be a code word that was transmitted over a noisy channel.
Letr=(ro, r1, ..., rn-1) be the received vector at the outputof the channel

v /N rEvite

Where

e=r+v=(eo,el, .., en-1) is an n-tuple and the n-tuple ‘e’ is called the
error vector (or error pattern).The condition is

ei=1forri#

viei=0 forrj

= Vj

Upon receiving r, the decoder must first determine whether r contains transmission
errors. If the presence of errors is detected, the decoder will take actions to locate the
errors, correct errors (FEC) and request for a retransmission of v.

When r is received, the decoder computes the following (n —k)-
tuple.s=r e HT
s = (s0, s1, ..., sn-k-1)

where s is called the syndrome of
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The syndrome is not a function of the transmitted codeword but a function of error
pattern. So we can construct only a matrix of all possible error patterns with corresponding
syndrome.

When s =0, if and only if ris a code word and hence receiver accepts r as the
transmitted code word. When sz 0, if and only if r is not a code word and hence the
presence of errors has been detected. When the error pattern e is identical to a nonzero
code word (i.e., r contain errors but s =r « HT = 0), error patterns of this kind are called
undetectable error patterns. Since there are 2k — 1 non-zero code words, there are 2k — 1
undetectable error patterns. The syndrome digits are as follows:

SO =r0 +rn-k p00 + rn-k+1 p10 + --- + rn-
1pk-1,0s1 =r1 +rn-k p01 + rn-k+1 p11 +
-+ +rn-1pk-1,1

sn-k-1 = rn-k-1 + rn-k p0,n-k-1 + rn-k+1 p1,n-k-1 + --- + rn-1 pk-1,n-k-1

The syndrome s is the vector sum of the received parity digits (ro,r1,...,rn-k-1) and the

parity- check digits recomputed from the received information digits (rn-k,rn-k+1,...,rn-1).

The below figure shows the syndrome circuit for a linear systematic (n, k) code.

Figure: Syndrome Circuit

Error detection and error correction capabilities of linear block codes:

If the minimum distance of a block code C is dmin, any two distinct code vector of C
differ in at least dmin places. A block code with minimum distance dmin is capable of
detecting all the error pattern of dmin— 1 or fewer errors.

However, it cannot detect all the error pattern of dmin errors because there exists at

80




least one pair of code vectors that differ in dmin places and there is an error pattern of dmin

errors that will carry one into the other. The random-error-detecting capability of a block
code with minimum distance dmin is dmin—1.

An (n, k) linear code is capable of detecting 2n — 2k error patterns of length n
Among the 2n — 1 possible non zero error patterns, there are 2k — 1 error patterns that are
identical to the 2k — 1 non zero code words. If any of these 2k — 1 error patterns occurs, it
alters the transmitted code word v into another code word w, thus w will be received and
its syndrome is zero.

If an error pattern is not identical to a nonzero code word, the received vector r
will not be a code word and the syndrome will not be zero.

Hamming Codes:

These codes and their variations have been widely used for error
control in digital communication and data storage systems.

For any positive integer m > 3, there exists a Hamming code with the following
parameters: Code length:n=2m -1
Number of information symbols: k=2m-m-1
Number of parity-check symbols: n — k = m
Error-correcting capability: t = 1(dmin= 3)
The parity-check matrix H of this code consists of all the non zero m-tuple as its columns (2m-

1)In systematic form, the columns of H are arranged in the following form H = [Im Q]
where Im is an m x m identity matrix

The sub matrix Q consists of 2m — m — 1 columns which are the m-tuples of weight 2 or
more. The columns of Q may be arranged in any order without affecting the distance
property and weight distribution of the code.

In systematic form, the generator matrix of the code is

G = [QT I12m—-m-1]
where QT is the transpose of Q and | 2m—-m-1isan (2m-m—-1) x(2m-m —1)
identity matrix.
Since the columns of H are nonzero and distinct, no two columns add to zero. Since H
consists of all the nonzero m-tuples as its columns, the vector sum of any two columns, say
hi and hj, must also be a column in H, say hlhi+ hj+ h] = 0.The minimum distance of a

Hamming code is exactly 3.

Using H' as a parity-check matrix, a shortened Hamming code can be obtained with
the following parameters :
Code length:n=2m-1-1
Number of information symbols: k=2m-m-1-1
Number of parity-check symbols: n—k=m
Minimum distance : dmin >3
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When a single error occurs during the transmission of a code vector, the resultant
syndrome is nonzero and it contains an odd number of 1’s (e x H'T corresponds to a column
in H’).When double errors occurs, the syndrome is nonzero, but it contains even number of
1’s.

Decoding can be accomplished in the following manner:

) If the syndrome s is zero, we assume that no error occurred

i) If s is nonzero and it contains odd number of 1’s, assume that a single error
occurred. The error pattern of a single error that corresponds to s is added to the received
vector for error correction.

i) 1f s is nonzero and it contains even number of 1°s, an uncorrectable error
pattern has been detected.

Problems:

1.

The parity check bits of a (8.4) block code are generated by
Solution

| 1 L8 ) I
1(a) € =[€q --cu ] =[By - -bumiy —-om, 1 =Ly -, - IE,
LT oO 1 1 N
1 1 | LE]
- 1 1 L8] k.
Therefore. G = N,
O 1 1 1
1 0 1 1
(
( 1 1 Ui 1
1 I I 8]
and then H = | K :
I L] I 1
L] I 1 1

(a) onow LINIrougn armn cxampiIic uart uiis Coac can aciceC unrcco crrorscouc“'ord.

(b}

(111 -

OO OO0 OO0
0001 1011 O 1
0010 OL1l D10
0011 1 100 Ol 1
0 1 O 1101 0100
0101 0110 0101
o110 1010 0110
o111 o001 0111
1 O 1110 1o
1O 1 0101 1001
1O 10 1001 1010
1011 0010 101 1
1 100 o011 1100
1101 1O0oD 1101
1110 0100 1110
1111 1111 1111

Therefore, minimum weight = 4
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(c) d_,, =minimum weight =4

Therefore, error-detecting capability = d_, —1=3

(d) Suppose the transmitted code be 00000000 and the received code be 11100000.

1
1
s=rH" =[11100000 [4.-1
0

Convolution

codes

Xy = m®m, ®m,

and X, = m@m,

1
1
(1]
1

= e = O

1"
| =r1110]=0
1]
. (44)
.. (442)

The output switch first samples x; and then x,. The shift register then shifts
contents of m; to m, and contents of m to m,. Next input bit is then taken and stored
in m. Again x; and x, are generated according to this new combination of
m,m, and m, (equation 44.1 and equation 44.2). The output switch then samples
X, then x,. Thus the output bit stream for successive input bits will be,

X = xXpX)X,XX, .... and s0 on

.. (44.3)

Here note that for every input message bit two encoded output bits x; and x, are
transmitted. In other words, for a single message bit, the encoded code word is two

bits i.e. for this convolutional encoder,

Number of message bits, k = 1

Number ot encoded output bits for one message bit, n = 2

4411 Code Rate of Convolutional Encoder
The code rate of this encoder is,

k.3

r:-'-'-z—z-
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In the encoder of Fig. 44.1, observe that whenever a particular message bit enters
a shift register, it remains in the shift register for three shifts i.e.,

First shift — Message bit is entered in position ‘m’".
Second shift — Message bit is shifted in position m,.
Third shift — Message bit is shifted in position m,.

And at the fourth shift the message bit is discarded or simply lost by overwriting.
We know that x; and v, are combinations of m, m,, m,. Since a single message bit
remains in m during first shift, in m; during second shift and in m, during third shift;
it influences output x; and x, for ‘three’ successive shifts.

4.4.1.2 Constraint Length (K)

The constraint length of a convolution code is defined as the number of shifts over
which a single message bit can influence the encoder output. It is expressed in terms
of message bits.

For the encoder of Fig. 44.1 constraint length K = 3 bits. This is because in this
encoder, a single message bit influences encoder output for three successive shifts. At
the fourth shift, the message bit is lost and it has no effect on the output.

4.4.1.3 Dimension of the Code

The dimension of the code is given by n and k. We know that 'k’ is the number of
message bits taken at a time by the encoder. And 'n' is the encoded output bits' for
one message bits. Hence the dimension of the code is (n, k). And such encoder is
called (n, k) convolutional encoder. For example, the encoder of Fig. 44.1 has the
dimension of (2, 1).
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4.4.2 Time Domain Approach to Analysis of Convolutional Encoder

Let the sequence lg“’ (1"' g‘,') ...... q,,,')l denote the impulse response of the adder

which generates x; in Fig. 44.1 Similarly, Let the sequence I‘g=)2), g o g(,z’ ...... q,,, )

denote the impulse response of the adder which generates x, in Fig. 44.1. These
impulse responses are also called generator sequences of the code.

Let the incoming message sequence be [mg,, m,, m,....... }. The encoder generates
the two output sequences x; and x,. These are obtained by convolving the generator
sequences with the message sequence. Hence the name convolutional code is given.
The sequence x, is given as,

~

(1) (l)
| ﬁ 8 {m 0,22 e . (44.6)

Here m;_, = 0 for all I>i. Similarly the sequence x, is given as,

x; = 2 = ﬁg“) : im0, 2 s . (44.7)

Note : All additions in above equations are as per mod-2 addition rules.

As shown in the Fig. 4.4.1, the two sequences x; and x, are multiplexed by the
switch. Hence the output sequence is given as,

(1) (2) (2) (1) A2) (1) (2)
{xo Xy '| xI X5 Xy XgU X } .. (44.8)

v, = x,“) - {xg" .\"l" x‘z" x(;) ........ }

lx,"

(2) _ §,42) (2) (2) ,(2)
x; -{xo Xy XY X3 e }

U3

Observe that bits from above two sequences are multiplexed in equation (4.4.8)
The sequence {x;} is the output of the convolutional encoder.
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Transform Domain Approach to Analysis of Convolutional Encoder

In the previous section we observed that the convolution of generating sequence
and message sequence takes place. These calculations can be simplified by applying

the transformations to the sequences. Let the impulse responses be represented by
polynomials. i.e.,

) = gV +g 0p+glp24 4gll pM .. (44.13)

g(p) = g2 +5Pp+gPp24.... 4gl pM . (44.14)
Thus the polynomials can be written for other generating sequences. The variable

‘P’ is unit delay operator in above equations. It represents the time delay of the bits in
impulse response.

Similarly we can write the polynomial for message polynomial i.e.,

m(p) = mg+mp+myp2aamy_ptl .. (44.15)

Here L is the length of the message sequence. The convolution sums are converted
to polynomial multiplications in the transform domain. i.e.,
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xD(p)
X2 (p)

gM(p) - m(p)
g(z)(p) *m(p) .. (4.4.16)

I

The above equations are the output polynomials of sequences x}” and xfz).

Code Tree, Trellis and State Diagram for a Convolution Encoder
Now let’s study the operation of the convolutional encoder with the help of code

tree, trellis and state diagram. Consider again the convolutional encoder of Fig. 4.4.1.
It is reproduced below for convenience.

; Previous two successive message
a“l'rf::mb:l“r;p;ageeser;l bils are stored in those two flip-flops.
This bit is the part ¥ Those two bits (m,,m,) represent
of shift register — state of shift register

Message
bits input :I m ™™

1 X4
+

P

Fig. 4.4.4 Convolutional encoder with k =1 and n = 2

1

Output

2




In Fig. 4.4.4 the previous two successive message bits m, and m, represents state.
The input message bit m affects the ‘state’ of the encoder as well as outputs x; and x,
during that state. Whenever new message bit is shifted to ‘m’, the contents of
m, and m, define new state. And outputs x; and x, are also changed according to
new state m,, m, and message bit m. Let's define these states as shown in Table 4.4.1.

Let the initial values of bits stored in m; and m, be zero. That is m;m, =00
initially and the encoder is in state ‘a’,

m, my State of encoder
0 0 a
0 1 b
1 0 c
1 1 d

Table 4.4.1 States of the encoder of Fig. 4.4.4

Development of the Code Tree

Let us consider the development of code free for the message sequence m = 110.
Assume that m, m, =00 initially.

1) When m=1 i.e. first bit

The first message input is m = 1. With this input x, and x, will be calculated as
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New slate
“Tolo 4=1®0®0=1 104 0
m m‘ mz '
m my m x,=1®0=1 This bit is discarded

The values of x;x, = 11 are transmitted to the output and register contents are
shifted to right by one bit position as shown.

Thus the new state of encoder is mym; =01 or ¥ and output transmitted are
xyx, =11. This shows that if encoder is in state ‘a’ and if input is m = 1 then the next
state is ¥ and outputs are x;x, =11. The first row of Table 4.4.2 illustrates this
operation.

The last column of this table shows the code tree diagram. The code tree diagram
starts at node or state ‘a". The diagram is reproduced as shown in Fig. 44.5.

Upward arrow indicates

4 that message bitism =0

Start Node or state

Y-<«—— Downward arrow indicates

that message bitism = 1
This indicates output 1 ket i
while going from node b - S new state
‘a'to'd' S—11 1 or node when m = 1

Fig. 4.4.5 Code tree from node ‘a’ to ‘b’

Observe that if m = 1 we go downward from node ‘a’. Otherwise if m = 0, we go
upward from node ‘a’. It can be verified that if m = 0 then next node (state) is “a’ only.
Since m = 1 here we go downwards toward node b and output is 11 in this node (or
state).

2) When m =1 1.e. second bit

Now let the second message bit be 1. The contents of shift register with this input
will be as shown below.
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X =19180=0

12-—- 1 9 0 =1
1111{0

momy M, These values of x;x, =01 are then
transmitted to output and register
contents are shifted to right by one bit

New state The next state formed is as shown.
1410 Thus the new state of the encoder
momy ™ “l is mymy; =11 or ‘d’ and the outputs
This bit s discarded transmitted are x,x, =01. Thus the
encoder goes from state ‘b’ to state ‘d’

if input is ‘1" and transmitted output x,x, =01. This operation is illustrated by Table
442 in second row. The last column of the table shows the code tree for those first
and second input bits.

Example 4.4.8 : Determine the state diagram for the convolutional encoder shown in
Fig. +.4.32. Draw the trellis diagram through the first set of steady state transitions. On
the second trellis diagram, show the termunation of trellis to all zero state,

S, S, 5

Input

Qutput
Fig. 4.4.32 Convolutional encoder of example 4.4.8

Sol. : (i) To determine dimension of the code :
For every message bit (k=1), two output bits (n =2) are generated. Hence this is
rate % code. Since there are three stages in the shift register, every message bit will

affect output for three successive shifts. Hence constraint length, K = 3. Thus,

k=1 n=2 and K=3
ii) To obtain the state diagram :
First, let us define the states of the encoder.

s18; = 00, state ‘a’
s35, = 01, state'd’
S35, = 10, state'c
S18, = 11, state'd
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A table is prepared that lists state transitions, message input and outputs. The

table 1s as follows ;

Sr. |Current state | Input Outputs Next state
No. $3 8, -5.080

8 x‘xz‘.—'s‘gssﬁ 525

1 a=00 0 0 00, ie a

1 1 01 ie b

2 b=01 0 1 0 10.18.¢

0 11 ie d

3 c=10 0 1 1 00, ie a

1 0 0 01iebd

4 d=11 0 0 1 10.ie ¢

1 1 0 11, ie.d

Table 4.4.8 : State transition table

Based on above table, the state diagram can be prepared easily. It is shown below

in Fig. 4.4.33.

iii) To obtain trellis diagram for steady state :

From Table 4.4.9, the code trellis diagram can be prepared. It is steady state

diagram. It is shown below.
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Decoding methods of Convolution code:

1.Veterbi decoding 2.Sequential

decoding 3.Feedback decoding

Veterbi algorithm for decoding of convolution codes(maximam likelihood decoding): Let
represent the received signal by y.

Convolutional encoding operates continuously on input data Hence

there areno code vectorsand blocks such as.

Metric:it is the discrepancybetwen the received signal y and the decoding signal at particular
node .this metric can be added over few nodes a particular path

Surviving path: this is the path of the decoded signal with minimum metric In
veterbi decoding ametric is assigned to each surviving path
Metric of the particular is obtained by adding individual metric on the nodes along that path.

Y is decoded as the surviving path with smallest metric.
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