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UNIT 1 

 

Introduction: Database systems applications, Purpose of Database Systems, view of Data, Database 

Languages, Relational Databases, Database Design, Data Storage and Querying, Transaction Management, 

Database Architecture, Data Mining and Information Retrieval, Specialty Databases, Database users and 

Administrators. 

Introduction to Relational Model: Structure of Relational Databases, Database Schema, Keys, Schema 

Diagrams, Relational Query Languages, Relational Operations 

 

Introduction 

A database-management system (DBMS) is a collection of interrelated data and a set of programs to access 

those data. The collection of data, usually referred to as the database, contains information relevant to an 

enterprise.  

The primary goal of a DBMS is to provide a way to store and retrieve database information that is both 

convenient and efficient.  

Database systems are designed to manage large bodies of information.  

Management of data involves both defining structures for storage of information and providing mechanisms 

for the manipulation of information.  

In addition, the database system must ensure the safety of the information stored, despite system crashes or 

attempts at unauthorized access. If data are to be shared among several users, the system must avoid 

possible anomalous results. Because information is so important in most organizations, computer scientists 

have developed a large body of concepts and techniques for managing data. 

 

Database-System Applications  

Databases are widely used. Here are some representative applications:  

 Enterprise Information  

o Sales: For customer, product, and purchase information.  

o Accounting: For payments, receipts, account balances, assets and other accounting information. 

o Human resources: For information about employees, salaries, payroll taxes, and benefits, and for 

generation of paychecks.  

o Manufacturing: For management of the supply chain and for tracking production of items in factories, 

inventories of items in warehouses and stores, and orders for items. 

o Online retailers: For sales data noted above plus online order tracking, generation of recommendation 

lists, and maintenance of online product evaluations. 

 Banking and Finance 

o Banking: For customer information, accounts, loans, and banking transactions. 

o Credit card transactions: For purchases on credit cards and generation of monthly statements. 

o Finance: For storing information about holdings, sales, and purchases of financial instruments such 

as stocks and bonds; also for storing real-time market data to enable online trading by customers and 

automated trading by the firm. 

 Universities: For student information, course registrations, and grades (in addition to standard enterprise 

information such as human resources and accounting). 

 Airlines: For reservations and schedule information. Airlines were among the first to use databases in a 

geographically distributed manner. 

 Telecommunication: For keeping records of calls made, generating monthly bills, maintaining balances on 

prepaid calling cards, and storing information about the communication networks. 

 

As the list illustrates, databases form an essential part of every enterprise today, storing not only types of 

information that are common to most enterprises, but also information that is specific to the category of the 

enterprise.  

Over the course of the last four decades of the twentieth century, use of databases grew in all enterprises.  

In the early days, very few people interacted directly with database systems, although without realizing it, 
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they interacted with databases indirectly— through printed reports such as credit card statements, or 

through agents such as bank tellers and airline reservation agents. Then automated teller machines came 

along and let users interact directly with databases. Phone interfaces to computers (interactive voice-response 

systems) also allowed users to deal directly with databases—a caller could dial a number, and press phone 

keys to enter information or to select alternative options, to find flight arrival/departure times, for example, or 

to register for courses in a university.  

The Internet revolution of the late 1990s sharply increased direct user access to databases. Organizations 

converted many of their phone interfaces to databases into Web interfaces, and made a variety of services and 

information available online. For instance, when you access an online bookstore and browse a book or music 

collection, you are accessing data stored in a database. When you enter an order online, your order is stored 

in a database. When you access a bank Web site and retrieve your bank balance and transaction information, 

the information is retrieved from the bank’s database system. When you access a Web site, information about 

you may be retrieved from a database to select which advertisements you should see. Furthermore, data 

about your Web accesses may be stored in a database. Thus, although user interfaces hide details of access 

to a database, and most people are not even aware they are dealing with a database, accessing databases 

forms an essential part of almost everyone’s life today. 

 

Purpose of Database Systems 

In the early days, database applications were built directly on top of file system, which leads to: 

 Data redundancy and inconsistency: data is stored  in multiple file formats resulting induplication of 

information in different files 

 Difficulty in accessing data  

• Need to write a new program to carry out each new task 

 Data isolation  

• Multiple files and formats 

 Integrity problems 

• Integrity constraints  (e.g., account balance > 0) become “buried” in program code rather than 

being stated explicitly 

• Hard to add new constraints or change existing ones 

 Atomicity of updates 

• Failures may leave database in an inconsistent state with partial updates carried out 

• Example: Transfer of funds from one account to another should either complete or not happen 

at all 

 Concurrent access by multiple users 

• Concurrent access needed for performance 

• Uncontrolled concurrent accesses can lead to inconsistencies 

 Ex: Two people reading a balance (say 100) and updating it by withdrawing money (say 

50 each) at the same time 

 Security problems 

• Hard to provide user access to some, but not all, data 

    Database systems offer solutions to all the above problems 

 

University Database Example 

 Data consists of information about: 

• Students 

• Instructors 

• Classes 

 Application program examples: 

• Add new students, instructors, and courses 

• Register students for courses, and generate class rosters 

• Assign grades to students, compute grade point averages (GPA) and generate transcripts 
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View of Data 

 A database system is a collection of interrelated data and a set of programs that allow users to access 

and modify these data.  

 A major purpose of a database system is to provide users with an abstract view of the data. 

• Data models 

 A collection of conceptual tools for describing data, data relationships, data semantics, 

and consistency constraints. 

• Data abstraction 

 Hide the complexity of data structures to represent data in the database from users 

through several levels of data abstraction. 

 

Data Models 

 A collection of tools for describing  

• Data  

• Data relationships 

• Data semantics 

• Data constraints 

 Relational model 

 Entity-Relationship data model (mainly for database design)  

 Object-based data models (Object-oriented and Object-relational) 

 Semi-structured data model  (XML) 

 Other older models: 

• Network model  

• Hierarchical model 

 

 

Relational Model 

 All the data is stored in various tables. 

 Example of tabular data in the relational model 

 

 

 

 

 

 

Levels of Abstraction 

Physical level: describes how a record (e.g., instructor) is stored. 

Logical level: describes data stored in database, and the relationships among the data. 

type instructor = record 

 ID : string;  

 name : string; 

 dept_name : string; 
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 salary : integer; 

end; 

View level: application programs hide details of data types.  Views can also hide information (such as an 

employee’s salary) for security purposes. 

 

Architecture for a database system  

 

 
 

 

Instances and Schemas 

 Similar to types and variables in programming languages 

 Logical Schema – the overall logical structure of the database  

• Example: The database consists of information about a set of customers and accounts in a 

bank and the relationship between them 

 Analogous to type information of a variable in a program 

 Physical schema – the overall physical  structure of the database  

 Instance – the actual content of the database at a particular point in time  

• Analogous to the value of a variable 

 

Physical Data Independence 

 The ability to modify the physical schema without changing the logical schema 

• Applications depend on the logical schema 

• In general, the interfaces between the various levels and components should be well defined so 

that changes in some parts do not seriously influence others. 

 

Data Definition Language (DDL) 

 Specification notation for defining the database schema 

Example:  create table instructor ( 

                             ID                char(5), 

                              name           varchar(20), 

                              dept_name  varchar(20), 

                              salary           numeric(8,2)) 

 DDL compiler generates a set of table templates stored in a data dictionary 

 Data dictionary contains metadata (i.e., data about data) 

• Database schema  

• Integrity constraints 

 Primary key (ID uniquely identifies instructors) 

• Authorization 

 Who can access what 

 

Data Manipulation Language (DML) 
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 Language for accessing and updating the data organized by the appropriate data model 

• DML also known as query language 

 There are basically two types of data-manipulation language 

• Procedural DML -- require a user to specify what data are needed and how to get those data. 

• Declarative DML -- require a user to specify what data are needed without specifying how to 

get those data.  

 Declarative DMLs are usually easier to learn and use than are procedural DMLs.   

 Declarative DMLs are also referred to as non-procedural DMLs 

 The portion of a DML that involves information retrieval is called a query language.   

 

SQL Query Language 

 SQL query language is nonprocedural. A query takes as input several tables (possibly only one) and 

always returns a single table. 

 Example to find all instructors in Comp. Sci. dept 

  select name 

  from instructor 

  where dept_name = 'Comp. Sci.'  

 SQL is NOT a Turing machine equivalent language 

 To be able to compute complex functions SQL is usually embedded in some higher-level language 

 Application programs generally access databases through one of 

• Language extensions to allow embedded SQL 

• Application program interface (e.g., ODBC/JDBC) which allow SQL queries to be sent to a 

database 

 

Database Access from Application Program 

 Non-procedural query languages such as SQL are not as powerful as a universal Turing machine.     

 SQL does not support actions such as input from users, output to displays, or communication over 

the network.   

 Such computations and actions must be written in a host language, such as C/C++, Java or Python, 

with embedded SQL queries that access the data in the database. 

 Application programs -- are programs that are used to interact with the database in this fashion.   

 

Database Design 

The process of designing the general structure of the database: 

 Logical Design – Deciding on the database schema. Database design requires that we find a “good” 

collection of relation schemas. 

• Business decision – What attributes should we record in the database? 

• Computer Science decision – What relation schemas should we have and how should the 

attributes be distributed among the various relation schemas? 

 Physical Design – Deciding on the physical layout of the database                 

      

Database Engine 

 A database system is partitioned into modules that deal with each of the responsibilities of the overall 

system.   

 The functional components of a database system can be divided into 

• The storage manager, 

• The  query processor component,  

• The transaction management component. 

 

Storage Manager 

 A program module that provides the interface between the low-level data stored in the database and 

the application programs and queries submitted to the system. 
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 The storage manager is responsible to the following tasks:  

• Interaction with the OS file manager  

• Efficient storing, retrieving and updating of data 

 The storage manager components include: 

• Authorization and integrity manager 

• Transaction manager 

• File manager 

• Buffer manager 

 The storage manager implements several data structures as part of the physical system 

implementation: 

• Data files -- store the database itself 

• Data dictionary -- stores metadata about the structure of the database, in particular the 

schema of the database. 

• Indices -- can provide fast access to data items.  A database index provides pointers to those 

data items that hold a particular value.   

 

Query Processor 

 The query processor components include: 

• DDL interpreter -- interprets DDL statements and records the definitions in the data 

dictionary. 

• DML compiler -- translates DML statements in a query language into an evaluation plan 

consisting of low-level instructions that the query evaluation engine understands. 

 The DML compiler performs query optimization; that is, it picks the lowest cost 

evaluation plan from among the various alternatives. 

• Query evaluation engine -- executes low-level instructions generated by the DML compiler. 

 

Query Processing 

1. Parsing and translation 

2. Optimization 

3. Evaluation 

 

 
 

Transaction Management  

 A transaction is a collection of operations that performs a single logical function in a database 

application 

 Transaction-management component ensures that the database remains in a consistent (correct) 

state despite system failures (e.g., power failures and operating system crashes) and transaction 

failures. 

 Concurrency-control manager controls the interaction among the concurrent transactions, to ensure 

the consistency of the database.  

 

Database Architecture 
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 Centralized databases 

• One to a few cores, shared memory 

 Client-server,  

• One server machine executes work on behalf of multiple client machines. 

 Parallel databases 

• Many core shared memory 

• Shared disk 

• Shared nothing 

 Distributed databases 

• Geographical distribution 

• Schema/data heterogeneity 

 
 

Database Applications 

Database applications are usually partitioned into two or three parts 

 Two-tier architecture --  the application resides at the client machine, where it invokes database 

system functionality at the server machine 

 Three-tier architecture -- the client machine acts as a front end and does not contain any direct 

database calls.   

• The client end communicates with an application server, usually through a forms interface.   

• The application server in turn communicates with a database system to access data.   

 

Two-tier and three-tier architectures 
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Database Users 

 
 

 

Database Administrator 

A person who has central control over the system is called a database administrator (DBA).   

Functions of a DBA include: 

 Schema definition 

 Storage structure and access-method definition 

 Schema and physical-organization modification 

 Granting of authorization for data access 

 Routine maintenance 

 Periodically backing up the database 

 Ensuring that enough free disk space is available for normal operations, and upgrading disk space as 

required 

 Monitoring jobs running on the database 

 

History of Database Systems 

 1950s and early 1960s: 

• Data processing using magnetic tapes for storage 

 Tapes provided only sequential access 

• Punched cards for input 

 Late 1960s and 1970s: 

• Hard disks allowed direct access to data 
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• Network and hierarchical data models in widespread use 

• Ted Codd defines the relational data model 

 Would win the ACM Turing Award for this work 

 IBM Research begins System R prototype 

 UC Berkeley (Michael Stonebraker) begins Ingres prototype 

 Oracle releases first commercial relational database 

• High-performance (for the era) transaction processing 

 1980s: 

• Research relational prototypes evolve into commercial systems 

 SQL becomes industrial standard 

• Parallel and distributed database systems 

 Wisconsin, IBM, Teradata 

• Object-oriented database systems 

 1990s: 

• Large decision support and data-mining applications 

• Large multi-terabyte data warehouses 

• Emergence of Web commerce 

 2000s 

• Big data storage systems 

 Google BigTable, Yahoo PNuts, Amazon,  

 “NoSQL” systems. 

• Big data analysis: beyond SQL 

 Map reduce and friends 

 2010s 

• SQL reloaded 

 SQL front end to Map Reduce systems 

 Massively parallel database systems 

 Multi-core main-memory databases 

 

Relation Schema and Instance 

 A1, A2, …, An are attributes  

 R = (A1, A2, …, An ) is a relation schema 

 Example:      instructor  = (ID,  name, dept_name, salary) 

 A relation instance r defined over schema R is denoted by r (R). 

 The current values a relation are specified by a table 

 An element t of relation r is called a  tuple and is represented by a row in a table 

 

Attributes 

 The set of allowed values for each attribute is called the domain of the attribute 

 Attribute values are (normally) required to be atomic; that is, indivisible 

 The special value null  is a member of every domain. Indicated that the value is “unknown” 

 The null value causes complications in the definition of many operations 

 

Relations are Unordered 

 Order of tuples is irrelevant (tuples may be stored in an arbitrary order) 

 Example: instructor  relation with unordered tuples 

 

Database Schema 

 Database schema -- is the logical structure of the database. 

 Database instance -- is a snapshot of the data in the database at a given instant in time.  

 Example: 

• schema:   instructor (ID, name, dept_name, salary) 
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• Instance: 

 
 

Keys 

 Let K  R 

 K is a superkey of R if values for K are sufficient to identify a unique tuple of each possible relation 

r(R)  

• Example:  {ID} and {ID,name} are both superkeys of instructor.  

 Superkey K is a candidate key if K is minimal 

Example:  {ID} is a candidate key for Instructor  

 One of the candidate keys is selected to be the primary key. 

 Foreign key constraint: Value in one relation must appear in another 

• Referencing relation 

• Referenced relation 

• Example: dept_name in instructor  is a foreign key from instructor referencing department 

 

Schema Diagram for University Database 

 
Relational Query Languages 

 Procedural versus non-procedural, or declarative 

 “Pure” languages: 
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• Relational algebra 

• Tuple relational calculus 

• Domain relational calculus 

 The above 3 pure languages are equivalent in computing power 

 We will concentrate in this chapter on relational algebra 

• Not Turing-machine equivalent 

• Consists of 6 basic operations 

 

Relational Algebra 

 A procedural language consisting of a set of operations that take one or two relations as input and 

produce a new relation as their result.  

 Six basic operators: 

• select:   

• project:   

• union:   

• set difference: –  

• Cartesian product: x 

• rename:   

 

Select Operation 

 The  select operation selects tuples that satisfy a given predicate. 

 Notation:   p (r) 

 p is called the selection predicate 

 Example: select those tuples of the instructor  relation where the instructor is in the “Physics” 

department. 

• Query:  dept_name=“Physics” (instructor)  

• Result 

 
 

 We allow comparisons using =, , >, . <.  in the selection predicate.  

 We can combine several predicates into a larger predicate by using the connectives:  (and),  (or),  

(not) 

Example: Find the instructors in Physics with a salary greater $90,000, we write: 

            dept_name=“Physics”  salary > 90,000 (instructor)  

 The select predicate may include comparisons between two attributes.  

• Example, find all departments whose name is the same as their building name: 

•   dept_name=building  (department)  

 

Project Operation 

 A unary operation that returns its argument relation, with certain attributes left out.   

 Notation:    A1, A2, A3 ….Ak  (r) where A1, A2,  …, Ak  are attribute names and r is a relation name. 

 The result is defined as the relation of k columns obtained by erasing the columns that are not listed 

 Duplicate rows removed from result, since relations are sets 

Example: eliminate the dept_name attribute of instructor 

 Query:  ID, name, salary (instructor)  

 Result: 
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Composition of Relational Operations 

 The result of a relational-algebra operation is relation and therefore of relational-algebra operations 

can be composed together into a relational-algebra expression. 

 Consider the query -- Find the names of all instructors in the Physics department. 

              name( dept_name =“Physics”  (instructor))       

 Instead of giving the name of a relation as the argument of the projection operation, we give an 

expression that evaluates to a relation. 

 

Cartesian-Product Operation 

 The Cartesian-product operation (denoted by X) allows us to combine information from any two 

relations.   

Example: the Cartesian product of the relations instructor and teaches is written  as: 

                instructor  X  teaches 

 We construct a tuple of the result out of each possible pair of tuples: one from the instructor relation 

and one from the teaches relation (see next slide) 

 Since the instructor ID appears in both relations we distinguish between these attribute by attaching 

to the attribute the name of the relation from which the attribute originally came. 

• instructor.ID 

• teaches.ID 

 

The  instructor  X  teaches  table 
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Join Operation 

 The Cartesian-Product  

                    instructor  X  teaches  associates every  tuple of  instructor with every tuple of teaches. 

• Most of the resulting rows have information about instructors who did NOT teach a particular 

course.  

 To get only those tuples of  “instructor  X  teaches “ that pertain to instructors and the courses that 

they taught, we write: 

             instructor.id =  teaches.id  (instructor  x teaches ))  

• We get only those tuples of “instructor  X  teaches” that pertain to instructors and the courses 

that they taught. 

 The result of this expression,  

 
 The join operation allows us to combine a select operation and a Cartesian-Product operation into a 

single operation. 

 Consider relations r(R) and s(S). Let “theta” be a predicate on attributes in the schema R “union” S.  

 The join operation r ⋈Ɵ s is defined as follows:  r ⋈Ɵ s = σƟ (r x s) 

 Thus, σinstructor.id = teaches.id (instructor   x    teaches)  

 Can equivalently be written as:  instructor ⋈ instructor.id = teaches.id teaches 
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Union Operation 

 The union operation allows us to combine two relations  

 Notation:  r   s  

 For r   s to be valid. 

 1.   r, s must have the same arity (same number of attributes) 

 2.   The attribute domains must be compatible (example: 2nd column of r deals with the same type of 

values as does the 2nd column of s) 

 Example: to find all courses taught in the Fall 2017 semester, or in the Spring 2018 semester, or in 

both course_id ( semester=“Fall”  Λ year=2017 (section))       course_id ( semester=“Spring”  Λ year=2018 (section)) 

 Result of:    course_id ( semester=“Fall”  Λ year=2017 (section))    course_id ( semester=“Spring”  Λ year=2018 (section)) 

                                                                              
Set-Intersection Operation 

 The set-intersection  operation  allows us to find tuples that are in both the input relations.  

 Notation: r  s  

 Assume:  

• r, s have the same arity  

• attributes of r and s are compatible 

 Example: Find the set of all courses taught in both the Fall 2017 and the Spring 2018 semesters. 

           course_id ( semester=“Fall”  Λ year=2017 (section))  course_id ( semester=“Spring”  Λ year=2018 (section)) 

Result: 

 
 

Set Difference Operation 

 The set-difference operation allows us to find tuples that are in one relation but are not in another.  

 Notation r – s 

 Set differences must be taken between compatible relations. 

• r and s must have the same arity  

• attribute domains of r and s must be compatible 

 Example: to find all courses taught in the Fall 2017 semester, but not in the Spring 2018 semester 

   course_id ( semester=“Fall”  Λ year=2017 (section))  −     course_id ( semester=“Spring”  Λ year=2018 (section)) 

 
 

The Assignment Operation 

 It is convenient at times to write a relational-algebra expression by assigning parts of it to temporary 

relation variables.   

 The assignment  operation is  denoted by  and works like assignment in a programming language. 

 Example: Find all instructor in the “Physics” and Music department. 

          Physics   dept_name=“Physics” (instructor) 
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         Music   dept_name=“Music” (instructor) 

         Physics   Music 

 With the assignment operation, a query can be written as a sequential program consisting of a series 

of assignments followed by an expression whose value is displayed as the result of the query.  

 

The Rename Operation 

 The results of relational-algebra expressions do not have a name that we can use to refer to them.  The  

rename operator,   ,  is provided  for that purpose 

 The expression: x (E)  returns the result of expression E under the name x  

 Another form of the rename operation: x(A1,A2, .. An) (E)  

 

Equivalent Queries 

 There is more than one way to write a query in relational algebra.  

Example:  Find information about courses taught by instructors in the Physics department with salary 

greater than 90,000 

 Query 1:   dept_name=“Physics”  salary > 90,000 (instructor)  

 Query 2:   dept_name=“Physics” ( salary > 90.000 (instructor))  

 The two queries are not identical; they are, however, equivalent -- they give the same result on any 

database. 

 

Example: Find information about courses taught by instructors in the Physics department   

 Query 1: σ dept_name=“Physics” (instructor ⋈ instructor.ID = teaches.ID teaches)   

 Query 2: (σ dept_name=“Physics” (instructor)) ⋈ instructor.ID = teaches.ID teaches.   

 The two queries are not identical; they are, however, equivalent -- they give the same result on any 

database 
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UNIT 2 

Introduction to SQL: Overview of the SQL Query Language, SQL Data Definition, Basic Structure of SQL 

Queries, Additional Basic Operations, Set Operations, Null Values, Aggregate Functions, Nested Sub-queries, 

Modification of the Database.  

Intermediate SQL: Joint Expressions, Views, Transactions, Integrity Constraints, SQL Data types and 

schemas, Authorization. 

Advanced SQL: Accessing SQL from a Programming Language, Functions and Procedures, Triggers, Recursive 

Queries, OLAP, Formal relational query languages. 

 

History 

 IBM Sequel language developed as part of System R project at the IBM San Jose Research Laboratory 

 Renamed Structured Query Language (SQL) 

 ANSI and ISO standard SQL: 

• SQL-86 

• SQL-89 

• SQL-92  

• SQL:1999 (language name became Y2K compliant!) 

• SQL:2003 

 Commercial systems offer most, if not all, SQL-92 features, plus varying feature sets from later standards 

and special proprietary features.   

• Not all examples here may work on your particular system. 

 

SQL Parts 

 DML -- provides the ability to query information from the database and to insert tuples into, delete tuples 

from, and modify tuples in the database. 

 Integrity – the DDL includes commands for specifying integrity constraints. 

 View definition -- The DDL includes commands for defining views. 

 Transaction control – includes commands for specifying the beginning and ending of transactions. 

 Embedded SQL and dynamic SQL -- define how SQL statements can be embedded within general-purpose 

programming languages. 

 Authorization – includes commands for specifying access rights to relations and views. 

 

Data Definition Language 

The SQL data-definition language (DDL) allows the specification of information about relations, including: 

 The schema for each relation. 

 The type of values associated with each attribute. 

 The Integrity constraints 

 The set of indices to be maintained for each relation. 

 Security and authorization information for each relation. 

 The physical storage structure of each relation on disk. 

 

Domain Types in SQL 

 char(n).  Fixed length character string, with user-specified length n.  

 varchar(n).  Variable length character strings, with user-specified maximum length n. 

 int.  Integer (a finite subset of the integers that is machine-dependent). 

 smallint.  Small integer (a machine-dependent subset of the integer domain type). 

 numeric(p,d).  Fixed point number, with user-specified precision of p digits, with d digits to the right 

of decimal point.  (ex., numeric(3,1), allows 44.5 to be stores exactly, but not 444.5 or 0.32) 

 real, double precision.  Floating point and double-precision floating point numbers, with machine-

dependent precision. 

 float(n).  Floating point number, with user-specified precision of at least n digits. 
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Create Table Construct 

 An SQL relation is defined using the create table command: 

  create table r  

                        (A1 D1, A2 D2, ..., An Dn, 

             (integrity-constraint1), 

             .., 

                      (integrity-constraintk)) 

• r is the name of the relation 

• each Ai is an attribute name in the schema of relation r 

• Di is the data type of values in the domain of attribute Ai  

 Example: 

   create table instructor ( 

                              ID                char(5), 

                              name           varchar(20), 

                              dept_name  varchar(20), 

                              salary           numeric(8,2)) 

 

Integrity Constraints in Create Table 

 Types of integrity constraints 

• primary key (A1, ..., An ) 

• foreign key (Am, ..., An ) references r  

• not null 

 SQL prevents any update to the database that violates an integrity constraint. 

Example: 

create table instructor ( 

                ID                char(5), 

                name           varchar(20) not null, 

                dept_name  varchar(20), 

                salary           numeric(8,2), 

                primary key (ID), 

                foreign key (dept_name) references department); 

 

create table student ( 

          ID                    varchar(5), 

          name               varchar(20) not null, 

          dept_name      varchar(20), 

          tot_cred           numeric(3,0), 

          primary key (ID), 

              foreign key (dept_name) references department); 

create table takes ( 

          ID                   varchar(5), 

          course_id       varchar(8), 

          sec_id            varchar(8), 

          semester        varchar(6), 

          year                numeric(4,0), 

          grade              varchar(2),  

               primary key (ID, course_id, sec_id, semester, year) , 

               foreign key (ID) references  student, 

          foreign key (course_id, sec_id, semester, year) references section); 

create table course ( 

          course_id        varchar(8), 

          title                  varchar(50), 
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          dept_name      varchar(20), 

          credits             numeric(2,0), 

              primary key (course_id), 

              foreign key (dept_name) references department); 

 

Updates to tables 

 Insert    

• insert into instructor values ('10211', 'Smith', 'Biology', 66000); 

 Delete  

•  Remove all tuples from the student relation 

 delete from student   

 Drop Table 

• drop table r 

 Alter   

• alter table r add A D 

  where A is the name of the attribute to be added to relation r  and D is the domain of A.  

 All exiting tuples in the relation are assigned null as the value for the new attribute.   

• alter table r drop A      

 where A is the name of an attribute of relation r 

 Dropping of attributes not supported by many databases. 

 

Basic Query Structure 

 A typical SQL query has the form: 

 select A1, A2, ..., An 

 from r1, r2, ..., rm 

 where P 

• Ai represents an attribute, Ri represents a relation, P is a predicate. 

 The result of an SQL query is a relation. 

 

The select Clause 

 The select clause lists the attributes desired in the result of a query 

• corresponds to the projection operation of the relational algebra 

 Example: find the names of all instructors: 

  select name from instructor 

 NOTE:  SQL names are case insensitive (i.e., you may use upper- or lower-case letters.)   

• E.g.,  Name ≡ NAME ≡ name 

• Some people use upper case wherever we use bold font. 

 SQL allows duplicates in relations as well as in query results. 

 To force the elimination of duplicates, insert the keyword distinct after select. 

 Find the department names of all instructors, and remove duplicates 

  select distinct dept_name from instructor 

 The keyword all specifies that duplicates should not be removed.  

  select all dept_name from instructor 

 An asterisk in the select clause denotes “all attributes” 

   select * from instructor 

 An attribute can be a literal  with  no from  clause 

   select  '437'  

• Results is a table with one column and a single row with value “437” 

• Can give the column a name using: select '437' as FOO   

 An attribute can be a literal with from  clause 

   select  'A' from instructor 

• Result is a table with one column and N rows (number of tuples in the instructors table), each 

row with value “A” 
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 The select clause can contain arithmetic expressions involving the operation, +, –, *, and /, and 

operating on constants or attributes of tuples. 

• The query:  

                   select ID, name, salary/12 from instructor 

 would return a relation that is the same as the instructor relation, except that the value of the 

attribute salary is divided by 12. 

• Can rename “salary/12” using the as clause: select ID, name, salary/12  as monthly_salary 

 

The where Clause 

 The where clause specifies conditions that the result must satisfy 

• Corresponds to the selection predicate of the relational algebra.   

 To find all instructors in Comp. Sci. dept 

  select name from instructor where dept_name = 'Comp. Sci.' 

 SQL allows the use of the logical connectives  and, or, and not  

 The operands of the logical connectives can be expressions involving the comparison operators <, <=, 

>, >=, =, and <>. 

 Comparisons can be applied to results of arithmetic expressions 

 To find all instructors in Comp. Sci. dept with salary > 70000 

 select name from instructor where dept_name = 'Comp. Sci.'  and salary > 70000 

 

The from Clause 

 The from clause lists the relations involved in the query 

• Corresponds to the Cartesian product operation of the relational algebra. 

 Find the Cartesian product instructor X teaches  

   select * from instructor, teaches 

• generates every possible instructor – teaches pair, with all attributes from both relations. 

• For common attributes (e.g., ID), the attributes  in the resulting table are renamed using the  

relation name (e.g., instructor.ID) 

 Cartesian product not very useful directly, but useful combined with where-clause condition (selection 

operation in relational algebra). 

  

Examples 

 Find the names of all instructors who have taught some course and the course_id  

• select name, course_id 

from instructor , teaches 

where instructor.ID = teaches.ID  

  

 Find the names of all instructors in the Art  department who have taught some course and the 

course_id  

• select name, course_id 

from instructor , teaches 

where instructor.ID = teaches.ID  and  instructor. dept_name = 'Art' 

 

The Rename Operation 

 The SQL allows renaming relations and attributes using the as clause: old-name as new-name   

 Find the names of all instructors who have a higher salary than some instructor in 'Comp. Sci'. 

• select distinct T.name 

from instructor as T, instructor as S 

where T.salary > S.salary and S.dept_name = 'Comp. Sci.’  

 Keyword as is optional and may be omitted:  instructor as T ≡ instructor T  
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Self Join Example 

 Relation emp-super 

 
 

 Find the supervisor of “Bob” 

 Find the supervisor of the supervisor of “Bob” 

 Can you find ALL the supervisors (direct and indirect) of “Bob”? 

 

String Operations 

 SQL includes a string-matching operator for comparisons on character strings.  The operator like uses 

patterns that are described using two special characters: 

• percent ( % ).  The % character matches any substring. 

• underscore ( _ ).  The _ character matches any character. 

 Find the names of all instructors whose name includes the substring “dar”. 

 select name 

 from instructor 

 where name like '%dar%'  

 Match the string “100%” 

   like '100 \%'  escape  '\' ; we use backslash (\) as the escape character. 

 Patterns are case sensitive.  

 Pattern matching examples: 

• 'Intro%' matches any string beginning with “Intro”. 

• '%Comp%' matches any string containing “Comp” as a substring. 

• '_ _ _' matches any string of exactly three characters. 

• '_ _ _ %' matches any string of at least three characters.  

 SQL supports a variety of string operations such as 

• concatenation (using “||”) 

• converting from upper to lower case (and vice versa) 

• finding string length, extracting substrings, etc. 

 

Ordering the Display of Tuples 

 List in alphabetic order the names of all instructors  

            select distinct name 

 from    instructor 

 order by name  

 We may specify desc for descending order or asc for ascending order, for each attribute; ascending 

order is the default. 

• Example:  order by name desc  

 Can sort on multiple attributes 

• Example: order by  dept_name, name  

 

Where Clause Predicates 

 SQL includes a between comparison operator 

 Example:  Find the names of all instructors with salary between $90,000 and $100,000 (that is,  

$90,000 and £ $100,000) 

• select name 

from instructor 

where salary between 90000 and 100000 

 Tuple comparison 



B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 6 
 

• select name, course_id 

from instructor, teaches 

where (instructor.ID, dept_name) = (teaches.ID, 'Biology'); 

 

Set Operations 

 Find courses that ran in Fall 2017 or in Spring 2018 

           (select course_id  from section where sem = 'Fall' and year = 2017) 

            union 

           (select course_id  from section where sem = 'Spring' and year = 2018)  

 Find courses that ran in Fall 2017 and in Spring 2018 

           (select course_id  from section where sem = 'Fall' and year = 2017) 

            intersect 

           (select course_id  from section where sem = 'Spring' and year = 2018)  

 Find courses that ran in Fall 2017 but not in Spring 2018 

          (select course_id  from section where sem = 'Fall' and year = 2017) 

           except 

          (select course_id  from section where sem = 'Spring' and year = 2018) 

 

 Set operations union, intersect, and except  

• Each of the above operations automatically eliminates duplicates 

 To retain all duplicates use the 

• union all, 

• intersect all 

• except all. 

 

Null Values 

 It is possible for tuples to have a null value, denoted by null, for some of their attributes 

 null signifies an unknown value or that a value does not exist. 

 The result of any arithmetic expression involving null is null 

• Example:  5 + null  returns null 

 The predicate is null can be used to check for null values. 

• Example: Find all instructors whose salary is null. 

  select name 

  from instructor 

  where salary is null  

 The predicate is not null succeeds if the value on which it is applied is not null. 

 It is possible for tuples to have a null value, denoted by null, for some of their attributes 

 null signifies an unknown value or that a value does not exist. 

 The result of any arithmetic expression involving null is null 

• Example:  5 + null  returns null 

 The predicate  is null can be used to check for null values. 

• Example: Find all instructors whose salary is null. 

  select name 

  from instructor 

  where salary is null  

 The predicate is not null succeeds if the value on which it is applied is not null. 

 

Aggregate Functions 

 These functions operate on the multiset of values of a column of a relation, and return a value 

 avg: average value 

 min:  minimum value 

 max:  maximum value 
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 sum:  sum of values 

 count:  number of values 

 

 Find the average salary of instructors in the Computer Science department  

select avg (salary) 

from instructor 

where dept_name= 'Comp. Sci.'; 

 Find the total number of instructors who teach a course in the Spring 2018 semester 

select count (distinct ID) 

from teaches 

where semester = 'Spring' and year = 2018; 

 Find the number of tuples in the course relation 

select count (*) 

from course; 

 Find the average salary of instructors in each department 

select dept_name, avg (salary) as avg_salary 

from instructor 

group by dept_name; 

 Attributes in select clause outside of aggregate functions must appear in group by list 

/* erroneous query */ 

select dept_name, ID, avg (salary) 

from instructor 

group by dept_name; 

 

Aggregate Functions – Having Clause 

 Find the names and average salaries of all departments whose average salary is greater than 42000 

select dept_name, avg (salary) as avg_salary  

from instructor 

group by dept_name 

having avg (salary) > 42000; 

 Note: predicates in the having clause are applied after the formation of groups whereas predicates in 

the where clause are applied before forming groups 

 

Nested Subqueries 

 SQL provides a mechanism for the nesting of subqueries. A subquery is a select-from-where 

expression that is nested within another query. 

 The nesting can be done in the following SQL query 

 select A1, A2, ..., An 

 from r1, r2, ..., rm 

 where P 

  as follows: 

• From clause: ri  can be replaced by any valid subquery 

• Where clause: P can be replaced with an expression of the form: B <operation> (subquery) 

      B is an attribute and <operation> to be defined later. 

• Select clause:  

Ai   can be replaced be a subquery that generates a single value. 

 

Set Membership 

 Find courses offered in Fall 2017 and in Spring 2018 

select distinct course_id  

from section 

where semester = 'Fall' and year= 2017 and  

course_id in (select course_id from section where semester = 'Spring' and year= 2018); 
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 Find courses offered in Fall 2017 but not in Spring 2018  

select distinct course_id  

from section 

where semester = 'Fall' and year= 2017 and  

           course_id  not in (select course_id  from section 

                                        where semester = 'Spring' and year= 2018); 

 Name all instructors whose name is neither “Mozart” nor Einstein” 

            select distinct name  

           from instructor 

           where  name not in ('Mozart', 'Einstein')  

 

 Find the total number of (distinct) students who have taken course sections taught by the instructor 

with ID 10101 

select count (distinct ID) 

from takes 

where (course_id, sec_id, semester, year) in  

                                (select course_id, sec_id, semester, year 

                                 from teaches 

                                 where teaches.ID= 10101); 

   

Set Comparison 

 Find names of instructors with salary greater than that of some (at least one) instructor in the Biology 

department. 

select distinct T.name 

from instructor as T, instructor as S 

where T.salary > S.salary and S.dept name = 'Biology'; 

 

 Same query using > some clause 

select name 

from instructor 

where salary > some (select salary 

                                     from instructor 

                                     where dept name = 'Biology'); 
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©Silberschatz, Korth and Sudarshan3.41Database System Concepts - 7th Edition

Definition of  “some” Clause

 F <comp> some r t r such that (F <comp> t )

Where <comp> can be:      

0
5

6

(5 < some ) = true

0
5

0

) = false

5

0
5(5  some ) = true (since 0  5)

(read:  5 < some tuple in the relation) 

(5 < some

) = true(5 = some

(= some)  in

However, ( some)  not in

 
 

Set Comparison – “all” Clause 

 Find the names of all instructors whose salary is greater than the salary of all instructors in the 

Biology department. 

select name 

from instructor 

where salary > all (select salary from instructor where dept name = 'Biology'); 

 

Definition of “all” Clause 

 F <comp> all r   t  r  (F <comp> t)  

 

 
 



B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 10 
 

 

Test for Empty Relations 

 The exists construct returns the value true if the argument subquery is nonempty. 

 exists  r   r  Ø  

 not exists r   r = Ø 

 

Use of “exists” Clause 

 Yet another way of specifying the query “Find all courses taught in both the Fall 2017 semester and in 

the Spring 2018 semester” 

select course_id 

    from section as S 

    where semester = 'Fall' and year = 2017 and  

               exists  (select * from section as T 

                             where semester = 'Spring' and year= 2018  

                                        and S.course_id = T.course_id); 

  

 Correlation name – variable S  in the outer query  

 Correlated subquery – the inner query 

 

Use of “not exists” Clause 

 Find all students who have taken all courses offered in the Biology department. 

select distinct S.ID, S.name 

from student as S 

where not exists ( (select course_id from course 

                                  where dept_name = 'Biology') 

                                 except 

                                   (select T.course_id from takes as T 

                                    where S.ID = T.ID)); 

• First nested query lists all courses offered in Biology 

• Second nested query lists all courses a particular student took 

 Note that X – Y = Ø      X  Y  

 Note: Cannot write this query using = all and its variants  

 

Test for Absence of Duplicate Tuples 

 The unique construct tests whether a subquery has any duplicate tuples in its result. 

 The unique construct evaluates to “true” if a given subquery contains no duplicates . 

 Find all courses that were offered at most once in 2017 

select T.course_id 

from course as T 

where unique ( select R.course_id 

                           from section as R 

                           where T.course_id= R.course_id  

                                       and R.year = 2017); 

 

Subqueries in the From Clause 

 SQL allows a subquery expression to be used in the from clause 

 Find the average instructors’ salaries of those departments where the average salary is greater than 

$42,000.” 

select dept_name, avg_salary 

from ( select dept_name, avg (salary) as avg_salary 

           from instructor 

           group by dept_name) 

where avg_salary > 42000; 
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 Note that we do not need to use the having clause 

 Another way to write above query 

select dept_name, avg_salary 

from (  select dept_name, avg (salary)  

            from instructor 

            group by dept_name)  

                 as dept_avg (dept_name, avg_salary) 

     where avg_salary > 42000; 

 

With Clause 

 The with clause provides a way of defining a temporary relation whose definition is available only to 

the query in which the with clause occurs.  

 Find all departments with the maximum budget  

     with max_budget (value) as  

             (select max(budget) 

              from department) 

     select department.name 

     from department, max_budget 

     where department.budget = max_budget.value; 

 

Complex Queries using With Clause 

 Find all departments where the total salary is greater than the average of the total salary at all 

departments 

with dept _total (dept_name, value) as 

        (select dept_name, sum(salary) 

         from instructor 

         group by dept_name), 

dept_total_avg(value) as 

       (select avg(value) 

       from dept_total) 

select dept_name 

from dept_total, dept_total_avg  

where dept_total.value > dept_total_avg.value; 

 

Scalar Subquery 

 Scalar subquery is one which is used where a single value is expected 

 List all departments along with the number of instructors in each department 

select dept_name,  

             ( select count(*)  

                from instructor  

                where department.dept_name = instructor.dept_name) 

             as num_instructors 

from department; 

 Runtime error if subquery returns more than one result tuple 

 

Modification of the Database 

 Deletion of tuples from a given relation.  

 Insertion of new tuples into a given relation 

 Updating of values in some tuples in a given relation 

 

Deletion 

 Delete all instructors 

  delete from instructor  
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 Delete all instructors from the Finance department 

                    delete from instructor 

                     where dept_name= 'Finance’; 

  

 Delete all tuples in the instructor relation for those instructors associated with a department located in 

the Watson building. 

                      delete from instructor 

                         where dept name in (select dept name 

                                                            from department 

                                                            where building = 'Watson'); 

 Delete all instructors whose salary is less than the average salary of instructors 

delete from instructor 

where salary < (select avg (salary)  

                             from instructor); 

• Problem:  as we delete tuples from instructor, the average salary changes 

• Solution used in SQL: 

1. First, compute avg (salary) and find all tuples to delete 

2. Next, delete all tuples found above (without recomputing avg or retesting the tuples) 

 

Insertion 

 Add a new tuple to course 

       insert into course 

               values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);  

 or equivalently 

       insert into course (course_id, title, dept_name, credits) 

              values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);  

 Add a new tuple to student  with tot_creds set to null 

       insert into student 

               values ('3003', 'Green', 'Finance', null); 

 Make each student in the Music department who has earned more than 144 credit hours an instructor 

in the Music department with a salary of  $18,000. 

      insert into instructor 

   select ID, name, dept_name, 18000 

             from   student  

             where   dept_name = 'Music' and total_cred > 144;   

 The select from where statement is evaluated fully before any of its results are inserted into the 

relation.   

      Otherwise queries like:     insert into table1 select * from table1       would cause problem 

 

Updates 

 Give  a  5% salary raise to all instructors 

    update instructor  set salary = salary * 1.05 

 Give  a 5% salary raise to those instructors who earn less than 70000 

           update instructor 

                     set salary = salary * 1.05 

                    where salary < 70000; 

 Give  a 5% salary raise to instructors whose salary is less than average 

                     update instructor 

                       set salary = salary * 1.05 

                       where salary <  (select avg (salary) from instructor); 

 Increase salaries of instructors whose salary is over $100,000 by 3%, and all others by a 5%  

• Write two update statements: 
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            update instructor 

                 set salary = salary * 1.03 

                 where salary > 100000; 

             update instructor 

                  set salary = salary * 1.05 

                  where salary <= 100000; 

• The order is important 

• Can be done better using the case statement 

 

Case Statement for Conditional Updates 

 Same query as before but with case statement 

   update instructor 

                 set salary = case 

                                       when salary <= 100000 then salary * 1.05 

                                      else salary * 1.03 

                                  end  

 

Updates with Scalar Subqueries 

 Recompute and update tot_creds value for all students 

           update student S  

     set tot_cred = (select sum(credits) 

                              from takes, course 

                              where takes.course_id = course.course_id  and  

                                          S.ID= takes.ID and takes.grade <> 'F' and 

                                          takes.grade is not null); 

 Sets tot_creds to null for students who have not taken any course 

 Instead of sum(credits), use: 

                   case  

                   when sum(credits) is not null then sum(credits) 

                   else 0 

             end  
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Intermediate SQL 

Joined Relations 

 Join operations take two relations and return as a result another relation. 

 A join operation is a Cartesian product which requires that tuples in the two relations match (under 

some condition).  It also specifies the attributes that are present in the result of the join  

 The join operations are typically used as subquery expressions in the from clause 

 Three types of joins: 

• Natural join 

• Inner join 

• Outer join 

 

Natural Join in SQL 

 Natural join matches tuples with the same values for all common attributes, and retains only one copy 

of each common column. 

 List the names of instructors along with the course ID of the courses that they taught 

• select name, course_id 

from  students, takes 

where student.ID = takes.ID; 

 Same query in SQL with “natural join” construct 

• select name, course_id 

from student natural join takes; 

 The from clause can have multiple relations combined using natural join: 

select  A1, A2, … An 

from  r1  natural join r2 natural join .. natural join rn 

where  P ; 

 

Student Relation 
 

Takes Relation 
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student natural join takes 

 
 

Dangerous in Natural Join 

 Beware of unrelated attributes with same name which get equated incorrectly 

  Example -- List the names of students instructors along with the titles of courses that they have 

taken 

• Correct version 

            select name, title 

         from student natural join takes, course 

         where takes.course_id = course.course_id; 

• Incorrect version 

         select name, title 

     from student natural join takes natural join course; 

 This query omits all (student name, course title) pairs where the student takes a course 

in a department other than the student's own department.  

 The  correct  version (above), correctly outputs such pairs. 

 

Natural Join with Using Clause 

 To avoid the danger of equating attributes erroneously, we can use the “using” construct that allows 

us to specify exactly which columns should be equated. 

 Query example  

         select name, title 

    from  (student natural join takes)  join course using (course_id) 
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Join Condition 

 The  on  condition allows a general predicate over the relations being  joined 

 This predicate is written like a where clause predicate except for the use of the keyword on 

 Query example  

           select * from  student join takes on student_ID  = takes_ID  

• The on condition above specifies that a tuple from student matches a tuple from takes if their 

ID values are equal. 

 Equivalent to: 

           select * from  student , takes where  student_ID  = takes_ID  

 The  on  condition allows a general predicate over the relations being joined.   

 This predicate is written like a where clause predicate except for the use of the keyword on. 

 Query example  

         select * from  student join takes on student_ID  = takes_ID  

• The on condition above specifies that a tuple from student matches a tuple from takes if their 

ID values are equal. 

 Equivalent to: 

         select * from  student , takes where  student_ID  = takes_ID  

 

Outer Join 

 An extension of the join operation that avoids loss of information. 

 Computes the join and then adds tuples form one relation that does not match tuples in the other 

relation to the result of the join.  

 Uses null values. 

 Three forms of outer join: 

• left outer join 

• right outer join 

• full outer join 

 

Outer Join Examples 

   

          
 

           

Relation course Relation prereq  

 

Left Outer Join 

 course natural left outer join prereq  

            
 In relational algebra:   course ⟕ prereq  

 

Right Outer Join 

 course natural right outer join prereq  
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 In relational algebra:   course ⟖ prereq  

 

Full Outer Join 

 course natural full outer join prereq  

 In relational algebra:   course ⟗ prereq  

 
 

Joined Types and Conditions 

 Join operations take two relations and return as a result another relation. 

 These additional operations are typically used as subquery expressions in the from clause 

 Join condition – defines which tuples in the two relations match. 

 Join type – defines how tuples in each relation that do not match any tuple in the other relation 

(based on the join condition) are treated. 

    
 

 course natural right outer join prereq  

 
 

 course full outer join prereq using (course_id) 

 
 

 course inner join prereq on course.course_id = prereq.course_id  

 
 

 course left outer join prereq on course.course_id = prereq.course_id  
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 course natural right outer join prereq  

 
 

 course full outer join prereq using (course_id) 

 
 

Views 

 In some cases, it is not desirable for all users to see the entire logical model (that is, all the actual 

relations stored in the database.) 

 Consider a person who needs to know an instructors name and department, but not the salary.  This 

person should see a relation described, in SQL, by  

   

             select ID, name, dept_name from instructor  

  

 A view provides a mechanism to hide certain data from the view of certain users.  

 Any relation that is not of the conceptual model but is made visible to a user as a “virtual relation” is 

called a view. 

 

View Definition 

 A view is defined using the create view statement which has the form 

  create view v as < query expression > 

 where <query expression> is any legal SQL expression.  The view name is represented by v.  

 Once a view is defined, the view name can be used to refer to the virtual relation that the view 

generates. 

 View definition is not the same as creating a new relation by evaluating the query expression   

• Rather, a view definition causes the saving of an expression; the expression is substituted into 

queries using the view. 

 

View Definition and Use 

 A view of instructors without their salary 

            create view faculty as  

              select ID, name, dept_name from instructor  

 Find all instructors in the Biology department 

            select name  from faculty  where dept_name = 'Biology' 

 Create a view of department salary totals 

    create view departments_total_salary(dept_name, total_salary) as 

         select dept_name, sum (salary) 

          from instructor 

          group by dept_name; 
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Views Defined Using Other Views 

 One view may be used in the expression defining another view  

 A view relation v1 is said to depend directly on a view relation v2  if v2 is used in the expression 

defining v1  

 A view relation v1 is said to depend on view relation v2 if either v1 depends directly to v2  or there is a 

path of dependencies from v1 to v2  

 A view relation v is said to be recursive if it depends on itself. 

 

 create view physics_fall_2017 as 

   select course.course_id, sec_id, building, room_number 

   from course, section 

   where course.course_id = section.course_id 

              and course.dept_name = 'Physics' 

              and section.semester = 'Fall' 

              and section.year = '2017’; 

  

 create view physics_fall_2017_watson as 

    select course_id, room_number 

    from physics_fall_2017 

    where building= 'Watson'; 

 

View Expansion 

 Expand  the view : 

           create view physics_fall_2017_watson  as 

         select course_id, room_number 

         from physics_fall_2017 

         where building= 'Watson'  

 To: 

create view physics_fall_2017_watson as 

select course_id, room_number  

from (select course.course_id, building, room_number  

from course, section 

where course.course_id = section.course_id  

and course.dept_name = 'Physics' 

and section.semester = 'Fall' 

and section.year = '2017') 

where building= 'Watson'; 

 

 A way to define the meaning of views defined in terms of other views. 

 Let view v1 be defined by an expression e1 that may itself contain uses of view relations. 

 View expansion of an expression repeats the following replacement step: 

  repeat 

  Find any view relation vi in e1 

  Replace the view relation vi by the expression defining vi              

 until no more view relations are present in e1  

 As long as the view definitions are not recursive, this loop will terminate 

 

Materialized Views 

 Certain database systems allow view relations to be physically stored. 

•  Physical copy created when the view is defined. 

• Such views are called Materialized view: 

 If relations used in the query are updated, the materialized view result becomes out of date 
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• Need to maintain the view, by updating the view whenever the underlying relations are 

updated. 

 

Update of a View 

 Add a new tuple to faculty view which we defined earlier  

  insert into faculty  

                       values ('30765', 'Green', 'Music'); 

 This insertion must be represented by the insertion into  the instructor relation 

• Must have a  value for salary. 

 Two approaches 

• Reject the insert 

• Insert the tuple 

   ('30765', 'Green', 'Music', null) 

       into the instructor relation 

 

Some Updates Cannot be Translated Uniquely 

 create view instructor_info as 

      select ID, name, building 

       from instructor, department 

       where instructor.dept_name = department.dept_name; 

 insert into instructor_info  

             values ('69987', 'White', 'Taylor'); 

 Issues 

• Which department, if multiple departments in Taylor? 

• What if no department is in Taylor?  

 create view history_instructors as 

   select * 

   from instructor 

   where dept_name= 'History'; 

 What happens if we insert  

           ('25566', 'Brown', 'Biology', 100000) into history_instructors?  

 

View Updates in SQL 

 Most SQL implementations allow updates only on simple views  

• The from clause has only one database relation. 

• The select clause contains only attribute names of the relation, and does not have any 

expressions, aggregates, or distinct specification. 

• Any attribute not listed in the select clause can be set to null 

• The query does not have a group by or having clause. 

 

Transactions 

 A  transaction consists of a sequence of query and/or update statements and is a “unit” of work 

 The SQL standard specifies that a transaction begins implicitly when an SQL statement is executed.   

 The transaction must end with one of the following statements: 

• Commit work. The updates performed by the transaction become permanent in the database.  

• Rollback work. All  the updates performed by the SQL statements in the transaction are 

undone. 

 Atomic transaction 

• either fully executed or rolled back as if it never occurred 

 Isolation from concurrent transactions 

 

Integrity Constraints 
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 Integrity constraints guard against accidental damage to the database, by ensuring that authorized 

changes to the database do not result in a loss of data consistency.  

• A checking account must have a balance greater than $10,000.00 

• A salary of a bank employee must be at least $4.00 an hour 

• A customer must have a (non-null) phone number 

 

Constraints on a Single Relation 

 not null 

 primary key 

 unique  

 check (P), where P is a predicate 

 

 Declare name and budget to be not null 

            name varchar(20) not null 

            budget numeric(12,2) not null 

 

 unique ( A1, A2, …, Am) 

• The unique specification states that the attributes A1, A2, …, Am  form a candidate key. 

• Candidate keys are permitted to be null (in contrast to primary keys). 

 

 The  check (P) clause specifies a predicate P that must be satisfied by every tuple in a relation. 

 Example:  ensure that semester is one of fall, winter, spring or summer 

                create table section  

                    (course_id varchar (8), 

                     sec_id varchar (8), 

                     semester varchar (6), 

                     year numeric (4,0), 

                     building varchar (15), 

                     room_number varchar (7), 

                     time slot id varchar (4),  

                     primary key (course_id, sec_id, semester, year), 

                     check (semester in ('Fall', 'Winter', 'Spring', 'Summer'))) 

 

Referential Integrity 

 Ensures that a value that appears in one relation for a given set of attributes also appears for a certain 

set of attributes in another relation. 

• Example:  If “Biology” is a department name appearing in one of the tuples in the instructor 

relation, then there exists a tuple in the department relation for “Biology”. 

 Let A be a set of attributes.  Let R and S be two relations that contain attributes A and where A is the 

primary key of S. A is said to be a foreign key of R if for any values of A appearing in R these values 

also appear in S. 

 Foreign keys can be specified as part of the SQL create table  statement  

          foreign key (dept_name) references department 

 By default, a foreign key references the primary-key attributes of the referenced table. 

 SQL allows  a list of attributes of the referenced relation to be specified explicitly. 

        foreign key (dept_name) references department (dept_name) 

 

Cascading Actions in Referential Integrity 

 When a referential-integrity constraint is violated, the normal procedure is to reject the action that 

caused the violation. 

 An alternative, in case of delete or update is to cascade 

             create table course ( 

              (… 
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               dept_name varchar(20), 

               foreign key (dept_name) references department 

                   on delete cascade 

                    on update cascade, 

                 . . .)  

 Instead of cascade we can use :   

• set null, 

• set default  

 

Integrity Constraint Violation During Transactions 

 Consider: 

       create table person ( 

       ID  char(10), 

          name char(40), 

          mother char(10), 

          father  char(10), 

          primary key ID, 

          foreign key father references person, 

          foreign key mother references  person) 

 How to insert a tuple without causing constraint violation? 

• Insert father and mother of a person before inserting person 

• OR, set father and mother to null initially, update after inserting all persons (not possible if 

father and mother attributes declared to be not null)  

• OR defer constraint checking 

 

Complex Check Conditions 

 The predicate in the check clause can be an arbitrary predicate that can include a subquery. 

          check (time_slot_id  in (select time_slot_id from time_slot)) 

 

The check condition states  that the  time_slot_id in each tuple in the section  relation is actually the 

identifier of a time slot in the time_slot relation. 

• The condition has to be checked not only when a tuple is inserted or modified in section , but 

also when the relation time_slot changes  

 

Assertions 

 An assertion is a predicate expressing a condition that we wish the database always to satisfy. 

 The following constraints, can be expressed using assertions: 

 For each tuple in the student relation, the value of the attribute tot_cred must equal the sum of credits 

of courses that the student has completed successfully. 

 An instructor cannot teach in two different classrooms in a semester in the same time slot 

 An assertion in SQL takes the form: 

         create assertion <assertion-name> check (<predicate>); 

 

Built-in Data Types in SQL 

 date:  Dates, containing a (4 digit) year, month and date 

• Example:  date '2005-7-27' 

 time:  Time of day, in hours, minutes and seconds. 

• Example:  time '09:00:30'         time '09:00:30.75' 

 timestamp: date plus time of day 

• Example:  timestamp  '2005-7-27 09:00:30.75' 

 interval:  period of time 

• Example:   interval  '1' day 

• Subtracting a date/time/timestamp value from another gives an interval value 
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• Interval values can be added to date/time/timestamp values 

 

Large-Object Types 

 Large objects (photos, videos, CAD files, etc.) are stored as a large object: 

• blob: binary large object -- object is a large collection of uninterpreted binary data (whose 

interpretation is left to an application outside of the database system) 

• clob: character large object -- object is a large collection of character data 

 When a query returns a large object, a pointer is returned rather than the large object itself. 

 

User-Defined Types 

 create type construct in SQL creates user-defined type 

   create type Dollars as numeric (12,2) final  

   

 Example: 

           create table department 

           (dept_name varchar (20), 

           building varchar (15), 

           budget Dollars); 

 

Domains 

 create domain construct in SQL-92 creates user-defined domain types 

   create domain person_name char(20) not null 

  

 Types and domains are similar.  Domains can have constraints, such as not null, specified on them. 

 Example:  

         create domain degree_level varchar(10) 

        constraint degree_level_test 

            check (value in ('Bachelors', 'Masters', 'Doctorate')); 

 

Index Creation 

 Many queries reference only a small proportion of the records in a table.  

 It is inefficient for the system to read every record to find  a record with  particular value 

 An index on an attribute of a relation is a data structure that allows the database system to find those 

tuples in the relation that have a specified value for that attribute efficiently, without scanning 

through all the tuples of the relation. 

 We create an index with the create index command 

          create index <name> on <relation-name> (attribute); 

 

 create table student  

(ID varchar (5), 

name varchar (20) not null, 

dept_name varchar (20), 

tot_cred numeric (3,0) default 0, 

primary key (ID)) 

 

 create index studentID_index on student(ID) 

 The query:  

select * from  student where  ID = '12345; can be executed by using the index to find the required 

record,  without looking at all records of student  

 

Authorization 

 We may assign a user several forms of authorizations on parts of the database. 

• Read - allows reading, but not modification of data. 
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• Insert - allows insertion of new data, but not modification of existing data. 

• Update - allows modification, but not deletion of data. 

• Delete - allows deletion of data. 

 Each of these types of authorizations is called a privilege. We may authorize the user all, none, or a 

combination of these types of privileges on specified parts of a database, such as a relation or a view. 

 Forms of authorization to modify the database schema 

• Index - allows creation and deletion of indices. 

• Resources - allows creation of new relations. 

• Alteration - allows addition or deletion of attributes in a relation. 

• Drop - allows deletion of relations. 

 

Authorization Specification in SQL 

 The grant statement is used to confer authorization 

    grant <privilege list> on <relation or view > to <user list> 

 <user list> is: 

• a user-id 

• public, which allows all valid users the privilege granted 

• A role (more on this later) 

 Example: 

• grant  select on  department to Amit,  Satoshi 

 Granting a privilege on a view does not imply granting any privileges on the underlying relations. 

 The grantor of the privilege must already hold the privilege on the specified item (or be the database 

administrator). 

 

Privileges in SQL 

 select: allows read access to relation, or the ability to query using the view 

• Example: grant users U1, U2, and U3 select authorization on the instructor relation: 

   grant select on instructor to U1, U2, U3  

 insert: the ability to insert tuples 

 update: the ability  to update using the SQL update statement 

 delete: the ability to delete tuples. 

 all privileges: used as a short form for all the allowable privileges 

 

Revoking Authorization in SQL 

 The revoke statement is used to revoke authorization. 

revoke <privilege list> on <relation or view> from <user list> 

 Example: 

revoke select on student  from U1, U2, U3 

 <privilege-list> may be all to revoke all privileges the revokee may hold. 

 If <revokee-list> includes public, all users lose the privilege except those granted it explicitly. 

 If the same privilege was granted twice to the same user by different grantees, the user may retain the 

privilege after the revocation. 

 All privileges that depend on the privilege being revoked are also revoked. 

 

Roles 

 A role is a way to distinguish among various users as far as what these users can access/update in 

the database. 

 To create a role we use: 

        create a role <name> 

 Example: 

•   create role instructor 

 Once a role is created we can assign “users” to the role using: 

• grant  <role> to <users> 
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Roles Example 

 create role instructor; 

 grant instructor to Amit;  

 Privileges can be granted to roles: 

• grant select on takes to instructor; 

 Roles can be granted to users, as well as to other roles 

• create role teaching_assistant  

• grant teaching_assistant to instructor; 

 Instructor inherits all privileges of teaching_assistant  

 Chain of roles 

• create role dean; 

• grant instructor to dean; 

• grant dean to Satoshi; 

 

Authorization on Views 

 create view  geo_instructor as 

(select * 

from instructor 

where dept_name = 'Geology'); 

 grant select on geo_instructor to  geo_staff  

 Suppose that a  geo_staff member issues 

• select * 

from geo_instructor; 

 What if  

• geo_staff does not have permissions on instructor? 

• Creator of view did not have some permissions on instructor?  

 

Other Authorization Features 

 references privilege to create foreign key 

• grant reference (dept_name) on department to Mariano; 

• Why is this required? 

 transfer of privileges 

• grant select on department to Amit with grant option; 

• revoke select on department from Amit, Satoshi cascade; 

• revoke select on department from Amit, Satoshi restrict; 
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Advanced SQL 

Accessing SQL from a Programming Language 

A database programmer must have access to a general-purpose programming language for at least two 

reasons: 

 Not all queries can be expressed in SQL, since SQL does not provide the full expressive power of a 

general-purpose language. 

 Non-declarative actions -- such as printing a report, interacting with a user, or sending the results of a 

query to a graphical user interface -- cannot be done from within SQL. 

 

There are two approaches to accessing SQL from a general-purpose programming language 

 A general-purpose program  -- can connect to and communicate with a database server using a 

collection of functions 

 Embedded SQL -- provides a means by which a program can interact with a database server.   

• The SQL statements are translated at compile time  into function calls.   

• At runtime, these function calls connect to the database  using an API  that provides dynamic  

SQL facilities. 

 

JDBC 

 JDBC is a Java API for communicating with database systems supporting SQL. 

 JDBC supports a variety of features for querying and updating data, and for retrieving query results. 

 JDBC also supports metadata retrieval, such as querying about relations present in the database and 

the names and types of relation attributes. 

 Model for communicating with the database: 

• Open a connection 

• Create a “statement” object 

• Execute queries using the statement object to send queries and fetch results 

• Exception mechanism to handle errors 

 

JDBC Code 

public static void JDBCexample(String dbid, String userid, String passwd)  

            {  

     try (Connection conn = DriverManager.getConnection(      

       "jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid, passwd);  

            Statement stmt = conn.createStatement(); 

     )  

     {  

            … Do Actual Work ….  

     }   

    catch (SQLException sqle) {    

        System.out.println("SQLException : " + sqle);   

     }   

     } 

NOTE: Above syntax works with Java 7, and JDBC 4 onwards.  

Resources opened in “try (….)” syntax (“try with resources”) are automatically closed at the end of the try 

block 

 

 Update to database 

try { 

     stmt.executeUpdate( 

          "insert into instructor values('77987', 'Kim', 'Physics', 98000)"); 

} catch (SQLException sqle) 

{ 
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    System.out.println("Could not insert tuple. " + sqle); 

} 

 Execute query and fetch and print results 

     ResultSet rset = stmt.executeQuery( 

                                "select dept_name, avg (salary) 

                                 from instructor 

                                 group by dept_name"); 

while (rset.next()) { 

       System.out.println(rset.getString("dept_name") + " " + 

                                              rset.getFloat(2)); 

} 

 

JDBC SUBSECTIONS        

 Connecting to the Database 

 Shipping SQL Statements to the Database System 

 Exceptions and Resource Management 

 Retrieving the Result of a Query 

 Prepared Statements 

 Callable Statements 

 Metadata Features 

 Other Features 

 Database Access from Python 

 

JDBC Code Details        

 Getting result fields: 

• rs.getString(“dept_name”) and rs.getString(1) equivalent if dept_name is the first argument of 

select result. 

 Dealing with Null values 

int a = rs.getInt(“a”); 

if (rs.wasNull()) Systems.out.println(“Got null value”);  

 

Prepared Statement 

 PreparedStatement pStmt = conn.prepareStatement(  

                                                 "insert into instructor values(?,?,?,?)"); 

pStmt.setString(1, "88877"); 

pStmt.setString(2, "Perry"); 

pStmt.setString(3, "Finance"); 

pStmt.setInt(4, 125000); 

pStmt.executeUpdate(); 

pStmt.setString(1, "88878"); 

pStmt.executeUpdate(); 

 WARNING: always use prepared statements when taking an input from the user and adding it to a 

query 

• NEVER create a query by concatenating strings 

• "insert into instructor values(' " + ID + " ', ' " + name + " ', " + " ' + dept name + " ', " ' balance + 

')“  

• What if name is “D'Souza”? 

 

SQL Injection 

 Suppose query is constructed using 

• "select * from instructor where name = '" + name + "'" 

 Suppose the user, instead of entering a name, enters: 

• X' or 'Y' = 'Y 
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 then the resulting statement becomes: 

• "select * from instructor where name = '" + "X' or 'Y' = 'Y" + "'" 

• which is: 

 select * from instructor where name = 'X' or 'Y' = 'Y'  

• User could have even used 

 X'; update instructor set salary = salary + 10000; -- 

 Prepared stament internally uses: 

"select * from instructor where name = 'X\' or \'Y\' = \'Y'  

• Always use prepared statements, with user inputs as parameters 

 

Metadata Features 

 ResultSet metadata 

 E.g. after executing query to get a ResultSet rs: 

• ResultSetMetaData rsmd = rs.getMetaData(); 

     for(int i = 1; i <= rsmd.getColumnCount(); i++) { 

           System.out.println(rsmd.getColumnName(i)); 

                  System.out.println(rsmd.getColumnTypeName(i)); 

        } 

 Database metadata 

 DatabaseMetaData dbmd = conn.getMetaData(); 

// Arguments to getColumns: Catalog, Schema-pattern, Table-pattern, 

// and Column-Pattern 

// Returns: One row for each column; row has a number of attributes 

// such as COLUMN_NAME, TYPE_NAME 

// The value null indicates all Catalogs/Schemas.   

// The value “” indicates current catalog/schema 

// The value “%” has the same meaning as SQL like clause 

      ResultSet rs = dbmd.getColumns(null, "univdb", "department", "%");  

 while( rs.next()) { 

        System.out.println(rs.getString("COLUMN_NAME"), 

                                      rs.getString("TYPE_NAME"); 

     } 

 DatabaseMetaData dbmd = conn.getMetaData(); 

// Arguments to getTables: Catalog, Schema-pattern, Table-pattern, and Table-Type 

// Returns: One row for each table; row has a number of attributes 

// such as TABLE_NAME, TABLE_CAT, TABLE_TYPE, .. 

// The value null indicates all Catalogs/Schemas.   

// The value “” indicates current catalog/schema 

// The value “%” has the same meaning as SQL like clause 

// The last attribute is an array of types of tables to return.   

//    TABLE means only regular tables 

      ResultSet rs = dbmd.getTables (“”, "", “%", new String[] {“TABLES”});  

 while( rs.next()) { 

        System.out.println(rs.getString(“TABLE_NAME“)); 

     } 

 

Finding Primary Keys 

 DatabaseMetaData dmd = connection.getMetaData(); 

 

// Arguments below are:  Catalog, Schema, and Table 

// The value “”  for Catalog/Schema indicates current catalog/schema 

//  The value null indicates all catalogs/schemas 

ResultSet rs = dmd.getPrimaryKeys(“”, “”, tableName); 



B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 29 
 

 

while(rs.next()){ 

    // KEY_SEQ indicates the position of the attribute in  

    // the primary key, which is required if a primary key has multiple 

    // attributes 

    System.out.println(rs.getString(“KEY_SEQ”),   

                                       rs.getString("COLUMN_NAME"); 

} 

 

Transaction Control in JDBC 

 By default, each SQL statement is treated as a separate transaction that is committed automatically 

• bad idea for transactions with multiple updates 

 Can turn off automatic commit on a connection 

• conn.setAutoCommit(false); 

 Transactions must then be committed or rolled back explicitly 

• conn.commit();     or 

• conn.rollback(); 

 conn.setAutoCommit(true) turns on automatic commit. 

  

Other JDBC Features 

 Calling functions and procedures 

• CallableStatement cStmt1 = conn.prepareCall("{? = call some function(?)}"); 

• CallableStatement cStmt2 = conn.prepareCall("{call some procedure(?,?)}"); 

 Handling large object types 

• getBlob() and getClob() that are similar to the getString() method, but return objects of type 

Blob and Clob, respectively 

• get data from these objects by getBytes() 

• associate an open stream with Java Blob or Clob object to update large objects 

 blob.setBlob(int parameterIndex, InputStream inputStream). 

 

SQLJ 

 JDBC is overly dynamic, errors cannot be caught by compiler 

 SQLJ: embedded SQL in Java 

• #sql iterator deptInfoIter ( String dept name, int avgSal); 

 deptInfoIter iter = null; 

 #sql iter = { select dept_name, avg(salary) from instructor 

    group by dept name }; 

 while (iter.next()) { 

     String deptName = iter.dept_name(); 

       int avgSal = iter.avgSal(); 

       System.out.println(deptName + " " + avgSal); 

 } 

 iter.close(); 

 

ODBC 

 Open DataBase Connectivity (ODBC) standard  

• standard for application program to communicate with a database server. 

• application program interface (API) to  

 open a connection with a database,  

 send queries and updates,  

 get back results. 

 Applications such as GUI, spreadsheets, etc. can use ODBC 
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Embedded SQL 

 The SQL standard defines embeddings of SQL in a variety of programming languages such as C, C++, 

Java, Fortran, and PL/1,  

 A language to which SQL queries are embedded is referred to as a host language, and the SQL 

structures permitted in the host language comprise embedded SQL. 

 The basic form of these languages follows that of the System R embedding of SQL into PL/1. 

 EXEC SQL statement is used in the host language to identify embedded SQL request to the 

preprocessor 

               EXEC SQL <embedded SQL statement >; 

      Note:  this varies by language:  

• In some languages, like COBOL,  the semicolon is replaced with END-EXEC  

• In Java embedding uses    # SQL { …. }; 

 Before executing any SQL statements, the program must first connect to the database.  This is done 

using: 

          EXEC-SQL connect to  server  user user-name using password; 

      Here, server identifies the server to which a connection is to be established. 

 Variables of the host language can be used within embedded SQL statements.  They are preceded  by a 

colon  (:) to distinguish from SQL variables (e.g.,  :credit_amount )  

 Variables used as above must be declared within DECLARE section, as illustrated below. The syntax 

for declaring the variables, however, follows the usual host language syntax. 

              EXEC-SQL BEGIN DECLARE SECTION} 

                      int  credit-amount ; 

              EXEC-SQL END DECLARE SECTION; 

 To write an embedded SQL query, we use the  

             declare c cursor for  <SQL query>  

       statement.  The  variable c  is used to identify the query 

 Example: 

• From within a host language, find the ID and name of students who  have completed more 

than the number of credits stored in variable credit_amount in the host langue 

• Specify the query in SQL as follows: 

             EXEC SQL 

              declare c cursor for  

             select ID, name 

             from student 

              where tot_cred > :credit_amount  

              END_EXEC 

 The open statement for our example is as follows: 

  EXEC SQL open c ; 

This statement causes the database system to execute the query and  to save the results within a 

temporary relation.  The query uses the value of the host-language variable credit-amount at the time 

the open statement is executed.  

 The fetch statement causes the values of one tuple in the query result to be placed on host language 

variables. 

  EXEC SQL fetch c into :si, :sn END_EXEC 

Repeated calls to fetch get successive tuples in the query result 

 A variable called SQLSTATE in the SQL communication area (SQLCA) gets set to '02000' to indicate no 

more data is available 

 The close statement causes the database system to delete the temporary relation that holds the result 

of the query. 

  EXEC SQL close c ; 

Note: above details vary with language.  For example, the Java embedding defines Java iterators to 

step through result tuples. 
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Updates Through Embedded SQL 

 Embedded SQL expressions for database modification (update, insert, and delete)  

 Can update tuples fetched by cursor by declaring that the cursor is for update 

           EXEC SQL  

            declare c cursor for 

              select * 

              from instructor 

              where dept_name = 'Music' 

              for update 

 We then iterate through the tuples by performing  fetch operations on the cursor (as illustrated 

earlier), and after fetching each tuple we execute the following code: 

                  update instructor 

              set salary = salary + 1000 

              where current of c 

         

Functions and Procedures 

 Functions and procedures allow  “business logic”  to be stored in the database and executed from SQL 

statements. 

 These can be defined either by the procedural component of SQL or  by an external programming 

language such as Java, C, or C++. 

 The syntax we present here is defined by the SQL standard. 

• Most databases implement nonstandard versions of this syntax. 

 

Declaring SQL Functions 

 Define a function that, given the name of a department, returns the count of the number of instructors 

in that department. 

             create function dept_count (dept_name varchar(20)) 

                returns integer 

               begin 

               declare d_count  integer; 

                      select count (* ) into d_count 

                      from instructor 

                      where instructor.dept_name = dept_name 

               return d_count; 

       end 

 The function dept_count can be used to find the department names and budget of all departments 

with more that 12 instructors. 

  select dept_name, budget 

 from department 

 where dept_count (dept_name ) > 12  

 

Table Functions 

 The SQL standard supports functions that can return tables as results; such functions are called table 

functions 

 Example: Return all instructors in a given department 

 create function instructor_of (dept_name char(20)) 

  returns table  (   

                        ID varchar(5), 

           name varchar(20), 

                   dept_name varchar(20), 

           salary numeric(8,2)) 

          return table 

          (select ID, name, dept_name, salary 
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           from instructor 

           where instructor.dept_name = instructor_of.dept_name) 

 Usage 

  select * from table (instructor_of ('Music'))  

 

SQL Procedures 

 The dept_count function could instead be written as procedure: 

 create procedure dept_count_proc (in dept_name varchar(20), out d_count integer) 

    begin 

        select count(*) into d_count 

         from instructor 

         where instructor.dept_name = dept_count_proc.dept_name  

         end  

 The keywords in and  out  are parameters that are expected to have values assigned to them and 

parameters whose values are set in the procedure in order to return results. 

 Procedures can be invoked either from an SQL procedure or from embedded SQL, using the call 

statement. 

  declare d_count integer; 

 call dept_count_proc( 'Physics', d_count); 

 Procedures and functions can be invoked also from dynamic SQL 

 SQL allows more than one procedure of the so long as the number of arguments of the procedures 

with the same name is different. 

 The name, along with the number of arguments, is used to identify the procedure.  

 

Language Constructs for Procedures & Functions 

 SQL supports constructs that gives it almost all the power of a general-purpose programming 

language. 

• Warning: most database systems implement their own variant of the standard syntax below. 

 Compound statement: begin … end,  

• May contain multiple SQL statements between begin and end. 

• Local variables can be declared within a compound statements 

 While and repeat statements: 

• while boolean expression  do 

              sequence of statements ; 

  end while 

  

•  repeat 

           sequence of statements ; 

  until boolean expression  

  end repeat 

 For loop 

• Permits iteration over all results of a query 

 Example:   Find the budget of all departments 

 

  declare n  integer default 0; 

  for r  as 

         select budget from department where dept_name = 'Music'  

   do 

        set n = n + r.budget 

   end for  

 

Language Constructs – if-then-else 

 Conditional statements  (if-then-else) 
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               if boolean  expression  

       then statement or compound statement  

  elseif boolean  expression  

       then statement or compound statement  

           else statement or compound statement  

   end if 

 

Example procedure 

 Registers student after ensuring classroom capacity is not exceeded 

• Returns 0 on success and -1 if capacity is exceeded 

• See book (page 202) for details 

 Signaling of exception conditions, and declaring handlers for exceptions 

 declare out_of_classroom_seats  condition 

 declare exit handler for out_of_classroom_seats 

 begin 

 … 

 end 

 The statements between the begin and the end can raise an exception by executing  “signal 

out_of_classroom_seats”  

 The handler says that if the condition arises he action to be taken is to exit the enclosing  the begin  

end statement.  

 

Triggers 

 A trigger is a statement that is executed automatically by the system as a side effect of a modification 

to the database. 

 To design a trigger mechanism, we must: 

• Specify the conditions under which the trigger is to be executed. 

• Specify the actions to be taken when the trigger executes. 

 Triggers introduced to SQL standard in SQL:1999, but supported even earlier using non-standard 

syntax by most databases.   

• Syntax illustrated here may not work exactly on your database system; check the system 

manuals 

 

Triggering Events and Actions in SQL 

 Triggering event can be insert, delete or update 

 Triggers on update can be restricted to specific attributes 

• For example,  after update of takes on grade 

 Values of attributes before and after an update can be referenced 

• referencing old row as   :  for deletes and updates 

• referencing new row as  : for inserts and updates  

 Triggers can be activated before an event, which can serve as extra constraints.  For example,  convert 

blank grades to null. 

  

 create trigger setnull_trigger before update of takes 

 referencing new row as nrow 

 for each row 

       when (nrow.grade = ' ') 

              begin atomic 

           set nrow.grade = null; 

             end; 

 

  



B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 34 
 

Statement Level Triggers 

 Instead of executing a separate action for each affected row, a single action can be executed for all 

rows affected by a transaction 

• Use     for each statement      instead of    for each row 

• Use     referencing old table   or   referencing new table   to refer to temporary tables  (called 

transition tables) containing the affected rows 

• Can be more efficient when dealing with SQL statements that update a large number of rows 

 

When Not To Use Triggers 

 Triggers were used earlier for tasks such as  

• Maintaining summary data (e.g., total salary of each department) 

• Replicating databases by recording changes to special relations (called change or delta 

relations) and having a separate process that applies the changes over to a replica  

 There are better ways of doing these now: 

• Databases today provide built in materialized view facilities to maintain summary data 

• Databases provide built-in support for replication 

 Encapsulation facilities can be used instead of triggers in many cases 

• Define methods to update fields 

• Carry out actions as part of the update methods instead of  

through a trigger  

 Risk of unintended execution of triggers, for example, when 

• Loading data from a backup copy 

• Replicating updates at a remote site 

• Trigger execution can be disabled before such actions. 

 Other risks with triggers: 

• Error leading to failure of critical transactions that set off the trigger 

• Cascading execution 

 

Recursive Queries 

 SQL:1999 permits recursive view definition 

 Example: find which courses are a prerequisite, whether directly or indirectly, for a specific course  

with recursive rec_prereq(course_id, prereq_id) as ( 

        select course_id, prereq_id 

        from prereq 

    union 

        select rec_prereq.course_id, prereq.prereq_id,  

        from rec_rereq, prereq 

        where rec_prereq.prereq_id = prereq.course_id 

    ) 

select ∗ 

from rec_prereq; 

 This example view, rec_prereq, is called the transitive closure of the prereq relation 

 Recursive views make it possible to write queries, such as transitive closure queries, that cannot be 

written without recursion or iteration. 

• Intuition:  Without recursion, a non-recursive non-iterative program can perform only a fixed 

number of joins of prereq with itself 

 This can give only a fixed number of levels of managers 

 Given a fixed non-recursive query, we can construct a database with a greater number 

of levels of prerequisites on which the query will not work 

 Alternative: write a procedure to iterate as many times as required 

• See procedure findAllPrereqs in book 

 Computing transitive closure using iteration, adding successive tuples to rec_prereq  

• The next slide shows a prereq relation 
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• Each step of the iterative process constructs an extended version of rec_prereq from its 

recursive definition.   

• The final result is called the fixed point  of the recursive view definition. 

 Recursive views are required to be monotonic.  That is, if we add tuples to prereq the view rec_prereq 

contains all of the tuples it contained before, plus possibly more 

 

Advanced Aggregation Features 

Ranking 

 Ranking is done in conjunction with an order by specification.  

 Suppose we are given a relation  

       student_grades(ID, GPA)  

giving the grade-point average of each student 

 Find the rank of each student. 

select ID, rank() over (order by GPA desc) as s_rank 

        from student_grades  

 An extra order by clause is needed to get them in sorted order 

         select ID, rank() over (order by GPA desc) as s_rank 

         from student_grades  

        order by s_rank  

 Ranking may leave gaps: e.g. if 2 students have the same top GPA, both have rank 1, and the next 

rank is 3 

• dense_rank does not leave gaps, so next dense rank would be 2  

 Ranking can be done using basic SQL aggregation, but resultant query is very inefficient 

select ID, (1 + (select count(*) 

                    from student_grades B 

                        where B.GPA > A.GPA)) as s_rank  

from student_grades A order by s_rank; 

 Ranking can be done within partition of the data. 

 “Find the rank of students within each department.” 

          select ID, dept_name, 

           rank () over (partition by dept_name order by GPA desc)  

                        as dept_rank 

     from dept_grades 

      order by dept_name, dept_rank; 

 Multiple rank clauses can occur in a single select clause. 

 Ranking is done after applying group by clause/aggregation 

 Can be used to find top-n results 

• More general than the limit n clause supported by many databases, since it allows top-n 

within each partition  

 Other ranking functions:   

• percent_rank (within partition, if partitioning is done)  

• cume_dist (cumulative distribution) 

  fraction of tuples with preceding values 

• row_number (non-deterministic in presence of duplicates) 

 SQL:1999 permits the user to specify nulls first or nulls last 

select ID,  

rank ( ) over (order by GPA desc nulls last) as s_rank 

from student_grades  

 For a given constant n, the ranking the function ntile(n) takes the tuples in each partition in the 

specified order, and divides them into n buckets with equal numbers of tuples. 

 E.g., 

 select ID, ntile(4) over (order by GPA desc) as quartile 

 from student_grades; 
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Windowing 

 Used to smooth out random variations.  

 E.g., moving average: “Given sales values for each date, calculate for each date the average of the 

sales on that day, the previous day, and the next day” 

 Window specification in SQL: 

• Given relation sales(date, value) 

            select date, sum(value) over  

           (order by date between rows 1 preceding and 1 following) 

        from sales 

 Examples of other window specifications: 

• between rows unbounded preceding and current 

• rows unbounded preceding 

• range  between 10 preceding and current row 

 All rows with values between current row value –10 to current value 

• range interval 10 day preceding 

 Not including current row 

 Can do windowing within partitions 

 E.g., Given a relation transaction (account_number, date_time, value), where value is positive for a 

deposit and negative for a withdrawal 

• “Find total balance of each account after each transaction on the account” 

select account_number, date_time, 

sum (value) over 

  (partition by account_number  

  order by date_time 

  rows unbounded preceding) 

    as balance 

from transaction 

order by account_number, date_time  

 

OLAP 

Data Analysis and OLAP 

 Online Analytical Processing (OLAP) 

• Interactive analysis of data, allowing data to be summarized and viewed in different ways in an 

online fashion (with negligible delay) 

 Data that can be modeled as dimension attributes and measure attributes are called 

multidimensional data. 

• Measure attributes  

 measure some value 

 can be aggregated upon 

 e.g., the attribute number of the sales relation 

• Dimension attributes  

 define the dimensions on which measure attributes (or aggregates thereof) are viewed 

 e.g., attributes item_name, color, and size of the sales relation 
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Example sales relation 

 

 
 

Cross Tabulation of sales by item_name and color 

 
 The table above is an example of a cross-tabulation (cross-tab), also referred to as a pivot-table. 

• Values for one of the dimension attributes form the row headers 

• Values for another dimension attribute form the column headers 

• Other dimension attributes are listed on top 

• Values in individual cells are (aggregates of) the values of the dimension attributes that specify 

the cell. 

Data Cube 

 A data cube is a multidimensional generalization of a cross-tab 

 Can have n  dimensions; we show 3 below  

 Cross-tabs can be used as views on a data cube 
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Hierarchies on Dimensions 

 Hierarchy on dimension attributes: lets dimensions to be viewed at different levels of detail 

• E.g., the dimension DateTime can be used to aggregate by hour of day, date, day of week, 

month, quarter or year 

 
 

Cross Tabulation With Hierarchy 

 Cross-tabs can be easily extended to deal with hierarchies 

• Can drill down or roll up on a hierarchy 

 
 

Relational Representation of Cross-tabs 

 Cross-tabs can be represented as relations 

• We use the value all is used to represent aggregates. 

• The SQL standard actually uses null values in place of all despite confusion with regular null 

values. 

 
 

Extended Aggregation to Support OLAP 

 The cube operation computes union of group by’s on every subset of the specified attributes 
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 Example relation for this section 

   sales(item_name, color, clothes_size, quantity) 

 E.g., consider the query 

 select item_name, color, size, sum(number) 

 from sales 

 group by cube(item_name, color, size) 

      This computes the union of eight different groupings of the sales relation: 

    { (item_name, color, size), (item_name, color),  

     (item_name, size),           (color, size),  

     (item_name),                   (color),  

     (size),                              ( ) } 

      where ( ) denotes an empty group by list. 

 For each grouping, the result contains the null value  

for attributes not present in the grouping.  

 

Online Analytical Processing Operations 

 Relational representation of cross-tab that we saw earlier, but with null in place of all, can be 

computed by 

  select item_name, color, sum(number) 

 from sales 

 group by cube(item_name, color) 

 The function grouping() can be applied on an attribute 

• Returns 1 if the value is a null value representing all, and returns 0 in all other cases.  

select item_name, color, size, sum(number), 

grouping(item_name) as item_name_flag, 

grouping(color) as color_flag, 

grouping(size) as size_flag, 

from sales 

group by cube(item_name, color, size) 

 Can use the function decode() in the select clause to replace such nulls by a value such as all 

• E.g., replace item_name  in first query by  

   decode( grouping(item_name), 1, ‘all’, item_name)  

 The rollup construct generates union on every prefix of specified list of attributes  

 E.g.,  

  select item_name, color, size, sum(number) 

 from sales 

 group by rollup(item_name, color, size) 

• Generates union of four groupings: 

        { (item_name, color, size), (item_name, color), (item_name), ( ) } 

 Rollup can be used to generate aggregates at multiple levels of a 

hierarchy. 

 E.g., suppose table itemcategory(item_name, category) gives the category of each item. Then   

            select category, item_name, sum(number) 

           from sales, itemcategory 

           where sales.item_name = itemcategory.item_name 

           group by rollup(category, item_name) 

 would give a hierarchical summary by item_name and by category. 

 Multiple rollups and cubes can be used in a single group by clause 

• Each generates set of group by lists, cross product of sets gives overall set of group by lists 

 E.g.,  

 select item_name, color, size, sum(number) 

         from sales 

         group by rollup(item_name), rollup(color, size) 
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      generates the groupings  

         {item_name, ()} X {(color, size), (color), ()}  

   = { (item_name, color, size), (item_name, color), (item_name), (color, size), (color), ( ) } 

 Pivoting: changing the dimensions used in a cross-tab is called  

 Slicing: creating a cross-tab for fixed values only  

• Sometimes called dicing, particularly when values for multiple dimensions are fixed.  

 Rollup: moving from finer-granularity data to a coarser granularity  

 Drill down: The opposite operation -  that of moving from coarser-granularity data to finer-granularity 

data 

 

OLAP Implementation 

 The earliest OLAP systems used multidimensional arrays in memory to store data cubes, and are 

referred to as multidimensional OLAP (MOLAP) systems. 

 OLAP implementations using only relational database features are called relational OLAP (ROLAP) 

systems 

 Hybrid systems, which store some summaries in memory and store the base data and other 

summaries in a relational database, are called hybrid OLAP (HOLAP) systems. 

 Early OLAP systems precomputed all possible aggregates in order to provide online response 

 Space and time requirements for doing so can be very high 

 2n combinations of group by 

 It suffices to precompute some aggregates, and compute others on demand from one of the 

precomputed aggregates 

 Can compute aggregate on (item_name, color) from an aggregate on (item_name, color, 

size)  

 For all but a few “non-decomposable” aggregates such as median  

 is cheaper than computing it from scratch  

 Several optimizations available for computing multiple aggregates 

 Can compute aggregate on (item_name, color) from an aggregate on (item_name, color, size) 

 Can compute aggregates on (item_name, color, size),  

(item_name, color) and (item_name) using a single sorting of the base data 
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Unit 3 

Database Design and the E-R Model: Overview of the Design Process, The Entity-Relationship Model, Constraints, 

Removing Redundant Attributes in Entity Sets, Entity-Relationship Diagrams, Reduction to Relational Schemas, Entity-

Relationship Design Issues. 

Relational Database Design: Features of Good Relational Designs, Atomic Domains and First Normal Form, Decomposition 

Using Functional Dependencies, Functional-Dependency Theory, Algorithms for Decomposition, Decomposition Using 

Multi-valued Dependencies, More Normal Forms. 

 

Design Phases 

 Initial phase -- characterize fully the data needs of the prospective database users.  

 Second phase  -- choosing  a data model 

• Applying the concepts of the chosen data model 

• Translating these requirements into a conceptual schema of the database. 

• A fully developed conceptual schema indicates the functional requirements of the enterprise.  

 Describe the kinds of operations (or transactions) that will be performed on the data. 

 Final Phase -- Moving from an abstract data model to the implementation of the database  

• Logical Design –  Deciding on the database schema.  

 Database design requires that we find a “good” collection of relation schemas. 

 Business decision – What attributes should we record in the database? 

 Computer Science decision –  What relation schemas should we have and how should 

the attributes be distributed among the various relation schemas? 

• Physical Design – Deciding on the physical layout of the database                 

      

Design Alternatives 

 In designing a database schema, we must ensure that we avoid two major pitfalls: 

• Redundancy:  a bad design may result in repeat information.   

 Redundant representation of information may lead to data inconsistency among the 

various copies of information  

• Incompleteness: a bad design may make certain aspects of the enterprise difficult or impossible 

to model. 

 Avoiding bad designs is not enough. There may be a large number of  good designs from which we 

must choose. 

 

Design Approaches 

 Entity Relationship Model  

• Models an enterprise as a collection of entities and relationships 

 Entity: a “thing” or “object” in the enterprise that is distinguishable from other objects 

• Described by a set of attributes  

 Relationship: an association among several entities 

• Represented diagrammatically by an entity-relationship diagram: 

 Normalization Theory  

• Formalize what designs are bad, and test for them 

 

ER model -- Database Modeling 

 The ER data mode was developed to facilitate database design by allowing specification of an 

enterprise schema that represents the overall logical structure of a database. 

 The ER data model employs three basic concepts:  

• entity sets, 

• relationship sets,  

• attributes. 

 The ER model also has an associated diagrammatic representation, the ER diagram, which can 

express the overall logical structure of a database graphically. 

 

Entity Sets 
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 An entity is an object that exists and is distinguishable from other objects. 

• Example:  specific person, company, event, plant 

 An entity set is a set of entities of the same type that share the same properties. 

• Example: set of all persons, companies, trees, holidays 

 An entity is represented by a set of attributes; i.e., descriptive properties possessed by all members of 

an entity set. 

• Example:  

      instructor = (ID, name, salary ) 

 course= (course_id, title, credits)  

 A subset of the attributes form a  primary key of the entity set; i.e., uniquely identifying each member 

of the set. 

 

Entity Sets -- instructor and student 

 
Representing Entity sets in ER Diagram 

 Entity sets can be represented graphically as follows: 

• Rectangles represent entity sets. 

• Attributes listed inside entity rectangle 

• Underline indicates primary key attributes 

 
 

Relationship Sets 

 A relationship is an association among several entities 

 Example: 

 44553 (Peltier)  advisor     22222 (Einstein)  

  student entity  relationship set  instructor entity 

 A relationship set is a mathematical relation among n  2 entities, each taken from entity sets 

{(e1, e2, … en) | e1   E1, e2   E2, …, en   En} 

where (e1, e2, …, en) is a relationship 

• Example:  

          (44553,22222)  advisor 

 Example: we define the relationship set  advisor to denote the associations between students and the 

instructors who act as their advisors. 

 Pictorially, we draw a line between related entities. 
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Representing Relationship Sets via ER Diagrams 

Diamonds represent relationship sets. 

 

 
 

 An attribute can also be associated with a relationship set. 

 For instance, the advisor relationship set between entity sets instructor and student may have the 

attribute date which tracks when the student started being associated with the advisor 

 

Relationship Sets with Attributes 

 
 

Roles 

 Entity sets of a relationship need not be distinct 

• Each occurrence of an entity set plays a “role” in the relationship  

 The labels “course_id” and “prereq_id” are called roles.  

 

 
Degree of a Relationship Set 

 Binary relationship 

• involve two entity sets (or degree two).  

• most relationship sets in a database system are binary. 

 Relationships between more than two entity sets are rare.  Most relationships are binary. (More on this 

later.) 

• Example: students work on research projects under the guidance of an instructor.  

• relationship proj_guide is a ternary relationship between instructor, student, and project  
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Non-binary Relationship Sets 

 Most relationship sets are binary 

 There are  occasions when it is more convenient to represent relationships as non-binary. 

 E-R Diagram with a Ternary Relationship 

 
Complex Attributes 

 Attribute types: 

• Simple and composite attributes. 

• Single-valued and multivalued attributes 

 Example: multivalued attribute: phone_numbers  

• Derived attributes 

 Can be computed from other attributes 

 Example:  age, given date_of_birth  

 Domain – the set of permitted values for each attribute  

 

Composite Attributes 

 Composite attributes allow us to divided attributes  into subparts (other attributes). 

 

 
 

Representing Complex Attributes  in ER Diagram 

 
 

Mapping Cardinality Constraints 

 Express the number of entities to which another entity can be associated via a relationship set. 

 Most useful in describing binary relationship sets. 

 For a binary relationship set the mapping cardinality must be one of the following types: 

• One to one 

• One to many 

• Many to one 

name address

first_name middle_initial last_name street city state postal_code

street_number street_name apartment_number

composite
attributes

component
attributes
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• Many to many  

 

Mapping Cardinalities 

 
 

 
 

Representing Cardinality Constraints in ER Diagram 

 We express cardinality constraints by drawing either a directed line (), signifying “one,” or an 

undirected line (—), signifying “many,” between the relationship set and the entity set. 

 One-to-one relationship between an instructor and a student : 

• A student is associated with at most one instructor via the relationship advisor 

• A student is associated with at most one department via stud_dept  

 
 

One-to-Many Relationship 

 one-to-many relationship between an instructor and a student 

• an instructor is associated with several (including 0) students via advisor  

• a student is associated with at most one instructor via advisor,  

 

 
 

 In a many-to-one relationship between an instructor and a student,  
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• an instructor  is associated with at most one student via advisor,  

• and a student is associated with several (including 0) instructors via advisor 

 
 

 An instructor is associated with several (possibly 0) students via advisor 

 A student is associated with several (possibly 0) instructors via advisor  

 
 

Total and Partial Participation 

 Total participation (indicated by double line):  every entity in the entity set participates in at least one 

relationship in the relationship set 

participation of student  in advisor relation is total 

  every student must have an associated instructor 

 Partial participation:  some entities may not participate in any relationship in the relationship set 

• Example: participation of instructor in advisor is partial 

 

Notation for Expressing More Complex Constraints 

 A line may have an associated minimum and maximum cardinality, shown in the form l..h, where l is 

the minimum and h the maximum cardinality 

• A minimum value of 1 indicates total participation. 

• A maximum value of 1 indicates that the entity participates  in at most one relationship 

• A maximum value of * indicates no limit. 

 Example 

• Instructor can advise 0 or more students.  A student must have 1 advisor; cannot have 

multiple advisors 

 

Cardinality Constraints on Ternary Relationship 

 We allow at most one arrow out of a ternary (or greater degree) relationship to indicate a cardinality 

constraint 

 For example, an arrow from proj_guide to instructor indicates each student has at most one guide for a 

project 

 If there is more than one arrow, there are two ways of defining the meaning.   

• For example, a ternary relationship R between A, B and C with arrows to B and C could mean 

       1.      Each A entity is associated with a unique entity from B and C or  

2.     Each pair of entities from (A, B) is associated with a unique C entity, and each pair (A, C) 

is associated with a unique B 

• Each alternative has been used in different formalisms 

• To avoid confusion we outlaw more than one arrow 

 

Primary Key 

 Primary keys provide a way to specify how entities and  relations are distinguished.  We will consider: 

• Entity sets 

• Relationship sets. 

• Weak entity sets 
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Primary key for Entity Sets 

 By definition, individual entities are distinct. 

 From database perspective, the differences among them must be expressed in terms of their 

attributes. 

 The values of the attribute values of an entity must be such that they can uniquely identify the entity. 

• No two entities in an entity set are allowed to have exactly the same value for all attributes. 

 A key for an entity is a set of attributes that suffice to distinguish entities from each other 

 

Primary Key for Relationship Sets 

 To distinguish among the various relationships of a relationship set we use the individual  primary 

keys of the entities in the relationship set. 

• Let R be a relationship set involving entity sets E1, E2, .. En  

• The primary key for R is consists of the  union of the primary keys of entity sets E1, E2, ..En  

• If the relationship set R has attributes  a1, a2, .., am associated with it, then the  primary key 

of R  also includes the attributes  a1, a2, .., am  

 Example: relationship set “advisor”. 

• The primary key  consists of instructor.ID and student.ID 

 The choice of the primary key for a relationship set depends on  the mapping cardinality of the 

relationship set. 

 

Choice of Primary key for Binary Relationship 

 Many-to-Many relationships.   The preceding union of the primary keys is a minimal superkey and is 

chosen as the primary key. 

 One-to-Many relationships . The primary key of the “Many” side is a minimal superkey and is used as 

the primary key. 

 Many-to-one relationships. The primary key of the “Many” side is a minimal superkey and is used as 

the primary key. 

 One-to-one relationships. The primary key of either one of the participating entity sets forms a 

minimal superkey, and either one can be chosen as the primary key. 

 

Weak Entity Sets 

 Consider a section entity, which is uniquely identified by a course_id, semester, year, and sec_id. 

 Clearly, section entities are related to course entities. Suppose we create a relationship set sec_course 

between entity sets section and course. 

 Note that the information in sec_course is redundant, since section already has an attribute course_id, 

which identifies the course with which the section is related.  

 One option to deal with this redundancy is to get rid of the relationship sec_course;  however, by doing 

so the relationship between section and course becomes implicit in an attribute, which is not desirable. 

 An alternative way to deal with this redundancy is to not store the attribute course_id  in the section 

entity and to only store the remaining attributes section_id,  year, and semester.  

 However, the entity set section then does not have enough attributes to identify a particular 

section entity uniquely 

 To deal with this problem, we treat the relationship sec_course  as a special relationship that provides 

extra information, in this case, the course_id, required to identify section  entities uniquely. 

 A weak entity set is one whose existence is dependent on another entity, called its identifying entity  

 Instead of associating a primary key with a weak entity, we use the identifying entity, along with extra 

attributes called discriminator to uniquely identify a weak entity.  

 An entity set that is not a weak entity set is termed a strong entity set. 

 Every weak entity must be associated with an identifying entity; that is, the weak entity set is said to 

be existence dependent on the identifying entity set.  

 The identifying entity set is said to own the weak entity set that it identifies.  
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 The relationship associating the weak entity set with the identifying entity set is called the identifying 

relationship. 

 Note that the relational schema we eventually create from the entity set section does have the attribute 

course_id, for reasons that will become clear later, even though we have dropped the attribute 

course_id  from the entity set section. 

 

Expressing Weak Entity Sets 

 In E-R diagrams, a weak entity set is depicted via a double rectangle. 

 We underline the discriminator of a weak entity set  with a dashed line. 

 The relationship set connecting the  weak entity set to the identifying strong entity set is depicted by a 

double diamond.  

 Primary key for section – (course_id, sec_id, semester, year) 

            
Redundant Attributes 

 Suppose we have entity sets: 

• student, with attributes: ID, name, tot_cred, dept_name 

• department, with attributes: dept_name, building, budget 

 We model the fact that each student has an associated department using a relationship set stud_dept  

 The attribute dept_name in student below replicates information present in the relationship and is 

therefore  redundant 

• and needs to be removed. 

 BUT: when converting back to tables, in some cases the attribute gets reintroduced, as we will see 

later. 

            
 

E-R Diagram for a University Enterprise 



B Rupa Devi Unit 3 DBMS - AK22 MCA Page 9 
 

 
 

Reduction to Relation Schemas 

 Entity sets and relationship sets can be expressed uniformly as relation schemas that represent the 

contents of the database. 

 A database which conforms to an E-R diagram can be represented by a collection of schemas. 

 For each entity set and relationship set there is a unique schema that is assigned the name of the 

corresponding entity set or relationship set. 

 Each schema has a number of columns (generally corresponding to attributes), which have unique 

names. 

 

Representing Entity Sets 

 A strong entity set reduces to a schema with the same attributes 

            student(ID, name, tot_cred) 

 A weak entity set becomes a table that includes a column for the primary key of the identifying strong 

entity set  

            section ( course_id, sec_id, sem, year ) 

 

Representation of Entity Sets with Composite Attributes 

 Composite attributes are flattened out by creating a separate attribute for each component attribute 

• Example: given entity set instructor with composite attribute name with component attributes 

first_name and last_name the schema corresponding to the entity set has two attributes 

name_first_name  and name_last_name  
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 Prefix omitted if there is no ambiguity (name_first_name could be first_name)  

 Ignoring multivalued attributes, extended instructor schema is 

• instructor(ID,  

      first_name, middle_initial,  last_name, 

      street_number, street_name,   

           apt_number, city, state, zip_code,   

      date_of_birth) 

                        
 

Representation of Entity Sets with Multivalued Attributes 

 A multivalued attribute M of an entity E is represented by a separate schema EM  

 Schema EM has attributes corresponding to the primary key of E and an attribute corresponding to 

multivalued attribute M  

 Example:  Multivalued attribute phone_number of instructor is represented by a schema: 

    inst_phone= ( ID, phone_number)  

 Each value of the multivalued attribute maps to a separate tuple of the relation on schema EM  

• For example, an instructor entity with primary key  22222 and phone numbers 456-7890 and 

123-4567 maps to two tuples:    

   (22222, 456-7890) and (22222, 123-4567)  

 

Representing Relationship Sets 

 A many-to-many relationship set is represented as a schema with attributes for the primary keys of 

the two participating entity sets, and any descriptive attributes of the relationship set.  

 Example: schema for relationship set advisor 

          advisor = (s_id, i_id) 

 

             
 

Redundancy of Schemas 

 Many-to-one and one-to-many relationship sets that are total on the many-side can be represented by 

adding an extra attribute to the “many” side, containing the primary key of the “one” side 

 Example: Instead of creating a schema for relationship set inst_dept, add an attribute dept_name to 

the schema arising from entity set instructor 

 Example 
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 For one-to-one relationship sets, either side can be chosen to act as the “many” side 

• That is, an extra attribute can be added to either of the tables corresponding to the two entity 

sets  

 If participation is partial on the “many” side, replacing a schema by an extra attribute in the schema 

corresponding to the “many” side could result in null values 

 The schema corresponding to a relationship set linking a weak entity set to its identifying strong entity 

set is redundant. 

 Example: The section schema already contains the attributes that would appear in the sec_course 

schema 

 

Extended E-R Features 

Specialization 

 Top-down design process; we designate sub-groupings within an entity set that are distinctive from 

other entities in the set. 

 These sub-groupings become lower-level entity sets that have attributes or participate in relationships 

that do not apply to the higher-level entity set. 

 Depicted by a triangle component labeled ISA (e.g., instructor “is a” person). 

 Attribute inheritance – a lower-level entity set inherits all the attributes and relationship 

participation of the higher-level entity set to which it is linked. 

 

Specialization Example 

 Overlapping – employee and student 

 Disjoint – instructor and secretary 

 Total and partial 
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Representing Specialization via Schemas 

 Method 1:  

• Form a schema for the higher-level entity  

• Form a schema for each lower-level entity set, include primary key of higher-level entity set and 

local attributes 

                       
 

• Drawback:  getting information about, an employee requires accessing two relations, the one 

corresponding to the low-level schema and the one corresponding to the high-level schema 

• Method 2:   

• Form a schema for each entity set with all local and inherited attributes 

 
 

• Drawback:  name, street and city may be stored redundantly for people who are both students 

and employees 

 

Generalization 

 A bottom-up design process – combine a number of entity sets that share the same features into a 

higher-level entity set. 

 Specialization and generalization are simple inversions of each other; they are represented in an E-R 

diagram in the same way. 

 The terms specialization and generalization are used interchangeably. 

 

Completeness constraint 

 Completeness constraint -- specifies whether or not an entity in the higher-level entity set must 

belong to at least one of the lower-level entity sets within a generalization. 

• total: an entity must belong to one of the lower-level entity sets 

• partial: an entity need not belong to one of the lower-level entity sets 

 Partial generalization is the default.   

 We can specify total generalization in an ER diagram by adding the keyword total in the diagram and 

drawing a dashed line from the keyword to the corresponding hollow arrow-head to which it applies 

(for a total generalization), or to the set of hollow arrow-heads to which it applies (for an overlapping 

generalization). 

 The student generalization is total: All student entities must be either graduate or undergraduate. 

Because the higher-level entity set arrived at through generalization is generally composed of only 

those entities in the lower-level entity sets, the completeness constraint for a generalized higher-level 

entity set is usually total 

 

Aggregation 

 Consider the ternary relationship proj_guide, which we saw earlier 

 Suppose we want to record evaluations of a student by a guide on a project 
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 Relationship sets eval_for and proj_guide represent overlapping information 

• Every eval_for relationship corresponds to a proj_guide relationship 

• However, some proj_guide relationships may not correspond to any eval_for relationships  

 So we can’t discard the proj_guide relationship 

 Eliminate this redundancy via aggregation  

• Treat relationship as an abstract entity 

• Allows relationships between relationships  

• Abstraction of relationship into new entity 

 Eliminate this redundancy via aggregation without introducing redundancy, the following diagram 

represents: 

• A student is guided by a particular instructor on a particular project  

• A student, instructor, project combination may have an associated evaluation 

 

                                             
Reduction to Relational Schemas 

 To represent aggregation, create a schema containing 

• Primary key of the aggregated relationship, 

• The primary key of the associated entity set 

• Any descriptive attributes 

 In our example: 

• The schema eval_for is: 

        eval_for (s_ID, project_id, i_ID, evaluation_id) 

• The schema proj_guide is redundant. 

 

Design Issues 

Common Mistakes in E-R Diagrams 
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Entities vs. Attributes 

 Use of entity sets vs. attributes 

   
 

 Use of phone as an entity allows extra information about phone numbers (plus multiple phone 

numbers) 

 

Entities vs. Relationship sets 

 Use of entity sets vs. relationship sets 

      Possible guideline is to designate a relationship set to describe an action that occurs between entities  

           
 Placement of relationship attributes 

For example, attribute date as attribute of advisor or as attribute of student 
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Binary Vs. Non-Binary Relationships 

 Although it is possible to replace any non-binary (n-ary, for n > 2) relationship set by a number of 

distinct binary relationship sets, a n-ary relationship set shows more clearly that several entities 

participate in a single relationship. 

 Some relationships that appear to be non-binary may be better represented using binary relationships 

• For example,  a ternary relationship parents, relating a child to his/her father and mother, is 

best replaced by two binary relationships,  father and mother 

 Using two binary relationships allows partial information (e.g., only mother being 

known) 

• But there are some relationships that are naturally non-binary 

 Example: proj_guide  

 

Converting Non-Binary Relationships to Binary Form. 

 In general, any non-binary relationship can be represented using binary relationships by creating an 

artificial entity set. 

• Replace R between entity sets A, B and C by an entity set E, and three relationship sets:  

  1. RA, relating E and A        2.  RB, relating E and B      3. RC, relating E and C 

• Create an identifying attribute for E and add any attributes of R to E  

• For each relationship (ai , bi , ci) in R, create  

        1. a new entity ei in the entity set E        2. add (ei , ai ) to RA 

        3. add (ei , bi ) to RB                             4. add (ei , ci ) to RC 

                                                                        

 
 

 Also need to translate constraints 

• Translating all constraints may not be possible 

• There may be instances in the translated schema that 

cannot correspond to any instance of R 

 Exercise:  add constraints to the relationships RA, RB and RC to ensure that a newly 

created entity corresponds to exactly one entity in each of entity sets A, B and C 

• We can avoid creating an identifying attribute by making E a weak entity set (described shortly) 

identified by the three relationship sets  

 

E-R Design Decisions 

 The use of an attribute or entity set to represent an object. 

 Whether a real-world concept is best expressed by an entity set or a relationship set. 

 The use of a ternary relationship versus a pair of binary relationships. 

 The use of a strong or weak entity set. 

 The use of specialization/generalization – contributes to modularity in the design. 

 The use of aggregation – can treat the aggregate entity set as a single unit without concern for the 

details of its internal structure. 

Summary of Symbols Used in E-R Notation 
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Alternative ER Notations 

 Chen, IDE1FX, … 
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                                                      Chen                                       IDE1FX (Crows feet notation) 

                   
UML  

 UML: Unified Modeling Language 

 UML has many components to graphically model different aspects of an entire software system 

 UML Class Diagrams correspond to E-R Diagram, but several differences. 

 

ER vs. UML Class Diagrams 
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 Binary relationship sets are represented in UML by just drawing a line connecting the entity sets. The 

relationship set name is written adjacent to the line.   

 The role played by an entity set in a relationship set may also be specified by writing the role name on 

the line, adjacent to the entity set.  

 The relationship set name may alternatively be written in a box, along with attributes of the 

relationship set, and the box is connected, using a dotted line, to the line depicting the  relationship 

set. 

 

Other Aspects of Database Design 

 Functional Requirements 

 Data Flow, Workflow 

 Schema Evolution 
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Overview of Normalization 

Features of Good Relational Designs 

 
 

 Suppose we combine instructor and department into in_dep, which represents the natural join on the 

relations instructor and department 

 There is repetition of information 

 Need to use null values (if we add a new department with no instructors)  

 

A Combined Schema Without Repetition 

Not all combined schemas result in repetition of information 

 Consider combining relations  

• sec_class(sec_id, building, room_number) and  

• section(course_id, sec_id, semester, year)  

into one relation 

• section(course_id, sec_id, semester, year, building, room_number)  

 No repetition in this case 

 

Decomposition 

 The only way to avoid the repetition-of-information problem in the in_dep schema is to decompose it 

into two schemas – instructor and department schemas. 

 Not all decompositions are good.  Suppose we decompose 

 

       employee(ID, name, street, city, salary)   

       into 

        employee1 (ID, name) 

        employee2 (name, street, city, salary) 

      The problem arises when we have two employees with the same name 

 We cannot reconstruct the original employee relation -- and so, this is a lossy decomposition. 

 

A Lossy Decomposition 
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Lossless Decomposition 

 Let R be a relation schema and let R1 and R2 form a decomposition of R . That is R = R1  U R2  

 We say that the decomposition is a lossless decomposition  if there is no loss of information by 

replacing  R with the two relation schemas R1  U R2  

 Formally, 

              R1 (r)      R2 (r) = r 

 And,  conversely a decomposition is lossy if  

      r     R1 (r)      R2 (r) = r  

 

Example of Lossless Decomposition 

 Decomposition of R = (A, B, C) 

 R1 = (A, B) R2 = (B, C)  
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Normalization Theory 

 Decide whether a particular relation R is in “good” form. 

 In the case that a relation R is not in “good” form, decompose it into  set of relations {R1, R2, ..., Rn} 

such that  

• Each relation is in good form  

• The decomposition is a lossless decomposition 

 Our theory is based on: 

• Functional dependencies 

• Multivalued dependencies 

 

What is Normalization? 

Normalization is the process of organizing the data in the database. 

Normalization is used to minimize the redundancy from a relation or set of relations. It is also used to 

eliminate undesirable characteristics like Insertion, Update, and Deletion Anomalies. 

Normalization divides the larger table into smaller and links them using relationships. 

 

Why do we need Normalization? 

The main reason for normalizing the relations is removing these anomalies. Failure to eliminate anomalies 

leads to data redundancy and can cause data integrity and other problems as the database grows. 

Normalization consists of a series of guidelines that helps to guide you in creating a good database structure 

 

Functional Dependencies 

 There are usually a variety of constraints (rules) on the data in the real world.  

 For example, some of the constraints that are expected to hold  in a university database are: 

• Students and instructors are uniquely identified by their ID. 

• Each student and instructor has only one name. 

• Each instructor and student is (primarily) associated with only one department. 

• Each department has only one value for its budget, and only one associated building. 

 An instance of a relation that satisfies all such real-world constraints is called a  legal instance of the 

relation;  

  A legal instance of a database is one where all the relation instances are legal instances  

 Constraints on the set of legal relations. 

 Require that the value for a certain set of attributes determines uniquely the value for another set of 

attributes. 

 A functional dependency is a generalization of the notion of a key.  

 

Functional Dependencies Definition 

 Let R be a relation schema 

    R  and    R 

 The functional dependency 
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holds on R if and only if for any legal relations r(R), whenever any two tuples t1 and t2 of r agree on the 

attributes , they also agree on the attributes .  That is,  

   t1[] = t2 []      t1[ ]  = t2 [ ]  

 Example:  Consider r(A,B ) with the following instance of r.                           

1 4 

1 5 

3 7 

 On this instance, B  A hold;  A  B does NOT hold,  

 

Closure of a Set of Functional Dependencies 

 Given a set F set of functional dependencies, there are certain other functional dependencies that are 

logically implied by F. 

•  If  A  B and  B  C,  then we can infer that A  C 

 The set of all functional dependencies logically implied by F is the closure of F. 

 We denote the closure of F by F+. 

 

Keys and Functional Dependencies 

 K is a superkey for relation schema R if and only if K  R  

 K is a candidate key for R if and only if  

• K  R, and 

• for no   K,   R 

 Functional dependencies allow us to express constraints that cannot be expressed using superkeys.  

Consider the schema: 

       in_dep (ID, name, salary, dept_name, building, budget ). 

 We expect these functional dependencies to hold: 

                           dept_name  building 

                                        ID  building  

 but would not expect the following to hold:  

   dept_name  salary 

 

Use of Functional Dependencies 

 We use functional dependencies to: 

• To test relations to see if they are legal under a given set of functional dependencies.  

  If a relation r is legal under a set F of functional dependencies, we say that r satisfies 

F.  

• To specify constraints on the set of legal relations 

 We say that F holds on R if all legal relations on R satisfy the set of functional 

dependencies F. 

 Note:  A specific instance of a relation schema may satisfy a functional dependency even if the 

functional dependency does not hold on all legal instances.   

• For example, a specific instance of instructor may, by chance, satisfy  

               name  ID. 

 

Trivial Functional Dependencies 

 A functional dependency is trivial if it is satisfied by all instances of a relation 

 Example: 

•  ID, name  ID 

•  name  name 

 In general,    is trivial if     
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Lossless Decomposition 

 We can use functional dependencies to show when certain decomposition are lossless.   

 For the case of R = (R1, R2), we require that for all possible relations r on schema R 

  r = R1 (r )    R2 (r )  

 A decomposition of R into R1 and R2 is lossless decomposition  if at least one of the following 

dependencies is in F+: 

• R1  R2  R1 

• R1  R2  R2  

 The above functional dependencies are a sufficient condition for lossless join decomposition; the 

dependencies are a necessary condition only if all constraints are functional dependencies 

 

 Example 

 R = (A, B, C) 

F = {A  B, B  C) 

 R1 = (A, B),   R2 = (B, C) 

• Lossless decomposition: 

         R1   R2 = {B}  and B  BC 

 R1 = (A, B),   R2 = (A, C) 

• Lossless decomposition: 

             R1   R2 = {A}  and A  AB 

 Note: 

•  B  BC  

         is a shorthand notation for  

•  B  {B, C}  

 

Dependency Preservation 

 Testing functional dependency constraints each time the database is updated can be costly 

 It is useful to design the database in a way that constraints can be tested efficiently.   

 If testing a functional dependency can be done by considering just one relation, then the cost of 

testing this constraint is low 

 When decomposing a relation it is possible that it is no longer possible to do the testing without having 

to perform a Cartesian Produced. 

 A decomposition that makes it computationally hard to enforce functional dependency is said to be 

NOT dependency preserving. 

 

Dependency Preservation Example 

 Consider a schema: 

         dept_advisor(s_ID, i_ID, department_name) 

 With function dependencies: 

             i_ID  dept_name 

             s_ID, dept_name  i_ID 

 In the above design we are forced to repeat the department name once for each time an instructor 

participates in a dept_advisor relationship.   

 To fix this, we need to decompose dept_advisor 

 Any decomposition will not include all the attributes in 

            s_ID, dept_name  i_ID 

 Thus, the composition NOT be dependency preserving  
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Normal Forms 

Database normalization is the process of organizing the attributes of the database to reduce or eliminate data 

redundancy (having the same data but at different places).  

 

Problems because of data redundancy  

Data redundancy unnecessarily increases the size of the database as the same data is repeated in many 

places. Inconsistency problems also arise during insert, delete and update operations.  

 

Functional Dependency  

Functional Dependency is a constraint between two sets of attributes in relation to a database. A functional 

dependency is denoted by an arrow (→).  

If an attribute A functionally determines B, then it is written as A → B.  

For example, employee_id → name means employee_id functionally determines the name of the employee. As 

another example in a timetable database, {student_id, time} → {lecture_room}, student ID and time determine 

the lecture room where the student should be.  

 

What does functionally dependent mean?  

A function dependency A → B means for all instances of a particular value of A, there is the same value of B.  

For example in the below table A → B is true, but B → A is not true as there are different values of A for B = 

3.  

A   B 

------ 

1   3 

2   3 

4   0 

1   3 

4   0 

 

Trivial Functional Dependency  

X → Y is trivial only when Y is subset of X.  

 

Examples  

ABC → AB 

ABC → A 

ABC → ABC 

 

Non Trivial Functional Dependencies  

X → Y is a non trivial functional dependency when Y is not a subset of X.  

X → Y is called completely non-trivial when X intersects Y is NULL.  

  

Example:  

Id → Name,  

Name → DOB 

 

Semi Non Trivial Functional Dependencies  

X → Y is called semi non-trivial when X intersect Y is not NULL.  

Examples:  

  

AB → BC,  

AD → DC 
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Normalization is the process of minimizing redundancy from a relation or set of relations. Redundancy in 

relation may cause insertion, deletion, and update anomalies. So, it helps to minimize the redundancy in 

relations. Normal forms are used to eliminate or reduce redundancy in database tables. 

 

1. First Normal Form – 

If a relation contain composite or multi-valued attribute, it violates first normal form or a relation is in first 

normal form if it does not contain any composite or multi-valued attribute. A relation is in first normal form if 

every attribute in that relation is singled valued attribute. 

Example 1 – Relation STUDENT in table 1 is not in 1NF because of multi-valued attribute STUD_PHONE. Its 
decomposition into 1NF has been shown in table 2. 

 
 

Example 2 – 

  

ID   Name    Courses 

---------------------------- 

1    A       c1, c2 

2    E       c3 

3    M       C2, c3 

In the above table Course is a multi-valued attribute so it is not in 1NF. 

Below Table is in 1NF as there is no multi-valued attribute 

ID   Name   Course 

------------------ 

1    A       c1 

1    A       c2 

2    E       c3 

3    M       c2 

3    M       c3 

 

2. Second Normal Form – 

To be in second normal form, a relation must be in first normal form and relation must not contain any 

partial dependency. A relation is in 2NF if it has No Partial Dependency, i.e., no non-prime attribute 

(attributes which are not part of any candidate key) is dependent on any proper subset of any candidate key 

of the table. 
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Partial Dependency – If the proper subset of candidate key determines non-prime attribute, it is called 

partial dependency. 

Example 1 – Consider table-3 as following below. 

STUD_NO            COURSE_NO        COURSE_FEE 

1                     C1                  1000 

2                     C2                  1500 

1                     C4                  2000 

4                     C3                  1000 

4                     C1                  1000 

2                     C5                  2000 

{Note that, there are many courses having the same course fee.} 

Here, 

COURSE_FEE cannot alone decide the value of COURSE_NO or STUD_NO; 

COURSE_FEE together with STUD_NO cannot decide the value of COURSE_NO; 

COURSE_FEE together with COURSE_NO cannot decide the value of STUD_NO; 

Hence, 

COURSE_FEE would be a non-prime attribute, as it does not belong to the one only candidate key {STUD_NO, 

COURSE_NO} ; 

 

But, COURSE_NO -> COURSE_FEE, i.e., COURSE_FEE is dependent on COURSE_NO, which is a proper 

subset of the candidate key. Non-prime attribute COURSE_FEE is dependent on a proper subset of the 

candidate key, which is a partial dependency and so this relation is not in 2NF. 

 

To convert the above relation to 2NF, we need to split the table into two tables such as : 

Table 1: STUD_NO, COURSE_NO 

Table 2: COURSE_NO, COURSE_FEE 

       Table 1                                       Table 2 

STUD_NO            COURSE_NO           COURSE_NO   COURSE_FEE      

1                   C1                    C1                        1000 

2                   C2                    C2                        1500 

1                   C4                    C3                        1000 

4                   C3                    C4                        2000 

4                   C1                    C5                        2000         

2    C5 

NOTE: 2NF tries to reduce the redundant data getting stored in memory. For instance, if there are 100 

students taking C1 course, we don’t need to store its Fee as 1000 for all the 100 records, instead, once we can 

store it in the second table as the course fee for C1 is 1000. 

 

Example 2 – Consider following functional dependencies in relation R (A,  B , C,  D ) 

AB -> C  [A and B together determine C] 

BC -> D  [B and C together determine D] 

In the above relation, AB is the only candidate key and there is no partial dependency, i.e., any proper subset 

of AB doesn’t determine any non-prime attribute. 

 

3. Third Normal Form – 

A relation is in third normal form, if there is no transitive dependency for non-prime attributes as well as it 

is in second normal form. 

A relation is in 3NF if at least one of the following condition holds in every non-trivial function dependency 

X –> Y 

1. X is a super key. 

2. Y is a prime attribute (each element of Y is part of some candidate key). 
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Transitive dependency – If A->B and B->C are two FDs then A->C is called transitive dependency. 

 

Example 1 – In relation STUDENT given in Table 4, 

FD set: {STUD_NO -> STUD_NAME, STUD_NO -> STUD_STATE, STUD_STATE -> STUD_COUNTRY, STUD_NO 

-> STUD_AGE} 

Candidate Key: {STUD_NO} 

 

For this relation in table 4, STUD_NO -> STUD_STATE and STUD_STATE -> STUD_COUNTRY are true. So 

STUD_COUNTRY is transitively dependent on STUD_NO. It violates the third normal form. To convert it in 

third normal form, we will decompose the relation STUDENT (STUD_NO, STUD_NAME, STUD_PHONE, 

STUD_STATE, STUD_COUNTRY_STUD_AGE) as: 

STUDENT (STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE, STUD_AGE) 

STATE_COUNTRY (STATE, COUNTRY) 

 

Example 2 – Consider relation R(A, B, C, D, E) 

A -> BC, 

CD -> E, 

B -> D, 

E -> A 

 

All possible candidate keys in above relation are {A, E, CD, BC} All attributes are on right sides of all 

functional dependencies are prime. 

 

4. Boyce-Codd Normal Form (BCNF) – 

A relation R is in BCNF if R is in Third Normal Form and for every FD, LHS is super key. A relation is in BCNF 

iff in every non-trivial functional dependency X –> Y, X is a super key. 

 

Example 1 – Find the highest normal form of a relation R(A,B,C,D,E) with FD set as {BC->D, AC->BE, B->E} 

Step 1. As we can see, (AC)+ ={A,C,B,E,D} but none of its subset can determine all attribute of relation, So AC 

will be candidate key. A or C can’t be derived from any other attribute of the relation, so there will be only 1 

candidate key {AC}. 

Step 2. Prime attributes are those attributes that are part of candidate key {A, C} in this example and others 

will be non-prime {B, D, E} in this example. 

Step 3. The relation R is in 1st normal form as a relational DBMS does not allow multi-valued or composite 

attribute. 

The relation is in 2nd normal form because BC->D is in 2nd normal form (BC is not a proper subset of 

candidate key AC) and AC->BE is in 2nd normal form (AC is candidate key) and B->E is in 2nd normal form 

(B is not a proper subset of candidate key AC). 

The relation is not in 3rd normal form because in BC->D (neither BC is a super key nor D is a prime attribute) 

and in B->E (neither B is a super key nor E is a prime attribute) but to satisfy 3rd normal for, either LHS of 

an FD should be super key or RHS should be prime attribute. 

So the highest normal form of relation will be 2nd Normal form. 

 

Example 2 –For example consider relation R(A, B, C) 

A -> BC, 

B -> 

A and B both are super keys so above relation is in BCNF. 
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Key Points – 

1. BCNF is free from redundancy. 

2. If a relation is in BCNF, then 3NF is also satisfied. 

3.  If all attributes of relation are prime attribute, then the relation is always in 3NF. 

4. A relation in a Relational Database is always and at least in 1NF form. 

5. Every Binary Relation ( a Relation with only 2 attributes ) is always in BCNF. 

6. If a Relation has only singleton candidate keys( i.e. every candidate key consists of only 1 attribute), 

then the Relation is always in 2NF( because no Partial functional dependency possible). 

7. Sometimes going for BCNF form may not preserve functional dependency. In that case go for BCNF 

only if the lost FD(s) is not required, else normalize till 3NF only. 

8. There are many more Normal forms that exist after BCNF, like 4NF and more. But in real world 

database systems it’s generally not required to go beyond BCNF. 

  

Exercise 1: Find the highest normal form in R (A, B, C, D, E) under following functional dependencies. 

  ABC --> D 

  CD --> AE  

 

Important Points for solving above type of question. 

1) It is always a good idea to start checking from BCNF, then 3 NF, and so on. 

2) If any functional dependency satisfied a normal form then there is no need to check for lower normal form. 

For example, ABC –> D is in BCNF (Note that ABC is a superkey), so no need to check this dependency for 

lower normal forms. 

Candidate keys in the given relation are {ABC, BCD} 

BCNF: ABC -> D is in BCNF. Let us check CD -> AE, CD is not a super key so this dependency is not in 

BCNF. So, R is not in BCNF. 

3NF: ABC -> D we don’t need to check for this dependency as it already satisfied BCNF. Let us consider CD -> 

AE. Since E is not a prime attribute, so the relation is not in 3NF. 

2NF: In 2NF, we need to check for partial dependency. CD is a proper subset of a candidate key and it 

determines E, which is non-prime attribute. So, given relation is also not in 2 NF. So, the highest normal form 

is 1 NF. 

 

Problems: 

1. Relation R has eight attributes ABCDEFGH. Fields of R contain only atomic values. F = {CH -> G, A -> BC, 

B -> CFH, E -> A, F -> EG} is a set of functional dependencies (FDs) so that F+ is exactly the set of FDs that 

hold for R. How many candidate keys does the relation R have? 

Hint:  

A+ is ABCEFGH which is all attributes except D. 

B+ is also ABCEFGH which is all attributes except D. 

E+ is also ABCEFGH which is all attributes except D. 

F+ is also ABCEFGH which is all attributes except D. 

So there are total 4 candidate keys AD, BD, ED and FD. 
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Boyce-Codd Normal Form 

 A relation schema R is in BCNF with respect to a set F of functional  dependencies if for all functional 

dependencies in F+ of the form  

                     

      where   R and   R, at least one of the following holds: 

•     is trivial (i.e.,   ) 

•  is a superkey for R 

 Example schema  that is not  in BCNF: 

          in_dep (ID, name, salary, dept_name, building, budget ) 

      because : 

• dept_name building, budget   

 holds on in_dep  

 but  

• dept_name is not a superkey  

 When decompose  in_dept  into instructor and department  

• instructor  is in BCNF 

• department is in BCNF 

 

Decomposing a Schema into BCNF 

 Let  R be a schema R  that is not in BCNF.  Let     be the FD that causes a violation of BCNF. 

 We decompose R into: 

• ( U  )  

• ( R - (  -  ) )  

 In our example of in_dep,  

•  = dept_name  

•  = building, budget 

and in_dep is replaced by 

•  ( U  ) = ( dept_name, building, budget ) 

• ( R - (  -  ) ) = ( ID, name, dept_name, salary ) 

 

Example 

 R = (A, B, C) 

F = {A  B, B  C)  

 R1 = (A, B),   R2 = (B, C) 

• Lossless-join decomposition: 

   R1   R2 = {B}   and B  BC 

• Dependency preserving 

 R1 = (A, B),   R2 = (A, C) 

• Lossless-join decomposition: 

   R1   R2 = {A} and A  AB 

• Not dependency preserving  

(cannot check B  C without computing R1     R2) 

 

BCNF and Dependency Preservation 

 It is not always possible to achieve both BCNF and dependency preservation  

 Consider a schema: 

         dept_advisor(s_ID, i_ID, department_name) 

 With function dependencies: 

             i_ID  dept_name 

             s_ID, dept_name  i_ID 

 dept_advisor is not in BCNF  

•  i_ID  is not a superkey. 
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 Any decomposition  of dept_advisor will not include all the attributes in 

            s_ID, dept_name  i_ID 

 Thus, the composition is  NOT be dependency preserving  

 

Third Normal Form 

 A relation schema R is in third normal form (3NF) if for all: 

     in F+ 

  

at least one of the following holds: 

•    is trivial (i.e.,   ) 

•  is a superkey for R  

• Each attribute A in  –  is contained in a candidate key for R. 

   (NOTE: each attribute may be in a different candidate key)  

 If a relation is in BCNF it is in 3NF (since in BCNF one of the first two conditions above must hold). 

 Third condition is a minimal relaxation of BCNF to ensure dependency preservation  

 

3NF Example 

 Consider a schema: 

         dept_advisor(s_ID, i_ID, dept_name) 

 With function dependencies: 

             i_ID  dept_name  

             s_ID, dept_name  i_ID  

 Two candidate keys =  {s_ID, dept_name}, {s_ID, i_ID }  

 We have seen before that dept_advisor is not in BCNF 

 R,  however,  is in  3NF 

•  s_ID, dept_name is a superkey  

•  i_ID  dept_name  and  i_ID is NOT a superkey, but: 

 { dept_name} – {i_ID }  =   {dept_name } and 

 dept_name  is contained in a  candidate key  

 

Redundancy in 3NF 

 Consider  the schema R below,  which is in 3NF 

 R = (J, K, L )  

 F = {JK  L, L  K } 

 And an instance table: 

               
 

 What is wrong with the table?  

 Repetition of information 

 Need to use null values (e.g., to represent the relationship l2, k2 where there is no 

corresponding value for J)  

 

Comparison of BCNF and 3NF 

 Advantages to 3NF over BCNF.  It is always possible to obtain a 3NF design without sacrificing 

losslessness or dependency preservation.  

 Disadvantages to 3NF.  
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• We may have to use null values to represent some of the possible meaningful relationships 

among data items. 

•  There is the problem of repetition of information. 

 

Goals of Normalization 

 Let R be a relation scheme with a set F of functional dependencies. 

 Decide whether a relation scheme R is in “good” form. 

 In the case that a relation scheme R is not in “good” form, need to decompose it into a set of relation 

scheme  {R1, R2, ..., Rn} such that: 

• Each relation scheme is in good form  

• The decomposition is a lossless decomposition 

• Preferably, the decomposition should be dependency preserving. 

 

How good is BCNF? 

 There are database schemas in BCNF that do not seem to be sufficiently normalized  

 Consider a relation  

  inst_info (ID, child_name, phone) 

• where an instructor may have more than one phone and can have multiple children 

• Instance of inst_info  

 

               
 

 There are no non-trivial functional dependencies and therefore the relation is in BCNF  

 Insertion anomalies – i.e., if we add a phone 981-992-3443 to 99999, we need to add two tuples 

  (99999, David,   981-992-3443) 

  (99999, William, 981-992-3443) 

 

Higher Normal Forms 

 It is better to decompose inst_info into: 

• inst_child: 

 
• inst_phone: 

 
 This suggests the need for higher normal forms, such as Fourth Normal Form (4NF). 

 

Functional-Dependency Theory 

 We now consider the formal theory that tells us which functional dependencies are implied logically by 

a given set of functional dependencies. 

 We then develop algorithms to generate lossless decompositions into BCNF and 3NF 

 We then develop algorithms to test if a decomposition is dependency-preserving  
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Closure of a Set of Functional Dependencies 

 Given a set F set of functional dependencies, there are certain other functional dependencies that are 

logically implied by F. 

•  If  A  B and  B  C,  then we can infer that A  C 

 The set of all functional dependencies logically implied by F is the closure of F. 

 We denote the closure of F by F+. 

 We can compute F+, the closure of F, by repeatedly applying Armstrong’s Axioms: 

• Reflexive rule: if   , then      

• Augmentation  rule: if   , then        

• Transitivity rule:  if   , and   , then      

 These rules are  

• Sound -- generate only functional dependencies that actually hold,  and  

• Complete  -- generate all functional dependencies that hold. 

 

Example of  F+ 

 R = (A, B, C, G, H, I) 

F = { A  B 

  A  C 

 CG  H 

 CG  I 

  B  H}  

 Some members of F+  

• A  H         

 by transitivity from A  B and B  H 

• AG  I        

 by augmenting A  C with G, to get AG  CG  

                   and then transitivity with CG  I  

• CG  HI      

 by augmenting CG  I to infer CG  CGI,  

    and augmenting of CG  H to infer CGI  HI,  and then transitivity 

 Additional rules: 

• Union rule: If    holds and    holds,  then     holds. 

• Decomposition rule: If     holds, then     holds and    holds. 

• Pseudotransitivity rule:If     holds and     holds, then     holds.  

 The above rules can be inferred from Armstrong’s axioms.  

 

Procedure for Computing F+ 

 To compute the closure of a set of functional dependencies F:  

         F + = F 

    repeat 

 for each functional dependency f in F+ 

        apply reflexivity and augmentation rules on f 

        add the resulting functional dependencies to F + 

 for each pair of functional dependencies f1and f2 in F + 

        if f1 and f2 can be combined using transitivity 

              then add the resulting functional dependency to F + 

       until F + does not change any further 

  NOTE:  We shall see an alternative procedure for this task later  

 

Closure of Attribute Sets 

 Given a set of attributes a, define the closure of a under F (denoted by a+) as the set of attributes that 

are functionally determined by a under F 
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  Algorithm to compute a+, the closure of a under F 

       result := a; 

 while (changes to result) do 

  for each    in F do 

   begin 

    if   result then  result := result    

   end 

 

Example of Attribute Set Closure 

 R = (A, B, C, G, H, I) 

 F = { A  B 

 A  C  

 CG  H 

 CG  I 

 B  H }  

 (AG)+  

1. result = AG  

2. result = ABCG (A  C and A  B)  

3. result = ABCGH (CG  H and CG  AGBC) 

4. result = ABCGHI (CG  I and CG  AGBCH) 

 Is AG a candidate key?   

1. Is AG a super key? 

1. Does AG  R? == Is R  (AG)+  

2. Is any subset of AG a superkey? 

1. Does A  R? == Is R  (A)+    

2. Does G  R? == Is R  (G)+  

3. In general: check for each subset of size n-1  

 

Uses of Attribute Closure 

There are several uses of the attribute closure algorithm: 

 Testing for superkey: 

• To test if  is a superkey, we compute +, and check if + contains all attributes of R. 

 Testing functional dependencies 

• To check if a functional dependency    holds (or, in other words, is in F+), just check if   

+.  

• That is, we compute + by using attribute closure, and then check if it contains .  

• Is a simple and cheap test, and very useful 

 Computing closure of F 

• For each   R, we find the closure +, and for each S  +, we output a functional dependency  

 S.  

 

Canonical Cover 

 Suppose that we have a set of functional dependencies F on a relation schema. Whenever a user 

performs an update on the relation, the database system must ensure that the update does not violate 

any functional dependencies; that is, all the functional dependencies in F are satisfied in the new 

database state. 

 If an update violates any functional dependencies in the set F, the system must roll back the update. 

 We can reduce the effort spent in checking for violations by testing a simplified set of functional 

dependencies that has the same closure as the given set.  

 This simplified set is termed the canonical cover 

 To define canonical cover we must first define extraneous attributes. 
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• An attribute of a functional dependency  in F is extraneous if we can remove it without 

changing  F +  

 

Extraneous Attributes 

 Removing an attribute from the left side of a functional dependency could make it a stronger 

constraint.   

• For example, if we have AB  C and remove B, we get the possibly stronger result A   C.  It 

may be stronger because A   C logically implies AB  C, but  AB  C does not, on its own, 

logically imply A   C 

 But, depending on what our set F of functional dependencies happens to be, we may be able to remove 

B from AB  C safely.   

• For example, suppose that 

• F =  {AB  C, A  D, D  C} 

• Then we can show that F logically implies A  C, making extraneous in AB  C. 

 Removing an attribute from the right side of a functional dependency could make it a weaker 

constraint.   

• For example, if we have AB  CD and remove C, we get the possibly weaker result AB  D.  It 

may be weaker because using just AB  D, we can no longer infer AB  C. 

 But, depending on what our set F of functional dependencies happens to be, we may be able to remove 

C from AB  CD safely.   

• For example, suppose that 

           F = { AB  CD, A  C. 

• Then we can show that even after replacing AB  CD by AB  D, we can still infer $AB  C 

and thus AB  CD. 

 

 An attribute of a functional dependency  in F is extraneous if we can remove it without changing  F +  

 Consider a set F of functional dependencies and the functional dependency    in F. 

• Remove from the left side: Attribute A is extraneous in  if 

  A    and  

 F  logically implies (F – {  })  {(  – A)  }. 

• Remove from the right side: Attribute A is extraneous in  if 

 A   and  

 The set of functional dependencies     

        (F  – {  })  { ( – A)} logically implies F. 

 Note: implication in the opposite direction is trivial in each of the cases above, since a “stronger” 

functional dependency always implies a weaker one 

 

Testing if an Attribute is Extraneous 

 Let R  be  a relation  schema and  let  F  be  a set of functional dependencies that hold on R . Consider 

an attribute in the functional dependency   . 

 To test if attribute A    is extraneous in   

• Consider the set: 

         F' = (F  – {  })  { ( – A)},  

•  check that +  contains A; if it does, A is extraneous in   

 To test if attribute A   is extraneous in   

• Let  =  – {A}. Check if      can be inferred  from F.  

  Compute + using the dependencies in F  

  If +  includes all attributes in  then , A is extraneous in   

 

Examples of Extraneous Attributes 

 Let F = {AB  CD, A  E, E  C } 
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 To check if C is extraneous in AB  CD, we: 

•  Compute the attribute closure of AB under F' = {AB  D, A  E, E  C} 

• The closure is ABCDE, which includes CD 

• This implies that C is extraneous  

 

Canonical Cover 

A canonical cover for F is a set of dependencies Fc such that  

 F logically implies all dependencies in Fc , and  

 Fc logically implies all dependencies in F, and 

 No functional dependency in Fc contains an extraneous attribute, and 

 Each left side of functional dependency in Fc is unique. That is, there are no two dependencies in Fc  

• 1  1 and 2  2 such that  

• 1 = 2 

 

To compute a canonical cover for F: 

 repeat 

Use the union rule to replace any dependencies in F of the form 

    1  1 and 1  2 with 1  1 2 

  Find a functional dependency     in Fc with an extraneous attribute either in  or in   

                /* Note: test for extraneous attributes done using Fc, not F*/ 

   If an extraneous attribute is found, delete it from    in Fc 

until  (Fc does not change) 

 

Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be 

re-applied 

 

 R = (A, B, C) 

F = {A  BC 

   B  C 

   A  B 

 AB  C} 

 Combine A  BC and A  B into A  BC 

• Set is now {A  BC, B  C, AB  C} 

 A is extraneous in AB  C 

• Check if the result of deleting A from  AB  C  is implied by the other dependencies 

 Yes: in fact,  B  C is already present! 

• Set is now {A  BC, B  C}  

 C is extraneous in A  BC  

• Check if A  C is logically implied by A  B and the other dependencies 

 Yes: using transitivity on A  B  and B  C.  

• Can use attribute closure of A in more complex cases 

 The canonical cover is:  A  B 

    B  C 

 

Dependency Preservation 

 Let Fi be the set of dependencies F + that include only attributes in Ri.  

•  A  decomposition is dependency preserving,  if 

           (F1  F2  …  Fn )+ = F + 

 Using the above definition,  testing for dependency preservation take exponential time. 

 Not that if a decomposition is NOT dependency preserving then checking updates for violation of 

functional dependencies may require computing joins, which is expensive. 

 Let F  be the set of dependencies  on schema R  and let R1, R2 ,  .., Rn   be a decomposition of R. 
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 The restriction of F to Ri is the set Fi of all functional dependencies in F + that include only attributes of 

Ri . 

 Since all functional dependencies in a restriction involve attributes of only one relation schema, it is 

possible to test such a dependency for satisfaction by checking only one relation. 

 Note that the definition of restriction uses all dependencies in in F +, not just those in F. 

 The set of restrictions F1, F2 , .. , Fn   is the set of functional dependencies that can be checked 

efficiently. 

 

Testing for Dependency Preservation 

 To check if a dependency    is preserved in a decomposition of R into R1, R2, …, Rn , we apply the 

following test (with attribute closure done with respect to F) 

• result =  

repeat  

 for each Ri in the decomposition 

  t = (result  Ri)+  Ri 

  result  =  result   t 

            until  (result does not change)  

• If result contains all attributes in , then the functional dependency     is preserved. 

 We apply the test on all dependencies in F  to check if a decomposition is dependency preserving 

 This procedure takes polynomial time, instead of the exponential time required to compute F+ and (F1 

 F2  …  Fn)+  

 

Example 

 R = (A, B, C ) 

F = {A  B 

  B  C} 

Key = {A} 

 R is not in BCNF 

 Decomposition R1 = (A, B),  R2 = (B, C) 

• R1 and R2 in BCNF 

• Lossless-join decomposition 

• Dependency preserving 

 

Algorithm for Decomposition Using Functional Dependencies 

Testing for BCNF 

 To check if a non-trivial dependency    causes a violation of BCNF 

1.  compute + (the attribute closure of ), and  

2.  verify that it includes all attributes of R, that is, it is a superkey of R. 

 Simplified test: To check if a relation schema R is in BCNF, it suffices to check only the dependencies 

in the given set F for violation of BCNF, rather than checking all dependencies in F+. 

• If none of the dependencies in F causes a violation of BCNF, then none of the dependencies in 

F+ will cause a violation of BCNF either. 

 However, simplified test using only F is incorrect when testing a relation in a decomposition of R 

• Consider R = (A, B, C, D, E), with F = { A  B, BC  D} 

 Decompose R into R1 = (A,B) and R2 = (A,C,D, E)  

 Neither of the dependencies in F contain only attributes from 

 (A,C,D,E) so we might be mislead into thinking R2 satisfies BCNF.   

 In fact, dependency AC  D in F+ shows R2 is not in BCNF.  

 

Testing Decomposition for BCNF 

To check if a relation Ri in a decomposition of R is in BCNF  
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 Either test Ri for BCNF with respect to the restriction of F+ to Ri  (that is, all FDs in F+ that contain 

only attributes from Ri) 

 Or use the original set of dependencies F that hold on R, but with the following test: 

 for every set of attributes   Ri, check that + (the attribute closure of ) either 

includes no attribute of Ri- , or includes all attributes of Ri. 

• If the condition is violated by some     in F+, the dependency 

        (+ - )  Ri 

can be shown to hold on Ri, and Ri violates BCNF. 

• We use above dependency to decompose Ri  

 

BCNF Decomposition Algorithm 

result := {R }; 

done := false; 

compute F +; 

while (not done) do 

 if (there is a schema Ri in result  that is not in BCNF) 

  then begin 

   let     be a nontrivial functional dependency that  

                       holds on Ri  such that   Ri is not in F +,  

       and     = ; 

      result := (result – Ri )  (Ri – )  (,  ); 

      end 

  else done := true;  

 

Note:  each Ri is in BCNF, and decomposition is lossless-join. 

 

Example of BCNF Decomposition 

 class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, capacity, 

time_slot_id) 

 Functional dependencies: 

• course_id → title, dept_name, credits 

• building, room_number → capacity  

• course_id, sec_id, semester, year → building, room_number, time_slot_id  

 A candidate key {course_id, sec_id, semester, year}. 

 BCNF Decomposition: 

• course_id→ title, dept_name, credits  holds 

 but course_id is not a superkey. 

•  We replace class by: 

 course(course_id, title, dept_name, credits) 

 class-1 (course_id, sec_id, semester, year, building, room_number, capacity, time_slot_id) 

 course is in BCNF 

• How do we know this? 

 building, room_number→capacity  holds on class-1  

•  but {building, room_number} is not a superkey for class-1. 

• We replace class-1 by: 

 classroom (building, room_number, capacity) 

 section (course_id, sec_id, semester, year, building, room_number, time_slot_id) 

 classroom and section are in BCNF. 

 

Third Normal Form 

 There are some situations where  

• BCNF is not dependency preserving, and  
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• efficient checking for FD violation on updates is important 

 Solution: define a weaker normal form, called Third Normal Form (3NF) 

• Allows some redundancy (with resultant problems; we will see examples later)  

• But functional dependencies can be checked on individual relations without computing a join. 

• There is always a lossless-join, dependency-preserving decomposition into 3NF. 

 

3NF Example -- Relation dept_advisor 

 dept_advisor (s_ID, i_ID, dept_name) 

F = {s_ID, dept_name  i_ID,  i_ID  dept_name} 

 Two candidate keys:  s_ID, dept_name, and  i_ID, s_ID  

 R is in 3NF 

• s_ID, dept_name  i_ID   s_ID  

  dept_name is a superkey  

•  i_ID  dept_name   

 dept_name is contained in a candidate key 

 

Testing for 3NF 

 Need to check only FDs in F, need not check all FDs in F+. 

 Use attribute closure to check for each dependency   , if  is a superkey. 

 If  is not a superkey, we have to verify if each attribute in  is contained in a candidate key of R 

• This test is rather more expensive, since it involve finding candidate keys 

• Testing for 3NF has been shown to be NP-hard 

• Interestingly, decomposition into third normal form (described shortly) can be done in 

polynomial time  

 

3NF Decomposition Algorithm 

Let Fc be a canonical cover for F; 

i := 0; 

for each  functional dependency    in Fc do 

 if none of the schemas Rj, 1  j   i contains     

  then begin 

    i := i  + 1; 

    Ri  :=    

   end 

if none of the schemas Rj, 1  j   i contains a candidate key for R 

 then begin 

   i := i  + 1; 

   Ri := any candidate key for R; 

  end  

/* Optionally, remove redundant relations */ 

repeat 

if any schema Rj is contained in another schema Rk 

        then /* delete Rj  */ 

           Rj = R;; 

           i=i-1; 

return (R1, R2, ..., Ri)       

 

Above algorithm ensures: 

 Each relation schema Ri is in 3NF 

 Decomposition is dependency preserving and lossless-join 

 Proof of correctness is at end of this presentation (click here) 
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3NF Decomposition: An Example 

 Relation schema: 

cust_banker_branch = (customer_id, employee_id, branch_name, type )  

 The functional dependencies for this relation schema are: 

• customer_id, employee_id  branch_name, type 

• employee_id  branch_name  

• customer_id, branch_name  employee_id  

 We first compute a canonical cover 

• branch_name is extraneous in the r.h.s. of the 1st dependency 

• No other attribute is extraneous, so we get FC = 

              customer_id, employee_id  type 

    employee_id  branch_name 

          customer_id, branch_name  employee_id  

 The for loop generates following 3NF schema: 

            (customer_id, employee_id, type ) 

                   (employee_id, branch_name) 

                   (customer_id, branch_name, employee_id) 

• Observe that (customer_id, employee_id, type ) contains a candidate key of the original schema, 

so no further relation schema needs be added 

 At end of for loop, detect and delete schemas, such as  (employee_id, branch_name), which are subsets 

of other schemas 

• result will not depend on the order in which FDs are considered 

 The resultant simplified 3NF schema is: 

   (customer_id, employee_id, type) 

                 (customer_id, branch_name, employee_id) 

 

Comparison of BCNF and 3NF 

 It is always possible to decompose a relation into a set of  relations that are in 3NF such that: 

• The decomposition is lossless 

• The dependencies are preserved 

 It is always possible to decompose a relation into a set of relations that are in BCNF such that: 

• The decomposition is lossless 

• It may not be possible to preserve dependencies. 

 

Design Goals 

 Goal for a relational database design is: 

• BCNF. 

• Lossless join. 

• Dependency preservation. 

 If we cannot achieve this, we accept one of 

• Lack of dependency preservation  

• Redundancy due to use of 3NF 

 Interestingly, SQL does not provide a direct way of specifying functional dependencies other than 

superkeys. 

 Can specify FDs using assertions, but they are expensive to test, (and currently not supported by any 

of the widely used databases!) 

 Even if we had a dependency preserving decomposition, using SQL we would not be able to efficiently 

test a functional dependency whose left hand side is not a key. 

 

Multivalued Dependencies 

 Suppose we record names of children, and phone numbers for instructors: 

• inst_child(ID, child_name) 
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• inst_phone(ID, phone_number) 

 If we were to combine these schemas to get 

• inst_info(ID, child_name, phone_number) 

• Example data: 

(99999, David, 512-555-1234) 

(99999, David, 512-555-4321) 

(99999, William, 512-555-1234) 

(99999, William, 512-555-4321) 

 This relation is in BCNF 

• Why? 

 

Multi-valued Dependencies 

 Let R be a relation schema and let   R and   R.   The multi-valued dependency  

       

 holds on R if in any legal relation r(R), for all pairs for tuples t1 and t2 in r such that t1[] = t2 [], there 

exist tuples t3 and t4 in r such that:  

  t1[] = t2 [] = t3 [] = t4 []  

  t3[]         =  t1 []  

  t3[R  – ] =  t2[R  – ]  

  t4 []         =  t2[]  

  t4[R  – ] =  t1[R  – ]  

 

  Tabular representation of     

 
 

 Let R be a relation schema with a set of attributes that are partitioned into 3 nonempty subsets. 

   Y, Z, W 

 We say that Y  Z (Y multidetermines Z ) 

if and only if for all possible relations r (R )  

  < y1, z1, w1 >  r and < y1, z2, w2 >  r  

 then 

  < y1, z1, w2 >  r and < y1, z2, w1 >  r 

 Note that since the behavior of Z and W are identical it follows that  

 Y  Z if Y  W  

 

Example 

 In our example: 

  ID  child_name  

 ID  phone_number  

 The above formal definition is supposed to formalize the notion that given a particular value of Y (ID) it 

has associated with it a set of values of Z (child_name) and a set of values of W (phone_number), and 

these two sets are in some sense independent of each other. 

 Note:  

• If Y  Z  then  Y  Z  

• Indeed we have (in above notation) Z1 = Z2 

The claim follows. 
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Use of Multivalued Dependencies 

 We use multivalued dependencies in two ways:  

1. To test relations to determine whether they are legal under a given set of functional and multivalued 

dependencies 

2. To specify constraints on the set of legal relations.  We shall concern ourselves only with relations 

that satisfy a given set of functional and multivalued dependencies. 

 If a relation r fails to satisfy a given multivalued dependency, we can construct a relations r  that does 

satisfy the multivalued dependency by adding tuples to r.  

   

Theory of MVDs 

 From the definition of multivalued dependency, we can derive the following rule: 

• If   , then     

 That is, every functional dependency is also a multivalued dependency 

 The closure D+ of D is the set of all functional and multivalued dependencies logically implied by D.  

• We can compute D+ from D, using the formal definitions of functional dependencies and 

multivalued dependencies. 

• We can manage with such reasoning for very simple multivalued dependencies, which seem to 

be most common in practice 

• For complex dependencies, it is better to reason about sets of dependencies using a system of 

inference rules (Appendix C). 

 

Fourth Normal Form 

 A relation schema R is in 4NF with respect to a set D of functional and multivalued dependencies if for 

all multivalued dependencies in D+ of the form   , where   R and   R, at least one of the 

following hold: 

•    is trivial (i.e.,    or    = R) 

•  is a superkey for schema R 

 If a relation is in 4NF it is in BCNF 

 

Restriction of Multivalued Dependencies 

 The restriction of  D to Ri is the set Di consisting of 

• All functional dependencies in D+ that include only attributes of Ri 

• All multivalued dependencies of the form 

     (  Ri) where   Ri  and     is in D+  

 

4NF Decomposition Algorithm 

 result: = {R}; 

done := false; 

compute D+; 

Let Di denote the restriction of D+ to Ri 

      while (not done)  

    if (there is a schema Ri in result that is not in 4NF) then 

       begin  

   let    be a nontrivial multivalued dependency that holds 

            on Ri such that   Ri  is not in Di, and ;  

          result :=  (result - Ri)  (Ri - )   (, );  

       end 

    else done:= true; 

      Note: each Ri is in 4NF, and decomposition is lossless-join 

 

Example 

 R =(A, B, C, G, H, I) 
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 F ={ A  B  

  B  HI  

  CG  H } 

 R is not in 4NF since A  B and A is not a superkey for R  

 Decomposition 

 a) R1 = (A, B)    (R1 is in 4NF) 

 b) R2 = (A, C, G, H, I)    (R2 is not in 4NF, decompose into R3 and R4) 

 c) R3 = (C, G, H)   (R3 is in 4NF) 

 d) R4 = (A, C, G, I)    (R4 is not in 4NF, decompose into R5 and R6) 

• A  B and B  HI  A  HI, (MVD transitivity), and 

• and hence A  I (MVD restriction to R4)  

 e) R5 = (A, I)     (R5 is in 4NF) 

 f)R6 = (A, C, G)    (R6 is in  4NF) 

 

Further Normal Forms 

 Join dependencies generalize multivalued dependencies 

• lead to project-join normal form (PJNF) (also called fifth normal form) 

 A class of even more general constraints, leads to a normal form called domain-key normal form. 

 Problem with these generalized constraints:  are hard to reason with, and no set of sound and 

complete set of inference rules exists. 

 Hence rarely used 

 

Overall Database Design Process 

We have assumed schema R is given 

 R could have been generated when converting E-R diagram to a set of tables. 

 R could have been a single relation containing all attributes that are of interest (called universal 

relation). 

 Normalization breaks R into smaller relations. 

 R could have been the result of some ad hoc design of relations, which we then test/convert to normal 

form. 

 

ER Model and Normalization 

 When an E-R diagram is carefully designed, identifying all entities correctly, the tables generated from 

the E-R diagram should not need further normalization. 

 However, in a real (imperfect) design, there can be functional dependencies from non-key attributes of 

an entity to other attributes of the entity 

• Example:  an employee entity with 

  attributes  

   department_name and building,  

  functional dependency  

   department_name building 

 Good design would have made department an entity 

 Functional dependencies from non-key attributes of a relationship set possible, but rare --- most 

relationships are binary  

 

Denormalization for Performance 

 May want to use non-normalized schema for performance 

 For example, displaying prereqs along with course_id,  and title requires join of course with prereq  

 Alternative 1:  Use denormalized relation containing attributes of course as well as prereq with all 

above attributes 

• faster lookup 

• extra space and extra execution time for updates 
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• extra coding work for programmer and possibility of error in extra code 

 Alternative 2: use a materialized view defined a course      prereq  

• Benefits and drawbacks same as above, except no extra coding work for programmer and 

avoids possible errors 

 

Other Design Issues 

 Some aspects of database design are not caught by normalization 

 Examples of bad database design, to be avoided:  

 Instead of earnings (company_id, year, amount ), use  

• earnings_2004, earnings_2005, earnings_2006, etc., all on the schema (company_id, earnings). 

 Above are in BCNF, but make querying across years difficult and needs new table each 

year 

• company_year (company_id, earnings_2004, earnings_2005,   

earnings_2006) 

 Also in BCNF, but also makes querying across years difficult and requires new attribute 

each year. 

 Is an example of a crosstab, where values for one attribute become column names 

 Used in spreadsheets, and in data analysis tools 

 

Modeling Temporal Data 

 Temporal data have an association time interval during which the data are valid.  

 A snapshot is the value of the data at a particular point in time 

 Several proposals to extend ER model by adding valid time to 

• attributes, e.g., address of an instructor at different points in time 

• entities, e.g., time duration when a student entity exists 

• relationships, e.g., time during which an instructor was associated with a student as an 

advisor. 

 But no accepted standard 

 Adding a temporal component results in functional dependencies like 

  ID  street, city 

 not holding, because the address varies over time 

 A temporal functional dependency  X  Y holds on schema R if the functional dependency X  Y 

holds on all snapshots for all legal instances r (R). 

 In practice, database designers may add start and end time attributes to relations 

• E.g.,  course(course_id, course_title) is replaced by  

        course(course_id, course_title, start, end) 

• Constraint: no two tuples can have overlapping valid times 

 Hard to enforce efficiently 

 Foreign key references may be to current version of data, or to data at a point in time 

• E.g., student transcript should refer to course information at the time the course was taken 
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Additional Notes/Problems: 

Functional Dependency and Attribute Closure 

A functional dependency A->B in a relation holds if two tuples having same value of attribute A also have 

same value for attribute B. For Example, in relation STUDENT shown in table 1, Functional Dependencies  

  

STUD_NO->STUD_NAME, STUD_NO->STUD_PHONE hold 

but  

STUD_NAME->STUD_STATE do not hold  

 
 

How to find functional dependencies for a relation? 

Functional Dependencies in a relation are dependent on the domain of the relation. Consider the STUDENT 

relation given in Table 1.  

  

 We know that STUD_NO is unique for each student. So STUD_NO->STUD_NAME, STUD_NO-

>STUD_PHONE, STUD_NO->STUD_STATE, STUD_NO->STUD_COUNTRY and STUD_NO -> STUD_AGE 

all will be true. 

 Similarly, STUD_STATE->STUD_COUNTRY will be true as if two records have same STUD_STATE, they 

will have same STUD_COUNTRY as well. 

 For relation STUDENT_COURSE, COURSE_NO->COURSE_NAME will be true as two records with 

same COURSE_NO will have same COURSE_NAME. 

 

Functional Dependency Set:  Functional Dependency set or FD set of a relation is the set of all FDs present 

in the relation.  

 

For Example, FD set for relation STUDENT shown in table 1 is:  

{STUD_NO -> STUD_NAME,  

STUD_NO -> STUD_PHONE,  

STUD_NO -> STUD_STATE,  

STUD_NO -> STUD_COUNTRY,  

STUD_NO -> STUD_AGE,  

STUD_STATE -> STUD_COUNTRY} 

 

Attribute Closure: Attribute closure of an attribute set can be defined as set of attributes which can be 

functionally determined from it.  

How to find attribute closure of an attribute set?  

To find attribute closure of an attribute set:  

 Add elements of attribute set to the result set. 

 Recursively add elements to the result set which can be functionally determined from the elements of 

the result set. 

 

Using FD set of table 1, attribute closure can be determined as:  

  

(STUD_NO)+ = {STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE, STUD_COUNTRY, STUD_AGE} 
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(STUD_STATE)+ = {STUD_STATE, STUD_COUNTRY} 

  

How to find Candidate Keys and Super Keys using Attribute Closure?  

 If attribute closure of an attribute set contains all attributes of relation, the attribute set will be super 

key of the relation. 

 If no subset of this attribute set can functionally determine all attributes of the relation, the set will be 

candidate key as well. For Example, using FD set of table 1, 

 

(STUD_NO, STUD_NAME)+ = {STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE, STUD_COUNTRY, 

STUD_AGE}  

 

(STUD_NO)+ = {STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE, STUD_COUNTRY, STUD_AGE}  

 

(STUD_NO, STUD_NAME) will be super key but not candidate key because its subset (STUD_NO)+ is equal to 

all attributes of the relation. So, STUD_NO will be a candidate key.  

 

GATE Question: Consider the relation scheme R = {E, F, G, H, I, J, K, L, M, N} and the set of functional 

dependencies {{E, F} -> {G}, {F} -> {I, J}, {E, H} -> {K, L}, K -> {M}, L -> {N} on R. What is the key for R? (GATE-

CS-2014)  

A. {E, F}  

B. {E, F, H}  

C. {E, F, H, K, L}  

D. {E}  

Answer: Finding attribute closure of all given options, we get:  

{E,F}+ = {EFGIJ}  

{E,F,H}+ = {EFHGIJKLMN}  

{E,F,H,K,L}+ = {{EFHGIJKLMN}  

{E}+ = {E}  

{EFH}+ and {EFHKL}+ results in set of all attributes, but EFH is minimal. So it will be candidate key. So 

correct option is (B).  

  

How to check whether an FD can be derived from a given FD set? 

To check whether an FD A->B can be derived from an FD set F,  

 

1. Find (A)+ using FD set F. 

2. If B is subset of (A)+, then A->B is true else not true. 

 

GATE Question: In a schema with attributes A, B, C, D and E following set of functional dependencies are 

given  

{A -> B, A -> C, CD -> E, B -> D, E -> A}  

Which of the following functional dependencies is NOT implied by the above set? (GATE IT 2005)  

A. CD -> AC  

B. BD -> CD  

C. BC -> CD  

D. AC -> BC  

Answer: Using FD set given in question,  

(CD)+ = {CDEAB} which means CD -> AC also holds true.  

(BD)+ = {BD} which means BD -> CD can’t hold true. So this FD is no implied in FD set. So (B) is the required 

option.  

Others can be checked in the same way.  

  

Prime and non-prime attributes 
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Attributes which are parts of any candidate key of relation are called as prime attribute, others are non-prime 

attributes. For Example, STUD_NO in STUDENT relation is prime attribute, others are non-prime attribute.  

 

GATE Question:  Consider a relation scheme R = (A, B, C, D, E, H) on which the following functional 

dependencies hold: {A–>B, BC–> D, E–>C, D–>A}. What are the candidate keys of R? [GATE 2005]  

(a) AE, BE  

(b) AE, BE, DE  

(c) AEH, BEH, BCH  

(d) AEH, BEH, DEH  

Answer: (AE)+ = {ABECD} which is not set of all attributes. So AE is not a candidate key. Hence option A and 

B are wrong.  

(AEH)+ = {ABCDEH}  

(BEH)+ = {BEHCDA}  

(BCH)+ = {BCHDA} which is not set of all attributes. So BCH is not a candidate key. Hence option C is wrong.  

So correct answer is D.  

 

Finding Attribute Closure and Candidate Keys using Functional Dependencies 

What is Functional Dependency? 

A functional dependency X->Y in a relation holds if two tuples having same value for X also have same value 

for Y i.e  X uniquely determines Y. 

In EMPLOYEE relation given in Table 1, 

 FD E-ID->E-NAME holds because for each E-ID, there is a unique value of E-NAME. 

 FD E-ID->E-CITY and E-CITY->E-STATE also holds. 

 FD E-NAME->E-ID does not hold because E-NAME ‘John’ is not uniquely determining E-ID. There are 

2 E-IDs corresponding to John (E001 and E003). 

 

EMPLOYEE 

E-ID E-NAME E-CITY E-STATE 

E001 John Delhi Delhi 

E002 Mary Delhi Delhi 

E003 John Noida U.P. 

Table 1 

 

The FD set for EMPLOYEE relation given in Table 1 are: 

{E-ID->E-NAME, E-ID->E-CITY, E-ID->E-STATE, E-CITY->E-STATE} 

 

Trivial versus Non-Trivial Functional Dependency: A trivial functional dependency is the one which will 

always hold in a relation. 

X->Y will always hold if X ⊇ Y 

 

In the example given above, E-ID, E-NAME->E-ID is a trivial functional dependency and will always hold 

because {E-ID,E-NAME} ⊃ {E-ID}. You can also see from the table that for each value of {E-ID, E-NAME}, value 

of E-ID is unique, so {E-ID, E-NAME} functionally determines E-ID. 

 

If a functional dependency is not trivial, it is called Non-Trivial Functional Dependency. Non-Trivial functional 

dependency may or may not hold in a relation. e.g; E-ID->E-NAME is a non-trivial functional dependency 

which holds in the above relation. 
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Properties of Functional Dependencies 

Let X, Y, and Z are sets of attributes in a relation R. There are several properties of functional dependencies 

which always hold in R also known as Armstrong Axioms. 

1. Reflexivity: If Y is a subset of X, then X → Y. e.g.; Let X represents {E-ID, E-NAME} and Y represents 

{E-ID}.  {E-ID, E-NAME}->E-ID is true for the relation. 

2. Augmentation: If X → Y, then XZ → YZ. e.g.; Let X represents {E-ID}, Y represents {E-NAME} and Z 

represents {E-CITY}. As {E-ID}->E-NAME is true for the relation, so { E-ID,E-CITY}->{E-NAME,E-CITY} 

will also be true. 

3. Transitivity: If X → Y and Y → Z, then X → Z. e.g.; Let X represents {E-ID}, Y represents {E-CITY} and 

Z represents {E-STATE}. As {E-ID} ->{E-CITY} and {E-CITY}->{E-STATE}  is true for the relation, so { E-

ID }->{E-STATE} will also be true. 

4. Attribute Closure: The set of attributes that are functionally dependent on the attribute A is called 

Attribute Closure of A and it can be represented as A+. 

 

Steps to Find the Attribute Closure of A 

Q. Given FD set of a Relation R, The attribute closure set S be the set of A 

1. Add A to S. 

2. Recursively add attributes which can be functionally determined from attributes of the set S until 

done. 

From Table 1, FDs are 

Given R(E-ID, E-NAME, E-CITY, E-STATE) 

FDs = { E-ID->E-NAME, E-ID->E-CITY, E-ID->E-STATE, E-CITY->E-STATE } 

The attribute closure of E-ID can be calculated as: 

1. Add E-ID to the set {E-ID} 

2. Add Attributes which can be derived from any attribute of set. In this case, E-NAME and E-CITY, E-

STATE can be derived from E-ID. So these are also a part of closure. 

3. As there is one other attribute remaining in relation to be derived from E-ID. So result is: 

(E-ID)+ = {E-ID, E-NAME, E-CITY, E-STATE } 

Similarly, 

(E-NAME)+ = {E-NAME} 

(E-CITY)+ = {E-CITY, E_STATE} 

 
Q. Find the attribute closures of given FDs R(ABCDE) = {AB->C, B->D, C->E, D->A} To find (B)+ ,we will add 

attribute in set using various FD which has been shown in table below.   

Attributes Added in Closure FD used 

{B} Triviality 

{B,D} B->D 

{B,D,A} D->A 

{B,D,A,C} AB->C 

{B,D,A,C,E} C->E 

 We can find (C, D)+ by adding  C and D into the set (triviality) and then E using(C->E) and then A using 

(D->A) and set becomes.   (C,D)+ = {C,D,E,A} 

 Similarly we can find (B,C)+ by adding B and C into the set (triviality) and then D using (B->D) and then E 

using (C->E) and then A using (D->A) and set becomes  (B,C)+ ={B,C,D,E,A} 

 
Candidate Key 
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Candidate Key is minimal set of attributes of a relation which can be used to identify a tuple uniquely. For 

Example, each tuple of EMPLOYEE relation given in Table 1 can be uniquely identified by E-ID and it is 

minimal as well. So it will be Candidate key of the relation. 

A candidate key may or may not be a primary key. 

Super Key 

Super Key is set of attributes of a relation which can be used to identify a tuple uniquely.For Example, each 

tuple of EMPLOYEE relation given in Table 1 can be uniquely identified by E-ID or (E-ID, E-NAME) or (E-ID, 

E-CITY) or (E-ID, E-STATE) or (E_ID, E-NAME, E-STATE) etc. So all of these are super keys of EMPLOYEE 

relation. 

Note: A candidate key is always a super key but vice versa is not true. 

 
Q. Finding Candidate Keys and Super Keys of a Relation using FD set The set of attributes whose attribute 

closure is set of all attributes of relation is called super key of relation. For Example, the EMPLOYEE relation 

shown in Table 1 has following FD set. {E-ID->E-NAME, E-ID->E-CITY, E-ID->E-STATE, E-CITY->E-

STATE} Let us calculate attribute closure of different set of attributes: 

(E-ID)+ = {E-ID, E-NAME,E-CITY,E-STATE} 

(E-ID,E-NAME)+ = {E-ID, E-NAME,E-CITY,E-STATE} 

(E-ID,E-CITY)+ = {E-ID, E-NAME,E-CITY,E-STATE} 

(E-ID,E-STATE)+ = {E-ID, E-NAME,E-CITY,E-STATE} 

(E-ID,E-CITY,E-STATE)+ = {E-ID, E-NAME,E-CITY,E-STATE} 

(E-NAME)+ = {E-NAME} 

(E-CITY)+ = {E-CITY,E-STATE} 

As (E-ID)+, (E-ID, E-NAME)+, (E-ID, E-CITY)+, (E-ID, E-STATE)+, (E-ID, E-CITY, E-STATE)+ give set of all 

attributes of relation EMPLOYEE. So all of these are super keys of relation. 

The minimal set of attributes whose attribute closure is set of all attributes of relation is called candidate key 

of relation. As shown above, (E-ID)+ is set of all attributes of relation and it is minimal. So E-ID will be 

candidate key. On the other hand (E-ID, E-NAME)+ also is set of all attributes but it is not minimal because 

its subset (E-ID)+ is equal to set of all attributes. So (E-ID, E-NAME) is not a candidate key. 

 

Types of Functional dependencies in DBMS 

A functional dependency is a constraint that specifies the relationship between two sets of attributes where 

one set can accurately determine the value of other sets. It is denoted as X → Y, where X is a set of attributes 

that is capable of determining the value of Y. The attribute set on the left side of the arrow, X is 

called Determinant, while on the right side, Y is called the Dependent.  

 

Example: 

roll_no name dept_name dept_building 

42 abc CO A4 

43 pqr IT A3 

44 xyz CO A4 

45  xyz IT A3 

46 mno EC B2 

47 jkl ME B2 

From the above table we can conclude some valid functional dependencies: 
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 roll_no → { name, dept_name, dept_building },→  Here, roll_no can determine values of fields name, 

dept_name and dept_building, hence a valid Functional dependency 

 roll_no → dept_name , Since, roll_no can determine whole set of {name, dept_name, dept_building}, it 

can determine its subset dept_name also. 

 dept_name → dept_building ,  Dept_name can identify the dept_building accurately, since departments 

with different dept_name will also have a different dept_building 

 More valid functional dependencies: roll_no → name, {roll_no, name} ⇢ {dept_name, dept_building}, 

etc. 

 

Here are some invalid functional dependencies: 

 name → dept_name   Students with the same name can have different dept_name, hence this is not a 

valid functional dependency. 

 dept_building → dept_name    There can be multiple departments in the same building, For example, 

in the above table departments ME and EC are in the same building B2, hence dept_building → 

dept_name is an invalid functional dependency. 

 More invalid functional dependencies: name → roll_no, {name, dept_name} → roll_no, dept_building → 

roll_no, etc. 

 

Armstrong’s axioms/properties of functional dependencies: 

1. Reflexivity: If Y is a subset of X, then X→Y holds by reflexivity rule 

For example, {roll_no, name} → name is valid. 

2. Augmentation: If X → Y is a valid dependency, then XZ → YZ is also valid by the augmentation rule. 

For example, If {roll_no, name} → dept_building is valid, hence {roll_no, name, dept_name} → 

{dept_building, dept_name} is also valid.→ 

3. Transitivity: If X → Y and Y → Z are both valid dependencies, then X→Z is also valid by the 

Transitivity rule. 

For example, roll_no → dept_name & dept_name → dept_building, then roll_no → dept_building is also 

valid. 

 

Types of Functional dependencies in DBMS: 

1. Trivial functional dependency 

2. Non-Trivial functional dependency 

3. Multivalued functional dependency 

4. Transitive functional dependency 

 

1. Trivial Functional Dependency 

In Trivial Functional Dependency, a dependent is always a subset of the determinant. 

i.e. If X → Y and Y is the subset of X, then it is called trivial functional dependency 

 

For example, 

roll_no name age 

42 abc 17 

43 pqr 18 

44 xyz 18 

Here, {roll_no, name} → name is a trivial functional dependency, since the dependent name is a subset of 

determinant set {roll_no, name} 

Similarly, roll_no → roll_no is also an example of trivial functional dependency.  
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2. Non-trivial Functional Dependency 

In Non-trivial functional dependency, the dependent is strictly not a subset of the determinant. 

i.e. If X → Y and Y is not a subset of X, then it is called Non-trivial functional dependency. 

For example, 

roll_no name age 

42 abc 17 

43 pqr 18 

44 xyz 18 

Here, roll_no → name is a non-trivial functional dependency, since the dependent name is not a subset 

of determinant roll_no 

Similarly, {roll_no, name} → age is also a non-trivial functional dependency, since age is not a subset of 

{roll_no, name}  

 

3. Multivalued Functional Dependency 

In Multivalued functional dependency, entities of the dependent set are not dependent on each other. 

i.e. If a → {b, c} and there exists no functional dependency between b and c, then it is called a multivalued 

functional dependency. 

For example, 

roll_no name age  

42 abc 17  

43 pqr 18 

44 xyz 18 

45 abc 19 

Here, roll_no → {name, age} is a multivalued functional dependency, since the 

dependents name & age are not dependent on each other(i.e. name → age or age → name doesn’t exist !) 

 

4. Transitive Functional Dependency 

In transitive functional dependency, dependent is indirectly dependent on determinant. i.e. If a → b & b → c, 

then according to axiom of transitivity, a → c. This is a transitive functional dependency   

For example, 

enrol_no name dept building_no 

42 abc CO 4 

43 pqr EC 2 

44 xyz IT 1 

45 abc EC 2 
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Here, enrol_no → dept and dept → building_no,  

Hence, according to the axiom of transitivity, enrol_no → building_no is a valid functional dependency. This is 

an indirect functional dependency, hence called Transitive functional dependency. 

 

Number of Possible Super Keys in DBMS 

Any set of attributes of a table that can uniquely identify all the tuples of that table is known as a Super key. 

It’s different from the primary and candidate keys in the sense that only the minimal superkeys are the 

candidate/primary keys. 

 

This means that from a super key when we remove all the attributes that are unnecessary for its uniqueness, 

only then it becomes a primary/candidate key. So, in essence, all primary/candidate keys are super keys but 

not all super keys are primary/candidate keys. By the formal definition of a Relation(Table), we know that the 

tuples of a relation are all unique. So, the set of all attributes itself is a super key.  

 

Example-1: Let a Relation R have attributes {a1,a2,a3} and a1 is the candidate key. Then how many super 

keys are possible?  

Here, any superset of a1 is the super key.  

Super keys are = {a1, a1 a2, a1 a3, a1 a2 a3}  

Thus we see that 4 Super keys are possible in this case.  

In general, if we have ‘N’ attributes with one candidate key then the number of possible superkeys is 2(N – 1).  

 

Example-2 : Let a Relation R have attributes {a1, a2, a3,…,an}. Find Super key of R.  

Maximum Super keys = 2n – 1.  

If each attribute of relation is candidate key. 

 

Example-3: Let a Relation R have attributes {a1, a2, a3,…, an} and the candidate key is “a1 a2 a3” then the 

possible number of super keys?  

Following the previous formula, we have 3 attributes instead of one. So, here the number of possible super 

keys is 2(N-3).  

 

Example-4: Let a Relation R have attributes {a1, a2, a3,…, an} and the candidate keys are “a1”, “a2” then the 

possible number of super keys?  

This problem now is slightly different since we now have two different candidate keys instead of only one. 

Tackling problems like these is shown in the diagram below:  

 
→ |A1 ∪ A2| = |A1| + |A2| - |A1 ∩ A2|  

= (super keys possible with candidate key A1) + (super keys possible with candidate key A2) – (common 

superkeys from both A1 and A2)  

= 2(n-1) + 2(n-1) - 2(n-2)   

 

Example-5: Let a Relation R have attributes {a1, a2, a3,…, an} and the candidate keys are “a1”, “a2 a3” then 

the possible number of super keys?  

Super keys of (a1) + Super keys of (a2 a3) – Super keys of (a1 a2 a3)  

⇒ 2(n - 1) + 2(n - 2) - 2(n - 3)  
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Example-6: Let a Relation R have attributes {a1, a2, a3,…, an} and the candidate keys are “a1 a2”, “a3 a4” 

then the possible number of super keys?  

Super keys of(a1 a2) + Super keys of(a3 a4) – Super keys of(a1 a2 a3 a4)  

⇒ 2(n - 2) + 2(n - 2) - 2(n - 4)   

Example-7: Let a Relation R have attributes {a1, a2, a3,…, an} and the candidate keys are “a1 a2”, “a1 a3” 

then the possible number of super keys?  

Super keys of (a1 a2) + Super keys of (a1 a3) – Super keys of(a1 a2 a3)  

⇒ 2(n - 2) + 2(n - 2) - 2(n - 3)   

 

Example-8 : Let a Relation R have attributes {a1, a2, a3,…,an} and the candidate keys are “a1”, “a2”, “a3” 

then the possible number of super keys?  

In this question, we have 3 different candidate keys. Tackling problems like these are shown in the diagram 

below.  

 
→ |A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3| – |A1 ∩ A2| – |A1 ∩ A3| – |A2 ∩ A3| + |A1 ∩ A2 ∩ A3|  

= (super keys possible with candidate key A1) + (super keys possible with candidate key A2) + (super keys 

possible with candidate key A3) – (common super keys from both A1 and A2) – (common super keys from both 

A1 and A3) – (common super keys from both A2 and A3) + (common super keys from both A1, A2, and A3)  

= 2(n-1) + 2(n-1) + 2(n-1) – 2(n-2) – 2(n-2) – 2(n-2) + 2(n-3)  

  

Example-9: A relation R (A, B, C, D, E, F, G, H)and set of functional dependencies are  

CH → G,  

A → BC,  

B → CFH,  

E → A,  

F → EG  

Then how many possible super keys are present?  

Step 1:- First of all, we have to find what the candidate keys are:-  

as we can see in the given functional dependency D is missing but in relation, D is given so D must be a 

prime attribute of the Candidate key.  

A+ = E+ = B+ = F+ = all attributes of a relation except D  

So, Candidate keys are = AD, BD, ED, FD  

Step 2:-Find super keys due to a single candidate key there is a two possibilities of attribute either we select 

or not hence there will be 2 chances so,  

A_ _D_ _ _ _ = _ B_ D_ _ _ _ = _ _ _ DE _ _ _ = _ _ _ D_F_ _ = 26  
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Step 3:-Find superkeys due to a combination of two Candidate Keys. So,  

n(AD ∩ BD) = n(AD ∩ ED) = n(AD ∩ FD) = n(BD ∩ ED) = n(BD ∩ FD) = n(ED ∩ FD) = 25  

Step 4:-Find super keys due to a combination of 3 Candidate Keys  

So,  

n(AD ∩ BD ∩ ED) = n(AD ∩ ED ∩ FD) = n(ED ∩ BD ∩ FD) = n(BD ∩ FD ∩ AD) = 24  

Step 5:-Find super keys due to all. So, 

n(AD ∩ BD ∩ ED ∩ FD) = AB_DEF_ _ = 23  

So, According to the inclusion-exclusion principle :-  

|W ∪ X ∪ Y ∪ Z| = |W| + |X| + |Y| + |Z| – |W ∩ X| – |W ∩ Y| – |W ∩ Z| – |X ∩Y| – |X ∩ Z| – |Y ∩ Z| + |W ∩ 

X ∩ Y| + |W ∩ X ∩ Z| + |W ∩ Y ? Z| + |X ∩ Y ∩ Z| – |W ∩ X ∩ Y ∩ Z|  

# Super keys = 4 * 26 – 6 * 25 + 4 * 24 – 23 = 120  

So the number of super keys is 120.  

 

Example 10 : Let a Relation R have attributes {a1,a2,a3______ an} and {a1a2a3____ak} as the candidate key 

where k<=n. Then how many super keys are possible? 

The possible number of super keys is 2(n-k). 

 

Example 11: Let a relation R have attributes {a1,a2,a3______ an} such that any k of the attributes at a time 

determines all other attributes. Find the value of k such that the number of candidate keys in the relation will 

be maximum. 

Any k attributes at a time constitute one candidate key. These k attributes are randomly chosen from the n 

attributes. So for some k, the possible no of candidate keys is nCk, i.e., n!/(n-k)!k!. For the number of 

members to be maximum k must be ⌊n/2⌋ so that nCk is the maximum for that value. 
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Query Processing: Overview, Measures of Query cost, Selection operation, sorting, Join Operation, other 

operations, Evaluation of Expressions.  

Query optimization: Overview, Transformation of Relational Expressions, Estimating statistics of Expression 

results, Choice of Evaluation Plans, Materialized views, Advanced Topics in Query Optimization. 

 

Basic Steps in Query Processing 

1. Parsing and translation 

2. Optimization 

3. Evaluation  

 

 
 Parsing and translation 

• translate the query into its internal form.  This is then translated into relational algebra. 

• Parser checks syntax, verifies relations 

 Evaluation 

• The query-execution engine takes a query-evaluation plan, executes that plan, and returns the 

answers to the query. 

 

Optimization 

 A relational algebra expression may have many equivalent expressions 

• E.g., salary75000(salary(instructor)) is equivalent to  

         salary(salary75000(instructor)) 

 Each relational algebra operation can be evaluated using one of several different algorithms 

• Correspondingly, a relational-algebra expression can be evaluated in many ways.  

 Annotated expression specifying detailed evaluation strategy is called an evaluation-plan.  E.g.,: 

• Use an index on salary to find instructors with salary < 75000, 

• Or perform complete relation scan and discard instructors with salary  75000 

 Query Optimization: Amongst all equivalent evaluation plans choose the one with lowest cost.  

•  Cost is estimated using statistical information from the 

 database catalog 

 e.g.. number of tuples in each relation, size of tuples, etc. 

 

Measures of Query Cost 

 Many factors contribute to time cost 

• disk access, CPU, and network communication 

 Cost can be measured based on  

• response time, i.e. total elapsed time for answering query, or 

• total resource consumption 

 We use total resource consumption as cost metric 

• Response time harder to estimate, and minimizing resource consumption is a good idea in a 

shared database 

 We ignore CPU costs for simplicity 

• Real systems do take CPU cost into account 
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• Network costs must be considered for parallel systems 

 We describe how estimate the cost of each operation 

• We do not include cost to writing output to disk 

 Disk cost can be estimated as: 

• Number of seeks             * average-seek-cost 

• Number of blocks read     * average-block-read-cost 

• Number of blocks written * average-block-write-cost 

 For simplicity we just use the number of block transfers from disk and the number of seeks as the 

cost measures 

• tT – time to transfer one block 

 Assuming for simplicity that write cost is same as read cost 

• tS – time for one seek 

• Cost for b block transfers plus S seeks 

        b * tT + S * tS  

 tS and tT depend on where data is stored; with 4 KB blocks: 

• High end magnetic disk: tS = 4 msec and tT =0.1 msec  

• SSD:  tS = 20-90 microsec and tT = 2-10 microsec for 4KB  

 Required data may be buffer resident already, avoiding disk I/O 

• But hard to take into account for cost estimation 

 Several algorithms can reduce disk IO by using extra buffer space  

• Amount of real memory available to buffer depends on other concurrent queries and OS 

processes, known only during execution 

 Worst case estimates assume that no data is initially in buffer  and only the minimum amount of 

memory needed for the operation is available 

• But more optimistic estimates are used in practice 

 

Selection Operation 

 File scan  

 Algorithm A1 (linear search).  Scan each file block and test all records to see whether they satisfy the 

selection condition. 

• Cost estimate = br block transfers + 1 seek  

 br  denotes number of blocks containing records from relation r 

• If selection is on a key attribute, can stop on finding record 

 cost = (br /2) block transfers + 1 seek 

• Linear search can be applied regardless of  

 selection condition or 

 ordering of records in the file, or  

 availability of indices 

 Note: binary search generally does not make sense since data is not stored consecutively 

• except when there is an index available,  

• and binary search requires more seeks than index search 

 

Selections Using Indices 

 Index scan – search algorithms that use an index 

• selection condition must be on search-key of index. 

 A2 (clustering index, equality on key).  Retrieve a single record that satisfies the corresponding 

equality condition   

• Cost = (hi + 1) * (tT + tS)  

 A3 (clustering index, equality on nonkey) Retrieve multiple records.  

• Records will be on consecutive blocks 

 Let b = number of blocks containing matching records 

• Cost = hi * (tT + tS) + tS + tT * b  

 A4 (secondary index, equality on key/non-key).  
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• Retrieve a single record if the search-key is a candidate key 

 Cost = (hi + 1) * (tT + tS)  

• Retrieve multiple records if search-key is not a candidate key 

 each of n matching records may be on a different block   

 Cost =  (hi + n) * (tT + tS)  

 Can be very expensive! 

 

Selections Involving Comparisons 

 Can implement selections of the form AV (r) or A  V(r) by using 

•  a linear file scan, 

•  or by using indices in the following ways: 

 A5 (clustering index, comparison). (Relation is sorted on A)  

 For A  V(r)  use index to find first tuple  v  and scan relation sequentially  from there 

 For AV (r) just scan relation sequentially till first tuple > v; do not use index  

 A6 (clustering index, comparison).  

 For A  V(r)  use index to find first index entry  v and scan index sequentially  from 

there, to find pointers to records. 

 For AV (r) just scan leaf pages of index finding pointers to records, till first entry > v  

 In either case, retrieve records that are pointed to 

 requires an I/O per record; Linear file scan may be cheaper! 

 

Implementation of Complex Selections 

 Conjunction:  1 2. . . n(r)   

 A7 (conjunctive selection using one index).   

• Select a combination of i and algorithms A1 through A7 that results in the least cost for i (r). 

•  Test other conditions on tuple after fetching it into memory buffer. 

 A8 (conjunctive selection using composite index).   

• Use appropriate composite (multiple-key) index if available. 

 A9 (conjunctive selection by intersection of identifiers).  

• Requires indices with record pointers.  

• Use corresponding index for each condition, and take intersection of all the obtained sets of 

record pointers.  

• Then fetch records from file 

• If some conditions do not have appropriate indices, apply test in memory. 

 

Algorithms for Complex Selections 

 Disjunction:1 2 . . . n (r).  

 A10 (disjunctive selection by union of identifiers).  

• Applicable if all  conditions have available indices.   

 Otherwise use linear scan. 

• Use corresponding index for each condition, and take union of all the obtained sets of record 

pointers.  

• Then fetch records from file 

 Negation:  (r) 

• Use linear scan on file 

• If very few records satisfy , and an index is applicable to   

  Find satisfying records using index and fetch from file 

 

Bitmap Index Scan 

 The bitmap index scan algorithm of PostgreSQL 

• Bridges gap between secondary index scan and linear file scan when number of matching 

records is not known before execution 
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• Bitmap with 1 bit per page in relation 

• Steps: 

 Index scan used to find record ids, and set bit of corresponding page in bitmap 

 Linear file scan fetching only pages with bit set to 1 

• Performance 

 Similar to index scan when only a few bits are set 

 Similar to linear file scan when most bits are set 

 Never behaves very badly compared to best alternative 

 

Sorting 

 We may build an index on the relation, and then use the index to read the relation in sorted order.  

May lead to one disk block access for each tuple. 

 For relations that fit in memory, techniques like quicksort can be used.   

• For relations that don’t fit in memory, external sort-merge is a good choice.  

 

Example: External Sorting Using Sort-Merge 

 
 

External Sort-Merge 

Let M denote memory size (in pages).  

1.  Create sorted runs.  Let i be 0 initially.  

     Repeatedly do the following till the end of the relation: 

     (a)  Read M blocks of relation into memory 

     (b)  Sort the in-memory blocks 

     (c)  Write sorted data to run Ri; increment i. 

  

Let the final value of i be N 

2.    Merge the runs (N-way merge). We assume (for now) that N < M.  

1. Use N blocks of memory to buffer input runs, and 1 block to buffer output. Read the first block 

of each run into its buffer page 

2.    repeat 

1. Select the first record (in sort order) among all buffer pages 

2. Write the record to the output buffer.  If the output buffer is full write it to disk. 
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3. Delete the record from its input buffer page. 

If the buffer page becomes empty then 

   read the next block (if any) of the run into the buffer.  

3.    until all input buffer pages are empty: 

 

 If N  M, several merge passes are required. 

• In each pass, contiguous groups of M - 1 runs are merged.  

• A pass reduces the number of runs by a factor of M -1, and creates runs longer by the same 

factor.  

 E.g.  If M=11, and there are 90 runs, one pass reduces the number of runs to 9, each 

10 times the size of the initial runs 

• Repeated passes are performed till all runs have been merged into one. 

 

 Cost analysis: 

• 1  block per run leads to too many seeks during merge 

 Instead use bb buffer blocks per run  

 read/write bb blocks at a time 

 Can merge M/bb–1 runs in one pass  

• Total number of merge passes required: log M/bb–1(br/M). 

• Block transfers for initial run creation as well as in each pass is 2br  

 for final pass, we don’t count write cost  

• we ignore final write cost for all operations since the output of an operation may 

be sent to the parent operation without being written to disk 

 Thus total number of block transfers for external sorting: 

  br ( 2 log M/bb–1 (br / M) + 1)   

• Seeks: next slide 

 

 Cost of seeks 

• During run generation: one seek to read each run and one seek to write each run 

  2 br / M  

• During the merge phase 

 Need 2 br / bb seeks for each merge pass  

• except the final one which does not require a write 

 Total number of seeks: 

    2 br / M + br / bb (2 logM/bb–1(br / M) -1) 

 

Join Operation 

 Several different algorithms to implement joins 

• Nested-loop join 

• Block nested-loop join 

• Indexed nested-loop join 

• Merge-join 

• Hash-join 

 Choice based on cost estimate 

 Examples use the following information 

• Number of records of student:  5,000     takes: 10,000 

• Number of blocks of   student:     100     takes:      400 

 

Nested-Loop Join 

 To compute the theta join        r ⨝  s 

      for each tuple tr in r do begin 

         for each tuple ts  in s do begin 
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       test pair (tr,ts) to see if they satisfy the join condition   

       if they do, add tr • ts to the result. 

         end 

     end  

 r  is called the outer relation and s the inner relation of the join. 

 Requires no indices and can be used with any kind of join condition. 

 Expensive since it examines every pair of tuples in the two relations.  

 

 In the worst case, if there is enough memory only to hold one block of each relation, the estimated cost 

is  

       nr  bs + br   block transfers, plus  nr + br  seeks  

 If the smaller relation fits entirely in memory, use that as the inner relation. 

•  Reduces cost to br  + bs block transfers and 2 seeks 

 Assuming worst case memory availability cost estimate is 

• with student as outer relation: 

 5000  400 + 100 = 2,000,100 block transfers, 

 5000 + 100 = 5100 seeks  

• with takes  as the outer relation  

 10000  100 + 400 = 1,000,400 block transfers and 10,400 seeks 

 If smaller relation (student) fits entirely in memory, the cost estimate will be 500 block transfers. 

 Block nested-loops algorithm (next slide) is preferable. 

 

Block Nested-Loop Join 

 Variant of nested-loop join in which every block of inner relation is paired with every block of outer 

relation. 

  for each block Br of r do begin 

  for each block Bs of s do begin 

   for each tuple tr in Br  do begin 

    for each tuple ts in Bs do begin 

     Check if (tr,ts) satisfy the join condition  

     if they do, add tr • ts to the result. 

    end 

   end 

  end 

 end 

 

 Worst case estimate:  br  bs + br  block transfers + 2 * br  seeks  

• Each block in the inner relation s is read once for each block in the outer relation  

 Best case: br + bs block transfers + 2 seeks. 

 Improvements to nested loop and block nested loop algorithms: 

• In block nested-loop, use M — 2 disk blocks as blocking unit for outer relations, where M = 

memory size in blocks; use remaining two blocks to buffer inner relation and output 

   Cost =   br  / (M-2)  bs + br block transfers + 2 br  / (M-2) seeks  

• If equi-join attribute forms a key or inner relation, stop inner loop on first match 

• Scan inner loop forward and backward alternately, to make use of the blocks remaining in 

buffer (with LRU replacement) 

• Use index on inner relation if available (next slide) 

 

Indexed Nested-Loop Join 

 Index lookups can replace file scans if 

• join is an equi-join or natural join and 

• an index is available on the inner relation’s join attribute 
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 Can construct an index just to compute a join. 

 For each tuple tr in the outer relation r, use the index to look up tuples in s that satisfy the join 

condition with tuple tr. 

 Worst case:  buffer has space for only one page of r, and, for each tuple in r, we perform an index 

lookup on s.  

 Cost of the join:  br (tT + tS) + nr  c  

• Where c is the cost of traversing index and fetching all matching s tuples for one tuple or r  

• c can be estimated as cost of a single selection on s using the join condition. 

 If indices are available on join attributes of both r and s, 

use the relation with fewer tuples as the outer relation. 

 

Example of Nested-Loop Join Costs 

 Compute student ⨝ takes, with student as the outer relation. 

 Let takes have a primary B+-tree index on the attribute ID, which contains 20 entries in each index 

node. 

 Since takes has 10,000 tuples, the height of the tree is 4, and one more access is needed to find the 

actual data 

 student has 5000 tuples 

 Cost of block nested loops join 

• 400*100 + 100 =  40,100 block transfers + 2 * 100 = 200 seeks 

  assuming worst case memory  

 may be significantly less with more memory 

  Cost of indexed nested loops join 

• 100 + 5000 * 5 = 25,100  block transfers and seeks. 

• CPU cost likely to be less than that for block nested loops join  

 

Merge-Join 

1.   Sort both relations on their join attribute (if not already sorted on the join  

      attributes). 

2.   Merge the sorted relations to join them 

1.   Join step is similar to the merge stage of the sort-merge algorithm.   

2.   Main difference is handling of duplicate values in join attribute —  

      every pair with same value on join attribute must be matched 

3.   Detailed algorithm in book 

 
 Can be used only for equi-joins and natural joins 

 Each block needs to be read only once (assuming all tuples for any given value of the join attributes fit 

in memory 

 Thus the cost of merge join is:  

         br + bs  block transfers  + br / bb + bs / bb  seeks + the cost of sorting if relations are unsorted. 
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 hybrid merge-join: If one relation is sorted, and the other has a secondary B+-tree index on the join 

attribute 

• Merge the sorted relation with the leaf entries of the B+-tree .  

• Sort the result on the addresses of the unsorted relation’s tuples 

• Scan the unsorted relation in physical address order and merge with previous result, to replace 

addresses by the actual tuples 

 Sequential scan more efficient than random lookup 

 

Hash-Join 

 Applicable for equi-joins and natural joins. 

 A hash function h is used to partition tuples of both relations  

 h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the common attributes of r and s used 

in the natural join.  

• r0, r1, . . ., rn denote partitions of r tuples 

 Each tuple tr  r is put in partition ri where i = h(tr [JoinAttrs]). 

• r0,, r1. . ., rn denotes partitions of s tuples 

 Each tuple ts s is put in partition si, where i = h(ts [JoinAttrs]). 

 Note: In book,  Figure 12.10 ri   is denoted as Hri, si is denoted as Hsi  and 

 n is denoted as nh.  

 

 
 r  tuples in ri need only to be compared with s tuples in si Need not be compared with s tuples in any 

other partition, since: 

• an r tuple and an s tuple that satisfy the join condition will have the same value for the join 

attributes. 

• If that value is hashed to some value i, the r tuple has to be in ri and the s tuple in si. 

 

Hash-Join Algorithm 

The hash-join of r and s is computed as follows. 

1. Partition the relation s using hashing function h.  When partitioning a relation, one block of memory is 

reserved as the output buffer for each partition. 

2. Partition r similarly. 

3. For each i:  

(a) Load si into memory and build an in-memory hash index on it using the join attribute.  This hash 

index uses a different hash function than the earlier one h.  

(b) Read the tuples in ri from the disk one by one.  For each tuple tr locate each matching tuple ts in si 

using the in-memory hash index.  Output the concatenation of their attributes. 
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Relation s is called the build input and r is called the probe input. 

 

 The value n and the hash function h is chosen such that each si should fit in memory. 

• Typically n is chosen as bs/M * f  where f is a “fudge factor”, typically around 1.2 

• The probe relation partitions si need not fit in memory 

 Recursive partitioning required if number of partitions n is greater than number of pages M of 

memory. 

• instead of partitioning n ways, use  M – 1 partitions for s 

• Further partition the M – 1 partitions using a different hash function 

• Use same partitioning method on r 

• Rarely required: e.g., with block size of 4 KB, recursive partitioning not needed for relations of < 

1GB with memory size of 2MB, or relations of < 36 GB with memory of 12 MB 

 

Handling of Overflows 

 Partitioning is said to be skewed if some partitions have significantly more tuples than some others 

 Hash-table overflow occurs in partition si if si does not fit in memory.  Reasons could be 

• Many tuples in s with same value for join attributes 

• Bad hash function 

 Overflow resolution can be done in build phase 

• Partition si is further partitioned using different hash function.  

• Partition ri must be similarly partitioned. 

 Overflow avoidance performs partitioning carefully to avoid overflows during build phase 

• E.g., partition build relation into many partitions, then combine them 

 Both approaches fail with large numbers of duplicates 

• Fallback option: use block nested loops join on overflowed  partitions 

 

Cost of Hash-Join 

 If recursive partitioning is not required: cost of hash join is 

          3(br + bs) +4  nh  block transfers + 

         2( br / bb + bs / bb)  seeks  

 If recursive partitioning required: 

• number of passes required for partitioning build relation s to less than M blocks per partition is 

logM/bb–1(bs/M)  

• best to choose the smaller relation as the build relation. 

• Total cost estimate is:  

      2(br + bs) logM/bb–1(bs/M) + br + bs  block transfers +  

      2(br / bb + bs / bb) logM/bb–1(bs/M)   seeks  

 If the entire build input can be kept in main memory no partitioning is required 

• Cost estimate goes down to br + bs. 

 

Example of Cost of Hash-Join 

instructor ⨝ teaches 

 Assume that memory size is 20 blocks 

 binstructor= 100 and bteaches = 400. 

 instructor is to be used as build input.  Partition it into five partitions, each of size 20 blocks.  This 

partitioning can be done in one pass. 

 Similarly, partition teaches into five partitions, each of size 80.  This is also done in one pass. 

 Therefore total cost, ignoring cost of writing partially filled blocks: 

• 3(100 + 400) = 1500 block transfers  + 

2( 100/3 + 400/3) = 336 seeks  

 

Hybrid Hash–Join 
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 Useful when memory sized are relatively large, and the build input is bigger than memory. 

 Main feature of hybrid hash join: 

      Keep the first partition of the build relation in memory.  

 E.g. With memory size of 25 blocks, instructor can be partitioned into five partitions, each of size 20 

blocks. 

•  Division of memory: 

 The first partition occupies 20 blocks of memory 

 1 block is used for input, and 1 block each for buffering the other 4 partitions. 

 teaches is similarly partitioned into five partitions each of size 80 

• the first is used right away for probing, instead of being written out 

 Cost of 3(80 + 320) + 20 +80 = 1300 block transfers for 

 hybrid hash join, instead of 1500 with plain hash-join. 

 Hybrid hash-join most useful if M >>  

 

Complex Joins 

 Join with a conjunctive condition: 

  r ⨝ 1  2...   n s  

• Either use nested loops/block nested loops, or 

• Compute the result of one of the simpler joins r ⨝ i s  

 final result comprises those tuples in the intermediate result that satisfy the remaining 

conditions 

  1  . . .  i –1  i +1  . . .  n  

 Join with a disjunctive condition  

   r ⨝ 1  2 ...  n s  

• Either use nested loops/block nested loops, or 

•  Compute as the union of the records in individual joins r ⨝ i s: 

  (r ⨝ 1 s)  (r ⨝ 2  s)  . . .  (r ⨝ n  s)  

 

Joins over Spatial Data 

 No simple sort order for spatial joins 

 Indexed nested loops join with spatial indices 

• R-trees, quad-trees, k-d-B-trees 

 

Other Operations 

 Duplicate elimination can be implemented via hashing or sorting. 

• On sorting duplicates will come adjacent to each other, and all but one set of duplicates can be 

deleted.   

• Optimization: duplicates can be deleted during run generation as well as at intermediate merge 

steps in external sort-merge. 

• Hashing is similar – duplicates will come into the same bucket. 

 Projection: 

• perform projection on each tuple  

• followed by duplicate elimination.  

 

 

Other Operations : Aggregation 

 Aggregation can be implemented in a manner similar to duplicate elimination. 

• Sorting or hashing can be used to bring tuples in the same group together, and then the 

aggregate functions can be applied on each group.  

• Optimization: partial aggregation 

 combine tuples in the same group during run generation and intermediate merges, by 

computing partial aggregate values 
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 For count, min, max, sum: keep aggregate values on tuples found so far in the group.   

• When combining partial aggregate for count, add up the partial aggregates 

 For avg, keep sum and count, and divide sum by count at the end 

 

Other Operations : Set Operations 

 Set operations (,  and ):  can either use variant of merge-join after sorting, or variant of hash-

join.  

 E.g., Set operations using hashing: 

1.   Partition both relations using the same hash function 

2.   Process each partition i as follows.   

1. Using a different hashing function, build an in-memory hash index on ri. 

2. Process si as follows 

• r  s:   

1. Add tuples in si to the hash index if they are not already in it.   

2. At end of si add the tuples in the hash index to the result. 

 E.g., Set operations using hashing: 

1.   as before partition r and s,  

2.   as before, process each partition i as follows  

1. build a hash index on ri  

2. Process si as follows 

1. r  s:  

• output tuples in si to the result if they are already there in the hash index 

2.  r – s:  

• for each tuple in si, if it is there in the hash index, delete it from the index.  

•  At end of si add remaining tuples in the hash index to the result.  

 

Answering Keyword Queries 

 Indices mapping keywords to documents 

• For each keyword, store sorted list of document IDs that contain the keyword 

 Commonly referred to as a inverted index 

 E.g.,: database:  d1, d4, d11, d45, d77, d123 

         distributed:  d4, d8, d11, d56, d77, d121, d333 

• To answer a query with several keywords, compute intersection of lists corresponding to those 

keywords 

 To support ranking, inverted lists store extra information 

• “Term frequency” of the keyword in the document 

• “Inverse document frequency” of the keyword 

• Page rank of the document/web page 

 

Other Operations : Outer Join 

 Outer join can be computed either as  

• A join followed by addition of null-padded non-participating tuples. 

• by modifying the join algorithms. 

 Modifying merge join to compute r ⟕ s  

• In r ⟕ s, non participating tuples are those in r – R(r ⨝ s) 

• Modify merge-join to compute r ⟕ s:   

 During merging, for every tuple tr from r that do not match any tuple in s, output tr 

padded with nulls. 

• Right outer-join and full outer-join can be computed similarly. 

 Modifying hash join to compute r ⟕ s  

• If  r is probe relation, output non-matching r tuples padded with nulls 

• If r is build relation, when probing keep track of which r tuples matched s tuples.  At end of si  

output non-matched r tuples padded with nulls  
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Evaluation of Expressions 

 Alternatives for evaluating an entire expression tree 

• Materialization:  generate results of an expression whose inputs are relations or are already 

computed, materialize (store) it on disk.  Repeat. 

• Pipelining:  pass on tuples to parent operations even as an operation is being executed 

 

Materialization 

 Materialized evaluation:  evaluate one operation at a time, starting at the lowest-level.  Use 

intermediate results materialized into temporary relations to evaluate next-level operations. 

 E.g., in figure below, compute and store 

 

 

then compute the store its join with instructor, and finally compute the projection on name.  

 

 
 Materialized evaluation is always applicable 

 Cost of writing results to disk and reading them back can be quite high 

• Our cost formulas for operations ignore cost of writing results to disk, so 

 Overall cost  =  Sum of costs of individual operations +  

                         cost of writing intermediate results to disk 

 Double buffering: use two output buffers for each operation, when one is full write it to disk while the 

other is getting filled 

• Allows overlap of disk writes with computation and reduces execution time 

 

Pipelining 

 Pipelined evaluation:  evaluate several operations simultaneously, passing the results of one 

operation on to the next. 

 E.g., in previous expression tree, don’t store result of 

 

  

• instead, pass tuples directly to the join..  Similarly, don’t store result of join, pass tuples 

directly to projection.  

 Much cheaper than materialization: no need to store a temporary relation to disk. 

 Pipelining may not always be possible – e.g., sort, hash-join.  

 For pipelining to be effective, use evaluation algorithms that generate output tuples even as tuples are 

received for inputs to the operation.  

 Pipelines can be executed in two ways:  demand driven and producer driven  

 

 In demand driven or lazy evaluation 

• system repeatedly requests next tuple  from top level operation 

• Each operation requests  next tuple from children operations as required, in order to output its 

next tuple 

• In between calls, operation has to maintain “state” so it knows what to return next 

 In producer-driven or eager pipelining 

• Operators produce tuples eagerly and pass them up to their parents 

)("Watson" departmentbuilding

)("Watson" departmentbuilding
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 Buffer maintained between operators, child puts tuples in buffer, parent removes tuples 

from buffer 

 if buffer is full, child waits till there is space in the buffer, and then generates more 

tuples 

• System schedules operations that have space in output buffer and can process more input 

tuples 

 Alternative name: pull and push models of pipelining 

 Implementation of demand-driven pipelining 

• Each operation is implemented as an iterator implementing the following operations 

 open() 

 E.g., file scan: initialize file scan 

  state: pointer to beginning of file 

 E.g., merge join: sort relations; 

  state: pointers to beginning of sorted relations 

  next() 

 E.g., for file scan: Output next tuple, and advance and store file pointer 

 E.g., for merge join:  continue with merge from earlier state till next output tuple 

is found.  Save pointers as iterator state. 

 close() 

 

Blocking Operations 

 Blocking operations:  cannot generate any output until all input is consumed 

• E.g., sorting, aggregation, … 

 But can often consume inputs from a pipeline, or produce outputs to a pipeline 

 Key idea: blocking operations often have two suboperations  

• E.g., for sort:  run generation and merge 

• For hash join:  partitioning and build-probe  

 Treat them as separate operations 

 

 
 

Pipeline Stages 

 Pipeline stages:  

• All operations in a stage run concurrently 

• A stage can start only after preceding stages have completed execution 

 
 

Evaluation Algorithms for Pipelining 

 Some algorithms are not able to output results even as they get input tuples 

• E.g., merge join, or hash join 

• intermediate results written to disk and then read back 

 Algorithm variants to generate (at least some) results on the fly, as input tuples are read in 
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• E.g., hybrid hash join generates output tuples even as probe relation tuples in the in-memory 

partition (partition 0) are read in 

• Double-pipelined join technique: Hybrid hash join, modified to buffer partition 0 tuples of 

both relations in-memory, reading them as they become available, and output results of any 

matches between partition 0 tuples 

 When a new r0 tuple is found, match it with existing s0 tuples, output matches, and 

save it in r0  

 Symmetrically for s0 tuples 

 

Pipelining for Continuous-Stream Data 

 Data streams 

• Data entering database in a continuous manner 

• E.g.,  Sensor networks, user clicks, … 

 Continuous queries 

• Results get updated as streaming data enters the database 

• Aggregation on windows is often used 

 E.g., tumbling windows divide time into units, e.g., hours, minutes 

 Need to use pipelined processing algorithms 

• Punctuations used to infer when all data for a window has been received 

 

Query Processing in Memory 

 Query compilation to machine code 

• Overheads of interpretation 

 E.g., repeatedly finding attribute location within tuple, from metadata  

 Overhead of expression evaluation 

• Compilation can avoid many such overheads and speed up query processing 

• Often via generation of Java byte code / LLVM, with just-in-time (JIT) compilation 

 Column-oriented storage 

• Allows vector operations (in conjunction with compilation) 

 Cache conscious algorithms 

 

Cache Conscious Algorithms 

 Goal: minimize cache misses, make best use of data fetched into the cache as part of a cache line 

 For sorting: 

• Use runs that are as large as L3 cache (a few megabytes) to avoid cache misses during sorting 

of a run 

• Then merge runs as usual in merge-sort 

 For hash-join 

• First create partitions such that build+probe partitions fit in memory 

• Then subpartition further s.t. build subpartition+index fits in L3 cache 

 Speeds up probe phase significantly by avoiding cache misses 

 Lay out attributes of tuples to maximize cache usage 

• Attributes that are often accessed together should be stored adjacent to each other 

 Use multiple threads for parallel query processing 

• Cache misses leads to stall of one thread, but others can proceed 
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Query Optimization 

 Alternative ways of evaluating a given query 

• Equivalent expressions 

• Different algorithms for each operation  

 
 

An evaluation plan defines exactly what algorithm is used for each operation, and how the execution of the 

operations is coordinated 

 

 
 

 Cost difference between evaluation plans for a query can be enormous 

• E.g., seconds vs. days in some cases 

 Steps in cost-based query optimization 

1.   Generate logically equivalent expressions using equivalence rules  

2.   Annotate resultant expressions to get alternative query plans 

3.   Choose the cheapest plan based on estimated cost  

 Estimation of plan cost based on: 

• Statistical information about relations. Examples: 

 number of tuples, number of distinct values for an attribute 

• Statistics estimation for intermediate results 

 to compute cost of complex expressions 

• Cost formulae for algorithms, computed using statistics 

 

Viewing Query Evaluation Plans 

 Most database support  explain <query> 

• Displays plan chosen by query optimizer, along with cost estimates 
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• Some syntax variations between databases 

 Oracle:  explain plan for <query> followed by select * from table (dbms_xplan.display) 

 SQL Server:  set showplan_text on 

 Some databases (e.g. PostgreSQL) support  explain analyse <query> 

• Shows actual runtime statistics found by running the query, in addition to showing the plan  

 Some databases (e.g. PostgreSQL) show cost as   f..l  

• f is the cost of delivering first tuple and l is cost of delivering all results  

 

Generating Equivalent Expressions 

Transformation of Relational Expressions 

 Two relational algebra expressions are said to be equivalent if the two expressions generate the same 

set of tuples on every legal database instance 

• Note: order of tuples is irrelevant 

• we don’t care if they generate different results on databases that violate integrity constraints 

 In SQL, inputs and outputs are multisets of tuples 

• Two expressions in the multiset version of the relational algebra are said to be equivalent if the 

two expressions generate the same multiset of tuples on every legal database instance.  

 An equivalence rule says that expressions of two forms are equivalent 

• Can replace expression of first form by second, or vice versa 

 

Equivalence Rules 

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections. 

                 σ1  2 (E)     ≡  σ1 (σ2 (E))  

2. Selection operations are commutative. 

                 σ1(σ2(E))    ≡   σ2 (σ1(E)) 

3. Only the last in a sequence of projection operations is needed, the others can be omitted. 

  L1( L2(…( Ln(E))…))     ≡      L1(E)  where L1 ⊆ L2 … ⊆ Ln 

4.    Selections can be combined with Cartesian products and theta joins. 

a.  σ (E1 x E2)     ≡    E1 ⨝  E2  

b.  σ 1 (E1 ⨝2 E2)     ≡    E1 ⨝ 1∧2 E2  

5.  Theta-join operations (and natural joins) are commutative. 

           E1 ⨝  E2    ≡    E2 ⨝ E1 

6. (a) Natural join operations are associative: 

(E1 ⨝  E2) ⨝  E3     ≡     E1 ⨝ (E2 ⨝ E3) 

(b) Theta joins are associative in the following manner: 

        (E1 ⨝ 1 E2) ⨝ 2  3 E3    ≡    E1 ⨝1  3 (E2 ⨝ 2 E3) 

     where 2 involves attributes from only E2 and E3. 
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7. The selection operation distributes over the theta join operation under the following two conditions: 

(a)  When all the attributes in 0  involve only the attributes of one of the expressions (E1) being joined. 

                0 E1 ⨝ E2)      ≡     (0(E1)) ⨝ E2  

 (b) When 1 involves only the attributes of E1 and 2  involves  only the attributes of E2. 

                 1  2 E1 ⨝ E2)     ≡      (1(E1)) ⨝ (2(E2)) 

 

8. The projection operation distributes over the theta join operation as follows: 

 (a) if  involves only attributes from L1  L2: 

            L1  L2(E1 ⨝  E2)     ≡      L1(E1) ⨝  L2(E2)   

 (b) In general, consider a join E1 ⨝  E2.  

•  Let L1 and L2 be sets of attributes from E1 and E2, respectively.   

• Let L3 be attributes of E1 that are involved in join condition , but are not in L1  L2, and 

•  let L4 be attributes of E2 that are involved in join condition , but are not in L1  L2. 

 L1  L2(E1 ⨝  E2)     ≡     L1  L2( L1  L3(E1) ⨝  L2  L4(E2)) 

 

Similar equivalences hold for outerjoin operations: ⟕, ⟖, and ⟗  

 

 
13.  Selection distributes over aggregation as below 

          (G𝛾A(E))    ≡   G𝛾A((E))  

       provided  only involves attributes in G 

14.  a. Full outerjoin is commutative: 

            E1 ⟗ E2     ≡    E2 ⟗ E1  

           b. Left and right outerjoin are not commutative, but: 

            E1 ⟕ E2     ≡    E2 ⟖ E1  

15.  Selection distributes over left and right outerjoins as below, provided 1              

       only involves attributes of E1   

       a. 1 (E1 ⟕ E2)    ≡    (1 (E1)) ⟕ E2  

       b. 1 (E1 ⟖ E2)    ≡    E2 ⟕ (1 (E1)) 

16.  Outerjoins can be replaced by inner joins under some conditions 
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        a. 1 (E1 ⟕ E2)    ≡    1 (E1 ⨝ E2) 

        b. 1 (E1 ⟖ E1)    ≡    1 (E1 ⨝ E2) 

        provided 1 is null rejecting on E2  

 

Note that several equivalences that hold for joins do not hold for outerjoins  

 year=2017(instructor ⟕ teaches)  ≢ year=2017(instructor ⨝ teaches) 

 Outerjoins are not associative 

               (r ⟕ s) ⟕ t     ≢     r ⟕ (s ⟕ t) 

• e.g. with r(A,B) = {(1,1),    s(B,C) = { (1,1)},   t(A,C) = { }  

 

Transformation Example: Pushing Selections 

 Query:  Find the names of all instructors in the Music department, along with the titles of the courses 

that they teach 

• name, title(dept_name= ‘Music’ 

               (instructor ⨝ (teaches ⨝ course_id, title (course)))) 

 Transformation using rule 7a. 

• name, title((dept_name= ‘Music’(instructor)) ⨝    

               (teaches ⨝ course_id, title (course))) 

 Performing the selection as early as possible reduces the size of the relation to be joined.  

 

Example with Multiple Transformations 

 Query: Find the names of all instructors in the Music department who have taught a course in 2017, 

along with the titles of the courses that they taught 

• name, title(dept_name= "Music”year = 2017 

         (instructor ⨝ (teaches ⨝ course_id, title (course))))  

 Transformation using join associatively (Rule 6a): 

• name, title(dept_name= “Music”year = 2017 

         ((instructor ⨝ teaches) ⨝  course_id, title (course))) 

 Second form provides an opportunity to apply the “perform selections early” rule, resulting in the 

subexpression 

           dept_name = “Music” (instructor) ⨝  year = 2017 (teaches) 

 
 

Transformation Example: Pushing Projections 

 Consider: name, title(dept_name= “Music” (instructor) ⨝ teaches)  

                                   ⨝  course_id, title (course)))) 

 When we compute 

  (dept_name = “Music” (instructor ⨝ teaches) 
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we obtain a relation whose schema is: 

(ID, name, dept_name, salary, course_id, sec_id, semester, year) 

 Push projections using equivalence rules 8a and 8b; eliminate unneeded attributes from intermediate 

results to get: 

      name, title(name, course_id ( 

                             dept_name= “Music” (instructor) ⨝ teaches))  

                ⨝   course_id, title (course)))) 

 Performing the projection as early as possible reduces the size of the relation to be joined.  

 

Join Ordering Example 

 For all relations r1, r2, and r3, 

  (r1 ⨝ r2) ⨝ r3  = r1 ⨝ (r2 ⨝ r3 ) 

 (Join Associativity) ⨝  

 If r2 ⨝  r3  is quite large and r1 ⨝ r2 is small, we choose 

  (r1 ⨝ r2) ⨝ r3  

 so that we compute and store a smaller temporary relation.  

 

 Consider the expression 

  name, title(dept_name= “Music” (instructor) ⨝ teaches)  

    ⨝  course_id, title (course)))) 

 Could compute   teaches ⨝ course_id, title (course) first, and join result with  

  dept_name= “Music” (instructor)  

but  the result of the first join is likely to be a large relation. 

 Only a small fraction of the university’s instructors are likely to be from the Music department 

•  it is better to compute 

   dept_name= “Music” (instructor) ⨝ teaches              first.  

 

Enumeration of Equivalent Expressions 

 Query optimizers use equivalence rules to systematically generate expressions equivalent to the given 

expression 

 Can generate all equivalent expressions as follows:  

•  Repeat 

 apply all applicable equivalence  rules on every subexpression of every equivalent 

expression found so far 

 add newly generated expressions to the set of equivalent expressions  

Until no new equivalent expressions are generated above 

 The above approach is very expensive in space and time 

• Two approaches 

 Optimized plan generation based on transformation rules 

 Special case approach for queries with only selections, projections and joins 

 

Implementing Transformation Based Optimization 

 Space requirements reduced by sharing common sub-expressions: 

• when E1 is generated from E2 by an equivalence rule, usually only the top level of the two are 

different, subtrees below are the same and can be shared using pointers 
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• E.g., when applying join commutativity 

 
 

• Same sub-expression may get generated multiple times 

 Detect duplicate sub-expressions and share one copy 

 Time requirements are reduced by not generating all expressions 

• Dynamic programming 

 We will study only the special case of dynamic programming for join order optimization 

 

Cost Estimation 

 Cost of each operator computer as described in Chapter 15 

• Need statistics of input relations 

 E.g., number of tuples, sizes of tuples 

 Inputs can be results of sub-expressions 

• Need to estimate statistics of expression results 

• To do so, we require additional statistics 

 E.g., number of distinct values for an attribute 

 More on cost estimation later 

 

Choice of Evaluation Plans 

 Must consider the interaction of evaluation techniques when choosing evaluation plans 

• choosing the cheapest algorithm for each operation independently may not yield best overall 

algorithm.  E.g. 

 merge-join may be costlier than hash-join, but may provide a sorted output which 

reduces the cost for an outer level aggregation. 

 nested-loop join may provide opportunity for pipelining 

 Practical query optimizers incorporate elements of the following two broad approaches: 

1. Search all the plans and choose the best plan in a cost-based fashion. 

2. Uses heuristics to choose a plan. 

 

Cost-Based Optimization 

 Consider finding the best join-order for r1 ⨝ r2 ⨝   . . . ⨝ rn. 

 There are (2(n – 1))!/(n – 1)! different join orders for above expression.  With n = 7, the number is 

665280, with n = 10, the number is greater than 176 billion! 

 No need to generate all the join orders.  Using dynamic programming, the least-cost join order for any 

subset of  

{r1, r2, . . . rn} is computed only once and stored for future use.   

 

Dynamic Programming in Optimization 

 To find best join tree for a set of n relations: 

• To find best plan for a set S of n relations, consider all possible plans of the form:  S1 ⨝ (S – S1) 

where S1 is any non-empty subset of S. 

• Recursively compute costs for joining subsets of S to find the cost of each plan.  Choose the 

cheapest of the 2n – 2 alternatives. 

• Base case for recursion:  single relation access plan 

 Apply all selections on Ri using best choice of indices on Ri 

• When plan for any subset is computed, store it and reuse it when it is required again, instead 

of recomputing it 

 Dynamic programming 
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Join Order Optimization Algorithm 

procedure findbestplan(S) 

if (bestplan[S].cost  ) 

 return bestplan[S] 

// else bestplan[S] has not been computed earlier, compute it now 

if (S contains only 1 relation) 

    set bestplan[S].plan and bestplan[S].cost based on the best way  

    of accessing S  using selections on S and indices (if any) on S else for each non-empty subset S1 of S such 

that S1  S 

 P1= findbestplan(S1) 

 P2= findbestplan(S - S1) 

 for each algorithm A for joining results of P1 and P2 

             … compute plan and cost of using A (see next page) .. 

        if cost < bestplan[S].cost  

  bestplan[S].cost = cost 

  bestplan[S].plan = plan; 

return bestplan[S]  

 

for each algorithm A for joining results of P1 and P2 

 // For indexed-nested loops join, the outer could be P1 or P2 

 // Similarly for hash-join, the build relation could be P1 or P2 

 //  We assume the alternatives are considered as separate algorithms            

      if algorithm A is indexed nested loops  

     Let Pi and Po denote inner and outer inputs 

     if Pi has a single relation ri and ri has an index on the join attribute 

                plan = “execute Po.plan; join results of Po and ri using A”,  

                      with any selection conditions on Pi performed as part of 

                       the join condition 

            cost = Po.cost + cost of A 

      else  cost = ; /* cannot use indexed nested loops join */ 

else  

      plan = “execute P1.plan; execute P2.plan;  

                               join results of P1 and P2 using A;”  

      cost = P1.cost + P2.cost + cost of A 

      

Left Deep Join Trees 

 In left-deep join trees, the right-hand-side input for each join is a relation, not the result of an 

intermediate join. 

c 

 

Cost of Optimization 
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 With dynamic programming time complexity of optimization with bushy trees is O(3n).   

• With n = 10, this number is 59000 instead of 176 billion! 

 Space complexity is O(2n)  

 To find best left-deep join tree for a set of n relations: 

• Consider n alternatives with one relation as right-hand side input and the other relations as 

left-hand side input. 

• Modify optimization algorithm: 

 Replace “for each non-empty subset S1 of S such that S1  S”  

 By:   for each relation r in S 

               let S1 = S – r . 

 If only left-deep trees are considered, time complexity of finding best join order is O(n 2n) 

• Space complexity remains at O(2n)  

 Cost-based optimization is expensive, but worthwhile for queries on large datasets (typical queries 

have small n, generally < 10) 

 

Interesting Sort Orders 

 Consider the expression (r1 ⨝ r2) ⨝ r3 (with A as common attribute) 

 An interesting sort order  is a particular sort order of tuples that could make a later operation 

(join/group by/order by) cheaper 

• Using merge-join to compute r1 ⨝ r2  may be costlier than hash join but generates result sorted 

on A 

• Which in turn may make merge-join with r3 cheaper, which may reduce cost of join with r3 and 

minimizing overall cost  

 Not sufficient to find the best join order for each subset of the set of n given relations 

• must find the best join order for each subset, for each interesting sort order 

• Simple extension of earlier dynamic programming algorithms 

• Usually, number of interesting orders is quite small and doesn’t affect time/space complexity 

significantly  

 

Cost Based Optimization with Equivalence Rules 

 Physical equivalence rules allow logical query plan to be converted to physical query plan specifying 

what algorithms are used for each operation. 

 Efficient optimizer based on equivalent rules depends on 

• A space efficient representation of expressions which avoids making multiple copies of 

subexpressions 

• Efficient techniques for detecting duplicate derivations of expressions 

• A form of dynamic programming based on memoization, which stores the best plan for a 

subexpression the first time it is optimized, and reuses in on repeated optimization calls on 

same subexpression 

• Cost-based pruning techniques that avoid generating all plans 

 Pioneered by the Volcano project and implemented in the SQL Server optimizer 

 

Heuristic Optimization 

 Cost-based optimization is expensive, even with dynamic programming. 

 Systems may use heuristics to reduce the number of choices that must be made in a cost-based 

fashion. 

 Heuristic optimization transforms the query-tree by using a set of rules that typically (but not in all 

cases) improve execution performance: 

• Perform selection early (reduces the number of tuples) 

• Perform projection early (reduces the number of attributes) 

• Perform most restrictive selection and join operations (i.e., with smallest result size) before 

other similar operations. 
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• Some systems use only heuristics, others combine heuristics with partial cost-based 

optimization. 

 

Structure of Query Optimizers 

 Many optimizers considers only left-deep join orders. 

• Plus heuristics to push selections and projections down the query tree 

• Reduces optimization complexity and generates plans amenable to pipelined evaluation. 

 Heuristic optimization used in some versions of Oracle: 

• Repeatedly pick “best” relation to join next  

 Starting from each of n starting points.  Pick best among these 

 Intricacies of SQL complicate query optimization 

• E.g., nested subqueries 

 Some query optimizers integrate heuristic selection and the generation of alternative access plans. 

• Frequently used approach 

 heuristic rewriting of nested block structure and aggregation 

 followed by cost-based join-order optimization for each block 

• Some optimizers (e.g. SQL Server) apply transformations to entire query and do not depend on 

block structure 

• Optimization cost budget to stop optimization early (if cost of plan is less than cost of 

optimization) 

• Plan caching to reuse previously computed plan if query is resubmitted 

 Even with different constants in query   

 Even with the use of heuristics, cost-based query optimization imposes a substantial overhead. 

• But is worth it for expensive queries 

• Optimizers often use simple heuristics for very cheap queries, and perform exhaustive 

enumeration for more expensive queries  

 

Statistics for Cost Estimation 

Statistical Information for Cost Estimation 

 nr:  number of tuples in a relation r.  

 br: number of blocks containing tuples of r.  

 lr: size of a tuple of r. 

 fr: blocking factor of r — i.e., the number of tuples of r that fit into one block. 

 V(A, r): number of distinct values that appear in r for attribute A; same as the size of A(r). 

 If tuples of r are stored together physically in a file, then:  

 

 

 

 

Histograms 

 Histogram on attribute age of relation person 
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 Equi-depth histograms break up range such that each range has (approximately) the same number of 

tuples 

• E.g. (4, 8, 14, 19)  

 Many databases also store n most-frequent values and their counts 

• Histogram is built on remaining values only 

 Histograms and other statistics usually computed based on a random  sample 

 Statistics may be out of date 

• Some database require a analyze  command to be executed to update statistics 

• Others automatically recompute statistics  

 e.g., when number of tuples in a relation changes by some percentage 

 

Selection Size Estimation 

 A=v (r)  

• nr / V(A,r) : number of records that will satisfy the selection 

• Equality condition on a key attribute: size estimate = 1 

 AV(r) (case of A  V(r) is symmetric)  

• Let c denote  the estimated number of tuples satisfying the condition.  

• If min(A,r) and max(A,r) are available in catalog 

 c = 0 if v < min(A,r) 

 

 c =  

 

•  If histograms available, can refine above estimate 

• In absence of statistical information c is assumed to be nr / 2. 

 

Size Estimation of Complex Selections 

      The selectivity of a condition i is the probability that a tuple in the relation r satisfies i .  

•  If si  is the number of satisfying tuples in r, the selectivity of  i is given by si /nr.  

 Conjunction:  1 2. . .  n (r).  Assuming independence, estimate of tuples in the result is: 

 
 Disjunction:1 2 . . .  n (r).   Estimated number of tuples:  

 

 Negation:  (r).  Estimated number of tuples: 

 nr – size((r)) 

 

 

Join Operation:  Running Example 

Running example:  student ⨝ takes 

Catalog information for join examples: 

 nstudent = 5,000. 

 fstudent  = 50, which implies that  bstudent =5000/50 = 100. 

 ntakes = 10000. 

 ftakes   = 25, which implies that  btakes = 10000/25 = 400. 

 V(ID, takes) = 2500, which implies that on average, each student who has taken a course has taken 4 

courses. 

• Attribute ID in takes is a foreign key referencing student. 

• V(ID, student) = 5000 (primary key!) 

 

Estimation of the Size of Joins 

 The Cartesian product r  x s contains nr .ns tuples; each tuple occupies sr + ss bytes. 
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 If R  S = , then r ⋈ s is the same as r  x s.  

 If R  S is a key for R, then a tuple of s will join with at most one tuple from r  

• therefore, the number of tuples in r ⋈ s is no greater than the number of tuples in s. 

 If R  S in S is a foreign key in S referencing R, then the number of tuples in r ⋈ s is exactly the same 

as the number of tuples in s. 

 The case for R  S being a foreign key referencing S is symmetric. 

 In the example query student ⋈ takes, ID in  takes is a foreign key referencing student 

•  hence, the result has exactly ntakes tuples, which is 10000 

 If R  S = {A} is not a key for R or S. 

If we assume that every tuple t in R produces tuples in R    S, the number of tuples in R ⨝ S is 

estimated to be: 

 

 

 

If the reverse is true, the estimate obtained will be: 

 

 

 

The lower of these two estimates is probably the more accurate one. 

 Can improve on above if histograms are available 

• Use formula similar to above, for each cell of histograms on the two relations  

 

  Compute the size estimates for depositor ⨝ customer without using information about foreign 

keys: 

• V(ID, takes) = 2500, and 

V(ID, student) = 5000 

• The two estimates are 5000 * 10000/2500 = 20,000 and 5000 * 10000/5000 = 10000 

• We choose the lower estimate, which in this case, is the same as our earlier computation using 

foreign keys. 

 

Size Estimation for Other Operations 

 Projection:  estimated size of A(r)   =   V(A,r) 

 Aggregation : estimated size of G𝛾A(r)   = V(G,r) 

 Set operations 

•  For unions/intersections of selections on the same relation: rewrite and use size estimate for 

selections 

 E.g., 1 (r)  2 (r)  can be rewritten as 1 or  2 (r) 

• For operations on different relations: 

 estimated size of r  s  = size of r + size of s.    

 estimated size of r  s  = minimum size of r and size of s. 

 estimated size of r – s   = r. 

 All the three estimates may be quite inaccurate, but provide upper bounds on the sizes. 

 Outer join:   

• Estimated size of r ⟕ s  = size of  r ⨝ s  + size of r 

 Case of right outer join is symmetric 

• Estimated size of r ⟗ s  = size of r ⨝ s + size of r + size of s 

 

Estimation of Number of Distinct Values 

Selections:  (r)  

 If  forces A to take a specified value: V(A, (r)) = 1. 

 e.g., A = 3 

),( sAV

nn sr 

),( rAV

nn sr 
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 If  forces A to take on one of a specified set of values:  

        V(A, (r)) = number of specified values. 

 (e.g., (A = 1 V A = 3 V A = 4 )),  

 If the selection condition  is of the form A op r 

 estimated V(A, (r)) = V(A.r) * s  

 where s is the selectivity of the selection. 

 In all the other cases: use approximate estimate of 

  min(V(A,r), n (r) ) 

• More accurate estimate can be got using probability theory, but this one works fine generally 

 

Joins: r ⨝ s  

 If all attributes in A are from r 

     estimated  V(A, r ⨝ s) = min (V(A,r), n r ⨝ s) 

 If A contains attributes A1 from r and A2 from s, then estimated  

V(A,r ⨝ s) =  

  min(V(A1,r)*V(A2 – A1,s), V(A1 – A2,r)*V(A2,s), nr ⨝ s) 

•  More accurate estimate can be got using probability theory, but this one works fine generally 

 

 Estimation of distinct values are straightforward for projections. 

• They are the same in A (r) as in r.  

 The same holds for grouping attributes of aggregation. 

 For aggregated values  

• For min(A) and max(A), the number of distinct values can be estimated as min(V(A,r), V(G,r))  

where G denotes grouping attributes 

• For other aggregates, assume all values are distinct, and use V(G,r) 

 

Optimizing Nested Subqueries** 

 Nested query example: 

select name  

from instructor 

where exists (select * 

                 from teaches 

                 where instructor.ID = teaches.ID and teaches.year = 2019)  

 SQL conceptually treats nested subqueries in the where clause as       functions that take parameters 

and return a single value or set of values 

• Parameters are variables from outer level query that are used in the  nested subquery; such 

variables are called correlation variables 

 Conceptually, nested subquery is executed once for each tuple in the       cross-product generated by 

the outer level from clause 

• Such evaluation is called correlated evaluation  

• Note: other conditions in where clause may be used to compute a join (instead of a cross-

product) before executing the nested subquery 

 Correlated evaluation may be quite inefficient since  

• a large number of calls may be made to the nested query  

• there may be unnecessary random I/O as a result 

 SQL optimizers attempt to transform nested subqueries to joins where possible, enabling use of 

efficient join techniques 

 E.g.,: earlier nested query can be rewritten as  

  name(instructor ⨝instructor.ID=teaches.ID  teaches.year=2019  teaches)  

 Note: the two queries generate different numbers of duplicates (why?) 

• Can be modified to handle duplicates correctly using semijoins  

 The semijoin operator ⋉ is defined as follows 
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• A tuple ri appears n times in r ⋉  s if it appears n times in r, and there is at least one matching 

tuple si in s 

 E.g.: earlier nested query can be rewritten as  

  name(instructor ⋉ instructor.ID=teaches.ID  teaches.year=2019  teaches)  

• Or even as:   name(instructor ⋉instructor.ID=teaches.ID (teaches.year=2019 teaches)) 

• Now the duplicate count is correct! 

 The above relational algebra query is also equivalent to 

from instructor 

where ID in (select teaches.ID  

                 from teaches 

                 where teaches.year = 2019) 

 

In general, SQL queries of the form below can be rewritten as shown 

 Rewrite:  select A 

                from r1, r2 ,…, rn  

                         where P1 and exists (select * 

                    from s1, s2 ,…, sm  

          where P2
1
  and P2

2
 ) 

 To:  A(σ P1 (r1 x r2 x … x rn ) ⋉ P22  σ P21 (s1 x s2 x … x sm ) 

• P2
1  contains predicates that do not involve any correlation variables 

• P2
2 contains predicates involving correlation variables 

 The process of replacing a nested query by a query with a join/semijoin (possibly with a temporary 

relation) is called decorrelation. 

 Decorrelation is more complicated in several cases, e.g. 

 The nested subquery uses aggregation, or 

 The nested subquery is a scalar subquery 

• Correlated evaluation used in these cases 

 Decorrelation of scalar aggregate subqueries can be done using groupby/aggregation in some cases 

 select name 

from instructor 

where  1 < (select count(*)  

                 from teaches 

                 where instructor.ID = teaches.ID  

                                    and teaches.year = 2019) 

   name(instructor ⋉ instructor.ID=TID  1 < cnt (  

        ID as TID 𝛾count(*) as cnt (σ teaches.year=2019  (teaches))))  

 

Materialized Views 

 A materialized view is a view whose contents are computed and stored. 

 Consider the view 

create view department_total_salary(dept_name, total_salary) as 

select dept_name, sum(salary) 

from instructor 

group by dept_name  

 Materializing the above view would be very useful if the total salary by department is required 

frequently 

• Saves the effort of finding multiple tuples and adding up their amounts 

 

Materialized View Maintenance 

 The task of keeping a materialized view up-to-date with the underlying data is known as materialized 

view maintenance 

 Materialized views can be maintained by recomputation on every update 
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 A better option is to use incremental view maintenance 

• Changes to database relations are used to compute changes to the materialized view, 

which is then updated 

 View maintenance can be done by 

• Manually defining triggers on insert, delete, and update of each relation in the view definition 

• Manually written code to update the view whenever database relations are updated 

• Periodic recomputation (e.g. nightly) 

• Incremental maintenance supported by many database systems 

 Avoids manual effort/correctness issues 

 

Incremental View Maintenance 

 The changes (inserts and deletes) to a relation or expressions are referred to as its differential  

• Set of tuples inserted to and deleted from r are denoted ir and dr  

 To simplify our description, we only consider inserts and deletes 

• We replace updates to a tuple by deletion of the tuple followed by insertion of the update tuple  

 We describe how to compute the change to the result of each relational operation, given changes to its 

inputs 

 We then outline how to handle relational algebra expressions  

 

Join Operation 

 Consider the materialized view v = r  ⨝ s  and an update to r 

 Let rold and rnew denote the old and new states of relation r  

 Consider the case of an insert to r:   

• We can write rnew ⨝ s as (rold  ir) ⨝ s 

• And rewrite the above to  (rold
 ⨝ s)  (ir ⨝ s) 

• But (rold
 ⨝ s) is simply the old value of the materialized view, so the incremental change to the 

view is just      ir ⨝ s  

 Thus, for inserts     vnew = vold (ir ⨝ s)  

 Similarly for deletes    vnew = vold – (dr ⨝ s) 

 

Selection and Projection Operations 

 Selection: Consider a view v = (r). 

• vnew = vold (ir) 

• vnew = vold - (dr) 

 Projection is a more difficult operation  

• R = (A,B), and r(R) = { (a,2), (a,3)} 

•  A(r) has a single tuple (a).  

• If we delete the tuple (a,2) from r, we should not delete the tuple (a) from A(r), but if we then 

delete (a,3) as well, we should delete the tuple 

 For each tuple in a projection A(r) , we will keep a count of how many times it was derived 

• On insert of a tuple to r, if the resultant tuple is already in A(r) we increment its count, else we 

add a new tuple with count = 1 

• On delete of a tuple from r, we decrement the count of the corresponding tuple in A(r)  

 if the count becomes 0, we delete the tuple from A(r) 

 

Aggregation Operations 

 Count : v = A 𝛾 count(B)
(r).  

• When a set of tuples ir is inserted  

 For each tuple r in ir, if the corresponding group is already present in v, we increment 

its count, else we add a new tuple with count = 1 

• When a set of tuples dr is deleted 
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 for each tuple t in ir.we look for the group t.A in v, and subtract 1 from the count for the 

group.  

• If the count becomes 0, we delete from v the tuple for the group t.A  

 Sum: v = A 𝛾 sum (B)
(r)  

• We maintain the sum in a manner similar to count, except we add/subtract the B value 

instead of adding/subtracting 1 for the count 

• Additionally we maintain the count in order to detect groups with no tuples.  Such groups are 

deleted from v 

 Cannot simply test for sum = 0 (why?) 

 Avg: How to handle average? 

•  Maintain sum and count separately, and divide at the end 

 min, max: v = A 𝛾 min (B) (r).   

• Handling insertions on r is straightforward. 

• Maintaining the aggregate values min and max on deletions may be more expensive.  We have 

to look at the other tuples of r that are in the same group to find the new minimum 

 

Other Operations 

 Set intersection: v = r  s  

•  when a tuple is inserted in r we check if it is present in s, and if so we add it to v.  

• If the tuple is deleted from r, we delete it from the intersection if it is present.  

• Updates to s are symmetric 

• The other set operations, union and set difference are handled in a similar fashion. 

 Outer joins are handled in much the same way as joins but with some extra work  

 

Handling Expressions 

 To handle an entire expression, we derive expressions for computing the incremental change to the 

result of each sub-expressions, starting from the smallest sub-expressions. 

 E.g., consider  E1 ⨝ E2 where each of E1 and E2 may be a complex expression 

• Suppose the set of tuples to be inserted into E1 is given by D1  

 Computed earlier, since smaller sub-expressions are handled first 

• Then  the set of tuples to be inserted into E1 ⨝ E2 is given by 

 D1 ⨝ E2 

 This is just the usual way of maintaining joins 

 

Query Optimization and Materialized Views 

 Rewriting queries to use materialized views: 

• A materialized view v = r ⨝ s is available  

• A user submits a query    r ⨝ s ⨝ t  

• We can rewrite the query as v ⨝ t  

 Whether to do so depends on cost estimates for the two alternative 

 Replacing a use of a materialized view by the view definition: 

• A materialized view v = r ⨝ s is available, but without any index on it 

• User submits a query A=10(v).  

• Suppose also that s has an index on the common attribute B, and r has an index on attribute 

A.  

• The best plan for this query may be to replace v by r ⨝ s, which can lead to the query plan 

A=10(r) ⨝ s 

 Query optimizer should be extended to consider all above  

alternatives and  choose the best overall plan   

 

Materialized View Selection 

 Materialized view selection: “What is the best set of views to materialize?”  

 Index selection:  “what is the best set of indices to create”  
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• closely related, to materialized view selection 

 but simpler 

 Materialized view selection and index selection based on typical system workload (queries and 

updates) 

• Typical goal: minimize time to execute workload , subject to constraints on space and time 

taken for some critical queries/updates 

• One of the steps in database tuning  

 more on tuning in later chapters 

 Commercial database systems provide tools (called “tuning assistants” or “wizards”) to help the 

database administrator choose what indices and materialized views to create  

 

Top-K Queries   

select *  

from r, s 

where r.B = s.B 

order by r.A ascending 

limit 10 

• Alternative 1: Indexed nested loops join with r as outer 

• Alternative 2: estimate highest r.A value in result and add selection (and r.A <= H) to where 

clause   

 If < 10 results, retry with larger H 

 

Optimization of Updates 

 Halloween problem 

update R set A = 5 * A  

where A > 10 

• If index on A is used to find tuples satisfying A > 10, and   tuples updated immediately, same tuple 

may be found (and updated) multiple times 

• Solution 1: Always defer updates 

• collect the updates (old and new values of tuples) and update relation and indices in second 

pass 

• Drawback: extra overhead even if e.g. update is only on R.B, not on attributes in selection 

condition 

• Solution 2: Defer only if required 

• Perform immediate update if update does not affect attributes in where clause, and deferred 

updates otherwise. 
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Join Minimization 

select r.A, r.B  

from r, s 

where r.B = s.B  

 Check if join with s is redundant, drop it  

• E.g., join condition is on foreign key from r to s, r.B is declared as not null, and no selection on 

s 

• Other sufficient conditions possible 

 select r.A, s2.B  

 from r, s as s1, s as s2 

   where r.B=s1.B and r.B = s2.B and s1.A < 20 and s2.A < 10 

 join with s1 is redundant and can be dropped (along with selection on s1) 

• Lots of research in this area since 70s/80s! 

 

Multiquery Optimization 

 Example 

  Q1: select * from (r natural join t) natural join s 

  Q2: select * from (r natural join u) natural join s 

• Both queries share common subexpression (r natural join s) 

• May be useful to compute (r natural join s) once and use it in both queries 

 But this may be more expensive in some situations 

• e.g. (r natural join s) may be expensive, plans as shown in queries may be cheaper 

 Multiquery optimization: find best overall plan for a set of queries, exploiting sharing of common 

subexpressions between queries where it is useful 

 Simple heuristic used in some database systems: 

 optimize each query separately 

 detect and exploiting common subexpressions in the individual optimal query plans 

 May not always give best plan, but is cheap to implement 

 Shared scans: widely used special case of multiquery optimization 

 Set of materialized views may share common subexpressions 

 As a result, view maintenance plans may share subexpressions 

 Multiquery optimization can be useful in such situations 

 

Parametric Query Optimization 

 Example  

select *  

from r natural join s 

where r.a < $1 

• value of parameter $1 not known at compile time 

 known only at run time 

• different plans may be optimal for different values of $1 

 Solution 1: optimize at run time, each time query is submitted 

  can be expensive  

 Solution 2: Parametric Query Optimization: 

• optimizer generates a set of plans, optimal for different values of $1 

 Set of optimal plans usually small for 1 to 3 parameters 

 Key issue: how to do find set of optimal plans efficiently 

• best one from this set is chosen at run time when $1 is known 

 Solution 3: Query Plan Caching 

• If optimizer decides that same plan is likely to be optimal for all parameter values, it caches 

plan and reuses it, else re-optimize each time 

• Implemented in many database systems 
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Plan Stability Across Optimizer Changes 

 What if 95% of plans are faster on database/optimizer version N+1 than on N, but 5% are slower? 

• Why should plans be slower on new improved optimizer?   

 Answer: Two wrongs can make a right, fixing one wrong can make things worse! 

 Approaches: 

• Allow hints for tuning queries 

 Not practical for migrating large systems with no access to source code 

• Set optimization level, default to version N (Oracle) 

 And migrate one query at a time after testing both plans on new optimizer 

• Save plan from version N, and give it to optimizer version N+1 

 Sybase, XML representation of plans (SQL Server) 

 

Adaptive Query Processing 

 Some systems support adaptive operators that change execution algorithm on the fly 

• E.g., (indexed) nested loops join or hash join chosen at run time, depending on size of outer 

input 

 Other systems allow monitoring of behavior of plan at run time and adapt plan 

• E.g., if statistics such as number of rows is found to be very different in reality from what 

optimizer estimated 
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Unit 5 

Transaction Management: Transactions: Concept, A Simple Transactional Model, Storage Structures, 

Transaction Atomicity and Durability, Transaction Isolation, Serializability, Isolation and Atomicity, 

Transaction Isolation Levels, Implementation of Isolation Levels, Transactions as SQL Statements.  

Concurrency Control: Lock-based Protocols, Deadlock Handling, Multiple granularity, Timestamp-based 

Protocols, and Validation-based Protocols. 

Recovery System: Failure Classification, Storage, Recovery and Atomicity, Recovery Algorithm, Buffer 

Management, Failure with Loss of Nonvolatile Storage, Early Lock Release and Logical Undo Operations. 

 

A transaction is a unit of program execution that accesses and  possibly updates various data items. 

E.g., transaction to transfer $50 from account A to account B: 

1. read(A) 

2. A := A – 50 

3. write(A) 

4. read(B) 

5. B := B + 50 

6. write(B) 

Two main issues to deal with: 

 Failures of various kinds, such as hardware failures and system crashes 

 Concurrent execution of multiple transactions 

 

Example of Fund Transfer 

Transaction to transfer $50 from account A to account B: 

1. read(A) 

2. A := A – 50 

3. write(A) 

4. read(B) 

5. B := B + 50 

6. write(B) 

 Atomicity requirement - If the transaction fails after step 3 and before step 6, money will be “lost” leading 

to an inconsistent database state 

Failure could be due to software or hardware 

The system should ensure that updates of a partially executed transaction are not reflected in the database 

 Durability requirement — once the user has been notified that the transaction has completed (i.e., the 

transfer of the $50 has taken place), the updates to the database by the transaction must persist even if 

there are software or hardware failures. 

 Consistency requirement in above example: 

The sum of A and B is unchanged by the execution of the transaction 

In general, consistency requirements include: 

Explicitly specified integrity constraints such as primary keys and foreign keys 

Implicit integrity constraints - e.g., sum of balances of all accounts, minus sum of loan amounts must equal 

value of cash-in-hand 

A transaction must see a consistent database. 

During transaction execution the database may be temporarily inconsistent. 

When the transaction completes successfully the database must be consistent - Erroneous transaction logic 

can lead to inconsistency 

 Isolation requirement — if between steps 3 and 6, another transaction T2 is allowed to access the partially 

updated database, it will see an inconsistent database (the sum A + B will be less than it should be). 

              T1                                        T2 

1. read(A) 

2. A := A – 50 
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3. write(A) 

                                      read(A), read(B), print(A+B) 

4. read(B) 

5. B := B + 50 

6. write(B  

 Isolation can be ensured trivially by running transactions serially 

•  That is, one after the other.    

 However, executing multiple transactions concurrently has significant benefits.  

©Silberschatz, Korth and Sudarshan16.7Database System Concepts - 6th Edition
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ACID Properties 

A transaction is a unit of program execution that accesses and possibly updates various data items. To 

preserve the integrity of data the database system must ensure: 

 Atomicity.  Either all operations of the transaction are properly reflected in the database or none are. 

 Consistency.  Execution of a transaction in isolation preserves the consistency of the database. 

 Isolation.  Although multiple transactions may execute concurrently, each transaction must be 

unaware of other concurrently executing transactions.  Intermediate transaction results must be 

hidden from other concurrently executed transactions.   

• That is, for every pair of transactions Ti and Tj, it appears to Ti that either Tj, finished execution 

before Ti started, or Tj started execution after Ti finished. 

 Durability.  After a transaction completes successfully, the changes it has made to the database 

persist, even if there are system failures.  

 

Transaction State 

 Active – the initial state; the transaction stays in this state while it is executing 

 Partially committed – after the final statement has been executed. 

 Failed -- after the discovery that normal execution can no longer proceed. 

 Aborted – after the transaction has been rolled back and the database restored to its state prior to the 

start of the transaction.  Two options after it has been aborted: 

 Restart the transaction -  Can be done only if no internal logical error 

• Kill the transaction 

 Committed – after successful completion. 
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Concurrent Executions 

 Multiple transactions are allowed to run concurrently in the system.  Advantages are: 

• Increased processor and disk utilization, leading to better transaction throughput 

 E.g., one transaction can be using the CPU while another is reading from or writing to 

the disk 

• Reduced average response time for transactions: short transactions need not wait behind 

long ones. 

 Concurrency control schemes – mechanisms  to achieve isolation 

• That is, to control the interaction among the concurrent transactions in order to prevent them 

from destroying the consistency of the database 

 Will study in Chapter 15, after studying notion of correctness of concurrent executions. 

 

Schedules 

 Schedule – a sequences of instructions that specify the chronological order in which instructions of 

concurrent transactions are executed 

• A schedule for a set of transactions must consist of all instructions of those transactions 

• Must preserve the order in which the instructions appear in each individual transaction. 

 A transaction that successfully completes its execution will have a commit instructions as the last 

statement  

• By default transaction assumed to execute commit instruction as its last step 

 A transaction that fails to successfully complete its execution will have an abort instruction as the last 

statement  

 

Schedule 1 

 Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B.   

 A serial schedule in which T1 is followed by T2 : 
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Schedule 2 

 A serial schedule where T2 is followed by T1 

 
 

Schedule 3 

 Let T1 and T2 be the transactions defined previously.  The following schedule is not a serial schedule, 

but it is equivalent to Schedule 1 

 
 

 In Schedules 1, 2 and 3, the sum A + B is preserved.  

 

Schedule 4 

 The following concurrent schedule does not preserve the value of (A + B ).     

    



B Rupa Devi, AITS, Tirupati                                      AK22 MCA DBMS Unit 5 Page 5 
 

Serializability 

Basic Assumption – Each transaction preserves database consistency. 

Thus, serial execution of a set of transactions preserves database consistency. 

A (possibly concurrent) schedule is serializable if it is equivalent to a serial schedule.  Different forms of 

schedule equivalence give rise to the notions of: 

1. Conflict serializability 

2. View Serializability 

 

Simplified view of transactions 

 We ignore operations other than read and write instructions 

 We assume that transactions may perform arbitrary computations on data in local buffers in between 

reads and writes.   

 Our simplified schedules consist of only read and write instructions. 

 

Conflicting Instructions 

 Instructions li and lj of transactions Ti and Tj respectively, conflict if and only if there exists some item 

Q accessed by both li and lj, and at least one of these instructions wrote Q.  

     1. li = read(Q), lj = read(Q).   li and lj don’t conflict. 

     2. li = read(Q),  lj = write(Q).  They conflict. 

     3. li = write(Q), lj = read(Q).   They conflict 

     4. li = write(Q), lj = write(Q).  They conflict 

 Intuitively, a conflict between li and lj forces a (logical) temporal order between them.   

 If li and lj are consecutive in a schedule and they do not conflict, their results would remain the same 

even if they had been interchanged in the schedule. 

 

Conflict Serializability 

 If a schedule S can be transformed into a schedule S’ by a series of swaps of non-conflicting 

instructions, we say that S and S’ are conflict equivalent.  

 We say that a schedule S is conflict serializable if it is conflict equivalent to a serial schedule 

 Schedule 3 can be transformed into Schedule 6, a serial schedule where T2 follows T1, by series of 

swaps of non-conflicting instructions.  Therefore Schedule 3 is conflict serializable. 

 

 

 

 

 

Schedule 3 Schedule 6 

 

 Example of a schedule that is not conflict serializable: 

 
 We are unable to swap instructions in the above schedule to obtain either the serial schedule < T3, T4 

>, or the serial schedule < T4, T3 >. 
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Anomalies with Interleaved Execution 

1. Reading Uncommitted Data (WR Conflicts, “dirty reads”): 

 
 

2. Unrepeatable Reads (RW Conflicts): 

 
 

3. Overwriting Uncommitted Data (WW Conflicts): 

 
 

 

View Serializability 

 Let S and S’ be two schedules with the same set of transactions.  S and S’ are view equivalent if the 

following three conditions are met, for each data item Q,  

1.   If in schedule S, transaction Ti reads the initial value of Q, then in schedule S’ also transaction Ti 

must read the initial value of Q. 

2.   If in schedule S transaction Ti executes read(Q), and that value was produced by transaction Tj  (if 

any), then in schedule S’ also transaction Ti must read the value of Q that was produced by the       

same write(Q) operation of transaction Tj . 

3.   The transaction (if any) that performs the final write(Q) operation in schedule S must also perform 

the final write(Q) operation in schedule S’. 

 

 A schedule S is view serializable if it is view equivalent to a serial schedule. 

 Every conflict serializable schedule is also view serializable. 

 Below is a schedule which is view-serializable but not conflict serializable. 
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 What serial schedule is above equivalent to? 

 Every view serializable schedule that is not conflict serializable has blind writes. 

 

Other Notions of Serializability 

 The schedule below produces same outcome as the serial schedule < T1, T5 >, yet is not conflict 

equivalent or view equivalent to it. 

   
 Determining such equivalence requires analysis of operations other than read and write. 

 

Testing for Serializability 

 Consider some schedule of a set of transactions T1, T2, ..., Tn  

 Precedence graph — a direct graph where the vertices are the transactions (names). 

 We draw an arc from Ti to Tj if the two transaction conflict, and Ti accessed the data item on which the 

conflict arose earlier. 

 We may label the arc by the item that was accessed. 

 Example of a precedence graph: 

 
 

Test for Conflict Serializability 

 A schedule is conflict serializable if and only if its precedence graph is acyclic. 

 Cycle-detection algorithms exist which takes order n2 time, where n is the number of vertices in the 

graph.   

• (Better algorithms take order n + e where e is the number of edges.) 

 If precedence graph is acyclic, the serializability order can be obtained by a topological sorting of the 

graph.  

•  This is a linear order consistent with the partial order of the graph. 

• For example, a serializability order for Schedule A would be 

T5  T1  T3  T2  T4  

 Are there others? 
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Test for View Serializability 

 The precedence graph test for conflict serializability cannot be used directly to test for view 

serializability. 

• Extension to test for view serializability has cost exponential in the size of the precedence 

graph. 

 The problem of checking if a schedule is view serializable falls in the class of NP-complete problems.  

• Thus, existence of an efficient algorithm is extremely unlikely. 

 However practical algorithms that just check some sufficient conditions for view serializability can 

still be used.  

 

Recoverable Schedules 

Need to address the effect of transaction failures on concurrently  

running transactions. 

 Recoverable schedule — if a transaction Tj reads a data item previously written by a transaction Ti , 

then the commit operation of Ti  appears before the commit operation of Tj.  

 The following schedule (Schedule 11) is not recoverable 

  
  

 If T8 should abort, T9 would have read (and possibly shown to the user) an inconsistent database state.  

Hence, database must ensure that schedules are recoverable. 

 

Cascading Rollbacks 

 Cascading rollback – a single transaction failure leads to a series of transaction rollbacks.  Consider 

the following schedule where none of the transactions has yet committed (so the schedule is 

recoverable) 
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If T10 fails, T11 and T12 must also be rolled back. 

 Can lead to the undoing of a significant amount of work 

 

Cascadeless Schedules 

 Cascadeless schedules — cascading rollbacks cannot occur; 

• For each pair of transactions Ti and Tj such that Tj  reads a data item previously written by Ti, 

the commit operation of Ti  appears before the read operation of Tj. 

 Every Cascadeless schedule is also recoverable 

 It is desirable to restrict the schedules to those that are cascadeless 

 

Concurrency Control 

 A database must provide a mechanism that will ensure that all possible schedules are  

• either conflict or view serializable, and  

• are recoverable and preferably cascadeless 

 A policy in which only one transaction can execute at a time generates serial schedules, but provides a 

poor degree of concurrency 

• Are serial schedules recoverable/cascadeless? 

 Testing a schedule for serializability after it has executed is a little too late! 

 Goal – to develop concurrency control protocols that will assure serializability. 

 Schedules must be conflict or view serializable, and recoverable, for the sake of database consistency, 

and preferably cascadeless. 

 A policy in which only one transaction can execute at a time generates serial schedules, but provides a 

poor degree of concurrency. 

 Concurrency-control schemes tradeoff between the amount of concurrency they allow and the amount 

of overhead that they incur. 

 Some schemes allow only conflict-serializable schedules to be generated, while others allow  view-

serializable schedules that are not conflict-serializable. 

 

Concurrency Control vs. Serializability Tests 

 Concurrency-control protocols allow concurrent schedules, but ensure that the schedules are 

conflict/view serializable, and are recoverable and cascadeless. 

 Concurrency control protocols (generally) do not examine the precedence graph as it is being created 

• Instead a protocol imposes a discipline that avoids non-serializable schedules. 

• We study such protocols in Chapter 16. 

 Different concurrency control protocols provide different tradeoffs between the amount of concurrency 

they allow and the amount of overhead that they incur. 

 Tests for serializability help us understand why a concurrency control protocol is correct.    

 

Weak Levels of Consistency 

 Some applications are willing to live with weak levels of consistency, allowing schedules that are not 

serializable 

• E.g., a read-only transaction that wants to get an approximate total balance of all accounts  

• E.g., database statistics computed for query optimization can be approximate (why?) 

• Such transactions need not be serializable with respect to other transactions 

 Tradeoff accuracy for performance 
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Levels of Consistency in SQL-92 

 Serializable — default 

 Repeatable read — only committed records to be read.  

• Repeated reads of same record must return same value. 

• However, a transaction may not be serializable – it may find some records inserted by a 

transaction but not find others. 

 Read committed — only committed records can be read. 

• Successive reads of record may return different (but committed) values. 

 Read uncommitted — even uncommitted records may be read.  

 

Levels of Consistency 

 Lower degrees of consistency useful for gathering approximate information about the database  

 Warning: some database systems do not ensure serializable schedules by default 

 E.g., Oracle (and PostgreSQL prior to version 9) by default support a level of consistency called 

snapshot isolation (not part of the SQL standard) 

 

Transaction Definition in SQL 

 In SQL, a transaction begins implicitly. 

 A transaction in SQL ends by: 

• Commit work commits current transaction and begins a new one. 

• Rollback work causes current transaction to abort. 

 In almost all database systems, by default, every SQL statement also commits implicitly if it executes 

successfully 

• Implicit commit can be turned off by a database directive 

 E.g., in JDBC -- connection.setAutoCommit(false); 

 Isolation level can be set at database level 

 Isolation level can be changed at start of transaction 

• E.g.  In SQL set transaction isolation level serializable 

• E.g. in JDBC - connection.setTransactionIsolation(Connection.TRANSACTION_SERIALIZABLE) 

 

Implementation of Isolation Levels 

 Locking  

• Lock on whole database vs lock on items 

• How long to hold lock? 

• Shared vs exclusive locks 

 Timestamps 

• Transaction timestamp assigned e.g. when a transaction begins 

• Data items store two timestamps 

 Read timestamp 

 Write timestamp 

• Timestamps are used to detect out of order accesses 

 Multiple versions of each data item 

• Allow transactions to read from a “snapshot” of the database 

 

Transactions as SQL Statements 

 E.g., Transaction 1: 

   select ID, name   from  instructor   where salary > 90000  

 E.g., Transaction 2: 

   insert into instructor values ('11111', 'James', 'Marketing', 100000) 

 Suppose  

• T1 starts, finds tuples salary > 90000 using index and locks them 

• And then T2 executes.   

• Do T1 and T2 conflict?  Does tuple level locking detect the conflict? 
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• Instance of the phantom phenomenon 

 Also consider T3 below, with Wu’s salary = 90000  

    update instructor 

    set salary = salary * 1.1 

    where name = 'Wu’  

 Key idea:  Detect “predicate” conflicts, and use some form of  “predicate locking” 
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Concurrency Control 

 

Purpose of Concurrency Control 

To enforce Isolation (through mutual exclusion) among conflicting transactions.  

To preserve database consistency through consistency preserving execution of transactions. 

To resolve read-write and write-write conflicts. 

 

Example:  

In concurrent execution environment if T1 conflicts with T2 over a data item A, then the existing concurrency 

control decides if T1 or T2 should get the A and if the other transaction is rolled-back or waits.  

 

Two-Phase Locking Techniques 

 Locking is an operation which secures  

 (a) permission to Read 

 (b) permission to Write a data item for a transaction.   

 Example:  

 Lock (X).  Data item X is locked in behalf of the requesting transaction.   

 Unlocking is an operation which removes these permissions from the data item.   

 Example: 

 Unlock (X): Data item X is made available to all other transactions. 

 Lock and Unlock are Atomic operations.  

 

Two-Phase Locking Techniques: Essential components  

 Two locks modes: 

 (a) shared (read)  (b) exclusive (write). 

 Shared mode:  shared lock (X) 

 More than one transaction can apply share lock on X for reading its value but no write 

lock can be applied on X by any other transaction. 

 Exclusive mode: Write lock (X) 

 Only one write lock on X can exist at any time and no shared lock can be applied by 

any other transaction on X. 

 Conflict matrix 

 
 

 

Lock-Based Protocols 

A lock is a mechanism to control concurrent access to a data item 

Data items can be locked in two modes : 

    1.  exclusive (X) mode. Data item can be both read as well as written. X-lock is requested using lock-X 

instruction. 

    2.  shared (S) mode. Data item can only be read. S-lock is requested using lock-S instruction. 

Lock requests are made to the concurrency-control manager by the programmer. Transaction can proceed 

only after request is granted.  

Lock-compatibility matrix 
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A transaction may be granted a lock on an item if the requested lock is compatible with locks already held on 

the item by other transactions 

Any number of transactions can hold shared locks on an item,  

But if any transaction holds an exclusive on the item no other transaction may hold any lock on the item. 

If a lock cannot be granted, the requesting transaction is made to wait till all incompatible locks held by other 

transactions have been released.  The lock is then granted. 

Example of a transaction performing locking: 

                       T2: lock-S(A); 

                             read (A); 

                             unlock(A); 

                             lock-S(B); 

                             read (B); 

                             unlock(B); 

                             display(A+B) 

Locking as above is not sufficient to guarantee serializability — if A and B get updated in-between the read of 

A and B, the displayed sum would be wrong. 

A  locking protocol is a set of rules followed by all transactions while requesting and releasing locks. Locking 

protocols restrict the set of possible schedules. 

 

The Two-Phase Locking Protocol 

This protocol ensures conflict-serializable schedules. 

Phase 1: Growing Phase 

Transaction may obtain locks  

Transaction may not release locks 

Phase 2: Shrinking Phase 

Transaction may release locks 

Transaction may not obtain locks 

 

The protocol assures serializability. It can be proved that the transactions can be serialized in the order of 

their lock points (i.e., the point where a transaction acquired its final lock). 

There can be conflict serializable schedules that cannot be obtained if two-phase locking is used.   

However, in the absence of extra information (e.g., ordering of access to data), two-phase locking is needed for 

conflict serializability in the following sense: 

Given a transaction Ti that does not follow two-phase locking, we can find a transaction Tj that uses two-

phase locking, and a schedule for Ti and Tj that is not conflict serializable. 

 

Lock Conversions 

Two-phase locking with lock conversions: 

     –   First Phase:         

o can acquire a lock-S on item 

o can acquire a lock-X on item 

o can convert a lock-S to a lock-X (upgrade) 

     –   Second Phase: 

o can release a lock-S 

o can release a lock-X 

o can convert a lock-X to a lock-S  (downgrade) 

This protocol assures serializability. But still relies on the programmer to insert the various locking 

instructions. 

 

Automatic Acquisition of Locks 

A transaction Ti issues the standard read/write instruction, without explicit locking calls. 

The operation read(D) is processed as: 
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                      if Ti has a lock on D 

                         then 

                                read(D)  

                         else begin  

                                   if necessary wait until no other   

                                       transaction has a lock-X on D 

                                   grant Ti a  lock-S on D; 

                                   read(D) 

                                end 

 

write(D) is processed as: 

     if Ti has a  lock-X on D  

        then  

          write(D) 

       else begin 

            if necessary wait until no other transaction has any lock on D, 

            if Ti has a lock-S on D 

                 then 

                    upgrade lock on D  to lock-X 

                else 

                    grant Ti a lock-X on D 

                write(D) 

         end; 

 

All locks are released after commit or abort 

 

Deadlocks 

Consider the partial schedule 

 
Neither T3 nor T4 can make progress — executing lock - S(B) causes T4 to wait for T3 to release its lock on B, 

while executing  lock-X(A) causes T3  to wait for T4 to release its lock on A. 

Such a situation is called a deadlock.  

To handle a deadlock one of T3 or T4 must be rolled back and its locks released. 

 

Two-phase locking does not ensure freedom from deadlocks. 

In addition to deadlocks, there is a possibility of starvation. 

Starvation  occurs if the concurrency control manager is badly designed.  

 

For example: 

A transaction may be waiting for an X-lock on an item, while a sequence of other transactions request and are 

granted an S-lock on the same item.   

The same transaction is repeatedly rolled back due to deadlocks. 

Concurrency control manager can be designed to prevent starvation. 
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The potential for deadlock exists in most locking protocols. Deadlocks are a necessary evil. 

When a deadlock occurs there is a possibility of cascading roll-backs.  

Cascading roll-back is possible under two-phase locking. To avoid this, follow a modified protocol called strict 

two-phase locking -- a transaction must hold all its exclusive locks till it commits/aborts. 

Rigorous two-phase locking is even stricter. Here, all locks are held till commit/abort. In this protocol 

transactions can be serialized in the order in which they commit. 

 

Implementation of Locking 

 A lock manager can be implemented as a separate process to which transactions send lock and unlock 

requests 

 The lock manager replies to a lock request by sending a lock grant messages (or a message asking the 

transaction to roll back, in case of  a deadlock) 

 The requesting transaction waits until its request is answered 

 The lock manager maintains a data-structure called a lock table to record granted locks and pending 

requests 

 The lock table is usually implemented as an in-memory hash table indexed on the name of the data item 

being locked 

 

Lock Table 

 
 

 Dark blue rectangles indicate granted locks; light blue indicate waiting requests 

 Lock table also records the type of lock granted or requested 

 New request is added to the end of the queue of requests for the data item, and granted if it is compatible 

with all earlier locks 

 Unlock requests result in the request being deleted, and later requests are checked to see if they can now 

be granted 

 If transaction aborts, all waiting or granted requests of the transaction are deleted  

 lock manager may keep a list of locks held by each transaction, to implement this efficiently 

 

Deadlock Handling 

System is deadlocked if there is a set of transactions such that every transaction in the set is waiting for 

another transaction in the set. 

Deadlock prevention protocols ensure that the system will never enter into a deadlock state. Some prevention 

strategies: 

 Require that each transaction locks all its data items before it begins execution (predeclaration). 

 Impose partial ordering of all data items and require that a transaction can lock data items only in the 

order specified by the partial order. 
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More Deadlock Prevention Strategies 

Following schemes use transaction timestamps for the sake of deadlock prevention alone. 

wait-die scheme — non-preemptive 

 older transaction may wait for younger one to release data item. (older means smaller timestamp) 

Younger transactions never Younger transactions never wait for older ones; they are rolled back 

instead. 

 a transaction may die several times before acquiring needed data item 

wound-wait scheme — preemptive 

 older transaction wounds (forces rollback) of younger transaction instead of waiting for it. Younger 

transactions may wait for older ones. 

 may be fewer rollbacks than wait-die scheme. 

 

Both in wait-die and in wound-wait schemes, a rolled back transactions is restarted with its original 

timestamp. Older transactions thus have precedence over newer ones, and starvation is hence avoided. 

 

Timeout-Based Schemes: 

 A transaction waits for a lock only for a specified amount of time. If the lock has not been granted 

within that time, the transaction is rolled back and restarted, 

 Thus, deadlocks are not possible 

 simple to implement; but starvation is possible. Also difficult to determine good value of the timeout 

interval. 

 

Deadlock Detection 

 Deadlocks can be described as a wait-for graph, which consists of a pair G = (V,E),  

o V is a set of vertices (all the transactions in the system) 

o E is a set of edges; each element is an ordered pair Ti -> Tj.   

 If Ti ->  Tj is in E, then there is a directed edge from Ti to Tj, implying that Ti is waiting for Tj to release 

a data item. 

 When Ti requests a data item currently being held by Tj, then the edge Ti -> Tj is inserted in the wait-

for graph. This edge is removed only when Tj is no longer holding a data item needed by Ti. 

 The system is in a deadlock state if and only if the wait-for graph has a cycle.  Must invoke a deadlock-

detection algorithm periodically to look for cycles. 

 

 

 
 

 

 

Wait-for graph without a cycle Wait-for graph with a cycle 

 

Deadlock Recovery 

When deadlock is detected: Some transaction will have to rolled back (made a victim) to break deadlock.  

Select that transaction as victim that will incur minimum cost. 

Rollback -- determine how far to roll back transaction 

 Total rollback: Abort the transaction and then restart it. 

 More effective to roll back transaction only as far as necessary to break deadlock. 

Starvation happens if same transaction is always chosen as victim. Include the number of rollbacks in the 

cost factor to avoid starvation 
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Multiple Granularity 

 Allow  data items to be of various sizes and define a hierarchy of data granularities, where the small 

granularities are nested within larger ones 

 Can be represented graphically as a tree. 

 When a transaction locks a node in the tree explicitly, it implicitly locks all the node's descendents in 

the same mode. 

 Granularity of locking (level in tree where locking is done): 

 fine granularity (lower in tree): high concurrency, high locking overhead 

 coarse granularity  (higher in tree): low locking overhead, low concurrency 

 
 

The levels, starting from the coarsest (top) level are 

 database 

 area  

 file  

 record  

 

Intention Lock Modes 

 In addition to S and X lock modes, there are three additional lock modes with multiple granularity: 

o intention-shared (IS): indicates explicit locking at a lower level of the tree but only with shared 

locks. 

o intention-exclusive (IX): indicates explicit locking at a lower level with exclusive or shared locks 

o shared and intention-exclusive (SIX): the subtree rooted by that node is locked explicitly in 

shared mode and explicit locking is being done at a lower level with exclusive-mode locks. 

 intention locks allow a higher level node to be locked in S or X mode without having to check all 

descendent nodes. 

 

Compatibility Matrix with Intention Lock Modes 

 
 

Multiple Granularity Locking Scheme 

 Transaction Ti can lock a node Q, using the following rules: 

o The lock compatibility matrix must be observed. 

o The root of the tree must be locked first, and may be locked in any mode. 
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o A node Q can be locked by Ti in S or IS mode only if the parent of Q is currently locked by Ti in 

either IX or IS mode. 

o A node Q can be locked by Ti in X, SIX, or IX mode only if the parent of Q is currently locked by Ti 

in either IX or SIX mode. 

o Ti can lock a node only if it has not previously unlocked any node (that is, Ti is two-phase). 

o Ti can unlock a node Q only if none of the children of Q are currently locked by Ti.  

 Observe that locks are acquired in root-to-leaf order, whereas they are released in leaf-to-root order. 

 Lock granularity escalation: in case there are too many locks at a particular level, switch to higher 

granularity S or X lock 

 

Timestamp-Based Protocols 

 Each transaction is issued a timestamp when it enters the system. If an old transaction Ti has time-stamp 

TS(Ti), a new transaction Tj is assigned time-stamp TS(Tj) such that TS(Ti) <TS(Tj).  

 The protocol manages concurrent execution such that the time-stamps determine the serializability order. 

 In order to assure such behavior, the protocol maintains for each data Q two timestamp values: 

o W-timestamp(Q) is the largest time-stamp of any transaction that executed write(Q) successfully. 

o R-timestamp(Q) is the largest time-stamp of any transaction that executed read(Q) successfully. 

 The timestamp ordering protocol ensures that any conflicting read and write operations are executed in 

timestamp order. 

 Suppose a transaction Ti issues a read(Q) 

o If TS(Ti)  W-timestamp(Q), then Ti needs to read a value of Q        that was already overwritten. 

 Hence, the read operation is rejected, and Ti  is rolled back. 

o If TS(Ti)  W-timestamp(Q), then the read operation is executed, and R-timestamp(Q) is set to 

max(R-timestamp(Q), TS(Ti)). 

 Suppose that transaction Ti issues write(Q). 

o If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed previously, and the 

system assumed that that value would never be produced.  

 Hence, the write operation is rejected, and Ti is rolled back. 

o If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q.  

 Hence, this write operation is rejected, and Ti is rolled back. 

o Otherwise, the  write operation is executed, and W-timestamp(Q) is set to TS(Ti). 

 

 A partial schedule for several data items for transactions with timestamps 1, 2, 3, 4, 5 

 
Correctness of Timestamp-Ordering Protocol 

 The timestamp-ordering protocol guarantees serializability since all the arcs in the precedence graph 

are of the form: 
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Thus, there will be no cycles in the precedence graph 

 Timestamp protocol ensures freedom from deadlock as no transaction ever waits.   

 But the schedule may not be cascade-free, and may  not even be recoverable. 

 

Recoverability and Cascade Freedom 

 Problem with timestamp-ordering protocol: 

o Suppose Ti aborts, but Tj has read a data item written by  Ti  

o Then Tj must abort; if Tj had been allowed to commit earlier, the schedule is not recoverable. 

o Further, any transaction that has read a data item written by Tj must abort 

o This can lead to cascading rollback --- that is, a chain of rollbacks  

 Solution 1: 

o A transaction is structured such that its writes are all performed at the end of its processing 

o All writes of a transaction form an atomic action; no transaction may execute while a 

transaction is being written 

o A transaction that aborts is restarted with a new timestamp 

 Solution 2: Limited form of locking: wait for data to be committed before reading it 

 Solution 3: Use commit dependencies to ensure recoverability 

 

Thomas’ Write Rule 

 Modified version of the timestamp-ordering protocol in which obsolete write operations may be ignored 

under certain circumstances. 

 When Ti attempts to write data item Q, if TS(Ti) < W-timestamp(Q), then Ti is attempting to write an 

obsolete value of {Q}.  

o Rather than rolling back Ti as the timestamp ordering protocol would have done, this {write} 

operation can be ignored. 

 Otherwise this protocol is the same as the timestamp ordering protocol. 

 Thomas' Write Rule allows greater potential concurrency.  

o Allows some view-serializable schedules that are not conflict-serializable. 

 

Validation-Based Protocol 

 Execution of transaction Ti is done in three phases. 

1. Read and execution phase: Transaction Ti writes only to temporary local variables 

2. Validation phase: Transaction Ti performs a ‘‘validation test'' to determine if local variables can 

be written without violating serializability. 

3. Write phase: If Ti is validated, the updates are applied to the database; otherwise, Ti is rolled 

back. 

 The three phases of concurrently executing transactions can be    interleaved, but each transaction 

must go through the three phases in that order. 

o Assume for simplicity that the validation and write phase occur together, atomically and 

serially 

 I.e., only one transaction executes validation/write at a time.  

 Also called as optimistic concurrency control since transaction executes fully in the hope that all 

will go well during validation 

 Each transaction Ti has 3 timestamps 

o Start(Ti) : the time when Ti started its execution 

o Validation(Ti): the time when Ti entered its validation phase 

o Finish(Ti) : the time when Ti finished its write phase 
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 Serializability order is determined by timestamp given at validation time; this is done to increase 

concurrency.  

o Thus, TS(Ti) is given the value of Validation(Ti). 

 This protocol is useful and gives greater degree of concurrency if probability of conflicts is low.  

o because the serializability order is not pre-decided, and 

o relatively few transactions will have to be rolled back. 

 

Validation Test for Transaction Tj 

 If for all Ti with TS (Ti) < TS (Tj) either one of the following condition holds: 

o finish(Ti) < start(Tj)  

o start(Tj) < finish(Ti) < validation(Tj) and the set of data items written by Ti does not intersect 

with the set of data items read by Tj.   

 then validation succeeds and Tj can be committed.  Otherwise, validation fails and Tj is aborted. 

 Justification:  Either the first condition is satisfied, and there is no overlapped execution, or the second 

condition is satisfied and 

o the writes of Tj do not affect reads of Ti since they occur after Ti has finished its reads. 

o the writes of Ti do not affect reads of Tj since Tj does not read  any item written by Ti.  

 

Schedule Produced by Validation 
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Recovery System 

Failure Classification 

 Transaction failure : 

o Logical errors: transaction cannot complete due to some internal error condition 

o System errors: the database system must terminate an active transaction due to an error 

condition (e.g., deadlock) 

 System crash: a power failure or other hardware or software failure causes the system to crash. 

o Fail-stop assumption: non-volatile storage contents are assumed to not be corrupted by 

system crash 

 Database systems have numerous integrity checks to prevent corruption of disk data  

 Disk failure: a head crash or similar disk failure destroys all or part of disk storage 

o Destruction is assumed to be detectable: disk drives use checksums to detect failures 

 

Recovery Algorithms 

 Consider transaction Ti that transfers $50 from account A to account B 

o Two updates: subtract 50 from A and add 50 to B  

 Transaction Ti  requires updates to A and B to be output to the database.  

o A failure may occur after one of these modifications have been made but before both of them 

are made.  

o Modifying the database without ensuring that the transaction will commit  may leave the 

database in an inconsistent state 

o Not modifying the database may result in lost updates if failure occurs just after transaction 

commits 

 Recovery algorithms have two parts 

o Actions taken during normal transaction processing to ensure enough information exists to 

recover from failures 

o Actions taken after a failure to recover the database contents to a state that ensures atomicity, 

consistency and durability 

 

Storage Structure 

 Volatile storage: 

o does not survive system crashes 

o examples: main memory, cache memory 

 Nonvolatile storage: 

o survives system crashes 

o examples: disk, tape, flash memory, non-volatile (battery backed up) RAM  

o but may still fail, losing data 

 Stable storage: 

o a mythical form of storage that survives all failures 

o approximated by maintaining multiple copies on distinct nonvolatile media 

o See book for more details on how to implement stable storage 

 

Stable-Storage Implementation 

 Maintain multiple copies of each block on separate disks 

o copies can be at remote sites to protect against disasters such as fire or flooding. 

 Failure during data transfer can still result in inconsistent copies: Block transfer can result in 

o Successful completion 

o Partial failure: destination block has incorrect information 

o Total failure: destination block was never updated 

 Protecting storage media from failure during data transfer (one solution): 

o Execute output operation as follows (assuming two copies of each block): 

1. Write the information onto the first physical block. 
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2. When the first write successfully completes, write the same information onto the second 

physical block. 

3. The output is completed only after the second write successfully completes. 

 Protecting storage media from failure during data transfer (cont.): 

 Copies of a block may differ due to failure during output operation. To recover from failure: 

1. First find inconsistent blocks: 

1. Expensive solution: Compare the two copies of every disk block. 

2. Better solution:  

 Record in-progress disk writes on non-volatile storage (Non-volatile RAM or 

special area of disk).  

 Use this information during recovery  to find blocks that may be inconsistent, 

and only compare copies of these.  

 Used in hardware RAID systems 

2. If either copy of an inconsistent block is detected to have an error (bad checksum), overwrite it 

by the other copy.  If both have no error, but are different, overwrite the second block by the 

first block.    

 

Data Access 

 Physical blocks are those blocks residing on the disk.  

 Buffer blocks are the blocks residing temporarily in main memory. 

 Block movements between  disk and main memory are initiated through the following two operations: 

o input(B) transfers the physical block B  to main memory. 

o output(B) transfers the buffer block B to the disk, and replaces the appropriate physical block 

there. 

 We assume, for simplicity, that each data item fits in, and is stored inside, a single block. 
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Example of Data Access

X      

Y     

A

B

x1

y1 

buffer

Buffer Block A

Buffer Block B

input(A)

output(B) 

read(X)

write(Y)

disk

work area

of T1

work area

of T2 

memory

x2

b 

 

 Each transaction Ti has its private work-area in which local copies of all data items accessed and 

updated by it are kept. 

 Ti's local copy of a data item X is called xi.  

 Transferring data items between system buffer blocks and its private work-area done by: 

o read(X) assigns the value of data item X to the local variable xi. 

o write(X) assigns the value of local variable xi to data item {X} in the buffer block. 

o Note: output(BX) need not immediately follow write(X). System can perform the output 

operation when it deems fit. 

 Transactions  
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o Must perform read(X) before accessing X for the first time (subsequent reads can be from local 

copy)  

o write(X) can be executed at any time before the transaction commits 

 

Recovery and Atomicity 

 To ensure atomicity despite failures, we first output information describing the modifications to stable 

storage without modifying the database itself. 

 We study log-based recovery mechanisms in detail 

o We first present key concepts 

o And then present the actual recovery algorithm 

 Less used alternative: shadow-copy and shadow-paging  

 

 
 

Log-Based Recovery 

 A  log is kept on stable storage.  

o The log is a sequence of log records, and maintains a record of update activities on the 

database. 

 When transaction Ti starts, it registers itself by writing a  

       <Ti  start>log record 

 Before Ti executes write(X), a log record  

         <Ti, X,  V1,  V2>  

is written, where V1 is the value of X  before the write (the old value), and V2 is the value to be written 

to X (the new value).  

 When Ti finishes it last statement, the log record <Ti  commit> is written.  

 Two approaches using logs 

o Deferred database modification 

o Immediate database modification 

 

Immediate Database Modification 

 The immediate-modification scheme allows updates of an uncommitted transaction to be made to 

the buffer, or the disk itself, before the transaction commits 

 Update log record must be written before database item is written 

o We assume that the log record is output directly to stable storage 

o (Will see later that how to postpone log record output to some extent) 

 Output of updated blocks to stable storage can take place at any time before or  after transaction 

commit 

 Order in which blocks are output can be different from the order in which they are written. 
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 The deferred-modification scheme performs updates to buffer/disk only at the time of transaction 

commit 

o Simplifies some aspects of recovery 

o But has overhead of storing local copy 

 

Transaction Commit 

 A transaction is said to have committed when its commit log record is output to stable storage  

o all previous log records of the transaction must have been output already  

 Writes performed by a transaction may still be in the buffer when the transaction commits, and may 

be output later 

 

Immediate Database Modification Example 
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Immediate Database Modification Example

Log                                  Write                              Output

<T0 start>

<T0, A, 1000, 950>

<To, B, 2000, 2050

A = 950

B = 2050

<T0 commit>

<T1 start>

<T1, C, 700, 600>

C = 600

BB , BC

<T1 commit>

BA

 Note: BX denotes block containing X.

BC output before T1 

commits

BA output after T0 

commits

 
 

Concurrency Control and Recovery 

 With concurrent transactions, all transactions share a single disk buffer and a single log 

o A buffer block can have data items updated by one or more transactions 

 We assume that if a transaction Ti has modified an item, no other transaction can modify the same item 

until Ti  has committed or aborted 

o i.e. the updates of uncommitted transactions should not be visible to other transactions 

 Otherwise how to perform undo if T1 updates A, then T2 updates A and commits, and 

finally T1 has to abort? 

o Can be ensured by obtaining exclusive locks on updated items and holding the locks till end of 

transaction (strict two-phase locking) 

 Log records of different transactions may be interspersed in the log. 

 

Undo and Redo Operations 

 Undo of a log record <Ti, X,  V1,  V2> writes the old value V1 to X 

 Redo of a log record <Ti, X,  V1,  V2> writes the new value V2 to X 

 Undo and Redo of Transactions 

o undo(Ti) restores the value of all data items updated by Ti to their old values, going backwards 

from the last log record for Ti  
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 each time a data item X is restored to its old value V a special  log record <Ti , X, V> is 

written out 

 when undo of a transaction is complete, a log record  

<Ti abort> is written out. 

o redo(Ti) sets the value of all data items updated by Ti to the new values, going forward from the 

first log record for Ti  

 No logging is done in this case 

 

Undo and Redo on Recovering from Failure 

 When recovering after failure: 

o Transaction Ti needs to be undone if the log  

 contains the record <Ti start>, 

 but does not contain either the record <Ti commit> or <Ti abort>. 

o Transaction Ti needs to be redone if the log  

 contains the records <Ti start>  

 and contains the record <Ti commit> or <Ti abort> 

 Note that If transaction Ti was undone earlier and the <Ti abort> record written to the log, and then a 

failure occurs, on recovery from failure Ti  is redone 

o such a redo redoes all the original actions including the steps that restored old values 

 Known as repeating history 

 Seems wasteful, but simplifies recovery greatly 

 

Immediate DB Modification Recovery Example 

 Below we show the log as it appears at three instances of time. 

 
Recovery actions in each case above are: 

(a)  undo (T0): B is restored to 2000 and A to 1000, and log records 

<T0, B, 2000>, <T0, A, 1000>, <T0, abort> are written out 

(b) redo (T0) and undo (T1): A and B are set to 950 and 2050 and C is restored to 700.  Log records <T1, C, 

700>, <T1, abort> are written out. 

(c)  redo (T0) and redo (T1): A and B are set to 950 and 2050 respectively. Then C is set to 600 

 

Checkpoints 

 Redoing/undoing all transactions recorded in the log can be very slow  

o processing the entire log is time-consuming if the system has run for a long time 

o we might unnecessarily redo transactions which have already output their updates to the 

database. 

 Streamline recovery procedure by periodically performing checkpointing  

o Output all log records currently residing in main memory onto stable storage. 

o Output all modified buffer blocks to the disk. 

o Write a log record < checkpoint L> onto stable storage where L is a list of all transactions active at 

the time of checkpoint. 
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o All updates are stopped while doing checkpointing  

 During recovery we need to consider only the most recent transaction Ti that started before the 

checkpoint, and transactions that started after Ti.  

o Scan backwards from end of log to find the most recent <checkpoint L> record  

o Only transactions that are in L or started after the checkpoint need to be redone or undone 

o Transactions that committed or aborted before the checkpoint already have all their updates 

output to stable storage. 

 Some earlier part of the log may be needed for undo operations 

o Continue scanning backwards till a record <Ti start> is found for every transaction Ti  in L. 

o Parts of log prior to earliest <Ti start> record above are not needed for recovery, and can be erased 

whenever desired. 
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Example of Checkpoints

 T1 can be ignored (updates already output to disk due to checkpoint)

 T2 and T3 redone.

 T4 undone

Tc
Tf

T1

T2

T3

T4

checkpoint system failure

 
 

 

Recovery Algorithm 

 Logging (during normal operation): 

 <Ti start> at transaction start 

 <Ti, Xj,  V1,  V2> for each update, and  

o <Ti commit> at transaction end  

 Transaction rollback (during normal operation) 

o Let Ti be the transaction to be rolled back 

o Scan log backwards from the end, and for each log record of Ti  of the form <Ti, Xj,  V1,  V2>  

 perform the undo by writing V1 to Xj, 

 write a log record <Ti , Xj,  V1>  

 such log records are called compensation log records 

o Once the record <Ti start> is found stop the scan and write the log record <Ti abort>  

 Recovery from failure: Two phases 

o Redo phase:  replay updates of all transactions, whether they committed, aborted, or are 

incomplete 

o Undo phase: undo all incomplete transactions 

 Redo phase: 

o Find last <checkpoint L> record, and set undo-list to L. 

o Scan forward from above <checkpoint L> record 

 Whenever a  record <Ti, Xj,  V1,  V2> or <Ti, Xj, V2>  is found, redo it by writing V2  to Xj  

 Whenever a log record <Ti  start> is found, add Ti  to undo-list 

 Whenever a log record <Ti  commit> or <Ti abort> is found, remove Ti  from undo-list 

 Undo phase:  
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o Scan log backwards from end  

 Whenever a log record <Ti, Xj,  V1,  V2> is found where Ti is in undo-list perform same 

actions as for transaction rollback: 

  perform undo by writing V1 to Xj. 

 write a log record <Ti , Xj,  V1> 

 Whenever a log record <Ti start> is found where Ti is in undo-list,  

 Write a log record <Ti  abort>  

 Remove Ti  from undo-list 

 Stop when undo-list is empty 

 i.e. <Ti start> has been found for every transaction in undo-list 

 After undo phase completes, normal transaction processing can commence 
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Log Record Buffering 

 Log record buffering: log records are buffered in main memory, instead of of being output directly to 

stable storage. 

o Log records are output to stable storage when a block of log records in the buffer is full, or a 

log force operation is executed. 

 Log force is performed to commit a transaction by forcing all its log records (including the commit 

record) to stable storage. 

 Several log records can thus be output using a single output operation, reducing the I/O cost. 

 The rules below must be followed if log records are buffered: 

o Log records are output to stable storage in the order in which they are created.  

o Transaction Ti enters the commit state only when the log record  

<Ti commit> has been output to stable storage. 

o Before a block of data in main memory is output to the database, all log records pertaining to 

data in that block must have been output to stable storage.  

 This rule is called the write-ahead logging or WAL rule 

 Strictly speaking WAL only requires undo information to be output 

 

Database Buffering 

 Database maintains an in-memory buffer of data blocks 
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o When a new block is needed, if buffer is full an existing block needs to be removed from buffer 

o If the block chosen for removal has been updated, it must be output to disk 

 The recovery algorithm supports the no-force policy: i.e., updated blocks need not be written to disk 

when transaction commits 

o force policy: requires updated blocks to be written at commit 

 More expensive commit 

 The recovery algorithm supports the steal policy:i.e., blocks containing updates of uncommitted 

transactions can be written to disk, even before the transaction commits 

 If a block with uncommitted updates is output to disk, log records with undo information for the 

updates are output to the log on stable storage first 

o (Write ahead logging) 

 No updates should be in progress on a block when it is output to disk.  Can be ensured as follows. 

o Before writing a data item, transaction acquires exclusive lock on block containing the data 

item 

o Lock can be released once the write is completed.  

 Such locks held for short duration are called latches. 

 To output a block to disk 

o First acquire an exclusive latch on the block 

 Ensures no update can be in progress on the block 

o Then perform a log flush 

o Then output the block to disk 

o Finally release the latch on the block 

 

Buffer Management 

 Database buffer can be implemented either 

o in an area of real main-memory reserved for the database, or 

o in virtual memory 

 Implementing buffer in reserved main-memory has drawbacks: 

o Memory is partitioned before-hand between database buffer and applications, limiting 

flexibility.   

o Needs may change, and although operating system knows best how memory should be divided 

up at any time, it cannot change the partitioning of memory. 

 Database buffers are generally implemented in virtual memory in spite of some drawbacks:  

o When operating system needs to evict a page that has been modified, the page is written to 

swap space on disk. 

o When database decides to write buffer page to disk, buffer page may be in swap space, and 

may have to be read from swap space on disk and output to the database on disk, resulting in 

extra I/O!  

 Known as dual paging problem. 

o Ideally when OS needs to evict a page from the buffer, it should pass control to database, 

which in turn should 

 Output the page to database instead of to swap space (making sure to output log 

records first), if it is modified 

 Release the page from the buffer, for the OS to use 

Dual paging can thus be avoided, but common operating systems do not support such 

functionality. 

 

Fuzzy Checkpointing 

 To avoid long interruption of normal processing during checkpointing, allow updates to happen during 

checkpointing  

 Fuzzy checkpointing is done as follows: 

1. Temporarily stop all updates by transactions 
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2. Write a <checkpoint L> log record and force log to stable storage 

3. Note list M of modified buffer blocks 

4. Now permit transactions to proceed with their actions 

5. Output to disk all modified buffer blocks in list M  

 blocks should not be updated while being output 

 Follow WAL: all log records pertaining to a block must be output before the block is 

output 

6. Store a pointer to the checkpoint record in a fixed position last_checkpoint on disk 

 When recovering using a fuzzy checkpoint, start scan from the checkpoint record pointed to by  

last_checkpoint  

o Log records before  last_checkpoint have their updates reflected in database on disk, and need 

not be redone. 

o Incomplete checkpoints, where system had crashed while performing checkpoint, are handled 

safely 

 
 

Failure with Loss of Nonvolatile Storage 

 Technique similar to checkpointing used to deal with loss of non-volatile storage 

o Periodically dump the entire content of the database to stable storage 

o No transaction may be active during the dump procedure; a procedure similar to checkpointing 

must take place 

 Output all log records currently residing in main memory onto stable storage. 

 Output all buffer blocks onto the disk. 

 Copy the contents of the database to stable storage. 

 Output a record <dump> to log on stable storage. 

 

Recovering from Failure of Non-Volatile Storage 

 To recover from disk failure 

o restore database from  most recent dump.  

o Consult the log and redo all transactions that committed after the dump 

 Can be extended to allow transactions to be active during dump; known as fuzzy dump or online 

dump 

o Similar to fuzzy checkpointing  

 

Recovery with Early Lock Release and Logical Undo Operations 

Recovery with Early Lock Release 

 Support for high-concurrency locking techniques, such as those used for B+-tree concurrency control, 

which release locks early 

o Supports “logical undo”  

 Recovery based on “repeating history”, whereby recovery executes exactly the same actions as normal 

processing  

 

Logical Undo Logging 

 Operations like B+-tree insertions and deletions release locks early.  

o They cannot be undone by restoring old values (physical undo), since once a lock is released, 

other transactions may have updated the B+-tree. 
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o Instead, insertions (resp. deletions) are undone  by executing a deletion (resp. insertion) 

operation (known as logical undo).   

 For such operations, undo log records should contain the undo operation to be executed 

o Such logging is called logical undo logging, in contrast to physical undo logging 

 Operations are called logical operations 

o Other examples: 

 delete of tuple, to undo insert of tuple  

 allows early lock release on space allocation information 

 subtract amount deposited, to undo deposit 

 allows early lock release on bank balance 

 

Physical Redo 

 Redo information is logged physically (that is, new value for each write) even for operations with 

logical undo 

o Logical redo is very complicated since database state on disk may not be “operation consistent” 

when recovery starts 

o Physical redo logging does not conflict with early lock release 

 

Operation Logging 

 Operation logging is done as follows: 

1. When operation starts, log <Ti, Oj,  operation-begin>. Here Oj is a unique identifier of the 

operation instance. 

2. While operation is executing, normal log records with physical redo and physical undo 

information are logged.  

3. When operation completes, <Ti, Oj,  operation-end, U> is logged, where U contains information  

needed to perform a logical undo information. 

 If crash/rollback occurs before operation completes: 

o the operation-end log record is not found, and  

o the physical undo information is used to undo operation. 

 If crash/rollback occurs after the operation completes: 

o the operation-end log record is found, and in this case 

o logical undo is performed using U;  the physical undo information for the operation is ignored. 

 Redo of operation (after crash) still uses physical redo information. 

 

Transaction Rollback with Logical Undo 

Rollback of transaction Ti is done as follows:  

Scan the log backwards  

1. If a log record <Ti, X, V1, V2> is found, perform the undo and log a al <Ti, X, V1>. 

2. If a <Ti, Oj,  operation-end, U> record is found 

 Rollback the operation logically using  the undo information U.  

– Updates performed during roll back are logged just like during normal operation 

execution.   

– At the end of the operation rollback, instead of logging an  operation-end 

record, generate a record <Ti, Oj, operation-abort>. 

 Skip all preceding log records for Ti  until the record 

 <Ti, Oj operation-begin>  is found 

Transaction rollback, scanning the log backwards (cont.): 

3. If a redo-only record is found ignore it 

4. If a <Ti, Oj, operation-abort> record is found: 

H skip all preceding log records for Ti  until the record  

<Ti, Oj, operation-begin> is found. 

5. Stop the scan when the record <Ti, start> is found 

6. Add a <Ti,  abort> record to the log 
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Some points to note: 

a. Cases 3 and 4 above can occur only if the database crashes while a  transaction is being rolled back. 

b. Skipping of log records as in case 4 is important to prevent multiple rollback of the same operation. 

 

 
 

Failure Recovery with Logical Undo 

 
 



B Rupa Devi, AITS, Tirupati                                      AK22 MCA DBMS Unit 5 Page 32 
 

Recovery Algorithm with Logical Undo 

Basically same as earlier algorithm, except for changes described earlier for transaction rollback 

1. (Redo phase): Scan log forward from last < checkpoint L> record till end of log 

1. Repeat history by physically redoing all updates of  all transactions,  

2. Create an undo-list during the scan as follows 

 undo-list is set to L initially 

 Whenever <Ti start> is found Ti is added to undo-list  

 Whenever <Ti commit> or <Ti abort> is found, Ti is deleted from undo-list  

 This brings database to state as of crash, with committed as well as uncommitted transactions having 

been redone. 

 Now  undo-list contains transactions that are incomplete, that is, have neither committed nor been 

fully rolled back. 

2.  (Undo phase): Scan log backwards, performing undo on log records of transactions found in undo-list.   

 Log records of transactions being rolled back are processed as described earlier, as they are 

found 

o Single shared scan for all transactions being undone 

 When <Ti  start> is found for a transaction Ti in  undo-list, write a <Ti abort> log record. 

 Stop scan when <Ti start> records have been found for all Ti in  undo-list  

This undoes the effects of incomplete transactions (those with neither commit nor abort log records). 

Recovery is now complete. 

 

 

 


	 The join operation r ⋈Ɵ s is defined as follows:  r ⋈Ɵ s = σƟ (r x s)
	 Thus, σinstructor.id = teaches.id (instructor   x    teaches)
	 Can equivalently be written as:  instructor ⋈ instructor.id = teaches.id teaches

