
B Rupa Devi, AITS, Tirupati DBMS – Unit 1 – CSE AK20 and MCA AK22 Page 1

UNIT 1

Introduction: Database systems applications, Purpose of Database Systems, view of Data, Database

Languages, Relational Databases, Database Design, Data Storage and Querying, Transaction Management,

Database Architecture, Data Mining and Information Retrieval, Specialty Databases, Database users and

Administrators.

Introduction to Relational Model: Structure of Relational Databases, Database Schema, Keys, Schema

Diagrams, Relational Query Languages, Relational Operations

Introduction

A database-management system (DBMS) is a collection of interrelated data and a set of programs to access

those data. The collection of data, usually referred to as the database, contains information relevant to an

enterprise.

The primary goal of a DBMS is to provide a way to store and retrieve database information that is both

convenient and efficient.

Database systems are designed to manage large bodies of information.

Management of data involves both defining structures for storage of information and providing mechanisms

for the manipulation of information.

In addition, the database system must ensure the safety of the information stored, despite system crashes or

attempts at unauthorized access. If data are to be shared among several users, the system must avoid

possible anomalous results. Because information is so important in most organizations, computer scientists

have developed a large body of concepts and techniques for managing data.

Database-System Applications

Databases are widely used. Here are some representative applications:

 Enterprise Information

o Sales: For customer, product, and purchase information.

o Accounting: For payments, receipts, account balances, assets and other accounting information.

o Human resources: For information about employees, salaries, payroll taxes, and benefits, and for

generation of paychecks.

o Manufacturing: For management of the supply chain and for tracking production of items in factories,

inventories of items in warehouses and stores, and orders for items.

o Online retailers: For sales data noted above plus online order tracking, generation of recommendation

lists, and maintenance of online product evaluations.

 Banking and Finance

o Banking: For customer information, accounts, loans, and banking transactions.

o Credit card transactions: For purchases on credit cards and generation of monthly statements.

o Finance: For storing information about holdings, sales, and purchases of financial instruments such

as stocks and bonds; also for storing real-time market data to enable online trading by customers and

automated trading by the firm.

 Universities: For student information, course registrations, and grades (in addition to standard enterprise

information such as human resources and accounting).

 Airlines: For reservations and schedule information. Airlines were among the first to use databases in a

geographically distributed manner.

 Telecommunication: For keeping records of calls made, generating monthly bills, maintaining balances on

prepaid calling cards, and storing information about the communication networks.

As the list illustrates, databases form an essential part of every enterprise today, storing not only types of

information that are common to most enterprises, but also information that is specific to the category of the

enterprise.

Over the course of the last four decades of the twentieth century, use of databases grew in all enterprises.

In the early days, very few people interacted directly with database systems, although without realizing it,

B Rupa Devi, AITS, Tirupati DBMS – Unit 1 – CSE AK20 and MCA AK22 Page 2

they interacted with databases indirectly— through printed reports such as credit card statements, or

through agents such as bank tellers and airline reservation agents. Then automated teller machines came

along and let users interact directly with databases. Phone interfaces to computers (interactive voice-response

systems) also allowed users to deal directly with databases—a caller could dial a number, and press phone

keys to enter information or to select alternative options, to find flight arrival/departure times, for example, or

to register for courses in a university.

The Internet revolution of the late 1990s sharply increased direct user access to databases. Organizations

converted many of their phone interfaces to databases into Web interfaces, and made a variety of services and

information available online. For instance, when you access an online bookstore and browse a book or music

collection, you are accessing data stored in a database. When you enter an order online, your order is stored

in a database. When you access a bank Web site and retrieve your bank balance and transaction information,

the information is retrieved from the bank’s database system. When you access a Web site, information about

you may be retrieved from a database to select which advertisements you should see. Furthermore, data

about your Web accesses may be stored in a database. Thus, although user interfaces hide details of access

to a database, and most people are not even aware they are dealing with a database, accessing databases

forms an essential part of almost everyone’s life today.

Purpose of Database Systems

In the early days, database applications were built directly on top of file system, which leads to:

 Data redundancy and inconsistency: data is stored in multiple file formats resulting induplication of

information in different files

 Difficulty in accessing data

• Need to write a new program to carry out each new task

 Data isolation

• Multiple files and formats

 Integrity problems

• Integrity constraints (e.g., account balance > 0) become “buried” in program code rather than

being stated explicitly

• Hard to add new constraints or change existing ones

 Atomicity of updates

• Failures may leave database in an inconsistent state with partial updates carried out

• Example: Transfer of funds from one account to another should either complete or not happen

at all

 Concurrent access by multiple users

• Concurrent access needed for performance

• Uncontrolled concurrent accesses can lead to inconsistencies

 Ex: Two people reading a balance (say 100) and updating it by withdrawing money (say

50 each) at the same time

 Security problems

• Hard to provide user access to some, but not all, data

 Database systems offer solutions to all the above problems

University Database Example

 Data consists of information about:

• Students

• Instructors

• Classes

 Application program examples:

• Add new students, instructors, and courses

• Register students for courses, and generate class rosters

• Assign grades to students, compute grade point averages (GPA) and generate transcripts

B Rupa Devi, AITS, Tirupati DBMS – Unit 1 – CSE AK20 and MCA AK22 Page 3

View of Data

 A database system is a collection of interrelated data and a set of programs that allow users to access

and modify these data.

 A major purpose of a database system is to provide users with an abstract view of the data.

• Data models

 A collection of conceptual tools for describing data, data relationships, data semantics,

and consistency constraints.

• Data abstraction

 Hide the complexity of data structures to represent data in the database from users

through several levels of data abstraction.

Data Models

 A collection of tools for describing

• Data

• Data relationships

• Data semantics

• Data constraints

 Relational model

 Entity-Relationship data model (mainly for database design)

 Object-based data models (Object-oriented and Object-relational)

 Semi-structured data model (XML)

 Other older models:

• Network model

• Hierarchical model

Relational Model

 All the data is stored in various tables.

 Example of tabular data in the relational model

Levels of Abstraction

Physical level: describes how a record (e.g., instructor) is stored.

Logical level: describes data stored in database, and the relationships among the data.

type instructor = record

 ID : string;

 name : string;

 dept_name : string;

B Rupa Devi, AITS, Tirupati DBMS – Unit 1 – CSE AK20 and MCA AK22 Page 4

 salary : integer;

end;

View level: application programs hide details of data types. Views can also hide information (such as an

employee’s salary) for security purposes.

Architecture for a database system

Instances and Schemas

 Similar to types and variables in programming languages

 Logical Schema – the overall logical structure of the database

• Example: The database consists of information about a set of customers and accounts in a

bank and the relationship between them

 Analogous to type information of a variable in a program

 Physical schema – the overall physical structure of the database

 Instance – the actual content of the database at a particular point in time

• Analogous to the value of a variable

Physical Data Independence

 The ability to modify the physical schema without changing the logical schema

• Applications depend on the logical schema

• In general, the interfaces between the various levels and components should be well defined so

that changes in some parts do not seriously influence others.

Data Definition Language (DDL)

 Specification notation for defining the database schema

Example: create table instructor (

 ID char(5),

 name varchar(20),

 dept_name varchar(20),

 salary numeric(8,2))

 DDL compiler generates a set of table templates stored in a data dictionary

 Data dictionary contains metadata (i.e., data about data)

• Database schema

• Integrity constraints

 Primary key (ID uniquely identifies instructors)

• Authorization

 Who can access what

Data Manipulation Language (DML)

B Rupa Devi, AITS, Tirupati DBMS – Unit 1 – CSE AK20 and MCA AK22 Page 5

 Language for accessing and updating the data organized by the appropriate data model

• DML also known as query language

 There are basically two types of data-manipulation language

• Procedural DML -- require a user to specify what data are needed and how to get those data.

• Declarative DML -- require a user to specify what data are needed without specifying how to

get those data.

 Declarative DMLs are usually easier to learn and use than are procedural DMLs.

 Declarative DMLs are also referred to as non-procedural DMLs

 The portion of a DML that involves information retrieval is called a query language.

SQL Query Language

 SQL query language is nonprocedural. A query takes as input several tables (possibly only one) and

always returns a single table.

 Example to find all instructors in Comp. Sci. dept

 select name

 from instructor

 where dept_name = 'Comp. Sci.'

 SQL is NOT a Turing machine equivalent language

 To be able to compute complex functions SQL is usually embedded in some higher-level language

 Application programs generally access databases through one of

• Language extensions to allow embedded SQL

• Application program interface (e.g., ODBC/JDBC) which allow SQL queries to be sent to a

database

Database Access from Application Program

 Non-procedural query languages such as SQL are not as powerful as a universal Turing machine.

 SQL does not support actions such as input from users, output to displays, or communication over

the network.

 Such computations and actions must be written in a host language, such as C/C++, Java or Python,

with embedded SQL queries that access the data in the database.

 Application programs -- are programs that are used to interact with the database in this fashion.

Database Design

The process of designing the general structure of the database:

 Logical Design – Deciding on the database schema. Database design requires that we find a “good”

collection of relation schemas.

• Business decision – What attributes should we record in the database?

• Computer Science decision – What relation schemas should we have and how should the

attributes be distributed among the various relation schemas?

 Physical Design – Deciding on the physical layout of the database

Database Engine

 A database system is partitioned into modules that deal with each of the responsibilities of the overall

system.

 The functional components of a database system can be divided into

• The storage manager,

• The query processor component,

• The transaction management component.

Storage Manager

 A program module that provides the interface between the low-level data stored in the database and

the application programs and queries submitted to the system.

B Rupa Devi, AITS, Tirupati DBMS – Unit 1 – CSE AK20 and MCA AK22 Page 6

 The storage manager is responsible to the following tasks:

• Interaction with the OS file manager

• Efficient storing, retrieving and updating of data

 The storage manager components include:

• Authorization and integrity manager

• Transaction manager

• File manager

• Buffer manager

 The storage manager implements several data structures as part of the physical system

implementation:

• Data files -- store the database itself

• Data dictionary -- stores metadata about the structure of the database, in particular the

schema of the database.

• Indices -- can provide fast access to data items. A database index provides pointers to those

data items that hold a particular value.

Query Processor

 The query processor components include:

• DDL interpreter -- interprets DDL statements and records the definitions in the data

dictionary.

• DML compiler -- translates DML statements in a query language into an evaluation plan

consisting of low-level instructions that the query evaluation engine understands.

 The DML compiler performs query optimization; that is, it picks the lowest cost

evaluation plan from among the various alternatives.

• Query evaluation engine -- executes low-level instructions generated by the DML compiler.

Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

Transaction Management

 A transaction is a collection of operations that performs a single logical function in a database

application

 Transaction-management component ensures that the database remains in a consistent (correct)

state despite system failures (e.g., power failures and operating system crashes) and transaction

failures.

 Concurrency-control manager controls the interaction among the concurrent transactions, to ensure

the consistency of the database.

Database Architecture

B Rupa Devi, AITS, Tirupati DBMS – Unit 1 – CSE AK20 and MCA AK22 Page 7

 Centralized databases

• One to a few cores, shared memory

 Client-server,

• One server machine executes work on behalf of multiple client machines.

 Parallel databases

• Many core shared memory

• Shared disk

• Shared nothing

 Distributed databases

• Geographical distribution

• Schema/data heterogeneity

Database Applications

Database applications are usually partitioned into two or three parts

 Two-tier architecture -- the application resides at the client machine, where it invokes database

system functionality at the server machine

 Three-tier architecture -- the client machine acts as a front end and does not contain any direct

database calls.

• The client end communicates with an application server, usually through a forms interface.

• The application server in turn communicates with a database system to access data.

Two-tier and three-tier architectures

B Rupa Devi, AITS, Tirupati DBMS – Unit 1 – CSE AK20 and MCA AK22 Page 8

Database Users

Database Administrator

A person who has central control over the system is called a database administrator (DBA).

Functions of a DBA include:

 Schema definition

 Storage structure and access-method definition

 Schema and physical-organization modification

 Granting of authorization for data access

 Routine maintenance

 Periodically backing up the database

 Ensuring that enough free disk space is available for normal operations, and upgrading disk space as

required

 Monitoring jobs running on the database

History of Database Systems

 1950s and early 1960s:

• Data processing using magnetic tapes for storage

 Tapes provided only sequential access

• Punched cards for input

 Late 1960s and 1970s:

• Hard disks allowed direct access to data

B Rupa Devi, AITS, Tirupati DBMS – Unit 1 – CSE AK20 and MCA AK22 Page 9

• Network and hierarchical data models in widespread use

• Ted Codd defines the relational data model

 Would win the ACM Turing Award for this work

 IBM Research begins System R prototype

 UC Berkeley (Michael Stonebraker) begins Ingres prototype

 Oracle releases first commercial relational database

• High-performance (for the era) transaction processing

 1980s:

• Research relational prototypes evolve into commercial systems

 SQL becomes industrial standard

• Parallel and distributed database systems

 Wisconsin, IBM, Teradata

• Object-oriented database systems

 1990s:

• Large decision support and data-mining applications

• Large multi-terabyte data warehouses

• Emergence of Web commerce

 2000s

• Big data storage systems

 Google BigTable, Yahoo PNuts, Amazon,

 “NoSQL” systems.

• Big data analysis: beyond SQL

 Map reduce and friends

 2010s

• SQL reloaded

 SQL front end to Map Reduce systems

 Massively parallel database systems

 Multi-core main-memory databases

Relation Schema and Instance

 A1, A2, …, An are attributes

 R = (A1, A2, …, An) is a relation schema

 Example: instructor = (ID, name, dept_name, salary)

 A relation instance r defined over schema R is denoted by r (R).

 The current values a relation are specified by a table

 An element t of relation r is called a tuple and is represented by a row in a table

Attributes

 The set of allowed values for each attribute is called the domain of the attribute

 Attribute values are (normally) required to be atomic; that is, indivisible

 The special value null is a member of every domain. Indicated that the value is “unknown”

 The null value causes complications in the definition of many operations

Relations are Unordered

 Order of tuples is irrelevant (tuples may be stored in an arbitrary order)

 Example: instructor relation with unordered tuples

Database Schema

 Database schema -- is the logical structure of the database.

 Database instance -- is a snapshot of the data in the database at a given instant in time.

 Example:

• schema: instructor (ID, name, dept_name, salary)

B Rupa Devi, AITS, Tirupati DBMS – Unit 1 – CSE AK20 and MCA AK22 Page 10

• Instance:

Keys

 Let K R

 K is a superkey of R if values for K are sufficient to identify a unique tuple of each possible relation

r(R)

• Example: {ID} and {ID,name} are both superkeys of instructor.

 Superkey K is a candidate key if K is minimal

Example: {ID} is a candidate key for Instructor

 One of the candidate keys is selected to be the primary key.

 Foreign key constraint: Value in one relation must appear in another

• Referencing relation

• Referenced relation

• Example: dept_name in instructor is a foreign key from instructor referencing department

Schema Diagram for University Database

Relational Query Languages

 Procedural versus non-procedural, or declarative

 “Pure” languages:

B Rupa Devi, AITS, Tirupati DBMS – Unit 1 – CSE AK20 and MCA AK22 Page 11

• Relational algebra

• Tuple relational calculus

• Domain relational calculus

 The above 3 pure languages are equivalent in computing power

 We will concentrate in this chapter on relational algebra

• Not Turing-machine equivalent

• Consists of 6 basic operations

Relational Algebra

 A procedural language consisting of a set of operations that take one or two relations as input and

produce a new relation as their result.

 Six basic operators:

• select:

• project:

• union:

• set difference: –

• Cartesian product: x

• rename:

Select Operation

 The select operation selects tuples that satisfy a given predicate.

 Notation: p (r)

 p is called the selection predicate

 Example: select those tuples of the instructor relation where the instructor is in the “Physics”

department.

• Query: dept_name=“Physics” (instructor)

• Result

 We allow comparisons using =, , >, . <. in the selection predicate.

 We can combine several predicates into a larger predicate by using the connectives: (and), (or),

(not)

Example: Find the instructors in Physics with a salary greater $90,000, we write:

 dept_name=“Physics” salary > 90,000 (instructor)

 The select predicate may include comparisons between two attributes.

• Example, find all departments whose name is the same as their building name:

• dept_name=building (department)

Project Operation

 A unary operation that returns its argument relation, with certain attributes left out.

 Notation: A1, A2, A3 ….Ak (r) where A1, A2, …, Ak are attribute names and r is a relation name.

 The result is defined as the relation of k columns obtained by erasing the columns that are not listed

 Duplicate rows removed from result, since relations are sets

Example: eliminate the dept_name attribute of instructor

 Query: ID, name, salary (instructor)

 Result:

B Rupa Devi, AITS, Tirupati DBMS – Unit 1 – CSE AK20 and MCA AK22 Page 12

Composition of Relational Operations

 The result of a relational-algebra operation is relation and therefore of relational-algebra operations

can be composed together into a relational-algebra expression.

 Consider the query -- Find the names of all instructors in the Physics department.

 name(dept_name =“Physics” (instructor))

 Instead of giving the name of a relation as the argument of the projection operation, we give an

expression that evaluates to a relation.

Cartesian-Product Operation

 The Cartesian-product operation (denoted by X) allows us to combine information from any two

relations.

Example: the Cartesian product of the relations instructor and teaches is written as:

 instructor X teaches

 We construct a tuple of the result out of each possible pair of tuples: one from the instructor relation

and one from the teaches relation (see next slide)

 Since the instructor ID appears in both relations we distinguish between these attribute by attaching

to the attribute the name of the relation from which the attribute originally came.

• instructor.ID

• teaches.ID

The instructor X teaches table

B Rupa Devi, AITS, Tirupati DBMS – Unit 1 – CSE AK20 and MCA AK22 Page 13

Join Operation

 The Cartesian-Product

 instructor X teaches associates every tuple of instructor with every tuple of teaches.

• Most of the resulting rows have information about instructors who did NOT teach a particular

course.

 To get only those tuples of “instructor X teaches “ that pertain to instructors and the courses that

they taught, we write:

 instructor.id = teaches.id (instructor x teaches))

• We get only those tuples of “instructor X teaches” that pertain to instructors and the courses

that they taught.

 The result of this expression,

 The join operation allows us to combine a select operation and a Cartesian-Product operation into a

single operation.

 Consider relations r(R) and s(S). Let “theta” be a predicate on attributes in the schema R “union” S.

 The join operation r ⋈Ɵ s is defined as follows: r ⋈Ɵ s = σƟ (r x s)

 Thus, σinstructor.id = teaches.id (instructor x teaches)

 Can equivalently be written as: instructor ⋈ instructor.id = teaches.id teaches

B Rupa Devi, AITS, Tirupati DBMS – Unit 1 – CSE AK20 and MCA AK22 Page 14

Union Operation

 The union operation allows us to combine two relations

 Notation: r s

 For r s to be valid.

 1. r, s must have the same arity (same number of attributes)

 2. The attribute domains must be compatible (example: 2nd column of r deals with the same type of

values as does the 2nd column of s)

 Example: to find all courses taught in the Fall 2017 semester, or in the Spring 2018 semester, or in

both course_id (semester=“Fall” Λ year=2017 (section)) course_id (semester=“Spring” Λ year=2018 (section))

 Result of: course_id (semester=“Fall” Λ year=2017 (section)) course_id (semester=“Spring” Λ year=2018 (section))

Set-Intersection Operation

 The set-intersection operation allows us to find tuples that are in both the input relations.

 Notation: r s

 Assume:

• r, s have the same arity

• attributes of r and s are compatible

 Example: Find the set of all courses taught in both the Fall 2017 and the Spring 2018 semesters.

 course_id (semester=“Fall” Λ year=2017 (section)) course_id (semester=“Spring” Λ year=2018 (section))

Result:

Set Difference Operation

 The set-difference operation allows us to find tuples that are in one relation but are not in another.

 Notation r – s

 Set differences must be taken between compatible relations.

• r and s must have the same arity

• attribute domains of r and s must be compatible

 Example: to find all courses taught in the Fall 2017 semester, but not in the Spring 2018 semester

 course_id (semester=“Fall” Λ year=2017 (section)) − course_id (semester=“Spring” Λ year=2018 (section))

The Assignment Operation

 It is convenient at times to write a relational-algebra expression by assigning parts of it to temporary

relation variables.

 The assignment operation is denoted by and works like assignment in a programming language.

 Example: Find all instructor in the “Physics” and Music department.

 Physics dept_name=“Physics” (instructor)

B Rupa Devi, AITS, Tirupati DBMS – Unit 1 – CSE AK20 and MCA AK22 Page 15

 Music dept_name=“Music” (instructor)

 Physics Music

 With the assignment operation, a query can be written as a sequential program consisting of a series

of assignments followed by an expression whose value is displayed as the result of the query.

The Rename Operation

 The results of relational-algebra expressions do not have a name that we can use to refer to them. The

rename operator, , is provided for that purpose

 The expression: x (E) returns the result of expression E under the name x

 Another form of the rename operation: x(A1,A2, .. An) (E)

Equivalent Queries

 There is more than one way to write a query in relational algebra.

Example: Find information about courses taught by instructors in the Physics department with salary

greater than 90,000

 Query 1: dept_name=“Physics” salary > 90,000 (instructor)

 Query 2: dept_name=“Physics” (salary > 90.000 (instructor))

 The two queries are not identical; they are, however, equivalent -- they give the same result on any

database.

Example: Find information about courses taught by instructors in the Physics department

 Query 1: σ dept_name=“Physics” (instructor ⋈ instructor.ID = teaches.ID teaches)

 Query 2: (σ dept_name=“Physics” (instructor)) ⋈ instructor.ID = teaches.ID teaches.

 The two queries are not identical; they are, however, equivalent -- they give the same result on any

database

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 1

UNIT 2

Introduction to SQL: Overview of the SQL Query Language, SQL Data Definition, Basic Structure of SQL

Queries, Additional Basic Operations, Set Operations, Null Values, Aggregate Functions, Nested Sub-queries,

Modification of the Database.

Intermediate SQL: Joint Expressions, Views, Transactions, Integrity Constraints, SQL Data types and

schemas, Authorization.

Advanced SQL: Accessing SQL from a Programming Language, Functions and Procedures, Triggers, Recursive

Queries, OLAP, Formal relational query languages.

History

 IBM Sequel language developed as part of System R project at the IBM San Jose Research Laboratory

 Renamed Structured Query Language (SQL)

 ANSI and ISO standard SQL:

• SQL-86

• SQL-89

• SQL-92

• SQL:1999 (language name became Y2K compliant!)

• SQL:2003

 Commercial systems offer most, if not all, SQL-92 features, plus varying feature sets from later standards

and special proprietary features.

• Not all examples here may work on your particular system.

SQL Parts

 DML -- provides the ability to query information from the database and to insert tuples into, delete tuples

from, and modify tuples in the database.

 Integrity – the DDL includes commands for specifying integrity constraints.

 View definition -- The DDL includes commands for defining views.

 Transaction control – includes commands for specifying the beginning and ending of transactions.

 Embedded SQL and dynamic SQL -- define how SQL statements can be embedded within general-purpose

programming languages.

 Authorization – includes commands for specifying access rights to relations and views.

Data Definition Language

The SQL data-definition language (DDL) allows the specification of information about relations, including:

 The schema for each relation.

 The type of values associated with each attribute.

 The Integrity constraints

 The set of indices to be maintained for each relation.

 Security and authorization information for each relation.

 The physical storage structure of each relation on disk.

Domain Types in SQL

 char(n). Fixed length character string, with user-specified length n.

 varchar(n). Variable length character strings, with user-specified maximum length n.

 int. Integer (a finite subset of the integers that is machine-dependent).

 smallint. Small integer (a machine-dependent subset of the integer domain type).

 numeric(p,d). Fixed point number, with user-specified precision of p digits, with d digits to the right

of decimal point. (ex., numeric(3,1), allows 44.5 to be stores exactly, but not 444.5 or 0.32)

 real, double precision. Floating point and double-precision floating point numbers, with machine-

dependent precision.

 float(n). Floating point number, with user-specified precision of at least n digits.

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 2

Create Table Construct

 An SQL relation is defined using the create table command:

 create table r

 (A1 D1, A2 D2, ..., An Dn,

 (integrity-constraint1),

 ..,

 (integrity-constraintk))

• r is the name of the relation

• each Ai is an attribute name in the schema of relation r

• Di is the data type of values in the domain of attribute Ai

 Example:

 create table instructor (

 ID char(5),

 name varchar(20),

 dept_name varchar(20),

 salary numeric(8,2))

Integrity Constraints in Create Table

 Types of integrity constraints

• primary key (A1, ..., An)

• foreign key (Am, ..., An) references r

• not null

 SQL prevents any update to the database that violates an integrity constraint.

Example:

create table instructor (

 ID char(5),

 name varchar(20) not null,

 dept_name varchar(20),

 salary numeric(8,2),

 primary key (ID),

 foreign key (dept_name) references department);

create table student (

 ID varchar(5),

 name varchar(20) not null,

 dept_name varchar(20),

 tot_cred numeric(3,0),

 primary key (ID),

 foreign key (dept_name) references department);

create table takes (

 ID varchar(5),

 course_id varchar(8),

 sec_id varchar(8),

 semester varchar(6),

 year numeric(4,0),

 grade varchar(2),

 primary key (ID, course_id, sec_id, semester, year) ,

 foreign key (ID) references student,

 foreign key (course_id, sec_id, semester, year) references section);

create table course (

 course_id varchar(8),

 title varchar(50),

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 3

 dept_name varchar(20),

 credits numeric(2,0),

 primary key (course_id),

 foreign key (dept_name) references department);

Updates to tables

 Insert

• insert into instructor values ('10211', 'Smith', 'Biology', 66000);

 Delete

• Remove all tuples from the student relation

 delete from student

 Drop Table

• drop table r

 Alter

• alter table r add A D

 where A is the name of the attribute to be added to relation r and D is the domain of A.

 All exiting tuples in the relation are assigned null as the value for the new attribute.

• alter table r drop A

 where A is the name of an attribute of relation r

 Dropping of attributes not supported by many databases.

Basic Query Structure

 A typical SQL query has the form:

 select A1, A2, ..., An

 from r1, r2, ..., rm

 where P

• Ai represents an attribute, Ri represents a relation, P is a predicate.

 The result of an SQL query is a relation.

The select Clause

 The select clause lists the attributes desired in the result of a query

• corresponds to the projection operation of the relational algebra

 Example: find the names of all instructors:

 select name from instructor

 NOTE: SQL names are case insensitive (i.e., you may use upper- or lower-case letters.)

• E.g., Name ≡ NAME ≡ name

• Some people use upper case wherever we use bold font.

 SQL allows duplicates in relations as well as in query results.

 To force the elimination of duplicates, insert the keyword distinct after select.

 Find the department names of all instructors, and remove duplicates

 select distinct dept_name from instructor

 The keyword all specifies that duplicates should not be removed.

 select all dept_name from instructor

 An asterisk in the select clause denotes “all attributes”

 select * from instructor

 An attribute can be a literal with no from clause

 select '437'

• Results is a table with one column and a single row with value “437”

• Can give the column a name using: select '437' as FOO

 An attribute can be a literal with from clause

 select 'A' from instructor

• Result is a table with one column and N rows (number of tuples in the instructors table), each

row with value “A”

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 4

 The select clause can contain arithmetic expressions involving the operation, +, –, *, and /, and

operating on constants or attributes of tuples.

• The query:

 select ID, name, salary/12 from instructor

 would return a relation that is the same as the instructor relation, except that the value of the

attribute salary is divided by 12.

• Can rename “salary/12” using the as clause: select ID, name, salary/12 as monthly_salary

The where Clause

 The where clause specifies conditions that the result must satisfy

• Corresponds to the selection predicate of the relational algebra.

 To find all instructors in Comp. Sci. dept

 select name from instructor where dept_name = 'Comp. Sci.'

 SQL allows the use of the logical connectives and, or, and not

 The operands of the logical connectives can be expressions involving the comparison operators <, <=,

>, >=, =, and <>.

 Comparisons can be applied to results of arithmetic expressions

 To find all instructors in Comp. Sci. dept with salary > 70000

 select name from instructor where dept_name = 'Comp. Sci.' and salary > 70000

The from Clause

 The from clause lists the relations involved in the query

• Corresponds to the Cartesian product operation of the relational algebra.

 Find the Cartesian product instructor X teaches

 select * from instructor, teaches

• generates every possible instructor – teaches pair, with all attributes from both relations.

• For common attributes (e.g., ID), the attributes in the resulting table are renamed using the

relation name (e.g., instructor.ID)

 Cartesian product not very useful directly, but useful combined with where-clause condition (selection

operation in relational algebra).

Examples

 Find the names of all instructors who have taught some course and the course_id

• select name, course_id

from instructor , teaches

where instructor.ID = teaches.ID

 Find the names of all instructors in the Art department who have taught some course and the

course_id

• select name, course_id

from instructor , teaches

where instructor.ID = teaches.ID and instructor. dept_name = 'Art'

The Rename Operation

 The SQL allows renaming relations and attributes using the as clause: old-name as new-name

 Find the names of all instructors who have a higher salary than some instructor in 'Comp. Sci'.

• select distinct T.name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = 'Comp. Sci.’

 Keyword as is optional and may be omitted: instructor as T ≡ instructor T

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 5

Self Join Example

 Relation emp-super

 Find the supervisor of “Bob”

 Find the supervisor of the supervisor of “Bob”

 Can you find ALL the supervisors (direct and indirect) of “Bob”?

String Operations

 SQL includes a string-matching operator for comparisons on character strings. The operator like uses

patterns that are described using two special characters:

• percent (%). The % character matches any substring.

• underscore (_). The _ character matches any character.

 Find the names of all instructors whose name includes the substring “dar”.

 select name

 from instructor

 where name like '%dar%'

 Match the string “100%”

 like '100 \%' escape '\' ; we use backslash (\) as the escape character.

 Patterns are case sensitive.

 Pattern matching examples:

• 'Intro%' matches any string beginning with “Intro”.

• '%Comp%' matches any string containing “Comp” as a substring.

• '_ _ _' matches any string of exactly three characters.

• '_ _ _ %' matches any string of at least three characters.

 SQL supports a variety of string operations such as

• concatenation (using “||”)

• converting from upper to lower case (and vice versa)

• finding string length, extracting substrings, etc.

Ordering the Display of Tuples

 List in alphabetic order the names of all instructors

 select distinct name

 from instructor

 order by name

 We may specify desc for descending order or asc for ascending order, for each attribute; ascending

order is the default.

• Example: order by name desc

 Can sort on multiple attributes

• Example: order by dept_name, name

Where Clause Predicates

 SQL includes a between comparison operator

 Example: Find the names of all instructors with salary between $90,000 and $100,000 (that is,

$90,000 and £ $100,000)

• select name

from instructor

where salary between 90000 and 100000

 Tuple comparison

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 6

• select name, course_id

from instructor, teaches

where (instructor.ID, dept_name) = (teaches.ID, 'Biology');

Set Operations

 Find courses that ran in Fall 2017 or in Spring 2018

 (select course_id from section where sem = 'Fall' and year = 2017)

 union

 (select course_id from section where sem = 'Spring' and year = 2018)

 Find courses that ran in Fall 2017 and in Spring 2018

 (select course_id from section where sem = 'Fall' and year = 2017)

 intersect

 (select course_id from section where sem = 'Spring' and year = 2018)

 Find courses that ran in Fall 2017 but not in Spring 2018

 (select course_id from section where sem = 'Fall' and year = 2017)

 except

 (select course_id from section where sem = 'Spring' and year = 2018)

 Set operations union, intersect, and except

• Each of the above operations automatically eliminates duplicates

 To retain all duplicates use the

• union all,

• intersect all

• except all.

Null Values

 It is possible for tuples to have a null value, denoted by null, for some of their attributes

 null signifies an unknown value or that a value does not exist.

 The result of any arithmetic expression involving null is null

• Example: 5 + null returns null

 The predicate is null can be used to check for null values.

• Example: Find all instructors whose salary is null.

 select name

 from instructor

 where salary is null

 The predicate is not null succeeds if the value on which it is applied is not null.

 It is possible for tuples to have a null value, denoted by null, for some of their attributes

 null signifies an unknown value or that a value does not exist.

 The result of any arithmetic expression involving null is null

• Example: 5 + null returns null

 The predicate is null can be used to check for null values.

• Example: Find all instructors whose salary is null.

 select name

 from instructor

 where salary is null

 The predicate is not null succeeds if the value on which it is applied is not null.

Aggregate Functions

 These functions operate on the multiset of values of a column of a relation, and return a value

 avg: average value

 min: minimum value

 max: maximum value

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 7

 sum: sum of values

 count: number of values

 Find the average salary of instructors in the Computer Science department

select avg (salary)

from instructor

where dept_name= 'Comp. Sci.';

 Find the total number of instructors who teach a course in the Spring 2018 semester

select count (distinct ID)

from teaches

where semester = 'Spring' and year = 2018;

 Find the number of tuples in the course relation

select count (*)

from course;

 Find the average salary of instructors in each department

select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name;

 Attributes in select clause outside of aggregate functions must appear in group by list

/* erroneous query */

select dept_name, ID, avg (salary)

from instructor

group by dept_name;

Aggregate Functions – Having Clause

 Find the names and average salaries of all departments whose average salary is greater than 42000

select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name

having avg (salary) > 42000;

 Note: predicates in the having clause are applied after the formation of groups whereas predicates in

the where clause are applied before forming groups

Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries. A subquery is a select-from-where

expression that is nested within another query.

 The nesting can be done in the following SQL query

 select A1, A2, ..., An

 from r1, r2, ..., rm

 where P

 as follows:

• From clause: ri can be replaced by any valid subquery

• Where clause: P can be replaced with an expression of the form: B <operation> (subquery)

 B is an attribute and <operation> to be defined later.

• Select clause:

Ai can be replaced be a subquery that generates a single value.

Set Membership

 Find courses offered in Fall 2017 and in Spring 2018

select distinct course_id

from section

where semester = 'Fall' and year= 2017 and

course_id in (select course_id from section where semester = 'Spring' and year= 2018);

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 8

 Find courses offered in Fall 2017 but not in Spring 2018

select distinct course_id

from section

where semester = 'Fall' and year= 2017 and

 course_id not in (select course_id from section

 where semester = 'Spring' and year= 2018);

 Name all instructors whose name is neither “Mozart” nor Einstein”

 select distinct name

 from instructor

 where name not in ('Mozart', 'Einstein')

 Find the total number of (distinct) students who have taken course sections taught by the instructor

with ID 10101

select count (distinct ID)

from takes

where (course_id, sec_id, semester, year) in

 (select course_id, sec_id, semester, year

 from teaches

 where teaches.ID= 10101);

Set Comparison

 Find names of instructors with salary greater than that of some (at least one) instructor in the Biology

department.

select distinct T.name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept name = 'Biology';

 Same query using > some clause

select name

from instructor

where salary > some (select salary

 from instructor

 where dept name = 'Biology');

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 9

©Silberschatz, Korth and Sudarshan3.41Database System Concepts - 7th Edition

Definition of “some” Clause

 F <comp> some r t r such that (F <comp> t)

Where <comp> can be:

0
5

6

(5 < some) = true

0
5

0

) = false

5

0
5(5 some) = true (since 0 5)

(read: 5 < some tuple in the relation)

(5 < some

) = true(5 = some

(= some) in

However, (some) not in

Set Comparison – “all” Clause

 Find the names of all instructors whose salary is greater than the salary of all instructors in the

Biology department.

select name

from instructor

where salary > all (select salary from instructor where dept name = 'Biology');

Definition of “all” Clause

 F <comp> all r t r (F <comp> t)

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 10

Test for Empty Relations

 The exists construct returns the value true if the argument subquery is nonempty.

 exists r r Ø

 not exists r r = Ø

Use of “exists” Clause

 Yet another way of specifying the query “Find all courses taught in both the Fall 2017 semester and in

the Spring 2018 semester”

select course_id

 from section as S

 where semester = 'Fall' and year = 2017 and

 exists (select * from section as T

 where semester = 'Spring' and year= 2018

 and S.course_id = T.course_id);

 Correlation name – variable S in the outer query

 Correlated subquery – the inner query

Use of “not exists” Clause

 Find all students who have taken all courses offered in the Biology department.

select distinct S.ID, S.name

from student as S

where not exists ((select course_id from course

 where dept_name = 'Biology')

 except

 (select T.course_id from takes as T

 where S.ID = T.ID));

• First nested query lists all courses offered in Biology

• Second nested query lists all courses a particular student took

 Note that X – Y = Ø X Y

 Note: Cannot write this query using = all and its variants

Test for Absence of Duplicate Tuples

 The unique construct tests whether a subquery has any duplicate tuples in its result.

 The unique construct evaluates to “true” if a given subquery contains no duplicates .

 Find all courses that were offered at most once in 2017

select T.course_id

from course as T

where unique (select R.course_id

 from section as R

 where T.course_id= R.course_id

 and R.year = 2017);

Subqueries in the From Clause

 SQL allows a subquery expression to be used in the from clause

 Find the average instructors’ salaries of those departments where the average salary is greater than

$42,000.”

select dept_name, avg_salary

from (select dept_name, avg (salary) as avg_salary

 from instructor

 group by dept_name)

where avg_salary > 42000;

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 11

 Note that we do not need to use the having clause

 Another way to write above query

select dept_name, avg_salary

from (select dept_name, avg (salary)

 from instructor

 group by dept_name)

 as dept_avg (dept_name, avg_salary)

 where avg_salary > 42000;

With Clause

 The with clause provides a way of defining a temporary relation whose definition is available only to

the query in which the with clause occurs.

 Find all departments with the maximum budget

 with max_budget (value) as

 (select max(budget)

 from department)

 select department.name

 from department, max_budget

 where department.budget = max_budget.value;

Complex Queries using With Clause

 Find all departments where the total salary is greater than the average of the total salary at all

departments

with dept _total (dept_name, value) as

 (select dept_name, sum(salary)

 from instructor

 group by dept_name),

dept_total_avg(value) as

 (select avg(value)

 from dept_total)

select dept_name

from dept_total, dept_total_avg

where dept_total.value > dept_total_avg.value;

Scalar Subquery

 Scalar subquery is one which is used where a single value is expected

 List all departments along with the number of instructors in each department

select dept_name,

 (select count(*)

 from instructor

 where department.dept_name = instructor.dept_name)

 as num_instructors

from department;

 Runtime error if subquery returns more than one result tuple

Modification of the Database

 Deletion of tuples from a given relation.

 Insertion of new tuples into a given relation

 Updating of values in some tuples in a given relation

Deletion

 Delete all instructors

 delete from instructor

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 12

 Delete all instructors from the Finance department

 delete from instructor

 where dept_name= 'Finance’;

 Delete all tuples in the instructor relation for those instructors associated with a department located in

the Watson building.

 delete from instructor

 where dept name in (select dept name

 from department

 where building = 'Watson');

 Delete all instructors whose salary is less than the average salary of instructors

delete from instructor

where salary < (select avg (salary)

 from instructor);

• Problem: as we delete tuples from instructor, the average salary changes

• Solution used in SQL:

1. First, compute avg (salary) and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or retesting the tuples)

Insertion

 Add a new tuple to course

 insert into course

 values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

 or equivalently

 insert into course (course_id, title, dept_name, credits)

 values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

 Add a new tuple to student with tot_creds set to null

 insert into student

 values ('3003', 'Green', 'Finance', null);

 Make each student in the Music department who has earned more than 144 credit hours an instructor

in the Music department with a salary of $18,000.

 insert into instructor

 select ID, name, dept_name, 18000

 from student

 where dept_name = 'Music' and total_cred > 144;

 The select from where statement is evaluated fully before any of its results are inserted into the

relation.

 Otherwise queries like: insert into table1 select * from table1 would cause problem

Updates

 Give a 5% salary raise to all instructors

 update instructor set salary = salary * 1.05

 Give a 5% salary raise to those instructors who earn less than 70000

 update instructor

 set salary = salary * 1.05

 where salary < 70000;

 Give a 5% salary raise to instructors whose salary is less than average

 update instructor

 set salary = salary * 1.05

 where salary < (select avg (salary) from instructor);

 Increase salaries of instructors whose salary is over $100,000 by 3%, and all others by a 5%

• Write two update statements:

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 13

 update instructor

 set salary = salary * 1.03

 where salary > 100000;

 update instructor

 set salary = salary * 1.05

 where salary <= 100000;

• The order is important

• Can be done better using the case statement

Case Statement for Conditional Updates

 Same query as before but with case statement

 update instructor

 set salary = case

 when salary <= 100000 then salary * 1.05

 else salary * 1.03

 end

Updates with Scalar Subqueries

 Recompute and update tot_creds value for all students

 update student S

 set tot_cred = (select sum(credits)

 from takes, course

 where takes.course_id = course.course_id and

 S.ID= takes.ID and takes.grade <> 'F' and

 takes.grade is not null);

 Sets tot_creds to null for students who have not taken any course

 Instead of sum(credits), use:

 case

 when sum(credits) is not null then sum(credits)

 else 0

 end

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 14

Intermediate SQL

Joined Relations

 Join operations take two relations and return as a result another relation.

 A join operation is a Cartesian product which requires that tuples in the two relations match (under

some condition). It also specifies the attributes that are present in the result of the join

 The join operations are typically used as subquery expressions in the from clause

 Three types of joins:

• Natural join

• Inner join

• Outer join

Natural Join in SQL

 Natural join matches tuples with the same values for all common attributes, and retains only one copy

of each common column.

 List the names of instructors along with the course ID of the courses that they taught

• select name, course_id

from students, takes

where student.ID = takes.ID;

 Same query in SQL with “natural join” construct

• select name, course_id

from student natural join takes;

 The from clause can have multiple relations combined using natural join:

select A1, A2, … An

from r1 natural join r2 natural join .. natural join rn

where P ;

Student Relation

Takes Relation

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 15

student natural join takes

Dangerous in Natural Join

 Beware of unrelated attributes with same name which get equated incorrectly

 Example -- List the names of students instructors along with the titles of courses that they have

taken

• Correct version

 select name, title

 from student natural join takes, course

 where takes.course_id = course.course_id;

• Incorrect version

 select name, title

 from student natural join takes natural join course;

 This query omits all (student name, course title) pairs where the student takes a course

in a department other than the student's own department.

 The correct version (above), correctly outputs such pairs.

Natural Join with Using Clause

 To avoid the danger of equating attributes erroneously, we can use the “using” construct that allows

us to specify exactly which columns should be equated.

 Query example

 select name, title

 from (student natural join takes) join course using (course_id)

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 16

Join Condition

 The on condition allows a general predicate over the relations being joined

 This predicate is written like a where clause predicate except for the use of the keyword on

 Query example

 select * from student join takes on student_ID = takes_ID

• The on condition above specifies that a tuple from student matches a tuple from takes if their

ID values are equal.

 Equivalent to:

 select * from student , takes where student_ID = takes_ID

 The on condition allows a general predicate over the relations being joined.

 This predicate is written like a where clause predicate except for the use of the keyword on.

 Query example

 select * from student join takes on student_ID = takes_ID

• The on condition above specifies that a tuple from student matches a tuple from takes if their

ID values are equal.

 Equivalent to:

 select * from student , takes where student_ID = takes_ID

Outer Join

 An extension of the join operation that avoids loss of information.

 Computes the join and then adds tuples form one relation that does not match tuples in the other

relation to the result of the join.

 Uses null values.

 Three forms of outer join:

• left outer join

• right outer join

• full outer join

Outer Join Examples

Relation course Relation prereq

Left Outer Join

 course natural left outer join prereq

 In relational algebra: course ⟕ prereq

Right Outer Join

 course natural right outer join prereq

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 17

 In relational algebra: course ⟖ prereq

Full Outer Join

 course natural full outer join prereq

 In relational algebra: course ⟗ prereq

Joined Types and Conditions

 Join operations take two relations and return as a result another relation.

 These additional operations are typically used as subquery expressions in the from clause

 Join condition – defines which tuples in the two relations match.

 Join type – defines how tuples in each relation that do not match any tuple in the other relation

(based on the join condition) are treated.

 course natural right outer join prereq

 course full outer join prereq using (course_id)

 course inner join prereq on course.course_id = prereq.course_id

 course left outer join prereq on course.course_id = prereq.course_id

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 18

 course natural right outer join prereq

 course full outer join prereq using (course_id)

Views

 In some cases, it is not desirable for all users to see the entire logical model (that is, all the actual

relations stored in the database.)

 Consider a person who needs to know an instructors name and department, but not the salary. This

person should see a relation described, in SQL, by

 select ID, name, dept_name from instructor

 A view provides a mechanism to hide certain data from the view of certain users.

 Any relation that is not of the conceptual model but is made visible to a user as a “virtual relation” is

called a view.

View Definition

 A view is defined using the create view statement which has the form

 create view v as < query expression >

 where <query expression> is any legal SQL expression. The view name is represented by v.

 Once a view is defined, the view name can be used to refer to the virtual relation that the view

generates.

 View definition is not the same as creating a new relation by evaluating the query expression

• Rather, a view definition causes the saving of an expression; the expression is substituted into

queries using the view.

View Definition and Use

 A view of instructors without their salary

 create view faculty as

 select ID, name, dept_name from instructor

 Find all instructors in the Biology department

 select name from faculty where dept_name = 'Biology'

 Create a view of department salary totals

 create view departments_total_salary(dept_name, total_salary) as

 select dept_name, sum (salary)

 from instructor

 group by dept_name;

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 19

Views Defined Using Other Views

 One view may be used in the expression defining another view

 A view relation v1 is said to depend directly on a view relation v2 if v2 is used in the expression

defining v1

 A view relation v1 is said to depend on view relation v2 if either v1 depends directly to v2 or there is a

path of dependencies from v1 to v2

 A view relation v is said to be recursive if it depends on itself.

 create view physics_fall_2017 as

 select course.course_id, sec_id, building, room_number

 from course, section

 where course.course_id = section.course_id

 and course.dept_name = 'Physics'

 and section.semester = 'Fall'

 and section.year = '2017’;

 create view physics_fall_2017_watson as

 select course_id, room_number

 from physics_fall_2017

 where building= 'Watson';

View Expansion

 Expand the view :

 create view physics_fall_2017_watson as

 select course_id, room_number

 from physics_fall_2017

 where building= 'Watson'

 To:

create view physics_fall_2017_watson as

select course_id, room_number

from (select course.course_id, building, room_number

from course, section

where course.course_id = section.course_id

and course.dept_name = 'Physics'

and section.semester = 'Fall'

and section.year = '2017')

where building= 'Watson';

 A way to define the meaning of views defined in terms of other views.

 Let view v1 be defined by an expression e1 that may itself contain uses of view relations.

 View expansion of an expression repeats the following replacement step:

 repeat

 Find any view relation vi in e1

 Replace the view relation vi by the expression defining vi

 until no more view relations are present in e1

 As long as the view definitions are not recursive, this loop will terminate

Materialized Views

 Certain database systems allow view relations to be physically stored.

• Physical copy created when the view is defined.

• Such views are called Materialized view:

 If relations used in the query are updated, the materialized view result becomes out of date

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 20

• Need to maintain the view, by updating the view whenever the underlying relations are

updated.

Update of a View

 Add a new tuple to faculty view which we defined earlier

 insert into faculty

 values ('30765', 'Green', 'Music');

 This insertion must be represented by the insertion into the instructor relation

• Must have a value for salary.

 Two approaches

• Reject the insert

• Insert the tuple

 ('30765', 'Green', 'Music', null)

 into the instructor relation

Some Updates Cannot be Translated Uniquely

 create view instructor_info as

 select ID, name, building

 from instructor, department

 where instructor.dept_name = department.dept_name;

 insert into instructor_info

 values ('69987', 'White', 'Taylor');

 Issues

• Which department, if multiple departments in Taylor?

• What if no department is in Taylor?

 create view history_instructors as

 select *

 from instructor

 where dept_name= 'History';

 What happens if we insert

 ('25566', 'Brown', 'Biology', 100000) into history_instructors?

View Updates in SQL

 Most SQL implementations allow updates only on simple views

• The from clause has only one database relation.

• The select clause contains only attribute names of the relation, and does not have any

expressions, aggregates, or distinct specification.

• Any attribute not listed in the select clause can be set to null

• The query does not have a group by or having clause.

Transactions

 A transaction consists of a sequence of query and/or update statements and is a “unit” of work

 The SQL standard specifies that a transaction begins implicitly when an SQL statement is executed.

 The transaction must end with one of the following statements:

• Commit work. The updates performed by the transaction become permanent in the database.

• Rollback work. All the updates performed by the SQL statements in the transaction are

undone.

 Atomic transaction

• either fully executed or rolled back as if it never occurred

 Isolation from concurrent transactions

Integrity Constraints

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 21

 Integrity constraints guard against accidental damage to the database, by ensuring that authorized

changes to the database do not result in a loss of data consistency.

• A checking account must have a balance greater than $10,000.00

• A salary of a bank employee must be at least $4.00 an hour

• A customer must have a (non-null) phone number

Constraints on a Single Relation

 not null

 primary key

 unique

 check (P), where P is a predicate

 Declare name and budget to be not null

 name varchar(20) not null

 budget numeric(12,2) not null

 unique (A1, A2, …, Am)

• The unique specification states that the attributes A1, A2, …, Am form a candidate key.

• Candidate keys are permitted to be null (in contrast to primary keys).

 The check (P) clause specifies a predicate P that must be satisfied by every tuple in a relation.

 Example: ensure that semester is one of fall, winter, spring or summer

 create table section

 (course_id varchar (8),

 sec_id varchar (8),

 semester varchar (6),

 year numeric (4,0),

 building varchar (15),

 room_number varchar (7),

 time slot id varchar (4),

 primary key (course_id, sec_id, semester, year),

 check (semester in ('Fall', 'Winter', 'Spring', 'Summer')))

Referential Integrity

 Ensures that a value that appears in one relation for a given set of attributes also appears for a certain

set of attributes in another relation.

• Example: If “Biology” is a department name appearing in one of the tuples in the instructor

relation, then there exists a tuple in the department relation for “Biology”.

 Let A be a set of attributes. Let R and S be two relations that contain attributes A and where A is the

primary key of S. A is said to be a foreign key of R if for any values of A appearing in R these values

also appear in S.

 Foreign keys can be specified as part of the SQL create table statement

 foreign key (dept_name) references department

 By default, a foreign key references the primary-key attributes of the referenced table.

 SQL allows a list of attributes of the referenced relation to be specified explicitly.

 foreign key (dept_name) references department (dept_name)

Cascading Actions in Referential Integrity

 When a referential-integrity constraint is violated, the normal procedure is to reject the action that

caused the violation.

 An alternative, in case of delete or update is to cascade

 create table course (

 (…

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 22

 dept_name varchar(20),

 foreign key (dept_name) references department

 on delete cascade

 on update cascade,

 . . .)

 Instead of cascade we can use :

• set null,

• set default

Integrity Constraint Violation During Transactions

 Consider:

 create table person (

 ID char(10),

 name char(40),

 mother char(10),

 father char(10),

 primary key ID,

 foreign key father references person,

 foreign key mother references person)

 How to insert a tuple without causing constraint violation?

• Insert father and mother of a person before inserting person

• OR, set father and mother to null initially, update after inserting all persons (not possible if

father and mother attributes declared to be not null)

• OR defer constraint checking

Complex Check Conditions

 The predicate in the check clause can be an arbitrary predicate that can include a subquery.

 check (time_slot_id in (select time_slot_id from time_slot))

The check condition states that the time_slot_id in each tuple in the section relation is actually the

identifier of a time slot in the time_slot relation.

• The condition has to be checked not only when a tuple is inserted or modified in section , but

also when the relation time_slot changes

Assertions

 An assertion is a predicate expressing a condition that we wish the database always to satisfy.

 The following constraints, can be expressed using assertions:

 For each tuple in the student relation, the value of the attribute tot_cred must equal the sum of credits

of courses that the student has completed successfully.

 An instructor cannot teach in two different classrooms in a semester in the same time slot

 An assertion in SQL takes the form:

 create assertion <assertion-name> check (<predicate>);

Built-in Data Types in SQL

 date: Dates, containing a (4 digit) year, month and date

• Example: date '2005-7-27'

 time: Time of day, in hours, minutes and seconds.

• Example: time '09:00:30' time '09:00:30.75'

 timestamp: date plus time of day

• Example: timestamp '2005-7-27 09:00:30.75'

 interval: period of time

• Example: interval '1' day

• Subtracting a date/time/timestamp value from another gives an interval value

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 23

• Interval values can be added to date/time/timestamp values

Large-Object Types

 Large objects (photos, videos, CAD files, etc.) are stored as a large object:

• blob: binary large object -- object is a large collection of uninterpreted binary data (whose

interpretation is left to an application outside of the database system)

• clob: character large object -- object is a large collection of character data

 When a query returns a large object, a pointer is returned rather than the large object itself.

User-Defined Types

 create type construct in SQL creates user-defined type

 create type Dollars as numeric (12,2) final

 Example:

 create table department

 (dept_name varchar (20),

 building varchar (15),

 budget Dollars);

Domains

 create domain construct in SQL-92 creates user-defined domain types

 create domain person_name char(20) not null

 Types and domains are similar. Domains can have constraints, such as not null, specified on them.

 Example:

 create domain degree_level varchar(10)

 constraint degree_level_test

 check (value in ('Bachelors', 'Masters', 'Doctorate'));

Index Creation

 Many queries reference only a small proportion of the records in a table.

 It is inefficient for the system to read every record to find a record with particular value

 An index on an attribute of a relation is a data structure that allows the database system to find those

tuples in the relation that have a specified value for that attribute efficiently, without scanning

through all the tuples of the relation.

 We create an index with the create index command

 create index <name> on <relation-name> (attribute);

 create table student

(ID varchar (5),

name varchar (20) not null,

dept_name varchar (20),

tot_cred numeric (3,0) default 0,

primary key (ID))

 create index studentID_index on student(ID)

 The query:

select * from student where ID = '12345; can be executed by using the index to find the required

record, without looking at all records of student

Authorization

 We may assign a user several forms of authorizations on parts of the database.

• Read - allows reading, but not modification of data.

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 24

• Insert - allows insertion of new data, but not modification of existing data.

• Update - allows modification, but not deletion of data.

• Delete - allows deletion of data.

 Each of these types of authorizations is called a privilege. We may authorize the user all, none, or a

combination of these types of privileges on specified parts of a database, such as a relation or a view.

 Forms of authorization to modify the database schema

• Index - allows creation and deletion of indices.

• Resources - allows creation of new relations.

• Alteration - allows addition or deletion of attributes in a relation.

• Drop - allows deletion of relations.

Authorization Specification in SQL

 The grant statement is used to confer authorization

 grant <privilege list> on <relation or view > to <user list>

 <user list> is:

• a user-id

• public, which allows all valid users the privilege granted

• A role (more on this later)

 Example:

• grant select on department to Amit, Satoshi

 Granting a privilege on a view does not imply granting any privileges on the underlying relations.

 The grantor of the privilege must already hold the privilege on the specified item (or be the database

administrator).

Privileges in SQL

 select: allows read access to relation, or the ability to query using the view

• Example: grant users U1, U2, and U3 select authorization on the instructor relation:

 grant select on instructor to U1, U2, U3

 insert: the ability to insert tuples

 update: the ability to update using the SQL update statement

 delete: the ability to delete tuples.

 all privileges: used as a short form for all the allowable privileges

Revoking Authorization in SQL

 The revoke statement is used to revoke authorization.

revoke <privilege list> on <relation or view> from <user list>

 Example:

revoke select on student from U1, U2, U3

 <privilege-list> may be all to revoke all privileges the revokee may hold.

 If <revokee-list> includes public, all users lose the privilege except those granted it explicitly.

 If the same privilege was granted twice to the same user by different grantees, the user may retain the

privilege after the revocation.

 All privileges that depend on the privilege being revoked are also revoked.

Roles

 A role is a way to distinguish among various users as far as what these users can access/update in

the database.

 To create a role we use:

 create a role <name>

 Example:

• create role instructor

 Once a role is created we can assign “users” to the role using:

• grant <role> to <users>

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 25

Roles Example

 create role instructor;

 grant instructor to Amit;

 Privileges can be granted to roles:

• grant select on takes to instructor;

 Roles can be granted to users, as well as to other roles

• create role teaching_assistant

• grant teaching_assistant to instructor;

 Instructor inherits all privileges of teaching_assistant

 Chain of roles

• create role dean;

• grant instructor to dean;

• grant dean to Satoshi;

Authorization on Views

 create view geo_instructor as

(select *

from instructor

where dept_name = 'Geology');

 grant select on geo_instructor to geo_staff

 Suppose that a geo_staff member issues

• select *

from geo_instructor;

 What if

• geo_staff does not have permissions on instructor?

• Creator of view did not have some permissions on instructor?

Other Authorization Features

 references privilege to create foreign key

• grant reference (dept_name) on department to Mariano;

• Why is this required?

 transfer of privileges

• grant select on department to Amit with grant option;

• revoke select on department from Amit, Satoshi cascade;

• revoke select on department from Amit, Satoshi restrict;

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 26

Advanced SQL

Accessing SQL from a Programming Language

A database programmer must have access to a general-purpose programming language for at least two

reasons:

 Not all queries can be expressed in SQL, since SQL does not provide the full expressive power of a

general-purpose language.

 Non-declarative actions -- such as printing a report, interacting with a user, or sending the results of a

query to a graphical user interface -- cannot be done from within SQL.

There are two approaches to accessing SQL from a general-purpose programming language

 A general-purpose program -- can connect to and communicate with a database server using a

collection of functions

 Embedded SQL -- provides a means by which a program can interact with a database server.

• The SQL statements are translated at compile time into function calls.

• At runtime, these function calls connect to the database using an API that provides dynamic

SQL facilities.

JDBC

 JDBC is a Java API for communicating with database systems supporting SQL.

 JDBC supports a variety of features for querying and updating data, and for retrieving query results.

 JDBC also supports metadata retrieval, such as querying about relations present in the database and

the names and types of relation attributes.

 Model for communicating with the database:

• Open a connection

• Create a “statement” object

• Execute queries using the statement object to send queries and fetch results

• Exception mechanism to handle errors

JDBC Code

public static void JDBCexample(String dbid, String userid, String passwd)

 {

 try (Connection conn = DriverManager.getConnection(

 "jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid, passwd);

 Statement stmt = conn.createStatement();

)

 {

 … Do Actual Work ….

 }

 catch (SQLException sqle) {

 System.out.println("SQLException : " + sqle);

 }

 }

NOTE: Above syntax works with Java 7, and JDBC 4 onwards.

Resources opened in “try (….)” syntax (“try with resources”) are automatically closed at the end of the try

block

 Update to database

try {

 stmt.executeUpdate(

 "insert into instructor values('77987', 'Kim', 'Physics', 98000)");

} catch (SQLException sqle)

{

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 27

 System.out.println("Could not insert tuple. " + sqle);

}

 Execute query and fetch and print results

 ResultSet rset = stmt.executeQuery(

 "select dept_name, avg (salary)

 from instructor

 group by dept_name");

while (rset.next()) {

 System.out.println(rset.getString("dept_name") + " " +

 rset.getFloat(2));

}

JDBC SUBSECTIONS

 Connecting to the Database

 Shipping SQL Statements to the Database System

 Exceptions and Resource Management

 Retrieving the Result of a Query

 Prepared Statements

 Callable Statements

 Metadata Features

 Other Features

 Database Access from Python

JDBC Code Details

 Getting result fields:

• rs.getString(“dept_name”) and rs.getString(1) equivalent if dept_name is the first argument of

select result.

 Dealing with Null values

int a = rs.getInt(“a”);

if (rs.wasNull()) Systems.out.println(“Got null value”);

Prepared Statement

 PreparedStatement pStmt = conn.prepareStatement(

 "insert into instructor values(?,?,?,?)");

pStmt.setString(1, "88877");

pStmt.setString(2, "Perry");

pStmt.setString(3, "Finance");

pStmt.setInt(4, 125000);

pStmt.executeUpdate();

pStmt.setString(1, "88878");

pStmt.executeUpdate();

 WARNING: always use prepared statements when taking an input from the user and adding it to a

query

• NEVER create a query by concatenating strings

• "insert into instructor values(' " + ID + " ', ' " + name + " ', " + " ' + dept name + " ', " ' balance +

')“

• What if name is “D'Souza”?

SQL Injection

 Suppose query is constructed using

• "select * from instructor where name = '" + name + "'"

 Suppose the user, instead of entering a name, enters:

• X' or 'Y' = 'Y

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 28

 then the resulting statement becomes:

• "select * from instructor where name = '" + "X' or 'Y' = 'Y" + "'"

• which is:

 select * from instructor where name = 'X' or 'Y' = 'Y'

• User could have even used

 X'; update instructor set salary = salary + 10000; --

 Prepared stament internally uses:

"select * from instructor where name = 'X\' or \'Y\' = \'Y'

• Always use prepared statements, with user inputs as parameters

Metadata Features

 ResultSet metadata

 E.g. after executing query to get a ResultSet rs:

• ResultSetMetaData rsmd = rs.getMetaData();

 for(int i = 1; i <= rsmd.getColumnCount(); i++) {

 System.out.println(rsmd.getColumnName(i));

 System.out.println(rsmd.getColumnTypeName(i));

 }

 Database metadata

 DatabaseMetaData dbmd = conn.getMetaData();

// Arguments to getColumns: Catalog, Schema-pattern, Table-pattern,

// and Column-Pattern

// Returns: One row for each column; row has a number of attributes

// such as COLUMN_NAME, TYPE_NAME

// The value null indicates all Catalogs/Schemas.

// The value “” indicates current catalog/schema

// The value “%” has the same meaning as SQL like clause

 ResultSet rs = dbmd.getColumns(null, "univdb", "department", "%");

 while(rs.next()) {

 System.out.println(rs.getString("COLUMN_NAME"),

 rs.getString("TYPE_NAME");

 }

 DatabaseMetaData dbmd = conn.getMetaData();

// Arguments to getTables: Catalog, Schema-pattern, Table-pattern, and Table-Type

// Returns: One row for each table; row has a number of attributes

// such as TABLE_NAME, TABLE_CAT, TABLE_TYPE, ..

// The value null indicates all Catalogs/Schemas.

// The value “” indicates current catalog/schema

// The value “%” has the same meaning as SQL like clause

// The last attribute is an array of types of tables to return.

// TABLE means only regular tables

 ResultSet rs = dbmd.getTables (“”, "", “%", new String[] {“TABLES”});

 while(rs.next()) {

 System.out.println(rs.getString(“TABLE_NAME“));

 }

Finding Primary Keys

 DatabaseMetaData dmd = connection.getMetaData();

// Arguments below are: Catalog, Schema, and Table

// The value “” for Catalog/Schema indicates current catalog/schema

// The value null indicates all catalogs/schemas

ResultSet rs = dmd.getPrimaryKeys(“”, “”, tableName);

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 29

while(rs.next()){

 // KEY_SEQ indicates the position of the attribute in

 // the primary key, which is required if a primary key has multiple

 // attributes

 System.out.println(rs.getString(“KEY_SEQ”),

 rs.getString("COLUMN_NAME");

}

Transaction Control in JDBC

 By default, each SQL statement is treated as a separate transaction that is committed automatically

• bad idea for transactions with multiple updates

 Can turn off automatic commit on a connection

• conn.setAutoCommit(false);

 Transactions must then be committed or rolled back explicitly

• conn.commit(); or

• conn.rollback();

 conn.setAutoCommit(true) turns on automatic commit.

Other JDBC Features

 Calling functions and procedures

• CallableStatement cStmt1 = conn.prepareCall("{? = call some function(?)}");

• CallableStatement cStmt2 = conn.prepareCall("{call some procedure(?,?)}");

 Handling large object types

• getBlob() and getClob() that are similar to the getString() method, but return objects of type

Blob and Clob, respectively

• get data from these objects by getBytes()

• associate an open stream with Java Blob or Clob object to update large objects

 blob.setBlob(int parameterIndex, InputStream inputStream).

SQLJ

 JDBC is overly dynamic, errors cannot be caught by compiler

 SQLJ: embedded SQL in Java

• #sql iterator deptInfoIter (String dept name, int avgSal);

 deptInfoIter iter = null;

 #sql iter = { select dept_name, avg(salary) from instructor

 group by dept name };

 while (iter.next()) {

 String deptName = iter.dept_name();

 int avgSal = iter.avgSal();

 System.out.println(deptName + " " + avgSal);

 }

 iter.close();

ODBC

 Open DataBase Connectivity (ODBC) standard

• standard for application program to communicate with a database server.

• application program interface (API) to

 open a connection with a database,

 send queries and updates,

 get back results.

 Applications such as GUI, spreadsheets, etc. can use ODBC

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 30

Embedded SQL

 The SQL standard defines embeddings of SQL in a variety of programming languages such as C, C++,

Java, Fortran, and PL/1,

 A language to which SQL queries are embedded is referred to as a host language, and the SQL

structures permitted in the host language comprise embedded SQL.

 The basic form of these languages follows that of the System R embedding of SQL into PL/1.

 EXEC SQL statement is used in the host language to identify embedded SQL request to the

preprocessor

 EXEC SQL <embedded SQL statement >;

 Note: this varies by language:

• In some languages, like COBOL, the semicolon is replaced with END-EXEC

• In Java embedding uses # SQL { …. };

 Before executing any SQL statements, the program must first connect to the database. This is done

using:

 EXEC-SQL connect to server user user-name using password;

 Here, server identifies the server to which a connection is to be established.

 Variables of the host language can be used within embedded SQL statements. They are preceded by a

colon (:) to distinguish from SQL variables (e.g., :credit_amount)

 Variables used as above must be declared within DECLARE section, as illustrated below. The syntax

for declaring the variables, however, follows the usual host language syntax.

 EXEC-SQL BEGIN DECLARE SECTION}

 int credit-amount ;

 EXEC-SQL END DECLARE SECTION;

 To write an embedded SQL query, we use the

 declare c cursor for <SQL query>

 statement. The variable c is used to identify the query

 Example:

• From within a host language, find the ID and name of students who have completed more

than the number of credits stored in variable credit_amount in the host langue

• Specify the query in SQL as follows:

 EXEC SQL

 declare c cursor for

 select ID, name

 from student

 where tot_cred > :credit_amount

 END_EXEC

 The open statement for our example is as follows:

 EXEC SQL open c ;

This statement causes the database system to execute the query and to save the results within a

temporary relation. The query uses the value of the host-language variable credit-amount at the time

the open statement is executed.

 The fetch statement causes the values of one tuple in the query result to be placed on host language

variables.

 EXEC SQL fetch c into :si, :sn END_EXEC

Repeated calls to fetch get successive tuples in the query result

 A variable called SQLSTATE in the SQL communication area (SQLCA) gets set to '02000' to indicate no

more data is available

 The close statement causes the database system to delete the temporary relation that holds the result

of the query.

 EXEC SQL close c ;

Note: above details vary with language. For example, the Java embedding defines Java iterators to

step through result tuples.

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 31

Updates Through Embedded SQL

 Embedded SQL expressions for database modification (update, insert, and delete)

 Can update tuples fetched by cursor by declaring that the cursor is for update

 EXEC SQL

 declare c cursor for

 select *

 from instructor

 where dept_name = 'Music'

 for update

 We then iterate through the tuples by performing fetch operations on the cursor (as illustrated

earlier), and after fetching each tuple we execute the following code:

 update instructor

 set salary = salary + 1000

 where current of c

Functions and Procedures

 Functions and procedures allow “business logic” to be stored in the database and executed from SQL

statements.

 These can be defined either by the procedural component of SQL or by an external programming

language such as Java, C, or C++.

 The syntax we present here is defined by the SQL standard.

• Most databases implement nonstandard versions of this syntax.

Declaring SQL Functions

 Define a function that, given the name of a department, returns the count of the number of instructors

in that department.

 create function dept_count (dept_name varchar(20))

 returns integer

 begin

 declare d_count integer;

 select count (*) into d_count

 from instructor

 where instructor.dept_name = dept_name

 return d_count;

 end

 The function dept_count can be used to find the department names and budget of all departments

with more that 12 instructors.

 select dept_name, budget

 from department

 where dept_count (dept_name) > 12

Table Functions

 The SQL standard supports functions that can return tables as results; such functions are called table

functions

 Example: Return all instructors in a given department

 create function instructor_of (dept_name char(20))

 returns table (

 ID varchar(5),

 name varchar(20),

 dept_name varchar(20),

 salary numeric(8,2))

 return table

 (select ID, name, dept_name, salary

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 32

 from instructor

 where instructor.dept_name = instructor_of.dept_name)

 Usage

 select * from table (instructor_of ('Music'))

SQL Procedures

 The dept_count function could instead be written as procedure:

 create procedure dept_count_proc (in dept_name varchar(20), out d_count integer)

 begin

 select count(*) into d_count

 from instructor

 where instructor.dept_name = dept_count_proc.dept_name

 end

 The keywords in and out are parameters that are expected to have values assigned to them and

parameters whose values are set in the procedure in order to return results.

 Procedures can be invoked either from an SQL procedure or from embedded SQL, using the call

statement.

 declare d_count integer;

 call dept_count_proc('Physics', d_count);

 Procedures and functions can be invoked also from dynamic SQL

 SQL allows more than one procedure of the so long as the number of arguments of the procedures

with the same name is different.

 The name, along with the number of arguments, is used to identify the procedure.

Language Constructs for Procedures & Functions

 SQL supports constructs that gives it almost all the power of a general-purpose programming

language.

• Warning: most database systems implement their own variant of the standard syntax below.

 Compound statement: begin … end,

• May contain multiple SQL statements between begin and end.

• Local variables can be declared within a compound statements

 While and repeat statements:

• while boolean expression do

 sequence of statements ;

 end while

• repeat

 sequence of statements ;

 until boolean expression

 end repeat

 For loop

• Permits iteration over all results of a query

 Example: Find the budget of all departments

 declare n integer default 0;

 for r as

 select budget from department where dept_name = 'Music'

 do

 set n = n + r.budget

 end for

Language Constructs – if-then-else

 Conditional statements (if-then-else)

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 33

 if boolean expression

 then statement or compound statement

 elseif boolean expression

 then statement or compound statement

 else statement or compound statement

 end if

Example procedure

 Registers student after ensuring classroom capacity is not exceeded

• Returns 0 on success and -1 if capacity is exceeded

• See book (page 202) for details

 Signaling of exception conditions, and declaring handlers for exceptions

 declare out_of_classroom_seats condition

 declare exit handler for out_of_classroom_seats

 begin

 …

 end

 The statements between the begin and the end can raise an exception by executing “signal

out_of_classroom_seats”

 The handler says that if the condition arises he action to be taken is to exit the enclosing the begin

end statement.

Triggers

 A trigger is a statement that is executed automatically by the system as a side effect of a modification

to the database.

 To design a trigger mechanism, we must:

• Specify the conditions under which the trigger is to be executed.

• Specify the actions to be taken when the trigger executes.

 Triggers introduced to SQL standard in SQL:1999, but supported even earlier using non-standard

syntax by most databases.

• Syntax illustrated here may not work exactly on your database system; check the system

manuals

Triggering Events and Actions in SQL

 Triggering event can be insert, delete or update

 Triggers on update can be restricted to specific attributes

• For example, after update of takes on grade

 Values of attributes before and after an update can be referenced

• referencing old row as : for deletes and updates

• referencing new row as : for inserts and updates

 Triggers can be activated before an event, which can serve as extra constraints. For example, convert

blank grades to null.

 create trigger setnull_trigger before update of takes

 referencing new row as nrow

 for each row

 when (nrow.grade = ' ')

 begin atomic

 set nrow.grade = null;

 end;

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 34

Statement Level Triggers

 Instead of executing a separate action for each affected row, a single action can be executed for all

rows affected by a transaction

• Use for each statement instead of for each row

• Use referencing old table or referencing new table to refer to temporary tables (called

transition tables) containing the affected rows

• Can be more efficient when dealing with SQL statements that update a large number of rows

When Not To Use Triggers

 Triggers were used earlier for tasks such as

• Maintaining summary data (e.g., total salary of each department)

• Replicating databases by recording changes to special relations (called change or delta

relations) and having a separate process that applies the changes over to a replica

 There are better ways of doing these now:

• Databases today provide built in materialized view facilities to maintain summary data

• Databases provide built-in support for replication

 Encapsulation facilities can be used instead of triggers in many cases

• Define methods to update fields

• Carry out actions as part of the update methods instead of

through a trigger

 Risk of unintended execution of triggers, for example, when

• Loading data from a backup copy

• Replicating updates at a remote site

• Trigger execution can be disabled before such actions.

 Other risks with triggers:

• Error leading to failure of critical transactions that set off the trigger

• Cascading execution

Recursive Queries

 SQL:1999 permits recursive view definition

 Example: find which courses are a prerequisite, whether directly or indirectly, for a specific course

with recursive rec_prereq(course_id, prereq_id) as (

 select course_id, prereq_id

 from prereq

 union

 select rec_prereq.course_id, prereq.prereq_id,

 from rec_rereq, prereq

 where rec_prereq.prereq_id = prereq.course_id

)

select ∗

from rec_prereq;

 This example view, rec_prereq, is called the transitive closure of the prereq relation

 Recursive views make it possible to write queries, such as transitive closure queries, that cannot be

written without recursion or iteration.

• Intuition: Without recursion, a non-recursive non-iterative program can perform only a fixed

number of joins of prereq with itself

 This can give only a fixed number of levels of managers

 Given a fixed non-recursive query, we can construct a database with a greater number

of levels of prerequisites on which the query will not work

 Alternative: write a procedure to iterate as many times as required

• See procedure findAllPrereqs in book

 Computing transitive closure using iteration, adding successive tuples to rec_prereq

• The next slide shows a prereq relation

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 35

• Each step of the iterative process constructs an extended version of rec_prereq from its

recursive definition.

• The final result is called the fixed point of the recursive view definition.

 Recursive views are required to be monotonic. That is, if we add tuples to prereq the view rec_prereq

contains all of the tuples it contained before, plus possibly more

Advanced Aggregation Features

Ranking

 Ranking is done in conjunction with an order by specification.

 Suppose we are given a relation

 student_grades(ID, GPA)

giving the grade-point average of each student

 Find the rank of each student.

select ID, rank() over (order by GPA desc) as s_rank

 from student_grades

 An extra order by clause is needed to get them in sorted order

 select ID, rank() over (order by GPA desc) as s_rank

 from student_grades

 order by s_rank

 Ranking may leave gaps: e.g. if 2 students have the same top GPA, both have rank 1, and the next

rank is 3

• dense_rank does not leave gaps, so next dense rank would be 2

 Ranking can be done using basic SQL aggregation, but resultant query is very inefficient

select ID, (1 + (select count(*)

 from student_grades B

 where B.GPA > A.GPA)) as s_rank

from student_grades A order by s_rank;

 Ranking can be done within partition of the data.

 “Find the rank of students within each department.”

 select ID, dept_name,

 rank () over (partition by dept_name order by GPA desc)

 as dept_rank

 from dept_grades

 order by dept_name, dept_rank;

 Multiple rank clauses can occur in a single select clause.

 Ranking is done after applying group by clause/aggregation

 Can be used to find top-n results

• More general than the limit n clause supported by many databases, since it allows top-n

within each partition

 Other ranking functions:

• percent_rank (within partition, if partitioning is done)

• cume_dist (cumulative distribution)

 fraction of tuples with preceding values

• row_number (non-deterministic in presence of duplicates)

 SQL:1999 permits the user to specify nulls first or nulls last

select ID,

rank () over (order by GPA desc nulls last) as s_rank

from student_grades

 For a given constant n, the ranking the function ntile(n) takes the tuples in each partition in the

specified order, and divides them into n buckets with equal numbers of tuples.

 E.g.,

 select ID, ntile(4) over (order by GPA desc) as quartile

 from student_grades;

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 36

Windowing

 Used to smooth out random variations.

 E.g., moving average: “Given sales values for each date, calculate for each date the average of the

sales on that day, the previous day, and the next day”

 Window specification in SQL:

• Given relation sales(date, value)

 select date, sum(value) over

 (order by date between rows 1 preceding and 1 following)

 from sales

 Examples of other window specifications:

• between rows unbounded preceding and current

• rows unbounded preceding

• range between 10 preceding and current row

 All rows with values between current row value –10 to current value

• range interval 10 day preceding

 Not including current row

 Can do windowing within partitions

 E.g., Given a relation transaction (account_number, date_time, value), where value is positive for a

deposit and negative for a withdrawal

• “Find total balance of each account after each transaction on the account”

select account_number, date_time,

sum (value) over

 (partition by account_number

 order by date_time

 rows unbounded preceding)

 as balance

from transaction

order by account_number, date_time

OLAP

Data Analysis and OLAP

 Online Analytical Processing (OLAP)

• Interactive analysis of data, allowing data to be summarized and viewed in different ways in an

online fashion (with negligible delay)

 Data that can be modeled as dimension attributes and measure attributes are called

multidimensional data.

• Measure attributes

 measure some value

 can be aggregated upon

 e.g., the attribute number of the sales relation

• Dimension attributes

 define the dimensions on which measure attributes (or aggregates thereof) are viewed

 e.g., attributes item_name, color, and size of the sales relation

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 37

Example sales relation

Cross Tabulation of sales by item_name and color

 The table above is an example of a cross-tabulation (cross-tab), also referred to as a pivot-table.

• Values for one of the dimension attributes form the row headers

• Values for another dimension attribute form the column headers

• Other dimension attributes are listed on top

• Values in individual cells are (aggregates of) the values of the dimension attributes that specify

the cell.

Data Cube

 A data cube is a multidimensional generalization of a cross-tab

 Can have n dimensions; we show 3 below

 Cross-tabs can be used as views on a data cube

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 38

Hierarchies on Dimensions

 Hierarchy on dimension attributes: lets dimensions to be viewed at different levels of detail

• E.g., the dimension DateTime can be used to aggregate by hour of day, date, day of week,

month, quarter or year

Cross Tabulation With Hierarchy

 Cross-tabs can be easily extended to deal with hierarchies

• Can drill down or roll up on a hierarchy

Relational Representation of Cross-tabs

 Cross-tabs can be represented as relations

• We use the value all is used to represent aggregates.

• The SQL standard actually uses null values in place of all despite confusion with regular null

values.

Extended Aggregation to Support OLAP

 The cube operation computes union of group by’s on every subset of the specified attributes

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 39

 Example relation for this section

 sales(item_name, color, clothes_size, quantity)

 E.g., consider the query

 select item_name, color, size, sum(number)

 from sales

 group by cube(item_name, color, size)

 This computes the union of eight different groupings of the sales relation:

 { (item_name, color, size), (item_name, color),

 (item_name, size), (color, size),

 (item_name), (color),

 (size), () }

 where () denotes an empty group by list.

 For each grouping, the result contains the null value

for attributes not present in the grouping.

Online Analytical Processing Operations

 Relational representation of cross-tab that we saw earlier, but with null in place of all, can be

computed by

 select item_name, color, sum(number)

 from sales

 group by cube(item_name, color)

 The function grouping() can be applied on an attribute

• Returns 1 if the value is a null value representing all, and returns 0 in all other cases.

select item_name, color, size, sum(number),

grouping(item_name) as item_name_flag,

grouping(color) as color_flag,

grouping(size) as size_flag,

from sales

group by cube(item_name, color, size)

 Can use the function decode() in the select clause to replace such nulls by a value such as all

• E.g., replace item_name in first query by

 decode(grouping(item_name), 1, ‘all’, item_name)

 The rollup construct generates union on every prefix of specified list of attributes

 E.g.,

 select item_name, color, size, sum(number)

 from sales

 group by rollup(item_name, color, size)

• Generates union of four groupings:

 { (item_name, color, size), (item_name, color), (item_name), () }

 Rollup can be used to generate aggregates at multiple levels of a

hierarchy.

 E.g., suppose table itemcategory(item_name, category) gives the category of each item. Then

 select category, item_name, sum(number)

 from sales, itemcategory

 where sales.item_name = itemcategory.item_name

 group by rollup(category, item_name)

 would give a hierarchical summary by item_name and by category.

 Multiple rollups and cubes can be used in a single group by clause

• Each generates set of group by lists, cross product of sets gives overall set of group by lists

 E.g.,

 select item_name, color, size, sum(number)

 from sales

 group by rollup(item_name), rollup(color, size)

B Rupa Devi Unit 2 DBMS – AK22 MCA / AK20 B Tech Page 40

 generates the groupings

 {item_name, ()} X {(color, size), (color), ()}

 = { (item_name, color, size), (item_name, color), (item_name), (color, size), (color), () }

 Pivoting: changing the dimensions used in a cross-tab is called

 Slicing: creating a cross-tab for fixed values only

• Sometimes called dicing, particularly when values for multiple dimensions are fixed.

 Rollup: moving from finer-granularity data to a coarser granularity

 Drill down: The opposite operation - that of moving from coarser-granularity data to finer-granularity

data

OLAP Implementation

 The earliest OLAP systems used multidimensional arrays in memory to store data cubes, and are

referred to as multidimensional OLAP (MOLAP) systems.

 OLAP implementations using only relational database features are called relational OLAP (ROLAP)

systems

 Hybrid systems, which store some summaries in memory and store the base data and other

summaries in a relational database, are called hybrid OLAP (HOLAP) systems.

 Early OLAP systems precomputed all possible aggregates in order to provide online response

 Space and time requirements for doing so can be very high

 2n combinations of group by

 It suffices to precompute some aggregates, and compute others on demand from one of the

precomputed aggregates

 Can compute aggregate on (item_name, color) from an aggregate on (item_name, color,

size)

 For all but a few “non-decomposable” aggregates such as median

 is cheaper than computing it from scratch

 Several optimizations available for computing multiple aggregates

 Can compute aggregate on (item_name, color) from an aggregate on (item_name, color, size)

 Can compute aggregates on (item_name, color, size),

(item_name, color) and (item_name) using a single sorting of the base data

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 1

Unit 3

Database Design and the E-R Model: Overview of the Design Process, The Entity-Relationship Model, Constraints,

Removing Redundant Attributes in Entity Sets, Entity-Relationship Diagrams, Reduction to Relational Schemas, Entity-

Relationship Design Issues.

Relational Database Design: Features of Good Relational Designs, Atomic Domains and First Normal Form, Decomposition

Using Functional Dependencies, Functional-Dependency Theory, Algorithms for Decomposition, Decomposition Using

Multi-valued Dependencies, More Normal Forms.

Design Phases

 Initial phase -- characterize fully the data needs of the prospective database users.

 Second phase -- choosing a data model

• Applying the concepts of the chosen data model

• Translating these requirements into a conceptual schema of the database.

• A fully developed conceptual schema indicates the functional requirements of the enterprise.

 Describe the kinds of operations (or transactions) that will be performed on the data.

 Final Phase -- Moving from an abstract data model to the implementation of the database

• Logical Design – Deciding on the database schema.

 Database design requires that we find a “good” collection of relation schemas.

 Business decision – What attributes should we record in the database?

 Computer Science decision – What relation schemas should we have and how should

the attributes be distributed among the various relation schemas?

• Physical Design – Deciding on the physical layout of the database

Design Alternatives

 In designing a database schema, we must ensure that we avoid two major pitfalls:

• Redundancy: a bad design may result in repeat information.

 Redundant representation of information may lead to data inconsistency among the

various copies of information

• Incompleteness: a bad design may make certain aspects of the enterprise difficult or impossible

to model.

 Avoiding bad designs is not enough. There may be a large number of good designs from which we

must choose.

Design Approaches

 Entity Relationship Model

• Models an enterprise as a collection of entities and relationships

 Entity: a “thing” or “object” in the enterprise that is distinguishable from other objects

• Described by a set of attributes

 Relationship: an association among several entities

• Represented diagrammatically by an entity-relationship diagram:

 Normalization Theory

• Formalize what designs are bad, and test for them

ER model -- Database Modeling

 The ER data mode was developed to facilitate database design by allowing specification of an

enterprise schema that represents the overall logical structure of a database.

 The ER data model employs three basic concepts:

• entity sets,

• relationship sets,

• attributes.

 The ER model also has an associated diagrammatic representation, the ER diagram, which can

express the overall logical structure of a database graphically.

Entity Sets

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 2

 An entity is an object that exists and is distinguishable from other objects.

• Example: specific person, company, event, plant

 An entity set is a set of entities of the same type that share the same properties.

• Example: set of all persons, companies, trees, holidays

 An entity is represented by a set of attributes; i.e., descriptive properties possessed by all members of

an entity set.

• Example:

 instructor = (ID, name, salary)

 course= (course_id, title, credits)

 A subset of the attributes form a primary key of the entity set; i.e., uniquely identifying each member

of the set.

Entity Sets -- instructor and student

Representing Entity sets in ER Diagram

 Entity sets can be represented graphically as follows:

• Rectangles represent entity sets.

• Attributes listed inside entity rectangle

• Underline indicates primary key attributes

Relationship Sets

 A relationship is an association among several entities

 Example:

 44553 (Peltier) advisor 22222 (Einstein)

 student entity relationship set instructor entity

 A relationship set is a mathematical relation among n 2 entities, each taken from entity sets

{(e1, e2, … en) | e1 E1, e2 E2, …, en En}

where (e1, e2, …, en) is a relationship

• Example:

 (44553,22222) advisor

 Example: we define the relationship set advisor to denote the associations between students and the

instructors who act as their advisors.

 Pictorially, we draw a line between related entities.

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 3

Representing Relationship Sets via ER Diagrams

Diamonds represent relationship sets.

 An attribute can also be associated with a relationship set.

 For instance, the advisor relationship set between entity sets instructor and student may have the

attribute date which tracks when the student started being associated with the advisor

Relationship Sets with Attributes

Roles

 Entity sets of a relationship need not be distinct

• Each occurrence of an entity set plays a “role” in the relationship

 The labels “course_id” and “prereq_id” are called roles.

Degree of a Relationship Set

 Binary relationship

• involve two entity sets (or degree two).

• most relationship sets in a database system are binary.

 Relationships between more than two entity sets are rare. Most relationships are binary. (More on this

later.)

• Example: students work on research projects under the guidance of an instructor.

• relationship proj_guide is a ternary relationship between instructor, student, and project

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 4

Non-binary Relationship Sets

 Most relationship sets are binary

 There are occasions when it is more convenient to represent relationships as non-binary.

 E-R Diagram with a Ternary Relationship

Complex Attributes

 Attribute types:

• Simple and composite attributes.

• Single-valued and multivalued attributes

 Example: multivalued attribute: phone_numbers

• Derived attributes

 Can be computed from other attributes

 Example: age, given date_of_birth

 Domain – the set of permitted values for each attribute

Composite Attributes

 Composite attributes allow us to divided attributes into subparts (other attributes).

Representing Complex Attributes in ER Diagram

Mapping Cardinality Constraints

 Express the number of entities to which another entity can be associated via a relationship set.

 Most useful in describing binary relationship sets.

 For a binary relationship set the mapping cardinality must be one of the following types:

• One to one

• One to many

• Many to one

name address

first_name middle_initial last_name street city state postal_code

street_number street_name apartment_number

composite
attributes

component
attributes

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 5

• Many to many

Mapping Cardinalities

Representing Cardinality Constraints in ER Diagram

 We express cardinality constraints by drawing either a directed line (), signifying “one,” or an

undirected line (—), signifying “many,” between the relationship set and the entity set.

 One-to-one relationship between an instructor and a student :

• A student is associated with at most one instructor via the relationship advisor

• A student is associated with at most one department via stud_dept

One-to-Many Relationship

 one-to-many relationship between an instructor and a student

• an instructor is associated with several (including 0) students via advisor

• a student is associated with at most one instructor via advisor,

 In a many-to-one relationship between an instructor and a student,

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 6

• an instructor is associated with at most one student via advisor,

• and a student is associated with several (including 0) instructors via advisor

 An instructor is associated with several (possibly 0) students via advisor

 A student is associated with several (possibly 0) instructors via advisor

Total and Partial Participation

 Total participation (indicated by double line): every entity in the entity set participates in at least one

relationship in the relationship set

participation of student in advisor relation is total

 every student must have an associated instructor

 Partial participation: some entities may not participate in any relationship in the relationship set

• Example: participation of instructor in advisor is partial

Notation for Expressing More Complex Constraints

 A line may have an associated minimum and maximum cardinality, shown in the form l..h, where l is

the minimum and h the maximum cardinality

• A minimum value of 1 indicates total participation.

• A maximum value of 1 indicates that the entity participates in at most one relationship

• A maximum value of * indicates no limit.

 Example

• Instructor can advise 0 or more students. A student must have 1 advisor; cannot have

multiple advisors

Cardinality Constraints on Ternary Relationship

 We allow at most one arrow out of a ternary (or greater degree) relationship to indicate a cardinality

constraint

 For example, an arrow from proj_guide to instructor indicates each student has at most one guide for a

project

 If there is more than one arrow, there are two ways of defining the meaning.

• For example, a ternary relationship R between A, B and C with arrows to B and C could mean

 1. Each A entity is associated with a unique entity from B and C or

2. Each pair of entities from (A, B) is associated with a unique C entity, and each pair (A, C)

is associated with a unique B

• Each alternative has been used in different formalisms

• To avoid confusion we outlaw more than one arrow

Primary Key

 Primary keys provide a way to specify how entities and relations are distinguished. We will consider:

• Entity sets

• Relationship sets.

• Weak entity sets

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 7

Primary key for Entity Sets

 By definition, individual entities are distinct.

 From database perspective, the differences among them must be expressed in terms of their

attributes.

 The values of the attribute values of an entity must be such that they can uniquely identify the entity.

• No two entities in an entity set are allowed to have exactly the same value for all attributes.

 A key for an entity is a set of attributes that suffice to distinguish entities from each other

Primary Key for Relationship Sets

 To distinguish among the various relationships of a relationship set we use the individual primary

keys of the entities in the relationship set.

• Let R be a relationship set involving entity sets E1, E2, .. En

• The primary key for R is consists of the union of the primary keys of entity sets E1, E2, ..En

• If the relationship set R has attributes a1, a2, .., am associated with it, then the primary key

of R also includes the attributes a1, a2, .., am

 Example: relationship set “advisor”.

• The primary key consists of instructor.ID and student.ID

 The choice of the primary key for a relationship set depends on the mapping cardinality of the

relationship set.

Choice of Primary key for Binary Relationship

 Many-to-Many relationships. The preceding union of the primary keys is a minimal superkey and is

chosen as the primary key.

 One-to-Many relationships . The primary key of the “Many” side is a minimal superkey and is used as

the primary key.

 Many-to-one relationships. The primary key of the “Many” side is a minimal superkey and is used as

the primary key.

 One-to-one relationships. The primary key of either one of the participating entity sets forms a

minimal superkey, and either one can be chosen as the primary key.

Weak Entity Sets

 Consider a section entity, which is uniquely identified by a course_id, semester, year, and sec_id.

 Clearly, section entities are related to course entities. Suppose we create a relationship set sec_course

between entity sets section and course.

 Note that the information in sec_course is redundant, since section already has an attribute course_id,

which identifies the course with which the section is related.

 One option to deal with this redundancy is to get rid of the relationship sec_course; however, by doing

so the relationship between section and course becomes implicit in an attribute, which is not desirable.

 An alternative way to deal with this redundancy is to not store the attribute course_id in the section

entity and to only store the remaining attributes section_id, year, and semester.

 However, the entity set section then does not have enough attributes to identify a particular

section entity uniquely

 To deal with this problem, we treat the relationship sec_course as a special relationship that provides

extra information, in this case, the course_id, required to identify section entities uniquely.

 A weak entity set is one whose existence is dependent on another entity, called its identifying entity

 Instead of associating a primary key with a weak entity, we use the identifying entity, along with extra

attributes called discriminator to uniquely identify a weak entity.

 An entity set that is not a weak entity set is termed a strong entity set.

 Every weak entity must be associated with an identifying entity; that is, the weak entity set is said to

be existence dependent on the identifying entity set.

 The identifying entity set is said to own the weak entity set that it identifies.

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 8

 The relationship associating the weak entity set with the identifying entity set is called the identifying

relationship.

 Note that the relational schema we eventually create from the entity set section does have the attribute

course_id, for reasons that will become clear later, even though we have dropped the attribute

course_id from the entity set section.

Expressing Weak Entity Sets

 In E-R diagrams, a weak entity set is depicted via a double rectangle.

 We underline the discriminator of a weak entity set with a dashed line.

 The relationship set connecting the weak entity set to the identifying strong entity set is depicted by a

double diamond.

 Primary key for section – (course_id, sec_id, semester, year)

Redundant Attributes

 Suppose we have entity sets:

• student, with attributes: ID, name, tot_cred, dept_name

• department, with attributes: dept_name, building, budget

 We model the fact that each student has an associated department using a relationship set stud_dept

 The attribute dept_name in student below replicates information present in the relationship and is

therefore redundant

• and needs to be removed.

 BUT: when converting back to tables, in some cases the attribute gets reintroduced, as we will see

later.

E-R Diagram for a University Enterprise

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 9

Reduction to Relation Schemas

 Entity sets and relationship sets can be expressed uniformly as relation schemas that represent the

contents of the database.

 A database which conforms to an E-R diagram can be represented by a collection of schemas.

 For each entity set and relationship set there is a unique schema that is assigned the name of the

corresponding entity set or relationship set.

 Each schema has a number of columns (generally corresponding to attributes), which have unique

names.

Representing Entity Sets

 A strong entity set reduces to a schema with the same attributes

 student(ID, name, tot_cred)

 A weak entity set becomes a table that includes a column for the primary key of the identifying strong

entity set

 section (course_id, sec_id, sem, year)

Representation of Entity Sets with Composite Attributes

 Composite attributes are flattened out by creating a separate attribute for each component attribute

• Example: given entity set instructor with composite attribute name with component attributes

first_name and last_name the schema corresponding to the entity set has two attributes

name_first_name and name_last_name

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 10

 Prefix omitted if there is no ambiguity (name_first_name could be first_name)

 Ignoring multivalued attributes, extended instructor schema is

• instructor(ID,

 first_name, middle_initial, last_name,

 street_number, street_name,

 apt_number, city, state, zip_code,

 date_of_birth)

Representation of Entity Sets with Multivalued Attributes

 A multivalued attribute M of an entity E is represented by a separate schema EM

 Schema EM has attributes corresponding to the primary key of E and an attribute corresponding to

multivalued attribute M

 Example: Multivalued attribute phone_number of instructor is represented by a schema:

 inst_phone= (ID, phone_number)

 Each value of the multivalued attribute maps to a separate tuple of the relation on schema EM

• For example, an instructor entity with primary key 22222 and phone numbers 456-7890 and

123-4567 maps to two tuples:

 (22222, 456-7890) and (22222, 123-4567)

Representing Relationship Sets

 A many-to-many relationship set is represented as a schema with attributes for the primary keys of

the two participating entity sets, and any descriptive attributes of the relationship set.

 Example: schema for relationship set advisor

 advisor = (s_id, i_id)

Redundancy of Schemas

 Many-to-one and one-to-many relationship sets that are total on the many-side can be represented by

adding an extra attribute to the “many” side, containing the primary key of the “one” side

 Example: Instead of creating a schema for relationship set inst_dept, add an attribute dept_name to

the schema arising from entity set instructor

 Example

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 11

 For one-to-one relationship sets, either side can be chosen to act as the “many” side

• That is, an extra attribute can be added to either of the tables corresponding to the two entity

sets

 If participation is partial on the “many” side, replacing a schema by an extra attribute in the schema

corresponding to the “many” side could result in null values

 The schema corresponding to a relationship set linking a weak entity set to its identifying strong entity

set is redundant.

 Example: The section schema already contains the attributes that would appear in the sec_course

schema

Extended E-R Features

Specialization

 Top-down design process; we designate sub-groupings within an entity set that are distinctive from

other entities in the set.

 These sub-groupings become lower-level entity sets that have attributes or participate in relationships

that do not apply to the higher-level entity set.

 Depicted by a triangle component labeled ISA (e.g., instructor “is a” person).

 Attribute inheritance – a lower-level entity set inherits all the attributes and relationship

participation of the higher-level entity set to which it is linked.

Specialization Example

 Overlapping – employee and student

 Disjoint – instructor and secretary

 Total and partial

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 12

Representing Specialization via Schemas

 Method 1:

• Form a schema for the higher-level entity

• Form a schema for each lower-level entity set, include primary key of higher-level entity set and

local attributes

• Drawback: getting information about, an employee requires accessing two relations, the one

corresponding to the low-level schema and the one corresponding to the high-level schema

• Method 2:

• Form a schema for each entity set with all local and inherited attributes

• Drawback: name, street and city may be stored redundantly for people who are both students

and employees

Generalization

 A bottom-up design process – combine a number of entity sets that share the same features into a

higher-level entity set.

 Specialization and generalization are simple inversions of each other; they are represented in an E-R

diagram in the same way.

 The terms specialization and generalization are used interchangeably.

Completeness constraint

 Completeness constraint -- specifies whether or not an entity in the higher-level entity set must

belong to at least one of the lower-level entity sets within a generalization.

• total: an entity must belong to one of the lower-level entity sets

• partial: an entity need not belong to one of the lower-level entity sets

 Partial generalization is the default.

 We can specify total generalization in an ER diagram by adding the keyword total in the diagram and

drawing a dashed line from the keyword to the corresponding hollow arrow-head to which it applies

(for a total generalization), or to the set of hollow arrow-heads to which it applies (for an overlapping

generalization).

 The student generalization is total: All student entities must be either graduate or undergraduate.

Because the higher-level entity set arrived at through generalization is generally composed of only

those entities in the lower-level entity sets, the completeness constraint for a generalized higher-level

entity set is usually total

Aggregation

 Consider the ternary relationship proj_guide, which we saw earlier

 Suppose we want to record evaluations of a student by a guide on a project

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 13

 Relationship sets eval_for and proj_guide represent overlapping information

• Every eval_for relationship corresponds to a proj_guide relationship

• However, some proj_guide relationships may not correspond to any eval_for relationships

 So we can’t discard the proj_guide relationship

 Eliminate this redundancy via aggregation

• Treat relationship as an abstract entity

• Allows relationships between relationships

• Abstraction of relationship into new entity

 Eliminate this redundancy via aggregation without introducing redundancy, the following diagram

represents:

• A student is guided by a particular instructor on a particular project

• A student, instructor, project combination may have an associated evaluation

Reduction to Relational Schemas

 To represent aggregation, create a schema containing

• Primary key of the aggregated relationship,

• The primary key of the associated entity set

• Any descriptive attributes

 In our example:

• The schema eval_for is:

 eval_for (s_ID, project_id, i_ID, evaluation_id)

• The schema proj_guide is redundant.

Design Issues

Common Mistakes in E-R Diagrams

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 14

Entities vs. Attributes

 Use of entity sets vs. attributes

 Use of phone as an entity allows extra information about phone numbers (plus multiple phone

numbers)

Entities vs. Relationship sets

 Use of entity sets vs. relationship sets

 Possible guideline is to designate a relationship set to describe an action that occurs between entities

 Placement of relationship attributes

For example, attribute date as attribute of advisor or as attribute of student

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 15

Binary Vs. Non-Binary Relationships

 Although it is possible to replace any non-binary (n-ary, for n > 2) relationship set by a number of

distinct binary relationship sets, a n-ary relationship set shows more clearly that several entities

participate in a single relationship.

 Some relationships that appear to be non-binary may be better represented using binary relationships

• For example, a ternary relationship parents, relating a child to his/her father and mother, is

best replaced by two binary relationships, father and mother

 Using two binary relationships allows partial information (e.g., only mother being

known)

• But there are some relationships that are naturally non-binary

 Example: proj_guide

Converting Non-Binary Relationships to Binary Form.

 In general, any non-binary relationship can be represented using binary relationships by creating an

artificial entity set.

• Replace R between entity sets A, B and C by an entity set E, and three relationship sets:

 1. RA, relating E and A 2. RB, relating E and B 3. RC, relating E and C

• Create an identifying attribute for E and add any attributes of R to E

• For each relationship (ai , bi , ci) in R, create

 1. a new entity ei in the entity set E 2. add (ei , ai) to RA

 3. add (ei , bi) to RB 4. add (ei , ci) to RC

 Also need to translate constraints

• Translating all constraints may not be possible

• There may be instances in the translated schema that

cannot correspond to any instance of R

 Exercise: add constraints to the relationships RA, RB and RC to ensure that a newly

created entity corresponds to exactly one entity in each of entity sets A, B and C

• We can avoid creating an identifying attribute by making E a weak entity set (described shortly)

identified by the three relationship sets

E-R Design Decisions

 The use of an attribute or entity set to represent an object.

 Whether a real-world concept is best expressed by an entity set or a relationship set.

 The use of a ternary relationship versus a pair of binary relationships.

 The use of a strong or weak entity set.

 The use of specialization/generalization – contributes to modularity in the design.

 The use of aggregation – can treat the aggregate entity set as a single unit without concern for the

details of its internal structure.

Summary of Symbols Used in E-R Notation

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 16

Alternative ER Notations

 Chen, IDE1FX, …

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 17

 Chen IDE1FX (Crows feet notation)

UML

 UML: Unified Modeling Language

 UML has many components to graphically model different aspects of an entire software system

 UML Class Diagrams correspond to E-R Diagram, but several differences.

ER vs. UML Class Diagrams

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 18

 Binary relationship sets are represented in UML by just drawing a line connecting the entity sets. The

relationship set name is written adjacent to the line.

 The role played by an entity set in a relationship set may also be specified by writing the role name on

the line, adjacent to the entity set.

 The relationship set name may alternatively be written in a box, along with attributes of the

relationship set, and the box is connected, using a dotted line, to the line depicting the relationship

set.

Other Aspects of Database Design

 Functional Requirements

 Data Flow, Workflow

 Schema Evolution

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 19

Overview of Normalization

Features of Good Relational Designs

 Suppose we combine instructor and department into in_dep, which represents the natural join on the

relations instructor and department

 There is repetition of information

 Need to use null values (if we add a new department with no instructors)

A Combined Schema Without Repetition

Not all combined schemas result in repetition of information

 Consider combining relations

• sec_class(sec_id, building, room_number) and

• section(course_id, sec_id, semester, year)

into one relation

• section(course_id, sec_id, semester, year, building, room_number)

 No repetition in this case

Decomposition

 The only way to avoid the repetition-of-information problem in the in_dep schema is to decompose it

into two schemas – instructor and department schemas.

 Not all decompositions are good. Suppose we decompose

 employee(ID, name, street, city, salary)

 into

 employee1 (ID, name)

 employee2 (name, street, city, salary)

 The problem arises when we have two employees with the same name

 We cannot reconstruct the original employee relation -- and so, this is a lossy decomposition.

A Lossy Decomposition

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 20

Lossless Decomposition

 Let R be a relation schema and let R1 and R2 form a decomposition of R . That is R = R1 U R2

 We say that the decomposition is a lossless decomposition if there is no loss of information by

replacing R with the two relation schemas R1 U R2

 Formally,

 R1 (r) R2 (r) = r

 And, conversely a decomposition is lossy if

 r R1 (r) R2 (r) = r

Example of Lossless Decomposition

 Decomposition of R = (A, B, C)

 R1 = (A, B) R2 = (B, C)

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 21

Normalization Theory

 Decide whether a particular relation R is in “good” form.

 In the case that a relation R is not in “good” form, decompose it into set of relations {R1, R2, ..., Rn}

such that

• Each relation is in good form

• The decomposition is a lossless decomposition

 Our theory is based on:

• Functional dependencies

• Multivalued dependencies

What is Normalization?

Normalization is the process of organizing the data in the database.

Normalization is used to minimize the redundancy from a relation or set of relations. It is also used to

eliminate undesirable characteristics like Insertion, Update, and Deletion Anomalies.

Normalization divides the larger table into smaller and links them using relationships.

Why do we need Normalization?

The main reason for normalizing the relations is removing these anomalies. Failure to eliminate anomalies

leads to data redundancy and can cause data integrity and other problems as the database grows.

Normalization consists of a series of guidelines that helps to guide you in creating a good database structure

Functional Dependencies

 There are usually a variety of constraints (rules) on the data in the real world.

 For example, some of the constraints that are expected to hold in a university database are:

• Students and instructors are uniquely identified by their ID.

• Each student and instructor has only one name.

• Each instructor and student is (primarily) associated with only one department.

• Each department has only one value for its budget, and only one associated building.

 An instance of a relation that satisfies all such real-world constraints is called a legal instance of the

relation;

 A legal instance of a database is one where all the relation instances are legal instances

 Constraints on the set of legal relations.

 Require that the value for a certain set of attributes determines uniquely the value for another set of

attributes.

 A functional dependency is a generalization of the notion of a key.

Functional Dependencies Definition

 Let R be a relation schema

 R and R

 The functional dependency

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 22

holds on R if and only if for any legal relations r(R), whenever any two tuples t1 and t2 of r agree on the

attributes , they also agree on the attributes . That is,

 t1[] = t2 [] t1[] = t2 []

 Example: Consider r(A,B) with the following instance of r.

1 4

1 5

3 7

 On this instance, B A hold; A B does NOT hold,

Closure of a Set of Functional Dependencies

 Given a set F set of functional dependencies, there are certain other functional dependencies that are

logically implied by F.

• If A B and B C, then we can infer that A C

 The set of all functional dependencies logically implied by F is the closure of F.

 We denote the closure of F by F+.

Keys and Functional Dependencies

 K is a superkey for relation schema R if and only if K R

 K is a candidate key for R if and only if

• K R, and

• for no K, R

 Functional dependencies allow us to express constraints that cannot be expressed using superkeys.

Consider the schema:

 in_dep (ID, name, salary, dept_name, building, budget).

 We expect these functional dependencies to hold:

 dept_name building

 ID building

 but would not expect the following to hold:

 dept_name salary

Use of Functional Dependencies

 We use functional dependencies to:

• To test relations to see if they are legal under a given set of functional dependencies.

 If a relation r is legal under a set F of functional dependencies, we say that r satisfies

F.

• To specify constraints on the set of legal relations

 We say that F holds on R if all legal relations on R satisfy the set of functional

dependencies F.

 Note: A specific instance of a relation schema may satisfy a functional dependency even if the

functional dependency does not hold on all legal instances.

• For example, a specific instance of instructor may, by chance, satisfy

 name ID.

Trivial Functional Dependencies

 A functional dependency is trivial if it is satisfied by all instances of a relation

 Example:

• ID, name ID

• name name

 In general, is trivial if

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 23

Lossless Decomposition

 We can use functional dependencies to show when certain decomposition are lossless.

 For the case of R = (R1, R2), we require that for all possible relations r on schema R

 r = R1 (r) R2 (r)

 A decomposition of R into R1 and R2 is lossless decomposition if at least one of the following

dependencies is in F+:

• R1 R2 R1

• R1 R2 R2

 The above functional dependencies are a sufficient condition for lossless join decomposition; the

dependencies are a necessary condition only if all constraints are functional dependencies

 Example

 R = (A, B, C)

F = {A B, B C)

 R1 = (A, B), R2 = (B, C)

• Lossless decomposition:

 R1 R2 = {B} and B BC

 R1 = (A, B), R2 = (A, C)

• Lossless decomposition:

 R1 R2 = {A} and A AB

 Note:

• B BC

 is a shorthand notation for

• B {B, C}

Dependency Preservation

 Testing functional dependency constraints each time the database is updated can be costly

 It is useful to design the database in a way that constraints can be tested efficiently.

 If testing a functional dependency can be done by considering just one relation, then the cost of

testing this constraint is low

 When decomposing a relation it is possible that it is no longer possible to do the testing without having

to perform a Cartesian Produced.

 A decomposition that makes it computationally hard to enforce functional dependency is said to be

NOT dependency preserving.

Dependency Preservation Example

 Consider a schema:

 dept_advisor(s_ID, i_ID, department_name)

 With function dependencies:

 i_ID dept_name

 s_ID, dept_name i_ID

 In the above design we are forced to repeat the department name once for each time an instructor

participates in a dept_advisor relationship.

 To fix this, we need to decompose dept_advisor

 Any decomposition will not include all the attributes in

 s_ID, dept_name i_ID

 Thus, the composition NOT be dependency preserving

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 24

Normal Forms

Database normalization is the process of organizing the attributes of the database to reduce or eliminate data

redundancy (having the same data but at different places).

Problems because of data redundancy

Data redundancy unnecessarily increases the size of the database as the same data is repeated in many

places. Inconsistency problems also arise during insert, delete and update operations.

Functional Dependency

Functional Dependency is a constraint between two sets of attributes in relation to a database. A functional

dependency is denoted by an arrow (→).

If an attribute A functionally determines B, then it is written as A → B.

For example, employee_id → name means employee_id functionally determines the name of the employee. As

another example in a timetable database, {student_id, time} → {lecture_room}, student ID and time determine

the lecture room where the student should be.

What does functionally dependent mean?

A function dependency A → B means for all instances of a particular value of A, there is the same value of B.

For example in the below table A → B is true, but B → A is not true as there are different values of A for B =

3.

A B

1 3

2 3

4 0

1 3

4 0

Trivial Functional Dependency

X → Y is trivial only when Y is subset of X.

Examples

ABC → AB

ABC → A

ABC → ABC

Non Trivial Functional Dependencies

X → Y is a non trivial functional dependency when Y is not a subset of X.

X → Y is called completely non-trivial when X intersects Y is NULL.

Example:

Id → Name,

Name → DOB

Semi Non Trivial Functional Dependencies

X → Y is called semi non-trivial when X intersect Y is not NULL.

Examples:

AB → BC,

AD → DC

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 25

Normalization is the process of minimizing redundancy from a relation or set of relations. Redundancy in

relation may cause insertion, deletion, and update anomalies. So, it helps to minimize the redundancy in

relations. Normal forms are used to eliminate or reduce redundancy in database tables.

1. First Normal Form –

If a relation contain composite or multi-valued attribute, it violates first normal form or a relation is in first

normal form if it does not contain any composite or multi-valued attribute. A relation is in first normal form if

every attribute in that relation is singled valued attribute.

Example 1 – Relation STUDENT in table 1 is not in 1NF because of multi-valued attribute STUD_PHONE. Its
decomposition into 1NF has been shown in table 2.

Example 2 –

ID Name Courses

1 A c1, c2

2 E c3

3 M C2, c3

In the above table Course is a multi-valued attribute so it is not in 1NF.

Below Table is in 1NF as there is no multi-valued attribute

ID Name Course

1 A c1

1 A c2

2 E c3

3 M c2

3 M c3

2. Second Normal Form –

To be in second normal form, a relation must be in first normal form and relation must not contain any

partial dependency. A relation is in 2NF if it has No Partial Dependency, i.e., no non-prime attribute

(attributes which are not part of any candidate key) is dependent on any proper subset of any candidate key

of the table.

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 26

Partial Dependency – If the proper subset of candidate key determines non-prime attribute, it is called

partial dependency.

Example 1 – Consider table-3 as following below.

STUD_NO COURSE_NO COURSE_FEE

1 C1 1000

2 C2 1500

1 C4 2000

4 C3 1000

4 C1 1000

2 C5 2000

{Note that, there are many courses having the same course fee.}

Here,

COURSE_FEE cannot alone decide the value of COURSE_NO or STUD_NO;

COURSE_FEE together with STUD_NO cannot decide the value of COURSE_NO;

COURSE_FEE together with COURSE_NO cannot decide the value of STUD_NO;

Hence,

COURSE_FEE would be a non-prime attribute, as it does not belong to the one only candidate key {STUD_NO,

COURSE_NO} ;

But, COURSE_NO -> COURSE_FEE, i.e., COURSE_FEE is dependent on COURSE_NO, which is a proper

subset of the candidate key. Non-prime attribute COURSE_FEE is dependent on a proper subset of the

candidate key, which is a partial dependency and so this relation is not in 2NF.

To convert the above relation to 2NF, we need to split the table into two tables such as :

Table 1: STUD_NO, COURSE_NO

Table 2: COURSE_NO, COURSE_FEE

 Table 1 Table 2

STUD_NO COURSE_NO COURSE_NO COURSE_FEE

1 C1 C1 1000

2 C2 C2 1500

1 C4 C3 1000

4 C3 C4 2000

4 C1 C5 2000

2 C5

NOTE: 2NF tries to reduce the redundant data getting stored in memory. For instance, if there are 100

students taking C1 course, we don’t need to store its Fee as 1000 for all the 100 records, instead, once we can

store it in the second table as the course fee for C1 is 1000.

Example 2 – Consider following functional dependencies in relation R (A, B , C, D)

AB -> C [A and B together determine C]

BC -> D [B and C together determine D]

In the above relation, AB is the only candidate key and there is no partial dependency, i.e., any proper subset

of AB doesn’t determine any non-prime attribute.

3. Third Normal Form –

A relation is in third normal form, if there is no transitive dependency for non-prime attributes as well as it

is in second normal form.

A relation is in 3NF if at least one of the following condition holds in every non-trivial function dependency

X –> Y

1. X is a super key.

2. Y is a prime attribute (each element of Y is part of some candidate key).

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 27

Transitive dependency – If A->B and B->C are two FDs then A->C is called transitive dependency.

Example 1 – In relation STUDENT given in Table 4,

FD set: {STUD_NO -> STUD_NAME, STUD_NO -> STUD_STATE, STUD_STATE -> STUD_COUNTRY, STUD_NO

-> STUD_AGE}

Candidate Key: {STUD_NO}

For this relation in table 4, STUD_NO -> STUD_STATE and STUD_STATE -> STUD_COUNTRY are true. So

STUD_COUNTRY is transitively dependent on STUD_NO. It violates the third normal form. To convert it in

third normal form, we will decompose the relation STUDENT (STUD_NO, STUD_NAME, STUD_PHONE,

STUD_STATE, STUD_COUNTRY_STUD_AGE) as:

STUDENT (STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE, STUD_AGE)

STATE_COUNTRY (STATE, COUNTRY)

Example 2 – Consider relation R(A, B, C, D, E)

A -> BC,

CD -> E,

B -> D,

E -> A

All possible candidate keys in above relation are {A, E, CD, BC} All attributes are on right sides of all

functional dependencies are prime.

4. Boyce-Codd Normal Form (BCNF) –

A relation R is in BCNF if R is in Third Normal Form and for every FD, LHS is super key. A relation is in BCNF

iff in every non-trivial functional dependency X –> Y, X is a super key.

Example 1 – Find the highest normal form of a relation R(A,B,C,D,E) with FD set as {BC->D, AC->BE, B->E}

Step 1. As we can see, (AC)+ ={A,C,B,E,D} but none of its subset can determine all attribute of relation, So AC

will be candidate key. A or C can’t be derived from any other attribute of the relation, so there will be only 1

candidate key {AC}.

Step 2. Prime attributes are those attributes that are part of candidate key {A, C} in this example and others

will be non-prime {B, D, E} in this example.

Step 3. The relation R is in 1st normal form as a relational DBMS does not allow multi-valued or composite

attribute.

The relation is in 2nd normal form because BC->D is in 2nd normal form (BC is not a proper subset of

candidate key AC) and AC->BE is in 2nd normal form (AC is candidate key) and B->E is in 2nd normal form

(B is not a proper subset of candidate key AC).

The relation is not in 3rd normal form because in BC->D (neither BC is a super key nor D is a prime attribute)

and in B->E (neither B is a super key nor E is a prime attribute) but to satisfy 3rd normal for, either LHS of

an FD should be super key or RHS should be prime attribute.

So the highest normal form of relation will be 2nd Normal form.

Example 2 –For example consider relation R(A, B, C)

A -> BC,

B ->

A and B both are super keys so above relation is in BCNF.

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 28

Key Points –

1. BCNF is free from redundancy.

2. If a relation is in BCNF, then 3NF is also satisfied.

3. If all attributes of relation are prime attribute, then the relation is always in 3NF.

4. A relation in a Relational Database is always and at least in 1NF form.

5. Every Binary Relation (a Relation with only 2 attributes) is always in BCNF.

6. If a Relation has only singleton candidate keys(i.e. every candidate key consists of only 1 attribute),

then the Relation is always in 2NF(because no Partial functional dependency possible).

7. Sometimes going for BCNF form may not preserve functional dependency. In that case go for BCNF

only if the lost FD(s) is not required, else normalize till 3NF only.

8. There are many more Normal forms that exist after BCNF, like 4NF and more. But in real world

database systems it’s generally not required to go beyond BCNF.

Exercise 1: Find the highest normal form in R (A, B, C, D, E) under following functional dependencies.

 ABC --> D

 CD --> AE

Important Points for solving above type of question.

1) It is always a good idea to start checking from BCNF, then 3 NF, and so on.

2) If any functional dependency satisfied a normal form then there is no need to check for lower normal form.

For example, ABC –> D is in BCNF (Note that ABC is a superkey), so no need to check this dependency for

lower normal forms.

Candidate keys in the given relation are {ABC, BCD}

BCNF: ABC -> D is in BCNF. Let us check CD -> AE, CD is not a super key so this dependency is not in

BCNF. So, R is not in BCNF.

3NF: ABC -> D we don’t need to check for this dependency as it already satisfied BCNF. Let us consider CD ->

AE. Since E is not a prime attribute, so the relation is not in 3NF.

2NF: In 2NF, we need to check for partial dependency. CD is a proper subset of a candidate key and it

determines E, which is non-prime attribute. So, given relation is also not in 2 NF. So, the highest normal form

is 1 NF.

Problems:

1. Relation R has eight attributes ABCDEFGH. Fields of R contain only atomic values. F = {CH -> G, A -> BC,

B -> CFH, E -> A, F -> EG} is a set of functional dependencies (FDs) so that F+ is exactly the set of FDs that

hold for R. How many candidate keys does the relation R have?

Hint:

A+ is ABCEFGH which is all attributes except D.

B+ is also ABCEFGH which is all attributes except D.

E+ is also ABCEFGH which is all attributes except D.

F+ is also ABCEFGH which is all attributes except D.

So there are total 4 candidate keys AD, BD, ED and FD.

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 29

Boyce-Codd Normal Form

 A relation schema R is in BCNF with respect to a set F of functional dependencies if for all functional

dependencies in F+ of the form

 where R and R, at least one of the following holds:

• is trivial (i.e.,)

• is a superkey for R

 Example schema that is not in BCNF:

 in_dep (ID, name, salary, dept_name, building, budget)

 because :

• dept_name building, budget

 holds on in_dep

 but

• dept_name is not a superkey

 When decompose in_dept into instructor and department

• instructor is in BCNF

• department is in BCNF

Decomposing a Schema into BCNF

 Let R be a schema R that is not in BCNF. Let be the FD that causes a violation of BCNF.

 We decompose R into:

• (U)

• (R - (-))

 In our example of in_dep,

• = dept_name

• = building, budget

and in_dep is replaced by

• (U) = (dept_name, building, budget)

• (R - (-)) = (ID, name, dept_name, salary)

Example

 R = (A, B, C)

F = {A B, B C)

 R1 = (A, B), R2 = (B, C)

• Lossless-join decomposition:

 R1 R2 = {B} and B BC

• Dependency preserving

 R1 = (A, B), R2 = (A, C)

• Lossless-join decomposition:

 R1 R2 = {A} and A AB

• Not dependency preserving

(cannot check B C without computing R1 R2)

BCNF and Dependency Preservation

 It is not always possible to achieve both BCNF and dependency preservation

 Consider a schema:

 dept_advisor(s_ID, i_ID, department_name)

 With function dependencies:

 i_ID dept_name

 s_ID, dept_name i_ID

 dept_advisor is not in BCNF

• i_ID is not a superkey.

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 30

 Any decomposition of dept_advisor will not include all the attributes in

 s_ID, dept_name i_ID

 Thus, the composition is NOT be dependency preserving

Third Normal Form

 A relation schema R is in third normal form (3NF) if for all:

 in F+

at least one of the following holds:

• is trivial (i.e.,)

• is a superkey for R

• Each attribute A in – is contained in a candidate key for R.

 (NOTE: each attribute may be in a different candidate key)

 If a relation is in BCNF it is in 3NF (since in BCNF one of the first two conditions above must hold).

 Third condition is a minimal relaxation of BCNF to ensure dependency preservation

3NF Example

 Consider a schema:

 dept_advisor(s_ID, i_ID, dept_name)

 With function dependencies:

 i_ID dept_name

 s_ID, dept_name i_ID

 Two candidate keys = {s_ID, dept_name}, {s_ID, i_ID }

 We have seen before that dept_advisor is not in BCNF

 R, however, is in 3NF

• s_ID, dept_name is a superkey

• i_ID dept_name and i_ID is NOT a superkey, but:

 { dept_name} – {i_ID } = {dept_name } and

 dept_name is contained in a candidate key

Redundancy in 3NF

 Consider the schema R below, which is in 3NF

 R = (J, K, L)

 F = {JK L, L K }

 And an instance table:

 What is wrong with the table?

 Repetition of information

 Need to use null values (e.g., to represent the relationship l2, k2 where there is no

corresponding value for J)

Comparison of BCNF and 3NF

 Advantages to 3NF over BCNF. It is always possible to obtain a 3NF design without sacrificing

losslessness or dependency preservation.

 Disadvantages to 3NF.

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 31

• We may have to use null values to represent some of the possible meaningful relationships

among data items.

• There is the problem of repetition of information.

Goals of Normalization

 Let R be a relation scheme with a set F of functional dependencies.

 Decide whether a relation scheme R is in “good” form.

 In the case that a relation scheme R is not in “good” form, need to decompose it into a set of relation

scheme {R1, R2, ..., Rn} such that:

• Each relation scheme is in good form

• The decomposition is a lossless decomposition

• Preferably, the decomposition should be dependency preserving.

How good is BCNF?

 There are database schemas in BCNF that do not seem to be sufficiently normalized

 Consider a relation

 inst_info (ID, child_name, phone)

• where an instructor may have more than one phone and can have multiple children

• Instance of inst_info

 There are no non-trivial functional dependencies and therefore the relation is in BCNF

 Insertion anomalies – i.e., if we add a phone 981-992-3443 to 99999, we need to add two tuples

 (99999, David, 981-992-3443)

 (99999, William, 981-992-3443)

Higher Normal Forms

 It is better to decompose inst_info into:

• inst_child:

• inst_phone:

 This suggests the need for higher normal forms, such as Fourth Normal Form (4NF).

Functional-Dependency Theory

 We now consider the formal theory that tells us which functional dependencies are implied logically by

a given set of functional dependencies.

 We then develop algorithms to generate lossless decompositions into BCNF and 3NF

 We then develop algorithms to test if a decomposition is dependency-preserving

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 32

Closure of a Set of Functional Dependencies

 Given a set F set of functional dependencies, there are certain other functional dependencies that are

logically implied by F.

• If A B and B C, then we can infer that A C

 The set of all functional dependencies logically implied by F is the closure of F.

 We denote the closure of F by F+.

 We can compute F+, the closure of F, by repeatedly applying Armstrong’s Axioms:

• Reflexive rule: if , then

• Augmentation rule: if , then

• Transitivity rule: if , and , then

 These rules are

• Sound -- generate only functional dependencies that actually hold, and

• Complete -- generate all functional dependencies that hold.

Example of F+

 R = (A, B, C, G, H, I)

F = { A B

 A C

 CG H

 CG I

 B H}

 Some members of F+

• A H

 by transitivity from A B and B H

• AG I

 by augmenting A C with G, to get AG CG

 and then transitivity with CG I

• CG HI

 by augmenting CG I to infer CG CGI,

 and augmenting of CG H to infer CGI HI, and then transitivity

 Additional rules:

• Union rule: If holds and holds, then holds.

• Decomposition rule: If holds, then holds and holds.

• Pseudotransitivity rule:If holds and holds, then holds.

 The above rules can be inferred from Armstrong’s axioms.

Procedure for Computing F+

 To compute the closure of a set of functional dependencies F:

 F + = F

 repeat

 for each functional dependency f in F+

 apply reflexivity and augmentation rules on f

 add the resulting functional dependencies to F +

 for each pair of functional dependencies f1and f2 in F +

 if f1 and f2 can be combined using transitivity

 then add the resulting functional dependency to F +

 until F + does not change any further

 NOTE: We shall see an alternative procedure for this task later

Closure of Attribute Sets

 Given a set of attributes a, define the closure of a under F (denoted by a+) as the set of attributes that

are functionally determined by a under F

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 33

 Algorithm to compute a+, the closure of a under F

 result := a;

 while (changes to result) do

 for each in F do

 begin

 if result then result := result

 end

Example of Attribute Set Closure

 R = (A, B, C, G, H, I)

 F = { A B

 A C

 CG H

 CG I

 B H }

 (AG)+

1. result = AG

2. result = ABCG (A C and A B)

3. result = ABCGH (CG H and CG AGBC)

4. result = ABCGHI (CG I and CG AGBCH)

 Is AG a candidate key?

1. Is AG a super key?

1. Does AG R? == Is R (AG)+

2. Is any subset of AG a superkey?

1. Does A R? == Is R (A)+

2. Does G R? == Is R (G)+

3. In general: check for each subset of size n-1

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

 Testing for superkey:

• To test if is a superkey, we compute +, and check if + contains all attributes of R.

 Testing functional dependencies

• To check if a functional dependency holds (or, in other words, is in F+), just check if

+.

• That is, we compute + by using attribute closure, and then check if it contains .

• Is a simple and cheap test, and very useful

 Computing closure of F

• For each R, we find the closure +, and for each S +, we output a functional dependency

 S.

Canonical Cover

 Suppose that we have a set of functional dependencies F on a relation schema. Whenever a user

performs an update on the relation, the database system must ensure that the update does not violate

any functional dependencies; that is, all the functional dependencies in F are satisfied in the new

database state.

 If an update violates any functional dependencies in the set F, the system must roll back the update.

 We can reduce the effort spent in checking for violations by testing a simplified set of functional

dependencies that has the same closure as the given set.

 This simplified set is termed the canonical cover

 To define canonical cover we must first define extraneous attributes.

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 34

• An attribute of a functional dependency in F is extraneous if we can remove it without

changing F +

Extraneous Attributes

 Removing an attribute from the left side of a functional dependency could make it a stronger

constraint.

• For example, if we have AB C and remove B, we get the possibly stronger result A C. It

may be stronger because A C logically implies AB C, but AB C does not, on its own,

logically imply A C

 But, depending on what our set F of functional dependencies happens to be, we may be able to remove

B from AB C safely.

• For example, suppose that

• F = {AB C, A D, D C}

• Then we can show that F logically implies A C, making extraneous in AB C.

 Removing an attribute from the right side of a functional dependency could make it a weaker

constraint.

• For example, if we have AB CD and remove C, we get the possibly weaker result AB D. It

may be weaker because using just AB D, we can no longer infer AB C.

 But, depending on what our set F of functional dependencies happens to be, we may be able to remove

C from AB CD safely.

• For example, suppose that

 F = { AB CD, A C.

• Then we can show that even after replacing AB CD by AB D, we can still infer $AB C

and thus AB CD.

 An attribute of a functional dependency in F is extraneous if we can remove it without changing F +

 Consider a set F of functional dependencies and the functional dependency in F.

• Remove from the left side: Attribute A is extraneous in if

 A and

 F logically implies (F – { }) {(– A) }.

• Remove from the right side: Attribute A is extraneous in if

 A and

 The set of functional dependencies

 (F – { }) { (– A)} logically implies F.

 Note: implication in the opposite direction is trivial in each of the cases above, since a “stronger”

functional dependency always implies a weaker one

Testing if an Attribute is Extraneous

 Let R be a relation schema and let F be a set of functional dependencies that hold on R . Consider

an attribute in the functional dependency .

 To test if attribute A is extraneous in

• Consider the set:

 F' = (F – { }) { (– A)},

• check that + contains A; if it does, A is extraneous in

 To test if attribute A is extraneous in

• Let = – {A}. Check if can be inferred from F.

 Compute + using the dependencies in F

 If + includes all attributes in then , A is extraneous in

Examples of Extraneous Attributes

 Let F = {AB CD, A E, E C }

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 35

 To check if C is extraneous in AB CD, we:

• Compute the attribute closure of AB under F' = {AB D, A E, E C}

• The closure is ABCDE, which includes CD

• This implies that C is extraneous

Canonical Cover

A canonical cover for F is a set of dependencies Fc such that

 F logically implies all dependencies in Fc , and

 Fc logically implies all dependencies in F, and

 No functional dependency in Fc contains an extraneous attribute, and

 Each left side of functional dependency in Fc is unique. That is, there are no two dependencies in Fc

• 1 1 and 2 2 such that

• 1 = 2

To compute a canonical cover for F:

 repeat

Use the union rule to replace any dependencies in F of the form

 1 1 and 1 2 with 1 1 2

 Find a functional dependency in Fc with an extraneous attribute either in or in

 /* Note: test for extraneous attributes done using Fc, not F*/

 If an extraneous attribute is found, delete it from in Fc

until (Fc does not change)

Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be

re-applied

 R = (A, B, C)

F = {A BC

 B C

 A B

 AB C}

 Combine A BC and A B into A BC

• Set is now {A BC, B C, AB C}

 A is extraneous in AB C

• Check if the result of deleting A from AB C is implied by the other dependencies

 Yes: in fact, B C is already present!

• Set is now {A BC, B C}

 C is extraneous in A BC

• Check if A C is logically implied by A B and the other dependencies

 Yes: using transitivity on A B and B C.

• Can use attribute closure of A in more complex cases

 The canonical cover is: A B

 B C

Dependency Preservation

 Let Fi be the set of dependencies F + that include only attributes in Ri.

• A decomposition is dependency preserving, if

 (F1 F2 … Fn)+ = F +

 Using the above definition, testing for dependency preservation take exponential time.

 Not that if a decomposition is NOT dependency preserving then checking updates for violation of

functional dependencies may require computing joins, which is expensive.

 Let F be the set of dependencies on schema R and let R1, R2 , .., Rn be a decomposition of R.

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 36

 The restriction of F to Ri is the set Fi of all functional dependencies in F + that include only attributes of

Ri .

 Since all functional dependencies in a restriction involve attributes of only one relation schema, it is

possible to test such a dependency for satisfaction by checking only one relation.

 Note that the definition of restriction uses all dependencies in in F +, not just those in F.

 The set of restrictions F1, F2 , .. , Fn is the set of functional dependencies that can be checked

efficiently.

Testing for Dependency Preservation

 To check if a dependency is preserved in a decomposition of R into R1, R2, …, Rn , we apply the

following test (with attribute closure done with respect to F)

• result =

repeat

 for each Ri in the decomposition

 t = (result Ri)+ Ri

 result = result t

 until (result does not change)

• If result contains all attributes in , then the functional dependency is preserved.

 We apply the test on all dependencies in F to check if a decomposition is dependency preserving

 This procedure takes polynomial time, instead of the exponential time required to compute F+ and (F1

 F2 … Fn)+

Example

 R = (A, B, C)

F = {A B

 B C}

Key = {A}

 R is not in BCNF

 Decomposition R1 = (A, B), R2 = (B, C)

• R1 and R2 in BCNF

• Lossless-join decomposition

• Dependency preserving

Algorithm for Decomposition Using Functional Dependencies

Testing for BCNF

 To check if a non-trivial dependency causes a violation of BCNF

1. compute + (the attribute closure of), and

2. verify that it includes all attributes of R, that is, it is a superkey of R.

 Simplified test: To check if a relation schema R is in BCNF, it suffices to check only the dependencies

in the given set F for violation of BCNF, rather than checking all dependencies in F+.

• If none of the dependencies in F causes a violation of BCNF, then none of the dependencies in

F+ will cause a violation of BCNF either.

 However, simplified test using only F is incorrect when testing a relation in a decomposition of R

• Consider R = (A, B, C, D, E), with F = { A B, BC D}

 Decompose R into R1 = (A,B) and R2 = (A,C,D, E)

 Neither of the dependencies in F contain only attributes from

 (A,C,D,E) so we might be mislead into thinking R2 satisfies BCNF.

 In fact, dependency AC D in F+ shows R2 is not in BCNF.

Testing Decomposition for BCNF

To check if a relation Ri in a decomposition of R is in BCNF

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 37

 Either test Ri for BCNF with respect to the restriction of F+ to Ri (that is, all FDs in F+ that contain

only attributes from Ri)

 Or use the original set of dependencies F that hold on R, but with the following test:

 for every set of attributes Ri, check that + (the attribute closure of) either

includes no attribute of Ri- , or includes all attributes of Ri.

• If the condition is violated by some in F+, the dependency

 (+ -) Ri

can be shown to hold on Ri, and Ri violates BCNF.

• We use above dependency to decompose Ri

BCNF Decomposition Algorithm

result := {R };

done := false;

compute F +;

while (not done) do

 if (there is a schema Ri in result that is not in BCNF)

 then begin

 let be a nontrivial functional dependency that

 holds on Ri such that Ri is not in F +,

 and = ;

 result := (result – Ri) (Ri –) (,);

 end

 else done := true;

Note: each Ri is in BCNF, and decomposition is lossless-join.

Example of BCNF Decomposition

 class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, capacity,

time_slot_id)

 Functional dependencies:

• course_id → title, dept_name, credits

• building, room_number → capacity

• course_id, sec_id, semester, year → building, room_number, time_slot_id

 A candidate key {course_id, sec_id, semester, year}.

 BCNF Decomposition:

• course_id→ title, dept_name, credits holds

 but course_id is not a superkey.

• We replace class by:

 course(course_id, title, dept_name, credits)

 class-1 (course_id, sec_id, semester, year, building, room_number, capacity, time_slot_id)

 course is in BCNF

• How do we know this?

 building, room_number→capacity holds on class-1

• but {building, room_number} is not a superkey for class-1.

• We replace class-1 by:

 classroom (building, room_number, capacity)

 section (course_id, sec_id, semester, year, building, room_number, time_slot_id)

 classroom and section are in BCNF.

Third Normal Form

 There are some situations where

• BCNF is not dependency preserving, and

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 38

• efficient checking for FD violation on updates is important

 Solution: define a weaker normal form, called Third Normal Form (3NF)

• Allows some redundancy (with resultant problems; we will see examples later)

• But functional dependencies can be checked on individual relations without computing a join.

• There is always a lossless-join, dependency-preserving decomposition into 3NF.

3NF Example -- Relation dept_advisor

 dept_advisor (s_ID, i_ID, dept_name)

F = {s_ID, dept_name i_ID, i_ID dept_name}

 Two candidate keys: s_ID, dept_name, and i_ID, s_ID

 R is in 3NF

• s_ID, dept_name i_ID s_ID

 dept_name is a superkey

• i_ID dept_name

 dept_name is contained in a candidate key

Testing for 3NF

 Need to check only FDs in F, need not check all FDs in F+.

 Use attribute closure to check for each dependency , if is a superkey.

 If is not a superkey, we have to verify if each attribute in is contained in a candidate key of R

• This test is rather more expensive, since it involve finding candidate keys

• Testing for 3NF has been shown to be NP-hard

• Interestingly, decomposition into third normal form (described shortly) can be done in

polynomial time

3NF Decomposition Algorithm

Let Fc be a canonical cover for F;

i := 0;

for each functional dependency in Fc do

 if none of the schemas Rj, 1 j i contains

 then begin

 i := i + 1;

 Ri :=

 end

if none of the schemas Rj, 1 j i contains a candidate key for R

 then begin

 i := i + 1;

 Ri := any candidate key for R;

 end

/* Optionally, remove redundant relations */

repeat

if any schema Rj is contained in another schema Rk

 then /* delete Rj */

 Rj = R;;

 i=i-1;

return (R1, R2, ..., Ri)

Above algorithm ensures:

 Each relation schema Ri is in 3NF

 Decomposition is dependency preserving and lossless-join

 Proof of correctness is at end of this presentation (click here)

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 39

3NF Decomposition: An Example

 Relation schema:

cust_banker_branch = (customer_id, employee_id, branch_name, type)

 The functional dependencies for this relation schema are:

• customer_id, employee_id branch_name, type

• employee_id branch_name

• customer_id, branch_name employee_id

 We first compute a canonical cover

• branch_name is extraneous in the r.h.s. of the 1st dependency

• No other attribute is extraneous, so we get FC =

 customer_id, employee_id type

 employee_id branch_name

 customer_id, branch_name employee_id

 The for loop generates following 3NF schema:

 (customer_id, employee_id, type)

 (employee_id, branch_name)

 (customer_id, branch_name, employee_id)

• Observe that (customer_id, employee_id, type) contains a candidate key of the original schema,

so no further relation schema needs be added

 At end of for loop, detect and delete schemas, such as (employee_id, branch_name), which are subsets

of other schemas

• result will not depend on the order in which FDs are considered

 The resultant simplified 3NF schema is:

 (customer_id, employee_id, type)

 (customer_id, branch_name, employee_id)

Comparison of BCNF and 3NF

 It is always possible to decompose a relation into a set of relations that are in 3NF such that:

• The decomposition is lossless

• The dependencies are preserved

 It is always possible to decompose a relation into a set of relations that are in BCNF such that:

• The decomposition is lossless

• It may not be possible to preserve dependencies.

Design Goals

 Goal for a relational database design is:

• BCNF.

• Lossless join.

• Dependency preservation.

 If we cannot achieve this, we accept one of

• Lack of dependency preservation

• Redundancy due to use of 3NF

 Interestingly, SQL does not provide a direct way of specifying functional dependencies other than

superkeys.

 Can specify FDs using assertions, but they are expensive to test, (and currently not supported by any

of the widely used databases!)

 Even if we had a dependency preserving decomposition, using SQL we would not be able to efficiently

test a functional dependency whose left hand side is not a key.

Multivalued Dependencies

 Suppose we record names of children, and phone numbers for instructors:

• inst_child(ID, child_name)

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 40

• inst_phone(ID, phone_number)

 If we were to combine these schemas to get

• inst_info(ID, child_name, phone_number)

• Example data:

(99999, David, 512-555-1234)

(99999, David, 512-555-4321)

(99999, William, 512-555-1234)

(99999, William, 512-555-4321)

 This relation is in BCNF

• Why?

Multi-valued Dependencies

 Let R be a relation schema and let R and R. The multi-valued dependency

 holds on R if in any legal relation r(R), for all pairs for tuples t1 and t2 in r such that t1[] = t2 [], there

exist tuples t3 and t4 in r such that:

 t1[] = t2 [] = t3 [] = t4 []

 t3[] = t1 []

 t3[R –] = t2[R –]

 t4 [] = t2[]

 t4[R –] = t1[R –]

 Tabular representation of

 Let R be a relation schema with a set of attributes that are partitioned into 3 nonempty subsets.

 Y, Z, W

 We say that Y Z (Y multidetermines Z)

if and only if for all possible relations r (R)

 < y1, z1, w1 > r and < y1, z2, w2 > r

 then

 < y1, z1, w2 > r and < y1, z2, w1 > r

 Note that since the behavior of Z and W are identical it follows that

 Y Z if Y W

Example

 In our example:

 ID child_name

 ID phone_number

 The above formal definition is supposed to formalize the notion that given a particular value of Y (ID) it

has associated with it a set of values of Z (child_name) and a set of values of W (phone_number), and

these two sets are in some sense independent of each other.

 Note:

• If Y Z then Y Z

• Indeed we have (in above notation) Z1 = Z2

The claim follows.

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 41

Use of Multivalued Dependencies

 We use multivalued dependencies in two ways:

1. To test relations to determine whether they are legal under a given set of functional and multivalued

dependencies

2. To specify constraints on the set of legal relations. We shall concern ourselves only with relations

that satisfy a given set of functional and multivalued dependencies.

 If a relation r fails to satisfy a given multivalued dependency, we can construct a relations r that does

satisfy the multivalued dependency by adding tuples to r.

Theory of MVDs

 From the definition of multivalued dependency, we can derive the following rule:

• If , then

 That is, every functional dependency is also a multivalued dependency

 The closure D+ of D is the set of all functional and multivalued dependencies logically implied by D.

• We can compute D+ from D, using the formal definitions of functional dependencies and

multivalued dependencies.

• We can manage with such reasoning for very simple multivalued dependencies, which seem to

be most common in practice

• For complex dependencies, it is better to reason about sets of dependencies using a system of

inference rules (Appendix C).

Fourth Normal Form

 A relation schema R is in 4NF with respect to a set D of functional and multivalued dependencies if for

all multivalued dependencies in D+ of the form , where R and R, at least one of the

following hold:

• is trivial (i.e., or = R)

• is a superkey for schema R

 If a relation is in 4NF it is in BCNF

Restriction of Multivalued Dependencies

 The restriction of D to Ri is the set Di consisting of

• All functional dependencies in D+ that include only attributes of Ri

• All multivalued dependencies of the form

 (Ri) where Ri and is in D+

4NF Decomposition Algorithm

 result: = {R};

done := false;

compute D+;

Let Di denote the restriction of D+ to Ri

 while (not done)

 if (there is a schema Ri in result that is not in 4NF) then

 begin

 let be a nontrivial multivalued dependency that holds

 on Ri such that Ri is not in Di, and ;

 result := (result - Ri) (Ri -) (,);

 end

 else done:= true;

 Note: each Ri is in 4NF, and decomposition is lossless-join

Example

 R =(A, B, C, G, H, I)

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 42

 F ={ A B

 B HI

 CG H }

 R is not in 4NF since A B and A is not a superkey for R

 Decomposition

 a) R1 = (A, B) (R1 is in 4NF)

 b) R2 = (A, C, G, H, I) (R2 is not in 4NF, decompose into R3 and R4)

 c) R3 = (C, G, H) (R3 is in 4NF)

 d) R4 = (A, C, G, I) (R4 is not in 4NF, decompose into R5 and R6)

• A B and B HI A HI, (MVD transitivity), and

• and hence A I (MVD restriction to R4)

 e) R5 = (A, I) (R5 is in 4NF)

 f)R6 = (A, C, G) (R6 is in 4NF)

Further Normal Forms

 Join dependencies generalize multivalued dependencies

• lead to project-join normal form (PJNF) (also called fifth normal form)

 A class of even more general constraints, leads to a normal form called domain-key normal form.

 Problem with these generalized constraints: are hard to reason with, and no set of sound and

complete set of inference rules exists.

 Hence rarely used

Overall Database Design Process

We have assumed schema R is given

 R could have been generated when converting E-R diagram to a set of tables.

 R could have been a single relation containing all attributes that are of interest (called universal

relation).

 Normalization breaks R into smaller relations.

 R could have been the result of some ad hoc design of relations, which we then test/convert to normal

form.

ER Model and Normalization

 When an E-R diagram is carefully designed, identifying all entities correctly, the tables generated from

the E-R diagram should not need further normalization.

 However, in a real (imperfect) design, there can be functional dependencies from non-key attributes of

an entity to other attributes of the entity

• Example: an employee entity with

 attributes

 department_name and building,

 functional dependency

 department_name building

 Good design would have made department an entity

 Functional dependencies from non-key attributes of a relationship set possible, but rare --- most

relationships are binary

Denormalization for Performance

 May want to use non-normalized schema for performance

 For example, displaying prereqs along with course_id, and title requires join of course with prereq

 Alternative 1: Use denormalized relation containing attributes of course as well as prereq with all

above attributes

• faster lookup

• extra space and extra execution time for updates

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 43

• extra coding work for programmer and possibility of error in extra code

 Alternative 2: use a materialized view defined a course prereq

• Benefits and drawbacks same as above, except no extra coding work for programmer and

avoids possible errors

Other Design Issues

 Some aspects of database design are not caught by normalization

 Examples of bad database design, to be avoided:

 Instead of earnings (company_id, year, amount), use

• earnings_2004, earnings_2005, earnings_2006, etc., all on the schema (company_id, earnings).

 Above are in BCNF, but make querying across years difficult and needs new table each

year

• company_year (company_id, earnings_2004, earnings_2005,

earnings_2006)

 Also in BCNF, but also makes querying across years difficult and requires new attribute

each year.

 Is an example of a crosstab, where values for one attribute become column names

 Used in spreadsheets, and in data analysis tools

Modeling Temporal Data

 Temporal data have an association time interval during which the data are valid.

 A snapshot is the value of the data at a particular point in time

 Several proposals to extend ER model by adding valid time to

• attributes, e.g., address of an instructor at different points in time

• entities, e.g., time duration when a student entity exists

• relationships, e.g., time during which an instructor was associated with a student as an

advisor.

 But no accepted standard

 Adding a temporal component results in functional dependencies like

 ID street, city

 not holding, because the address varies over time

 A temporal functional dependency X Y holds on schema R if the functional dependency X Y

holds on all snapshots for all legal instances r (R).

 In practice, database designers may add start and end time attributes to relations

• E.g., course(course_id, course_title) is replaced by

 course(course_id, course_title, start, end)

• Constraint: no two tuples can have overlapping valid times

 Hard to enforce efficiently

 Foreign key references may be to current version of data, or to data at a point in time

• E.g., student transcript should refer to course information at the time the course was taken

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 44

Additional Notes/Problems:

Functional Dependency and Attribute Closure

A functional dependency A->B in a relation holds if two tuples having same value of attribute A also have

same value for attribute B. For Example, in relation STUDENT shown in table 1, Functional Dependencies

STUD_NO->STUD_NAME, STUD_NO->STUD_PHONE hold

but

STUD_NAME->STUD_STATE do not hold

How to find functional dependencies for a relation?

Functional Dependencies in a relation are dependent on the domain of the relation. Consider the STUDENT

relation given in Table 1.

 We know that STUD_NO is unique for each student. So STUD_NO->STUD_NAME, STUD_NO-

>STUD_PHONE, STUD_NO->STUD_STATE, STUD_NO->STUD_COUNTRY and STUD_NO -> STUD_AGE

all will be true.

 Similarly, STUD_STATE->STUD_COUNTRY will be true as if two records have same STUD_STATE, they

will have same STUD_COUNTRY as well.

 For relation STUDENT_COURSE, COURSE_NO->COURSE_NAME will be true as two records with

same COURSE_NO will have same COURSE_NAME.

Functional Dependency Set: Functional Dependency set or FD set of a relation is the set of all FDs present

in the relation.

For Example, FD set for relation STUDENT shown in table 1 is:

{STUD_NO -> STUD_NAME,

STUD_NO -> STUD_PHONE,

STUD_NO -> STUD_STATE,

STUD_NO -> STUD_COUNTRY,

STUD_NO -> STUD_AGE,

STUD_STATE -> STUD_COUNTRY}

Attribute Closure: Attribute closure of an attribute set can be defined as set of attributes which can be

functionally determined from it.

How to find attribute closure of an attribute set?

To find attribute closure of an attribute set:

 Add elements of attribute set to the result set.

 Recursively add elements to the result set which can be functionally determined from the elements of

the result set.

Using FD set of table 1, attribute closure can be determined as:

(STUD_NO)+ = {STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE, STUD_COUNTRY, STUD_AGE}

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 45

(STUD_STATE)+ = {STUD_STATE, STUD_COUNTRY}

How to find Candidate Keys and Super Keys using Attribute Closure?

 If attribute closure of an attribute set contains all attributes of relation, the attribute set will be super

key of the relation.

 If no subset of this attribute set can functionally determine all attributes of the relation, the set will be

candidate key as well. For Example, using FD set of table 1,

(STUD_NO, STUD_NAME)+ = {STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE, STUD_COUNTRY,

STUD_AGE}

(STUD_NO)+ = {STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE, STUD_COUNTRY, STUD_AGE}

(STUD_NO, STUD_NAME) will be super key but not candidate key because its subset (STUD_NO)+ is equal to

all attributes of the relation. So, STUD_NO will be a candidate key.

GATE Question: Consider the relation scheme R = {E, F, G, H, I, J, K, L, M, N} and the set of functional

dependencies {{E, F} -> {G}, {F} -> {I, J}, {E, H} -> {K, L}, K -> {M}, L -> {N} on R. What is the key for R? (GATE-

CS-2014)

A. {E, F}

B. {E, F, H}

C. {E, F, H, K, L}

D. {E}

Answer: Finding attribute closure of all given options, we get:

{E,F}+ = {EFGIJ}

{E,F,H}+ = {EFHGIJKLMN}

{E,F,H,K,L}+ = {{EFHGIJKLMN}

{E}+ = {E}

{EFH}+ and {EFHKL}+ results in set of all attributes, but EFH is minimal. So it will be candidate key. So

correct option is (B).

How to check whether an FD can be derived from a given FD set?

To check whether an FD A->B can be derived from an FD set F,

1. Find (A)+ using FD set F.

2. If B is subset of (A)+, then A->B is true else not true.

GATE Question: In a schema with attributes A, B, C, D and E following set of functional dependencies are

given

{A -> B, A -> C, CD -> E, B -> D, E -> A}

Which of the following functional dependencies is NOT implied by the above set? (GATE IT 2005)

A. CD -> AC

B. BD -> CD

C. BC -> CD

D. AC -> BC

Answer: Using FD set given in question,

(CD)+ = {CDEAB} which means CD -> AC also holds true.

(BD)+ = {BD} which means BD -> CD can’t hold true. So this FD is no implied in FD set. So (B) is the required

option.

Others can be checked in the same way.

Prime and non-prime attributes

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 46

Attributes which are parts of any candidate key of relation are called as prime attribute, others are non-prime

attributes. For Example, STUD_NO in STUDENT relation is prime attribute, others are non-prime attribute.

GATE Question: Consider a relation scheme R = (A, B, C, D, E, H) on which the following functional

dependencies hold: {A–>B, BC–> D, E–>C, D–>A}. What are the candidate keys of R? [GATE 2005]

(a) AE, BE

(b) AE, BE, DE

(c) AEH, BEH, BCH

(d) AEH, BEH, DEH

Answer: (AE)+ = {ABECD} which is not set of all attributes. So AE is not a candidate key. Hence option A and

B are wrong.

(AEH)+ = {ABCDEH}

(BEH)+ = {BEHCDA}

(BCH)+ = {BCHDA} which is not set of all attributes. So BCH is not a candidate key. Hence option C is wrong.

So correct answer is D.

Finding Attribute Closure and Candidate Keys using Functional Dependencies

What is Functional Dependency?

A functional dependency X->Y in a relation holds if two tuples having same value for X also have same value

for Y i.e X uniquely determines Y.

In EMPLOYEE relation given in Table 1,

 FD E-ID->E-NAME holds because for each E-ID, there is a unique value of E-NAME.

 FD E-ID->E-CITY and E-CITY->E-STATE also holds.

 FD E-NAME->E-ID does not hold because E-NAME ‘John’ is not uniquely determining E-ID. There are

2 E-IDs corresponding to John (E001 and E003).

EMPLOYEE

E-ID E-NAME E-CITY E-STATE

E001 John Delhi Delhi

E002 Mary Delhi Delhi

E003 John Noida U.P.

Table 1

The FD set for EMPLOYEE relation given in Table 1 are:

{E-ID->E-NAME, E-ID->E-CITY, E-ID->E-STATE, E-CITY->E-STATE}

Trivial versus Non-Trivial Functional Dependency: A trivial functional dependency is the one which will

always hold in a relation.

X->Y will always hold if X ⊇ Y

In the example given above, E-ID, E-NAME->E-ID is a trivial functional dependency and will always hold

because {E-ID,E-NAME} ⊃ {E-ID}. You can also see from the table that for each value of {E-ID, E-NAME}, value

of E-ID is unique, so {E-ID, E-NAME} functionally determines E-ID.

If a functional dependency is not trivial, it is called Non-Trivial Functional Dependency. Non-Trivial functional

dependency may or may not hold in a relation. e.g; E-ID->E-NAME is a non-trivial functional dependency

which holds in the above relation.

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 47

Properties of Functional Dependencies

Let X, Y, and Z are sets of attributes in a relation R. There are several properties of functional dependencies

which always hold in R also known as Armstrong Axioms.

1. Reflexivity: If Y is a subset of X, then X → Y. e.g.; Let X represents {E-ID, E-NAME} and Y represents

{E-ID}. {E-ID, E-NAME}->E-ID is true for the relation.

2. Augmentation: If X → Y, then XZ → YZ. e.g.; Let X represents {E-ID}, Y represents {E-NAME} and Z

represents {E-CITY}. As {E-ID}->E-NAME is true for the relation, so { E-ID,E-CITY}->{E-NAME,E-CITY}

will also be true.

3. Transitivity: If X → Y and Y → Z, then X → Z. e.g.; Let X represents {E-ID}, Y represents {E-CITY} and

Z represents {E-STATE}. As {E-ID} ->{E-CITY} and {E-CITY}->{E-STATE} is true for the relation, so { E-

ID }->{E-STATE} will also be true.

4. Attribute Closure: The set of attributes that are functionally dependent on the attribute A is called

Attribute Closure of A and it can be represented as A+.

Steps to Find the Attribute Closure of A

Q. Given FD set of a Relation R, The attribute closure set S be the set of A

1. Add A to S.

2. Recursively add attributes which can be functionally determined from attributes of the set S until

done.

From Table 1, FDs are

Given R(E-ID, E-NAME, E-CITY, E-STATE)

FDs = { E-ID->E-NAME, E-ID->E-CITY, E-ID->E-STATE, E-CITY->E-STATE }

The attribute closure of E-ID can be calculated as:

1. Add E-ID to the set {E-ID}

2. Add Attributes which can be derived from any attribute of set. In this case, E-NAME and E-CITY, E-

STATE can be derived from E-ID. So these are also a part of closure.

3. As there is one other attribute remaining in relation to be derived from E-ID. So result is:

(E-ID)+ = {E-ID, E-NAME, E-CITY, E-STATE }

Similarly,

(E-NAME)+ = {E-NAME}

(E-CITY)+ = {E-CITY, E_STATE}

Q. Find the attribute closures of given FDs R(ABCDE) = {AB->C, B->D, C->E, D->A} To find (B)+ ,we will add

attribute in set using various FD which has been shown in table below.

Attributes Added in Closure FD used

{B} Triviality

{B,D} B->D

{B,D,A} D->A

{B,D,A,C} AB->C

{B,D,A,C,E} C->E

 We can find (C, D)+ by adding C and D into the set (triviality) and then E using(C->E) and then A using

(D->A) and set becomes. (C,D)+ = {C,D,E,A}

 Similarly we can find (B,C)+ by adding B and C into the set (triviality) and then D using (B->D) and then E

using (C->E) and then A using (D->A) and set becomes (B,C)+ ={B,C,D,E,A}

Candidate Key

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 48

Candidate Key is minimal set of attributes of a relation which can be used to identify a tuple uniquely. For

Example, each tuple of EMPLOYEE relation given in Table 1 can be uniquely identified by E-ID and it is

minimal as well. So it will be Candidate key of the relation.

A candidate key may or may not be a primary key.

Super Key

Super Key is set of attributes of a relation which can be used to identify a tuple uniquely.For Example, each

tuple of EMPLOYEE relation given in Table 1 can be uniquely identified by E-ID or (E-ID, E-NAME) or (E-ID,

E-CITY) or (E-ID, E-STATE) or (E_ID, E-NAME, E-STATE) etc. So all of these are super keys of EMPLOYEE

relation.

Note: A candidate key is always a super key but vice versa is not true.

Q. Finding Candidate Keys and Super Keys of a Relation using FD set The set of attributes whose attribute

closure is set of all attributes of relation is called super key of relation. For Example, the EMPLOYEE relation

shown in Table 1 has following FD set. {E-ID->E-NAME, E-ID->E-CITY, E-ID->E-STATE, E-CITY->E-

STATE} Let us calculate attribute closure of different set of attributes:

(E-ID)+ = {E-ID, E-NAME,E-CITY,E-STATE}

(E-ID,E-NAME)+ = {E-ID, E-NAME,E-CITY,E-STATE}

(E-ID,E-CITY)+ = {E-ID, E-NAME,E-CITY,E-STATE}

(E-ID,E-STATE)+ = {E-ID, E-NAME,E-CITY,E-STATE}

(E-ID,E-CITY,E-STATE)+ = {E-ID, E-NAME,E-CITY,E-STATE}

(E-NAME)+ = {E-NAME}

(E-CITY)+ = {E-CITY,E-STATE}

As (E-ID)+, (E-ID, E-NAME)+, (E-ID, E-CITY)+, (E-ID, E-STATE)+, (E-ID, E-CITY, E-STATE)+ give set of all

attributes of relation EMPLOYEE. So all of these are super keys of relation.

The minimal set of attributes whose attribute closure is set of all attributes of relation is called candidate key

of relation. As shown above, (E-ID)+ is set of all attributes of relation and it is minimal. So E-ID will be

candidate key. On the other hand (E-ID, E-NAME)+ also is set of all attributes but it is not minimal because

its subset (E-ID)+ is equal to set of all attributes. So (E-ID, E-NAME) is not a candidate key.

Types of Functional dependencies in DBMS

A functional dependency is a constraint that specifies the relationship between two sets of attributes where

one set can accurately determine the value of other sets. It is denoted as X → Y, where X is a set of attributes

that is capable of determining the value of Y. The attribute set on the left side of the arrow, X is

called Determinant, while on the right side, Y is called the Dependent.

Example:

roll_no name dept_name dept_building

42 abc CO A4

43 pqr IT A3

44 xyz CO A4

45 xyz IT A3

46 mno EC B2

47 jkl ME B2

From the above table we can conclude some valid functional dependencies:

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 49

 roll_no → { name, dept_name, dept_building },→ Here, roll_no can determine values of fields name,

dept_name and dept_building, hence a valid Functional dependency

 roll_no → dept_name , Since, roll_no can determine whole set of {name, dept_name, dept_building}, it

can determine its subset dept_name also.

 dept_name → dept_building , Dept_name can identify the dept_building accurately, since departments

with different dept_name will also have a different dept_building

 More valid functional dependencies: roll_no → name, {roll_no, name} ⇢ {dept_name, dept_building},

etc.

Here are some invalid functional dependencies:

 name → dept_name Students with the same name can have different dept_name, hence this is not a

valid functional dependency.

 dept_building → dept_name There can be multiple departments in the same building, For example,

in the above table departments ME and EC are in the same building B2, hence dept_building →

dept_name is an invalid functional dependency.

 More invalid functional dependencies: name → roll_no, {name, dept_name} → roll_no, dept_building →

roll_no, etc.

Armstrong’s axioms/properties of functional dependencies:

1. Reflexivity: If Y is a subset of X, then X→Y holds by reflexivity rule

For example, {roll_no, name} → name is valid.

2. Augmentation: If X → Y is a valid dependency, then XZ → YZ is also valid by the augmentation rule.

For example, If {roll_no, name} → dept_building is valid, hence {roll_no, name, dept_name} →

{dept_building, dept_name} is also valid.→

3. Transitivity: If X → Y and Y → Z are both valid dependencies, then X→Z is also valid by the

Transitivity rule.

For example, roll_no → dept_name & dept_name → dept_building, then roll_no → dept_building is also

valid.

Types of Functional dependencies in DBMS:

1. Trivial functional dependency

2. Non-Trivial functional dependency

3. Multivalued functional dependency

4. Transitive functional dependency

1. Trivial Functional Dependency

In Trivial Functional Dependency, a dependent is always a subset of the determinant.

i.e. If X → Y and Y is the subset of X, then it is called trivial functional dependency

For example,

roll_no name age

42 abc 17

43 pqr 18

44 xyz 18

Here, {roll_no, name} → name is a trivial functional dependency, since the dependent name is a subset of

determinant set {roll_no, name}

Similarly, roll_no → roll_no is also an example of trivial functional dependency.

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 50

2. Non-trivial Functional Dependency

In Non-trivial functional dependency, the dependent is strictly not a subset of the determinant.

i.e. If X → Y and Y is not a subset of X, then it is called Non-trivial functional dependency.

For example,

roll_no name age

42 abc 17

43 pqr 18

44 xyz 18

Here, roll_no → name is a non-trivial functional dependency, since the dependent name is not a subset

of determinant roll_no

Similarly, {roll_no, name} → age is also a non-trivial functional dependency, since age is not a subset of

{roll_no, name}

3. Multivalued Functional Dependency

In Multivalued functional dependency, entities of the dependent set are not dependent on each other.

i.e. If a → {b, c} and there exists no functional dependency between b and c, then it is called a multivalued

functional dependency.

For example,

roll_no name age

42 abc 17

43 pqr 18

44 xyz 18

45 abc 19

Here, roll_no → {name, age} is a multivalued functional dependency, since the

dependents name & age are not dependent on each other(i.e. name → age or age → name doesn’t exist !)

4. Transitive Functional Dependency

In transitive functional dependency, dependent is indirectly dependent on determinant. i.e. If a → b & b → c,

then according to axiom of transitivity, a → c. This is a transitive functional dependency

For example,

enrol_no name dept building_no

42 abc CO 4

43 pqr EC 2

44 xyz IT 1

45 abc EC 2

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 51

Here, enrol_no → dept and dept → building_no,

Hence, according to the axiom of transitivity, enrol_no → building_no is a valid functional dependency. This is

an indirect functional dependency, hence called Transitive functional dependency.

Number of Possible Super Keys in DBMS

Any set of attributes of a table that can uniquely identify all the tuples of that table is known as a Super key.

It’s different from the primary and candidate keys in the sense that only the minimal superkeys are the

candidate/primary keys.

This means that from a super key when we remove all the attributes that are unnecessary for its uniqueness,

only then it becomes a primary/candidate key. So, in essence, all primary/candidate keys are super keys but

not all super keys are primary/candidate keys. By the formal definition of a Relation(Table), we know that the

tuples of a relation are all unique. So, the set of all attributes itself is a super key.

Example-1: Let a Relation R have attributes {a1,a2,a3} and a1 is the candidate key. Then how many super

keys are possible?

Here, any superset of a1 is the super key.

Super keys are = {a1, a1 a2, a1 a3, a1 a2 a3}

Thus we see that 4 Super keys are possible in this case.

In general, if we have ‘N’ attributes with one candidate key then the number of possible superkeys is 2(N – 1).

Example-2 : Let a Relation R have attributes {a1, a2, a3,…,an}. Find Super key of R.

Maximum Super keys = 2n – 1.

If each attribute of relation is candidate key.

Example-3: Let a Relation R have attributes {a1, a2, a3,…, an} and the candidate key is “a1 a2 a3” then the

possible number of super keys?

Following the previous formula, we have 3 attributes instead of one. So, here the number of possible super

keys is 2(N-3).

Example-4: Let a Relation R have attributes {a1, a2, a3,…, an} and the candidate keys are “a1”, “a2” then the

possible number of super keys?

This problem now is slightly different since we now have two different candidate keys instead of only one.

Tackling problems like these is shown in the diagram below:

→ |A1 ∪ A2| = |A1| + |A2| - |A1 ∩ A2|

= (super keys possible with candidate key A1) + (super keys possible with candidate key A2) – (common

superkeys from both A1 and A2)

= 2(n-1) + 2(n-1) - 2(n-2)

Example-5: Let a Relation R have attributes {a1, a2, a3,…, an} and the candidate keys are “a1”, “a2 a3” then

the possible number of super keys?

Super keys of (a1) + Super keys of (a2 a3) – Super keys of (a1 a2 a3)

⇒ 2(n - 1) + 2(n - 2) - 2(n - 3)

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 52

Example-6: Let a Relation R have attributes {a1, a2, a3,…, an} and the candidate keys are “a1 a2”, “a3 a4”

then the possible number of super keys?

Super keys of(a1 a2) + Super keys of(a3 a4) – Super keys of(a1 a2 a3 a4)

⇒ 2(n - 2) + 2(n - 2) - 2(n - 4)

Example-7: Let a Relation R have attributes {a1, a2, a3,…, an} and the candidate keys are “a1 a2”, “a1 a3”

then the possible number of super keys?

Super keys of (a1 a2) + Super keys of (a1 a3) – Super keys of(a1 a2 a3)

⇒ 2(n - 2) + 2(n - 2) - 2(n - 3)

Example-8 : Let a Relation R have attributes {a1, a2, a3,…,an} and the candidate keys are “a1”, “a2”, “a3”

then the possible number of super keys?

In this question, we have 3 different candidate keys. Tackling problems like these are shown in the diagram

below.

→ |A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3| – |A1 ∩ A2| – |A1 ∩ A3| – |A2 ∩ A3| + |A1 ∩ A2 ∩ A3|

= (super keys possible with candidate key A1) + (super keys possible with candidate key A2) + (super keys

possible with candidate key A3) – (common super keys from both A1 and A2) – (common super keys from both

A1 and A3) – (common super keys from both A2 and A3) + (common super keys from both A1, A2, and A3)

= 2(n-1) + 2(n-1) + 2(n-1) – 2(n-2) – 2(n-2) – 2(n-2) + 2(n-3)

Example-9: A relation R (A, B, C, D, E, F, G, H)and set of functional dependencies are

CH → G,

A → BC,

B → CFH,

E → A,

F → EG

Then how many possible super keys are present?

Step 1:- First of all, we have to find what the candidate keys are:-

as we can see in the given functional dependency D is missing but in relation, D is given so D must be a

prime attribute of the Candidate key.

A+ = E+ = B+ = F+ = all attributes of a relation except D

So, Candidate keys are = AD, BD, ED, FD

Step 2:-Find super keys due to a single candidate key there is a two possibilities of attribute either we select

or not hence there will be 2 chances so,

A_ _D_ _ _ _ = _ B_ D_ _ _ _ = _ _ _ DE _ _ _ = _ _ _ D_F_ _ = 26

B Rupa Devi Unit 3 DBMS - AK22 MCA Page 53

Step 3:-Find superkeys due to a combination of two Candidate Keys. So,

n(AD ∩ BD) = n(AD ∩ ED) = n(AD ∩ FD) = n(BD ∩ ED) = n(BD ∩ FD) = n(ED ∩ FD) = 25

Step 4:-Find super keys due to a combination of 3 Candidate Keys

So,

n(AD ∩ BD ∩ ED) = n(AD ∩ ED ∩ FD) = n(ED ∩ BD ∩ FD) = n(BD ∩ FD ∩ AD) = 24

Step 5:-Find super keys due to all. So,

n(AD ∩ BD ∩ ED ∩ FD) = AB_DEF_ _ = 23

So, According to the inclusion-exclusion principle :-

|W ∪ X ∪ Y ∪ Z| = |W| + |X| + |Y| + |Z| – |W ∩ X| – |W ∩ Y| – |W ∩ Z| – |X ∩Y| – |X ∩ Z| – |Y ∩ Z| + |W ∩

X ∩ Y| + |W ∩ X ∩ Z| + |W ∩ Y ? Z| + |X ∩ Y ∩ Z| – |W ∩ X ∩ Y ∩ Z|

Super keys = 4 * 26 – 6 * 25 + 4 * 24 – 23 = 120

So the number of super keys is 120.

Example 10 : Let a Relation R have attributes {a1,a2,a3______ an} and {a1a2a3____ak} as the candidate key

where k<=n. Then how many super keys are possible?

The possible number of super keys is 2(n-k).

Example 11: Let a relation R have attributes {a1,a2,a3______ an} such that any k of the attributes at a time

determines all other attributes. Find the value of k such that the number of candidate keys in the relation will

be maximum.

Any k attributes at a time constitute one candidate key. These k attributes are randomly chosen from the n

attributes. So for some k, the possible no of candidate keys is nCk, i.e., n!/(n-k)!k!. For the number of

members to be maximum k must be ⌊n/2⌋ so that nCk is the maximum for that value.

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 1

Query Processing: Overview, Measures of Query cost, Selection operation, sorting, Join Operation, other

operations, Evaluation of Expressions.

Query optimization: Overview, Transformation of Relational Expressions, Estimating statistics of Expression

results, Choice of Evaluation Plans, Materialized views, Advanced Topics in Query Optimization.

Basic Steps in Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

 Parsing and translation

• translate the query into its internal form. This is then translated into relational algebra.

• Parser checks syntax, verifies relations

 Evaluation

• The query-execution engine takes a query-evaluation plan, executes that plan, and returns the

answers to the query.

Optimization

 A relational algebra expression may have many equivalent expressions

• E.g., salary75000(salary(instructor)) is equivalent to

 salary(salary75000(instructor))

 Each relational algebra operation can be evaluated using one of several different algorithms

• Correspondingly, a relational-algebra expression can be evaluated in many ways.

 Annotated expression specifying detailed evaluation strategy is called an evaluation-plan. E.g.,:

• Use an index on salary to find instructors with salary < 75000,

• Or perform complete relation scan and discard instructors with salary 75000

 Query Optimization: Amongst all equivalent evaluation plans choose the one with lowest cost.

• Cost is estimated using statistical information from the

 database catalog

 e.g.. number of tuples in each relation, size of tuples, etc.

Measures of Query Cost

 Many factors contribute to time cost

• disk access, CPU, and network communication

 Cost can be measured based on

• response time, i.e. total elapsed time for answering query, or

• total resource consumption

 We use total resource consumption as cost metric

• Response time harder to estimate, and minimizing resource consumption is a good idea in a

shared database

 We ignore CPU costs for simplicity

• Real systems do take CPU cost into account

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 2

• Network costs must be considered for parallel systems

 We describe how estimate the cost of each operation

• We do not include cost to writing output to disk

 Disk cost can be estimated as:

• Number of seeks * average-seek-cost

• Number of blocks read * average-block-read-cost

• Number of blocks written * average-block-write-cost

 For simplicity we just use the number of block transfers from disk and the number of seeks as the

cost measures

• tT – time to transfer one block

 Assuming for simplicity that write cost is same as read cost

• tS – time for one seek

• Cost for b block transfers plus S seeks

 b * tT + S * tS

 tS and tT depend on where data is stored; with 4 KB blocks:

• High end magnetic disk: tS = 4 msec and tT =0.1 msec

• SSD: tS = 20-90 microsec and tT = 2-10 microsec for 4KB

 Required data may be buffer resident already, avoiding disk I/O

• But hard to take into account for cost estimation

 Several algorithms can reduce disk IO by using extra buffer space

• Amount of real memory available to buffer depends on other concurrent queries and OS

processes, known only during execution

 Worst case estimates assume that no data is initially in buffer and only the minimum amount of

memory needed for the operation is available

• But more optimistic estimates are used in practice

Selection Operation

 File scan

 Algorithm A1 (linear search). Scan each file block and test all records to see whether they satisfy the

selection condition.

• Cost estimate = br block transfers + 1 seek

 br denotes number of blocks containing records from relation r

• If selection is on a key attribute, can stop on finding record

 cost = (br /2) block transfers + 1 seek

• Linear search can be applied regardless of

 selection condition or

 ordering of records in the file, or

 availability of indices

 Note: binary search generally does not make sense since data is not stored consecutively

• except when there is an index available,

• and binary search requires more seeks than index search

Selections Using Indices

 Index scan – search algorithms that use an index

• selection condition must be on search-key of index.

 A2 (clustering index, equality on key). Retrieve a single record that satisfies the corresponding

equality condition

• Cost = (hi + 1) * (tT + tS)

 A3 (clustering index, equality on nonkey) Retrieve multiple records.

• Records will be on consecutive blocks

 Let b = number of blocks containing matching records

• Cost = hi * (tT + tS) + tS + tT * b

 A4 (secondary index, equality on key/non-key).

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 3

• Retrieve a single record if the search-key is a candidate key

 Cost = (hi + 1) * (tT + tS)

• Retrieve multiple records if search-key is not a candidate key

 each of n matching records may be on a different block

 Cost = (hi + n) * (tT + tS)

 Can be very expensive!

Selections Involving Comparisons

 Can implement selections of the form AV (r) or A V(r) by using

• a linear file scan,

• or by using indices in the following ways:

 A5 (clustering index, comparison). (Relation is sorted on A)

 For A V(r) use index to find first tuple v and scan relation sequentially from there

 For AV (r) just scan relation sequentially till first tuple > v; do not use index

 A6 (clustering index, comparison).

 For A V(r) use index to find first index entry v and scan index sequentially from

there, to find pointers to records.

 For AV (r) just scan leaf pages of index finding pointers to records, till first entry > v

 In either case, retrieve records that are pointed to

 requires an I/O per record; Linear file scan may be cheaper!

Implementation of Complex Selections

 Conjunction: 1 2. . . n(r)

 A7 (conjunctive selection using one index).

• Select a combination of i and algorithms A1 through A7 that results in the least cost for i (r).

• Test other conditions on tuple after fetching it into memory buffer.

 A8 (conjunctive selection using composite index).

• Use appropriate composite (multiple-key) index if available.

 A9 (conjunctive selection by intersection of identifiers).

• Requires indices with record pointers.

• Use corresponding index for each condition, and take intersection of all the obtained sets of

record pointers.

• Then fetch records from file

• If some conditions do not have appropriate indices, apply test in memory.

Algorithms for Complex Selections

 Disjunction:1 2 . . . n (r).

 A10 (disjunctive selection by union of identifiers).

• Applicable if all conditions have available indices.

 Otherwise use linear scan.

• Use corresponding index for each condition, and take union of all the obtained sets of record

pointers.

• Then fetch records from file

 Negation: (r)

• Use linear scan on file

• If very few records satisfy , and an index is applicable to

 Find satisfying records using index and fetch from file

Bitmap Index Scan

 The bitmap index scan algorithm of PostgreSQL

• Bridges gap between secondary index scan and linear file scan when number of matching

records is not known before execution

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 4

• Bitmap with 1 bit per page in relation

• Steps:

 Index scan used to find record ids, and set bit of corresponding page in bitmap

 Linear file scan fetching only pages with bit set to 1

• Performance

 Similar to index scan when only a few bits are set

 Similar to linear file scan when most bits are set

 Never behaves very badly compared to best alternative

Sorting

 We may build an index on the relation, and then use the index to read the relation in sorted order.

May lead to one disk block access for each tuple.

 For relations that fit in memory, techniques like quicksort can be used.

• For relations that don’t fit in memory, external sort-merge is a good choice.

Example: External Sorting Using Sort-Merge

External Sort-Merge

Let M denote memory size (in pages).

1. Create sorted runs. Let i be 0 initially.

 Repeatedly do the following till the end of the relation:

 (a) Read M blocks of relation into memory

 (b) Sort the in-memory blocks

 (c) Write sorted data to run Ri; increment i.

Let the final value of i be N

2. Merge the runs (N-way merge). We assume (for now) that N < M.

1. Use N blocks of memory to buffer input runs, and 1 block to buffer output. Read the first block

of each run into its buffer page

2. repeat

1. Select the first record (in sort order) among all buffer pages

2. Write the record to the output buffer. If the output buffer is full write it to disk.

g

a

d 31

c 33

b 14

e 16

r 16

d 21

m 3

p 2

d 7

a 14

a 14

a 19

b 14

c 33

d 7

d 21

d 31

e 16

g 24

m 3

p 2

r 16

a 19

b 14

c 33

d 31

e 16

g 24

a 14

d 7

d 21

m 3

p 2

r 16

a 19

d 31

g 24

b 14

c 33

e 16

d 21

m 3

r 16

a 14

d 7

p 2
initial

relation
create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

24

19

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 5

3. Delete the record from its input buffer page.

If the buffer page becomes empty then

 read the next block (if any) of the run into the buffer.

3. until all input buffer pages are empty:

 If N M, several merge passes are required.

• In each pass, contiguous groups of M - 1 runs are merged.

• A pass reduces the number of runs by a factor of M -1, and creates runs longer by the same

factor.

 E.g. If M=11, and there are 90 runs, one pass reduces the number of runs to 9, each

10 times the size of the initial runs

• Repeated passes are performed till all runs have been merged into one.

 Cost analysis:

• 1 block per run leads to too many seeks during merge

 Instead use bb buffer blocks per run

 read/write bb blocks at a time

 Can merge M/bb–1 runs in one pass

• Total number of merge passes required: log M/bb–1(br/M).

• Block transfers for initial run creation as well as in each pass is 2br

 for final pass, we don’t count write cost

• we ignore final write cost for all operations since the output of an operation may

be sent to the parent operation without being written to disk

 Thus total number of block transfers for external sorting:

 br (2 log M/bb–1 (br / M) + 1)

• Seeks: next slide

 Cost of seeks

• During run generation: one seek to read each run and one seek to write each run

 2 br / M

• During the merge phase

 Need 2 br / bb seeks for each merge pass

• except the final one which does not require a write

 Total number of seeks:

 2 br / M + br / bb (2 logM/bb–1(br / M) -1)

Join Operation

 Several different algorithms to implement joins

• Nested-loop join

• Block nested-loop join

• Indexed nested-loop join

• Merge-join

• Hash-join

 Choice based on cost estimate

 Examples use the following information

• Number of records of student: 5,000 takes: 10,000

• Number of blocks of student: 100 takes: 400

Nested-Loop Join

 To compute the theta join r ⨝ s

 for each tuple tr in r do begin

 for each tuple ts in s do begin

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 6

 test pair (tr,ts) to see if they satisfy the join condition

 if they do, add tr • ts to the result.

 end

 end

 r is called the outer relation and s the inner relation of the join.

 Requires no indices and can be used with any kind of join condition.

 Expensive since it examines every pair of tuples in the two relations.

 In the worst case, if there is enough memory only to hold one block of each relation, the estimated cost

is

 nr bs + br block transfers, plus nr + br seeks

 If the smaller relation fits entirely in memory, use that as the inner relation.

• Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is

• with student as outer relation:

 5000 400 + 100 = 2,000,100 block transfers,

 5000 + 100 = 5100 seeks

• with takes as the outer relation

 10000 100 + 400 = 1,000,400 block transfers and 10,400 seeks

 If smaller relation (student) fits entirely in memory, the cost estimate will be 500 block transfers.

 Block nested-loops algorithm (next slide) is preferable.

Block Nested-Loop Join

 Variant of nested-loop join in which every block of inner relation is paired with every block of outer

relation.

 for each block Br of r do begin

 for each block Bs of s do begin

 for each tuple tr in Br do begin

 for each tuple ts in Bs do begin

 Check if (tr,ts) satisfy the join condition

 if they do, add tr • ts to the result.

 end

 end

 end

 end

 Worst case estimate: br bs + br block transfers + 2 * br seeks

• Each block in the inner relation s is read once for each block in the outer relation

 Best case: br + bs block transfers + 2 seeks.

 Improvements to nested loop and block nested loop algorithms:

• In block nested-loop, use M — 2 disk blocks as blocking unit for outer relations, where M =

memory size in blocks; use remaining two blocks to buffer inner relation and output

 Cost = br / (M-2) bs + br block transfers + 2 br / (M-2) seeks

• If equi-join attribute forms a key or inner relation, stop inner loop on first match

• Scan inner loop forward and backward alternately, to make use of the blocks remaining in

buffer (with LRU replacement)

• Use index on inner relation if available (next slide)

Indexed Nested-Loop Join

 Index lookups can replace file scans if

• join is an equi-join or natural join and

• an index is available on the inner relation’s join attribute

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 7

 Can construct an index just to compute a join.

 For each tuple tr in the outer relation r, use the index to look up tuples in s that satisfy the join

condition with tuple tr.

 Worst case: buffer has space for only one page of r, and, for each tuple in r, we perform an index

lookup on s.

 Cost of the join: br (tT + tS) + nr c

• Where c is the cost of traversing index and fetching all matching s tuples for one tuple or r

• c can be estimated as cost of a single selection on s using the join condition.

 If indices are available on join attributes of both r and s,

use the relation with fewer tuples as the outer relation.

Example of Nested-Loop Join Costs

 Compute student ⨝ takes, with student as the outer relation.

 Let takes have a primary B+-tree index on the attribute ID, which contains 20 entries in each index

node.

 Since takes has 10,000 tuples, the height of the tree is 4, and one more access is needed to find the

actual data

 student has 5000 tuples

 Cost of block nested loops join

• 400*100 + 100 = 40,100 block transfers + 2 * 100 = 200 seeks

 assuming worst case memory

 may be significantly less with more memory

 Cost of indexed nested loops join

• 100 + 5000 * 5 = 25,100 block transfers and seeks.

• CPU cost likely to be less than that for block nested loops join

Merge-Join

1. Sort both relations on their join attribute (if not already sorted on the join

 attributes).

2. Merge the sorted relations to join them

1. Join step is similar to the merge stage of the sort-merge algorithm.

2. Main difference is handling of duplicate values in join attribute —

 every pair with same value on join attribute must be matched

3. Detailed algorithm in book

 Can be used only for equi-joins and natural joins

 Each block needs to be read only once (assuming all tuples for any given value of the join attributes fit

in memory

 Thus the cost of merge join is:

 br + bs block transfers + br / bb + bs / bb seeks + the cost of sorting if relations are unsorted.

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 8

 hybrid merge-join: If one relation is sorted, and the other has a secondary B+-tree index on the join

attribute

• Merge the sorted relation with the leaf entries of the B+-tree .

• Sort the result on the addresses of the unsorted relation’s tuples

• Scan the unsorted relation in physical address order and merge with previous result, to replace

addresses by the actual tuples

 Sequential scan more efficient than random lookup

Hash-Join

 Applicable for equi-joins and natural joins.

 A hash function h is used to partition tuples of both relations

 h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the common attributes of r and s used

in the natural join.

• r0, r1, . . ., rn denote partitions of r tuples

 Each tuple tr r is put in partition ri where i = h(tr [JoinAttrs]).

• r0,, r1. . ., rn denotes partitions of s tuples

 Each tuple ts s is put in partition si, where i = h(ts [JoinAttrs]).

 Note: In book, Figure 12.10 ri is denoted as Hri, si is denoted as Hsi and

 n is denoted as nh.

 r tuples in ri need only to be compared with s tuples in si Need not be compared with s tuples in any

other partition, since:

• an r tuple and an s tuple that satisfy the join condition will have the same value for the join

attributes.

• If that value is hashed to some value i, the r tuple has to be in ri and the s tuple in si.

Hash-Join Algorithm

The hash-join of r and s is computed as follows.

1. Partition the relation s using hashing function h. When partitioning a relation, one block of memory is

reserved as the output buffer for each partition.

2. Partition r similarly.

3. For each i:

(a) Load si into memory and build an in-memory hash index on it using the join attribute. This hash

index uses a different hash function than the earlier one h.

(b) Read the tuples in ri from the disk one by one. For each tuple tr locate each matching tuple ts in si

using the in-memory hash index. Output the concatenation of their attributes.

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 9

Relation s is called the build input and r is called the probe input.

 The value n and the hash function h is chosen such that each si should fit in memory.

• Typically n is chosen as bs/M * f where f is a “fudge factor”, typically around 1.2

• The probe relation partitions si need not fit in memory

 Recursive partitioning required if number of partitions n is greater than number of pages M of

memory.

• instead of partitioning n ways, use M – 1 partitions for s

• Further partition the M – 1 partitions using a different hash function

• Use same partitioning method on r

• Rarely required: e.g., with block size of 4 KB, recursive partitioning not needed for relations of <

1GB with memory size of 2MB, or relations of < 36 GB with memory of 12 MB

Handling of Overflows

 Partitioning is said to be skewed if some partitions have significantly more tuples than some others

 Hash-table overflow occurs in partition si if si does not fit in memory. Reasons could be

• Many tuples in s with same value for join attributes

• Bad hash function

 Overflow resolution can be done in build phase

• Partition si is further partitioned using different hash function.

• Partition ri must be similarly partitioned.

 Overflow avoidance performs partitioning carefully to avoid overflows during build phase

• E.g., partition build relation into many partitions, then combine them

 Both approaches fail with large numbers of duplicates

• Fallback option: use block nested loops join on overflowed partitions

Cost of Hash-Join

 If recursive partitioning is not required: cost of hash join is

 3(br + bs) +4 nh block transfers +

 2(br / bb + bs / bb) seeks

 If recursive partitioning required:

• number of passes required for partitioning build relation s to less than M blocks per partition is

logM/bb–1(bs/M)

• best to choose the smaller relation as the build relation.

• Total cost estimate is:

 2(br + bs) logM/bb–1(bs/M) + br + bs block transfers +

 2(br / bb + bs / bb) logM/bb–1(bs/M) seeks

 If the entire build input can be kept in main memory no partitioning is required

• Cost estimate goes down to br + bs.

Example of Cost of Hash-Join

instructor ⨝ teaches

 Assume that memory size is 20 blocks

 binstructor= 100 and bteaches = 400.

 instructor is to be used as build input. Partition it into five partitions, each of size 20 blocks. This

partitioning can be done in one pass.

 Similarly, partition teaches into five partitions, each of size 80. This is also done in one pass.

 Therefore total cost, ignoring cost of writing partially filled blocks:

• 3(100 + 400) = 1500 block transfers +

2(100/3 + 400/3) = 336 seeks

Hybrid Hash–Join

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 10

 Useful when memory sized are relatively large, and the build input is bigger than memory.

 Main feature of hybrid hash join:

 Keep the first partition of the build relation in memory.

 E.g. With memory size of 25 blocks, instructor can be partitioned into five partitions, each of size 20

blocks.

• Division of memory:

 The first partition occupies 20 blocks of memory

 1 block is used for input, and 1 block each for buffering the other 4 partitions.

 teaches is similarly partitioned into five partitions each of size 80

• the first is used right away for probing, instead of being written out

 Cost of 3(80 + 320) + 20 +80 = 1300 block transfers for

 hybrid hash join, instead of 1500 with plain hash-join.

 Hybrid hash-join most useful if M >>

Complex Joins

 Join with a conjunctive condition:

 r ⨝ 1 2... n s

• Either use nested loops/block nested loops, or

• Compute the result of one of the simpler joins r ⨝ i s

 final result comprises those tuples in the intermediate result that satisfy the remaining

conditions

 1 . . . i –1 i +1 . . . n

 Join with a disjunctive condition

 r ⨝ 1 2 ... n s

• Either use nested loops/block nested loops, or

• Compute as the union of the records in individual joins r ⨝ i s:

 (r ⨝ 1 s) (r ⨝ 2 s) . . . (r ⨝ n s)

Joins over Spatial Data

 No simple sort order for spatial joins

 Indexed nested loops join with spatial indices

• R-trees, quad-trees, k-d-B-trees

Other Operations

 Duplicate elimination can be implemented via hashing or sorting.

• On sorting duplicates will come adjacent to each other, and all but one set of duplicates can be

deleted.

• Optimization: duplicates can be deleted during run generation as well as at intermediate merge

steps in external sort-merge.

• Hashing is similar – duplicates will come into the same bucket.

 Projection:

• perform projection on each tuple

• followed by duplicate elimination.

Other Operations : Aggregation

 Aggregation can be implemented in a manner similar to duplicate elimination.

• Sorting or hashing can be used to bring tuples in the same group together, and then the

aggregate functions can be applied on each group.

• Optimization: partial aggregation

 combine tuples in the same group during run generation and intermediate merges, by

computing partial aggregate values

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 11

 For count, min, max, sum: keep aggregate values on tuples found so far in the group.

• When combining partial aggregate for count, add up the partial aggregates

 For avg, keep sum and count, and divide sum by count at the end

Other Operations : Set Operations

 Set operations (, and): can either use variant of merge-join after sorting, or variant of hash-

join.

 E.g., Set operations using hashing:

1. Partition both relations using the same hash function

2. Process each partition i as follows.

1. Using a different hashing function, build an in-memory hash index on ri.

2. Process si as follows

• r s:

1. Add tuples in si to the hash index if they are not already in it.

2. At end of si add the tuples in the hash index to the result.

 E.g., Set operations using hashing:

1. as before partition r and s,

2. as before, process each partition i as follows

1. build a hash index on ri

2. Process si as follows

1. r s:

• output tuples in si to the result if they are already there in the hash index

2. r – s:

• for each tuple in si, if it is there in the hash index, delete it from the index.

• At end of si add remaining tuples in the hash index to the result.

Answering Keyword Queries

 Indices mapping keywords to documents

• For each keyword, store sorted list of document IDs that contain the keyword

 Commonly referred to as a inverted index

 E.g.,: database: d1, d4, d11, d45, d77, d123

 distributed: d4, d8, d11, d56, d77, d121, d333

• To answer a query with several keywords, compute intersection of lists corresponding to those

keywords

 To support ranking, inverted lists store extra information

• “Term frequency” of the keyword in the document

• “Inverse document frequency” of the keyword

• Page rank of the document/web page

Other Operations : Outer Join

 Outer join can be computed either as

• A join followed by addition of null-padded non-participating tuples.

• by modifying the join algorithms.

 Modifying merge join to compute r ⟕ s

• In r ⟕ s, non participating tuples are those in r – R(r ⨝ s)

• Modify merge-join to compute r ⟕ s:

 During merging, for every tuple tr from r that do not match any tuple in s, output tr

padded with nulls.

• Right outer-join and full outer-join can be computed similarly.

 Modifying hash join to compute r ⟕ s

• If r is probe relation, output non-matching r tuples padded with nulls

• If r is build relation, when probing keep track of which r tuples matched s tuples. At end of si

output non-matched r tuples padded with nulls

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 12

Evaluation of Expressions

 Alternatives for evaluating an entire expression tree

• Materialization: generate results of an expression whose inputs are relations or are already

computed, materialize (store) it on disk. Repeat.

• Pipelining: pass on tuples to parent operations even as an operation is being executed

Materialization

 Materialized evaluation: evaluate one operation at a time, starting at the lowest-level. Use

intermediate results materialized into temporary relations to evaluate next-level operations.

 E.g., in figure below, compute and store

then compute the store its join with instructor, and finally compute the projection on name.

 Materialized evaluation is always applicable

 Cost of writing results to disk and reading them back can be quite high

• Our cost formulas for operations ignore cost of writing results to disk, so

 Overall cost = Sum of costs of individual operations +

 cost of writing intermediate results to disk

 Double buffering: use two output buffers for each operation, when one is full write it to disk while the

other is getting filled

• Allows overlap of disk writes with computation and reduces execution time

Pipelining

 Pipelined evaluation: evaluate several operations simultaneously, passing the results of one

operation on to the next.

 E.g., in previous expression tree, don’t store result of

• instead, pass tuples directly to the join.. Similarly, don’t store result of join, pass tuples

directly to projection.

 Much cheaper than materialization: no need to store a temporary relation to disk.

 Pipelining may not always be possible – e.g., sort, hash-join.

 For pipelining to be effective, use evaluation algorithms that generate output tuples even as tuples are

received for inputs to the operation.

 Pipelines can be executed in two ways: demand driven and producer driven

 In demand driven or lazy evaluation

• system repeatedly requests next tuple from top level operation

• Each operation requests next tuple from children operations as required, in order to output its

next tuple

• In between calls, operation has to maintain “state” so it knows what to return next

 In producer-driven or eager pipelining

• Operators produce tuples eagerly and pass them up to their parents

)("Watson" departmentbuilding

)("Watson" departmentbuilding

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 13

 Buffer maintained between operators, child puts tuples in buffer, parent removes tuples

from buffer

 if buffer is full, child waits till there is space in the buffer, and then generates more

tuples

• System schedules operations that have space in output buffer and can process more input

tuples

 Alternative name: pull and push models of pipelining

 Implementation of demand-driven pipelining

• Each operation is implemented as an iterator implementing the following operations

 open()

 E.g., file scan: initialize file scan

 state: pointer to beginning of file

 E.g., merge join: sort relations;

 state: pointers to beginning of sorted relations

 next()

 E.g., for file scan: Output next tuple, and advance and store file pointer

 E.g., for merge join: continue with merge from earlier state till next output tuple

is found. Save pointers as iterator state.

 close()

Blocking Operations

 Blocking operations: cannot generate any output until all input is consumed

• E.g., sorting, aggregation, …

 But can often consume inputs from a pipeline, or produce outputs to a pipeline

 Key idea: blocking operations often have two suboperations

• E.g., for sort: run generation and merge

• For hash join: partitioning and build-probe

 Treat them as separate operations

Pipeline Stages

 Pipeline stages:

• All operations in a stage run concurrently

• A stage can start only after preceding stages have completed execution

Evaluation Algorithms for Pipelining

 Some algorithms are not able to output results even as they get input tuples

• E.g., merge join, or hash join

• intermediate results written to disk and then read back

 Algorithm variants to generate (at least some) results on the fly, as input tuples are read in

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 14

• E.g., hybrid hash join generates output tuples even as probe relation tuples in the in-memory

partition (partition 0) are read in

• Double-pipelined join technique: Hybrid hash join, modified to buffer partition 0 tuples of

both relations in-memory, reading them as they become available, and output results of any

matches between partition 0 tuples

 When a new r0 tuple is found, match it with existing s0 tuples, output matches, and

save it in r0

 Symmetrically for s0 tuples

Pipelining for Continuous-Stream Data

 Data streams

• Data entering database in a continuous manner

• E.g., Sensor networks, user clicks, …

 Continuous queries

• Results get updated as streaming data enters the database

• Aggregation on windows is often used

 E.g., tumbling windows divide time into units, e.g., hours, minutes

 Need to use pipelined processing algorithms

• Punctuations used to infer when all data for a window has been received

Query Processing in Memory

 Query compilation to machine code

• Overheads of interpretation

 E.g., repeatedly finding attribute location within tuple, from metadata

 Overhead of expression evaluation

• Compilation can avoid many such overheads and speed up query processing

• Often via generation of Java byte code / LLVM, with just-in-time (JIT) compilation

 Column-oriented storage

• Allows vector operations (in conjunction with compilation)

 Cache conscious algorithms

Cache Conscious Algorithms

 Goal: minimize cache misses, make best use of data fetched into the cache as part of a cache line

 For sorting:

• Use runs that are as large as L3 cache (a few megabytes) to avoid cache misses during sorting

of a run

• Then merge runs as usual in merge-sort

 For hash-join

• First create partitions such that build+probe partitions fit in memory

• Then subpartition further s.t. build subpartition+index fits in L3 cache

 Speeds up probe phase significantly by avoiding cache misses

 Lay out attributes of tuples to maximize cache usage

• Attributes that are often accessed together should be stored adjacent to each other

 Use multiple threads for parallel query processing

• Cache misses leads to stall of one thread, but others can proceed

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 15

Query Optimization

 Alternative ways of evaluating a given query

• Equivalent expressions

• Different algorithms for each operation

An evaluation plan defines exactly what algorithm is used for each operation, and how the execution of the

operations is coordinated

 Cost difference between evaluation plans for a query can be enormous

• E.g., seconds vs. days in some cases

 Steps in cost-based query optimization

1. Generate logically equivalent expressions using equivalence rules

2. Annotate resultant expressions to get alternative query plans

3. Choose the cheapest plan based on estimated cost

 Estimation of plan cost based on:

• Statistical information about relations. Examples:

 number of tuples, number of distinct values for an attribute

• Statistics estimation for intermediate results

 to compute cost of complex expressions

• Cost formulae for algorithms, computed using statistics

Viewing Query Evaluation Plans

 Most database support explain <query>

• Displays plan chosen by query optimizer, along with cost estimates

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 16

• Some syntax variations between databases

 Oracle: explain plan for <query> followed by select * from table (dbms_xplan.display)

 SQL Server: set showplan_text on

 Some databases (e.g. PostgreSQL) support explain analyse <query>

• Shows actual runtime statistics found by running the query, in addition to showing the plan

 Some databases (e.g. PostgreSQL) show cost as f..l

• f is the cost of delivering first tuple and l is cost of delivering all results

Generating Equivalent Expressions

Transformation of Relational Expressions

 Two relational algebra expressions are said to be equivalent if the two expressions generate the same

set of tuples on every legal database instance

• Note: order of tuples is irrelevant

• we don’t care if they generate different results on databases that violate integrity constraints

 In SQL, inputs and outputs are multisets of tuples

• Two expressions in the multiset version of the relational algebra are said to be equivalent if the

two expressions generate the same multiset of tuples on every legal database instance.

 An equivalence rule says that expressions of two forms are equivalent

• Can replace expression of first form by second, or vice versa

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.

 σ1 2 (E) ≡ σ1 (σ2 (E))

2. Selection operations are commutative.

 σ1(σ2(E)) ≡ σ2 (σ1(E))

3. Only the last in a sequence of projection operations is needed, the others can be omitted.

 L1(L2(…(Ln(E))…)) ≡ L1(E) where L1 ⊆ L2 … ⊆ Ln

4. Selections can be combined with Cartesian products and theta joins.

a. σ (E1 x E2) ≡ E1 ⨝ E2

b. σ 1 (E1 ⨝2 E2) ≡ E1 ⨝ 1∧2 E2

5. Theta-join operations (and natural joins) are commutative.

 E1 ⨝ E2 ≡ E2 ⨝ E1

6. (a) Natural join operations are associative:

(E1 ⨝ E2) ⨝ E3 ≡ E1 ⨝ (E2 ⨝ E3)

(b) Theta joins are associative in the following manner:

 (E1 ⨝ 1 E2) ⨝ 2 3 E3 ≡ E1 ⨝1 3 (E2 ⨝ 2 E3)

 where 2 involves attributes from only E2 and E3.

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 17

7. The selection operation distributes over the theta join operation under the following two conditions:

(a) When all the attributes in 0 involve only the attributes of one of the expressions (E1) being joined.

 0 E1 ⨝ E2) ≡ (0(E1)) ⨝ E2

 (b) When 1 involves only the attributes of E1 and 2 involves only the attributes of E2.

 1 2 E1 ⨝ E2) ≡ (1(E1)) ⨝ (2(E2))

8. The projection operation distributes over the theta join operation as follows:

 (a) if involves only attributes from L1 L2:

 L1 L2(E1 ⨝ E2) ≡ L1(E1) ⨝ L2(E2)

 (b) In general, consider a join E1 ⨝ E2.

• Let L1 and L2 be sets of attributes from E1 and E2, respectively.

• Let L3 be attributes of E1 that are involved in join condition , but are not in L1 L2, and

• let L4 be attributes of E2 that are involved in join condition , but are not in L1 L2.

 L1 L2(E1 ⨝ E2) ≡ L1 L2(L1 L3(E1) ⨝ L2 L4(E2))

Similar equivalences hold for outerjoin operations: ⟕, ⟖, and ⟗

13. Selection distributes over aggregation as below

 (G𝛾A(E)) ≡ G𝛾A((E))

 provided only involves attributes in G

14. a. Full outerjoin is commutative:

 E1 ⟗ E2 ≡ E2 ⟗ E1

 b. Left and right outerjoin are not commutative, but:

 E1 ⟕ E2 ≡ E2 ⟖ E1

15. Selection distributes over left and right outerjoins as below, provided 1

 only involves attributes of E1

 a. 1 (E1 ⟕ E2) ≡ (1 (E1)) ⟕ E2

 b. 1 (E1 ⟖ E2) ≡ E2 ⟕ (1 (E1))

16. Outerjoins can be replaced by inner joins under some conditions

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 18

 a. 1 (E1 ⟕ E2) ≡ 1 (E1 ⨝ E2)

 b. 1 (E1 ⟖ E1) ≡ 1 (E1 ⨝ E2)

 provided 1 is null rejecting on E2

Note that several equivalences that hold for joins do not hold for outerjoins

 year=2017(instructor ⟕ teaches) ≢ year=2017(instructor ⨝ teaches)

 Outerjoins are not associative

 (r ⟕ s) ⟕ t ≢ r ⟕ (s ⟕ t)

• e.g. with r(A,B) = {(1,1), s(B,C) = { (1,1)}, t(A,C) = { }

Transformation Example: Pushing Selections

 Query: Find the names of all instructors in the Music department, along with the titles of the courses

that they teach

• name, title(dept_name= ‘Music’

 (instructor ⨝ (teaches ⨝ course_id, title (course))))

 Transformation using rule 7a.

• name, title((dept_name= ‘Music’(instructor)) ⨝

 (teaches ⨝ course_id, title (course)))

 Performing the selection as early as possible reduces the size of the relation to be joined.

Example with Multiple Transformations

 Query: Find the names of all instructors in the Music department who have taught a course in 2017,

along with the titles of the courses that they taught

• name, title(dept_name= "Music”year = 2017

 (instructor ⨝ (teaches ⨝ course_id, title (course))))

 Transformation using join associatively (Rule 6a):

• name, title(dept_name= “Music”year = 2017

 ((instructor ⨝ teaches) ⨝ course_id, title (course)))

 Second form provides an opportunity to apply the “perform selections early” rule, resulting in the

subexpression

 dept_name = “Music” (instructor) ⨝ year = 2017 (teaches)

Transformation Example: Pushing Projections

 Consider: name, title(dept_name= “Music” (instructor) ⨝ teaches)

 ⨝ course_id, title (course))))

 When we compute

 (dept_name = “Music” (instructor ⨝ teaches)

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 19

we obtain a relation whose schema is:

(ID, name, dept_name, salary, course_id, sec_id, semester, year)

 Push projections using equivalence rules 8a and 8b; eliminate unneeded attributes from intermediate

results to get:

 name, title(name, course_id (

 dept_name= “Music” (instructor) ⨝ teaches))

 ⨝ course_id, title (course))))

 Performing the projection as early as possible reduces the size of the relation to be joined.

Join Ordering Example

 For all relations r1, r2, and r3,

 (r1 ⨝ r2) ⨝ r3 = r1 ⨝ (r2 ⨝ r3)

 (Join Associativity) ⨝

 If r2 ⨝ r3 is quite large and r1 ⨝ r2 is small, we choose

 (r1 ⨝ r2) ⨝ r3

 so that we compute and store a smaller temporary relation.

 Consider the expression

 name, title(dept_name= “Music” (instructor) ⨝ teaches)

 ⨝ course_id, title (course))))

 Could compute teaches ⨝ course_id, title (course) first, and join result with

 dept_name= “Music” (instructor)

but the result of the first join is likely to be a large relation.

 Only a small fraction of the university’s instructors are likely to be from the Music department

• it is better to compute

 dept_name= “Music” (instructor) ⨝ teaches first.

Enumeration of Equivalent Expressions

 Query optimizers use equivalence rules to systematically generate expressions equivalent to the given

expression

 Can generate all equivalent expressions as follows:

• Repeat

 apply all applicable equivalence rules on every subexpression of every equivalent

expression found so far

 add newly generated expressions to the set of equivalent expressions

Until no new equivalent expressions are generated above

 The above approach is very expensive in space and time

• Two approaches

 Optimized plan generation based on transformation rules

 Special case approach for queries with only selections, projections and joins

Implementing Transformation Based Optimization

 Space requirements reduced by sharing common sub-expressions:

• when E1 is generated from E2 by an equivalence rule, usually only the top level of the two are

different, subtrees below are the same and can be shared using pointers

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 20

• E.g., when applying join commutativity

• Same sub-expression may get generated multiple times

 Detect duplicate sub-expressions and share one copy

 Time requirements are reduced by not generating all expressions

• Dynamic programming

 We will study only the special case of dynamic programming for join order optimization

Cost Estimation

 Cost of each operator computer as described in Chapter 15

• Need statistics of input relations

 E.g., number of tuples, sizes of tuples

 Inputs can be results of sub-expressions

• Need to estimate statistics of expression results

• To do so, we require additional statistics

 E.g., number of distinct values for an attribute

 More on cost estimation later

Choice of Evaluation Plans

 Must consider the interaction of evaluation techniques when choosing evaluation plans

• choosing the cheapest algorithm for each operation independently may not yield best overall

algorithm. E.g.

 merge-join may be costlier than hash-join, but may provide a sorted output which

reduces the cost for an outer level aggregation.

 nested-loop join may provide opportunity for pipelining

 Practical query optimizers incorporate elements of the following two broad approaches:

1. Search all the plans and choose the best plan in a cost-based fashion.

2. Uses heuristics to choose a plan.

Cost-Based Optimization

 Consider finding the best join-order for r1 ⨝ r2 ⨝ . . . ⨝ rn.

 There are (2(n – 1))!/(n – 1)! different join orders for above expression. With n = 7, the number is

665280, with n = 10, the number is greater than 176 billion!

 No need to generate all the join orders. Using dynamic programming, the least-cost join order for any

subset of

{r1, r2, . . . rn} is computed only once and stored for future use.

Dynamic Programming in Optimization

 To find best join tree for a set of n relations:

• To find best plan for a set S of n relations, consider all possible plans of the form: S1 ⨝ (S – S1)

where S1 is any non-empty subset of S.

• Recursively compute costs for joining subsets of S to find the cost of each plan. Choose the

cheapest of the 2n – 2 alternatives.

• Base case for recursion: single relation access plan

 Apply all selections on Ri using best choice of indices on Ri

• When plan for any subset is computed, store it and reuse it when it is required again, instead

of recomputing it

 Dynamic programming

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 21

Join Order Optimization Algorithm

procedure findbestplan(S)

if (bestplan[S].cost)

 return bestplan[S]

// else bestplan[S] has not been computed earlier, compute it now

if (S contains only 1 relation)

 set bestplan[S].plan and bestplan[S].cost based on the best way

 of accessing S using selections on S and indices (if any) on S else for each non-empty subset S1 of S such

that S1 S

 P1= findbestplan(S1)

 P2= findbestplan(S - S1)

 for each algorithm A for joining results of P1 and P2

 … compute plan and cost of using A (see next page) ..

 if cost < bestplan[S].cost

 bestplan[S].cost = cost

 bestplan[S].plan = plan;

return bestplan[S]

for each algorithm A for joining results of P1 and P2

 // For indexed-nested loops join, the outer could be P1 or P2

 // Similarly for hash-join, the build relation could be P1 or P2

 // We assume the alternatives are considered as separate algorithms

 if algorithm A is indexed nested loops

 Let Pi and Po denote inner and outer inputs

 if Pi has a single relation ri and ri has an index on the join attribute

 plan = “execute Po.plan; join results of Po and ri using A”,

 with any selection conditions on Pi performed as part of

 the join condition

 cost = Po.cost + cost of A

 else cost = ; /* cannot use indexed nested loops join */

else

 plan = “execute P1.plan; execute P2.plan;

 join results of P1 and P2 using A;”

 cost = P1.cost + P2.cost + cost of A

Left Deep Join Trees

 In left-deep join trees, the right-hand-side input for each join is a relation, not the result of an

intermediate join.

c

Cost of Optimization

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 22

 With dynamic programming time complexity of optimization with bushy trees is O(3n).

• With n = 10, this number is 59000 instead of 176 billion!

 Space complexity is O(2n)

 To find best left-deep join tree for a set of n relations:

• Consider n alternatives with one relation as right-hand side input and the other relations as

left-hand side input.

• Modify optimization algorithm:

 Replace “for each non-empty subset S1 of S such that S1 S”

 By: for each relation r in S

 let S1 = S – r .

 If only left-deep trees are considered, time complexity of finding best join order is O(n 2n)

• Space complexity remains at O(2n)

 Cost-based optimization is expensive, but worthwhile for queries on large datasets (typical queries

have small n, generally < 10)

Interesting Sort Orders

 Consider the expression (r1 ⨝ r2) ⨝ r3 (with A as common attribute)

 An interesting sort order is a particular sort order of tuples that could make a later operation

(join/group by/order by) cheaper

• Using merge-join to compute r1 ⨝ r2 may be costlier than hash join but generates result sorted

on A

• Which in turn may make merge-join with r3 cheaper, which may reduce cost of join with r3 and

minimizing overall cost

 Not sufficient to find the best join order for each subset of the set of n given relations

• must find the best join order for each subset, for each interesting sort order

• Simple extension of earlier dynamic programming algorithms

• Usually, number of interesting orders is quite small and doesn’t affect time/space complexity

significantly

Cost Based Optimization with Equivalence Rules

 Physical equivalence rules allow logical query plan to be converted to physical query plan specifying

what algorithms are used for each operation.

 Efficient optimizer based on equivalent rules depends on

• A space efficient representation of expressions which avoids making multiple copies of

subexpressions

• Efficient techniques for detecting duplicate derivations of expressions

• A form of dynamic programming based on memoization, which stores the best plan for a

subexpression the first time it is optimized, and reuses in on repeated optimization calls on

same subexpression

• Cost-based pruning techniques that avoid generating all plans

 Pioneered by the Volcano project and implemented in the SQL Server optimizer

Heuristic Optimization

 Cost-based optimization is expensive, even with dynamic programming.

 Systems may use heuristics to reduce the number of choices that must be made in a cost-based

fashion.

 Heuristic optimization transforms the query-tree by using a set of rules that typically (but not in all

cases) improve execution performance:

• Perform selection early (reduces the number of tuples)

• Perform projection early (reduces the number of attributes)

• Perform most restrictive selection and join operations (i.e., with smallest result size) before

other similar operations.

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 23

• Some systems use only heuristics, others combine heuristics with partial cost-based

optimization.

Structure of Query Optimizers

 Many optimizers considers only left-deep join orders.

• Plus heuristics to push selections and projections down the query tree

• Reduces optimization complexity and generates plans amenable to pipelined evaluation.

 Heuristic optimization used in some versions of Oracle:

• Repeatedly pick “best” relation to join next

 Starting from each of n starting points. Pick best among these

 Intricacies of SQL complicate query optimization

• E.g., nested subqueries

 Some query optimizers integrate heuristic selection and the generation of alternative access plans.

• Frequently used approach

 heuristic rewriting of nested block structure and aggregation

 followed by cost-based join-order optimization for each block

• Some optimizers (e.g. SQL Server) apply transformations to entire query and do not depend on

block structure

• Optimization cost budget to stop optimization early (if cost of plan is less than cost of

optimization)

• Plan caching to reuse previously computed plan if query is resubmitted

 Even with different constants in query

 Even with the use of heuristics, cost-based query optimization imposes a substantial overhead.

• But is worth it for expensive queries

• Optimizers often use simple heuristics for very cheap queries, and perform exhaustive

enumeration for more expensive queries

Statistics for Cost Estimation

Statistical Information for Cost Estimation

 nr: number of tuples in a relation r.

 br: number of blocks containing tuples of r.

 lr: size of a tuple of r.

 fr: blocking factor of r — i.e., the number of tuples of r that fit into one block.

 V(A, r): number of distinct values that appear in r for attribute A; same as the size of A(r).

 If tuples of r are stored together physically in a file, then:

Histograms

 Histogram on attribute age of relation person

 Equi-width histograms

value

fr
eq

ue
nc

y

50

40

30

20

10

1–5 6–10 11–15 16–20 21–25

rf
rn

rb

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 24

 Equi-depth histograms break up range such that each range has (approximately) the same number of

tuples

• E.g. (4, 8, 14, 19)

 Many databases also store n most-frequent values and their counts

• Histogram is built on remaining values only

 Histograms and other statistics usually computed based on a random sample

 Statistics may be out of date

• Some database require a analyze command to be executed to update statistics

• Others automatically recompute statistics

 e.g., when number of tuples in a relation changes by some percentage

Selection Size Estimation

 A=v (r)

• nr / V(A,r) : number of records that will satisfy the selection

• Equality condition on a key attribute: size estimate = 1

 AV(r) (case of A V(r) is symmetric)

• Let c denote the estimated number of tuples satisfying the condition.

• If min(A,r) and max(A,r) are available in catalog

 c = 0 if v < min(A,r)

 c =

• If histograms available, can refine above estimate

• In absence of statistical information c is assumed to be nr / 2.

Size Estimation of Complex Selections

 The selectivity of a condition i is the probability that a tuple in the relation r satisfies i .

• If si is the number of satisfying tuples in r, the selectivity of i is given by si /nr.

 Conjunction: 1 2. . . n (r). Assuming independence, estimate of tuples in the result is:

 Disjunction:1 2 . . . n (r). Estimated number of tuples:

 Negation: (r). Estimated number of tuples:

 nr – size((r))

Join Operation: Running Example

Running example: student ⨝ takes

Catalog information for join examples:

 nstudent = 5,000.

 fstudent = 50, which implies that bstudent =5000/50 = 100.

 ntakes = 10000.

 ftakes = 25, which implies that btakes = 10000/25 = 400.

 V(ID, takes) = 2500, which implies that on average, each student who has taken a course has taken 4

courses.

• Attribute ID in takes is a foreign key referencing student.

• V(ID, student) = 5000 (primary key!)

Estimation of the Size of Joins

 The Cartesian product r x s contains nr .ns tuples; each tuple occupies sr + ss bytes.

n

r

n
r

n

sss
n

*

 . . . 21

),min(),max(

),min(
.

rArA

rAv
nr

)1(...)1()1(1 21

r

n

rr

r
n

s

n

s

n

s
n

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 25

 If R S = , then r ⋈ s is the same as r x s.

 If R S is a key for R, then a tuple of s will join with at most one tuple from r

• therefore, the number of tuples in r ⋈ s is no greater than the number of tuples in s.

 If R S in S is a foreign key in S referencing R, then the number of tuples in r ⋈ s is exactly the same

as the number of tuples in s.

 The case for R S being a foreign key referencing S is symmetric.

 In the example query student ⋈ takes, ID in takes is a foreign key referencing student

• hence, the result has exactly ntakes tuples, which is 10000

 If R S = {A} is not a key for R or S.

If we assume that every tuple t in R produces tuples in R S, the number of tuples in R ⨝ S is

estimated to be:

If the reverse is true, the estimate obtained will be:

The lower of these two estimates is probably the more accurate one.

 Can improve on above if histograms are available

• Use formula similar to above, for each cell of histograms on the two relations

 Compute the size estimates for depositor ⨝ customer without using information about foreign

keys:

• V(ID, takes) = 2500, and

V(ID, student) = 5000

• The two estimates are 5000 * 10000/2500 = 20,000 and 5000 * 10000/5000 = 10000

• We choose the lower estimate, which in this case, is the same as our earlier computation using

foreign keys.

Size Estimation for Other Operations

 Projection: estimated size of A(r) = V(A,r)

 Aggregation : estimated size of G𝛾A(r) = V(G,r)

 Set operations

• For unions/intersections of selections on the same relation: rewrite and use size estimate for

selections

 E.g., 1 (r) 2 (r) can be rewritten as 1 or 2 (r)

• For operations on different relations:

 estimated size of r s = size of r + size of s.

 estimated size of r s = minimum size of r and size of s.

 estimated size of r – s = r.

 All the three estimates may be quite inaccurate, but provide upper bounds on the sizes.

 Outer join:

• Estimated size of r ⟕ s = size of r ⨝ s + size of r

 Case of right outer join is symmetric

• Estimated size of r ⟗ s = size of r ⨝ s + size of r + size of s

Estimation of Number of Distinct Values

Selections: (r)

 If forces A to take a specified value: V(A, (r)) = 1.

 e.g., A = 3

),(sAV

nn sr

),(rAV

nn sr

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 26

 If forces A to take on one of a specified set of values:

 V(A, (r)) = number of specified values.

 (e.g., (A = 1 V A = 3 V A = 4)),

 If the selection condition is of the form A op r

 estimated V(A, (r)) = V(A.r) * s

 where s is the selectivity of the selection.

 In all the other cases: use approximate estimate of

 min(V(A,r), n (r))

• More accurate estimate can be got using probability theory, but this one works fine generally

Joins: r ⨝ s

 If all attributes in A are from r

 estimated V(A, r ⨝ s) = min (V(A,r), n r ⨝ s)

 If A contains attributes A1 from r and A2 from s, then estimated

V(A,r ⨝ s) =

 min(V(A1,r)*V(A2 – A1,s), V(A1 – A2,r)*V(A2,s), nr ⨝ s)

• More accurate estimate can be got using probability theory, but this one works fine generally

 Estimation of distinct values are straightforward for projections.

• They are the same in A (r) as in r.

 The same holds for grouping attributes of aggregation.

 For aggregated values

• For min(A) and max(A), the number of distinct values can be estimated as min(V(A,r), V(G,r))

where G denotes grouping attributes

• For other aggregates, assume all values are distinct, and use V(G,r)

Optimizing Nested Subqueries**

 Nested query example:

select name

from instructor

where exists (select *

 from teaches

 where instructor.ID = teaches.ID and teaches.year = 2019)

 SQL conceptually treats nested subqueries in the where clause as functions that take parameters

and return a single value or set of values

• Parameters are variables from outer level query that are used in the nested subquery; such

variables are called correlation variables

 Conceptually, nested subquery is executed once for each tuple in the cross-product generated by

the outer level from clause

• Such evaluation is called correlated evaluation

• Note: other conditions in where clause may be used to compute a join (instead of a cross-

product) before executing the nested subquery

 Correlated evaluation may be quite inefficient since

• a large number of calls may be made to the nested query

• there may be unnecessary random I/O as a result

 SQL optimizers attempt to transform nested subqueries to joins where possible, enabling use of

efficient join techniques

 E.g.,: earlier nested query can be rewritten as

 name(instructor ⨝instructor.ID=teaches.ID teaches.year=2019 teaches)

 Note: the two queries generate different numbers of duplicates (why?)

• Can be modified to handle duplicates correctly using semijoins

 The semijoin operator ⋉ is defined as follows

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 27

• A tuple ri appears n times in r ⋉ s if it appears n times in r, and there is at least one matching

tuple si in s

 E.g.: earlier nested query can be rewritten as

 name(instructor ⋉ instructor.ID=teaches.ID teaches.year=2019 teaches)

• Or even as: name(instructor ⋉instructor.ID=teaches.ID (teaches.year=2019 teaches))

• Now the duplicate count is correct!

 The above relational algebra query is also equivalent to

from instructor

where ID in (select teaches.ID

 from teaches

 where teaches.year = 2019)

In general, SQL queries of the form below can be rewritten as shown

 Rewrite: select A

 from r1, r2 ,…, rn

 where P1 and exists (select *

 from s1, s2 ,…, sm

 where P2
1
 and P2

2
)

 To: A(σ P1 (r1 x r2 x … x rn) ⋉ P22 σ P21 (s1 x s2 x … x sm)

• P2
1 contains predicates that do not involve any correlation variables

• P2
2 contains predicates involving correlation variables

 The process of replacing a nested query by a query with a join/semijoin (possibly with a temporary

relation) is called decorrelation.

 Decorrelation is more complicated in several cases, e.g.

 The nested subquery uses aggregation, or

 The nested subquery is a scalar subquery

• Correlated evaluation used in these cases

 Decorrelation of scalar aggregate subqueries can be done using groupby/aggregation in some cases

 select name

from instructor

where 1 < (select count(*)

 from teaches

 where instructor.ID = teaches.ID

 and teaches.year = 2019)

 name(instructor ⋉ instructor.ID=TID 1 < cnt (

 ID as TID 𝛾count(*) as cnt (σ teaches.year=2019 (teaches))))

Materialized Views

 A materialized view is a view whose contents are computed and stored.

 Consider the view

create view department_total_salary(dept_name, total_salary) as

select dept_name, sum(salary)

from instructor

group by dept_name

 Materializing the above view would be very useful if the total salary by department is required

frequently

• Saves the effort of finding multiple tuples and adding up their amounts

Materialized View Maintenance

 The task of keeping a materialized view up-to-date with the underlying data is known as materialized

view maintenance

 Materialized views can be maintained by recomputation on every update

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 28

 A better option is to use incremental view maintenance

• Changes to database relations are used to compute changes to the materialized view,

which is then updated

 View maintenance can be done by

• Manually defining triggers on insert, delete, and update of each relation in the view definition

• Manually written code to update the view whenever database relations are updated

• Periodic recomputation (e.g. nightly)

• Incremental maintenance supported by many database systems

 Avoids manual effort/correctness issues

Incremental View Maintenance

 The changes (inserts and deletes) to a relation or expressions are referred to as its differential

• Set of tuples inserted to and deleted from r are denoted ir and dr

 To simplify our description, we only consider inserts and deletes

• We replace updates to a tuple by deletion of the tuple followed by insertion of the update tuple

 We describe how to compute the change to the result of each relational operation, given changes to its

inputs

 We then outline how to handle relational algebra expressions

Join Operation

 Consider the materialized view v = r ⨝ s and an update to r

 Let rold and rnew denote the old and new states of relation r

 Consider the case of an insert to r:

• We can write rnew ⨝ s as (rold ir) ⨝ s

• And rewrite the above to (rold
 ⨝ s) (ir ⨝ s)

• But (rold
 ⨝ s) is simply the old value of the materialized view, so the incremental change to the

view is just ir ⨝ s

 Thus, for inserts vnew = vold (ir ⨝ s)

 Similarly for deletes vnew = vold – (dr ⨝ s)

Selection and Projection Operations

 Selection: Consider a view v = (r).

• vnew = vold (ir)

• vnew = vold - (dr)

 Projection is a more difficult operation

• R = (A,B), and r(R) = { (a,2), (a,3)}

• A(r) has a single tuple (a).

• If we delete the tuple (a,2) from r, we should not delete the tuple (a) from A(r), but if we then

delete (a,3) as well, we should delete the tuple

 For each tuple in a projection A(r) , we will keep a count of how many times it was derived

• On insert of a tuple to r, if the resultant tuple is already in A(r) we increment its count, else we

add a new tuple with count = 1

• On delete of a tuple from r, we decrement the count of the corresponding tuple in A(r)

 if the count becomes 0, we delete the tuple from A(r)

Aggregation Operations

 Count : v = A 𝛾 count(B)
(r).

• When a set of tuples ir is inserted

 For each tuple r in ir, if the corresponding group is already present in v, we increment

its count, else we add a new tuple with count = 1

• When a set of tuples dr is deleted

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 29

 for each tuple t in ir.we look for the group t.A in v, and subtract 1 from the count for the

group.

• If the count becomes 0, we delete from v the tuple for the group t.A

 Sum: v = A 𝛾 sum (B)
(r)

• We maintain the sum in a manner similar to count, except we add/subtract the B value

instead of adding/subtracting 1 for the count

• Additionally we maintain the count in order to detect groups with no tuples. Such groups are

deleted from v

 Cannot simply test for sum = 0 (why?)

 Avg: How to handle average?

• Maintain sum and count separately, and divide at the end

 min, max: v = A 𝛾 min (B) (r).

• Handling insertions on r is straightforward.

• Maintaining the aggregate values min and max on deletions may be more expensive. We have

to look at the other tuples of r that are in the same group to find the new minimum

Other Operations

 Set intersection: v = r s

• when a tuple is inserted in r we check if it is present in s, and if so we add it to v.

• If the tuple is deleted from r, we delete it from the intersection if it is present.

• Updates to s are symmetric

• The other set operations, union and set difference are handled in a similar fashion.

 Outer joins are handled in much the same way as joins but with some extra work

Handling Expressions

 To handle an entire expression, we derive expressions for computing the incremental change to the

result of each sub-expressions, starting from the smallest sub-expressions.

 E.g., consider E1 ⨝ E2 where each of E1 and E2 may be a complex expression

• Suppose the set of tuples to be inserted into E1 is given by D1

 Computed earlier, since smaller sub-expressions are handled first

• Then the set of tuples to be inserted into E1 ⨝ E2 is given by

 D1 ⨝ E2

 This is just the usual way of maintaining joins

Query Optimization and Materialized Views

 Rewriting queries to use materialized views:

• A materialized view v = r ⨝ s is available

• A user submits a query r ⨝ s ⨝ t

• We can rewrite the query as v ⨝ t

 Whether to do so depends on cost estimates for the two alternative

 Replacing a use of a materialized view by the view definition:

• A materialized view v = r ⨝ s is available, but without any index on it

• User submits a query A=10(v).

• Suppose also that s has an index on the common attribute B, and r has an index on attribute

A.

• The best plan for this query may be to replace v by r ⨝ s, which can lead to the query plan

A=10(r) ⨝ s

 Query optimizer should be extended to consider all above

alternatives and choose the best overall plan

Materialized View Selection

 Materialized view selection: “What is the best set of views to materialize?”

 Index selection: “what is the best set of indices to create”

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 30

• closely related, to materialized view selection

 but simpler

 Materialized view selection and index selection based on typical system workload (queries and

updates)

• Typical goal: minimize time to execute workload , subject to constraints on space and time

taken for some critical queries/updates

• One of the steps in database tuning

 more on tuning in later chapters

 Commercial database systems provide tools (called “tuning assistants” or “wizards”) to help the

database administrator choose what indices and materialized views to create

Top-K Queries

select *

from r, s

where r.B = s.B

order by r.A ascending

limit 10

• Alternative 1: Indexed nested loops join with r as outer

• Alternative 2: estimate highest r.A value in result and add selection (and r.A <= H) to where

clause

 If < 10 results, retry with larger H

Optimization of Updates

 Halloween problem

update R set A = 5 * A

where A > 10

• If index on A is used to find tuples satisfying A > 10, and tuples updated immediately, same tuple

may be found (and updated) multiple times

• Solution 1: Always defer updates

• collect the updates (old and new values of tuples) and update relation and indices in second

pass

• Drawback: extra overhead even if e.g. update is only on R.B, not on attributes in selection

condition

• Solution 2: Defer only if required

• Perform immediate update if update does not affect attributes in where clause, and deferred

updates otherwise.

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 31

Join Minimization

select r.A, r.B

from r, s

where r.B = s.B

 Check if join with s is redundant, drop it

• E.g., join condition is on foreign key from r to s, r.B is declared as not null, and no selection on

s

• Other sufficient conditions possible

 select r.A, s2.B

 from r, s as s1, s as s2

 where r.B=s1.B and r.B = s2.B and s1.A < 20 and s2.A < 10

 join with s1 is redundant and can be dropped (along with selection on s1)

• Lots of research in this area since 70s/80s!

Multiquery Optimization

 Example

 Q1: select * from (r natural join t) natural join s

 Q2: select * from (r natural join u) natural join s

• Both queries share common subexpression (r natural join s)

• May be useful to compute (r natural join s) once and use it in both queries

 But this may be more expensive in some situations

• e.g. (r natural join s) may be expensive, plans as shown in queries may be cheaper

 Multiquery optimization: find best overall plan for a set of queries, exploiting sharing of common

subexpressions between queries where it is useful

 Simple heuristic used in some database systems:

 optimize each query separately

 detect and exploiting common subexpressions in the individual optimal query plans

 May not always give best plan, but is cheap to implement

 Shared scans: widely used special case of multiquery optimization

 Set of materialized views may share common subexpressions

 As a result, view maintenance plans may share subexpressions

 Multiquery optimization can be useful in such situations

Parametric Query Optimization

 Example

select *

from r natural join s

where r.a < $1

• value of parameter $1 not known at compile time

 known only at run time

• different plans may be optimal for different values of $1

 Solution 1: optimize at run time, each time query is submitted

 can be expensive

 Solution 2: Parametric Query Optimization:

• optimizer generates a set of plans, optimal for different values of $1

 Set of optimal plans usually small for 1 to 3 parameters

 Key issue: how to do find set of optimal plans efficiently

• best one from this set is chosen at run time when $1 is known

 Solution 3: Query Plan Caching

• If optimizer decides that same plan is likely to be optimal for all parameter values, it caches

plan and reuses it, else re-optimize each time

• Implemented in many database systems

B Rupa Devi, AITS DBMS – UNIT 4 – AK22 Page 32

Plan Stability Across Optimizer Changes

 What if 95% of plans are faster on database/optimizer version N+1 than on N, but 5% are slower?

• Why should plans be slower on new improved optimizer?

 Answer: Two wrongs can make a right, fixing one wrong can make things worse!

 Approaches:

• Allow hints for tuning queries

 Not practical for migrating large systems with no access to source code

• Set optimization level, default to version N (Oracle)

 And migrate one query at a time after testing both plans on new optimizer

• Save plan from version N, and give it to optimizer version N+1

 Sybase, XML representation of plans (SQL Server)

Adaptive Query Processing

 Some systems support adaptive operators that change execution algorithm on the fly

• E.g., (indexed) nested loops join or hash join chosen at run time, depending on size of outer

input

 Other systems allow monitoring of behavior of plan at run time and adapt plan

• E.g., if statistics such as number of rows is found to be very different in reality from what

optimizer estimated

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 1

Unit 5

Transaction Management: Transactions: Concept, A Simple Transactional Model, Storage Structures,

Transaction Atomicity and Durability, Transaction Isolation, Serializability, Isolation and Atomicity,

Transaction Isolation Levels, Implementation of Isolation Levels, Transactions as SQL Statements.

Concurrency Control: Lock-based Protocols, Deadlock Handling, Multiple granularity, Timestamp-based

Protocols, and Validation-based Protocols.

Recovery System: Failure Classification, Storage, Recovery and Atomicity, Recovery Algorithm, Buffer

Management, Failure with Loss of Nonvolatile Storage, Early Lock Release and Logical Undo Operations.

A transaction is a unit of program execution that accesses and possibly updates various data items.

E.g., transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

Two main issues to deal with:

 Failures of various kinds, such as hardware failures and system crashes

 Concurrent execution of multiple transactions

Example of Fund Transfer

Transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

 Atomicity requirement - If the transaction fails after step 3 and before step 6, money will be “lost” leading

to an inconsistent database state

Failure could be due to software or hardware

The system should ensure that updates of a partially executed transaction are not reflected in the database

 Durability requirement — once the user has been notified that the transaction has completed (i.e., the

transfer of the $50 has taken place), the updates to the database by the transaction must persist even if

there are software or hardware failures.

 Consistency requirement in above example:

The sum of A and B is unchanged by the execution of the transaction

In general, consistency requirements include:

Explicitly specified integrity constraints such as primary keys and foreign keys

Implicit integrity constraints - e.g., sum of balances of all accounts, minus sum of loan amounts must equal

value of cash-in-hand

A transaction must see a consistent database.

During transaction execution the database may be temporarily inconsistent.

When the transaction completes successfully the database must be consistent - Erroneous transaction logic

can lead to inconsistency

 Isolation requirement — if between steps 3 and 6, another transaction T2 is allowed to access the partially

updated database, it will see an inconsistent database (the sum A + B will be less than it should be).

 T1 T2

1. read(A)

2. A := A – 50

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 2

3. write(A)

 read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B

 Isolation can be ensured trivially by running transactions serially

• That is, one after the other.

 However, executing multiple transactions concurrently has significant benefits.

©Silberschatz, Korth and Sudarshan16.7Database System Concepts - 6th Edition

Example of Data Access

X

Y

A

B

x1

y1

buffer

Buffer Block A

Buffer Block B

input(A)

output(B)

read(X)

write(Y)

disk

work area

of T1

work area

of T2

memory

x2

ACID Properties

A transaction is a unit of program execution that accesses and possibly updates various data items. To

preserve the integrity of data the database system must ensure:

 Atomicity. Either all operations of the transaction are properly reflected in the database or none are.

 Consistency. Execution of a transaction in isolation preserves the consistency of the database.

 Isolation. Although multiple transactions may execute concurrently, each transaction must be

unaware of other concurrently executing transactions. Intermediate transaction results must be

hidden from other concurrently executed transactions.

• That is, for every pair of transactions Ti and Tj, it appears to Ti that either Tj, finished execution

before Ti started, or Tj started execution after Ti finished.

 Durability. After a transaction completes successfully, the changes it has made to the database

persist, even if there are system failures.

Transaction State

 Active – the initial state; the transaction stays in this state while it is executing

 Partially committed – after the final statement has been executed.

 Failed -- after the discovery that normal execution can no longer proceed.

 Aborted – after the transaction has been rolled back and the database restored to its state prior to the

start of the transaction. Two options after it has been aborted:

 Restart the transaction - Can be done only if no internal logical error

• Kill the transaction

 Committed – after successful completion.

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 3

Concurrent Executions

 Multiple transactions are allowed to run concurrently in the system. Advantages are:

• Increased processor and disk utilization, leading to better transaction throughput

 E.g., one transaction can be using the CPU while another is reading from or writing to

the disk

• Reduced average response time for transactions: short transactions need not wait behind

long ones.

 Concurrency control schemes – mechanisms to achieve isolation

• That is, to control the interaction among the concurrent transactions in order to prevent them

from destroying the consistency of the database

 Will study in Chapter 15, after studying notion of correctness of concurrent executions.

Schedules

 Schedule – a sequences of instructions that specify the chronological order in which instructions of

concurrent transactions are executed

• A schedule for a set of transactions must consist of all instructions of those transactions

• Must preserve the order in which the instructions appear in each individual transaction.

 A transaction that successfully completes its execution will have a commit instructions as the last

statement

• By default transaction assumed to execute commit instruction as its last step

 A transaction that fails to successfully complete its execution will have an abort instruction as the last

statement

Schedule 1

 Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B.

 A serial schedule in which T1 is followed by T2 :

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 4

Schedule 2

 A serial schedule where T2 is followed by T1

Schedule 3

 Let T1 and T2 be the transactions defined previously. The following schedule is not a serial schedule,

but it is equivalent to Schedule 1

 In Schedules 1, 2 and 3, the sum A + B is preserved.

Schedule 4

 The following concurrent schedule does not preserve the value of (A + B).

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 5

Serializability

Basic Assumption – Each transaction preserves database consistency.

Thus, serial execution of a set of transactions preserves database consistency.

A (possibly concurrent) schedule is serializable if it is equivalent to a serial schedule. Different forms of

schedule equivalence give rise to the notions of:

1. Conflict serializability

2. View Serializability

Simplified view of transactions

 We ignore operations other than read and write instructions

 We assume that transactions may perform arbitrary computations on data in local buffers in between

reads and writes.

 Our simplified schedules consist of only read and write instructions.

Conflicting Instructions

 Instructions li and lj of transactions Ti and Tj respectively, conflict if and only if there exists some item

Q accessed by both li and lj, and at least one of these instructions wrote Q.

 1. li = read(Q), lj = read(Q). li and lj don’t conflict.

 2. li = read(Q), lj = write(Q). They conflict.

 3. li = write(Q), lj = read(Q). They conflict

 4. li = write(Q), lj = write(Q). They conflict

 Intuitively, a conflict between li and lj forces a (logical) temporal order between them.

 If li and lj are consecutive in a schedule and they do not conflict, their results would remain the same

even if they had been interchanged in the schedule.

Conflict Serializability

 If a schedule S can be transformed into a schedule S’ by a series of swaps of non-conflicting

instructions, we say that S and S’ are conflict equivalent.

 We say that a schedule S is conflict serializable if it is conflict equivalent to a serial schedule

 Schedule 3 can be transformed into Schedule 6, a serial schedule where T2 follows T1, by series of

swaps of non-conflicting instructions. Therefore Schedule 3 is conflict serializable.

Schedule 3 Schedule 6

 Example of a schedule that is not conflict serializable:

 We are unable to swap instructions in the above schedule to obtain either the serial schedule < T3, T4

>, or the serial schedule < T4, T3 >.

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 6

Anomalies with Interleaved Execution

1. Reading Uncommitted Data (WR Conflicts, “dirty reads”):

2. Unrepeatable Reads (RW Conflicts):

3. Overwriting Uncommitted Data (WW Conflicts):

View Serializability

 Let S and S’ be two schedules with the same set of transactions. S and S’ are view equivalent if the

following three conditions are met, for each data item Q,

1. If in schedule S, transaction Ti reads the initial value of Q, then in schedule S’ also transaction Ti

must read the initial value of Q.

2. If in schedule S transaction Ti executes read(Q), and that value was produced by transaction Tj (if

any), then in schedule S’ also transaction Ti must read the value of Q that was produced by the

same write(Q) operation of transaction Tj .

3. The transaction (if any) that performs the final write(Q) operation in schedule S must also perform

the final write(Q) operation in schedule S’.

 A schedule S is view serializable if it is view equivalent to a serial schedule.

 Every conflict serializable schedule is also view serializable.

 Below is a schedule which is view-serializable but not conflict serializable.

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 7

 What serial schedule is above equivalent to?

 Every view serializable schedule that is not conflict serializable has blind writes.

Other Notions of Serializability

 The schedule below produces same outcome as the serial schedule < T1, T5 >, yet is not conflict

equivalent or view equivalent to it.

 Determining such equivalence requires analysis of operations other than read and write.

Testing for Serializability

 Consider some schedule of a set of transactions T1, T2, ..., Tn

 Precedence graph — a direct graph where the vertices are the transactions (names).

 We draw an arc from Ti to Tj if the two transaction conflict, and Ti accessed the data item on which the

conflict arose earlier.

 We may label the arc by the item that was accessed.

 Example of a precedence graph:

Test for Conflict Serializability

 A schedule is conflict serializable if and only if its precedence graph is acyclic.

 Cycle-detection algorithms exist which takes order n2 time, where n is the number of vertices in the

graph.

• (Better algorithms take order n + e where e is the number of edges.)

 If precedence graph is acyclic, the serializability order can be obtained by a topological sorting of the

graph.

• This is a linear order consistent with the partial order of the graph.

• For example, a serializability order for Schedule A would be

T5 T1 T3 T2 T4

 Are there others?

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 8

Test for View Serializability

 The precedence graph test for conflict serializability cannot be used directly to test for view

serializability.

• Extension to test for view serializability has cost exponential in the size of the precedence

graph.

 The problem of checking if a schedule is view serializable falls in the class of NP-complete problems.

• Thus, existence of an efficient algorithm is extremely unlikely.

 However practical algorithms that just check some sufficient conditions for view serializability can

still be used.

Recoverable Schedules

Need to address the effect of transaction failures on concurrently

running transactions.

 Recoverable schedule — if a transaction Tj reads a data item previously written by a transaction Ti ,

then the commit operation of Ti appears before the commit operation of Tj.

 The following schedule (Schedule 11) is not recoverable

 If T8 should abort, T9 would have read (and possibly shown to the user) an inconsistent database state.

Hence, database must ensure that schedules are recoverable.

Cascading Rollbacks

 Cascading rollback – a single transaction failure leads to a series of transaction rollbacks. Consider

the following schedule where none of the transactions has yet committed (so the schedule is

recoverable)

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 9

If T10 fails, T11 and T12 must also be rolled back.

 Can lead to the undoing of a significant amount of work

Cascadeless Schedules

 Cascadeless schedules — cascading rollbacks cannot occur;

• For each pair of transactions Ti and Tj such that Tj reads a data item previously written by Ti,

the commit operation of Ti appears before the read operation of Tj.

 Every Cascadeless schedule is also recoverable

 It is desirable to restrict the schedules to those that are cascadeless

Concurrency Control

 A database must provide a mechanism that will ensure that all possible schedules are

• either conflict or view serializable, and

• are recoverable and preferably cascadeless

 A policy in which only one transaction can execute at a time generates serial schedules, but provides a

poor degree of concurrency

• Are serial schedules recoverable/cascadeless?

 Testing a schedule for serializability after it has executed is a little too late!

 Goal – to develop concurrency control protocols that will assure serializability.

 Schedules must be conflict or view serializable, and recoverable, for the sake of database consistency,

and preferably cascadeless.

 A policy in which only one transaction can execute at a time generates serial schedules, but provides a

poor degree of concurrency.

 Concurrency-control schemes tradeoff between the amount of concurrency they allow and the amount

of overhead that they incur.

 Some schemes allow only conflict-serializable schedules to be generated, while others allow view-

serializable schedules that are not conflict-serializable.

Concurrency Control vs. Serializability Tests

 Concurrency-control protocols allow concurrent schedules, but ensure that the schedules are

conflict/view serializable, and are recoverable and cascadeless.

 Concurrency control protocols (generally) do not examine the precedence graph as it is being created

• Instead a protocol imposes a discipline that avoids non-serializable schedules.

• We study such protocols in Chapter 16.

 Different concurrency control protocols provide different tradeoffs between the amount of concurrency

they allow and the amount of overhead that they incur.

 Tests for serializability help us understand why a concurrency control protocol is correct.

Weak Levels of Consistency

 Some applications are willing to live with weak levels of consistency, allowing schedules that are not

serializable

• E.g., a read-only transaction that wants to get an approximate total balance of all accounts

• E.g., database statistics computed for query optimization can be approximate (why?)

• Such transactions need not be serializable with respect to other transactions

 Tradeoff accuracy for performance

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 10

Levels of Consistency in SQL-92

 Serializable — default

 Repeatable read — only committed records to be read.

• Repeated reads of same record must return same value.

• However, a transaction may not be serializable – it may find some records inserted by a

transaction but not find others.

 Read committed — only committed records can be read.

• Successive reads of record may return different (but committed) values.

 Read uncommitted — even uncommitted records may be read.

Levels of Consistency

 Lower degrees of consistency useful for gathering approximate information about the database

 Warning: some database systems do not ensure serializable schedules by default

 E.g., Oracle (and PostgreSQL prior to version 9) by default support a level of consistency called

snapshot isolation (not part of the SQL standard)

Transaction Definition in SQL

 In SQL, a transaction begins implicitly.

 A transaction in SQL ends by:

• Commit work commits current transaction and begins a new one.

• Rollback work causes current transaction to abort.

 In almost all database systems, by default, every SQL statement also commits implicitly if it executes

successfully

• Implicit commit can be turned off by a database directive

 E.g., in JDBC -- connection.setAutoCommit(false);

 Isolation level can be set at database level

 Isolation level can be changed at start of transaction

• E.g. In SQL set transaction isolation level serializable

• E.g. in JDBC - connection.setTransactionIsolation(Connection.TRANSACTION_SERIALIZABLE)

Implementation of Isolation Levels

 Locking

• Lock on whole database vs lock on items

• How long to hold lock?

• Shared vs exclusive locks

 Timestamps

• Transaction timestamp assigned e.g. when a transaction begins

• Data items store two timestamps

 Read timestamp

 Write timestamp

• Timestamps are used to detect out of order accesses

 Multiple versions of each data item

• Allow transactions to read from a “snapshot” of the database

Transactions as SQL Statements

 E.g., Transaction 1:

 select ID, name from instructor where salary > 90000

 E.g., Transaction 2:

 insert into instructor values ('11111', 'James', 'Marketing', 100000)

 Suppose

• T1 starts, finds tuples salary > 90000 using index and locks them

• And then T2 executes.

• Do T1 and T2 conflict? Does tuple level locking detect the conflict?

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 11

• Instance of the phantom phenomenon

 Also consider T3 below, with Wu’s salary = 90000

 update instructor

 set salary = salary * 1.1

 where name = 'Wu’

 Key idea: Detect “predicate” conflicts, and use some form of “predicate locking”

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 12

Concurrency Control

Purpose of Concurrency Control

To enforce Isolation (through mutual exclusion) among conflicting transactions.

To preserve database consistency through consistency preserving execution of transactions.

To resolve read-write and write-write conflicts.

Example:

In concurrent execution environment if T1 conflicts with T2 over a data item A, then the existing concurrency

control decides if T1 or T2 should get the A and if the other transaction is rolled-back or waits.

Two-Phase Locking Techniques

 Locking is an operation which secures

 (a) permission to Read

 (b) permission to Write a data item for a transaction.

 Example:

 Lock (X). Data item X is locked in behalf of the requesting transaction.

 Unlocking is an operation which removes these permissions from the data item.

 Example:

 Unlock (X): Data item X is made available to all other transactions.

 Lock and Unlock are Atomic operations.

Two-Phase Locking Techniques: Essential components

 Two locks modes:

 (a) shared (read) (b) exclusive (write).

 Shared mode: shared lock (X)

 More than one transaction can apply share lock on X for reading its value but no write

lock can be applied on X by any other transaction.

 Exclusive mode: Write lock (X)

 Only one write lock on X can exist at any time and no shared lock can be applied by

any other transaction on X.

 Conflict matrix

Lock-Based Protocols

A lock is a mechanism to control concurrent access to a data item

Data items can be locked in two modes :

 1. exclusive (X) mode. Data item can be both read as well as written. X-lock is requested using lock-X

instruction.

 2. shared (S) mode. Data item can only be read. S-lock is requested using lock-S instruction.

Lock requests are made to the concurrency-control manager by the programmer. Transaction can proceed

only after request is granted.

Lock-compatibility matrix

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 13

A transaction may be granted a lock on an item if the requested lock is compatible with locks already held on

the item by other transactions

Any number of transactions can hold shared locks on an item,

But if any transaction holds an exclusive on the item no other transaction may hold any lock on the item.

If a lock cannot be granted, the requesting transaction is made to wait till all incompatible locks held by other

transactions have been released. The lock is then granted.

Example of a transaction performing locking:

 T2: lock-S(A);

 read (A);

 unlock(A);

 lock-S(B);

 read (B);

 unlock(B);

 display(A+B)

Locking as above is not sufficient to guarantee serializability — if A and B get updated in-between the read of

A and B, the displayed sum would be wrong.

A locking protocol is a set of rules followed by all transactions while requesting and releasing locks. Locking

protocols restrict the set of possible schedules.

The Two-Phase Locking Protocol

This protocol ensures conflict-serializable schedules.

Phase 1: Growing Phase

Transaction may obtain locks

Transaction may not release locks

Phase 2: Shrinking Phase

Transaction may release locks

Transaction may not obtain locks

The protocol assures serializability. It can be proved that the transactions can be serialized in the order of

their lock points (i.e., the point where a transaction acquired its final lock).

There can be conflict serializable schedules that cannot be obtained if two-phase locking is used.

However, in the absence of extra information (e.g., ordering of access to data), two-phase locking is needed for

conflict serializability in the following sense:

Given a transaction Ti that does not follow two-phase locking, we can find a transaction Tj that uses two-

phase locking, and a schedule for Ti and Tj that is not conflict serializable.

Lock Conversions

Two-phase locking with lock conversions:

 – First Phase:

o can acquire a lock-S on item

o can acquire a lock-X on item

o can convert a lock-S to a lock-X (upgrade)

 – Second Phase:

o can release a lock-S

o can release a lock-X

o can convert a lock-X to a lock-S (downgrade)

This protocol assures serializability. But still relies on the programmer to insert the various locking

instructions.

Automatic Acquisition of Locks

A transaction Ti issues the standard read/write instruction, without explicit locking calls.

The operation read(D) is processed as:

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 14

 if Ti has a lock on D

 then

 read(D)

 else begin

 if necessary wait until no other

 transaction has a lock-X on D

 grant Ti a lock-S on D;

 read(D)

 end

write(D) is processed as:

 if Ti has a lock-X on D

 then

 write(D)

 else begin

 if necessary wait until no other transaction has any lock on D,

 if Ti has a lock-S on D

 then

 upgrade lock on D to lock-X

 else

 grant Ti a lock-X on D

 write(D)

 end;

All locks are released after commit or abort

Deadlocks

Consider the partial schedule

Neither T3 nor T4 can make progress — executing lock - S(B) causes T4 to wait for T3 to release its lock on B,

while executing lock-X(A) causes T3 to wait for T4 to release its lock on A.

Such a situation is called a deadlock.

To handle a deadlock one of T3 or T4 must be rolled back and its locks released.

Two-phase locking does not ensure freedom from deadlocks.

In addition to deadlocks, there is a possibility of starvation.

Starvation occurs if the concurrency control manager is badly designed.

For example:

A transaction may be waiting for an X-lock on an item, while a sequence of other transactions request and are

granted an S-lock on the same item.

The same transaction is repeatedly rolled back due to deadlocks.

Concurrency control manager can be designed to prevent starvation.

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 15

The potential for deadlock exists in most locking protocols. Deadlocks are a necessary evil.

When a deadlock occurs there is a possibility of cascading roll-backs.

Cascading roll-back is possible under two-phase locking. To avoid this, follow a modified protocol called strict

two-phase locking -- a transaction must hold all its exclusive locks till it commits/aborts.

Rigorous two-phase locking is even stricter. Here, all locks are held till commit/abort. In this protocol

transactions can be serialized in the order in which they commit.

Implementation of Locking

 A lock manager can be implemented as a separate process to which transactions send lock and unlock

requests

 The lock manager replies to a lock request by sending a lock grant messages (or a message asking the

transaction to roll back, in case of a deadlock)

 The requesting transaction waits until its request is answered

 The lock manager maintains a data-structure called a lock table to record granted locks and pending

requests

 The lock table is usually implemented as an in-memory hash table indexed on the name of the data item

being locked

Lock Table

 Dark blue rectangles indicate granted locks; light blue indicate waiting requests

 Lock table also records the type of lock granted or requested

 New request is added to the end of the queue of requests for the data item, and granted if it is compatible

with all earlier locks

 Unlock requests result in the request being deleted, and later requests are checked to see if they can now

be granted

 If transaction aborts, all waiting or granted requests of the transaction are deleted

 lock manager may keep a list of locks held by each transaction, to implement this efficiently

Deadlock Handling

System is deadlocked if there is a set of transactions such that every transaction in the set is waiting for

another transaction in the set.

Deadlock prevention protocols ensure that the system will never enter into a deadlock state. Some prevention

strategies:

 Require that each transaction locks all its data items before it begins execution (predeclaration).

 Impose partial ordering of all data items and require that a transaction can lock data items only in the

order specified by the partial order.

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 16

More Deadlock Prevention Strategies

Following schemes use transaction timestamps for the sake of deadlock prevention alone.

wait-die scheme — non-preemptive

 older transaction may wait for younger one to release data item. (older means smaller timestamp)

Younger transactions never Younger transactions never wait for older ones; they are rolled back

instead.

 a transaction may die several times before acquiring needed data item

wound-wait scheme — preemptive

 older transaction wounds (forces rollback) of younger transaction instead of waiting for it. Younger

transactions may wait for older ones.

 may be fewer rollbacks than wait-die scheme.

Both in wait-die and in wound-wait schemes, a rolled back transactions is restarted with its original

timestamp. Older transactions thus have precedence over newer ones, and starvation is hence avoided.

Timeout-Based Schemes:

 A transaction waits for a lock only for a specified amount of time. If the lock has not been granted

within that time, the transaction is rolled back and restarted,

 Thus, deadlocks are not possible

 simple to implement; but starvation is possible. Also difficult to determine good value of the timeout

interval.

Deadlock Detection

 Deadlocks can be described as a wait-for graph, which consists of a pair G = (V,E),

o V is a set of vertices (all the transactions in the system)

o E is a set of edges; each element is an ordered pair Ti -> Tj.

 If Ti -> Tj is in E, then there is a directed edge from Ti to Tj, implying that Ti is waiting for Tj to release

a data item.

 When Ti requests a data item currently being held by Tj, then the edge Ti -> Tj is inserted in the wait-

for graph. This edge is removed only when Tj is no longer holding a data item needed by Ti.

 The system is in a deadlock state if and only if the wait-for graph has a cycle. Must invoke a deadlock-

detection algorithm periodically to look for cycles.

Wait-for graph without a cycle Wait-for graph with a cycle

Deadlock Recovery

When deadlock is detected: Some transaction will have to rolled back (made a victim) to break deadlock.

Select that transaction as victim that will incur minimum cost.

Rollback -- determine how far to roll back transaction

 Total rollback: Abort the transaction and then restart it.

 More effective to roll back transaction only as far as necessary to break deadlock.

Starvation happens if same transaction is always chosen as victim. Include the number of rollbacks in the

cost factor to avoid starvation

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 17

Multiple Granularity

 Allow data items to be of various sizes and define a hierarchy of data granularities, where the small

granularities are nested within larger ones

 Can be represented graphically as a tree.

 When a transaction locks a node in the tree explicitly, it implicitly locks all the node's descendents in

the same mode.

 Granularity of locking (level in tree where locking is done):

 fine granularity (lower in tree): high concurrency, high locking overhead

 coarse granularity (higher in tree): low locking overhead, low concurrency

The levels, starting from the coarsest (top) level are

 database

 area

 file

 record

Intention Lock Modes

 In addition to S and X lock modes, there are three additional lock modes with multiple granularity:

o intention-shared (IS): indicates explicit locking at a lower level of the tree but only with shared

locks.

o intention-exclusive (IX): indicates explicit locking at a lower level with exclusive or shared locks

o shared and intention-exclusive (SIX): the subtree rooted by that node is locked explicitly in

shared mode and explicit locking is being done at a lower level with exclusive-mode locks.

 intention locks allow a higher level node to be locked in S or X mode without having to check all

descendent nodes.

Compatibility Matrix with Intention Lock Modes

Multiple Granularity Locking Scheme

 Transaction Ti can lock a node Q, using the following rules:

o The lock compatibility matrix must be observed.

o The root of the tree must be locked first, and may be locked in any mode.

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 18

o A node Q can be locked by Ti in S or IS mode only if the parent of Q is currently locked by Ti in

either IX or IS mode.

o A node Q can be locked by Ti in X, SIX, or IX mode only if the parent of Q is currently locked by Ti

in either IX or SIX mode.

o Ti can lock a node only if it has not previously unlocked any node (that is, Ti is two-phase).

o Ti can unlock a node Q only if none of the children of Q are currently locked by Ti.

 Observe that locks are acquired in root-to-leaf order, whereas they are released in leaf-to-root order.

 Lock granularity escalation: in case there are too many locks at a particular level, switch to higher

granularity S or X lock

Timestamp-Based Protocols

 Each transaction is issued a timestamp when it enters the system. If an old transaction Ti has time-stamp

TS(Ti), a new transaction Tj is assigned time-stamp TS(Tj) such that TS(Ti) <TS(Tj).

 The protocol manages concurrent execution such that the time-stamps determine the serializability order.

 In order to assure such behavior, the protocol maintains for each data Q two timestamp values:

o W-timestamp(Q) is the largest time-stamp of any transaction that executed write(Q) successfully.

o R-timestamp(Q) is the largest time-stamp of any transaction that executed read(Q) successfully.

 The timestamp ordering protocol ensures that any conflicting read and write operations are executed in

timestamp order.

 Suppose a transaction Ti issues a read(Q)

o If TS(Ti) W-timestamp(Q), then Ti needs to read a value of Q that was already overwritten.

 Hence, the read operation is rejected, and Ti is rolled back.

o If TS(Ti) W-timestamp(Q), then the read operation is executed, and R-timestamp(Q) is set to

max(R-timestamp(Q), TS(Ti)).

 Suppose that transaction Ti issues write(Q).

o If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed previously, and the

system assumed that that value would never be produced.

 Hence, the write operation is rejected, and Ti is rolled back.

o If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q.

 Hence, this write operation is rejected, and Ti is rolled back.

o Otherwise, the write operation is executed, and W-timestamp(Q) is set to TS(Ti).

 A partial schedule for several data items for transactions with timestamps 1, 2, 3, 4, 5

Correctness of Timestamp-Ordering Protocol

 The timestamp-ordering protocol guarantees serializability since all the arcs in the precedence graph

are of the form:

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 19

Thus, there will be no cycles in the precedence graph

 Timestamp protocol ensures freedom from deadlock as no transaction ever waits.

 But the schedule may not be cascade-free, and may not even be recoverable.

Recoverability and Cascade Freedom

 Problem with timestamp-ordering protocol:

o Suppose Ti aborts, but Tj has read a data item written by Ti

o Then Tj must abort; if Tj had been allowed to commit earlier, the schedule is not recoverable.

o Further, any transaction that has read a data item written by Tj must abort

o This can lead to cascading rollback --- that is, a chain of rollbacks

 Solution 1:

o A transaction is structured such that its writes are all performed at the end of its processing

o All writes of a transaction form an atomic action; no transaction may execute while a

transaction is being written

o A transaction that aborts is restarted with a new timestamp

 Solution 2: Limited form of locking: wait for data to be committed before reading it

 Solution 3: Use commit dependencies to ensure recoverability

Thomas’ Write Rule

 Modified version of the timestamp-ordering protocol in which obsolete write operations may be ignored

under certain circumstances.

 When Ti attempts to write data item Q, if TS(Ti) < W-timestamp(Q), then Ti is attempting to write an

obsolete value of {Q}.

o Rather than rolling back Ti as the timestamp ordering protocol would have done, this {write}

operation can be ignored.

 Otherwise this protocol is the same as the timestamp ordering protocol.

 Thomas' Write Rule allows greater potential concurrency.

o Allows some view-serializable schedules that are not conflict-serializable.

Validation-Based Protocol

 Execution of transaction Ti is done in three phases.

1. Read and execution phase: Transaction Ti writes only to temporary local variables

2. Validation phase: Transaction Ti performs a ‘‘validation test'' to determine if local variables can

be written without violating serializability.

3. Write phase: If Ti is validated, the updates are applied to the database; otherwise, Ti is rolled

back.

 The three phases of concurrently executing transactions can be interleaved, but each transaction

must go through the three phases in that order.

o Assume for simplicity that the validation and write phase occur together, atomically and

serially

 I.e., only one transaction executes validation/write at a time.

 Also called as optimistic concurrency control since transaction executes fully in the hope that all

will go well during validation

 Each transaction Ti has 3 timestamps

o Start(Ti) : the time when Ti started its execution

o Validation(Ti): the time when Ti entered its validation phase

o Finish(Ti) : the time when Ti finished its write phase

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 20

 Serializability order is determined by timestamp given at validation time; this is done to increase

concurrency.

o Thus, TS(Ti) is given the value of Validation(Ti).

 This protocol is useful and gives greater degree of concurrency if probability of conflicts is low.

o because the serializability order is not pre-decided, and

o relatively few transactions will have to be rolled back.

Validation Test for Transaction Tj

 If for all Ti with TS (Ti) < TS (Tj) either one of the following condition holds:

o finish(Ti) < start(Tj)

o start(Tj) < finish(Ti) < validation(Tj) and the set of data items written by Ti does not intersect

with the set of data items read by Tj.

 then validation succeeds and Tj can be committed. Otherwise, validation fails and Tj is aborted.

 Justification: Either the first condition is satisfied, and there is no overlapped execution, or the second

condition is satisfied and

o the writes of Tj do not affect reads of Ti since they occur after Ti has finished its reads.

o the writes of Ti do not affect reads of Tj since Tj does not read any item written by Ti.

Schedule Produced by Validation

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 21

Recovery System

Failure Classification

 Transaction failure :

o Logical errors: transaction cannot complete due to some internal error condition

o System errors: the database system must terminate an active transaction due to an error

condition (e.g., deadlock)

 System crash: a power failure or other hardware or software failure causes the system to crash.

o Fail-stop assumption: non-volatile storage contents are assumed to not be corrupted by

system crash

 Database systems have numerous integrity checks to prevent corruption of disk data

 Disk failure: a head crash or similar disk failure destroys all or part of disk storage

o Destruction is assumed to be detectable: disk drives use checksums to detect failures

Recovery Algorithms

 Consider transaction Ti that transfers $50 from account A to account B

o Two updates: subtract 50 from A and add 50 to B

 Transaction Ti requires updates to A and B to be output to the database.

o A failure may occur after one of these modifications have been made but before both of them

are made.

o Modifying the database without ensuring that the transaction will commit may leave the

database in an inconsistent state

o Not modifying the database may result in lost updates if failure occurs just after transaction

commits

 Recovery algorithms have two parts

o Actions taken during normal transaction processing to ensure enough information exists to

recover from failures

o Actions taken after a failure to recover the database contents to a state that ensures atomicity,

consistency and durability

Storage Structure

 Volatile storage:

o does not survive system crashes

o examples: main memory, cache memory

 Nonvolatile storage:

o survives system crashes

o examples: disk, tape, flash memory, non-volatile (battery backed up) RAM

o but may still fail, losing data

 Stable storage:

o a mythical form of storage that survives all failures

o approximated by maintaining multiple copies on distinct nonvolatile media

o See book for more details on how to implement stable storage

Stable-Storage Implementation

 Maintain multiple copies of each block on separate disks

o copies can be at remote sites to protect against disasters such as fire or flooding.

 Failure during data transfer can still result in inconsistent copies: Block transfer can result in

o Successful completion

o Partial failure: destination block has incorrect information

o Total failure: destination block was never updated

 Protecting storage media from failure during data transfer (one solution):

o Execute output operation as follows (assuming two copies of each block):

1. Write the information onto the first physical block.

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 22

2. When the first write successfully completes, write the same information onto the second

physical block.

3. The output is completed only after the second write successfully completes.

 Protecting storage media from failure during data transfer (cont.):

 Copies of a block may differ due to failure during output operation. To recover from failure:

1. First find inconsistent blocks:

1. Expensive solution: Compare the two copies of every disk block.

2. Better solution:

 Record in-progress disk writes on non-volatile storage (Non-volatile RAM or

special area of disk).

 Use this information during recovery to find blocks that may be inconsistent,

and only compare copies of these.

 Used in hardware RAID systems

2. If either copy of an inconsistent block is detected to have an error (bad checksum), overwrite it

by the other copy. If both have no error, but are different, overwrite the second block by the

first block.

Data Access

 Physical blocks are those blocks residing on the disk.

 Buffer blocks are the blocks residing temporarily in main memory.

 Block movements between disk and main memory are initiated through the following two operations:

o input(B) transfers the physical block B to main memory.

o output(B) transfers the buffer block B to the disk, and replaces the appropriate physical block

there.

 We assume, for simplicity, that each data item fits in, and is stored inside, a single block.

©Silberschatz, Korth and Sudarshan16.9Database System Concepts - 6th Edition

Example of Data Access

X

Y

A

B

x1

y1

buffer

Buffer Block A

Buffer Block B

input(A)

output(B)

read(X)

write(Y)

disk

work area

of T1

work area

of T2

memory

x2

b

 Each transaction Ti has its private work-area in which local copies of all data items accessed and

updated by it are kept.

 Ti's local copy of a data item X is called xi.

 Transferring data items between system buffer blocks and its private work-area done by:

o read(X) assigns the value of data item X to the local variable xi.

o write(X) assigns the value of local variable xi to data item {X} in the buffer block.

o Note: output(BX) need not immediately follow write(X). System can perform the output

operation when it deems fit.

 Transactions

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 23

o Must perform read(X) before accessing X for the first time (subsequent reads can be from local

copy)

o write(X) can be executed at any time before the transaction commits

Recovery and Atomicity

 To ensure atomicity despite failures, we first output information describing the modifications to stable

storage without modifying the database itself.

 We study log-based recovery mechanisms in detail

o We first present key concepts

o And then present the actual recovery algorithm

 Less used alternative: shadow-copy and shadow-paging

Log-Based Recovery

 A log is kept on stable storage.

o The log is a sequence of log records, and maintains a record of update activities on the

database.

 When transaction Ti starts, it registers itself by writing a

 <Ti start>log record

 Before Ti executes write(X), a log record

 <Ti, X, V1, V2>

is written, where V1 is the value of X before the write (the old value), and V2 is the value to be written

to X (the new value).

 When Ti finishes it last statement, the log record <Ti commit> is written.

 Two approaches using logs

o Deferred database modification

o Immediate database modification

Immediate Database Modification

 The immediate-modification scheme allows updates of an uncommitted transaction to be made to

the buffer, or the disk itself, before the transaction commits

 Update log record must be written before database item is written

o We assume that the log record is output directly to stable storage

o (Will see later that how to postpone log record output to some extent)

 Output of updated blocks to stable storage can take place at any time before or after transaction

commit

 Order in which blocks are output can be different from the order in which they are written.

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 24

 The deferred-modification scheme performs updates to buffer/disk only at the time of transaction

commit

o Simplifies some aspects of recovery

o But has overhead of storing local copy

Transaction Commit

 A transaction is said to have committed when its commit log record is output to stable storage

o all previous log records of the transaction must have been output already

 Writes performed by a transaction may still be in the buffer when the transaction commits, and may

be output later

Immediate Database Modification Example

©Silberschatz, Korth and Sudarshan16.15Database System Concepts - 6th Edition

Immediate Database Modification Example

Log Write Output

<T0 start>

<T0, A, 1000, 950>

<To, B, 2000, 2050

A = 950

B = 2050

<T0 commit>

<T1 start>

<T1, C, 700, 600>

C = 600

BB , BC

<T1 commit>

BA

 Note: BX denotes block containing X.

BC output before T1

commits

BA output after T0

commits

Concurrency Control and Recovery

 With concurrent transactions, all transactions share a single disk buffer and a single log

o A buffer block can have data items updated by one or more transactions

 We assume that if a transaction Ti has modified an item, no other transaction can modify the same item

until Ti has committed or aborted

o i.e. the updates of uncommitted transactions should not be visible to other transactions

 Otherwise how to perform undo if T1 updates A, then T2 updates A and commits, and

finally T1 has to abort?

o Can be ensured by obtaining exclusive locks on updated items and holding the locks till end of

transaction (strict two-phase locking)

 Log records of different transactions may be interspersed in the log.

Undo and Redo Operations

 Undo of a log record <Ti, X, V1, V2> writes the old value V1 to X

 Redo of a log record <Ti, X, V1, V2> writes the new value V2 to X

 Undo and Redo of Transactions

o undo(Ti) restores the value of all data items updated by Ti to their old values, going backwards

from the last log record for Ti

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 25

 each time a data item X is restored to its old value V a special log record <Ti , X, V> is

written out

 when undo of a transaction is complete, a log record

<Ti abort> is written out.

o redo(Ti) sets the value of all data items updated by Ti to the new values, going forward from the

first log record for Ti

 No logging is done in this case

Undo and Redo on Recovering from Failure

 When recovering after failure:

o Transaction Ti needs to be undone if the log

 contains the record <Ti start>,

 but does not contain either the record <Ti commit> or <Ti abort>.

o Transaction Ti needs to be redone if the log

 contains the records <Ti start>

 and contains the record <Ti commit> or <Ti abort>

 Note that If transaction Ti was undone earlier and the <Ti abort> record written to the log, and then a

failure occurs, on recovery from failure Ti is redone

o such a redo redoes all the original actions including the steps that restored old values

 Known as repeating history

 Seems wasteful, but simplifies recovery greatly

Immediate DB Modification Recovery Example

 Below we show the log as it appears at three instances of time.

Recovery actions in each case above are:

(a) undo (T0): B is restored to 2000 and A to 1000, and log records

<T0, B, 2000>, <T0, A, 1000>, <T0, abort> are written out

(b) redo (T0) and undo (T1): A and B are set to 950 and 2050 and C is restored to 700. Log records <T1, C,

700>, <T1, abort> are written out.

(c) redo (T0) and redo (T1): A and B are set to 950 and 2050 respectively. Then C is set to 600

Checkpoints

 Redoing/undoing all transactions recorded in the log can be very slow

o processing the entire log is time-consuming if the system has run for a long time

o we might unnecessarily redo transactions which have already output their updates to the

database.

 Streamline recovery procedure by periodically performing checkpointing

o Output all log records currently residing in main memory onto stable storage.

o Output all modified buffer blocks to the disk.

o Write a log record < checkpoint L> onto stable storage where L is a list of all transactions active at

the time of checkpoint.

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 26

o All updates are stopped while doing checkpointing

 During recovery we need to consider only the most recent transaction Ti that started before the

checkpoint, and transactions that started after Ti.

o Scan backwards from end of log to find the most recent <checkpoint L> record

o Only transactions that are in L or started after the checkpoint need to be redone or undone

o Transactions that committed or aborted before the checkpoint already have all their updates

output to stable storage.

 Some earlier part of the log may be needed for undo operations

o Continue scanning backwards till a record <Ti start> is found for every transaction Ti in L.

o Parts of log prior to earliest <Ti start> record above are not needed for recovery, and can be erased

whenever desired.

©Silberschatz, Korth and Sudarshan16.22Database System Concepts - 6th Edition

Example of Checkpoints

 T1 can be ignored (updates already output to disk due to checkpoint)

 T2 and T3 redone.

 T4 undone

Tc
Tf

T1

T2

T3

T4

checkpoint system failure

Recovery Algorithm

 Logging (during normal operation):

 <Ti start> at transaction start

 <Ti, Xj, V1, V2> for each update, and

o <Ti commit> at transaction end

 Transaction rollback (during normal operation)

o Let Ti be the transaction to be rolled back

o Scan log backwards from the end, and for each log record of Ti of the form <Ti, Xj, V1, V2>

 perform the undo by writing V1 to Xj,

 write a log record <Ti , Xj, V1>

 such log records are called compensation log records

o Once the record <Ti start> is found stop the scan and write the log record <Ti abort>

 Recovery from failure: Two phases

o Redo phase: replay updates of all transactions, whether they committed, aborted, or are

incomplete

o Undo phase: undo all incomplete transactions

 Redo phase:

o Find last <checkpoint L> record, and set undo-list to L.

o Scan forward from above <checkpoint L> record

 Whenever a record <Ti, Xj, V1, V2> or <Ti, Xj, V2> is found, redo it by writing V2 to Xj

 Whenever a log record <Ti start> is found, add Ti to undo-list

 Whenever a log record <Ti commit> or <Ti abort> is found, remove Ti from undo-list

 Undo phase:

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 27

o Scan log backwards from end

 Whenever a log record <Ti, Xj, V1, V2> is found where Ti is in undo-list perform same

actions as for transaction rollback:

 perform undo by writing V1 to Xj.

 write a log record <Ti , Xj, V1>

 Whenever a log record <Ti start> is found where Ti is in undo-list,

 Write a log record <Ti abort>

 Remove Ti from undo-list

 Stop when undo-list is empty

 i.e. <Ti start> has been found for every transaction in undo-list

 After undo phase completes, normal transaction processing can commence

©Silberschatz, Korth and Sudarshan16.27Database System Concepts - 6th Edition

Example of Recovery

Log Record Buffering

 Log record buffering: log records are buffered in main memory, instead of of being output directly to

stable storage.

o Log records are output to stable storage when a block of log records in the buffer is full, or a

log force operation is executed.

 Log force is performed to commit a transaction by forcing all its log records (including the commit

record) to stable storage.

 Several log records can thus be output using a single output operation, reducing the I/O cost.

 The rules below must be followed if log records are buffered:

o Log records are output to stable storage in the order in which they are created.

o Transaction Ti enters the commit state only when the log record

<Ti commit> has been output to stable storage.

o Before a block of data in main memory is output to the database, all log records pertaining to

data in that block must have been output to stable storage.

 This rule is called the write-ahead logging or WAL rule

 Strictly speaking WAL only requires undo information to be output

Database Buffering

 Database maintains an in-memory buffer of data blocks

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 28

o When a new block is needed, if buffer is full an existing block needs to be removed from buffer

o If the block chosen for removal has been updated, it must be output to disk

 The recovery algorithm supports the no-force policy: i.e., updated blocks need not be written to disk

when transaction commits

o force policy: requires updated blocks to be written at commit

 More expensive commit

 The recovery algorithm supports the steal policy:i.e., blocks containing updates of uncommitted

transactions can be written to disk, even before the transaction commits

 If a block with uncommitted updates is output to disk, log records with undo information for the

updates are output to the log on stable storage first

o (Write ahead logging)

 No updates should be in progress on a block when it is output to disk. Can be ensured as follows.

o Before writing a data item, transaction acquires exclusive lock on block containing the data

item

o Lock can be released once the write is completed.

 Such locks held for short duration are called latches.

 To output a block to disk

o First acquire an exclusive latch on the block

 Ensures no update can be in progress on the block

o Then perform a log flush

o Then output the block to disk

o Finally release the latch on the block

Buffer Management

 Database buffer can be implemented either

o in an area of real main-memory reserved for the database, or

o in virtual memory

 Implementing buffer in reserved main-memory has drawbacks:

o Memory is partitioned before-hand between database buffer and applications, limiting

flexibility.

o Needs may change, and although operating system knows best how memory should be divided

up at any time, it cannot change the partitioning of memory.

 Database buffers are generally implemented in virtual memory in spite of some drawbacks:

o When operating system needs to evict a page that has been modified, the page is written to

swap space on disk.

o When database decides to write buffer page to disk, buffer page may be in swap space, and

may have to be read from swap space on disk and output to the database on disk, resulting in

extra I/O!

 Known as dual paging problem.

o Ideally when OS needs to evict a page from the buffer, it should pass control to database,

which in turn should

 Output the page to database instead of to swap space (making sure to output log

records first), if it is modified

 Release the page from the buffer, for the OS to use

Dual paging can thus be avoided, but common operating systems do not support such

functionality.

Fuzzy Checkpointing

 To avoid long interruption of normal processing during checkpointing, allow updates to happen during

checkpointing

 Fuzzy checkpointing is done as follows:

1. Temporarily stop all updates by transactions

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 29

2. Write a <checkpoint L> log record and force log to stable storage

3. Note list M of modified buffer blocks

4. Now permit transactions to proceed with their actions

5. Output to disk all modified buffer blocks in list M

 blocks should not be updated while being output

 Follow WAL: all log records pertaining to a block must be output before the block is

output

6. Store a pointer to the checkpoint record in a fixed position last_checkpoint on disk

 When recovering using a fuzzy checkpoint, start scan from the checkpoint record pointed to by

last_checkpoint

o Log records before last_checkpoint have their updates reflected in database on disk, and need

not be redone.

o Incomplete checkpoints, where system had crashed while performing checkpoint, are handled

safely

Failure with Loss of Nonvolatile Storage

 Technique similar to checkpointing used to deal with loss of non-volatile storage

o Periodically dump the entire content of the database to stable storage

o No transaction may be active during the dump procedure; a procedure similar to checkpointing

must take place

 Output all log records currently residing in main memory onto stable storage.

 Output all buffer blocks onto the disk.

 Copy the contents of the database to stable storage.

 Output a record <dump> to log on stable storage.

Recovering from Failure of Non-Volatile Storage

 To recover from disk failure

o restore database from most recent dump.

o Consult the log and redo all transactions that committed after the dump

 Can be extended to allow transactions to be active during dump; known as fuzzy dump or online

dump

o Similar to fuzzy checkpointing

Recovery with Early Lock Release and Logical Undo Operations

Recovery with Early Lock Release

 Support for high-concurrency locking techniques, such as those used for B+-tree concurrency control,

which release locks early

o Supports “logical undo”

 Recovery based on “repeating history”, whereby recovery executes exactly the same actions as normal

processing

Logical Undo Logging

 Operations like B+-tree insertions and deletions release locks early.

o They cannot be undone by restoring old values (physical undo), since once a lock is released,

other transactions may have updated the B+-tree.

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 30

o Instead, insertions (resp. deletions) are undone by executing a deletion (resp. insertion)

operation (known as logical undo).

 For such operations, undo log records should contain the undo operation to be executed

o Such logging is called logical undo logging, in contrast to physical undo logging

 Operations are called logical operations

o Other examples:

 delete of tuple, to undo insert of tuple

 allows early lock release on space allocation information

 subtract amount deposited, to undo deposit

 allows early lock release on bank balance

Physical Redo

 Redo information is logged physically (that is, new value for each write) even for operations with

logical undo

o Logical redo is very complicated since database state on disk may not be “operation consistent”

when recovery starts

o Physical redo logging does not conflict with early lock release

Operation Logging

 Operation logging is done as follows:

1. When operation starts, log <Ti, Oj, operation-begin>. Here Oj is a unique identifier of the

operation instance.

2. While operation is executing, normal log records with physical redo and physical undo

information are logged.

3. When operation completes, <Ti, Oj, operation-end, U> is logged, where U contains information

needed to perform a logical undo information.

 If crash/rollback occurs before operation completes:

o the operation-end log record is not found, and

o the physical undo information is used to undo operation.

 If crash/rollback occurs after the operation completes:

o the operation-end log record is found, and in this case

o logical undo is performed using U; the physical undo information for the operation is ignored.

 Redo of operation (after crash) still uses physical redo information.

Transaction Rollback with Logical Undo

Rollback of transaction Ti is done as follows:

Scan the log backwards

1. If a log record <Ti, X, V1, V2> is found, perform the undo and log a al <Ti, X, V1>.

2. If a <Ti, Oj, operation-end, U> record is found

 Rollback the operation logically using the undo information U.

– Updates performed during roll back are logged just like during normal operation

execution.

– At the end of the operation rollback, instead of logging an operation-end

record, generate a record <Ti, Oj, operation-abort>.

 Skip all preceding log records for Ti until the record

 <Ti, Oj operation-begin> is found

Transaction rollback, scanning the log backwards (cont.):

3. If a redo-only record is found ignore it

4. If a <Ti, Oj, operation-abort> record is found:

H skip all preceding log records for Ti until the record

<Ti, Oj, operation-begin> is found.

5. Stop the scan when the record <Ti, start> is found

6. Add a <Ti, abort> record to the log

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 31

Some points to note:

a. Cases 3 and 4 above can occur only if the database crashes while a transaction is being rolled back.

b. Skipping of log records as in case 4 is important to prevent multiple rollback of the same operation.

Failure Recovery with Logical Undo

B Rupa Devi, AITS, Tirupati AK22 MCA DBMS Unit 5 Page 32

Recovery Algorithm with Logical Undo

Basically same as earlier algorithm, except for changes described earlier for transaction rollback

1. (Redo phase): Scan log forward from last < checkpoint L> record till end of log

1. Repeat history by physically redoing all updates of all transactions,

2. Create an undo-list during the scan as follows

 undo-list is set to L initially

 Whenever <Ti start> is found Ti is added to undo-list

 Whenever <Ti commit> or <Ti abort> is found, Ti is deleted from undo-list

 This brings database to state as of crash, with committed as well as uncommitted transactions having

been redone.

 Now undo-list contains transactions that are incomplete, that is, have neither committed nor been

fully rolled back.

2. (Undo phase): Scan log backwards, performing undo on log records of transactions found in undo-list.

 Log records of transactions being rolled back are processed as described earlier, as they are

found

o Single shared scan for all transactions being undone

 When <Ti start> is found for a transaction Ti in undo-list, write a <Ti abort> log record.

 Stop scan when <Ti start> records have been found for all Ti in undo-list

This undoes the effects of incomplete transactions (those with neither commit nor abort log records).

Recovery is now complete.

	 The join operation r ⋈Ɵ s is defined as follows: r ⋈Ɵ s = σƟ (r x s)
	 Thus, σinstructor.id = teaches.id (instructor x teaches)
	 Can equivalently be written as: instructor ⋈ instructor.id = teaches.id teaches

