ANNAMACHARYA
INSTITUTE OF TECHNOLOGY AND SCIENCES

(AUTONOMOUS)

Approved by AICTE, New Delhi & Permanent Affiliation to INTUA, Anantapur.
Three B. Tech Programmes (CSE , ECE & CE) are accredited by NBA, New Delhi,Accredited by NAAC with ‘A’ Grade , Bangalore.
A-grade awarded by AP Knowledge Mission. Recognized under sections 2(f) & 12(B) of UGC Act 1956.

Venkatapuram Village, Renigunta Mandal, Tirupati, Andhra Pradesh-517520.

Department of Artificial Intelligence

Academic Year 2023-24
lll. B.Tech | Semster

Design And Analysis of

Algorithms
(20APE3001)

Prepared By

Mr. N Venkata Ramana ., M.Tech.
Assistant Professor
Department of CSE, AITS

DESIGN AND ANALYSIS OF ALGORITHM

Unit 1.1 Topics: Algorithm- Algorithm specification- Performance analysis

Algorithm:
» An algorithm is a finite set of instructions that accomplishes a particular task.

» In addition, all algorithms must satisfy the following criteria:

Input. Zero or more guantities are externally supplied.
Output. At least one guantity is produced.

Definiteness. Each instruction is clear and unambiguous.

I

Finiteness. If we trace out the instructions of an algorithm, then for
all cases, the algorithm terminates after a finite number of steps.

b

Effectiveness. Every instruction must be very basic so thatl it can be
carried out, in principle, by a person using only pencil and paper.

An algorithm is composed of a finite set of steps, each of which may require one or more operations.
Algorithms produce one or more outputs and have zero or more inputs that are externally supplied.
Each operation must be definite, meaning that it must be perfectly clear what should be done.

They terminate after a finite number of operations.

Algorithms that are definite and effective are also called computational procedures.

A program is the expression of an algorithm in a programming language.

VVVVYVY

What is an Algorithm?

1. How to devise algorithms- Creating an algorithm is an art which may never be fully automated.

2. How to validate algorithms- Once an algorithm is devised, it is necessary to show that it computes the

correct answer for all possible legal inputs. We refer to this process as algorithm validation.

3. How to analyze algorithm- Analysis of algorithms or performance analysis refers to the task of determining

how much computing time and storage an algorithm requires.

4. How to test a program — Testing a program consists of two phases: debugging and profiling.

» Debugging is the process of executing programs on sample data sets to determine whether faulty results
occur and, if so, to correct them.

» Profiling or performance measurement is the process of executing a correct program on data sets and
measuring the time and space it takes to compute the results.

Algorithm specification:

» We can describe an algorithm in many ways.

» We can use a natural language like English, although if we select this option we must make sure that the
resulting instructions are definite.

» Graphic representation called flowcharts are another possibility, but they work well only if the algorithm
is small and simple.

1. Comments begin with // and continue until the end of line.

2. Blocks are indicated with matching braces: { and }. A compound
statement (l.e., a collection of simple statements) can be represented
as a block. The body of a procedure also forms a block. Statements
are delimited by ;.

3. An identifier begins with a letter. The data types of variables are
not explicitly declared. The types will be clear from the context.
Whether a variable is global or local to a procedure will also be evident
from the context. We assume simple data types such as integer, float,
char, boolean, and so on. Compound data types can be formed with
records. Here is an example:

node = record
{ datatype_1 data_l;

datatype_n data_n;
rnode «ltnk;

}

In this example, link is a pointer to the record type node. Individual
data items of a record can be accessed with — and period. For instance
if p points to a record of type node, p — data_1 stands for the value of
the first field in the record. On the other hand, if ¢ is a record of type
node, g.data_1 will denote its first field.

4. Assignment of values to variables is done using the assignment state-
et

{variable) 1= {expression);

5. There are two boolean values true and false., In order to produce
these values, the logical operators and, or, and not and the relational
operators <, <<, =, ¥, =, and = are provided.

6. Elements of multidimensional arrays are accessed using [and], For
example, if A is a two dimensional array. the (i, §)th element of the
array is denoted as Ali, 7]. Array indices start at zero.

7. The following looping statements are employved: for., while, and repeat-
until. The while loop takes the following form:

while {condition) do

{

{staternent 1)

{staternent n}

}

As long as (condition) is true, the statements get executed. When
{condition) becomes false, the loop is exited. The value of (condition)
is evaluated at the top of the loop.

The general form of a for loop is
for variable := valuel to value2 step step do

(staternent 1)

{staterment n)

Here valuel, value2, and step are arithmetic expressions. A variable
of type integer or real or a numerical constant is a simple form of an
arithmetic expression. The clause “step step” is optional and taken
as +1 if it does not occur. step could either be positive or negative.
variable is tested for termination at the start of each iteration. The
for loop can be implemented as a while loop as follows:

vartable := valuel;
fin = value2;
incr ;= step;

while ((variable — fin) = step < 0) do

{

1: atatorriert 1)

{staternent n)
variable ;= varialble + iner;

}

A repeat-until statement is constructed as follows:

repeat
{staterment 1)

{staternent n)
until {corditiorn)

The statements are executed as long as {condition) is false. The value
of {condition)} 18 computed after executing the statements.

The instruction break; can be used within any of the above looping
instructions to force exit. In case of nested loops, break; results in
the exit of the innermost loop that it is a part of. A return statement
within any of the above also will result in exiting the loops. A return
statement results in the exit of the function itself.

8. A conditional statement has the following forms:

if {condition) then (statement)
if {condition) then {(statement 1) else (statement 2)

Hore {(condition) is a boolean expression and {staterment), {staterment 1},
and (staternment 2) are arbitrary statements (simple or compound).

We also employ the following case statement:

case

{

H{eondition 1): {(statement 1)

{eondition n): (statement n)
relse: (staterment n+ 1)

9. Input and output are done using the instructions read and write. No
format is used to specifty the size of input or output guantities.

10, There is only one type of procedure: Algorithm. An algorithm con-
sists of a heading and a body. The heading takes the form

Algorithm Name ({parameter list))

As an example, the following algorithm finds and returns the maximum
of n given numbers:

Algorithm Max(A, n)
// A is an array of size n.

Result := A[l];
for i := 2 to n do

if Afi] > Result then Result := Ali];
return FResult;

o /I o) BN ORI S

}

In this algorithm (named Max), A and n are procedure parameters.
Result and i are local variables.

Recursive Algorithm:

A recursive function is a function that is defined in terms of it-self.
Similarly, an algorithm is said to be recursive if the same algorithm is invoked in the body.
An algorithm that calls itself is direct recursive.

Algorithm A is said to be indirect recursive if it calls another algorithm which in turn calls A.
Example: Towers of Hanoi.

YVVVYVY

Towers of Hanoi:

» The disks were of decreasing size and were stacked on the tower in decreasing order of size bottom to
top.

» Objective: Move the disks from tower X to tower Y using tower Z for intermediate storage.

» Rules:
1. Asthe disks are very heavy, they can be moved only one at a time.
2. Nodisk is on top of a smaller disk.

. N . R Noi y we P4 ‘TD }fw wJ ENY “4
C-L.\lech\jé - HO\‘I‘/\% e tep N Alels % om to % (

Towers of Hanoi- Recursive Algorithm

Towers of Hanoi- Algorithm Analysis & Recursive Calls

Tt-H('s/m/‘(J)&) |

@
ToH(&,%)%,%) (*“Qﬂj
i \ g
/ w2 O
Ton (|, %)% &) ToH (!, %,3,%)
) ToH (0,%,3,4) TH(0,Y,%,3)

4] © 421 ©

, ToH(0,],%,")) ToHL0,) %)3)4)

Towers of Hanoi- Solution For 3 Disks:
» For n=3 disks we have totally seven moves:
1.X->Y
2.X->7
3.Y->7
4, X->Y
5.7->X
6. Z2->Y
7. X->Y
» For n disks, Total Number of Moves= 2"-1
> For 3 disks, Total Number of Moves= 23-1= 7 moves
> For 4 disks, Total Number of Moves= 24-1= 15 moves

1 Algorithm TowersOfHanoi(re, =, w, =)

2 LS DMowve the top n disks from tower o to tower 7.
3

< if (72 = 1) then

>

6 TowersOfHanoi(r — 1, 2, =, 24)3

ril write ("move top disk from tower'™, @,
8 "to top of tower'™,)3

9 TowersOfHanoi(mn — 1, =, 2. x)3

10 3}

11 %

1

7 | |

& '

| \= ;

ToH(1,%)%, 4) ToHU,% Y, %) |
-T TR A

oh(0,3)4 ,70))10))(c./‘x,§/ q)

410 bhoyle

ToH(©,¥,%4%) LTon(z,y,x)

Pole 1 Pole 2 Pole 3

Figure: Polel is tower X Pole2 is tower Y & Pole3 is tower Z

Performance Analysis:

» The space complexity of an algorithm is the amount of memory it needs to run to completion.
» The time complexity of an algorithm is the amount of computer time it needs to run to completion.

Space Complexity:

The space requirement S(P) of any algorithm P may therefore he written
as S(P) = ¢+ Sp(instance characteristics), where ¢ is a constant.

1. A fixed part that is independent of the characteristics (e.g., number,
size) of the inputs and outputs.

2. A variable part that consists of the space needed by component vari-
ables whose size is dependent on the particular problem instance being
solved, the space needed by referenced variables

Examplel: Finding result of given expression with fixed values a, b, ¢

| Algorithh D aboc(a, b,)

2 {

3 retarmn a +b+bxc+ (a+ b — c)/{(a+ b)) + 4.0;
A 3}

Sp= 0 since no instance characteristics & S(P)= c only.

Time Complexity:

» The time T(P)taken by a program P is the sum of the compile time and the run (or execution)time.
» The compile time does not depend on the instance characteristics.
» Time Complexity can be calculated with two methods:

1. Recurrence Relations.

2. Step count Method

» We may assume that a compiled program will be run several times without recompilation.
So, we could obtain an expression for tp(n) of the form

tp(n) = ca ADD(n) + c.SUB(n) + ey MUL(n) + cq DIV (n) + - --

where n denotes the instance characteristics, and ¢,, ¢, ¢,. ¢4, and so on,
respectively, denote the time needed for an addition, subtraction, multipli-
cation, division, and so on, and ADD, SUB, MUL, DIV, and so on, are
functions whose values are the numbers of additions, subtractions, multipli-
cations, divisions, and so on, that are performed when the code for 7 is used
on an instance with characteristic n.

Example- Recurrence Relations

| Algorithm RSum{a; n) tsun(n) = 2+ tRsun(1 = 1
- = 24 2+ tgsum(n - 2)
3 count := count + 1; [/ For the if conditional - £ -

1 if (n < 0) then 2(2) + thsun(n 2]
oo :

£ count := count + 1; // For the return :

; } return 0.0; - ?I[E) N tRSum(U}

i el = M+ n>0
10 {

11 count := count + 13 /[For the addition, function

12 // imvocation and return

13 return RSum(a,n = 1) + a[nl;

14

15 }

When analyzing a recursive program for its step count, we often obtain
a recursive formula for the step count, for example,

¢) 2 fn=0
RSum() = 9 4o (n=1) ifn>0

These recursive formulas are referred to as recurrence relations.

Example- Step Count Method:

| Statement s/c | frequency | total steps ||
1 Algorithm Sum(a.n) | O — O |
2 QO — 8]
3 s :=— 0.03 1 1 1
4 for ¢ := 1 to n do 1 n + 1 e+ 1
5 s + ali]; 1 72 72
[§] return s; 1 1 1
L7 __F o = _0 1
| Total | | | 272 + 3)

The s/e of a statement is the amount by which the count changes as
aresult of the execution of that statement.

|| Statement s/e | frequency | total steps ||
1 Algorithm Add(a,b,c,m.,n) 0 - 0
2 4 0 — 0
3 for i := 1 to m do 1 m+ 1 m+ 1
4 for 7 := 1 to n do 1 m(n + 1) e —+
D CEi,_ﬂ i {I[EJ] + b[iﬁjl; 1 mn mn
6 ¥ 0 — 0
! Total | | 2mn + 2m + 1 "

Asymptotic Notations:

» Asymptotic analysis of algorithms is used to compare relative performance.
» Time complexity of an algorithm concerns determining an expression of the number of primitive

operations needed as a function of the problem size.

» Asymptotic analysis makes use of the following:

Big-Oh Notation:

1. Big Oh Notation.

2. Big Omega Notation.

3. Big Theta Notation.
4. Little Oh Notation.

5. Little Omega Notation.

» The big-Oh notation gives an upper bound on the growth rate of a function.

> Definition:

Given functions fin) and g(n). we say that f{n) 15 O(g(n)) 1f there are positive constants ¢ = () and

ng = 1 such that

fin) =ce(n) forallm. n=mny

This defimition 15 referred to as the “big-Oh™ notation. Alternatively, we can also say “fin) 15
order of g(n)”. This definition 15 illustrated in Figure 1.2 (the value of f{in) always lies on or

below cg(n)).

The big-Oh notation gives an upper bound on the growth rate of a function. The statement
“fin) 1s Xg(n))” means that the growth rate of f{»1) 15 no more than the growth rate of g(1).

L]

Figure 1.2: fin) is N e(n)), for fin) = cgi(n) when n = g

Example:

Let us consider f(n)=3n+2 g(n)=n c=4 and the big Oh notation relation is f(n)<=c* g(n)
3n+2 <= 4n for n>=3-> It satisfies the relation
n=3 2 3.3+2<=4.3 2 11<=12 - True
n=4 2 3.4+2<=4.4 > 12<=16 = True

We write O(1) to mean a computing time that is a constant. O(n) is
called linear, O(n?) is called gquadratic, O(n®) is called cubic, and O(2")
is called exponential. 1If an algorithm takes time O(logn), it is faster, for
sufficiently large n, than if it had taken O(n). Similarly, O(nlogn) is better
than O(n?) but not as good as O(n). These seven computing times-O(1),
O(logn), O(n), O(nlogn), O(n?), O(xn?), and O(2")

3
o™ N o)

O(n log n)
T O(n)
WorstTime(72)
O(log n)
O(1)

7 —p
Figure 1.3: Comparnison of WorstTime(#n) for seven orders of functions

Big-Omega Notation:
» The big-Omega notation gives an lower bound on the growth rate of a function.

» Definition:
As O-notation provides an asymptotic upper bound on a function, Q-notation provides an
asymptotic lower bound. Given functions f{n) and g(»), we say that f{n) 15 Q(g(n)) 1f there are

positive constants ¢ > 0 and g > 1 such that

fin) 2 cg(n) foralln,nzm

This definition 1s referred to as the “big-Omega™ notation and 1s illustrated 1 Figure 1.4: for all
values 7 to the right of 7, the value of f{») 1s on or above cg(n).

fn)

cg(n)
I(n)

n

no
Figure 1.4: fn) 1s Q(g(n)), for fin) = cg(n) when n = ng

Example:

Let us consider f(n)=3n+2 g(n)=n c= 3 and the big Omega notation relation is f(n)>=c* g(n)
3n+2 >= 3n for n>=2-> It satisfies the relation
n=2 =2 3.2+2>=3.2 = 8>=6~> True
n=3 =2 3.3+2<=4.2 > 9>=8 2 True

Big-Theta Notation:
> Definition:

Let fin) and g(n) be two asymptotically positive real-valued functions. We say that fln) 1s
@(g(n)) 1f there 15 an integer ny and posttive real constants ¢; and ¢, such that ¢;g(n) < fin) <
cag(n) for all n = my (to the nght of ny the value of f{n) always lies between c1g(n) and e2e(n)

cae(m)
S
c1e(m)

()

L

o

Figure 1.5: f{rn) 15 O(g(rm)). for c1g(n) = fin) = cxg(n) when n = ng

Example The function 3n 4+ 2 = ©(n) as3n +2 > 3n forall n > 2
and 3n+2 <4dnforalln>2,s0¢; =3, =4, and ng = 2. 3In+3 = O(n),
10n? +4n+2 = O(n?), 6 %2 +n? = O(2"), and 10 * logn + 4 = O(logn).
3n+2#0(1), 3n+3 # 0(n?), 100’ +4n+2 # O(n), 10n? +4n+2 # O(1),
62" +n? # O(n?), 62" + n? £ O(n'%), and 6 % 2" + n? # O(1). O

10

TITTLE OH & LITTLE OMEGA NOTATION

Definition [Little “oh"] The function f(n) = o(g(n)) (read as “f of n
is little oh of g of n”) iff
f(n)

Ao gln) |

Definition [Little omega] The function f(n) = w(g(n)) (read as “f of
n is little omega of g of n”) iff

g(n)

lm — = 0

1 —00 f{ﬂ} N

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k %k 3k %k 3k %k %k 3k %k %k %k %k %k k

11

DESIGN AND ANALYSIS OF ALGORITHM

Unit 1.2 Topics: General method- Binary Search- Finding the maximum and minimum- Merge sort- Quick Sort-
Selection- Strassen's matrix multiplication

Divide-And-Conquer- General Method:

» Divide-and-Conquer Strategy breaks (divides) the given problem into sub problems, solve each sub
problems independently and finally conquer (combine) all sub problems solutions into whole solution.

» Divide-and-Conquer Strategy suggests splitting the n inputs into k distinct subsets, 1< k < n, yielding k sub-

problems.

» If the sub-problems are still relatively large, then the divide-and-conquer strategy can possibly be
reapplied.

» Often the sub-problems resulting from a divide-and conquer design are of the same type as the original
problem.

DAndC (Algorithm 3.1) is initially invoked as DAndC(FP), where P is the
problem to be solved.

Small(P) is a Boolean-valued function that determines whether the input
size is sinall enough that the answer can be computed without splitting. If
this is so, the function S is invoked. Otherwise the problem P is divided
into smaller subproblems. These subproblems P, 2, ..., P. are solved by
recursive applications of DAndC. Combine is a function that determines the
solution to P using the solutions to the k subproblems. If the size of PP is n
and the sizes of the & subproblems are ni,ns, ..., ng, respectively

1 Algorithm DAnRdC(F)

2

3 if Small(#) then return S({F);

4 else

5 {

6 divide P into smaller instances P, FPo.. ... P, & = 1;

ril Apply DANdC to each of these subproblems;

8 return Combine(DAndC ({7).DANdC{%),. . .. DANdC{));
9

10}

Algorithm 3.1 Control abstraction for divide-and-conquer

Computing Time:
computing time of DAndC is described by the recurrence relation

[g(n) n small .
T(n) = { T(n)+T(na)++--+T(ng) + f(n) otherwise (3.1)

where T'(n) is the time for DAndC on any input of size n and g(n) is the time
to compute the answer directly for small inputs. The function f(n) is the
time for dividing I and combining the solutions to subproblems. For divide-
and-conquer-based algorithms that produce subproblems of the same type
as the original problem, it i1s very natural to first describe such algorithms
using recursion.

The complexity of many divide-and-conquer algorithms is given by recur-
rences of the form

T(1 Y=l .
T(n) = { r:.?{"(g'a/h) + f(n) n>1 (3-2)

where a and b are known constants. We assume that T(1) is known and n
is a power of b (i.e., n = b¥).

]

_ Consider the case in which ¢ = 2 and b = 2. Let T(1) = 2
and f(n) = n. We have
T(n) 2T (n/2) +n
2[2T(n/4) + n/2] +n
AT (n/4) + 2n
4[2T(n/8) + n/4] + 2n
8T (n/8) + 3n

Il

In general, we see that T(n) = 2'T(n/2') + in, for any logon > i > 1. In
particular, then, T'(n) = 2'9€2"T (/29627 4 nlog, n. corresponding to the
choice of ¢ = logy n. Thus, T(n) = nT(1) + nlog, n = nlogy, n + 2n. O

Beginning with the recurrence (3.2) and using the substitution method,
it can be shown that

T(n) = n'8%[T(1) + u(n)]

where u(n) = Z‘;‘:_l h() and h(n) = f(n)/n'o8 9,

Binary Search:
A binary search algorithm is a technique for finding a particular value in a sorted list.

>
» Divide-and-conquer can be used to solve this problem.

» Any given problem P gets divided into one new sub-problem. This division takes only O(1) time.

» After a comparison the instance remaining to be solved by using this divide-and-conquer scheme again.
» If the element is found in the list = successful search

» If the element is not found in the list 2 unsuccessful search

» The Time Complexity of Binary Search is:

successful searches unsuccessful searches
0(1), ©(logn), O(logn) O(logn)

best, average, worst best, average, worst

Recursive Binary Search- Algorithm

L= Uk Wiy =

Algorithm BinSrch(a,i,{,x)

S/ Given an array ali : I] of elements in nondecreasing
S/ order, 1 < i < [, determine whether x is present, and
// if so, return j such that = = a[j]; else return 0.

if (I = i) then // If Small(P)

if (x = al?]) then return i;
else return U;
s
else
{ // Reduce P into a smaller subproblem.
mid = (i +1)/2];
if (# = a[mid]) then return mid;
else if (x < a[mid]) then
return BinSrch(a, ¢, rmed — 1, x);
else return BinSrch(a, mid + 1,1, x);
¥
>

Iterative Binary Search- Algorithm

o 00 =~ O O e Q2 B2 =

Algorithm BinSearch(a, n,)

// Given an array a[l : n| of elements in nondecreasing
/ order, n > (), determine whether z is present, and

// if so, return j such that z = a[j]; else return 0.

low := 13 high = n;
while (low < high) do

mid ;= |(low 4+ high)/2|;

if (z < a[mid]) then high := mid — 1;

else if (z > a|mid]) then low = mid + 13
else return mid;

}

return 0;

BINARY SEARCH- EXAMPLE

Ea: at6) alf) afsy alz) ald ags) Al a3l afe) ; s,
el walsolss] e o0 [ar] Dt oo
,} ") ' |
\uTn ;E-mol ”"‘”
cmid = (low +Wigh)/ 2 ‘ |
= (o+8)/a = =" . 2 s
. o _ , - i)
ke 7 a{mid] -"-"‘OW*‘g./wﬂﬁ Vs g e fiaid
R A ¢T 1 alf
h ‘ afs) ale] als = il
! [gt ’ bg 9o q W . T o
f |‘: 3 B { . ‘ A ‘E];%LV i . \ ; N - !
\M m bS/ r_”A 1 { i\ I P [8l et ‘
L .'. mld.- LS"\'g')/b. 2/=5 NS, IR Ehd ’-,\' ' ' l,
3 | g h\‘ak—; |
tow =~/ " 1y

“e’é < a(modj ‘ o

b - pmobmdd [s
o | ot Lt [Vel | weasf
ot By Sl e

PR - o Bt T S A ¢ 2) 7R R I

Binary Search Time Complexity
{

. STtnd= TN/) T |
. | "! kol MV
| 7 ,.{T‘n/4)*‘3'*'"l o
| ool I'l"') ..."! ' ",‘." N ' " 7
T(ﬂ/q-) i 2.4 Vogdadiy g
\ W v FLR P \ : 'o" {reli .'.J';‘I"

ERERR L 3t MO) L L

’ \
. |5 VA \ [
£ FL Y SR G o
:. . ‘

' f\l

: ’ [ovke

k=Yoq" = T(&K/ann N A L

J .% \i \!, ' -' o ‘- .l'l o .I”l. g ;
ANy .T(.lg‘—r K ." - ‘ - W $arg

\ | . . LR | (‘.“')f {
i b Y = TCH+logn = 1 +logn !

I. |"ll|' ‘

T'.'m_e Complenahy. is O(:togn) A

Finding the Maximum And Minimum:
» The divide and- conquer technique is to find the maximum and minimum items in a set of n elements in

the given list.
1 Algorithm StraightMaxMin(a, n, maz, min)
2 // Set maz to the maximum and min to the minimum of a[l : n).
3 {
4 mazx = min = a[l];
5 for i := 2 to n do
6 {
7 if (a[i] > max) then mazx = a[il;
8 if (ali] < min) then min := ali];
9 }
10 }

Algorithm 3.5 Straightforward maximum and minimum

| T ST T O e L S

o T To|es] <aust] 28 és |5 1S

ol e e (e A
'I—.'ll/' : US| \. s ‘ :
mank = 5§ l W} ,g/-q,qu qv}‘;rl_ﬂ’ﬂ
{ =% V]

mine=q marz 0

|,g,5qfﬁ79c7

ol o |cof e ._;‘};—‘q/wr/qofér »rl-an
m‘n"-_ s g ! '

man =50

(59" min=-9 yman=99,

by

A v

ok
| \
.,(\;n“—q | ,
\ m“":ﬂ) | |

Finding the Maximum And Minimum- Divide & Conquer:
» If the list contains only one element, then
Maximum=Minimum= a[1] element only.
» If the list contains two elements, then compare these two elements & find maximum and minimum.
» If the list contains more than two elements, then divide the given list into sub lists based on middle
value.
» Recursively perform this process until minimum & maximum value is found in the given list.
» Time Complexity = O(n)

Algorithm:
1 Algorithm MaxMin(i. j, maz, min)
2 /[a[l :n]is a global array. Parameters i and j are integers,
3 //1<i<j<n. Theeffect is to set maz and min to the
4 /[largest and smallest values in ali : j], respectively.
5 A
6 if (i = j) then max := min := ali]; // Small(P)
7 else if (i = j — 1) then // Another case of Small(P)
8
9 if (a[i] < a[j]) then
10 {
11 mar 2= a[j]; min = alil;
12]
13 else
14 {
15 mazx := alil; min = alj];
11}
17 } }
14 else
14 { //If Pis not small, divide P into subproblems.
20) // Find where to split the set.
21 mid == [(i + 7)/2];
22 /{ Solve the subproblems,
24 MaxMin(i, rid, rnaz, min);
21 MaxMin{mid + 1. 4, maxl. minl);
21 // Combine the solutions.
21 if (mazr < mazl) then maz := mazxl;
27 if (min > minl) then min := minl;
2 }
29}

e ok 3y AL £ 8, o o ‘
; . ln I;L—s‘ - |5 éo] 17 s]) q}' i (R S been

mid SHCHANS LRI e T Musrq" Mol adt e
&“H’K-&E"| 1 1 " r . |.-‘.‘“ st u" ‘r g.‘ - ."é"\'» “ ') c'Al "'
2.’3: Il"-iv’. :...{ l?_l""* 1S l! Al :l : Ay v .rL,vo IQ—]“ (i1l L‘} f v
o R) 1
i : R L 1T LY T .|§I i i
[RN . { . - 2 ! ! vl ‘4‘\
'm‘A€ .Ltr é'%' ‘ LT A y .9 "}‘ M‘A ¥ -’;:
| '- < A pitf dets oy) !
a2 Y 4 6 1 ¥ l_)
E,_ o !-—8’ i< | [gfo‘ % JETMEE: .s '
4 ; sty lii
sé (et 1 . YL i Lol }
\ g utbSia G (N B U’"‘P"" /7
FAY BT; e M\:l‘” =5 Y ‘ C:omﬁd\\“s'\l‘oﬂ’) ity ¥ th 11
L /¢ LT - P““'
‘ > 3 ' H"’“}I.) ":, Lelf 'M N-_q;...] \\l
211 11 ‘!-*fl B '“;.“' “U’h":"’)) ol
; & y lt' LR '., q".'|~|"‘
{‘ '
Combiming (1,2) ¥ 3 mpailng W5 |
‘d]"u— . C
Hin = -% “la*_‘} B | 1B S o 'i“- WFosilr (g6
\ HQ’\?-'Z—L (‘l‘ I'n\\ }' ’Jl" . '|'|'|) / \\ ‘n ‘ ; i
\& #—_—/j (RN A .Hld.'*"‘dcoi "\ "' .

How = 22 Lo A gmsnidng g

onl

. 0 .
Hin = =8, MaX.= e? WMoy S o

T'(n) represents this number, then the resulting recurrence relation is

([n/2])+ T([n/2])+2 n>2
T('H) = 1 n = 2
(0 n=1

When n is a power of two, n = 2% for some positive integer &, then

T(n) = 2T(n/2)+ 2
2(27(n/4) +2) + 2
4T (n/4) + 4 + 2

= 2FUT(2) + 30 i 2°
2k—1 L2k 2 =3n/2 -2

i

Merge sort:
» In Merge Sort, the elements are to be sorted in non decreasing order.

» Given a sequence of n elements(also called keys) a[l],,.a[n]the general idea is to imagine them split into
two sets a[l]....a[n/2]and a[[n/2]+1]....a[n].

» Each set is individually sorted, and the resulting sorted sequences are merged to produce a single sorted
sequence of n elements.

Merge sort Algorithm:

MergeSort (Algorithm 3.7) describes this process very succinctly using
recursion and a function Merge (Algorithm 3.8) which merges two sorted
sets. Before executlng MergeSort, the n elements should be placed in a[l : n].
Then MergeSort(1,n) causes the keys to be rearranged into nondecreasing
order in a.

1 Algorithm MergeSort(low, high)

2 // al[low : high] is a global array to be sorted.

3 // Small(P) is true if there is only one element
4 /] to sort. In this case the list is already sorted.
5 |

6 if (low < high) then // If there are more than one element
7

8 // Divide P into subproblems.

9 // Find where to split the set.

10 med := | (low + high)/2];

11 // Solve the subproblems.

12 MergeSort(low, mid);

13 MergeSort(mid + 1, high);

14 // Combine the solutions.

15 Merge(low, mid, high);

16

17 }

Algorithm 3.7 Merge sort

Merge- Algorithm:

1 Algorithm Merge(low, mid, high)

2 S oallow : hi_ghi is a global array containing two sorted
3 // subsets in a(low : mid]| and in a[mid + 1 1 high]. The goal
4 // is to merge these two sets into a single set residing
5 S inallow @ highl. b]]| is an auxiliary global array.
£

T fro = lows; ¢ := low; 7 = mid + 13

H while ({(/ < mid) and {5 < high)) do

O

10) if (alh] < alf]) then

11

12 b[i] == a[hl;jh := h + 1;

13

1-1 else

15 {

16 blE] :=ali]s 7 =7 + 13

17 }

15 Ti1=1+ 13

19

20 if (A = mad) then

21 for k := j to high do

22 {

23 bli] := al[k|; i :== i + 13

24 }

25 else

26 for k := h to mid do

27 {

28 blt] == alk]; 1 ;=1 + 1;

29

30 for k := low to high do alk] := blk];

41}

Algorithm 3.8 Merging two sorted subarrays using auxiliary storage

Merge sort- Example

Exaniple 3.7 Consider the array of ten elements a[l : 10] = (310, 285, 179,
652, 351, 423, 861, 254, 450, 520). Algorithm MergeSort begins by splitting
a[] into two subarrays each of size five (e[l : 5] and a[6 : 10]).

(310 | 285 | 179 | 652, 351 | 423, 861, 254, 450, 520)

where vertical bars indicate the boundaries of subarrays. Elements a[1] and
a[2] are merged to yield

(285, 310 | 179 | 652, 351 | 423, 861, 254, 450, 520)
Then a[3] is merged with a[l : 2] and

(179, 285, 310 | 652, 351 | 423, 861, 254, 450, 520)

is produced. Next, elements a[4] and a[5] are merged:
(179, 285, 310 | 351, 652 | 423, 861. 254, 450. 520)
and then a[l : 3] and a[4 : 5]:

(179, 285, 310, 351, 652 | 423, 861, 254, 450, 520)

At this point the algorithm has returned to the first invocation of MergeSort
and is about to process the second recursive call. Repeated recursive calls
are invoked producing the following subarrays:

(179, 285, 310, 351, 652 | 423 | 861 | 254 | 450, 520)

Elements a[6] and «[7] are merged. Then a[8] is merged with a[6 : 7]:

(179, 285, 310, 351, 652 | 254, 423, 861 | 450, 520)
Next a[9] and a[10] are merged, and then «[6 : 8] and a9 : 10]:
(179, 285, 310, 351, 652 | 254, 423, 450, 520, 861)

At this point there are two sorted subarrays and the final merge produces
the fully sorted result

(179, 254, 285, 310, 351, 423, 450, 520, 652, 861)

Merge sort- Time Complexity

If the time for the merging operation is proportional to n, then the com-
puting time for merge sort is described by the recurrence relation

T (n) = a n = 1l,a a constant
(n) = 2T (n/2) +en n > 1,c a constant
When n is a power of 2, n = 2%, we can solve this equation by successive
substitutions:

T(n) 2(2T (n/4) +en/2) + cn
AT (nn/4) + 2¢en
4(2T(n/8) + cn/4) + 2cn

Il

T (1) + ken =2k T1)=a &k = logw:u

an + cnlogn

It is casy to see that if 28 < n < 28+! then T(n) < T(25*'). Therefore

T(n) = O(nlogn)

10

Quick Sort:

» In quick sort, the division into two sub arrays is made so that the sorted sub arrays do not need to be

merged later.
» Three Steps involved here is:
1. Partitioning given array into sub arrays.
2. Interchanging two elements in the array.
3. Searching the input element.
Time Complexity = O(n*log n)

Quick Sort- Partitioning & Interchanging Algorithm:

1 Algorithm Partition(a, e, p)

2 S/ Within a[m], alm + 1].. .. alp — 1] the elements are
3 S/ rearranged in such a manner that if initially ¢ = a[m],
<3 S/ then after completion a[g] = ¢ for some ¢ between m
5 J/and p — 1, alk] < & for m < k < g, and alk] = ¢

G S/ for g < k < p. g is returned. Set a[p] = oc.

T

8 v = a[m]; i ;= m3 1= p;3

9 repeat

1y

11 repeat

12 i := % + 1j

13 until («a[Z] = u);

14 repeat

L5 = 3 — 13

16 untll [a[;] = v],

17 if (¢ = 7) then Interchange(w. i, 7);

18 + until (i = j);

19 ex[rr] = alf]; alf] ;= v; return j;

20 3}

1 Algorithim Interchange(a. 4, 7)

2 S/ Exchange ali] with al7].

3 4

4 pi— alils i

5 ali] »= alil; ali]l := ps

6 }

Algorithm 3.12 Partition the array al[m : p — 1] about a[m]

11

Quick Sort Algorithm:

1 Algorithm QuickSort(p, q)

2 // Sorts the elements a[p],. .., a[q] which reside in the global
3 // array a[l : n] into ascending order; a[n + 1] is considered to
4 // be defined and must be > all the elements in a[l : n].

5

6 if (p < g) then [/ If there are more than one element

7

8 // divide P into two subproblems.

9 j := Partition({a.p. g + 1);

10 // 7 is the position of the partitioning element.
11 // Solve the subproblems.

12 QuickSort{p,7 — 1);

13 QuickSort(j + 1, q);

141 // There is no need for combining solutions.

150

16}

Algorithm 3.13 Sorting by partitioning

Quick sort- Example:

Qicks oy - B mp"(

EL\J“ g0 \Leo]ss/so/:,];]

V=all] - 6s — HAeq

Tacvement 1 value unti a(:)’z \9 set a(lo]) = «@
Decvement J value , unti) a(:]) <y

i L&) — swap ali)§all)

e 5 1JEY

L7 g = do pestibtion.§ swap aldJ§
r‘{"‘} y § 6 "WiEg e) SEYs
(i o Tor [T T Tl o] o1 Mkt
> 1

L J

< = Swap &l2]) § a(q]

12

. 2

) 6§
/ e) 757
2 | SO 4 65

oo

vy
“\ N\
3
~3
o

|

’ 2 1 Y ' - é
[es [os]s 1o es[6] =]
o S
S48 “>5“’“P aisjﬁc\w]

fo
g076S
l—é’i QLC {OI o/ £ éolf? 7§ 70 OO_J g =

1\

3

2’
b < g - Swap aly)§ al3)

poos. B N & 6 V& i = c2>b5
@}mliﬂﬂ?,}“{”g e |-

Y . J
§Lb = chxp als) {q[é]

|k & -

gs 765
(o{)wC}s’olsf)“’ l“ 1 7°[J Lo S
T 1\0 (

75 > do paskition f swap aly) § U

@l [T O w [o

W T L—’—‘ﬂ/_/' P
gLz Hned o

Quick cort (1, 4)

13

Apply Quickeo? posatiboning algeithrms oy
Auick<ery (1,4)

[eo Tux [>o J=r Jreeq [ac] so] o= [o |

\ \/Pgs.a_kn Hon
e S =L

[vs [= s [eo| [e) [e]ae] e] =]

’\//

LJYO J 60jé§ -10 o5 /zro /:rJ

Eivial Sorted Arvvonnf st G elements -

petfilion s

Quick sort- Time Complexity:

T(n) = a n = 1,a a constant
(n)= 2T (n/2) +cn n > 1,c a constant

When 7 is a power of 2, n = 2%, we can solve this equation by successive
substitutions:

T(n) 2(2T'(n/4) + cn/2) + cn
4T (n/4) + 2¢n
4(2T(n/8) + cn/4) + 2¢cn

2T (1) + ken n=2%, T()=a&k=logn

an + cnlogn

|

It is casy to see that if 28 < n < 28+, then T'(n) < T(25*!). Therefore

T(n) = O(nlogn)

14

Selection:
» Selection is used to find kth smallest element and place kth position in the given array of n elements say
a[l:n].
» jis the position in which k element is there.
» Here we are partitioning the given array into three parts (say k is small element):
1. Sub array which contains 1 to j-1 elements.
2. if k=j => element is found in jth position.
3. Sub array which contains (n-j) elements.
» This partitioning process continues until we found kth smallest element.
> Time Complexity= O(n?)

Selection- Partitioning & Interchanging Algorithm:

1 Algorithm Partition(a, e, p)

2 /4 Within a[m], alm + 1]...., .ap — 1] the elements are
3 S/ rearranged in such a manner that if initially ¢ = a[m],
! // then after completion a[g] = ¢ for some g between m
5 S/ and p— 1, alk] <t form < kE < g, and a[k] = ¢

6 S/ for g << k < p. g is returned. Set a[p] = oc

T

5 vi= a[m]; i 1= m; j 1= p;3

9 repeat

1)

11 repeat

12 =g + 13

13 until {a[f] = v);

14 repeat

15 o= — 13

16 until {(a[j] < :U],

17 if (i < j) then Interchange(a, i, j);

158 3 until (i = j);

19 alm] = alj]; a[f] = v; return j;

20 }

1 Algorithm Interchange(a, i, 7)

2 // Exchange alz] with a[7].

3 o

1 p = alil;)

5 ali] := aljl; ali]l == p3

i

Algorithm 3.12 Partition the array al[m : p — 1] about a[m]

15

Selection- Algorithm

1 Algorithm Selectl{a,n, k)

2 J/J Selects the kth-smallest element in a[l : n| and places it

3 J/ in the kth position of a[|. The remaining elements are

4 // rearranged such that a[m] < alk] for 1 < m < k, and

5 Jfalm] = alk] for K <m < n.

6

7 low = 13 up := n + 1;

8 aln + 1] 1= oc; Jf/ aln + 1] is set to infinity.

9 repeat

10 {

11 // Each timme the loop is entered,

12 Sl <low <k <up<mn-+ 1.

13 4 = Partition(a, low, up);

14 J/ i is such that alf] is the jth-smallest value in a].
15 if (k= j) then return;

16 else if (k& < j) then up := y3; // 7 is the new upper limit.
17 else low = 5+ 13 f/ j+ 1 is the new lower limit.

18 } until (false);

19

Algorithm 3.17 Finding the kth-smallest element

Selection- Example

16

BOLL{ % d\ 7\\
LI
1 = 1 Y < ¢ 3 g» 9
1(»(“10\;0) 6o | &5 go(-,s-j%]
©
. T
J C
Swap 6 Lo
L B TONE” S ¢ . o 9 |
< | /B |
Qolqo w| s }@ erng {‘73-/70“]'
S —— || W —— e
Pavti i on) trsid e |

k=% — pladng 51K smollest element in 515 position e ¢S
K=3 — tall Pastiton (6,9) ‘,

R X% 5% T use 19
A 9

Eigc(wo] 7] 10 |

v sanalily B posifion P)ace (41 sm%&- ejgmud n 6T position
lace |£F S :
: i i s o , . L‘S‘ '10\ g‘O\ '“[S—\ ?S)swoJP ggq:;,b
\ \ <5 J v TR R T hecaste a[e]=§:
1me 'a.v\o\ smq!\ in 'z—nd?osqu ’ 6{\ 0 ‘ He } ?b) @ : |
: s o R .
\Mo “1@0 \ o5 J |

lld ploee B in. 8ﬂupo.sl+§ov>

Place avd smoH in 2vd Pog'\ﬁcﬁ) F‘o\u_ Q‘\\V) n qm '(OSIHO')-\

‘f/‘-lo \SOJ £ :o J

ﬁnd?c‘wm\.ﬁ
|'z-.:t‘1 .. B bG8 1)

' m sg| < £o\ erl—;ol 1r[&*o! BC . Y

17

Strassen's matrix multiplication:

Let 4 and B be two n x n matrices. The product matrix C = ADB is also an
7. X n matrix whose 7, jth element is formed by taking the elements in the
zth row of A and the jth column of B and multiplying them to get

C(i,j) = > A(, k)B(k.j)

l<k<mn

for all i and 7 between 1 and n. To compute C(i.7) using this formula,
we nced n multiplications. As the matrix €' has n® elements, the time
for the resulting matrix multiplication algorithm, which we refer to as the
conventional method is ©(n?).

Then the product AB can be computed by using the above formula
for the product of 2 x 2 matrices: if AB is

A Az] By, Bis] _ [Cn Ci2] (3.11)
Azy Aao Bz, Ba - Cy; Ca '
then
Cii = AnBn + A12Bo
Ci2 = AnBi2 + A12B2; (3.12)
Ca1 = Ax1By + A22B9 =
Cyy = A2 B2 + Az2B3:

To compute AB using (3.12), we need to perform eight multiplications
of n/2 x n/2 matrices and four additions of n/2 x n/2 matrices. Since two

n/2 x n/2 matrices can be added in time ¢n? for some constant ¢, the overall
computing time 7'(n) of the resulting divide-and-conquer algorithm is given
by the recurrence

b n<2
I(n) = { 8T(n/2) +cn? n>2

where b and ¢ are constants.

This recurrence can be solved in the same way as earlier recurrences to
obtain T(n) = O(n?).

Volker Strassen has discovered a way to compute the Cij’s of (3.12) using
only 7 multiplications and 18 additions or subtractions. His method involves
first computing the seven n/2 x n/2 matrices P, @, R, S, T, U, and V as
in (3.13). Then the Cj;'s are computed using the formulas in (3.14). As
can be seen, P, @, R, S, T, U, and V can be computed using 7 matrix
multiplications and 10 matrix additions or subtractions. The Cj;’s require
an additional 8 additions or subtractions.

18

Strassen's matrix multiplication- Formula:

(A1 + Ao2) (B + Bao)
(Aay + Aze) By
A11(By2 — B)
Ax(By — By))
(A1 + A12) Bao
(Ag1 — Ap) (B + Bya)
(A12 — Ag) (B2 + Baa)

P+8—-T+V
R+T
Q+S
P+R-Q+U

The resulting recurrence relation for T'(n) is

TENNDOT

Qa0
i

I8!
Il

n<?2
Tn) = { TT(n/2) +an®* n>2

Strassen's matrix multiplication- Example:

123 4)[1 427
(=0 6033 135
411 2[20
035 0[[1 451

[a—
L]

L

We define the following eight 7/2 by /2 matrices:

(1 2] 3 4] 14
A = Ap= By =

06 03 3 1
LIS R 0 B

0 3] 50 I

(3.13)
(3.14)
(3.15)
Buzz l
335
13
Bﬂzl]
51

19

1 2 1 2 1 4 1 3
Py =(Ap+ Ap)x(By+By) = + X +
0 6 5 0 3 1 5 1
[2 4] [2 7)[36 22
5 6 8 2 58 47
14 23
Py=(4 T Ap)x By = {]

-3 12
P3;=Anx(Biz-B) =
-12 24

g

Py=Apx(By-By)= - - 21 18
R Cip=P;+Ps=| 3! 30
b 33 33
e [33,
=+ ddy: i . :; 235
ERE: C23=P1+P3—P_,+P6=[22 38
= (d-Au)n Byt By)= ia 3
ks 17 22 31 30
1 oo|21 18 33 33
Pr= (- Ap)x(By By 11 25 22 38
2 4 19 3 14 30,

17 22
C“=P]+P4-P5+P7=|: :l

|

20

Strassen's matrix multiplication- Time Complexity:

The resulting recurrence relation for T'(n) is

n<2
Tn) = { T(n/2) +an® n>2

where ¢ and b are constants. Working with this formula, we get

ﬂ,'?f,z[] + 7/4 + [7/4)2 4.0 4 (7/4)L_1] n TkT(l)
< end(7/4)1%2" £ 727 ¢ a constant
mlag;;; A+4log, T=log, 1 . ﬂlﬂi-‘{-g 7

O(n'827) & O(n*)

I(n)

I

3k 3k 3k %k %k %k %k %k %k >k >k %k 3k % %k %k *k

(3.15)

21

DESIGN AND ANALYSIS OF ALGORITHM — GREEDY METHOD

Unit 2.1 Topics: General method- Knapsack Problem- Job scheduling with deadlines- Minimum cost spanning

trees- Optimal storage on tapes- Single source shortest path

Greedy Method-General Method:

> Itis straightforward design technique and applied to a wide variety of problems.
» Most of these problems have n inputs and require us to obtain a subset that satisfies some constraints.
> Any subset that satisfies those constraints is called a feasible solution.
» We need to find a feasible solution that either maximizes or minimizes a given objective function. A Feasible
solution that does this is called an optimal solution.
» The greedy method suggests that one can devise an algorithm that works in stages, considering one input at a time.
> A Greedy technique that will result in algorithm those general sub optimal solutions is called subset paradigm.
Greedy Algorithm:
1 Algorithm Greedy(a,n2)
2 // a[l : n] contains the n inputs.
3
4 solution := O3 // Initialize the solution.
5] for i := 1 to n do
6 {
7 x := Select(a);
8 if Feasible(solution, =) then
9 solution = Union(solution, x);3
10 }
11 return solution;
12 }

Algorithm 4.1 Greedy method control abstraction for the subset paradigm

YV VVYVYY

The function Select selects an input from a[] and removes it.

The selected input's value is assigned to x.

Feasible is a Boolean-valued function that determines whether x can be included into the solution vector.
The function Union combines x with the solution and updates the objective function.

Once a particular problem is chosen and the functions Select, Feasible and Union are properly implemented.

Knapsack Problem:

YVVVVVY

The greedy method is applied to solve the knapsack problem.

We are given n objects and a knapsack or bag.

Object i has a weight w; and the knapsack has a capacity m.

If a fraction x;, 0 <x; < 1, of object i is placed into the knapsack, then a profit of p; * x; is earned.

The objective is to obtain a filling of the knapsack that maximizes the total profit earned.

Since the knapsack capacity is m, we require the total weight of all chosen objects to be at most m.

Formally the problem can be stated as:

maximize Z i (4.1)
1<i<n
subject to Z w;r; < m (4.2)
1<i<ln
and 0 < x; <1, 1<:i:<mn (4.3)

The profits and weights are positive numbers.

A feasible solution (or filling) is any set (x,,..., x,) satisfying (4.2) and
(4.3) above. An optimal solution is a feasible solution for which (4.1) is
maximized.

Example 4.3: There are four items that have a profit and weight list below. The knapsack
capacity 1s 4 kgs. We apply the above three greedy strategies.

item (7) p; w; item 1 item 3
2Kg
L 5 1 1Kg Rs 4
2 9 3 Rs 5
3 4 g item 2 iend
4 8 2 2Kg |
Rs 8

3Kg
Rs 9
Figure 4.3: A Knapsack problem

, =) » R WY
31 \3 T ‘I

-roblw ¥ . :
Akaosx'\’“""t‘s“" %wreepl% Shyodegied h—of Ms_”____#_a.o\cf’ R B
V- Ao +H m‘..:l" 'Y As \:y\ﬂpgadc’(m/ni‘\ | (OHB Q'.)wcjg‘-?b) Yu’,'e,d““/,ef."ld:
9 n contoliis g P10 . o Bl w i+
. Qnd wtl j s‘,-‘l] PL“P‘U/ /
&= ¢ Pt‘ 3 e}(e" cuch —that P[C‘INUJ 7. %

= o 'ﬁ"'e n objech ofd‘ Wi hoy \-n] = M soludion. qe_ci'ff” b
‘“"(‘F s'e"e and!L & S8 107 HY—
Yo Il e o, s w0aP . R AL KTy
e A : w[!] == Ud/ /I I’“hf,’}l}c L ,
; ¢ 4 = ' & "\‘l'l’:\ H
G b‘ﬂ,.l L‘p;‘-l A-O ¢ “ ' P . 'I 3 :
-7 U‘,:m} : : l..
2 WC-=I“’°n°lb Rkl .0
q g o 2 3 .
|o: ‘b‘LwU] >U) J PR R
e S - g %
0. \§ TTiare 102
Ve B » A § : L § 113 - ol
’3) ;k L\\S“.) %co %t - 1 g s \': \ =

14 33’ . | . : . ! i

Knapsack Problem-Example:

Example 4.1 Consider the following instance of the knapsack problem:
n = 3,m = 20,(p1,p2.p3) = (25,24,15), and (wy, w2, w3) = (18,15,10).
Four feasible solutions are:

(1,2, 23) S wir; D pir
1. (1/2,1/3.1/4) 16.5 24.25
2. (1, 2/15, 0) 20 28.2
3. (0,2/3, 1) 20 31
4. (0,1, 1/2) 20 31.5

Of these four feasible solutions, solution 4 yields the maximum profit. As
we shd 1l soon - see, this solution is optimal for the given problem instance.

: | J Mc"’hod.
50\\&\'100 N —\")‘\S'\QY\O\P&'AC r,vob\em ccxo be So\ved bg "S""ﬂ C\ﬂfce_ ti
""s oK1, 7 —_—

e i
Let x(is a jraction whose N2 . b

!

x Rz, X3 ” n Ve
n=3 —-9 1, Siaible solukions _ew 1>

e have, (n+\) l!’ P e
©. Gased, on" HESUMENH) o
liSo\U:hDM / @ "Boned oA A\aou-\-{nm —_— | | :
C:L‘::\—O&d @) Boved ©n l-\ssumphon C AT
@ Roned on A\%o&_\-ﬂs"n SO e o i

t=t solubion Bosed on ASQ\JMP'HO’) e 1

. (N
S B e 2R

n=3 "‘) o

'h)
\
&
I ‘.

Divide one by Yg_main\'k.c‘j “nombeXs e ey v B
{v’ Sc\u”on) « { ‘/2-”/."/.3) V\l)\ L 4
piS ey | B2y \ .
- v v" \‘ ¥
‘ B WeD AL AR
. | | i 2 C
2nd solution * pesed o A‘%“’“‘*”‘"’ AR ARy Bl S
———— —— VN)y)]
: R{DEQL 577 2} = o
Lad Al - KOS .0, X(2) i 'U—»% apal o

mM \)H o

Asse

g",_,\ea, on

\ HHone

a¥d 0

<sotutionz

;*ﬂ«. colution ' ;
euk k"(~] -

Tvpes of Knapsack Problem

Tiso typez, 4 Knc\peqﬂ«\é

probien, :

"JJ

Blem so\m W uﬂwf .Sde.djna each item| @4
L 1ol oy pigramic PrORAmAIE

®' o) knapsack pro

@ FTMDM knquabh onb,em |- L :
solves i+ by allowing ! b—m?*v e -)o L T
| { \
"Solved by Cueedy Method. |V iEA: L1 %,
F-meh‘ nal knapeacic = ¢ vl
Pigothm Practona) ~ KRnapsack (wgrn), et ‘;‘J\I" ,%"E
brer =) +o 0 do 7
A (i1 =0
eigut=0 T | ;g P
V] 1y '._ , . \ :
L= ".?’.) By 3 { '
>0 =) e i ; '
* 1
Leignd * welgnk 4 :
else R wetd
A (1d= (W - elk‘*t)/ f il n
weairt = W
bmﬁ r ;

wWhole oxY None.
3 Y I

Fractional Knapsack- Example Problem:

Item A B C D
Profit 280 100 120 120
Weight 40 10 20 24
Pi/ Wi 7 10 6 5
Arranging the above the tables with descending order of Pi/ Wi
Item B A C D
Profit 100(P1) 280(P2) 120(P3) 120(P4)
Weight 10 (W1) 40(W2) 20(W3) 24(W4)
Pi/ Wi 10 7 6 5
Consider the knapsack capacity W=60
: (9] X) 4 X' ()
: b | fa)
L
w L § §
e pud e+ v [
~ s 2 60
X =) =)
: 10+ Y©
[P- i\p—f

v, 70 :460 /‘;

60 — 590/ 20

X{2) =
b ok
IUL’U;(A* = 60 —> break ¢
roLp)= (O
ok L Lo AT G
‘ot WeF™ - L <7) A e
' 2p e P20 (720
N
tol Probit Jjoo » R3O0 7
Toto- ok .
y r}]/ O)
& N r \ 3 ~N
0}»“’”’5‘} solutio Eiste 0 3 5
irem bor PN

) Y A C
Boved o1 capacity, selecking B, A and %

e

Job Scheduling With Deadlines:

» Greedy Method is applied for this problem.

> Initially we are given a set of n jobs.

» Associated with job i is an integer deadline di >=0 and a profit pi >0.

> For any job i the profit pi is earned iff the job is completed by its deadline.

Conditions:

» To complete a job, one has to process the job on a machine for one unit of time.

» Only one machine is available for processing jobs.

» A feasible solution for this problem is a subset J of jobs such that each job in this subset can be completed by its
deadline.

> An optimal solution is a feasible solution with maximum value.

Algorithm for Job Scheduling:

EF OSSO U N -

Algorithm GreedylJob(d, .J, n)
// J is a set of jobs that can be completed by their deadlines.

J:={1};

for i := 2 to n do

if (all jobs in J U {7} can be completed
by their deadlines) then J := J U {i};

Algorithm 4.5 High-level description of job sequencing algorithin

Algorithm for Job Scheduling with Deadlines:

1 Algorithm JS(d, j,n)

2 //dli] 21, 1<i<n arethe deadlines, n > 1. The jobs

3 /] are ordered such that pll] > p[2] > -+ > p[n]. J[i]

4 // is the ith job in the optimal Solutlon < z <_1 k.

5 // Also, at termination d[J[i]] < d[J[i + 1}]

6

7 d[0] := J[0] := 0; // Initialize.

8 J[1] := 15 // Include job 1.

9 k:=1;

10 for i :=2 to n do

11 {

12 // Consider jobs in nonincreasing order of p[i]. Find
13 // position for i and check feasibility of insertion.

14 ri=k;

15 while ((d[J[r]] > d[i]) and (d[J[r] # r)) do r:=r —1;
16 if ((d[J[r]] < d[i]) and (d[i] > r)) then

17

18 // Insert i into J|].

19 for q := k to ('r—l- 1) step —1do Jlg+ 1] := Jlql;
20 Jr+1]l=u5k:=k+

21 }

22

23 return k;

24}

Algorithm 4.6 Greedy algorithm for sequencing unit time jobs with dead-
lines and profits

Examplel:
Let number of jobs= n=3

(p1, p2, p3, p4)= (100, 10, 15, 27) deadline=1-> job should be done on first day
(d1,d2,d3,d4)=(2,1, 2,1) deadline=2-> job should be done on first day or second day
Here maximum deadline=2 means only two jobs can be done per day & no parallel execution of jobs is done.
Feasible Processing Value Explanation
Solution Sequence
(1,2) 2,1 110 2’s deadline <1’s deadline
(1,3) 1,30r3,1 115 1’s deadline = 3’s deadline
(1,4) 4,1 127 4’s deadline <1’s deadline
(Maximum Profit)
(2,3) 2,3 25 2’s deadline < 3’s deadline
(2,4) Impossible because of parallel execution Both are having deadline=1
(3, 4) 4,3 42 4’s deadline <3’s deadline
(1) 1 100
(2) 2 10
(3) 3 15
(4) 4 27
Example2:
Example 4.3 Let n = 5, (piss=sy pe) = (20,15,10,5,1) aupd (di,.cqds)

= (2,2,1,3,3). Using the above feasibili ity rule, we have

J assigned slots job considered action profit
] none 1 assign to [1, 2] 0
{1} [1,. 2] 2 assign to [0, 1] 20
{1, 2} [0, 1], [1, 2] 3 cannot fit; reject 35
{1, 2] [0, 1], [1, 2] 4 assign to [2, 3] 35
{12, 4} 10, 1]; [1; 2]s [25 3] 5 reject 40

The optimal solution is J = {1, 2,4} with a profit of 40.

J2 J J4a

Minimum Cost Spanning Trees:

YV VY

Y VY

A Spanning Tree of a graph is a tree that has all the vertices of the graph is connected by some edges.

A Graph can have one or more spanning trees.

If a graph contains n vertices, then spanning trees contains (n-1) edges.

A Minimum Cost Spanning Tree (MST) is a spanning tree that has minimum weight than all other spanning trees of
the graph.

A Spanning Tree does not contain cycles.

Two Algorithms are used to find Minimum Cost Spanning Tree:

1. Prim’s Algorithm.

2. Kruskal Algorithm.

Cr O oD > C o
. o— . 2 D e G L

Figure 4.5 An undirected graph and three of its spanning trees

1. Prim’s Algorithm:
In this algorithm we choose a neighboring or adjacent vertex for finding minimum cost spanning tree.

1 Algorithm Prim(E, cost,n,t)

2 // E is the set of edges in G, cost[l : n,1 : r] is the cost

3 // adjacency matrix of an n vertex graph such that cost[i, j] is
4 /[either a positive real number or oo if no edge (i, j) exists.

5 // A minimum spanning tree is computed and stored as a set of
6 // edges in the array #[1 :n — 1,1 : 2]. (¢[7, 1],¢[,2]) is an edge in
7 // the minimum-cost spanning tree. The final cost is returned.
8

9 Let (k,1) be an edge of minimum cost in Ej

10 mincost := cost[k,l];

11 t[1.1] := k3 £[1,2] := 13

12 for i := 1 to n do // Initialize near.

13 if (cost(i,l] < costli, k]) then near[i] := I;

14 else near|i] := k;

15 near(k] i= near[l] := 03

16 for i:=2ton—1do

17 { // Find n — 2 additional edges for t.

18 Let 7 be an index such that near[j] # 0 and

19 cost]7, near(j]] is minimum;

20 t[i, 1] := 3 t[i. 2] := near[j];

21 mincost := mincost + cost[j, near(jll;

22 near[j] := 03

23 for k:= 1 to n do // Update near|].

24 if ((near[k] # 0) and (cost[k, near[k]] > cost[k, j])}
25 then near(k] := j;

26 }

27 return mincost;

28 }

Algorithm 4.8 Prim’s minimum-cost spanning tree algorithm

Example:

(1) 28 (l)
10 e 10/ e
/ﬁl 14/ \16 U
R Ilj_.,__ P Py PN
24/ \ /
AWARIT YD) 25, A2
5\ on.
T et 29 1
22°(4) 274

Figure 4.6 A graph and its minimum cost spanning tree

(d)

N

N)

1 1)
2 ' >
10/ 10 -
6 (7 3 (6 (7 3
25 25
(S 5
4 297 A
(b) (c)
1 1
2 2

10 10 —

, 16 , 14/ 16
(6 (7) (3 ‘6 T 2
25 12 25 12

5 5
22 74 22 Y4
(e) ()

Figure 4.7 Stages in Prim’s algorithm

2. Kruskal Algorithm:

In this algorithm we list out costs between vertices in ascending order & add one by one vertex to spanning tree which
doesn’t forms any cycles.

000 =] O UM e QO BD e

25 }

Algorithm Kruskal(E, cost,n,t)

J// E is the set of edges in G. G has n vertices. costu,v] is the
// cost of edge (u,v). t is the set of edges in the minimum-cost
// spanning tree. The final cost is returned.

Construct a heap out of the edge costs using Heapify;
for 7 := 1 to n do parent[i] :== —1;

// Each vertex is in a different set.

i := (3 mincost := 0.03

while ((i < n — 1) and (heap not empty)) do

Delete a minimum cost edge (u,v) from the heap
and reheapify using Adjust;

g :=Find(u); k := Find(v);

if (7 #£ k) then

{

ir=17+ 13
t[i, 1] 1= uy t[i, 2] := w3
mincost := mincost + cost[u, v];
Union(j, k)3
}

if (7 # n — 1) then write ("No spanning tree");
else return mincost;

Algorithm 4.10 Kruskal’s algorithm

Example:

(n) 2 0
10 /) 10/ e
/’ 14/ 16 /o 14/ \16
et Y L , e,
= ” v e e
25°°7 118 12 25" A2
5\ 3/
- Jﬁh“'«.{':"'{l . “"-\.-'_'-'{:.
22 4 22 ‘i’)
(a) (b)

Figure 4.6 A graph and its minimum cost spanning tree

10

Figure 4.8 Stages in Kruskal’s algorithm

N

11

Optimal storage on tapes:

' ' i) | \

| 30"]0‘1[& MP(' \
odioN? ave 3 6) ' o 3
TP‘ -'DOP%‘X;‘SWCJ & vea)&’\ﬂ%rt éls') \ ;
i - each f”b?(m g e eded 10
lMa*h 2 L:' W - N N ") ‘the tlme t~| e
o gideoys T2 AT ')
prograns M€ SW %

tape proportional € ZX”‘

)s
mebmieve YoM L 14 K&

re)uvcd eqpaly often, hen . i
lr“ufmtﬁww : (n Z-tJ

»
enpicel o Wmm) TR
based 0n e oder stoved i *"4‘" we minimize MAT ,' ; :.
% + MUK
T U eq,wvolm*‘ o m\nm@“‘j L) = z ZL «:;
H\mrm?u‘*& MR £, e
Example:

Let number of inputs=3

(11,12, 13)= (5, 10, 3)

For n number of jobs we have n! possible orderings.
For 3 jobs we have 3! = 6 possible orderings.

Ordering | d(1) MRT
1,2,3 5 +(5+10)+(5+10+3) 38
1,3,2 5 +(5+3)+(5+3+10) 31
2,1,3 10+(10+5)+(10+5+3) 43
2,3,1 10+(10+3)+(10+3+5) 41
3,1,2 3+(3+5)+(3+5+10) 29
3,2,1 3+(3+10)+(3+10+5) 34

The optimal ordering is 3, 1, 2 is having minimum MRT value as 29.

Single-Source Shortest Paths:

> Graphs can be used to represent the highway structure of a state or country with vertices representing cities and
edges representing sections of highway.

» The edges can then be assigned weights which may be either the distance between the two cities connected by the
edge or the average time to drive along that section of highway.

P, - S
./{/- T —

iy S0 ey A0 L 25N

e e = Pearlh Length
1ol ls0 15~ /20-T B wT g 1) 1,4 10

' =~ | it 2) 1,4,5 25

| - T

) B ol - 3) 1,4,5.2 as

4) s =5 = 3 —{ 6} a4 1.3 a

= — . s

(a) Graph (b)) Shortest paths from 1

Figure 4.15 Graph and shortest paths from vertex 1 to all destinations

12

Single-Source Shortest Paths- Algorithm:

is set to the length of the shortest

S/ path from vertex v to vertex j in a digraph G with n
S/ vertices. dist[v] is set to zero. (is represented by its

s, 1o ?“.r,].

= 0.0 J/ Put v in S

= false) do

if (dist[w] > dist[u] + cost[u. w])) then

1= dist[u] + costu, wl;

1 Algorithm ShortestPaths(v, cost, dist. 1)

2 /) dist[j]. 1 <j = n,

3

4

5 S/ cost adjacency matrix cost[1

6

T for ¢ := 1 to n do

8 { // Initialize S.

9 S[iZ] := false; dist[i] := cost[v, i];
10

11 Slv] := true; dist[v]

12 for num = 2 to n — 1 do

13 {

14 // Determine n — 1 paths from .
15 Choose u from among those vertices not
16 in S such that dis#[u] is minimum;
17 Su] := true; // Put u in 5.

18 for {(each w adjacent to n with S[w]
19 // Update distances.

20

21 dist[w]

22 }

23 3}

Algorithm 4.14 Greedy algorithm to generate shortest paths

Examplel:

4.
o)

4% wﬂ% goume vu‘re/*” sekie) =)

Now Hnd ,shmw d)cﬂmu b—"O'" Vme’”

C‘[;] ".b \'/ ‘ N \ “'l
t\',3]|,=.l°oj e \ 7
ooy W 2'00 " e | ';
i1 ABYST =
| U/L'] el S {
0 %) ._.oo .

seleck vaten 2- w % roini

Cy,2,2)= 30'-\‘/" e Lt

c‘)Z)lq]':w .
C,2,;5]) =9
[l,'z_/cj = @

- 20 4§ ."'Il

cv,2,94) =

,\salqd- vertent 3 wﬂ'ﬁ m%mmum di\s

C‘/7‘/3/‘” i Hf "
('/?-/'5,5,3 -'3-5?/-‘5
£1,2,3,4] = %] .L_: (
Ci 08,99 =5 !

sdé.d' Veatem S ol minimum
C\;'L,B, 5,81 s
0,2 3,5, F] s

For the example, to reach source to destination (1 to 7) we have shortest path with value 42.

1 ,ﬁ‘y._.

ity ‘Eiehandh 101

/

' i
. ‘
.
\

".‘lll"'

nu. 30

{

X £,

\

}M
|

=N

13

Example2:
Boston

San Francisc%

810
Los Angeles New Orleans
Miami
(a) Digraph
1 2 3 4 5 6 7 8
1 o0]
2 300 0
3 100 800 0
4 1200 0
5 1500 0 250
6 1000 0 900 1400
7 0O 1000
8 | 1700 o
(b) Length-adjacency matrix
! Distance
i
lteration S | Vertex | LA SF DEN CHI BOST NY MIA NO
selected | (1) 2] (3[4 [S1 [6] [7 [8]
Initial = - |- too 4o 4oo 1500 0 250 40 oo
1 {5} 6 | 4e e 4 1250 0 250 1150 1650
2 {56 7 yoo 4m 4w 1250 0 250 1150 1650
3 1567] 4 +o 4o 2450 1230 0 250 1150 1650
4 (5674 § 3350 4ee 2450 1250 0 250 1150 1650
51156748} 3 3350 3250 2450 1250 0 250 1150 1650
6 [56,7483] 2 3350 3250 2450 1250 0 250 1150 1650

wﬁJA33;]) i(

3k 3k >k >k >k 3k 3k 3k %k %k %k >k k 3k k k k

DESIGN AND ANALYSIS OF ALGORITHM - DYNAMIC PROGRAMMING

Unit 2.2 Topics: General Method, Multistage graphs, All-pairs shortest paths, Optimal binary search trees, 0/1
knapsack, The traveling sales person problem.

Dynamic Programming- General Method:

» Dynamic programming is an algorithm design method that can be used when the solution to a problem
can be viewed as the result of a sequence of decisions.

» Both Greedy Method & Dynamic Programming solve a problem by breaking it down into several sub-
problems that can be solved recursively.

» Dynamic programming is a bottom-up technique that usually begins by solving the smaller sub-problems,
saving these results, and then reusing them to solve larger sub-problems until the solution to the original
problem is obtained.

» Whereas divide-and-conquer approach, which solves problems in a top-down method.

Example:
/ﬁ "
fib(4) ﬁb 3)
/ﬁb 3) /»\ ﬁb
fib(2) fib(1)f |fib(1) {fib(0) | Ifib(1) fib(0)
{ 1t (n=10) return 0:
if (n=1) return 1: fib(1) fib(0)
return fib(n-1) + fib(n-2): — . . |
} Figure 5.1: Recursive computation of Fibonacei numbers

» In Dynamic Programming, an optimal sequence of decisions is obtained by making explicit appeal to The
Principle of Optimality.

» Principle of Optimality states that an optimal sequence of decisions has the property that whatever the
initial state and decisions are, the remaining decisions must constitute an optimal decision sequence with
regard to the state resulting from the first decision.

» Steps in Dynamic Programming:

1. Characterize the structure of optimal solution.

2. Recursively defines the value of optimal solution.

3. The optimal solution has to be constructed from information.
4. Compute an optimal solution from computedinformation.

Difference between Greedy Method & Dynamic Programming:

Greedy Method Dynamic Programming

1. It is used for obtaining optimal 1. It is also used for obtaining
solution. optimal solution.

2. In this, a set of feasible solutions 2. There 1i1s mno set of feasible
are generated, among these we solutions.
select an optimal solution.

3. Optimal Solution 1is generated 3. It considers all possible sequences
without revising previously in order to obtain optimal solution.
generated solution.

4. No guarantee of optimal solution. 4. Guarantee of optimal solution is
achieved using principle of
optimality.

Multistage graphs:

A multistage graph G = (V, E) is a directed graph in which the vertices are
partitioned into £ 2 2 disjoint sets V;, 1 <1 < k.

Let s is a source vertex & t is smk(destlnatlon) vertex.

Let c (i, j)= cost of edges of (i, j).

The cost of path from s to t is sum of cost of the edges on the path.

The multi stage graph problem is to find minimum cost path from s to t.
Two approaches in multi stage graph:

1. Forward approach.

2. Backward approach.

YVVVYVY

Multistage graphs- Forward Approach:

1 Algorithm FGraph{(G.k.n,p)

2 // The input is a k-stage graph G = (V. E) with n vertices
3 S/ indexed in order of stages. F is a set of edges and c[i, j]
4 // is the cost of {i, 7). p[l : k] is a minimum-cost path.

5

6 cost(n] := 0.0;

T for j:=mn—1to 1 step —1 do

8 { // Compute cost[j].

9 Let r» be a vertex such that (j. r) is an edge

10 of &G and e[j, r] + cost[r] is minimum;

11 cost[j] := clj.r] + cost[rl;

12 dj] := r;

13

14 S/ Find a minimum-cost path.

15 pll] := 15 p[k] := n;

16 for 7 := 2 to k — 1 do plj] := dlply — 1]];

17 }

Algorithm 5.1 Multistage graph pseudocode corresponding to the forward
approach

Multistage graphs- Forward Approach- Example:

Forward Approach

ats;h =1 ALE,TIE:
) Bl | | dle,T) =10 s g

A(S)C)-—?- \ | : """'l‘ ' '{" |
dis,p) = m\n§|+d(ﬁ,o) 2+ d(8,0)},

:m‘m‘{|+3,z+l‘}=q- b T

dis,D) = \j\

diie; BV o
0\(5,5) & mln'{zM'(B,E) I+JU"/E)/~7+ (¢, } .

]
i il

r

mm‘{zﬂo, l*(: ’7%3}\r~ ?"

dts,E) = ':-} |
' Ty +d(ET)
min§ d(s,00 +d(0,T), dlS/E)4 0}.§E,T), 4(9,) +d(E T

"'~..

/
\ TR

a0

d(s,T)

! R4}

= Mm{4+g 7+?‘/ 'q.‘HO} WA (

d(s,'r) .‘\

\ a~A-
Path choosen 4o Yeach s+T0T VS T

Multistage graphs- Backward Approach:

1 Algorithm BGraph(G, k. n.p)

2 // Same function as FGraph

3 A

4 beost[1] := 0.0;

5 for j := 2 to n do

6 { // Compute beost(y].

7 Let ¢ be such that (r,j) is an edge of
8 G and beost|r] + ¢[r, 7| 18 minimuimn;
9 beost[j] := beost|r] + ¢|r, 73

10 dlj] = r;

11

12 // Find a minimum-cost path.

13 pl] = 15 plk] := n3

14 for j:= &k — 1 to 2 do p[j] := d|p[j + 1]];
15 }

Algorithm 5.2 Multistage graph pseudocode corresponding to backward
approach
Multistage graphs- Backward Approach-Example: '

Back wovd AppYoach: 4, ; - ’ . &

‘.d(D/T): 8 - | | ! | \ ! \ ¢ N ,
dLE,T) =% L' £
dLeTHEIT .,

eI A s
b1y, 6+ dlE 5
' A(A,'\').: min i3+0\(Fleg A=E~T ALAIT) =%

' | B .=‘9
:mif\E3+%>é’*?”9' Jd A

+d(e,)
dLB ™ = m‘nz4+A(D/T) / i ’
,T) =

R b =
. m‘lni 4’1"?/ ,01’23 e ‘ \ \

2 - . _ ™
ot Srdem TS g e)

min{ 3+%, 104 =5

1

are, ™

"

' 4
dts,T) = nt videAT) ,2+d(8,T % +de,m3

+5% &
= mnLtE, Atz B

T,) R
‘g‘LS/T): 9 f=kh c—hoosc,-,‘. c—A-E

All-pairs shortest paths:

Let G = (V,E) be a directed graph with n vertices. Let cost be a cost
adjacency matrix for G such that cost(i,i) = 0, 1 < i < n. Then cost(i. j)
is the length (or cost) of edge (i,j) if (i,7) € E(G) and cost(i,j) = oo if
1# 7 and (i, 7) € E(G). The all-pairs shortest-path problem is to determine
a matrix A such that A(7, j) is the length of a shortest path from i to ;.

ARG 5) = min {A* (4,), AR R+ AV R DY k=1

All-pairs shortest paths-Algorithm:

0 Algorithm AllPaths(cost, A, n)

1 // eost[l :n,1:n]is the cost adjacency matrix of a graph with
2 // nvertices: A[i,j| is the cost of a shortest path from vertex
3 /[1tovertex j. cost[i,i] = 0.0, for 1 <i < n.

4

5 for i :=1 to n do

6 for j:=1to n do

7 Ali, j] := cost[i, j]; // Copy cost into A.

8 for k:=1 to n do

9 for i :==1 to n do

10 for y:=1to n do

11 Ali, 7] := min(A1, 5], Ali, k] + A[k, j]);

Algorithm 5.3 Function to compute lengihs of shortest paths

Example:
6
< _ 5
@ a — —L2)
3"-«3 \1 1 /
2

(a) Example digraph

AY 1 2 3
O 4 11
6 O 2
3 oo
(b) A”

=80 =2 k—
A(‘_a,:»_j = a0 (AC3,L3) A&3/|3+At'}73‘$

View o de)

Al | 1 2 3 AZI 1 2 3 Al 1 2 3
10 4 @D 1lo 4 6 1,0 4 6
2|6 0 2 2 (&) o 2 2 1) o 2
3.3 7 0 3 ‘ 37 0 313 7 0
(c)A' (d)A? (e) A?

i=1, j=3,k=2

ATI 3] = min(ACIIC3), ATI, 23 + Alz,3]) - vianodes

=min (1, 4+2) =6

=2, =i i
Alz,11 = K

. /i 'l " |

min (A['z.,n._])ACL/?»J*'-‘\f?u'])

Optimal binary search trees:
A binary search tree is a tree where the key values are ordered that all the keys in the left sub tree are less
than the keys in the node, and all the keys in the right sub tree are greater. Clearly

LST<=ROOT<=RST

LST= Left Sub Tree & RST= Right Sub Tree

s (20

(11 TT8) @@@

Optimal binary search trees- Algorithm:

1 Algorithm OBST(p.q.n)

2 /) Given n distinct identifiers a; < as << --- < a,, and probabilities
3 /S plily 1 <1 <n,and gli]l, 0 <4< n, this algorithm computes
4 /[the cost ¢ft, j] of optimal binary search trees ¢,; for identifiers
5 S/ aiei. o ooag. It alse computes r[t. 7]. the root of tij.

6 J wli.j] is the weight of ¢;;.

-

H for i:=0ton—1do

9

10 // Tnitialize.

11 wiy 1] = q[i]; rli.4] .= 05 ¢fi, 2] := 0.0;

12 J/ Optimal trees with one node

13 wii, i+ 1] = g[¢] + gli + 1] + pli + 1]

14 rli, i+ 1] t=1i + 13

15 cli,e + 1) :—q['i_'—r}'['ii+ 1| + pli + 13

16 }

17 wln,n] 1= g[nl]; rln,n] := 0; cfn, n] = 0.0;

18 for m =2 to n do 1/ Fmd optimal trees with m nodes.
19 for i :=0ton - mdo

20 {

21 j =14 m;3

22 wli, §] := wli, § — 1] + p[5] + q[5];

23 I/ ‘nﬂve 5.12 using Knuth's result.

24 k:= Find{e, r. 4, 7);

25 // A value of ! in the range r[i, j — 1] <
26 J.-'r'," < r[i + 1, 7] that minimizes c[i. ! — 1| + <[, j];
27 ei, j] == wlt, 3] + i, k — 1] + e[k, §];

28 rli, j| = kj

20

30 write ([0, n], w|0,n], [0, n]);

31}

1 Algorithm Find{e.r, 1, 7)

2 {

3 TN 1= 00

4 for m:=vrli.y— 1] to r[i + 1, ;] do

5 if (cli.mm — 1] + ¢[m, 7]} < min then

i

7 min 1= ¢cli,m — 1| + elm. 53 [:= mg3

8 }

4 return (;

10}

Algorithm 5.5 Finding a minimume-cost binary search tree

ia—vy
= OBST VB og\ven u i \ \ i
a (&'ﬂm Wet dh— \JQM'HCVS Z(M’A, Qy)g Q) < Ay A an

Let PU) be probabitHes o succembpl Seprch for al

Lek ay N E
() be probabiktis bor unsuccemhul 2 eorth.

\ el ~

S Py S oA = |
l«i&n 04L& N

— A tree il mmimum cost \s Gbtained by adding hiPsy o8 v

PH""’J B Coonth Tree

— A binowy ceanth tee _wim o-pﬁmal cost 1% ‘O\Uq W
— cost |s calewlsle it e Tl

pep—

i e
s e TR L0
LLRED
CeL D) & Rl
(L,) 20 T mti, =K
W(Z/‘L) = Vi 88>
TLZ,Z):O pe LAy
w(t)]):f’j+wi+—""("/“—') \
0 b sl

(PL,0 y Py, Py)= (3,3,',!)

F . 0 N 14 é
‘(\)‘))-—.K N(l’J)C P:“-m‘i+w(()3_|)
((\JC/(‘)J U2 .‘sz’l)q) e (2, t;.(.‘{',

RS A oy ‘

RS s N oy 3 -
hkugu(t,kunw(k,o)}* Wit | Weesr
- Wei = P+ YY) + Woe :5+3+2=3 Wy = 3
Coy = Wp & Min{Coo+Criy= 8 Y mnjotol =8 (K g7

i Wza =)

o< R

Yoo =t X = | ’ \No‘=3)t‘.o|c%;'{°l‘) wyy = |

""@‘ wn.:?z*(\i;+w”:3+|+3:?
\ - K._.Q)
Cyz = Wiz + min {C"‘*Czd e T+ mingotol =7 (
1¢KeR i
Y\z.;k:l N|2:?; C’ZCJL/‘.)Z’-:Z'
- Wyg = P3aaz+ W2l = VL >]
s 3 tk=3
¥c .
2¢key ¥ 33}
Yz =kK=3
1yl =3
VD e 3¥m‘n{o+03’ 5

C3q = W3.q + 3“(4(1

2 Woz = P+ Yz ¥ Wol e ;
jpfminior?
Coz = Wpa + min {CDO"'C”-% - 12
0« k€2
= k= b= 20
\ - |2+8 v
. ¢ =|2+m'n{5+0’5'
CoL = NO'Lf mn CCD|+ ZZS
um \/a‘u’;

Coﬁ.’—‘Q) K

e A ‘m
K=| = Cot 19 } sek(f Nt
Ko = Coz = 0

:K"d'

Toz

ol Ve
W i manmey we NA

' g
- k———p contine : &)

c 7 -
Wiz =9 Cl'é"”""s '
. Lt =%
Wld Wﬂ‘s) CaY = QJ "“{ .
v d\) > Np2 =
Wo 2\ No“ﬂi,cor”" P

| :
5 A | =7
R;su'd"‘d NN =)) Gy = 'q’ i iV

b 15 os)
et - "‘/
gt

Lekreild = Vi 5 7

(,(.0/4') M LOS"UI’ (7

¥ gy SO
M Cewox)
1 y
4 ¥ i L
0 1 2 3 4
Woo = wip =3 wy = Wiz = waq =1
0 Cop = C|1=0 C22=0 C33=0 Caq4 =
r00=0 P'l]=0 1'22=0 r33=0 .?'44=0

Woy =8 W]2=7 W23=3 W34=3
| co = Cr2 = €23 =3 | ¢34 =3
?'01:] r12=2 r23=3 r34=4

=12 W3 = 9 Waqg =
2 002=]9 C13=]2 Caq =

roz 1lr3= 2| ruy=3
L =14 W14=11

3 Cm—ZS Cl4=]9
Foz = 2 Fia = 2

4 Cpg = 32
Foa = 2

Figure 5.16 Computation of ¢(0,4), w(0,4), and r(0,4)

10

0/1 knapsack:
Knapsack is a bag which has a capacity M.

In fractional knapsack, we place the items one by one by considering Pi/ Wi.

In 0/1 Knapsack, we cannot consider any fractions.

In Dynamic Programming, we consider knapsack problem for placing maximum elements with
maximum profit & weight that does not exceed knapsack capacity.

0 means we cannot consider that item.

1 means we consider that item to placed in knapsack.

The solution for Dynamic Programming is:

Frnlm) = max {fn_1(m), fno1{m — wy,) + pnt

VVVYVY

YV V

0/1 knapsack- Algorithm:

?lgurithm DKP(p, w, n,m)
8= {(0,0)};

for i:=1ton—1do

ST i= {(PW)(P — pi, W —w;) € S and W < m};
St := MergePurge(S* 1, 877 1);

S0~ S DW=

}

(PX,WX) :=last pair in S ';

10 (PY,WY) := (P +p,, W' +w,) where W' is the largest W in
11 any pair in S"! such that W + w, < m;

12 // Trace back for x,,x,-1,...,21.

13 if (PX > PY) then z, := 0;

14 EIEE L 1= 1;
15 TraceBackFor(zp—1,...,21);
16 }

Algorithm 5.6 Informal knapsack algorithm
0/1 knapsack- Example:

nam Yt m ' % 34'6 €
S.'"'\é U l{. P‘O’J am I"‘ kleWS P
“

bo\vm% 0, knapsack me'm\

0

O Mdionaprationt 5 = 3 i i)

L] v

Lo et g [
® Nevging W*”“Tf' ok,

ﬂ..ln !

11

, .
@ PuTﬂ’W\ﬂ lec Dommanu RO gt (-P\". W')i Md (PKle)

tho SE1 S §S, Lolewﬁ WM, |

Take anY

e §

v ol Aot i P4

ﬂi‘ A :l ;“l ,“” | \ | '
:wz,woes iy e Ans]

(pl}w() G_S

- , \npubs n = .
Example'. knogpsau_k c_a\pauhd) m =6 \ no: dlr (){
Fy w0 = U,'z.) (Pz_, Wla—) (g/a) ("3/“33) 448

. [s"@ Sty) {Lt,?»i

s‘; = P+ (h,W) = {(0107}*'?'“/?’)% o

(1

S‘ = 5°U S? :{(0/0)3 v i(\/?’)} W

Sl""-'-'.{'(d, 0y, 0,%);

g L \‘ i R o’L‘\ g‘ ,o é'z,-
' ted since’ OS
tw_m puGing vule is applied i

_ 110,00, 0,0 # D)
y = 2(2)3) (3',‘5'): "':
\ {U-/BD)Q%;S)S L
(|,2)3 V) i L)—,E) (3);>}

S: = S\ + (Py ,W2)

s A .
| SR I | ey

5>< s U sf- 10,0);
. i SL(O/O)/
. R %_lo,o) o Q_)/(z,s){CB/SA)ik |
NL pevging vule is opplied, '

ey , G432, (3"93

12

2+
S| = 57'-)-(?3,1,\;3) |]

£3 a \
* 100,0), (1,2), (=3, (3,5)} +(5,4)

\ =3 (5w, (6,6), (3,3, (e,q)} T U T VR T

&> it S,

= {(0,0), 0,20, 0n,3), Ls,S)}) {,gglq')A(G,?J), (7,7 (89)"t

_‘-____,_I..—-——',-.".'-"—

7,77, (8,2

l33 = L0o,0), (1,2), (2,3, (3,5, (5,4, 6/, €

|

comider -hoo tuples (3,5)§(S,4) 1 345 'i, s,q T PR
i ey ey
Aprly N’qua ~ruJ.l. - (P\,)w)) ' g vemoved . e e L.’b S) %] 9
'_'____’—“—_".
F3 =1(b,0), U z.) (z,zo (5,4-),(6,6)/Q?I-,"r)./(S;CU,
g 257 g ol |

Eneds \ Loond (3 § (8/9) orceeds
Sivce Plnapsadt capadity M=k cr‘n%"c'hsww CH3) § L8
| BT T

et coslel), o o

s 'llll'-., I'I"'l"l J“' /

(86)58” AT
(6 6)45" “4en Mt)¢ .')w e r3r ')

. To tacr Newt Haple/ (66D =
v by (6, 6)"(3‘ 4) = (s,z) | GRS

) sl %en ‘.“Wk @ | S

|
1 \ \

(93)L03) v \ iy &

(hg e8! N e, ,
! . V() 1
) W 0’ '
(\,L) g@s v Aorte [=1 s . #
v v 0 \ \ |45] 8 i |
(‘ 7——)\ s y l o\ A ‘ ;‘u
/ ¢— ol Han is'("&}‘/%)")’,k39 ,':-'-—“’Q!‘/‘o/'l') 8
\ S (v . ; | A
Hence -he oprimal '

The traveling sales person problem:
» Let G=(V,E) be a directed graph with edge costs Cij.
» The variable Cij is defined such that

= Cij>0foralli&|j.

= C(Cij=o0if(i,j) €E.

» Let |V|=nandassume that n>1.
» Atour of G is a directed simple cycle that includes every vertex in V.
» The cost of a tour is the sum of the cost of the edges on the tour.
» The traveling sales person problem is to find a tour of minimum cost.
> Notations:
» gl(i, s) = length of the shortest path starting at vertex i, going through all vertices in s and terminating at
vertex 1.
» g(1, V-{1}) = length of an optimal sales person tour.
» Principle of Optimality states that
oLV = {1}) = min {eu+9(k,V ~ {1,K})} (50)
P T
Generalizing (5.20), we obtain (for i ¢ 5)
g(i, S) = min{ci; +9(3, 5 —{7})} (5.21)
FEE
Example:

e

2

. 5 0 10 15 20

5 0 9 10
L 6 13 0 12
(4 3

(a) N -
(b)

Figure 5.21 Directed graph and edge length matrix ¢

Thus g(2,¢) = c21 = 5,9(3,¢) = c31 = 6, and g(4,¢) = cs1 = 8.

14

=5 Vv
| R
. Sc‘ed- VOL+W ‘5 =)

T et T 7 R M

@(?’/¢)’ s
8(4)¢) = C-Q—‘ —_8’

|

We obtal”

= = \§
g 2,23y = o FIOP) 1

‘f;} 8(2-) 14Y) = C2y + g4,)" 'O“"%‘:)g\;
g (3,12 = conr e 212777 20
qLs, 143) = Cagr §lasf) =124 ° /
9 (4,§2%)= C;:h:t_a__(:z:_,_gb) e §+9 F ‘i
9 Ca, T3Y) 3(24_3 ¥ ag?i@‘ 16 =(!S/.
lvlru.;
Ne'* we compu& Qd,s) wn th \9'21/ W
i & ("
ﬂ(l,{g/Q‘b s ¢ AQCL%- = ild /

"M Gt (3,24Y), C?—Wﬂ (4) ZZS)}
=i l9+ 2, ot 5 . min [24,25 = 25
83, t26d) = min Caug(a,14)) oy + JeARY)
= M {lzﬂg/ ll’rl%} = m‘mi3|,1g} = 25
8(4;3%3}) = M eqaty (% 080), ey *3(3’{4)3

= "ﬂn"i 8+)§, q‘HgK - m%ni%,ﬂ} = 23

15

/ . .
S
mong, we obtadn "

P e ——

%(‘/izlz/ﬂ): sl ~—

min {¢px+ 3(7—/23/4"3‘,‘)) Cis +ﬂ_(3/ {2, 4‘3)/ Cl++8(+/il/33)}

"

min 310 +35, IS+25, 20 + 2.33

= min{ 35,49, 43}
= 35
Optimal dour of Groph hos length 25

— L ’ﬁ‘ %Oa ,L(.
| 4%t shatky, F7O7 +o
*\(‘/f2-,3,4,3):2_ Your stalls

i, 5940 =4 heat e,v'ae (2/4)

-

904,13l =3 ncmi'uhae w,’s) O |
/) > >

- “_ &

The Optimal Hour s 1% 43!

/_______/

3k 3k 3k 3k %k %k %k %k %k %k >k >k >k %k %k >k %k %k k%

16

DESIGN AND ANALYSIS OF ALGORITHM

Unit 3.1 Topics: Basic Traversal And Search Techniques- Techniques for Binary Trees- Techniques for Graphs-
Connected Components and Spanning Trees- Bi-connected components and DFS

3.1.1 Techniques for Binary Trees:
In Normal Tree, any node can have any number of children.
Binary Tree is a special tree in which every node can have a maximum of two children.
In Binary Tree, each node can have 0 or 1 or 2 children but not more than 2 children.
Displaying or Visiting order of nodes in binary trees is called Binary Tree Traversal.
3 Types of Binary Tree Traversals:

1. In-order (LVR) Traversal- order: left child, root node, right child.

2. Pre-order (VLR) Traversal -order: root node, left child, right child.

3. Post-order (LRV) Traversal-order: left child, right child, root node.

YVVVYVY

Algorithm for In-order traversal

treernode — record

{
Type data; // Type is the data type of data.
treennode xlchild; treenode xrchilds;

¥

1 Algorithm InOrder(t)

2 // tis a binary tree. Each node of ¢ has
3 S/ three fields: Ichild, data, and rchild.
4

5 if ¢+ # 0 then

6

7 InOrder(t — lchild)s

8 Visit(?)3

9 INnOrder(t — rchild);

10 3

11}

Algorithm 6.1 Recursive formulation of inorder trawversal

Algorithm for Pre-order traversal

Algorithm PreOrder(t)
// tis a binary tree. Each node of ¢ has
/[three fields: Ichild, data, and rchild.

if ¢t # 0 then
Visit (1);

PreOrder(t — Ichild);
PreOrder(t —+ rchild);

D O =1 O LT o Qo D —

0}
L}

e f—

Algorithm for Post-order traversal

| Algorithm PostQrder(1)
2 /[tis a binary tree. Each node of ¢ has
3 [/ three fields: lchild, data, and rchild.

4
5 if t # 0 then
b

7 PostOrder(t — lchild);
8 PostOrder(t — rchild):
9 Visit(t);

0}

1l)

Example for Binary Tree Traversal

-1

/\

AT T3

’ ot
fooe
", DgEA.FC,GW.
Inovdex HC’“VMSCJ * ek, G 3 ;
Pre ovoex xvoversal . ABDE & o

' ' i c Pr
Post orfier, trover=al 1D BB T SS0E

3.1.2 Techniques for Graphs
» A Graph G = (V, E) is defined such that this path starts at vertex v and ends at vertex u.
» We describe two search methods for this:

1. Breadth First Search and Traversal.

2. Depth First Search and Traversal.

gon a
2 3 RO
R x
p—
_4: (:5__}\\ X 6/ /I\?) _3)
\;\,QV (b) Directed graph
G

(a) Undirected graph G

Breadth First Search and Traversal (level by level traversing)

In breadth first search we start at a vertex v and mark it as having been reached (visited).

The vertex v is at this time said to be unexplored.

A vertex is said to have been explored by an algorithm when the algorithm has visited all vertices adjacent from it.
The newly visited vertices haven't been explored and are put onto the end of a list of unexplored vertices.

The first vertex on this list is the next to be explored.

Exploration continues until no unexplored vertex is left. The list of unexplored vertices operates as a queue and can
be represented using any of the standard queue representation.

VVVVVYYVY

Algorithm for BFS

Algorithm BFS(v)

// A breadth first search of G is carried out beginning
// at vertex v. For any node 1, visited[i] = 1 if ¢ has

// already been visited. The graph G and array visited| |
// are global; visited| | is initialized to zero.

u:=v; // qis a queue of unexplored vertices.
visited[v] 1= 1;
repeat

SO0 =] S U s GO D

for all vertices w adjacent from u do

{
if (visitedjw] = 0) then

Add w to ¢; // w is unexplored.
vistted[w] := 13

if q is empty then return; // No unexplored vertex.
Delete « from ¢; // Get first unexplored vertex.

21 } until(false);

22 }

D et ek o — — — — f— f—
[Nl SR e ek) QETCNN LY S]

Algorithm for Breadth first graph traversal

Algorithm BFT(G,n)
/[Breadth first traversal of G

for 1:=1to ndo // Mark all vertices unvisited.
visited[i] := 03

for i :=1to n do
if (visited[i] = 0) then BFS(z);

SO =1 & U e G o

Example for BFS

BFSOrder:1,2,3,4,5,6,7,8 i -
3y)
e
Applying BFS > ,{ J’f \
pplying) -)
OWORRONG
s
HH.
RO
BFS

Depth First Search and Traversal

» A depth first search of a graph differs from a breadth first search in that the exploration of a vertex v is suspended
as soon as a new vertex is reached.
> At this time the exploration of the new vertex u begins.

> When this new vertex has been explored, the exploration of v continues. The search terminates when all reached
vertices have been fully explored.

Algorithm for DFS

1 Algorithm DFS(v)
2 // Given an undirected (directed) graph G = (V, E) with
3 // n vertices and an array visited| | initially set
4 // to zero, this algorithm visits all vertices
5 // reachable from v. G and visited[| are global.
6
7 visited[v] 1= 13
8 for each vertex w adjacent from v do
9 {
10 if (visited[w] = 0) then DFS(w);
11
12}
Example for DFS Y
0 A

! DFSOrder: 1, 2,4,8,5,6,3,7 /,/
/

|/i{ 3 _{ — — Yy
3 6) (7
' { Applying DFS > (R © D

3.1.3 Connected Components and Spanning Trees

> A graph is said to be connected if at least one path exists between every pair of vertices in the graph.
» Two vertices are connected component if there exists a path between them.

> Adirected graph is said to be strongly connected if every two nodes in the graph are reachable from each other.

@ ® D © ?
O—® E—© ® B—

. A digraph
Connected graph - A graph that is not connected that is strongly connected

Spanning Trees

A spanning tree of an undirected graph of n nodes is a set of n-1 edges that connects all nodes.

A graph may have many spanning trees.

For finding minimum cost spanning trees we have two algorithms

1. Prim’s Algorithm

2. Kruskal Algorithm

YV VV

Properties of spanning trees:

e There is no cycle — a cycle needs » edges in an n-node graph.

There 1s exactly one path between any two nodes — there is at least one path between any

two nodes because all nodes are connected. Further, there 1s not more than one path between
a pair of nodes.

Undirected graph and four of the spanning trees of the graph

3.1.4 Bi-connected components and DFS

» A vertex v in a connected graph G is an articulation point if and only if the deletion of vertex v together with all
edges incident to v disconnects the graph into two or more non empty components.
> A graph G is bi-connected if and only if it contains no articulation points.

Node 2 is articulation point of Graph G

o — i S o
'&6:‘, (6) ’\.!.:/ {\::-c"
an s \ By
ONRO), ONRO '- 3
\/____.\\ /\T) --\/__ A ‘TA\\'-— \‘ /} —
OBRO22¢) (45 | (T N <
“"\V.‘ v § /\),L\/) o "J'\yﬁ /_ﬁ{/ L2
L) <) /'}_%4\' & A biconnected graph
i ” g Mo
@ © 0 ©
(a) Graph G (b) Result of deleting vertex 2

Bi Connected Component

G' = (V',E') is a maximal biconnected
subgraph of G if and only if G' has no biconnected subgraph G” = (V", E")

such that V/ C V” and E' € E”. A maximal biconnected subgraph is a
biconnected component.

Example:
(6
B . i o
6 (1) SO
- =
| 4-“I 22\} - _\(,/-h' ’ .
et {2) — 7
© &
2} €D

/373" Biconnected components

L
10 \® &

(a) Graph G

DFs
Depth First Spanning Trees are used to identify articulation points and bi connected components.

1
N
2 ;/r I'.
/:_I-\‘]1.
p S S
3 f"{ ‘.
} ”{::“ e %
MIURREC) \\c’fl[’}ﬁ
7 L R,
O R)
Bk SN |
(6) (7) .
D) \r |
.f: :}_[_0 4
(b)

A depth first spanning tree of the graph

3k 3k 3k >k 3k 3k 3k 3k %k %k k >k k k%

DESIGN AND ANALYSIS OF ALGORITHM

Unit 3.2 Topics: Backtracking- General Method- 8 Queens Problem- Sum of subset problem- Graph coloring-
Hamiltonian Cycles- Knapsack Problem

3.2.1 Backtracking- General Method:

» The name Backtrack was first coined by D.H.Lehmer in 1950’s.

> Itis a method of determining the correct solution to a problem by examining all the available paths.

> If a particular path leads to unsuccessful solution then its previous solution is examined in-order to final correct
solution.

> In many applications of the backtrack method, the desired solution is expressible as an n-tuple (x1, x2,.. xn) where
xi is chosen from some finite set Si. Often the problem to be solved calls for finding one vector that maximizes or
minimizes or satisfies a criterion function P(x1,x2... xn)

> In Brute force algorithm, we consider all feasible solutions for finding optimal solution.

» In Backtracking algorithm, it is having ability to yield same answer with far fewer than m trails.

» Many of the problems, we solve using backtracking require that all solutions satisfy the complex set of
constraints.

» Two types of Constraints
1. Explicit Constraints are the rules that restrict each xi to take on values only from a given set.
Eg: xi>=0 or Si= {all non negative real numbers}

Xi=0orlorSi={0, 1}

2. Implicit Constraints are the rules that determine which of the tuples in the solution space | satisfy the
criterion functions. Thus Implicit Constraints describe the way in which the xi must relate to each other.

Some Important Definitions:

D —

Sartiony

© Pf"b_‘e_‘_“ steli ~ shlle dhat dopines by all nodes with in Hree evganization. ’w‘f"

®
/ \ A B, C ave pvoblém sholes’
@ @ 3 by a Pmblem
‘ : viL comhvaind (defined PY
; @ soluhion spaw - The tuples that satishy all explcit
borm a sojuhion spac

O

| \ SaqpAve nodes -~ indicaly solution
’ f\ N
‘ |@ O (5]@ @

“ @ soluhon S'}cxtﬁ) it\;ﬂ"& to a proklem stales
\n Hae solublon Space .

+hot ave amowid wnl a Yoot "’.7

N — (','L,‘\—), ('/B/é)/(l/:”/?)

! means of chfh dcbfwﬁv\ﬂ uple
l aoluton stale

Recursive Backtracking Algorithm:

1 Algorithm Backtrack(k)

2 // This schema describes the backtracking process using
3 // recursion. On entering, the first £k — 1 values

4 // x[1],7[2],....z[k — 1] of the solution vector

5 // z[l: n| have been assigned. z[] and n are global.

6 {

7 for (each z[k] € T'(z[1],...,z[k —1]) do

8

9 if (Bi(z[1],z[2],...,z[k]) # 0) then

10

11 if (z[1],z[2],...,z[k] is a path to an answer node)
12 then write (z[1 : &]);

13 if (k < n) then Backtrack(k + 1);

14 }

15

16 }

Algorithm 7,1 Recursive backtracking algorithm

Iterative Backtracking Algorithm:

1 Algorithm |Backtrack(n)

2 // This schema describes the backtracking process.

3 // All solutions are generated in z[1 : n] and printed

4 // as soon as they are determined.

O

6 k.= 1;

7 while (k # 0) do

8

9 if (there remains an untried z[k] € T'(z[1], z2[2],...,
10 z[k —1]) and By(z[1],...,z[k]) is true) then
11

12 if (z[1],...,=z[k] is a path to an answer node)
13 then write (z[1 : k]);

14 k :=k + 13 // Consider the next set.

15

16 else k := k — 1; // Backtrack to the previous set.
17

18 }

Algorithm 7.2 General iterative backtracking method

Applications of Backtracking:
» Backtracking method is applied to solve various problems like:
1. N Queens Problem
2. Sum of Subsets Problem
3. Graph Coloring
4. Hamiltonian Cycles
5. Knapsack Problem

3.2.2 N Queens Problem (8 Queens Problem)

» N Queens Problems means:
1. Place N Queens placed on N X N chess board.
2. No Two Queens are placed in same row or same column or diagonal.
3. No Two Queens attack to each other.

1 2 3
1 2 1
1 1 2
1 2 3
n=1 n=2 n=23
Trivial solution No solution No solution

Examples of n-queens problem

4-Queens Problem solution:

step3: Place Third Gueen ab (3,2) POshO”

\ YRR A
) (&1 -
y 2 &ﬂ
3 Qz| “ | -
4 5 & \

stepy . Plae 4_")&%5" b not possibie ‘dhen perrerm backWacking

a; w moved o (,2)

Qaz v moyed tv &) (%)) :

Plau. Qq, in (4,3) posmon
| 1 4

&

!

(2,41, 4 soution
2-

OF%

A4

(2,4,1,3) =2 Solutionl
b EE LR (3,1,4,2) = Solution2

4-Queens Problem —state space tree:

Tree organization of the 4-queens solution space. Nodes are
numbered as in depth first search.

N-Queens Problem- algorithm1: Placing a new queen in kth row & ith column.

1 Algorithm Place(k,i)

2 // Returns true if a queen can be placed in kth row and
3 // ith column. Otherwise it returns false. z[] is a

4 /[global array whose first (k — 1) values have been set.
5 [/ Abs(r) returns the absolute value of r.

6

7 for j:=1to k—1do

8 if ((z[j] = ¢) // Two in the same column

9 or (Abs(z[j] —1) = Abs(j — k)))

10 // or in the same diagonal

11 then return false;

12 return true;

13}

Algorithm 7.4 Can a new queen be placed?

N-Queens Problem- algorithm2: All solutions for N Queens Problem.

1 Algorithm NQueens(k,n)

2 // Using backtracking, this procedure prints all
3 // possible placements of n queens on an n x n
4 // chessboard so that they are nonattacking.

5 A

6 for i :=1to n do

7

8 if Place(k,7) then

9

10 zlk] := i3

11 if (k = n) then write (z[1 : n]);
12 else NQueens(k + 1,n);

13 }

14

15 }

Algorithm 7.5 All solutions to the n-queens problem

8-Queens Problem solution:

column
1 2 3 4 5 o6 7 8
! Q
= Q
row 3 Q
s Q
3 Q
61Q
Z Q
B Q

One solution to the 8-queens problem

3.2.3 Sum of subset problem

and we desire to find all combinations of these numbers whose sums are m.
This is called the sum of subsets proble '

Suppose we are given n distinct positj{e numbers (usually called weights)

A simple choice for the bounding functions is Bi(zy,...,z;) = true iff
k
Zwimi = w; 2 m
i=1 i=kf+1
Bramples .4 00 totallsom(md=20

Whit 6] XS, 10, 10,18, 15,185
s fing SUM = 30 i os pellaws
we hove 4he solubions fov getiing
bl o Bt | P
oo o s — *14"'“&' 54 10415 7 3°
Solukontr t 7 b1 O .:’;"- b \‘3' 5+12t1s 2.3°
_.s;.?\u\%onz-. | O ! b W e = 30,
Saukess: - of GCUHREER | F A9 s ¢ hdews

|

SUM OF SUBSETS PROBLEM-EXAMPLE

X= 135,673 il S—15

Sum of Subsets Problem-Algorithm

1 Algorithm SumOfSub(s, k,r)

2 // Find all subsets of w[1 : n] that sum to m. The values of z[j],
3 // 1< j <k, have already been determined. s = Z?;ll wlj] * z[7]
4 //andr=3""_, w(j]. The w(j]’s are in nondecreasing order.

5 // It is assumed that w[l] < m and 372, w[i] > m.

6

7 // Generate left child. Note: s + w[k] < m since By_ is true.
8 zlk] = 1;

9 if (s +w[k] = rn) then write ([l : k]); // Subset found

10 / There is no recursive call here as w[j] > 0, 1 < j < n.
11 else if (s + w[k] +w[k + 1] < m)

12 then SumOfSub(s + w[k], k + 1,7 — w[k]);

13 // Generate right child and evaluate By.

14 if ((s+r— w[k] >m) and (s + w[k + 1] < m)) then

15

16 z[k] := 03

17 SumOfSub(s, k + 1,7 — w(k]);

18

19 }

Algorithm 7.6 Recursive backtracking algorithm for sum of subsets prob-
lem

Sum of Subsets Problem-Example
7’

£ m= 20
Crample: = W= iC,lo,vl,lz,li,\ﬁ’Z \

Out p uks -»(l/|/o/o,|)y(|,o/|/))ﬂ(o,o,l/o/o/ 1) Y@gpc(ﬁ\/d%

—
B ——

Y= 6410+ 12412415418 = 33

S=20, k=l , re?3 v
SHTWIE] ¢ 04+Wl1) = 0+5 4 20 — Genevale Leftcild § vigtd cleild
Lebt clild: — stwik)+wlk+1I < m = 0+ wiil+wiz) <20
£ A 4 €+S+10 £ 20 = ISS30T

Lokt i - s+WTE), k4, Y- W(K) g -
L R
o+wli) A4, 33 -WID -=)15,z,u‘; J ¢ L4
| 0+5,2 73-5 Lk
2M9 SHY-Wik) 72 m g’s.ywtkﬂjsm

0+73 -w(1) 330 §0+wiz) <20

T3-5 %30 S0+104£30 > 687,30 and 10£30

vigwtOwild = s k4!, v —wik] =)l0/ 7-,6<Zl

B=wl1) okining in-this manay

Cozdinu?v\g in s manaly

5,3,5% |
» Mﬂ A3=® iZznd i WA 5
27 4’ 4" | Y Ay~ 0
(2%] SARE) |, 4% [s,%,40
LL_/_—‘ £4 105,33 Lz-ﬂ;”,

x40 |m=° o0

r -
=) Y b 18

15,533\ [552) [0 By
Asd) o Sohdm | o 13S5% A=\ <
i :} {;/6;“’;

\ Sohdhim) Solufions

3.2.4 Graph coloring:

>
>

>

Let G be a graph and m be a positive integer.

It is to find whether that nodes of G can be colored in such a way that no two adjacent nodes have the same color

yet only m colors are used where m is a chromatic number.
If d is degree of a given graph G, then it is colored with d+ 1 colors.
Degree means number of edges connected to that node.

| -'.'l.'. Ny, l”l
/O , | .,“/" %5 “ é’—sﬁia’ﬂs
v) ' ‘ ‘ .

can ‘°‘-’n‘(e7? L
— 0 colers : , i &
2 .' ‘v&A_w\mrr Pl i gy |
L wc

O} \’?(A—"‘OAM)‘ §F 11 <oa it (f ol

C‘C—ﬁ‘re_e =3)

For example, the graph of Figure 7.11 can
be colored with threec colors 1,2, and 3. The color of cach node is indicated
next to it. It can also be seen that three colors are needed to color this graph
and hence this graph’s chromatic number is 3.

Figure 7.11 An example graph and its coloring

A graph is said to be planar iff it can be drawn in a plane in such a

way that no two edpges cross each other.

Figure 7.12 A map and its planar graph representation

10

Graph coloring- m coloring algorithm

1 Algorithm mColoring(k)

2 // This algorithm was formed using the recursive backtracking
3 // schema. The graph is represented by its boolean adjacency
4 // matrix G[1 : n,1:n]. All assignments of 1,2,...,m to the
5 // vertices of the graph such that adjacent vertices are

6 // assigned distinct integers are printed. k& is the index

7 // of the next vertex to color.

8

9 repeat

10 {// Generate all legal assignments for z[k|.

11 NextValue(k); // Assign to z[k] a legal color.

12 if (z[k] = 0) then return; // No new color possible
13 if (k=n) then // At most m colors have been
14 // used to color the n vertices.

15 write (z[1 : n]);

16 else mColoring(k + 1);

17 } until (false);

18 }

Algorithm 7.7 Finding all m-colorings of a graph

Graph coloring- state space tree

I2=1/// 2\‘\3 // \‘\\ // \

Al A
UJEC{) Oul\wéu J&mu})é éo 5

,_5
—=={_}

Figure 7.13 State space tree for mColoring when n =3 and m = 3

11

Graph coloring- generating color algorithm

Algorithm NextValue(k)

// z[1],...,z[k — 1] have been assigned integer values in

// the range [1,m] such that adjacent vertices have distinct
/ integers. A value for z[k] is determined in the range

J// [0,m]. x[k] is assigned the next highest numbered color

/ / while maintaining distinctness from the adjacent vertices

// of vertex k. If no such color exists, then z[k] is 0.

Lo ~IHU = W =

Eepeat
z[k] := (z[k] + 1) mod (m + 1); // Next highest color.
if (z[k] = 0) then return; // All colors have been used.
for j :=1 to n do
{ // Check if this color is

/ distinct from adjacent colors.

f ((G[k,j] # 0) and (z[k] = z[j]))

// If (k,7) is and edge and if adj.

// vertices have the same color.
then break;

[E—)

""N.

if (1 =n + 1) then return; // New color found
} until (false); // Otherwise try to find another color.

BB B B = = e s e e e
WN=oLYOU~10 Uk WwNnE=O
et

Algorithm 7.8 Generating a next color

Graph coloring- another example

12

3.2.5 Hamiltonian Cycles
Let G = (V, E) be a connected graph with n vertices. A Hamiltonian cycle
(suggested by Sir William Hamilton) is a round-trip path along n edges of
G that visits every vertex once and returns to its starting position. In other
words if a Hamiltonian cycle begins at some vertex v; € G and the vertices

of G are visited in the order vy, vs, ..., Un+1, then the edges (v;, v;+1) are in

? K

E. 1 < i < n, and the v; are distinct except for v, and v, 1, which are equal.

Enample. EEE

C«ﬂ\Ph G

' "; 'l@ ‘V‘ bas
$¢

TN Hamil o,

bcw y \LL
%ir "7 1
2—, 3/4‘/ ’l . | ,"r

I

L '

Hamiltonian Cycles-Generating a next vertex Algorithm

1 Algorithm NextValue(k)

2 /J/ x[1l:k—1]is a path of £ — 1 distinct vertices. If x[k] = 0, then
3 / no vertex has as yet been assigned to z[k]. After execution,

4 // x[k] is assigned to the next highest numbered vertex which

5 // does not already appear in x[l : & — 1] and is connected by

6 // an edge to x[k — 1]. Otherwise z[k] = 0. If kK = n, then

7 // in addition z[k] is connected to z[1].

8

9 repeat

10 {

11 z[k] := (x[k] + 1) mod (n + 1); // Next vertex.

12 if (x[k] = 0) then return;

13 if (Glz[k — 1],x[k]] £ 0) then

14 { // Is there an edge?

15 for j:=1to &k — 1 do if (z[j] = z[k]) then break;
16 // Check for distinctness.

17 if (7 = k) then // If true, then the vertex is distinct.
18 if ((k < n) or ((k =n) and G[z[n], z[1]] # 0))
19 then return;

20 }

21 } until (false);

22 }

Algorithm 7.9 Generating a next vertex

13

Hamiltonian Cycles-Finding all Hamiltonian Cycles Algorithm

1 Algorithm Hamiltonian(k)

2 // This algorithm uses the recursive formulation of
3 // backtracking to find all the Hamiltonian cycles
4 // of a graph. The graph is stored as an adjacency
5 // matrix G[1:n,1:n|. All cycles begin at node 1.
6

7 repeat

8 { // Generate values for z[k].

9 NextValue(k); // Assign a legal next value to z[k].
10 if (z[k] = 0) then return;

11 if (k = n) then write (z[1 : n);

12 else Hamiltonian{k + 1);

13 } until (false);

14 }

Algorithm 7.10 Finding all Hamiltonian cycles

3.2.6 Knapsack Problem) ' . .
Given n positive weights w;, n positive profits p;, and a positive
number m that is the knapsack capacity, this problem calls for choosing a
subset of the weights such that

S w;r; < m and Z pix; 18 maximized
1<i<n 1<i<n

The xz;’s constitute a zero-one-valued vector.

Knapsack Problem- Place the items/ objects 1in the
knapsack which will have maximum profit.

Bounding functions are needed to help for killing some live
nodes without expanding them.

Good Bounding function 1s obtained by using upper bound
on the value of the best feasible solution obtainable by
expanding given live nodes.

Upper bound i1s not higher than value- live nodes can

killed.

14

Knapsack Problem- Bounding Function Algorithm

DL O W=

Algorithm Bound(cp, cw, k)

// ep is the current profit total, cw is the current
/ / weight total; k is the index of the last removed
// item; and rm is the knapsack size.

b:= ¢p; ¢ := cws
for i := & + 1 to n do
{
c = ¢+ wlils
if (¢ < mn) then b := b+ pli];
else return b+ (1 — (¢ —) fw(z]) * pli];

return b;

Algorithm 7.11 A bounding function
Backtracking Knapsack Problem- Algorithm

LIk

29

Algorithm BKnap(k, ¢p, cw)
// mi is the size of the knapsack; n is the number of weights
/ and profits. w[| and p[| are the weights and profits.
/) plE]l/wli] = pli + 1]/w[i + 1]. fw is the final weight of
/ knapsack; fp is the final maximum profit. z[k] = 0 if w|k]
// is not in the knapsack; else xz[k] = 1.

{
// Generate left child.
if (cw + wlk] < m) then
ylk| == 1;
if (k < n) then BKnap(k + 1, ¢p + plk], cw + w[k]);
if ((cp + plk] > fp) and (k = n)) then
{
fp:=cp + plkls fw := cw + w[k];
for j:=1 to k do z[j] := y[j]s
}
// Generate right child.
if (Bound(cp,cw,k) = fp) then
y[k] := 03 if (k < n) then BKnap(k + 1, cp, cw);
if ((ep > fp) and (kK = n)) then
fpi=cp; fw:= cw;
for j :=1 to k do z[j] := y[j]s
}
}

Algorithm 7.12 Backtracking solution to the 0/1 knapsack problem

15

Knapsack Problem- Example

Let us try out a backtracking algorithm and the above dy-
namic partitioning scheme on the following data: p = {11,21,31. 33.43, 53,
55,65}, w = {1,11,21, 23, 33,43,45,55}, m = 110, and n = 8.

worvent pYOfi € cuvvent qu)

\ - 0 (Cw
‘ g B— = -l ‘C'f';o/ cua= 0 LG4
sed ?nid-iaﬂﬂ ot imum PRt P= 1
- =%
F W
oA c.us+wt\'-3$"”7o “Hl LB
‘ Byl
sek y(\) =) . w+wt"~)> =y
q e BK(K“/CVH’[], BL(L;|‘ N
ken = |\ i i
=) Lo
2 C'P—“ | &0 TYV‘-L
L/_/j w[’ﬁ_] Al =) ‘+‘ e " Bkts)s')—) 12- 7
e +wtS 57 ' | gy (3! N2l 1+3)
= .y (ied j'ew T-”‘).Y-k'J) =
ken = RS & X f |
wa: il ¥
3 cp= 3% - |y £ | (z12")
Sﬁ/ =3 P 110 <) |) 3
\'l—’\'w)c'-:;)‘i F W o 1 2 63/ 3)
P WL 2 ' 3 i3 By-L4)
L S CwY '
' eeryl®)2) - 'm\,cr”’w’
(‘ o} - 348’ 7 r’)! ; Py S L) " | | i | l'."
- £ 110 TvuL BT
st z5/:\10'-")5" P Bmﬁ/ V12 2l
) «m =) 32 % p L6)
- yL4) =l (5} °7
sy T or (Kt At P, cw*rwﬁhl) BV- '
ken = ‘ j , ;
.._,/—‘v—"’—"\ , A0 :
P T T B s ol e i 7l
LT i e et i et S G S g
S 5(,+Wf-g3« 1 \ : , ((9‘ qlﬂ‘ /
Cur Wl &M = \ Z’\)@ Billh 559
' cwo+WU) av (6,139,
Col- 3(33';\. i d wiy CP+(’(.¥T'3 | | |
'f K(n =) S/\Q’TAQ ; I i1

!

| c—) :g’ﬂ ".'Il i ¥ .\. CA{ N
| =3 C0 \ ‘
elgpb: k=6 cp= 1 2 1%3‘,0-;:01“»7&92"_“?"‘ —

g— '
Cr Wik} &M < 8aT 45 &“0.

peTm) b= Cp=139,

a \'D . 3 ‘
e A AT bt(.-cc-f">"*"“”*?'”> bl
' ' = b E
Leim = 340 =

C_:.C-N':-gq/ |

& TR
| \ '.- ‘,,
. j wieged o)l =5 B (F

6485 7, —1 Toue - seb g6l =07 Bk kP
o, =81 oo ponetion | 6N

129, ¥9)

q+55 = 1HY

5 b= b1~ 6
_ sl _uag-10)[s5 ¥

(3¢/55)% 65) =143t

C:C—'i"”[.'é-.sp‘ g

cam 2 ek A0 F

comy|wii) 4 PLD)

| " '
= T+ 1-

| F7 -] T) Stk yIHRI=0) B Lk, Cpy)
i , .2 By\(8/|3c‘)gq)
S}XPE‘- E:?;CP:I?:'C\, Q= S‘H

Lno'F
cwtW(k)&m = 894 w0 2 gq+5g-‘§\\0 = 1443 &

. N : [fli.t‘p.
b=Cp=139, c=Cw=8) L=kt = L9 ﬁloop'\o“,%f*'

qQéh = Q<% falre. 7
b= Cp =129 Yelont)
sel yrel=o ! |
Q4N DYLY Fabe

cprbp § k=h = 1297 =1 G ® ¥

[rcrn, e 1

—

17

%C31 = Y1 = M0 YOy =»|n 0320

I‘|

“(3) = {3} =) car=0
w(s) =408, nmm"O

f"ll

Final Solubon = (1,11 |

~Yals S powce e

,0,0,0) ho\v\nﬂ ,kwl P“'OW 129 § bWJ WAW 89

o

) . S Ay =
' "’*‘%\D
, : =
. ,"(t.| i
7
U\’_:;‘ 3 '7&3_:; o
I .

solutiorn .
e AT S

3k 3k %k >k 3k 3k 3k 3k %k %k %k k k sk k ok

18

UNIT-4 DESIGN AND ANALYSIS OF ALGORITHM

Branch and Bound: The method, Travelling salesperson, 0/1 Knapsack problem.
Lower Bound Theory: Comparison trees, Lower bounds through reductions — Multiplying triangular matrices,
inverting a lower triangular matrix, computing the transitive closure

4.1 Branch and Bound (B & B)- The method:

> B &Bis ageneral algorithmic method for finding optimal solutions of various problems.

> In B & B, a state space tree is built and all the children of E-nodes are generated before any other node become a
live node.

» Enodeis alive node that can be expanded to generate its children node.
> Live node is a node that can be expanded without generating its children node.
> B &Bisused only for optimization problem.
> B & B needs two additional values when compared to backtracking.
1. A bound value of objective function for every node of state space tree.
2. Value of best solution is compared to node’s bound.
> If node’s bound is better than best solution @ node is terminated.
> Lower bound is for minimization problems.
> Upper bound is for maximization problems.
> In Branching, we define tree structure from set of candidates in a recursive manner.
> In Bounding, we calculate lower bound & upper bound of each node in the tree.
» Lower bound > Upper bound = first node is discarded from the search = Pruning.
> B & Bis based on advanced BFS which is done with priority queue instead of traditional list. That means highest

priority element is always on first position.
» Bounding functions are useful because it doesn’t allow to generate sub tree that has no answer nodes.
» 3 types of search strategies:
1. FIFO (First- In- First- Out) Search or BFS.
2. LIFO (Last- In- First- Out) Search or DFS.
3. Least Count (LC) Search.

Difference between Backtracking & Branch and Bound:

. ! yis AT I B&B
Backiracky e XN

e

—7
vth meﬂxodx;
//'_‘;;"J' - Any ‘ool f_f‘hle_ Seo

\ g D]
< o wi)3 \ . +-$&uth ca i
» so\ VvV Obﬁ&?dl I '|" DFejor BFS (;'(\ i
T | o P s wed Yo pbtain sol.

Iy | /

il) e\ e h‘m
\ A 0 ml&ﬂ\
— TA provdes Seluhon Yov decicion — 34 PYW\CJCA soluton for P
wa Yl ipYgetems, : ” &
° : - |
) — No bad Soluflons lare gW

b\ﬂ;ﬁ'ﬂ o okinin F,?UT—,

. ‘|
» Theve B po== LIRS

« n
feee wain RY 8

\whons- ¢ cpack :
REEgE e w not cearched | = £ | .P erely Snce e 2
y A cdadle spat - ceonthed ‘G’QFP | Amum,
‘Head the prow? saikg AN oph
completely ' possibty .,%‘?l“f?,“'w

oh
. A €000
semrching et neles

S B ob*fafnUL
sduthon s ‘] l

4.1.1. FIFO (First- In- First- Out) Search or BFS:
Lk %""w.\)ﬁqw L sl space Hee K23 o W ot !

:‘:"" R, A ' A '
4) ! | \ ' . 59 : 0
.'/‘ ‘h"l | \ I ¢ @

| @

§ v vl ,;'.,..":."
@ BT (1O A‘. i
@ . B

6 @ g

B ; 23 oty M)
; / aAwww&L ;""' L . .
o ey | I-HA..LA'E_ 'n
Flvér Yake &- No:{e M v\ode,l Nc aa“”“t‘ cHildven df- |; We Pla< |

OL | QMAENE - ool | | |

S i gt e TR v
kil oV

. Delele 3 a %et\cjfo‘je cwildyen -3 32 bul ?‘2"‘3{ ave Kve Mdu - Ki b.‘md-}m

Delele 4 — kme_d by blounding, b-unc,hon Lq.g cluldvtn) :

Delelr; 5 K\I\M by \oounc\u\& b.unuhcm il I *

o Problem
6 o V12 Sou‘risb-lu "H’UL so\uthon db.-ﬂu_ .
grede It ‘-"'“d d}r L S €0+l pYOL7) fum:wdxo

4.1.2. LIFO (Last- In- First- Out) Search or DFS:

\ Y A : 540, i " o
.) 3 . plaade '
Flwt dolce E—node os node | We gewale 91"".‘,*”‘" 'o'}'_ \ i \,71,_ P

dhesze N a s&uc,lc[-. ‘ T ‘ ‘

o
Remove 2 — ahu\d-«tn d}_ z ' P\ﬂcca' on the op o tha stack.

| 0y Bt Vi . e
Remove S —'children O S ave \o/u e killed -y bounding funchtm

Rerioye € - c.hl\o\ven d}ré w12 Ub\"\d’! U awdwer node

_c,ep«d—) prown: '(:eJlJ'hlr\alZo

4.1.3. Least Count (LC) Search:

,.,,Leaé" Couné Seowch conkel abstrachion

Let ¢ ~ stale, $po¢t ee

1 ¥
| WLgspnary
c() - cosk h“’"‘d‘m |ov e podes 10k,
| 1% = node int | .)
') [.
| C (k) = cosk gy Minimum cosl amswey no 4
| i | s
C) ~ coat ¢- minimum cosd andwer node in 17 .

| tA
| T eony e compuke ond acnuauU\a heu “the ‘mew}t Ahat 'l A
C - W‘>LJ |'0 b—l

dr
r\C‘ 0~N“’°M ne.
ovawacr nbde.' or a leal: node 4hen Cn) = T,

|)

l "9 -“\IS Q.l OM’\ hm Me& 2 -\)\'\ChOM * “ ' L 7 ! ' \

' d B “) Neoat £L) . Thie node & deleted 'fvom T
! O \eort() -b—uwl/s Lwcnoc’e‘i i - e LI R R i : |
i b{s" (}l_ UVQY\OC‘M an(l Vl’,hﬂ\r\(—d. | " 't) s] |

B R tnd e s e b Mive node W s List - G el

'y \

listnode = record {
listnode x next, * parent; float cost;

}
1 Algorithm LCSearch(t)
2 // Search t for an answer node.
3
4 if =¢ is an answer node then output *f and return;
5 E :=t; // E-node.
6 Initialize the list of live nodes to be empty;
7 repeat
8
9 for each child = of F do
10 {
11 if z is an answer node then output the path
12 from x to ¢t and returmn;
13 Add(xz); // x is a new live node.
14 (# — parent) := F; // Pointer for path to root.
15 }
16 if there are no more live nodes then
17 {
18 write ("No answer node"); return;
19 }
20 E = Least();
21 } until (false);
22 }

Algorithm 8.1 LC-search

4.2 Travelling Sales Person using B & B

rT*r[wd.h g Sol u Pueson Problem

uring B8 | &
Dﬁ Find '\hc towy dl- Minimum Cogd SMQ‘M,O lfom &l node § taomﬂ 1o, oﬂ"”
MAJ On(L’ Qnd Q""u-,u’d"f 'rb H‘\L gWH Dn].«‘- Q.

fm"P«AWC \Qr asolving huwdllm sales PEI"SO“ Pm""eﬂ)

9‘3?' Find ow e veduced tost mahm\ kyom 8wen cos+ madix - This can be
obtained ak follpws: / i

’) ¥
O Row Reduction 1 '

i
@Co\omn REA‘UJ"DO) su.la“fdd‘ rfka.l’ element b'YOI

RQU) REA 3 Y m 5+ YOG
UCHO') Toke minimum elemen h‘ ’ l itk element

T) w: 5Mb)‘(a.d'

\S‘\rfow , nexd take, tammum! element h-rom 2nd vo
| “, !

_.‘.. Iy 4hle YOLLAWQ aU YOS .
fYom 2nd row .| l’rﬂ vP b"f %’M} Vi
CO\Urﬁh 'R&d\(U"DO‘! que mm\mqm e\emen" b-vom |54 CD‘UMY) | SU l ‘ £ -
! lomn4 .
Wom \st co\owm .-+ opply Some pmce//) b e) ol

A ST TP
colymp uMS‘c vediction <om,
Now we Wil kind Yow wise veduction ‘som§ eold | M gl

koo W‘A 'f'ObO.S
fracted Yom
R ‘eum = sum ol elemenbhsub
ouotmsc Réduthionisym 5 by L wokch; subiradted b'Yom colomru!

o::\um Whse ReducHon 'stm = 30"' 0" e\emi’_’/___ : e veduction'sum)

C.O‘Umn w‘)S
c_omt.tla.hve RCAuChO’) - YOW wse veduction SUn’) %+

Lound |
wlady kedumon as loued
Step2: For storting rode, we wil :Tahe_ cum:v, = . Pay kb oy

il o el e BT D s it comn 3 A do
A il padh L)) comdwe::l, ~then qha\('cde n w’row L g

/ \

c:orr\’o&n‘m% 4o 0L '€ all enMmes dg-wé‘w’ ??AOAM COvdo..lms 20]
Also {W\d c_,unq\dodwc V‘edttchor) (Eo P | Y7 ") 9
d) ¥ b colewlakd in Srepe) S04 iy Wl L gy ke ¢ itk g
LC(S)=c(R)+A(1,4)+Yl : - *‘h',“i. =, ¥
SRy — lowseak nodpd (Lol Whnale ¥ 4 USg e

cls) ~ yanki hg b—unohon (cosr b—o"‘d"on) . !
eL Q"I’Q \/\S\w ;

vy bt % ek b

—

kepea,“ S‘\‘&P?- \Jn'h) ;all Y)Od

TSP Example:
| |

ls+ef>\ ApplY Row Redutkion

P p l‘ 1 Dedudk (0 twom aﬂ\’mw i
Given cos¥ rpal\‘{"ﬁ ‘,SH | ‘Pedm-a_ b:rom SR YOR
(0 koo o) | Dekeks pron YR
s 0 b 4 % pelluek 3 yorn i N |
s 58 @ 24| |l "oeaudrﬂn.wrf’,..‘,"mw
g grwe s Ceo 10 20 04l T
LLA—’I‘G"OJ 3 oo 14 = 0
s #ap %
5 3 gEs ©
g Tar iz *

\ J Wi
Rowwise Reduckon sum= 10 +2+243 +4..:‘%}

e —— e

Aol co\omn Ytduchon 0 Padend cost b,
Deductk | kYom {[s}- LO\Um!) [0 10 “\? I '
. De_ﬂ# 0 bvom and co\umnl R 00 I 0 s 0 edvltd'% Rows.
e 0 "
Dul\‘&Ur,]T%m g L0lomN A : S i ,TO O 1l ey
D&%\l&"o prom a4l ¢olumn | 8 0
- :\” 0 012«00
pcd\&cr“o {om 51 cdlom ol 9
] i | =4 |
co\umn \mac Yoduckion ‘sim = Hmi}r_o‘io“_,. P "_.g.“
' T T o e by e AE /J
_ pow s, % o
¥ i \O&M RQAQCHM feduc chon Son yeduchon $917 [t T VTR

E‘E{’j— 5\0~h’l\~g wn“n \Iﬂ‘\'&m (nodc) s 1 heM he,can \hsr} ”:Lnd,‘s'rd 4% ov STh

"l.i-)“l ¥
| I W v ‘ ’ : : vl b e 0000
\ seledk A(1,2) and d\owae_ Is¥-vow E‘oﬂhd t_olumM awre o0 :

sek M?-,l) ¢ The Rerwltant oA i

_[op—cn —00—00 80

@w W 20

lv. 1 O(‘;'OOO‘OZ—“"".H,',

' ' \S,oo 12 o0, 0 " ,
‘ (14 '...‘I.H"
\ \ oo o0 1% X iv‘;dt(,no,,;(app(g“ ot Tows

o
| Apply oW Yedu chpn' §/colurn veduckion —5 but here S o
[; ;

| and co\umv\b comtaive pllierines ok o0 | i of |
(s \ |
5 +pyr0=D :

i Immlhd\ons\;m 0+0
| Co\\Jmn \’Eclu(_ﬁor) sum = o+0+0%0

:Dé

; o b =D -
il i Nouvo WiSE CQ‘\“""” “”“ | -
l | _ comul.aH\JC \reduuhon L%) i WSS W

f b ol c(s)cc(R)+A(\7—)+"7 |
ll ‘ L a5+\o+oi_zs ">% ity il g,

| § ' : T ¥ a y e " f
s;m‘(ow‘(g we, apbly bav A L3) Kt d |
' co\va ove 20! Wil e

@ Sdecr AU/B) olnd 'ichauge A5t Yo § 31 WL =

')

sel A(3,1) « @ The vesultond o ¥ by W
y oo
_.,—-oo-—oO“g@“"’o 00— ,AEA‘*(—" o-b¥om pwd
) o ‘ ldeduck o rxpm 34T
=) 3 L dedugh o promith Y™
IS '3 dy o® O “'. : duide\Y’rm St yow
0 o TR ‘
e[l 1 7 .‘7- d _J ‘[Co‘Umy) Y'Cd‘*d"on
Apply Row Yeduchion W veducHon i
i FPL e PO ol | deduck o ‘S+;o
Yow veduckion Sum o 0 \O*OI‘*‘O— ho deduck 0 Vo™ 2l EB{
co)l veductHon sum = n+o+0or0 all deduct O ™ 4T 01
| s cof

o;+ n="\ deduct 0 Y™

7

Comulodive veAqdnon)
o() = c(&)~‘-AU 3y Hih

. BEY I e T8

ctsy) = S3

.,a’.:xm e

e e 4

% Seled- AL),4) and cko\nﬂe ISt vow § 4% colomns axe 0 |

‘ set Al4,1)c (00" The w@.ud*an* ma\‘t‘l‘& 1% @ .

\“'[l

‘~—8b-06~ooﬁ ,——og N %
T W e) 6 | ' IRov Reduction
10 B8 i 2 - deduce o [-,-Yom;v\d Yoy
| @ 3 n 0 deduce 0 from 3vd v0.
.Ql o 0 - dcdu\‘u_ 9,’5@"’ 41k vou
a? | J ey de.o(\kce 0 L-ch)‘ sts rou

Al fpely R°V° “3'5'3 '2', column WSe m(wvhow
CO‘ {e,duchon

R
You w_alw:hoq svm o400 *d E O b by

| vom'\<F cof |
| veduction sum = 0+0+P+0=D A o’eduu_ 06 om'

deah_u_ (@) 6¥0"m md C°'1

Cumu(ah\lc yeduthon (Y) = 0 + " dedute 6 hvom avd o
¢! &'
SR J CLR) +ACL,H)T A) , Wedu 6ilrem % eo)
&5"‘0'*‘0 QS ‘|i“l“ &)lll]l “".iv, | »‘ .’,l‘
l i exks "i (3 {y, o
42:(9):95\ N A T b
Sdedk AUL,S) and “—‘\N«ae |.st row'ﬁ sk COlUMM qr'.e 'a,b ')’“
s A =« The veltant modin ie 1 [AL,S) J
g1l PEUL o
“‘N’Ww—w = Y ko,
rl')_ gy . Mucm') % g
0 3 o0 0 | § e d&duﬁL L‘,xﬂ') MdY /
IS 3 1% VSR e dues. oh»rmsro\rm?'
; ¥ Wit oo
‘ @0 0%t .. A f,' ’. g o\ecuursm"m 2ty o
APP\\A Row wdise 3 column tiee mlumov) v deduw © brvcms ST ¥
] oy ey
-(ouanduchon Sum = 2—-'*'.0 3"'0 ~ 5’ b ¥ ;Co)Tealt(d‘TO'T) [
| e re_olwchon Sum < D #BFOTO=D0 1 1 Jeducc 0 vom dst <o
N eolie 0 fvom and cof
ve v co(Y>~5+° = . \d
Cumulo\:h e uluL‘ n Lﬂ de_olqu bb-rm'h' ¥ cof,
Lo =W A8 5) K A et o b g
g : T A

. _‘;\5—+|+b 3) " O

4.5 IR r!' 9y ' | \ ‘.‘ o

Seleck | =2 & i Y MU

o) od) o) 20 o)
ek 1134 il o I o) O
Reduced M - e &
o0 c
D 3
=) 3)2 ©2 o
od) ol

Consider Now

432,433,425

| | 2N
change 4Th YW 5 |
COv\Mdt\ the PMh MA;?-) and v ot AT

set M'L;l) = 0. The VewLani' "

. i ¥
P‘ﬂ % w w 007 ,’/ '» I '»' |
@\' ” 00 O IS 'I | 3 Ur'h - o+0+0 =0
ovedtion S _
0 00 o0 M0 ?—- Yol +°+0_
L, (_nl’)"t.ducﬁm\ sum =0
el —-(1\\)—"90-'_’0’@—}— . : ‘ \
i o "' i AT
! L“ 016 y OQ] h:m I',I“"""" RSt ’-mr’») oy
Yedub ¢ A A ‘, ' '
‘ App\\j ch veducHon & qo\un?r)‘ i | 040 ,;_:o' sl T .
| cammalative veduction {7 = e E
" h ARy AU FT T B0
' c(s) = \ ' Py |
‘s p! gE B FOG T kg J
|¥ LSRTN, S ey =ag| e Py s GOV B Wb

=

s

RSO o

) P,

l'l‘l

seblA(2 /1) =0 Tt mw\@hi‘ mo&fm s R

consider the \Pcd”h A(+,3) and d«omge 4—%’* qarﬂ eBlumd owé 0.

Cﬁ‘by ‘L}

vyl .j
PADKEY S o 3 e b it | +0=2%
| 19 A Y e o ¢ e pmen ey Q- o
: L e E A 0 'wwvcc"ucﬁoﬁ 5\‘”:"!] ?+'
@3 b o 2| e weiston, S0 i =1
| | Y o5 ! “1‘\” {) t \
| =P 0000-'70 in VY oy)ag ngu)f ‘ M\”
| : { """Il(ln.
L“ oC]J o {hon.ll" | .mr°° 0 20 %
APMY Rormduthoﬂﬁ column redul ‘i)| e
| c_qrnmuLod\ve Tecltkf—hon U)’Q'HI | i | gy g
i~ I { "\,o D 0 aOoO
& FALAD +%h l '
: -] 1‘\5'\"'2- i ',‘n.l) (,« N |
l\’z(s): 5:31 Fgreh B ooyl baoiyy "“."“n"""” |
Fyr e I‘! bk " ;3 ; t
b il 1oy "I“"'l;_‘_"’___)_’}__ll/’
__/, | : |
ave ed.

sonsider The chH') Al45) and 'chonge 4-TF> fo»&‘,‘ S‘IE .colw?m
sk ALS, 1) Q' The vedutant mwn T A 1‘ AL+,5) =0|

0 2 & Qigh |0

commulehive veduction () = N +0 e
R(s) = CLR) +AT4,5) T
ca5+ D+ = 3¢

fﬁoa‘oe,_m.-ﬂﬂd]—'-w il
@000060.4 .“

A
PPY Rou Yeduwchpn gwwmh weduthon |,

\

f-w R @ d)fo \mw-r(_id Lhon S\Jm‘=“[+)°+0
oQ |) & I
20 ! Mo (ol r"i—,’h"n SU‘M'WO"’D*DFN”}

b Ry

=l

o B 7l

-

l"o" 3 OQ) ‘)
‘W g N DD

o

foooﬁmwﬂo

|‘ooo"°°°
0

0 o 0D

\

!
J

\
f

2 . e =S
Chi ° i = 3 < i
I > S
)
« =5
2
\ 0
S
= 2%
se)eck) — 2y o TR M N MUY volue
- oD oD 2 oD o
Reduced Mok A = 2. 5 " . 3
'®) oD o (=) or 2o
Consider Now e LA Lo i
e 1" o> O o 2o
. |
Q.
°°"MA“ P"Lm A(2)3) and dw\ﬂc ﬁnd mw{ zrd co\umnx e
' g o =)
Sd ALBI., 70 " Th V'p{uHan\ MOLM'KI , .x‘ A[‘L,'.’:)' |

i Ay :‘1 y \

& ,‘,’{uq\)“‘(“ﬁdt&d‘lrm '}?Umh 9—"‘" U"'-HQ:HI».
K

l I C,b“ V'LAWd'\Of) SUM l: HJ{-O ﬁ\”t ¥

/\, \f‘ao A
.. A-r.‘—wL_m
A

N

|‘ . I'l.m "@r il | R ':I‘ . iy ’ |
fiy! I § " '|| a
ﬂ ')‘ !, M\LLQA mm’«

i '“”“ o , d-l
t F ik s I ‘\’l
App\g,ﬁow mlucﬁon? w\“’M,MM]’ :3" M et o MOT
ki T =
. cummu\.odw'a m\uchof) (=% o o o 68 e 0 &
. T (;(R)-!-M'J-zg)‘m R TN
‘ ‘) | '| n"' : ;

& x i ' & 29__““3 Gﬂr rmm; 9?,'3(}\30 od 0

P ; Lo o0 00| |

P 't Tl
A il V-IE\LS)':SL[P 4 T',)')' "‘l Iy 5 A

' "r'l“\yl Aol

10

0 I O

consides path "\(1/5) and cbwsﬂe, 20 rouﬁ gt,\wl\,m% pos
Sf—* A(S,I) X i'The fasuld'mi' MMY"K V.h (0, }

!

>3

X .
.lA(‘R/‘-‘;)’-a'

I\' Y, |.r("0 OO DO Do -~
ENY 200 1 "TOW'(‘A"\d"O” 5"'" 0]
' h Al : L ’ il
N D' X 00 o0 MO lco&|pmn V'Cd\#k‘on .sum b il
|| u.,.°°°0°0 . vy ‘/\ by
‘ DO ‘0 Oo.l \y [' TN |
«eA'mo{ Al RN |
ApPly ROW irkdulction € co,\wpn |° Kov o |
DR 1y 1 \ ‘ '.‘..;‘; ‘ { _‘): |
c‘_ummwldftwf faﬂud‘ton LIy & ot 0 r L o3y
| il
, 'l/\(S)~ CCR).).A(’Z_)Q)‘}‘T] I . '
| T { | e i i
il ‘ (g WS ” + 0 “”4[i i L ,V . | i
| ," "l, 'I \ ~,:\i$ 0"- ' g | " ‘l.llhl")] "' u.',l(',\“’l)r"”." i, ;‘\
Ch) a (l | i A SR g 1 .
.‘C\.CS’) ~ A%\ &l ’.‘ Pooy by \u.‘l\!h'(“f} ‘
Sl i O l VTR L R ¥,
<
e
splect 1 —=Sdp =2 2 — 5 with minimunm value = .
Juced MMokaiz = = il
i e o 0 oo XD
3 20 oD o oD O
Consider Now s mgs vl oDab
00 o0 o0 2 &V

11

ATy]y

: ' " e er P .__._,.__-"_A._N
= YOWifz’Td “{ ’v“(|nl)llh
idex poth ALS3), '—""‘“‘ﬂt 5Tb £,
“ e P > l)" ars s Ve vuw\h\v\& fﬂ‘*‘*"t ! I”'[. 'f}”” —
ser ALY i ff
(00 "Ub aom‘ '(om"d‘“mmsum Q
21, gl veduckon SV Y
°° b /’ A TRy A
00 ed e " § L
1ty l leni l Nran n‘ ‘;.' Eﬂ\hql QOSUM‘ ,TIY',,“,, o

[y P _p_O 3)
—w 9. 'f{-ed*ch ,‘ ,}.' ’
Umn ‘) b4 NP v o
i .(@,alwqh eo\ | .y o i ,“ P l. AL ""?’.A",’,IA

- - g —

"/lf’{ *,.11)"

APP\$ e). bh(ﬂ') [% 8 ol - R
' cmm‘*w""e " r:\fh sy s o 7!-/) i o 50l 3% 10 1)
P RY T / | s 'k, ,
| f‘gcs>= A ¢ 0t oa s Rub 4o
(4¢3 cotggle qro < N
’s A : e (W is Mean g R F
1 e e VZ‘ZE b s g
' | ?Yob)em"‘—" A o 0 f’;"g- i
sa‘&%mﬂn : | oD
'T"')ﬂ Pa)ﬁ,,’)db_ Hoyﬂl‘"\% VO)l ; . 1)___;l$|_.—> ') nn/’ !,F Ijelhﬁ}_; ; < :
\ "'34' = 2— 5 ; R c“’ g
) '> . ". ,’l 3 ."
3 - 7—8/ l) SR g o | sty
¢ 8 cost"°+"+2‘+:r'+ : -!:"
Mm\muf” . ‘. R Tl Ry g g

12

4.3 0/1 Knapsack problem using B & B
O knapsack problem vsing Bvanch & Bound showld not emceed)
- 5 ' &l . e '
Place he e 1o bag § get maumum PRI Prapensk Sap ™

12,12)

Mels, n=4 (PP, fa fay = (19,19,

(W), Wi, Wy, W) © (2,4 6,9)

bov ¢ b wed ¢
> Tn d4his problem we Wil calewlete Joraen bourd §up

pex bound
Place 16t \tem — vemaining welglt = 1§ ~2 = |3
Place 2nd tem — vemoinley el © 13-4 = 9
Place 21 item = vemalain weiged « 463
We cant p\o(c; Adh \em =) knapsack, ICAP‘\‘)N enceedld.
PfoH# » ﬂﬁr(’x*f’z = |IDFHIDT)2 = 3%
Upper loound = 3% Homs ane albowed

pace Wg in b*G since. b

- W¢
To calewlele Yower b oL Hons Qe ",?_".“"Wd'

ol M «— Since yac
To eodculole Uppey oud h e Camﬁ——%—-‘a'fcmmvi"& welgul
>
+ [—XI8 5
L wedgd 9 W4

f
|oucvl90t)04—. 2246 = 2Q

knapsack problem = mosimigation peoblem '
\ s mizaion problem
RKB o CL\)P\«M }U{on\\a MiNIMIZ) Al
T vt mom'lm'qo\ﬁof) Pfob\em into m\ﬂ\M\g\(\hof) P\fbbkm Ng hawve
o con

nfﬁ@ﬁ\lc Siﬁn kq'f Wpper L,ow,ol {‘ loweA bound . |
V. (\L\)pevbovﬁd) o LR,
L LLowes bovd) = 738 Lade L W 59 U

13

. - |
I ' 4ang) bounds . '
careating uppar baunds § lower bounds e % ‘
L B R et '\hmﬂwf*ﬂf =0 — not Incdude 18t 4em

Node &' =1, U s

; iy I"'t|
‘ 0] ‘U“': ‘o +\L = 2’”’ A l "\

b ‘7— . ?Q— . oy 'l' e
J = |D+\O T‘\ ': d m o

i b +‘w.j\-(gx\z) > 32

L= |o+|o+’lz+(_§’_x\8') = 3%

IL:—sgx | 0 \ | @

Noxt, we caleuloli dibfeence dr Whpr bound gﬂoéc&kwhdﬂw nodes 8,3
e v
' b Syt Gep g s g

v node 2 — ’

bov node > = U=
b Since ipros (B

) 2]" f
p s ~29 49 1400 gy, "M

mum diperence volue 6,

choose node

‘w\;

o
BV \
0 L= \
3 v
,o" l \"’ 2
,,\ L=
g Vg ,'1/"/
/I,’V \ 1~ ,45L
M S A%

v
Calwlating uppey bouads ¢ lower bound4

Smm——

Node 41 . =) o Include and Hem
d= jo#13 =22

= £
[e com
i 7()&):3% L =10 +n7.+(qix)g) = 3k

S
L = oo+t (g |
lL: -—385 i L= =36 l nd td{ nollbs 4,5
| o P boo
\ per bovnd ¢ joten
calenlafc dab—kv\c.nu‘ d- AP

& A% - {
kov hode 4 = y-L =-32+3F

kmﬂOdCS"—)\J"L :_7,7,.{-36—_]4— OJMG
ah MINIMAN) dipeence ¥ |

NodeS =0 > donok include 2nd 1M
Node>,

NQK"’ , We

choose node 4 since 1t b

14

7 /.3([Az =) Az = SIAGT
< \),./?9% ’ ‘ v
A\ - ,’5¢‘ | ‘
o~
cMW(koonds § lowd o oind 4 b/ ’ A9y
volh o AheBUNERE dyd Wem | Noded! W30 =donot inclde avd tem
BRI

U=lotipt)e =38

U- oot 2= 2% 1
L=(o410H% +(%’.$‘9') =3¥ \.c\‘ 10+ \qr*r(%-x\%) = 38
iL: "33& }_Eifﬂ

1’\, Wt wdwlaﬁ d‘

jov node 6 2 UL =
bov node 3 = U~k = 28 438 =0
v hod myinimum dijfeenc value 0.

freumc df- appy bound § (oW looond {Tornoolu b,

-39 138 = 6

Ne

chpose node F since 1

15

) = «%1,

U= A ///// ;:t:>\ ~3a

c,zgo LT_:"_

%t‘\
Ve 22
Lc"}q U_,.L'Jﬁ

Ct\lcu‘a*ina \lPP(’J\bOUnds Elowa bOUOAS,
Nodes « w4 =) = nclude athifem | | Nodeq: A4 =0 —90\0 not include 44 item

‘—~
!

U=lot|btly = 28 U= 10410 = 20

< lo+i0t18 +(%—'x1f> =38 L= 04104 %x)‘t); 3¢
-.Lt"bg" | |

Nt we calewlale uppe«bounol {Ioow\boundo v nodes £
borpode s o U-L = =3k +3E7 0

\ov node g — U-L = _20+3% =18 i
Choose node € = discard node q becavse it MA’

.mum value .

4

16

4.4 Lower Bound Theory - Comparison trees

.Wd co"ed"“"’e‘ﬁ trled

SWe whe Compt!MStm frees ‘.0(dm\m\{‘ lm bounJ:) oN pLOUem

soﬂw@ q S‘uwdm{
Gotiy proben — We have o set § G n d\s-};nu‘ VdW) (
% o PL) - . Plv)
B qu it ALP)
s’f"f%e n AL sakely A[pm]<A[Plz)]< -
in
A N
Orderdd s that ALTL- (n) —

b
L o ‘ W_ o 's in A{’ nJ o\d-u,mme PDSH‘]DA t
such that A1) = "

17

« i apen) 801"
. ()
on Do ¢l 'min)

MC'(\ p
T Froblen -y ordeved celp y disHnck "‘P“l’-’ \-{om

ALY ¢ ALR) - (] aLN 46l
these mn volus o # be m«ofqed
1 c[man),

(NLCr) - el

TeAl pdolems can bo olved by faking
alﬂorlf‘nma US@A hwﬂ A L&UCA LOMPMS(M BMCJ ﬁON‘th
@mdavgd so)’-’-wf

We comider Compatisem e al%w'\hﬂd I which every COMPA'mswn b two

Clemens - d. e Type " compare y gnf ALY

———

‘ - . Th
compmsoM 5/ demenb

hee ave 3 pocsible gutcomes A hig compamsom
A<AC) ‘) lE(r'l' YOW’“) |
= A[l] -) al«ao,uﬂqm ‘Tvrmmﬂm % ‘j 18
AYAlD o Y.Ub\k bvanch

| ",‘| ,

compening A § eath element m Al t]'> algouthm waed,

~—>"fa«ch uoS\Actﬂ'MW
b, oftered so tat ALT) &-AD)

n the werst cme/bv

no L & fovnd
et Q1! Ny, N7l ewontoln n dishnth elemen
Lef FIND(1) be The minimun 70 CompaniST™ needea(|
any Compmsen ~ bened algo&|fbn, -%n Yecocaw;c ahethr € ALIND) . Then
FIND (0 7{log (111)

~

18

@ Savhivg:

consder N nomb"”s

CDMP@"”%

in ' ACI:

‘A(E]Z;ACJ] . A[']
(= pOSs;b;U’H‘CA)

<4

binosy e

Failures

ATI< ACYD —> proashs e 19

(rf’ bvandh

>AE4] __.)pfow o) \nﬁld‘ bYancL,

dewm

Failure Failure

Faslure

Failure| [Failure

Failure{ (Failure IFaimLﬂ Failure| [Failure

Comparison trees for two searching algorithms

19

1,2,3 (1:3) (1:3) 3,21
o ‘ g - % a ™
[1.3.2) [3.1.2] [2.1.3 EXND

Figure 10.2 A comparison tree for sorting three items

Example 10.1 Let A[l] = 21, A[2] = 13, and A[3] = 18. At the root of the
comparison tree (in Figure 10.2), 21 and 13 are compared, and as a result,
the computation proceeds to the right subtree. Now, 13 and 18 are compared
and the computation proceeds to the left subtree. Then A[l] and A[3] are
compared and the computation proceeds to the right subtree to yield the
permutation A[2], A[3], A[1].

(N

€) selecion
To And maximumi diy N ¢ e\emenbs ~ atleat i m’rwnal nodes
* Since each path b—Yom Yoot '}o any enfernol node Mt Covtain Mw%
=] indesmal nodes.
* Atleast - lcompmsm nceJeJ WOWW.S: oot F90 0 inpwk Item

SUPPOCE Ly in) denolis Lowen boond ¥ M0 % compemliny |
= K conpamsan algodtthm i 1o defermine 1002t setond longeet - K

|ovgest dy-d- n elenens Tn workteane

M) 7, (logatn~) ==+ (1" kt1)) Compesions are needal,

20

Lower bounds through reductions —
1. Multiplying triangular matrices
2. Inverting a lower triangular matrix

3. Computing the transitive closure

Definition 10.1 Let /7 and I’ be any two problems. We say P reduces to
P (also written P, o< P) in time 7(n) if an instance of P, can be converted
into an instance of % and a solution for /% can be obtained from a solution
for 1% in time < 7(n).

Example 10.2 Let P; be the problem of selection (discussed in Section
3.6) and P, be the problem of sorting. Let the input have n numbers. If
the numbers are sorted, say in an array A[|, the ¢th-smallest element of the
input can be obtained as A[:]. Thus P, reduces to /% in O(1) time.

Example 10.3 Let S and S5 be two sets with m elements each. The
problem /7 is to check whether the two sets are disjoint, that is. whether
S1 NSy = 0. P is the sorting problem. We can show that P o« % in O(m)
time as follows.

Let S; = {kl?kgg...,k:m} and Sy = {¢,¢2,...,¢,}. The instance of
Pz to be created has n — 2m and the sequence of keys to be sorted is
(k1,1), {k?g-.l},.. s (ks 1), (61,2),(02,2),..., ,(€,2). In other words,

(,d.(h key in X is a tupl(, and the sorting has to be done in lexwogld,p]u(
order. The conversion of P, to % takes O(m) time, since it involves the
creation of 2m tuples.

4.5 Multiplying triangular matrices

Triangular Matrix Definition:

An n x n matrix A whose elements are {a;;}, 1 < i,j < n, is said to be
upper triangular if a;; = 0 whenever ¢ > j. It is said to be lower triangular if
a;; = 0 for ¢ < j. A matrix that is either upper triangular or lower triangular
is said to be triangular.

Lower Upper

Triangular Triangular
1 0 0 2 -1 -2
-2 1 0 0 4 =3
2 - 1 0 0 3

21

Lemma 10.5 Afi(n) = Q(M(n)).

Proof: We show that /7 reduces to % in O(n?) time. Note that M(n) =
Q(n?) since there are 2n? elements in the input and n? in the output. Let
the two matrices to be multiplied be A and B and of size n x n each. The
instance of /% to be created is the following:

O O O O O O
A= O O O B'=| B O O
O A O
Here O stands for the zero matriz, that is, an n X< n matrix all of whose

entries are zeros. Both A’ and B’ are of size 3n x 3n each. Multiplying the
two matrices, we get

O O ©
A'B' = O 0O O
AB O O

Thus the product AB is easily obtainable from the product A'B’. Prob-
len P reduces to P in O(n?) time. This reduction implies that M (n) <
M(3n) + O(n?); this in turn means AM;(n) > M(%) — O(n?). Since M(n) =
Q(n?), M(%) = Q(M(n)). Hence, My(n) = Q(M(’n)}-

Note that the above lemma also implies that M(n) = @(M(n)).

4.6 Inverting a Lower Triangular Matrix:

Let A be an n x n matrix. Also, let 7 be the n x n identity matriz, that is,
the matrix for which 75 = 1, for 1 < k < n, and whose every other element
is zero. The elements agr of any matrix A are called the diagonal elements
of A. Every element of I is zero except for the diagonal elements which are
all ones. If there exists an n x n matrix B such that AB = I, then we say
B is the inverse of A and A is said to be invertible. The inverse of A is

also denoted as A~'. Not every matrix is invertible. For example. the zero
matrix has no inverse.

-23

-‘l_

A=

-231_[10

43
-1_
AA"=132]l3-4]% |01

22

Lemma 10.6 M(n) = O(I;{n)).

Proof: The claim is that P, reduces to £ in O(n?) time, from which the
lemma follows. Let A and B be the two n x n full matrices to be multiplied.
We construct the following lower triangular matrix in O(n?) time:

I O O
C=|B I O
O A T

where the O’s and [I's are n X n zero matrices and identity matrices, respec-
tively. C' is a 3n x 3n matrix. The inverse of C' is

I 0O O
C'=|-B I O
AB —A I

where — A refers to A with all the elements negated. Here also we see that
the product AB is obtainable easily from the inverse of €. Thus we get
M(n) < Ii(3n) + O(n?), and hence M (n) = O(I;(n)).

Lemma 10.7 I,(n) = O(M(n)).

Proof: Let A be the n x n lower triangular matrix to be inverted. Partition

A into four submatrices of size ’23 X ’25 each as follows:

AZ{AU O]

Az Ao

Both A;; and Ass are lower triangular matrices and As; could possibly be
a full matrix. The inverse of A can be verified to be

-1 A;ll O

A = —1 —1 —1

— Ay A21 AT, Ass
The above equation suggests a divide-and-conquer algorithm for inverting
A. To invert A which is of size n x n. it suffices to invert two lower trian-

ular matrices (A;; and Ags) of size 2 x 2 each and perform two matrix
2 2 P

multiplications (i.e., compute D=A,, (421 A;}')) and negate a matrix (D).
D can be negated in %~ time. The run time of such a divide-and-conquer

algorithm satisfies the %ollowing recurrence relation:

2
I(n) < 21, (g) +2M (g) + 7—3—

23

Using repeated substitution, we get

Ii(n) <2M (g) +2°M (%) + -+ 0O(n?)
Since M (n) = 2(n?), the above simplifies to
I(n) = O(M(n) + n®) = O(M(n)).
Lemmas 10.6 and 10.7 together imply that I;(n) = O(M(n)).

4.7 Computing the Transitive Closure
Let G' be a directed graph whose adjacency matrix is A. Recall that the
reflexive transitive closure (or simply the transitive closure) of G, denoted
A", is a matrix such that A*(z,7) = 1 if and only if there is a directed path
of length zero or more from node i to node j in G.

Lemma 10.10 M(n) < T(3n) + O(n?), and hence M(n) = O(T(n)).

Proof: If A and B are the given n x n matrices to be multiplied, form the
following 3n x 3n matrix C in O(n?) time:

O A O
C=|0 O B
O 0O O
C? is given by
0O O AB
c*=|{0 O O
o O O

Also, C* = O for k > 3. Therefore, using Lemma 10.9,

I A AB
C'=T+C+C*+- +C"'=1+C+C?*=|0 I B
O 0 T

Given C*, it is easy to obtain the product AB.

24

Lemma 10.11 T'(n) = O(M(n)).

Proof: The proof is analogous to that of Lemma 10.7. Let G(V, E) be the
graph under consideration and A its adjacency matrix. The matrix A is

partitioned into four submatrices of size § x § each:
A= | A A
Az Aao

Recall that row i of A corresponds to edges going out of node 7. Let V] be
the set of nodes corresponding to rows 1,2,..., 5 of A and V5 be the set of
nodes corresponding to the rest of the rows.

The entry A7,(¢,7) = 1 if and only if there is a path from node i € V3
to node 7 € V; all of whose intermediate nodes are also from V;. A similar
property holds for A3,.

Let D = A15A5 and let w and v € V;. Then, D(u,v) = 1 if and only
if there exists a w € V5 such that (u,w) and {(w,v) are in FE. A similar
statement holds for 457 A45.

Let the transitive closure of G be given by

« _ | Ci1 Ci2
A _[CQI sz]

Our goal is to derive a divide-and-conquer algorithm for computing A*.
Therefore, we should find a way of computing C,,,C:2,C5;, and Cy from
11 and A3,.

Using similar reasoning, the rest of A® can also be determined: Ciy =
Ci1A12A45,, Co1 = A35A2:Ch1, and Caz = A3y + A55 A2 Cii A12A3,.
Thus the above divide-and-conquer algorithm for computing A™ performs
n

two transitive closures on matrices of size [} x § each (A3, and (A, +

A2 A3, A21)%), six matrix multiplications, and two matrix additions on ma-

trices of size 5 x 3 each. Therefore we get

T(n) <2T (g) + 6M (%) + O(n?)

Repeated substitution yields

6M (g) L 12M (g) +24M (g) Ty] +O(n?)

But, M(n) > n?, and hence M(n/2) < 4M(n). Using this fact, we see that
T(n) = O(M(n) + n?) = O(M(n)).

Lemmas 10.10 and 10.11 show that T'(n) = @(M(n)).

T(n) <

3k 3k sk 3k 3k 3k 3k 3k %k %k %k >k 5k 3k 3k %k %k %k >k %k %k %k %k %k kk %k k sk k k

25

UNIT-5 DESIGN AND ANALYSIS OF ALGORITHM (P, NP, NP-COMPLETE, NP-HARD PROBLEMS)

Introduction to Problems:

of the problems that can be solved in polynomial time. For example :

There are two groups in which a problem can be classified. The first group consists
: scarching of an

element from the list O(), sorting of elements O(logn).

polynomial time. For example : Knapsack problem O(2

The second group consists of problems that can be solved in non-deterministic
n/2) and Travelling Salesperson

problem (O(n?2")).

e Any problem for which answer is either yes or no is called decision problem. The
algorithm for decision problem is called decision algorithm.

e Any problem that involves the identification of optimal cost (minimum or
maximum) is called optimization problem. The algorithm for optimization problem '

is called optimization algorithm.

Types of Algorithms

>

Two types of Algorithms:
1. Deterministic Algorithm: It has a property that result of every operation is uniquely defined.
2. Non Deterministic Algorithm: It terminates unsuccessfully if and only if there exists no set of choices leading to a

success signal.
To specify such algorithms, we introduce 3 functions:

1. Choice(S) arbitrarily chooses one of the elements of set S.
2. Failure() signals an unsuccessful completion.
3. Success() signals a successful completion.

Example 11.1 Consider the problem of searching for an element z in a
given set of elements A[l : n], n > 1. We are required to determine an index
j such that A[j] =z or j = 0if z is not in A. A nondeterministic algorithm
for this is Algorithm 11.1.

1 7 := Choice(l,n);
2 if A[j] = = then {write (;); Success();}
3 write (0); Failure();

Algorithm 11.1 Nondeterministic search

Example 11.2 [Sorting] Let A[i], 1 < 7 < n, be an unsorted array of posi-
tive integers. The nondeterministic algorithin NSort(A,n) (Algorithm 11.2)
sorts the numbers into nondecreasing order and then outputs them in this
order. An auxiliary array B[l : n] is used for convenience. '

1 Algorithm NSort(A, n)

2 /[Sort n positive integers.

3

4 for i := 1 to n do B[i] := 0; // Initialize BJ |.
5 for i := 1 to nn do

6

7 j := Choice(1,n);

8 if B[j] # 0 then Failure();

9 B[j] := Alil;

10

11 for i :=1ton—1do // Verify order.
12 if B[i] > B[i + 1] then Failure();

13 write (B[l : n]);

14 Success();

15 }

Algorithm 11.2 Nondeterministic sorting

P, NP PROBLEMS

P is the set of all decision problems solvable by determin-
istic algorithms in polynomial time. AP is the set of all decision problems
solvable by nondeterministic algorithms in polynomial time.

Since deterministic algorithms are just a special case of nondeterministic
ones, we conclude that P € NP. What we do not know, and what has

become perhaps the most famous unsolved problem in computer science, is
whether P = NP or P # N P.

.

‘—\—-_‘—-—\.___-__——"F.'.f

Commonly believed relationship between P and NP

NP-HARD & NP-COMPLETE

(Computational complexity problema

! |
| [P - class] NP - class j

l 3]
.LNF‘—complete [NP - hard j

et

REDUCIBILITY

LLet Ly and Ls be problems. Problem L, reduces to Lo
(also written L; o< Lo) if and only if there is a way to solve L, by a de-
terministic polynomial time algorithm using a deterministic algorithm that

solves Lo in polynomial time.

NP HARD PROBLEM:
Every problem in NP class can be reduced into another
set using polynomial time, then it is called NP Hard
Problem.

NP COMPLETE PROBLEM:
The group of problems which are both in NP & NP
Hard problem are known as NP Complete Problem.
All NP problems are NP Hard but all NP Hard
problems are not NP Complete problem.

;NP
rs . AfP-complete

AP-hard

Commonly believed relationship among P, NP. NP-
complete, and N P-hard problems

Cook’s Theorem:

Cook’s theorem (Theorem 11.1) states that satisfiability is in P if and only
if P = NP. We now prove this important theorem. We have already seen
that satisfiability is in NP (Example 11.9). Hence, if P = NP, then satis-
fiability is in P. It remains to be shown that if satisfiability is in P, then
P = N'P. To do this, we show how to obtain from any polynomial time
nondeterministic decision algorithm A and input I a formula Q(A, I) such
that @ is satisfiable iff A has a successful termination with input I.

Before going into the construction of @@ from A and I, we make some
simplifying assumptions on our nondeterministic machine model and on the
form of A. These assumptions do not in any way alter the class of decision
problems in AP or P. The simplifying assumptions are as follows.

1. The machine on which A is to be executed is word oriented. Each
word 18 w bits long. Multiplication, addition, subtraction, and so on

2. A simple expression is an expression that contains at most one operator
and all operands are simple variables (i.e., no array variables are used).
Some sample simple expression are —8B, B+ C. D or E, and F. We
assume that all assignments in A are in one of the following forms:

(a) (simple variable) := (simple expression)

(b) {array variable) := (simple variable)

(c) (simple variable) := (array variable)

(d) (simple variable) := Choice(S), where S is a finite set {5, S2,..., Sk}
or l,u. In the latter case the function chooses an integer in the
range ([: u).

Indexing within an array is done using a simple integer variable and
all index values are positive. Only one-dimensional arrays are allowed.
Clearly, all assignment statements not falling into one of the above
categories can be replaced by a set of statements of these types. Hence,
this restriction does not alter the class N'P.

3. All variables in A are of type integer or boolean.

4. Algorithm A contains no read or write statements. The only input to
A is via its parameters. At the time A is invoked. all variables (other
than the parameters) have value zero (or false if boolean).

5. Algorithm A contains no constants. Clearly, all constants in any al-
gorithm can be replaced by new variables. These new variables can
be added to the parameter list of A and the constants associated with
them can be part of the input.

6. In addition to simple assignment statements, A is allowed to contain
only the following types of statements:

(a) The statement goto k, where £ is an instruction number.

(b) The statement if ¢ then goto a;. Variable ¢ is a simple boolean
variable (i.e., not an array) and ¢ is an instruction number.

¢) Success(), Failure().

(

(d) Algorithm A may contain type declaration and dimension state-
ments. These are not used durmg execution of A and so need
not be translated into Q.

7. Let p(n) be a polynomial such that A takes no more than p(n) time
units on any input of length n. Because of the complexity assumptlon
of 1), A cannot change or use more than p(n) words of memory.

Formula @ makes use of several boolean variables. We state the semantics
of two sets of variables used in Q:

1. B(i,j,t), 1 <i<p(n), 1 <j<w, 0<t<p(n)

B(i, j,t) represents the status of bit j of word i following ¢ steps (or
time units) of computation. The bits in a word are numbered from
right to left. The rightmost bit is numbered 1. @ is constructed so
that in any truth assignment for which @ is true, B(7,7,t) is true if
and only if the corresponding bit has value 1 following t steps of some
successful computation of A on input 1.

2. Sl7.4); 1 <7 <4, 1<% <pln)

Recall that ¢ is the number of instructions in A. S(j,t) represents the
instruction to be executed at time ¢. @ is constructed so that in any
truth assignment for which @ is true, S(7,1) is true if and only if the
instruction executed by A at time £ is instruction J.

QQ is made up of six subformulas. C,D,E, F,G,and H. Q =CADAEA
F AG A H. These subformulas make the following assertions:

C: The initial status of the p(n) words represents the input I. All non-
input variables are zero.

D: Instruction 1 is the first istruction to execute.

E: At the end of the ith step, there can be only one next instruction to
execute. Hence, for any fixed 4, exactly one of the S(j,7), 1 < 7 <4,
can be true.

F: It 8(j,1) is true, then S(4,i+1) is also true if instruction j is a Success or
Failure statement. S{j+1,i+1) is true if 7 is an assignment statement.

G': If the instruction executed at step t is not an assignment statement,
then the B(z, 7,t)’s are unchanged. If this instruction is an assignment
and the variable on the left-hand side is X, then only X may change.
This change is determined by the right-hand side of the instruction.

H: The instruction to be executed at time p(n) is a Success instruction.
Hence the computation terminates successfully.

Clearly, if C' through H make the above assertions, then Q = CADAEA
F AG A H is satisfiable if and only if there is a successful computation of A
on input /.

Satifiability problem

- [Satisfiability] Let 1, zs,. .. denote boolean variables (their
value is either true or false). Let &; denote the negation of z;. A literal is
either a variable or its negation. A formula in the propositional calculus is an
expression that can be constructed using literals and the operations and and
or. Examples of such formulas are (z1Az9)V (23A%4) and (z3VEy) A(z1 Vo).
The symbol V denotes or and A denotes and. A formula is in conjunctive
normal form (CNF) if and only if it is represented as /\é’:lci, where the ¢;
are clauses each represented as VI;;. The [;; are literals. It is in disjunctive
normal form (DNF) if and only if it is represented as VX ¢; and each clause
¢; is represented as Aly;. Thus (z1 A z2) V (23 A 24) is in DNF whereas
(23 V £4) A(z1V @o) is in CNT, The satisfiability problem is to determine
whether a formula is true for some assignment of truth values to the variables.
CNF-satisfiability is the satisfiability problem for CNF formulas.

3 CNF Satifiability problem

AT problem is a problem which takes a Boolean f
e having exactly three litera]s and check an formul
' means each literal is OReq to form w
an formula S].

Ay

SN

'g\fomula is an instance of 35AT problem ;

.?(C+é+f)(5+d+})(a+e+ﬂ)

a 5 in CNF form with
hether § is satisfied or not. [Note
a clause, and each clause is ANDed to

Let S be the Boolean formula havin
uct a simple non-deterministic algor
ues 'to S. If the S is evaluated as 1t

.g 3 literals in each clause for which we
ithm which can guess an assignment of
hen § is satisfied. Thus we can prove that

REDUCTIONS FOR SOME KNOWN PROBLEMS

7 | poly. time I’ algorithm for poly. time solution for

transform L, transform 7

Reduction of L, to L

The strategy we adopt to show that a problem Lo is NP-hard is:

1. Pick a problem L; already known to be A/P-hard.

2. Show how to obtain (in polynomial deterministic time) an instance I’
of Ly from any instance [of L; such that from the solution of I’ we can
determine (in polynomial deterministic time) the solution to instance
I of L, (see Figure 11.3).

3. Conclude from step (2) that Ly o« L.

4. Conclude from steps (1) and (3) and the transitivity of oc that Ls is
NP-hard.

MAXIMUM CLIQUE PROBLEM

[Maximum clique] A maximal complete subgraph of a graph
= (V, E) is a clique. The size of the clique is the number of vertices in it.
The max clique problem is an optimization problem that has to determine
the size of a largest clique in G. The corresponding decision problem is to
determine whether G has a clique of size at least k for some given k. Let
DClique(G, k) be a deterministic decision algorithm for the clique decision
problem. If the number of vertices in G is n, the size of a max clique in
GG can be found by making several applications of DClique. DClique is used
once foreach k, k = n,n—1,n—2,..., until the output from DClique is 1.

Clique size = 4

Clique size = 3

CLIQUE DECISION PROBLEM
- The clique decision problem (CDP) is NP-complete.

Proof : Let, F be a formula for CNF which is satisfiable.

‘

F = Cl /\C2 A.. Ck V
where C is a clause. Every clause in CNF is denoted by a, where 1<i<n.]
length of F is F and is obtained in time O(m) then we can obtam polynomiz

| "' time algorithm in CDP.
Let ‘_us design a graph G = (V. E) with set of vertices
V={o, i>0 isa litéral in C; } and set of edges
E={(<0,1> <3,]>)|1¢]and %5 }

For example

;B = @V‘azv a3)"\. '(alv 52\/ 53)
it Cf ?2

-The graph G can be drawn as follows..' '

Bk o <a1,1> <a, 2>

| '. ’ '~f f‘,'.f' i
£ s <ay 2>
Rl i
M'// :\‘.-""1‘, : R L R
I { a > -
\“'.U m'”)'h ‘ 3' 1 : Wi : <a3l 2>
g,e formula F is sahsﬁable 1f and only if G has a clique of size > k. The F will be

s le on]y when at least one literal g in C, is true.

-~ Aclique
> N :
@2 Y of size 2.

<aq, 1> <2y, 2

”'CNF satisfiability is NP complete CDP is also NP complete.

NODE COVER DECISION PROBLEM

A set § C V is a node cover for a graph G = (V, F) if and only if all edges
in F are incident to at least one vertex in S. The size |S| of the cover is the
number of vertices in 5.

Example 11.12 Consider the graph of Figure 11.5. § = {2,4} is a node
cover of size 2. § = {1,3,5} is a node cover of size 3.

§ o Sd

8]

A samnple graph and node cover

In the node cover decision problem we are given a graph & and an integer
k. We are required to determine whether G' has a node cover of size at most
k.
Theorem 11.3 The clique decision problem o< the node cover decision prob-
lem.

Proof: Let G = (V,FE) and k define an instance of CDP. Assume that
|V| = n. We construct a graph G’ such that G’ has a node cover of size at
most n — k if and only if G has a clique of size at least k. Graph ' is given
by G' = (V, E), where E = {(u,v) | v € V,v € V and (u,v) € E}. The set
' is known as the complement of G.

Example 11.13 Figure 11.6 shows a graph & and its complement G’. In
this figure, G’ has a node cover of {4,5}, since every edge of G’ is incident
either on the node 4 or on the node 5. Thus, GG has a clique of size 5 —2 = 3
consisting of the nodes 1, 2, and 3.

A graph and its complement

10

CHROMATIC NUMBER DECISION PROBLEM

A coloring of a graph G = (V, E) is a function f: V — {1,2,...,k} defined
for all 1 € V. If (u,v) € E, then f(u) # f(v). The chromatic number
decision problem is to determine whether GG' has a coloring for a given k.

Example 11.14 A possible 2-coloring of the graph of Figure 11.5is f(1) =
f(3) = f(5) =1 and f(2) = f(4) = 2. Clearly, this graph has no 1-coloring.

l o o 2
Ny /0\\\
“‘\\ P o \
“‘\\ e P
: N
- v 3
3 5 P
/ '_ - 4
/ "‘x\\ /
e By
5 ¢ v 4

DIRECTED HAMILTONIAN CYCLE

A directed Hamiltonian cycle in a directed graph G = (V. E) is a directed
cycle of length n = |V]. So, the cycle goes through every vertex exactly once
and then returns to the starting vertex. The DHC problem is to determine
whether G has a directed Hamiltonian cycle.

Example 11.15 1. 2, 3, 4, 5, 1 is a directed Hamiltonian cycle in the graph
of Figure 11.7. If the edge (5,1) is deleted from this graph, then it has no
directed Hamiltonian cycle.

¥4

Figure 11.7 A sample graph and Hamiltonian cycle

11

TRAVELLING SALES PERSON DECISION PROBLEM

The traveling salesperson problem was introduced in Chapter 5. The cor-
responding decision problem is to determine whether a complete directed

graph G = (V, E) with edge costs c(u,v) has a tour of cost at most M.

Theorem 11.6 Directed Hamiltonian cycle (DHC) o« the traveling sales-
person decision problem (TSP).

Proof: From the directed graph G = (V, F) construct the complete directed
graph G' = (V,E'), B' = {(i,j) | i # j} and (i, j) = 1 if (i,j) € B
c(i,7) =2 if ¢ # j and (7, j) ¢ E. Clearly, G’ has a tour of cost at most n iff
G has a directed Hamiltonian cycle.

(A
S S L
(a)

AN g
& C
Graphs representing problems (P

ok ok ok K oK oK ok ok ok ok ok K ok ok ok ok ok ok ok

12

