

Department of Computer Science and Engineering

Academic Year 2023-24

II. B.Tech I Semster

Digital Electronics & Microprocessors
(20APC0503/ 20APC3601)

 Prepared By

 Ms. Deveswari

 Assistant Professor

 Department of ECE, AITS

UNIT-IV Microprocessor-I

Microprocessor - Overview

 Microprocessor is a controlling unit of a micro-computer, fabricated on a small chip

capable of performing ALU (Arithmetic Logical Unit) operations and communicating with the

other devices connected to it.

 Microprocessor consists of an ALU, register array, and a control unit. ALU performs

arithmetical and logical operations on the data received from the memory or an input device.

Register array consists of registers identified by letters like B, C, D, E, H, L and accumulator.

The control unit controls the flow of data and instructions within the computer.

Block Diagram of a Basic Microcomputer

How does a Microprocessor Work?

The microprocessor follows a sequence: Fetch, Decode, and then Execute.

 Initially, the instructions are stored in the memory in a sequential order. The

microprocessor fetches those instructions from the memory, then decodes it and executes those

instructions till STOP instruction is reached. Later, it sends the result in binary to the output

port. Between these processes, the register stores the temporarily data and ALU performs the

computing functions.

List of Terms Used in a Microprocessor

A list of some of the frequently used terms in a microprocessor −

 Instruction Set − It is the set of instructions that the microprocessor can understand.

 Bandwidth − It is the number of bits processed in a single instruction.

 Clock Speed − It determines the number of operations per second the processor can

perform. It is expressed in megahertz (MHz) or gigahertz (GHz).It is also known as

Clock Rate.

 Word Length − It depends upon the width of internal data bus, registers, ALU, etc. An

8-bit microprocessor can process 8-bit data at a time. The word length ranges from 4 bits

to 64 bits depending upon the type of the microcomputer.

 Data Types − The microprocessor has multiple data type formats like binary, BCD,

ASCII, signed and unsigned numbers.

Features of a Microprocessor

 features of any microprocessor −

 Cost-effective − The microprocessor chips are available at low prices and results its low

cost.

 Size − The microprocessor is of small size chip, hence is portable.

 Low Power Consumption − Microprocessors are manufactured by using metaloxide

semiconductor technology, which has low power consumption.

 Versatility − The microprocessors are versatile as we can use the same chip in a number

of applications by configuring the software program.

 Reliability − The failure rate of an IC in microprocessors is very low, hence it is reliable.

Microprocessor - Classification

A microprocessor can be classified into three categories −

RISC Processor

RISC stands for Reduced Instruction Set Computer. It is designed to reduce the execution

time by simplifying the instruction set of the computer. Using RISC processors, each instruction

requires only one clock cycle to execute results in uniform execution time. This reduces the

efficiency as there are more lines of code, hence more RAM is needed to store the instructions.

The compiler also has to work more to convert high-level language instructions into machine

code.

Some of the RISC processors are −

 Power PC: 601, 604, 615, 620

 DEC Alpha: 210642, 211066, 21068, 21164

 MIPS: TS (R10000) RISC Processor

 PA-RISC: HP 7100LC

Architecture of RISC

RISC microprocessor architecture uses highly-optimized set of instructions. It is used in

portable devices like Apple iPod due to its power efficiency.

Characteristics of RISC

The major characteristics of a RISC processor are as follows −

 It consists of simple instructions.

 It supports various data-type formats.

 It utilizes simple addressing modes and fixed length instructions for pipelining.

 It supports register to use in any context.

 One cycle execution time.

 “LOAD” and “STORE” instructions are used to access the memory location.

 It consists of larger number of registers.

 It consists of less number of transistors.

CISC Processor

CISC stands for Complex Instruction Set Computer. It is designed to minimize the number of

instructions per program, ignoring the number of cycles per instruction. The emphasis is on

building complex instructions directly into the hardware.

The compiler has to do very little work to translate a high-level language into assembly level

language/machine code because the length of the code is relatively short, so very little RAM is

required to store the instructions.

Some of the CISC Processors are −

 IBM 370/168

 VAX 11/780

 Intel 80486

Architecture of CISC

Its architecture is designed to decrease the memory cost because more storage is needed in

larger programs resulting in higher memory cost. To resolve this, the number of instructions per

program can be reduced by embedding the number of operations in a single instruction.

Characteristics of CISC

 Variety of addressing modes.

 Larger number of instructions.

 Variable length of instruction formats.

 Several cycles may be required to execute one instruction.

 Instruction-decoding logic is complex.

 One instruction is required to support multiple addressing modes.

Special Processors

These are the processors which are designed for some special purposes. Few of the special

processors are briefly discussed −

Coprocessor

A coprocessor is a specially designed microprocessor, which can handle its particular function

many times faster than the ordinary microprocessor.

For example − Math Coprocessor.

Some Intel math-coprocessors are −

 8087-used with 8086

 80287-used with 80286

 80387-used with 80386

Input/Output Processor

It is a specially designed microprocessor having a local memory of its own, which is used to

control I/O devices with minimum CPU involvement.

For example −

 DMA (direct Memory Access) controller

 Keyboard/mouse controller

 Graphic display controller

 SCSI port controller

Transputer (Transistor Computer)

A transputer is a specially designed microprocessor with its own local memory and having links

to connect one transputer to another transputer for inter-processor communications. It was first

designed in 1980 by Inmos and is targeted to the utilization of VLSI technology.

A transputer can be used as a single processor system or can be connected to external links,

which reduces the construction cost and increases the performance.

For example − 16-bit T212, 32-bit T425, the floating point (T800, T805 & T9000) processors.

DSP (Digital Signal Processor)

This processor is specially designed to process the analog signals into a digital form. This is

done by sampling the voltage level at regular time intervals and converting the voltage at that

instant into a digital form. This process is performed by a circuit called an analogue to digital

converter, A to D converter or ADC.

A DSP contains the following components −

 Program Memory − It stores the programs that DSP will use to process data.

 Data Memory − It stores the information to be processed.

 Compute Engine − It performs the mathematical processing, accessing the program

from the program memory and the data from the data memory.

 Input/Output − It connects to the outside world.

Its applications are −

 Sound and music synthesis

 Audio and video compression

 Video signal processing

 2D and 3d graphics acceleration.

For example − Texas Instrument’s TMS 320 series, e.g., TMS 320C40, TMS320C50.

Microprocessor - 8085 Architecture

085 is pronounced as "eighty-eighty-five" microprocessor. It is an 8-bit microprocessor

designed by Intel in 1977 using NMOS technology.

It has the following configuration −

 8-bit data bus

 16-bit address bus, which can address upto 64KB

 A 16-bit program counter

 A 16-bit stack pointer

 Six 8-bit registers arranged in pairs: BC, DE, HL

 Requires +5V supply to operate at 3.2 MHZ single phase clock

It is used in washing machines, microwave ovens, mobile phones, etc.

8085 Microprocessor – Functional Units

8085 consists of the following functional units −

Accumulator

It is an 8-bit register used to perform arithmetic, logical, I/O & LOAD/STORE operations. It is

connected to internal data bus & ALU.

Arithmetic and logic unit

As the name suggests, it performs arithmetic and logical operations like Addition, Subtraction,

AND, OR, etc. on 8-bit data.

General purpose register

There are 6 general purpose registers in 8085 processor, i.e. B, C, D, E, H & L. Each register

can hold 8-bit data.

These registers can work in pair to hold 16-bit data and their pairing combination is like B-C,

D-E & H-L.

Program counter

It is a 16-bit register used to store the memory address location of the next instruction to be

executed. Microprocessor increments the program whenever an instruction is being executed, so

that the program counter points to the memory address of the next instruction that is going to be

executed.

Stack pointer

It is also a 16-bit register works like stack, which is always incremented/decremented by 2

during push & pop operations.

Temporary register

It is an 8-bit register, which holds the temporary data of arithmetic and logical operations.

Flag register

It is an 8-bit register having five 1-bit flip-flops, which holds either 0 or 1 depending upon the

result stored in the accumulator.

These are the set of 5 flip-flops −

 Sign (S)

 Zero (Z)

 Auxiliary Carry (AC)

 Parity (P)

 Carry (C)

Its bit position is shown in the following table −

D7 D6 D5 D4 D3 D2 D1 D0

S Z AC P CY

Instruction register and decoder

It is an 8-bit register. When an instruction is fetched from memory then it is stored in the

Instruction register. Instruction decoder decodes the information present in the Instruction

register.

Timing and control unit

It provides timing and control signal to the microprocessor to perform operations. Following are

the timing and control signals, which control external and internal circuits −

 Control Signals: READY, RD’, WR’, ALE

 Status Signals: S0, S1, IO/M’

 DMA Signals: HOLD, HLDA

 RESET Signals: RESET IN, RESET OUT

Interrupt control

As the name suggests it controls the interrupts during a process. When a microprocessor is

executing a main program and whenever an interrupt occurs, the microprocessor shifts the

control from the main program to process the incoming request. After the request is completed,

the control goes back to the main program.

There are 5 interrupt signals in 8085 microprocessor: INTR, RST 7.5, RST 6.5, RST 5.5,

TRAP.

Serial Input/output control

It controls the serial data communication by using these two instructions: SID (Serial input

data) and SOD (Serial output data).

Address buffer and address-data buffer

The content stored in the stack pointer and program counter is loaded into the address buffer

and address-data buffer to communicate with the CPU. The memory and I/O chips are

connected to these buses; the CPU can exchange the desired data with the memory and I/O

chips.

Address bus and data bus

Data bus carries the data to be stored. It is bidirectional, whereas address bus carries the location

to where it should be stored and it is unidirectional. It is used to transfer the data & Address I/O

devices.

8085 Architecture

We have tried to depict the architecture of 8085 with this following image −

Microprocessor - 8085 Pin Configuration
The following image depicts the pin diagram of 8085 Microprocessor −

The pins of a 8085 microprocessor can be classified into seven groups −

Address bus

A15-A8, it carries the most significant 8-bits of memory/IO address.

Data bus

AD7-AD0, it carries the least significant 8-bit address and data bus.

Control and status signals

These signals are used to identify the nature of operation. There are 3 control signal and 3 status

signals.

Three control signals are RD, WR & ALE.

 RD − This signal indicates that the selected IO or memory device is to be read and is

ready for accepting data available on the data bus.

 WR − This signal indicates that the data on the data bus is to be written into a selected

memory or IO location.

 ALE − It is a positive going pulse generated when a new operation is started by the

microprocessor. When the pulse goes high, it indicates address. When the pulse goes

down it indicates data.

Three status signals are IO/M, S0 & S1.

IO/M

This signal is used to differentiate between IO and Memory operations, i.e. when it is high

indicates IO operation and when it is low then it indicates memory operation.

S1 & S0

These signals are used to identify the type of current operation.

Power supply

There are 2 power supply signals − VCC & VSS. VCC indicates +5v power supply and VSS

indicates ground signal.

Clock signals

There are 3 clock signals, i.e. X1, X2, CLK OUT.

 X1, X2 − A crystal (RC, LC N/W) is connected at these two pins and is used to set

frequency of the internal clock generator. This frequency is internally divided by 2.

 CLK OUT − This signal is used as the system clock for devices connected with the

microprocessor.

Interrupts & externally initiated signals

Interrupts are the signals generated by external devices to request the microprocessor to perform

a task. There are 5 interrupt signals, i.e. TRAP, RST 7.5, RST 6.5, RST 5.5, and INTR. We will

discuss interrupts in detail in interrupts section.

 INTA − It is an interrupt acknowledgment signal.

 RESET IN − This signal is used to reset the microprocessor by setting the program

counter to zero.

 RESET OUT − This signal is used to reset all the connected devices when the

microprocessor is reset.

 READY − This signal indicates that the device is ready to send or receive data. If

READY is low, then the CPU has to wait for READY to go high.

 HOLD − This signal indicates that another master is requesting the use of the address

and data buses.

 HLDA (HOLD Acknowledge) − It indicates that the CPU has received the HOLD

request and it will relinquish the bus in the next clock cycle. HLDA is set to low after

the HOLD signal is removed.

Serial I/O signals

There are 2 serial signals, i.e. SID and SOD and these signals are used for serial

communication.

 SOD (Serial output data line) − The output SOD is set/reset as specified by the SIM

instruction.

 SID (Serial input data line) − The data on this line is loaded into accumulator whenever a

RIM instruction is executed.

Microprocessor - 8086 Overview
8086 Microprocessor is an enhanced version of 8085Microprocessor that was designed by Intel

in 1976. It is a 16-bit Microprocessor having 20 address lines and16 data lines that provides up

to 1MB storage. It consists of powerful instruction set, which provides operations like

multiplication and division easily.

It supports two modes of operation, i.e. Maximum mode and Minimum mode. Maximum mode

is suitable for system having multiple processors and Minimum mode is suitable for system

having a single processor.

Features of 8086

The most prominent features of a 8086 microprocessor are as follows −

 It has an instruction queue, which is capable of storing six instruction bytes from the

memory resulting in faster processing.

 It was the first 16-bit processor having 16-bit ALU, 16-bit registers, internal data bus,

and 16-bit external data bus resulting in faster processing.

 It is available in 3 versions based on the frequency of operation −

o 8086 → 5MHz

o 8086-2 → 8MHz

o (c)8086-1 → 10 MHz

 It uses two stages of pipelining, i.e. Fetch Stage and Execute Stage, which improves

performance.

 Fetch stage can prefetch up to 6 bytes of instructions and stores them in the queue.

 Execute stage executes these instructions.

 It has 256 vectored interrupts.

 It consists of 29,000 transistors.

Comparison between 8085 & 8086 Microprocessor

 Size − 8085 is 8-bit microprocessor, whereas 8086 is 16-bit microprocessor.

 Address Bus − 8085 has 16-bit address bus while 8086 has 20-bit address bus.

 Memory − 8085 can access up to 64Kb, whereas 8086 can access up to 1 Mb of

memory.

 Instruction − 8085 doesn’t have an instruction queue, whereas 8086 has an instruction

queue.

 Pipelining − 8085 doesn’t support a pipelined architecture while 8086 supports a

pipelined architecture.

 I/O − 8085 can address 2^8 = 256 I/O's, whereas 8086 can access 2^16 = 65,536 I/O's.

 Cost − The cost of 8085 is low whereas that of 8086 is high.

Architecture of 8086

The following diagram depicts the architecture of a 8086 Microprocessor −

Microprocessor - 8086 Functional Units

8086 Microprocessor is divided into two functional units, i.e., EU (Execution Unit)

and BIU (Bus Interface Unit).

EU (Execution Unit)

Execution unit gives instructions to BIU stating from where to fetch the data and then decode

and execute those instructions. Its function is to control operations on data using the instruction

decoder & ALU. EU has no direct connection with system buses as shown in the above figure,

it performs operations over data through BIU.

Let us now discuss the functional parts of 8086 microprocessors.

ALU

It handles all arithmetic and logical operations, like +, −, ×, /, OR, AND, NOT operations.

Flag Register

It is a 16-bit register that behaves like a flip-flop, i.e. it changes its status according to the result

stored in the accumulator. It has 9 flags and they are divided into 2 groups − Conditional Flags

and Control Flags.

Conditional Flags

It represents the result of the last arithmetic or logical instruction executed. Following is the list

of conditional flags −

 Carry flag − This flag indicates an overflow condition for arithmetic operations.

 Auxiliary flag − When an operation is performed at ALU, it results in a carry/barrow

from lower nibble (i.e. D0 – D3) to upper nibble (i.e. D4 – D7), then this flag is set, i.e.

carry given by D3 bit to D4 is AF flag. The processor uses this flag to perform binary to

BCD conversion.

 Parity flag − This flag is used to indicate the parity of the result, i.e. when the lower

order 8-bits of the result contains even number of 1’s, then the Parity Flag is set. For odd

number of 1’s, the Parity Flag is reset.

 Zero flag − This flag is set to 1 when the result of arithmetic or logical operation is zero

else it is set to 0.

 Sign flag − This flag holds the sign of the result, i.e. when the result of the operation is

negative, then the sign flag is set to 1 else set to 0.

 Overflow flag − This flag represents the result when the system capacity is exceeded.

Control Flags

Control flags controls the operations of the execution unit. Following is the list of control flags

−

 Trap flag − It is used for single step control and allows the user to execute one

instruction at a time for debugging. If it is set, then the program can be run in a single

step mode.

 Interrupt flag − It is an interrupt enable/disable flag, i.e. used to allow/prohibit the

interruption of a program. It is set to 1 for interrupt enabled condition and set to 0 for

interrupt disabled condition.

 Direction flag − It is used in string operation. As the name suggests when it is set then

string bytes are accessed from the higher memory address to the lower memory address

and vice-a-versa.

General purpose register

There are 8 general purpose registers, i.e., AH, AL, BH, BL, CH, CL, DH, and DL. These

registers can be used individually to store 8-bit data and can be used in pairs to store 16bit data.

The valid register pairs are AH and AL, BH and BL, CH and CL, and DH and DL. It is referred

to the AX, BX, CX, and DX respectively.

 AX register − It is also known as accumulator register. It is used to store operands for

arithmetic operations.

 BX register − It is used as a base register. It is used to store the starting base address of

the memory area within the data segment.

 CX register − It is referred to as counter. It is used in loop instruction to store the loop

counter.

 DX register − This register is used to hold I/O port address for I/O instruction.

Stack pointer register

It is a 16-bit register, which holds the address from the start of the segment to the memory

location, where a word was most recently stored on the stack.

BIU (Bus Interface Unit)

BIU takes care of all data and addresses transfers on the buses for the EU like sending

addresses, fetching instructions from the memory, reading data from the ports and the memory

as well as writing data to the ports and the memory. EU has no direction connection with

System Buses so this is possible with the BIU. EU and BIU are connected with the Internal Bus.

It has the following functional parts −

 Instruction queue − BIU contains the instruction queue. BIU gets upto 6 bytes of next

instructions and stores them in the instruction queue. When EU executes instructions

and is ready for its next instruction, then it simply reads the instruction from this

instruction queue resulting in increased execution speed.

 Fetching the next instruction while the current instruction executes is called pipelining.

 Segment register − BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the

addresses of instructions and data in memory, which are used by the processor to access

memory locations. It also contains 1 pointer register IP, which holds the address of the

next instruction to executed by the EU.

o CS − It stands for Code Segment. It is used for addressing a memory location in

the code segment of the memory, where the executable program is stored.

o DS − It stands for Data Segment. It consists of data used by the program andis

accessed in the data segment by an offset address or the content of other register

that holds the offset address.

o SS − It stands for Stack Segment. It handles memory to store data and addresses

during execution.

o ES − It stands for Extra Segment. ES is additional data segment, which is used by

the string to hold the extra destination data.

 Instruction pointer − It is a 16-bit register used to hold the address of the next

instruction to be executed.

Register organization of 8086

General 16-bit registers

The registers AX, BX, CX, and DX are the general 16-bit registers.

AX Register: Accumulator register consists of two 8-bit registers AL and AH, which

can be combined together and used as a 16- bit register AX. AL in this case contains the

low-order byte of the word, and AH contains the high-order byte. Accumulator can be

used for I/O operations, rotate and string manipulation.

BX Register: This register is mainly used as a base register. It holds the starting base

location of a memory region within a data segment. It is used as offset storage for

forming physical address in case of certain addressing mode.

CX Register: It is used as default counter or count register in case of string and loop

instructions.

DX Register: Data register can be used as a port number in I/O operations and implicit

operand or destination in case of few instructions. In integer 32-bit multiply and divide

instruction the DX register contains high-order word of the initial or resulting number.

Segment registers:

To complete 1Mbyte memory is divided into 16 logical segments. The complete

1Mbyte memory segmentation is as shown in fig 1.5. Each segment contains 64Kbyte of

memory. There are four segment registers.

Code segment (CS) is a 16-bit register containing address of 64 KB segment with

processor instructions. The processor uses CS segment for all accesses to instructions

referenced by instruction pointer (IP) register. CS register cannot be changed directly.

The CS register is automatically updated during far jump, far call and far return

instructions. It is used for addressing a memory location in the code segment of the

memory, where the executable program is stored.

Stack segment (SS) is a 16-bit register containing address of 64KB segment with

program stack. By default, the processor assumes that all data referenced by the stack

pointer (SP) and base pointer (BP) registers is located in the stack segment. SS register

can be changed directly using POP instruction. It is used for addressing stack segment of

memory. The stack segment is that segment of memory, which is used to store stack data.

Data segment (DS) is a 16-bit register containing address of 64KB segment with

program data. By default, the processor assumes that all data referenced by general

registers (AX, BX, CX, DX) and index register (SI, DI) is located in the data segment.

DS register can be changed directly using POP and LDS instructions. It points to the data

segment memory where the data is resided.

Extra segment (ES) is a 16-bit register containing address of 64KB segment, usually

with program data. By default, the processor assumes that the DI register references the ES

segment in string manipulation instructions. ES register can be changed directly using POP and

LES instructions. It also refers to segment which essentially is another data segment of the

memory. It also contains data.

Pointers and index registers.

The pointers contain within the particular segments. The pointers IP, BP, SP

usually contain offsets within the code, data and stack segments respectively

Stack Pointer (SP) is a 16-bit register pointing to program stack in stack segment.

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP register is

usually used for based, based indexed or register indirect addressing.

Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register

indirect addressing, as well as a source data addresses in string manipulation instructions.

Destination Index (DI) is a 16-bit register. DI is used for indexed, based indexed and

register indirect addressing, as well as a destination data address in string manipulation

instructions.

Conditional Flags

Conditional flags are as follows:

Carry Flag (CY): This flag indicates an overflow condition for unsigned integer

arithmetic. It is also used in multiple-precision arithmetic.

Auxiliary Flag (AC): If an operation performed in ALU generates a carry/barrow from

lower nibble (i.e. D0 – D3) to upper nibble (i.e. D4 – D7), the AC flag is set i.e. carry given

by D3 bit to D4 is AC flag. This is not a general-purpose flag, it is used internally by the

Processor to perform Binary to BCD conversion.

Parity Flag (PF): This flag is used to indicate the parity of result. If lower order 8-bits of

the result contains even number of 1’s, the Parity Flag is set and for odd number of 1’s,

the Parity flag is reset.

Zero Flag (ZF): It is set; if the result of arithmetic or logical operation is zero else it is

reset.

Sign Flag (SF): In sign magnitude format the sign of number is indicated by MSB bit. If

the result of operation is negative, sign flag is set.

Control Flags

Control flags are set or reset deliberately to control the operations of the execution unit.

Control flags are as follows:

Trap Flag (TF): It is used for single step control. It allows user to execute one

instruction of a program at a time for debugging. When trap flag is set, program can be

run in single step mode.

Interrupt Flag (IF): It is an interrupt enable/disable flag. If it is set, the maskable

interrupt of 8086 is enabled and if it is reset, the interrupt is disabled. It can be set by

executing instruction sit and can be cleared by executing CLI instruction.

Direction Flag (DF): It is used in string operation. If it is set, string bytes are accessed

from higher memory address to lower memory address. When it is reset, the string bytes are

accessed from lower memory address to higher memory address.

Flag Register in 8086 Microprocessor

Flag Register is a 16-bit register, but there are only 9 flags available in the

8086 microprocessor. The rest 7 bits are hence left idle.

There are two categories of flag register:

1. Condition flags

2. Control flags

1) Condition flags

The conditional flags are set or reset after any arithmetic or logical operation

is performed on an 8 bit or 16-bit number. This category consists of the

following 6 flags:

i. Carry Flag (CF): The carry flag will be set only if a carry is generated

from the MSB of the result after doing any operation in 8086

Microprocessor.

ii. Parity Flag (PF): Parity is related to the number of 1’s contained in the

binary data. There exist two types of parity:

o Even Parity: When the number of 1’s in the binary data are even.

o Odd Parity: When the number of 1’s in the binary data are odd.

For the flag, the PF is set if there exists an even parity in data after the

execution of the instruction. Else the flag is reset.

iii. Auxiliary-Carry Flag (AF): This flag is set if there is a generation of

carrying from a nibble, i.e. 4 bits of data.

iv. Zero Flag (ZF): If the result after performing the required operation

(Arithmetic or Logical) on the instructions is zero, in that case, the zero

flags are set to 1. Else, it remains reset.

v. Sign Flag (SF): If the result after performing any arithmetic or logic

operation in the given instruction is negative, then the sign flag is set to

1. Else, for a positive result, the sign flag remains reset.

vi. Overflow Flag (OF): This Flag will be set if the register gets overflowed

with data after any arithmetic or logic operation. This happens in cases

when the carry is getting in in MSB, but there is no space in the register

to store the carried out bit.

2) Control flags

The control flags are used to navigate the microprocessor for certain

operations. There are 3 types of control flags:

i. Trap Flag (TF): This flag is used of we need single-step debugging in

our code. If the TF is set, then the execution will be done step by step.

Otherwise, the free-running operation will be done.

ii. Interrupt Flag (IF): This flag is used to enable the Interrupt. The

microprocessor is capable of handling interrupts only if this flag is in the

set mode. Otherwise, any interrupt raised while the execution of the

instructions will not be handled by the microprocessor.

iii. Direction Flag (DF): This flag is used for string operations. If this flag is

set, the string will be read from higher-order bits to lower order bits and

vice versa.

Microprocessor - 8086 Addressing Modes
The different ways in which a source operand is denoted in an instruction is known

as addressing modes. There are 8 different addressing modes in 8086 programming −

Immediate addressing mode

The addressing mode in which the data operand is a part of the instruction itself is known as

immediate addressing mode.

Example

MOV CX, 4929 H,

ADD AX, 2387 H,

MOV AL, FFH

Register addressing mode

It means that the register is the source of an operand for an instruction.

Example

MOV CX, AX ; copies the contents of the 16-bit AX register into

 ; the 16-bit CX register),

ADD BX, AX

Direct addressing mode

The addressing mode in which the effective address of the memory location is written directly

in the instruction.

Example

MOV AX, [1592H],

MOV AL, [0300H]

Register indirect addressing mode

This addressing mode allows data to be addressed at any memory location through an offset

address held in any of the following registers: BP, BX, DI & SI.

Example

MOV AX, [BX] ; Suppose the register BX contains 4895H, then the contents

 ; 4895H are moved to AX

ADD CX, {BX}

Based addressing mode

In this addressing mode, the offset address of the operand is given by the sum of contents of the

BX/BP registers and 8-bit/16-bit displacement.

Example

MOV DX, [BX+04], ADD CL, [BX+08]

Indexed addressing mode

In this addressing mode, the operands offset address is found by adding the contents of SI or DI

register and 8-bit/16-bit displacements.

Example

MOV BX, [SI+16],

 ADD AL, [DI+16]

Based-index addressing mode

In this addressing mode, the offset address of the operand is computed by summing the base

register to the contents of an Index register.

Example

ADD CX, [AX+SI],

MOV AX, [AX+DI]

Based indexed with displacement mode

In this addressing mode, the operands offset is computed by adding the base register contents.

An Index registers contents and 8 or 16-bit displacement.

Example

MOV AX, [BX+DI+08],

ADD CX, [BX+SI+16]

Microprocessor - 8086 Pin Configuration

8086 was the first 16-bit microprocessor available in 40-pin DIP (Dual Inline Package) chip.

Let us now discuss in detail the pin configuration of a 8086 Microprocessor.

8086 Pin Diagram

Here is the pin diagram of 8086 microprocessor −

Let us now discuss the signals in detail −

Power supply and frequency signals

It uses 5V DC supply at VCC pin 40, and uses ground at VSS pin 1 and 20 for its operation.

Clock signal

Clock signal is provided through Pin-19. It provides timing to the processor for operations. Its

frequency is different for different versions, i.e. 5MHz, 8MHz and 10MHz.

Address/data bus

AD0-AD15. These are 16 address/data bus. AD0-AD7 carries low order byte data and

AD8AD15 carries higher order byte data. During the first clock cycle, it carries 16-bit address

and after that it carries 16-bit data.

Address/status bus

A16-A19/S3-S6. These are the 4 address/status buses. During the first clock cycle, it carries 4-

bit address and later it carries status signals.

S7/BHE

BHE stands for Bus High Enable. It is available at pin 34 and used to indicate the transfer of

data using data bus D8-D15. This signal is low during the first clock cycle, thereafter it is

active.

Read(\overline{RD})

It is available at pin 32 and is used to read signal for Read operation.

Ready

It is available at pin 22. It is an acknowledgement signal from I/O devices that data is

transferred. It is an active high signal. When it is high, it indicates that the device is ready to

transfer data. When it is low, it indicates wait state.

RESET

It is available at pin 21 and is used to restart the execution. It causes the processor to

immediately terminate its present activity. This signal is active high for the first 4 clock cycles

to RESET the microprocessor.

INTR

It is available at pin 18. It is an interrupt request signal, which is sampled during the last clock

cycle of each instruction to determine if the processor considered this as an interrupt or not.

NMI

It stands for non-maskable interrupt and is available at pin 17. It is an edge triggered input,

which causes an interrupt request to the microprocessor.

\overline{TEST}

This signal is like wait state and is available at pin 23. When this signal is high, then the

processor has to wait for IDLE state, else the execution continues.

MN/\overline{MX}

It stands for Minimum/Maximum and is available at pin 33. It indicates what mode the

processor is to operate in; when it is high, it works in the minimum mode and vice-aversa.

INTA

It is an interrupt acknowledgement signal and id available at pin 24. When the microprocessor

receives this signal, it acknowledges the interrupt.

ALE

It stands for address enable latch and is available at pin 25. A positive pulse is generated each

time the processor begins any operation. This signal indicates the availability of a valid address

on the address/data lines.

DEN

It stands for Data Enable and is available at pin 26. It is used to enable Transreceiver 8286. The

transreceiver is a device used to separate data from the address/data bus.

DT/R

It stands for Data Transmit/Receive signal and is available at pin 27. It decides the direction of

data flow through the transreceiver. When it is high, data is transmitted out and vice-a-versa.

M/IO

This signal is used to distinguish between memory and I/O operations. When it is high, it

indicates I/O operation and when it is low indicates the memory operation. It is available at pin

28.

WR

It stands for write signal and is available at pin 29. It is used to write the data into the memory

or the output device depending on the status of M/IO signal.

HLDA

It stands for Hold Acknowledgement signal and is available at pin 30. This signal acknowledges

the HOLD signal.

HOLD

This signal indicates to the processor that external devices are requesting to access the

address/data buses. It is available at pin 31.

QS1 and QS0

These are queue status signals and are available at pin 24 and 25. These signals provide the

status of instruction queue. Their conditions are shown in the following table −

QS0 QS1 Status

0 0 No operation

0 1 First byte of opcode from the queue

1 0 Empty the queue

1 1 Subsequent byte from the queue

S0, S1, S2

These are the status signals that provide the status of operation, which is used by the Bus

Controller 8288 to generate memory & I/O control signals. These are available at pin 26, 27,

and 28. Following is the table showing their status −

S2 S1 S0 Status

0 0 0 Interrupt acknowledgement

0 0 1 I/O Read

0 1 0 I/O Write

0 1 1 Halt

1 0 0 Opcode fetch

1 0 1 Memory read

1 1 0 Memory write

1 1 1 Passive

LOCK

When this signal is active, it indicates to the other processors not to ask the CPU to leave the

system bus. It is activated using the LOCK prefix on any instruction and is available at pin 29.

RQ/GT1 and RQ/GT0

These are the Request/Grant signals used by the other processors requesting the CPU to release

the system bus. When the signal is received by CPU, then it sends acknowledgment.

RQ/GT0 has a higher priority than RQ/GT1.

Microprocessor - 8086 Interrupts
Interrupt is the method of creating a temporary halt during program execution and allows

peripheral devices to access the microprocessor. The microprocessor responds to that interrupt

with an ISR (Interrupt Service Routine), which is a short program to instruct the microprocessor

on how to handle the interrupt.

The following image shows the types of interrupts we have in a 8086 microprocessor −

Hardware Interrupts

Hardware interrupt is caused by any peripheral device by sending a signal through a specified

pin to the microprocessor.

The 8086 has two hardware interrupt pins, i.e. NMI and INTR. NMI is a non-maskable interrupt

and INTR is a maskable interrupt having lower priority. One more interrupt pin associated is

INTA called interrupt acknowledge.

NMI

It is a single non-maskable interrupt pin (NMI) having higher priority than the maskable

interrupt request pin (INTR)and it is of type 2 interrupt.

When this interrupt is activated, these actions take place −

 Completes the current instruction that is in progress.

 Pushes the Flag register values on to the stack.

 Pushes the CS (code segment) value and IP (instruction pointer) value of the return

address on to the stack.

 IP is loaded from the contents of the word location 00008H.

 CS is loaded from the contents of the next word location 0000AH.

 Interrupt flag and trap flag are reset to 0.

INTR

The INTR is a maskable interrupt because the microprocessor will be interrupted only if

interrupts are enabled using set interrupt flag instruction. It should not be enabled using clear

interrupt Flag instruction.

The INTR interrupt is activated by an I/O port. If the interrupt is enabled and NMI is disabled,

then the microprocessor first completes the current execution and sends ‘0’ on INTA pin twice.

The first ‘0’ means INTA informs the external device to get ready and during the second ‘0’ the

microprocessor receives the 8 bit, say X, from the programmable interrupt controller.

These actions are taken by the microprocessor −

 First completes the current instruction.

 Activates INTA output and receives the interrupt type, say X.

 Flag register value, CS value of the return address and IP value of the return address are

pushed on to the stack.

 IP value is loaded from the contents of word location X × 4

 CS is loaded from the contents of the next word location.

 Interrupt flag and trap flag is reset to 0

Software Interrupts

Some instructions are inserted at the desired position into the program to create interrupts.

These interrupt instructions can be used to test the working of various interrupt handlers. It

includes −

INT- Interrupt instruction with type number

It is 2-byte instruction. First byte provides the op-code and the second byte provides the

interrupt type number. There are 256 interrupt types under this group.

Its execution includes the following steps −

 Flag register value is pushed on to the stack.

 CS value of the return address and IP value of the return address are pushed on to the

stack.

 IP is loaded from the contents of the word location ‘type number’ × 4

 CS is loaded from the contents of the next word location.

 Interrupt Flag and Trap Flag are reset to 0

The starting address for type0 interrupt is 000000H, for type1 interrupt is 00004H similarly for

type2 is 00008H and ……so on. The first five pointers are dedicated interrupt pointers. i.e. −

 TYPE 0 interrupt represents division by zero situation.

 TYPE 1 interrupt represents single-step execution during the debugging of a program.

 TYPE 2 interrupt represents non-maskable NMI interrupt.

 TYPE 3 interrupt represents break-point interrupt.

 TYPE 4 interrupt represents overflow interrupt.

The interrupts from Type 5 to Type 31 are reserved for other advanced microprocessors, and

interrupts from 32 to Type 255 are available for hardware and software interrupts.

INT 3-Break Point Interrupt Instruction

It is a 1-byte instruction having op-code is CCH. These instructions are inserted into the

program so that when the processor reaches there, then it stops the normal execution of program

and follows the break-point procedure.

Its execution includes the following steps −

 Flag register value is pushed on to the stack.

 CS value of the return address and IP value of the return address are pushed on to the

stack.

 IP is loaded from the contents of the word location 3×4 = 0000CH

 CS is loaded from the contents of the next word location.

 Interrupt Flag and Trap Flag are reset to 0

INTO - Interrupt on overflow instruction

It is a 1-byte instruction and their mnemonic INTO. The op-code for this instruction is CEH. As

the name suggests it is a conditional interrupt instruction, i.e. it is active only when the overflow

flag is set to 1 and branches to the interrupt handler whose interrupt type number is 4. If the

overflow flag is reset then, the execution continues to the next instruction.

Its execution includes the following steps −

 Flag register values are pushed on to the stack.

 CS value of the return address and IP value of the return address are pushed on to the

stack.

 IP is loaded from the contents of word location 4×4 = 00010H

 CS is loaded from the contents of the next word location.

 Interrupt flag and Trap flag are reset to 0

MINIMUM MODE OPERATIONS OF 8086:

 8086 works in Minimum Mode, when MN/ ¯MX = 1.

 Minimum Mode, 8086 is the only processor in the system. The Minimum Mode circuit of

8086 is as shown below:

 Clock is provided by the 8284 clock generator, it provides CLK, RESET and READY

input to 8086.

 Address from the address bus is latched into 8282 8-bit latch. Three such latches are

needed, as address bus is 20-bit. The ALE of 8086 is connected to STB of the latch. The

ALE for this latch is given by 8086 itself.

 The data bus is driven through 8286 8-bit trans-receiver. Two such trans-receivers are

needed, as the data bus is 16-bit. The trans-receivers are enabled through the DEN signal,

while the direction of data is controlled by the DT/ ¯R signal. ¯DEN is connected to ¯OE

and DT/ ¯R is connected to T. Both ¯DEN and DT/ ¯R are given by 8086 itself.

 Control signals for all operations are generated by decoding M/¯IO , ¯RD and ¯WR

signals.

 M/¯IO , ¯RD and ¯WR are decoded by a 3:8 decoder like IC 74138. Bus Request (DMA)

is done using the HOLD and HLDA signals.

 ¯INTA is given by 8086, in response to an interrupt on INTR line.

MAXIMUM MODE OPERATION OF 8086:

8086 microprocessor characteristics:
 It contains 20 bit address bus.

 It contains 16-bit data bus, therefore 8086 is called as 16-bit microprocessor.

 It is 2-stage pipelined processor. It can prefetch 6 bytes from memory and store into

queue to increase the speed of the execution.

 It’s control bus carries signals for executing operations such as read ,write etc.

 It has Memory Banks. 2 banks of 512KB each. These banks are called as lower

Bank (even) and higher Bank (odd).

 In 8086 the entire memory is divided into four memory segments which are code

,stack, data and extra segment.

 8086 has 16 bit IO address.

 It has 256 interrupts.

8086 has two operating Modes:
1. Minimum mode

2. Maximum mode

Minimum mode:

 In this 8086 is the only processor in the system . In a minimum mode 8086 system.

 8086 is operated in minimum mode when MN/MX’ pin to logic 1.

 In this mode, all the control signals are given out by the 8086 itself.

 Maximum mode:

 In this we can connect more processors to 8086 (8087/8089).

 8086 max mode is basically for implementation of allocation of global resources

and passing bus control to other coprocessor(i.e. second processor in the system),

because two processors can not access system bus at same instant.

 All processors execute their own program.

 The resources which are common to all processors are known as global resources.

 The resources which are allocated to a particular processor are known as local or

private resources.

https://www.geeksforgeeks.org/architecture-of-8086/

Maximum mode circuit

Circuit explanation:
 When MN/ MX’ = 0 , 8086 works in max mode.

 Clock is provided by 8284 clock generator.

 8288 bus controller- Address form the address bus is latched into 8282 8-bit latch.

Three such latches are required because address bus is 20 bit. The ALE(Address

latch enable) is connected to STB(Strobe) of the latch. The ALE for latch is given

by 8288 bus controller.
 The data bus is operated through 8286 8-bit transceiver. Two such transceivers are

required, because data bus is 16-bit. The transceivers are enabled the DEN signal,

while the direction of data is controlled by the DT/R signal. DEN is connected

to OE’ and DT/ R’ is connected to T. Both DEN and DT/ R’ are given by 8288

bus controller.

 Control signals for all operations are generated by decoding S’2, S’1 and

S’0 using 8288 bus controller.

 Bus request is done using RQ’ / GT’ lines interfaced with 8086. RQ0/GT0 has more

priority than RQ1/GT1.

 INTA’ is given by 8288, in response to an interrupt on INTR line of 8086.

 In max mode, the advanced write signals get enabled one T-state in advance as

compared to normal write signals. This gives slower devices more time to get ready

to accept the data, therefore it reduces the number of cycles.

APPLICATIONS OF MICROPROCESSOR:

o The microprocessor is used in personal computers (PCs).

o The microprocessor is used in LASER printers for good speed and making automatic

photo copies.

o The microprocessors are used in modems, telephone, digital telephone sets, and also

in air reservation systems and railway reservation systems.

o The microprocessor is used in medical instrument to measure temperature and blood

pressure.

o It is also used in mobile phones and television.

o It is used in calculators and game machine.

o It is used in accounting system and data acquisition system.

o It is used in military applications.

o It is also used in traffic light control.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 1

UNIT V
MICROPROCESSORS-II

ADDRESSING MODES OF 8086:

Addressing modes indicates way of locating data or operands. Depending upon the data types used

in the instruction and the memory addressing modes, any instruction may belong to one or more

addressing modes. Thus the addressing modes describe the types of operands and the way they are

accessed for executing an instruction.

According to the flow of instruction execution, the instruction may be categorized as:

Sequential Control flow instructions Control Transfer instructions

 Sequential Control flow instructions: In this type of instruction after execution control can be

transferred to the next immediately appearing instruction in the program.

The addressing modes for sequential control transfer instructions are as follows:

 Immediate addressing mode: In this mode, immediate is a part of instruction and appears in the

form of successive byte or bytes.

Example: MOV CX, 0007H; Here 0007 is the immediate data

 Direct Addressing mode: In this mode, the instruction operand specifies the memory address

where data is located.

Example: MOV AX, [5000H]; Data is available in 5000H memory location

Effective Address (EA) is computed using 5000H as offset

address and content of DS as segment address.

EA=10H * DS + 5000H

 Register Addressing mode: In this mode, the data is stored in a register and it is referred using

particular register. All the registers except IP may be used in this mode.

Example: MOV AX, BX;

 Register Indirect addressing mode: In this mode, instruction specifies a register containing an

address, where data is located. This addressing mode works with SI, DI, BX and BP registers.

Example: MOV AX, [BX]; EA=10H * DS + [BX]

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 2

 Indexed Addressing mode: 8-bit or 16-bit instruction operand is added to the contents of an index

register (SI or DI), the resulting value is a pointer to location where data resides. DS and ES are

default segments for index registers SI and DI. DS=0800H, SI=2000H, MOV DL, [SI]

Example: MOV AX, [SI]; EA=10H * DS + [SI]

 Register Relative Addressing mode: In this mode, the data is available at an effective address

formed by adding an 8-bit or 16-bit displacement with the content of any one of the registers BX,

BP, SI, DI in the default segments.

Example: MOV AX, 50H [BX]; EA=10H * DS + 50H + [BX]

 Based Indexed Addressing mode: In this mode, the contents of a base register (BX or BP) is added

to the contents of an index register (SI or DI), the resulting value is a pointer to location where data

resides.

Example: MOV AX, [BX] [SI]; EA=10H * DS + [BX] + [SI]

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 3

 Relative Based Indexed Addressing mode: In this mode, 8-bit or 16-bit instruction operand is

added to the contents of a base register (BX or BP) and index register (SI or DI), the resulting value

is a pointer to location where data resides.

Example: MOV AX, 50H [BX] [SI]; EA=10H * DS + 50H + [BX] + [SI]

 Control Transfer Instructions: In control transfer instruction, the control can be transferred to

some predefined address or the address somehow specified in the instruction after their execution.

For the control transfer instructions, the addressing modes depend upon whether the destination

location is within the segment or different segments. It also depends upon the method of passing the

destination address to the processor. Depending on this control transfer instructions are categorized

as follows:

 Intra segment Direct mode: In this mode, the address to which control is to be transferred lies in

the same segment in which control transfer instruction lies and appears directly in the instruction as

an immediate displacement value.

 Intra segment Indirect mode: In this mode, the address to which control is to be transferred lies in

the same segment in which control transfer instruction lies but it is passed to the instruction

indirectly.

 Inter segment Direct mode: In this mode, the address to which control is to be transferred lies in a

different segment in which control transfer instruction lies and appears directly in the instruction as

an immediate displacement value.

 Inter segment Indirect mode: In this mode, the address to which control is to be transferred lies in

a different segment in which control transfer instruction lies but it is passed to the instruction

indirectly.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 4

Memory Segmentation for 8086:

8086, via its 20-bit address bus, can address 220 = 1,048,576 or 1 MB of different memory locations.

Thus the memory space of 8086 can be thought of as consisting of 1,048,576 bytes or 524,288 words. The

memory map of 8086 is shown in Figure where the whole memory space starting from 00000 H to FFFFF

H is divided into 16 blocks—each one consisting of 64KB.

 1 MB memory of 8086 is partitioned into 16 segments—each segment is of 64 KB length. Out of

these 16 segments, only 4 segments can be active at any given instant of time— these are code segment,

stack segment, data segment and extra segment. The four memory segments that the CPU works with at

any time are called currently active segments. Corresponding to these four segments, the registers used

are Code Segment Register (CS), Data Segment Register (DS), Stack Segment Register (SS) and Extra

Segment Register (ES) respectively. Each of these four registers is 16-bits wide and user accessible—i.e.,

their contents can be changed by software.

 The code segment contains the instruction codes of a program, while data, variables and constants

are held in data segment. The stack segment is used to store interrupt and subroutine return addresses. The

extra segment contains the destination of data for certain string instructions. Thus 64 KB are available for

program storage (in CS) as well as for stack (in SS) while128 KB of space can be utilized for data storage

(in DS and ES).One restriction on the base address (starting address) of a segment is that it must reside on

a 16-byte address memory—examples being 00000 H, 00010 H or 00020 H, etc.

Non overlapping segments overlapping segments

Memory segmentation of 8086

Memory segmentation, as implemented for 8086, gives rise to the following advantages:

 Although the address bus is 20-bits in width, memory segmentation allows one to work with

registers having width 16-bits only.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 5

 It allows instruction code, data, stack and portion of program to be more than 64 KB long by

using more than one code, data, extra segment and stack segment.

 In a time-shared multitasking environment when the program moves over from one user’s

program to another, the CPU will simply have to reload the four segment registers with the

segment starting addresses assigned to the current user’s program.

 User’s program (code) and data can be stored separately.

 Because the logical address range is from 0000 H to FFFF H, the same can be loaded at any place

in the memory.

Instruction Set of 8086:

There are 117 basic instructions in the instruction set of 8086.The instruction set of 8086 can be divided

into the following number of groups, namely:

1. Data copy / Transfer instructions 2. Arithmetic and Logical instructions

3. Branch instructions 4. Loop instructions

5. Machine control instructions 6. Flag Manipulation instructions

7. Shift and Rotate instructions 8. String instructions

Data copy / Transfer instructions: The data movement instructions copy values from one location to

another. These instructions include MOV, XCHG, LDS, LEA, LES, PUSH, PUSHF, PUSHFD, POP,

POPF, LAHF, AND SAHF.

MOV The MOV instruction copies a word or a byte of data from source to a destination. The destination

can be a register or a memory location. The source can be a register, or memory location or immediate

data. MOV instruction does not affect any flags.The mov instruction takes several different forms:

Mov reg, reg1; mov mem, reg; mov reg, mem; mov mem, immediate data; mov reg, immediate data;

mov ax/al, mem; mov mem, ax/al; mov segreg, mem16; mov segreg, reg16; mov mem16, segreg; mov

reg16, segreg

The MOV instruction cannot:

1. Set the value of the CS and IP registers.

2. Copy value of one segment register to another segment register (should copy to general register

first). MOV CS, DS (Invalid)

3. Copy immediate value to segment register (should copy to general register first). MOV CS, 2000H

(Invalid)

Example:

ORG 100h

MOV AX, 0B800h; set AX = B800h

MOV DS, AX; copy value of AX to DS.

MOV CL, 'A'; CL = 41h (ASCII code).

The XCHG Instruction: Exchange This instruction exchanges the contents of the specified source and

destination operands, which may be registers or one of them, may be a memory location. However,

exchange of data contents of two memory locations is not permitted.

Example: MOV AL, 5; AL = 5

 MOV BL, 2; BL = 2

XCHG AL, BL; AL = 2, BL = 5

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 6

PUSH: Push to stack; this instruction pushes the contents of the specified register/memory location on to

the stack. The stack pointer is decremented by 2, after each execution of the instruction. The actual

current stack-top is always occupied by the previously pushed data. Hence, the push operation decrements

SP by two and then stores the two byte contents of the operand onto the stack. The higher byte is pushed

first and then the lower byte. Thus out of the two decremented stack addresses the higher byte occupies

the higher address and the lower byte occupies the lower address.

1. PUSH AX

2. PUSH DS

3. PUSH [500OH] ; Content of location 5000H and 5001 H in DS are pushed onto the stack.

POP: Pop from Stack this instruction when executed loads the specified register/memory location with

the contents of the memory location of which the address is formed using the current stack segment and

stack pointer as usual. The stack pointer is incremented by 2. The POP instruction serves exactly opposite

to the PUSH instruction.

1. POP BX

2. POP DS

3. POP [5000H]

PUSHF: Push Flags to Stack The push flag instruction pushes the flag register on to the stack; first the

upper byte and then the lower byte will be pushed on to the stack. The SP is decremented by 2, for each

push operation. The general operation of this instruction is similar to the PUSH operation.

POPF: Pop Flags from Stack The pop flags instruction loads the flag register completely (both bytes)

from the word contents of the memory location currently addressed by SP and SS. The SP is incremented

by 2for each pop operation.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 7

LAHF: Load AH from Lower Byte of Flag This instruction loads the AH register with the lower byte of

the flag register. This instruction may be used to observe the status of all the condition code flags (except

overflow) at a time.

SAHF: Store AH to Lower Byte of Flag Register This instruction sets or resets the condition code flags

(except overflow) in the lower byte of the flag register depending upon the corresponding bit positions in

AH. If a bit in AH is 1, the flag corresponding to the bit position is set, else it is reset.

LEA: Load Effective Address The load effective address instruction loads the offset of an operand in the

specified register. This instruction is similar to MOV, MOV is faster than LEA.

LEA cx, [bx+si]; CX (BX+SI) mod 64K If bx=2f00 H; si=10d0H cx = 3fd0H

The LDS AND LES instructions:

• LDS and LES load a 16-bit register with offset address retrieved from a memory location then load

either DS or ES with a segment address retrieved from memory.

This instruction transfers the 32-bit number, addressed by DI in the data segment, into the BX and DS

registers.

• LDS and LES instructions obtain a new far address from memory.

– Offset address appears first, followed by the segment address

• This format is used for storing all 32-bit memory addresses.

• A far address can be stored in memory by the assembler.

LDS BX, DWORD PTR[SI]

BL [SI];

BH [SI+1]

DS [SI+3: SI+2]; in the data segment

LES BX, DWORD PTR[SI]

BL [SI];

BH [SI+1]

ES [SI+3: SI+2]; in the extra segment

I/O Instructions: The 80x86 supports two I/O instructions: in and out15. They take the forms:

In ax, port

in ax, dx

out port, ax

out dx, ax

port is a value between 0 and 255.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 8

The in instruction reads the data at the specified I/O port and copies it into the accumulator. The

out instruction writes the value in the accumulator to the specified I/O port.

Arithmetic instructions: These instructions usually perform the arithmetic operations, like addition, subtraction,

multiplication and division along with the respective ASCII and decimal adjust instructions. The increment and

decrement operations also belong to this type of instructions.

The ADD and ADC instructions: The add instruction adds the contents of the source operand to the

destination operand. For example, add ax, bx adds bx to ax leaving the sum in the ax register. Add

computes dest: = dest + source while adc computes dest: = dest + source + C where C represents the

value in the carry flag. Therefore, if the carry flag is clear before execution, adc behaves exactly like the

add instruction.

Example:

 CF=1

BX=25 AX=98

DX=78 CX=94

BX=9E AX=2C

Both instructions affect the flags identically. They set the flags as follows:

• The overflow flag denotes a signed arithmetic overflow.

• The carry flag denotes an unsigned arithmetic overflow.

• The sign flag denotes a negative result (i.e., the H.O. bit of the result is one).

• The zero flag is set if the result of the addition is zero.

• The auxiliary carry flag contains one if a BCD overflow out of the L.O. nibble occurs.

• The parity flag is set or cleared depending on the parity of the L.O. eight bits of the result. If there is

even number of one bits in the result, the ADD instructions will set the parity flag to one (to denote even

parity). If there is an odd number of one bits in the result, the ADD instructions clear the parity flag (to

denote odd parity).

The INC instruction: The increment instruction adds one to its operand. Except for carry flag, inc sets

the flags the same way as Add ax, 1 same as inc ax. The inc operand may be an eight bit, sixteen bit. The

inc instruction is more compact and often faster than the comparable add reg, 1 or add mem, 1 instruction.

The AAA and DAA Instructions

The aaa (ASCII adjust after addition) and daa (decimal adjust for addition) instructions support

BCD arithmetic. BCD values are decimal integer coded in binary form with one decimal digit (0...9) per

nibble. ASCII (numeric) values contain a single decimal digit per byte, the H.O. nibble of the byte should

contain zero (30 ….39).

The aaa and daa instructions modify the result of a binary addition to correct it for ASCII

or decimal arithmetic. For example, to add two BCD values, you would add the mas though they were

binary numbers and then execute the daa instruction afterwards to correct the results.

Note: These two instructions assume that the add operands were proper decimal or ASCII values. If you

add binary (non-decimal or non-ASCII) values together and try to adjust them with these instructions, you

will not produce correct results.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 9

Aaa (which you generally execute after an add, adc, or xadd instruction) checks the value in al for BCD

overflow. It works according to the following basic algorithm:

if ((al and 0Fh) > 9 or (AuxC =1)) then add al=08 +06; al=0E > 9

al := al + 6 al=0E + 06=04

else

ax := ax + 6

end if

ah := ah + 1 ah=00+01=01

AuxC := 1 ;Set auxilliary carry

Carry := 1 ; and carry flags.

Else al=04+03=08, now al<9, so only clear

AuxC := 0 ;Clear auxilliary carry ah=0

Carry := 0 ; and carry flags.

endif

al := al and 0Fh

The aaa instruction is mainly useful for adding strings of digits where there is exactly one decimal digit

per byte in a string of numbers.

 The daa instruction functions like aaa except it handles packed BCD values rather than the one

digit per byte unpacked values aaa handles. As for aaa, daa’s main purpose is to add strings of BCD digits

(with two digits per byte). The algorithm for daa is

if ((AL and 0Fh) > 9 or (AuxC = 1)) then al=24+77=9B, as B>9 add 6 to al

al := al + 6 al=9B+06=A1, as higher nibble A>9, add 60

AuxC: = 1 ; Set Auxilliary carry. to al, al=A1+60=101

End if Note: if higher or lower nibble of AL <9 then

if ((al > 9Fh) or (Carry = 1)) then no need to add 6 to AL

al := al + 60h

Carry: = 1; Set carry flag.

End if

EXAMPLE:

Assume AL = 0 0 1 1 0 1 0 1, ASCII 5

BL = 0 0 1 1 1 0 0 1, ASCII 9

ADD AL, BL Result: AL= 0 1 1 0 1 1 1 0 = 6EH, which is incorrect BCD

AAA Now AL = 00000100, unpacked BCD 4.

CF = 1 indicates answer is 14 decimal

NOTE: OR AL with 30H to get 34H, the ASCII code for 4. The AAA instruction works only on the AL

register. The AAA instruction updates AF and CF, but OF, PF, SF, and ZF are left undefined.

EXAMPLES:

AL = 0101 1001 = 59 BCD; BL = 0011 0101 = 35 BCD

ADD AL, BL AL = 1000 1110 = 8EH

DAA Add 01 10 because 1110 > 9 AL = 1001 0100 = 94 BCD

AL = 1000 1000 = 88 BCD BL = 0100 1001 = 49 BCD

ADD AL, BL AL = 1101 0001, AF=1

DAA Add 0110 because AF =1, AL = 11101 0111 = D7H

1101 > 9 so add 0110 0000

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 10

AL = 0011 0111= 37 BCD, CF =1

The DAA instruction updates AF, CF, PF, and ZF. OF is undefined after a DAA instruction.

The SUBTRACTION instructions: SUB, SBB, DEC, AAS, and DAS

The sub instruction computes the value dest: =dest - src. The sbb instruction computes dest: =dest

- src - C.

The sub, sbb, and dec instructions affect the flags as follows:

• They set the zero flag if the result is zero. This occurs only if the operands are equal for sub and sbb.

The dec instruction sets the zero flag only when it decrements the value one.

• These instructions set the sign flag if the result is negative.

• These instructions set the overflow flag if signed overflow/under flow occurs.

• They set the auxiliary carry flag as necessary for BCD/ASCII arithmetic.

• They set the parity flag according to the number of one bits appearing in the result value.

• The sub and sbb instructions set the carry flag if an unsigned overflow occurs. Note that the dec

instruction does not affect the carry flag.

The aas instruction, like its aaa counterpart, lets you operate on strings of ASCII numbers with one

decimal digit (in the range 0...9) per byte. This instruction uses the following algorithm:

if ((al and 0Fh) > 9 or AuxC = 1) then

al := al - 6

ah := ah - 1

AuxC: = 1; Set auxilliary carry

Carry: = 1; and carry flags.

else

AuxC: = 0; Clear Auxilliary carry

Carry: = 0; and carry flags.

End if

al := al and 0Fh

The das instruction handles the same operation for BCD values, it uses the following

Algorithm:

if ((al and 0Fh) > 9 or (AuxC = 1)) then

al := al -6

AuxC = 1

End if

if (al > 9Fh or Carry = 1) then

al := al - 60h

Carry: = 1; Set the Carry flag.

End if

EXAMPLE:

ASCII 9-ASCII 5 (9-5)

AL = 00111001 = 39H = ASCII 9

BL = 001 10101 = 35H = ASCII 5

SUB AL, BL Result: AL = 00000100 = BCD 04 and CF = 0

AAS Result: AL = 00000100 = BCD 04 and CF = 0

no borrow required

ASCII 5-ASCII 9 (5-9)

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 11

Assume AL = 00110101 = 35H ASCII 5

and BL = 0011 1001 = 39H = ASCII 9

SUB AL, BL Result: AL = 11111100 = - 4 in 2s complement and CF =1

AAS Result: AL = 00000100 = BCD 04 and CF = 1, borrow needed

EXAMPLES:

AL 1000 0110 86 BCD ; BH 0101 0111 57 BCD

Chapter 2

SUB AL,BH AL 0010 1111 2FH, CF = 0

DAS Lower nibble of result is 1111, so DAS automatically

Subtracts 0000 0110 to give AL = 00101001 29 BCD

AL 0100 1001 49 BCD BH 0111 0010 72 BCD

SUB AL, BH AL 1101 0111 D7H, CF = 1

DAS Subtracts 0110 0000 (- 60H) because 1101 in upper nibble > 9

AL = 01110111= 77 BCD, CF=1 CF =1 means borrow was needed

The CMP Instruction: The cmp (compare) instruction is identical to the sub instruction with one crucial

difference– it does not store the difference back into the destination operand. The syntax for the cmp

instruction is very similar to sub; the generic form is cmpdest, src

Consider the following cmp instruction: cmp ax, bx

This instruction performs the computation ax-bx and sets the flags depending up on the result of the

computation. The flags are set as follows:

Z: The zero flag is set if and only if ax = bx. This is the only time ax-bx produces a zero result. Hence,

you can use the zero flag to test for equality or inequality.

S: The sign flag is set to one if the result is negative.

O: The overflow flag is set after a cmp operation if the difference of ax and bx produced an overflows or

underflow.

C: The carry flag is set after a cmp operation if subtracting bx from ax requires a borrow.This occurs only

when ax is less than bx where ax and bx are both unsigned values.

The Multiplication Instructions: MUL, IMUL, and AAM: This instruction multiplies an unsigned byte

or word by the contents of AL. The unsigned byte or word may be in any one of the general-purpose

registers or memory locations. The most significant word of the result is stored in DX, while the least

significant word of the result is stored in AX.

The mul instruction, with an eight bit operand, multiplies the al register by the operand and stores the

16 bit result in ax. So

mul operand (Unsigned) MUL BL i.e. AL * BL; Al=25 * BL=04; AX=00 (AH) 64 (AL)

imul operand (Signed) IMUL BL i.e. AL * BL; AL=09 * BL=-2; AL * 2’s comp(BL)

 AL=09 * BL (0EH) =7E; 2’s comp (7e) =-82

The aam (ASCII Adjust after Multiplication) instruction, adjust an unpacked decimal value after

multiplication. This instruction operates directly on the ax register. It assumes that you’ve multiplied two

eight bit values in the range 0..9 together and the result is sitting in ax (actually, the result will be sitting

in al since 9*9 is 81,the largest possible value; ah must contain zero). This instruction divides ax by 10

and leaves the quotient in ah and the remainder in al: mul bl; al=9, bl=9 al*bl=9*9=51H; AX=00(AH)

51(AL); AAM ; first hexadecimal value is converted to decimal value i.e. 51 to 81; al=81D; second

convert packed BCD to unpacked BCD, divide AL content by 10 i.e. 81/10 then AL=01, AH =08; AX =

0801

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 12

EXAMPLE:

AL 00000101 unpacked BCD 5

BH 00001001 unpacked BCD 9

MUL BH AL x BH; result in AX

AX = 00000000 00101101 = 002DH

AAM AX = 00000100 00000101 = 0405H, which is unpacked BCD for 45.

If ASCII codes for the result are desired, use next instruction OR AX, 3030H Put 3 in upper nibble of

each byte.

AX = 0011 0100 0011 0101 = 3435H, which is ASCII code for 45

The Division Instructions: DIV, IDIV, and AAD

The 80x86 divide instructions perform a 64/32 division (80386 and later only), a 32/16division or a 16/8

division. These instructions take the form:

Div reg For unsigned division

Div mem

Idiv reg For signed division

Idiv mem

The div instruction computes an unsigned division. If the operand is an eight bit operand, div divides the

ax register by the operand leaving the quotient in al and the remainder (modulo) in ah. If the operand is a

16 bit quantity, then the div instruction divides the 32 bit quantity in dx:ax by the operand leaving the

quotient in ax and the remainder in .

Note: If an overflow occurs (or you attempt a division by zero) then the80x86 executes an INT 0

(interrupt zero).

The aad (ASCII Adjust before Division) instruction is another unpacked decimal operation.It splits apart

unpacked binary coded decimal values before an ASCII division operation. The aad instruction is useful

forother operations. The algorithm that describes this instruction is

al := ah*10 + al AX=0905H; BL=06; AAD; AX=AH*10+AL=09*10+05=95D;

convert decimal to hexadecimal; 95D=5FH; al=5f;

 DIV BL; AL/BL=5F/06; AX=05(AH) 0F (AL)

ah := 0

EXAMPLE:

AX = 0607H unpacked BCD for 67 decimal CH = 09H, now adjust to binary

AAD Result: AX = 0043 = 43H = 67 decimal

DIV CH Divide AX by unpacked BCD in CH

Quotient: AL = 07 unpacked BCD Remainder:

AH = 04 unpacked BCD Flags undefined after DIV

NOTE: If an attempt is made to divide by 0, the 8086 will do a type 0 interrupt.

CBW-Convert Signed Byte to Signed Word: This instruction copies the sign of a byte in AL to all the

bits in AH. AH is then said to be the sign extension of AL. The CBW operation must be done beforea

signed byte in AL can be divided by another signed byte with the IDIV instruction. CBW affects no flags.

EXAMPLE:

AX = 00000000 10011011 155 decimal

CBW Convert signed byte in AL to signed word in AX

Result: AX = 11111111 10011011 155 decimal

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 13

CWD-Convert Signed Word to Signed Double word: CWD copies the sign bit of a word in AX to all

the bits of the DX register. In other words it extends the sign of AX into all of DX. The CWD operation

must be done before a signed word in AX can be divided by another signed word with the IDIV

instruction. CWD affects no flags.

EXAMPLE:

DX = 00000000 00000000

AX = 11110000 11000111 3897 decimal

CWD Convert signed word in AX to signed doubleword in DX:AX

Result DX = 11111111 11111111

AX = 11110000 11000111 3897 decimal

Logical, Shift, Rotate and Bit Instructions: The 80x86 family provides five logical instructions, four

rotate instructions, and three shift instructions. The logical instructions are and, or, xor, test, and not; the

rotates are ror,rol, rcr, and rcl; the shift instructions are shl/sal, shr, and sar.

The Logical Instructions: AND, OR, XOR, and NOT:The 80x86 logical instructions operate on a bit-

by-bit basis. Except not, these instructions affect the flags as follows:

• They clear the carry flag.

• They clear the overflow flag.

• They set the zero flag if the result is zero, they clear it otherwise.

• They copy the H.O. bit of the result into the sign flag.

• They set the parity flag according to the parity (number of one bits) in the result.

• They scramble the auxiliary carry flag.

The not instruction does not affect any flags.

The AND instruction sets the zero flag if the two operands do not have any ones in corresponding bit

positions. AND AX, BX

The OR instruction will only set the zero flag if both operands contain zero. OR AX, BX

The XOR instruction will set the zero flag only if both operands are equal. Notice that the xor

operation will produce a zero result if and only if the two operands are equal. Many programmers

commonly use this fact to clear a sixteen bit register to zero since an instruction of the form xor reg16,

reg16; XOR AX, AX is shorter than the comparable mov reg, 0 instruction.

You can use the and instruction to set selected bits to zero in the destination operand. This is known as

masking out data; Likewise, you can use the or instruction to force certain bits to one in the destination

operand;

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 14

The Shift Instructions: SHL/SAL, SHR, SAR: The 80x86 supports three different shift instructions (shl

and sal are the same instruction): shl (shift left), sal (shift arithmetic left), shr (shift right), and sar (shift

arithmetic right). The general format for a shift instruction is

Shl dest, count sal dest, count shr dest, count sar dest, count

SHL/SAL: These instructions move each bit in the destination operand one bit position to the left the

number of times specified by the count operand. Zeros fill vacated positions at the L.O. bit; the H.O. bit

shifts into the carry flag.

The shl/sal instruction sets the condition code bits as follows:

• If the shift count is zero, the shl instruction doesn’t affect any flags.

• The carry flag contains the last bit shifted out of the H.O. bit of the operand.

• The overflow flag will contain one if the two H.O. bits were different prior to a single bit shift. The

overflow flag is undefined if the shift count is not one.

• The zero flag will be one if the shift produces a zero result.

• The sign flag will contain the H.O. bit of the result.

• The parity flag will contain one if there are an even number of one bits in the L.O. byte of the result.

• The A flag is always undefined after the shl/sal instruction.

The shift left instruction is especially useful for packing data. For example, suppose you have two

nibbles in al and ah that you want to combine. You could use the following code to do this:

shl ah, 4 ;

or al, ah ; Merge in H.O. four bits.

Of course, al must contain a value in the range 0..F for this code to work properly (the shift left operation

automatically clears the L.O. four bits of ah before the or instruction).

SHL OPERATION

H.O. four bits of al are not zero before this operation, you can easily clear them with an and instruction:

shl ah, 4 ;Move L.O. bits to H.O. position.

and al, 0Fh ;Clear H.O. four bits.

or al, ah ;Merge the bits.

Since shifting an integer value to the left one position is equivalent to multiplying that value by two, you

can also use the shift left instruction for multiplication by powers of two:

shl ax, 1 ;Equivalent to AX*2

shl ax, 2 ;Equivalent to AX*4

shl ax, 3 ;Equivalent to AX*8

SAR:Thesar instruction shifts all the bits in the destination operand to the right one bit, replicating the

H.O. bit.

The sar instruction’s main purpose is to perform a signed division by some power of two. Each shift to the

right divides the value by two. Multiple right shifts divide the previous shifted result by two, so multiple

shifts produce the following results:

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 15

SAR OPERATION

sar ax, 1 ;Signed division by 2

sar ax, 2 ;Signed division by 4

sar ax, 3 ;Signed division by 8

sar ax, 4 ;Signed division by 16

sar ax, 5 ;Signed division by 32

sar ax, 6 ;Signed division by 64

sar ax, 7 ;Signed division by 128

sar ax, 8 ;Signed division by 256

There is a very important difference between the sar and idiv instructions. The idiv instruction always

truncates towards zero while sar truncates results toward the smaller result. For positive results, an

arithmetic shift right by one position produces the same result as an integer division by two. However, if

the quotient is negative, idiv truncates towards zero while sar truncates towards negative infinity.

SHR: The shr instruction shifts all the bits in the destination operand to the right one bit shifting a zero

into the H.O. bit

SHR OPERATION

The shift right instruction is especially useful for unpacking data. shifting an unsigned integer value to the

right one position is equivalent to dividing that value by two, you can also use the shift right instruction

for division by powers of two:

shr ax, 1 ;Equivalent to AX/2

shr ax, 2 ;Equivalent to AX/4

shr ax, 3 ;Equivalent to AX/8

shr ax, 4 ;Equivalent to AX/16

The Rotate Instructions: RCL, RCR, ROL, and ROR
The rotate instructions shift the bits around, just like the shift instructions, except the bits shifted out of the operand by the rotate

instructions recirculate through the operand. They include rcl (rotate through carry left), rcr(rotate through carry right), rol(rotate left),

And ror (rotate right). These instructions all take the forms:

rcl dest, count rol dest, count rcr dest, count ror dest, count

RCL: The rcl (rotate through carry left), as its name implies, rotates bits to the left, through the carry flag, and back into bit zero on

the right. The rcl instruction sets the flag bits as follows:
• The carry flag contains the last bit shifted out of the H.O. bit of the operand.

• If the shift count is one, rcl sets the overflow flag if the sign changes as a result of the rotate. If the count is not one, the overflow

flag is undefined.

• The rcl instruction does not modify the zero, sign, parity, or auxiliary carry flags.

RCL OPERATION

RCR: The rcr (rotate through carry right) instruction is the complement to the rcl instruction. It shifts its

bits right through the carry flag and back into the H.O. bit. This instruction sets the flags in a manner

analogous to rcl:

• The carry flag contains the last bit shifted out of the L.O. bit of the operand.

• The rcr instruction does not affect the zero, sign, parity, or auxiliary carry flags.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 16

RCR OPERATION

ROL: The rol instruction is similar to the rcl instruction in that it rotates its operand to the left the

specified number of bits. The major difference is that rol shifts its operand’s H.O. bit, rather than the

carry, into bit zero. Rol also copies the output of the H.O. bit into the carry flag. The rol instruction sets

the flags identically to rcl. Other than the source of the value shifted into bit zero, this instruction behaves

exactly like the rcl instruction.

Like shl, the rol instruction is often useful for packing and unpacking data.

ROL OPERATION

ROR: The ror instruction relates to the rcr instruction in much the same way that the rol instruction

relates to rcl. That is, it is almost the same operation other than the source of the input bit to the operand.

Rather than shifting the previous carry flag into the H.O. bit of the destination operation, ror shifts bit zero

into the H.O. bit.

ROR OPERATION

String Instructions: A string is a collection of objects stored in contiguous memory locations. Strings are

usually arrays of bytes or words on 8086.All members of the 80x 86 families support five different

string instructions: MOVS, CMPS, SCAS, LODS, AND STOS.

The string instructions operate on blocks (contiguous linear arrays) of memory. For example, the movs

instruction moves a sequence of bytes from one memory location to another. The cmps instruction

compares two blocks of memory. The scas instruction scans a block of memory for a particular value.

These string instructions often require three operands, a destination block address, a source block address,

and (optionally) an element count. For example, when using the movs instruction to copy a string, we

need a source address, a destination address, and a count (the number of string elements to move).The

operands for the string instructions include:

• the SI (source index) register, • the DI (destination index) register, • the CX (count) register,

• the AX register, and • the direction flag in the FLAGS register.

The REP/REPE/REPZ and REPNZ/REPNE Prefixes: The repeat prefixes tell the 80x86 to do a multi-

byte string operation. The syntax for the repeat prefix is:

Field:

Label repeat mnemonic operand; comment

For MOVS:

Rep movs {operands}

For CMPS:

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 17

Repe cmps {operands} repz cmps {operands} repne cmps {operands} repnz

cmps {operands}

For SCAS:

Repe scas {operands} repz scas {operands} repnescas {operands} repnzscas {operands}

For STOS:

Rep stos {operands}

When specifying the repeat prefix before a string instruction, the string instruction repeats cx

times. Without the repeat prefix, the instruction operates only on a single byte,word, or double word.

If the direction flag is clear, the CPU increments si and di after operating upon each string

element. If the direction flag is set, then the 80x86 decrements si and di after processing each string

element. The direction flag may be set or cleared using the cld (clear direction flag) and std (setdirection

flag) instructions.

The MOVS Instruction: The movsb (move string, bytes) instruction fetches the byte at address ds:si,

stores it at address es :di, and then increments or decrements the si and di registers by one. If the rep

prefix is present, the CPU checks cx to see if it contains zero. If not, then it moves the byte from ds: si to

es: di and decrements the cx register. This process repeats until cx becomes zero. The syntax is:

{REP} MOVSB {REP} MOVSW

The CMPS Instruction: The cmps instruction compares two strings. The CPU compares the string

referenced by es: di to the string pointed at by ds: si. CX contains the length of the two strings (when

using the rep prefix). The syntax is: {REPE} CMPSB {REPE} CMPSW

To compare two strings to see if they are equal or not equal, you must compare corresponding

elements in a string until they don’t match or length of the string cx=0.The repe prefix accomplishes

this operation. It will compare successive elements in a string as long as they are equal and cx is greater

than zero.

The SCAS Instruction: The scas instruction, by itself, compares the value in the accumulator (al or ax)

against the value pointed at by es:di and then increments (or decrements) di by one or two. The CPU sets

the flags according to the result of the comparison. When using the repne prefix (repeat while not equal),

scas scans the string searching for the first string element which is equal to the value in the accumulator.

The scas instruction takes the following forms: {REPNE} SCASB {REPNE} SCASW

The STOS Instruction: The stos instruction stores the value in the accumulator at the location specified

by es: di. After storing the value, the CPU increments or decrements di depending upon the state of the

direction flag. Its primary use is to initialize arrays and strings to a constant value. {REP} STOSB

{REP} STOSW

The LODS Instruction: The lods instruction copies the byte or word pointed at by ds:si into the al or ax

register, after which it increments or decrements the si register by one or two.{REP} LODSB

 {REP} LODSW

Flag Manipulation and Processor Control Instructions: These instructions control the functioning of

the available hardware inside the processor chip. These are categorized into two types; (a) flag

manipulation instructions and (b) machine control instructions.

The flag manipulation instructions directly modify some of the flags of 8086. The machine control

instructions control the bus usage and execution. The flag manipulation instructions and their functions

are as follows:

CLC - Clear carry flag CMC - Complement carry flag STC - Set carry flag

CLD - Clear direction flag STD - Set direction flag CLI - Clear interrupt flag

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 18

STI - Set interrupt flag

These instructions modify the carry (CF), direction (DF) and interrupt (IF) flags directly. The DF and IF,

which may be modified using the flag manipulation instructions, further control the processor operation;

like interrupt responses and auto increment or auto decrement modes.

The machine control instructions supported by 8086 and 8088 are listed as follows along with

their functions. These machine control instructions do not require any operand.

WAIT - Wait for Test input pin to go low HLT - Halt the processor NOP - No

operation ESC - Escape to external device like NDP (numeric co-processor) LOCK - Bus

lock instruction prefix.

After executing the HLT instruction, the processor enters the halt state. The two ways to pull it out of the

halt state are to reset the processor or to interrupt it.

When NOP instruction is executed, the processor does not perform any operation till 4 clock

cycles, except incrementing the IP byone. It then continues with further execution after 4 clock cycles.

ESC instruction when executed, frees the bus for an external master like a coprocessor or

peripheral devices.

The LOCK prefix may appear with another instruction. When it is executed, the bus access is not

allowed for another master till the lock prefixed instruction is executed completely. This instruction is

used in case of programming for multiprocessor systems.

The WAIT instruction when executed holds the operation of processor with the current status till

the logic level on the TEST pin goes low. The processor goes on inserting WAIT states in the instruction

cycle, till the TEST pin goes low. Once the TEST pin goes low, it continues further execution.

Program Flow Control Instructions: The control transfer instructions are used to transfer the control

from one memory location to another memory location. In 8086 program control instructions belong to

three groups: unconditional transfers, conditional transfers, and subroutine call and return instructions.

Unconditional Jumps: The jmp (jump) instruction unconditionally transfers control to another point in

the program. Intra segment jumps are always between statements in the same code segment. Intersegment

jumps can transfer control to a statement in a different code segment.

JMP Address

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 19

Unconditional jump Conditional jump

Conditional Jump: The conditional jump instructions are the basic tool for creating loops and other

conditionally executable statements like the if…..then statement. The conditional jumps test one or more

bits in the status register to see if they match some particular pattern. If the pattern matches, control

transfers to the target location. If the condition fails, the CPU ignores the conditional jump and execution

continues with the next instruction. Some instructions, for example, test the conditions of the sign, carry,

overflow and zero flags.

Loop Instruction:

• These instructions are used to repeat a set of instructions several times.

• Format: LOOP Short-Label

• Operation: (CX) (CX)-1

• Jump is initialized to location defined by short label if CX≠0. Otherwise, execute next

sequential instruction.

• Instruction LOOP works with respect to contents of CX. CX must be preloaded with a count

that represents the number of times the loop is to be repeat.

P
a
r
t

1

J
M
P

A
A

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 20

• Whenever the loop is executed, contents at CX are first decremented then checked to

determine if they are equal to zero.

• If CX=0, loop is complete and the instruction following loop is executed.

• If CX ≠ 0, content return to the instruction at the label specified in the loop instruction.

• LOOP AGAIN is almost same as: DEC CX, JNZ AGAIN

SUBROUTINE & SUBROUTINE HANDILING INSTRUCTIONS: CALL, RET

 A subroutine is a special segment of program that can be called for execution from any point

in a program.

 An assembly language subroutine is also referred to as a “procedure”.

 Whenever we need the subroutine, a single instruction is inserted in to the main body of the

program to call subroutine.

 Transfers the flow of the program to the procedure.

Skipped part

 Part 3

 AA XXXX

 Part 2

Next instruction

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 21

 CALL instruction differs from the jump instruction because a CALL saves a return address

on the stack.

 The return address returns control to the instruction that immediately follows the

CALL in a program when a RET instruction executes.

 To branch a subroutine the value in the IP or CS and IP must be modified.

 After execution, we want to return the control to the instruction that immediately follows the

one called the subroutine i.e., the original value of IP or CS and IP must be preserved.

 Execution of the instruction causes the contents of IP to be saved on the stack. (this time (SP)

 (SP) -2)

 A new 16-bit (near-proc, mem16, reg16 i.e., Intra Segment) value which is specified by the

instructions operand is loaded into IP.

 Examples: CALL 1234H

CALL BX

CALL [BX]

Return Instruction: RET instruction removes an address from the stack so the program returns to

the instruction following the CALL

• Every subroutine must end by executing an instruction that returns control to the main

program. This is the return (RET) instruction.

• By execution the value of IP or IP and CS that were saved in the stack to be returned back to

their corresponding registers. (this time (SP) (SP)+2)

MACROS: The macro directive allows the programmer to write a named block of source

statements, then use that name in the source file to represent the group of statements. During the

assembly phase, the assembler automatically replaces each occurrence of the macro name with the

statements in the macro definition.

Macros are expanded on every occurrence of the macro name, so they can increase the length

of the executable file if used repeatably. Procedures or subroutines take up less space, but the

increased overhead of saving and restoring addresses and parameters can make them slower. In

summary, the advantages and disadvantages of macros are,

Advantages

 Repeated small groups of instructions replaced by one macro

 Errors in macros are fixed only once, in the definition

 Duplication of effort is reduced

 In effect, new higher level instructions can be created

 Programming is made easier, less error prone

 Generally quicker in execution than subroutines

Disadvantages

In large programs, produce greater code size than procedures

When to use Macros

 To replace small groups of instructions not worthy of subroutines

 To create a higher instruction set for specific applications

 To create compatibility with other computers

 To replace code portions which are repeated often throughout the program

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 22

Modular Programming: Instead of writing a large program in a single unit, it is better to write

small programs—which are parts of the large program. Such small programs are called program

modules or simply modules. Each such module can be separately written, tested and debugged. Once

the debugging of the small programs is over, they can be linked together. Such methodology of

developing a large program by linking the modules is called modular programming.

Assembler Directives:

Assembler directives are special instructions that provide information to the assembler but do not

generate any code. Examples include the segment directive, equ, assume and end. These mnemonics

are not valid 80x86 instructions. They are messages to the assembler, to generate address.

A pseudo-opcode is a message to the assembler, just like an assembler directive, however a

pseudo-opcode will emit object code bytes. Examples of pseudo-opcodes include byte, word, dword,

qword, and byte. These instructions emit the bytes of data specified by their operands but they are

not true 80X86 machine instructions.

ASSUME: The ASSUME directive tell the assembler the name of the logical segment it should use

for a specified segment. Ex: ASSUME CS: Code, DS: Data, SS: Stack; or ASSUME CS: Code

Data Directives: The directives DB, DW, DD, DR and DT are used to (a) define different types of

variables or (b) to set aside one or more storage locations in memory-depending on the data type:

DB — Define Byte DW — Define Word DD — Define Double word

DQ — Define Quad word DT — Define Ten Bytes

The DB directive is used to declare a byte-type variable or to set aside one or more storage locations

of type byte in memory (Define Byte)

Example: Temp DB 42H; Temp is a variable allotted 1byte of memory location assigned with data

42H

The DW directive is used to declare a variable of type word or to reserve memory locations which

can be accessed as type double word (Define word)

Example: N2 DW 427AH; N2 variable is initialized with value 427AH when it is loaded into

memory to run.

The DD directive is used to declare a variable of type double word or to reserve memory locations

which can be accessed as type double word (Define double word)

Example: Big DD 2456756CH; Big variable is initialized with 4 bytes

The DQ directive is used to tell the assembler to declare a variable 4 words in length or to reverse 4

words of storage in memory (Define Quad word)

Example: Big DQ 2456756C88464567H; Big variable is initialized with 4 words (8 bytes)

The DT directive is used to tell the assembler to declare a variable 10 bytes in length or to reverse

10bytes of storage in memory (Define Ten bytes)

Example: Packed BCD DT 11223344556677889900H; 10 byte data is initialized to variable packed

BCD

DUP: This directive operator is used to initialize several locations and to assign values to these

locations. Its format is: Name Data-Type Num DUP (value)

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 23

Example: TABLE DB 20 DUP (0); Reserve an array of 20 bytes of memory and initialize all 20

bytes with 0. Array is named TABLE

END: The END directive is placed after the last statement of a program to tell the assembler that this

is the end of the program module. The assembler will ignore any statement after an end directive.

The ENDP directive is used with the name of the procedure to indicate the end of a procedure to the

assembler.

SQUARE NUM PROC

….

….

SQUARE NUM ENDP

The ENDS directive is used with the name of the segment to indicate the end of a segment to the

assembler.

CODE SEGMENT

…

…

CODE ENDS

EQU: The EQU directive is used to give a name to some value or to a symbol. Each time assembler

finds the name in the program it will replace the name with the value.

FACTOR EQU 03H; This statement should be written at the start

ADD AL, FACTOR; The assembler converts this instruction as ADD AL, 03H

EVEN: The EVEN directive instructs the assembler to increment the location of the counter to the

next even address if it is not already in the even address. If the word starts at an odd address, 8086

will take 2 bus cycles to get the 2 byte of the word. “A series of words can read much more quickly if

they are at even address”.

DATA HERE SEGMENT ; Location counter will point to 0009H after assembler reads next

statement

SALES DB 9 DUP (?) ; Declare an array of 9 bytes

EVEN ; Increment location counter to 000AH

RECORD DW 100 DUP (?) ; Array of 100 words starting on even address for quicker read

DATA HERE ENDS ;

GLOBAL: This GLOBAL directive can be used in place of PUBLIC directive or in place of an

EXTRN directive. The GOLBAL directive is used to make the symbol available to other modules.

PUBLIC: The PUBLIC directive is used along with the EXTRN directive. This informs the

assembler that the labels, variables, constants, or procedures declared PUBLIC may be accessed by

other assembly modules to form their codes, but while using the PUBLIC declared labels, variables,

constants or procedures the user must declare them externals using the EXTRN directive.

EXTRN: This EXTRN directive is used to tell the assembler that the names or labels following the

directive are in some other assembly module.

GROUP: This GROUP directive is used to tell the assembler to group the logical segments named

after the directive into one logical group segment.

Example: SMALL SYSTEM GROUP CODE, DATA, STACK

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 24

 ASSUME CS: SMALL SYSTEM, DS: SMALL SYSTEM, SS: SMALL SYSTEM

OFFSET—Is an operator which tells the assembler to determine the offset or the displacement of a

named data item (variable) or procedure from start of the segment which contains it. This operator is

used to load the offset of a variable into a register so that the variable can be accessed with one of the

indexed addressing modes. MOV AL, OFFSET N1

ORG – This ORG directive allows to set the location counter to a desired value at any point in the

program. The statement ORG 100H tells the assembler to set the location counter to 0100H.

PROCEDURE: A PROC directive is used to define a label and to delineate a sequence of instructions

that are usually interpreted to be a subroutine, that is, CALLed either from within the same physical

segment (near) or from another physical segment (far).

Syntax:

name PROC [type] P1 PROC NEAR

MOV AX, 1 5

ADD OX, AX

….. ENDP

name ENDP

Labels: A label, a symbolic name for a particular location in an instruction sequence, maybe defined

in one of three ways. The first way is the most common. The format is shown below: label:

[instruction]

where "label" is a unique ASM86 identifier and "instruction" is an8086/8087/8088 instruction. This

label will have the following attributes:

1. Segment-the current segment being assembled.

2. Offset-the current value of the location counter.

3. Type-will be NEAR.

An example of this form of label definition is: ALAB: MOV AX, COUNT

Introduction to 8051 MicroContoller:

To make a complete microcomputer system, only microprocessor is not sufficient. It is necessary to

add other peripherals such as ROM, RAM, decoders, drivers, number of I/O devices to make a

complete microcomputer system. In addition, special purpose devices, such as interrupt controller,

programmable timers, programmable I/O devices, DMA controllers may be added to improve the

capability and performance and flexibility of a microcomputer system.

 The key feature for microprocessor based design is that it has more flexibility to configure a

system as large system or small system by adding suitable peripherals.

 On the other hand, the microcontroller incorporates all the features that are found in

microprocessor. The microcontroller has built-in ROM, RAM, parallel I/O, serial I/O, counters and a

clock circuit. It has on-chip peripheral devices which makes it possible to have single microcomputer

system.

Advantages of built-in peripherals:

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 25

Built-in peripherals have smaller access times hence speed is more.

Hardware reduces due to single chip microcomputer system.

Less hardware reduces PCB size and increases reliability of the system.

Comparison between Microprocessors and Microcontrollers:

Features of 8051:

 4KB on-chip program memory (ROM/EPROM).

 128 bytes on-chip data memory.

 Four register banks.

 64KB each program and external RAM addressability.

 One microsecond instruction cycle with 12MHz crystal.

 32 bidirectional I/O lines organized as four 8-bit ports.

 Multiple modes, high-speed programmable serial port (UART).

 16-bit Timers/Counters.

 Direct byte and bit addressability.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 26

Block Diagram of 8051:

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 27

Accumulator: The Accumulator, as it’s name suggests, is used as a general register to accumulate

the results of a large number of instructions. It can hold an 8-bit (1-byte) value.

‘B’ Register: The "B" register is very similar to the Accumulator in the sense that it may hold an 8-

bit (1-byte) value. The "B" register is only used by two 8051 instructions: MUL AB and DIV AB.

Aside from the MUL and DIV an instruction, the “B” register is often used as yet another

temporary storage register much like a ninth "R" register.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 28

Program Status Word

The PSW register contains program status information. It is a 8-bit flag register, out of 8-bits 6 bits

are used and 2 bits are reserved. Out of 6 bits 4 bits are conditional bits and 2 bits are used for

selecting register bank.

Stack Pointer

The Stack Pointer register is 8 bits wide. It is incremented before data is stored during PUSH and

CALL executions. While the stack may reside anywhere in on-chip RAM, the Stack Pointer is

initialized to 07H after a reset. This causes the stack to begin at locations 08H.

Data Pointer

The Data Pointer (DPTR) consists of a high byte (DPH) and a low byte (DPL). Its intended function

is to hold a 16-bit address. It may be manipulated as a 16-bit register or as two independent 8-bit

registers.

Program Counter

The Program Counter (PC) is a 2-byte address which tells the 8051 where the next instruction to

execute is found in memory. When the 8051 is initialized PC always starts at 0000h and is

incremented each time an instruction is executed. It is important to note that PC isn’t always

incremented by one. Since some instructions require 2 or 3 bytes the PC will be incremented by 2 or

3 in these cases.

The Program Counter is special in that there is no way to directly modify its value. That is to say, we

can’t do something like PC=2430h. On the other hand, if we execute LJMP 2430h you’ve effectively

accomplished the same thing.

Ports 0 to 3

P0, P1, P2, and P3 are the SFR latches of Ports 0, 1, 2, and 3, respectively. Writing a one to a bit of a

port SFR (P0, P1, P2, or P3) causes the corresponding port output pin to switch high. Writing a zero

causes the port output pin to switch low. When used as an input, the external state of a port pin will

be held in the port SFR (i.e., if the external state of a pin is low, the corresponding port SFR bit will

contain a 0; if it is high, the bit will contain a 1).

Serial Data Buffer

The Serial Buffer is actually two separate registers, a transmit buffer and a receive buffer. When data

is moved to SBUF, it goes to the transmit buffer and is held for serial transmission. (Moving a byte

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 29

to SBUF is what initiates the transmission.) When data is moved from SBUF, it comes from the

receive buffer.

Timer Registers Basic to 80C51

Register pairs (TH0, TL0), and (TH1, TL1) are the 16-bit Counting registers for Timer/Counters 0

and 1, respectively.

Control Register for the 80C51

Special Function Registers IP, IE, TMOD, TCON, SCON, and PCON contain control and status bits

for the interrupt system, the Timer/Counters, and the serial port.

Register Banks

The 8051 uses 8 "R" registers which are used in many of its instructions. These "R" registers are

numbered from 0 through 7 (R0, R1, R2, R3, R4, R5, R6, and R7). These registers are generally used

to assist in manipulating values and moving data from one memory location to another.

PSEN (Program Store Enable)

The 8051 has four dedicated bus control signals. It is a control signal that enables external program

(code) memory. It usually connects to an EPROM's Output Enable (OE) pin to permit reading of

program bytes. The PSEN signal pulses low during the fetch stage of an instruction. When executing

a program from internal ROM (8051/8052), PSEN remains in the inactive (high) state.

ALE (Address Latch Enable)

The 8051 similarly uses ALE for demultiplexing the address and data bus. When Port 0 is used in its

alternate mode—as the data bus and the low-byte of the address bus—ALE is the signal that latches

the address into an external register during the first half of a memory cycle.

EA (External Access)

The EA input signal is generally tied high (+5 V) or low (ground). If high, the 8051 executes

programs from internal ROM when executing in the lower 4K of memory. If low, programs execute

from external memory only (and PSEN pulses low accordingly).

RST (Reset)

The RST input is the master reset for the 8051. When this signal is brought high for at least two

machine cycles, the 8051 internal registers are loaded with appropriate values for an orderly system

start-up.

On-chip Oscillator Inputs

The 8051 features an on-chip oscillator. The nominal crystal frequency is 12 MHz for most ICs in the

MCS-51™ family.

Memory Organization

Most microprocessors implement a shared memory space for data and programs. This is reasonable,

since programs are usually stored on a disk and loaded into RAM for execution; thus both the data

and programs reside in the system RAM. Microcontrollers have limited memory, and there is no disk

drive or disk operating system. The control program must reside in. For this reason, the 8051

implements a separate memory space for programs (code) and data. Both the code and data may be

internal; however, both expand using external components to a maximum of 64K code memory and

64K data memory.

The internal memory consists of on-chip ROM (8051/8052 only) and on-chip data RAM. The on-

chip RAM contains a rich arrangement of general-purpose storage, bit-addressable storage,

register banks, and special function registers.

The internal memory space is divided between register banks (00H-1FH), bit-addressable RAM

(20H-2FH), general-purpose RAM (30H-7FH), and special function registers (80H-FFH).

Any location in the general-purpose RAM can be accessed freely using the direct or indirect

addressing modes.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 30

Bit-addressable RAM

The 8051 contains 210 bit-addressable locations, of which 128 are at byte addresses 20H through

2FH, and the rest are in the special function registers.

The idea of individually accessing bits through software is a powerful feature of most

microcontrollers. Bits can be set, cleared, ANDed, ORed, etc., with a single instruction.

Most microprocessors require a read-modify-write sequence of instructions to achieve the same

effect. Furthermore, the 8051 I/O ports are bit-addressable, simplifying the software interface to

single-bit inputs and outputs.

There are 128 general-purpose bit-addressable locations at byte address 20H through 2FH (8

bits/byte X 16 bytes = 128 bits).

Register Banks

The bottom 32 locations of internal memory contain the register banks. The 8051 instruction set

supports 8 registers, R0 through R7, and by default (after a system reset) these registers are at

addresses OOH-07H.

Instructions using registers R0 to R7 are shorter and faster than the equivalent instructions using

direct addressing. Data values used frequently should use one of these registers.

Special Function Registers

The 8051 internal registers are configured as part of the on-chip RAM; therefore, each register also

has an address. This is reasonable for the 8051, since it has so many registers. As well as R0 to R7,

there are 21 special function registers (SFRs) at the top of internal RAM, from addresses 80H to

FFH.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 31

EXTERNAL MEMORY

The MCS-51 architecture provides expansion in the form of a 64K external code memory space and

a 64K external data memory space. Extra ROM and RAM can be added as needed. Peripheral

interface ICs can also be added to expand the I/O capability. These become part of the external data

memory space using memory-mapped I/O.

When external memory is used, Port 0 is unavailable as an I/O port. It becomes a multiplexed

address (A0-A7) and data (D0-D7) bus, with ALE latching the low-byte of the address at the

beginning of each external memory cycle. Port 2 is usually (but not always) employed for the high-byte

of the address bus.

Addressing Modes of 8051:

In this section, we will see different addressing modes of the 8051 microcontrollers. In 8051

there are 1-byte, 2-byte instructions and very few 3-byte instructions are present. The opcodes

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 32

are 8-bit long. As the opcodes are 8-bit data, there are 256 possibilities. Among 256, 255

opcodes are implemented.

The clock frequency is12MHz, so 64 instruction types are executed in just 1 µs, and rest are just

2 µs. The Multiplication and Division operations take 4 µsto to execute.

In 8051 There are six types of addressing modes.

 Immediate AddressingMode

 Register AddressingMode

 Direct AddressingMode

 Register IndirectAddressing Mode

 Indexed AddressingMode

 Implied AddressingMode

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 33

Immediate addressing mode

In this Immediate Addressing Mode, the data is provided in the instruction itself. The data is

provided immediately after the opcode. These are some examples of Immediate Addressing

Mode.

MOVA, #0AFH;

MOVR3, #45H;

MOVDPTR, #FE00H;

In these instructions, the # symbol is used for immediate data. In the last instruction, there is

DPTR. The DPTR stands for Data Pointer. Using this, it points the external data memory

location. In the first instruction, the immediate data is AFH, but one 0 is added at the beginning.

So when the data is starting with A to F, the data should be preceded by 0.

Register addressing mode

In the register addressing mode the source or destination data should be present in a register (R0

to R7). These are some examples of RegisterAddressing Mode.

MOVA, R5;

MOVR2, #45H;

MOVR0, A;

In 8051, there is no instruction like MOVR5, R7. But we can get the same result by using this i

nstruction MOV R5, 07H, or by using MOV 05H, R7. But this two instruction will work when

the selected register bank is RB0. To use another register bank and to get the same effect, we have

to add the starting address of that register bank with the register number. For an example, if the

RB2 is selected, and we want to access R5, then the address will be (10H + 05H = 15H), so the

instruction will look like this MOV 15H, R7. Here 10H is the starting address of Register Bank 2.

Direct Addressing Mode

In the Direct Addressing Mode, the source or destination address is specified by using 8- bit data

in the instruction. Only the internal data memory can be used in this mode. Here some of the

examples of direct Addressing Mode.

MOV80H, R6;

MOVR2, 45H;

MOVR0, 05H;

The first instruction will send the content of registerR6 to port P0 (Address of Port 0 is 80H).

The second one is forgetting content from 45H to R2. The third one is used to get data from

Register R5 (When register bank RB0 is selected) to register R5.

Register indirect addressing Mode

In this mode, the source or destination address is given in the register. By using register indirect

addressing mode, the internal or external addresses can be accessed. The R0

and R1 are used for 8-bit addresses, and DPTR is used for 16-bit addresses, no other registers can be

used for addressing purposes. Let us see some examples of this mode.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 34

MOV0E5H, @R0; MOV@R1,

80H

In the instructions, the @ symbol is used for register indirect addressing. In the first instruction, it is

showing that theR0 register is used. If the content of R0 is 40H, then that instruction will take the data

which is located at location 40H of the internal RAM. In the second one, if the content of R1 is 30H,

then it indicates that the content of port P0 will be stored at location 30H in the internal RAM.

MOVXA, @R1;

MOV@DPTR, A;

In these two instructions, the X in MOVX indicates the external data memory. The external data

memory can only be accessed in register indirect mode. In the first instruction if the R0 is holding

40H, then A will get the content of external RAM location40H. And in the second one, the content of

A is overwritten in the location pointed by DPTR.

Indexed addressing mode

In the indexed addressing mode, the source memory can only be accessed from program memory only.

The destination operand is always the register A. These are some examples of Indexed addressing

mode.

MOVCA, @A+PC;

MOVCA, @A+DPTR;

The C in MOVC instruction refers to code byte. For the first instruction, let us consider A holds 30H.

And the PC value is1125H. The contents of program memory location 1155H (30H + 1125H) are

moved to register A.

Implied Addressing Mode

In the implied addressing mode, there will be a single operand. These types of instruction can work on

specific registers only. These types of instructions are also known as register specific instruction. Here

are some examples of Implied Addressing Mode.

RLA;

SWAPA;

These are 1- byte instruction. The first one is used to rotate the A register content to the Left. The

second one is used to swap the nibbles in A.

Pin Diagram of 8051:

8051 microcontroller is a 40 pin Dual Inline Package (DIP). These 40 pins serve different functions

like read, write, I/O operations, interrupts etc. 8051 has four I/O ports wherein each port has 8 pins

which can be configured as input or output depending upon the logic state of the pins. Therefore, 32

out of these 40 pins are dedicated to I/O ports. The rest of the pins are dedicated to VCC, GND,

XTAL1, XTAL2, RST, ALE, EA’ and PSEN’.

Pin diagram of 8051 microprocessor is as given below :

https://www.geeksforgeeks.org/introduction-to-8051-microcontroller/
https://www.geeksforgeeks.org/interrupts/

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 35

Description of the Pins :

 Pin 1 to Pin 8 (Port 1) –

Pin 1 to Pin 8 are assigned to Port 1 for simple I/O operations. They can be configured as input or output

pins depending on the logic control i.e. if logic zero

(0) is applied to the I/O port it will act as an output pin and if logic one (1) is applied the pin will act as an

input pin. These pins are also referred to as P1.0 to P1.7 (where P1 indicates that it is a pin in port 1 and

the number after ‘.’ tells the pin number i.e. 0 indicates first pin of the port. So, P1.0 means first pin of

port 1, P1.1 means second pin of the port 1 and so on). These pins are bidirectional pins.

 Pin 9 (RST) –

Reset pin. It is an active-high, input pin. Therefore if the RST pin is high for a minimum of 2 machine

cycles, the microcontroller will reset i.e. it will close and terminate all activities. It is often referred as

“power-on-reset” pin because it is used to reset the microcontroller to it’s initial values when power is on

(high).

 Pin 10 to Pin 17 (Port 3) –

Pin 10 to pin 17 are port 3 pins which are also referred to as P3.0 to P3.7. These pins are similar to port 1

and can be used as universal input or output pins. These pins are bidirectional pins.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 36

 These pins also have some additional functions which are as follows:

1) P3.0 (RXD) :

 10th pin is RXD (serial data receive pin) which is for serial input. Through this input signal

microcontroller receives data for serial communication.

2) P3.1 (TXD) :

11th pin is TXD (serial data transmit pin) which is serial output pin. Through this output signal

microcontroller transmits data for serial communication.

3) P3.2 and P3.3 (INT0′, INT1′) :

12th and 13th pins are for External Hardware Interrupt 0 and Interrupt 1 respectively. When this

interrupt is activated(i.e. when it is low), 8051 gets interrupted in whatever it is doing and jumps to the

vector value of the interrupt (0003H for INT0 and 0013H for INT1) and starts performing Interrupt

Service Routine (ISR) from that vector location.

4) P3.4 and P3.5 (T0 and T1) :

14th and 15th pin are for Timer 0 and Timer 1 external input. They can be connected with 16 bit

timer/counter.

5) P3.6 (WR’) :

16th pin is for external memory write i.e. writing data to the external memory.

6) P3.7 (RD’) :

17th pin is for external memory read i.e. reading data from external memory.

 Pin 18 and Pin 19 (XTAL2 And XTAL1) –

These pins are connected to an external oscillator which is generally a quartz crystal oscillator. They are used

to provide an external clock frequency of 4MHz to 30MHz.

 Pin 20 (GND) :

This pin is connected to the ground. It has to be provided with 0V power supply. Hence it is connected

to the negative terminal of the power supply.

 Pin 21 to Pin 28 (Port 2) :

Pin 21 to pin 28 are port 2 pins also referred to as P2.0 to P2.7. When additional external memory is

interfaced with the 8051 microcontroller, pins of port 2 act as higher-order address bytes. These pins are

bidirectional.

 Pin 29 (PSEN) :

PSEN stands for Program Store Enable. It is output, active-low pin. This is used to read external

memory. In 8031 based system where external ROM holds the program code, this pin is connected

to the OE pin of the ROM.

 Pin 30 (ALE/ PROG) :

ALE stands for Address Latch Enable. It is input, active-high pin. This pin is used to distinguish between

memory chips when multiple memory chips are used. It is also used to de-multiplex the multiplexed address

and data signals available at port 0.During flash programming i.e. Programming of EPROM, this pin

acts as program pulse input (PROG).

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 37

 Pin 31 (EA/ VPP) :

EA stands for External Access input. It is used to enable/disable external memory interfacing. In 8051,

EA is connected to Vcc as it comes with on-chip ROM to store programs. For other family members such

as 8031 and 8032 in which there is no on-chip ROM, the EA pin is connected to the GND.

 Pin 32 to Pin 39 (Port 0) :

Pin 32 to pin 39 are port 0 pins also referred to as P0.0 to P0.7. They are bidirectional input/output pins.

They don’t have any internal pull-ups. Hence, 10K pull-up registers are used as external pull-ups. Port 0 is also

designated as AD0- AD7 because 8051 multiplexes address and data through port 0 to save pins.

 Pin 40 (VCC) :

This pin provides power supply voltage i.e. +5 Volts to the circuit.

Instruction Set of 8051:

Types of Instructions in 8051 Microcontroller Instruction Set

Before seeing the types of instructions, let us see the structure of the 8051 Microcontroller Instruction.

An 8051 Instruction consists of an Opcode (short of Operation – Code) followed by Operand(s) of size

Zero Byte, One Byte or Two Bytes.

The Op-Code part of the instruction contains the Mnemonic, which specifies the type of operation to

be performed. All Mnemonics or the Opcode part of the instruction are of One Byte size.

Coming to the Operand part of the instruction, it defines the data being processed by the instructions.

The operand can be any of the following:

 No Operand

 Data value

 I/O Port

 Memory Location

 CPU register

There can multiple operands and the format of instruction is as follows: MNEMONIC

DESTINATION OPERAND, SOURCE OPERAND

A simple instruction consists of just the opcode. Other instructions may include one or more

operands. Instruction can be one-byte instruction, which contains only opcode, or two-byte

instructions, where the second byte is the operand or three byte instructions, where the operand makes

up the second and third byte.

Based on the operation they perform, all the instructions in the 8051 Microcontroller

Instruction Set are divided into five groups. They are:

 Data Transfer Instructions

 Arithmetic Instructions

 Logical Instructions

 Boolean or Bit Manipulation Instructions

 Program Branching Instructions

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 38

We will now see about these instructions briefly.

Data Transfer Instructions

The Data Transfer Instructions are associated with transfer of data between registers or external

program memory or external data memory. The Mnemonics associated with Data Transfer are given

below.

 MOV

 MOVC

 MOVX

 PUSH

 POP

 XCH

 XCHD

Mnemoni
c

Description

MOV Move Data

MOVC Move Code

MOCX Move External Data

PUSH Move Data to Stack

POP Copy Data from Stack

XCH Exchange Data between two Registers

XCHD Exchange Lower Order Data between two
Registers

The following table lists out all the possible data transfer instructions along with other details like

addressing mode, size occupied and number machine cycles it takes.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 39

Arithmetic Instructions:

Using Arithmetic Instructions, you can perform addition, subtraction, multiplication and division.

The arithmetic instructions also include increment by one, decrement by one and a special

instruction called Decimal Adjust Accumulator.

The Mnemonics associated with the Arithmetic Instructions of the 8051 Microcontroller

Instruction Set are:

 ADD

 ADDC

 SUBB

 INC

 DEC

 MUL

 DIV

 DA A

Mnemoni
c

Description

ADD Addition without Carry

ADDC Addition with Carry

SUBB Subtract with Carry

INC Increment by 1

DEC Decrement by 1

MUL Multiply

DIV Divide

DA A Decimal Adjust the Accumulator (A Register)

The arithmetic instructions have no knowledge about the data format i.e., signed, unsigned, ASCII,

BCD, etc. Also, the operations performed by the arithmetic instructions affect flags like carry,

overflow, zero, etc. in the PSW Register.

All the possible Mnemonics associated with Arithmetic Instructions are mentioned in the

following table.

Logical Instructions

The next group of instructions are the Logical Instructions, which perform logical operations like AND,

OR, XOR, NOT, Rotate, Clear and Swap. Logical Instruction are performed on Bytes of data on a bit-

by-bit basis.

Mnemonics associated with Logical Instructions are as follows:

 ANL

 ORL

 XRL

 CLR

 CPL

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 40

 RL

 RLC

 RR

 RRC

 SWAP

Mnemoni
c

Description

ANL Logical AND

ORL Logical OR

XRL Ex-OR

CLR Clear Register

CPL Complement the Register

RL Rotate a Byte to Left

RLC Rotate a Byte and Carry Bit to Left

RR Rotate a Byte to Right

RRC Rotate a Byte and Carry Bit to Right

SWAP Exchange lower and higher nibbles in a Byte

The following table shows all the possible Mnemonics of the Logical Instructions.

Boolean or Bit Manipulation Instructions

As the name suggests, Boolean or Bit Manipulation Instructions deal with bit variables. We know

that there is a special bit-addressable area in the RAM and some of the Special Function Registers

(SFRs) are also bit addressable.

The Mnemonics corresponding to the Boolean or Bit Manipulation instructions are:

 CLR

 SETB

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 41

 MOV

 JC

 JNC

 JB

 JNB

 JBC

 ANL

 ORL

 CPL

Mnemoni
c

Description

CLR Clear a Bit (Reset to 0)

SETB Set a Bit (Set to 1)

MOV Move a Bit

JC Jump if Carry Flag is Set

JNC Jump if Carry Flag is Not Set

JB Jump if specified Bit is Set

JNB Jump if specified Bit is Not Set

JBC Jump if specified Bit is Set and also clear the
Bit

ANL Bitwise AND

ORL Bitwise OR

CPL Complement the Bit

These instructions can perform set, clear, and, or, complement etc. at bit level. All the possible

mnemonics of the Boolean Instructions are specified in the following table.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 42

Program Branching Instructions

The last group of instructions in the 8051 Microcontroller Instruction Set are the Program Branching

Instructions. These instructions control the flow of program logic. The mnemonics of the Program

Branching Instructions are as follows.

 LJMP

 AJMP

 SJMP

 JZ

 JNZ

 CJNE

 DJNZ

 NOP

 LCALL

 ACALL

 RET

 RETI

 JMP

Mnemoni
c

Description

LJMP Long Jump (Unconditional)

AJMP Absolute Jump (Unconditional)

SJMP Short Jump (Unconditional)

JZ Jump if A is equal to 0

JNZ Jump if A is not equal to 0

CJNE Compare and Jump if Not Equal

DJNZ Decrement and Jump if Not Zero

NOP No Operation

LCALL Long Call to Subroutine

ACALL Absolute Call to Subroutine (Unconditional)

RET Return from Subroutine

RETI Return from Interrupt

JMP

Jump to an Address (Unconditional)

All these instructions, except the NOP (No Operation) affect the Program Counter (PC) in one way

or other. Some of these instructions has decision making capability before transferring control to other

part of the program.

The following table shows all the mnemonics with respect to the program branching instructions.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 43

Microcontrollers 8051 Input Output Ports

8051 microcontrollers have 4 I/O ports each of 8-bit, which can be configured as input or output.

Hence, total 32 input/output pins allow the microcontroller to be connected with the peripheral

devices.

 Pin configuration, i.e. the pin can be configured as 1 for input and 0 for output as per the logic

state.

o Input/Output (I/O) pin − All the circuits within the microcontroller must be

connected to one of its pins except P0 port because it does not have pull- up resistors

built-in.

o Input pin − Logic 1 is applied to a bit of the P register. The output FE transistor is

turned off and the other pin remains connected to the power supply voltage over a pull-

up resistor of high resistance.

 Port 0 − The P0 (zero) port is characterized by two functions −

o When the external memory is used then the lower address byte (addresses A0A7) is

applied on it, else all bits of this port are configured as input/output.

o When P0 port is configured as an output then other ports consisting of pins with built-

in pull-up resistor connected by its end to 5V power supply, the pins of this port have

this resistor left out.

Input Configuration:

If any pin of this port is configured as an input, then it acts as if it “floats”, i.e. the input has unlimited

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

 AITS, DEPT OF ECE 44

input resistance and in-determined potential.

Output Configuration:

When the pin is configured as an output, then it acts as an “open drain”. By applying logic 0 to a port

bit, the appropriate pin will be connected to ground (0V), and applying logic 1, the external output

will keep on “floating”.

In order to apply logic 1 (5V) on this output pin, it is necessary to build an external pullup resistor.

 Port 1

P1 is a true I/O port as it doesn’t have any alternative functions as in P0, but this port can be configured

as general I/O only. It has a built-in pull-up resistor and is completely compatible with TTL circuits.

 Port 2

P2 is similar to P0 when the external memory is used. Pins of this port occupy addresses intended for

the external memory chip. This port can be used for higher address byte with addresses A8-A15. When

no memory is added then this port can be used as a general input/output port similar to Port 1.

 Port 3

In this port, functions are similar to other ports except that the logic 1 must be applied to appropriate

bit of the P3 register.

Pins Current Limitations

 When pins are configured as an output (i.e. logic 0), then the single port pins can receive a

current of 10mA.

 When these pins are configured as inputs (i.e. logic 1), then built-in pull-up resistors provide

very weak current, but can activate up to 4 TTL inputs of LS series.

 If all 8 bits of a port are active, then the total current must be limited to 15mA (port P0:

26mA).

 If all ports (32 bits) are active, then the total maximum current must be limited to 71mA.

	UNIT-IV Microprocessor-I
	Microprocessor - Overview
	Block Diagram of a Basic Microcomputer
	How does a Microprocessor Work?
	List of Terms Used in a Microprocessor

	Features of a Microprocessor

	Microprocessor - Classification
	RISC Processor
	Architecture of RISC
	Characteristics of RISC

	CISC Processor
	Architecture of CISC
	Characteristics of CISC

	Special Processors
	Coprocessor
	Input/Output Processor
	Transputer (Transistor Computer)
	DSP (Digital Signal Processor)

	Microprocessor - 8085 Architecture
	8085 Microprocessor – Functional Units
	Accumulator
	Arithmetic and logic unit
	General purpose register
	Program counter
	Stack pointer
	Temporary register
	Flag register
	Instruction register and decoder
	Timing and control unit
	Interrupt control
	Serial Input/output control
	Address buffer and address-data buffer
	Address bus and data bus

	8085 Architecture

	Microprocessor - 8085 Pin Configuration
	Address bus
	Data bus
	Control and status signals
	IO/M
	S1 & S0
	Power supply
	Clock signals
	Interrupts & externally initiated signals
	Serial I/O signals

	Microprocessor - 8086 Overview
	Features of 8086
	Comparison between 8085 & 8086 Microprocessor
	Architecture of 8086

	Microprocessor - 8086 Functional Units
	EU (Execution Unit)
	ALU
	Flag Register
	Conditional Flags
	Control Flags
	General purpose register
	Stack pointer register

	BIU (Bus Interface Unit)

	Register organization of 8086
	Flag Register in 8086 Microprocessor
	1) Condition flags
	2) Control flags

	Microprocessor - 8086 Addressing Modes
	Immediate addressing mode
	Example

	Register addressing mode
	Example

	Direct addressing mode
	Example

	Register indirect addressing mode
	Example

	Based addressing mode
	Example

	Indexed addressing mode
	Example

	Based-index addressing mode
	Example

	Based indexed with displacement mode
	Example

	Microprocessor - 8086 Pin Configuration
	8086 Pin Diagram

	Microprocessor - 8086 Interrupts
	Hardware Interrupts
	NMI
	INTR

	Software Interrupts
	INT- Interrupt instruction with type number
	INT 3-Break Point Interrupt Instruction
	INTO - Interrupt on overflow instruction
	Maximum mode:

	Introduction to 8051 MicroContoller:
	Addressing Modes of 8051:
	Immediate addressing mode
	Register addressing mode
	Direct Addressing Mode
	Register indirect addressing Mode
	Indexed addressing mode
	Implied Addressing Mode

	Pin Diagram of 8051:
	Output Configuration:
	 Port 1
	 Port 2
	 Port 3

