ANNAMACHARYA
INSTITUTE OF TECHNOLOGY AND SCIENCES

(AUTONOMOUS)

Approved by AICTE, New Delhi & Permanent Affiliation to INTUA, Anantapur.
Three B. Tech Programmes (CSE , ECE & CE) are accredited by NBA, New Delhi,Accredited by NAAC with ‘A’ Grade , Bangalore.
A-grade awarded by AP Knowledge Mission. Recognized under sections 2(f) & 12(B) of UGC Act 1956.

Venkatapuram Village, Renigunta Mandal, Tirupati, Andhra Pradesh-517520.

Department of Computer Science and Engineering

Academic Year 2023-24
Il. B.Tech | Semster

Digital Electronics & Microprocessors
(20APC0503/ 20APC3601)

Prepared By

Ms. Deveswari
Assistant Professor
Department of ECE, AITS

NRJIT v I

| Number SL]AtUn'

Nuwrnbe A-,Ttem A oo boris jo} countfrq(' VaTioUA iteros -
On P‘l?a'_ﬂ\”? the wovd ' nurnber, ol of 4 'r‘rnrnedl'alﬂ.v thank
q the jarn':lf&f ' deciomal purrber aystern eoth 1ta 10 dic'it.s:
0,, 2,34:5,6,1 8 and 9q.]

Modevn Computevs Communitote. ard ppevete. coith birmld
numbe% whch wae onl:? the da'aitb ® anc) L. For [axcr

cecimal cw,mtt‘t@s ave cleal with .Uettd. lﬂ«ﬁ(} ; binax-.(&tﬁncr,
and thevefore 'ﬂf‘ctd do ot like coc)ildncq coith b?ncmd Punbes
Thia odo.ve sire 10 Thvee new hmﬁbz"; Ar.aA-tam-

- Octal 5
" Hexerdecimal

i B-‘ncm—d Codecl Qecimal (BD)

—~ lo deju‘me cﬂﬂ m,urnlgev Ad“@’- we— "i\‘w"’—’— . to /‘P“-"C’i]t'j |
jollowirﬁ aapecta: : s '

¥ Boue of the number A\.dd'te-m‘. /S.LLC.h ar 9,%,10 ov 6.

x "The boae (ov siadin decides the ~otal nurmkbey of d\‘cai’ga
available in thoat nurboer Atd&'tem-

* Fiat diﬂit in the Ppumbey ALdA‘tBrn ix Gl-lwani,g 2ev0 (0)
ond Jlaar d.:cait in dhe Purbex bLJ&thi A a.lwan()t. .
boae - 1 ‘ i

* 9n azrxarcd a numbz¥ in o AL yValeg hul'rvr howe can be
wviten aa |

- 0 .| u : =
an*mn—ran_, ot Vg -~ —+aqeoi PR TRLE W, P i —— O _ AT

——

Whewe Qnz Hhouatus of e N digit, %1- nadis.

gedmal ilurmbex Sr.qfstcm; J
© The decimal number ALJAtem cortoun ten unique atdmbov':
® 2,3,4,5,6,1,% and Q.
dn dectrmal 6Id&h2m 10 uimhol& ave involved , SO “the base ov vadix

a10.
i a wemjhl:ed Nttrmbey AlalAte.m-

Te value attached T the)E.lebOl d&pend/v on ith
location coith veapect o the decimmal pom:_b '

Ir generad, dn Ana dnea ;oo df"d.'f_d-?- A
‘." ?_:Ueﬂ buj- W
(clnx ro)-t— Cdn._,mo ") “":”'*""'fc'—'lo“O)‘r’(Ol—i KIO

?_Cd:}g’-‘c;z) W : + @:,m's{,io) ;

exi- 256-26= qx 16 +2XI0 + HXI0 +6XIG + 2 16" 4 6 X 153
= AKI000 £2Y100 + 510 + & + (2/i6) + (Efio0)-
Emmtl Numbest Sou”f@m I I
The binoay urmer st s o oeiqitedl Apitem:

* The boae Cj v nurneY A\—GA’DZ"‘ % Q-

© 4t has two :ndepe,ncbnt AldmbOld
. The Aymbok ‘waeel axe o ond 1

“ A b;.—m,! eliczif' ix Callecl o bit-
Eexi- 410\-10]

3 2 | w)
= I 41%2 4 6x94 | + 1% +O*Ql+1153

2> (13625),,

Octol Numbes Sv,mm

X r ako o weicahted ALaVstEm-

o 4t bwe 0% eodix ix %

© 8t hoa § Independert aymbol @23 H56adF.

" Hr bwme 8:23, c\a&n—u 3 - bt 1150%9 oj* bimnd corn be
wpomantzd by an octal chcait-
" (s83)g
Heo. Qecinne) :\Iwnbu&'mm
‘ The hexadecirmal purrioer &.da'te_m s, o weicih'tccl 4;5&1:&:17-
e boare om sedve of s mumber 5%'&1m s 16,
© e &dmboh weat ave 0,42,3,4,5,6,%%,9,A,3,0,0,E arel

F') i ! 1
* The bone lG 3.# guc'n_q 4-bt C]TOLLF Oj' b|ﬂO'ﬂ-a> Can

e eepwrfted b\# ar hexo.decimal ehg]vt

€xt- (3F0) g -

C@ucmit)%:

‘@ecimal to b;nom(Conuém::On:‘-
w Comvert (59),, irfito b-'no.rv

sol:- 9l 52 ;
2 L2 -0

(53),0 z (V10 tOb) o

W) Convesit (105:15);p ‘Nt b"’"‘“j

3!’1132?‘)1 Pﬁt Frvaction paat
A2 ' 015¥3 030 —7 0
2@"' 0:30*% 2 2060 =0
Hag-0: A&7 7 LA B
2 l3-0 A RIS Tgw TP |
. 8 ' 0-40%xQ =080 —> 0O l/
Q‘% P 08022 =160 = R
-3 |

C105:15)y = (1101001 00100 2

« Qecimal to octal Conuvevrion:
\) Convesit (31%8.93),, into Octod.

0:Q3%8 = 3-44 = 1

3719 _ - .
SL, O-44%X8 - 3.6 — 3
%L} ":_21 0:'5128 =z 4.16 —> 2

3 O-16x% = .28 —>

(318:93)y = (532 F341)g

. @ecimal 1o hexedecimal Convesnwion:
Convent (2599-615)1p irlDd hexa.clec.umaj

16 | 2598 0‘615)‘{6 =105 - A
162 -6 0:3<X16 =12:8 = ¢
3 S OF %16 =128 = ¢

0-&§ ¥ (¢ 212§ > C

(3598 ¢16)p = (a26 . Acce),,’

O

Binary o Decirmal Conueswion
\) Convesit (10102 o cecinmal
C101002. = (1xa") +(ox23) +(1x02) + (0x2") +{1x2°)

216 +0 +4+0+| I ¢ 4l
=(21)10

) Convest Cipio1)y to decirmol

Clll‘ 10y = Clle") +(,xg')+C_m;°) +(x ;1“')f£m G+ +(_}x9.'3)

= 4424 +0:5+0+ 0125

% ¥ 635 o
= %! . i){
= (k10 = C+e25m0

Octal to Pecinmad Cenvevaion

Convesil (356:603)g to decimal
(356-603)g = (1 82) +(5x8") + (¢ 5°) +(6xg")+ (021 +C3x8'3)

= [44% +40+64+0-F5 +O+0-005

{

> (494359
Hexe.decirnal T decirmal Conu:cir.&'ion 4
Conveet (AGFq. OEB)g to decimal

CAO F9-0eB)), - (10x !63) +(ox6?) ¢ (15 x 16") + Caxis®)

HOx16™) & (rayie2) 4 (nxie2)

-

= HOA6O+0+ 246 + 9+ 0 + 0:0546 +0:0026

> (412096 532) 4

L‘aincut.J octal Conuvevaion
Jov bimud o octal Conveaion <“the 'bimud” Alrbew dve
chuickect nlo cymu_ps qf- 3 bits each,

Octed b‘mxtl
0 OO0
) -00)
1 010
3 on
Y 100
s 101
6 110
-3 1

dr ConvemﬁfOonl\@lono-llOllOc;i-JDz'.inﬁD octal, ..

101111 01011D - 1'OtLO O

5 1% 2 6 4sgo-g X

7 (tontiowonio oiee1), = (5326 663)5

ﬂ;? G‘Snuev{ (1010 Wieol- (’.’DlH)i_ into octal- .

010101111001 - 011100
a5 % 3 4 .

=>}_' (1010111100) - 011)y = (25 - 3,*)3 s

———fﬂ

L,

B?rm‘? to 'Hemdecfnnﬂ Canvevai on:
Joar bfncmi "to" hexaclec: nel Conuvevaion the l;);rnxtd -numbg%
ave divided into qroups of 4 'bir each.

flexadecinmal 13inowy Hexadecinnal Bn‘rmj
;. 00060 3 1000

l 000 | q 185

2 0Q10. A 1010

3 0011 . BB 1011

4 o100 ey 1100

5 olol D (10

. 6 OIIO. | E 110

1 Ol ks LT

@ Corvesit (1011011011, into hesxbdecinmol

QOO0 IO

N e

Q b Baaniam

= Clouonon’)z_ =:(208),,

& Corvesit (01011111011 011111y itrts Ferddeeirmal -

S, LI
i £

OOI0 HIL L1 « o1y OO .

e — S St
G

LI R <

7 (owomon-otny), =(2r83),

L E—

‘Octal to Q‘cnan.d Conversion !

To Convesit octal numbey 10 binoni, neplace each eclal
d:eJit by ta 3- bit birovy equivalant -

Convenit (363-52)g rito biror-df '

%4 1 51

Ot 1o - 101 010
=y (367:52)5 = (onio11:101010),

Hexo.decimal 1o Bim}r? Conuevsion

To Conueﬁ.‘ Hexodlecirmeal nmﬂloef 1o bfnan?, mpre

cockh hewdecinmal da‘c:ait‘ -b1 A 4. bit b;ﬁqmi qroup.
Convesit (3aqe-BOD), nto bincm{

(3ra¢ . BOD) 1

00ll 1010 1001 111q . O 0066 (161

z> A ‘ : ’
(3Aqe BoD)e = (0116161661115 - 1010000 1061),

OC,IO.D 16 FWGICLdQCiFan CQWETysiQn_-;- NG ¢

fov octol o, Hexadecimn) Comvevsion | it conueit
C‘ﬂi\fﬁn OCIGJ N bey ™ bir-)a::’(_ql and ‘ bm"l
K R i

|

]

pur—kes o Pﬁmdeci‘rn:x.l

Convesit C'ISS'GOB)S to Héxadéain—bl'r |

T g
LIRS v e gl R R
000 V110 1110

iy Sl 20 Q%Q__I téggo

e i |
g

= (156 go:z,)& = (1ee -c\®)¢

Hexadecirmal to Octad Convenaion
For hexocdecimal W Octed Convewaion, fival convet “tre
caruen hexacdecined purnboey 1o bmm(_d and then blr)axui

numbey 10 octal «

Convesit (BF- zﬂee)i o octal,

5B a8 .a E

ot tool w1 . jopo0 O
101 110 o; 1l - 16l ol 100
5 4 34 33 L

1y

= (BaF Ae), = (563% 534)g

B'ﬁmtf Avitherortic. Operation:
- B.‘m:ui Addition:

gAq 30,
O%F 24
T+ =1

141 =10, t.e. O w\h ca:rrud\
* Acd (106101), ond (11pt),

OO yer |
+ VY OVY W 4

100101 006

h_.-——r""_'——-—_-__—-—

*
lgim‘ﬂi Subtoctioni | ¢

O -0 = @) i
OF§ 4 b, with a bovwow of ¥
V-0 £'¢ E 8" 7 0
= ¥ =8

Subh‘lxact C 1B) 3 o j‘10m C \ 0\0-*",;.0 l')#ﬁ_ 5 y

l1owd-cgo |
: ‘_". k % } L & g e
(0 AL AT |

W‘:Qi"oll' b (1] f:{ Ri1j 4
..————-'——_—’—_’-—— [
M | t g r

3 Binaﬂ Mult; plicalion: i
Ox0 =0 il
O+x1=0 | j
\ | bl : T TR |
I*§:=-=0 ' ' ' ; |
Ex U 23 o (61) o i 8
M‘-me[j CHOI'),_ b\& CI\D)L
4
EWek W, I
X 110 | iR
T 000d
| Ligbp B0 A
B ot Gty o (4.9
l O O 5 [1} ;"'01“ { |

L. 'B;mmti%:U|‘Ai°h 4
Q=1 =0
b 2F &)

@t‘m‘de C\C) 1o ')2_ b\1 (no),

o) 1o1io 0 (11

4ol

100
o, b
1 00 |

110
110
110

0006

Rep{aaeﬁtoiionidj— '5ifarﬁ§:cl' ne: 5
Two unxfs Oj 1@Pre/stzﬂtfnoa- 5i-cang'c] no-%
Comlobn*cnﬁ'—‘d form
< 4n Sigp rognituds form | an- additioral bt collael
the pign bit i ploced in front of the no. 3 the
Sgﬁn Bt 50 the o wd4ve; [Fla 1, Y O
I _ve

er- O IvO Yo + 59

Y Siarn bit

4/
S‘u‘ﬂn bt

* Complerrented Foim

+ 15 Complement

9A Cowplem-—it
veserdaion

o 1A Complemert WP »
The A's Cornfi@rreh't oj o _b
, and each 1 to O

if;ﬁ“d numbeY i obteined bld

chonqing eoch o W
23 Fod C1100), 2 Complerent
Py & U
0 o\ll _‘_\ _ 1's Complemerl

7 s Complermert W@mﬁm
The 25 Cormpement of o birmg‘
numbesn cwhich » obloired by ackling, 1 o, tre A's

Compbrrert of o numbe? i-es .

nrnbber a4 o b.mnd

9'A Comp\e«'n%ciri = 45 Complement +)

Exi- F:f'd (1010)2 9% Comp\&rhent
ol

OlO\—-»i'AComplemr{t

+ |
L

O F | O* -;' ‘.'J\/_& Cormplements

. P@'ﬁmm C101))q - (01 00), tlAinc'J A's Complemerit elhed.

«wMl. > 0100 8

—

3

A'» Cormplement oy o100 in 1011

101
+ 1010
Mo 110

e
@ vyt

Subotvact (9), rom C4))p wﬁnqd '4 . Cormplerrent methed

A= (4), = (OI00),

A<B
B W= Oaoy,
1'A Cmmplemen‘c Jor 160F A OO
100
+ 0.1 6
’ \

} & 1 d

REgO™ (@) = (8)e WAINg s Complemert methed

(1001)y

(610 1)y

A= (q)m

k)

H

B= (8

1_',_-, Complernen'r jox OOl A 1010
S 1

O Coqimﬂé‘

100 W |
1O\,

(Ht) Qe . .
L___,,;Qiic_o.»cl CO-WL‘
-—-—-'r—""
pevform @) - (@) ';Lu,ximcfr the A Complment method-

| ALB,
b A=Y =) (0100),

G: (Do = (100L),

e

9 cOmPl@men't 'joi 1001 15 G111
TR L T &

0100
GE%}

A

dd - 9515 10 +3% 5 Lmtncr 1 bt avithmetic

t83:5 = 0101011 . 1000

-45.7§ - 110 100\0 -0\00 ,—zl_g‘a Cornplerment
U RN I Y (0 = e T
(/@OO\O\OOV‘ WeX¢

s ComP\emer\t L 10A Compln—vnerit

*qQ's Complenent of 3465 and 718254

L

a9 gageq e o
3465 1% 294
653 ‘_‘l 9. | ‘]-115 I
| oA Complem@r\t of 'noeq
T4 9 ' |
28069

239350 B laRc@mpernent
i
593) -7, \0A corf@h:fcf‘

!

. Subtvact 1458143662 mim@)y Corpplumet

i W

al

4

i

4436762 +5633% -4sc B
30919 091 5 5633 * < (omplmt
!
309 14

: SLL&TCLCI uAincJ C|'A ComPtl—W\t-ﬁt 43669 — 14582

43662

-~ 14542
30020

g o

qa Complument fov T48:32 B q499. 49

- WS e § &
g334sh ¥
436-63
+ 54t
o e R
) 690-3

i no ca.wi yeault \n —\.J‘&'
3% it ha mmiitt@+ya & :
_Q,,&un in g4 Compf:_wu—v""% 6q0- 19

- Qaqq.qq
6Q0-39

‘f[

Subtvact 292%-54 - 41633 ‘t”%?nﬁ" 0% ' Complerent
2938 54 ar Complerent fov L1633

_ 0416-33 & "' qaq.qq
9411°3) o o - (1T £
A583. 23 1 9583726
il #
118! : tH
(e 5 95 83°3%

! 32‘]”‘0‘2 C"”"‘j [0 ?w\ﬂ&m

Subtvact 6 #3 - 202854 Using 104 Complment

0"’“6?3 IO'A tom [l.fﬂ.l-""t'
P ¥ 2994 ;
- 299§ -5y de QA%-S4 1»
e o=
“F0o31'y 5 20 Comp
OWe 33 kil
+ 303 -R6 +03)46 —?ldACbrtIP
DU TR T
349819
Malles, ERSL:

Bl'r\o.ﬂi Codn.fﬁ @eca‘rmj UBC.D).'.

BCO x o LOGKiNl(’J codéa,éach' AULLCEASVE digit From
ﬁcﬁhz to lejt ve,prewd& u:ca‘:ﬁhu, gq.mﬁ o some Apeuéjcd
wvelue and 1O odet Yhe cguwalerd Aecimal numbey asld
the products of the, mi_c{bm | bmq “lhe c;owrg,spo:nd?rﬁ bim*f{
d}c‘;‘f—g g4l W the roost common betowse g49) BCD i1 the

mot natwol ClmOr‘ﬂAt‘ Yhe! -'o‘tfwe}r possible Codlea -

Qocimal BLD 'I Pacirmal BC D

24
; _- 8 3Yo1 ¥u9)
® 6Qcs ' ‘ 000! (3000
6010 1% 000\ 0010

o0!) 13 o00) 001)
0100
®10)

OILE
1000

2

3

I

5 T

& e\0
e

g

Q 100 |

¥ BED Acddition :;

C&Aei' Sum VA equal v leaa'ﬁ'\o.n 9 ond Qa'n’t.‘:

Pexjo(m BCD additip~ o_f' (a)w ancl Cé)w

Bep
U’)ro T 0N

(s),.,'—zono
i e ;
|l 000 -~ sSum W a valid

{

‘ s-'ht,lrnhgr.

Conec 2 : Sum ﬂmatu thar 9 but Ic.a.ﬂtj-J:O.‘

P

,Dew]‘otm BcO &ddlﬁm‘ Qf C:f')w Ound‘ C_G)io
|={w) ‘
X M o

6_#-) Bve

2 llO\—";ﬁnuo.h.d BCD -
A0’V 07=> adel 6 to Inualid
dvs L A e BcD

" ' 3 f
0AC 305 ol “lean thon ov ccginl B q buk Coxvy =1
F’@jo'm Beb, addition of (a) and Cé):o'

cool o0O\V 5 velsd BeO

Sl % 100)
"LL —> . 1000 WL
B [ag@i —i \asa Sen e »
J & 11 “’”’1“
i 000! o0l — Anecovvect Bep verults
Sivonek g 0000 2 tO |
S _Oo o Q Vo | - G;W@C,T BCD,

I ~—

Add (s6q), and (§8%)p '™ BCD

5 60 -5 OO OV 10601
+6&1*,‘*OHO \000 O1I1)

O .o e O 1 R

)9 56 ,||o|l 11y 0000 ‘
J L Ly valid Bep wHh
- Snvali Cony s

Bep 4rvedic)

2 | _ BRCD

Add (ouo)s 1O dnualid BeD numbey 10 et coveck
@CD -

O V1Y 'vah 0000
$ GEIOF OYG OO

I'l_" 1 . N
¥ G310 OIO0Y OF 10

\l} .
00! 0010 oltol o010

v o~
! - 5 ¢

. —=> \Walid Bep

x B Suptvaction:

Stpatvact (3o ap@l,._Q?.)lio iry Bc-t?

3% —~ 6oh oo
—-‘S ‘4’ _OOO’I O,‘O‘.'

™

43

0010001} ‘yelid BeD

|

R

3 @06'1310 - C”H‘E):o n BLD

063 > 00I& 000% 0o @iy
-147- § W 0100 L »

24 0000 (0! F.ing vilg gD Hhe
010 B0 - 0110 g
- i -2 Subtycic t
olkie) &y 0l0\ 10060 | 0o} i
Bcop. | B . 0 L.y Lgho),
5 e

. Pevform (33) - CQDI{Q_I luf,‘"”% A4 complement el

“EREY

' > 14 4 [’ -‘ | f
Q2 Complementis {Gs 98 '\ oL
HidD 10 DUPLY |
-)
38 y
! . J 01O 41 W (00 110
- 83 =0\ ogo 00N
N = . @l voog
Vidly yaby TR e B
y YU LA 4
Jovotid ' 7 ruolid” 01
BCD BeD
H O € 2
1‘11‘* 10\',(A
0. 008 (g Lk & §:)

\ll'

+ gt
(& oero ©o°!
L} thot [DUWO ©00)

Conng ; |

acld |
po. i
fad Ol1o0010

J

10n Cormplererit Jov 93 Qo
Qg

"_—-_'- 1
1+ = Ar comp
+

T4 —> 106 Comp

IZCD
2% —» 016% dioy
1§ <>, 05y Y000

Ll

1100 V100 — Arwvolid BeD
+ 01 OVICE

iy l.l \ N . !)
3canom «T¥oory 00O 7, UaPcl BCD
oy - =

Excess-3 (xs-3) coce:

4 ian oo non —wen‘odhtecl BCD coce: TEoch biho:rv Coclecod

w The COwc'reAPohdmcd gyal Codeword plua OO\ (2)- 5t ix ™
s equertial code 2 thevelovre can be wed | fov &?ifhrne‘hc_
OP&“C:ﬁOh-
Becinnel d;%;t Cucem=-> Codle
= 00 t
! O! 00
% 01 0)
3 oo,
[T O Ill]
5 1000
1
6 roo0
1010
ki K1)
8
|
q 1 100

*Excem -3 Addition

To pevjeym Excem-3 acdition , we have o

* Add -t@o CYCeAR-2 Nuwbew -

ﬂ_f’ -_Co.»t-lul - ocdel 3 W the X oj tTwoo cLi‘ciibt

20 ¥ subtvoct 3
A4l L xs-3 code
+' - g |
3 ¥ '+ duo g Y
i | 1A g ! 4 A4
.) 101 = Ceany j 20
2 / : GER UF « L0 4 i
~001) ey

| 0\0O

¥ Excbar-'3' Substvdietion 1 ot1 bl X
o 'perjom;‘“’ Eicom's subtvaction., ue hove to
* Coroplerment' the aubtahend
Add complermented Aubtmberd 1 minuercl:
- ﬁ-j Cony 21, Qlaith inrsudl. Addi % dind sdd awourd
3 Cary :0, teantlt a0 —Ve | gulstwct 3. mej

14

exi- Q-5 *s3 Cede
§ — Vel b

5—> 1000 i ve
' Q'nCompl‘.m.wI- O

0..'\."_‘, ° @ 0010

pevforr . dubtvaction (6u¢)o —(3|q),° N Y$-3 Cocle uxsir\ca
the Cl'b Cornp\el'r‘en‘t'

1

97 Complerment oy

319 A Qqq
319
680
X$-3 Cede
euUS '
§ i 001 ot oo
6¥0 ' —» | | '

«'00L 16y OOL)

Vi aE

M 00wl 0010 1o
+ 0011 +00t1 -00)

Y ' \ e

orv10o O10) 1000
54

O) 10 O)0I oot

__-__._—_'_'___,.'-"

L

Gm“ ((;019

Gno-ul Code i o p.PacioJ CoAe Oj unit - clistonce ceck - 9n
UNit - dintance code, it pattevrs fov oo Conseculive numbeys

Cl;jjcv N Onh.u\ one hit portion: Theae Codesr ave alo called
CJ.dc(.‘c, Code.
* Bery -To - Giray COW&RS!ON'-

ﬂj an n- bt brm.t nurnbzv L\ TeP‘leJ\GnhEd b._‘ B9, Bn-)--*
-- G%
"“'Blmﬁth‘Ta\-thdeecvlﬂﬁMbul@lnGnl

n oe
wWhee Gn ond Ba O%€ 'thz ME:Bs 'ﬁ‘E.’h cd\'o.u-“c,ode- b

Obtoired from e bmo:‘a ‘an | folleeoa:
) ()1 {0 L E .
G1n = Bn par’
Gn-1 = Bn @ Bl
Ede 443 r
G1|‘ - BQ@B‘

Wheve the ,ly.lmbol @ xtorch fpf Leclusive. OR(_X—OR)

L 1601 1o Gvoy Ccode
[Sircw —— \—9——%‘3—@-&0.@_;\
GRME | L]
\ \ () [
Gucu1 —

c;im,.f cede Hor (1001), 410

k! Bm By
tede
0 0000 0000
‘ 000\ 000
- AN 00 1)
3 0O 0010
Y 0100 O\0
5 010\ VERR
¢ o110 o010 |
. O o100
S 1000 \ 10D
q | 00) \10)
% 1010 vt
” Lo \110
1 1100 1010
'3 110l 1011
- o 100 1
s i) 1 600

* a
va 7;’) B‘”“RY Comuetzstom

¥ or n-bit Qe nurmbeY ix epesentid by
Go Gna - oo G and i loiray cauivalurd by B0 Bna - By,
then binouua bitra ave oblained Avom G‘scu1 bita aa followys.
Bn = Gin
B = Bn © Gin -

J
i

B:l = Bl@ er

L;O(j iC GOT oA

' dogic goles @e he furdamertal building blocks ¢f diegte
/NJAT,CW)&-

Theoe aze 3 bowic Ldpe;, of cao,m AND,OR and NOT-

ogic cpto awe clectrenic civeuits becowe ‘fhey dxe mocke
G o C’f a numbe g‘ e lecTvonic deuicezs'ahd Cﬂmpv@'b;
Seputs ond outputs of Ccniic c@aﬁ/‘» Cﬂ"_o?f"“"‘/ o"“‘j’ e
levels: ~Theae 1200 fleusfs axe termed HIGH and Low , O
Thoe @rd FALSE, O ON and OFF ‘97'5;"}qu' d__O.!'CJO‘

[4

AND Gate
an PND aoﬁrhcustwom reove wpuls but On.ul one Oulpeil-
e Gulpur A bca-‘a | alate Onhq eoben each cme,qj itA

putr i ot legic 1 Alafe -

" e Otﬁipu’-t ‘i')s l@?.‘c_ 0 A[gj:v eL(bm i$ one cﬁ ita pids ix ol

Joopie. qwtak- “Futh Table |
Anputs | outpd

A E8] - : i N S
’

q Siml.ml |) e |0
" ‘ . ; ‘

—

0
| l |

Aﬁ OR w have two oY more ll"';,i)(,l.:rn"> bot Qf‘l"—l one ,
OL&P&: ! {cxﬂrc 1 ATGLZ cven j one Qf ita lnpuI %
ke logvc B Atare . -

- The OUIPLE " locd;c. o /Stake» onlvﬂ ‘when each ore o its k-
inpl,d?& éu, an lofdlc. | bﬂ:a]l- ' -

_ | Thuth Jedle
J L-O(afc S‘q""’w— ‘-.* | L_ ﬂnp uits @quUI \
{0 e A 1 B \\{-Z]‘{H‘Bﬁ{

NOT Gtz R | \ |

A NOT called an Arverler, H:L& ® ;}bm., Sopedd
i e e “I‘Ti Py

and ore oulpul- |

A W a dleviee t‘;hme, ouLpul i o):wo.nr the Con*pfﬁnﬁﬂl éj

it

ﬁ ita §nP(ﬂL' | \
v hs OUI‘PU-I‘ 0_'(o AOT ciali ix the J.‘Loc‘cc | slaki tohe te
npu i8N - lcxarc o Ak and ‘the lc?rc o slale tohen T;g

inpod'/s & Gy ﬂgﬁtc 4 slode . B ?
) Toutin lodole |
tege o | 9ope | Outpelt
A A

o T S R
A "{>°'_— 0 d
)

; 0

R s

NAND G,o:te_
*NAND gl 4 ol Combinall '
aﬁﬁf 1 q; CmTkHﬂQI@r;(j an AND 5
© The output W locdir. 0 chen each of tre
-G.rvcl jer amd olhex COmB?niaIic}j oj- ’m]oruu, lhelo
Jlocd:c.ﬂfl. ‘ | |

»

CThth Table

) ?L?c.£§$550q

INPOT OUTPUT

'?;l / onha Qjm?h cach ore Qf te
4R R ination of
| jow | am(ro‘tﬁw,r Cormbin . |

A i o »!OC‘diC- O .Q.EUER
/ i “Truth Table

INPUT outeuT |
A M=AB
I Ol | GHEN |
| ! |
r

[ex

B
xS

\ b

(&

X -OR Gate

" A x- or (.]CCE 7A| & two ﬂmpu,ﬁ, one oulput ﬂc('dic Civeuwt:
Tre owlpul % i@f‘d‘rc 1 cohen one ard ontuaa one Of A
_— c?n(:x.ttk W ,Qccdfc,ﬂ,, When both the qnpuTA i’ ,qu(EcO

oY wher both the inpula g ﬁ@%ic 1, He output 1A

ﬂochc O-
Tyt Tab#&
Lo%j;a Sldmbo[-
‘ ’NPUT\I OUTPUT
A 9 A =) g__‘i::A@B -
: 0 e | O
. o |1 |
[®) {
V- AB+AB
b ' 0
X - NOR (ate

- An X= NOR cdcﬂlb: v the combincion of an x-or= cdaju,

ond o nOT cdoﬁ/

An X- NOR cdcm, ik o fwo fopEs 0N ouput _Q.Otafc,

cixcearl -
¢ The ouXpuE A Jl@cir:c: L4 Onﬁ? when both the { npuls
oxe ﬂccifc o Of when both Tre fopute 5 1.
The- @ujﬂiput A .,P,@cdfc_ O whernr ONE oj' LA pt,&/g A
o o ond otret w1 "t Tobte
mi[c INPOT OLTROT
*Lﬂ%fc dem ol la CEEEVEY o2
- 6| O \
& Y ol | 0
R : ! O)
y= AB+A B \ | :

A
ll;; llpl |

w wed to anohuaaz oﬁﬂ |umjLi e
| i {?1 T
dhodrta! Circusits: use , Tt waep onﬂ‘q» The bﬁmmd ndrobeys,

e, o il 6008 ﬁ alro cmwc o B:ncuu(-vﬁﬂc&ebfafof

L‘x]‘wﬁ -F\Icacb'ro. | K |
i ll' ;I-I:..flr; ’.. {.”: R
. M | , :

k Commei‘ﬁve it G

2 AND law

3. Amocictive lacw

4. Piatsioulive law

5. OR \aw
6. Jnuewniorn law

au \
i “.I'

'“%“1

B:C

| A (BC)

o OR Lowos (Ohue:mfor\ Laeo
* A0 = 0 *x A4 =z A x 44 Az0 then A=), A-,
A X AT | (v 9 A=l thenA=0, A =
* AA =z A N A+ALLD A ‘- ' (
oA N AdAE | 1 (!
(([i | (
Hedundarit tacos- 8 he S ¢
|4, A+AR=A | C;bnovpﬁ@m([aw)} e !
| [P¥00}: - L-H-; 2 A+AB§§' P T
|
e B L
; A ‘r v SO R
) Aafe - A+ ¥
[P¥oo) - l;_..HSZ.A—r;EB
| | .' o ::A_¥AQ+TAB : ('A%AB:A}
:{A-I—BCPHﬁ) [A+—P¥L‘: 1-)
= A+ (1)
* A4B
Ji (A8 (ade) - A+Bc i, :
| (¥ | ; ! !
proofi- buse (aho) Cadey 0 !
: ;'..l_ Aip+ AC lﬁ'B-A-’rB-.fIC i {{

[' A'A = Mg 1D A A B)

i

O+ ACtA'BE+B:C

(- A+n-B = A)
A+ AC+BC

e gts 1)
= A1 0) +BC
= A()) + BC
= A+RE -
v i G
COnAcn/bwb Theover | ' |
e B |
Lo AB +E§ +Bc = AB+ AC
LHS] 4 é AC + BC W
. = +
rhoof §

"ée+ Ac +BCCA+A)
= AB+ AC +BCA'§$BCR &
AB(1+C) + Ac (1 + B)

< AB() +AC (1)

S AB +AC

.. CA+9) CA+CJ CB+C) z (A+B) (A +C)
Prooft | ps '

" (e (A+0) (8+O)
LAA-H"C +BA+BC) (B+
CAEE (B N

(AC+BA +BC)(RAC)

ABC + BB'A +B-BC + pAaC + BAC + B-CC

- ABC+BA+BC 4AC +BAC +BL ("~ me-s
= E-C2L

A'A;;D]

: AC+ BA+BC "[ﬁnazg
Rus= (as)(Aae)

-

0 - [AR =0
= AA+ BE""AC%—BQ E | ')

—

= AC+BARL

s

aoroA tion *ﬁ'wéo?em ;

AB+BCs (a+e) (E 4+ 13) _
P‘zfooj:- - T Q‘HC;) - +8) \
- AB+ABYAC +BC

204+ ABHACHRLC

. pp+ACHBClA+R)

I

AB+AC+ BCA+BCA

i |

AB(Cl+c) +AC+ABC. .

- AB+ACHA Bc

= AB+ AC (1+E3""'

AB—I'J‘-”(C.

.,a

Dol {‘3 o

.
v

X m ﬁmi in o 1o uo.!ue;a& Bmﬁe&n al gebxa . The
dual of an algebwe, the dual of oo "_eﬁ:iebxma expxeAzS:oDn
Coh be obtained A'mphf de m‘texchoné(&(r? eR an@!l ﬁ{\l

wlows and by veplog 15 b“? 0s @rd Os b 7
o Wi «

o

Gitven emﬂibn @U.D.p Enpression

P 0-1 T d.

-ﬂ_- 81 -0 ‘*'%'!: ' ; r

3 | @ 0 =g g Eal=l

A fa4o-0 ' |

G+ AT A A+D=A } -

LA A=A .

8 AR .

9.9 A-B :=2B-A

6. A-(B-C)- Ca-B)c

" A (B ARG

A CA+B) © A

3. A (A-B) = A'B

19

4. AB - B+8

A lE -

: Y
{p,ﬁf:‘b !Bw”i

A4lR+OY= (A+B)+C
A 4(BC) :LAA—B)(;&C)_

A+AB = |

'S (A+B) (A+Q) CB-HZ)*' CMBM‘HC) ABTRC +BL= ABHALC

' F)-i-BC, "(A""B)CA—}C)
1+ (asc) (a-m-:a) = ABdr&C
rs. i pse b
9 A+B:= AB + AR Aé' |

90 AB +A +AB :@

SITSRI S
Theovern 1 ; A‘—é,'%m W*—E:
This

$ro

A B AB A
p. 0 ! \ }

"%CB'fCJ AB—l'PrC,
AC +m:_=, = (B (’A‘Jrc)

(aB+CD)= (A4() CMD) CB+c.)

: F—D\ij& A =R+ B A Y=A18B
—.‘> T,’) i
BE - B

NAND Bubbled oR

'}I(:]"' C;;}e)\’b-u;]a.h:a Fisit Theosern
T Y R

"Theotern 2 A+B - AB 1
et T A At o WAL s

This theover stales

cqual to the product €f

é-no“r A B
: O. =

1% b b © T & o

ﬁtﬂ‘i }b.bt‘;- 1o \.Ievij‘_d %GMOY?&():Q- Gecond theovem

W
(8

| ' RO

Rl S :]"-f'-'\l R I YA »)
o LR T el BREY
2 o o S

i .
Unive sal Gratea

‘The NAND and - NOR taoit?/& ae called @ UDoivensa! Gales

becatne it i pamible 1o implerent aruy Boolean expyesmsion

toith Yo help of onhq NAND &% onl'\f NOR qates.

p@aQL%oL‘on oj aaim tm‘inca NAND Cda—@

!‘ ¥
h NeT :Jaii. Lesiogh NAND qole,
i .‘ | A \—P' |
| \y= A i
A [___ » ’ . 0
, |
NGF qofy B TR 1
; T 8

- & - o T ath toble
v, NOR CJO'I" LNDCJ ,MA:_\.D ﬂaﬁ | e

VER TS

. NOR
{ { & (“H { l{'. {
{ 4
.(i g
[
,.-—-q—-"'_'-- —
ACRBIBLAB) Y

R \ . . _..'.l-l ;
B {) 3l ; ‘.——-——-_:_-:‘”
L e Al ‘?’&P‘B}
; *!; D i)/ .‘I ’MIH

® & EBOQ 80 M

3 Acae'h B (5‘@}5 v ﬁemmcpm jieotecs
c. P-(nﬂ‘ﬁ) *B'CH+B) | A33 Avd
" AB : A48)
8. . 8= f.\'f' AB -"BH +BB* . e y. 2y |
b { ' il ’1 A "I—:: ,1 8630
. ;- 9-1_3+»QB (s &)

N

‘QI{, Y-NOR LMmrJ MAND cam -. 1R

\
A | S Efrﬂ
bt ,. Ff T
REFY ivp ame | '
| it ,. Tufh ﬁble
i > G O I
| 7 e T R
| | W) [!
Y= n(5B) B ma}

(fﬂ(p8)) (ﬁ‘imaﬁ}

£ Jo J,.

AB+RCRB)+ Bl§+ Aol

tl

: il -B_ é_.l. AR & - “'LI (:-‘- A PA"A} *AH C)J

@ah%oi’-'om of ‘@t‘”‘ L ooly NOR ﬁom
Uy M?T.cdo:b. UNQ"CJIMOR_ ﬁcﬂm A

‘\;} OR i . ,\J@R -g.'-;,.‘ . of BRI &Y Y fl.\,“._v[;“ff-\ 'tabtg
;__,f:,k dc. m‘ ? Wi IS Mr

ol ai| g
_ | v (i l
B . | | ¢l dl
| Dk

: . " A | B :d Q’
0, AND ﬂaﬁ. sy . N6 ']Ohﬁ- A A \r ‘& AB

S TR o (S 2
Y= (A&MNG+ B i (AB-A 5
iy o S8 G W\ SN
= CPM M_@)OLB-I- E»TS) A+A =\,
B+a3, AR =0, BR=()

= (a+(A-8)) (B+ (A B))
= (A+8) (p+B) (B+A) (B+B)

s CQ+§,)(B4§)._._ AB+AR+BB+AB - AB+AB

¥ -

A+ 4B —l»-m [i

i
o 1

A+ AIB + B+ATD 4
- ——.-_—--d II.I
= Q+a+3 ~¥ 13+A+B

* A A+B) 4 afmﬁg (P

- A A+ aBa—n B+8 .

ar o.JC?e_ bﬁ@&*
cobich co"%“'t’ﬂ R
| Endl e locdvérs operol

3 C,D) = AHBC +Am& | .
Z CrB 7 W T .‘ Binin W .

\osiows m"d'& TD?' x@P'leaejﬂ'ﬁ ol C\lu , jurﬁ.??: B b

© Qhoduet of Seer gD (B (k) (K] (008

£ ,51 (N TAYD A : { 0\ W‘ -) i{' 1 {4 \ 1

SRR Saetee i s | TSI T TN AR T . |
Sum of Preduct (Sop) fown:- il |
" This 5 ol called | disjuntlivel donenicak fore (ocr) o
Expancled Sum of products Fotmm oy QCoronical Sum of
(Products fonm:

3 thal ol Mo juretiph BiTng spm o numeer of

pYOd LLC‘tA '&Tm : wbe-f@ #’_\L’% P@LLCI texen C_@nt&.lm ol

't?u.’th 1able bﬂ :r nel:nca
Cowcvspondé 10 thore
eohich f ?-o,mume/s the value 1.

o el P’ C.@'ﬂl@}h&i ol the uamablez of
i o ole - - lernented
the juhc_'t'l@‘ﬁb eithex | lir [Cogh p\'_- en‘tEd OY wncorm P

fown @8 calledhio. rointereo: i

" The mm’te\'m w dencted arx me miy, 25

Ac other o Oﬁ mpreAenfl ncz te mjung‘}':onﬁ I‘ru Canoniced
.: e 90rR. j;)rm -tha% &howtﬁ% 'the.)5Luf'r-x oj- m.ntermas X jor
b So R 0 R s U

5
46080 = = m(h33:6)

lbhexe E_m%:m[mfe,seritg' orite ‘!}je. 7/:.1;1}:*1;".'(of el —tha mintexrs - ®

‘p\'odt.u:‘t Qf Sum Cmg) Foran: (10 | &40 _

-~ This Joe n alke colled aa Conjunclive fa‘f\@ﬂi;ﬂito:r!
v Sxparced pecuct - ofs Sum PP on Corvniéal precct
of Svrma Foren- |
L b'@ csrwcléf'r% thé mmbapat@r*
E&C’h ’teffﬁ ! o ,5&«& Qﬁ ol —trel uo. q)blﬂ

The junc'tzon ‘_‘J’U" (3,“_ 'ﬁ;s- Cﬁ-rra) Cm+8)"“"‘ 4‘3

ey ‘@P’@""” ox the Ay
i refiestecibs mwmj :& .'

:PCAfBrCJ Em) 6&'; '5, U, 57

M M3 My M3

T mM C \1?’;‘-”,5)

& Eapard A (CA+B) (A+p4E) to moxtexemn ancl mirteyrns

\
1

Given P88 Jorer iy

0 8% B) g ¥
p (A4B) CA++2)
B TH b P AR R Y TR)
A= ABENCE & | g g BEAE B

;@ AT
@?ﬁ)(n+15+c}CA+B+C)
CA+B+C)
'ﬁ“’w’@cil { {Pcﬂ PD
= Cme-m‘ﬁémam) (p+3+0) :*f;?if?ﬂ+@*4 @ﬁ*%c) Ca+s+cJ
f?(moﬂ‘on) d J)Q@Q b

- Mo f.{“ M“K Mﬁ; r“‘_n M#&h‘m %; ff-:q"_. |

o (%3 MM)

“‘ﬁe oxteyma Me. M3 o W _;3: "-;” he. s form

hly ‘ "l‘

S@, the SOP ':fof?m M" C&;\’tﬂ%? ‘t’?‘ﬁ mn'taa’m '@ and

*z;mCG el

e et e o - —

L Comvedil re expvemion into ter Alardad SOp Aown

\|= AB+ AC +BC

Given that Y= AB+ AC +BC

i W

=AB(C+E) + AC(B+R) +BC,CA*§)

Y

ABC 1ABC + ABC+ ABC + ABL +BBC

i}

ABE $ABE + nde + Asd 1 Y

S Eapand A +Be+ ABC | tgy movieros

Given that Y- A+ BC*%F\EC.

1

A(g+)lc+C) + ecﬁﬁm) + AB’t&"I” A

} r

\!

(AB-mB) (c+C) + B@ﬁ* gcAa b gg-d’ |

ﬁsg ' ':!

| = d B+ ABE o

- ABCH ABE + ARE + P?'B.C sie - "
2 pfc 4 ABERABE T ARC A Be,

LQGO} ({99“ B (kv Y 'éf"“* |

Pl o

(1) neyAtreny A (Q&f\) ’”\

o

1l

!) 4 m 4. 1
. oY, mé, 1“""5 mﬁh 43“"-. SO | o

\1

Zm(%:%‘—:"é’f:}) :

R 'j'_{'fﬁ \

| | | rog, 0, T2
l\"\imtﬁcr“iﬁt@'”m e ’ |

So. ~he mancter ma ase ™Mo, MY M2

=T m(e L2)

B %Fm the (aiven itk Tlebe, Wwaite ke faa‘t’- exprestion)
»l rclsqjorrn-

A B C \/ !
(
0 0 0 0
I | () |
v () 1 |
L 1.) J {
| 0 ()
3 i I | (
0 1) (6 iy
{ ¥ ¢ I
\) e
3 b | (j
\ (@] ﬂ, ¢ l
1 1 0 @" '
il | r 1
) l .
A . { By RN | |
$ol:- ‘
B C \ v '

b o
l L
| o) g B —
£ 4
|) i &
| | 0O 0

Y B RC 4 ABT + ABC b

= Zm(81, &, %)

85 oY o Cjiuen' tvdlh table kivite the lcna_ie:cd CAICAS i 1
N the atandad pos fove

.
N & ¥
b 4 0 0
"
(@] 0 i \
| | : {
) l o 0 '
]
4
) | \ o 1
\ o) 0 ! |
G | ((! |
\ 0 \ @ _’(
! o
I & 9 : .
&
|] I . ; i
ol Giuen utih toble A 1 g
A 8 & Yl A gl o %
@ g q G'.- Sy A+[31+1C. b
G & LW LY
i —
0 £ G a — ArEa | (

|
] o @ b | _ i |
I o ' 3 —> A+B+C '
oLk & 2 A -&l—'B + C'.l k l !
T y N &
* .\ |
Storclarel pos forms

- (A+BtC) (A+Bre) (A+ B+EN(B+B+T) C_7—T+§+c)

I S'mfdg‘tj the CXpPeMON qiven belows
Y= AB* (A+B) (A+B)
Gien eaxpemion in SOp fowe
y- A+ (AB)(A +8)
-p2+ (AR +AR +AB + BB)

i I o Y B } /
(') pB+AB:=AR,
AR =0
RB=B)
{

¢

- AB+ AB+ 3

":BLH+51;B"'j{'

L2 B4R cl i EJF :' a+ Bﬂ:{l [3)3 Y
=3 .
W
J gnmwﬂ the jO%LMNﬂ'ﬂwgz\xHﬂmé Beolean
C')KPTGAblOr\-

Y= Zm (2:u:6)
Ly Wy W
/ \
Gﬁ'uen e'){PT@f,]OO in Sop jo*sm !
i | o000
1 = m'):';}mq-l-me ol ¢ Bat
i e .. Mg 60
= ABC+ ARC 41 ABC n@E
: b 3‘ { 4 A {
> ABE +AC(B+B e 116
Lo Y D i ﬂ%?]
= ABC+AC
2@ +al ! |

e ease=(al) ()

O, ' :
led'j.j “the jon(‘.'\tﬂiﬁ(a thyee biable IOSEC CAPYE A% N
,;."]'['M Chlg,ﬁ)
G]iue,ﬂ glpmior\ \n POS j—@'i m .

=M1 M3 M5 e B MY e
A : A+B+ C
- (pao?) (A+B+2) [Aimi)
t)(‘)* . ML OF |
‘Cf-\’antE)EAEa +93+AE+§S+B'I§' | g
L B Mg=110O |
+ B +AC +BC’*CC~J;_ A+etc)

1

(AR =0, CC ,B"ri':oj"

., i
= AB+ AC + ﬁ@d— Bc EZ +BE ﬁf
CmB*rc)C H A X

Ol
Dt

. (peet) (AB+ T CA+P) AR 3 gueD)4E)
C.‘ H-—!—E_:\, B-}-ﬁ;-_—._.\)

—_—

> () AB+C +AG+C +C)

\f

(a+e+c) (AB+AB +C)
; J ‘ 7y (i ! (g A . oW 1{
AAB+AAB+A¢+ABB+ABB+ Bc,+AB

r\ |
:Dl
)
0l
o+

AT

. ik :. B b
% gB+0 +AC +AB+OQ+BC+ ABC + ABc +@ C
- AR +AC+ BC + ABE +ABE +C

- ac€ +C)+AC+BE + ﬁ»i.,ﬁ?. -tTil

- AB+AT +0¢ +ABEHG (|

e

kl’l-manau?h Mop& @s) 1(~Map»:
The R«-‘map A o chast o a CZJmLph' Compored of
o awancaerhent oT adjct.(:ent cells , each yepYerentine o

pesticwlan combinalion ©f vasiables 10 Gom ov precluc t

jO‘lm-
« The lA—moP. A Atrtemcd:fc_ method q]‘ bimpl;deir)? e

Boo(ean G'IP’T%‘\OD-

-—F&'DO*‘ U&niabte;. k- rhapi-

A teoo vaviable expyession con have 99:4 pessi ble
Combimtions, Qf‘ the imp_t;ct uo.mab@,s . Aand B.

S0P Farah- ‘- £
¥ TThe ﬁfvavi‘qxb-\@- K- g‘wafa haa .'a &y

Cee @o.lled celks-
* A .L?* . placeel lin OJﬂLJ

faystebich indicates! ol
;r\cﬁ.u.ded 0 the OUIP“I
No en*hnd in o AopraTe

minteren does et

i

ccﬂe,spondmca rminteym s

eLpYeAsion; onha @ O o8
indicotes Tat the CoT¥YeA Pordunc(]
oppeaal N the Cilpm%ion j‘oY ou.tput

|

A o 0 [
— ok i f i'-.;'.'f- \) {40 \ (A
Bl B
| | A A J

p'és jorm: -

€ach Al term. - n | e r‘c‘ Pos @)LF)‘(@MIOH 1/5
called a Matem . A -junc’f:on N Two variables A, B) has

4 posible roxlerms, A+B, Aig, A4B ard A+B - Th@LJ ave
l

anal Ma espectively.
de poesented @ Wi 1, B8 . i {

g ' ‘ii]| i1 { ;
| |
i
"'[' | | iy
! \
1 |
() 7;T|
& .‘.
The pemible rmvotexm S'roupinc& in a tho uamalal@'
N {1 |

k‘ a Aho‘—*-jh b&lﬁw _ - | '
map Ye Wk R PO QSR W Y

,o..',r
=

g
AB B g 1
P TP
Al FiE
A | % i S|

Tedua thi eapiesiion i ABRAG 4 aa ”’;i”?’“ Rerrap

wern e i = A+ A
Giu pressten +- Agt Ag iag expremed i

n
W o) L T
L2 YMA | \ |
4= ™Mo+ Tt + E

J- ‘ZMC.O@”U 3)

A \ s AB+ AB A j) >)
Y& B
A
RB+AB
B(A+m) . '
st o O
i L \ Iﬁ
5 : A+S. : |
1203 0¥
P "]@D 4 by g (HesO o iable k-map

The pomible minter™ queping

axe ahown below:

b\e‘r A\B_. B 8
(o] v
A J@l :
A]‘ lg-; EJ;‘ ﬁ‘ @1, T -
’ \i} t
J: ﬁ' ﬁ.‘-‘- B,u‘ {

e o 1

: é r \I
A Q Olij / !
Al lo | of]

S

["(_.C‘-.C’)UQL -

the. ERpresion j =CA+B) A+) C A g8l L
K- roop

{ | |
ol- TThe C‘dlue.n c-:m.p'f@AAior‘r 'ml'__"tcrrm qf maxterms s
d=Tm (o, 1,3)
a .
Ne 9 Ny
% 'L—; A+
A @ _;‘:I (B)(A"} B)
0 «ﬂm»fae—mBJng
Bl Qja.. ey
] _l; e Alda (R4 B)
J Ly R+ A ’ :
2 - y i ¢
A+ T
() T_BR(‘ Bl G> ! Nl £ Ay ! dird
T RPPALPRIARIRE A
: _é(ﬁ+'@)+'é o2
= @""E *;‘_.'r 9 i
£ | P | o, o
‘ ¢ be
A jttnc‘tion i~ three uewiodoles (RiBL) Con
ex premed
Porvible

in. Sep and pos Joim hcwmcig eiqht
cormbi nelion

hawee

g ASAuores

A ‘thyee variable H’Tmcxg‘

oY C.Q.lb& ancl (f.a_c_i"\ /Scungre O r) ;
e rmap *se.]b'r@,se,n'bg o munteym o¥ ot Ym l_/s\ i
/5}\0(.3\ N “the jtau\'g bejow Bt) gl |
ANDE o0 G8 .Y o) A\ |
0

rgg 9] n3
O |PBic| PHBAC | A+BHE
Lm\ (M) Lm)

"&B«_ 4B marc

cMl (e | LMY (M)
mMir %tmm _ e

;]:(;u,\r’ \/&M&bl.-— I{, Mo
fan
A Jow \anable (A/B.C.D) CHPYCAHION

Vbl
Powible combinations of inpud vaxiables A ow
\
call)& O.rd cach

have 21=16

oble

NS q»U.O-‘fG’)'si @Tl
K- rTOOP ok 2V= (6
Aquoye en the ™MAp WPYGAEHV @‘T"ﬂ"l a rointevm
&7 v roaxlerm ax aAhoton e]‘-t Lor bélow
N ! 1‘ O J _ i
' 3 1 ds)
Q:! 3 = 6-‘-;;.] '
dE
€0 (ABCcD | '
(M) | (o)
IS] 1y
ABCD
.0“!5’) Cmtq)
h _" '___ 16
ABCD
(P
| [Ar i,u — 1.

5°P Jorer (mirvterms)

U
A T S e
60 at&‘:);m AHBHUD | A+BALID| AtE+Z+) % |
LA (vl (MD & ¢) |
A li P _5 51 , I i '
0| |A+B+GD| A+B+CAD | A+B+TAD '{e&ﬁ-ﬁ'&m "
(M9 (Mg) (M%) | (Mo
i K i _.._..—_:--r '9 I.s f 4 ’;: i,
1 [PBvess | BB +cHp ﬁ*+é'+'5f P+B+C+D
(M) | @) | (M P cmw) ol
N U T | W,
I-Q_:__ merg A+B+q. ﬁ+P>4rc+q A+B +C 4D
&1 MR- CMq f (M) (M)

pos Jorm C maxterm)

Foe the k-map shewn in fiqurel Wnitt We siMply;- Y

Beolean expveaion n SOP jorm and pos form
AB
c\ 00 o) 11 ta .
ololt [tk I

i] Uy
o foli kO | W

aep Jovm pos Jor™ |
gAB AB AB PB | it AR MB B B AR
e oo OV Ve J1088 f c &l 11) O
e ° : o : B ; L] »
¢ 0| o | @
A
£} L ' @
Y
\{= AB+ BC *\éc_ %{J = (9*.[:,)’(@1{34-5) (_ﬂ+¢)

\

NERTS dowﬂ "l‘he. zs?rhphjrecl Bmlem eu_p'veaw’@n J‘t
the K- f“OP /’Shc.'awh ll'g \»—fm‘t.u*e. . S
C,\.._E_Q___’_ot_‘ i3 ! i ‘ i | .' o

1!?;__;

| LO)| D

75 mel B 4m N -
80| :- Of'r. g i rBC
l. al ' '

Sop Jowo 1O a &
. 5| =

i . i)
@ e pBC

A RC

Y- ABC + ABT 4 Apc +ABC

U.A‘nncﬂ K-map | siealize the Jolbeoing expiesmion |

JQ (rBO = e (00,3, Cj,.'(o,"-r’)

RC @E :E;,C, BC BE ,
"] < 43 | ||'! f
D1 a {j
o . i 6 LY :
Y
o &l
by B ;.Ml { (A 8 o i i .
Y3 EB-‘AB+C : | ' A ek

ﬂmp\ement-. the jot’fow‘m]‘ Beoledn Aunction coith NAND

—
P .

'

n‘.mpk'jl_d the Beolear jcmc'h‘on LtAif‘\C}

K = roces

j = Zm (0;')21!""451‘6)

@¢ BT B¢ pe¢ 08I
00 o\ 1\ 10 5 -
. ' 3 L
OF L\ W\ | -3 3‘
s 9 | { | I A
) \ I | \ -
|

|
'@ﬁi‘*a» W’.'m:a mo_ppin‘i e (?,'Lp\'@%idn 3 = Zm (01,225,789, 4
ge P = ' il |
¢ 7" 6 =0 PAONY g
A~ 000" O1- i\l 1Ol e D 4B Z4B CiD 4V
| = - d 114 | _I.':'O]"" vF &_r "l-f .&’P?(X
| g ' \
ABO Qp prB \ \ 5 } 7 .
—_ m _Ap :r q\ S\L' 1{ »
| A+ L= o
', ; p‘).t' 3

/B 1

ARO[

Sopfomt = BD +

]

> C

AC

P8 Ll g
i Aol |l &
o 845 (A+E+D) (ArB2)
A Pos foum 4= (rrBar) (A+E+D) (2

Simpli th .

| P jj @ .‘JO“C'C»"”CE' baolear Function & :

R e 9 ey e
d-" Z(SJL‘MSJ '4—;‘3(, lg/ll-l,lﬁ)

e +AcD

" 7

7

¥ ﬁ*cm

Are0)(R T} (1T+0Y £ B+ C) I

pos form = j’:(

2
I' Cerver{ Hpe Gray cede 1101 o bmfy

AR A
E.Iﬂ‘."l"j O 0)
3. ro 110 1

Etrtor Detsrnnﬂ and (ovecfy

KJ (ocley -
= Cedles tohich allog, orl

LJ ewor deleclion are mlled "Enrpy
Dﬂerﬁnﬁ codes .

=2 Cedes which alloty arpr delection and cowection are called

" Errgv Dei:cﬁna and mrrecﬁn? cocles”.

- Pﬂrmj Bit

. Hh odd pan - oith
3- by Message Message- 10 *f} e n parit
A B C e ol 'ﬁﬂ ERE Py
ooo O
0o 0o D 000
0 | 8 el !
] 0
6 0 i O . LY Ne) '
0
D | () ol | 0
o | ol l '
00
| 0 O | OO 0 [
| O | | O | 10}

o O

|1 1 O |1 D | (o

1la
m"’“’“ﬂ (crie

Mo “F pnﬁhl by,
:P *F AT
[*<x Mg t-\]ﬂr".'l!l bt

Ly =
b =%l rj] |1tl1‘_|||_tﬂ‘ﬂrl 1lr"l-

E-mmpl‘.:' :
~fov 4 bit Wivmation, et 1=y

P->Thial 3 eviel el pra-
NTERR
y=9a X
let p=3
f:~,u+3+l

828 v
L Three Pnnha bity are I‘EC,UI'rEGl' tp provicle Q‘M-.]h"

‘ . bt -
etror corf ection for "HDUT 'W‘Fﬁ'mﬂnn

Errﬂrf&frﬂ‘-‘-ﬁnﬂ todes -
— \

I. g9-bit —Hnmrnina Cocle-
P, P. Ds Ry bs. e 159

PI —> Illr‘arS-":q
P,—> 2,3, 6,7

Pq,-',b;"u’g' b7

3
1) “The -1 -flﬂnumn} tocle
L]

o Dyopyo D Dy {,‘ID‘.'D",DHDIJ_
= tas,an
f} = 23,4, 1,10, 1)
Pu _N l;.f.,{.,:},l}‘_
Pg — 89,100,120
3) ‘ihe 15-It -ii'a.'rmmir? tocle

"D P DS pe Dy b Dy Do P D Dy Dy by

Py =>1,3,7,%,9,11,13,1€
Pr=> 203,6,9,10,10,1y 1
Fy—=> Ui 6, 023,00 S

Pe — 8,9,10)11,12,13,1y,1S

" Enced e -l.h-.: brnan Coord | O] intp Seven bit even-

NV
Pﬂ”'ﬁj hammrna cede . n=Yy
Step 11 fincl “the. ho- ©f parrty bits required
let p-3
of 5 xtpt)
Q%> ytat)
§38 v

" Tree panty bith are- Sufficient
“Irlal Code. bib = 1P = 413=2

=i Sy
Py Constroe4 @ bit lpcalion tabk
=
E'?.' Bir ﬂt‘.ﬂ;ﬁl rerion Do 3y D H]t D_3 F";_ P I
{ B location) £ < oy 3) |
Jr :
F- H"-"ﬂr? lerlion nombey py no 10} 1Ko e IO GO
|' Irprmatbn b I D I I
15{ Pﬂrﬁa bits O O |
o
| Slep 3) Deletmine ~le Fnrﬂ'a ity
!
; gveD
‘L I B—=3 5 3 51 1 1 _—

UP:_—E"S-(S F =00 |

O >S5 &6 3 —=1 0 1

. Seven bt Harmin Code. 2 10 | O 10 |

o Determine the SJnﬂFE error- correciin Efncﬂc, ~for the
informartion code 10111 —for celd Panty.

ctep 1+ Find the number of panty Lits req_urrecf
et p-3

Hence -fovr Db
are ";L'an"rf'n I e

Total ercle bit-- /41 2 9

step 2: Cepclue b a bit focation Lable

Bit designtlion .
(I:llf'l ror ‘]l'l Il|I r}:lr I TJF_ P” t!] P..'ll P.

1]

Rt (eartion
l'l E "] f;- f' { l 3 ' '

ﬂ!nnnd loccrtion
Hemies e) oo ot plip G| oo el L onib 0oo)
Jirfooma tien Hihy | 0 \ \]
.) I O
['k‘l‘r'ml ity O
Slepa : Dxleimine the party Bits 6ol
CFNPJ'.ESQCI (10|
| Foo & - 3 & 7 y 1 0
! For Py * 56 7 v 1 O
1
For Pg ! Bit Pg checrs bl locations € and 9
on odd panity{-

and must be 0 4o have

Step Y : enter the lmrﬁtf hib D the table T© {Dﬂ'ﬂ' a
nine. bit lamming code
oot 111} 0

[:Hﬂc{‘l'ﬁﬂ andl Cﬂrrg.tﬁn? an Error

I. Assume -that the EUEN pan Hammm? code 0 erample

oLIp0Ol iS —tmm:mmf:d and that O
t+ was 'UﬂﬁSH'Jﬂfﬂd '

has tccvred usm.-:d

popll reaved

The FECEIVCT doex not R:nﬂm‘mh'l

Delermine bit [0cation iphee oY
veceived cod -

Silep) Constve bt —lhe Lit leration -(ahl
.

) DEJ' D‘: Paj. D-_,.‘ F_-‘-_.‘ & I

_||I Bt rir:.-.ﬁ-rm‘tlnﬂ
Jf Ar Iperelin N n L o oy 3 2
Glrmn{- tocertion pvobe; it 110 (0] o ol Ol0 o091
Receved code o 1 O 0 O i \
Stlep 2 CI];-;'H--EH [r'rll‘ ETIEN _E_"uf_‘?_f}...-
I o PI : .:‘*fwrn loco-liom La,% ;80 '— | o o O tI"':"?‘--J
o for D checiea pealiv as n,3,b,71 — | QT @
ol D

| For My checs locationy S,6,9 —~ o

o The rewltant —?]_ (O |
toord

'ﬂurssmfs -
' :rrrsgkwshmtdbef-

ls in €rror
1, The correct code O 110

v Hamming. Bode 01l pLT0Y 18 rceivecl . Correc
It LI‘ ﬂn'd Eaiﬂrs.—h,em ane. —&Ur Pﬂri"tLd’ [gh ﬂﬂd Gdd

?nﬁﬁd s US ed

oll.

—

AL poinsaemg 000 o s
== Dl N e cecles e (veley Lreel tn etecele The chmack,
of afpinlet 0 Aclilery 1 e clvimel rlrJﬂ'. -
e At cede Amenican Manebavel Cecle 'f-u .‘]r'rf"rml‘!'fﬁh-J'H"irinr.:]r
I I T A

> T s In-.nrﬂtf f

I
P 7 178

Tl e Acetl eale .

MG

. oo alal | eirn oy nh 10 ne 1ey
cecl spH pe ! I N £i a o
¢ce1 0 & X Ne 2 - 3 B b :
eol 1 gix nes 1 3 c . r
el toT by # i D _ ‘ i
Crel (nB ppk /. ¢ C ! g ¢
$Be OrtD ek syw . b F . . v
oIl EL pp 1 ¢ :‘; IR
000 BS eaNn ¢ n : 1 "
T
ee) ur EM) qQ 1. y y
010 1r sy T A T

oo FF FS ' <
1o - \OE
I ce G - = M
)]
0 so RS i . ;
(DAY ?
/ 0 - b D

: b vier hen L

ACK - r"urrnumlrd-ﬁr
netL -Re

s - Pacrcpace
W - cance]
[y A rmﬁnfr

L

Dy - Mirvee | Cemol |

pes - Duect Corel 2

g - . 3

Dly - T Py
ptL = Deledc dle
pLE - Orla lint esanpe
Et] - Erel c; el v

yr o ne

eND - Enqu\n1
E0T — End r:-{ Trant Ms$io 0
ESC - Eccape

ETR - End D{ transmission bloct.

eTx — End D’ text

I -fowmn Jeed
rFs-luirg Q.g-':n!:rh::f
G5 = Grup Cematpt
i = tedrentol Niahb
LT - Lipe feed

M” i 'I'-.I.r'grh\fﬂ -[Trnﬂm‘tcﬁaL

nup - plot)
Qs — Recordd Srmurtor

S1 - Shift Jn

S0 - shift out

SOk - ot o] heodin

eTx - Substitute

ISINER nchoncu s 7d (e
s - Onit &Tx:ra*:ar

\UT - Vertical Tab

he EBCDIC Code : Exlended B“’““J Coded Decimal

] nere }\an(? e C‘\ﬂdd ‘

.ﬂ-%:: 25§

e iy [I_n--','l :
o f:l r rf: {v' l[',) . £ SAL
" sorr |per oo / e |y |~
—~ 2 e fea |re e Al L B
—> S | e “1' !
el i o
o] 4 Pr Y s VWY P L
_..,.IF L'-:Uf h“‘) 1 M1 (P | r ¥
Lo ye
, ¢l te B o)y 9 Pl
7] e | 3L | PR 0T h Y
! § chn A l?
." q Em
f
' A cmm cc Lm o ! p '
8 | \ri didMs
c | FF |IFS pey|<|* |7 G
¢
D|lce |3gs| oy (| D]
e | so |IrRS| P 37|
- ol 7’
r| sy [Just BEYSBIIL 1

UNIT-Q
—

Combinoitfona,(Cincunit ;-
MDA AAA AN ANNA

A Cormbinatiomal Cidicennt rhmd be. de]‘ired OA O Bocdic, Ciopeuit
Gj the iopuds - The outpur does not depend on the post
\{QP.U.G_ oj: thUTA DY U.t{DU:r& .'nqe’.xejo-(@ wmbihaxlﬁnaﬂ c#mﬂwt}’
do not heed el.m,a rrwen’r_)nd-

: B o L
: 22— A Combinational > Yy ,
In " Pl |
| . Quipul
A ' Cigceul -

<>

jfca:- Block dr'cs’f_amm cj‘ o .Coaml?.inoﬁcmal Ciscent -
) & Tl _ , _

A Comb’mL'Ohd-D Ciecuat fco_n' heve A& npumber cj inputs

G-YYZI @& pumbes ﬂj' OUIPUIA —W\G Ok)OU& JtC;‘LLYQ l”OA N mpu.t%
|

G-rd m OM ai‘tu.?i’@ﬁ 1’7@. |r)pu_‘bg GU’?C] OC’LtPLLD’ } ﬂ_(r(qw, ﬁo:t@/g

Gone Cconnecled , and, hence. , Comb:no.thhol C,mccu.t leCCLu-"J

COﬂ/:I/‘tﬁ of lotﬂ:c. ?O.tGA(L

‘—[— (! (,. i

he osrious St@P& ff)nuo\l,zeal o @aaicaninﬁ ‘.-?mCe,cluxe. ef e
| [n |

Combinational locdic.s ;na_;d be, disted, Undey :

|

* e ol be cituen o Problerﬁ
{ .
T TTheb, tael deteyrmine "the. humbe,zr qf inpuets and! ocgtpubs

and mwcﬁn fettea « Audmbobs o (mput and output vaxiables .
CAften ot we comite a Twih teble ‘:J]cfaimc] the inptds andl

oudpteds .
' Then s Weite k-map for cach outpul ancl cbtain the blmPZJ'feCJ

.-‘f') ._ Wy .1‘.-
Beolean expmewcw fof each OLJPLI.E ' p’ .]- '

40050 1 L A s /
LOAUH Ao the [ofﬁrc C‘JICICJ\IOJT\

8"’ A Ciocwit, hos jec.m mpubs cnrd th:o ouizpuﬂ- C')ne» @j the
ourpuds s ['-wcah e rrfﬂom\t\a- oj' mpul’xs ave. l'wcqh The
Z:@CQ“C-J' m.tPuI 23 hﬂh orh.a wher‘v ald tnPuﬁ ca'e. cj— ,5arne.

il
{‘,Jr;gg %eé.uan the Cormbi nohonaﬂ CfmCu.vt ;

Sok-3) ket the foun inputs be A, @00 and the, 100 outpul’

ke Yy ard Y3t
& Tren Waite tire Truth’ table
bom i |
Qecirnol, [AP | : outp:?' i ..g.,_:.,j i
' i & ‘D S T
& | o &l 18 T ar el e
! 0 _ d}. O ! e (G o j
5 Bio BERI Mo dl
' ' P R 2.8 eyt If
. A o (% ['dtal it 4T
hy) Y
5 o léba lwe]l a0l @&)1
6 o Ul iy ol | LSy ©
i B A T |
i’ ol Al ¢ % *’ I ; O g
;_ 3 Jlal dY & | ol O il
i q | ain G |
1 ¥)
Ii ghsi 10 W I ; Iy O ki) .-r;i
' 1 e 1} r @
1 3 A () oy O i
13 I' { O_"l
| e ‘.r hi |

L”_Y‘,”' lAlm}tQ knﬁ{) l’J("f (’{\(‘lﬁ (b_.uﬁpu_t and (3(”)"rnP"‘f"‘-/{

C""LP?‘T(’ % AN

\hi!

\-J'-OT outpud v,

AR O O N\ et
‘_-_-_E' B \ g eh
AB I o) G__ | . —
oy 0 < f q M
AB | e /O 0
é \h
g &
B0 co

3imph—jfed CAPYCAAIBNA
- Y- BeorABCHABDYACD
Yy ABED +ABCD
W/ Pman the MTC daaclmm-

B‘Qg‘q’ﬁ B

| V t r—% } —/rac.o

0 U I e e, i_': ABC

r il e ABD . ¥

L 5] =
n (Jr ___I'_/AGD . et puts
L L o] A:} ABED
=]
f ' L= :}QCD J@/ e

__‘l
Ilk l.\ "{: P M | . .
ﬂ;}:\\\t ,!.u\li@h .C'T[ton‘_.t.n.n\ﬁn(‘\nl}] ‘neaka
VA W8 & A /\x,.\u,\,xr\,&r\,\,\,-\ e i

The Cormbinational e imcwits mC\tJ be Clmv{m]f@d a ¥}

W) Code converlew

¥ Addexs

4y Pubtiaclos

v, Com pavYetov

» Addean:
Pl
Addition Cj w0 b'rmo;uJ
ned diqital Ccormputeys.
Pekffo\r de the diq P
C[cws'ffichior\ - oj— Bino;uf Addea:
o) Holj addes , ancl
0 Fuldl edldes

Aigits s mokt baaic opexation

Hosf Addesr
Haty adden \x o combimtional logiec cimcuit eoith teco

ula and 1o cutpuls - 5T ix the baaic builclinca block J‘om
as O

1‘np
addition

outpuls mmelT Ca;ma‘ and sum:.

‘?j tco0 Ainfa[e bit rumbcﬁ%-"[pw, Cinceat h

An bhalf addes ciocwil ix d@sicdned 10 acd teoo

,b'mcale. it bir‘)(‘mj pumbes A ancl B

Ll | o
il | SRANTY

A
“CJJJ‘ A\lcles | Outpula

30[3@8

B - — > Caxw |
- |

j’icl:- Rleck dicﬂram 01- —Hcdf ﬂcié)@sl

Y T yth Teble

B3 B B
A."r_ (v) _)

o] 1

pof @

A 3 3
A CD\ i o
-

A8 |

[sno | dnputs OL@JE'IF o
A | B | sum |Camy

: 0 0 v o)

2 ' MR l O

| o | 9)

LLT i (| \ O \

= | -— {
Sum= AB+AB = 'ADB

|

. j‘j |-rmep fo¥ Sum outpect

Surm ou,‘tpu{}s

B "

A 8 B
- ,ao 1 i
. . -

B O {i)—1 > AB
C,o:ma= AR

3&:‘ '.-I/;—map -j'Or Caw-j outpud

T
L
Ll

A
B

Jop- Weip Acker

L

P s
| ;D—' ‘o

Civewst

srmplerertation’ of g SR g

»—

Sa

jfcag. Holt Ackdex wmca Baaic

‘iDvowooﬁ K-

Howeven |, e addition

of rext bBlr Zequimgs the addition of

Qdes |
A bhalf adder can odad Ao ad Bo Yo predice G, and Co.

Ri,B: ard Co - “The acldition o—f thvee bt 4 nd possible

| To Pexform de Lv\'mﬂ' an ho.l]‘ adcley eiverit: Therefore ,pm(t{ca[[T
| we Camdt we a half addey:

| A= A Ao
B: B| BO ot
‘ + C§ 7 a“'“d Ca,eneta”ﬂ?d jxom e addition
| T S (Ao+ Bo)
To ovemcome The clyaco

. o
. -ﬂle Lt addey ciscuwet called Fall Adde .
deuclop o 3 AC

| and B,
4t can add two ©ne -B't nurmbees A
Bcvsic:all‘d o Aull adden h o thvee Gnpul _.wd -‘tu?o outpud

[]

CI_("IC:l COXTL& Cin'

o binational cicust -
| \ (

RS, ' 3npub'> | outputs

p Al BiltiCn| 8 | Co

A B : Sum (5) 9 94909 |0
s " rullacder' [| ol L NEEE
Inp i OF Tyl &' | 0
Ce— — (Co) T | i

N L m;iut I \ 0 ‘ - |

- o A

in 5 - 0 | o) \

i d dis R RN K

;cd'r Rlack _uca‘rt\m
/(0 (\ \
-LI—___T-'_'"\-_— amastolll = l S

:J“‘J‘f T;L,L'fh eHa

[(-Ifno]tox :fO{ the SLLmCQth{ me] oul CC“). Ou;&pf,cﬁlz;'

PR

K-rap gor Sum | Lc»rmr Jor Cﬁﬂmd el
o ;
o PAQ) H
N Syl) y v Blin ' =L
BGn BCin BCin BCin A BCin BCin BGn BCin
1 ° VL R . ol ' a‘,___>g(;_-
A Ol || &l 6 (IO P‘_ 0 -
¥ q 5 3 ¢ M 47 s
B
1@l efolo] A o]CTD
_ i Wawrs o
ABRC A AB Cin ' ACia AR

_ @it Atin +AB
= Coaxsy o = BCm’Hq in
| Sum'= ARCIA T ABCInT ABCIN +PBCin ‘ﬂ

= Cn(AB+ AR+ Cin CAB'*AB)

- Cin L AED) + Cin (AOR)

hel = ADB
¢ 5) + Cin(®)

Surmn = Cin
2 X @ G

L Sum s A@BECI
Lmdic (b“mcx(mﬂ jo{ \f’tdl 'P\C\C\G!

A HESN 5 AR ©Cio
{ Clr\-_ 1 | /, .|"|- d

,\‘]’7?1' kFLL”I —Acﬂd@’: CwCLu’r

Fudl Addex Uing talf -Acldows

L W W, W N

Half Aclder -1
el g i NaK Adder -2

|-

|- ~. " |

1 T | M’fu?’) |

-1__4_ - -_.____I__._1,.__ P .. ¢ | ‘C](-
X ' 5% *I %) "'ﬂ.

Hn
&1

|
|

| DJB | | (f:- l'ra [‘,_I,’C‘;(".l
C:n;__ . .

.*

|

| L o o e 1r——
|
|
|

J T
, 2 NP &
| 7 A ?)i J0

ji‘al-, Full Neldler Lu'{rhzﬂ teo Hnljc Addeyx

Sunz A@B® Cin

(o = (POB)Cin +AB
z (EAB-’r Pu@) Cin +RB

\r

|
ABCin +ABCIn T pB

\1

L rali, by
B8(ACin+A) +ABCin . L A+AB = A4B)

12

chc-,r,) +aéCm

- AB+ BCin +ABCIn

= PB+ Cin CB*P‘@)

= At Cio CQ%B)

= AB+ ACinh +BCin

/A%;ddem actr ™ a boaic bu’nld‘mca black of -the
4 bt | s bt brow[ep adden Tes dcha 3433

1 deplernent Hay Adde uAIng ool NAND -

A B
O D
. AB ol i
Dﬂ:(ﬁ) (A B)
= = AB + AB
o - AB+AB
D
!“_ AR =AB

ﬁi%z- \—lp.\j Addes Ll/sincd onlud NAND e‘]dx&

. e gmplmnfit Full Adcles Lmiﬁca enlL‘ NAND qotes

o B..

j;{ai' Full _P[ckﬂ@m

iv&ﬂ Sebstvacton

AUNANANANNA |
The bir*cmd atibstyactors mmd ke l(w;aﬁed oA

t l | =
. Jrlo.lj Subtyoactor

" Full Subtwoctof | 1
Mol Subtalcg

Petintion:- ' .
m subtyactot . mo-j be de:]‘ineal ar o corobinalion

1 . pelweeh
Y, A holf aubtracter produces e O an oupd
il birary L ot e inpor opdl QYO el
the 0O OINCI ' l '. borrocoael -
CBD“OW') 10 1nC 'J-' * l*lT\Cl)f‘ ‘ e
| ' _Yoputs | O wipLds -
/ Y a | B Qiﬁe!ence' B?‘if
3 | i R (A8
Hrputa 5H01j ()LGP"?‘ o O Lo (N R o (l)
—— | BovIo (o i 4.1 V.
i .0 \ 0
: l Y el ®
jfcl:— Block (Q‘&%‘am . e
e i | ;Pffll"_]?wfh Table

Cf'ﬂ 3 Haff Austyactor Civeuet

Rrawbock

J A balp pubstvacior can ©
ef two, birm*d bils - Heweves, cohile pevforminf tire ﬁ»l-tb‘t“z@'
~tion, \t doea npet tade Grlo account the botrow of T
Lou:;:ef Aicdrfﬁi carit stage: S
Sroplemenitatioo of HoJf Subtvactor

o0
| H[’D"T Bf—{' >o-l |
oF |

{

|

anfj—ox m the subtaction

Fiil '@

rile

g e 8 asc quios
Subttactor tl,eir;ﬂ onrlgﬂ(,f\JPND ﬂ%

_ T | a

— ’ ((1 (
i

4_-W—

Subtwctor wlng only NAMD Golor

T]

wﬁr\g‘r Boaic Gates

Fall Subtsaclor

'%ej!nit:‘on:- {
A jull subtryactoy A o Cormbinational ¢isiceul eoith thyee

oPLds :

OpLls AL B and Bin and two outpuls D and B,. fleme. A i
Tre minuend , B ix subtrohend), B, A the DoOs¥OLO]D“o’odLLCf’J:l
bxd The prcauimu. ATacle y, D wl e d‘ﬁerenca oulpul ord Bo

v the Bovsocw oulput.

Inpuds - Outprds
. - Al g Bw| D Bo.
g > Piference . , vy
2 Subtvactor (D) v e R I I
Eﬁln—_ﬁt T 0 ' 0 v - H (ol
% Botow :
- (Bo) 0 I | O 1
I Qi © | ¢)
j'ta 2 B[ﬂ:k C‘fﬁ-fltﬁm Dj j(.l.“ Substraclon [O \ O 0
| \ (W) 0O O
LAy Bl ! 40, Lt

jl'C]l- \’EnuTh Table
'lk_ma_PA J‘or Cafﬁe‘femu- and Bossow outputs

BT S Y BBin (i
| "\ 8Bu_ eB/a/ B8in_BBin AN /BB, ®Bin,/BBin BBin
L o : ; = 4 S | [- 3 2]
Al o O o] Oprems 8o | (R E
A @H S 4 € N L T ety o
0 e ol ol - { -
| GP ' O w \ i J
<& v p - : \l/
A Eéh ABBIn : B8in
}{afmap jm @;rt]‘emna, l(-rmp .'JBO‘ [Poviow

Bo = A Bint E)[?ﬁBB}n

&

O- 5BBin +ABBIn +PBBI + ABBiA

_ Bin (BB +AB) + Bn(PB+AB)
- Bin(A@B) + Bin (AOB)
- ADB @_Biﬁ

(_—}iCdI- ’-afdic. 9?0Lr:dram joi o 1 jull Subtvaclor

Fuall Subtroclor utng ol Subbaclow
Ho Y Subtwctory

A! \ h"___”]" T o s _1
" ! l | '
B— e) " M
X L P j£>l D: A®B®Bin
|
| : | : | Sk
| | (s
LR A% i BT) !
Bi, it i Ll e o el j
[<8, (A®B)Bint
Jic\l:- Full Subtvaclor uAng | Half Seohaicoim =

B = (A®B)Bin+ AB
= (A B+AB)Bin +AB

—

A BBin + ABBIN +AB

ABBin+ B(ABin+A) it
= ABBIN + 8(54—8‘"—0
Bin +AB+BBin

A tAB:= A+B)

il

Ik

B
(BBin +B) + BBin
(B+Bin) + BBin
AR+ A Bin +BBin

It

Full Subbact - NAND qofos
@\W E‘l&m%"é&&“}“’

, S

.-Hr_

j‘«at- Ful Sub‘traatbf W\inﬂ oﬁl‘i NAND ﬁaitc,g

D= (E_ﬁf_?):‘:) ('5 B@m) (E—é—B.i‘_nj(PE%:‘-”)

D

B Bin + ﬁBéin + ABBINn + ABBin

—

A B Pin + ABBIn + ABBiIn +ABBin
@ R@ Blr\

Y}FEin) CBBm

+ A Bin + BBin

DIL

Bo:(

3

—_

B+ A Rin +BBin

MULTIPLEXERS:
A Multipexeys (MUX) ia Combirational [@ﬂ‘;a cornpone Nk

Tt HJA‘I Aeve mal ‘nmputﬁ and Onla(one outpul - !

"Mox dieclh one of tre iopuls 1o ita outpud dine bLJ Lmian Q
Contvol bit coovd 1o s Select Linea

" MUK Cerlaina

x q {ﬁﬁpial),

¥ N Geleclion inputs

fiqe. Anrﬁle outpul
ol \ﬁaﬁzdton lrvaI Aetexyro>ines the tr‘)puI That Ahould be

* Deo H‘__‘—H‘ﬁ___ﬁr |
; (S
T+ Lo:)
Ny >V (oufput)
. MOLTIPLEXER
: Pl — 3
£ —>

gn_l 17\;13

:}"‘a'f Bloc k cliachm C‘ﬁ Nl Moltiplexes

as data Seleclor

* The Multnple,mem w alko callec .
ie. switch that oelec

* e Multiplexe achh like an elecvon

ore fyom d\jjc/,fent-'
- A multiplexen mC'LL[

o{aerollon of the OmL-

bave, an canble oput 0 cortyol the

™
\ %}
- i

""l)_)'t‘_’(\PLe X €IR
AN

b rlﬂL‘u‘.Ple-tIC":“ has 1o data ‘oputs Do and Ui) R

"\-’,\.-\.

elect opet S an eraple ioput - ancl one oukped 1, TTne-

bloc k d]a(:]rm of 21 mdltiplexey wi Ao 0 ji-‘:]m@--"""

)
--____—————_._
D, oalth J
. Q) Y ouitped) Ercidis | ?ﬂmﬁrifﬁ;'ié.chLLT \
MUX P S _' v |
E | : 11 Ok Yl ' |
Hi))
f&’ ngblet T | O *Il“ti " Da #
P S(selecl input) TR .“LD ¥
$iq:- Block ‘Binclmm b ks |
Tshth Td“gbl%
= ‘t-"f‘ hil
\/: € gDe +£5D, Ak
i
:e (éDD-{'SDO
2 4 DV D
g

j{ﬂ:'@ﬂsz“O“ Cff! 2:1" MOX wﬁn? cdoﬁia.g

LI 3 MOLTIPLEXER!

L

B

M UH.‘{P[(Z)(@Y

| "L" I TN Telole

cha - @Block di&cd\’&m

o Selecl limeA Qnd ©ONC ocpud-

4t hos fous Aator opuds 1o

Truih teble tella A

= Do when 5/ 50 = 00

y=®i cohen 5,56 = O\

y=Py cohen 5,5 =0

y =Pz WhE? 550~ 1

"1y ﬁ

g B 515003

The OCLtPLd. eoill be
HC‘J")QQ_ The IOCJICCJ e P\(M\mt‘) f@\’ @uﬁptiﬁ in e Sop fow‘u’w

341 MoriPtexer : -
N NN

7!’—73 blocle d,a(j;(lm Oj

A

\f: 5[SD Do"f 5|Sool+ S]SDD

j{cdme and it Tt Tedole -

Blocl @f&;i‘éam

l’utjh cohen the sele

1+ 51 SDD:}

QtECb mpu:ﬁ} s Tl

ool be

_ 4
an §it MUK ho [g@en Alhoton

-T;Ll.ﬂ“' -_Z;,L)(L

.F_"

|

Select Inpubs [Ob}fDU“bS

5:,‘. S\] So

0

0
0

0

\

Y
Do

)

n twed m a doda scleclor 1o select one oul of ma.r.rj clate:

Applications of o Multiplexsr:

“mPuT/s-

4t waed Jov Amplificalion of lm‘ic cle«skan.
* 9n The dale af,cwi/s'uton ALdATEm-

* On dmicirirﬂ the Combindlional Civcuets:

*In te DA converiers
" To nSinmize The Nurnbest O]t Co

ppec Tions

Multplcxex T;@e; (Expanc],un?(Mu,[‘t?p\e:')cc:r/s)
move Nurmben oj

moe multiplexes @ith less
o1 *txe,e-

The multiplexeys I»ou’mtﬂ ippuls (oo be

obloired bla CaAC,acliDCd two oY
Nnurnbes Oj inPLL‘tf"'—TF'!iA A IiﬂO'.Dﬂ 0A O muﬁip\@ﬂ‘l

b Grplement an 8:1 multiplexeer LA teoo u:l muliple

ACYR

DU‘-——ﬁ.
o & : geleck puis ocdped f
D2 T Y S, 8.4 (Se v
Dy —— MOX —| '
6| 0|0 Pa i
Dl{'—)r 5:‘ Sei ! _ Of "W ®y |9
Ds— .,Li”. Mol o ®y 3
O MeN-2] AN | W
| Py B - b | bl L% ‘0 P | 3
| J ; o | CDJ k%
incqt— Ml,Jti'-jz,xer bLl Cmccdinﬂ _Tx-u‘fh Tbk

two 4y Muﬁ.‘Plexeu- :

_J

. ’ﬂ“P‘@R‘Gr{E a 1601 multiplexes Lu!sincJ Yl muJi%Pl@"*@“-

W

Do_h_—_% DD \-,'
O ——9D 4
Dp—— 0 MR-
D3—___‘>- Dy S So
SI — / 4\
So
. iz /
Dq-————)-ﬂ? Si So l{
P— . Moz
D-? .Dj / DO |
i sp Y b g
Np, MOXS | oulput
) v 5% L
Dg— 3o Y] Y3 /(\ [|
Do ——>D. MUX-3 L
Dy — D S % : .
/ /
D,l — 10 Si ?o
Lpe
Dig — D, AL L/L!

Dy ———D. MLx-Y
Dls_ﬂ‘og,

mudti ple xexA

jiCJi" 161 MLLH]P\QKGJ’I Lminta Lt

Jtipl .9, 3
—The 5@lacf inpbd- S ard Se ‘j% mLH"PGm“ 1,23 cund 4
C,orﬁr‘ecTed ’CO??%"- The 5@1€CT 'lﬁp.t'bk Sg and S, oxe QPFL'@d
ioputs Ds, DuD2 ond O3 of MUX-5 A phown | in

Q3e
1o the data

J fc]-wrc -

—

Select inputs MOX - Outputs T
Sa S, 8 | 54 y, ‘ Va | V3 L{‘f OLLT.\;DLL[
i i O O | O | Do |Vt De| Do Do 3352200
i 5 ¢/].0x | Ds| Dy | ‘il io MUY -5
0 | 0 1 o | Pai|l B¢ | By | D D Selechs
0 | 0 | | B3| D% | DW!'| D D;
8 I Qv it © Ds | Dy %, Do Dy 536,20\
1 0 ' |
R b G S
Selects Yo
0 [! ' D3| Dy | Ow | Ds| Dy
IRHEEERE R
s 9 3 Dy
I @l v lof | U5 O D8 |TDy i
gl O Lt Bl D ou B L
: t O | 0 | De| P |Dg| D
o R L 0 T e L 8 S352=1]
! l ‘ G | Ol D¢l Dol pe MUX ~5
! ' ' Kl Osi 0p o | De Selects 7y

—

Select nputs

i 0tER | MOX -Outputs Firal
53| 52l S| So| v | val Vs Yy OU?/DU[
0 i O O | O |Do|Dus|Ds|Dn| D
G | 6 | o f v Pl Bef Dy R D,
5 I. 0 | 0 D | O | Do | D, D»
0 0 | ! D3| Oz | Du | D .Da
% [0 (o [[oliior o ol G
0 ! 0 ' O | Ds | Dg | D Ds i |
0 ! 1 0 Dy D¢ | Dio| Dy D
0 ! ! ! Dail Dy | Ohl Beil ' Dy
: O Q@ | ol 06l D De| gl Dyl "
I 0 0 b Bbl e Dq | Dn Dy } |
| @il y O D: | o {lsr bw De
! 0 ! | Rail Dyl Dw | D,
I r §) 0 Dol Dp | 'Bwl Da| D
\ ! o) | Onil Pe | ooy Dy [T
1 ! ‘ G | D& De | Dol D [Du t}.
! ' ! Wi Oa oyl ol bal B 4

i

MUx -5

" ﬂmpl‘?’“ﬁ"i Qa juJi acldey Lmihﬁj 3:1 mulliplexen

The truth table oj oL jttu aclden i

jﬂp als Ourputg
& 8 Cin | Sum(s)|Cory(©)
{
0 0 0 0 O
0 0 1 | O
0 [0 , 0
0 | ! 0 i
! 0 6 | b
! 0 ; 5 ,
| I o) \
Sl [_
- z | |

.-m'f“ Swn 0!‘0] Co.)"l"-a OLIIPUI& Cor be W@d n 1he ;;tanclaxd

S0P jorm ix
S= Tmf1,34%) and C= = (38,6 %)

v

57 _
! Do
i D,
D y :
: Uy e Co.mi
D3 %] \f AR 'D& % | \{ H—
Dy MOX ¢+ 0
Ds |
& Jogic | gy, _—
I ; 7
D E (——3— D3 £ R 93 c
5.2- Sl Se 8, Sy go
/ N . |
EOTT] e TT
A BCos X B Cin

jitﬁ;_ Fulf ﬁddév LAy 811 MU

L DRIy AT R T TR R S |,

M t'l[{- Ilp{_egt

: thpl@]\‘enl b Ljo[bwiﬂC} j‘Llr\(_‘_'Uc»n U"'Xiﬂcl an gl :-a--;cx.tf.;f’kfiam-

j [f—\,-B,C,D') & ™ (0,2,4,6, 3, 10,12, 14)

- s}
ﬁénptﬁb I'Da thl D> 'Da] Darl Ds| De ’Dj_,
A o|D®|2 @ b @ 6 j.__‘+
A |3 | @@ |@® w|©
saniIEMUI V) r 1C) \ 0 | Gl |
[ocaicl
Vo
D
D @"
Ds MO oupul
Oy
Ds
De
Dy
S1 Sy Se
)
Iocifc_o T)l\
A B8 C

j’lfj émﬁamnfm@ﬁon Luﬂnfd g1 Mulliplexey
N

Demutniplexer
> w alko caleel a data dixtvibulot .

A cemultiplexen v & ckevice dhal - Todees & /Sif\c’qle. -
iopud line and soutes t ore of Seveal dfcdtiaﬂ culp

[,ir\%.
—> A dedeTiple:r_e:t haxr " ou"tpu’m and
which ave L%Bf_ﬁ to' Aelect cohich PP

N select Llines

ut Une 10 xerd

4{:}&5 L (y f 't {"Do o l
¢ Do oLt bl

e Dk o .
. .\ |
R
Enab'e (; |
0 e g
Vil IR) P8

9“ i Sn L

jio, - 1'n clemultiplexex

demulbiplexey haxr ©One clata input Din, One
S, ONne Erwudole Ce) r'n.PuI ordd two OUI‘P‘;D-&

L i
S
=

Qiﬁ
17

o .
WE' MOx

|'I|I.l .' [
i|I. i iy
W
] i R L
] A '-ij f
i 2 '-. | 4

Se
J “3: - Blecle c\‘ic_c‘:]“ro.m

ﬂj Srable =0, ther ol thes OD&‘P
‘4 Crable input =1, one ol THS 2

\'), CLC,'tiUG.’. jOf oL éiuen]nputt

Coooe | Pod [gpject
I{P wne | # g
E Dl‘r_\ oA I"} i) |J':‘ _-'I-'l'

|

>c_~ O

O)(! "
\ ol @ W i

1 e

| l

Tyath table of 112 ReMvx: '

Llo < EDin %—;

L{I 3 & Din So

—e o,
T Yo
—_— L

'mﬁ::} 13

!..]

J'"j:' Y Demcdtiplexes -
\‘: 8 (J}Lml,lﬂii ple_xe_y
1. @emultip(emf has one dalo. opul , eignt outpuls , thee

Select ilﬁPLd—z& and an ecable input Eax Abown 0 block c\(agmm-

) ‘Erable Select ‘, Outpuls :
‘fo E 528, rgo \f-,- 'ye ‘f.g.[\fq Y3 | Ys Il\f‘ln ,[_\lb_
Y, { 0/ ¥ ¥ | X 0 Q Q O 0 O O |o
i , oo [(o}‘o | al'o| o 6| all On
s % » ' ol gl v |19 ® oo | o0 Dil -0
: e
. r gl kl o | @ o 9o |O 'Dq 7 °
Dermox t‘fq ' aliwl o |0l ol 0o | Dy o f o4 O
Ys | L lolo]o|lo |0 Diqd 0 OE.O:O
'{5 ! 1 O O O | O O
. | Ko} oWl of | ol & D«/ e
— I 1|t 0|o/Dd o) o|lo|/o|o]o
\ |
,! TT i E 'D;noo’olorof@)o

‘Y e Muttip!exe‘(

'y Demuﬁ;.‘plex'm coriloens 5i”3]e ;npu,t | Jouy oc&puia Sl
two Selectin inpus es Ashoco” in jiqure below:
—— Yo
Dio 7™ Liyy e ool 4
Temux s 1
E —— 2
Y3
8, Sp

3‘81* Blec e dio.LJTa.m of 114 Derwx

Pata [Se tect Oultﬁ-l'tb
Enable jnpul R |
T P R T P O
Xy X Ix) 0 0 0
' i O} 0 Wl o| 0 O
|] O ' 0 i o) O
l VER |y 0 o D] vy O
P g N e R 1 ol 6| o
: ey y i l
Tttt foble of 'Y Dermux
L{OI :Egl -S_O Dll’"!
Lrl z € g; Se Diﬁ
Lh— = E 5|€Q D}n

\{s =88 58 Dins

Yy = £ 3 51 3ePin ¢ Do 5 8 &y
Y, =€ 9.8 SoDin W % _Dojf %
\2= €3, %15 Din = — %
Y3:€ S, S5 Din | Y,
Yy = € 825 SeDio e

Y.

\.’6 :Eﬁzs;gbo‘tn S 1 o)

Ys=E 52 5, S Din L. .' D
} Vs

\-f_? - E 5251 So D'rn

= >
; b %

;{}fﬂ{' Loarjc, Ciplwit | of 119 dermultiplexey

be a) q- '.I‘f‘lE- !CiEIrLUK LLAI‘ﬂg {39 ckzmumplel&%.

___._\}O
4 f 5 So \f3 Vil Y| Mo
Demuox
é—?_.__.l_._ O I QI] O ! o " ']-)ln Gy
0O 1 g o Dial O Enadp i)
‘..;;'D:n : go &) \{l [| 0L O Dn 0 O \j e
% AT (2)
1t2 | | DH | © O ; Enedla ¢
Dcmvﬁ ‘| > —-1
L ALAEDY R | ‘ |
— it
")

35:‘ L-L(.MU‘ Mfﬂﬁ 12 %lr)ﬁ “ X

A decoder W @ Combinational civcuart - gt conwexls “the

D= it b‘lm1Ld in-jo‘lﬂﬂ(f-t;on al itz nito & maxinvn qaﬁ Guipu;ﬂ

{ BT
. \ N TR
N mput;%_ NnX 2 P ow:pv:[s
DecedeX ‘
E
Emoble
Jli?j;- nx 9 decodex Io\eclk djo%mm

Q%Y Decoder.-
The block diCLﬂ'b’am oj

jigum :

i 2% Y décoc‘é')‘ hoa /ﬁ"\OL/Dr‘ g

| Ar}

.
‘Tu‘? (fo
i Y,
PDlecedey — _

| 973(

M cosly (ootosor A ‘npulx , Jour oudpds ond Erable

npect - Fod ¥ ;
coch output vepeedts or= of tre wirterma of g fnpd
vasiobler
- 3 Sralde =0, then ol the olpuds axe 2evo.

. 4 Erable I, Or of the ouvlpuls vy, +to Yy & aclive

Jo'f (¢ Cziuer\ mPLd.

_H_Inpu'b. Oulpecta \
E A B | Y Vs Vj
WY Nlada oo
\ O V) v 0 o0
| cr \ oy oa |
HE 2Iaq o g
__\ \ | O 0 0O | i

()u!pub Yo ® active \,=! cohen f}w{;atg A<D, B:0

Y, i Active, yi = wheo! oph pzo, B2y
n Active, \f, =1 whern npdh A=) B:O

3 npuly
| ! t e -
i Active, Yl wpen PO A BiE]
5 4 By
4 7 ¢ | . ,
0 PO (e [;
¥ { {' / / Ir. [((
'{ | (-(__ u i | T) (
i :k' { J 7 R o &
A B - | X
y | § | ((/)
| | ! ' T "
i
I A ((G ¢ T +——]
L]
' { r '
9x Y dececlex

— |
A S 14 A\ A
e ire” { i 8 :
B — -
C X ¥ > Y3 b, i { | |
— | |
D@.COdEY _> \{3 (J | |
s — W T R
e &
o | Ye
E e
Em_ L Y:; e
ﬁ‘ji- Slecke diac:j-{am of | 3k deco:i@_f |
Tnputs g Ot
..e_' J AR C l] Yo Y VY Y3 y'-r \{s | \,ﬂ‘ \fq_
0 X X)(O Of o J O O ..‘- O| % .
i WG EL N G SO Q. §R g
LAkl & § o o old o d
I O l I ad 4 o | . e
e e o G ol d i
R (O
r A A d AN 04
I f 6§, | F YA WA A . d
-—-—-.________1] O 0 0 ® o P 4

jﬂ Tyuth toble of 3xg dlececle

}'?’- 5 L@a?ic,

SQOTQW @L RX Y drcades

—‘;Q‘PPLCOII ONA ch' Pececleys .

i TF‘@LJ coan be._u/xed

or Code convevtews

<x1- BCD 1o ‘—I-S_eﬁmn); ! i/splmd decodex

Bi mYLd 10 ch Adecodey

. "]l’r@cd ave Used joy

Aot digtyboudion

© (ued ox bui»[oblﬂj bloclea in ipemertiog Seaitclrung

j unction:

UNIT -3 |
C%EC]uedh'Q] Ciorenits 1+

he ol REC 180 '
N ((-”]-“l L'T[Q. fﬁflth‘nlw\f Cryecul C"I,f-‘-‘pc-’(dl t_LF'Oﬂ'“"nJ

r-‘-hl" '_:'(ﬂ '{’ ;(F\:‘

I”"P"T“ The evious oulpul and The

fﬂG\W 'LLLT‘J e " {“Di‘\ifq I"“r ” i-..}C—"_, II|[\F)LIT/&) ok (e HF:T:)L‘ EC‘D .

PP
ool —— \+1”‘1 Lombanaﬁom!._
oo | locdl'c Civceul ‘ T—‘> OUJPU;[

\

L Mcmonj
Clement

clock I 1 [1
Jrgi- Block dfaﬁmm of e Aequentia) it .
@ nequerlial civewl ~ecpuier O rmernoly elerment.
Pyerent Sbhgj o Secpential Civeeut: -

Te doir atoed by The memorg elermenrt ot
Oﬁ‘:d qiver okt of tirne ik known 04 the present
Sale o] tre isquertied civeot
Newt Gtate:-

e Core birediona) civeenat

tale
mpﬂ}, elge the Pmﬁﬁ 4 . N
Neo OU&PL@ G)g"L_D‘fE-O\ o merme j

el stote of the

opevetes ON the cxlevnol
to pmclu_ce e Quﬁ:puii_

Sorce OFf trAe
elernert ard

Secpuertiol crvcost

?

Clock Sfcd'“’c‘j:'

The cloclk AiOJhGJ koo Timine ,gfeihaﬂ . Clock 5 o
m-fctancauﬁa‘f f“@n‘lp or Abown in j fcauve cortth o d‘—'ﬁj
étjc(e equed 10 50 7 - The clock g;clhaj) Yapgoﬁ:g | 6Aels
Qjﬂzr every T seconds - Wemj@«-@ the clock 3 YWL{T

F= VT
Hligh

A : time, T
|

an}zsincl S
Falling |
ciee el
'K— T =

|

L;.ff‘:] Allwibedion of ¢ C lock f;écdmjg‘
(Cormparison kefeeen compinotioned ond secuantiol Civeuits:-

Comb‘.mﬂoml Civewal Seayuenti FeC o [
»4h C@mb;noxorbﬂ Cisceuts , tre ke dn pequentiol civeadn the oulpxit
oudpull vosiobler of any indarl|vanables ef any iflent of tme
Oj He O d@f:,eri,glcfﬂf OnLT or:‘ﬂ"E’! Q= depfrdzriﬂf not on the
present npud vopaaki®s: | presert (rput vosialoes, T pud abg
‘Q)rﬁ The P’nc%ehlt siale-

el

xMermongy unk s ot vequuaes M eMenovy unid s YECLulYEC[to
combinationa) civcuit: gtoe the powt hi&t@ﬂ-j &f the
[hP“I voxiables.

‘*T’m&@ Civcetls Qve jOATﬁ'Y becama]% Secvuerﬁl:iaﬂ Crceatr ave Slysey
”[}scde(o.7 beteaeer tre fpardOlp| tpon Combirationed Civtauks .

dve o p@mﬂoﬁion cletc»a oj chm
s i

E Ecznul fo d@‘f(j"" *Com{ﬁmﬁuﬂb‘? havel "toc]mijn

SR LATCcH : -

The laich hasr twe owpuds @ and @' . ohern the
CivcedL 1 swortched on e lotch moadr enter into Clmd
/Slate - I Q=1 thern Q':0 Ccohich ik colled seT glate jj
@20, ter @=1 cohich # callid same ster [RESET St
Ohetrer e Jofeh i« in SeT stal or ReseT sl i

Wil cantinue 10 yermoin 10 the same atale, O Lgnca as,

an tuefed civewt; gince thee K NO &DO«Ld of enﬁ‘i_u.j
the deaned '“un:[.

NOH lLatch:-
Ao ® ANOR Tt Table
]
e M | A B Y=PiB
; T = oudputr |
Inputs P O o

| \'L '@ 0 1 o)
S v 0 0
o

jicdi- SR lofch uAQmed NOR CJOL/ Lot

Coae 1= 5=1, R=0,

-

output of NOK gjaﬁﬂ n O ie, R=0,

herce the Gnputs Of NOK cloifn.i axe O=Q:= |

e 5=\ R=0 =» Q=1 , @ =0.

Core Qi- =0, E=l,
Output of NOR cdoﬁw
A 1 'n NOR b
L@ = O

;6 0O becol~ oncG Dj- ‘e ;hpu.t

cdole. Then e (Z(T)u,t[DUjt 14 2N

hence the both ﬂnpc,dx of Nor cdcd;, 1 pue 0 Ao the
Ob&pui Q:=-\-

CCVS@ Bi- 6=D’R:O

e know thol @R:= s+& ond R: R+ Q

5? 0+@ and @Q:a:@
®:0Q =0 &

:a— = &

S=R=0,ten dad g do rpt iy
Yeiyv
alotas ijw

Cose Y- O, Rl Hen e olpuls @ and B both ae
Joeed 1w 0. Aetualt. T L en indase sl
Gole wohickh gt ol M@i‘M . " w

‘"—?—Gﬂ— ' 5 R
\ :
IR ® _1_ q r
' O
SLdme,

Truth table

vt ol
NAND LATCH NAND v ble
A B Y= AB
P D o0 t
|
outpuls 0 {
|
| (V]
? i &) O

j‘if" SR Latch we.‘mca- NAND C‘oﬂs

Consealji= S0, Ra0; Tren the ouipul}s Q arna @ both coe
jo vced 1o 1. T s an undetexomircite slote
ohich must be avoided-

core (- G=0, R=|

output of NAND %]‘m’i w1 e, =

hence tre 1opuds Cj' NAND cdat-,?_ ave | .. Q=0.
Cone diiy:- 5-‘-\,: R=0 ;

Output of NAND gafi2 i 1 e &=l

hence the. inputs of A..I'PrND‘ aaﬁi are j_.'v.(’;‘)_—_o.
Care iv,- S= [, R= | | |

we- roew ol - 5.6 and §=- R G

Y= Q-3 Q= R Q
= kB = R-+Q
4 L = 0+4Q
= ® :@5

. S:=p= 1, Then @ onrd Q@ do oot ahcmﬂe
The¥ /S'tﬂr@é

5-R Flip- flop
The loosic flp -qlop s o one bit mermory cell thol
cﬂ‘m@s the jundamen'tal dea. of rnzmomd device. The kxﬁr‘c«

d'ra_cﬂa’o.m and the lblock cb'aca-mm of 5-R qup_ J%F’ coith
clocled qnpu'ﬁ-

5

clhik

jf(] L B'D(".k d’.‘OﬂmM

Jf?:f Lc’?ic @fcﬁmm
be macde W ‘G’/%FDnC[@nﬁd
of clocle pubse bj cwlclif? teoo

to the nput latch. So /Sr.dnchronliol‘_mn 1A

The dlip-flop =
aluring the. ocLLLYance
NAND cdat@s
Lopieved . e, flpbps are dllowed to charge e
states ontud ot porticular \~itart of tirne. The cloc

pulkes are adenerol‘ml bLi a clock pube c&]enmfcﬁtor'
The JE[.:Pfjtop‘.\ axe a,ﬂectid enhv- cotth the. axvival of-

Clock pubse

=~ phen Cliezo —the oudpel of N3 ard N& are 2 weqardlea of
the vatue of 3 and R . Thia s Qiven ax input 1o AL anc
U2 ua rnakes the prewiovs waluf of @ and @ unchan

7 wWhen clk=1 +he ‘mjorm‘ﬁ*o” at § ard R ppuls axe allowed
to seach the 1ofth and change of Alate 0 jhpflo(: takes
plate .

~7 Clk=1, 5:0,1"?:1 ﬂ‘ue" the KESET gt ie., Q:=0, Q =)

= clkst, 8= R=0 tﬂ‘we» the. seT Atole Ve @zl Q=0

w ol ollowed, becawre it ix ot able

= - =, R=1 |
¥ L. B X slate . i concition sacd o

1o detexwine he nf?ﬁl
« Wace Condition”

be o
:]
A Noclhange
O Ao change
0 ReseT
! seT
‘ NoE allows ea:

Teuth table

j{om e haxacteviatic. okt

ey
@ Qner [3 K
® 0 o X
N O O
\ 0 | o
bl

Coccitation table

JK JUp - flop

The davalid condition in SR jl-t‘pj[op,oahen S=R=| is
C[?minoled N I-K j[_l:Pj’lDP' Theve. ia o jeedbac.k J‘l?rorh
the. OLL‘EPUI 10 the inpu.‘bS-

Block d"acim

The T and K ave ceded cortyol inputs, becawie “H-i'ey

delevaine cobat the Hlipflop does cohers o ponitive cloek
Qaxvwes -

7 WhenT:0 , L= then bet N3 ard My eotll Produce
h?c(h oultput and the previous value of @ arnd B Yelaine
SN Y

= when T=0, k=l M3 il CJGI an ouWdput Aoy 4 and op
©f N¢ depends 00 The value of @. e firal epuctput
ix =0, &= e, Reser stal:

< When Jo1,ke0 e output of Nk a4 and N3 depnds
on The value o 7. The j;no& oedped 1A A=) and
R =0 re-, Sel Stal.

= pohen J=)yk=l it n Poaribl. To get (%) -rcase‘t. e

Cfﬂ»pjtop de.pendifn;f oN the, cuvvent slale oJLOuIFL‘t

H Q- 1, R0 then MG pamer 0 o M2 eohich

(\Pmduuzb x| =0 cohich 124 ¥sel Statz . coben
J=hw=1,Q Qhanﬁe,s T the Complement of the Lot

5‘{&[" = . hc \
] lpd o e *
j o rid to be in tthe '[Of]j(cL Stal,.

£ O
K @n
&1 Qn — T 1< QnH‘

© 0, @n Moc[nanae) 5 0
0 ®
0) (
\ .) aet O 1 o . i
| 1 On Conplamunt/ o 1) |
T&Jc]c;Ju ' o:0 |
TYLft‘h Toote \ o o
y @ l
R o
Jvorm chaso-cleyintic Table
J ’ Chavacteviatic talle

Excitation table

B \j[LP -4lop! -

Tre O Jup-flep e medified foven of B R
Jupdlep, s-m Ap-glop s converted to D jup"ffLDP bj
M\d’hﬂ an 0vevley bz'tween 3 and B and only
ere input D ix Taken infteaal of s and K- Se
one. \‘mlDuI) w D ard C.ompu-mél’ft of D

A %'Jiven

d;aﬂram o4 D Alp ~flop eoith clocled put:

D

e L

B‘UC.’! Cll'a_ﬂrq_m

Maic dl‘aﬂmm
toren the cleck 3 lowo both “the NAN D ﬂaﬁu
(N and AlR) oue olisaled and @ vyetairk ty lant
value - ohen clock A hcﬂln both The ac&m axe
P nabled and e impur volve ai © B t¥ana fened
to . outpdd R D Jupflp “ aho colbed " Oata FLep-
g |

o Bn ®nen
0 (o) o XN
0O O
1)
0 \
| 1) 0 [)
LIRS § '
Tewth Tedole C_ho:loc'ta'a‘m'b‘c. “Talolic 2oatitation T
X
D D)
On
o
T
D

Gy <D

T Jlpdlop:-

Y e T 1npuf w h""";j
state ("toggesr) henevem e <
B e Tioput n low, The e

p, tne T Jups Jlep I
‘lnpuji % styobed

oK
Alor holde "the i

pxe,u‘: oua Value -

‘Q’PPUCO&?QW of Flp - Flops:-

* ﬁﬂcﬁuj-h(‘_nj- 'D;vf/;i@n
P&chﬂc_l Alak. Stowge

) &“O& Aol Stoﬂ;acae.

arser of date. -

7P,
hcﬂiﬂt{a‘/’s _

Te imcreéu,@_ e Atovace Ca.chcitL_j, e Lferm& of
nurmbey of bits, e hove to we nNo-of iqu@P/S'
veh o geop of dUp- flops in lermowon as o Tgister

Tre. n-bt xefjixte_v coill coraist of N Nnourn be o

C_ﬁj’ _jb.‘,pj’l@p& and T A copale © e 5@rinCJ. on M
bit coova-

'%ﬁ}a'tam I"“O-'-a 'be, c:,[aM'ij‘Iécl boreal on The camzf
' cohich doto.~ oaxe ecrteved and tolcen ol

jrom O~ “fecﬂia’tev.']}wxe. rno.xT e ’joLLca:.oirmﬁb; —jouu(

Pomtb Le- roeceA:

Medea of Opevation
‘l _ . -

oo] -
Sevial in Seriad .S@'sio.h“'m (:ca’aaw “ Panallet i W
Oul ' out Cegial out (h‘&lﬂﬁnj}
(S1580) - Csipoy (_p150) out

(pipo)

S%j’t lE ea?a‘t@vst—
N ' o
The bmmmnj cala. n o rf@_Cll'.'A'th ac::.n -
within the Ycar:{'i/s"te\r o one Flpjlop o the
pudsicle. it coith applicedion of clock
Puwlaes - “Thoae ‘(cac:diz\tem cohch allow auch dafe.
torferr arxe kncon aA S haft 'R;_c‘!i,x'tem.
Medes of opevalion of < Shuft rIZLci.‘Ata_r
Sexiad Npul Sewed outpul C aenia) Shdt Q‘j’th)
'+ Sesiad nput Sesund owdput C Sewial sShegt left)
" Sexiol tapud foowalled oulpul
© Posalled input Sexial ioutput. .

k]

Otney oY

Serial Inpet Sewial Outpur '(shﬁ' lett Mode)

> kL W Connicler tho olb ~the Jttu[OPA ; nit?aiﬁj. axe. 'n
the. yeat condilion. e, Qs @ - @ - _—
: 1 - o =0.
> Ll w llwlradle the e.rﬁtrj of & ':R”'W [Tt [O;m.?
humbet 11t wwto the Y@LJ}AT@.
Thes Mumber ruaat b2 apdied o O bit -bj_-b;(;

with 1he MSB bit appled Jiwst-

- { e [G‘)’: D3 \qu:Dz T*
— I Rl bl
b | o 0
'1/ 0) 0 0
\[I O ’ D \ _];—,, \k
| L
JJ D % 14_’ ‘ !L’ \
\: \L_’!l | £ ‘L’/ |
-~ i _Eﬁ_ﬂ';_,

Dieclion cl]‘ dote. tvovel &

&hf&fmm j@-; SL\ijf hedt operci}om.

) ’
) L I S
D_J f ' | |
.Dl. < . r r
((|
0y o { L-EE sely | o
| | T
L | [FE%sa!
| [| . b
P s .
Q'L é (' \ \IFF—B Se:Da

| |
Qj»d*”’“: | ‘IHT

Stoedwad s 6000 | 0001

enidd in Sevidd Our Csh;jt ng(lnt Medly)

D?n Y

g .&-md shift wgrt veqier

Bejove application of clock Aic[noﬁ, et @3 @2 @y fo"
000p and we appsy 1SB bL of Tihe narker 10
be enteved t6 DA » Herce Dio = De=l "(Fu_n Lo
“Ahe cloclk - Or ~the _f‘!‘ va'lt chLLmel ecL%{c. of

gtorved seoovcl

appiy
elecle, e FE-3 A Sel ,
eoll e Cl'we_r") _b\i

and “the

-~ T the rac_[‘m“t@r

q)b‘@'?» Q, ®p '—".“ oo

;_; satua oftey Jiuat Jalliry elocls

S &KJ t-Shett veqyia

Apply Tre onl bit 0 Do Mence « Vinz=l, A

asmrsi oa e wed oo &dc’p ot the clock

hots, FF-2 ech and Tlhe stoved word t_,O.t” ng

.j\ff]i* SH'LJUC Yaﬁlatu‘ Ataliy s Second JtCLEﬂUr\lj ik
@‘dgﬁ =f clocl . ;

v%})L\J next bt to o= Moved e, [ve Dip-

- CLPPLJ ithe clode pulae . A 200N Ca the thind
heﬂdt?ve: clocle edge hts. FF-I colll Sets and the
OWPL ¢l get roodifleg o

Din Ga G Q@ Ga'—'-]‘!@

Jp-Eht Yol 4 tag,

Loy the thivy)
jodlk»r\fj c-adsje_ of clock |

3%(&4_([_7 o aa Dr‘n 2. it~ Tt '7'00% hx;_?ﬁive_
E_[ED\LIL @,d9¢ a«{v.‘ﬂﬂ, Te S(ed toord in The ~egpnloe
od he ofven by &y QL @ @, = 1(, '

Din

L .
Dy oy By @ 0 o o

i 3 | S -
o rloclk. jhgh Sl\ﬁ @I—?\‘a'ter Atobus aftis the fourth 4(13?@»‘{32%3

=0, Gg‘: O, QD:D'

0 0 0 5
\l, I — I\ O O O
7 ———5 I M. a4 0
Y L — I \;L'I\ \‘AL 0
¥ h—_— | R ¥) ,\l,

— DOire ction of sl vavel .

x laveform Jor g\ﬁ—jf;]’),cju @J)D\,c_j—u—\

€ FF\Sety
@] : . | =

[| '
R

stoed ot on, |

1060 @0

cg%et‘ﬂfa) (Z!\J (pmo.Ue,l oOuT Cslpo)i-

dn thih data i eriteved ,se‘n‘a[h.r and then Toder

ot i parallel This meam et Jiont the doto 18
loaded bit - bj - bit. Tre ouwtputr axe diraloled O [onﬁ.
A "tcucm(J ptace. A AOON ay e
and an the jLpflops CoMnt

the oulpuly &xe ernabled .

QA the lOCLC“ﬁ CJ-
-LOo.d‘mc:r ir complkte
of theww veopived ~dals

20 that all the lcoded dato. W
ouey all the oulpul Ninea Aimul’co_neouzstcd» . Ak,

NPusber ©f clock QLJC,LM vequived 1 lbad a fjoux

It toxd Ao 4 - Thevejore Hre spa=d 0f O
eance oA g =3" O_j—

p@Taﬁ on

6f SIPO mede il x erman
Sia0 nede -

Jnicaw__ ﬂ[(,u,{t-m:ﬁ@ﬂ oj Sexial 'rnpg,t m&aﬂg_ﬂ oubput
rmede -

- Arater Faratie L Our (pPipo)

i quye Ahoen ~lhe posaltel in povallel ol rede
o} opexdtion. The Y- bit binanJ fopd Be, BuBa , By ix
C_F‘{L-ed to the ddla wptls Do, D1, D1 ard D3 YeApeC-
tmehif o} e Jowr JUp-flops- —As AbON o4 a l'fgoliue
clek edge i opplied. The input birerg bits shalt
ke looded into the flip -flops snmLtha!'\&OM(LJ.%
lcaded bita appeay S‘nmultane_omba» 10 the oupul
side . Hee onuav ore Clocke pulre s erserttial
46 lod ol He bix,
__'_B,_: bt paralle] dats. eﬂﬂpuls —

B3

L

K% bit pudlf, dati gps—

A

PARAUEL IN SERIAL OUT MODE CPIs0)
axe cenrntered in W@ucil

bit

4 Thia mode, te. bits
2lhown 1M jt’cju;re_ = jouf
sexlal oupu YQCJI'/SUEU- oukput of previoys

to the inpur oj— e ek one Orth
_qhen Lhe bfﬂa”j

e-) The civebrt

pm’o-ﬁe L 'mp(,d:

| 1 “the
Otd Be. BIJBZI Ry 7 aP‘d-LQCL ’th'ﬁough
C'!YC.(.L_\LI"'." . "{her@ are. ._tm hﬂocleg
TFeAC podclet ONE

% are k
e cohich TNiA cwcwat canm cocx K -
Pk rode ard 1o roode
] o <-:—-‘ P .
% i 2 8. iopuls o
Ch‘!\ - - e —_—
Figre Poredled in Sevs) ot Shitt Kot
By,
éﬂﬁjt Mecle

ohem the chift/load bre s hgh (1) the ANp

gl 2y 6 become. inactive . Hence, the patedtsd

[oachn? of e dalo ecomes Impoarible . But, 4e
ANLD ?01!-5 \, 3and 5 lecome aclive. Therefore, the
Sh‘lj'tfﬂcl of dato fyem left to wight bit —by ~ bit on
application of clock pulses - Thas, e poxallel i Sernl
sl operoticsn Taley place

load Mods

then the Shift/toad tine: i low (o) , the ARD
onus 2,4 ard € e come QAcltive "nmj' pass Bi,B>
ond B3 Lk <t the coa're/\p@ndin? Alip -flops - On
low P G_che of chock , the loinave) ippuls Bs BBy gs

qet Leaded inte The coyerponeirg - Alip- flops. Treretue
(pmuej Qm@ﬂ? taleer place-

i

%

Cocjh'fe.m e

The clu‘ﬁ,‘taj Civcurt Lued Jov COLE.I"]'D'F‘}% pultes s

Enocwon ax counter.

g i a Sequartial Clvcuit . Cpunley W Yhe coldeat
applicctions of flp -flops. 4t 1 o qrocp of jﬁa‘p-jto'ps
with a clock Aiﬁ nal appled BOJVJC;:.D_L]_» Counters Count
the number of clecle palieg . &t Ccon be laecd Jor
mamuﬁnj fT@CWJ‘iM‘ET oY e pesiod:

Class: f\ cation of Coonlewy

counlevs axe baﬁimﬂ"‘d of jouowinq = hﬂ%r

J, .A:%‘}F“ﬁ ¢ oroua oY dipple Couvribeva -

—

¥ bt,l Nc s oroua Coonle¥Aa-

) AMJ Nehy oNoua ['@Lppt_._ Up Countes
Lo "T,-‘(\C' e CL“T‘L’_JIWJ[,@T A, Abhe etey l'\c_.l[' L:_Q_C‘TC e A Clmc ik
Ckﬂ_ﬂfd) 1o ore J Lip {lop and Tren The oLt pul of
por¥ece éf_:'-,-rv_], Jijp Tﬂ_cu P Conpec Ld 1t the cleck ("T
meat {lip - lop-
f 1]-CJLL\L- -\}Y.“-L.O.-.-\ & o bi‘['/_I:L‘Pd{, LLP Co (_L|-Lﬁ;bk Tie
ne- of fbp- flopr wed 2, TC}CJC,](.L rJ Lp- j{_cp 5

Qo being Wed . Bu, WS CAN e e Tk flip.

Hop .

‘HC"?-'\C.- T % Ccr'rm,c'i',c,d) ,Dt’,wr'zcxr)er’f[(«a-' Jdo JLQCI.LL, | 4

. \ oler L : .
cxynad COLA A CL[D[M:A to te dlock inpuf oj

_'j‘]b*:ﬁk‘f? A and O Sudped i oapplied 1o the <o s

birmy. AlAD e Fe-
]“L‘—P JLOL j L B'

L A hi ; h i .
PP-,L}_- A lwo alle C“thc 10NoUAs - 1D mzl U-F

Cawﬂ'ﬂiu..

= ﬂ nit [CLQ.H ool e jf{;_mf lopa be imn yeret corclitior

o~
=Y

Treefore Bm Qs = 00

7 The ‘Jt’f.\'t' :‘m‘x{“'ﬁlu’t’- g]@éni Clock c:?dcdt‘ IM‘-J[% FE -A,
¥ el 'fG(JC‘J(L as T,=1 - dlence , ®, il ke ecjual
to 1. Alko BQ w connectled o cloclk ipput
oy FF-B- Swce Qp hor changed foor ot
| Lrealed ay e m\l't'l ve Clocle EC.‘L?J(—Z_
b‘fj‘ FE-B8 - Trexe s pe Chance i~ Qp becouae
FF-B ix o hc—:’q\:{tw‘e edge e ceved Fr . flerce

OIJ o the :h\' & clhek pube Tre Lo s DUJ.?LLG

Oine (I—\JB 'Q._-g - O |

e b G .Or‘\C7J s L.ql_l',.l;t{‘. [als

Pl & to‘]cj(‘-'“ ClCJCLiD , e ool @ O
s Qe il become 1 -
The Cotnie O(’JPU-’E’S (as
Q% Glp, =10

Ty C\

7 A1 ke Jouwth r:chﬂLlLrwc] @dfje of ¢ lock

FF-A -togcilLu and R, C,lwanfja': fa’@ﬂ“‘ O -lo
C’QB ol ¥erpaa Acume
The coontey Owpuls qu.
@Qg ®n = |1
= M Ahe fowth 'fLLQL““L ‘—‘iﬂ@ of cloclk

FF-A Jc@ﬂ*ﬂ(@s aind Ry becomes @ ard Rp,

alro toqgles fyorn 10 o

. The Courtey © wl P ullh, o
Qe Ra =00
=R _‘ e s State. nURbey Deciveal
P QBL |a _ egunvalent
MSB) Qa (LSB) St

e ‘ N
‘ 4l aLqu 6 o - .
L 2t (V) 0 I ‘ |

‘ E (H ‘ O s 2.

\Ill -B!d C\l') ‘ ‘ -3 ’3

:JMT” i Qbo Ve la b(f‘ . “lhia C.OUI’{E[_PJ P)CIA 'jo LY
ditinet Akd o oud pud t’mm@.u{ 00, OV, |0 oand
e 9o gerevel, e num hev of Alatss =2, wheve

N s equa to Ahe ronnlbey of AUp- flops .

DO(OF) C@ voley . -
The Covrtews cohich car coonk

Aocoresoxd divection,

tp Z€¥0 oxXe called Jowdn coonters

daeam covrter ot been
opul appliecl dfre_cf[lﬂ
to clock © j- By

.\ 3. bit Onn)ncwomm

ghecon 0 JiGgwe “Te clocl
to fF-A. B, Qa ® connecled

Q. C -
QB to cloc I« oj’ FE-¢ CU"Ci so O

’:J\'icdt" A 3 bit CL%LJnc]rwono% dowon

Couriley

a1 lr‘l;'ttCLMAa‘ all the j('LP j[GP/S » T it
Car\dltiOr_

G?C QB Gg;.-, 2 O OO

S - -
Gon A the jnr)\t- —}'Q,M_Me} ¢ lock pu}.ac axx\wes
- /

r-n toqqles - 50, ©n hecomres 1 and Q, becormes

ijrn 1. Aho, @ Qeta v a clock o £f -8B -
Qg

ﬂ(‘ NCe., FF -) CDi'.l & han{]@. '.,LQ‘, State. - 4]3,&‘6 / -
opof . deria FFe£ oot change

acta clacle 10

s Slate - TheeTore Re. becormer 1 and Op becomea

Abe jHAT clock pULLS(*?} The CJU—tP“J

0. Hent o tey
Ojt coonlen Ove.
R Op @A = 1))

Con@/spon&;nﬁ 10 he gecond Aallerg cloc k

eclqge, FF-A 1ogqls, ®@a becomes O amel Qy

becomes Lo Thua portive CJoinc(T c harge i~ R, cloes

ret altey the glale of FE-B - S0, QB et 1 and
W ro change in th

C\)B Jemowena O Hence , ese
tihe cecord ¢ locle p.‘[ﬂf,

g tode o] FF-C Yence , oftev
e coonler @a_btptﬂg s unde:

@CQBQAi‘\O

(7. ' ' b
o mn’ W0 o1 1100 201 oDt 0ol 000 Rkpeal,

e -
(-- —
fl,')Lj;waw'c‘rflu.& (Cuﬁlc—l S

jj lhe clock pulses aue applied 1o all the flipflops

n o ¢ ounle o ,ﬂ,imultar}czou/slv,ti"eh Bhch a cootley

Ccmed aA SLJI"?C}’TSOI’WCJUA Co[_mte‘f-
2 - Bit Sjnchrsonou«s OP Countex

A- 2- bt E)LJHC.HB'OML}S cCountey hax Alhocorn 1o :J‘CJ‘-

-c] to
The Ja and Ka 'lmput/, of FF-A Ox& comnecke

. he-
legic. 1+ Honee FF-A coonla s o toqqle. j'bp-ﬂDP’T

-3
Jp nd ke inpute ave comnected 10 @, . Herce, FF

EOCJC][E’A 5 Q@ =l and these coon't ke c‘bm.J staIL.C]fﬂhC}e

'§ Qe =0.
Loca{c,)

— @lock — LIl

j‘rﬁ = A Bt ;Unchxor\om Coor\‘t@r.
- ﬂni'tiaﬂ,T Qg @, = 0 0

T AME fint neqobue clock edge ;, oppled -

FF-A tggles and @, wil C,h:mj@ fyom o to 1.
B, At fhe indant of appticaliony of negative

Clock edqe . Qu-0 , hevefow , Og:kg:0. e FF-B
ol et clharnge W Slale - Thaa, Qg ol vermaen 0.
Qg Qa= O\

7 0P the Qe o SeCcord r\(‘qoiﬂfw* e lsek C«(.\g(;}
FF-A togles aqoun ard @, Clonges Arom ! to
0. But, at thin mwlant, Qs oA dence , kg = |
od FF -B teggles. HMeree , @g changes 470 o to

| s
. Bg ®s =10

=3 .
S'"“Mat[fj on The next pleele pulae FF -H tD(JCJ[u
G Jom o1 Gk T o Crorge o

Stolle _fO'y Qg -
O‘B GQA = 1)
7 On dhe pexX dock pulse By chorges {vom
to o as Qp cll abo charge o 1t O

-~ O 9
QB @ﬁb

Cb O Ouipuly K
N

Qg (M9B) QA(LC,»E
(]nit.‘aw) - o-_ T g
ant QL) 0
d (W) | D
7) \
| yh) | 0 0 =

. —_— i
5.no/]’xa;}mtef _,Bw_dnchtomm S«_dnchrcmo% E
COrmpai A0 cCountey Covntes
v CHCLI.J: Comp{e'iitud LD?#C CivCot 14 LWt Incyeane in N .
APl }*‘-"j" Atallesn |, tie LOﬂ{c.
| Civeuelt becormeA
Complicaled-
& Correction output of the Theye » ne Cooreclion
%) patev P¥ecechng FF i between oudtput of
. Comrected to clock prec@dltr\fz] FE and
l‘?j'the oer FF Ak of rext ore.

3| Clock nput |All e FFa awe nol[4ll e Frs yecove
f ¢_locleecl Nmo[tﬁDG’OU’{)v. clocle ;gic:JnoJ] Simnul -p
‘f&l’}e..OcLAl.\L:l .

| (){opaqoiloﬂ P-D= mxlta) bhete [pp = (ta) ;F+C64J3
OGLCMJ N ia NO- 0‘1" FF& af!.'?' ﬂl' M mu_cf"\ Ahofté'l’
g Cd 4 pd per FE | thoan thot of
} on rvchmrjotﬁ/s C ouwritey-
5 Ma\umum j

ﬁlﬂ”‘? loco becatue of -l-fchh e 10 Alhortey

0
o opealien “hs greyi n “‘pzropare&ton d&lcl
\ddCL

.

UNIT-IV Microprocessor-I

Microprocessor - Overview

Microprocessor is a controlling unit of a micro-computer, fabricated on a small chip

capable of performing ALU (Arithmetic Logical Unit) operations and communicating with the
other devices connected to it.

Microprocessor consists of an ALU, register array, and a control unit. ALU performs
arithmetical and logical operations on the data received from the memory or an input device.
Register array consists of registers identified by letters like B, C, D, E, H, L and accumulator.
The control unit controls the flow of data and instructions within the computer.

Block Diagram of a Basic Microcomputer

Input Microprocessor

Output
Device

—p X
(ALU +Register array + Device
Control unit)

Memory

How does a Microprocessor Work?

The microprocessor follows a sequence: Fetch, Decode, and then Execute.

Initially, the instructions are stored in the memory in a sequential order. The
microprocessor fetches those instructions from the memory, then decodes it and executes those
instructions till STOP instruction is reached. Later, it sends the result in binary to the output

port. Between these processes, the register stores the temporarily data and ALU performs the
computing functions.

List of Terms Used in a Microprocessor

A list of some of the frequently used terms in a microprocessor —
e Instruction Set — It is the set of instructions that the microprocessor can understand.

o Bandwidth — It is the number of bits processed in a single instruction.

Clock Speed — It determines the number of operations per second the processor can
perform. It is expressed in megahertz (MHz) or gigahertz (GHz).It is also known as
Clock Rate.

Word Length — It depends upon the width of internal data bus, registers, ALU, etc. An
8-bit microprocessor can process 8-bit data at a time. The word length ranges from 4 bits
to 64 bits depending upon the type of the microcomputer.

Data Types — The microprocessor has multiple data type formats like binary, BCD,
ASCII, signed and unsigned numbers.

Features of a Microprocessor

features of any microprocessor —

Cost-effective — The microprocessor chips are available at low prices and results its low
cost.

Size — The microprocessor is of small size chip, hence is portable.

Low Power Consumption — Microprocessors are manufactured by using metaloxide
semiconductor technology, which has low power consumption.

Versatility — The microprocessors are versatile as we can use the same chip in a number
of applications by configuring the software program.

Reliability — The failure rate of an IC in microprocessors is very low, hence it is reliable.

Microprocessor - Classification

A microprocessor can be classified into three categories —

Microprocessor

RISC CISC Special

Processors Processors Processors

RISC Processor

RISC stands for Reduced Instruction Set Computer. It is designed to reduce the execution
time by simplifying the instruction set of the computer. Using RISC processors, each instruction
requires only one clock cycle to execute results in uniform execution time. This reduces the
efficiency as there are more lines of code, hence more RAM is needed to store the instructions.
The compiler also has to work more to convert high-level language instructions into machine
code.

Some of the RISC processors are —

« Power PC: 601, 604, 615, 620

« DEC Alpha: 210642, 211066, 21068, 21164
e MIPS: TS (R10000) RISC Processor

e PA-RISC: HP 7100LC

Architecture of RISC

RISC microprocessor architecture uses highly-optimized set of instructions. It is used in
portable devices like Apple iPod due to its power efficiency.

Characteristics of RISC

The major characteristics of a RISC processor are as follows —

« It consists of simple instructions.

It supports various data-type formats.

« It utilizes simple addressing modes and fixed length instructions for pipelining.
It supports register to use in any context.

e One cycle execution time.

e “LOAD” and “STORE” instructions are used to access the memory location.

It consists of larger number of registers.

It consists of less number of transistors.

CISC Processor

CISC stands for Complex Instruction Set Computer. It is designed to minimize the number of
instructions per program, ignoring the number of cycles per instruction. The emphasis is on
building complex instructions directly into the hardware.

The compiler has to do very little work to translate a high-level language into assembly level
language/machine code because the length of the code is relatively short, so very little RAM is
required to store the instructions.

Some of the CISC Processors are —

o |IBM 370/168
« VAX 11/780
o Intel 80486

Architecture of CISC

Its architecture is designed to decrease the memory cost because more storage is needed in
larger programs resulting in higher memory cost. To resolve this, the number of instructions per
program can be reduced by embedding the number of operations in a single instruction.

Instruction &

Micro Program Cache
Control
Memory

Main Memory

Characteristics of CISC

« Variety of addressing modes.
e Larger number of instructions.
o Variable length of instruction formats.

o Several cycles may be required to execute one instruction.
e Instruction-decoding logic is complex.

e One instruction is required to support multiple addressing modes.

Special Processors

These are the processors which are designed for some special purposes. Few of the special
processors are briefly discussed —

Coprocessor

A coprocessor is a specially designed microprocessor, which can handle its particular function
many times faster than the ordinary microprocessor.

For example — Math Coprocessor.

Some Intel math-coprocessors are —

e 8087-used with 8086
o 80287-used with 80286
e 80387-used with 80386

Input/Output Processor

It is a specially designed microprocessor having a local memory of its own, which is used to
control 1/0 devices with minimum CPU involvement.

For example —

o DMA (direct Memory Access) controller
o Keyboard/mouse controller

o Graphic display controller

e SCSI port controller

Transputer (Transistor Computer)

A transputer is a specially designed microprocessor with its own local memory and having links
to connect one transputer to another transputer for inter-processor communications. It was first
designed in 1980 by Inmos and is targeted to the utilization of VVLSI technology.

A transputer can be used as a single processor system or can be connected to external links,
which reduces the construction cost and increases the performance.

For example — 16-bit T212, 32-bit T425, the floating point (T800, T805 & T9000) processors.
DSP (Digital Signal Processor)

This processor is specially designed to process the analog signals into a digital form. This is
done by sampling the voltage level at regular time intervals and converting the voltage at that
instant into a digital form. This process is performed by a circuit called an analogue to digital
converter, A to D converter or ADC.

A DSP contains the following components —
e Program Memory — It stores the programs that DSP will use to process data.
o Data Memory — It stores the information to be processed.

e Compute Engine — It performs the mathematical processing, accessing the program
from the program memory and the data from the data memory.

e Input/Output — It connects to the outside world.

Its applications are —

e Sound and music synthesis

e Audio and video compression

e Video signal processing

e 2D and 3d graphics acceleration.

For example — Texas Instrument’s TMS 320 series, e.g., TMS 320C40, TMS320C50.

Microprocessor - 8085 Architecture

085 is pronounced as "eighty-eighty-five™ microprocessor. It is an 8-bit microprocessor
designed by Intel in 1977 using NMOS technology.

It has the following configuration —

e 8-bit data bus

e 16-bit address bus, which can address upto 64KB

e A 16-bit program counter

e A 16-bit stack pointer

e Six 8-bit registers arranged in pairs: BC, DE, HL

e Requires +5V supply to operate at 3.2 MHZ single phase clock
It is used in washing machines, microwave ovens, mobile phones, etc.

8085 Microprocessor — Functional Units

8085 consists of the following functional units —

Accumulator

It is an 8-bit register used to perform arithmetic, logical, /0 & LOAD/STORE operations. It is
connected to internal data bus & ALU.

Arithmetic and logic unit

As the name suggests, it performs arithmetic and logical operations like Addition, Subtraction,
AND, OR, etc. on 8-bit data.

General purpose register

There are 6 general purpose registers in 8085 processor, i.e. B, C, D, E, H & L. Each register
can hold 8-bit data.

These registers can work in pair to hold 16-bit data and their pairing combination is like B-C,
D-E & H-L.

Program counter

It is a 16-bit register used to store the memory address location of the next instruction to be
executed. Microprocessor increments the program whenever an instruction is being executed, so
that the program counter points to the memory address of the next instruction that is going to be
executed.

Stack pointer

It is also a 16-bit register works like stack, which is always incremented/decremented by 2
during push & pop operations.

Temporary register
It is an 8-bit register, which holds the temporary data of arithmetic and logical operations.
Flag register

It is an 8-bit register having five 1-bit flip-flops, which holds either 0 or 1 depending upon the
result stored in the accumulator.

These are the set of 5 flip-flops —

e Sign(S)

e Zero (2)

e Auxiliary Carry (AC)
e Parity (P)

e Carry (C)

Its bit position is shown in the following table —

D7 D6 D5 D4 D3 D2 D1

Instruction register and decoder

It is an 8-bit register. When an instruction is fetched from memory then it is stored in the

Instruction register. Instruction decoder decodes the information present in the Instruction
register.

Timing and control unit

It provides timing and control signal to the microprocessor to perform operations. Following are
the timing and control signals, which control external and internal circuits —

e Control Signals: READY, RD’, WR’, ALE
e Status Signals: SO, S1, [O/M’
« DMA Signals: HOLD, HLDA
e RESET Signals: RESET IN, RESET OUT

Interrupt control

As the name suggests it controls the interrupts during a process. When a microprocessor is
executing a main program and whenever an interrupt occurs, the microprocessor shifts the

control from the main program to process the incoming request. After the request is completed,
the control goes back to the main program.

There are 5 interrupt signals in 8085 microprocessor: INTR, RST 7.5, RST 6.5, RST 5.5,
TRAP,

Serial Input/output control

It controls the serial data communication by using these two instructions: SID (Serial input
data) and SOD (Serial output data).

Address buffer and address-data buffer

The content stored in the stack pointer and program counter is loaded into the address buffer
and address-data buffer to communicate with the CPU. The memory and 1/O chips are

connected to these buses; the CPU can exchange the desired data with the memory and 1/O
chips.

Address bus and data bus

Data bus carries the data to be stored. It is bidirectional, whereas address bus carries the location

to where it should be stored and it is unidirectional. It is used to transfer the data & Address 1/O
devices.

8085 Architecture

We have tried to depict the architecture of 8085 with this following image —

INTA RST6 S TRAP

nmInsrss !asvvsl SID SOD
L Iaterrupt Coatrol J Senal VO Conmrod
-
B-8it Interanl Dats Bas
{ O ! ! {\ U |
Accumulator Temp. Reg Instruction kil
* (8) L) Regier (%) 1 I
w %) z [])
Temp. Reg. Temp. Reg.
Flag 15 | | B & C &
Flip-Flogs Reg Reg
: = D 1§ E (%
Wostrection £ Reg Reg
thmet Decoder &
Ay IS and - H %) L %) Register
‘G’:: - ‘T Machine o Reg Reg. [Amay
Cycle
mu..;m - Encodiag Stack Poimer '
2 Program Counter
s o ™
Z Address Laech 16
Pones Soppbesf GND L)
Timung and Controd
X, —o-‘
CLK Reset (8) (8)
Nycod SOEN il S p— S | Assress Butier B | Dswadaress Butter B
]
' I REEER) 1 . }
CLK OUT RD WR ALE S, S, 1O'M HLDA RESET OUT o
READY HOLD RESET IN As-Ay AD,-AD,

Address Bus AddreswData Bus

Microprocessor - 8085 Pin Configuration

The following image depicts the pin diagram of 8085 Microprocessor —

X, —{]1 Vcc
X —={12 HOLD
Reset out --—{|3 HLDA
SOD -m—{|4 CLK (out)
SID —»={|5 Reset in
Trap =-—{|6 Ready
RST 7.5 —»={17 10o/M
RST 6.5 --—{]8 S,
RST 5.5 —»{]9 Vpp

-
0

INTR —»{]
INTA -—-—{]11
ADg —-m»{]12
AD, —--»{]13
AD, --m»{]14
AD; -m»{]15
AD, —--»{]16
ADgs; --»{117
ADg -»{]18
AD; -m»{]19
Vss —{120

3
3
3
3
2
2
2
2
2
2
2
2
2

The pins of a 8085 microprocessor can be classified into seven groups —

Address bus

A15-A8, it carries the most significant 8-bits of memory/IO address.

Data bus
AD7-ADQO, it carries the least significant 8-bit address and data bus.

Control and status signals

These signals are used to identify the nature of operation. There are 3 control signal and 3 status
signals.

Three control signals are RD, WR & ALE.

o RD — This signal indicates that the selected 10 or memory device is to be read and is
ready for accepting data available on the data bus.

e WR — This signal indicates that the data on the data bus is to be written into a selected
memory or 10 location.

e ALE — It is a positive going pulse generated when a new operation is started by the
microprocessor. When the pulse goes high, it indicates address. When the pulse goes
down it indicates data.

Three status signals are 10/M, SO & S1.

I0/M

This signal is used to differentiate between 10 and Memory operations, i.e. when it is high
indicates 10 operation and when it is low then it indicates memory operation.

S1 & S0
These signals are used to identify the type of current operation.
Power supply

There are 2 power supply signals — VCC & VSS. VCC indicates +5v power supply and VSS
indicates ground signal.

Clock signals

There are 3 clock signals, i.e. X1, X2, CLK OUT.

e X1, X2 - A crystal (RC, LC N/W) is connected at these two pins and is used to set
frequency of the internal clock generator. This frequency is internally divided by 2.

e CLK OUT — This signal is used as the system clock for devices connected with the
microprocessor.

Interrupts & externally initiated signals

Interrupts are the signals generated by external devices to request the microprocessor to perform
a task. There are 5 interrupt signals, i.e. TRAP, RST 7.5, RST 6.5, RST 5.5, and INTR. We will
discuss interrupts in detail in interrupts section.

e INTA — It is an interrupt acknowledgment signal.

e RESET IN — This signal is used to reset the microprocessor by setting the program
counter to zero.

e RESET OUT — This signal is used to reset all the connected devices when the
microprocessor is reset.

e READY — This signal indicates that the device is ready to send or receive data. If
READY is low, then the CPU has to wait for READY to go high.

e« HOLD — This signal indicates that another master is requesting the use of the address
and data buses.

e HLDA (HOLD Acknowledge) — It indicates that the CPU has received the HOLD
request and it will relinquish the bus in the next clock cycle. HLDA is set to low after
the HOLD signal is removed.

Serial 1/0 signals

There are 2 serial signals, i.e. SID and SOD and these signals are used for serial
communication.

e SOD (Serial output data line) — The output SOD is set/reset as specified by the SIM
instruction.

SID (Serial input data line) — The data on this line is loaded into accumulator whenever a
RIM instruction is executed.

Microprocessor - 8086 Overview

8086 Microprocessor is an enhanced version of 8085Microprocessor that was designed by Intel
in 1976. It is a 16-bit Microprocessor having 20 address lines and16 data lines that provides up
to 1MB storage. It consists of powerful instruction set, which provides operations like
multiplication and division easily.

It supports two modes of operation, i.e. Maximum mode and Minimum mode. Maximum mode
is suitable for system having multiple processors and Minimum mode is suitable for system
having a single processor.

Features of 8086

The most prominent features of a 8086 microprocessor are as follows —

It has an instruction queue, which is capable of storing six instruction bytes from the
memory resulting in faster processing.

It was the first 16-bit processor having 16-bit ALU, 16-bit registers, internal data bus,
and 16-bit external data bus resulting in faster processing.

It is available in 3 versions based on the frequency of operation —
o 8086 — SMHz
o 8086-2 — 8MHz
o (c)8086-1 — 10 MHz

It uses two stages of pipelining, i.e. Fetch Stage and Execute Stage, which improves
performance.

Fetch stage can prefetch up to 6 bytes of instructions and stores them in the queue.
Execute stage executes these instructions.
It has 256 vectored interrupts.

It consists of 29,000 transistors.

Comparison between 8085 & 8086 Microprocessor

Size — 8085 is 8-bit microprocessor, whereas 8086 is 16-bit microprocessor.
Address Bus — 8085 has 16-bit address bus while 8086 has 20-bit address bus.

Memory — 8085 can access up to 64Kb, whereas 8086 can access up to 1 Mb of
memory.

Instruction — 8085 doesn’t have an instruction queue, whereas 8086 has an instruction
queue.

e Pipelining — 8085 doesn’t support a pipelined architecture while 8086 supports a
pipelined architecture.

e 1/O — 8085 can address 28 = 256 1/O's, whereas 8086 can access 216 = 65,536 1/O's.
e Cost — The cost of 8085 is low whereas that of 8086 is high.

Architecture of 8086

The following diagram depicts the architecture of a 8086 Microprocessor —

MEMORY
INTERFACE

:— ——— 3
| C-BUS :
I |
|) |
| S INSTRUCTION |
I STREAM |
: 4 BYTE |
I 3 QUEUE |
I 2 |
I : L '
1 |
! e fomm e —
| | :
| | :
| I :
: : CONTROL I
Voo ; ! SYSTEM |
. e e e A A :
I y AR
| EU § A-BUS :
: 1
i |
| !
1 AH AL !
: B8H BL |
| cH cL ARITHMETIC |
| OM DL LOGIC UNIT |
| sP T :
| apP | L A l
} S| I) 1

o L 1
I OPERANDS i
} FLAGS] J |

Microprocessor - 8086 Functional Units

8086 Microprocessor is divided into two functional units, i.e., EU (Execution Unit)
and BIU (Bus Interface Unit).

EU (Execution Unit)

Execution unit gives instructions to BIU stating from where to fetch the data and then decode
and execute those instructions. Its function is to control operations on data using the instruction

decoder & ALU. EU has no direct connection with system buses as shown in the above figure,
it performs operations over data through BIU.

Let us now discuss the functional parts of 8086 microprocessors.

ALU
It handles all arithmetic and logical operations, like +, —, %, /, OR, AND, NOT operations.

Flag Register

It is a 16-bit register that behaves like a flip-flop, i.e. it changes its status according to the result
stored in the accumulator. It has 9 flags and they are divided into 2 groups — Conditional Flags
and Control Flags.

Conditional Flags

It represents the result of the last arithmetic or logical instruction executed. Following is the list
of conditional flags —

o Carry flag — This flag indicates an overflow condition for arithmetic operations.

Auxiliary flag — When an operation is performed at ALU, it results in a carry/barrow
from lower nibble (i.e. DO — D3) to upper nibble (i.e. D4 — D7), then this flag is set, i.e.
carry given by D3 bit to D4 is AF flag. The processor uses this flag to perform binary to
BCD conversion.

e Parity flag — This flag is used to indicate the parity of the result, i.e. when the lower
order 8-bits of the result contains even number of 1°s, then the Parity Flag is set. For odd
number of 1’s, the Parity Flag is reset.

e Zero flag — This flag is set to 1 when the result of arithmetic or logical operation is zero
else it is set to O.

e Sign flag — This flag holds the sign of the result, i.e. when the result of the operation is
negative, then the sign flag is set to 1 else set to 0.

o Overflow flag — This flag represents the result when the system capacity is exceeded.

Control Flags

Control flags controls the operations of the execution unit. Following is the list of control flags

e Trap flag— It is used for single step control and allows the user to execute one
instruction at a time for debugging. If it is set, then the program can be run in a single
step mode.

e Interrupt flag — It is an interrupt enable/disable flag, i.e. used to allow/prohibit the
interruption of a program. It is set to 1 for interrupt enabled condition and set to O for
interrupt disabled condition.

o Direction flag — It is used in string operation. As the name suggests when it is set then
string bytes are accessed from the higher memory address to the lower memory address
and vice-a-versa.

General purpose register

There are 8 general purpose registers, i.e., AH, AL, BH, BL, CH, CL, DH, and DL. These
registers can be used individually to store 8-bit data and can be used in pairs to store 16bit data.
The valid register pairs are AH and AL, BH and BL, CH and CL, and DH and DL. It is referred
to the AX, BX, CX, and DX respectively.

e AX register — It is also known as accumulator register. It is used to store operands for
arithmetic operations.

o BX register — It is used as a base register. It is used to store the starting base address of
the memory area within the data segment.

e CX register — It is referred to as counter. It is used in loop instruction to store the loop
counter.

o DX register — This register is used to hold I/O port address for I/O instruction.

Stack pointer register

It is a 16-bit register, which holds the address from the start of the segment to the memory
location, where a word was most recently stored on the stack.

BIU (Bus Interface Unit)

BIU takes care of all data and addresses transfers on the buses for the EU like sending
addresses, fetching instructions from the memory, reading data from the ports and the memory
as well as writing data to the ports and the memory. EU has no direction connection with
System Buses so this is possible with the BIU. EU and BIU are connected with the Internal Bus.

It has the following functional parts —

e Instruction queue — BIU contains the instruction queue. BIU gets upto 6 bytes of next
instructions and stores them in the instruction queue. When EU executes instructions
and is ready for its next instruction, then it simply reads the instruction from this
instruction queue resulting in increased execution speed.

o Fetching the next instruction while the current instruction executes is called pipelining.

e Segment register — BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the
addresses of instructions and data in memory, which are used by the processor to access
memory locations. It also contains 1 pointer register IP, which holds the address of the
next instruction to executed by the EU.

o CS — It stands for Code Segment. It is used for addressing a memory location in
the code segment of the memory, where the executable program is stored.

o DS — It stands for Data Segment. It consists of data used by the program andis
accessed in the data segment by an offset address or the content of other register
that holds the offset address.

o SS — It stands for Stack Segment. It handles memory to store data and addresses
during execution.

o ES — It stands for Extra Segment. ES is additional data segment, which is used by
the string to hold the extra destination data.

e Instruction pointer — It is a 16-bit register used to hold the address of the next
instruction to be executed.

Register organization of 8086

General 16-bit registers
The registers AX, BX, CX, and DX are the general 16-bit registers.

AX Register: Accumulator register consists of two 8-bit registers AL and AH, which
can be combined together and used as a 16- bit register AX. AL in this case contains the
low-order byte of the word, and AH contains the high-order byte. Accumulator can be
used for I/O operations, rotate and string manipulation.

BX Register: This register is mainly used as a base register. It holds the starting base
location of a memory region within a data segment. It is used as offset storage for
forming physical address in case of certain addressing mode.

CX Register: It is used as default counter or count register in case of string and loop
instructions.

DX Register: Data register can be used as a port number in 1/O operations and implicit
operand or destination in case of few instructions. In integer 32-bit multiply and divide
instruction the DX register contains high-order word of the initial or resulting number.

Segment registers:

To complete 1Mbyte memory is divided into 16 logical segments. The complete
1Mbyte memory segmentation is as shown in fig 1.5. Each segment contains 64Kbyte of
memory. There are four segment registers.

Code segment (CS) is a 16-bit register containing address of 64 KB segment with
processor instructions. The processor uses CS segment for all accesses to instructions
referenced by instruction pointer (IP) register. CS register cannot be changed directly.
The CS register is automatically updated during far jump, far call and far return
instructions. It is used for addressing a memory location in the code segment of the
memory, where the executable program is stored.

Stack segment (SS) is a 16-bit register containing address of 64KB segment with
program stack. By default, the processor assumes that all data referenced by the stack
pointer (SP) and base pointer (BP) registers is located in the stack segment. SS register
can be changed directly using POP instruction. It is used for addressing stack segment of
memory. The stack segment is that segment of memory, which is used to store stack data.

Data segment (DS) is a 16-bit register containing address of 64KB segment with
program data. By default, the processor assumes that all data referenced by general
registers (AX, BX, CX, DX) and index register (Sl, DI) is located in the data segment.
DS register can be changed directly using POP and LDS instructions. It points to the data
segment memory where the data is resided.

Extra segment (ES) is a 16-bit register containing address of 64KB segment, usually

with program data. By default, the processor assumes that the DI register references the ES
segment in string manipulation instructions. ES register can be changed directly using POP and
LES instructions. It also refers to segment which essentially is another data segment of the
memory. It also contains data.

Pointers and index registers.

The pointers contain within the particular segments. The pointers IP, BP, SP
usually contain offsets within the code, data and stack segments respectively
Stack Pointer (SP) is a 16-bit register pointing to program stack in stack segment.

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP register is
usually used for based, based indexed or register indirect addressing.

Source Index (SI) is a 16-bit register. Sl is used for indexed, based indexed and register
indirect addressing, as well as a source data addresses in string manipulation instructions.

Destination Index (DI) is a 16-bit register. DI is used for indexed, based indexed and
register indirect addressing, as well as a destination data address in string manipulation
instructions.

Conditional Flags

Conditional flags are as follows:

Carry Flag (CY): This flag indicates an overflow condition for unsigned integer
arithmetic. It is also used in multiple-precision arithmetic.

Aucxiliary Flag (AC): If an operation performed in ALU generates a carry/barrow from
lower nibble (i.e. DO — D3) to upper nibble (i.e. D4 — D7), the AC flag is set i.e. carry given
by D3 bit to D4 is AC flag. This is not a general-purpose flag, it is used internally by the
Processor to perform Binary to BCD conversion.

Parity Flag (PF): This flag is used to indicate the parity of result. If lower order 8-bits of
the result contains even number of 1’s, the Parity Flag is set and for odd number of 1°s,
the Parity flag is reset.

Zero Flag (ZF): It is set; if the result of arithmetic or logical operation is zero else it is
reset.

Sign Flag (SF): In sign magnitude format the sign of number is indicated by MSB bit. If
the result of operation is negative, sign flag is set.

Control Flags
Control flags are set or reset deliberately to control the operations of the execution unit.

Control flags are as follows:

Trap Flag (TF): It is used for single step control. It allows user to execute one
instruction of a program at a time for debugging. When trap flag is set, program can be
run in single step mode.

Interrupt Flag (IF): It is an interrupt enable/disable flag. If it is set, the maskable
interrupt of 8086 is enabled and if it is reset, the interrupt is disabled. It can be set by
executing instruction sit and can be cleared by executing CLI instruction.

Direction Flag (DF): It is used in string operation. If it is set, string bytes are accessed
from higher memory address to lower memory address. When it is reset, the string bytes are
accessed from lower memory address to higher memory address.

Flag Register in 8086 Microprocessor

Flag Register is a 16-bit register, but there are only 9 flags available in the
8086 microprocessor. The rest 7 bits are hence left idle.

| | | | |OoF |DF |[IF |TF [SF [zF | AF | PF | | cF |
DI5 D14 D13 D12 D11 D10 D9 D& D7 D6 D5 |D4 D3I D2 D1 DO

There are two categories of flag register:

1. Condition flags
2. Control flags

1) Condition flags

The conditional flags are set or reset after any arithmetic or logical operation
is performed on an 8 bit or 16-bit number. This category consists of the
following 6 flags:

Vi.

Carry Flag (CF): The carry flag will be set only if a carry is generated
from the MSB of the result after doing any operation in 8086
Microprocessor.
Parity Flag (PF): Parity is related to the number of 1's contained in the
binary data. There exist two types of parity:
o Even Parity: When the number of 1's in the binary data are even.
o Odd Parity: When the number of 1's in the binary data are odd.

For the flag, the PF is set if there exists an even parity in data after the
execution of the instruction. Else the flag is reset.

Auxiliary-Carry Flag (AF): This flag is set if there is a generation of
carrying from a nibble, i.e. 4 bits of data.

Zero Flag (ZF): If the result after performing the required operation
(Arithmetic or Logical) on the instructions is zero, in that case, the zero
flags are set to 1. Else, it remains reset.

Sign Flag (SF): If the result after performing any arithmetic or logic
operation in the given instruction is negative, then the sign flag is set to
1. Else, for a positive result, the sign flag remains reset.

Overflow Flag (OF): This Flag will be set if the register gets overflowed
with data after any arithmetic or logic operation. This happens in cases
when the carry is getting in in MSB, but there is no space in the register
to store the carried out bit.

2) Control flags

The control flags are used to navigate the microprocessor for certain
operations. There are 3 types of control flags:

i. Trap Flag (TF): This flag is used of we need single-step debugging in
our code. If the TF is set, then the execution will be done step by step.
Otherwise, the free-running operation will be done.

ii. Interrupt Flag (IF): This flag is used to enable the Interrupt. The
microprocessor is capable of handling interrupts only if this flag is in the
set mode. Otherwise, any interrupt raised while the execution of the
instructions will not be handled by the microprocessor.

iii. Direction Flag (DF): This flag is used for string operations. If this flag is
set, the string will be read from higher-order bits to lower order bits and
vice versa.

Microprocessor - 8086 Addressing Modes

The different ways in which a source operand is denoted in an instruction is known
as addressing modes. There are 8 different addressing modes in 8086 programming —

Immediate addressing mode

The addressing mode in which the data operand is a part of the instruction itself is known as
immediate addressing mode.

Example

MOV CX, 4929 H,
ADD AX, 2387 H,
MOV AL, FFH

Register addressing mode
It means that the register is the source of an operand for an instruction.

Example

MOV CX, AX ; copies the contents of the 16-bit AX register into
; the 16-bit CX register),
ADD BX, AX

Direct addressing mode

The addressing mode in which the effective address of the memory location is written directly
in the instruction.

Example

MOV AX, [1592H],
MOV AL, [0300H]

Register indirect addressing mode

This addressing mode allows data to be addressed at any memory location through an offset
address held in any of the following registers: BP, BX, DI & SI.

Example

MOV AX, [BX] ; Suppose the register BX contains 4895H, then the contents
; 4895H are moved to AX

ADD CX, {BX}

Based addressing mode

In this addressing mode, the offset address of the operand is given by the sum of contents of the
BX/BP registers and 8-bit/16-bit displacement.

Example
MOV DX, [BX+04], ADD CL, [BX+08]

Indexed addressing mode

In this addressing mode, the operands offset address is found by adding the contents of SI or DI
register and 8-bit/16-bit displacements.

Example

MOV BX, [SI+16],
ADD AL, [DI+16]

Based-index addressing mode

In this addressing mode, the offset address of the operand is computed by summing the base
register to the contents of an Index register.

Example

ADD CX, [AX+SI],
MOV AX, [AX+DI]

Based indexed with displacement mode

In this addressing mode, the operands offset is computed by adding the base register contents.
An Index registers contents and 8 or 16-bit displacement.

Example
MOV AX, [BX+DI+08],
ADD CX, [BX+S1+16]

Microprocessor - 8086 Pin Configuration

8086 was the first 16-bit microprocessor available in 40-pin DIP (Dual Inline Package) chip.
Let us now discuss in detail the pin configuration of a 8086 Microprocessor.

8086 Pin Diagram

Here is the pin diagram of 8086 microprocessor —

= s =
GNO (1 1 4 [vee

e} -
Ao..jz 3) ADy
AD,; (13 2 [AvS,
AD.,L*_J{c 87 [Ap'S,
ADy (15 3% [AwSs
Ao,.L;’;o 35 | AwSs
AD, (17 34 | BHES,
AD, L’j’a 33 T MNAX
A0, (9 2 7] AD
AD, [10 8ces 3 7] RQGT, (MOLD)
AD; 10 % |] ROGT, (HLDA)
A0, [12 20] (0K (W)
ADy (13 288 M0)
AD, (1% (] s, (OTH)
A0, 118 27§ (OEN)
AD, [16 25 f”_’. QS (ALE)
N v 24 [©s, (INTA)
INTR [18 23 |) Tesv
ok [19 22 |) READY
ono (1 20 zn;_j RESET

Let us now discuss the signals in detail —

Power supply and frequency signals

It uses 5V DC supply at Vcc pin 40, and uses ground at Vss pin 1 and 20 for its operation.
Clock signal

Clock signal is provided through Pin-19. It provides timing to the processor for operations. Its
frequency is different for different versions, i.e. 5MHz, 8MHz and 10MHz.

Address/data bus

ADO-AD15. These are 16 address/data bus. ADO-AD7 carries low order byte data and
AD8AD15 carries higher order byte data. During the first clock cycle, it carries 16-bit address
and after that it carries 16-bit data.

Address/status bus

Al16-A19/S3-S6. These are the 4 address/status buses. During the first clock cycle, it carries 4-
bit address and later it carries status signals.

S7/BHE

BHE stands for Bus High Enable. It is available at pin 34 and used to indicate the transfer of
data using data bus D8-D15. This signal is low during the first clock cycle, thereafter it is
active.

Read(\overline{RD})
It is available at pin 32 and is used to read signal for Read operation.
Ready

It is available at pin 22. It is an acknowledgement signal from 1/O devices that data is
transferred. It is an active high signal. When it is high, it indicates that the device is ready to
transfer data. When it is low, it indicates wait state.

RESET

It is available at pin 21 and is used to restart the execution. It causes the processor to
immediately terminate its present activity. This signal is active high for the first 4 clock cycles
to RESET the microprocessor.

INTR

It is available at pin 18. It is an interrupt request signal, which is sampled during the last clock
cycle of each instruction to determine if the processor considered this as an interrupt or not.

NMI

It stands for non-maskable interrupt and is available at pin 17. It is an edge triggered input,
which causes an interrupt request to the microprocessor.

\overline{TEST}

This signal is like wait state and is available at pin 23. When this signal is high, then the
processor has to wait for IDLE state, else the execution continues.

MN/\overline{MX}

It stands for Minimum/Maximum and is available at pin 33. It indicates what mode the
processor is to operate in; when it is high, it works in the minimum mode and vice-aversa.

INTA

It is an interrupt acknowledgement signal and id available at pin 24. When the microprocessor
receives this signal, it acknowledges the interrupt.

ALE

It stands for address enable latch and is available at pin 25. A positive pulse is generated each
time the processor begins any operation. This signal indicates the availability of a valid address
on the address/data lines.

DEN

It stands for Data Enable and is available at pin 26. It is used to enable Transreceiver 8286. The
transreceiver is a device used to separate data from the address/data bus.

DT/R

It stands for Data Transmit/Receive signal and is available at pin 27. It decides the direction of
data flow through the transreceiver. When it is high, data is transmitted out and vice-a-versa.

M/10

This signal is used to distinguish between memory and 1/0O operations. When it is high, it
indicates 1/0 operation and when it is low indicates the memory operation. It is available at pin
28.

WR

It stands for write signal and is available at pin 29. It is used to write the data into the memory
or the output device depending on the status of M/IO signal.

HLDA

It stands for Hold Acknowledgement signal and is available at pin 30. This signal acknowledges
the HOLD signal.

HOLD

This signal indicates to the processor that external devices are requesting to access the
address/data buses. It is available at pin 31.

QS: and QSo

These are queue status signals and are available at pin 24 and 25. These signals provide the
status of instruction queue. Their conditions are shown in the following table —

QSo QS1 Status

0 0 No operation

0 1 First byte of opcode from the queue

1 0 Empty the queue

1 1 Subsequent byte from the queue

So, S1, &2

These are the status signals that provide the status of operation, which is used by the Bus
Controller 8288 to generate memory & 1/O control signals. These are available at pin 26, 27,
and 28. Following is the table showing their status —

S2 S1 So Status
0 0 0 Interrupt acknowledgement
0 0 1 I/0O Read
0 1 0 I/0 Write
0 1 1 Halt
1 0 0 Opcode fetch
1 0 1 Memory read
1 1 0 Memory write
1 1 1 Passive
LOCK

When this signal is active, it indicates to the other processors not to ask the CPU to leave the
system bus. It is activated using the LOCK prefix on any instruction and is available at pin 29.

RQ/GT: and RQ/GTo

These are the Request/Grant signals used by the other processors requesting the CPU to release
the system bus. When the signal is received by CPU, then it sends acknowledgment.
RQ/GTyo has a higher priority than RQ/GT.

Microprocessor - 8086 Interrupts

Interrupt is the method of creating a temporary halt during program execution and allows
peripheral devices to access the microprocessor. The microprocessor responds to that interrupt
with an ISR (Interrupt Service Routine), which is a short program to instruct the microprocessor
on how to handle the interrupt.

The following image shows the types of interrupts we have in a 8086 microprocessor —

Interrupts

Hardware Software
Interrupt Interrupt

Non-Maskable

Maskable Interrupt
Interrupt

Hardware Interrupts

Hardware interrupt is caused by any peripheral device by sending a signal through a specified
pin to the microprocessor.

The 8086 has two hardware interrupt pins, i.e. NMI and INTR. NMI is a non-maskable interrupt
and INTR is a maskable interrupt having lower priority. One more interrupt pin associated is
INTA called interrupt acknowledge.

NMI

It is a single non-maskable interrupt pin (NMI) having higher priority than the maskable
interrupt request pin (INTR)and it is of type 2 interrupt.

When this interrupt is activated, these actions take place —
e Completes the current instruction that is in progress.

e Pushes the Flag register values on to the stack.

e Pushes the CS (code segment) value and IP (instruction pointer) value of the return
address on to the stack.

o |P is loaded from the contents of the word location 00008H.
e CS is loaded from the contents of the next word location 0000AH.
e Interrupt flag and trap flag are reset to 0.

INTR

The INTR is a maskable interrupt because the microprocessor will be interrupted only if

interrupts are enabled using set interrupt flag instruction. It should not be enabled using clear
interrupt Flag instruction.

The INTR interrupt is activated by an 1/0 port. If the interrupt is enabled and NMI is disabled,
then the microprocessor first completes the current execution and sends ‘0’ on INTA pin twice.
The first ‘0’ means INTA informs the external device to get ready and during the second ‘0’ the
microprocessor receives the 8 bit, say X, from the programmable interrupt controller.

These actions are taken by the microprocessor —
o First completes the current instruction.
o Activates INTA output and receives the interrupt type, say X.

o Flag register value, CS value of the return address and IP value of the return address are
pushed on to the stack.

o |IP value is loaded from the contents of word location X x 4
e CS is loaded from the contents of the next word location.
« Interrupt flag and trap flag is reset to 0

Software Interrupts

Some instructions are inserted at the desired position into the program to create interrupts.

These interrupt instructions can be used to test the working of various interrupt handlers. It
includes —

INT- Interrupt instruction with type number

It is 2-byte instruction. First byte provides the op-code and the second byte provides the
interrupt type number. There are 256 interrupt types under this group.

Its execution includes the following steps —
o Flag register value is pushed on to the stack.

e CS value of the return address and IP value of the return address are pushed on to the
stack.

e |P is loaded from the contents of the word location ‘type number’ x 4

¢ CSis loaded from the contents of the next word location.

o Interrupt Flag and Trap Flag are reset to O

The starting address for typeO interrupt is 000000H, for typel interrupt is 00004H similarly for
type2 is 00008H and so on. The first five pointers are dedicated interrupt pointers. i.e. —

o TYPE 0 interrupt represents division by zero situation.

e TYPE 1 interrupt represents single-step execution during the debugging of a program.
o TYPE 2 interrupt represents non-maskable NMI interrupt.

o TYPE 3 interrupt represents break-point interrupt.

e TYPE 4 interrupt represents overflow interrupt.

The interrupts from Type 5 to Type 31 are reserved for other advanced microprocessors, and
interrupts from 32 to Type 255 are available for hardware and software interrupts.

INT 3-Break Point Interrupt Instruction

It is a 1-byte instruction having op-code is CCH. These instructions are inserted into the
program so that when the processor reaches there, then it stops the normal execution of program
and follows the break-point procedure.

Its execution includes the following steps —
« Flag register value is pushed on to the stack.

e CS value of the return address and IP value of the return address are pushed on to the
stack.

e |P is loaded from the contents of the word location 3x4 = 0000CH
e CS is loaded from the contents of the next word location.

o Interrupt Flag and Trap Flag are reset to 0

INTO - Interrupt on overflow instruction

It is a 1-byte instruction and their mnemonic INTO. The op-code for this instruction is CEH. As
the name suggests it is a conditional interrupt instruction, i.e. it is active only when the overflow
flag is set to 1 and branches to the interrupt handler whose interrupt type number is 4. If the
overflow flag is reset then, the execution continues to the next instruction.

Its execution includes the following steps —
o Flag register values are pushed on to the stack.

e CS value of the return address and IP value of the return address are pushed on to the
stack.

e |P is loaded from the contents of word location 4x4 = 00010H
e CS is loaded from the contents of the next word location.

o Interrupt flag and Trap flag are reset to 0

MINIMUM MODE OPERATIONS OF 8086:

o 8086 works in Minimum Mode, when MN/ MX = 1.

e Minimum Mode, 8086 is the only processor in the system. The Minimum Mode circuit of
8086 is as shown below:

e Clock is provided by the 8284 clock generator, it provides CLK, RESET and READY
input to 8086.

e Address from the address bus is latched into 8282 8-bit latch. Three such latches are
needed, as address bus is 20-bit. The ALE of 8086 is connected to STB of the latch. The
ALE for this latch is given by 8086 itself.

e The data bus is driven through 8286 8-bit trans-receiver. Two such trans-receivers are
needed, as the data bus is 16-bit. The trans-receivers are enabled through the DEN signal,
while the direction of data is controlled by the DT/ R signal. DEN is connected to OE
and DT/ R is connected to T. Both DEN and DT/ R are given by 8086 itself.

DEN DT/ R Action
1 X
0 0
0 1

Transreceiver is disabled
Receive data
Transmit data

o Control signals for all operations are generated by decoding M/ 10, RD and WR

signals.
M/ 10 RD WR Action
1 0 1 Memory Read
1 1 0 Memory Write
0 0 1 1/0 Read
0 1 0 I/0 Write

e« M/ 10, RDand WR are decoded by a 3:8 decoder like IC 74138. Bus Request (DMA)
is done using the HOLD and HLDA signals.
e INTA is given by 8086, in response to an interrupt on INTR line.

e e

X X3 CLK

.| 8284 |REsET

Clock
ROY
Generator READY

Sys Ready

(Wait State

Generator)
Reset
Clrcult

NM| c—]
INTR =

INTA @

HOLD

HLDA et

VEC mmip
(Logic 1)

MN/ MX

CLK \ /

Ai6/Ss— Ais/Se,

ALE sT8 bt BHE
21
ADg = AD;s, 8282 - ., —
19— Ao
Aulss -A”/S‘, (3) 20 (Address bus)
BHE/S; 8 Bit Latch
OF
—=
$;-5;
8 8286
2)
Dis=Do
0 .. gl gl =
OT/R ¥ Recelver e
8
Vee
6 -
G,
= Y1 p— TOR
Mm/io c74138
o Y. p— 10w
RD B 38
— Decoder 'SP~ MEMR
WR A -
Y & JOrt MEMW
G_u a;.' (Control Bus)
A S

N_Iinimum Mode Write Cycle

{M/IO = 1 then Memory Write; M/I?) = 0 then IO Write}

LE}

T2

LE

N/ NS A

Ta

BHE/S; D K ss = Ase, BHE) i
ADis— ADo) '(Ag— Axs X Do — Dis

ALE / \

M/l-a x {(M/io =)1 Memory Write; M/I=(.) = 0 1/O Write}

3 v/ C—] -

RD

WR N F
DEN \ /

MAXIMUM MODE OPERATION OF 8086:

8086 microprocessor characteristics:

It contains 20 bit address bus.

It contains 16-bit data bus, therefore 8086 is called as 16-bit microprocessor.

It is 2-stage pipelined processor. It can prefetch 6 bytes from memory and store into
queue to increase the speed of the execution.

It’s control bus carries signals for executing operations such as read ,write etc.

It has Memory Banks. 2 banks of 512KB each. These banks are called as lower
Bank (even) and higher Bank (odd).

In 8086 the entire memory is divided into four memory segments which are code
,stack, data and extra segment.

8086 has 16 bit 10 address.

It has 256 interrupts.

8086 has two operating Modes:
1. Minimum mode
2. Maximum mode
Minimum mode:

In this 8086 is the only processor in the system . In a minimum mode 8086 system.
8086 is operated in minimum mode when MN/MX"’ pin to logic 1.
In this mode, all the control signals are given out by the 8086 itself.

Maximum mode:

In this we can connect more processors to 8086 (8087/8089).

8086 max mode is basically for implementation of allocation of global resources

and passing bus control to other coprocessor(i.e. second processor in the system),
because two processors can not access system bus at same instant.

All processors execute their own program.

The resources which are common to all processors are known as global resources.
The resources which are allocated to a particular processor are known as local or
private resources.

https://www.geeksforgeeks.org/architecture-of-8086/

RES”

l.e Three latches

RDY

Reset
Circuit

requests

Bus Request
Logic

Only For
8087 COP

Circuit explanation:

Sys Ready
(Wait State
Generator)

Maximum mode circuit

e When MN/ MX’ =0, 8086 works in max mode.

e Clock is provided by 8284 clock generator.

e 8288 bus controller- Address form the address bus is latched into 8282 8-bit latch.
Three such latches are required because address bus is 20 bit. The ALE(Address
latch enable) is connected to STB(Strobe) of the latch. The ALE for latch is given
by 8288 bus controller.

e The data bus is operated through 8286 8-bit transceiver. Two such transceivers are
required, because data bus is 16-bit. The transceivers are enabled the DEN signal,
while the direction of data is controlled by the DT/R signal. DEN is connected
to OE’ and DT/ R’ is connected to T. Both DEN and DT/ R’ are given by 8288
bus controller.

DEN (Of 8288) DR’ Action
0 X Trangracaiver is disabled
1 0 Receive daty
1 1 Trasanil dlala

r'-|1 Of 8 bit each
X7 Xz cLC ALE - s
RESET _ 21 8282
8284 ST ol o s tit 1aten B Aok,
. atc
Cilock READY A IS A 1S (Address
Generator sTE oE’
BHE /S i
i 8286
Iinterrupt — 0 > 2 “ =
- INTR ————] - 16 2157 Po
e (Data Bu:
8 L
JRQE) Ao B 8 Bit data 1
chr1 /IGT; ——a S
DT/R° DEN .
. -~ MRDC
TEST’W = ALE > MRDC"
as, Y cLK o— AmwTC"
o - ST .S LS, ——- | 588 L, . IORC”
Bus
B o— 1oOwC”’
MIN/MX .
__r’_ controller AlOWC”
Logic O e INTA’

e Control signals for all operations are generated by decoding S’2, S’1 and
S’ousing 8288 bus controller.

(Control Bu

Processor State (What 8288 Active Output 1

S5 S’ S’o the yP wants to do) Control signal shou!
generate)

0 0 (6] Interrupt Acknowledge INTA’
0] 0 1 Read I/O Port IORC’
0 1 0 Write 1/O Port IOWC’ and AII
0] 1 1 Halt None |
1 0 0 Instruction Fetch MRDC’
1 0 1 Memory Read MRDC’
1 1 (0] Memory Write MWTC’ and A
1 1 1 Inactive None |

o O O O O

Bus request is done using RQ’ / GT lines interfaced with 8086. RQo/GTo has more

priority than RQ1/GTj1.

INTA’ is given by 8288, in response to an interrupt on INTR line of 8086.

In max mode, the advanced write signals get enabled one T-state in advance as
compared to normal write signals. This gives slower devices more time to get ready
to accept the data, therefore it reduces the number of cycles.
APPLICATIONS OF MICROPROCESSOR:

The microprocessor is used in personal computers (PCs).
The microprocessor is used in LASER printers for good speed and making automatic

photo copies.

The microprocessors are used in modems, telephone, digital telephone sets, and also
in air reservation systems and railway reservation systems.
The microprocessor is used in medical instrument to measure temperature and blood

pressure.

It is also used in mobile phones and television.
It is used in calculators and game machine.
It is used in accounting system and data acquisition system.

It is used in military applications.

It is also used in traffic light control.

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

UNIT V

MICROPROCESSORS-II

ADDRESSING MODES OF 8086:

Addressing modes indicates way of locating data or operands. Depending upon the data types used
in the instruction and the memory addressing modes, any instruction may belong to one or more
addressing modes. Thus the addressing modes describe the types of operands and the way they are
accessed for executing an instruction.

According to the flow of instruction execution, the instruction may be categorized as:

Sequential Control flow instructions Control Transfer instructions

Sequential Control flow instructions: In this type of instruction after execution control can be
transferred to the next immediately appearing instruction in the program.

The addressing modes for sequential control transfer instructions are as follows:

Immediate addressing mode: In this mode, immediate is a part of instruction and appears in the
form of successive byte or bytes.

Example: MOV CX, 0007H; Here 0007 is the immediate data

X [By

3 o0 o7
x

Direct Addressing mode: In this mode, the instruction operand specifies the memory address
where data is located.
Example: MOV AX, [5000H]; Data is available in 5000H memory location

MOV [7000H], AX

Memory
| Data v AX| 12 | 34

AH AL

DS: 1000_

-+ Disp: _7000

17000 Effective Address (EA) is computed using 5000H as offset

address and content of DS as segment address.
EA=10H * DS + 5000H

Register Addressing mode: In this mode, the data is stored in a register and it is referred using

particular register. All the registers except IP may be used in this mode.

Example: MOV AX, BX;

Register Indirect addressing mode: In this mode, instruction specifies a register containing an

address, where data is located. This addressing mode works with SI, DI, BX and BP registers.

Example: MOV AX, [BX]; EA=10H * DS + [BX]

AITS, DEPT OF ECE 1

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

Indexed Addressing mode: 8-bit or 16-bit instruction operand is added to the contents of an index
register (SI or DI), the resulting value is a pointer to location where data resides. DS and ES are
default segments for index registers Sl and DI. DS=0800H, SI=2000H, MOV DL, [SI]

MOV DL, {S1]

BH DL
DX 26
-
' DS: 0800_
+ SI: 2000
0AD0D
Example: MOV AX, [SI]; EA=10H * DS + [SI]

Register Relative Addressing mode: In this mode, the data is available at an effective address
formed by adding an 8-bit or 16-bit displacement with the content of any one of the registers BX,
BP, SI, DI in the default segments.

Example: MOV AX, 50H [BX]; EA=10H * DS + 50H + [BX]
MO DI, 1511
—— PEL EE.
3L I 26

=

IDDS: OBOO__
-+ SI: s o 8
O A OO

Based Indexed Addressing mode: In this mode, the contents of a base register (BX or BP) is added
to the contents of an index register (SI or DI), the resulting value is a pointer to location where data
resides.

Example: MOV AX, [BX] [SI]; EA=10H * DS + [BX] + [SI]

AITS, DEPT OF ECE 2

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

RO [BPJ(SI). AT

22380
Relative Based Indexed Addressing mode: In this mode, 8-bit or 16-bit instruction operand is

added to the contents of a base register (BX or BP) and index register (SI or DI), the resulting value
IS a pointer to location where data resides.
Example: MOV AX, 50H [BX] [SI]; EA=10H * DS + 50H + [BX] + [SI]

MW CEL., B3 --T2I+ 2408081
o o | L

L - =20 I

]

DS : CE3OHD

“+— B e 0 o]
- I>I: OO T Oy
+ IDrisp»: SOy

OSSO

Control Transfer Instructions: In control transfer instruction, the control can be transferred to
some predefined address or the address somehow specified in the instruction after their execution.
For the control transfer instructions, the addressing modes depend upon whether the destination
location is within the segment or different segments. It also depends upon the method of passing the
destination address to the processor. Depending on this control transfer instructions are categorized
as follows:
Intra segment Direct mode: In this mode, the address to which control is to be transferred lies in
the same segment in which control transfer instruction lies and appears directly in the instruction as
an immediate displacement value.
Intra segment Indirect mode: In this mode, the address to which control is to be transferred lies in
the same segment in which control transfer instruction lies but it is passed to the instruction
indirectly.
Inter segment Direct mode: In this mode, the address to which control is to be transferred lies in a
different segment in which control transfer instruction lies and appears directly in the instruction as
an immediate displacement value.
Inter segment Indirect mode: In this mode, the address to which control is to be transferred lies in
a different segment in which control transfer instruction lies but it is passed to the instruction
indirectly.

AITS, DEPT OF ECE 3

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

Memory Segmentation for 8086:
8086, via its 20-bit address bus, can address 220 = 1,048,576 or 1 MB of different memory locations.
Thus the memory space of 8086 can be thought of as consisting of 1,048,576 bytes or 524,288 words. The
memory map of 8086 is shown in Figure where the whole memory space starting from 00000 H to FFFFF
H is divided into 16 blocks—each one consisting of 64KB.

1 MB memory of 8086 is partitioned into 16 segments—each segment is of 64 KB length. Out of
these 16 segments, only 4 segments can be active at any given instant of time— these are code segment,
stack segment, data segment and extra segment. The four memory segments that the CPU works with at
any time are called currently active segments. Corresponding to these four segments, the registers used
are Code Segment Register (CS), Data Segment Register (DS), Stack Segment Register (SS) and Extra
Segment Register (ES) respectively. Each of these four registers is 16-bits wide and user accessible—i.e.,
their contents can be changed by software.

The code segment contains the instruction codes of a program, while data, variables and constants
are held in data segment. The stack segment is used to store interrupt and subroutine return addresses. The
extra segment contains the destination of data for certain string instructions. Thus 64 KB are available for
program storage (in CS) as well as for stack (in SS) while128 KB of space can be utilized for data storage
(in DS and ES).One restriction on the base address (starting address) of a segment is that it must reside on
a 16-byte address memory—examples being 00000 H, 00010 H or 00020 H, etc.

Physical memory Physical memory
0000 T 0000 T
| |
I I
1000) <— CS;4 1000 3 CS;
i «— Offset IP, —— Offset IP,
Segment 1 64 KB

FFFF G 1A00 64 KB CS;
T ment 1
, g 0000,1A01 Offset IP,
|
: Segment 2
| 64 KB

~— QOffset IP;
Segment 2 64 KB Oveciap

FFFF FFFF N
T T
I I
| I
I |
I |
I !
I I

Non overlapping segments overlapping segments

Memory segmentation of 8086

Memory segmentation, as implemented for 8086, gives rise to the following advantages:

e Although the address bus is 20-bits in width, memory segmentation allows one to work with
registers having width 16-bits only.

AITS, DEPT OF ECE 4

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

e |t allows instruction code, data, stack and portion of program to be more than 64 KB long by
using more than one code, data, extra segment and stack segment.

e In a time-shared multitasking environment when the program moves over from one user’s
program to another, the CPU will simply have to reload the four segment registers with the
segment starting addresses assigned to the current user’s program.

e User’s program (code) and data can be stored separately.

e Because the logical address range is from 0000 H to FFFF H, the same can be loaded at any place
in the memory.

Instruction Set of 8086:
There are 117 basic instructions in the instruction set of 8086.The instruction set of 8086 can be divided
into the following number of groups, namely:

1. Data copy / Transfer instructions 2. Arithmetic and Logical instructions
3. Branch instructions 4. Loop instructions

5. Machine control instructions 6. Flag Manipulation instructions

7. Shift and Rotate instructions 8. String instructions

Data copy / Transfer instructions: The data movement instructions copy values from one location to
another. These instructions include MOV, XCHG, LDS, LEA, LES, PUSH, PUSHF, PUSHFD, POP,
POPF, LAHF, AND SAHF.
MOV The MOV instruction copies a word or a byte of data from source to a destination. The destination
can be a register or a memory location. The source can be a register, or memory location or immediate
data. MOV instruction does not affect any flags. The mov instruction takes several different forms:
Mov reg, regl; mov mem, reg; mov reg, mem; mov mem, immediate data; mov reg, immediate data;
mov ax/al, mem; mov mem, ax/al; mov segreg, mem16; mov segreg, regl6; mov meml6, segreg; mov
reglo, segreg
The MOV instruction cannot:

1. Set the value of the CS and IP registers.

2. Copy value of one segment register to another segment register (should copy to general register

first). MOV CS, DS (Invalid)
3. Copy immediate value to segment register (should copy to general register first). MOV CS, 2000H

(Invalid)
Example:
ORG 100h
MOV AX, 0B800h; set AX = B800h
MOV DS, AX; copy value of AX to DS.
MOV CL, 'A’; CL = 41h (ASCII code).

The XCHG Instruction: Exchange This instruction exchanges the contents of the specified source and
destination operands, which may be registers or one of them, may be a memory location. However,
exchange of data contents of two memory locations is not permitted.
Example: MOV AL, 5; AL=5

MOV BL, 2; BL =2

XCHG AL, BL;AL=2,BL=5

AITS, DEPT OF ECE 5

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

PUSH: Push to stack; this instruction pushes the contents of the specified register/memory location on to
the stack. The stack pointer is decremented by 2, after each execution of the instruction. The actual
current stack-top is always occupied by the previously pushed data. Hence, the push operation decrements
SP by two and then stores the two byte contents of the operand onto the stack. The higher byte is pushed
first and then the lower byte. Thus out of the two decremented stack addresses the higher byte occupies
the higher address and the lower byte occupies the lower address.

1. PUSH AX
2. PUSH DS
3. PUSH [5000H] ; Content of location 5000H and 5001 H in DS are pushed onto the stack.
O3 7FF-=-
== N
o i S S O3 7FE
‘ [o '(_' B3 IL\ O3 7FID
|
A ‘ sAaAaAB3S | = +ﬁ-
i C;)]
— ‘ OoO7FF I P 7_/—“:——
. oot T osooe
== ‘ OoO=300 | = -

T he effect of PUSsSH A INnstruction
POP: Pop from Stack this instruction when executed loads the specified register/memory location with
the contents of the memory location of which the address is formed using the current stack segment and
stack pointer as usual. The stack pointer is incremented by 2. The POP instruction serves exactly opposite
to the PUSH instruction.
1. POP BX
2. POP DS
3. POP [5000H]

O3 7FFF
J L L) == (=2 O3 7 F D=
:T_.E’D
—_e | oOoOTFF D } e —
Stack
segrmnent
| = O=3000
—_= | OS0o00O | -
T he effect oFf o B> imnstructicom

PUSHF: Push Flags to Stack The push flag instruction pushes the flag register on to the stack; first the
upper byte and then the lower byte will be pushed on to the stack. The SP is decremented by 2, for each
push operation. The general operation of this instruction is similar to the PUSH operation.

POPF: Pop Flags from Stack The pop flags instruction loads the flag register completely (both bytes)
from the word contents of the memory location currently addressed by SP and SS. The SP is incremented
by 2for each pop operation.

AITS, DEPT OF ECE 6

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

LAHF: Load AH from Lower Byte of Flag This instruction loads the AH register with the lower byte of
the flag register. This instruction may be used to observe the status of all the condition code flags (except
overflow) at a time.

SAHF: Store AH to Lower Byte of Flag Register This instruction sets or resets the condition code flags
(except overflow) in the lower byte of the flag register depending upon the corresponding bit positions in
AH. If a bit in AH is 1, the flag corresponding to the bit position is set, else it is reset.

LEA: Load Effective Address The load effective address instruction loads the offset of an operand in the
specified register. This instruction is similar to MOV, MOV is faster than LEA.

LEA cx, [bx+si]; CX (BX+SI) mod 64K If bx=2f00 H; si=10d0H cx = 3fdOH

The LDS AND LES instructions:

» LDS and LES load a 16-bit register with offset address retrieved from a memory location then load
either DS or ES with a segment address retrieved from memory.

This instruction transfers the 32-bit number, addressed by DI in the data segment, into the BX and DS
registers.

* LDS and LES instructions obtain a new far address from memory.
— Offset address appears first, followed by the segment address
* This format is used for storing all 32-bit memory addresses.

* A far address can be stored in memory by the assembler.
LDS BX, DWORD PTR][SI]

BL [SI];

BH [SI+1]

DS [SI+3: SI+2]; in the data segment

LES BX, DWORD PTR][SI]

BL [SI];
BH [SI+1]
ES [SI+3: SI+2]; in the extra segment
1
T OSTFTFF
oo OS7FF
(SN = OS7TFE
‘ ‘ P . =3 B3 OSTRFD -
[
. |
(=] | e | l r_ Eéﬁg I
segment e aES
o= ‘ OsSoo I TG -

T he effect of LDS B> . [>1] INnstruction

I/0 Instructions: The 80x86 supports two 1/O instructions: in and out15. They take the forms:
In ax, port

in ax, dx

out port, ax

out dx, ax

port is a value between 0 and 255.

AITS, DEPT OF ECE 7

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

The in instruction reads the data at the specified 1/0 port and copies it into the accumulator. The
out instruction writes the value in the accumulator to the specified 1/0 port.
Arithmetic instructions: These instructions usually perform the arithmetic operations, like addition, subtraction,
multiplication and division along with the respective ASCIl and decimal adjust instructions. The increment and
decrement operations also belong to this type of instructions.
The ADD and ADC instructions: The add instruction adds the contents of the source operand to the
destination operand. For example, add ax, bx adds bx to ax leaving the sum in the ax register. Add
computes dest: = dest + source while adc computes dest: = dest + source + C where C represents the
value in the carry flag. Therefore, if the carry flag is clear before execution, adc behaves exactly like the
add instruction.

(ADC) l_ (ADD)
| | —a—
+ [ox ! ox]
Example: ' =14 CH—.

J CF=1
BX=25 AX=98

DX=78 CX=94

BX=9E AX=2C

Both instructions affect the flags identically. They set the flags as follows:

* The overflow flag denotes a signed arithmetic overflow.

* The carry flag denotes an unsigned arithmetic overflow.

* The sign flag denotes a negative result (i.e., the H.O. bit of the result is one).

* The zero flag is set if the result of the addition is zero.

* The auxiliary carry flag contains one if a BCD overflow out of the L.O. nibble occurs.

* The parity flag is set or cleared depending on the parity of the L.O. eight bits of the result. If there is
even number of one bits in the result, the ADD instructions will set the parity flag to one (to denote even
parity). If there is an odd number of one bits in the result, the ADD instructions clear the parity flag (to
denote odd parity).

The INC instruction: The increment instruction adds one to its operand. Except for carry flag, inc sets
the flags the same way as Add ax, 1 same as inc ax. The inc operand may be an eight bit, sixteen bit. The
inc instruction is more compact and often faster than the comparable add reg, 1 or add mem, 1 instruction.
The AAA and DAA Instructions

The aaa (ASCII adjust after addition) and daa (decimal adjust for addition) instructions support
BCD arithmetic. BCD values are decimal integer coded in binary form with one decimal digit (0...9) per
nibble. ASCII (numeric) values contain a single decimal digit per byte, the H.O. nibble of the byte should
contain zero (3039).

The aaa and daa instructions modify the result of a binary addition to correct it for ASCII
or decimal arithmetic. For example, to add two BCD values, you would add the mas though they were
binary numbers and then execute the daa instruction afterwards to correct the results.

Note: These two instructions assume that the add operands were proper decimal or ASCII values. If you
add binary (non-decimal or non-ASCII) values together and try to adjust them with these instructions, you
will not produce correct results.

AITS, DEPT OF ECE 8

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

Aaa (which you generally execute after an add, adc, or xadd instruction) checks the value in al for BCD
overflow. It works according to the following basic algorithm:

if ((al and OFh) > 9 or (AuxC =1)) then add al=08 +06; al=0E > 9
al:=al+6 al=0E + 06=04

else

ax:=ax+6

end if

ah:=ah+1 ah=00+01=01

AuxC :=1 ;Set auxilliary carry
Carry :=1; and carry flags.

Else al=04+03=08, now al<9, so only clear
AuxC := 0 ;Clear auxilliary carry ah=0

Carry := 0 ; and carry flags.

endif

al := al and OFh

The aaa instruction is mainly useful for adding strings of digits where there is exactly one decimal digit
per byte in a string of numbers.

The daa instruction functions like aaa except it handles packed BCD values rather than the one
digit per byte unpacked values aaa handles. As for aaa, daa’s main purpose is to add strings of BCD digits
(with two digits per byte). The algorithm for daa is

if ((AL and OFh) > 9 or (AuxC = 1)) then al=24+77=9B, as B>9 add 6 to al

al:=al+6 al=9B+06=A1, as higher nibble A>9, add 60
AuxC: = 1; Set Auxilliary carry. to al, al=A1+60=101

End if Note: if higher or lower nibble of AL <9 then
if ((al > 9Fh) or (Carry = 1)) then no need to add 6 to AL

al := al + 60h

Carry: = 1; Set carry flag.

End if

EXAMPLE:

Assume AL=00110101, ASCII 5

BL=00111001, ASCII 9

ADD AL, BL Result: AL=01101110=6EH, which is incorrect BCD

AAA Now AL = 00000100, unpacked BCD 4.

CF =1 indicates answer is 14 decimal

NOTE: OR AL with 30H to get 34H, the ASCII code for 4. The AAA instruction works only on the AL
register. The AAA instruction updates AF and CF, but OF, PF, SF, and ZF are left undefined.
EXAMPLES:

AL = 0101 1001 =59 BCD; BL =0011 0101 =35 BCD

ADD AL, BL AL =1000 1110 = 8EH

DAA Add 01 10 because 1110 > 9 AL = 1001 0100 = 94 BCD

AL = 1000 1000 = 88 BCD BL = 0100 1001 = 49 BCD

ADD AL, BL AL =1101 0001, AF=1

DAA Add 0110 because AF =1, AL = 11101 0111 =D7H

1101 > 9 so add 0110 0000

AITS, DEPT OF ECE 9

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

AL =0011 0111=37 BCD, CF =1
The DAA instruction updates AF, CF, PF, and ZF. OF is undefined after a DAA instruction.
The SUBTRACTION instructions: SUB, SBB, DEC, AAS, and DAS
The sub instruction computes the value dest: =dest - src. The sbb instruction computes dest: =dest
-src - C.
The sub, sbb, and dec instructions affect the flags as follows:
* They set the zero flag if the result is zero. This occurs only if the operands are equal for sub and shb.
The dec instruction sets the zero flag only when it decrements the value one.
* These instructions set the sign flag if the result is negative.
* These instructions set the overflow flag if signed overflow/under flow occurs.
* They set the auxiliary carry flag as necessary for BCD/ASCII arithmetic.
* They set the parity flag according to the number of one bits appearing in the result value.
» The sub and sbb instructions set the carry flag if an unsigned overflow occurs. Note that the dec
instruction does not affect the carry flag.
The aas instruction, like its aaa counterpart, lets you operate on strings of ASCII numbers with one
decimal digit (in the range 0...9) per byte. This instruction uses the following algorithm:
if ((al and OFh) > 9 or AuxC = 1) then
al:=al-6
ah:=ah-1
AuxC: = 1; Set auxilliary carry
Carry: = 1; and carry flags.
else
AuxC: = 0; Clear Auxilliary carry
Carry: = 0; and carry flags.
End if
al := al and OFh
The das instruction handles the same operation for BCD values, it uses the following
Algorithm:
if ((al and OFh) > 9 or (AuxC = 1)) then
al:=al -6
AuxC =1
End if
if (al > 9Fh or Carry = 1) then
al :=al - 60h
Carry: = 1; Set the Carry flag.
End if
EXAMPLE:
ASCII 9-ASCII 5 (9-5)
AL =00111001 =39H = ASCII 9
BL =001 10101 = 35H = ASCII 5
SUB AL, BL Result: AL =00000100 = BCD 04 and CF =0
AAS Result: AL =00000100=BCD 04 and CF=0
no borrow required
ASCII 5-ASCII 9 (5-9)

AITS, DEPT OF ECE 10

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

Assume AL =00110101 = 35H ASCII 5

and BL = 0011 1001 = 39H = ASCII 9

SUB AL, BL Result: AL =11111100 = - 4 in 2s complement and CF =1
AAS Result: AL =00000100 = BCD 04 and CF = 1, borrow needed
EXAMPLES:

AL 1000 0110 86 BCD ; BH 0101 0111 57 BCD

SUB AL,BH AL 0010 1111 2FH, CF =0

DAS Lower nibble of result is 1111, so DAS automatically

Subtracts 0000 0110 to give AL =00101001 29 BCD

AL 0100 1001 49 BCD BH 0111 0010 72 BCD

SUB AL, BH AL 1101 0111 D7H,CF =1

DAS Subtracts 0110 0000 (- 60H) because 1101 in upper nibble > 9

AL =01110111= 77 BCD, CF=1 CF =1 means borrow was needed

The CMP Instruction: The cmp (compare) instruction is identical to the sub instruction with one crucial

difference— it does not store the difference back into the destination operand. The syntax for the cmp

instruction is very similar to sub; the generic form is cmpdest, src

Consider the following cmp instruction: cCmp ax, bx

This instruction performs the computation ax-bx and sets the flags depending up on the result of the

computation. The flags are set as follows:

Z: The zero flag is set if and only if ax = bx. This is the only time ax-bx produces a zero result. Hence,

you can use the zero flag to test for equality or inequality.

S: The sign flag is set to one if the result is negative.

O: The overflow flag is set after a cmp operation if the difference of ax and bx produced an overflows or

underflow.

C: The carry flag is set after a cmp operation if subtracting bx from ax requires a borrow.This occurs only

when ax is less than bx where ax and bx are both unsigned values.

The Multiplication Instructions: MUL, IMUL, and AAM: This instruction multiplies an unsigned byte

or word by the contents of AL. The unsigned byte or word may be in any one of the general-purpose

registers or memory locations. The most significant word of the result is stored in DX, while the least

significant word of the result is stored in AX.

The mul instruction, with an eight bit operand, multiplies the al register by the operand and stores the

16 bit result in ax. So

mul operand (Unsigned) MUL BL i.e. AL * BL; Al=25 * BL=04; AX=00 (AH) 64 (AL)

imul operand (Signed) IMUL BL i.e. AL * BL; AL=09 * BL=-2; AL * 2’s comp(BL)
AL=09 * BL (OEH) =7E; 2’s comp (7¢) =-82

The aam (ASCIlI Adjust after Multiplication) instruction, adjust an unpacked decimal value after

multiplication. This instruction operates directly on the ax register. It assumes that you’ve multiplied two

eight bit values in the range 0..9 together and the result is sitting in ax (actually, the result will be sitting

in al since 9*9 is 81,the largest possible value; ah must contain zero). This instruction divides ax by 10

and leaves the quotient in ah and the remainder in al: mul bl; al=9, bl=9 al*bl=9*9=51H; AX=00(AH)

51(AL); AAM ; first hexadecimal value is converted to decimal value i.e. 51 to 81; al=81D; second

convert packed BCD to unpacked BCD, divide AL content by 10 i.e. 81/10 then AL=01, AH =08; AX =

0801

AITS, DEPT OF ECE 11

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

EXAMPLE:

AL 00000101 unpacked BCD 5

BH 00001001 unpacked BCD 9

MUL BH AL x BH; result in AX

AX =00000000 00101101 = 002DH

AAM AX = 00000100 00000101 = 0405H, which is unpacked BCD for 45.

If ASCII codes for the result are desired, use next instruction OR AX, 3030H Put 3 in upper nibble of
each byte.

AX =0011 0100 0011 0101 = 3435H, which is ASCII code for 45

The Division Instructions: DIV, IDIV, and AAD

The 80x86 divide instructions perform a 64/32 division (80386 and later only), a 32/16division or a 16/8
division. These instructions take the form:

Div reg For unsigned division
Div mem

Idiv reg For signed division
Idiv mem

The div instruction computes an unsigned division. If the operand is an eight bit operand, div divides the
ax register by the operand leaving the quotient in al and the remainder (modulo) in ah. If the operand is a
16 bit quantity, then the div instruction divides the 32 bit quantity in dx:ax by the operand leaving the
quotient in ax and the remainder in .
Note: If an overflow occurs (or you attempt a division by zero) then the80x86 executes an INT 0
(interrupt zero).
The aad (ASCII Adjust before Division) instruction is another unpacked decimal operation.It splits apart
unpacked binary coded decimal values before an ASCII division operation. The aad instruction is useful
forother operations. The algorithm that describes this instruction is
al :=ah*10 + al AX=0905H; BL=06; AAD; AX=AH*10+AL=09*10+05=95D;
convert decimal to hexadecimal; 95D=5FH; al=5f;
DIV BL; AL/BL=5F/06; AX=05(AH) OF (AL)
ah:=0
EXAMPLE:
AX = 0607H unpacked BCD for 67 decimal CH = 09H, now adjust to binary
AAD Result: AX =0043 = 43H = 67 decimal
DIV CH Divide AX by unpacked BCD in CH
Quotient: AL = 07 unpacked BCD Remainder:
AH = 04 unpacked BCD Flags undefined after DIV
NOTE: If an attempt is made to divide by 0, the 8086 will do a type 0 interrupt.
CBW-Convert Signed Byte to Signed Word: This instruction copies the sign of a byte in AL to all the
bits in AH. AH is then said to be the sign extension of AL. The CBW operation must be done beforea
signed byte in AL can be divided by another signed byte with the IDIV instruction. CBW affects no flags.
EXAMPLE:
AX = 00000000 10011011 155 decimal
CBW Convert signed byte in AL to signed word in AX
Result: AX =11111111 10011011 155 decimal

AITS, DEPT OF ECE 12

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

CWD-Convert Signed Word to Signed Double word: CWD copies the sign bit of a word in AX to all
the bits of the DX register. In other words it extends the sign of AX into all of DX. The CWD operation
must be done before a signed word in AX can be divided by another signed word with the IDIV
instruction. CWD affects no flags.

EXAMPLE:

DX = 00000000 00000000

AX =11110000 11000111 3897 decimal

CWD Convert signed word in AX to signed doubleword in DX:AX

Result DX =11111111 11111111

AX =11110000 11000111 3897 decimal

Multiplication and Division Multiplication and Division Examples
Multiplication Muitiplicant Operand Result 2
s Ex1: Assurne that each instruction starts from these values
(MUL or IMUL) (Multiplier) &
AL =85H, BL =35H, AH=0H
Byte " Byte AX

Word - Word I. MULBL — AL.BL=85H*35H=I1B8%H — AX =|B8%H

PR = DR AR 2 IMULBL — AL. BL=2'S AL * BL = 2'S (85H)* 35H
=7BH* 35H=|97TH— 2 omop — EGB9H — AX.
! QOS5 H _ o =)
Divislon Dividend Operand Quotient : Remalnder * DIVBL— AX = 5H =02 (85-02*35=| B} —> “
(DIV or IDIV) (Divisor) BL
Word / Byte AX Register or memory AL - AH AX OQ085H o
4 TDIVBL - %7 = "z = B [
Dword / Word DXCAX Register or memory AX DX
Qword /| Dword | EDX EAX Reqister or Memory EAX EDX
20

Logical, Shift, Rotate and Bit Instructions: The 80x86 family provides five logical instructions, four
rotate instructions, and three shift instructions. The logical instructions are and, or, xor, test, and not; the
rotates are ror,rol, rcr, and rcl; the shift instructions are shl/sal, shr, and sar.
The Logical Instructions: AND, OR, XOR, and NOT:The 80x86 logical instructions operate on a bit-
by-bit basis. Except not, these instructions affect the flags as follows:
* They clear the carry flag.
* They clear the overflow flag.
* They set the zero flag if the result is zero, they clear it otherwise.
* They copy the H.O. bit of the result into the sign flag.
* They set the parity flag according to the parity (number of one bits) in the result.
* They scramble the auxiliary carry flag.
The not instruction does not affect any flags.
The AND instruction sets the zero flag if the two operands do not have any ones in corresponding bit
positions. AND AX, BX

The OR instruction will only set the zero flag if both operands contain zero. OR AX, BX

The XOR instruction will set the zero flag only if both operands are equal. Notice that the xor
operation will produce a zero result if and only if the two operands are equal. Many programmers
commonly use this fact to clear a sixteen bit register to zero since an instruction of the form xor reg16,
regle; XOR AX, AX is shorter than the comparable mov reg, O instruction.
You can use the and instruction to set selected bits to zero in the destination operand. This is known as
masking out data; Likewise, you can use the or instruction to force certain bits to one in the destination
operand;

AITS, DEPT OF ECE 13

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

The Shift Instructions: SHL/SAL, SHR, SAR: The 80x86 supports three different shift instructions (shl
and sal are the same instruction): shl (shift left), sal (shift arithmetic left), shr (shift right), and sar (shift
arithmetic right). The general format for a shift instruction is

Shl dest, count sal dest, count shr dest, count sar dest, count

SHL/SAL: These instructions move each bit in the destination operand one bit position to the left the
number of times specified by the count operand. Zeros fill vacated positions at the L.O. bit; the H.O. bit
shifts into the carry flag.
The shl/sal instruction sets the condition code bits as follows:
* [f the shift count is zero, the shl instruction doesn’t affect any flags.
* The carry flag contains the last bit shifted out of the H.O. bit of the operand.
* The overflow flag will contain one if the two H.O. bits were different prior to a single bit shift. The
overflow flag is undefined if the shift count is not one.
* The zero flag will be one if the shift produces a zero result.
* The sign flag will contain the H.O. bit of the result.
* The parity flag will contain one if there are an even number of one bits in the L.O. byte of the result.
* The A flag is always undefined after the shl/sal instruction.
The shift left instruction is especially useful for packing data. For example, suppose you have two
nibbles in al and ah that you want to combine. You could use the following code to do this:
shl ah, 4;
or al, ah ; Merge in H.O. four bits.
Of course, al must contain a value in the range 0..F for this code to work properly (the shift left operation
automatically clears the L.O. four bits of ah before the or instruction).
H.O Bit 4 3 2 1 O
%—' - - - iy —g"*—' le O

— %
SHL OPERATION
H.O. four bits of al are not zero before this operation, you can easily clear them with an and instruction:
shl ah, 4 ;Move L.O. bits to H.O. position.
and al, OFh ;Clear H.O. four bits.
or al, ah ;Merge the bits.
Since shifting an integer value to the left one position is equivalent to multiplying that value by two, you
can also use the shift left instruction for multiplication by powers of two:
shl ax, 1 ;Equivalent to AX*2
shl ax, 2 ;Equivalent to AX*4
shl ax, 3 ;Equivalent to AX*8
SAR:Thesar instruction shifts all the bits in the destination operand to the right one bit, replicating the
H.O. bit.

The sar instruction’s main purpose is to perform a signed division by some power of two. Each shift to the
right divides the value by two. Multiple right shifts divide the previous shifted result by two, so multiple

shifts produce the following results:
H._ O EBEit = =} = =2 -1 L=]

- - [L] LI [A ——(1
ﬁ.—-‘ T e e = [<=1

AITS, DEPT OF ECE 14

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

SAR OPERATION
sar ax, 1 ;Signed division by 2
sar ax, 2 ;Signed division by 4
sar ax, 3 ;Signed division by 8
sar ax, 4 ;Signed division by 16
sar ax, 5 ;Signed division by 32
sar ax, 6 ;Signed division by 64
sar ax, 7 ;Signed division by 128
sar ax, 8 ;Signed division by 256
There is a very important difference between the sar and idiv instructions. The idiv instruction always
truncates towards zero while sar truncates results toward the smaller result. For positive results, an
arithmetic shift right by one position produces the same result as an integer division by two. However, if
the quotient is negative, idiv truncates towards zero while sar truncates towards negative infinity.
SHR: The shr instruction shifts all the bits in the destination operand to the right one bit shifting a zero
into the H.O. bit

H.O Bit S e 3 =2 1 O
—% — - — —-b=.- —-b—_—-'— —I-—-I C

SHR OPERATION

The shift right instruction is especially useful for unpacking data. shifting an unsigned integer value to the
right one position is equivalent to dividing that value by two, you can also use the shift right instruction
for division by powers of two:

shr ax, 1 ;Equivalent to AX/2

shr ax, 2 ;Equivalent to AX/4

shr ax, 3 ;Equivalent to AX/8

shr ax, 4 ;Equivalent to AX/16

The Rotate Instructions: RCL, RCR, ROL, and ROR

The rotate instructions shift the bits around, just like the shift instructions, except the bits shifted out of the operand by the rotate
instructions recirculate through the operand. They include rcl (rotate through carry left), rcr(rotate through carry right), rol(rotate left),
And ror (rotate right). These instructions all take the forms:

rcl dest, count rol dest, count rcr dest, count ror dest, count

RCL: The rcl (rotate through carry left), as its name implies, rotates bits to the left, through the carry flag, and back into bit zero on
the right. The rcl instruction sets the flag bits as follows:

* The carry flag contains the last bit shifted out of the H.O. bit of the operand.

« If the shift count is one, rcl sets the overflow flag if the sign changes as a result of the rotate. If the count is not one, the overflow
flag is undefined.

* The rcl instruction does not modify the zero, sign, parity, or auxiliary carry flags.

I

LS B -{_ LB
RCL OPERATION
RCR: The rcr (rotate through carry right) instruction is the complement to the rcl instruction. It shifts its
bits right through the carry flag and back into the H.O. bit. This instruction sets the flags in a manner
analogous to rcl:
* The carry flag contains the last bit shifted out of the L.O. bit of the operand.
* The rer instruction does not affect the zero, sign, parity, or auxiliary carry flags.

AITS, DEPT OF ECE 15

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

I%I NS B = LSB

RCR OPERATION
ROL: The rol instruction is similar to the rcl instruction in that it rotates its operand to the left the
specified number of bits. The major difference is that rol shifts its operand’s H.O. bit, rather than the
carry, into bit zero. Rol also copies the output of the H.O. bit into the carry flag. The rol instruction sets
the flags identically to rcl. Other than the source of the value shifted into bit zero, this instruction behaves
exactly like the rcl instruction.
Like shl, the rol instruction is often useful for packing and unpacking data.

—

ROL OPERATION
ROR: The ror instruction relates to the rcr instruction in much the same way that the rol instruction
relates to rcl. That is, it is almost the same operation other than the source of the input bit to the operand.
Rather than shifting the previous carry flag into the H.O. bit of the destination operation, ror shifts bit zero
into the H.O. bit.

I%I MNMSB _) LSB m—
ROR OPERATION

String Instructions: A string is a collection of objects stored in contiguous memory locations. Strings are
usually arrays of bytes or words on 8086.All members of the 80x 86 families support five different
string instructions: MOVS, CMPS, SCAS, LODS, AND STOS.
The string instructions operate on blocks (contiguous linear arrays) of memory. For example, the movs
instruction moves a sequence of bytes from one memory location to another. The cmps instruction
compares two blocks of memory. The scas instruction scans a block of memory for a particular value.
These string instructions often require three operands, a destination block address, a source block address,
and (optionally) an element count. For example, when using the movs instruction to copy a string, we
need a source address, a destination address, and a count (the number of string elements to move).The
operands for the string instructions include:
* the Sl (source index) register, « the DI (destination index) register, e the CX (count) register,
* the AX register, and * the direction flag in the FLAGS register.

The REP/REPE/REPZ and REPNZ/REPNE Prefixes: The repeat prefixes tell the 80x86 to do a multi-
byte string operation. The syntax for the repeat prefix is:

Field:
Label repeat mnemonic operand; comment
For MOVS:
Rep movs {operands}
For CMPS:

AITS, DEPT OF ECE 16

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

Repe cmps {operands} repz cmps {operands} repne cmps {operands} repnz
cmps {operands}

For SCAS:

Repe scas {operands} repz scas {operands} repnescas {operands} repnzscas {operands}

For STOS:

Rep stos {operands}

When specifying the repeat prefix before a string instruction, the string instruction repeats cX
times. Without the repeat prefix, the instruction operates only on a single byte,word, or double word.

If the direction flag is clear, the CPU increments si and di after operating upon each string
element. If the direction flag is set, then the 80x86 decrements si and di after processing each string
element. The direction flag may be set or cleared using the cld (clear direction flag) and std (setdirection
flag) instructions.

The MOVS Instruction: The movsb (move string, bytes) instruction fetches the byte at address ds:si,
stores it at address es :di, and then increments or decrements the si and di registers by one. If the rep
prefix is present, the CPU checks cx to see if it contains zero. If not, then it moves the byte from ds: si to
es: di and decrements the cx register. This process repeats until cx becomes zero. The syntax is:

{REP} MOVSB {REP} MOVSW

The CMPS Instruction: The cmps instruction compares two strings. The CPU compares the string
referenced by es: di to the string pointed at by ds: si. CX contains the length of the two strings (when
using the rep prefix). The syntax is: {REPE} CMPSB {REPE} CMPSW

To compare two strings to see if they are equal or not equal, you must compare corresponding
elements in a string until they don’t match or length of the string cx=0.The repe prefix accomplishes
this operation. It will compare successive elements in a string as long as they are equal and cx is greater
than zero.

The SCAS Instruction: The scas instruction, by itself, compares the value in the accumulator (al or ax)
against the value pointed at by es:di and then increments (or decrements) di by one or two. The CPU sets
the flags according to the result of the comparison. When using the repne prefix (repeat while not equal),
scas scans the string searching for the first string element which is equal to the value in the accumulator.
The scas instruction takes the following forms: {REPNE} SCASB {REPNE} SCASW
The STOS Instruction: The stos instruction stores the value in the accumulator at the location specified
by es: di. After storing the value, the CPU increments or decrements di depending upon the state of the
direction flag. Its primary use is to initialize arrays and strings to a constant value. {REP} STOSB

{REP} STOSW

The LODS Instruction: The lods instruction copies the byte or word pointed at by ds:si into the al or ax
register, after which it increments or decrements the si register by one or two.{REP} LODSB

{REP} LODSW
Flag Manipulation and Processor Control Instructions: These instructions control the functioning of
the available hardware inside the processor chip. These are categorized into two types; (a) flag
manipulation instructions and (b) machine control instructions.

The flag manipulation instructions directly modify some of the flags of 8086. The machine control
instructions control the bus usage and execution. The flag manipulation instructions and their functions
are as follows:

CLC - Clear carry flag CMC - Complement carry flag STC - Set carry flag
CLD - Clear direction flag STD - Set direction flag CLI - Clear interrupt flag

AITS, DEPT OF ECE 17

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

STI - Set interrupt flag

These instructions modify the carry (CF), direction (DF) and interrupt (IF) flags directly. The DF and IF,
which may be modified using the flag manipulation instructions, further control the processor operation;
like interrupt responses and auto increment or auto decrement modes.

The machine control instructions supported by 8086 and 8088 are listed as follows along with
their functions. These machine control instructions do not require any operand.

WAIT - Wait for Test input pin to go low HLT - Halt the processor NOP - No
operation ESC - Escape to external device like NDP (numeric co-processor) LOCK - Bus
lock instruction prefix.

After executing the HLT instruction, the processor enters the halt state. The two ways to pull it out of the
halt state are to reset the processor or to interrupt it.

When NOP instruction is executed, the processor does not perform any operation till 4 clock
cycles, except incrementing the IP byone. It then continues with further execution after 4 clock cycles.

ESC instruction when executed, frees the bus for an external master like a coprocessor or
peripheral devices.

The LOCK prefix may appear with another instruction. When it is executed, the bus access is not
allowed for another master till the lock prefixed instruction is executed completely. This instruction is
used in case of programming for multiprocessor systems.

The WAIT instruction when executed holds the operation of processor with the current status till
the logic level on the TEST pin goes low. The processor goes on inserting WAIT states in the instruction
cycle, till the TEST pin goes low. Once the TEST pin goes low, it continues further execution.

Program Flow Control Instructions: The control transfer instructions are used to transfer the control
from one memory location to another memory location. In 8086 program control instructions belong to
three groups: unconditional transfers, conditional transfers, and subroutine call and return instructions.
Unconditional Jumps: The jmp (jump) instruction unconditionally transfers control to another point in
the program. Intra segment jumps are always between statements in the same code segment. Intersegment
jumps can transfer control to a statement in a different code segment.

JMP Address

AITS, DEPT OF ECE 18

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

~ =0

v B

> >

Unconditional jump

Conditional jump

Conditional Jump: The conditional jump instructions are the basic tool for creating loops and other
conditionally executable statements like the if.....then statement. The conditional jumps test one or more
bits in the status register to see if they match some particular pattern. If the pattern matches, control
transfers to the target location. If the condition fails, the CPU ignores the conditional jump and execution
continues with the next instruction. Some instructions, for example, test the conditions of the sign, carry,

overflow and zero flags.

Definition | Description Condition"
Jump Based on Unsigned Data

JE/JZ | Jump equal or jump zero 1=1
JNE / INZ | Jump not equal or jump not zero 1=
JA /INBE | Jump above or jump not below/ equal C=0&7=0
JAE / INB | Jump above/ equal or ump not below =0
JB /JNAE | Junyp below or jump not above/ equal C=1
JBE / INA | Jump below! equal ot jump not above C=lorZ-=1

Jump Based on Signed Data

JE/JZ | Jump equal or jump zero 1=l
JNE /INZ | Jump not equal or jump not zero 1=0
JG / JNLE | Jump greater or jump not less/ equal N=0 & 7=0

JGE / INL | Jump greater/ equal or ump not less N=0)
JL/ INGE | Jump less or jump not greater/ equal N=l
JLE | ING | Jump less/ equal or jump not greater N=lor Z=1
Arithmetic Jump
I8 Junip sign set N=1
INS Jump no sign set N=0)
JC Jump carry set C=1
INC Jump no carry set C=0
JO Tomp overflow set 0=1
INO Tump not overflow set 0=0
JP/JPE | Jump parity even =1
JNP/JPO | Jump parity odd P=0

Loop Instruction:

« These instructions are used to repeat a set of instructions several times.

 Format:

LOOP Short-Label
« Operation: (CX) €« (CX)-1

* Jump is initialized to location defined by short label if CX#0. Otherwise, execute next

sequential instruction.

« Instruction LOOP works with respect to contents of CX. CX must be preloaded with a count
that represents the number of times the loop is to be repeat.

AITS, DEPT OF ECE 19

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

» Whenever the loop is executed, contents at CX are first decremented then checked to
determine if they are equal to zero.
+ If CX=0, loop is complete and the instruction following loop is executed.
» IfCX #0, content return to the instruction at the label specified in the loop instruction.
+ LOOP AGAIN is almost same as: DEC CX, JNZ AGAIN
SUBROUTINE & SUBROUTINE HANDILING INSTRUCTIONS: CALL, RET

= A subroutine is a special segment of program that can be called for execution from any point
in a program.

= An assembly language subroutine is also referred to as a “procedure”.

= Whenever we need the subroutine, a single instruction is inserted in to the main body of the
program to call subroutine.

= Transfers the flow of the program to the procedure.

AITS, DEPT OF ECE 20

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

= CALL instruction differs from the jump instruction because a CALL saves a return address
on the stack.
= The return address returns control to the instruction that immediately follows the
CALL in a program when a RET instruction executes.
= To branch a subroutine the value in the IP or CS and IP must be modified.
= After execution, we want to return the control to the instruction that immediately follows the
one called the subroutine i.e., the original value of IP or CS and IP must be preserved.
= Execution of the instruction causes the contents of IP to be saved on the stack. (this time (SP)
< (SP) -2)
= A new 16-bit (near-proc, mem16, regl6 i.e., Intra Segment) value which is specified by the
instructions operand is loaded into IP.
= Examples: CALL 1234H
CALL BX
CALL [BX]
Return Instruction: RET instruction removes an address from the stack so the program returns to
the instruction following the CALL
« Every subroutine must end by executing an instruction that returns control to the main
program. This is the return (RET) instruction.
» By execution the value of IP or IP and CS that were saved in the stack to be returned back to
their corresponding registers. (this time (SP) < (SP)+2)
MACROS: The macro directive allows the programmer to write a named block of source
statements, then use that name in the source file to represent the group of statements. During the
assembly phase, the assembler automatically replaces each occurrence of the macro name with the
statements in the macro definition.

Macros are expanded on every occurrence of the macro name, so they can increase the length
of the executable file if used repeatably. Procedures or subroutines take up less space, but the
increased overhead of saving and restoring addresses and parameters can make them slower. In
summary, the advantages and disadvantages of macros are,

Advantages

. Repeated small groups of instructions replaced by one macro
. Errors in macros are fixed only once, in the definition

. Duplication of effort is reduced

. In effect, new higher level instructions can be created

. Programming is made easier, less error prone

. Generally quicker in execution than subroutines

Disadvantages
In large programs, produce greater code size than procedures
When to use Macros

. To replace small groups of instructions not worthy of subroutines

. To create a higher instruction set for specific applications

. To create compatibility with other computers

. To replace code portions which are repeated often throughout the program

AITS, DEPT OF ECE 21

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

Modular Programming: Instead of writing a large program in a single unit, it is better to write
small programs—which are parts of the large program. Such small programs are called program
modules or simply modules. Each such module can be separately written, tested and debugged. Once
the debugging of the small programs is over, they can be linked together. Such methodology of
developing a large program by linking the modules is called modular programming.

Assembler Directives:

Assembler directives are special instructions that provide information to the assembler but do not
generate any code. Examples include the segment directive, equ, assume and end. These mnemonics
are not valid 80x86 instructions. They are messages to the assembler, to generate address.

A pseudo-opcode is a message to the assembler, just like an assembler directive, however a
pseudo-opcode will emit object code bytes. Examples of pseudo-opcodes include byte, word, dword,
gword, and byte. These instructions emit the bytes of data specified by their operands but they are
not true 80X86 machine instructions.

ASSUME: The ASSUME directive tell the assembler the name of the logical segment it should use
for a specified segment. Ex: ASSUME CS: Code, DS: Data, SS: Stack; or ASSUME CS: Code

Data Directives: The directives DB, DW, DD, DR and DT are used to (a) define different types of
variables or (b) to set aside one or more storage locations in memory-depending on the data type:

DB — Define Byte DW — Define Word DD — Define Double word

DQ — Define Quad word DT — Define Ten Bytes

The DB directive is used to declare a byte-type variable or to set aside one or more storage locations
of type byte in memory (Define Byte)

Example: Temp DB 42H; Temp is a variable allotted 1byte of memory location assigned with data
42H

The DW directive is used to declare a variable of type word or to reserve memory locations which
can be accessed as type double word (Define word)

Example: N2 DW 427AH; N2 variable is initialized with value 427AH when it is loaded into
memory to run.

The DD directive is used to declare a variable of type double word or to reserve memory locations
which can be accessed as type double word (Define double word)

Example: Big DD 2456756CH; Big variable is initialized with 4 bytes

The DQ directive is used to tell the assembler to declare a variable 4 words in length or to reverse 4
words of storage in memory (Define Quad word)

Example: Big DQ 2456756C88464567H; Big variable is initialized with 4 words (8 bytes)

The DT directive is used to tell the assembler to declare a variable 10 bytes in length or to reverse
10bytes of storage in memory (Define Ten bytes)

Example: Packed BCD DT 11223344556677889900H; 10 byte data is initialized to variable packed
BCD

DUP: This directive operator is used to initialize several locations and to assign values to these
locations. Its format is: Name Data-Type Num DUP (value)

AITS, DEPT OF ECE 22

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

Example: TABLE DB 20 DUP (0); Reserve an array of 20 bytes of memory and initialize all 20
bytes with 0. Array is named TABLE
END: The END directive is placed after the last statement of a program to tell the assembler that this
is the end of the program module. The assembler will ignore any statement after an end directive.
The ENDP directive is used with the name of the procedure to indicate the end of a procedure to the
assembler.

SQUARE NUM PROC

SQUARE NUM ENDP
The ENDS directive is used with the name of the segment to indicate the end of a segment to the
assembler.
CODE SEGMENT

CODE ENDS
EQU: The EQU directive is used to give a name to some value or to a symbol. Each time assembler
finds the name in the program it will replace the name with the value.
FACTOR EQU 03H; This statement should be written at the start
ADD AL, FACTOR; The assembler converts this instruction as ADD AL, 03H
EVEN: The EVEN directive instructs the assembler to increment the location of the counter to the
next even address if it is not already in the even address. If the word starts at an odd address, 8086
will take 2 bus cycles to get the 2 byte of the word. “A series of words can read much more quickly if
they are at even address”.
DATA HERE SEGMENT ; Location counter will point to 0009H after assembler reads next
statement
SALES DB 9 DUP (?) ; Declare an array of 9 bytes
EVEN ; Increment location counter to 000AH
RECORD DW 100 DUP (?) ; Array of 100 words starting on even address for quicker read
DATA HERE ENDS ;

GLOBAL: This GLOBAL directive can be used in place of PUBLIC directive or in place of an
EXTRN directive. The GOLBAL directive is used to make the symbol available to other modules.
PUBLIC: The PUBLIC directive is used along with the EXTRN directive. This informs the
assembler that the labels, variables, constants, or procedures declared PUBLIC may be accessed by
other assembly modules to form their codes, but while using the PUBLIC declared labels, variables,
constants or procedures the user must declare them externals using the EXTRN directive.

EXTRN: This EXTRN directive is used to tell the assembler that the names or labels following the
directive are in some other assembly module.

GROUP: This GROUP directive is used to tell the assembler to group the logical segments named
after the directive into one logical group segment.

Example: SMALL SYSTEM GROUP CODE, DATA, STACK

AITS, DEPT OF ECE 23

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

ASSUME CS: SMALL SYSTEM, DS: SMALL SYSTEM, SS: SMALL SYSTEM
OFFSET—Is an operator which tells the assembler to determine the offset or the displacement of a
named data item (variable) or procedure from start of the segment which contains it. This operator is
used to load the offset of a variable into a register so that the variable can be accessed with one of the
indexed addressing modes. MOV AL, OFFSET N1
ORG — This ORG directive allows to set the location counter to a desired value at any point in the
program. The statement ORG 100H tells the assembler to set the location counter to 0100H.
PROCEDURE: A PROC directive is used to define a label and to delineate a sequence of instructions
that are usually interpreted to be a subroutine, that is, CALLed either from within the same physical
segment (near) or from another physical segment (far).

Syntax:

name PROC [type] P1 PROC NEAR
MOV AX, 15
ADD OX, AX

..... ENDP

name ENDP

Labels: A label, a symbolic name for a particular location in an instruction sequence, maybe defined
in one of three ways. The first way is the most common. The format is shown below: label:
[instruction]

where "label” is a unique ASM86 identifier and "instruction” is an8086/8087/8088 instruction. This
label will have the following attributes:

1. Segment-the current segment being assembled.

2. Offset-the current value of the location counter.

3. Type-will be NEAR.

An example of this form of label definition is: ALAB: MOV AX, COUNT

Introduction to 8051 MicroContoller:

To make a complete microcomputer system, only microprocessor is not sufficient. It is necessary to
add other peripherals such as ROM, RAM, decoders, drivers, number of 1/O devices to make a
complete microcomputer system. In addition, special purpose devices, such as interrupt controller,
programmable timers, programmable 1/0 devices, DMA controllers may be added to improve the
capability and performance and flexibility of a microcomputer system.

The key feature for microprocessor based design is that it has more flexibility to configure a
system as large system or small system by adding suitable peripherals.

On the other hand, the microcontroller incorporates all the features that are found in
microprocessor. The microcontroller has built-in ROM, RAM, parallel 1/0O, serial 1/0, counters and a
clock circuit. It has on-chip peripheral devices which makes it possible to have single microcomputer
system.

Advantages of built-in peripherals:

AITS, DEPT OF ECE 24

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

Built-in peripherals have smaller access times hence speed is more.
Hardware reduces due to single chip microcomputer system.
Less hardware reduces PCB size and increases reliability of the system.

Comparison between Microprocessors and Microcontrollers:

Na. Microprocessor Microcontroler
1| Miropmcassor coataing ALU, coatral unlt| Microconiroller containe microprocessor,
(cloek and timing choult) differant register and| memary [ROM and RAM), U0 interfacing
infarnupt circuit carcuil and periphatal devices such as AD
cofiverter, seclal L0, timer ete.
] Il has many insruckons (o move data between| |1 has ong or two instructons 1o move data
memary and CPLU, between memory and CPU.
2| It has one or two bit handling instructons. It kas many bit handiing nsiructions.
4. | Access times for memory and L0 devices are| Less access times for builtsn mamory and 10
FTIGRE. davices,
s MECTeprocessor Dased §ysiem raquires more| Microzontroller Dased gysiem requires |es
hardware, | hardwarz reducing PCB sze and increasing
| It reliabifty
€ | Micropmcassor based system Is mode rIEmmIE; Less fexible In design point of view,
v Il'ldElgn tlt_ll_nlm'lnl"ﬂ. » o
7. I{ has zirgle memory mag for dela and coda. It has segamls memory mep fof dala and
Lol
g Loss numbar of ping aro multfunctionad More numbar ping ane multifunctionad.
Features of 8051:

4KB on-chip program memory (ROM/EPROM).
128 bytes on-chip data memory.
Four register banks.

64KB each program and external RAM addressability.

One microsecond instruction cycle with 12MHz crystal.

32 bidirectional 1/0O lines organized as four 8-bit ports.
Multiple modes, high-speed programmable serial port (UART).
16-bit Timers/Counters.

Direct byte and bit addressability.

AITS, DEPT OF ECE 25

r

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

Block Diagram of 8051:

AITS, DEPT OF ECE 26

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

PO.0-PO.7 P20-P27

o i -

| Port 0 Port 2
v | Drivers Drivers |

cc
el |
| o N I
=
RAM Address Port 0 Port 2 EPROM/ 000000
Register)
~
)
Stack
ACC Pointer
R Bister T™MP2 TMP1 Progam
9 Address K N
Register A}
PCON
T2con
N }L{ '~ TLY I
I SBUF IE P — /1_>
ncrementer
‘ ‘ Interrupt, Serial N
Port, and Timer
Blocks 5
rogram
Psw Counter /I_>
PSEN <—] .
ALE 'I'
EA—— Control Register DPTR /
A N
RST—
PD o I
I Port 1 Latch Port 3 Latch
-
Oscillator v < 7
Port 1 \\\—'\ Port 3
Drivers —,/] Drivers |
l\ XTALT XTAL2 %I H H H H {7)
o _. ____________________ y‘onvvly
D|_| P1.0-P1.7 P3.0-P37

Accumulator: The Accumulator, as it’s name suggests, is used as a general register to accumulate
the results of a large number of instructions. It can hold an 8-bit (1-byte) value.

‘B’ Register: The "B" register is very similar to the Accumulator in the sense that it may hold an 8-
bit (1-byte) value. The "B" register is only used by two 8051 instructions: MUL AB and DIV AB.
Aside from the MUL and DIV an instruction, the “B” register is often used as yet another

temporary storage register much like a ninth "R" register.

AITS, DEPT OF ECE 27

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

Program Status Word
The PSW register contains program status information. It is a 8-bit flag register, out of 8-bits 6 bits
are used and 2 bits are reserved. Out of 6 bits 4 bits are conditional bits and 2 bits are used for
selecting register bank.

MSB LSB
CY AC FO RS1 | RSO ov — P

BIT SYMBOL FUNCTION
PSW7 CY Carry flag.
PSW6E AC Auxilliary Carry flag. (For BCD operations.)
PSW.5 FO Flag 0. (Available to the user for general purposes.)
PSW4 RS1 Reqister bank select control bit 1.

Set/cleared by software to determine working register bank. (See Note.)
PSW.3 RS0 Register bank select control bit 0.

Set/cleared by software todetermine working register bank. (See Note.)
PSW2 ov Overflow flag.
PSW.1 — User-definable flag.
PSW.0 P Parity flag.

Set/cleared by hardware each instruction cycle to indicate an odd/even
number of “one” bits in the Accumulator, i.e_, even parity.

NOTE: The contents of (RS1, RS0) enable the warking register banks as follows:
(0,0)— Bank 0 (00H-07H)
(0,1— Bank 1 (08H-0fH)
(1,00—Bank2 (10H-17H)
(1.1—Bank3 (18H-17H)
Stack Pointer

The Stack Pointer register is 8 bits wide. It is incremented before data is stored during PUSH and
CALL executions. While the stack may reside anywhere in on-chip RAM, the Stack Pointer is
initialized to 07H after a reset. This causes the stack to begin at locations 08H.

Data Pointer

The Data Pointer (DPTR) consists of a high byte (DPH) and a low byte (DPL). Its intended function
is to hold a 16-bit address. It may be manipulated as a 16-bit register or as two independent 8-bit
registers.

Program Counter

The Program Counter (PC) is a 2-byte address which tells the 8051 where the next instruction to
execute is found in memory. When the 8051 is initialized PC always starts at 0000h and is
incremented each time an instruction is executed. It is important to note that PC isn’t always
incremented by one. Since some instructions require 2 or 3 bytes the PC will be incremented by 2 or
3 in these cases.

The Program Counter is special in that there is no way to directly modify its value. That is to say, we
can’t do something like PC=2430h. On the other hand, if we execute LIMP 2430h you’ve effectively
accomplished the same thing.

Ports 0 to 3

PO, P1, P2, and P3 are the SFR latches of Ports 0, 1, 2, and 3, respectively. Writing a one to a bit of a
port SFR (PO, P1, P2, or P3) causes the corresponding port output pin to switch high. Writing a zero
causes the port output pin to switch low. When used as an input, the external state of a port pin will
be held in the port SFR (i.e., if the external state of a pin is low, the corresponding port SFR bit will
contain a 0; if it is high, the bit will contain a 1).

Serial Data Buffer

The Serial Buffer is actually two separate registers, a transmit buffer and a receive buffer. When data
is moved to SBUF, it goes to the transmit buffer and is held for serial transmission. (Moving a byte

AITS, DEPT OF ECE 28

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

to SBUF is what initiates the transmission.) When data is moved from SBUF, it comes from the
receive buffer.

Timer Registers Basic to 80C51

Register pairs (THO, TLO), and (TH1, TL1) are the 16-bit Counting registers for Timer/Counters O
and 1, respectively.

Control Register for the 80C51

Special Function Registers IP, IE, TMOD, TCON, SCON, and PCON contain control and status bits
for the interrupt system, the Timer/Counters, and the serial port.

Register Banks

The 8051 uses 8 "R" registers which are used in many of its instructions. These "R" registers are
numbered from O through 7 (RO, R1, R2, R3, R4, R5, R6, and R7). These registers are generally used
to assist in manipulating values and moving data from one memory location to another.

PSEN (Program Store Enable)
The 8051 has four dedicated bus control signals. It is a control signal that enables external program
(code) memory. It usually connects to an EPROM's Output Enable (OE) pin to permit reading of
program bytes. The PSEN signal pulses low during the fetch stage of an instruction. When executing
a program from internal ROM (8051/8052), PSEN remains in the inactive (high) state.
ALE (Address Latch Enable)
The 8051 similarly uses ALE for demultiplexing the address and data bus. When Port 0 is used in its
alternate mode—as the data bus and the low-byte of the address bus—ALE is the signal that latches
the address into an external register during the first half of a memory cycle.
EA (External Access)
The EA input signal is generally tied high (+5 V) or low (ground). If high, the 8051 executes
programs from internal ROM when executing in the lower 4K of memory. If low, programs execute
from external memory only (and PSEN pulses low accordingly).
RST (Reset)
The RST input is the master reset for the 8051. When this signal is brought high for at least two
machine cycles, the 8051 internal registers are loaded with appropriate values for an orderly system
start-up.
On-chip Oscillator Inputs
The 8051 features an on-chip oscillator. The nominal crystal frequency is 12 MHz for most ICs in the
MCS-51™ family.
Memory Organization
Most microprocessors implement a shared memory space for data and programs. This is reasonable,
since programs are usually stored on a disk and loaded into RAM for execution; thus both the data
and programs reside in the system RAM. Microcontrollers have limited memory, and there is no disk
drive or disk operating system. The control program must reside in. For this reason, the 8051
implements a separate memory space for programs (code) and data. Both the code and data may be
internal; however, both expand using external components to a maximum of 64K code memory and
64K data memory.
The internal memory consists of on-chip ROM (8051/8052 only) and on-chip data RAM. The on-
chip RAM contains a rich arrangement of general-purpose storage, bit-addressable storage,
register banks, and special function registers.
The internal memory space is divided between register banks (00H-1FH), bit-addressable RAM
(20H-2FH), general-purpose RAM (30H-7FH), and special function registers (80H-FFH).

Any location in the general-purpose RAM can be accessed freely using the direct or indirect
addressing modes.

AITS, DEPT OF ECE 29

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

Bit-addressable RAM

The 8051 contains 210 bit-addressable locations, of which 128 are at byte addresses 20H through
2FH, and the rest are in the special function registers.

The idea of individually accessing bits through software is a powerful feature of most
microcontrollers. Bits can be set, cleared, ANDed, ORed, etc., with a single instruction.

Most microprocessors require a read-modify-write sequence of instructions to achieve the same
effect. Furthermore, the 8051 1/O ports are bit-addressable, simplifying the software interface to
single-bit inputs and outputs.

There are 128 general-purpose bit-addressable locations at byte address 20H through 2FH (8
bits/byte X 16 bytes = 128 bits).

Register Banks

The bottom 32 locations of internal memory contain the register banks. The 8051 instruction set
supports 8 registers, RO through R7, and by default (after a system reset) these registers are at
addresses OOH-07H.

Instructions using registers RO to R7 are shorter and faster than the equivalent instructions using
direct addressing. Data values used frequently should use one of these registers.

Special Function Registers

The 8051 internal registers are configured as part of the on-chip RAM,; therefore, each register also
has an address. This is reasonable for the 8051, since it has so many registers. As well as R0 to R7,
there are 21 special function registers (SFRs) at the top of internal RAM, from addresses 80H to
FFH.

AITS, DEPT OF ECE 30

Erts
addrsss
TF
Gezmara]
B AR
30
2P TE|7E|7D|7C|7B|TA| 72| 7E
ZE FT|7E|T5| 74| 73| 72| 7L |70
D SF|6E | |6C |[6B|eA |52 | S8
c ST| &6 |65 |54 |63 | &2 |61 | SO
IB IF|SE|SD|5C |5E |5 A4 59 | 38
e 37 6| 53 4 |3F | 52|51 |50
20 EF|4E 4D |4 C 2B |4 A |42 |4B
28 47 |4€ |25 |42 |23 |22 |41 |40
7 IF|3E|3D|3C 2B |3A|Z2 |38
5 IT|IS |35 |32 |35 |32 |31 |30
I3 ZF |ZE|2D |2 2B |2A |22 |28
4 27|26 |2 24 |23 |2X |21 |20
Z3 IF|IE|ID|IC|IB|IA] 19| 01E
22z 17| 16| 05|14 13| 12 10 | 1
21 OF |0FE (0D |OC KB [OA |00 |08
Zz0 o7 |0S [OF |04 |03 |62 |01 |09
I[F
18 Bank 3
17
10 Bamnk 2
oOF
HE
o7 Dafaulr register
oo bunk for ED-E7T

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

EXTERNAL MEMORY
The MCS-51 architecture provides expansion in the form of a 64K external code memory space and
a 64K external data memory space. Extra ROM and RAM can be added as needed. Peripheral
interface ICs can also be added to expand the 1/O capability. These become part of the external data
memory space using memory-mapped 1/0.

Byt
addrass

FF

1-0
EC
DO

EE

B

Bir address

FPFIFS|IFS5[F4IF3|F2IFIIFG
ETIES|.EFIE4|EFEX|EILIED
DTIDSIDI D4 DID2] - Do

- L - 1 -

BC|EB|BAIB®IBE

B7|B&|B5| B4+ B3

B2[EIEBC

AF)| - AC|AB

|aA|AB| A

ATIASLIATIASIAT

AT|ALlAD

not bit addrs

snakle

AF|RE|¥D|5C "B

DA |BRF|SE

ET1S1851941531

RE jolla0

not kit addre

snabla

noet bit addre

snabla

not bit addre

wnable

=zot bit addre

wsabls

=zmot bit addressakls

EF |EE|IEDI|BC|EE|EA|ER|BE

mot bit addressabls

mot bit addressabla

mot bit addreszable

oot kit addreszabla

EFIES1ESIE<21EILE2 jE1 1BD

ACC

PR

"
[F1]

SBUF
SCOM

TE1
THO
TL1
TLD
T O D
TCOM
PCOM

DFH
DPL
=P

B

SPECIAT FUNCTION EEGISTEERS

When external memory is used, Port 0 is unavailable as an 1/0 port. It becomes a multiplexed

address (A0-A7) and data (D0-D7) bus, with ALE latching the low-byte of the address at the

beginning of each external memory cycle. Port 2 is usually (but not always) employed for the high-byte

of the address bus.

Addressing Modes of 8051:

In this section, we will see different addressing modes of the 8051 microcontrollers. In 8051
there are 1-byte, 2-byte instructions and very few 3-byte instructions are present. The opcodes

AITS, DEPT OF ECE 31

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

are 8-bit long. As the opcodes are 8-bit data, there are 256 possibilities. Among 256, 255
opcodes are implemented.

The clock frequency is12MHz, so 64 instruction types are executed in just 1 ps, and rest are just
2 us. The Multiplication and Division operations take 4 psto to execute.

In 8051 There are six types of addressing modes.

Immediate AddressingMode
Register AddressingMode

Direct AddressingMode

Register IndirectAddressing Mode
Indexed AddressingMode

Implied AddressingMode

(0 O Y O B O

AITS, DEPT OF ECE 32

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

Immediate addressing mode
In this Immediate Addressing Mode, the data is provided in the instruction itself. The data is
provided immediately after the opcode. These are some examples of Immediate Addressing
Mode.

MOVA, #O0AFH;
MOVR3, #45H;
MOVDPTR, #FEOOH;

In these instructions, the # symbol is used for immediate data. In the last instruction, there is
DPTR. The DPTR stands for Data Pointer. Using this, it points the external data memory
location. In the first instruction, the immediate data is AFH, but one 0 is added at the beginning.
So when the data is starting with A to F, the data should be preceded by 0.

Register addressing mode
In the register addressing mode the source or destination data should be present in a register (RO
to R7). These are some examples of RegisterAddressing Mode.

MOVA, R5;
MOVR2, #45H;
MOVRO, A;

In 8051, there is no instruction like MOVR5, R7. But we can get the same result by using this i

nstruction MOV R5, 07H, or by using MOV 05H, R7. But this two instruction will work when
the selected register bank is RBO. To use another register bank and to get the same effect, we have
to add the starting address of that register bank with the register number. For an example, if the
RB2 is selected, and we want to access R5, then the address will be (10H + 05H = 15H), so the
instruction will look like this MOV 15H, R7. Here 10H is the starting address of Register Bank 2.

Direct Addressing Mode

In the Direct Addressing Mode, the source or destination address is specified by using 8- bit data
in the instruction. Only the internal data memory can be used in this mode. Here some of the

examples of direct Addressing Mode.

MOV80H, R6;
MOVR2, 45H;
MOVRO0, 05H;

The first instruction will send the content of registerR6 to port PO (Address of Port 0 is 80H).
The second one is forgetting content from 45H to R2. The third one is used to get data from
Register R5 (When register bank RBO is selected) to register R5.

Register indirect addressing Mode
In this mode, the source or destination address is given in the register. By using register indirect
addressing mode, the internal or external addresses can be accessed. The RO
and R1 are used for 8-bit addresses, and DPTR is used for 16-bit addresses, no other registers can be
used for addressing purposes. Let us see some examples of this mode.

AITS, DEPT OF ECE 33

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

MOVOESH, @R0; MOV@RL,
80H

In the instructions, the @ symbol is used for register indirect addressing. In the first instruction, it is
showing that theRO register is used. If the content of RO is 40H, then that instruction will take the data
which is located at location 40H of the internal RAM. In the second one, if the content of R1 is 30H,
then it indicates that the content of port PO will be stored at location 30H in the internal RAM.

MOVXA, @RI;
MOV@DPTR, A;

In these two instructions, the X in MOVX indicates the external data memory. The external data
memory can only be accessed in register indirect mode. In the first instruction if the RO is holding
40H, then A will get the content of external RAM location40H. And in the second one, the content of
A is overwritten in the location pointed by DPTR.

Indexed addressing mode

In the indexed addressing mode, the source memory can only be accessed from program memory only.
The destination operand is always the register A. These are some examples of Indexed addressing
mode.

MOVCA, @A+PC;
MOVCA, @A+DPTR;

The C in MOVC instruction refers to code byte. For the first instruction, let us consider A holds 30H.
And the PC value is1125H. The contents of program memory location 1155H (30H + 1125H) are
moved to register A.

Implied Addressing Mode

In the implied addressing mode, there will be a single operand. These types of instruction can work on
specific registers only. These types of instructions are also known as register specific instruction. Here
are some examples of Implied Addressing Mode.

RLA;
SWAPA;

These are 1- byte instruction. The first one is used to rotate the A register content to the Left. The
second one is used to swap the nibbles in A.

Pin Diagram of 8051

8051 microcontroller is a 40 pin Dual Inline Package (DIP). These 40 pins serve different functions
like read, write, 1/O operations, interrupts etc. 8051 has four I/O ports wherein each port has 8 pins
which can be configured as input or output depending upon the logic state of the pins. Therefore, 32
out of these 40 pins are dedicated to 1/0O ports. The rest of the pins are dedicated to VCC, GND,
XTALI, XTAL2, RST, ALE, EA’ and PSEN".

Pin diagram of 8051 microprocessor is as given below :

AITS, DEPT OF ECE 34

https://www.geeksforgeeks.org/introduction-to-8051-microcontroller/
https://www.geeksforgeeks.org/interrupts/

)
P1OC]1 40 O vCC
P1.12 39 [P0.0 (ADO)
P1.2[]3 38 [PO.1 (AD1)
P1.34 37 O P0.2 (AD2)
P1.4]5 36 [0 P0.3 (AD3)
P15(]6 35 [P0.4 (AD4)
P17 34 [0 PO.5 (ADS)
P1.7(]8 33 [P0.6 (ADB)
RSTO9 32 [PO.7 (AD7)

(RXD) P3.0C] 10 8051 31 O EA/VPP

(TXD) P3.1] 11 30 [ALE/PROG

(INTO) P3.2(] 12 29 [1J PSEN

(INT1) P3.3[13 28 [1 P2.7 (A15)

(TO) P3.4] 14 27 O P2.6 (A14)
(T1)P3.5 15 26 [1 P2.5 (A13)
(WR) P3.6C] 16 25 [P2.4 (A12)
(RD)P3.7 17 24 [P2.3 (A11)
XTAL2] 18 23 [0 P2.2 (A10)
XTAL1] 19 22 [P2.1 (A9)
GND (] 20 21 [P2.0 (A8)

40 - PIN DIP

Description of the Pins :

e PinltoPin8 (Portl) -

Pin 1 to Pin 8 are assigned to Port 1 for simple 1/O operations. They can be configured as input or output

pins depending on the logic control i.e. if logic zero

(0) is applied to the 1/0 port it will act as an output pin and if logic one (1) is applied the pin will act as an
input pin. These pins are also referred to as P1.0 to P1.7 (where P1 indicates that it is a pin in port 1 and
the number after “.” tells the pin number i.e. 0 indicates first pin of the port. So, P1.0 means first pin of
port 1, P1.1 means second pin of the port 1 and so on). These pins are bidirectional pins.

e Pin9(RST)—

Reset pin. It isan active-high, input pin. Therefore if the RST pin is high for a minimum of 2 machine

cycles, the microcontroller will reset i.e. it will close and terminate all activities.

It is often referred as

“power-on-reset” pin because it is used to resetthe microcontrollerto it’sinitial values when powerison

(high).
e Pinl10toPin17 (Port3)—

Pin10topin17areport3pinswhicharealsoreferredtoasP3.0to P3.7. These pinsaresimilartoportl

andcanbeusedasuniversalinputoroutputpins. These pins are bidirectional pins.

AITS, DEPT OF ECE 35

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

These pins also have some additional functions which are as follows:
1) P3.0 (RXD):
10th pin is RXD (serial data receive pin) which is for serial input. Through this input signal
microcontroller receives data for serial communication.
2) P3.1(TXD):
11th pin is TXD (serial data transmit pin) which is serial output pin. Through this output signal
microcontroller transmits data for serial communication.

3) P3.2 and P3.3 (INT0’, INT1’) :

12th and 13th pins are for External Hardware Interrupt O and Interrupt 1 respectively. When this
interrupt is activated(i.e. when it is low), 8051 gets interrupted in whatever it is doing and jumps to the
vector value of the interrupt (0003H for INTOand 0013H for INT1)and starts performing Interrupt
Service Routine (ISR) fromthat vector location.

4) P3.4andP3.5(T0and T1):
14th and 15th pin are for Timer 0 and Timer 1 external input. They can be connected with 16 bit
timer/counter.
5) P3.6 (WR’):
16th pinisfor external memory write i.e. writing data to the external memory.
6) P3.7(RD’):
17th pinis for external memory read i.e. reading data from external memory.
Pin18andPin 19 (XTAL2 And XTAL1) —

Thesepinsare connectedtoanexternal oscillatorwhichisgenerally aquartz crystal oscillator. They are used
to provide an external clock frequency of 4AMHz to 30MHz.

Pin20(GND) :
Thispinisconnectedtotheground. Ithastobe providedwithOV powersupply. Hence itisconnected
tothenegativeterminalofthe powersupply.

Pin 21 to Pin 28 (Port 2) :
Pin 21 to pin 28 are port 2 pins also referred to as P2.0 to P2.7. When additional external memory is
interfaced with the 8051 microcontroller, pins of port 2 actas higher-order address bytes. These pinsare
bidirectional.

Pin 29 (PSEN) :
PSEN stands for Program Store Enable. It is output, active-low pin. This is used to read external
memory. In 8031 based system where external ROM holds the program code, this pin is connected
tothe OE pin ofthe ROM.

Pin 30 (ALE/PROG) :
ALE stands for Address Latch Enable. Itis input, active-high pin. This pin is used to distinguish between
memory chips when multiple memory chips are used. It is also usedtode-multiplexthemultiplexedaddress
anddatasignalsavailableatport0.During flash programming i.e. Programming of EPROM, this pin
acts asprogram pulse input (PROG).

AITS, DEPT OF ECE 36

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

e Pin31(EA/VPP):
EAstandsfor External Access input. Itisused to enable/disable externalmemory interfacing. In8051,
EAisconnectedtoVccasitcomeswithon-chipROMtostore programs. Forother familymemberssuch
as8031and8032inwhichthereisno on-chip ROM, the EA pinisconnected to the GND.

e Pin32toPin39 (Port0):
Pin 32 to pin 39 are port 0 pins also referred to as P0.0 to P0.7. They are bidirectional input/output pins.
They don’t have any internal pull-ups. Hence, 10K pull-upregistersareusedasexternal pull-ups. PortOisalso
designatedasADO- AD7 because8051 multiplexes address anddata through port0 tosave pins.

e Pin40(VCC):
This pin provides power supply voltage i.e. +5 Volts to the circuit.

Instruction Set of 8051:
Types of Instructions in 8051 Microcontroller Instruction Set

Before seeing the types of instructions, let us see the structure of the 8051 Microcontroller Instruction.
An 8051 Instruction consists of an Opcode (short of Operation — Code) followed by Operand(s) of size
Zero Byte, One Byte or Two Bytes.

The Op-Code part of the instruction contains the Mnemonic, which specifies the type of operation to
be performed. All Mnemonics or the Opcode part of the instruction are of One Byte size.

Coming to the Operand part of the instruction, it defines the data being processed by the instructions.
The operand can be any of the following:

No Operand

Data value

1/0O Port

Memory Location
(1 CPU register

OO oo™

There can multiple operands and the format of instruction is as follows: MNEMONIC
DESTINATION OPERAND, SOURCE OPERAND

A simple instruction consists of just the opcode. Other instructions may include one or more
operands. Instruction can be one-byte instruction, which contains only opcode, or two-byte
instructions, where the second byte is the operand or three byte instructions, where the operand makes
up the second and third byte.

Based on the operation they perform, all the instructions in the 8051 Microcontroller
Instruction Set are divided into five groups. They are:

Data Transfer Instructions

Arithmetic Instructions

Logical Instructions

Boolean or Bit Manipulation Instructions
Program Branching Instructions

0 R O R B B B

AITS, DEPT OF ECE 37

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

We will now see about these instructions briefly.

Data T

The Data Transfer Instructions are associated with transfer of data between registers or external
program memory or external data memory. The Mnemonics associated with Data Transfer are given

below.

N Y R O O O

The following table lists out all the possible data transfer instructions along with other details like

ransfer Instructions

MOV
MOVC
MOVX
PUSH
POP
XCH
XCHD

Mnemoni Description
C

MOV Move Data

MOVC Move Code

Move External Data
Move Data to Stack
Copy Data from Stack

MOCX
PUSH
POP
XCH

XCHD
Registers

Exchange Data between two Registers
Exchange Lower Order Data between two

addressing mode, size occupied and number machine cycles it takes.

_Mnemonic Instruction Description | Addressing Mode | # of Bytes | # of Cycles
MOV A. #Data A €< Data Immediate 2 1
A, Rn A € Rn Register 1 1
A, Direct A € (Direct) Direct 2 1
A. @RI A € @Ri Indirect 1 1
Rn. ¥Data Rn € data Immediate 2 1
Rn. A Rn € A Register 1 1
Rn. Direct Rn € (Direct) Direct 2 2
Direct, A (Direct) € A Direct 2 1
Direct. Rn (Direct) € Rn Direct 2 2
Directl. Direct2 (Directl) € (Direct2) Direct 3 =
Direct, @Ri (Direct) € @Ri Indirect 2 2
Direct. #Data (Direct) € #Data Direct 3 2
@Ri, A @Ri € A Indirect 1 1
@Ri, Direct @Ri € Direct Indirect 2 2
@RI, #Data @Ri € #Data Indirect 2 1
DPTR. #Datalé DPTR € #Datalé Immediate 3 2
MOVC A, @A+-DPTR A € Code Pointed by A+DPTR Indexed 1 2
A, @AFPC A € Code Pointed by A+PC Indexed 1 2
A, @RI A € Code Pointed by Ri (8-bit Address) Indirect 1 2
MOVX A. @DPTR A € External Data Pointed by DPTR Indirect 1 2
@Ri, A @Ri € A (External Data 8-bit Addr) Indirect 1 2
@DPTR. A @DPTR €< A (External Data 16-bit Addr) Indirect 1 2
PUSH Direct Stack Pointer SP € (Direct) Direct 2 2
POP Direct (Direct) € Stack Pointer SP Direct 2 =2
XCH Rn Exchange ACC with Rn Register 1 1
Direct Exchange ACC with Direct Byte Direct 2 1
@Ri Exchange ACC with Indirect RAM Indirect 1 1
XCHD A, @Ri Exchange ACC with Lower Order Indirect RAM Indirect 1 1

AITS, DEPT OF ECE 38 I

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

Arithmetic Instructions:

Using Arithmetic Instructions, you can perform addition, subtraction, multiplication and division.
The arithmetic instructions also include increment by one, decrement by one and a special
instruction called Decimal Adjust Accumulator.

The Mnemonics associated with the Arithmetic Instructions of the 8051 Microcontroller
Instruction Set are:

(J ADD
0 ADDC
J SUBB
0 INC
0 DEC
J MUL
0 DIV
0 DAA
Mnemoni Description
C
ADD Addition without Carry
ADDC Addition with Carry
SUBB Subtract with Carry
INC Increment by 1
DEC Decrement by 1
MUL Multiply
DIV Divide
DA A Decimal Adjust the Accumulator (A Register)

The arithmetic instructions have no knowledge about the data format i.e., signed, unsigned, ASCII,
BCD, etc. Also, the operations performed by the arithmetic instructions affect flags like carry,
overflow, zero, etc. in the PSW Register.

All the possible Mnemonics associated with Arithmetic Instructions are mentioned in the
following table.

Logical Instructions

The next group of instructions are the Logical Instructions, which perform logical operations like AND,
OR, XOR, NOT, Rotate, Clear and Swap. Logical Instruction are performed on Bytes of data on a bit-
by-bit basis.

Mnemonics associated with Logical Instructions are as follows:

ANL
ORL
XRL
CLR
CPL

(0 O T R B B B

AITS, DEPT OF ECE 39

RL
RLC
RR
RRC
SWAP

0) R B B O

Mnemoni
c
ANL
ORL
XRL
CLR
CPL
RL
RLC
RR
RRC
SWAP

Description

Logical AND
Logical OR
Ex-OR

Clear Register

Complement the Register

Rotate a Byte to Left

Rotate a Byte and Carry Bit to Left

Rotate a Byte to Right

Rotate a Byte and Carry Bit to Right

Exchange lower and higher nibbles in a Byte
The following table shows all the possible Mnemonics of the Logical Instructions.

Mnemonic Instruction Description Addressing Mode # of Bytes # of Cycles
ANL A. #Data A € A AND Data Immediate 2 1
A.Rn A € A AND Rn Register 1 1
A. Direct A €< A AND (Direct) Direct 2 1
A @Ri A < A AND @Ri Indirect 1 1
Direct. A (Direct) €< (Direct) AND A Direct 2 1
Direct. #FData (Direct) € (Direct) AND #Data Direct 3 2
ORL A. #Data A € A OR Data Immediate 2 1
A.Rn A €< A OR Rn Register 1 1
A. Direct A € A OR (Direct) Direct 2 1
A. @Ri1 A €< A OR @Ri Indirect 1 1
Direct. A (Direct) € (Direct) OR A Direct 2 1
Direct. #Data (Direct) €< (Direct) OR #Data Direct 3 2
XRL A. #Data A € A XRL Data Immediate 2 1
A.Rn A < A XRIL Rn Register 1 1
A Direct A €< A XRI (Direct) Direct 2 1
A. @R1 A € A XRI @Ri Indirect 1 1
Direct. A (Direct) € (Direct) XRL A Direct 2 1
Direct. #Data (Direct) € (Direct) XRI. #Data Direct 3 2
CLR A A< O0H - 1 1
CPE A A <€ A -- 1 1
RIL A Rotate ACC Left - 1 1
RIC A Rotate ACC Left through Carry - 1 1
RR A Rotate ACC Right - 1 1
RRC A Rotate ACC Right through Carry - 1 1
SWAP A Swap Nibbles within ACC - 1 1

Boolean or Bit Manipulation Instructions

As the name suggests, Boolean or Bit Manipulation Instructions deal with bit variables. We know
that there is a special bit-addressable area in the RAM and some of the Special Function Registers

(SFRs) are also bit addressable.

The Mnemonics corresponding to the Boolean or Bit Manipulation instructions are:

0 CLR
1 SETB

AITS, DEPT OF ECE 40 I

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

MOV
JC
JNC

JB

JNB
JBC
ANL
ORL
CPL

OO0 Oo0O0O0o-Qgood

Mnemoni
c

CLR
SETB
MOV

JC

JNC

JB

JNB

JBC

ANL
ORL
CPL

These instructions can perform set, clear, and, or, complement etc. at bit level. All the possible

Description

Clear a Bit (Reset to 0)

Set a Bit (Set to 1)

Move a Bit

Jump if Carry Flag is Set

Jump if Carry Flag is Not Set
Jump if specified Bit is Set
Jump if specified Bit is Not Set

Jump if specified Bit is Set and also clear the

Bit

Bitwise AND
Bitwise OR
Complement the Bit

mnemonics of the Boolean Instructions are specified in the following table.

Mnemonic Instruction Description # of Bytes | # of Cycles
CLR C C < 0 (C = Carry Bit) 1 1
Bit Bit €< 0 (Bit = Direct Bit) 2 1
SET C c<1 1 1
Bit Bit < 1 2 1
CPL G c< C 1 1
Bit Bit < Bit 2 1
ANL C. /Bit C < C. Bit (AND) 2 1
C. Bit C < C . Bit (AND) 2 1
ORL C. /Bit C < C + Bit (OR) 2 1
C. Bit C < C + Bit (OR) 2 1
MOV C. Bit C < Bit 2 1
Bit. C Bit € C 2 2
JC rel Jump is Carry (C) is Set 2 2
JINC rel Jump is Carry (C) is Not Set 2 2
JB Bit, rel Jump is Direct Bit is Set < 2
JNB Bit. rel Jump is Direct Bit is Not Set 3 2
S Jump is Direct Bit is Set and >
JBC Bit, rel Clear Bit 3 2

AITS, DEPT OF ECE 41 I

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

Program Branching Instructions

The last group of instructions in the 8051 Microcontroller Instruction Set are the Program Branching
Instructions. These instructions control the flow of program logic. The mnemonics of the Program
Branching Instructions are as follows.

0 LIMP

0 AJMP

0 SIMP

0 Jz

0 JNZ

0 CJNE

[0 DJINZ

0 NOP

0 LCALL

0 ACALL

0 RET

0 RETI

0 JMP
Mnemoni Description
C
LIMP Long Jump (Unconditional)
AJMP Absolute Jump (Unconditional)
SIMP Short Jump (Unconditional)
JZ Jump if Alisequal to 0
JNZ Jump if A'is not equal to 0
CINE Compare and Jump if Not Equal
DINZ Decrement and Jump if Not Zero
NOP No Operation
LCALL Long Call to Subroutine
ACALL Absolute Call to Subroutine (Unconditional)
RET Return from Subroutine
RETI Return from Interrupt

Jump to an Address (Unconditional)
JMP

All these instructions, except the NOP (No Operation) affect the Program Counter (PC) in one way
or other. Some of these instructions has decision making capability before transferring control to other
part of the program.

The following table shows all the mnemonics with respect to the program branching instructions.

AITS, DEPT OF ECE 42

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

Mnemonic Instruction Description # of Bytes | # of Cycles
Absolute Subroutine Call
£ AD 2 2
e B PC + 2 > (SP): ADDR11 = PC = =
Long Subroutine Call &
LGl SRl 16 PC + 3 = (SP): ADDR16 = PC 3 =
Return from Subroutine

= 2
RET (SP) > PC 1 2
RETI -- Return from Interrupt 1 2
Absolute Jump > =
SE ARDPEII ADDRI11 = PC 2 2
TMP Long Jump o

L BBl ADDRI16 > PC =

) Short Jump

SIME =l PC + 2 +rel > PC 2
JNMP @A + DPTR A + DPTR > PC 1 =
JZ rel If A=0, Jump to PC + rel 2 2

INZ rel If A # 0, Jump to PC + rel
CINE A Divect vel Compare (l;)xf*ec't) with A. Jump 3 >
to PC + rel if not equal
- X Compare #Data with A. Jump to =
Sy etiat, il PC + rel if not equal 3 -
: . Compare #Data with Rn. Jump
s Dats =l to PC + rel if not equal = =
.) Compare #Data with @Ri. Jump >
@B, #Data, rel to PC + rel if not equal . -
DINZ il Decrement _Rn. Jump to PC + rel > >
if not zero
Direct rol Decrement (D_u'ect). Jump to PC 3 >
+ rel if not zero

NOP No Operation 1 1

Microcontrollers 8051 Input Output Ports
8051 microcontrollers have 4 1/0O ports each of 8-bit, which can be configured as input or output.

Hence, total 32 input/output pins allow the microcontroller to be connected with the peripheral
devices.

(1 Pin configuration, i.e. the pin can be configured as 1 for input and O for output as per the logic
state.

0 Input/Output (1/0O) pin — All the circuits within the microcontroller must be
connected to one of its pins except PO port because it does not have pull- up resistors
built-in.

0 Input pin — Logic 1 is applied to a bit of the P register. The output FE transistor is
turned off and the other pin remains connected to the power supply voltage over a pull-
up resistor of high resistance.

(1 Port 0 — The PO (zero) port is characterized by two functions —

0 When the external memory is used then the lower address byte (addresses AOA7) is
applied on it, else all bits of this port are configured as input/output.

o When PO port is configured as an output then other ports consisting of pins with built-
in pull-up resistor connected by its end to 5V power supply, the pins of this port have
this resistor left out.

Input Configuration:

AITS, DEPT OF ECE 43

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL

input resistance and in-determined potential.

Output Configuration:

When the pin is configured as an output, then it acts as an “open drain”. By applying logic 0 to a port
bit, the appropriate pin will be connected to ground (0V), and applying logic 1, the external output
will keep on “floating”.

In order to apply logic 1 (5V) on this output pin, it is necessary to build an external pullup resistor.

e Portl

P1isatrue I/O port as it doesn’t have any alternative functions as in PO, but this port can be configured
as general 1/0 only. It has a built-in pull-up resistor and is completely compatible with TTL circuits.

e Port2

P2 is similar to PO when the external memory is used. Pins of this port occupy addresses intended for
the external memory chip. This port can be used for higher address byte with addresses A8-A15. When
no memory is added then this port can be used as a general input/output port similar to Port 1.

e Port3

In this port, functions are similar to other ports except that the logic 1 must be applied to appropriate
bit of the P3 register.

Pins Current Limitations

(1 When pins are configured as an output (i.e. logic 0), then the single port pins can receive a
current of 10mA.

(1 When these pins are configured as inputs (i.e. logic 1), then built-in pull-up resistors provide
very weak current, but can activate up to 4 TTL inputs of LS series.

(1 If all 8 bits of a port are active, then the total current must be limited to 15mA (port PO:
26mA).

(1 If all ports (32 bits) are active, then the total maximum current must be limited to 71mA.

AITS, DEPT OF ECE 44

	UNIT-IV Microprocessor-I
	Microprocessor - Overview
	Block Diagram of a Basic Microcomputer
	How does a Microprocessor Work?
	List of Terms Used in a Microprocessor

	Features of a Microprocessor

	Microprocessor - Classification
	RISC Processor
	Architecture of RISC
	Characteristics of RISC

	CISC Processor
	Architecture of CISC
	Characteristics of CISC

	Special Processors
	Coprocessor
	Input/Output Processor
	Transputer (Transistor Computer)
	DSP (Digital Signal Processor)

	Microprocessor - 8085 Architecture
	8085 Microprocessor – Functional Units
	Accumulator
	Arithmetic and logic unit
	General purpose register
	Program counter
	Stack pointer
	Temporary register
	Flag register
	Instruction register and decoder
	Timing and control unit
	Interrupt control
	Serial Input/output control
	Address buffer and address-data buffer
	Address bus and data bus

	8085 Architecture

	Microprocessor - 8085 Pin Configuration
	Address bus
	Data bus
	Control and status signals
	IO/M
	S1 & S0
	Power supply
	Clock signals
	Interrupts & externally initiated signals
	Serial I/O signals

	Microprocessor - 8086 Overview
	Features of 8086
	Comparison between 8085 & 8086 Microprocessor
	Architecture of 8086

	Microprocessor - 8086 Functional Units
	EU (Execution Unit)
	ALU
	Flag Register
	Conditional Flags
	Control Flags
	General purpose register
	Stack pointer register

	BIU (Bus Interface Unit)

	Register organization of 8086
	Flag Register in 8086 Microprocessor
	1) Condition flags
	2) Control flags

	Microprocessor - 8086 Addressing Modes
	Immediate addressing mode
	Example

	Register addressing mode
	Example

	Direct addressing mode
	Example

	Register indirect addressing mode
	Example

	Based addressing mode
	Example

	Indexed addressing mode
	Example

	Based-index addressing mode
	Example

	Based indexed with displacement mode
	Example

	Microprocessor - 8086 Pin Configuration
	8086 Pin Diagram

	Microprocessor - 8086 Interrupts
	Hardware Interrupts
	NMI
	INTR

	Software Interrupts
	INT- Interrupt instruction with type number
	INT 3-Break Point Interrupt Instruction
	INTO - Interrupt on overflow instruction
	Maximum mode:

	Introduction to 8051 MicroContoller:
	Addressing Modes of 8051:
	Immediate addressing mode
	Register addressing mode
	Direct Addressing Mode
	Register indirect addressing Mode
	Indexed addressing mode
	Implied Addressing Mode

	Pin Diagram of 8051:
	Output Configuration:
	 Port 1
	 Port 2
	 Port 3

