

Course Structure for the Four Year Regular B. Tech Degree Program (Effective for the batch admitted from 2023-24)

Department of Electrical and Electronics Engineering

			IYear-ISemester							
S.No	Category	Course Code	Course Title	Hoursper week			Credits	CIE	SEE	Total
1	Humanities & Social Sciences	23AHM9901	Communicative English	2	0	0	2	30	70	100
2	Basic Sciences	23ABS9901	Chemistry	3	0	0	3	30	70	100
3	Basic Sciences	23ABS9904	Linear Algebra & Calculus	3	0	0	3	30	70	100
4	Engineering Sciences	23AES0101	Basic Civil & Mechanical Engineering	3	0	0	3	30	70	100
5	Engineering Sciences	23AES0501	Introduction to Programming	3	0	0	3	30	70	100
6	Humanities & Social Sciences	23AHM9902	Communicative English Lab	0	0	2	1	30	70	100
7	Basic Sciences	23ABS9906	Chemistry Lab	0	0	2	1	30	70	100
8	Engineering Sciences	23AES0302	Engineering Workshop	0	0	3	1.5	30	70	100
9	Engineering Sciences	23AES0502	Computer Programming Lab	0	0	3	1.5	30	70	100
10	Humanities & Social Sciences	23АНМ9903	Health and wellness, Yoga and Sports	-	-	1	0.5	50	-	50
			Total	14	0	11	19.5	-	-	950

	I Year – II Semester												
S. No	Category	CourseCode	Course Title	Hoursper week		Credits	CIE	SEE	Total				
1	Basic Sciences	23ABS9903	Engineering Physics		T	P	C	30	70	100			
2	Basic Sciences	23ABS9905	Differential Equations &Vector Calculus	3	0	0	3	30	70	100			
3	Engineering Sciences	23AES0201	Basic Electrical & Electronics Engineering	3	0	0	3	30	70	100			
4	Engineering Sciences	23AES0301	Engineering Graphics	1	0	4	3	30	70	100			
5	Engineering Sciences	23AES0503	IT Workshop	0	0	2	1	30	70	100			
6	Professional Core	23APC0201	Electrical Circuit Analysis-1	3	0	0	3	30	70	100			
7	Basic Sciences	23ABS9908	Engineering Physics Lab	0	0	2	1	30	70	100			
8	Engineering Sciences	23AES0202	Electrical & ElectronicsEngineering Workshop	0	0	3	1.5	30	70	100			
9	Professional Core	23APC0202	Electrical Circuits Lab	0	0	3	1.5	30	70	100			
10	Humanities & Social Sciences	23AHM9904	NSS/NCC/Scouts & Guides/Community Service	1	1	1	0.5	50	-	50			
	·	·	Total	13	0	15	20.5			950			

Course Structure for the Four Year Regular B. Tech Degree Program

(Effective for the batch admitted from 2023-24) **Department of Electrical and Electronics Engineering**

	II Year – I Semester												
S. No	Category	CourseCode	Course Title	L	Hoursper week			CIE	SEE	Total			
1	Basic Sciences	23ABS9910	Complex Variable & Numerical Methods	3	0	0	C 3	30	70	100			
2	Humanities & Social Sciences	23АНМ9905	Universal Human Values	2	1	0	3	30	70	100			
3	Professional Core	23APC0205	Electromagnetic Field Theory	3	0	0	3	30	70	100			
4	Professional Core	23APC0206	Electrical Circuit Analysis-II	3	0	0	3	30	70	100			
5	Professional Core	23APC0207	DC Machines & Transformers	3	0	0	3	30	70	100			
6	Professional Core	23APC0208	Electrical Circuit Analysis-II & Simulation Lab	0	0	3	1.5	30	70	100			
7	Professional Core	23APC0209	DC Machines & Transformers Lab	0	0	3	1.5	30	70	100			
8	Skill Enhancement Courses	23ASC0502	Data Structures	0	1	2	2	100	,	100			
9	Mandatory course	23AMC9901	Environmental Sciences	2	0	0	-	30	-	30			
	Total 16 2 8 20 410 560 830												

			II Year - II Semester										
S. No	Category	CourseCode	Course Title	Hoursper week			Hoursper week			c Credits	CIE	SEE	Total
1	Management Course-I	23AHMMB01	Managerial Economics and Financial Analysis	2	0	0	2	30	70	100			
2	Engineering Sciences	23AES0403	Analog Circuits	3	0	0	3	30	70	100			
3	Professional Core	23APC0210	Power Systems-I	3	0	0	3	30	70	100			
4	Professional Core	23APC0211	Induction and Synchronous Machines	3	0	0	3	30	70	100			
5	Professional Core	23APC0212	Control Systems	3	0	0	3	30	70	100			
6	Professional Core	23APC0213	Induction and Synchronous Machines Lab	0	0	3	1.5	30	70	100			
7	Professional Core	23APC0214	Control Systems Lab	0	0	3	1.5	30	70	100			
8	Skill Enhancement Courses	23ASC0501	Python Programming	0	1	2	2	100	-	100			
9	Engineering Sciences	23AES0304	Design Thinking & Innovation	0	1	2	2	30	70	100			
			Total	14	2	10	21	340	560	900			
Mano	Mandatory Community Service Project of 08 weeks duration during summer vacation												

Department of Electrical and Electronics Engineering

Year/Sem	I/I & II	Branch of Study: Common to all branches				
Subjec	ct Code	Subject Name	L	T	P	Credits
23AH	M9901	2	0	0	2	

After co	ompletion of the course, students will be able to:
CO1	Understand reading / listening texts and to write summaries based on global comprehension of these texts.(Listening & Reading)
CO2	Apply grammatical structures to formulate sentences and correct word forms.(Grammar)
C03	Analyze discourse markers to speak clearly on a specific topic in formal and informal conversations. (Speaking)
CO4	Analyze a coherent paragraph interpreting graphic elements, figure/graph/chart/table(Read & Write)
CO5	Create a coherent essay, letter writing, report writing and design a resume. (Writing)

со	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
C01	Understand	Reading / listening texts and to write summaries based on global comprehension of these texts.			L2
CO2	Apply	Grammatical structures to formulate sentences and correct word forms			L3
CO3	Analyze	Analyze discourse markers to speak clearly on a specific topic in formal and informal conversations			L4
CO4	Analyze	Coherent paragraph interpreting graphic elements.			L4
CO5	Create	Coherent essay, letter writing, report writing and design a resume			L6

SYLLABUS

UNIT-I

TITLE: HUMAN VALUES: Gift of Magi(Short Story)

Listening: Identifying the topic, the context and specific pieces of information by listening to short audio texts and answering a series of questions.

Speaking: Asking and answering general questions on familiar topics such as home, family, work, studies and interests; introducing oneself and others.

Reading: Skimming to get the main idea of a text; scanning to look for specific pieces of information.

Writing: Mechanics of Writing-Capitalization, Spellings, Punctuation-Parts of Sentences.

Grammar: Parts of Speech, Basic Sentence Structures-forming questions **Vocabulary:** Synonyms, Antonyms, Affixes (Prefixes/Suffixes), Root words.

UNIT-II

TITLE: NATURE: The Brook by Alfred Tennyson (Poem)

Listening: Answering a series of questions about main ideas and supporting ideas after listening to audio texts.

Speaking: Discussion in pairs/small groups on specific topics followed by short structure talks.

Department of Electrical and Electronics Engineering

Reading: Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together.

Writing: Structure of a paragraph - Paragraph writing (specific topics)

Grammar: Cohesive devices - linkers, use of articles and zero article; prepositions.

Vocabulary: Homonyms, Homophones, Homographs.

UNIT-III

TITLE: BIOGRAPHY: Elon Musk

Listening: Listening for global comprehension and summarizing what is listened to.

Speaking: Discussing specific topics in pairs or small groups and reporting what is discussed.

Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues: strategies to use text clues for comprehension.

Writing: Summarizing, Note-making, paraphrasing. **Grammar:** Verbs - tenses; subject-verb agreement.

Vocabulary: Compound words, Collocations.

UNIT-IV

TITLE: INSPIRATION: The Toys of Peace by Saki

Listening: Making predictions while listening to conversations/ transactional dialogues without video; listening with video.

Speaking: Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions.

Reading: Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display complicated data.

Writing: Letter Writing: Official Letters, Resumes, Cover letters.

Grammar: Reporting verbs, Direct & Indirect speech, Active & Passive Voice.

Vocabulary: Words often confused, Jargons.

UNIT-V

TITLE: MOTIVATION: The Power of Intrapersonal Communication (An Essay)

Listening: Identifying key terms, understanding concepts and answering a series of relevant questions that test comprehension.

Speaking: Formal oral presentations on topics from academic contexts

Reading: Reading comprehension.

Writing: Writing structured essays on specific topics.

Grammar: Editing short texts -identifying and correcting common errors in grammar and usage (articles,

prepositions, tenses, subject verb agreement) **Vocabulary**: Idiom and phrases & Phrasal verbs

Text books:

- Pathfinder: Communicative English for Undergraduate Students, 1st Edition, Orient Black Swan, 2023 (Units 1,2 & 3)
- Empowering with Language by Cengage Publications, 2023 (Units 4 & 5)

Řeference books:

- 1 Dubey, Sham Ji& Co. English for Engineers, Vikas Publishers, 2020
- 2 Bailey, Stephen. Academic writing: A Handbook for International Students. Routledge, 2014.
- 3 Murphy, Raymond. English Grammar in Use, Fourth Edition, Cambridge University Press, 2019.
- Lewis, Norman. Word Power Made Easy- The Complete Handbook for Building a Superior Vocabulary. Anchor, 2014.

Department of Electrical and Electronics Engineering

Web Resources:

GRAMMAR:

- www.bbc.co.uk/learningenglish 1
- 2 https://dictionary.cambridge.org/grammar/british-grammar/
- 3 www.eslpod.com/index.html
- 4 https://www.learngrammar.net/
- https://english4today.com/english-grammar-online-with-quizzes/
- 6 https://www.talkenglish.com/grammar/grammar.aspx

VOCABULARY:

- https://www.youtube.com/c/DailyVideoVocabulary/videos 1
- 2 https://www.youtube.com/channel/UC4cmBAit8i_NJZE8qK8sfpA

Mapping	Iapping of Course outcomes with Program outcomes													
CO/PO	P01	PO2	P03	P04	PO5	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1										2				
CO2									2	2				
CO3										3				
CO4										3				
CO5										3				
Levels of	evels of correlation, viz., 1. Low, 2. Moderate, 3. High													

Mapp	oing of Cou	urse c	outcomes with P	rogram outco	mes J	ustification T	Table	
CO			СО			Program	PO(s): Action	Level of
No.	Lesson	%	correlation	Verb	BTL	Outcomes	verb and BTL	correlation
	Plan					(PO)	(for PO1 to	(0-3)
	(Hrs.)						PO5)	
1	12	22	3	Understand	L2	PO10	Thumb Rule	2
2	12	22	3	Apply	L3	PO9, PO10	Thumb Rule	2,2
3	10	18	2	Analyze	L4	PO10	Thumb Rule	3
4	10	18	2	Analyze	L4	PO10	Thumb Rule	3
5	10	18	2	Create	L6	PO10	Thumb Rule	3

Department of Electrical and Electronics Engineering

CO1: Understand reading / listening text and to write summaries based on global comprehension of these texts.

Action Verb: Understand (L2)

CO1 Action Verb Understand is of BTL 2. Using Thumb rule, L2 correlates PO6 to PO12 as moderate (2).

CO2: Apply grammatical structures to formulate sentences and correct word forms. Action Verb: Apply (L3)

CO2 Action Verb Apply is of BTL 3. Using Thumb rule, L3 correlates PO6 to PO12 as moderate (2) & (2)

CO3: Analyze discourse markers to speak clearly on a specific topic in Formal and informal Conversations.

Action Verb: Analyze (L4)

CO3 Action Verb Analyze is of BTL 4. Using Thumb rule, L4 correlates PO6 to PO12 as high (3). CO4: Analyze a coherent paragraph interpreting graphic elements, figure/graph/chart/table (Read & Write)

Action Verb: Analyze (L4)

CO4 Action Verb Analyze is of BTL 4. Using Thumb rule, L6 correlates PO6 to PO12 as high (3). CO5: Create a coherent essay, letter writing, report writing and design a resume.(Writing) Action Verb: Create(L6)

CO5 Action Verb Create is of BTL 6. Using Thumb rule, L5 correlates PO6 to PO12 as high (3).

Department of Electrical and Electronics Engineering

Year/Sem	I/II	Branch of Study: (Semester: I CSE, CIC, CSD& EEE) (Semester: II ECE, AI&DS & AI&ML)				
Subjec	ct Code	Subject Name	L	T	P	Credits
23AB	23ABS9901 CHEMISTRY		3	0	0	3

After co	After completion of the course, students will be able to:									
CO1	Understand the interaction of energy levels between atoms and molecules									
CO2	Apply the principle of Band diagrams in the conductors and semiconductors									
CO3	Apply the electrochemical principles to the construction of batteries, fuel cells and sensors									
CO4	Analyze the preparation and mechanism of plastics, Elastomers and conducting polymers									
CO5	Analyze the separation of liquid mixtures using instrumental methods.									

со	Action Verb	Knowledge Statement	Criteria	Bloom's level	
CO1	Understand	The interaction of energy levels		Between atoms and molecules	L2
CO2	Apply	Principle of Band diagrams	Conductors and semiconductors		L3
CO3	Apply	Electrochemical principles to the construction of batteries, fuel cells and sensors			L3
CO4	Analyze	Preparation and mechanism of plastics, Elastomers and conducting polymers			L4
CO5	Analyze	The separation of liquid mixtures	Using instrumental methods		L4

SYLLABUS

UNIT-I

TITLE: Structure and Bonding Models

Fundamentals of Quantum mechanics, Schrodinger Wave equation, significance of Ψ and Ψ^2 , particle in one dimensional box, molecular orbital theory – bonding in homo- and heteronucleardiatomic molecules – energy level diagrams of O2 and CO, etc. π -molecular orbitals of butadiene and benzene, calculation of bond order.

UNIT-II

TITLE: Modern Engineering materials

Semiconductors: Introduction, basic concept, applications. **Super conductors**: Introduction basic concept, applications.

Super capacitors: Introduction, Basic Concept-Classification – Applications.

Nano materials: Introduction, classification, properties and applications of Fullerenes, carbon Nano

tubes and Graphite's nanoparticles.

Department of Electrical and Electronics Engineering

UNIT-III

TITLE: Electrochemistry and Applications

Electrochemical cell, Nernst equation, cell potential calculations and numerical problems, potentiometry- potentiometric titrations (redox titrations), concept of conductivity, conductivity cell, conductometric titrations (acid-base titrations).

Electrochemical sensors – potentiometric sensors with examples, amperometric sensors with examples.

Primary cells – Zinc-air battery, Secondary cells –lithium-ion batteries- working of the batteries including cell reactions; Fuel cells, hydrogen-oxygen fuel cell– working of the cells. Polymer Electrolyte Membrane Fuel cells (PEMFC).

UNIT-IV

TITLE: Polymer Chemistry

Introduction to polymers, functionality of monomers, chain growth and step growth polymerization, coordination polymerization, with specific examples and mechanisms of polymer formation.

Plastics – Thermo and Thermosetting plastics, Preparation, properties and applications of – PVC, Teflon, Bakelite, Nylon-6,6, carbon fibres.

Elastomers-Buna-S, Buna-N-preparation, properties and applications.

Conducting polymers – Polyacetylene, Polyaniline, – mechanism of conduction and applications. Bio-Degradable polymers - Poly Glycolic Acid (PGA), Polyl Lactic Acid (PLA).

UNIT-V

TITLE: Instrumental Methods and Applications

Electromagnetic spectrum. Absorption of radiation: Beer-Lambert's law. UV-Visible Spectroscopy, electronic transition, Instrumentation, IR spectroscopies, fundamental modes and selection rules, Instrumentation. Chromatography-Basic Principle, Classification-HPLC: Principle, Instrumentation and Applications.

Tex	kt books:						
1	Jain and Jain, Engineering Chemistry, 16/e, DhanpatRai, 2013.						
2	Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e,0xford University						
	Press, 2010.						
Ref	Reference books:						
1	Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.						
2	J.D. Lee, Concise Inorganic Chemistry, 5th Edition, Wiley Publications, Feb.2008						
3	Textbook of Polymer Science, Fred W. Billmayer Jr, 3rd Edition						

Mapping	lapping of Course outcomes with Program outcomes													
CO/PO	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	2													
CO2	3													
CO3	3													
CO4		3												
CO5		3												
Levels of	evels of correlation, viz., 1. Low, 2. Moderate, 3. High													

Department of Electrical and Electronics Engineering

Mappi	ng of Cou	rse out	comes with Pro	gram outcom	es Just	ification Ta	ble	
CO		CO Prog				Program	PO(s): Action	Level of
No.	Lesson Plan (Hrs.)	%	correlation	Verb	BTL	Outcome s(PO)	verb and BTL (for PO1 to PO5)	correlation (0-3)
1	10	15.6	2	Understand	L2	PO1	PO1: Apply (L3)	2
2	10	26.5	3	Apply	L3	PO1	PO1: Apply (L3)	3
3	10	18.7	3	Apply	L3	PO2	PO1: Apply (L3)	3
4	10	20.3	3	Analyze	L4	PO2	PO2: Analyze(L4)	3
5	10	18.7	3	Analyze	L4	PO1	PO2: Analyze(L4)	3

CO1: Understand the fundamentals of Atoms and Molecules

Action Verb: Understand (L2)

PO1 Verbs: Apply (L3)

CO1 Action Verb is less than PO1 verb by one level; Therefore correlation is moderate (2).

CO2: Apply electrochemical principles to construct batteries

Action Verb: Apply (L3)

PO1 Verbs: Apply (L3)

CO2 Action Verb is equal to PO1 verb; Therefore correlation is high (3).

CO3: Apply electrochemical principles to the construction of batteries, fuel cells and electrochemical sensors.

Action Verb: Apply (L3)

PO2 Verb: Apply (L3)

CO3 Action Verb level is equal to PO1 verb; Therefore correlation is high (3).

CO4: Analyze the preparation and mechanism of polymers

Action Verb: Analyze (L4)

PO2 Verb: Analyze (L4)

CO4 Action Verb level is equal to PO2 verb; Therefore correlation is high (3).

CO5: Analyze the identification of individual components

Action Verb: Analyze (L4)

PO1 Verb: Analyze (L4)

CO5 Action Verb level is equal to PO2 verb; Therefore correlation is high (3).

Department of Electrical and Electronics Engineering

Year/Sem	I/I	Branch of Study: Common to All				
Subject Code		Subject Name	L	T	P	Credits
23ABS9904		LINEAR ALGEBRA AND CALCULUS	3	0	0	3

After co	After completion of the course, students will be able to:						
CO1	7 0 1 0 0 11						
CO2	Understand the concept of Eigen values, Eigen vectors and quadratic forms.						
CO3	Analyze the mean value theorems for real time applications.						
CO4	Apply the concepts of partial differentiation to functions of several variables.						
CO5	Apply the multivariable integral calculus for computation of Area and Volume.						

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	•	i ne matrix algebraic techniques	For engineering applications.		L4
CO2	Understand	The concept of eigen values, eigen vectors and quadratic forms.	-		L2
CO3	Analyze	The mean value theorems	For real time applications.		L4
CO4	Apply	The concept of Mayima and Minima	To functions of several variables.		L3
CO5	Apply	II na milifiyariania infagral calcillis	For computation of Area and volume.		L3

SYLLABUS

UNIT-I

TITLE: Matrices

Rank of a matrix by Echelon form, Normal form, Cauchy-Binet formula (without proof). Inverse of Nonsingular matrices by Gauss-Jordan method, system of linear equations: solving system of Homogeneous and Nonhomogeneous equations by Gauss Elimination method, Jacobi and Gauss Seidel Iteration methods.

UNIT-II

TITLE: Eigen values, Eigen vectors and Orthogonal Transformation

Eigen values, Eigen vectors and their properties, Diagonalization of a matrix, Cayley-Hamilton theore (without proof), finding inverse and power of a matrix by Cayley-Hamilton theorem, Quadratic form and Nature of the Quadratic forms, Reduction of quadratic form to canonical forms by Orthogona Transformation.

UNIT-III

TITLE: Calculus

Mean Value Theorems: Rolle's theorem, Lagrange's mean value theorem with their geometrical interpretation, Cauchy's mean value theorem, Taylor's and Maclaurin's theorems with remainders (without proof), problems and applications on the above theorems.

Department of Electrical and Electronics Engineering

UNIT-IV

TITLE: Partial differentiation and Applications (Multi Variable Calculus)

Functions of several variables: Continuity and Differentiability, Partial derivatives, total derivatives, chain rule, Directional derivative, Taylor's and Maclaurin's series expansion of functions of two variables, Jacobians, Functional dependence, Maxima and Minima of functions of two variables, method of Lagrange multipliers.

UNIT-V

TITLE: Multiple Integrals

Double integrals, triple integrals change of order of integration, change of Variables to polar, Cylindrical and Spherical coordinates, Finding areas (by double integrals) and volumes (by double integrals and triple integrals).

Text books:

- 1 B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017.
- 2 Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.

Reference books:

- Thomas Calculus, George B. Thomas, Maurice D. Weir and Joel Hass, Pearson Publishers, 2018, 14th Edition.
- Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Alpha Science International Ltd., 25th Edition(9th reprint).
- 3 Advanced Modern Engineering Mathematics, Glyn James, Pearsonpublishers, 2018, 5th Edition.
- 4 Advanced Engineering Mathematics, Micheael Greenberg, , Pearsonpublishers, 9th edition.
- Higher Engineering Mathematics, H. K Das, Er. Rajnish Verma, S. Chand Publications, 2014, Third Edition (Reprint 2021)

Mapping	lapping of Course outcomes with Program outcomes													
CO/PO	P01	PO2	PO3	P04	PO5	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1		3											1	
CO2		2											1	
CO3		3											1	
CO4	3												1	
CO5	3												1	
Levels of	evels of correlation, viz., 1, Low. 2, Moderate, 3, High													

Department of Electrical and Electronics Engineering

Mapp	oing of Cou	ırse ou	tcomes with P	rogram outcon	nes Jus	tification Tab	ole	
CO			CO			Program	PO(s):	Level of
No.	Lesson Plan (Hrs.)	%	correlation	Verb	BTL	Outcomes (PO)	Actionverb and BTL (for PO1 to PO5)	correlatio n(0-3)
1	10	14	2	Analyze	L4	PO2	Analyze	3
2	15	21.4	3	Understand	L2	PO2	Apply	2
3	15	21.4	3	Analyze	L4	PO2	Analyze	3
4	16	22.8	3	Apply	L3	P01	Apply	3
5	14	20	3	Apply	L3	PO1	Apply	3

CO1: Analyze the matrix algebraic techniques that are needed for engineering applications.

Action Verb: Analyze(L4)
PO2 Verbs: Analyze (L4)

CO1 Action Verb is equal to PO2 verb; Therefore correlation is high (3).

CO2: Understand the concept of eigen values, eigen vectors and quadratic forms.

Action Verb: Understand (L2)

PO1 Verb: Apply (L3)

CO2 Action Verb is low level to PO1 verb by one level; Therefore correlation is moderate (2).

CO3: Analyze the mean value theorems for real life problems.

Action Verb: Analyze (L4) PO1 Verb: Analyze (L4)

CO3 Action Verb level is equal to PO2 verb; Therefore correlation is high (3).

CO4: Apply the concept of Maxima and Minima of functions of several variables.

Action Verb: Apply (L3) PO2 Verb: Apply (L3)

CO4 Action Verb level is equal to PO1 verb; Therefore correlation is high (3).

CO5: Apply the multivariable integral calculus for computation of area and volume.

Action Verb: Apply(L3)

PO1 Verb: Apply (L3)

CO5 Action verb is high level to PO1 verb; therefore the correlation is high (3).

Department of Electrical and Electronics Engineering

Year/Sem	I/I&II	Branch of Study: Common to ALL Branches				
Subject Code		Subject Name	L	T	P	Credits
23AES0101		BASIC CIVIL & MECHANICAL ENGINEERING	3	0	0	3

After c	ompletion of the course, students will be able to:
CO1	Understand various sub-divisions of Civil Engineering and to appreciate their role in
	ensuring better society
CO2	Apply the methods of surveying in finding the measurements on Earth surface
CO3	Understand the importance of transportation, water resources and environmental engineering
CO4	Understand the applications and role of various materials in Mechanical Engineering.
CO5	Understand the different manufacturing processes and the basics of thermal engineering with its
603	applications.
CO6	Understand the working of different mechanical power transmission systems, power plants
C06	and applications of robotics.

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	Various sub-divisions of Civil Engineering		Role in ensuring better society	L2
CO2	Apply	Methods of surveying	Finding the measurements	On Earth surface	L3
CO3	understand	Importance of transportation, water resources and environmental engineering			L2
CO4	Understand	Applications and role of various materials in Mechanical Engineering			L2
CO5	Understand	thermal engineering with its applications			L2
CO6	Understand	Working of different mechanical power transmission systems, power plants and applications of robotics			L2

BASIC OF CIVIL ENGINEERING (PART-A) SYLLABUS

UNIT-I

TITLE: Basics of Civil Engineering

Role of Civil Engineers in Society- Various Disciplines of Civil Engineering- Structural Engineering- Geotechnical Engineering- Transportation Engineering Hydraulics and Water Resources Engineering - Environmental Engineering-Scope of each discipline - Building Construction and Planning- Construction Materials-Cement - Aggregate - Bricks- Cement concrete- Steel. Introduction to Prefabricated construction Techniques.

Department of Electrical and Electronics Engineering

UNIT-II

TITLE: Surveying

Objectives of Surveying- Horizontal Measurements- Angular Measurements- Introduction to Bearings Levelling instruments used for levelling -Simple problems on levelling and bearings-Contour mapping.

UNIT-III

TITLE: Transportation Engineering

Importance of Transportation in Nation's economic development- Types of Highway Pavements- Flexible Pavements and Rigid Pavements - Simple Differences. Basics of Harbour, Tunnel, Airport, and Railway Engineering.

Water Resources and Environmental Engineering

Introduction, Sources of water- Quality of water- Specifications- Introduction to Hydrology-Rainwater Harvesting-Water Storage and Conveyance Structures (Simple introduction to Dams and Reservoirs).

Text books:

- Basic Civil Engineering, M.S.Palanisamy, , Tata Mcgraw Hill publications (India) Pvt. Ltd. Fourth Edition.
- 2 Introduction to Civil Engineering, S.S. Bhavikatti, New Age International Publishers. 2022. First Edition.
- 3 Basic Civil Engineering, Satheesh Gopi, Pearson Publications, 2009, First Edition

Reference books:

- 1 Surveying, Vol- I and Vol-II, S.K. Duggal, Tata McGraw Hill Publishers 2019. FifthEdition
- 2 Hydrology and Water Resources Engineering, Santosh Kumar Garg, KhannaPublishers, Delhi. 2016
- 3 Irrigation Engineering and Hydraulic Structures -Santosh Kumar Garg, Khanna Publishers, Delhi 2023. 38th Edition
- 4 Highway Engineering, S.K.Khanna, C.E.G. Justo and Veeraraghavan, Nemchand and Brothers Publications 2019. 10th Edition
- 5 Indian Standard drinking water specification is 10500-2012

Department of Electrical and Electronics Engineering

BASIC OF MECHANICAL ENGINEERING (PART-B)

After co	After completion of the course, students will be able to:						
C01	Understand various sub-divisions of Civil Engineering and to appreciate their role in ensuring better society.						
CO2 Apply the methods of surveying in finding the measurements on Earth surface.							
CO3	Understand the importance of transportation, water resources and environmental engineering						
CO4	Understand the applications and role of various materials in Mechanical Engineering.						
C05	Understand the different manufacturing processes and the basics of thermal engineering with its applications.						
C06	Understand the working of different mechanical power transmission systems, power plants and applications of robotics.						

со	Action Verb	Knowledge Statement	Condition	Criteria	Bloom 's level
CO1	Understand	Various sub-divisions of Civil Engineering		Role in ensuring better society	L2
CO2	Apply	Methods of surveying	Finding the measurements	On Earth surface	L3
CO3	Understand	Importance of transportation, water resources and environmental engineering			L2
C04	Understand	Applications and role of various materials in Mechanical Engineering			L2
CO5	Understand	Different manufacturing processes and the basics of thermal engineering with its applications			L2
C06	Understand	Working of different mechanical power transmission systems, power plants and applications of robotics			L2

SYLLABUS

UNIT-I

TITLE: Basics of Mechanical Engineering & Engineering Materials

Introduction to Mechanical Engineering: Role of Mechanical Engineering in Industries and Society-Technologies in different sectors such as Energy, Manufacturing, Auto motive, Aerospace, and Marine sectors.

Engineering Materials - Metals-Ferrous and Non-ferrous, Ceramics, Composites, Smart materials.

UNIT-II

TITLE: Manufacturing Processes & Thermal Engineering

Manufacturing Processes: Principles of Casting, Forming, joining processes, Machining, Introduction to CNC machines, 3D printing, and Smart manufacturing.

Thermal Engineering - working principle of Boilers, Otto cycle, Diesel cycle, Refrigeration and air-

Department of Electrical and Electronics Engineering

Conditioning cycles, IC engines, 2-Stroke and 4-Stroke engines, SI/CI Engines, Components of Electric and Hybrid Vehicles.

UNIT-III

TITLE: Power plants, Mechanical Power Transmission & Introduction to Robotics

Power plants-working principle of Steam, Diesel, Hydro, Nuclear power plants.

Mechanical Power Transmission - Belt Drives, Chain, Rope drives, Gear Drives and their applications. **Introduction to Robotics** - Joints & links, configurations, and applications of robotics.

Text books:

- 1 Internal Combustion Engines by V.Ganesan, By Tata McGraw Hill publications (India) Pvt. Ltd.
- 2 A Tear book of Theory of Machines by S.S. Rattan, Tata McGraw Hill Publications, (India) Pvt. Ltd.
- 3 An introduction to Mechanical Engg by Jonathan Wicker and Kemper Lewis, Cengage learning India Pvt. Ltd.

Reference books:

- 1 Appuu Kuttan KK, Robotics, I.K. International Publishing House Pvt. Ltd. Volume-I 2. 3D
- 2 Printing & Additive Manufacturing Technology- L. Jyothish Kumar, Pulak MPandey, Springer publications
- 3 Thermal Engineering by Mahesh M Rathore Tata McGraw Hill publications (India) Pvt.Ltd.
- 4 G. Shanmugam and M.S.Palanisamy, Basic Civil and the Mechanical Engineering, TataMcGraw Hill publications (India) Pvt. Ltd.

Mapping	Mapping of Course outcomes with Program outcomes													
CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO 1	PSO2
CO1	2	2					2							1
CO2	3	2				2								1
CO3	2	2					2							1
CO4	2					2								1
CO5	2						2							1
C06	2				2		2							1
Levels of	fcorre	lation,	viz., 1.	Low, 2	. Mode	rate, 3	. High							

Department of Electrical and Electronics Engineering

Mapp	ing of Cou	urse o	outcomes with P	rogram outco	mes Jus	tification Tal	ole		
СО			CO			Program	PO(s): Action	Level of	
No.	Lesson	%	correlation	Verb	BTL	Outcomes	verb and BTL	correlation	
	Plan					(PO)	(for PO1 to	(0-3)	
	(Hrs.)						P05)		
							-		
						P01	Apply (L3)	2	
1	11/33	33	2	Understand	L2	PO2	Analyze(L3)	2	
		33	2	Unuerstanu	onuer stallu	ierstanu L2	P07	Thumb Rule	2
						PO1	Apply (L3)	3	
2	12/33	34	3	Apply	L3	PO2	Analyze (L4)	2	
	12/33	34	3	Apply	гэ	P06	Thumb Rule	2	
						P01	Apply (L3)	2	
3	11/33	33	2	Understand	L2	PO2	Analyze (L3)	2	
	11/33	33	2	Understand	LΖ	P07	Thumb Rule	2	
4						PO1	Identify-L3	2	
4	9/30	30	3	Understand	L2	P06	Thumb Rule	2	
						PO1	Identify-L3	2	
5	12/30	40	3	Understand	L2	P07	Thumb Rule	2	
						PO1	Apply(Identify)-L3	2	
6	0./20	20	2	IIm dowata J	1.2	PO5	Apply-L3	2	
	9/30	30	3	Understand	L2	P07	Thumb Rule	2	

CO1: Understand various sub-divisions of Civil Engineering and to appreciate their role in ensuring better society

Action Verb: Understand (L2)

PO1 Verb: Apply (L3)

CO1 Action verb is not same level as PO1 verb. Therefore, the correlation is medium (2)

PO2 Verb: Analyze(L4)

CO1 Action verb is not same level as PO2 verb. Therefore, the correlation is medium (2)

PO7 Verb: Thumb Rule

CO1 correlates medium with PO7. Therefore, the correlation is medium (2)

CO2: Apply the methods of surveying in finding the measurements on Earth surface. Action Verb: Apply (L3)

PO1 Verb: Apply (L3)

CO2 Action verb is same level as PO1 verb. Therefore, the correlation is high (3)

PO2 Verb: Analyze(L4)

CO2 Action verb is not same level as PO2 verb. Therefore, the correlation is medium (2)

PO6 Verb: Thumb Rule

CO2 correlates medium with PO6. Therefore, the correlation is medium (2)

CO3: Understand the importance of transportation, water resources and environmental engineering. Action Verb: Understand (L2) ${\bf L}$

PO1 Verb: Apply (L3)

CO3 Action verb is not same level as PO1 verb. Therefore, the correlation is medium (2)

PO2 Verb: Analyze(L4)

CO3 Action verb is not same level as PO2 verb. Therefore, the correlation is medium (2)

PO7 Verb: Thumb Rule

CO3 Correlates medium with PO7. Therefore, the correlation is medium (2)

Department of Electrical and Electronics Engineering

CO4: Understand the applications and role of various materials in Mechanical Engineering. Action Verb: Understand (L2)

PO1 Verb: Apply (L3)

CO4 Action verb is less than PO1 verb by one level. Therefore, the correlation is medium (2)

PO3 Verb: Review-L2

CO4 Action verb is same level as PO2 verb. Therefore, the correlation is high (3)

PO7 Verb: Thumb Rule

CO4 correlates moderately with PO6. Therefore, the correlation is medium (2).

CO5: Understand the different manufacturing processes and the basics of thermal engineering with its applications.

Action Verb: Understand (L2)

PO1 Verb: Apply (L3)

CO5 Action verb is less than PO1 verb by one level. Therefore, the correlation is medium (2)

PO3 Verb: Review-L2

CO5 Action verb is same level as PO2 verb. Therefore, the correlation is high (3)

PO7 Verb: Thumb Rule

CO5 correlates moderately with PO6. Therefore, the correlation is medium (2).

CO6: Understand the working of different mechanical power transmission systems, power plants and applications of robotics.

Action Verb: Understand (L2)

PO1 Verb: Apply (L3)

CO5 Action verb is less than PO1 verb by one level. Therefore, the correlation is medium (2)

PO3 Verb: Review-L2

CO5 Action verb is same level as PO2 verb. Therefore, the correlation is high (3)

PO7 Verb: Thumb Rule

CO5 correlates moderately with PO6. Therefore, the correlation is medium (2).

Department of Electrical and Electronics Engineering

Year/Sem	I/I	ranch of Study: Common to All branches					
Subject Code		Subject Name	L	T	P	Credits	
23AE	S0501	INTRODUCTION TO PROGRAMMING	3	0	0	3	

After co	After completion of the course, students will be able to:							
CO1	Understand the computer Programming concepts and Algorithms.							
CO2	Analyze the control structures to implement basic programs.							
CO3	Understand the concept of Arrays and string to manipulate the stored data.							
CO4	Create the dynamic memory allocation using pointers and structures.							
CO5	Create the user defined functions and files for modifying stored data.							

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	The computer Programming concepts and Algorithms.			L2
CO2	Analyze	The control structures		To implement basic programs.	L4
CO3	Understand	The concept of Arrays and string		To manipulat e the stored data	L2
CO4	Create	The dynamic memory allocation	Using pointers and structures.		L6
CO5	Create	User defined functions and files		For modifying stored data.	L6

SYLLABUS

UNIT-I

TITLE: Introduction to Programming and Problem Solving

History of Computers, Basic organization of a computer: ALU, input-output units, memory, program counter, Introduction to Programming Languages, Basics of a Computer Program- Algorithms, flowcharts (Using Dia Tool), pseudo code. Introduction to Compilation and Execution, Primitive Data Types, Variables, and Constants, Basic Input and Output, Operations, Type Conversion, and Casting.

Problem solving techniques: Algorithmic approach, characteristics of algorithm, Problem solving strategies: Top-down approach, Bottom-up approach, Time and space complexities of algorithms.

UNIT-II

TITLE: Control Structures

Simple sequential programs Conditional Statements (if, if-else, switch), Loops (for, while, do- while)Break and Continue.

Department of Electrical and Electronics Engineering

UNIT-III

TITLE: Arrays and Strings

Arrays indexing, memory model, programs with array of integers, two dimensional arrays, Introduction to Strings.

UNIT-IV

TITLE: Pointers & User Defined Data types

Pointers, dereferencing and address operators, pointer and address arithmetic, array manipulation using pointers, User-defined data types-Structures and Unions.

UNIT-V

TITLE: Functions & File Handling

Introduction to Functions, Function Declaration and Definition, Function call Return Types and Arguments, modifying parameters inside functions using pointers, arrays as parameters. Scope and Lifetime of Variables, Basics of File Handling.

Text books:

- "The C Programming Language", Brian W. Kernighan and Dennis M. Ritchie, Prentice-1 Hall, 1988
- 2 Schaum's Outline of Programming with C, Byron S Gottfried, McGraw-Hill Education, 1996.

Reference books:

- Computing fundamentals and C Programming, Balagurusamy, E., McGraw-Hill Education, 2008.
- 2 Programming in C, Rema Theraja, Oxford, 2016, 2nd edition
- C Programming, A Problem Solving Approach, Forouzan, Gilberg, Prasad, CENGAGE, 3rd edition

Mapping	Mapping of Course outcomes with Program outcomes													
CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	2	3	2										3	
CO2	3	3	3									2	2	
CO3	2	3										2	2	
CO4	3	3	3									2	2	
CO5	3	3	3									3	2	2
Levels of	correla	tion, vi	z 1. Lo	w. 2. Ma	derate.	3. High								

Department of Electrical and Electronics Engineering

Mappi	ng of Cou	rse out	comes with Prog	gram outcom	es Justi	fication Ta	ble	
CO			CO			Program	PO(s): Action	Level of
No.	Lesson	%	correlation	Verb	BTL	Outcome	verb and BTL	correlation
	Plan					s(P0)	(for PO1 to	(0-3)
	(Hrs.)						P05)	
1	19	25%	3	CO1: Understand	L2	P01, P02, P03	PO1: Apply(L3) PO2: Review(L2) PO3:Develop(L3)	2 3 2
2	10	14%	2	CO2: Analyze	L4	PO1, PO2, PO3, PO12	PO1: Apply(L3) PO2: Analyze (L4) PO3: Develop (L3) PO12: Thumb rule	3 3 3 2
3	19	25%	3	CO3: Understand	L2	PO1, PO2,	PO1: Apply(L3) PO2: Review (L2) PO12: Thumb rule	2 3 2
4	15	20%	2	CO4: Create	L6		PO1: Apply(L3) PO2: Review (L2) PO3: Develop (L3) PO12: Thumb rule	3 3 3 2
5	12	16%	2	CO5: Create	L6	P01, P02, P03,P012	PO1: Apply(L3) PO2: Review(L2) PO3: Develop (L3) PO12: Thumb rule	3 3 3

CO1: Understand the computer Programming concepts and Algorithms

Action Verb: Understand (L2)

PO1 Verb: Apply (L3)

CO1 Action verb is less than PO1 verb by one level. Therefore, the correlation is moderate (2)

PO2 Verb: Review (L2)

CO1 Action verb is same as than as PO2 verb by two level. Therefore, the correlation is High (3)

PO3 Verb: Develop (L3)

CO1 Action verb is less than as PO2 verb by one level. Therefore, the correlation is moderate (2)

CO2: Analyze the control structures to implement basic programs.

Action Verb: Analyze (L4)

PO1: Apply (L3)

CO2 Action verb is greater than as PO1 verb. Therefore, the correlation is high (3)

PO2: Analyze (L4)

CO2 Action verb is equal to PO2 verb. Therefore, the correlation is high (3)

PO3: Develop (L3)

CO2 Action verb is greater than PO3 verb. Therefore, the correlation is high (3)

PO12: Thumb rule

Some of the flow of control statements knowledge are used to solve various problems. Therefore, the correlation is moderate (2)

CO3: Understand the concept of Arrays and string to manipulate the stored data.

Action Verb: Understand (L2) PO1: Apply (L3)

CO3 Action verb is less than PO1 verb by one level. Therefore, the correlation is moderate (2)

PO2: Review (L2)

CO3 Action verb is Same as PO2 verb. Therefore, the correlation is High (3)

PO12: Thumb rule

For some matrix operations array and string concepts were used Therefore, the correlation is moderate (2)

CO4: Create the dynamic memory allocation using pointers and structures.

Action Verb: Create (L6)

PO1: Apply (L3)

Department of Electrical and Electronics Engineering

CO4 Action verb is greater than PO1 verb by two levels. Therefore, the correlation is high (3)

PO2: Review (L2)

CO4 Action verb is greater than as PO2 verb. Therefore, the correlation is high (3)

PO3: Develop (L3)

CO4 Action verb is greater than PO3 verb. Therefore, the correlation is high (3)

PO12: Thumb rule

For some mathematical operations Pointers and structures are used to manipulate the memory references.

Therefore, the correlation is moderate (2)

CO5: Create the user defined functions and files for modifying stored data.

Action Verb: Create (L6) PO1: Apply (L3)

CO5 Action verb is greater than PO1 verb by two levels. Therefore, the correlation is high (3)

PO2: Review (L2)

CO5 Action verb is greater than as PO2 verb. Therefore, the correlation is high (3)

PO3: Develop (L3)

CO5 Action verb is greater than as PO3 verb. Therefore, the correlation is high (3)

PO12: Thumb rule

In today's world file handling techniques were used in most of the areas. Therefore, the correlation is high (3)

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES, TIRUPATI (AUTONOMOUS) Department of Electrical and Electronics Engineering

Year/Sem	I & II	ranch of Study: Common to all branches					
Subjec	t Code	Subject Name	L	T	P	Credits	
23AHN	19902	COMMUNICATIVE ENGLISH LAB	0	0	2	1	

After co	After completion of the course, students will be able to:							
CO1	Understand-the different aspects of the English language proficiency with emphasis on LSRW skills.							
CO2	Apply communication skills through various language learning activities							
CO3	Analyze the English speech sounds, for better listening and speaking.							
CO4	Evaluate and exhibit professionalism in participating in debates and group discussions							
CO5	Analyze themselves to face interviews in future.							

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	The different aspects of the English language proficiency with emphasis on LSRW skills			L2
CO2	Apply	communication skills through various language learning activities			L3
C03	Analyze	The English speech sounds, for better listening and speaking.			L4
CO4	Evaluate	and exhibit professionalism in participating in debates and group discussions			L5
CO5	Analyze	Themselves to face interviews in future			L4

SYLLABUS

012200		
S.No List Of Ex	periments	CO
1. Vowels &	Consonants	(CO3)
Non Verb	oal Communication	(CO2)
3. Commun	ication Skills	(CO2)
4. Role Play	or Conversational Practice	(CO1,CO2)
5. E-mail W	riting	(CO1)
6. Just A Mi	nute	(CO1,CO2)
7. Group Di	scussions-methods & practice	(CO4)
8. Debates-	Methods & Practice	(CO4)
9. PPT Pres	entations/ Poster Presentation	(CO2)
1 Interview	vs Skills	(CO5)
1 Vowels &	Consonants	(CO3)

Department of Electrical and Electronics Engineering

Suggested Software:

- Walden Infotech
- Young India Films

Reference Books:

- 1 Raman Meenakshi, Sangeeta -Sharma. Technical Communication. Oxford Press. 2018.
- 2 Taylor Grant: English Conversation Practice, Tata McGraw-Hill EducationIndia,2016\
- 3 Hewing's, Martin. Cambridge Academic English (B2).CUP, 2012.
- 4 J.Sethi &P.V.Dhamija. A Course in Phonetics and Spen English, (2ndEd), Kindle, 2013.

Web Resources: Spoken English

- 1 www.esl-lab.com
- 2 www.englishmedialab.com
- 3 www.englishinteractive.net
- 4 https://www.britishcouncil.in/english/online
- 5 http://www.letstalkpodcast.com/
- 6 https://www.youtube.com/c/mmmEnglish_Emma/featured
- 7 https://www.youtube.com/c/ArnelsEverydayEnglish/featured
- 8 https://www.youtube.com/c/engvidAdam/featured
- 9 https://www.youtube.com/c/EnglishClass101/featured
- 10 https://www.youtube.com/c/SpeakEnglishWithTiffani/playlists
- 11 https://www.youtube.com/channel/UCV1h_cBE0Drdx19qkTM0WNw

Voice & Accent:

- 1 https://www.youtube.com/user/letstalkaccent/videos
- 2 https://www.youtube.com/c/EngLanguageClub/featured
- 3 https://www.youtube.com/channel/UC_OskgZBoS4dAnVUgJVexc
- 4 https://www.youtube.com/channel/UCNfm92h83W2i2ijc5Xwp_IA

Mapping	Mapping of Course outcomes with Program outcomes													
CO/P O	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO 1	PSO2
CO1										2				,
CO2									2	2				
CO3										3				
CO4									3	3				
CO5										3				
Levels of	Levels of correlation, viz., 1. Low, 2. Moderate, 3. High													

Department of Electrical and Electronics Engineering

Марр	ing of Cour	se ou	tcomes with l	Program outco	mes Jus	tification Tab	ole	
CO			CO			Program	PO(s):	Level of
No.						Outcomes	Action verb	correlation(0-3)
	Lesson Plan	%	correlation	Verb	BTL	(PO)	and BTL	
	(Hrs.)						(for PO1 to PO5)	
1				Understand	L2	10	Thumb Rule	2
2				Apply	L3	9,10	Thumb Rule	2,2
3				Analyze	L4	10	Thumb Rule	3
4				Evaluate	L5	9,10	Thumb Rule	3,3
5				Analyze	L4	10	Thumb Rule	3

CO1: Understand the different aspects of the English language proficiency with emphasis on LSRW skills

Action Verb: Understand (L2)

CO1 Action Verb is understand of BTL 2. Using Thumb rule, L2 correlates PO6 to PO12 as moderate (2).

CO2: Apply communication skills through various language learning activities.

Action Verb: Apply (L3)

CO2 Action Verb is Apply of BTL 3. Using Thumb rule, L3 correlates PO6 to PO12 as moderate (2).

CO3:Analyze the English speech sounds, for better listening and speaking.

Action Verb: Analyze (L4)

CO3 Action Verb is Analyze of BTL 4. Using Thumb rule, L4 correlates PO6 to PO12 as high (3).

CO4: Evaluate and exhibit professionalism in participating in debates and group discussions.

Action Verb: Evaluate (L5)

CO4 Action Verb is Evaluate of BTL 5. Using Thumb rule, L5 correlates PO6 to PO12 as high (3).

CO5: Analyze themselves to face interviews in future. Action Verb: Develop (L4)

Action Verb: Develop (L4)

CO5 Action Verb is Analyze of BTL 4. Using Thumb rule, L4 correlates PO6 to PO12 as high (3).

Department of Electrical and Electronics Engineering

Year/Sem	I/I & II	Branch of Study: Common to EEE, ECE, CSE & allied branch	es			
Subjec	t Code	Subject Name	L	T	P	Credits
23AB	S9906	CHEMISTRY LAB	0	0	2	1

After co	ompletion of the course, students will be able to:						
CO1	CO1 Determine the cell constant and conductance of solutions.						
CO2	Prepare advanced polymer Bakelite materials.						
CO3	Measure the strength of an acid present in secondary batteries.						
CO4	Analyze the UV-Visible spectra of some organic compounds.						
CO5	Estimate the unknown solution by volumetric analysis.						

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Determine	Cell constant and conductance of solutions.			L4
CO2	Prepare	Advanced polymer Bakelite materials			L4
CO3	Measure	Strength of an acid present in secondary batteries.			L4
CO4	Analyze	UV-Visible spectra of some organic compounds.			L4
CO5	Estimate	Unknown solution by volumetric analysis.			L5

List of Experiments:

- 1. Measurement of 10Dq by spectrophotometric method (CO1)
- 2. Conductometric titration of strong acid vs. strong base (CO1)
- 3. Conductometric titration of weak acid vs. strong base (CO1)
- 4. Determination of cell constant and conductance of solutions (CO1)
- 5. Potentiometry determination of redox potentials and emfs (CO5)
- 6. Determination of Strength of an acid in Pb-Acid battery (CO3)
- 7. Preparation of a Bakelite (CO2)
- 8. Verify Lambert-Beer's law (CO4)
- 9. Estimation of copper by Iodometry (CO5)
- 10. Wavelength measurement of sample through UV-Visible Spectroscopy (CO1)
- 11. Preparation of nanomaterials by precipitation method (CO1)
- 12. Estimation of Ferrous Iron by Dichrometry (CO5)

Note: Any TEN of the listed experiments are to be conducted. Out of which any TWO Experiments may be conducted in virtual mode.

Department of Electrical and Electronics Engineering

Reference books:

1 "Vogel's Quantitative Chemical Analysis 6th Edition 6th Edition" Pearson Publicationsby J. Mendham, R.C.Denney, J.D.Barnes and B. Sivasankar

Mapping	g of Cou	ırse ou	ıtcome	s with	Progra	m outo	omes							
CO/PO	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1				3										
CO2				3										
CO3				3										
CO4				3										
CO5				3										
Levels of	vels of correlation, viz., 1. Low, 2. Moderate, 3. High													

Mappi	ng of Cou	rse out	comes with Prog	gram outcom	es Justi	fication Tal	ble	
CO			CO			Program	PO(s): Action	Level of
No.	Lesson Plan (Hrs.)	%	correlation	Verb	BTL	Outcome s(PO)	verb and BTL (for PO1 to PO5)	correlation (0-3)
1				Determine	L4	PO4	PO4:Analyze(L4)	3
2				Prepare	L4	PO4	PO4:Analyze(L4)	3
3				Measure	L4	PO4	PO4:Analyze(L4)	3
4				Analyze	L4	PO4	PO4:Analyze(L4)	3
5				Estimate	L5	PO4	PO4:Analyze(L5)	3

Department of Electrical and Electronics Engineering

CO1: Determine the cell constant and conductance of solutions.

Action Verb: Determine **(L4)** PO4 Verb: Analyze (L4)

CO1 Action Verb is equal to PO4 verb; Therefore, correlation is high (3).

CO2: Prepare advanced polymer Bakelite materials.

Action Verb: Prepare **(L4)** PO4 Verb: Analyze (L4)

CO2 Action Verb is equal to PO4 verb; Therefore, correlation is high (3).

CO3: Measure the strength of an acid present in secondary batteries.

Action Verb: Measure (L4)

PO4 Verb: Analyze (L4)

CO3 Action Verb is equal to PO4 verb; Therefore, correlation is high (3)

CO4: Analyze the UV-Visible spectra of some organic compounds.

Action Verb: Analyze (L4)

PO4 Verb: Analyze (L4)

CO4 Action Verb is equal to PO4 verb; Therefore, correlation is high (3)

CO5: Estimate the unknown solution by volumetric analysis.

Action Verb: Estimate **(L5)** PO4 Verb: Analyze (L4)

CO5 Action Verb is greater than PO4; Therefore correlation is high (3).

Department of Electrical and Electronics Engineering

Year/Sem	I/I & II	Branch of Study: Common to all Branches				
Subjec	ct Code	Subject Name	L	T	P	Credits
23AE	S0302	ENGINEERING WORKSHOP	0	0	3	1.5

After co	After completion of the course, students will be able to:							
CO1	CO1 Apply the wood working skills to prepare different joints.							
CO2	Analyze the sheet metal and fitting operations to prepare various components							
CO3	Apply the basic electrical engineering knowledge for house wiring practice.							
CO4	Apply the Welding process for Lap and Butt Joints.							
CO5	CO5 Understand the various plumbing pipe joints							

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
C01	Apply	The wood working skills to prepare different joints			L3
CO2	Analyze	The sheet metal and fitting operations to prepare various components			L4
C03	Apply	The basic electrical engineering knowledge for house wiring practice			L3
CO4	Apply	The Welding process for Lap and Butt joints			L3
CO5	Understand	The various plumbing pipe joints			L2

SYLLABUS

- Demonstration: Safety practices and precautions to be observed in workshop.
 Wood Working: Familiarity with different types of woods and tools used in woodworking and
- Wood Working: Familiarity with different types of woods and tools used in woodworking and make following joints.
 - a) Half Lap joint b) Mortise and Tenon joint c) Corner Dovetail joint or Bridlejoint
- 3. **Sheet Metal Working**: Familiarity with different types of tools used in sheet metalworking, Developments of following sheet metal job from GI sheets.
 - a) Tapered tray b) Conical funnel c) Elbow pipe d) Brazing
- 4. **Fitting:** Familiarity with different types of tools used in fitting and do the following fitting exercises.
 - a) V-fit b) Dovetail fit c) Semi-circular fit d) Bicycle tire puncture and change of two-wheeler tyre
- 5. **Electrical Wiring**: Familiarity with different types of basic electrical circuits and make the following connections.
 - a) Parallel and series b) Two-way switch c) Godown lighting d) Tube light e) Three phase motor f) Soldering of wires
- 6. **Foundry Trade:** Demonstration and practice on Moulding tools and processes, Preparation of Green Sand Moulds for given Patterns.
- 7. **Welding Shop**: Demonstration and practice on Arc Welding and Gas welding.Preparation of Lap joint and Butt joint.
- 8. **Plumbing:** Demonstration and practice of Plumbing tools, Preparation of Pipe joints with coupling for same diameter and with reducer for different diameters.

Department of Electrical and Electronics Engineering

Text books:

- Basic Workshop Technology: Manufacturing Process, Felix W.; Independently Published, 2019. Workshop Processes, Practices and Materials; Bruce J. Black, Routledge publishers, 5th Edn. 2015.
- A Course in Workshop Technology Vol I. & II, B.S. Raghuwanshi, Dhanpath Rai & Co., 2015 & 2017.

Reference books:

- Elements of Workshop Technology, Vol. I by S. K. Hajra Choudhury & Others, Media Promoters and Publishers, Mumbai. 2007, 14th edition
- Workshop Practice by H. S. Bawa, Tata-McGraw Hill, 2004.

Mapping 0	Mapping of Course outcomes with Program outcomes													
CO/PO	P01	P02	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	3	3	3						3				3	3
CO2	3	3	3						3				3	3
CO3	3	3	3						3				3	3
CO4	3	3	3						3				3	3
CO5	2	2	2						2				3	3
Levels of co	evels of correlation, viz., 1. Low, 2. Moderate, 3. High													

Mapp	ping of Course outcomes with Program outcomes Justification Table												
CO			CO			Program	PO(s): Action	Level of					
No.	Lesson	%	correlation	Verb	BTL	Outcomes	verb and BTL	correlation					
	Plan					(PO)	(for PO1 to	(0-3)					
	(Hrs.)						PO5)						
							,						
						P01	Apply-L3	3					
1			3			PO2	Review-L2	3					
1			J	Apply	L3	PO3	Develop-L3	3					
						P09	Thumb Rule-L3	3					
						PO1	Apply-L3	3					
2			3			PO2	Review-L2	3					
			3	Analyze	L4	PO3	Develop-L3	3					
						P09	Thumb Rule-L3	3					
						P01	Apply-L3	3					
3			1	A 1		PO2	Review-L2	3					
3			1	Apply	L3	PO3	Develop-L3	3					
						PO9	Thumb Rule-L3	3					
						P01	Apply-L3	3					
4			2			PO2	Review-L2	3					
T			2	Apply	L3	PO3	Develop-L3	3					
						P09	Thumb Rule-L3	3					
						P01	Apply-L3	2					
5			2			PO2	Review-L2	2					
3			~	Understand	L2	PO3	Develop-L3	2					
						P09	Thumb Rule-L3	2					

Department of Electrical and Electronics Engineering

CO1: Apply the wood working skills to prepare different joints

Action Verb: **Apply** (L3) PO1 Verb: **Apply** (L3)

CO1 Action verb is same level as PO1 verb. Therefore, the correlation is high (3)

PO2 Verb: Review (L2)

CO1 Action verb is same level as PO2 verb. Therefore, the correlation is high (3)

PO3 Verb: **Develop (L3)**

CO1 Action verb is same level as PO3 verb. Therefore, the correlation is high (3)

PO9 Verb: Thumb Rule

CO1 Action verb is same level as PO9 verb. Therefore, the correlation is high (3)

CO1: Apply the wood working skills to prepare different joints

Action Verb: **Apply** (L3)

PO1 Verb: **Apply** (L3)

CO1 Action verb is same level as PO1 verb. Therefore, the correlation is high (3)

PO2 Verb: Review (L2)

CO2: Analyze the sheet metal and fitting operations to prepare various components

Action Verb: Analyse (L4)

PO1 Verb: **Apply** (L3)

CO2 Action verb is same level (greater) as PO1 verb. Therefore, the correlation is high(3)

PO2 Verb: Review (L2)

CO2 Action verb is same level (greater) as PO2 verb. Therefore, the correlation is high (3)

PO3 Verb: **Develop (L3)**

CO2 Action verb is same level (greater) as PO3 verb. Therefore, the correlation is high (3)

PO9 Verb: Thumb Rule

CO2 Action verb is same level (greater) as PO9 verb. Therefore, the correlation is high (3)

CO3: Apply the basic electrical engineering knowledge for house wiring practice

Action Verb: **Apply** (L3)

PO1 Verb: Apply (L3)

CO3 Action verb is same level as PO1 verb. Therefore, the correlation is high (3)

PO2 Verb: **Review (L2)**

CO3 Action verb is same level as PO2 verb. Therefore, the correlation is high (3)

PO3 Verb: **Develop (L3)**

CO3 Action verb is same level as PO3 verb. Therefore, the correlation is high (3)

PO9 Verb: Thumb Rule

CO3 Action verb is same level as PO9 verb. Therefore, the correlation is high (3)

CO3: Apply the basic electrical engineering knowledge for house wiring practice

Action Verb: Apply (L3)

PO1 Verb: **Apply** (L3)

CO3 Action verb is same level as PO1 verb. Therefore, the correlation is high (3)

PO2 Verb: Review (L2)

CO4: Apply the Welding process for Lap and Butt Joints

Action Verb: Apply (L3)

PO1 Verb: Apply (L3)

CO4 Action verb is same level as PO1 verb. Therefore, the correlation is high (3)

PO2 Verb: Review (L2)

CO4 Action verb is same level as PO2 verb. Therefore, the correlation is high (3)

PO3 Verb: **Develop (L3)**

CO4 Action verb is same level as PO3 verb. Therefore, the correlation is high (3)

PO9 Verb: Thumb Rule

CO4 Action verb is same level as PO9 verb. Therefore, the correlation is high (3)

Department of Electrical and Electronics Engineering

CO5: Understand the various plumbing pipe joints.

Action Verb: Understand (L2)

PO1 Verb: Apply (L2)

CO5 Action verb is less than as PO1 verb. Therefore, the correlation is high (2)

PO2 Verb: Review (L2)

CO5 Action verb is less than as PO2 verb. Therefore, the correlation is high (2)

PO3 Verb: Develop (L3)

CO5 Action verb is less than as PO3 verb. Therefore, the correlation is high (2)

PO9 Verb: **Thumb Rule**

CO5 Action verb is less than as PO9 verb. Therefore, the correlation is high (2)

Department of Electrical and Electronics Engineering

Year/Sem	I/I	Branch of Study: Common to all branches							
Subject Code Subject Nam		Subject Name	L	Т	P	Credits			
23AES0502 COMPUTER PROGRAMMING LAB		0	0	3	1.5				

After co	After completion of the course, students will be able to:						
CO1	Understand the basic syntax of C program to build applications.						
CO2	Create the control structure for solving complex problems.						
CO3	Apply the concepts of arrays, functions, basic concepts of pointers to organize the data.						
CO4	Apply the concepts of structures, unions and linked list to manage heterogeneous data.						
CO5	Create the file applications for storing and accessing data.						

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	The basic syntax of C program		To build applications	L2
CO2	Create	The control structure		For solving complex problems	L6
CO3	Apply	The concepts of arrays, functions, basic concepts of pointers		To organize the data	L3
CO4	Apply	The concepts of structures, unions and linked list		To manage heterogeneous data	L3
CO5	Create	The file applications		For storing and accessing data	L6

List of Experiments:

Exercise 1: Problem-solving using Computers[CO1]

- i) Basic Linux environment and its editors like Vi, Vim & Emacs etc.
- ii) Exposure to Turbo C, gcc
- iii) Writing simple programs using printf(), scanf()

Exercise 2: Problem-solving using Algorithms and Flow charts.[CO1]

- i) Sum and average of 3 numbers
- ii) Conversion of Fahrenheit to Celsius and vice versa
- iii) Simple interest calculation

Exercise 3: Variable types and type conversions[CO2]

- i) Finding the square root of a given number
- ii) Finding compound interest
- iii) Area of a triangle using heron's formulae
- iv) Distance travelled by an object

Exercise 4: Operators and the precedence and as associativity[CO2]

- i) Evaluate the following expressions.
- a. A+B*C+(D*E) + F*G
- b. A/B*C-B+A*D/3
- c. A+++B---A
- d. J = (i++) + (++i)
- ii) Find the maximum of three numbers using conditional operator
- iii) Take marks of 5 subjects in integers, and find the total, average in float list and perform insertion, deletion, and traversal.

Department of Electrical and Electronics Engineering

Exercise 5: Branching and logical expressions[CO2]

- i) Write a C program to find the max and min of four numbers using if-else.
- ii) Write a C program to generate electricity bill.
- iii) Find the roots of the quadratic equation.
- iv) Write a C program to simulate a calculator using switch case.
- v) Write a C program to find the given year is a leap year or not.

Exercise 6: Loops, while and for loops[CO2]

- i) Find the factorial of given number using any loop.
- ii) Find the given number is a prime or not.
- iii) Compute sine & cos series.
- iv) Checking a number palindrome
- v) Construct a pyramid of numbers.

Exercise 7: 1 D Arrays: searching[CO3]

- i) Find the min and max of a 1-D integer array.
- ii) Perform linear search on 1D array.
- iii) The reverse of a 1D integer array
- iv) Find 2's complement of the given binary number.
- v) Eliminate duplicate elements in an array.

Exercise 8: 2 D arrays, sorting and Strings[CO3]

- i) Addition of two matrices
- ii) Multiplication two matrices
- iii) Sort array elements using bubble sort
- iv) Concatenate two strings without built-in functions
- v) Reverse a string using built-in and without built-in string functions

Exercise 9: Pointers, structures and dynamic memory allocation[CO3]

- i) Write a C program to find the sum of a 1D array using malloc()
- ii) Write a C program to find the total, average of n students using structures
- iii) Enter n students data using calloc() and display failed students list
- iv) Read student name and marks from the command line and display the student details along with the total.
- v) Write a C program to implement realloc()

Exercise 10: Bitfields, Self-Referential Structures, Linked lists[CO4]

- i) Create and display a singly linked list using self-referential structure.
- ii) Demonstrate the differences between structures and unions using a C program.
- iii) Write a C program to shift/rotate using bitfields.
- iv) Write a C program to copy one structure variable to another structure of the same type.

Exercise 11: Functions, call by value, scope and extent[CO2]

- i) Write a C function to calculate NCR value.
- ii) Write a C function to find the length of a string.
- iii) Write a C function to transpose of a matrix.
- iv) Write a C function to demonstrate numerical integration of differential equations using Euler's method

Exercise 12: Recursion, the structure of recursive calls[CO4]

- i) Write a recursive function to generate Fibonacci series.
- ii) Write a recursive function to find the lcm of two numbers.
- iii) Write a recursive function to find the factorial of a number.
- iv) Write a C Program to implement Ackermann function using recursion.
- v) Write a recursive function to find the sum of series.

Exercise 13: Call by reference, dangling pointers[CO4]

- i) Write a C program to swap two numbers using call by reference.
- ii) Demonstrate Dangling pointer problem using a C program.
- iii) Write a C program to copy one string into another using pointer.

Department of Electrical and Electronics Engineering

v) Write a C program to find no of lowercase, uppercase, digits and other characters using pointers.

Exercise 14: File handling[CO5]

- i) Write a C program to write and read text into a file.
- ii) Write a C program to write and read text into a binary file using fread() and fwrite()
- iii) Copy the contents of one file to another file.
- iv) Write a C program to merge two files into the third file using command-line arguments.
- v) Find no. of lines, words and characters in a file
- vi) Write a C program to print last n characters of a given file.

Text books:

- 1 Ajay Mittal, Programming in C: A practical approach, Pearson.
- 2 Byron Gottfried, Schaum' s Outline of Programming with C, McGraw Hill

Reference books:

- 1 Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice-Hall of India
- 2 C Programming, A Problem-Solving Approach, Forouzan, Gilberg, Prasad, CENGAGE

Mapping	Mapping of Course outcomes with Program outcomes													
CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	2	3	2	2									2	
CO2	3	3		3								2	2	1
CO3	3	3		2	3							3	2	1
CO4	3	3	3	2								2	2	1
CO5	3	3	3	3								3	2	
Loveland	avals of correlation viz. 1 Law 2 Moderate 2 High													

Levels of correlation, viz., 1. Low, 2. Moderate, 3. High

Department of Electrical and Electronics Engineering

СО			СО		Program	PO(s): Action	Level of	
No.	Lesson Plan (Hrs.)	%	correlation	Verb	BTL	Outcomes (PO)	verb and BTL (for PO1 to PO5)	correlation (0-3)
1				Understand	L2	P01, P02, P03, P04	PO1: Apply(L3) PO2: Review(L2) PO3: Develop(L3) PO4: Analyze(L4)	2 3 2 2
2				Create	L6	P01, P02, P04, P05, P012	PO1: Apply(L3) PO2: Review (L3) PO4: Analyze (L4) PO5: Apply(L3) PO12: Thumb rule	3 3 3 3 2
3				Apply	L3	P01, P02, P04, P05, P012	PO1: Apply(L3) PO2: Review (L3) PO4: Analyze (L4) PO5: Apply(L3) PO12: Thumb rule	3 3 2 3 3
4				Apply	L3	P01, P02, P03, P04, P012	PO1: Apply(L3) PO2: Review (L2) PO3: Develop(L3) PO4: Analyze (L4) PO12: Thumb rule	3 3 3 2 2
5				Create	L6	P01, P02, P03, P04 P012	PO1: Apply(L3) PO2: Review (L2) PO3: Develop(L3) PO4: Analyze (L4) PO12: Thumb rule	3 3 3 3 3

CO1: Understand the basic syntax of C program to build applications.

Action Verb: Understand (L2)

- PO1 Verb: Apply (L3)
- CO1 Action verb is less than PO1 verb by one level. Therefore, the correlation is moderate (2)
- PO2 Verb: Review(L2)
- CO1 Action verb is greater than PO2 verb. Therefore, the correlation is high (3)
- PO3: Develop(L3)
- CO1 Action verb is less than PO3 verb by one level. Therefore, the correlation is moderate (2)
- PO4: Analyze(L4)
- CO1 Action verb is less than PO1 verb by one level. Therefore, the correlation is moderate is (2)

CO2: Create the control structure for solving complex problems.

Action Verb: Create (L6)

- PO1: Apply (L3)
- CO2 Action verb is greater than as PO1 verb. Therefore, the correlation is high (3)
- PO2: Review (L3)
- CO2 Action verb is same level PO2 verb. Therefore, the correlation is high (3)
- PO4: Analyze (L4)
- CO2 Action verb is same as PO4 verb. Therefore, the correlation is high (3)
- PO5: Apply(L3)
- CO2 Action verb is same as PO5 verb. Therefore, the correlation is high (3)

Department of Electrical and Electronics Engineering

PO12: Thumb rule

For some of Linear Data Structure applications, Linked lists concepts are used to write programs store the data. Therefore, the correlation is high (2)

CO3: Apply the concepts of arrays, functions, basic concepts of pointers to organize the data.. **Action Verb: Apply (L3)**

PO1: Apply (L3)

CO3 Action verb is greater than as PO1 verb. Therefore, the correlation is high (3)

PO2: Review (L3)

CO3 Action verb is same level PO2 verb. Therefore, the correlation is high (3)

PO4: Analyze (L4)

CO3 Action verb is less than PO4 verb by one level. Therefore, the correlation is moderate (2)

PO5: Apply(L3)

CO3 Action verb is same as PO5 verb. Therefore, the correlation is high (3)

PO12: Thumb rule

For some of Linear Data Structure applications, Linked lists concepts are used to write programs store the data. Therefore, the correlation is high (3)

CO4: Apply the concepts of structures, unions and linked list to manage heterogeneous data. **Action Verb: Apply (L3)**

PO1: Apply (L3)

CO4 Action verb is greater than as PO1 verb. Therefore, the correlation is high (3)

PO2: Review (L3)

CO4 Action verb is same level PO2 verb. Therefore, the correlation is high (3)

PO4: Analyze (L4)

CO4 Action verb is less than PO4 verb by one level. Therefore, the correlation is moderate (2)

PO5: Apply(L3)

CO4 Action verb is same as PO5 verb. Therefore, the correlation is high (3)

PO12: Thumb rule

For some of Linear Data Structure applications, Linked lists concepts are used to write programs store the data. Therefore, the correlation is high (2)

CO5: Create the file applications for storing and accessing data.

Action Verb: Create (L6)

PO1: Apply (L3)

CO5 Action verb is greater than as PO1 verb. Therefore, the correlation is high (3)

PO2: Review (L3)

CO5 Action verb is same level PO2 verb. Therefore, the correlation is high (3)

PO4: Analyze (L4)

CO5 Action verb is same as PO4 verb. Therefore, the correlation is high (3)

PO5: Apply(L3)

CO5 Action verb is same as PO5 verb. Therefore, the correlation is high (3)

PO12: Thumb rule

For some of Linear Data Structure applications, Linked lists concepts are used to write programs store the data. Therefore, the correlation is high (3)

Department of Electrical and Electronics Engineering

Year/Sem	I/I&II	Branch of Study: Common to I SEM CSE, CIC, SCD, EEE II SEM ECE, AI&DS, AI&ML, CE, ME							
Subject Code		Subject Name	L	Т	P	Credits			
23AHM9903		HEALTH AND WELLNESS, YOGA AND SPORTS	0	0	1	0.5			

After co	After completion of the course, students will be able to:							
CO1	Understand the health & fitness by diet							
CO2	Understand the importance of yoga.							
CO3	Apply The yoga practices including Surya Namaskar							
CO4	Understand the importance of sports.							
CO5	Analyze various activities that help enhance their health & Positive Personality							

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	Health & fitness by diet			L2
CO2	Understand	Importance of yoga.			L2
CO3	Apply	Yoga practices including Surya Namaskar			L3
CO4	Understand	Importance of sports			L2
CO5	Analyze	Various activities that help enhance their health & Positive Personality			L4

SYLLABUS

UNIT-I

Concept of health and fitness, Nutrition and Balanced diet, basic concept of immunity Relationship between diet and fitness, Globalization and its impact on health, Body Mass Index (BMI) of all age groups.

Activities:

- i) Organizing health awareness programmes in community
- ii) Preparation of health profile
- iii) Preparation of chart for balance diet for all age groups

UNIT-II

Concept of yoga, need for and importance of yoga, origin and history of yoga in Indian context, classification of yoga, Physiological effects of Asanas- Pranayama and meditation, stress management and yoga, Mental health and yoga practice.

Activities:

Yoga practices - Asana, Kriya, Mudra, Bandha, Dhyana, Surya Namaskar

UNIT-III

Concept of Sports and fitness, importance, fitness components, history of sports, Ancient and Modern Olympics, Asian games and Commonwealth games.

Activities:

- i) Participation in one major game and one individual sport viz., Athletics, Volleyball, Basketball, Handball, Football, Badminton, Kabaddi, Kho-kho, Table tennis, Cricket etc.
 Practicing general and specific warm up, aerobics
- ii) Practicing cardiorespiratory fitness, treadmill, run test, 9 min walk, skipping and running.

Department of Electrical and Electronics Engineering

Reference books:

- Gordon Edlin, Eric Golanty. Health and Wellness, 14th Edn. Jones & Bartlett Learning, 2022
- T.K.V.Desikachar. The Heart of Yoga: Developing a Personal Practice
- 3 Archie I.Bahm, Yoga Sutras of Pataniali, Jain Publishing Company, 1993
- Wiseman, John Lofty, SAS Survival Handbook: The Ultimate Guide to Surviving Anywhere Third Edition, William Morrow Paperbacks, 2014
- 5 The Sports Rules Book/ Human Kinetics with Thomas Hanlon. -- 3rd ed. Human Kinetics, Inc. 2014

General Guidelines:

- 1. Institutes must assign slots in the Timetable for the activities of Health/Sports/Yoga.
- 2. Institutes must provide field/facility and offer the minimum of five choices of as manyas Games/Sports.
- Institutes are required to provide sports instructor / yoga teacher to mentor the students. 3.

Evaluation Guidelines:

- Evaluated for a total of 100 marks.
- A student can select 6 activities of his/her choice with a minimum of 01 activity per unit. Each activity shall be evaluated by the concerned teacher for 15 marks, totalingto 90 marks.
- A student shall be evaluated by the concerned teacher for 10 marks by conducting viva in the subject

Mapping	g of Cou	ırse ot	ıtcome	s with	Progra	m outo	comes							
CO/PO	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1						2	2							
CO2						2	2							
CO3						2	2							
CO4						2	2							
CO5						3	3							
Levels of	evels of correlation viz 1 Low 2 Moderate 3 High													

Mapp	oing of Cou	ırse d	outcomes with P	rogram outco	mes Ju	ustification T	able	
CO			CO			Program	PO(s): Action	Level of
No.	Lesson Plan (Hrs.)	%	correlation	Verb	BTL	Outcomes (PO)	verb and BTL (for PO1 to PO5)	correlation (0-3)
1				Understand	L2	P06,P07		2
2				Understand	L2	P06,P07		2
3				Apply	L3	P06,P07		2
4				Understand	L2	P06,P07	·	2
5				Analyze	L4	P06,P07		3

Department of Electrical and Electronics Engineering

CO1: Understand the health & fitness by diet

Action Verb: Understand (L2)

CO1 Action Verb is **Understand** of BTL 2.Using Thumb rule; L2 correlates PO6 and PO7 as a moderate (2)

CO2: Understand the Importance of yoga

Action Verb: Understand (L2)

CO2 Action Verb is **Understand** of BTL 2.Using Thumb rule; L2 correlates PO6 and PO7 as a moderate (2)

CO3: APPLY yoga practices including Surya Namaskar

Action Verb: APPLY (L3)

CO3 Action Verb is APPLY of BTL 2.Using Thumb rule; L2 correlates PO6 and PO7 as a moderate (2)

CO4: .Understand Importance of sports

Action Verb: Understand (L2)

CO4 Action Verb is **Understand** of BTL 2.Using Thumb rule; L2 correlates PO6 and PO7 as a moderate (2)

Action Verb: APPLY (L3)

CO5: Analyze the Various activities that help enhance their health & Positive Personality

Action Verb: Analyze (L4)

CO5 Action Verb is Analyze of BTL 2.Using Thumb rule; L4 correlates PO6 and PO7 as a moderate (2)

Department of Electrical and Electronics Engineering

Year/Sem	I/I & II	Branch of Study: Common to ECE, AI&DS, AI&ML, ME, CE (Sem-1) & CSE, CIC, EEE, &CSD (Sem-2)							
Subject Code		Subject Name	L	T	P	Credits			
23ABS9903		ENGINEERING PHYSICS	3	0	0	3			

After co	ompletion of the course, students will be able to:
CO1	Understand the intensity variation of light due to interference, diffraction, and polarization.
CO2	Analyze the fundamentals of crystallography and X-ray diffraction.
CO3	Apply the basic concepts of dielectric and magnetic materials for engineering applications.
CO4	Analyze the fundamentals of Quantum mechanics and interpret the nanomaterials for engineering problems.
CO5	Analyze the charge carrier dynamics in semiconductors by implementing the equations of state.

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	The intensity variation of light due to interference, diffraction, and polarization.			L2
CO2	Analyze	The fundamentals of crystallography and X-ray diffraction.			L4
CO3	Apply	The basic concepts of dielectric and magnetic materials		For engineering applications.	L3
CO4	Analyze	The fundamentals of Quantum mechanics and interpret the nanomaterials		For engineering problems.	L4
CO5	Analyze	The charge carrier dynamics in semiconductors.	By implementing the equations of state.		L4

SYLLABUS

UNIT-I

TITLE: Wave Optics

Interference: Introduction - Principle of superposition - Interference of light - Interference in thin films (Reflection Geometry) & applications - Newton's Rings, Determination of wavelength and refractive index.

Diffraction: Introduction - Fresnel and Fraunhofer diffractions - Fraunhofer diffraction due to single slit, double slit (Qualitative) - Diffraction Grating.

Polarization: Introduction -Types of polarization - Polarization by reflection, refraction and Double refraction - Nicol's Prism -Half wave and Quarter wave plates.

UNIT-II

TITLE: Crystallography and X-ray diffraction

Crystallography: Space lattice, Basis, Unit Cell and lattice parameters - Bravais Lattices - crystal

Department of Electrical and Electronics Engineering

systems (3D) – coordination number - packing fraction of SC, BCC & FCC - Miller indices – separation between successive (hkl) planes.

X- ray diffraction: Bragg's law - X-ray Diffractometer – crystal structure determination byLaue's and powder methods.

UNIT-III

TITLE: Dielectric and Magnetic Materials

Dielectric Materials: Introduction - Dielectric polarization - Dielectric polarizability, Susceptibility, Dielectric constant and Displacement Vector - Relation between the electric vectors - Types of polarizations- Electronic (Quantitative), Ionic (Quantitative) and Orientation polarizations (Qualitative) - Lorentz internal field - Clausius- Mossotti equation - Frequency dependence of polarization-Applications of Dielectric materials.

Magnetic Materials: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability - Atomic origin of magnetism - Classification of magnetic materials: Dia, para, Ferro, anti-ferro & Ferri magnetic materials - Domain concept for Ferromagnetism & Domain walls (Qualitative) - Hysteresis - soft and hard magnetic materials - Applications of magnetic materials.

UNIT-IV

TITLE: Quantum Mechanics and Nanomaterials

Quantum Mechanics: Dual nature of matter – Heisenberg's Uncertainty Principle – Significance and properties of wave function – Schrodinger's time independent and dependent wave equations—Particle in a one-dimensional infinite potential well.

Nanomaterials: Introduction to Nanomaterials–Significance of nanoscale - Physical, Mechanical, Magnetic, and optical properties of nanomaterials -Synthesis of nanomaterials: Ball Milling, Applications of Nanomaterials.

UNIT-V

TITLE: Semiconductors

Semiconductors: Formation of energy bands – classification of crystalline solids - Intrinsic semiconductors: Density of charge carriers – Electrical conductivity – Fermi level – Extrinsic semiconductors: density of charge carriers – dependence of Fermi energy on carrier concentration and temperature - Drift and diffusion currents – Einstein's equation – Hall effectand its applications – Applications of semiconductors.

Text books:

- 1 A Text book of Engineering Physics, M. N. Avadhanulu, P.G. Kshirsagar & TVS Arun Murthy, S. Chand Publications, 11th Edition 2019.
- 2 K.Thyagarajan "Engineering Physics",-Mc Graw Hill Publishing Company Ltd, 2016.
- 3 Engineering Physics D.K.Bhattacharya and Poonam Tandon, Oxford press (2015)

Reference books:

- 1 Engineering Physics B.K. Pandey and S. Chaturvedi, Cengage Learning 2021.
- 2 Engineering Physics Shatendra Sharma, Jyotsna Sharma, Pearson Education, 2018.
- 3 Engineering Physics" Sanjay D. Jain, D. Sahasrabudhe and Girish, University Press. 2010
- 4 Engineering Physics M.R. Srinivasan, New Age international publishers (2009).

Web Resources:

1 https://www.loc.gov/rr/scitech/selected-internet/physics.html

Department of Electrical and Electronics Engineering

Mapping	lapping of Course outcomes with Program outcomes													
CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	3													
CO2	3													
CO3	3			3										
CO4	3													
CO5	3			3										
Levels of	evels of correlation, viz., 1. Low, 2. Moderate, 3. High													

Mapp	oing of Cou	ırse outo	comes with Prog	gram outcome	s Justi	fication Tabl	e	
CO			СО			Program	PO(s): Action	Level of
No.	Lesson Plan (Hrs.)	%	correlation	Verb	BTL	Outcomes (PO)	verb and BTL (for PO1 to PO5)	correlation (0-3)
1	15	22.3	3	Understand	L2	P01	Apply (L3)	2
2	11	16.4	2	Analyze	L4	PO1	Apply (L3)	3
3	12	17.9	2	Apply	L3	PO1, PO4	Apply (L3)	3
4	13	19.4	2	Analyze	L4	P01	Apply (L3)	3
5	16	23.8	3	Analyze	L4	PO1, PO4	Apply (L3)	3

$\textbf{CO1:} \ \textbf{The intensity variation of light due to interference, diffraction, and polarization.}$

Action Verb: Understand (L2)

PO1 Verbs: Apply (L3)

CO1 Action Verb is lesser than PO1 verb by one level; Therefore, correlation is moderate (2).

CO2: The fundamentals of crystallography.

Action Verb: Analyze (L4)

PO1 Verbs: Apply (L3)

CO2 Action Verb is greater than PO1 verb; Therefore correlation is high (3).

CO3: Apply the basic concepts of dielectric and magnetic materials for engineering applications.

Action Verb: Apply (L3)

PO1 and PO4 Verbs: Apply (L3)

CO3 Action Verb level is equal to PO1 and PO4 verb; Therefore correlation is high (3).

CO4: The fundamentals of Quantum mechanics and interpret the nanomaterials for engineering problems.

Action Verb: Analyze (L4)

PO1 Verb: Apply (L3)

CO4 Action Verb is greater than PO1 verb by one level; Therefore, correlation is high (3).

CO5: The charge carrier dynamics in semiconductors by implementing the equations of state.

Action Verb: Analyze (L4)

PO1 and PO4 Verb: Apply (L3)

CO5 Action verb is greater than PO1 verb; therefore, the correlation is high (3).

Department of Electrical and Electronics Engineering

Year/Sem	I/II	Branch of Study: Common to ALL Branches							
Subject Code		Subject Name	L	T	P	Credits			
23AB	S9905	DIFFERENTIAL EQUATIONS & VECTOR CALCULUS	3	0	0	3			

After co	After completion of the course, students will be able to:								
CO1	Apply the concepts of ordinary differential equations of first order and first degree.								
CO2	Apply the methods of linear differential equations related to various engineering problems.								
CO3	Analyze the solutions of partial differential equations using Lagrange's method.								
CO4	Understand the different operators and identities in the vector calculus.								
CO5	Evaluate the surface integral and volume integral in the vector calculus using various theorems.								

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
C01	Apply	The concepts of ordinary differential equations.		of first order and first degree	L3
CO2	Apply	The methods of linear differential equations related to various engineering problems.			L3
CO3	Analyze	The solutions of partial differential equations.	Using Lagrange's method		L4
C04	Understand	different operators and identities in the vector calculus.			L2
CO5	Evaluate	the surface integral and volume integral in the vector calculus.	Using various theorems		L5

SYLLABUS

UNIT-I

TITLE: Linear Differential Equations of first Order and first Degree

Linear differential equations-Bernoulli's equations-Exat equations and equations reducible to exact form. Applications: Newton's Law of cooling-Law of natural growth and decay-Electrical circuits.

UNIT-II

TITLE: Equations Reducible to Linear Differential Equations and Applications

Definitions, homogeneous and non-homogeneous, complimentary function, general solution, particular integral, Wronskian, Method of variation of parameters. Simultaneous linear equations, Applications to L-C-R Circuit problems and simple Harmonic motion.

UNIT-III

TITLE: Partial Differential Equations

Introduction and formation of partial differential Equations by elimination of arbitrary constants and arbitrary functions, solutions of first order linear equations using Lagrange's method. Homogeneous Linear Partial differential equations with constant coefficients.

Department of Electrical and Electronics Engineering

UNIT-IV

TITLE: Vector differentiation

Scalar and vector point functions, vector operator del, del applies to scalar point functions-Gradient, Directional derivative, del applied to vector point functions-Divergence and Curl, vector identities.

UNIT-V

TITLE: Vector integration

Line integral-circulation-work done, surface integral-flux, Green's theorem in the plane (without proof), Stoke's theorem (without proof), volume integral, Divergence theorem (without proof) and applications of these theorems.

Text books:

- B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna publishers, 2017.
- 2 Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley & Sons, 2011.

Reference books:

- 1 Dr.T.K.V.Iyengar, Engineering Mathematics-I,S.Chand publishers
- 2 R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002
- 3 N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmipublication, 2008
- 4 B. V. Ramana, Higher Engineering Mathematics, McGraw Hill Education.

Mapping	Mapping of Course outcomes with Program outcomes													
CO/PO	P01	PO2	PO3	PO4	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	3													
CO2	3													
CO3		3												
CO4	2													
CO5		3												
Levels of	correla	tion vi	z 1 Lov	w 2 Mo	derate	3 High								

Mapp	oing of Cou	ırse ou	tcomes with Pro	gram outcom	es Jus	tification Ta	ble	
СО			СО			Program	PO(s): Action	Level of
No.	Lesson Plan (Hrs.)	%	correlation	Verb	BTL	Outcomes (PO)	verb and BTL (for PO1 to PO5)	correlation (0-3)
1	14	20.8	3	Apply	L4	P01	Apply	3
2	15	22.3	3	Apply	L3	PO1	Apply	3
3	14	20.8	3	Analyze	L4	PO2	Analyze	3
4	9	13.4	2	Understand	L2	P01	Apply	2
5	15	22.3	3	Evaluate	L5	PO2	Analyze	3

Department of Electrical and Electronics Engineering

CO1: Apply the concepts of ordinary differential equations of first order and first degree.

Action Verb: Apply(L3) PO1 Verbs: Apply(L3)

CO1 Action Verb is equal to PO1 verb Therefore correlation is high (3).

CO2: Apply the methods of linear differential equations related to various engineering problems.

Action Verb: Apply (L3)

PO1 Verbs: Apply (L3)

CO2 Action Verb is equal to PO1 verb; Therefore correlation is high (3).

CO3: Analyze the solutions of partial differential equations.

Action Verb: Analyze(L4)

PO2 Verb: Analyze (L4)

CO3 Action Verb level is equal to PO2 verb; Therefore correlation is high (3).

CO4: Understand the different operators and identities in the vector calculus.

Action Verb: Understand(L2)

PO1 Verb: Apply(L3)

CO4 Action Verb is low level to PO1 to one level; Therefore correlation is moderate (2).

CO5: Evaluate the surface integral and volume integral in the vector calculus.

Action Verb: Evaluate(L5)

PO2 Verb: Analyze (L4)

CO5 Action verb is high level to PO2 verb; therefore the correlation is high (3).

Department of Electrical and Electronics Engineering

Year/Sem	I/II	Branch of Study: EEE				
Subject Code		Subject Name	L	T	P	Credits
23AE	S0201	BASIC ELECTRICAL & ELECTRONICS ENGINEERING	3	0	0	3

PART-A BASIC ELECTRICAL ENGINEERING

After co	After completion of the course, students will be able to:							
CO1	Understand the fundamental laws of A. C circuits and D. C circuits.							
CO2	Understand operating principles of motors, generators and measuring instruments.							
CO3	Understand the fundamentals of power generation, costing and safety measures.							

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	The fundamentals laws of A. C circuits and D.C circuits.		A. C circuits and D. C circuits	L2
CO2	Understand	Operating principles of motors, generators and measuring instruments.			L2
CO3	Understand	The fundamentals of Power generation, costing and safety measures.			L2

SYLLABUS

UNIT-I

TITLE: DC & AC Circuits

DC Circuits: Electrical circuit elements (R, L and C), Ohm's Law and its limitations, KCL & KVL, series, parallel, series-parallel circuits, Super Position theorem, Simple numerical problems.

AC Circuits: A.C. Fundamentals: Equation of AC Voltage and current, waveform, time period, frequency, amplitude, phase, phase difference, average value, RMS value, form factor, peak factor, Voltage and current relationship with phasor diagrams in R, L, and C circuits, Concept of Impedance, Active power, reactive power and apparent power, Concept of power factor (Simple Numerical problems).

UNIT-II

TITLE: Machines and Measuring Instruments

Machines: Construction, principle and operation of (i) DC Motor, (ii) DC Generator, (iii) Single Phase Transformer, (iv) Three Phase Induction Motor and (v) Alternator, Applications of electrical machines. Measuring Instruments: Construction and working principle of Permanent Magnet Moving Coil (PMMC), Moving Iron (MI) Instruments and Wheat Stone Bridge.

UNIT-III

TITLE: Energy Resources, Electricity Bill & Safety Measures

Energy Resources: Conventional and non-conventional energy resources; Layout and operation of various Power Generation systems: Hydel, Nuclear, Solar & Wind power generation.

Electricity bill: Power rating of household appliances including air conditioners, PCs, Laptops, Printers, etc. Definition of "unit" used for consumption of electrical energy, two-part electricity tariff, calculation of electricity bill for domestic consumers.

Department of Electrical and Electronics Engineering

Equipment Safety Measures: Working principle of Fuse and Miniature circuit breaker (MCB), merits and demerits. Personal safety measures: Electric Shock, Earthing and its types, Safety Precautions to avoid shock

Text books:

- Basic Electrical Engineering, D. C. Kulshreshtha, Tata McGraw Hill, 2019, First Edition 2. Power System Engineering, P.V. Gupta, M.L. Soni, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai & Co, 2013.
- 2 Fundamentals of Electrical Engineering, Rajendra Prasad, PHI publishers, 2014, Third Edition

Reference books:

- Basic Electrical Engineering, D. P. Kothari and I. J. Nagrath, Mc Graw Hill, 2019, Fourth Edition.
- 2 Principles of Power Systems, V.K. Mehtha, S. Chand Technical Publishers, 2020.
- Basic Electrical Engineering, T. K. Nagsarkar and M. S. Sukhija, Oxford University Press, 2017.
- 4 Basic Electrical and Electronics Engineering, S. K. Bhatacharya, Person Publications, 2018, Second Edition.

Web Resources:

- 1 https://nptel.ac.in/courses/108105053
- 2 https://nptel.ac.in/courses/108108076

Department of Electrical and Electronics Engineering

PART-B BASIC ELECTRONICS ENGINEERING

After co	After completion of the course, students will be able to:							
CO4	Understand the fundamental concepts of diodes, transistors and its applications.							
CO5	Analyze the concepts of rectifiers, power supplies and amplifiers in electronics							
C06	Analyze the concepts of Number Systems, Boolean Functions, Logic Gates and Digital Circuits							

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO4	Understand	Fundamental concepts of diodes, transistors and its applications			L2
CO5	Analyze	Concepts of rectifiers, power supplies and amplifiers in electronics			L4
C06	Analyze	Concepts of Number Systems, Boolean Functions, Logic Gates and Digital Circuits			L4

SYLLABUS

UNIT-I

TITLE: SEMICONDUCTOR DEVICES

Introduction - Evolution of electronics - Vacuum tubes to nano electronics - Characteristics of PN Junction Diode — Zener Effect — Zener Diode and its Characteristics. Bipolar Junction Transistor — CB, CE, CC Configurations and Characteristics — Elementary Treatment of Small Signal CE Amplifier.

UNIT-II

TITLE: BASIC ELECTRONIC CIRCUITS AND INSTRUMENTTAION

Rectifiers and power supplies: Block diagram description of a DC power supply, working of a full wave bridge rectifier, capacitor filter (no analysis), working of simple Zener voltage regulator. Amplifiers: Block diagram of Public Address system, Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response. Electronic Instrumentation: Block diagram of an electronic instrumentation system.

UNIT-III

TITLE: DIGITAL ELECTRONICS

Overview of Number Systems, Logic gates including Universal Gates, BCD codes, Excess-3 code, Gray code, Hamming code. Boolean Algebra, Basic Theorems and properties of Boolean Algebra, Truth Tables and Functionality of Logic Gates – NOT, OR, AND, NOR, NAND, XOR and XNOR. Simple combinational circuits–Half and Full Adder, Introduction to sequential circuits, Flip flops, Registers and counters (Elementary Treatment only)

Department of Electrical and Electronics Engineering

Text books:

- 1 R. L. Boylestad & Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2021.
- 2 R. P. Jain, Modern Digital Electronics, 4th Edition, Tata Mc Graw Hill, 2009

Reference books:

- 1 R. S. Sedha, A Textbook of Electronic Devices and Circuits, S. Chand & Co, 2010.
- 2 Santiram Kal, Basic Electronics- Devices, Circuits and IT Fundamentals, Prentice Hall, India, 2002.
- R. T. Paynter, Introductory Electronic Devices & Circuits Conventional Flow Version, Pearson Education, 2009.

Mapping	Mapping of Course outcomes with Program outcomes													
CO/PO	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	2	2				1							2	
CO2	2	1				1							1	
CO3	2	1				2							1	2
CO4	2	3												
CO5	3	3												
CO6	3	3			·									•
Levels of	correla	tion, vi	z., 1. Lo	w, 2. Mo	derate,	3. High	•	•	•					•

Mapping of Course outcomes with Program outcomes Justification Table \mathbf{CO} CO **Program** PO(s): Action Level of % correlation **Outcomes** verb and BTL No. Lesson Verb **BTL** correlation Plan (PO) (for PO1 to (0-3)PO5) (Hrs.) PO1: Apply (L3) 2 PO1, PO2: Identify (L3) 1 80 30 3 Understand **L2** 2 PO2, PO6 PO6: Thumb Rule 1 2 PO1: Apply (L3) PO1, PO2: Identify (L3) 2 3 80 30 **Understand** L2 1 PO2, PO6 PO6: Thumb Rule 1 PO1: Apply (L3) 2 P01. PO2: Identify (L3) 3 10 38 3 Understand L2 1 PO2, PO6 PO6: Thumb Rule 2 2 PO1: Apply (L3) 4 30 3 L2 PO1, PO2 80 **Understand** PO2: Review (L2) 3 PO1: Apply (L3) 3 5 80 30 3 Analyze **L4** PO1, PO2 PO2: Review (L2) 3 PO1: Apply (L3) 3 3 PO1, PO2 6 10 38 Analyze L4 PO2: Review (L2) 3

Department of Electrical and Electronics Engineering

CO1: Understand the fundamental laws of AC and DC circuits.

Action Verb: Understand (L2)

PO1: Apply (L3)

CO1 Action Verb is Less than PO1 verb by one level; Therefore, correlation is moderate (2).

PO2: Identify (L3)

CO1 Action Verb is Less than PO2 verb by one level; Therefore, correlation is moderate (2).

PO6: Using thumb rule, CO1 correlates PO6 as low (1).

CO2: Understand operating principles of motors, generators, MC and MI instruments.

Action Verb: Understand (L2)

PO1: Apply (L3)

CO2 Action Verb is Less than PO1 verb by one level; Therefore, correlation is moderate (2).

PO2: Analyze (L4)

CO2 Action Verb is Less than PO2 verb by two level; Therefore, correlation is low (1).

PO6: Using thumb rule, CO2 correlates PO6 as low (1).

CO3: Understand the fundamentals of power generation, costing and safety measures.

Action Verb: Understand (L2)

PO1: Apply (L3)

CO3 Action Verb is Less than PO1 verb by one level; Therefore, correlation is moderate (2).

PO2: Analyze (L4)

CO3 Action Verb is Less than PO2 verb by two level; Therefore, correlation is low (1).

PO6: Using thumb rule, CO3 correlates PO6 as medium (2).

${\bf CO4: Understand\ the\ fundamental\ concepts\ of\ diodes, transistors\ and\ its\ applications}$

Action Verb: Understand (L2)

PO1 Verbs: Apply (L3)

CO4 Action Verb is less than PO1 verb by one level; Therefore correlation is moderate (2).

PO2 Verbs: Review (L2)

CO4 Action Verb is equal to PO2 verb; Therefore correlation is high (3).

CO5: Analyze the concepts of rectifiers, power supplies and amplifiers in electronics.

Action Verb: Analyze (L4)

PO1 Verbs: Apply (L3)

CO5 Action Verb is greater than PO1 verb by one level; Therefore correlation is high (3).

PO2 Verbs: Review (L2)

CO5 Action Verb is equal to PO2 verb; Therefore correlation is high (3).

CO6: Analyze the concepts of Number Systems, Boolean Functions, Logic Gates and Digital Circuits.

Action Verb: Analyze (L4)

PO1 Verbs: Apply (L3)

CO6 Action Verb is greater than PO1 verb by one level; Therefore correlation is high (3).

PO2 Verbs: Review (L2)

CO6 Action Verb is equal to PO2 verb; Therefore correlation is high (3).

Department of Electrical and Electronics Engineering

Year/Sem	I/I&II	Branch of Study: Common to all Branches				
Subject Code		Subject Name	L	Т	P	Credits
23AE	50301	ENGINEERING GRAPHICS	1	0	4	3

After co	After completion of the course, students will be able to:						
CO1	Apply the concepts of engineering curves and scales for technical drawing.						
CO2	Understand the quadrant system to locate the position of points, lines and planes.						
CO3	Analyze the projection of solids located in quadrant system.						
CO4	Analyze the sectional views and development of surfaces of regular solids.						
CO5	Apply orthographic and isometric projections concepts to construct the given object						

со	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Apply	the concepts of engineering curves and scales	For technical drawing		L3
CO2	Understand	the quadrant system to locate the position of points, lines and planes			L2
CO3	Analyze	the projection of solids	located in quadrant system		L4
CO4	Analyze	the sectional views and development of surfaces	of regular solids		L4
CO5	Apply	orthographic and isometric projections concepts to construct the given object			L3

SYLLABUS

UNIT-I

Introduction: Lines, Lettering and Dimensioning, Geometrical Constructions and Constructing regular polygons by general methods.

Curves: construction of ellipse, parabola and hyperbola by general, Cycloids, Involutes, Normal and tangent to Curves.

Scales: Plain scales, diagonal scales and vernier scales.

UNIT-II

Orthographic Projections: Reference plane, importance of reference lines or Plane, Projections of a point situated in any one of the four quadrants.

Projections of Straight Lines: Projections of straight lines parallel to both reference planes, perpendicular to one reference plane and parallel to other reference plane, inclined to one reference plane and parallel to the other reference plane. Projections of Straight Line Inclined to both the

Department of Electrical and Electronics Engineering

reference planes

Projections of Planes: regular planes Perpendicular to both reference planes, parallel to one reference plane and inclined to the other reference plane; plane inclined to both the reference planes.

UNIT-III

Projections of Solids: Types of solids: Polyhedra and Solids of revolution. Projections of solids in simple positions: Axis perpendicular to horizontal plane, Axis perpendicular to vertical plane and Axis parallel to both the reference planes, Projection of Solids with axis inclined to one reference plane and parallel to another plane.

UNIT-IV

Sections of Solids: Perpendicular and inclined section planes, Sectional views and True shape of section, Sections of solids in simple position only.

Development of Surfaces: Methods of Development: Parallel line development and radial line development. Development of a cube, prism, cylinder, pyramid and cone.

UNIT-V

Conversion of Views: Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views. **Computer graphics**: Creating 2D&3D drawings of objects including PCB and Transformationsusing Auto CAD (Not for end examination).

Te	xt books:									
1	K. L. Narayana & P. Kannaiah, Engineering Drawing, 3/e, Scitech Publishers									
2	N. D. Bhatt, Engineering Drawing, 53/e, Charotar Publishers									
Re	Reference books:									
1	Engineering Drawing, K.L. Narayana and P. Kannaiah, Tata McGraw Hill, 2013.									
2	Engineering Drawing, M.B. Shah and B.C. Rana, Pearson Education Inc, 2009.									
3	Engineering Drawing with an Introduction to AutoCAD, Dhananjay Jolhe, TataMcGraw Hill, 2017									

Mapping	apping of Course outcomes with Program outcomes													
CO/PO	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	3		3							3			2	2
CO2	2		2							3			2	2
CO3	2		2							3			2	2
CO4	3		3							3			2	2
CO5	3		3							3			2	2
Levels of	correla	tion. vi	z 1. Lo	w. 2. Mo	derate.	3. High		•		•				

Department of Electrical and Electronics Engineering

Mapp	oing of Cou	ırse o	outcomes with P	rogram outco	mes Ju	ıstification T	Table	
CO			CO			Program	PO(s): Action	Level of
No.	Lesson	%	correlation	Verb	BTL	Outcomes	verb and BTL	correlation
	Plan					(PO)	(for PO1 to	(0-3)
	(Hrs.)						P05)	
						P01	Apply (L3)	3
1	18	24	3	Apply	L3	PO2	Develop (L3)	3
						PO10	Thumb Rule	3
						PO1	Apply (L3)	2
2	15	20	2	Understand	L2	PO2	Develop (L3)	2
						PO10	Thumb Rule	3
						P01	Apply (L3)	3
3	15	20	2	Analyze	L4	PO2	Develop(L3)	3
						PO10	Thumb Rule	3
						PO1	Apply (L3)	3
4	15	20	2	Analyze	L4	PO2	Develop (L3)	3
						PO10	Thumb Rule	3
						P01	Apply (L3)	3
5	12	16	2	Apply	L3	PO2	Develop (L3)	3
						PO10	Thumb Rule	3

CO1: Apply the concepts of engineering curves and scales for technical drawing.

Action Verb: Apply (L3)

PO1 Verb: Apply (L3)

CO1 Action verb is same level as PO1 verb. Therefore, the correlation is high (3)

PO2 Verb: **Develop (L3)**

CO1 Action verb is same level as PO2 verb. Therefore, the correlation is high (3)

PO10 Verb: Thumb Rule (TR)

CO1: Engineering graphics involves creating visual representations and technical drawings to communicate design ideas, concepts and specifications. Therefore, the correlation is high (3)

CO2: Understand the quadrant system to locate the position of points, lines and planes.

Action Verb: Understand (L2)

PO1 Verb: Apply (L3)

CO2: Action verb is less than PO1 verb by one level. Therefore, the correlation is medium (2)

PO2 Verb: **Develop (L3)**

CO2: Action verb is less than PO2 verb by one level. Therefore, the correlation is medium (2)

PO10 Verb: Thumb Rule (TR)

CO2: Engineering graphics involves creating visual representations and technical drawings to communicate design ideas, concepts and specifications. Therefore, the correlation is high (3)

CO3: Analyze the projection of solids located in quadrant system.

Action Verb: Analyze (L4)

PO1 Verb: Apply (L3)

CO3: Action verb is same level as PO1 verb. Therefore, the correlation is high (3)

PO2 Verb: **Develop (L3)**

CO3: Action verb is same level as PO2 verb. Therefore, the correlation is high (3)

PO10 Verb: Thumb Rule (TR)

CO3: Engineering graphics involves creating visual representations and technical drawings to communicate design ideas, concepts and specifications. Therefore, the correlation is high (3)

Department of Electrical and Electronics Engineering

CO4: Analyze the sectional views and development of surfaces of regular solids

Action Verb: Analyze (L4) PO1 Verb: Apply (L3)

CO4: Action verb is same level as PO1 verb. Therefore, the correlation is high (3)

PO2 Verb: Develop (L3)

CO4: Action verb is same level as PO2 verb. Therefore, the correlation is high (3)

PO10 Verb: Thumb Rule (TR)

CO4: Engineering graphics involves creating visual representations and technical drawings to communicate design ideas, concepts and specifications. Therefore, the correlation is high (3)

CO5: **Apply** orthographic and isometric projections concepts to construct the given object.

Action Verb: Apply (L3) PO1 Verb: Apply (L3)

CO5: Action verb is same level as PO1 verb. Therefore, the correlation is high (3)

PO2 Verb: Develop (L3)

CO5: Action verb is same level as PO2 verb. Therefore, the correlation is high (3)

PO10 Verb: Thumb Rule (TR)

CO5: Engineering graphics involves creating visual representations and technical drawings to communicate design ideas, concepts and specifications. Therefore, the correlation is high (3)

Department of Electrical and Electronics Engineering

Year/Sem	I/II	Branch of Study: (Common to CSE, CIC, CSE(DS) & E	EE)			
Subject Code		Subject Name	L	Т	P	Credits
23AE	50503	IT WORKSHOP	0	0	2	1

After co	ompletion of the course, students will be able to:									
CO1	Understand The Process of Software Installation & Hardware troubleshooting.									
CO2	Analyze the network configurations for customizing web pages and search engines.									
CO3	Apply the basic editing function, formatting text & objects on a required content.									
CO4	Apply the formulas, functions and visualizations to manage the data.									
CO5	Understand the libraries and models of chatGPT to generate information.									

со	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	The Process of Software Installation & Hardware troubleshooting.			L2
CO2	Analyze	the network configurations		for customizing web pages and search engines	L4
CO3	Apply	The basic editing function, formatting text & objects		on a required content	L3
CO4	Apply	the formulas, functions and visualizations		to manage the data	L3
CO5	Understand	The libraries and models of chatGPT		to generate information	L2

List of Experiments

PC Hardware & Software Installation

Task 1: Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.[CO1]

Task 2: Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.[CO1]

Task 3: Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.[CO1]

Task 4: Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot (VMWare) with both Windows and Linux. Lab instructors should verify the installation and follow it up with a Viva.[CO1]

Task 5: Every student should install BOSS on the computer. The system should be configured as dual boot (VMWare) with both Windows and BOSS. Lab instructors should

Department of Electrical and Electronics Engineering

verify the installation and follow it up with a Viva.[CO1]

Internet & World Wide Web

Task1: Orientation & Connectivity Boot Camp: Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.[CO2]

Task 2: Web Browsers, Surfing the Web: Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.[CO2]

Task 3: Search Engines & Netiquette: Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student. [CO2]

Task 4: Cyber Hygiene: Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/or worms. [CO2]

LaTeX and WORD

Task 1 – Word Orientation: The mentor needs to give an overview of La TeX and Microsoft (MS) office or equivalent (FOSS) tool word: Importance of La TeX and MS office or equivalent (FOSS) tool Word as word Processors, Details of the four tasks and features that would be covered in each, Using La TeXand word – Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter in word. [CO3]

Task 2: Using La TeX and Word to create a project certificate. Features to be covered: Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both La TeX and Word. [CO3]

Task 3: Creating project abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes. [CO3]

Task 4: Creating a Newsletter: Features to be covered:- Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word. [CO3]

EXCEL

Excel Orientation: The mentor needs to tell the importance of MS office or equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered in each. Using Excel – Accessing, overview of toolbars, saving excel files, Using help and resources. [CO4]

Task 1: Creating a Scheduler - Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text[CO4]

Task 2: Calculating GPA -. Features to be covered:- Cell Referencing, Formulae in excel – average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function, [CO4]

LOOKUP/VLOOKUP

Task 3: Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting[CO4]

Department of Electrical and Electronics Engineering

POWER POINT

Task 1: Students will be working on basic power point utilities and tools which help them create basic power point presentations. PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in PowerPoint. [CO4]

Task 2: Interactive presentations - Hyperlinks, Inserting –Images, Clip Art, Audio, Video, Objects, Tables and Charts. [CO4]

Task 3: Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), and Inserting – Background, textures, Design Templates, Hidden slides. [CO4]

AI TOOLS - ChatGPT

Task 1: Prompt Engineering: Experiment with different types of prompts to see how the model responds. Try asking questions, starting conversations, or even providing incomplete sentences to see how the model completes them. [CO5]

• Ex: Prompt: "You are a knowledgeable AI. Please answer the following question: What is the capital of France?"

Task 2: Creative Writing: Use the model as a writing assistant. Provide the beginning of a story or a description of a scene, and let the model generate the rest of the content. This can be a fun way to brainstorm creative ideas[CO5]

• Ex: Prompt: "In a world where gravity suddenly stopped working, people started floating upwards. Write a story about how society adapted to this new reality."

Task 3: Language Translation: Experiment with translation tasks by providing a sentence in one language and asking the model to translate it into another language. Compare the output to see how accurate and fluent the translations are. [CO5]

• Ex:Prompt: "Translate the following English sentence to French: 'Hello, how are you doing today?'"

Reference books:

- 1 Comdex Information Technology course tool kit, Vikas Gupta, WILEY Dream tech, 2003
- 2 The Complete Computer upgrade and repair book, Cheryl A Schmidt, WILEY Dream tech, 2013, 3rd edition
- Introduction to Information Technology, ITL Education Solutions limited, Pearson Education, 2012, 2nd edition
- 4 PC Hardware A Handbook, Kate J. Chase, PHI (Microsoft)
- 5 LaTeX Companion, Leslie Lamport, PHI/Pearson.
- 6 IT Essentials PC Hardware and Software Companion Guide, David Anfins on and Ken Quamme. CISCO Press, Pearson Education, 3rd edition
- 7 IT Essentials PC Hardware and Software Labs and Study Guide, Patrick Regan-CISCO Press, Pearson Education, 3rd edition

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES, TIRUPATI (AUTONOMOUS) Department of Electrical and Electronics Engineering

Mapping	g of Cou	ırse oı	ıtcome	s with	Progra	m outc	omes							
CO/PO	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	2	3											1	
CO2	3	3	3	3	3									
CO3	3	3	3	2	3							3	2	
CO4	3	3	3	2	3							3		2
CO5	2	2												1
Levels of	correla	tion, vi	z., 1. Lo	w, 2. Mc	derate,	3. High								

Mapp	oing of Cou	ırse o	utcomes with	Program outo	omes	Justification	Table									
СО			С			Program	PO(s): Action	Level of								
No.	_	0.1	0			Outcomes	verb and BTL	correlation								
	Lesson	%	correlation	Verb	BTL	(PO)	(for PO1 to	(0-3)								
	Plan						PO5)									
	(Hrs.)															
1						P01	Apply(L3)	2								
1				Understand		PO2	Review(L2)	3								
				onderstand	L2	PUZ	Review(LLZ)	3								
2						PO1	Apply(L3)	3								
						PO2	Identify (L3)	3								
				Analyze		PO3	Develop(L3)	3								
						PO4	Analyze (L4)	3								
					L4	PO5	Apply (L3)	3								
3						PO1	Apply(L3)	3								
						PO2	Review (L2)	3								
				Apply	L3	PO3	Develop(L3)	3								
				Apply	Apply	Apply	Apply	Арріу	Apply	Арріу	Apply	Apply	ь	PO4	Analyze (L4)	2
						PO5	Apply (L3)	3								
						PO12	Thumb rule	3								
4						PO1	Apply(L3)	3								
						PO2	Review (L2)	3								
				Apply		PO3	Develop(L3)	3								
				Apply	L3	PO4	Analyze (L4)	2								
						PO5	Apply (L3)	3								
						PO12	Thumb rule	3								
5				Understand		PO1	Apply(L3)	2								
				onuerstanu	L2	PO2	Identify (L3)	2								

Department of Electrical and Electronics Engineering

CO1: Understand The Process of Software Installation & Hardware troubleshooting

Action Verb: Understand (L2)

PO1 Verb: Apply (L3)

CO1 Action verb is less than PO1 verb by one level. Therefore, the correlation is moderate (2)

PO2 Verb: Review(L2)

CO1 Action verb is same as PO2 verb. Therefore, the correlation is high (3)

CO2: Analyze the network configurations for customizing web pages and search engines

Action Verb: Analyze (L4) PO1: Apply (L3)

CO2 Action verb is greater than as PO1 verb. Therefore, the correlation is high (3)

PO2: idetify(L3)

CO2 Action verb is greater than as PO2 verb. Therefore, the correlation is high (3)

PO3: Develop (L3)

CO2 Action verb is greater than as PO3 verb. Therefore, the correlation is high (3)

PO4: Analyze (L4)

CO2 Action verb is same as PO4 verb. Therefore, the correlation is high (3)

PO5: Apply (L3)

CO2 Action verb is greater than as PO5 verb. Therefore, the correlation is high (3)

CO 3: Apply The basic editing function, formatting text & objects on a required content.

Action Verb: Apply (L3) PO1: Apply (L3)

CO3 Action verb is greater than as PO1 verb. Therefore, the correlation is high (3)

PO2: Review(L2)

CO3 Action verb is less than as PO2 verb. Therefore, the correlation is high(3)

PO3: Develop(L3)

CO3 Action verb is same as PO3 verb. Therefore, the correlation is high (3)

PO4: Analyze (L4)

CO3 Action verb is less than as PO4 verb. Therefore, the correlation is moderate (2)

PO5: Apply (L3)

CO3 Action verb is same as PO5 verb. Therefore, the correlation is high (3)

PO12: Thumb rule

Documentation and presentation is learning process to find the solution better manner the correlation is high (3)

CO 4: Apply the formulas, functions and visualizations to manage the data.

Action Verb: Apply (L3) PO1: Apply (L3)

CO4 Action verb is greater than as PO1 verb. Therefore, the correlation is high (3)

PO2: idetify(L3)

CO4 Action verb is greater than as PO2 verb. Therefore, the correlation is high (3)

PO3: Develop (L3)

CO4 Action verb is same as PO3 verb. Therefore, the correlation is high (3)

PO4: Analyze (L4)

CO4 Action verb is less than as PO4 verb by one level. Therefore, the correlation is moderate (2)

CO 4: Apply the formulas, functions and visualizations to manage the data.

PO5: Apply (L3)

CO4 Action verb is greater than as PO5 verb. Therefore, the correlation is high (3)

PO12: Thumb rule

Spread sheets in Excel is the trending approach in the current days Therefore, the correlation is high (3)

CO 5: Understand the libraries and models of chatGPT to generate information.

Action Verb: Understand (L2)

PO1 Verb: Apply (L3)

CO1 Action verb is less than PO1 verb by one level. Therefore, the correlation is moderate (2)

PO2 Verb: Identify(L3)

CO1 Action verb is same as PO2 verb. Therefore, the correlation is moderate (2)

Department of Electrical and Electronics Engineering

Year/Sem	I/II	Branch of Study: EEE				
Subjec	ct Code	Subject Name	L	T	P	Credits
23AP0	C0201	ELECTRICAL CIRCUIT ANALYSIS-I	3	0	0	3

After co	ompletion of the course, students will be able to:
CO1	Understand the basic electrical elements and different fundamental laws. CO2:
CO2	Understand Network theorems and reduction techniques.
CO3	Understand the concept of self- inductance and mutual inductance of the magnetic circuits.
CO4	Analyze steady state response, different circuit topologies and phasor diagrams of series & parallel single-phase circuits with R, L & C components.
CO5	Apply mathematical concepts to obtain various and graphical representations of series and parallel resonance circuits.

со	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
C01	Remember	The basic electrical elements and different fundamental laws.			L1
CO2	Understand	Evaluation of Network theorems.		reduction techniques	L2
C03	Understand	The concept of self- inductance and mutual inductance of the magnetic circuits.			L2
CO4	Analyze	Analyze steady state response, different circuit topologies and phasor diagrams of series & parallel single-phase circuits.	with R, L & C components.		L4
CO5	Apply	Mathematical concepts to obtain various and graphical representations.	of series and parallel resonance circuits.		L3

SYLLABUS

UNIT-I

TITLE: INTRODUCTION TO ELECTRICAL CIRCUITS

Basic Concepts of passive elements of R, L, C and their V-I relations, Sources (dependent and independent), Kirchoff's laws, Network reduction techniques (series, parallel, series - parallel, star-to-delta and delta-to-star transformation), source transformation technique, nodal analysis and mesh analysis to DC networks with dependent and independent voltage and current sources.

UNIT-II

TITLE: NETWORK THEOREMS (DC & AC EXCITATIONS

Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum Power Transfer theorem, Reciprocity theorem, Millman's theorem and compensation theorem.

UNIT-III

TITLE: MAGNETIC CIRCUITS

Basic definition of MMF, flux and reluctance, analogy between electrical and magnetic circuits, Faraday's laws of electromagnetic induction - concept of self and mutual inductance, Dot convention coefficient of coupling and composite magnetic circuit, analysis of series and parallel magnetic circuits.

Department of Electrical and Electronics Engineering

UNIT-IV

TITLE: SINGLE PHASE CIRCUITS

Characteristics of periodic functions, Average value, R.M.S. value, form factor, representation of a sine function, concept of phasor and phasor diagrams. Steady state analysis of R, L and C circuits to sinusoidal excitations-response of pure resistance, inductance, capacitance, series RL circuit, series RC circuit, series RL circuit, parallel RL circuit, parallel RC circuit.

UNIT-V

TITLE: RESONANCE AND LOCUS DIAGRAMS

Series Resonance: Characteristics of a series resonant circuit, Q-factor, selectivity and bandwidth, expression for half power frequencies; Parallel resonance: Q-factor, selectivity and bandwidth; Locus diagram: RL, RC, RLC with R, L and C variables.

Text books:

- Engineering Circuits Analysis, Jack Kemmerly, William Hayt and Steven Durbin, Tata Mc Graw Hill Education, 2005, sixth edition.
- 2 Network Analysis, M. E. Van Valkenburg, Pearson Education, 2019, Revised Third Edition.

Reference books:

- Fundamentals of Electrical Circuits, Charles K. Alexander and Mathew N.O. Sadiku, Mc Graw Hill Education (India), 2013, Fifth Edition
- 2 Electric Circuits (Schaum's outline Series), Mahmood Nahvi, Joseph Edminister, and K. Rao, Mc Graw Hill Education, 2017, Fifth Edition.
- 3 Electric Circuits, David A. Bell, Oxford University Press, 2009, Seventh Edition..
- 4 Introductory Circuit Analysis, Robert L. Boylestad, Pearson Publications, 2023, Fourteenth Edition.
- 5 Circuit Theory: Analysis and Synthesis, A. Chakrabarti, Dhanpat Rai & Co., 2018, Seventh Revised Edition.

Web Resources:

- 1 https://onlinecourses.nptel.ac.in/noc23_ee81/preview
- 2 https://nptel.ac.in/courses/108104139
- 3 https://nptel.ac.in/courses/108106172
- 4 https://nptel.ac.in/courses/117106108

Mapping	apping of Course outcomes with Program outcomes													
CO/PO	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010	P011	PO12	PSO1	PSO2
CO1	2	2				1							3	
CO2	2	1				1							3	
CO3	2	1				1							3	
CO4	3	3	1			1							3	
CO5	3	2				1							3	

Levels of correlation, viz., 1. Low, 2. Moderate, 3. High

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES, TIRUPATI (AUTONOMOUS) Department of Electrical and Electronics Engineering

Mapp	Mapping of Course outcomes with Program outcomes Justification Table										
СО	СО					Program	PO(s): Action	Level of			
No.	Lesson	%	correlation	Verb	BTL	Outcomes	verb and BTL	correlation			
	Plan					(PO)	(for PO1 to	(0-3)			
	(Hrs.)						PO5)				
1				Understand	L2	PO1,	PO1: Apply (L3)	2			
				Ullueistallu	LZ	PO2,	PO2: Identify (L3)	2			
						P06	PO6: Thumb Rule	1			
2				Understand	L2	PO1,	PO1: Apply (L3)	2			
				Ullueistallu	LZ	PO2,	PO2: Analyze(L4)	1			
						P06	PO6: Thumb Rule	1			
3				IIn donaton d	L2	PO1,	PO1: Apply (L3)	2			
				Understand	LZ	PO2,	PO2: Analyze(L4)	1			
						P06	PO6: Thumb Rule	1			
4				Analysis	Ι./	PO1,	PO1: Apply (L3)	3			
				Analyze	L4	PO2,	PO2: Analyze(L4)	3			
						PO3,	PO3: Design (L6)	1			
						P06	PO6: Thumb Rule	1			
5				A l	1.2	PO1,	PO1: Apply (L3)	3			
				Apply	L3	PO2,	PO2: Analyze(L4)	2			
						P06	PO6: Thumb Rule	1			

Department of Electrical and Electronics Engineering

CO1: Remembering the basic electrical elements and different fundamental laws.

Action Verb: Understand (L2)

PO1: Apply (L3)

CO1 Action Verb is Less than PO1 verb by two level; Therefore, correlation is medium (2).

PO2: Identify (L3)

CO1 Action Verb is Less than PO2 verb by two level; Therefore, correlation is medium (2).

PO6: Using Thumb Rule, CO1 correlates to PO6 as low (1).

CO2: Understand and Evaluation of Network theorems and reduction techniques.

Action Verb: Understand (L2)

PO1: Apply (L3)

CO2 Action Verb is Less than PO1 verb by one level; Therefore, correlation is moderate (2).

PO2: Analyze (L4)

CO2 Action Verb is Less than PO2 verb by two level; Therefore, correlation is low (1).

PO6: Using Thumb Rule, CO2 correlates to PO6 as low (1).

$\textbf{CO3:} \ Understand \ the \ concept \ of \ self-inductance \ and \ mutual \ inductance \ of \ the \ magnetic \ circuits.$

Action Verb: Understand (L2)

PO1: Apply (L3)

CO3 Action Verb is Less than PO1 verb by one level; Therefore, correlation is moderate (2).

PO2: Analyze (L4)

CO3 Action Verb is Less than PO2 verb by two level; Therefore, correlation is low (1).

PO6: Using Thumb Rule, CO3 correlates to PO6 as low (1).

CO4: Analyze series and parallel circuits, steady state response, different circuit topologies (with R, L and C components) and phasor diagrams of the single-phase circuits.

Action Verb: Analyze (L4)

PO1: Apply (L3)

CO4 Action Verb is Greater than PO1 verb by one level; Therefore, correlation is high (3).

PO2: Analyze (L4)

CO4 Action Verb is same as PO2 verb; Therefore, correlation is high (3).

PO3: Design (L6)

CO4 Action Verb is Less than PO3 verb by two level; Therefore, correlation is low (1)

PO6: Using Thumb Rule, CO4 correlates to PO6 as low (1).

CO5: Apply the concepts to obtain various mathematical and graphical representations of series and parallel resonance.

Action Verb: Apply (L3)

PO1: Apply (L3)

CO5 Action Verb is same as PO1 verb; Therefore, correlation is high (3).

PO2: Analyze (L4)

CO5 Action Verb is Less than by PO2 verb by one level; Therefore, correlation is moderate (2).

PO6: Using Thumb Rule, CO5 correlates to PO6 as low (1).

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES, TIRUPATI (AUTONOMOUS) Department of Electrical and Electronics Engineering

Year/Sem	I/ I & II	Branch of Study: Common to ISem ECE, AI&DS, AI IISem CSE, CIC, EEE,	y: Common to ISem ECE, AI&DS, AI&ML, CE, ME& IISem CSE, CIC, EEE, CSD							
Subject Code		Subject Name	L	T	P	Credits				
23ABS9908		23ABS9908 ENGINEERING PHYSICS LAB		0	2	1				

After co	After completion of the course, students will be able to:					
CO1	Analyze the properties of light for engineering problems.					
CO2	Evaluate the crystallite size using X-ray diffraction.					
CO3	Analyze the basic properties of dielectric and magnetic behavior of the given material.					
CO4	Determine the mechanical behavior of a given material.					
CO5	Evaluate the basic parameters of a given semiconductor material.					

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Analyze	The properties of light		For engineering problems.	L4
CO2	Evaluate	The crystallite size using X-ray diffraction.			L5
CO3	Analyze	The basic properties of dielectric and magnetic behavior of the given material.			L4
CO4	Determine	The mechanical behavior of a given material.			L5
CO5	Evaluate	The basic parameters of a given semiconductor material.			L5

List of Experiments:

1.	Determination of radius of curvature of a given Plano-convex lens by Newton's rings –	CO1.
2.	Determination of wavelengths of different spectral lines in mercury spectrum using diffraction grating and the state of	_
_	normal incidence configuration –	CO1.
3.	Study the variation of B versus H by magnetizing the magnetic material (B-H curve)–	CO3.
4.	Determination of wavelength of Laser light using diffraction grating-	CO1.
5.	Magnetic field along the axis of a current carrying circular coil by Stewart Gee's Method-	CO3.
6.	Determination of energy gap of a semiconductor using p-n junction diode-	CO5.
7.	Determination of the resistivity of semiconductors by four probe methods-	CO5.
8.	Determination of the crystallite size using X-Ray Diffraction spectra-	CO2.
9.	Determination of the numerical aperture of a given optical fiber and angle of acceptance-	CO1.
10.	Verification of Brewster's law –	CO1.
11.	Determination of acceleration due to gravity and radius of Gyration by using a compound	
	pendulum-	CO4.
12.	Determination of rigidity modulus of the material of the given wire using Torsional pendulum-	CO4.
13.	Determination of temperature coefficients of a thermistor-	CO5.
14.	Determination of dielectric constant using charging and discharging method-	CO3.
15.	Determination of Hallvoltage and Hall coefficient of a given semiconductor using Hall Effect-	CO5.
16.	Sonometer: Verification of laws of stretched string-	CO4.
17.	Determination of magnetic Susceptibility by Kundt's tube method-	CO3.
18.	Determination of Frequency of electrically maintained tuning for k by Melde's experiment-	CO4.

Department of Electrical and Electronics Engineering

Note: Any TEN of the listed experiments are to be conducted. Out of which any TWO Experiments may be conducted in virtual mode.

Reference books:

- 1 A Text book of Practical Physics -S. Balasubramanian, M.N. Srinivasan, S. Chand Publishers, 2017. **Web Resources**:
- 1 www.vlab.co.in

Mapping	MappingofCourseoutcomeswithProgramoutcomes													
CO/PO	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	3			3										
CO2	3			3										
CO3	3			3										
CO4	3			3										
CO5	3			3										
Levelsofo	orrelat	ion,viz	.,1.Low	,2.Mode	rate,3.l	High	•	•			•	•	•	

Mapping of Course outcomes with Program outcomes Justification Table PO(s): CO CO **Program** Level % correlation Verb **BTL Outcomes** Actionverb ofcorrelati No. Lesson (PO) and BTL(for on(0-3) Plan(H PO1 toPO5) rs.) PO1:Apply(L3), 3 25 PO1.PO4 9 1 3 Analyze L4 3 PO4:Analyze(L4) 3 PO1:Apply(L3), PO1,PO4 2 L5 6 16 2 **Evaluate** PO4:Analyze(L4) 3 PO1:Apply(L3), 3 PO1,PO4 3 L4 9 25 3 Analyze PO4:Analyze(L4) 3 PO1:Apply(L3), 3 PO1,PO4 4 L5 6 16 2 Determine PO4:Analyze(L4) 3 3 PO1:Apply(L3), PO1,PO4 L5 5 2 6 16 **Evaluate** PO4:Analyze(L4) 3

Department of Electrical and Electronics Engineering

CO1: Analyze the properties of light for solving engineering problems.

Action Verb: Analyze (L4)

PO1 Verbs: Apply (L3)

PO4 Verb: Analyze (L4)

CO1 Action Verb is greater than PO1 verb by one level; Therefore, correlation is high(3).

CO1ActionVerbisequal to PO4verb; Therefore, correlation is high(3).

CO2: Evaluate the crystallite size using X-ray diffraction.

Action Verb: Evaluate (L5)

PO1 Verbs: Apply (L3)

PO4 Verb: Analyze (L4)

CO2 Action Verb is greater than PO1 verb by two levels; Therefore correlation is high (3).

CO2 Action Verb is greater than PO1 verb by one level; Therefore correlation is high(3).

CO3: Analyze the basic properties of dielectric and magnetic behavior of the given material.

Action Verb: Analyze (L4)

PO1 Verbs: Apply(L3)

PO4 Verb: Analyze(L4)

CO3ActionVerblevel is greater than PO1 action verb by one level; Therefore correlation is high (3).

CO3 Action Verb level is equal to PO4 action verb; Therefore correlation is high(3).

CO4: Determine the mechanical behavior of a given material using dynamic methods. Action Verb: Determine (L5)

PO1 Verbs: Apply (L3)

PO4 Verb: Analyze (L4)

CO4 Action Verb is greater than PO1 verb by two levels; Therefore correlation is high(3).

CO4 Action Verb is greater than PO4 verb by one level; Therefore correlation is high(3).

CO5: Evaluate the basic parameters of a given semiconductor material.

Action Verb: Evaluate (L5)

PO1andPO4Verb:Apply(L3)

CO5 Action Verb is greater than PO1 verb by two levels; Therefore correlation is high (3).

CO5 Action Verb is greater than PO1 verb by one level; Therefore correlation is high(3).

Department of Electrical and Electronics Engineering

Year/Sem	I/II	Branch of Study: EEE						
Subject Code		Subject Name	L	Т	P	Credits		
23AES0202		ELECTRICAL & ELECTRONICS ENGINEERING WORKSHOP	0	0	3	1.5		

PART A ELECTRICAL ENGINEERING LAB

After co	After completion of the course, students will be able to:						
CO1	1 Understand the Electrical circuit design, measurement of resistance, power, and power factor.						
CO2	Apply suitable methods to measure Resistance, power, energy and power factor.						
CO3	Design suitable methods for magnetization characteristics of D.C shunt generator.						

со	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	Electrical circuit design; measurement of resistance, power, power factor			L2
CO2	Apply	Suitable methods to measure Resistance, power, energy and power factor.			L3
CO3	Design	Suitable methods for magnetization characteristics of D.C shunt generator.			L6

PART A ELECTRICAL ENGINEERING LAB

List of experiments:

1.	Verification of Kirchhoff's current law and Voltage law-	CO1
2.	Verification of Superposition theorem-	CO1
3.	Measurement of Resistance using Wheatstone bridge-	CO1
4.	Measurement of Power and Power factor using Single-phase watt-meter-	CO2
5.	Measurement of Earth Resistance using Megger-	CO2
6.	Calculation of Electrical Energy for Domestic Premises-	CO2
7.	Magnetization Characteristics of DC Shunt Generator-	CO3

Reference books:

- 1 Basic Electrical Engineering, D.C. Kulshreshtha, Tata Mc Graw Hill, 2019, First Edition
- 2 Power System Engineering, P.V.Gupta, M.L.Soni, U.S.Bhatnagarand, A.Chakrabarti, DhanpatRai&Co,2013
- 3 Fundamentals of Electrical Engineering, Rajendra Prasad, PHI publishers, 2014, Third Editio **Note:** Minimum Six Experiments to be performed.

Department of Electrical and Electronics Engineering

PART B ELECTRONICS ENGINEERING LAB

After co	After completion of the course, students will be able to:					
CO4	CO4 Understand the V-I Characteristics of diodes and its applications.					
CO5	Analyze the input and output characteristics of BJT and its applications.					
C06	Analyze the truth tables of all logic gates and f/f's using IC's.					

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO4	Understand	V-I Characteristics of diodes and its applications.			L2
CO5	Analyze	Input and output characteristics of BJT and its applications			L4
C06	Analyze	Truth tables of all logic gates and f/f's using IC's.			L4

PART B ELECTRONICS ENGINEERING LAB

List of experiments:

1. Plot V-I characteristics of PN Junction diode A) Forward bias B)Reverse bias.	(CO4)
2. Plot VI characteristics of Zener Diode and its application as voltage Regulator.	(CO4)
3. Implementation of half wave and full wave rectifiers	(CO4)
4. Plot Input & Output characteristics of BJT in CE and CB configurations	(CO5)
5. Frequency response of CE amplifier.	(CO5)
6. Simulation of RC coupled amplifier with the design supplied.	(CO5)
7. Verification of Truth Table of AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR gates using ICs.	(CO6)
8. Verification of Truth Tables of S-R, J-K &D flipflops using respective ICs.	(CO6)

Tools Equipment Required: DC Power supplies, Multi meters, DC Ammeters, DC Voltmeters, AC Voltmeters, CROS, and all the required active devices.

Reference books:

- R.L.Boylestad&LouisNashlesky, ElectronicDevices&CircuitTheory, Pearson Education, 202
- R.P.Jain, Modern Digital Electronics, 4th Edition, Tata McGraw Hill, 2009
- R. T. Paynter, Introductory Electronic Devices & Circuits Conventional Flow Version, Pearson Education, 2009.

Note: Minimum Six Experiments to be performed. All the experiments shall be implemented using both Hardware and Software

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES, TIRUPATI (AUTONOMOUS) Department of Electrical and Electronics Engineering

Mapping	Mapping of Course outcomes with Program outcomes													
CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	2	1		1					1				2	
CO2	3	2		2					1				2	
CO3		3		3					1				2	1
CO4	2	3												
CO5	3	3												
C06	3	3												
Levelsofo	Levelsofcorrelation,viz.,1.Low,2.Moderate,3.High													

Mapp	Mapping of Course outcomes with Program outcomes Justification Table							
CO			С		Program	PO(s):	Level of	
No.			0		Outcomes	Action verb	correlati	
	Lesson % correlation Ve		Verb	BTL	(PO)	and BTL(for	on(0-3)	
	Plan(H						PO1 toPO5)	
	rs.)							
						PO1,	PO1:Apply(L3)	2
1				** 1 . 1		PO2,	PO2:Analyze(L4)	1
1				Understand	L2	PO4,	PO4:Analyze(L4)	1
						PO9	PO9:ThumbRule	1
						PO1,	PO1:Apply(L3)	3
2						PO2,	PO2:Analyze(L4)	2
				Apply L3		PO4,	PO4:Analyze(L4)	2
						PO9	PO9:ThumbRule	1
						PO2,	PO2:Analyze(L4)	3
3				Design	L6	PO4,	PO4:Design(L6)	3
				Design	по	PO9	PO9:ThumbRule	1
4				_		PO1,	PO1:Apply(L3)	2
4				Understand L2		PO2	PO2:Review(L2)	3
5				Analyze L4		PO1,	PO1:Apply(L3)	3
5						PO2	PO2:Review(L2)	3
6				Analyza		PO1,	PO1:Apply(L3)	3
U				Analyze	L4	PO2	PO2:Review(L2)	3

Department of Electrical and Electronics Engineering

CO1: Understand the Electrical circuit design, measurement of resistance, power, and power factor.

Action Verb: Understand(L2)

PO1: Apply (L3)

CO1 Action Verb is Less than PO1 verb by one level; Therefore, correlation is moderate(2).

PO2: Analyze (L4)

CO1 Action Verb is Less than PO2 verb by two level; Therefore, correlation is low(1).

PO4: Analyze (L4)

CO1 Action Verb is Less than PO4 verb by two level; Therefore correlation is low(1).

PO9: Using Thumb Rule, CO1 correlates to PO9 as low (1).

CO2: Apply suitable methods to measure Resistance, power, energy and power factor.

Action Verb: Apply(L3)

PO1: Apply (L3)

CO2 Action Verb is same as PO1 verb; Therefore, correlation is high(3).

PO2: Analyze (L4)

CO2 Action Verb is Less than PO2 verb by one level; Therefore, correlation is moderate(2).

PO4: Analyze (L4)

CO2 Action Verb is Less than PO4 verb by one level; Therefore, correlation is moderate(2).

Using Thumb Rule, CO2 correlates to PO9 as low (1).

CO3: Design suitable methods for magnetization characteristics of D.C shunt generator. Action Verb: Design(L6)

PO2: Analyze (L4)

CO3 Action Verb is greater than PO2 verb by two level; Therefore, correlation is high(3).

PO4: Design (L6)

CO3ActionVerbissameasPO4verb; Therefore, correlation is high(3).

PO9: Using Thumb Rule, CO3 correlates to PO9 as low (1).

CO4: Understand the V-I Characteristics of diodes and its applications.

Action Verb: Understand (L2)

PO1 Verbs: Apply (L3)

CO4 Action Verb is less than PO1 verb by one level; Therefore correlation is moderate(2)

PO2 Verbs: Review (L2)

CO4ActionVerb is equal to PO2 verb; Therefore correlation is high(3).

CO5: Analyze the input and output characteristics of BIT and its applications.

Action Verb: Analyze (L4)

PO1Verbs:Apply (L3)

CO5 Action Verb is greater than PO1 verb by one level; Therefore correlation is high(3).

PO2 Verbs: Review (L2)

CO5 Action Verb is equal to PO2 verb; Therefore correlation is high(3).

CO6: Analyze the truth tables of all logic gates and f/f's using IC's.

Action Verb: Analyze (L4)

PO1Verbs:Apply (L3)

CO6 Action Verb is greater than PO1 verb by one level; Therefore correlation is high(3).

PO2 Verbs: Review (L2)

CO6 Action Verb is equal to PO2 verb; Therefore correlation is high(3).

Department of Electrical and Electronics Engineering

Year/Sem	I/II	Branch of Study: EEE				
Subject Code		Subject Name	L	T	P	Credits
23APC0202		ELECTRICAL CIRCUITS LAB	0	0	3	1.5

After co	After completion of the course, students will be able to:					
CO1	Understand the concepts of fundamental laws, node and mesh networks.					
CO2	Apply various theorems to compare practical results obtained with theoretical calculations.					
CO3	Evaluate self, mutual inductance's and coefficient of coupling values, parameters of choke coil.					
CO4	Create locus diagrams of RL, RC series circuits and examine series and parallel resonance.					
CO5	Analyze self, mutual inductance's, and coefficient of coupling with the help of magnetic circuits.					

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
C01	Understand	The concepts of fundamental laws, node and mesh networks.			L2
CO2	Apply	Various theorems to compare practical results obtained with theoretical calculations.			L3
C03	Evaluate	Self, mutual inductance's and coefficient of coupling values, Parameters of choke coil.			L5
C04	Create	Locus diagrams of RL, RC series circuits and examine series and parallel resonance.			L6
CO5	Analyze	Self, mutual inductance's, and coefficient of coupling with the help of magnetic circuits.			L4

List of Experiments:

1.	Verification of Kirchhoff's circuit laws-	(CO1).
2.	Verification of node and mesh analysis-	(CO1).
3.	Verification of network reduction techniques-	(CO1).
4.	Determination of cold and hot resistance of an electric lamp-	(CO1).
5.	Determination of Parameters of a choke coil-	(CO3).
6.	Determination of self, mutual inductance's, and coefficient of coupling-	(CO3).
7.	Series and parallel resonance-	(CO4).
8.	Locus diagrams of R-L(L Variable) and R-C(C Variable) series circuits-	(CO4).
9.	Verification of Superposition theorem-	(CO2).
10.	Verification of Thevenin's and Norton's Theorems-	(CO2).
11.	Verification of Maximum Power Transfer Theorem-	(CO2).
12.	Verification of Compensation Theorem-	(CO2).
13.	Verification of Reciprocity and Millman's Theorems-	(CO2).

Reference books:

- Engineering Circuits Analysis, JackKemmerly, William Haytand Steven Durbin, Tata McGraw Hill Education, 2005, sixth edition.
- 2 Network Analysis, M.E.Van Valkenburg, Pearson Education, 2019, Revised Third Edition.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES, TIRUPATI (AUTONOMOUS) Department of Electrical and Electronics Engineering

Mapping	of Cou	ırse ou	itcome	s with l	Progra	m outc	omes							
CO/PO	P01	P02	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	2	1		1					1				3	
CO2	3	2		2					1				3	
CO3		3		2					1				3	
CO4		3		3					1				3	
CO5	3	3		1					1				3	
Levelsofo	orrelat	tion,viz	.,1.Low	.2.Mode	erate,3.	High					•		•	

Mapp	ing of Cou	ırse o	outcomes with	Program out	comes	Justification	Table	
CO No.			C 0			Program Outcomes	PO(s): Actionverb	Level ofcorrelati
	Lesson Plan(H rs.)	%	correlation	Verb	BTL	(PO)	and BTL(for PO1 toPO5)	on(0-3)
1				Understand	L2	PO1 PO2 PO4 PO9	P01:Apply(L3) P02:Analyze(L4) P04:Analyze(L4) P09:ThumbRule	2 1 1 1
2				Apply	L3	PO1 PO2 PO4 PO9	PO1:Apply(L3) PO2:Analyze(L4) PO4:Analyze(L4) PO9:ThumbRule	3 2 2 1
3				Evaluate	L5	PO2 PO4 PO9	P02:Analyze(L4) P04:Design(L6) P09:ThumbRule	3 2 1
4				Create	L6	P02 P04 P09	P02:Analyze(L4) P04:Design(L6) P09:ThumbRule	3 3 1
5				Analyze	L4	P01 P02 P04 P09	P01:Apply(L3) P02:Analyze(L4) P04:Design(L6) P09:ThumbRule	3 3 1 1

Department of Electrical and Electronics Engineering

CO1: Understand the concepts of fundamental laws, node and mesh networks. Action Verb: Understand(L2)

PO1:Apply(L3)

CO1 Action Verb is Less than PO1 verb by one level; Therefore, correlation is moderate(2).

PO2: Analyze (L4)

CO1 Action Verb is Less than PO2 verb by two level; Therefore, correlation is low(1).

PO4: Analyze (L4)

CO1 Action Verb is Less than PO4 verb by two level; Therefore, correlation is low(1).

PO9: Using Thumb Rule, CO1 correlates to PO9 as low (1).

CO2: Apply various theorems to compare practical results obtained with theoretical calculations. Action Verb: Apply(L3)

PO1:Apply(L3)

CO2 ActionVerbissameasPO1verb; Therefore, correlation is high(3).

PO2: Analyze (L4)

CO2 Action Verb is Less than PO2 verb by one level; Therefore, correlation is moderate(2).

PO4: Analyze (L4)

CO2 Action Verb is Less than PO4 verb by one level; Therefore, correlation is moderate(2).

PO9: Using Thumb Rule, CO2 correlates to PO9 as low (1).

CO3: Evaluate self, mutual inductance's and coefficient of coupling values, parameters of choke coil. Action Verb: Evaluate(L5)

PO2:Analyze(L4)

CO3 Action Verb is greater than PO2 verb by one level; Therefore, correlation is high(3).

PO4: Design (L6)

CO3 Action Verb is Less than PO4 verb by one level; Therefore, correlation is moderate(2).

PO9: Using Thumb Rule, CO3 correlates to PO9 as low (1).

CO4: Create locus diagrams of RL, RC series circuits and examine series and parallel resonance.

Action Verb: Create(L6)

PO2:Analyze(L4)

CO4 Action Verb is greater than PO2 verb by two level; Therefore, correlation is high(3).

PO4: Design (L6)

CO4 Action Verb is same as PO4 verb; Therefore, correlation is high(3).

PO9: Using Thumb Rule, CO4 correlates to PO9 as low (1).

CO5: Analyze self, mutual inductances, and coefficient of coupling with the help of magnetic circuits. Action Verb: Analyze(L4) PO1: Apply (L3)

CO5 Action Verb is Greater than PO1 verb by one level; Therefore, correlation is high(3).

PO2: Analyze (L4)

CO5 Action Verb is same as PO2 verb; Therefore, correlation is high(3).

PO4: Design (L6)

CO5 Action Verb is Less than PO4 verb by two level; Therefore, correlation is low(1).

PO9: Using Thumb Rule, CO5 correlates to PO9 as low (1).

Department of Electrical and Electronics Engineering

Year/Sem	I/I&II	Branch of Study: Common to ISEM ECE, AI&DS, AI&ML, CE, IISEM CSE, CIC, CSD, EEE	, ME	ı		&
Subjec	t Code	Subject Name	L	T	P	Credits
23AH	M9904	NSS/NCC/SCOUTS & GUIDES/COMMUNITY SERVICE	0	0	1	0.5

After co	ompletion of the course, students will be able to:								
CO1	CO1 Understand the importance of discipline, character and service motto of community.								
CO2	CO2 Analyze the activities need to be done for nature protection								
CO3	Analyze the social issues in a community and address it through the base camps.								

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	the importance of discipline, character and service motto		of commu nity	L1
CO2	Analyze	the activities need to be done for nature protection			L4
CO3	Analyze	the social issues in a community and address it through the base camps			L4

SYLLABUS

UNIT-I

Orientation

General Orientation on NSS/NCC/Scouts & Guides/Community Service activities, career guidance.

Activities:

- Conducting-ice breaking sessions-expectations from the course-knowing personal talents and skills i)
- ii) Conducting orientations programs for the students-future plans-activities-releasing road map etc.
- Displaying success stories-motivation al biopics-award winning movies on societal issues etc. iii)
- Conducting talent show in singing patriotic songs-paintings-any other contribution iv)

UNIT-II

Nature & Care

Activities:

- i) Best out of waste competition.
- ii) Poster and signs making competition to spread environmental awareness.
- iii) Recycling and environmental pollution article writing competition.
- iv) Organizing Zero-waste day.
- v) Digital Environmental awareness activity via various social media platforms.
- vi) Virtual demonstration of different eco-friendly approaches for sustainable living.
- vii) Write a summary on any book related to environmental issues.

UNIT-III

Community Service

Activities:

- i) Conducting One Day Special Camp in a village contacting village-area leaders-Survey in the village, identification of problems- helping them to solve via media- authorities- experts-etc.
- ii) Mental health, Spiritual Health, HIV/AIDS,

Department of Electrical and Electronics Engineering

- iii) Conducting consumer Awareness. Explaining various legal provisions etc.
- iv) Women Empowerment Programmes-Sexual Abuse, Adolescent Health and Population Education.
- v) Any other programmes in collaboration with local charities, NGOs etc.
- vi) Conducting awareness programs on Health-related issues such as General Health.

Mapping	Sapping of Course outcomes with Program outcomes													
CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	P08	P09	P010	P011	PO12	PSO1	PSO2
CO1	2	2								2				2
CO2	3	3								3				2
CO3	CO3 3 3 3 2 2													
Levelsofo	orrelat	tion,viz	.,1.Low	,2.Mode	erate,3.l	High								

Levelsoicorrelation,viz.,1.Low,2.Moderate,3.fign

	ing of Co	urse (outcomes with F	Program outco	mes J	ustification '		
CO			CO			Program	PO(s):	Level of
No.	Lesson Plan(H rs.)	%	correlation	Verb	Verb BTL		Actionverb and BTL(for PO1 toPO5)	correlati on(0-3)
1				Understand	L2	P01 P02 P010	Apply(L3) Analyze(L4) Thumb Rule	2 3 3
2				Analyze	L4	PO1 PO2 PO10	Apply(L3) Analyze(L4) Thumb Rule	2 3 3
3				Analyze	L4	PO1 PO2 PO10	Apply(L3) Analyze(L4) Thumb Rule	2 3 3

Department of Electrical and Electronics Engineering

Year/Sem	II/I	Branch of Study: EEE				
Subjec	ct Code	Subject Name	L	T	P	Credits
23AB	S9910	COMPLEX VARIABLES & NUMERICAL METHODS	3	0	0	3

After co	ompletion of the course, students will be able to:
CO1	Apply the differentiation for complex variable functions.
CO2	Evaluate the integrals and power series expansions for complex variable functions.
CO3	Analyze relevant numerical techniques for interpolation and concepts of curve fitting.
CO4	Apply the different iteration methods to solve Algebraic, Transcendental and Simultaneous
C04	Equations.
CO5	Evaluate different numerical methods with accuracy and efficiency for ordinary differential
603	equations

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Apply	the differentiation	for complex variable functions		L3
CO2	Evaluate	the integrals and power series expansions	for complex variable functions		L5
CO3	Analyze	relevant numerical techniques	for interpolation and concepts of curve fitting		L4
CO4	curve fitting	the different iteration methods	To solve Algebraic, Transcendental and Simultaneous Equations.		L3
CO5	Apply	different numerical methods with accuracy and efficiency	for ordinary differential equations		L5

SYLLABUS

UNIT-I

TITLE: Complex Variable - Differentiation

Introduction to functions of complex variable-concept of Limit, continuity & Differentiation, Cauchy- Riemann equations (cartesian and polar coordinates), analytic functions, harmonic functions, finding harmonic conjugate-construction of analytic function by Milne Thomson method.

UNIT-II

TITLE: Complex Variable - Integration

Line integral-Contour integration, Cauchy's integral theorem(Simple Case), Cauchy Integral formula. Power series expansions: Taylor's series, zeros of analytic functions, singularities, Laurent's series, Residues, Cauchy Residue theorem (without proof), Evaluation of integrals of the type. (a) $\int_0^{2\pi} F(\cos\theta, \sin\theta) \ d\theta$ (b) $\int_{-\infty}^{\infty} e^{imx} \ dx$

UNIT-III

TITLE: Interpolation

Finite forward and backward differences-Newton's forward and Newton's backward interpolation formulae – Lagrange's formula.

Curve fitting: By the method of least squares Fitting of straight line, second-degree and Exponential curve.

Department of Electrical and Electronics Engineering

UNIT-IV

TITLE: Solution of Algebraic & Transcendental Equations

Introduction-Bisection Method-Iterative method, Regula- falsi method and Newton Raphson method. System of Algebraic equations: LU decomposition, Gauss Elimination, Jacobi methods and Gauss Seidal iterative method.

UNIT-V

TITLE: Solution of Initial value problems to Ordinary differential equations

Numerical solutions of Ordinary Differential equations: Taylor's series-Picard's Method of successive Approximations-Euler's and modified Euler's methods-Runge-Kutta methods (second and fourth order).

Text books:

- B.S.Grewal, Higher Engineering Mathematics, KhannaPublishers,2017, 44th Edition
- 2 S Sastry, Introductory Methods of Numerical Analysis, PHI Learning Private Limited.
- R.K.Jain and S.R.K.Iyengar, Advanced Engineering Mathematics, Alpha Science International Ltd.,2021 5th Edition(9th reprint).

Reference books:

- 1 Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley&Sons, 2018, 10th Edition.
- 2 B.V.Ramana, Higher Engineering Mathematics, by Mc Grew Hill publishers
- 3 T.K.V.Iyengar, B.Krishna Gandhi, S.Ranganatham, M.V.V.S.N.Prasad, Engineering Mathematics volume-IV, S.Chand Publications
- 4 T.K.V.Iyengar, B.Krishna Gandhi, S.Ranganatham, M.V.V.S.N.Prasad, Numerical Methods, S.Chand Publications

Web Resources:

- 1 https://onlinecourses.nptel.ac.in/noc17_ma14/preview
- 2 https://onlinecourses.nptel.ac.in/noc20_ma50/preview
- 3 http://nptel.ac.in/courses/111105090

Mapping	g of Cou	ırse ou	itcome	s with	Progra	m outc	omes							
CO/PO	P01	P02	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	3													
CO2		3												
CO3	3													
CO4		3												
CO5		3												
Levels of	correla	tion, vi	z., 1. Lo	w, 2. Mc	derate,	3. High		<u> </u>						

Department of Electrical and Electronics Engineering

Mapp	oing of Co	ırse (outcomes with P	rogram outco	omes Ju	ustification T	able	
CO			CO			Program	PO(s): Action	Level of
No.	Lesson Plan	% correlation		Verb	BTL	Outcomes (PO)	verb and BTL(for PO1	correlation (0-3)
	(Hrs.)						to PO5)	
1				Apply	L3	PO1	Apply (L3)	3
2				Evaluate	L5	PO2	Analyze (L4)	3
3				Analyze	L4	PO2	Analyze (L4)	3
4				Apply	L3	PO1	Apply (L3)	3
5				Evaluate	L5	PO2	Analyze (L4)	3

CO1: Apply the differentiation for complex variable functions: Apply (L3)

PO1 Verb: Apply (L3)

CO1 Action Verb is equal to PO1 verb; Therefore correlation is high (3).

CO2: Evaluate the integrals and power series expansions for complex variable functions: Evaluate(L5)

PO2 Verb: Analyze(L4)

CO2 Action verb is high level to PO2 verb; therefore the correlation is high (3).

CO3: Analyze relevant numerical techniques for interpolation and concepts of curve fitting: Analyze(L4)

PO2 Verb: Analyze(L4)

CO3 Action Verb level is equal to PO2 verb; Therefore correlation is high (3).

CO4: Apply the different iteration methods to solve Algebraic, Transcendental and Simultaneous Equations: Apply (L3)

PO1 Verb: Apply (L3)

CO3 Action Verb is equal to PO1 verb; therefore the correlation is high (3).

CO5: Evaluate different numerical methods with accuracy and efficiency for ordinary differential equations: Evaluate(L5)

CO2 Verb: Analyze(L4)

CO5 Action verb is high level to PO2 verb; therefore the correlation is high (3).

Department of Electrical and Electronics Engineering

Year/Sem	II/I & II	Branch of Study: Common to all branches						
Subjec	ct Code	Subject Name	L	T	P	Credits		
23АНМ9905		UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY AND ETHICAL HUMAN CONDUCT	2	1	0	3		

After co	ompletion of the course, students will be able to:
CO1	Understand the essentials of human values, self-exploration, happiness and prosperity for value added education.
CO2	Analyze the harmony in the human being as sentient 'I' and the material 'Body' in various aspects.
CO3	Apply the nine universal human values in relationships for harmony in the family and orderliness in the society.
CO4	Evaluate the interconnectedness of four orders of nature and holistic perception of harmony at all levels of existence.
CO5	Apply the holistic understanding of harmony on professional ethics through augmenting universal human order.

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	The essentials of human values, self-exploration, happiness and prosperity for value added education.			L2
CO2	Analyze	The harmony in the human being as sentient 'I' and the material 'Body' in various aspects.			L4
CO3	Apply	The nine universal human values in relationships for harmony in the family and orderliness in the society.			L3
CO4	Evaluate	The interconnectedness of four order of nature and holistic perception of harmony at all levels of existence.			L5
CO5	Apply	The holistic understanding of harmony on professional ethics through augmenting universal human order.			L3

SYLLABUS

UNIT-I

TITLE: Introduction to Value Education(6 lectures and 3 tutorials for practice session)

- Lecture 1: Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of Education)
- Lecture 2: Understanding Value Education.
- Tutorial 1: Practice Session PS1 Sharing about Oneself.
- Lecture 3: self-exploration as the Process for Value Education.
- Lecture 4: Continuous Happiness and Prosperity the Basic Human Aspirations.
- Tutorial 2: Practice Session PS2 Exploring Human Consciousness.
- Lecture 5: Happiness and Prosperity Current Scenario.
- Lecture 6: Method to Fulfill the Basic Human Aspirations.
- Tutorial 3: Practice Session PS3 Exploring Natural Acceptance

Department of Electrical and Electronics Engineering

UNIT-II

TITLE: Harmony in the Human Being(6 lectures and 3 tutorials for practice session)

Lecture 7: Understanding Human being as the Co-existence of the self and the body.

Lecture 8: Distinguishing between the Needs of the self and the body.

Tutorial 4: Practice Session PS4 Exploring the difference of Needs of self and body.

Lecture 9: The body as an Instrument of the self.

Lecture 10: Understanding Harmony in the self.

Tutorial 5: Practice Session PS5 Exploring Sources of Imagination in the self.

Lecture 11: Harmony of the self with the body.

Lecture 12: Programme to ensure self-regulation and Health.

Tutorial 6: Practice Session PS6 Exploring Harmony of self with the body.

UNIT-III

TITLE: Harmony in the Family and Society (6 lectures and 3 tutorials for practice session)

Lecture 13: Harmony in the Family – the Basic Unit of Human Interaction.

Lecture 14: 'Trust' - the Foundational Value in Relationship.

Tutorial 7: Practice Session PS7 Exploring the Feeling of Trust.

Lecture 15: 'Respect' – as the Right Evaluation.

Tutorial 8: Practice Session PS8 Exploring the Feeling of Respect.

Lecture 16: Other Feelings, Justice in Human-to-Human Relationship.

Lecture 17: Understanding Harmony in the Society.

Lecture 18: Vision for the Universal Human Order.

Tutorial 9: Practice Session PS9 Exploring Systems to fulfil Human Goal.

UNIT-IV

TITLE: Harmony in the Nature/Existence (4 lectures and 2 tutorials for practice session)

Lecture 19: Understanding Harmony in the Nature

Lecture 20: Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature

Tutorial 10: Practice Session PS10 Exploring the Four Orders of Nature

Lecture 21: Realizing Existence as Co-existence at All Levels

Lecture 22: The Holistic Perception of Harmony in Existence

Tutorial 11: Practice Session PS11 Exploring Co-existence in Existence.

UNIT-V

TITLE: Implications of the Holistic Understanding - a Look at Professional Ethics (6 lectures and

3 tutorials for practice session)

Lecture 23: Natural Acceptance of Human Values

Lecture 24: Definitiveness of (Ethical) Human Conduct

Tutorial 12: Practice Session PS12 Exploring Ethical Human Conduct

Lecture 25: A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order

Lecture 26: Competence in Professional Ethics

Tutorial 13: Practice Session PS13 Exploring Humanistic Models in Education

Lecture 27: Holistic Technologies, Production Systems and Management Models-Typical Case Studies

Lecture 28: Strategies for Transition towards Value-based Life and Profession

Tutorial 14: Practice Session PS14 Exploring Steps of Transition towards Universal Human Order

Department of Electrical and Electronics Engineering

Text books:

- The Textbook R R Gaur, R Asthana, G P Bagaria, A Foundation Course in Human Values and Professional Ethics, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1
- The Teacher's Manual R R Gaur, R Asthana, G P Bagaria, Teachers' Manual for A Foundation Course in Human Values and Professional Ethics, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2

Reference books:

- 1 Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3 The Story of Stuff (Book).
- 4 The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5 Small is Beautiful E. F Schumacher.
- 6 Slow is Beautiful Cecile Andrews
- 7 Economy of Permanence J C Kumarappa
- 8 Bharat Mein Angreji Raj PanditSunderlal
- 9 Rediscovering India by Dharampal
- 10 Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11 India Wins Freedom Maulana Abdul Kalam Azad
- 12 Vivekananda Romain Rolland (English)
- 13 Gandhi Romain Rolland (English)

Web Resources:

- https://fdp-si.aicte-india.org/UHV-II%20Class%20Notes%20&%20Handouts/UHV%20Handout%201-Introduction%20to%20Value%20Education.pdf
- 2 https://fdp-si.aicte-india.org/UHV- II%20Class%20Notes%20&%20Handouts/UHV%20Handout%202 Harmony%20in%20the%20Human%20Being.pdf
- 3 https://fdp-si.aicte-india.org/UHV-II%20Class%20Notes%20&%20Handouts/UHV%20Handout%203-Harmony%20in%20the%20Family.pdf
- 4 https://fdp-si.aicte-india.org/UHV%201%20Teaching%20Material/D3-S2%20Respect%20July%2023.pdf
- 5 https://fdp-si.aicte-india.org/UHV-II%20Class%20Notes%20&%20Handouts/UHV%20Handout%205-Harmony%20in%20the%20Nature%20and%20Existence.pdf
- https://fdp-si.aicte-india.org/download/FDPTeachingMaterial/3-days%20FDP-SI%20UHV%20Teaching%20Material/Day%203%20Handouts/UHV%203D%20D3-S2A%20Und%20Nature-Existence.pdf
- 7 https://fdp-si.aicte-india.org/UHV%20II%20Teaching%20Material/UHV%20II%20Lecture%2023-25%20Ethics%20v1.pdf
- 8 https://www.studocu.com/in/document/kiet-group-of-institutions/universal-human-values/chapter-5- holistic-understanding-of-harmony-on-professional-ethics/62490385
- 9 https://onlinecourses.swayam2.ac.in/aic22_ge23/preview

Mapping	of Cou	ırse ou	ıtcome	s with 1	Progra	m outc	omes							
CO/PO	P01	P02	PO3	PO4	P05	P06	P07	P08	P09	P010	P011	PO12	PSO1	PSO2
CO1								2				2		
CO2							3	3						
CO3						2	2	2						
CO4						3	3	3				3		
CO5						2	2	2				2		

Levels of correlation, viz., 1. Low, 2. Moderate, 3. High

Department of Electrical and Electronics Engineering

Mapp	oing of Cou	ırse ou	tcomes with Pro	gram outcom	es Jus	tification Ta	ble	
СО			CO			Program	PO(s): Action	Level of
No.	Lesson	%	correlation	Verb	BTL	Outcomes	verb and BTL	correlation
	Plan					(PO)	(for PO1 to	(0-3)
	(Hrs.)						PO5)	
1	7	10.4	2	II d	2	P08,	Thumb Dulo	2,
1	/	19.4	2	Understand	2	PO12	Thumb Rule	2
2	8	22.2	3	Analyza	1	PO7,	Thumb Rule	3,
	0	22.2	3	Analyze	4	PO8	Humb Kule	3
						P06,		2,
3	7	19.4	2	Apply	3	PO7,	Thumb Rule	2,
						PO8		2
						PO6,		3,
4	8	22.2	3	Evaluate	5	PO7,	Thumb Rule	3,
T		22.2	3	Lvaluate	3	PO8,	Thumb Ruic	3,
						PO12		3
						PO6,		2,
5	7	19.4	2	Apply	3	PO7,	Thumb Rule	2,
	_ ′	17.4	2	дрріу	3	PO8,	Thumb Rule	2,
						PO12		2

CO1: Understand the essentials of human values, self-exploration, happiness and prosperity for value added education.

Action Verb: Understand (L2)

CO1 Action Verb is Understand of BTL 2. Using Thumb rule, L2 correlates PO6 to PO12 as moderate (2).

CO2: Analyze the harmony in the human being as sentient 'I' and the material 'Body' in various aspects.

Action Verb: Analyze (L4)

CO2 Action Verb is Analyze of BTL 4. Using Thumb rule, L4 correlates PO6 to PO12 as high (3).

CO3: Apply the nine universal human values in relationships for harmony in the family and orderliness in the society.

Action Verb: Apply (L3)

CO3 Action Verb is Apply of BTL 3. Using Thumb rule, L3 correlates PO6 to PO12 as moderate (2)

CO4: Evaluate the interconnectedness of four orders of nature and holistic perception of harmony at all levels of existence.

Action Verb: Evaluate (L5)

CO4 Action Verb is Evaluate of BTL5. Using Thumb rule, L5 correlates PO6 to PO12 as high (3).

CO5: Apply the holistic understanding of harmony on professional ethics through augmenting universal human order.

Action Verb: Apply (L3)

CO5 Action Verb is Apply of BTL 3. Using Thumb rule, L3 correlates PO6 to PO12 as moderate (2).

Department of Electrical and Electronics Engineering

Year/Sem	II/I	Branch of Study: EEE	ranch of Study: EEE							
Subject Code		Subject Name	L	T	P	Credits				
23APC0205		ELECTROMAGNETIC FIELD THEORY	3	0	0	3				

After co	After completion of the course, students will be able to:								
CO1	Understand the concepts of vector algebra, vector calculus and fundamental laws of								
COI	electrostatics.								
CO2	Understand the concepts of the conductors, dielectrics and capacitance in electric field.								
CO3	Analyze the properties of magnetic fields using various magneto static laws.								
CO4	Analyze the properties of self and mutual inductances in solenoid, toroid, coaxial cables, straight								
LU4	long and square loop wires.								
CO5	Understand the electromagnetic induction characteristics with respect to time varying field.								

со	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	The concepts of vector algebra, vector calculus and fundamental laws of electrostatics.			L2
CO2	Understand	The concepts of the conductors, dielectrics and capacitance in electric field.			L2
CO3	Analyze	The properties of magnetic fields.	Using various magneto static laws.		L4
CO4	Analyze	The properties of self and mutual inductances solenoid, toroid, coaxial cables, straight long an a square loop wires.			L4
CO5	Understand	The electromagnetic induction characteristics	with respect to time varying field		L2

SYLLABUS

UNIT-I

TITLE: Vector Analysis & Electrostatics

Vector Analysis:

Vector Algebra: Scalars and Vectors, Unit vector, Vector addition and subtraction, Position and distance vectors, Vector multiplication, Components of a vector.

Coordinate Systems: Rectangular, Cylindrical and Spherical coordinate systems.

Vector Calculus: Differential length, Area and Volume. Del operator, Gradient of a scalar, Divergence of a vector and Divergence theorem (definition only). Curl of a vector and Stoke's theorem (definition only), Laplacian of a scalar.

Electrostatics:

Coulomb's law and Electric field intensity (EFI) – EFI due to Continuous charge distributions (line and surface charge), Electric flux density, Gauss's law (Maxwell's first equation, ∇ . $D \rightarrow \rightarrow = \rho_V$), Applications of Gauss's law, Electric Potential, Work done in moving a point charge in an electrostatic field (second Maxwell's equation for static electric fields, $\nabla \times E \rightarrow = 0$), Potential gradient, Laplace's and Poison's equations.

Department of Electrical and Electronics Engineering

UNIT-II

TITLE: Conductors - Dielectrics and Capacitance

Behavior of conductor in Electric field, Electric dipole and dipole moment – Potential and EFI due to an electric dipole, Torque on an Electric dipole placed in an electric field, Current density-conduction and convection current densities, Ohm's law in point form, Behavior of conductors in an electric field, Polarization, dielectric constant and strength, Continuity equation and relaxation time, Boundary conditions between conductor to dielectric, dielectric to dielectric and conductor to free space, Capacitance of parallel plate, coaxial and spherical capacitors, Energy stored and density in a static electric field, Coupled and decoupled capacitors.

UNIT-III

TITLE: Magneto statics, Ampere's Law and Force in magnetic fields

Biot-Savart's law and its applications viz. Straight current carrying filament, circular, square, rectangle

and solenoid current carrying wire – Magnetic flux density and Maxwell's second Equation (∇ . \rightarrow \rightarrow = 0), Ampere's circuital law and its applications viz. MFI due to an infinite sheet, long filament, solenoid, toroidal current carrying conductor, point form of Ampere's circuital law, Maxwell's third equation

$$(\nabla \times \rightarrow \rightarrow = \rightarrow).$$

Magnetic force, moving charges in a magnetic field – Lorentz force equation, force on a current element in a magnetic field, force on a straight and a long current carrying conductor in a magnetic field, force between two straight long and parallel current carrying conductors, Magnetic dipole, Magnetic torque, and moment.

UNIT-IV

TITLE: Self and mutual inductance

Self and mutual inductance – determination of self-inductance of a solenoid, toroid, coaxial cable and mutual inductance between a straight long wire and a square loop wire in the same plane – Energy stored and energy density in a magnetic field.

UNIT-V

TITLE: Time Varying Fields

Faraday's laws of electromagnetic induction, Maxwell's fourth equation $(\nabla \times \rightarrow - - - - -)$, integral and

point forms of Maxwell's equations, statically and dynamically induced EMF, Displacement current, Modification of Maxwell's equations for time varying fields, Poynting theorem and Poynting vector.

Text books:

- 1 "Elements of Electromagnetics" by Matthew N O Sadiku, Oxford Publications, 7th edition, 2018.
- 2 "Engineering Electromagnetics" by William H. Hayt & John. A. Buck Mc. Graw-Hill, 7th Editon. 2006.

Reference books:

- 1 "Introduction to Electro Dynamics" by D J Griffiths, Prentice-Hall of India Pvt. Ltd, 2nd edition.
- 2 "Electromagnetic Field Theory" by Yaduvir Singh, Pearson India, 1st edition, 2011.
- 3 "Fundamentals of Engineering Electromagnetics" by Sunil Bhooshan, OxfordUniversity Press, 2012.
- 4 Schaum's Outline of Electromagnetics by Joseph A. Edminister, Mahamood Navi, 4th Edition, 2014.

Web Resources:

- 1 https://archive.nptel.ac.in/courses/108/106/108106073/
- 2 https://nptel.ac.in/courses/117103065

Department of Electrical and Electronics Engineering

Mapping	g of Cou	ırse oı	ıtcome	s with	Progra	m outc	omes							
CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	P08	P09	P010	P011	PO12	PSO1	PSO2
CO1	2	2											1	
CO2	2	2											1	
CO3	3	3											1	
CO4	3	3											1	
CO5	2	2											1	
Levels of	corrola	tion vi	7 1 I A	w 2 Mo	dorato	2 High		1						

Levels of correlation, viz., 1. Low, 2. Moderate, 3. High

Mapp	oing of Cou	ırse o	utcomes with P	rogram outco	mes Ju	ıstification T	Table	
CO			CO			Program	PO(s): Action	Level of
No.	Lesson Plan (Hrs.)	%	correlation	Verb	BTL	Outcomes (PO)	verb and BTL (for PO1 to PO5)	correlation (0-3)
1				Understand	L2	PO1, PO2	Apply (L3)	2
							Identify (L3)	2
2				Understand	L2	PO1,	Apply (L3)	2
				Uniderstand	LZ	PO2	Identify (L3)	2
3				A 1	1.4	PO1,	Apply (L3)	3
				Analyze	L4	PO2	Analyze (L4)	3
4				A 1	T 4	PO1,	Apply (L3)	3
				Analyze	L4	PO2	Analyze (L4)	3
5				II danatan d	W 1 . 1 VO		Apply (L3)	2
				Understand	L2	PO2	Identify (L3)	2

CO1: Understand the concepts of vector algebra, vector calculus and fundamental laws of electrostatics.

Action Verb: Understand (L2)

PO1 Verb: Apply (L3)

CO1 Action verb level is less than PO1 verb by one level; Therefore, correlation is Moderate (2).

PO2 Verb: Identify (L3)

CO1 Action verb level is less than PO2 verb by one level; Therefore, correlation is Moderate (2).

CO2: Understand the concepts of the conductors, dielectrics and capacitance in electric field. Action Verb: Understand (L2)

PO1 Verb: Apply (L3)

CO2 Action verb level is less than PO1 verb by one level; Therefore, correlation is Moderate (2).

PO2 Verb: Identify (L3)

CO2 Action verb level is less than PO2 verb by one level; Therefore, correlation is Moderate (2).

CO3: Analyze the properties of magnetic fields using various magneto static laws.

Action Verb: Analyze (L4)

PO1 Verb: Apply (L3)

CO3 Action verb level is greater than PO1 verb by one level; Therefore, correlation is High (3).

PO2 Verb: Analysis (L4)

CO3 Action verb level is equal to PO2 verb level; Therefore, correlation is High (3).

CO4: Analyze the properties of self and mutual inductances in solenoid, toroid, coaxial cables, straight long and a square loop wires.

Department of Electrical and Electronics Engineering

Action Verb: Analyze (L4)

PO1 Verb: Apply (L3)

CO4 Action verb level is greater than PO1 verb by one level; Therefore, correlation is High (3).

PO2 Verb: Analysis (L4)

CO4 Action verb level is equal to PO2 verb level; Therefore, correlation is High (3).

CO5: Understand the electromagnetic induction characteristics with respect to time varying field. Action Verb: Understand (L2)

PO1 Verb: Apply (L3)

CO5 Action verb level is less than PO1 verb by one level; Therefore, correlation is Moderate (2).

PO2 Verb: Identify (L3)

CO5 Action verb level is less than PO2 verb by one level; Therefore, correlation is Moderate (2).

Department of Electrical and Electronics Engineering

Year/Sem	II/I	Branch of Study: EEE	ranch of Study: EEE							
Subject Code		Subject Name	L	Т	P	Credits				
23APC0206		ELECTRICAL CIRCUIT ANALYSIS-II	3	0	0	3				

After co	After completion of the course, students will be able to:								
CO1	Analyze the three phase balanced and unbalanced circuits for different configurations.								
CO2	Analyze the response of RLC circuits using differential equation and laplace transform approaches								
CO3	Evaluate the Z, Y, H and ABCD parameters of a two port electrical network.								
CO4	Apply the Fourier series to the electrical circuits with periodic excitation.								
CO5	Analyze the Design procedure of various filters in electrical circuits.								

со	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Analyze	Three Phase Balanced And Unbalanced Circuits,	Different Circuit Configurations.		L4
CO2	Analyze	the response of RLC circuits using	Differential equation and laplace transform approaches.		L4
CO3	Evaluate	the Z, Y, H and ABCD parameters of a two port electrical network.			L5
C04	Apply	Fourier series for the electrical circuits	With periodic excitation		L4
CO5	Analyze	various filters	in electrical circuits		L4

SYLLABUS

UNIT-I

TITLE: Analysis of three phase balanced circuits & unbalanced circuits Analysis of three phase balanced circuits:

Phase sequence, star and delta connection of sources and loads, relation between line and phase quantities, analysis of balanced three phase circuits, and measurement of active and reactive power.

Analysis of three phase unbalanced circuits:

Loop method, Star-Delta transformation technique, two-wattmeter method for measurement of three phase power.

UNIT-II

TITLE: Laplace Transforms & Transient Analysis

Laplace Transforms:

Definition and Laplace transforms of standard functions– Shifting theorem – Transforms of derivatives and

integrals, Inverse Laplace transforms and applications.

Transient Analysis:

Transient response of R-L, R-C and R-L-C circuits (Series and parallel combinations) for D.C. and sinusoidal excitations – Initial conditions-Solution using differential equation approach and Laplace transform approach.

Department of Electrical and Electronics Engineering

UNIT-III

TITLE: Network Parameters

Impedance parameters, Admittance parameters, Hybrid parameters, Transmission (ABCD) parameters, conversion of Parameters from one form to other-Conditions for Reciprocity and Symmetry-Interconnection of Two Port networks in Series, Parallel and Cascaded configurations- problems.

UNIT-IV

TITLE: Analysis of Electric Circuits with Periodic Excitation

Fourier series and evaluation of Fourier coefficients, Trigonometric and complex Fourier series for periodic waveforms, Application to Electrical Systems – Effective value and average value of non-sinusoidal periodic waveforms, power factor, effect of harmonics.

UNIT-V

TITLE: Filters

Classification of filters-Low pass, High pass, Band pass and Band Elimination filters, Constant-k filters -Low pass and High Pass, Design of Filters.

Text books:

- 1 Engineering Circuit Analysis, William Hayt and Jack E. Kemmerly, 8th Edition McGraw-Hill, 2013
- Fundamentals of Electric Circuits, Charles K. Alexander, Mathew N. O. Sadiku, 3rdEdition, Tata McGraw- Hill, 2019.

Reference books:

- 1 Network Analysis, M. E. Van Valkenburg, 3rd Edition, PHI, 2019.
- 2 Circuit Theory: Analysis and Synthesis, A. Chakrabarti, DhanpatRai& Co., 2018, 7thRevised Edition.
- 3 Network Theory, N. C. Jagan and C. Lakshminarayana, 1st Edition, B. S. Publications, 2012.
- 4 Circuits and Networks Analysis and Synthesis, A. Sudhakar, Shyam Mohan S. Palli,5th Edition, Tata McGraw-Hill. 2017.
- 5 Engineering Network Analysis and Filter Design (Including Synthesis of One Port Networks)- DurgeshC.KulshreshthaGopal G. Bhise, Prem R. Chadha ,UmeshPublications 2012.

Web Resources:

- 1 https://archive.nptel.ac.in/courses/117/106/117106108/2.
- 2 https://archive.nptel.ac.in/courses/108/105/108105159/

Mapping	lapping of Course outcomes with Program outcomes													
CO/PO	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	2	2											2	2
CO2	2	2											1	1
CO3	3	3											3	3
CO4	3	2											3	3
CO5	2	2											3	3
Lovolc of	aonnolo	tion wi	- 1 Lo	2 Ma	donata	2 High	•	•	•	•	•			

Levels of correlation, viz., 1. Low, 2. Moderate, 3. High

Department of Electrical and Electronics Engineering

Mapp	Mapping of Course outcomes with Program outcomes Justification Table									
CO			CO			Program	PO(s): Action	Level of		
No.	Lesson	%	correlation	Verb	BTL	Outcomes	verb and BTL	correlation		
	Plan					(PO)	(for PO1 to	(0-3)		
	(Hrs.)						PO5)			
1				Analyze	L4	PO1,	Apply (L3)	3		
						PO2	Identify(L3)	3		
2				Analyze	L4	PO1,	Apply (L3)	3		
						PO2	Identify (L3)	3		
3				Evaluate	L5	PO1,	Apply (L3)	3		
						PO2	Analyze (L4)	3		
4				Apply	L3	PO1,	Apply (L3)	3		
						PO2	Analyze (L4)	2		
5				Analyze	L4	PO1	Apply (L3)	3		
						PO2	Identify (L3)	3		

CO1: Analyze the three phase balanced and unbalanced circuits for different configurations. Action Verb: Analyze (L4)

PO1 Verb: Apply (L3)

CO1 Action verb level is level is greater than PO1 verb by one level; Therefore, correlation is High (3).

PO2 Verb: Identify (L3)

CO1 Action verb level is level is greater than PO2 verb by one level; Therefore, correlation is High (3).

CO2: Analyze the response of RLC circuits using differential equation and laplace transform approaches.

Action Verb: Analyze (L4)

PO1 Verb: Apply (L3)

CO2 Action verb level is greater than PO1 verb by one level; Therefore, correlation is High (3).

PO2 Verb: Identify (L3)

CO2 Action verb level is greater than PO2 verb by one level; Therefore, correlation is High (3).

CO3: Evaluate the Z, Y, H and ABCD parameters of a two port electrical network.

Action Verb: Evaluate (L5)

PO1 Verb: Apply (L3)

CO3 Action verb level is greater than PO1 verb by two level; Therefore, correlation is High (3).

PO2 Verb: Analysis (L4)

CO3 Action verb level is greater than PO2 verb level by one level; Therefore, correlation is High (3).

CO4: Apply the Fourier series to the electrical circuits with periodic excitation.

Action Verb: Apply (L3)

PO1 Verb: Apply (L3)

CO4 Action verb level is level is equal to PO1 verb: Therefore, correlation is High (3).

PO2 Verb: Analysis (L4)

CO4 Action verb level is less than PO2 verb level by one level; Therefore, correlation is Moderate (2).

CO5: Analyze the Design procedure of various filters in electrical circuits.

Action Verb: Design (L6)

PO1 Verb: Analyze (L4)

CO5 Action verb level is greater than PO1 verb by one level; Therefore, correlation is High (3).

PO3 Verb: Identify (L3)

CO5 Action verb level is level is greater than PO2 verb by one level; Therefore, correlation is High (3).

Department of Electrical and Electronics Engineering

Year/Sem	II/I	Branch of Study: EEE				
Subject Code		Subject Name	L	Т	P	Credits
23AP0	C 0207	DC MACHINES & TRANSFORMERS			0	3

After co	After completion of the course, students will be able to:						
CO1	Understand the process of voltage build-up in D.C generators and its characteristics.						
CO2	Analyze the process of starting DC motors and speed control using various tests.						
CO3	Analyze the performance of single phase transformer.						
CO4	Apply direct and indirect testing methods to transformers for their characteristics.						
CO5	Analyze the various configurations of three-phase transformers.						

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	The process of voltage build-up in D.C generators and its characteristics.			L2
CO2	Analyze	The process of starting DC motors and speed control using various tests.			L4
CO3	Analyze	The performance of single phase transformer.			L4
CO4	Apply	Direct and indirect testing methods to transformers and study the characteristics of Transformers.			L3
CO5	Analyze	Various configurations of three-phase transformers			L4

SYLLABUS

UNIT-I

TITLE: DC Machines

Electro mechanical energy conversion series and parallel magnetic circuits - Construction and principle of operation of D.C Generator and D.C Motor - EMF equation for generator - Excitation techniques-characteristics of D.C generators -applications of D.C Generators, Back-EMF and torque equations of D.C motor - Armature reaction and commutation, Applications of D.C Motors.

UNIT-II

TITLE: Starting, Speed Control And Testing Of D.C Machines

Characteristics of D.C motors – losses and efficiency – Separation of iron and friction losses. Necessity of a starter – starting by 3-point and 4-point starters – speed control by armature voltage and field current control – testing of D.C machines – brake test, Swinburne's test – Hopkinson's test–Field Test.

UNIT-III

TITLE: Single-Phase Transformers

Introduction to single-phase Transformers (Construction and principle of operation)-EMF Equation – Operation on no-load and on load –Lagging, Leading and Unity Power Factors Loads –Phasor Diagrams–Equivalent Circuit –Regulation – losses and efficiency – effect of variation of frequency and supply voltage on losses – all day efficiency, Applications.

Department of Electrical and Electronics Engineering

UNIT-IV

TITLE: Testing Of Transformers

Open Circuit and Short Circuit tests – Sumpner's test – separation of losses— Parallel operation with equal and unequal voltage ratios— auto transformer – equivalent circuit – comparison with two winding transformers.

UNIT-V

TITLE: Three-Phase Transformers

Polyphase connections- Y/Y, Y/ Δ , Δ /Y, Δ / Δ , open Δ and Vector groups – third harmonics in phase voltages– Parallel operation–three winding transformers- transients in switching –off load and on load tap changers–Scott connection.

Text books:

- 1 Electrical Machinery by Dr. P S Bimbhra, 7th edition, Khanna Publishers, New Delhi, 1995.
- 2 Performance and analysis of AC machines by M.G. Say, CBS, 2002.

Reference books:

- 1 Electrical Machines by D. P.Kothari, I. J. Nagarth, McGraw Hill Publications, 5th edition
- 2 Electrical Machinery Fundamentals by Stephen J Chapman McGraw Hill education 2011.
- 3 Generalized Theory of Electrical Machines by Dr. PS Bimbhra, 7th Edition, Khanna Publishers, 2021.
- 4 Theory & Performance of Electrical Machines by J.B.Gupta, S.K.Kataria& Sons, 2007.
- 5 Electric Machinery by Fitzgerald, A.E., Kingsley, Jr., C., & Umans, S. D., 7th edition, McGraw-Hill Education, 2014.

Web Resources:

- 1 nptel.ac.in/courses/108/105/108105112
- 2 nptel.ac.in/courses/108/105/108105155

Mapping	Iapping of Course outcomes with Program outcomes													
CO/PO	P01	P02	РО3	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	2	2		1					2				2	2
CO2	3	3		3					3				3	3
CO3	3	3		3					3				3	3
CO4	3	3		2					2				3	2
CO5	3	3		3					3				3	3
Levels of	correla	tion. vi	z 1. Lo	w. 2. Mc	derate.	3. High		•						

Department of Electrical and Electronics Engineering

CO			outcomes with F CO			Program	PO(s): Action	Level of
No.	Lesson Plan (Hrs.)	%	correlation	Verb	BTL	Outcomes (PO)	verb and BTL (for PO1 to PO5)	correlation (0-3)
1				Understand	L2	PO1, PO2,	PO1: Apply (L3) PO2: Identify (L3)	2 2
						PO4, PO9	PO4:Analyze (L4) PO9: Thumb Rule	1 2
2				Understand	L2	PO1, PO2, PO4,	PO1: Apply (L3) PO2: Analyze (L4) PO4: Analyze (L4)	3 3 3
						PO9	PO9: Thumb Rule	3
3				Analyze	L4	PO1, PO2,	PO1: Apply (L3) PO2: Analyze (L4)	3 3
						PO4, PO9	PO4:Analyze (L4) PO9: Thumb Rule	2 3
4				Apply	L3	PO1, PO2,	PO1: Apply (L3) PO2: Identify (L3)	3 3
						PO4, PO9	PO4:Analyze (L4) PO9: Thumb Rule	2 2
5				Analyze	L4	PO1, PO2,	PO1: Apply (L3) PO2: Analyze (L4)	3 3
						PO4, PO9	PO4:Analyze (L4) PO9: Thumb Rule	3 3

CO1: Understand the process of voltage build-up in D.C generators and its characteristics. Action Verb: Understand (L1)

PO1 Verbs: Apply (L3)

CO1 Action Verb is less than to PO1 verb by one level; Therefore correlation is moderate (2).

PO2 Verb: Identify (L3)

CO1 Action Verb is less than to PO1 verb by one level; Therefore correlation is moderate (2).

PO4 Verb: Analyze (L4)

CO1 Action Verb is less than to PO1 verb by two level; Therefore correlation is low (1).

Based on students' participate in CLC activities. From this: CO1 level is 2, Using Thumb Rule its correlation is moderate (2)

CO2: Analyze the process of starting DC motors and speed control using various tests.

Action Verb: Analyze (L4)

PO1 Verbs: Apply (L3)

CO2 Action Verb is greater than to PO1 verb by one level; Therefore correlation is high (3).

PO2 Verb: Identify (L3)

CO2 Action Verb is greater than to PO2 verb by one level; Therefore correlation is high (3).

PO4 Verb: Analyze (L4)

CO5 Action Verb level is equal to PO4 verb; Therefore correlation is high (3).

Based on students' participate in CLC activities. From this: CO2 level is 3, Using Thumb Rule its correlation is moderate (3).

Department of Electrical and Electronics Engineering

CO3: Analyze the performance of single phase transformer.

Action Verb: Analyze (L4)

PO1 Verbs: Apply (L3)

CO3 Action Verb level is greater to PO1 verb; Therefore correlation is high (3).

PO2 Verb: Identify (L3)

CO3 Action Verb level is greater to PO3 verb; Therefore correlation is high (3).

PO4 Verb: Analyze (L4)

CO3 Action Verb is less than to PO4 verb by one level; Therefore correlation is moderate (2).

Based on students' participate in CLC activities. From this: CO3 level is 4, Using Thumb Rule its correlation is high (3).

CO4: Apply direct and indirect testing methods to transformers and study the characteristics of transformers.

Action Verb: Apply (L3)

PO1 Verbs: Apply (L3)

CO4 Action Verb is equal to PO1 verb; Therefore correlation is high (3).

PO2 Verb: Identify (L3)

CO4 Action Verb is equal to PO2 verb; Therefore correlation is high (3).

PO4 Verb: Analyze (L4)

CO4 Action Verb is less than to PO4 verb by one level; Therefore correlation is moderate (2).

Based on students' participate in CLC activities. Here, CO4 level is 3, by Using Thumb Rule its correlation is moderate (2).

CO5: Analyze various configurations of three-phase transformers.

Action Verb: Analyze (L4)

PO1 Verbs: Apply (L3)

CO5 Action Verb level is greater to PO1 verb; Therefore correlation is high (3).

PO2 Verb: Identify (L3)

CO5 Action Verb level is greater to PO2 verb; Therefore correlation is high (3).

PO4 Verb: Analyze (L4)

CO5 Action Verb level is equal to PO4 verb; Therefore correlation is high (3).

Based on students' participate in CLC activities. From this: CO5 level is 4, Using Thumb Rule its correlation is high (3).

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES, TIRUPATI (AUTONOMOUS) Department of Electrical and Electronics Engineering

Year/Sem	II/I	Branch of Study: EEE				
Subject Code		Subject Name	L	T	P	Credits
23AP	C 0208	ELECTRICAL CIRCUIT ANALYSIS-II & SIMULATIONLAB	0	0	3	1.5

After co	After completion of the course, students will be able to:						
CO1	Evaluate the active and reactive powers in three phase circuits.						
CO2	Analyze the transient response of electrical circuits.						
CO3	Evaluate the two port network parameters of electrical circuits using V labs.						
CO4	Analyze the properties of electrical circuits using simulation tools.						
CO5	Apply the network theorems to electrical circuits using simulation tools.						

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Evaluate	the active and reactive powers	three phase circuits		L5
CO2	Analyze	the transient response of electrical circuits.			L4
C03	Evaluate	the two port network parameters of electrical circuits	Using V labs.		L5
C04	Analyze	the properties of electrical circuits	Using software tools.		L4
CO5	Apply	the network theorems to electrical circuits	using simulation tools		L3

SYLLABUS

LIST OF EXPERIMENTS

1. Measurement of Active Power and Reactive Power for balanced loads.	CO1
2. Measurement of Active Power and Reactive Power for unbalanced loads.	CO1
3. Simulation and analysis of transient response of RL, RC and RLC circuits.	CO2
4. Determination of Z and Y parameters by using V labs.	CO3
5. Determination of ABCD and hybrid parameters by using V labs.	CO3
6. Verification of Kirchhoff's current law and voltage law using simulation tools.	CO4
7. Verification of mesh and nodal analysis using simulation tools.	CO4
8. Verification of series and parallel resonance using simulation tools.	CO4
9. Verification of self-inductance and mutual inductance by using simulation tools.	CO4
10. Verification of superposition and maximum power transfer theorems using simulation tools.	CO5
11. Verification of Reciprocity and Compensation theorems using simulation tools.	CO5
12. Verification of Thevenin's and Norton's theorems using simulation tools.	CO5

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES, TIRUPATI (AUTONOMOUS) Department of Electrical and Electronics Engineering

Mapping	Mapping of Course outcomes with Program outcomes													
CO/PO	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	PO12	PSO1	PSO2
CO1	2	2											2	
CO2	3	3											3	
CO3	3	3											3	
CO4	3	3											3	
CO5	3	3											3	
Levels of	correla	tion, vi	z., 1. Lo	w, 2. Mo	derate,	3. High		•					•	

Mapp	oing of Cou	urse (outcomes with P	rogram outco	omes Ju	ustification T	Table	
CO			CO			Program	PO(s): Action	Level of
No.	Lesson	%	correlation	Verb	BTL	Outcomes	verb and BTL	correlation
	Plan					(PO)	(for PO1 to	(0-3)
	(Hrs.)						PO5)	
1				Evoluate	īĒ	PO1,	Apply (L3)	3
1				Evaluate	L5	PO2	Identify (L3)	3
2				Analyze	L4	PO1,	Apply (L3)	3
				Allalyze	L 4	PO2	Identify (L3)	3
3				Evaluate	L5	PO1,	Apply (L3)	3
3				Evaluate	LS	PO2	Analyze (L4)	3
4				Analyze	L4	PO1,	Apply (L3)	3
4				Allalyze	L4	PO2	Analyze (L4)	3
5				Apply	1.4	PO1,	Apply (L3)	3
5				Apply	L4	PO2	Identify (L3)	3

Department of Electrical and Electronics Engineering

CO1: Evaluate the active and reactive powers in three phase circuits.

Action Verb: Evaluate (L5)

PO1 Verb: Apply (L3)

CO1 Action verb level is greater than PO1 verb by two level; Therefore, correlation is High(3).

PO2 Verb: Identify (L3)

CO1 Action verb level is greater than PO2 verb by two level; Therefore, correlation is High (3).

 ${\bf CO2:} Analyze \, the \, transient \, response \, of \, electrical \, circuits.$

Action Verb: Analyze (L4)

PO1 Verb: Apply (L3)

CO2 Action verb level is greater than PO1 verb by one level; Therefore, correlation is High (3).

PO2 Verb: Identify (L3)

CO2 Action verb level is greater than PO1 verb by one level; Therefore, correlation is High (3).

CO3: Evaluate the two port network parameters of electrical circuits using V labs.

Action Verb: Evaluate (L5)

PO1 Verb: Apply (L3)

CO3 Action verb level is greater than PO1 verb by two level; Therefore, correlation is High (3).

PO2 Verb: Analysis (L4)

CO3 Action verb level is greater than PO2 verb by one level; Therefore, correlation is High (3).

CO4: Analyze the properties of electrical circuits using simulation tools.

Action Verb: Analyze (L4)

PO1 Verb: Apply (L3)

CO4 Action verb level is greater than PO1 verb by one level; Therefore, correlation is High (3).

PO2 Verb: Analysis (L4)

CO4 Action verb level is equal to PO2 verb level; Therefore, correlation is High (3).

$\textbf{CO5:} \ Apply \ the \ network \ theorems \ to \ electrical \ circuits \ using \ simulation \ tools.$

Action Verb: Apply (L4)

PO1 Verb: Apply (L3)

CO3 Action verb level is greater than PO1 verb by one level; Therefore, correlation is High (3).

PO2 Verb: Identify (L3)

CO3 Action verb level is greater than PO1 verb by one level; Therefore, correlation is High (3).

Department of Electrical and Electronics Engineering

,	Year/Sem	II/I	Branch of Study: EEE				
	Subject Code		Subject Name	L	T	P	Credits
-	23AP	C0209	DC MACHINES & TRANSFORMERS LAB	0	0	3	1.5

After co	ompletion of the course, students will be able to:							
CO1	CO1 Evaluate the operational and speed control characteristics of D.C shunt motor.							
CO2	Evaluate the characteristics of D.C machines by conducting direct and indirect tests.							
CO3	Evaluate the performance parameters of a single phase transformer.							
CO4	Analyze the parallel operation of a Single phase Transformers.							
CO5	Analyze the Scott connection of transformers.							

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Evaluate	Operational and speed control characteristics of D.C shunt motor.			L5
CO2	Evaluate	Characteristics of D.C machines	Conducting direct and indirect tests		L5
CO3	Evaluate	The performance parameters of single phase transformer			L5
CO4	Analyze	Parallel operation of Single phase Transformers.			L4
CO5	Analyze	Scott connection of transformers.			L4

SYLLABUS

List of Experiments

Any 10 of the following experiments are to be conducted

1. Speed control of D.C shunt motor by Field Current and Armature Voltage Control.	CO1
2. Brake test on D.C shunt motor- Determination of performance curves.	CO1
3. Hopkinson's test on D.C shunts Machines.	CO1
4. Swinburne's test - Predetermination of efficiencies as DC Generator and Motor.	CO2
5. Load test on D.C compound generator-Determination of characteristics.	CO2
6. Load test on D.C shunt generator-Determination of characteristics.	CO2
7. Fields test on D.C series machines-Determination of efficiency.	CO2
8. Brake test on D.C compound motor-Determination of performance curves.	CO2
9. OC & SC tests on single phase transformer.	CO3
10. Sumpner's test on single phase transformer.	CO3
12. Separation of core losses of a single-phase transformer.	CO3
11. Parallel operation of Single-phase Transformers.	CO4
13 Scott connection of transformers	CO5

Reference books:

1 https://ems-iitr.vlabs.ac.in/List%20of%20experiments.html

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES, TIRUPATI (AUTONOMOUS) Department of Electrical and Electronics Engineering

Mapping	Mapping of Course outcomes with Program outcomes													
CO/PO	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	3	3		3					3				3	3
CO2	3	3		3					3				3	3
CO3	3	3		3					3				3	3
CO4	3	3		3					3				3	3
CO5	3	3		3					3				3	3
Levels of	correla	tion, vi	z., 1. Lo	w, 2. Mo	derate,	3. High	•	•	•	•	•			

Mapp	oing of Co	urse c	outcomes with I	Program outco	omes Ju	ustification T	Table	
CO			CO			Program	PO(s): Action	Level of
No.	Lesson	%	correlation	Verb	BTL	Outcomes	verb and BTL	correlation
	Plan					(PO)	(for PO1 to	(0-3)
	(Hrs.)						PO5)	
						PO1,	PO1: Apply (L3)	3
1				Evaluate	L5	PO2,	PO2: Analyze(L4)	3
1				Evaluate	ГЭ	PO4,	PO4:Analyze(L4)	3
						P09	PO9; Thumb Rule	3
						PO1,	PO1: Apply (L3)	3
				Б 1 .		PO2,	PO2: Analyze(L4)	3 3
2				Evaluate	L5	PO4,	PO4:Analyze(L4)	3
						P09	PO9; Thumb Rule	3
						PO1,	PO1: Apply (L3)	3
3				Evaluate	L5	PO2,	PO2: Analyze(L4)	2
3				Evaluate	L5	PO4,	PO4:Analyze(L4)	2
						P09	PO9; Thumb Rule	2
						PO1,	PO1: Apply (L3)	3
4				Analyza	L4	PO2,	PO2: Analyze(L4)	3
4				Analyze	L4	PO4,	PO4:Analyze(L4)	3
						P09	PO9; Thumb Rule	3
						PO1,	PO1: Apply (L3)	3
5				Analyzo	L4	PO2,	PO2: Analyze(L4)	3
3				Analyze	L 't	PO4,	PO4:Analyze(L4)	3
						P09	PO9; Thumb Rule	3

Department of Electrical and Electronics Engineering

CO1 Evaluate the operational and speed control characteristics of D.C shunt motor. Action Verb: Evaluate (L5)

- PO1 Verbs: Apply (L3)
- CO1 Action Verb is greater than PO1 verb by two level; Therefore, correlation is high (3).
- PO2 Verbs: Analyze (L4)
- CO1 Action Verb is greater than PO2 verb by two level; Therefore, correlation is high (3).
- PO4 Verbs: Analyze (L4)
- CO1 Action Verb is greater than PO4 verb by one level; Therefore, correlation is high (3).
- CO1 Action Verb is of BTL 5. Using Thumb rule, L5 correlates PO6 to PO12 as high (3).

CO2 Evaluate the characteristics of D.C machines by conducting direct and indirect tests Action Verb: Evaluate (L5)

- PO1 Verbs: Apply (L3)
- CO2 Action Verb is greater than PO1 verb by two level; Therefore, correlation is high (3).
- PO2 Verbs: Analyze (L4)
- CO2 Action Verb is greater than PO2 verb by two level; Therefore, correlation is high (3).
- PO4 Verbs: Analyze (L4)
- CO2 Action Verb is greater than PO4 verb by one level; Therefore, correlation is high (3).
- CO2 Action Verb is of BTL 5. Using Thumb rule, L5 correlates PO6 to PO12 as high (3).

CO3 Evaluate the performance parameters of a single phase transformer.

Action Verb: Evaluate (L5)

- PO1 Verbs: Apply (L3)
- CO2 Action Verb is greater than PO1 verb by two level; Therefore, correlation is high (3).
- PO2 Verbs: Analyze (L4)
- CO2 Action Verb is greater than PO2 verb by two level; Therefore, correlation is high (3).
- PO4 Verbs: Analyze (L4)
- CO2 Action Verb is greater than PO4 verb by one level; Therefore, correlation is high (3).
- CO2 Action Verb is of BTL 5. Using Thumb rule, L5 correlates PO6 to PO12 as high (3).

CO4 Analyze the parallel operation of a Single phase Transformers.

Action Verb: Analyze (L4)

- PO1 Verbs: Apply (L3)
- CO4 Action Verb is greater than PO1 verb by one level; Therefore, correlation is high (3).
- PO2 Verbs: Analyze (L4)
- CO4 Action Verb is same to PO2 verb; Therefore, correlation is high (3)
- PO4 Verbs: Analyze (L4)
- CO4 Action Verb is same to PO4 verb; Therefore, correlation is high (3).
- CO4 Action Verb is of BTL 4. Using Thumb rule, L4 correlates PO6 to PO12 and PSOs as high (3).

CO5 Analyze the Scott connection of transformers.

Action Verb: Analyze (L4)

- PO1 Verbs: Apply (L3)
- CO5 Action Verb is greater than PO1 verb by one level; Therefore, correlation is high (3).
- PO2 Verbs: Analyze (L4)
- CO5 Action Verb is greater than PO2 verb by one level; Therefore, correlation is high (3).
- PO4 Verbs: Analyze (L4)
- CO5 Action Verb is same to PO4 verb; Therefore, correlation is high (3).
- CO5 Action Verb is of BTL 4. Using Thumb rule, L4 correlates PO6 to PO12 and PSOs as high (3).

Department of Electrical and Electronics Engineering

Year/Sem	II/I	Branch of Study: EEE				
Subjec	ct Code	Subject Name	L	T	P	Credits
23ASC0502		DATA STRUCTURES (Skill Enhancement Course)	0	1	2	2

After co	After completion of the course, students will be able to:								
CO1	CO1 Understand the role of data structures in organizing and accessing data								
CO2	CO2 Apply the linked lists concepts for dynamic data storage								
CO3	Apply the stack mechanism to develop stack applications								
CO4	Understand the queue and deque dynamic data structure techniques								
CO5	Apply the tree techniques for processing hierarchical data structure								

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	the role of data structures in organizing and accessing data			L2
CO2	Apply	the linked lists concepts		for dynamic data storage	L3
CO3	Apply	the stack mechanism		to develop stack applications	L3
CO4	Understand	the queue and deque dynamic data structure techniques			L2
CO5	Apply	the tree techniques		for processing hierarchical data structure	L3

SYLLABUS

UNIT-I

TITLE: Introduction to Data Structures

Introduction to Data Structures: Definition and importance of Data structures, Abstract data types (ADTs) and its specifications, Arrays: Introduction, 1-D, 2-D Arrays, accessing elements of array, Row Major and Column Major storage of Arrays, Searching Techniques: Linear & Binary Search, Sorting Techniques: Bubble sort, Selection sort, Quick sort.

Sample experiments:

- 1. Program to find min & max element in an array.
- 2. Program to implement matrix multiplication.
- 3. Find an element in given list of sorted elements in an array using Binary search.
- 4. Implement Selection and Quick sort techniques.

UNIT-II

TITLE: Linked Lists

Linked Lists: Singly linked lists: representation and operations, doubly linked lists and circular linked lists, Comparing arrays and linked lists, Applications of linked lists. **Sample experiments**:

- 1. Write a program to implement the following operations using SLL.
 - a. Insert b. Deletion c. Traversal

Department of Electrical and Electronics Engineering

- 2. Write a program to store name, roll no, and marks of students in a class using circular double linked list.
- 3. Write a program to perform addition of given two polynomial expressions using linked list.

UNIT-III

TITLE: Stacks

Stacks: Introduction to stacks: properties and operations, implementing stacks using arrays and linked lists, Applications of stacks in expression evaluation, backtracking, reversing list etc.

Sample experiments:

- 1. Implement stack operations using
 - a. Arrays b. Linked list
- 2. Convert given infix expression into post fix expression using stacks.
- 3. Evaluate given post fix expression using stack.
- 4. Write a program to reverse given linked list using stack.

UNIT-IV

TITLE: Queues & Deques

Queues: Introduction to queues: properties and operations, Circular queues, implementing queues using arrays and linked lists, Applications of queues scheduling, etc.

Deques: Introduction to deques (double-ended queues), Operations on deques and their applications.

Sample experiments:

- 1. Implement Queue operations using
 - a. Arrays b. Linked list
- 2. Implement Circular Queue using
 - a. Arrays b. Linked list
- 3. Implement Deque using linked list.

UNIT-V

TITLE: Trees

Trees: Introduction to Trees, Binary trees and traversals, Binary Search Tree – Insertion, Deletion & Traversal

Sample experiments:

- 1. Implement binary tree traversals using linked list.
- 2. Write program to create binary search tree for given list of integers. Perform in-order traversal of the tree. Implement insertion and deletion operations.

Text books:

- 1 Data Structures and algorithm analysis in C, Mark Allen Weiss, Pearson, 2nd Edition.
- Fundamentals of data structures in C, Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed, Silicon Press, 2008

Reference books:

- 1 Algorithms and Data Structures: The Basic Toolbox by Kurt Mehlhorn and Peter Sanders
- 2 C Data Structures and Algorithms by Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft
- 3 Problem Solving with Algorithms and Data Structures by Brad Miller and David Ranum
- 4 Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
- Algorithms in C, Parts 1-5 (Bundle): Fundamentals, Data Structures, Sorting, Searching, and Graph Algorithms" by Robert Sedgewick

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES, TIRUPATI (AUTONOMOUS) Department of Electrical and Electronics Engineering

Mapping	Mapping of Course outcomes with Program outcomes													
CO/PO	P01	P02	PO3	PO4	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	2	3	2		2							2	1	
CO2	3	3	3	2	3								1	
CO3	3	3	3	2	3							2		2
CO4	2	3	2		2							3		2
CO5	3	3	3	2	3									2
Levels of	correla	tion, vi	z., 1. Lo	w, 2. Mo	derate	3. High								

СО			CO			Program	PO(s): Action	Level of
No.	Lesson	Lesson % correlation Plan		Verb BT		Outcomes (PO)	verb and BTL (for PO1 to	correlation (0-3)
	(Hrs.)					(10)	P05)	(0.0)
						P01	PO1: Apply (L3)	2
						PO2	PO2: Review (L2)	3
1	11	23	3	Understand	L2	PO3	PO3: Develop (L3)	2
						PO5	PO5: Apply (L3)	2
						PO12	PO12: Thumb rule	2
						PO1	PO1: Apply (L3)	3
						PO2	PO2: Review (L2)	3
2	9	19	2	Apply	L3	PO3	PO3: Develop (L3)	3
						PO4	PO4: Analyze (L4)	2
						PO5	PO5: Apply (L3)	3
						P01	PO1: Apply (L3)	3
						PO2	PO2: Review (L2)	3
3	9	19	2	A l	L3	PO3	PO3: Develop (L3)	3 2
3	9	19	2	Apply	L3	PO4	PO4: Analyze (L4)	2
						PO5	PO5: Apply (L3)	3
						PO12	PO12: Thumb rule	2
						PO1	PO1: Apply (L3)	2
						PO2	PO2: Review (L2)	3
4	10	20	2	Understand	L2	PO3	PO3: Develop (L3)	2
						PO5	PO5: Apply (L3)	2
						PO12	PO12: Thumb rule	3
						PO1	PO1: Apply (L3)	3
						PO2	PO2: Review (L2)	3
5	9	19	2	Apply	L3	PO3	PO3: Develop (L3)	3
						PO4	PO4: Analyze (L4)	2
						PO5	PO5: Apply (L3)	3

Department of Electrical and Electronics Engineering

CO1: Understand the role of data structures in organizing and accessing data.

Action Verb: Understand (L2)

- PO1 Verb: Apply (L3)
- CO1 Action verb is less than PO1 verb by one level. Therefore, the correlation is moderate (2)
- PO2 Verb: Review (L2)
- CO1 Action verb is same level as PO2 verb. Therefore, the correlation is high (3)
- PO3 Verb: Develop (L3)
- CO1 Action verb is less than PO3 verb by one level. Therefore, the correlation is moderate (2)
- PO5 Verb: Apply (L3)
- CO1 Action verb is less than PO5 verb by one level. Therefore, the correlation is moderate (2)
- PO12: Thumb rule

For some of Linear Data Structure applications like array, sorting and searching concepts are used to write programs. Therefore, the correlation is moderate (2)

CO2: Apply the linked lists concepts for dynamic data storage

Action Verb: Apply (L3)

- PO1 Verb: Apply (L3)
- CO2 Action verb is same level as PO1 verb. Therefore, the correlation is high (3)
- PO2 Verb: Review (L2)
- CO2 Action verb is more than PO2 verb. Therefore, the correlation is high (3)
- PO3 Verb: Develop (L3)
- CO2 Action verb is same level as PO3 verb. Therefore, the correlation is high (3)
- PO4 Verb: Analyze (L4)
- CO2 Action verb is less than PO4 verb by one level. Therefore, the correlation is moderate (2)
- PO5 Verb: Apply (L3)
- CO2 Action verb is same level as PO5 verb. Therefore, the correlation is high (3)

CO3: Apply the stack mechanism to develop stack applications

Action Verb: Apply (L3)

- PO1 Verb: Apply (L3)
- CO3 Action verb is same level as PO1 verb. Therefore, the correlation is high (3)
- PO2 Verb: Review (L2)
- CO3 Action verb is more than PO2 verb. Therefore, the correlation is high (3)
- PO3 Verb: Develop (L3)
- CO3 Action verb is same level as PO3 verb. Therefore, the correlation is high (3)
- PO4 Verb: Analyze (L4)
- CO3 Action verb is less than PO4 verb by one level. Therefore, the correlation is moderate (2)
- PO5 Verb: Apply (L3)
- CO3 Action verb is same level as PO5 verb. Therefore, the correlation is high (3)
- PO12: Thumb rule

For some of Stack applications like well-formed parentheses, redo, undo, expression evaluation concepts are used to solve problems. Therefore, the correlation is moderate (2)

CO4: Understand the queue and deque dynamic data structure techniques Action Verb: Understand (L2)

- PO1 Verb: Apply (L3)
- CO4 Action verb is less than PO1 verb by one level. Therefore, the correlation is moderate (2)
- PO2 Verb: Review (L2)
- CO4 Action verb is same level as PO2 verb. Therefore, the correlation is high (3)
- PO3 Verb: Develop (L3)
- CO4 Action verb is less than PO3 verb by one level. Therefore, the correlation is moderate (2)
- PO5 Verb: Apply (L3)
- CO4 Action verb is less than PO5 verb by one level. Therefore, the correlation is moderate (2)

PO12: Thumb rule

For real time applications Queues are used to schedule, booking & reservation purpose.

Therefore, the correlation is high (3)

Department of Electrical and Electronics Engineering

CO5: Apply the tree techniques for processing hierarchical data structure Action Verb: Apply (L3)

PO1 Verb: Apply (L3)

CO5 Action verb is same level as PO1 verb. Therefore, the correlation is high (3)

PO2 Verb: Review (L2)

CO5 Action verb is more than PO2 verb. Therefore, the correlation is high (3)

PO3 Verb: Develop (L3)

CO5 Action verb is same level as PO3 verb. Therefore, the correlation is high (3)

PO4 Verb: Analyze (L4)

CO5 Action verb is less than PO4 verb by one level. Therefore, the correlation is moderate (2)

PO5 Verb: Apply (L3)

CO5 Action verb is same level as PO5 verb. Therefore, the correlation is high (3)

Department of Electrical and Electronics Engineering

Year/Sem II/ I & II Branch of Study: Semester: I Branch: CSE, CIC, CSD&EEE Semester: II Branch: ECE, AI&DS, AI&ML, CE						
Subject Code		Subject Name	L	T	P	Credits
23AM	C9901	ENVIRONMENTAL SCIENCES	2	0	0	0

After co	After completion of the course, students will be able to:									
CO1	Understand the multidisciplinary nature of environmental studies, various renewable and nonrenewable resources.									
CO2	Understand the ecosystem and biodiversity to solve complex environmental problems									
CO3	Apply the various types of pollution, solid waste management, and related preventive measures									
CO4	Apply the rainwater harvesting, watershed management, ozone layer depletion and wasteland reclamation.									
CO5	Analyze the population explosion and impact of environmental health issues on human beings.									

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	The multidisciplinary nature of environmental studies, various renewable and nonrenewable resources.			L2
CO2	Understand	The ecosystem and biodiversity	To solve complex environmental problems		L2
CO3	Apply	The various types of pollution, solid waste management, and related preventive measures			L3
CO4	Apply	The rainwater harvesting, watershed management, ozone layer depletion, and wasteland reclamation			L3
CO5	Analyze	The population explosion and impact of environmental health issues on human being.			L4

SYLLABUS

UNIT-I

Multidisciplinary Nature of **Environmental Studies:** Introduction ② Multidisciplinary Nature of Environmental Studies ② Definition, Scope and Importance – Need for Public Awareness.

Natural Resources: Renewable and non-renewable energy resources –Natural resources and associated problems.

Forest resources: Use and over – exploitation, deforestation, case studies – Timber extraction – Mining, dams and other effects on forest and tribal people.

Water resources: Use and overutilization of surface and sub-surface – Floods, drought, conflicts over water, dams – benefits and problems.

Mineral resources: Use and exploitation, environmental effects of extracting and using mineral

Department of Electrical and Electronics Engineering

resources, case studies.

Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticides problems, water logging, salinity, case studies.

Energy resources: Renewable and non-renewable energy resources.

UNIT-II

Ecosystems: Concept of an ecosystem. – Structure and functions of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem: Forest ecosystem, Grassland ecosystem, Desert ecosystem and Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).

Biodiversity And Its Conservation : Introduction- Definition: genetic, species and ecosystem diversity – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a mega-diversity nation – Hot-sports of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man - wildlife conflicts – Conservation of biodiversity: In-situ and Ex- situ conservation of biodiversity.

UNIT-III

Environmental Pollution: Definition, Causes, effects and its control measures of: Air Pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, and Thermal pollution and Nuclear hazards. **Solid Waste Management:** Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: earthquakes, cyclones, tsunamis, and landslides.

UNIT-IV

Social Issues and the Environment: From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, Rainwater harvesting and Watershed Management – Resettlement and rehabilitation of people ② Case studies – Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies–Wasteland reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act ② Public awareness.

UNIT-V

Human Population and the Environment: Population growth, variation among nations. Population explosion – Family Welfare Programs. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of Information Technology in Environment and human health – Case studies

Department of Electrical and Electronics Engineering

Text books:

- Textbook of Environmental Studies for Undergraduate Courses Erach Bharucha for University Grants Commission, Universities Press.
- 2 Palaniswamy, "Environmental Studies", Pearson education
- 3 S.Azeem Unnisa, "Environmental Studies" Academic Publishing Company
- K.Raghavan Nambiar, "Text book of Environmental Studies for Undergraduate Courses as per UGC model syllabus", Scitech Publications (India), Pvt. Ltd.

Reference books:

- Deeksha Dave and E.Sai Baba Reddy, "Textbook of Environmental Science", Cengage Publications.
- 2 M.Anji Reddy, "Text book of Environmental Sciences and Technology", BS Publication.
- 3 J.P.Sharma, Comprehensive Environmental studies, Laxmi publications.
- J. Glynn Henry and Gary W. Heinke, "Environmental Sciences and Engineering", Prentice hall of India Private limited
- 5 G.R.Chatwal, "A Text Book of Environmental Studies" Himalaya Publishing House
- Gilbert M. Masters and Wendell P. Ela, "Introduction to Environmental Engineering and Science, Prentice hall of India Private limited.

Mapping of Course outcomes with Program outcomes														
CO/PO	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1						2	2							
CO2							2							
CO3						2	2							
CO4						2	2							
CO5							2							
Levels of	evels of correlation, viz., 1, Low, 2, Moderate, 3, High													

Mapp	Mapping of Course outcomes with Program outcomes Justification Table											
CO			CO			Program	PO(s): Action	Level of				
No.	Lesson Plan			Verb BTL		Outcomes (PO)	verb and BTL (for PO1 to	correlation (0-3)				
	(Hrs.)						P05)					
1	12	23	3	Understand	L2	P06, P07	Thumb Rule Thumb Rule	2, 2				
2	15	28	3	Understand	L2	P07	Thumb Rule	2				
3	8	15	2	Apply	L3	P06 P07	Thumb Rule Thumb Rule	2, 2				
4	10	19	2	Apply	L3	P06, P07	Thumb Rule Thumb Rule	2, 2				
5	8	15	2	Analyze	L4	P07	Thumb Rule	2				

Department of Electrical and Electronics Engineering

CO1: Understand the multidisciplinary nature of environmental studies, various renewable and nonrenewable resources.

Action Verb: Understand (L2)

Using Thumb rule, CO1 correlates PO6 and PO7 as a moderate (2)

CO2: Understand the ecosystem and biodiversity to solve complex environmental problems Action Verb: Understand (L2)

Using Thumb rule, CO2 correlates PO7 as a moderate (2)

CO3: Apply the various types of pollution, solid waste management, and related preventive measures. Action Verb: APPLY (L3)

Using Thumb rule, CO3 correlates PO6 and PO7 as a moderate (2)

CO4: Apply the rainwater harvesting, watershed management, ozone layer depletion, and wasteland reclamation.

Action Verb: APPLY (L3)

Using Thumb rule, CO4 correlates PO6 and PO7 as a moderate (2)

CO5: Analyze the population explosion and impact of environmental health issues on human being Action Verb: Analyze (L4)

Using Thumb rule, CO5 correlates PO7 as a moderate (2)

Department of Electrical and Electronics Engineering

Year/Sem	II/II	Branch of Study: EEE						
Subject Code		Subject Name	L	T	P	Credits		
23AHMMB01		1 MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS				2		

After co	After completion of the course, students will be able to:								
CO1	Understand the fundamentals of managerial economics and Apply the forecasting techniques for estimation of demand.								
CO2	Understand the production and cost concepts to optimize the output								
CO3	Analyze the price output relationship in different markets.								
CO4	Evaluate the capital budgeting techniques to invest in various projects.								
CO5	Analyze the accounting statements to evaluate the financial performance of business entity.								

со	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand Apply	The fundamentals of Managerial economics and the demand of a product	by using statistical and survey methods.		L3
CO2	Understand	Production and cost concepts		To optimize the output	L2
C03	Analyze	Price output relationship		In perfect and imperfect competition markets	L4
CO4	Evaluate	Capital budgeting techniques		To invest in various projects	L5
CO5	Analyze	Accounting statements		to evaluate the financial performance of business entity	L4

SYLLABUS

UNIT-I

TITLE: Managerial economics

Introduction – meaning, nature, significance, functions, and advantages, ME and its role in other fields. Demand - Concept, Function, Law of Demand-Demand Elasticity-Types – Measurement. Demand Forecasting- Factors governing forecasting, Methods.

UNIT-II

TITLE: Production and Cost Analysis

Introduction – Nature, meaning, significance, functions and advantages. Production Function–Least-cost combination – Short run and Long run Production Function- ISO quants and ISO costs, MRTS, Cobb-Douglas Production Function- Laws of Returns- Internal and External Economies of scale. Cost & Break-Even Analysis- Cost concepts and Cost behavior- Break- Even Analysis (BEA)

- Determination of Break-Even Point (Simple Problems) - Managerial significance and limitations of Break-Even Analysis.

Department of Electrical and Electronics Engineering

UNIT-III

TITLE: Business Organizations and Markets

Introduction-Forms of Business Organizations- Sole Proprietary - Partnership - Joint Stock Companies - Public Sector Enterprises. Types of Markets - Perfect and Imperfect Competition - Features of Perfect Competition, Monopoly- Monopolistic Competition - Oligopoly- Price-Output Determination - Pricing Methods and strategies.

UNIT-IV

TITLE: Capital Budgeting

Introduction- Nature, meaning, significance, types of working capital, Components, Sources of Short-term and Long-term Capital, Estimating Working capital requirements. Capital Budgeting – Features, Proposals, Time value of money. Methods and Evaluation of Projects – Pay Back Method, Accounting Rate of Return (ARR), Net Present Value (NPV), and Internal Rate Return (IRR) Method, Profitability Index(PI) Method (simple problems).

UNIT-V

TITLE: Financial Accounting and Analysis

Introduction - Concepts and Conventions- Double- Entry Book Keeping, Journal, Ledger, Trial Balance- Final Accounts (Trading Account, Profit and Loss Account and Balance Sheet with simple adjustments). **Financial Analysis -** Analysis and Interpretation of Liquidity Ratios, Activity Ratios, and Capital structure Ratios and Profitability.

Text books:

- 1 Varshney & Maheswari: Managerial Economics, Sultan Chand, 2013.
- 2 Aryasri: Business Economics and Financial Analysis, 4/e, MGH, 2019

Reference books:

- 1 Ahuja Hl Managerial economics Schand, 3/e, 2013
- 2 S.A.Siddiqui and A.S.Siddiqui: Managerial Economics and Financial Analysis, New Age International, 2013.
- 3 Joseph G.Nellis and David Parker: Principles of Business Economics, Pearson, 2/e, New Delhi
- 4 DomnickSalvatore: Managerial Economics in a Global Economy, Cengage, 2013.

Web Resources:

- 1 https://www.slideshare.net/123ps/managerial-economics-ppt
- 2 https://www.slideshare.net/rossanz/production-and-cost-45827016
- 3 https://www.slideshare.net/darkyla/business-organizations-19917607
- 4 https://www.slideshare.net/balarajbl/market-and-classification-of-market
- 5 https://www.slideshare.net/ruchi101/capital-budgeting-ppt-59565396
- 6 https://www.slideshare.net/ashu1983/financial-accounting.

Mapping	g of Cou	ırse oı	ıtcome	s with	Progra	m out	comes							
CO/PO	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	3													
CO2		1												
CO3	3													
CO4		3								·			·	
CO5		3												

Марр	oing of Co	urse o	utcomes with P	rogram outco	mes Ju	ustification T	able	
CO			CO			Program	PO(s): Action	Level of
No.	Lesson Plan (Hrs.)	%	correlation	Verb	BTL	Outcomes (PO)	verb and BTL (for PO1 to PO5)	correlation (0-3)
1	10	16.1 %	2	CO1: Apply	L3	P01	Apply	3
2	14	22.5 %	3	CO2: Understand	L2	PO2	Analyze	1
3	14	22.5 %	3	CO3: Analyze	L4	P01	Apply	3
4	10	16.1 %	2	CO4: Evaluate	L5	PO2	Analyze	3
5	14	22.5 %	3	CO5: Analyze	L4	PO2	Analyze	3

Department of Electrical and Electronics Engineering

CO1: Understand the fundamentals of managerial economics and Apply the forecasting techniques for estimation of demand.

Action Verb: Apply (L3)

PO1 Verb: Apply (L3)

CO1 Action verb is same as PO1verb. Therefore the correlation is high (3)

CO2: Understand the production and cost concepts to optimize the output.

Action Verb: Understand (L2)

PO2: Analyze (L4)

CO2 Action verb is less than PO1 verb by two levels. Therefore the correlation is low (1)

CO3: Analyze the price output relationship in different markets.

Action Verb: Analyze (L4)

PO1: Apply (L3)

CO3 Action verb is more than PO1 verb by one level. Therefore the correlation is high (3)

CO4: Evaluate the capital budgeting techniques to invest in various projects.

Action Verb: Evaluate (L5)

PO2: Analyze

CO3 Action verb is more than PO1 verb by one level. Therefore the correlation is high (3)

CO5: Analyze the accounting statements to evaluate the financial performance of business entity.

Action Verb: Analyze (L4)

PO2: Analyze (L4)

CO5 Action verb is same as PO2 verb. Therefore the correlation is high (3)

Department of Electrical and Electronics Engineering

Year/Se m	II/II	ranch of Study: EEE					
Subject Code		Subject Name	L	Т	P	Credits	
23AES0403		ANALOG CIRCUITS	3	0	0	3	

After co	ompletion of the course, students will be able to:
CO1	Understand the concepts of Diode Clipping and Clamping circuits and transistor biasing circuits.
CO2	Analyze the CB, CE, CC Transistor amplifiers using hybrid model and feedback amplifier
002	parameters.
CO3	Analyze the CB, CE, CC Transistor amplifiers using hybrid model and feedback amplifier
603	parameters.
CO4	Understand the various applications, comparators and waveform generators using Op-Amps.
CO5	Analyze the operation of 555 IC Timer, PLL, VCO, D/A and A/D converters using OP-Amps.

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
C01	Understand	the concepts of Diode Clipping and Clamping circuits and transistor biasing circuits			L2
CO2	Analyze	the transistor amplifiers	using hybrid model	and feedback amplifier parameters	L4
C03	Evaluate	the frequency of various oscillator circuits and Operational Amplifier characteristics			L5
CO4	Understand	the various applications, comparators and waveform generators	using Op-Amps		L2
CO5	Analyze	the operation of 555 IC Timer, PLL, VCO, D/A and A/D converters	using OP-Amps		L4

SYLLABUS

UNIT-I

TITLE: Diode clipping and clamping circuits

Diode clippers, clipping at two independent levels, Transfer characteristics of clippers, clamping circuit operation.

DC biasing of BJTs: Load lines, Operating Point, Bias Stability, Collector-to-Base Bias, Self-Bias, Stabilization against Variations in VBE and β for the Self-Bias Circuit, Bias Compensation, Thermal Runaway, Thermal Stability.

UNIT-II

TITLE: Small Signals Modeling of BIT

Analysis of a Transistor Amplifier Circuit using h- parameters, Simplified CE Hybrid Model, Analysis of CE, CC, CB Configuration using Approximate Model, Frequency Response of CE and CC amplifiers. **Feedback Amplifiers:** Classification of Amplifiers, the Feedback Concept, General Characteristics of Negative-Feedback Amplifiers, Effect of Negative Feedback upon Output and Input Resistances, Voltage-

Department of Electrical and Electronics Engineering

Series Feedback, Current-Series Feedback, Current-Shunt Feedback, Voltage-Shunt Feedback.

UNIT-III

TITLE: Oscillator Circuits

Barkhausen Criterion of oscillation, Oscillator operation, R-C phase shift oscillator, Wien bridge Oscillator, Crystal Oscillator.

Operational Amplifiers: Introduction, Basic information of Op-Amp, Ideal Operational Amplifier, Block Diagram Representation of Typical Op-Amp, OP-Amps Characteristics: Introduction, DC and AC characteristics, 741 op- amp & its features.

UNIT-IV

TITLE: Timers and Phase Locked Loop

Introduction, Basic Op-Amp Applications, Instrumentation Amplifier, AC Amplifier, V to I and I to V Converter, Sample and Hold Circuit, Log and Antilog Amplifier, Multiplier and Divider, Differentiator, integrator.

Comparators and Waveform Generators: Introduction, Comparator, Square Wave Generator, Mon stable Multivibrator, Triangular Wave Generator, Sine Wave Generators.

UNIT-V

TITLE: Financial Accounting and Analysis

Introduction to 555 timer, functional diagram, Monostable and Astable operations and applications, Schmitt Trigger, PLL block schematic, principles and description of individual blocks, 565 PLL, Applications of VCO (566).

Digital To Analog and Analog To Digital Converters: Introduction, basic DAC techniques, weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, A-D Converters

parallel Comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC, DAC and ADC Specifications.

Text books:

- 1 Electronic Devices and Circuits- J. Millman, C.Halkias, Tata Mc-Graw Hill, 2ndEdition, 2010.
- 2 Linear Integrated Circuits D. Roy Choudhury, New Age International (p) Ltd, 2ndEdition, 2003.

Reference books:

- 1 Electronic Devices and Circuit Theory Robert L.Boylestad and Lowis Nashelsky, Pearson Edition, 2021
- 2 Electronic Devices and Circuits–G.K. Mithal, Khanna Publisher, 23rd Edition, 2017.
- 3 Electronic Devices and Circuits David Bell, Oxford, 5thEdition, 2008.
- 4 Electronic Principles-Malvino, Albert Paul, and David J. Bates, McGraw-Hill/HigherEducation, 2007.
- 5 Operational Amplifiers and Linear Integrated Circuits Gayakwad R.A, Prentice HallIndia, 2002.
- 6 Operational Amplifiers and Linear Integrated Circuits Sanjay Sharma, Kataria & Sons, 2nd Edition, 2010.
- 7 Design of Analog CMOS Integrated Circuits Behzad Razavi

Web Resources:

- 1 https://nptel.ac.in/courses/122106025.
- 2 https://nptel.ac.in/courses/108102112.

Mapping	Mapping of Course outcomes with Program outcomes													
CO/PO	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	2	3		1	3								2	
CO2	3	3		3	3								3	
CO3	3	3		3	3								3	
CO4	2	3		1	2								2	
CO5	3	3		3	3								3	

CO			CO			Program	PO(s): Action	Level of
No.	Lesson	%	correlation	Verb	BTL	Outcomes	verb and BTL	correlation
	Plan					(PO)	(for PO1 to	(0-3)
	(Hrs.)						PO5)	
1				Understand	L2	PO1	PO1: Apply (L3)	2
				onacrotana		PO2	PO2: Review (L2)	3
						PO4	PO4: Analyze(L4)	1 3
						PO5	PO5: Select(L1)	3
2				Analyze	L4	PO1	PO1: Apply (L3)	3
				J		PO2	PO2: Identify(L3)	3 3 3 3
						PO4	PO4: Analyze (L4)	3
						PO5	PO5: Apply (L3)	3
3				Evaluate	L5	PO1	PO1: Apply (L3)	3
						PO2	PO2: Identify(L3)	3 3 3 3
						PO4	PO4: Analyze (L4)	3
						PO5	PO5: Apply (L3)	3
4				Understand	L2	PO1	PO1: Apply (L3)	2
						PO2	PO2: Review (L2)	2 3 1 2
						PO4	PO4: Analyze(L4)	2
						PO5	PO5: Apply(L3)	
5				Analyssa		PO1	PO1: Apply (L3)	3
				Analyze		PO2	PO2: Identify(L3)	3 3 3 3
						PO4	PO4: Analyze (L4)	3
						PO5	PO5: Apply (L3)	3

Department of Electrical and Electronics Engineering

CO1: Understand the concepts of Diode Clipping and Clamping circuits and transistor biasing circuits

Action Verb: Understand (L2)

PO1 Verbs: Apply (L3)

CO1 Action Verb is less than PO1 verb by one level; Therefore, the correlation is moderate (2).

PO2 Verbs: Review (L2)

CO1 Action Verb is in the same level of PO2 verb: Therefore, the correlation is high (3).

PO4 Verbs: Analyze(L4)

CO1 Action Verb is less than PO4 verb by two levels; Therefore, the correlation is low (1).

PO5 Verbs: Select(L1)

CO1 Action Verb is greater than PO5 verb; Therefore, the correlation is high (3).

CO2: Analyze the transistor amplifiers using hybrid model and feedback amplifier parameters. Action Verb: Analyze (L4)

PO1 Verbs: Apply (L3)

CO2 Action Verb is greater than PO1 verb; Therefore, the correlation is high (3).

PO2 Verbs: Review (L2)

CO2 Action Verb is greater than PO2 verb; Therefore, the correlation is high (3).

PO4 Verbs: Analyze (L4)

CO2 Action Verb is same as PO4 verb; Therefore, the correlation is moderate (3).

PO5 Verbs: Apply (L3)

CO2 Action Verb is greater than PO5 verb; Therefore, the correlation is high (3).

CO3: Evaluate the frequency of various oscillator circuits and Operational Amplifier characteristics **Action Verb: Evaluate (L5)**

PO1 Verbs: Apply (L3)

CO3 Action Verb is greater than PO1 verb; Therefore, the correlation is high (3).

PO2 Verb: Identify (L3)

CO3 Action Verb is greater than PO2 verb; Therefore, the correlation is high (3).

PO4 Verbs: Analyze(L4)

CO3 Action Verb is greater than PO4 verb; Therefore, the correlation is high (3).

PO5 Verbs: Apply (L3)

CO3 Action Verb is greater than PO5 verb; Therefore, the correlation is high (3).

CO4: Understand the various applications, comparators and waveform generators using Op-Amps. Action Verb: Understand(L2)

PO1 Verbs: Apply (L3)

CO4 Action Verb is less than PO1 verb by one level; Therefore, the correlation is moderate (2).

PO2 Verbs: Review (L2)

CO4 Action Verb is in the same level of PO2 verb; Therefore, the correlation is high (3).

PO4 Verb: Analysis (L4)

CO4 Action Verb level is less than PO4 verb by two levels; Therefore, the correlation is low (1).

PO5 Verbs: Apply (L3)

CO4 Action Verb is less than PO5 verb by one level; Therefore, correlation is moderate (2).

CO5: Analyze the operation of 555 IC Timer, PLL, VCO, D/A and A/D converters using OP-Amps Action Verb: Analyse (L4) PO1 Verb: Apply (L3)

CO5 Action verb is greater than PO1 verb; Therefore, the correlation is high (3). PO2 Verb: Identify (L3) CO5 Action Verb is greater than PO2 verb; Therefore, the correlation is high (3). PO4 verb: Analyze (L4)

CO5 Action verb is same as PO4 verb; Therefore, the correlation is high (3).

PO5 Verbs: Apply (L3)

CO5 Action Verb is greater than PO5 verb; Therefore, the correlation is high (3).

Department of Electrical and Electronics Engineering

Year/Sm	II/II	Branch of Study: EEE						
Subject Code		Subject Name	L	T	P	Credits		
23APC0210		POWER SYSTEMS-I	3	0	0	3		

After c	After completion of the course, students will be able to:								
CO1	Understand the operation of hydroelectric and thermal power stations.								
CO2	Understand the operation and pollution control of a nuclear power plant.								
CO3	Understand the operation of air insulated and gas insulated substations.								
CO4	Analyze the various distribution system and Underground cables.								
CO5	Analyze the various economic aspects and tariff methods for power generation and distribution.								

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	The operation of Hydroelectric and Thermal power stations.			L2
CO2	Understand	The operation and pollution control of a Nuclear power plant.			L2
CO3	Understand	The operation of Air Insulated and Gas Insulated substations.			L2
CO4	Analyze	The various distribution system and Underground cables.			L4
C05	Analyze	The various economic aspects and tariff methods.	Related to power generation and distribution.		L4

SYLLABUS

UNIT-I

TITLE: Hydroelectric Power Station:

Selection of site, general layout of a hydroelectric power plant with brief description of major components and principle of operation.

Thermal Power Stations:

Selection of site, general layout of a thermal power plant. Brief description of components: boilers, super heaters, economizers and electrostatic precipitators, steam turbines: impulse and reaction turbines, condensers, feed water circuit, cooling towers and chimney. Principle of operation of Gas power station.

UNIT-II

Nuclear Power Stations:

Location of nuclear power plant, working principle, nuclear fission, nuclear fuels, nuclear chain reaction, nuclear reactor components: moderators, control rods, reflectors and coolants, types of nuclear reactors and brief description of PWR, BWR and FBR. Radiation: radiation hazards and

Department of Electrical and Electronics Engineering

shielding, nuclear waste disposal.

UNIT-III

TITLE: Substations

Air Insulated Substations (AIS) - indoor & outdoor substations, substations layouts of 33/11 kV showing the location of all the substation equipment. Bus bar arrangements in the sub-stations: simple arrangements like single bus bar, sectionalized single bus bar, double bus bar with one and two circuit breakers, main and transfer bus bar system with relevant diagrams.

Gas Insulated Substations (GIS) – advantages of gas insulated substations, constructional aspects of GIS, comparison of air insulated substations and gas insulated substations.

UNIT-IV

TITLE: Distribution Systems:

Classification of Distribution systems, A.C Distribution, Overhead versus Underground system, Connection schemes of Distribution system, Requirements of Distribution system, Design considerations in Distribution system.

Underground Cables:

Types of cables, construction, types of insulating materials, calculation of insulation resistance, stress in insulation and power factor of cable. Capacitance of single and 3-Core belted Cables. Grading of cables: capacitance grading and intersheath grading.

UNIT-V

TITLE: Economic Aspects & Tariff:

Economic Aspects – load curve, load duration and integrated load duration curves, discussion on economic aspects: connected load, maximum demand, demand factor, load factor, diversity factor, plant capacity factor and plant use factor, base and peak load plants.

Tariff Methods– Costs of generation and their division into fixed, semi-fixed and running costs, desirable characteristics of a tariff method, tariff methods: simple rate, flat rate, block-rate, two part, three–part, and power factor tariff methods, Time of Day (ToD) tariff and Time of Use (ToU) tariff. Causes of low power factor and methods of improving power factor.

Text books:

- S. N. Singh, Electric Power Generation, Transmission and Distribution, PHI Learning Pvt Ltd, New Delhi, 2nd Edition, 2010.
- J. B. Gupta, Transmission and Distribution of Electrical Power, S. K. Kataria and sons, 10th Edition, 2012.

Reference books:

- 1 I.J. Nagarath& D.P. Kothari, Power System Engineering, McGraw-Hill Education, 3rdEdition, 2019.
- 2 C.L. Wadhwa, Generation, Distribution and Utilization of Electrical Energy, New Age International Publishers, 6th Edition, 2018.
- 3 V. K. Mehta and Rohit Mehta, Principles of Power System, S. Chand, 4th Edition, 2005.
- 4 Turan Gonen, Electric Power Distribution System Engineering, McGraw-Hill, 1985.
- 5 Handbook of switchgear, BHEL, McGraw-Hill Education, 2007.

Web Resources:

1 https://nptel.ac.in/courses/108102047

Mapping	apping of Course outcomes with Program outcomes													
CO/PO	P01	P02	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	2			1		1								
CO2	2			1		1	1							
CO3	2			1									3	3
CO4	3	3		3									3	3
CO5	3	3		3			1						3	3

CO			CO			Program	PO(s): Action	Level of
No.	Lesson Plan (Hrs.)	%	correlation	Verb	BTL	Outcome s(PO)	verb and BTL (for PO1 to PO5)	correlatio n(0-3)
						P01,	Apply (L3)	2
1				Understand	L2	PO4, PO6	Analysis (L4) Thumb Rule	1 1
						PO1, PO4	Apply (L3) Analysis(L4)	2 1
2				Understand	L2	PO6, PO7	Thumb Rule Thumb Rule	1 1
3				Understand	L2	PO1, PO4	Apply (L3) Analysis (L4)	2 1
						P01,	Apply (L3)	3
4				Analyze	L4	PO2, PO4	Analyze (L4) Analysis (L4)	3 3
						P01,	Apply (L3) Identify	3
5				Analyze	L4	PO2, PO4, PO7	L3) Analysis(L4) Thumb Rule Thumb Rule	3 3 1

Department of Electrical and Electronics Engineering

CO1: Understand the operation of hydroelectric and thermal power stations.

PO1 Verb: Apply (L3)

CO1 Action verb level is less than PO1 verb by one level; Therefore, correlation is Moderate (2). PO4 Verb: Analysis (L4)

CO1 Action verb level is less than PO4 verb by two levels; Therefore, correlation is Low (1). PO6 Using Thumb Rule, CO1 Correlated to PO6 as Low (1).

PO1 Verb: Apply (L3)

CO1 Action verb level is less than PO1 verb by one level; Therefore, correlation is Moderate (2). PO4 Verb: Analysis (L4)

CO2: Understand the operation and pollution control of a Nuclear power plant.

Action Verb: Understand (L2)

PO1 Verb: Apply (L3)

CO2 Action verb level is less than PO1 verb by one level; Therefore, correlation is Moderate (2). PO4 Verb: Analysis (L4)

CO2 Action verb level is less than PO4 verb by two levels; Therefore, correlation is Low (1). PO6 Using Thumb Rule, CO2 Correlated to PO6 as Low (1).

PO7 Using Thumb Rule, CO2 Correlated to PO7 as Low (1).

PO1 Verb: Apply (L3)

CO2 Action verb level is less than PO1 verb by one level; Therefore, correlation is Moderate (2). PO4 Verb: Analysis (L4)

CO3: Understand the operation of Air Insulated and Gas Insulated substations.

Action Verb: Understand (L2)

PO1 Verb: Apply (L3)

CO3 Action verb level is less than PO1 verb by one level; Therefore, correlation is Moderate (2).

PO4 Verb: Analysis (L4)

CO3 Action verb level is less than PO4 verb by two levels; Therefore, correlation is Low (1).

CO4: Analyze the various distribution system and Underground cables.

CO4: Analyze the various distribution system and Underground cables.

PO1 Verb: Apply (L3)

CO4 Action verb level is greater than PO1 verb by one level; Therefore, correlation is High (3).

PO2 Verb: Analyze (L4)

CO4 Action verb level is equal to PO2 verb level; Therefore, correlation is High (3).

PO4 Verb: Analysis (L4)

CO4 Action verb level is equal to PO4 verb level; Therefore, correlation is High (3).

CO5: Analyze the various economic aspects and tariff methods related to power generation and distribution.

Action Verb: Analyze (L4)

PO1 Verb: Apply (L3)

CO5 Action verb level is greater than PO1 verb by one level; Therefore, correlation is High (3).

PO2 Verb: Identify (L3)

CO5 Action verb level is greater than PO2 verb by one level; Therefore, correlation is High (3).

PO4 Verb: Analysis (L4)

CO5 Action verb level is equal to PO4 verb level; Therefore, correlation is High (3).

PO7 Using Thumb Rule, CO5 Correlated to PO7 as Low (1).

Department of Electrical and Electronics Engineering

Year/Sem	II/II	Branch of Study: EEE					
Subjec	Subject Code Subject Name						
23AP	C0211	INDUCTION AND SYNCHRONOUS MACHINES	3	0	0	3	

After c	After completion of the course, students will be able to:									
CO1	Understand the construction and principle of operation three phase induction motors.									
CO2	Analyze the performance of three phase induction motor.									
CO3	Understand the construction and principle of operation single phase induction motors.									
CO4	Analyze the construction and principle of operation of synchronous generator									
CO5	Analyze the characteristics of synchronous generators.									

со	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	Construction and principle of operation three phase induction motors.			L2
CO2	Analyze	Performance of three phase induction motor.			L4
CO3	Understand	Construction and principle of operation single phase induction motors.			L2
CO4	Analyze	Construction and principle of operation of synchronous generator.			L4
CO5	Analyze	Characteristics of synchronous generators.			L4

SYLLABUS

UNIT-I

TITLE: 3-Phase Induction Motors

Construction of Squirrel cage and Slipping induction motors – production of rotating magnetic field – principle of operation – rotor EMF and rotor frequency – rotor current and power factor at standstill and during running conditions – rotor power input, rotor copper loss and mechanical power developed and their inter-relationship –equivalent circuit – phasor diagram, Applications.

UNIT-II

TITLE: Performance Of 3-Phase Induction Motors

Torque equation – expressions for maximum torque and starting torque – torque-slip characteristics – double cage and deep bar rotors –No load, Brake test and Blocked rotor tests – circle diagram for predetermination of performance- methods of starting –starting current and torque calculations -speed control of induction motor with V/f control method, rotor resistance control and rotor EMF injection technique –crawling and cogging – induction generator operation.

UNIT-III

TITLE: Single Phase Motors

Single phase induction motors – constructional features – double revolving field theory, Cross field theory – equivalent circuit- starting methods: capacitor start capacitor run, capacitor start induction

Department of Electrical and Electronics Engineering

run, split phase & shaded pole, A.C series motor. Universal Motor- Single phase Synchronous Motors, Reluctance Motor-Hysteresis Motor-Stepper Motor, Applications.

UNIT-IV

TITLE: Synchronous Generator

Constructional features of non-salient and salient pole type alternators- armature windings – distributed and concentrated windings – distribution& pitch factors – E.M.F equation – armature reaction – voltage regulation by synchronous impedance method – MMF method and Poitier triangle method – two reaction analysis of salient pole machines -methods of synchronization- Slip test – Parallel operation of alternators.

UNIT-V

TITLE: Synchronous Motor

Synchronous motor principle and theory of operation – Effect of excitation on current and power factor–synchronous condenser –expression for power developed –hunting and its suppression – methods of starting, Applications.

Text books:

- 1 Electrical Machinery, Dr. P.S. Bhimbra, Khanna Publishing, 2021, First Edition.
- 2 Performance and analysis of AC machines by M.G. Say, CBS, 2002.

Reference books:

- 1 Electrical machines, D.P. Kothari and I.J. Nagrath, McGraw Hill Education, 2017, Fifth Edition.
- 2 Theory & Performance of Electrical Machines by J.B.Gupta, S.K.Kataria& Sons, 2007.
- 3 Electric Machinery, A.E.Fitzgerald, Charles kingsley, Stephen D.Umans, McGraw-Hill, 2020, Seventh edition.

Web Resources:

- 1 https://nptel.ac.in/courses/108/105/108105131
- 2 https://nptel.ac.in/courses/108106072

Mapping	apping of Course outcomes with Program outcomes													
CO/PO	P01	P02	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	2	2	2	1					2				2	2
CO2	3	3	3	3					3				3	3
CO3	2	2	2	1					2				2	2
CO4	3	3	3	3					3			·	3	3
CO5	3	3	3	3					3				3	3

Mapp	pping of Course outcomes with Program outcomes Justification Table												
СО			CO			Program	PO(s): Action	Level of					
No.	Lesson	%	correlation	Verb	BTL	Outcome	verb and BTL	correlatio					
	Plan					s(PO)	(for PO1 to	n(0-3)					
	(Hrs.)						PO5)						
1						PO1,PO2,	PO1: Apply (L3)	2					
				Understand		PO4,PO9	PO2: Identify (L3)	2					
				understand			PO4: Analyze (L4)	1					
							PO9: Thumb Rule	2					
2						PO1,PO2,	PO1: Apply (L3)	3					
				Analyza		PO4,PO9	PO2: Identify (L3)	3					
				Analyze			PO4: Analyze (L4)	3					
							PO9: Thumb Rule	3					
3						PO1,PO2,	PO1: Apply (L3)	2					
				Understand		PO4,PO9	PO2: Identify (L3)	2					
				onuel stanu			PO4: Analyze (L4)	1					
							PO9: Thumb Rule	2					
4						PO1,PO2,	PO1: Apply (L3)	3					
				Analyze		PO4,PO9	PO2: Identify (L3)	3					
				Allalyze			PO4: Analyze (L4)	3					
							PO9: Thumb Rule	3					
5						PO1,PO2,	PO1: Apply (L3)	3					
				Analyza		PO4,PO9	PO2: Identify (L3)	3					
				Analyze			PO4: Analyze (L4)	3					
							PO9: Thumb Rule	3					

Department of Electrical and Electronics Engineering

CO1: Understand the construction and principle of operation three phase induction motors. Action Verb: Understand (L2)

PO1 Verbs: Apply (L3)

CO1 Action Verb is less than to PO1 verb by one level; Therefore correlation is moderate (2).

PO2 Verb: Identify (L3)

CO1 Action Verb is less than to PO2 verb by one level; Therefore correlation is moderate (2).

PO4 Verb: Analyze (L4)

CO1 Action Verb is less than to PO4 verb by two level; Therefore correlation is low (1).

Based on students' participate in CLC activities. From this: CO1 level is 2, Using Thumb Rule its correlation is moderate (2).

CO2: A0nalyze the performance of three phase induction motor.

Action Verb: Analyze (L4)

PO1 Verbs: Apply (L3)

CO2 Action Verb level is greater to PO1 verb; Therefore correlation is high (3).

PO2 Verb: Identify (L3)

CO2 Action Verb level is greater to PO2 verb; Therefore correlation is high (3).

PO4 Verb: Analyze (L4)

CO2 Action Verb level is equal to PO4 verb; Therefore correlation is high (3).

Based on students' participate in CLC activities. From this: CO3 level is 4, Using Thumb Rule its correlation is high (3).

CO3: Understand the construction and principle of operation single phase induction motors.

Action Verb: Understand (L2)

PO1 Verbs: Apply (L3)

CO3 Action Verb is less than to PO1 verb by one level; Therefore correlation is moderate (2).

PO2 Verb: Identify (L3)

CO3 Action Verb is less than to PO2 verb by one level; Therefore correlation is moderate (2).

PO4 Verb: Analyze (L4)

CO3 Action Verb is less than to PO4 verb by two level; Therefore correlation is low (1).

Based on students' participate in CLC activities. From this: CO1 level is 2, Using Thumb Rule its correlation is moderate (2).

$\textbf{CO4:} Analyze \ the \ construction \ and \ principle \ of \ operation \ of \ synchronous \ generator.$

Action Verb: Analyze (L4)

PO1 Verbs: Apply (L3)

CO4 Action Verb level is greater to PO1 verb; Therefore correlation is high (3).

PO2 Verb: Identify (L3)

CO4 Action Verb level is greater to PO2 verb; Therefore correlation is high (3).

PO4 Verb: Analyze (L4)

CO4 Action Verb level is equal to PO4 verb; Therefore correlation is high (3).

PO1 Verbs: Apply (L3)

CO4 Action Verb level is greater to PO1 verb; Therefore correlation is high (3).

PO2 Verb: Identify (L3)

Based on students' participate in CLC activities. From this: CO4 level is 4, Using Thumb Rule its correlation is high (3).

Department of Electrical and Electronics Engineering

CO5: Analyze the characteristics of synchronous generators. Action Verb: Analyze (L4)

PO1 Verbs: Apply (L3)

CO5 Action Verb level is greater to PO1 verb; Therefore correlation is high (3).

PO2 Verb: Identify (L3)

CO5 Action Verb level is greater to PO2 verb; Therefore correlation is high (3).

PO4 Verb: Analyze (L4)

CO5 Action Verb level is equal to PO4 verb; Therefore correlation is high (3).

Based on students' participate in CLC activities. From this: CO5 level is 4, Using Thumb Rule its correlation is high (3).

Department of Electrical and Electronics Engineering

Year/Sem	II/II	Branch of Study: EEE				
Subjec	ct Code	Subject Name	L	T	P	Credits
23AP	C0212	CONTROL SYSTEMS	3	0	0	3

After co	ompletion of the course, students will be able to:
CO1	Understand the concept of block diagram reduction and signal flow graph methods, transfer
COI	function of D.C Servo motor, A.C Servo motor and Synchros.
CO2	Analyze the time response of first order system, transient response of second order system,
CUZ	steady state errors and controllers.
CO3	Analyze the stability of a system in time domain using the root locus and Routh- Hurwitz
603	stability criteria.
CO4	Analyze the stability of a system in frequency domain using Bode, Polar and Nyquist plots.
CO5	Evaluate the response of continuous systems using state space models.

со	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	The concept of block diagram reduction and signal flow graph methods, transfer function of D.C Servo motor, A.C Servo motor and Synchros.			L2
CO2	Analyze	The time response of first order system, transient response of second order system, steady state errors and controllers.			L4
CO3	Analyze	The stability of a system in time domain.	Using the root locus and Routh-Hurwitz stability criteria.		L4
CO4	Analyze		Using Bode, Polar and Nyquist plots.		L4
CO5	Evaluate	The rechance of continuous systems	Using state space models.		L5

SYLLABUS

UNIT-I

TITLE: Control systems concepts

Open loop and closed loop control systems and their differences- Examples of control systems-Classification of control systems, Feedback characteristics, Effects of positive and negative feedback, Mathematical models – Differential equations of translational and rotational mechanical systems and electrical systems, Analogous Systems, Block diagram reduction methods – Signal flow graphs - Reduction using Mason's gain formula. Principle of operation of DC and AC Servo motor, Transfer function of DC servo motor - AC servo motor, Synchros.

UNIT-II

TITLE: Time response analysis

Step Response - Impulse Response - Time response of first order systems - Characteristic Equation of Feedback control systems, Transient response of second order systems - Time domain specifications -

Department of Electrical and Electronics Engineering

Steady state response - Steady state errors and error constants, P, PI, PID Controllers.

UNIT-III

TITLE: Stability analysis in time domain

The concept of stability – Routh's stability criterion – Stability and conditional stability –limitations of Routh's stability. The Root locus concept - construction of root loci-effects of adding poles and zeros to G(s)H(s) on the root loci.

UNIT-IV

TITLE: Frequency response analysis

Introduction, Frequency domain specifications - Bode diagrams - Determination of Frequency domain specifications and transfer function from the Bode Diagram-Stability Analysis from Bode Plots. Polar Plots-Nyquist Plots- Phase margin and Gain margin - Stability Analysis. Compensation techniques – Lag, Lead, Lag-Lead Compensator design in frequency Domain.

IINIT-V

TITLE: State space analysis of continuous systems

Concepts of state, state variables and state model, state models - differential equations & Transfer function models - Block diagrams. Diagonalization, transfer function from state model, Solving the Time invariant state Equations- State Transition Matrix and its Properties. System response through State Space models. The concepts of controllability and observability, Duality between controllability and observability.

Text books:

- 1 Modern Control Engineering by Katsuhiko Ogata, Prentice Hall of India Pvt. Ltd., 5th edition, 2010
- 2 Control Systems Engineering by I. J. Nagrath and M. Gopal, New Age International (P) Limited Publishers, 5th edition, 2007.

Reference books:

- 1 Control Systems Principles & Design by M.Gopal, 4th Edition, Mc Graw Hill Education, 2012.
- 2 Automatic Control Systems by B. C. Kuo and Farid Golnaraghi, John wiley and sons, 8th edition, 2003.
- Feedback and Control Systems, Joseph J Distefano III, Allen R Stubberud & Ivan J Williams, 2nd Edition, Schaum's outlines, Mc Graw Hill Education, 2013.
- 4 Control System Design by Graham C. Goodwin, Stefan F. Graebe and Mario E. Salgado, Pearson, 2000
- Feedback Control of Dynamic Systems by Gene F. Franklin, J.D. Powell and Abbas Emami-Naeini, 6th Edition, Pearson, 2010.

Web Resources:

- 1 https://nptel.ac.in/courses/108102043
- 2 https://nptel.ac.in/courses/108106098.

Mapping	apping of Course outcomes with Program outcomes													
CO/PO	P01	PO2	PO3	PO4	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	2	1											3	
CO2	3	3											3	
CO3	3	3	1										3	
CO4	3	3	1										3	
CO5	3	3	2										3	

Levels of correlation, viz., 1. Low, 2. Moderate, 3. High

Mapp	oing of Cou	ırse c	outcomes with P	rogram outco	mes Ju	ıstification T	able	
CO			CO			Program	PO(s): Action	Level of
No.	Lesson	%	correlation	Verb	BTL	Outcomes	verb and BTL	correlation
	Plan					(PO)	(for PO1 to	(0-3)
	(Hrs.)						PO5)	
1					1.2	PO1,	Apply (L3),	2
1				Understand	L2	PO2	Analyze (L4)	1
2					Ι /	PO1,	Apply (L3),	3
2				Analyze	L4	PO2	Analyze (L4)	3
						PO1,	Apply (L3),	3
3				A 1	L4	PO2,	Analysis (L4),	3
				Analyze		PO3	Design (L6)	1
						PO1,	Apply (L3),	3
4				Analyma	L4	PO2,	Analyze (L4),	3
				Analyze		PO3	Design (L6)	1
					_	PO1,	Apply (L3),	3
5				Evaluate	L5	PO2,	Analyze (L4),	3
				Evaiuate		PO3	Design (L6)	2

Department of Electrical and Electronics Engineering

CO1 Understand the concept of block diagram reduction and signal flow graph methods, transfer function of D.C Servo motor, A.C Servo motor and Synchros.

Action Verb: Understand (L2)

PO1 Verb: Apply (L3)

CO1 Action verb level is less than PO1 verb by one level; Therefore, correlation is Moderate (2).

PO2 Verb: Analyze (L4)

CO1 Action verb level is less than PO2 verb by two level; Therefore, correlation is Low (1).

CO2: Analyze the time response of first order system, transient response of second order system, steady state errors and controllers.

Action Verb: Analyze (L4)

PO1 Verb: Apply (L3)

CO2 Action verb level is greater than PO1 verb by one level; Therefore, correlation is High (3).

PO2 Verb: Analyze (L4)

CO2 Action verb level is equal to PO2 verb; Therefore, correlation is High (3).

CO3 Analyze the stability of a system in time domain using the root locus and Routh-Hurwitz stability criteria

Action Verb: Analyze (L4)

PO1 Verb: Apply (L3)

CO3 Action verb level is greater than PO1 verb by one level; Therefore, correlation is High (3).

PO2 Verb: Analysis (L4)

CO3 Action verb level is equal to PO2 verb level; Therefore, correlation is High (3).

PO3 Verb: Design (L6)

CO3 Action verb level is less than PO3 verb by two levels; Therefore correlation is Low (1).

CO4 Analyze the stability of a system in frequency domain using Bode, Polar and Nyquist plots. Action Verb: Analyze (L4)

PO1 Verb: Apply (L3)

CO4 Action verb level is greater than PO1 verb by one level; Therefore, correlation is High (3).

PO2 Verb: Analysis (L4)

CO4 Action verb level is equal to PO2 verb level; Therefore, correlation is High (3).

PO3 Verb: Design (L6)

CO4 Action verb level is less than PO3 verb by two levels; Therefore correlation is Low (1).

CO5: Evaluate the response of continuous systems using state space models.

Action Verb: Evaluate (L5)

PO1 Verb: Apply (L3)

CO5 Action verb level is greater than PO1 verb by two levels; Therefore, correlation is High (3).

PO2 Verb: Analysis (L4)

CO5 Action verb level is greater than PO2 verb by one level; Therefore, correlation is High (3).

PO3 Verb: Design (L6)

CO5 Action verb level is less than PO3 verb by one level; Therefore, correlation is Moderate (2).

Department of Electrical and Electronics Engineering

Year/Sem	II/II	Branch of Study: EEE				
Subjec	Subject Code Subject Name					
23AP	C0213	INDUCTION AND SYNCHRONOUS MACHINES LAB	0	0	3	1.5

After c	ompletion of the course, students will be able to:									
CO1										
CO2	Evaluate the performance of equivalent circuit of single phase induction motor.									
CO3	Apply the Power Factor Improvement Methods of Single Phase Induction Motor.									
CO4	Analyze the regulation of three Phase Alternator by using different methods.									
CO5	Analyze the performance of synchronous machines and A.C Series Motor.									

со	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Analyze	Various performance characteristics of three-phase and single-phase induction motors.			L4
CO2	Evaluate	Performance of equivalent circuit of single phase induction motor.			L5
CO3	Apply	Power Factor Improvement Methods		Single Phase Induction Motor	L3
CO4	Analyze	Regulation of 3 Phase Alternator	Using different methods.		L4
CO5	Analyze	Performance of synchronous machines and A.C Series Motor.			L4

List of Experiments:

- 1. Brake test on three phase Induction Motor
- 2. Speed control of three phase induction motor by V/f method.
- 3. Circle diagram of three phase induction motor.
- 4. Load test on single phase induction motor.
- $5. \quad Equivalent\,circuit\,of\,single-phase\,induction\,motor.$
- 6. Power factor improvement of single-phase induction motor by using capacitors.
- 7. Regulation of a three -phase alternator by synchronous impedance &MMF methods.
- 8. Regulation of three-phase alternator by Poitier triangle method.
- 9. V and Inverted V curves of a three-phase synchronous motor.
- 10. Determination of X_d , X_a Regulation of a salient pole synchronous generator.
- 11. Determination of efficiency of 3- phase alternator by loading with 3- phase induction motor
- 12. Parallel operation of three-phase alternator under no-load and load conditions.
- 13. Determination of efficiency of a single-phase AC series Motor by conducting Brake test

Reference books:

1 https://em-coep.vlabs.ac.in/List%20of%20experiments.html

Mapping	Iapping of Course outcomes with Program outcomes													
CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	3	3		3					3				3	3
CO2	3	3		3					3				3	3
CO3	3	3		2					3				3	3
CO4	3	3		3					3				3	3
CO5	3	3		3					3				3	3

Maj	ping of Cour	se ou	tcomes with P	rogram outo	omes	Justification	Table	
CO			CO			Program	PO(s):	Level of
No.	Lesson Plan	%	correlation	Verb	BTL	Outcomes	Action verb	correlation
	(Hrs.)					(PO)	and BTL(for	(0-3)
							PO1 to PO5)	
1						PO1,	PO1: Apply (L3)	3
				Analyma	L4	PO2,	PO2: Analyze	3
				Analyze	L4	PO4,	(L4) PO4:Analyze	3
							(L4)	3
							PO9: Thumb Rule	
2						PO1,	PO1: Apply (L3)	3
				Evaluate	L5	PO2,	PO2: Analyze	3
				Evaluate	LO	PO4,	(L4) PO4:Analyze	3
						PO9	(L4)	3
							PO9: Thumb Rule	
3						PO1,	PO1: Apply (L3)	3
				Apply	L3	PO2,	PO2: Identify (L3)	3
				Apply	гэ	PO4,	PO4:Analyze(L4)	2
						P09	PO9: Thumb Rule	3
4						PO1,	PO1: Apply (L3)	3
				Analyza	L4	PO2,	PO2: Analyze (L4)	3
				Analyze	L4	PO4,	PO4:Analyze(L4)	3
						PO9	PO9: Thumb Rule	3
5						PO1,	PO1: Apply (L3)	3
				Analyze	L4	PO2,	PO2: Analyze (L4)	3
				Allalyze	L4	PO4,	PO4:Analyze(L4)	3
						P09	PO9: Thumb Rule	3

Department of Electrical and Electronics Engineering

CO1 Analyze the various performance characteristics of three-phase and single-phase induction motors.

Action Verb: Analyze (L4)

PO1 Verbs: Apply (L3)

CO1 Action Verb is greater than PO1 verb by one level; Therefore correlation is high (3). PO2 Verbs: Analyze (L4)

CO1 Action Verb is equal to PO1 verb; Therefore, correlation is high (3). PO4 Verbs: Analyze (L4)

CO1 Action Verb is equal to PO1 verb; Therefore, correlation is high (3).

CO1 Action Verb is of BTL 5. Using Thumb rule, L4 correlates PO6 to PO12 and PSOs as high (3).

PO1 Verbs: Apply (L3)

CO1 Action Verb is greater than PO1 verb by one level; Therefore correlation is high (3). PO2 Verbs: Analyze (L4)

CO2 Evaluate the performance of equivalent circuit of single phase induction motor.

Action Verb: Evaluate (L5)

PO1 Verbs: Apply (L3)

CO2 Action Verb is greater than PO1 verb by two level; Therefore, correlation is high (3). PO2 Verbs:

Analyze (L4)

CO2 Action Verb is equal to PO2 verb; Therefore, correlation is high (3). PO4 Verbs: Analyze (L4)

CO2 Action Verb is equal to PO4 verb; Therefore, correlation is high (3).

CO2 Action Verb is of BTL 5. Using Thumb rule, L4 correlates PO6 to PO12 high (3)

PO1 Verbs: Apply (L3)

 ${\tt CO2\,Action\,Verb\,is\,greater\,than\,PO1\,verb\,by\,two\,level;} Therefore, correlation\,is\,high\,(3).\,PO2\,Verbs:$

Analyze (L4)

CO3 Apply the Power Factor Improvement Methods of Single Phase Induction Motor.

Action Verb: Apply (L3)

PO1 Verbs: Apply (L3)

CO3 Action Verb is equal to PO1 verb; Therefore, correlation is high (3).

PO2 Verbs: identify (L4)

CO3 Action Verb is equal to PO2 verb; Therefore, correlation is high (3).

PO4 Verbs: Analyze (L4)

CO2 Action Verb is less than PO4 verb one level; Therefore, correlation is moderate (2).

CO3 Action Verb is of BTL3. Using Thumb rule, L3 correlates PO6 to PO12 and PSOs as moderate (2).

CO4 Analyze the regulation of three Phase Alternator by using different methods.

Action Verb: Analyze (L4)

PO1 Verbs: Apply (L3)

CO4 Action Verb is greater than PO1 verb by one level; Therefore, correlation is high (3).

PO2 Verbs: Analyze (L4)

CO4 Action Verb same to PO2 verb; Therefore, correlation is high (3).

PO4 Verbs: Analyze (L4)

CO4 Action Verb same to PO4 verb; Therefore, correlation is high (3).

CO4 Action Verb is of BTL 4. Using Thumb rule, L4 correlates PO6 to PO12 and PSOs as high (3).

Department of Electrical and Electronics Engineering

CO5 Analyze the performance of synchronous machines and A.C Series Motor Action Verb: Analyze (L4)

PO1 Verbs: Apply (L3)

CO5 Action Verb is greater than PO1 verb by one level; Therefore, correlation is high (3).

PO2 Verbs: Analyze (L4)

CO5 Action Verb same to PO2 verb; Therefore correlation is high (3). PO4 Verbs: Analyze (L4)

CO5 Action Verb same to PO4 verb; Therefore correlation is high (3).

CO5 Action Verb is of BTL 4. Using Thumb rule, L4 correlates PO6 to PO12 and PSOs as high (3).

Department of Electrical and Electronics Engineering

Year/Sem	II/II	Branch of Study: EEE				
Subjec	Subject Code Subject Name					Credits
23AP	C 0214	CONTROL SYSTEMS LAB	0	0	3	1.5

After co	ompletion of the course, students will be able to:
CO1	Analyze the time response and characteristics of second order system, A.C and DC servo motors.
CO2	Analyze the characteristics of Synchros and magnetic amplifiers.
CO3	Apply MATLAB and study the effect of poles and zeros location on transient and steady state behaviour of second order systems.
CO4	Understand the design of truth tables for logic gates and speed control of motor using programmable logic controller.
CO5	Understand the performance of P, PI, PID controllers, lag-lead compensation technique and temperature control using PID controller.

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
C01	Analyze	The time response and characteristics of second order system, A.C and DC servo motors			L4
CO2	Analyze	The characteristics of Synchros and magnetic amplifiers.			L4
CO3	Apply	MATLAB and study the effect of poles and zeros location on transient and steady state behaviour of second order systems.			L3
CO4	Understand	The design of truth tables for logic gates and speed control of motor	Using programmable logic controller		L2
CO5	Understand	The performance of P, PI, PID controllers, laglead compensation technique and temperature control.	Using PID controller		L2

LIST OF EXPERIMENTS

- 1. Analyze the Time response of Second order system.
- 2. Analyze the effect of feedback on DC servo motor.
- 3. Analyze the Transfer function of DC Machine.
- 4. Analyze the Characteristics of AC servo motor
- 5. Plot the response of a unity feedback system for different values of damping ratio and also plot its rise time, settling time, % maximum overshoot when the inputs applied to the system are the unit step and unit impulse
- 6. Analyze the Characteristics of Synchros.
- 7. Characteristics of magnetic amplifiers.
- 8. Linear system analysis (Time domain analysis, Error analysis) using MATLAB.
- 9. Stability analysis (Bode, Root Locus, Nyquist) of Linear Time Invariant system using MATLAB.
- 10. State space model for classical transfer function using MATLAB.
- 11. Programmable logic controller Study and verification of truth tables of logic gates, simple Boolean expressions and application of speed control of motor
- 12. Study the system response of a permanent magnet D.C motor
- 13. Effect of P, PD, PI, PID Controller on a second order system.

Department of Electrical and Electronics Engineering

- 14. Lag and lead compensation Magnitude and phase plot
- 15. Temperature controller using PID

Reference books:

- 1 M. H. Rashid, "Simulation of Electrical and electronics Circuits", using PSPICE, M/s PHI Publications.
- 2 PSPICE A/D user's manual Microsim, USA
- 3 PSPICE reference guide Microsim, USA.
- 4 MATLAB and its Tool Books user's manual and Math works, USA

Mapping	of Cour	se out	comes	with P	rogran	outco	mes							
CO/PO	P01	PO2	PO3	P04	PO5	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1				3					1				3	
CO2				3					1				3	
CO3				2	3				1				3	1
CO4				1					1				3	
CO5				1					1				3	
Levels of co	orrelati	on, viz.	, 1. Low	, 2. Mod	erate, 3	. High								

Mapp	oing of Cou	ırse o	outcomes with P	rogram outco	mes Ju	ıstification T	able	
CO			CO			Program	PO(s): Action	Level of
No.	Lesson	%	correlation	Verb	BTL	Outcomes	verb and BTL	correlation
	Plan			(PO)		(PO)	(for PO1 to	(0-3)
	(Hrs.)						PO5)	
1				Analysis	Ι /	PO4,	Analysis (L4)	3
				Analyze L4		PO9	Thumb Rule	1
2				A		PO4,	Analysis (L4)	3
				Analyze	L4	P09	Thumb Rule	1
3				Apply	L3	PO4,	Analysis (L4)	2
				Apply	LS	PO5,	Apply (L3)	3
						P09	Thumb Rule	1
4				Understand	12	PO4,	Analysis (L4)	1
				Understand L2		P09	Thumb Rule	1
5				Understand	L2	PO4,	Analysis (L4)	1
				Uniderstand	LZ	P09	Thumb Rule	1

Department of Electrical and Electronics Engineering

CO1: Analyze the time response and characteristics of second order system, A.C and DC servo motors.

Action Verb: Analyze (L4)

PO1 Verb: Analysis (L4)

CO1 Action verb level is equal to PO4 verb; Therefore, correlation is High (3).

Using Thumb Rule CO1 is correlated with PO9 is Low (1).

CO2: Analyze the characteristics of Synchros and magnetic amplifiers

Action Verb: Analyze (L4)

PO4 Verb: Analysis (L4)

CO2 Action verb level is equal to PO4 verb; Therefore, correlation is High (3).

Using Thumb Rule CO1 is correlated with PO9 is Low (1).

CO3 Apply MATLAB and study the effect of poles and zeros location on transient and steady state behaviour of second order systems.

Action Verb: Apply (L3)

PO4 Verb: Analysis (L4)

CO3 Action verb level is less than PO4 verb by one level; Therefore, correlation is Moderate (2).

PO5 Verb: Apply (L3)

CO3 Action verb level is equal to PO5 verb level; Therefore, correlation is High (3).

Using Thumb Rule CO3 is correlated with PO9 is Low (1).

CO4 Understand the design of truth tables for logic gates and speed control of motor using programmable logic controller.

Action Verb: Understand (L2)

PO4 Verb: Analysis (L4)

CO4 Action verb level is less than PO4 verb by two levels; Therefore, correlation is Low (1).

Using Thumb Rule CO4 is correlated with PO9 is Low (1).

CO5: Understand the performance of P, PI, PID controllers, lag-lead compensation technique and temperature control using PID controller.

Action Verb: Understand (L2)

PO4 Verb: Analysis (L4)

CO5 Action verb level is less than PO4 verb by two levels; Therefore, correlation is Low (1).

Using Thumb Rule CO4 is correlated with PO9 is Low (1).

Department of Electrical and Electronics Engineering

Year/Sem	II/II	Branch of Study: EEE				
Subjec	Subject Code Subject Name					Credits
23AS0	C0501	PYTHON PROGRAMMING	0	1	2	2

After co	After completion of the course, students will be able to:								
CO1	Understand the Basic concepts of python programming to build scripts in IDLE.								
CO2	Apply the modularity techniques to invoke user defined functions.								
CO3	Apply the concept of Dictionaries, Tuples and sets to perform operations on data.								
CO4	Analyze the file concepts and oops paradigms to manage data.								
CO5	Apply the concepts of JSON and XML for data processing.								

СО	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	Basic concepts of Python programming		To build scripts in idle	L2
CO2	Apply	The modularity techniques.		To invoke user defined functions	L3
CO3	Apply	The concept of Dictionaries, Tuples and Sets.		To perform operations on data.	L3
CO4	Analyze	The file concepts and Oops paradigms		To manage data	L4
CO5	Apply	The concepts of JSON And XML		For data processing	L3

SYLLABUS

UNIT-I

History of Python Programming Language, Thrust Areas of Python, Installing Anaconda Python Distribution, Installing and Using Jupyter Notebook.

Parts of Python Programming Language: Identifiers, Keywords, Statements and Expressions, Variables, Operators, Precedence and Associativity, Data Types, Indentation, Comments, Reading Input, Print Output, Type Conversions, the type () Function and Is Operator, Dynamic and Strongly Typed Language.

Control Flow Statements: if statement, if-else statement, if...elif...else, Nested if statement, while Loop, for Loop, continue and break Statements, Catching Exceptions Using try and except Statement.

List of Experiments:

- 1. Write a program to find the largest element among three Numbers.
- 2. Write a Program to display all prime numbers within an interval
- 3. Write a program to swap two numbers without using a temporary variable.
- 4. Demonstrate the following Operators in Python with suitable examples.
 - i) Arithmetic Operators ii) Relational Operators iii) Assignment Operators iv) Logical Operators v) Bit wise Operators vi) Ternary Operator vii) Membership Operators viii) Identity Operators

Department of Electrical and Electronics Engineering

- 5. Write a program to add and multiply complex numbers
- 6. Write a program to print multiplication table of a given number.

UNIT - II

Functions: Built-In Functions, Commonly Used Modules, Function Definition and Calling the function, return Statement and void Function, Scope and Lifetime of Variables, Default Parameters, Keyword Arguments, *args and **kwargs, Command Line Arguments.

Strings: Creating and Storing Strings, Basic String Operations, Accessing Characters in String by Index Number, String Slicing and Joining, String Methods, Formatting Strings.

Lists: Creating Lists, Basic List Operations, Indexing and Slicing in Lists, Built-In Functions Used on Lists, List Methods, del Statement.

Sample Experiments:

- 7. Write a program to define a function with multiple return values.
- 8. Write a program to define a function using default arguments.
- 9. Write a program to find the length of the string without using any library functions.
- 10. Write a program to check if the substring is present in a given string or not.
- 11. Write a program to perform the given operations on a list: i. Addition ii. Insertion iii. slicing
- 12. Write a program to perform any 5 built-in functions by taking any list.

UNIT - III

Dictionaries: Creating Dictionary, Accessing and Modifying key:value Pairs in Dictionaries, Built-In Functions Used on Dictionaries, Dictionary Methods, del Statement. **Tuples and Sets:** Creating Tuples, Basic Tuple Operations, tuple() Function, Indexing and Slicing in Tuples, Built-In Functions Used on Tuples, Relation between Tuples and Lists, Relation between Tuples and Dictionaries, Using zip() Function, Sets, Set Methods, Frozen set.

Sample Experiments:

- 13. Write a program to create tuples (name, age, address, college) for at least two members and concatenate the tuples and print the concatenated tuples.
- 14. Write a program to count the number of vowels in a string (No control flow allowed).
- 15. Write a program to check if a given key exists in a dictionary or not.
- 16. Write a program to add a new key-value pair to an existing dictionary.
- 17. Write a program to sum all the items in a given dictionary.

UNIT - IV

Files: Types of Files, Creating and Reading Text Data, File Methods to Read and Write Data, Reading and Writing Binary Files, Pickle Module, Reading and Writing CSV Files, Python os and os.path Modules.

Object-Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, Constructor Method, Classes with Multiple Objects, Class Attributes Vs Data Attributes, Encapsulation, Inheritance, Polymorphism.

Sample Experiments:

- 18. Write a program to sort words in a file and put them in another file. The output file should have only lower-case words, so any upper-case words from source must be lowered.
- 19. Python program to print each line of a file in reverse order.
- 20. Python program to compute the number of characters, words and lines in a file.
- 21. Write a program to create, display, append, insert and reverse the order of the items in the array.
- 22. Write a program to add, transpose and multiply two matrices.
- 23. Write a Python program to create a class that represents a shape. Include

Department of Electrical and Electronics Engineering

methods to calculate its area and perimeter. Implement subclasses for different shapes like circle, triangle, and square.

UNIT - V

Introduction to Data Science: Functional Programming, JSON and XML in Python, NumPy with Python, Pandas.

Sample Experiments:

- 24. Python program to check whether a JSON string contains complex object or not.
- 25. Python Program to demonstrate NumPy arrays creation using array () function.
- 26. Python program to demonstrate use of ndim, shape, size, dtype.
- 27. Python program to demonstrate basic slicing, integer and Boolean indexing.
- 28. Python program to find min, max, sum, cumulative sum of array
- 29. Create a dictionary with at least five keys and each key represent value as a list where this list contains at least ten values and convert this dictionary as a pandas data frame and explore the data through the data frame as follows:
 - a) Apply head () function to the pandas data frame
 - b) Perform various data selection operations on Data Frame
- 30. Select any two columns from the above data frame, and observe the change in one attribute with respect to other attribute with scatter and plot operations in matplotlib.

Reference books:

- 1 Gowrishankar S, Veena A., Introduction to Python Programming, CRC Press.
- 2 Python Programming, S Sridhar, J Indumathi, V M Hariharan, 2ndEdition, Pearson, 2024
- 3 Introduction to Programming Using Python, Y. Daniel Liang, Pearson. Online Learning Resources/Virtual Labs
- 1 https://www.coursera.org/learn/python-for-applied-data-science-ai
- 2 https://www.coursera.org/learn/python?specialization=python#syllabus

\Mappir	Mapping of Course outcomes with Program outcomes													
CO/P O	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO 1	PSO2
CO1	2	3	2		2								1	
CO2	3	3	3	2	3									2
CO3	3	3	3	2	3									2
CO4	3	3	3	3	3							2		
CO5	3	3	3	2	3									2
Levels of	f corre	lation	viz., 1.	Low, 2	. Mode	rate, 3.	High							

СО			CO	-		Program	PO(s): Action	Level of
No.	Lesson % correlation Verb BT		BTL	Outcomes	verb and BTL	correlation		
	Plan					(PO)	(for PO1 to	(0-3)
	(Hrs.)						P05)	
						PO1	Apply(L3)	2
1	9	20	2	CO1:	L2	PO2	Review(L2)	3
-		20	2	Understand	112	PO3	Develop (L3)	3 2 2
						PO5	PApply (L3)	2
						PO1	Apply(L3)	3
				CO2 :		PO2	Review(L2)	3 3 2
2	9	20	2	Apply	L3	PO3	Develop (L3)	3
				Арріу		PO4	Analyze(L4)	2
						PO5	Apply (L3)	3
						PO1	Apply(L3)	3
				COD		PO2	Review(L2)	
3	9	20	2	CO3 :	L3	PO3	Develop (L3)	3 3 2
				Apply		PO4	Analyze(L4)	2
						PO5	Apply (L3)	3
						PO1	Apply(L3)	3
						PO2	Review(L2)	3
4	9	20	2	CO4:	L4	PO3	Develop (L3)	3 3 3
4	9	20	2	Analyze	L4	PO4	Analyze(L4)	3
						PO5	Apply (L3)	3 2
						PO12	Thumb Rule	2
						PO1	Apply(L3)	3 3 3 2 3
				CO5 :		PO2	Review(L2)	3
5	9	20	2	Apply	L3	PO3	Develop (L3)	3
				rippiy		PO4	Analyze(L4)	2
						PO5	Apply (L3)	3

Department of Electrical and Electronics Engineering

CO1: Understand the Basic concepts of python programming to build scripts in IDLE.

Action Verb : Understand(L2)

PO1 Verb : Apply(L3)

CO1 Action verb is less than PO1 verb by one level. Therefore the correlation is moderate (2)

PO2 Verb : Review(L2)

CO1 Action verb is same as PO2 verb. Therefore the correlation is high (3)

PO3 Verb : Develop(L3)

CO1 Action verb is less than PO3 verb by one level. Therefore the correlation is moderate (2)

PO5 Verb : Apply(L3)

CO1 Action verb is less than PO5 verb by one level. Therefore the correlation is moderate (2)

CO2: Apply the modularity techniques to invoke user defined functions.

Action Verb : Apply (L3)

PO1: Apply(L3)

CO2 Action verb is same as PO1 verb. Therefore the correlation is high (3)

PO2 Verb : Review(L2)

CO2 Action verb is greater than PO2 verb. Therefore the correlation high (3)

PO3 Verb: Develop (L3)

CO2 Action verb same as PO3 verb. Therefore the correlation high (3)

PO4 Verb : Analyze(L4)

CO2 Action verb is less than PO4 verb by one level. Therefore the correlation is moderate (2)

PO5 Verb : Apply(L3)

CO2 Action verb is same as PO5 verb. Therefore the correlation is high (3)

CO3: Apply the concept of Dictionaries, Tuples and sets to perform operations on data.

Action Verb : Apply(L3)

PO1: Apply(L3)

CO3 Action verb is same as PO1 verb. Therefore the correlation is high (3)

PO2 Verb : Review(L2)

CO3 Action verb is greater than PO2 verb. Therefore the correlation high (3)

PO3 Verb: Develop (L3)

CO3 Action verb same as PO3 verb. Therefore the correlation high (3)

PO4 Verb : Analyze(L4)

CO3 Action verb is less than PO4 verb by one level. Therefore the correlation is moderate (2)

PO5 Verb : Apply(L3)

CO3 Action verb is same as PO5 verb. Therefore the correlation is high (3)

CO4: Analyze the file concepts and oops paradigms to manage data.

Action Verb: Analyze(L4)

CO3 Action verb is same as PO1 verb. Therefore the correlation is high (3)

PO1: Apply(L3)

CO3 Action verb is greater than PO1 verb. Therefore the correlation is high (3)

PO2 Verb : Review(L2)

CO3 Action verb is greater than PO2 verb. Therefore the correlation high (3)

PO3 Verb: Develop (L3)

CO3 Action verb is greater than PO3 verb. Therefore the correlation high (3)

PO4 Verb : Analyze(L4)

CO3 Action verb is same as PO4 verb. Therefore the correlation is high (3)

PO5 Verb : Apply(L3)

CO3 Action verb is greater than PO5 verb. Therefore the correlation is high (3)

PO12: Thumb rule

To solve the real time problems oops and file concepts are necessary for data security.

Therefore the correlation is medium(2)

CO5: Apply the concepts of JSON and XML for data processing.

Action Verb: Apply(L3) PO1

Department of Electrical and Electronics Engineering

PO1: Apply(L3)

CO3 Action verb is same as PO1 verb. Therefore the correlation is high (3)

PO2 Verb : Review(L2)

CO3 Action verb is greater than PO2 verb. Therefore the correlation high (3)

PO3 Verb: Develop (L3)

CO3 Action verb same as PO3 verb. Therefore the correlation high (3)

PO4 Verb : Analyze(L4)

CO3 Action verb is less than PO4 verb by one level. Therefore the correlation is moderate (2)

PO5 Verb : Apply(L3)

CO3 Action verb is same as PO5 verb. Therefore the correlation is high (3)

Department of Electrical and Electronics Engineering

Year/Sem	II/II	Branch of Study: Common to ALL				
Subjec	ct Code	Subject Name	L T P			Credits
23AE	S0304	DESIGN THINKING & INNOVATION	0	1	2	2

After co	After completion of the course, students will be able to:								
CO1	Understand the concepts and principles of design thinking process.								
CO2	Apply the design thinking techniques for solving problems in various sectors.								
CO3	Analyze the art of innovation & creativity in product development.								
CO4	Apply the design guidelines for produced development.								
CO5	Analyze the design thinking strategies for solving real time business issues.								

со	Action Verb	Knowledge Statement	Condition	Criteria	Bloom's level
CO1	Understand	The concepts and principles of design thinking process.			L1
CO2	Apply	The design thinking techniques for solving problems in various sectors.			L3
CO3	Analyze	The art of innovation & creativity in product development.			L4
CO4	Apply	The design guidelines for produced development.			L3
CO5	Analyze	The design thinking strategies for solving real time business issues.			L4

SYLLABUS

UNIT-I

Introduction to elements and principles of Design, basics of design-dot, line, shape, form as fundamental design components. Principles of design. Introduction to design thinking, historyof Design Thinking, New materials in Industry.

UNIT-II

Design thinking process (empathize, analyze, idea & prototype), implementing the process in driving inventions, design thinking in social innovations. Tools of design thinking - person, costumer, journey map, brainstorming, product development

Activity: Every student presents their idea in three minutes, Every student can present design process in the form of flow diagram or flow chart etc. Every student should explain about product development.

UNIT-III

Art of innovation, Difference between innovation and creativity, role of creativity and innovation in organizations- Creativity to Innovation- Teams for innovation- Measuring the impact and value of creativity.

Activity: Debate on innovation and creativity, Flow and planning from idea to innovation, Debate on value-based innovation.

Department of Electrical and Electronics Engineering

UNIT-IV

Problem formation, introduction to product design, Product strategies, Product value, Product planning, product specifications- Innovation towards product design- Case studies

Activity: Importance of modelling, how to set specifications, Explaining their own product design.

UNIT-V

Design Thinking applied in Business & Strategic Innovation, Design Thinking principles that redefine business—Business challenges: Growth, Predictability, Change, Maintaining Relevance, Extreme competition, Standardization. Design thinking to meet corporate needs—Design thinking for Startups—Defining and testing Business Models and Business Cases—Developing & testing prototypes

Activity: How to market our own product, About maintenance, Reliability and plan for startup.

Text books:

- 1 Tim Brown, Change by design, Harper Bollins (2009)
- 2 Idris Mootee, Design Thinking for Strategic Innovation, 2013, John Wiley & Sons.

Reference books:

- 1 David Lee, Design Thinking in the Classroom, Ulysses press
- 2 Shrutin N Shetty, Design the Future, Norton Press
- 3 William Lidwell, Universal Principles of Design-Kritina holden, Jill Butter.
- 4 Chesbrough. H, The Era of Open Innovation 2013

Web Resources:

- 1 https://nptel.ac.in/courses/110/106/110106124/
- 2 https://nptel.ac.in/courses/109/104/109104109/
- 3 https://swayam.gov.in/nd1_noc19_mg60/preview

Mapping	Mapping of Course outcomes with Program outcomes													
CO/PO	P01	P02	PO3	PO4	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	2		2										2	2
CO2	2	2	2										2	2
CO3	2	2	2			1							2	2
CO4	2	2	2			1							2	2
CO5	2	2	2		·	2							2	2
Levels of	correla	tion, vi	z., 1. Lo	w, 2. Mo	derate,	3. High		<u> </u>						

Mapp	lapping of Course outcomes with Program outcomes Justification Table										
СО			CO			Program	PO(s): Action	Level of			
No.	Lesson	%	correlation	Verb	BTL	Outcomes	verb and BTL	correlation			
	Plan					(PO)	(for PO1 to	(0-3)			
	(Hrs.)						PO5)				
1	11	20.3	L3			PO1	Apply (L3)	2			
1	11	20.5	LO	Understand	L2	PO3	Develop (L3)	2			
						PO1	Apply (L3)	3			
2	10	18.5	L2	Apply	L3	PO2	Identify (L3)	3			
				FFJ		PO3	Develop (L3)	3			
						PO1	Apply (L3)	3			
3	11	20.3	L3			PO2	Identify (L3)	3			
3	11	20.3	ГЭ	Analyze	L4	PO3	Develop (L3)	3			
						P06	Thumb Rule	1			
						PO1	Apply (L3)	3			
4	12	22.2	L3			PO2	Identify (L3)	3			
4	12	22.2	гэ	Apply	L3	PO3	Develop (L3)	3			
						P06	Thumb Rule	1			
						PO1	Apply (L3)	3			
5	10	10 🖪	L2			PO2	Identify (L3)	3			
5	10	18.5	LΔ	Analyze	L4	PO3	Develop (L3)	3			
						P06	Thumb Rule	2			

Department of Electrical and Electronics Engineering

CO1: Understand the concepts and principles of design thinking process. Action Verb: Understand (L2)

PO1Verb: Apply (L3)

CO1 Action verb is lower than PO1 verb. Therefore, the correlation is medium (2)

PO3 Verb: Develop (L3)

CO1 Action verb is lower than PO3 verb. Therefore, the correlation is medium (2)

CO2: Apply the design thinking techniques for solving problems in various sectors.

PO1 Verb: Apply (L3)

CO2 Action verb is same level as PO1 verb. Therefore, the correlation is high (3)

PO2 Verb: Identify (L3)

CO2 Action verb is same level as PO2 verb. Therefore, the correlation is high (3)

PO3 Verb: Develop (L3)

CO2 Action verb is same level as PO3 verb. Therefore, the correlation is high (3)

CO3: Analyze the art of innovation & creativity in product development.

Action Verb: Analyze (L4)

PO1 Verb: Apply (L3)

CO3 Action verb is same level (greater) as PO1 verb. Therefore, the correlation is high (3)

PO2 Verb: Identify (L3)

CO3 Action verb is same level (greater) as PO2 verb. Therefore, the correlation is high (3)

PO3 Verb: Develop (L3)

CO3 Action verb is same level (greater) as PO3 verb. Therefore, the correlation is high (3)

PO6 Verb: Thumb Rule

As per thumb rule CO3 co-relates slightly with PO6 verb. Therefore, the correlation is high (3)

CO4: Apply the design guidelines for produced development.

Action Verb: Apply (L3)

PO1 Verb: Apply (L3)

CO4 Action verb is same level as PO1 verb. Therefore, the correlation is high (3)

PO2 Verb: Identify (L3)

CO4 Action verb is same level as PO2 verb. Therefore, the correlation is high (3)

PO3 Verb: Develop (L3)

CO4 Action verb is same level as PO3 verb. Therefore, the correlation is high (3)

PO6 Verb: Thumb Rule

As per thumb rule CO4 co-relates slightly with PO6 verb. Therefore, the correlation is high (3)

CO5: Analyze the design thinking strategies for solving real time business issues.

Action Verb: Analyze (L4)

PO1 Verb: Apply (L3)

CO5 Action verb is same level (greater) as PO1 verb. Therefore, the correlation is high (3)

PO2 Verb: Identify (L3)

CO5 Action verb is same level (greater) as PO2 verb. Therefore, the correlation is high (3)

PO3 Verb: Develop (L3)

CO5 Action verb is same level (greater) as PO3 verb. Therefore, the correlation is low (1)

PO6 Verb: Thumb Rule

As per thumb rule CO5 co-relates moderately with PO6 verb. Therefore, the correlation is high (3)