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After going through this chapter, you should be able to unaerstana :

Alphabets, Strings and Languages
o Mathematical Induction

o Finite Automata

o Equivalence of NFAand DFA

o NFAwith ¢ -moves

11 ALPHABETS, STRINGS & LANGUAGES

Alphabet

Analphabet, denoted by 5, isa finite and nonempty set of symbols.

Example:
. If y isan alphabet containing all the 26 characters used in English language, then

y isfinite and nonempty set,and £ = {a,b,c, ..., 2}.
2. X ={0,]} isanalphabet.
3, ¥ ={1,2,3,.) isnotanalphabetbecauseitisinfinite.
4, 7 ={} isnotanalphabet because it is empty.
String
A string is a finite sequence of symbols from some alphabef.

Example :

"yyz" isastring over an alphabet £ = {a,b,c, .., z}. Theempty string or null string is
denoted by ¢.
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Length of a string

The length of a string is the number of symbols in that string. If v isa string then its length
isdenoted by | w|.

Example :

I w=abed, then length of w is | w|= 4
2. n=010 isastring,then|n|= 3
3. e isthe empty string and has length zero.

The set of strings of length K (K > 1)

Let ¢ beanalphabetand = {4, b} , thenall strings of length K (K > 1) isdenoted by vX.
5X ={w:wisastring of length K, K > 1}

Example:

1. Z={ab},then
£ ={a,b},
2* = {aa,ab, ba,bb},
%' = {aaa,aab,aba,abb baa, bab,bba,bbb}
|Z'= 2 = 2" (Number of strings of length one),
|2} = 4 = 27 (Number of strings of length two), and
| 2% = 8 = 2* (Number of strings of length three)
2. §={0,1,2} ,then §7 = {00,01,02,11, 10,12,22,20,21} ,and | §?| = 9 = 3?

Concatenation of strings

If w, and w, are two strings then concatenation of w, with w, isa string and it is denoted by
ww, . In other words, we can say that w, is followed by w, and | w;w,| = [ w| + | w,).
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Prefix of a string

A string obtained by removing zero or more trailing symbols is called prefix. For example, ifa
String w = abe ,then a,ab ,abc areprefixes of w.

Suffix of a string

A string obtained by removing zero or more leading symbols is called suffix. For example, ifa
String w = abc ,then ¢, be,abe are suffixesof w.

Asstring 4 isaproper prefix or suffix of astring w ifandonlyif a # w .

Substrings of a string

A string obtained by removing a prefix and a suffix from string w is called substring of w . For
example, ifastring v = ahe ,then p isasubstring of . Every prefix and suffix of string w is

asubstring of w, butnot every substring of y isa prefix or suffix of w . Forevery string w, both
w and ¢ are prefixes, suffixes, and substrings of w.

Substring of w = w —(one prefix)-(one suffix).
Language

A Language L over 3, is a subset of 5, i. e, it is a collection of strings over the
alphabet 5. ¢, and {c} are languages. The language ¢ is undefined as similar to infinity and
{€} is similar to an empty box i.e. a language without any string.

Example:

1. L, ={01,0011,000111 } isalanguage over alphabet {0,1}
2. L, ={e,0,00,000,..} isalanguageoveralphabet {0}

3. L, ={0""2" :n>1} isalanguage.
Kleene Closure of a Language

Let 7 bealanguage over some alphabet y . Then Kleene closure of , is denoted by 1, * and
it is also known as reflexive transitive closure, and defined as follows :
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L* = {Set of all words over L}
= {word of length zero, words of length one, words of length two, ...}

-UehH=rululu..
K=0

Example:

l. ¥ ={a,b} andalanguage 1 over 3 .Then
F=1r0vul'vlPu...
L' = {g
L' = {a,b},

I* = {aa,ab,ba,bb} and soon.
So, L*={e,a,b,aa,ab,ba,bb..}
2. § ={0}, then §* = {€,0,00,000,0000 ,00000 .....}

Positive Closure

If 5 isan alphabet then positive closure of 5 is denoted by 5+ and defined as follows :
5t = 3 - {g = {Set of all words over I excluding empty string €}
Example :
if £ = {0} ,then £* = {0,00,000,0000 ,00000 ..}

1.2 MATHEMATICAL INDUCTION

Based on general observations specific truths can be identified by reasoning, This principle is
called mathematical induction. The proof by mathematical induction involves four steps.

Basis : Thisisthestarting point foran induction. Here, prove thatthe result s true forsomen=0or 1.
Induction Hypothesis : Here, assume that the result is true forn =k .
Induction step : Prove that the result is true for somen=k+1.

Proof of induction step : Actual proof.
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1.3 FINITE AUTOMATA (FA)

A finite automata consists of a finite memory called input tape, a finite - nonempty set of states, an
input alphabet, aread - only head , a transition function which defines the change of configuration,
an initial state, and a finite - non empty set of final states.

A model of finite automata is shown in figure L.1.

¥ § je— Input Tape

]\*—- Reading Head

Finite Control

FIGURE 1.1 : Model of Finite Automata

The input tape s divided into cells and each cell contains one symbol from the input alphabet
The symbol 'y is used at the leftmost cell and the symbol '§'is used at the rightmost cell to

indicate the beginning and end of the input tape. The head reads one symbol on the input tape
and finite control controls the next configuration. The head canread either from left - to - right or
right - to -left one cell at a time. The head can't write and can't move backward. So, FA can'
remember its previous read symbols. This is the major limitation of FA.

Deterministic Finite Automata (DFA )

A deterministic finite automata M can be described by 5-tuple (Q, £, 8, g, F) , where

1. Qis finite, nonempty set of states,

2.y isaninput alphabet,

3. § istransition function whichmaps QxZ - Q i.e. thehead reads asymbolinits present
state and moves into next state.

4, q, €Q,knownasinitial state

5. FcQ,knownassetof final states.
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Non - deterministic Finite Automata (NFA)

A non - deterministic finite automata M can be described by 5 - tuple (Q, £, 8, q,, F), Where

1

2.
3.

4.
-}

Qis finite, nonempty set of states,

y, isaninput alphabet,

§ is transition function whichmaps Q x T - 2° i. ., thehead reads a symbol in its present
state and moves into the set of next state (s) . 22 is power set of Q,

q, €Q, known as initial state , and

F c Q, known as set of final states.

The difference between a DFA and a NFA is only in transition function. In DFA, transition
function maps on at most one state and in NFA transition function maps on at least one state for
avalid input symbol.

States of the FA

FAhas following states :

I. Initial state : Initial state is anunique state ; from this state the processing starts.

Final states : These are special states in which if execution of input string is ended then
execution is known as successful otherwise unsuccessful.

Non - final states : All states except final states are known as non - final states.

Hang - states : These are the states, which are not included into Q, and after reaching these
states FA sits in idle situation. These have no outgoing edge. These states are generally

denoted by ¢ . For example, consider a FA shown in figure1.2.

FIGURE 1.2 : Finite Automata

g, istheinitial state, q,, g, are final states, and ¢ isthe hang state.
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Notations used for representing FA

We represent a FA by describing all the five - terms (Q, Z, §, q,, F). By using diagram to
represent FA make things much clearer and readable. We use following notations for representing
the FA:

|. Theinitial state is represented by a state within a circle and an arrow entering into circle as

shown below :
(Initial state g, )

2. Final state is represented by final state within double circles :
( Final state g, )

3. Thehang state is represented by the symbol '¢" withina circle as follows:

4. Other states are represented by the state name within a circle.
5. Adirected edge with label shows the transition (or move). Suppose p is the present state
and q is the next state on input - symbol 'a', then this is represented by

6. A directed edge with more than one label shows the transitions (or moves). Suppose p is the
present state and q is the next state oninput - symbols 'a,' or ‘a," or...or ‘a," thenthisis

represented by (Pt 7)

Transition Functions
We have two types of transition functions depending on the number of arguments.

Transition Function

Direct /\ Indirect

( Represented by §) (Represented by §')

Direct transition Function (3)

When the input is a symbol, transition function is known as direct transition function.
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Example : §(p,a) = q (Where p s present state and q is the next state).

Itisalso known as one step transition.

Indirect transition function (')

When the input is a string, then transition function is known as indirect transition function.
Example : 6'(p,w) =g, where p is the present state and q is the next state after | w |

transitions. It is also known as one step or more than one step transition.
Properties of Transition Functions

1. Ifé(p,a)=q,then § (p, ax) =3(q x) andif &' (p, X) = q,then &' (p, xa) =8'(q a)
2. Fortwostringsxandy; 6(p,xy) =6(6(p,x),y),and 8'(p,xy) =6'(6'(p.x),y)
Example :1. ADFA M = ({9,,9,,92,9,},{0,1},8,9,.{q,}) isshowninfigurel.3.

% 0

oWl
0

FIGURE 1.3 ; Deterministic finite automata

Where § is defined as follows :
0 1
- G Qs 0,
G % q
g, G %
q( q2 q1

2. ANFAM| =({qo,q,,q2,qf},{(),l},t?,qo.{qf}) iSShownmﬁgm1.4.

0,1

0

FIGURE 1.4 : Non - deterministic finite automata
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3. Transition sequence for the string "011011" isas follows :

One execution ends in hang state ¢ , second ends in non - final state g, , and third ends in final

state ¢, hence string "011011" is accepted by third execution.

Difference between DFA and NFA

Strictly speaking the difference between DFAand NFA lies only in the definition of § . Using this
difference some more points can be derived and can be written as shown :

DFA

NFA

1. The DFAis 5 - tuple or quintuple
M =(Q,%,8,q,,F) where
Qis setof finite states
s isset of input alphabets
§:0xZto Q
g, isthe nitial state
Fc Q issetoffinal states

The NFA is same as DFA except in the
definition of §. Here, § is defined as follows::

§:0x(XUe) tosubset of ¢

2. There can be zero or one transition
from a state on an input symbol

There can be zero, one or more transitions
from a state on an input symbol

3, No e- transitions existi.e., there
should not be any transition ora
transition if exist it should be onan

input symbol

< - transitions can exist i. e., without any input
there can be transition from one state to
another state.

4. Difficult to construct

Easy to construct
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The NFA accepts strings a, ab, abbb etc. by using ¢ path between g, and g, we can move
from g, state to g, without reading any input symbol. To accept ab first we are moving from ¢,

to ¢, readingaand we canjumpto g, state without reading any symbol there we acceptband
we are ending with final state so it is accepted.

Equivalence of NFAwith .- Transitions and NFA without ¢ Transitions

Theorem :Ifthe language L is accepted by an NFAwith ¢ fransitions, then the language L,
is accepted by an NFAwithout ¢ - transitions.

Proof : Consider anNFA 'N'with ¢ - transitions where N =(0, Z, 8, ¢,, F)
Constructan NFA N, without ¢ transitions N, =(Q,, Z, 8, ¢, F)
where ¢, =0 and

F ﬂ{ Fu {qo} if €~ closure(q,) contains a stateof F

F otherwise

and 8, (g,a) i § (g,a) forqinQandain 3.

Consideranon - empty string o . To show by induction |o | that 5, (g,, ©) = § (g,,0)
For o =¢, the above statement is not true, Because
0,(q0,€)={q0} >
while 3(qy.,€)=€ ~closure (q,)

Basis :

Start induction with string length one.

i.e, lo|=1

Then wis asymbol a, and El(qg,a)=3(qﬂ,a) by definitionof 5, .
Induction : |>1
Let o = xy forsymbolain 5.
Then 51(90,%7)=61(8,(40:%)¥)
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Calculation of < -closure :

& - closure of state ( ¢-closure (q)) defined as it is a set of all vertices p such that there is a
path from q to p labelled ¢ ( including itself).

Example :
Consider the NFA with ¢ - moves

e - closure (¢,)= {4,, 9,9, 9, }
e - closure (¢,)={ g,, 4, 4, }

e - closure (¢,)= {g,, ¢, }

e - closure (¢,)= {¢, }

Procedure to convert NFA with - moves to NFA without - moves

Let N =(Q, %,8,,, F) isaNFAwith e movesthenthereexists N'=(0,¢,8,q,, F") without
e Moves

1. Firstfind e - closure of all states in the design.
2. Calculate extended transition function using following conversion formulae.
0 5, x)=e- closue §(5 (g, ¢),x)

(i) é:(q,e )=€ ~ closure (q)
3. F'isasetofall states whose e closure contains a final state in F.

Example 1 : Convert following NFAwith & moves to NFAwithout  moves.

BOmOS

Solution : Transition table for given NFAs

0
0 2 b
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() Finding < closure :
e~ closure (g,) = {g,}

€— closure (ql) = {qn Q2}
e closure (¢,) = {q,}

(ii) Extended Transition function :

8 a b
-4, {4),92} ¢

] {9,}
¢ {4:}

S (g,, @) =€ —closure (0 (3(q0,e),a))

= e—closure (8 (e —closure (q,) , a))
= e—closure (8 (q,, a))

= e—closure (g,)

={91,9,}

8 (4o, b) —e —closure (5(5(g,.€)b))
= e~ closure(8( - closure (q,), b))
=&~ closure(d (q,, b))
=&~ closure($)

=0

8 (q,, a) = e~ closure(5(5 (q,, €), @))
= e~ closure(d ( - closure(q,), a))
=e~- closure(d ((9,, 9,), a))
=e— closure(d (q,, a) Vd(q,,a))
=&~ closure ()

=9
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5 (g,5b) = € — closure (8 (8 (g,, €), b))
= €— closure (8 ( €— closure(q,), b))
= €— closure (5 ((q,,9,), b))
= €~ closure (5 (q,,b) VU (q,,b))
= €~- closure (q,)

={q,}

8 (q,,a) = €~ closure (8(5(q,, €), a))
= €— closure (8(€-—closure(g,), a))
=€ —closure (d(q,,a))
= €— closure (¢)
=¢
8 (g,, b) = €~ closure (& (5 (q,, €), b))
= €~ closure (& (e-closure (q,), b))
= €~ closure (8 (q,, b))
= €~ closure (q,)

={q,}

(iii) Final states are ¢,, ¢,, because
€— closure (g,) contains final state
€ - closure (g,) contains final state

(iv) NFA without € movesis
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2.1 FINITE STATE MACHINES (FSMs)

A finite state machine is similar to finite antomata having additional capability of outputs,

Amodel of finite stafe machine s shown in below figure .

Finite control
Input reading Qutput
head roducing head
y S| v E
' |
1
Input tape Output tape

FIGURE : Model of FSM

2.1.1 Description of FSM
A finite state machine is represented by 6 - tuple (0,2,4,,4, o) s Where
[ Qisfinite and non - empty set of states,

2. ¥, isinputalphabet,
3. A isoutput alphabet,
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4. § istransition function which maps present state and input symbol on to the next state or

OxZ—0,
5. 3 isthe output function, and
6. ¢,<0Q,istheinitial state .

2.1.2 Representation of FSM

We represent a finite state machine in two ways ; one is by transition table, and another is by
transition diagram . In transition diagram , edges are labeled with Input/ cutput.

Suppose , in transition table the entry is defined by a function F, so for input q, and state g,
Fig,, a) = (8(g;» a,) » AMg;,a,)) (where § is transition function, 3, is output function.)

Example 1 : Consider a finite state machine, which changes 1's into 0's andO'sinto 1's
( 1's complement ) as shown in below figure .

Transition diagram :

01

10

FIGURE : Finite state machine

Transition table :

Inputs
0 1
Present Next State (NS) | Output Next State (NS) Output
State(PS)
q q 1 q 0
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Example 2 : Consider the finite state machine shown in below figure, which outputs the 2's
complement of input binary number reading from least significant bit (LSB).

CORNN ()
e V1
T

FIGURE : Finite State machine

Suppose, input is 10100. What is the output ?
Solution : The finite state machine reads the input from right side (LSB).

Transition sequence for input 10100 :

Inputs
O (@O
Outputs ——
So, the output is 01100.

2.2 MOORE MACHINE

If the output of finite state machine is dependent on present state only, then this model of
finite state machine is known as Moore machine. '

A Moore machine is represented by 6-tuple (Q,%,A, 4, 4,¢,), Where
© is finite and non-empty set of states,
¥, is input alphabet,
- A isoutput alphabet,
8 is transition function which maps present state and input symbol on to the next state or
OxI-Q,
% is the oufput function whichmaps 0 — A, (Present state — Output), and
g, € Q ,istheinitial state .

B O B

S\ Lh

If Z (1), q (r) are output and present state respectively at time f then
Z(t) = r(g(0)-
Forinput ¢ (null string), Z (¢) = A (initial state)
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Congider three LSBs of Input
000 (X)
001 (X)
010 (X)
011 (X)
100 (X)

101
A10
LT X)

5 110/3@
| @)

o)
=
H

TN o S o T T o T

Transition diagram :

0

xjc

FIGURE : Moore Machine

24 EQUIVALENCE OF MOORE AND MEALY MACHINES

We can construct equivalent Mealy machine for a Moore machine and vice-versa. Let M, and
M, beequivalent Moore and Mealy machines respectively. The two outputs 7, (w) and 7, ()
are produced by the machines M, and M, respectively for input string w . Then the length of
T, (w) is one greater than the length of 7,(w), ie.

|5 w)| = | (w)| + 1

The additional length is due to the output produced by initial state of Moore machine. Let output
symbol x is the additional output produced by the initial state of Moore machine, then -
Ti(w)=xTy(w) . -
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It means that if we neglect the one initial output produced by the initial state of Moore machine,
then outputs produced by both machines are equivalent. The additional output is produced by
the initial state of (for input ¢ ) Moore machine without reading the input. |

Conversion of Moore Machine to Mealy Machine
Theorem :If i, =(Q,%,4,6,4,4,) isaMoore machine then there exists a Mealy machine
M, equivalentio M,. |
Proof : We will discuss proof in two steps.
Step 1 : Construction of equivalent Mealy machine A, , and
Step 2 : Outputs produced by both machines are equivalent.
Step 1(Construction of equivalent Mealy machine M, )
Let M, =(Q,%,A,8,4",q,) whereallterms 0,3, A, 8, ¢, are same as for Moore machine and
)’ isdefined as following :
A (g,a) = L (8(g,a) forallg e Qand 4 ¢ ¥

The first output produced by initial state of Moore machine is neglected and transition
sequences remain unchanged.
Step 2 : If x is the output symbol produced by initial state of Moore machine »,, and
T;(w), T, (w) are outputs produced by Moore machine A/, and equivalent Mealy machine 37,
respectively forinput string w , then

Ti(w) = xTy(w)
Or Output of Moore machine = x| | Output of Mealy machine
(The notation | | represents concatenation).

If we delete the output symbol x from 7, (w) and supposeitis 7' (w) whichisequivalentto

the output of Mealy machine. So we have,
L (w) = ()
Hence, Moore machine A, and Mealy machine M, are equivalent.

Example 1: Constructa Mealy machine equivalent to Moore machine A, givenin following
transition table.
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3. A remainsunchanged,
4. 9 isdefined asfollows :
8" (lg,b). a) = [8(g,a), A (g,a)], where § and ), are fransition function and output
function of Mealy machine.
5. ) isthe output function of equivalent Moore machine which is dependent on present state
only and defined as follows :
AM([g,8D) = b
6. 4, istheinitial state and defined as [g,,5,], where ¢, is the initial state of Mealy machine and
b, is any arbitrary symbol selected from output alphabet A .
Step 2 : Outputs of Mealy and Moore Machines
Suppose, Mealy machine M, enters states g, ¢;,9,,...9, On input a,, a,, as,....q, and
produces outputs by, by, by, ...b, . then M, entersthestates [, 51, [4;, b}, (92, 5,). - [¢: 6]
and produces outputs &,, 5,, b,, ... 5, asdiscussed in Step 1. Hence, outputs produced by both
machines are equivalent.
Therefore, Mealy machine M, and Moore machine M, are equivalent.

Example 1 : Consider the Mealy machine shown in below figure. Construct an equivalent
Moore machine. :

FIGURE : Mealy Machine
Solution : Let M,=(02Ad,4q,) is a given Mealy machine and
M,=(02,A,6"1",q,") betheequivalent Moore machine,
where

L 0 c{[g¢.1L[90. ¥} 191,71 141,¥),[92.7). [, ¥1} (Since, 0" € O x A)
2. T=1{01
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3. A={myh
4. g,'=lge. ], where g, istheinitial stateand y isthe output symbol of Mealy machine,
5. § isdefinedas following : .

For initial state[q,, ] :
(190> 71,0) = [6(20,0).4(q0,0)] = [g1,7]
8'(1g0, ¥ 1Y) =16(g0 1A (g0 D1 = [42,7]
For state [g,, n] :
8 ([g1, 7, 0) = [8 (1, 0), % (g1, O] = [0, 7]
5[ g1,n )1 = [8(q1 1 Mq11)I=lq2.4]
For state [g,, 7] :
8 (I, 71, 0) = [3(95,0) 2 {5, 0)] = [41,7]
§ ({gy,n D) =[8(g2: D), A (2. ] = 142, ]
For state [g,, y]
8 ([q1 1, 0) = [8 (1, 0, A (g1, O] = g3, ]
8 (g1, 1 1) = B (g, D A (00, D] = L2 1]
For state {g,, v] |
8 (42, 11, 0) = [8(92,0), 2 (92,0)] = [g1, 7]
8 ([g35 71, 1) = [8 (g2 D A (92, D] = [425 Y]

(Note : We have considered only those states, which are reachable from initial state)

6. 3 isdefined asfollows:
Algoyl=y
A lg,n] = n
N lgy,n] = n
Mgyl =
Mlg,yl=y
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2.5 EQUIVALENCE OF FSMs

Two finite machines are said to be equivalent if and only if every input sequence yields identical
output sequence.

Exampile :
Consider the FSM A7, shown in figure (a)and FSM M, shown in figure (b).

MI a :

Figure (b)

Are these two FSMs equivalent ?
Solution :

We check this. Consider the input strings and corresponding outputs as given following ;

input string Output by A, Output by A,
(1) 01 00 00

{2) 010 001 001
(3)0101 0011 0011
(4) 1000 - 0111 0111
(5) 10001 01111 01111

Now, we come to this conclusion that for each input sequence, outputs produced by both machines
are identical. So, these machines are equivalent. In other words, both machines do the same
task. But, A/, hastwo states and A7, has four states. So, some states of M, are doing the same
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task i. e., producing identical outputs on certain input. Such states are known as equivalent states
and require extra resources when implemented.
Thus, our goal s to find the simplest and equivalent FSM with minimum number of states.

251 FSM Minimization

We minimize 2 FSM using the following method, which finds the equivalent states, and merges
these into one state and finally construct the equivalent FSM by minimizing the number of states,

Method : Initially we assume that all pairs (g,,¢,) over states are non - equivalent states
Step 1 : Construct the transition table.

Step 2 : Repeat for each pair of non - equivalent states (¢o,,) :
(@ Do g, and g, produce same output ?
(6) Do g, and g, reach the same states foreach input ¢ €27
(¢)  If answers of (a) and (b) are YES, then ¢, and g,are equivalent states and
merge these two states into one state [g,,¢, ] and replace the all occurrences of
g, and g, by [q,.q;] and mark these equivalent states.

Step 3 : Check the all - present states, if any redundancy is found, remove that.

Step 4 : Exit.
Example 1 : Consider the following transition table for FSM. Construct minimum state FSM.
Inputs
, 0 1
Present Next State Next State
State(PS) (NS) (NS) Output
4, 9 4 0
g, % 4, 1
g g, % 1
9 9, 4 1
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After going through this chapter, you should be able to understand :

|dentity Rules

Constructing FAfor a given REs
Conversion of FAto REs
Pumping Lemma of Regular sets

Closure properties of Regular sets

Regular sets and Regular Expressions )
{ Uniit-I J

3.1 REGULAR SETS

A spectal class of sets of words over S, called regular sets, is defined recursively as follows.
(Kleene proves that any set recognized by an FSM is regular. Conversely, every regular set can
berecognized by some FSM.)

L. Everyfinite set of words over S (including ¢, the empty set ) is aregular set,

2. 1f Aand B are regular sets over S, then 4, p and AB are also regular.

3. IfSisaregularsetoverS, then soisits closure S¥,

4. Nosetisregularunlessitis obtained bya fnite numberof applications of definitions (1)to (3).

1.6, the class of regular sets over § is the smallest class containing all finite sets of words over §
and closed under union, concatenation and star operation,

Examples:

) Let £={a,b}then the set of strings that contain both odd number of s and b's is a
regular set.

i) Let £ = {0,1) then the set of strings {01,10 } isaregular set.
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3.2 REGULAR EXPRESSIONS

The languages accepted by FA are regular languages and these languages are easily described
by simple expressions called regular expressions. We have some algebraic notations to represent
the regular expressions.

Regular expressions are means to represent certain sets of strings in some algebraic
manner and regular expressions describe the language accepted by FA.

If 5 isanalphabet then regular expression(s) over this can be described by following rules.
1. Anysymbol from Z.e and ¢ are regular expressions.

2. If » and », are two regular expressions then union of these represented as r, L r, or
n + r, isalsoaregular expression
3. If », and r, are two regular expressions then concatenation of these represented as rr, is

also aregular expression.
4. TheKleene closure of a regular expression r isdenoted by » * is also aregular expression.

5. Ifrisaregularexpression then (r) isalsoaregular expression.

6. Theregular expressions obtained by applying rules 1 to 5 once or more than once are also
regular expressions.

Examples :

(1) If £ = {a,b},then

(a) aisaregularexpression (Usingrule 1)

(b) bisaregular expression (Usingrule 1)

(¢) o + b isaregular expression (Using rule 2)

(d) »+ isaregularexpression (Using rule 4)

(€) ab isaregular expression (Usingrule 3)

() ab + b+ isaregularexpression (Using rule 6)

(2) Find regular expression for the following

(a) A language consists of all the words over {a, b} endingin p .

(b) A language consists of all the words over {a, b} endingin pp.

(c) A language consists of all the words over {a, b} starting with aand endingin b.

(d) A language consists of all the words over {a, b} having pp as asubstring.

(¢) A language consists ofall the words over {a, b} ending in aab.

Solution :Let £={a,b},and

Allthe wordsover £ = {e, q, b, aa, bb, ab, ba, aaa,..... }=Z*or(@+b)*or(@avwb)*
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=({g a,b,aa,bb,...} )*

= {e a,b, aa, bb, ab, ba, aaa, bbb, abb, baa, aabb, ...}
= {All the words over {a, b} }

=(a+bh)*

So, (a* +b*)* =(a+b)*

3.3 IDENTITIES FOR REs
The two regular expressions P and Q are equivalent ( denoted as P = Q ) if and only if P
represents the same set of strings as Q does, For showing this equivalence of regular expressions

we need to show some identities of regular expressions.

Let P, Q and R are regular expressions then the identity rules are as given below

L. eR=Re=R

2. e'=z¢ eisnullstﬁng
3. #) =e ¢ isempty string.
4. OR=Rp=¢

5_ ¢+ —] R: R

6. R+R=R

1. RR¥=R*R=R'

8. (R') =R

9. e+RR =K'

10. (P+Q)R=PR+0OR

11. (P+Q) =(P'Q)=(P'+Q")
12, R'(e+R)=(e +R)R"' = R’
13. (R+e)' =R’

14. g+R' =R’

15, (PQ)' P=P(QPY

16. RR+R=RR

3.3.1 Equivalence of two REs

Let us see one important theorem named Arden's Theorem which helps in checking the
equivalence of two regular expressions.
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Arden'’s Theorem : Let P and Q be the two regular expressions over the input set ;. The
regular expression R is given as

R=Q+RP
Which has aunique solutionas R = OP'

Proof : Let, P and Q are two regular expressions over the input string ¥, .
IfP does not contain ¢ then there exists R such that

R=Q+RP I b
We will replace R by QP* in equation 1.
Consider R. H. S. of equation 1.

=Q+QP'P
=Q(e +P'P)
=QP'  e+R'R=R'
Thus R=0P
is proved. To prove that R = QP"isa unique solution, we will now replace L.H.S. of equation 1
by Q +RP. Then it becomes
Q+RP

Butagachan be replaced by Q + RP.
Q+RP=Q+(Q+RP)P
=0+0P+ RP?
Again replace R by Q + RP.
=0+0P+(Q+RP)P’
=0+0P+0P* +RP’
Thus if we go on replacing R by Q + RP then we get,
Q+RP=Q+QP+QP +....+QP' + RP"
=Q(e 4P+ P +...P")+ RP™

From equation 1,

R=Q(e+P+ P +...+ P')+ RP™ .0

here iz0
Consider equation 2,
R=Q(e+P+P*+...+P)+ R
e

R=QP" +RP*

Letwbe astring of lengthi.
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FORMAL LANGUAGES AND AUTOMATA THEORY

={€,0,00,1,11,111,01,10 0.}
= { e, any combination of 0's, any combination of I's, any combination of
Oand] }
Hence, L.H.S.=R. H.S.is proved.

3.4 RELATIONSHIP BETWEEN FA AND RE

There isa close relationship between a finite automata and the regular expression we can show
this relation in below figure.

Can be | Regular Canbe
Converted /| expression converted to
Deterministic NFA with
finite £ Moves
automata
Canbe Canbe
converted converted to
NFA without
& moves

FIGURE : Relationship between FAand regular expression
The above figure shows that it is convenient to convert the regular expression to NFAwith ¢
moves. Let us see the theorem based on this conversion.

3.5 CONSTRUCTING FA FOR AGIVEN REs
Theorem :If » bearegular expression then there exists a NFAWIN ¢ -moves, which accepts L(r).
Proof: First we will discuss the construction of NFA jf with  -moves for regular expression
r and then we prove that L(M) = L(r).

Let » be the regular expression over the alphabet 3.

Construction of NFA with ¢ - moves
Case 1:

@ r=90
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NFA M = ({s, 1, { } 8, 5, { f}) asshownml‘xgurcl (a)
(No path from initial state s to
reach the final state £
Figure 1 (a)

M r=¢

NFA M = ({s},{ }, 8, s, {s}) asshowninFigure 1 (b)

( > (The initial state s is the final state)

Figure 1 (b)
(i) » = a,foralla €%,
NFA M = ({s, £}, £,8,5 {f})
C a @ (One path s there from initial state s
to reach the final state fwith label a.)
Figure 1 (c)
Case2: |r|z21

Let ; and r, be the two regular expressions over £, ¥, and N, and N, are two NFA for
r, and r, respectively as shown in Figure 2 (a).

(s) =~ @ LN = 1
D & @Dw-s

Figure 2 (a) NFAfor regular expression », and r,
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Now let us compute for final state, which denotes the regular expression.
r2 will be computed, because there are total 2 states and final state is ¢, whose start state’is g, .

ri= e o Jlr)
= 0(e)*(e)+ 0
=0+0
r! =0 which isa final regular expression.

3.6.1 Arden's Method for Converting DFA to RE

As we have seen the Arden's theorem is useful for checking the equivalence of two regular
expressions, we will also see its use in conversion of DFA to RE.

Following algorithm is used to build the r. ¢. from given DFA.

1. Let g, betheinitial state.
2. Thereareq,, ¢,.4s,qs»q, numberof states.The final state may be some ¢, where j<n.
3. Let o, represents the transition from g, t0 g,.
4, Calculate g, such that
q,=0,.4,
If g, is a start state
g, =@;q;+€

5. Similarly compute the final state which ultimately gives the regular expression .

Example 1 : Construct RE for the given DFA.
start o X Vo4
:
Solution :

Since there is only one state in the finite automata let us solve for g, only.

G0 =90+ gol+ e
Go=qo(0+1)+e

FORMAL LANGUAGES AND AUTOMATA THEORY Page 31




Example 3 : Construct RE for the DFA given in below figure.

Solution : Letus see the equations
go=ql+g,0+¢€
g1 =qo0
43 =gl
q; =q,0+4,1+4,(0+1)

Letus solve g, first,
go=q,1 + 49,0+ €
Go = 4,01+ qol0+€
Go = qp(01+10)+ € *R=Q+RP
gy =€(01+10)* = QP* where
go <(01+10)* R=gy.0=¢,P=(01+10)

Thus the regular expression will be
r=(01+10)*

Since g, is a final state, we are interested in g, only.

Example 4 : Find out the regular expression from given DFA.
0
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Example 8 : Show that the language L ={a' b*|i >0} is notregular.

Solution : The set of strings accepted by language L is,
L = {abb, aabbbb, aaabbbbbb, aaaabbbbbbbb...}

Applying Pumping lemma for any of the strings above.

Take the string abb.

It is of the form www.

Where, |wv [<i|v]z]
To find i such that w'we L
Take i =2 here, then
w'w = a(bb)b
=abbb
Hence uv'w=abbb ¢ L

Since abbb is not present in the strings of L.
- Lisnot regular.

Example 9 : Show that L = {0°|n is a perfect square } is not regular.

Solution :
Step 1 : Let L is regular by Pumping lemma. Let n be number of states of FA accepting L.

Step2: Let ;= 0" then |z[=n22.
Therefore, we can write z=uvw; Where [wvisn)v1.
Take any string of the language L= { 00, 0000, 000000..... }
Take 0000 as string, hereu=0,v=0, w=00to find i such that w'wg¢ L.
Take i =2 here, then
w'w= 0(0)%00

= 00000
This string 00000 is not present instrings of language L. S0 uv'we L.

-, Itisacontradiction.

3.9 PROPERTIES OF REGULAR SETS

Regular sets are closed under following properties.
1. Union
2. Concatenation
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3. Kleene Closure

4. Complementation
5. Transpose

6. Intersection

Py
.

Union : If R and R, are two regular sets, then union of these denoted by R, + R, or
R, U R, isalsoaregular set.

Proof : Let R and R, be recognized by NFA N, and ¥, respectively as shown in
Figurel(a)and Figurel(b).

FIGURE 1(b) NFA for regular set R,
We construct a new NFA N based on union of N, and N, asshown in Figure 1 (c)

FIGURE 1(c) NFAfor N, + N,

Now,
L(N) = e L(N;) € + e I{N;) €
=€Re + €R,e
=R +R,
Since, Nis FA, hence L(N) isaregular set (language). Therefore, R, + R, isaregularset.
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2. Concatenation : If R and R, are two regular sets, then concatenation of these denoted
by RR, isalsoaregular set.
Proof : Let R and R, be recognized by NFA N, and N, respectively as shown in
Figure 2(a) and Figure 2(b).

FIGURE 2{b) NFA for regular set R,
We construct anew NFA N based on concatenation of N, and N, asshownin Figure2(c).

FIGURE 2(c) NFA for regular set R R,

Now,
L(N) = Regular setaccepted by N, followed by regular setaccepted by N, = RiR,
Since, L(N) isaregular set, hence R R, is also a regular set.

3. Kleene Closure : If Risaregularset, then Kleene closure of this denoted by R*isalso
aregular set.

Proof : Let R isaccepted by NFA y shownin Figure 3(a).

FIGURE 3(a) NFA for regular set R
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We construct a new NFA based on NFA N as shown in Figure 3(b).

FIGURE 3(b) NFA for regular expression for R’
Now,

L(N)={¢,R,RR,RRR ..}
=L
Since, L(N) isaregular set, therefore R" is aregular set.

4. Complement: If g isa regular set on some alphabet 3, then complement of g is
denotedby X" — R or 7 isalsoaregular set.
Proof : Let g be accepted by NFA N = (Q,2,8,5,F) . It means, L(N)=R.
N is shown in Figure 4(a).

FIGURE 4(a) NFA for regular set R
We construct a new NFA y'based on p as follows :
(a) Change all final states to non-final states.

(b) Change all non-final states to final states.
N 'is shown in Figure 4(b)

FIGURE 4 (b) NFA
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Now,
L(N") = {All the words which are not accepted by NFA N}
= { All the rejected words by NFAN}

=" -R
Since, L(N') isaregular set, therefore (£° — R) isaregular set.

5. Transpose :If Risaregular set, then the transpose denoted by g7, isalsoaregular set.
Proof : Let g beacceptedbyNFA N = (Q,Z.8,s,F ) asshown in Figure 5(a).

FIGURE 5 (a) NFA N for regular set R

If w isawordin R, then transpose (reverse) is denoted by 7 .
Let w = a,a,...a,

Then w” =a,a,_;....q

n“n~-1""

We constructanew §* based on  using following rules :

(a) Change the all final states into non-final states and merge all these into one state and make it
(b) Change initial state to final state.
(c) Reverse the direction of all edges.

A is shown in Figure5 (b)

FIGURE 5(b) NFA N'for regular set g’
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Let w = aya,...a, beawordin g, thenitis recognized by a7 and

wl = a,a,_,...a, isrecognized by A as shown in Figures (b)

In general, we say that if a word  in R is accepted by n,andthen y accepts ,,7.
Since, Z(N") is aregular set containing all ,,7 ; it means, L(N)=R".

Thus, R isaregular set,

Intersection : if R and R, are two regular sets over ¥, then intersection of these
denoted by R, n R, isalso aregular set.

Proof : By De Morgan's law for two sets 4 and B over R,
ANB=R*~((R*-4)U (R*-B))

SO,R "R, =Z*—~((S*=R,)U(E*-R,))

Let R, = (Z*-R,) and R, = (Z*-R,)

So, R, and R, are regular sets as these are complement of R and R,.

Let R, = R, U R,

So, R; isaregular set because it is the union of two regular sets R, and R,.
Let R; = *-R,

So, R isaregular set because it is the complement of regular set R;.
Therefore, intersection of two regular sets is also regular set.
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REGULAR GRAMMARS

After going through this chapter, you should be abie to understand :

o RegularGrammar
+ Equivaience between Regular Grammar and FA
e Interconversion

41 REGULAR GRAMMAR

Definition : The grammar G=(V, T, P, $)is said to be regular grammear iff he grammar is
right hinear or left linear.
A grammar G is said to be right linear ifall the productions are of the form

A->wB and/or A ->w where 4, BV and 7'

Agrammar G is said to be left lincar if all the productions are of the form
A—>Bw and/or A —w where 4, BeV and ,, 7.

Example 1: The grammar
S - @B |bbA | ¢
A o gl

B o bBlale
isaright linear grammar, Note that ¢ and string of terminals can appear on RHS of any production
and ifnon - terminal is present on R. H. § of any production, only one non - terminal should be
present and it has to be the right most symbol on R, H. §.

Example 2:
The grammar
S -» DBaa|Abb| ¢
A - Asa|b

B - Bblale
isaleft linear grammar. Note that < and string of terminals can appear on RHS of any production
and ifnon - terminal is present on L. H. § of any production, only one non - terminal should be
present and it has to be the left most symbolonL. H.S.
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Example 3:

Consider the grammar
S - 84

A - aB|b
B - Abla

Inthis grammar, each production s either left inear orright finear. But, the gtamumar is not either
loft linear orright linear, Such type of gramunar is called linear grammar. So, 2 grammar which has
ot most orie tion terminal on the right side of any production without restriction.on the position of
this non - terminal ( note the non - terminal can be leftmost or right most ) is called linear

grammar,
Note that the language generated from the regular grammar is called reguler language. So, there

dhiould be some relation between the regular grammar and the FA, sinee, the language accepted
by FAisalso regular language. So, we can construct a finite autormaton givenaregular grammar.

42 FAFROM REGULAR GRAMMAR

Theorem : LetG={V, T, 7. S ) be aright linear grammar. Then there exists a languags L(G)
which is accepted by & FA. 1. e, the language generated from the regular grammar

is reqular language.

Proof :Let ¥ =(g,, 4,, .. bethe variables and the start state §=¢, Let the productions in
the grammar be |
4 = K Ql
4 = L

g, = XN

Gy Xpdn

Assume that the language L(G) generated from these productionsisw. Correspondingto cach
production in the grammar we canhave a equivalent transitions in the FAto accept the string w.
After accepting the string w, the FAwill be inthe final state. The procedure to obtain PA from
these productions s given below : '
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Step 1. g, whichis the start symbol in the grammar s the start state of FA.

Step 2! For each production of the form

@ = Wy
the corresponding transition defined will be

5'(q,-,w)m q.;;
Step3: Foreach production of the form ¢ -5

the comesponding transition defined will be 8" (g;, ) =q where g, s the find] state,

As the string » € E(G) is also accepted by FA, by applying the transitions obtained from
stepl through step3, the language isregular. So, the theorern is proved,

Example 1 : Gonstruct a DFAto accept the ianguage generated by the following grammar

§ - 014
4 - 108
B 041

Solution :

Note that for each production of the form A-»wB, the corresponding transition will be
8(A, w)=B.Also, foreach production 4 - w , we can introduce the transition 3(4,w) =¢;

where g, isthe final state. The transitions obiained from grammar G is shown using the following

table:
Productions Transitions
S - (A 55, 01)= 4
A 108 54, 10)=5
B - 04 8B, 0)=4
B oo 1l 88, 11)=q,

 TheFA corresponding to the transitions obtained is shown below :
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So,eDFA M =(0,%, 8,4,, 4) where
g={8, 4, B, 9% QZ’%} , D={03

s isas obtained from the above table,
The additional vertices introduced are 4,4, ¢

Example 2 Constructa DFAto acceptthe language generated by the following grammar .

S - dAlg
A - aAlbB| ¢
B - DbBle

Solution ;

Note that for each production of the form 4-» w8, the corresponding transition will be
5(4,)= . Also,, for each production 4-» v , We canintroduce the fransition 8(4,w) = ¢;

where ¢ isthe final state, The transitions obtained from grammar (ris shown using the following |

table: -
Productions Transitions
S - 8A §(S,a)= 4
§ o5 ¢  Sisthefinal state
A o aA B(4,a)= 4
A - BB 5(4,by=B
A 5 e Aisthe final state
B - B 5(B,b)=3
B - e Bis the final state.
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Note : For each transition of the form 4 ¢, make Aas the ﬁnal state,
The FA corresponding to the transitions obtained is shown below :

So,the DFA M =(0.3, 5, g,, 4) where
O={S, 48} ,X={ab}
g, =8, 4={8, 4, B}
§1s as obtained from the above fable ,

4.3 REGULAR GRAMMAR FROM FA

Theorem : Let it =(0.3,5,q,,4) beafinte automaton IfLis the reguiar language accepted
by FA, then there exists a right linear grammar G=(V, T, B, 8§ ) so that L = L(B).

Proof : Let i =(0,3,6,¢,.4) beafinite automata accepting L where
Q= {q[} o4 ?""er} |
L={a,ay,.4,}
Aregular grammar G = (V, T, P, § ) can'be constructed where
V={gy q0q,}
I'=3
S=q,
The productions P from the transitions can be obtained as shown below :
Step 1 : Foreach transition of the form 5(g,, 4) =¢ ;

the corresponding production defined will be ¢, - ag,

Step2: if g e 4 i.e, ifq is the final state in FA, then introduce the production
g e

Asthese productions are obtained from the transitions defined for FA, the language accepted by
FAis alsoaccepted by the grammar,
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REGULAR GRAMMARS

After going through this chapter, you should be able to understand :

¢ RegularGrammar
o Equivalence between Regular Grammar and FA
¢ Interconversion

4,1 REGULAR GRAMMAR

Definition : The grammar G=(V, T, P, $)is said to be regular grammar iff the grammar is
right hinear or left linear,
A grammar G is said to be right linear if all the productions are of the form

A->wB and/or A —>w where 4, BeV and 4, o 7°.

A grammar G is said to be left linear if all the productions are of the form
A-sBw and/or A —w where 4, BeV and o7,

Example 1: The grammar
S - aaB | bbA | ¢
A - aAlb

isaright linear grammar. Note that  and string ofterminals can appear on RHS of any production
and ifnon - terminal is present on R. H. S of any production, only one non - terminal should be
present and it has to be the right most symbol on R. H. §.

Example 2:
The grarmmar
S ~» Baa|Abb]| ¢
A - Aalb

B -» Bb|a]e
isaleft linear grammar. Note that ¢ and siring of terminals can appear on RHS of any production
and ifnon - terminal is present on L. H. § of any production, only one non - terminal should be
present and it has to be the left most symbol onL. H. S.
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Note : For cach transition of the form 4 —y¢, make Aasthe ﬁnal state,
The FA corresponding to the transitions obtained is shown below :

So,the DFA M =(0.3, 8, g,, 4) where
Q={S, 4B}, L={a,b}
go=S8, d=1{S, 4, B}
§1s as obtained from the above table .

4.3 REGULAR GRAMMAR FROM FA

Theorem : Let i/ =(0,3,8,4,,4) bea finite automaton. If L is the regular language accepted
by FA, then there exists a right linear grammar G = (V, T, P, 8 ) so that L = L(G).

Proof : Let i =(Q,Z,8,4,,4) beafinite automata accepting I where
O ={do:q1r2,} |
= {d,ay,...0,}
Aregular grammar G= (V, T, P, § ) can be constructed where
V=i Go> Gis ooy 3
T=%
S=q,
The productions P from the transitions can be obtained as shown below :
Step 1 : For each transition of the form 8(g,, a) = ¢ g

the corresponding production defined will be ¢, — ag,

Step 2: If g ¢ 4 i.e,,if qis the final state in FA, then introduce the production
g —>e

Asthese productions are obtained from the transitions defined for FA, the language accepted by
FAis also accepted by the grammar,
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{ UNIT-3 J

CONTEXT FREE GRAMMARS

After going through this chapter, you should be able to understand :

Context free grammars

Left most and Rightmost derivation of strings
Derivation Trees

Ambiguity in CFGs

Minimization of CFGs

Normal Forms (CNF & GNF)

Pumping Lemma for CFLs

Enumeration properties of CFLS

51 CONTEXT FREE GRAMMARS

Agrammar G = (V, T, P, §) issaidto be a CFGifthe productions of G are of the form :

A->a whereae(VUT)*
Theright hand side of a CFG is not restricted and it may be null or a combination of variables and

terminals, The possible length of right hand sentential form ranges from Oto o ., 0 < | ot | <o,

As we know that a CFG has no context neither left nor right. This is why, it is known as
CONTEXT - FREE. Many programming languages have recursive structure that can be
defined by CFG's.

Example 1: Considerthe grammar G = (V, T, P, ) having productions:
S - aSa | bS| €. Check the productions and find the language generated.

Solution :
Let P:S - aSa (RHSisterminal variable terminal)
P,: § = bSh (RHSisterminal variable terminal)
B:§ -e¢ (RHSisnulstring)
Since, all productions are of the form 4 —» o, where & e(V U T)* hence G isaCFG.
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So, the final grammar to generate the language L= {w|n,(w)=n, (w)} isG=(V,T,KS)
where
V={8} , T={ab}
P={ §5¢
S aSh
S bSa

5§88
} S isthe start symbol

5.2 LEFTMOST AND RIGHTMOST DERIVATIONS

Leftmost derivation :

I£G=(7,T, P, 5) isa CFG and w ¢ L(G) thena derivation § = w is calledIefimost
derivation if and only ifall steps involved in derivation have leftmost variable replacement only.

Rightmost derivation :

IfG=,T,P,S) isaCFGand w € I(G), thenaderivation § :;> w is called rightmost

derivation if and only if all steps involved in derivation have rightmost variable replacement only.

Example 1 : Consider the grammar § — § + 8| § * 5| b. Find lefimost and rightmost
derivations forstring y = g * g + b.

Solution :
Leftmost derivation for w = g*4 4 5
§=8*§ (Using s - §*5)
2a*$ (The first left hand symbol is a, sousing § — 4)
2a*§+8  (Using§ - §+§,inordertoget 4 + b)
=a *a+S§  (Second symbol from theleftisa, sousing § - 4)

=a*a+b  (Thelastsymbol fromtheleflis b, sousing § — b)
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Rightmost derivation for y = g% g 4§
SAES (Usigy s
=8%5+5  (Since, intheabove sentential form second symbol from the rights * so,
we cannot use § — a|b. Therefore, weuse § - §+ §)
25%85+b  (Usings - b)
?S*a-+b (Using § - a)
:n;a*a+b (Using § = a)

Example 2 : ConsideraCFG S — b4|aB, 4 —» aS|addja, B -» bS|aBB|b . Find
leftmost and rightmost derivations for v = gaabbabbba -

Solution :
Leftmost derivation for y - gaabbabbba
S = aB (Using § — qB to generate first symbol of )

= auBB (Since, second symbol is a,s0 Weuse B —» aBB)
=> qaaBBB (Since, third symbol is a,soweuse B — aBB)
= aaabBB (Since fourth symbol is b, soweuse B — b)
= aaabbB (Since, fifth symbol is b, so we use B —» b)
=5 aaabbaBB (Since, sixth symbol isa, soweuse B — aBB)
= aaabbabB (Since, seventh symbol is b, sowe use B — b)

= aaabbabb$ (Since, eighth symbolis b, soweuse B — bS)
= aaabbabbbA (Since, ninth symbol is b, soweuse § — hA)

= aaabbabbba (Since, the tenth symbolisa,sousing 4 — a)
Rightmost derivation for \ = gaabbabbba

S = aB (Using § — aB to generate first symbol of w)

- aaBB (We need aas the rightmost symbol and second symbol from the left side, so we
use B - aBB)

= aaBbS (Weneedaasrightmost symbol and this is obtained from Aonly, weuse B — 5S)

= aaBbbA (Using § — b4)

= aaBbba (Using 4 - a)

= agaBBbba  (Weneed basthe fourth symbol from the right)

= aaaBbbba  (USing B - b)

= aaabSbbba  (Using B - b§ )
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Figure (c) Parse tree for y = ab Figure (d) Parse tree for w = ab
So, the given grammar is ambiguous.

541 Removal of Ambiguity

5.4.1.1 Left Recursion

A grammar can be changed from one form to another accepting the same language. Ifa grammar
has left recursive property, it is undesirable and left recursion should be eliminated. The left
recursion is defined as follows,

Definition :A grammar G is said to be left recursive if there is some non terminal A such that
4 =* Aa. Inotherwords, in the derivation process starting from any non - terminal A, ifa sentential
form starts with the same non - terminal A, then we say that the grammar is having left recursion.

Elimination of Left Recursion
The left recursion ina grammar G can be eliminated as shown below. Consider the A- production

ofthe form A->Aa|Aa Ay At | BBy | By e By
where s do not start with A. Then the A productions can be replaced by

A B 4| BA |BA oy 4
A a4 (A ] 2, A | €
Note that «,'s do not start with 4.

Example 1: Eliminate left recursion from the following grammar
E- E+T|T

T-T*F|F
F(E) |id
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5.5 MINIMIZATION OF CFGs

As we have seen various languages can effectively be represented by context free grammar. All
the grammars are not always optimized. That means grammar may consists of some extra symbols
( non - terminals). Having extra symbols unnecessary increases the length of grammar.
Simplification of grammar means reduction of grammar by removing useless symbols. The
properties of reduced grammar are given below :

1. Eachvariable i. . non - terminal) and each terminal of G appears in the derivation of some
wordinL,

2. Thereshouldnot be any production as .x - ¥ where X and Y are non - terminals.

3. If ¢ isnotinthe language L then there need not be the production ¥ —e.

We see the reduction of grammar as shown below :

Reduced grammar
Removal of Eliminationof Removal of
useless symbols & productions unit productions

551 Removal of useless symbols

Definition : Asymbol X is useful if there is a derivation of the form
S aXp = w

Otherwise, the symbol X is useless. Note that in a derivation, finally we should get string of
terminals and all these symbols must be reachable from the start symbol S. Those symbols and
productions which are not at all used in the derivation are useless.

Theorem 551 :LletG=(V, T P, S)beaCFG We can find an equivalent grammar
G, = (V,I;,B,,S) such thatforeachAin (VU T,) thereexists @ and fin (FUT)* and x in

T* forwhich §=' aAﬂ::'x.
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P T, Vi
- - S
S » a|Bb|Aa a.b S.A, B
A aB ab S,A,B
B—) alAa aab SvAsB
Theresulting grammar G, =(V,, T,,R,,S) where
v, = {S,A,B}
T, = {a,b}
B 5 A
S —» a|BbjaA
A -» aB
B -5 alAa

} S is the start symbol
such that each symbol Xin (¥, 1) hasa derivation of the form § =" aXg =" w.

5.5.2 Eliminating « - productions

Aproduction of the form 4 -» e is undesirable ina CFG, unless an empty string is derived from

the start symbol. Suppose, the language generated from a grammar G does not derive any
empty string and the grammar consists of e- productions. Such ¢ - productions can be removed.
An ¢ - production is defined as follows :

Definition1: LetG=(V,T,P,S)beaCFG Aproduction in P of the form

A-> e

is called an ¢ - production or NULL production. Afier applying the production the variable A is
erased. For each A in V, if there is a derivation of the form

4= e
then Ais anullable variable.
Example : Consider the grammar
S -  ABCa|bD

A - BC|b
B -» ble
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Step 2 : Construction of productions 7, . Add anon e- productionin Pto 7, . Takeall the
combinations of nullable variables in a production, delete subset of nullable variables one by one
and add the resulting productionsto P, .

Productions Resulting productions (2, )
S -  BAAB S -» BAAB|AAB |BAB|BAA|
AB|BB|BA|AA|A|B
A - 0A2 A - 0A2]02
A > 2A0 A - 2A0]20
| B —» AB B » AB|B|A
B -~ 1B B 1BJ|1

We can delete the productions of the form A > A. In P, , the production 3 -» B canbe
deleted and the final grammar obtained after eliminating ¢ -productions is shown below.
The grammar G, = (V,,T,,A,S) where

v, = {S,A,B,C.D}
T = {a,b,c,d}
P, = {S -» BAAB|AAB|BAB|BAA|AB|BB|BA|AA|A|B

A - 0A2]02|2A0]20
B » AB|A|IB|1
} S isthe start symbol

5.5.3 Eliminating unit productions
Consider the production 4 —» 8. The left hand side of the production and right hand side of the
production contains only one variable. Such productions are called unit productions. Formally,a
unit production is defined as follows.
Definition : LetG =(V, T, P, S)beaCFG Any production in G of the form

A—>B
where A, B ey isaunit production,

In any grammar, the unit productions are undesirable. This is because one variable is simply
replaced by another variable.
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[n a CFG, there is no restriction on the right hand side of a production. The restrictions are
imposed on the right hand side of productions ina CFG resulting in normal forms. The different
normal formsare :

1. Chomsky Normal Form (CNF)
2. Greiback Normal Form (GNF)

56.1 Chomsky Normal Form (CNF)

Chomsky normal form can be defined as follows.

Non - terminal —s Non - terminal Non - terminal
Non - terminal -» terminal

The given CFG should be converted in the above format then we can say that the grammar is in
CNF. Before converting the grammar into CNF it should be in reduced form. That means
remove all the useless symbols, ¢ productions and unit productions from it. Thus this reduced

grammar can be then converted to CNF,
Definition :
LetG= (V, T,P,S)beaCFG. The grammar G is said to be in CNF if all productions are
of the form |
A » BC
or
A 5 a

where A,Band CeV andaeT.

Note that ifa grammar s in CNF, the right hand side of the production should contain two
symbols or one symbol. Ifthere are two symbols on the right hand side those two symbols must
be non - terminals and if there is only one symbol, that symbol must be a terminal,

Theorem 5.6.1 : Let G=(V,T,P,8) be a CFG which generates context free language
without . We can find an equivalent context free grammar Gy =(¥,,T,7;,S) in CNF such that
L(G)=L(G,) i.e.,all productionsin G, are of the form

A » BC
or
A -5 a
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Thus, from (7), (8) and (9), the resultant grammar becomes ;
SV, S|V, lalb
b -
V= |
Vi §V,
V= SV,
V-1
Vo]

Now, in the resultant grammar (C), following is the production which is not in the form of CNF:
SUIY,

We can write this production as ;
=V (10)
i

Thus, from (10)and (11), the resultant grammar becomes :

| S >V, S Wy, | db
/-
V,=|
hott )
> 87,
V> S,
1
Vi ]
Thus, the resultant grammar (D) is in the form of CNF, which is the requited solution.

5.6.2 Greibach Normal form (GNF)

Greibach normal form can be defined as follows :

Non - terminal 5 one terminal. Any number of non - terminals

Example :
$- ad isin GNF
Sa isin GNF
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From the subtree shown in figure (b) , we get 5:', aSe O o 2, § z, andconsidering

the subtree shown in ﬁgure(c); we get S:‘> a OF § :, z

The subtree shown in figure (b) can be added as many times as we like in the parse tree
shownin figure (2). So, §= 2825222,

Therefore, string z can be written as uz;z,z,y for some uand y substrings of z. The substrings
2, and z, can be pumped as many times as we like. Replacing z;, z, and 2, by v, wandx

respectively, we get z=uvwxy and g B w'wy'y forsomei=0, 1,2, i
Hence , the statement of theorem is proved.

Application of Pumping Lemma for CFLs

We use the pumping lemma to prove certain languages are not CFL. We proceed as we have
seen inapplication of pumping lemma for regular sets and get contradiction. The result of this
lemmais always negative.

Procedure for Proving Language is not Context - free

The following steps are considered to showa given language is not context - free,

Step1:

Suppose that £ iscontext - free. Let 1 be the natural number obtained by using pumping lemma.
Step2:

Chooseastring xe L suchthat {+| >1 using pumping lemmaprinciple write 2= Uvwxy.

Step3:

Find suitable 5o that w 'wx 'ye & . Thisisa contradiction.So £ is not context - free,
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Case2:

veat and yco'. Let - ,» and pg=n!. Pumping v and X, (g+1) times, we get :
2= wq+lwxq+1y .

InZ,no, of a's will be n=p+n+p=nkn,

No.of b's inz' will remain n! +n. Hence, no. of a's =no, of b's in Z.

Similarly, in other cases, we can arrive at strings notas per specification of L.
Hence, L is not context free.

5.8 CLOSURE PROPERTIES OF CFLs

The closure properties that hold for regular languages donotalways hold for context free languages.
Consider those operations which preserve CFL.

The purpose of these operations are to prove certain languages are CFL and certain languages
are not CFL.

Context-free languages are closed under following properties.

1. Union

Concatenationand

Kleene Closure (Context-free languages may or may not close under following properties)
Intersection

Complementation
Theorem §.8.1 :1f 1, and L, aretwo CFLs, thenunion of £, and L, denotedby ; + I,

or [ u Ly isalsoa CFL.
Proof :
Let CFG G, = (v,,T,,P,S) generates Ly and CFG G, = (V,,T,,P,§) generates L,
and G=(V,T, P,S) generates L = L + L,.

We construct G as follows :

Step 1 : Rename the variables of CFG G,

[f¥, = {S,4,B,., X} thentherenamed variablesare S}, 4, B,...X;} . Thismodification
should be reflected in productions also.
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Step 2 ; Rename the variables of CFG G,

If ¥, ={S,4,B,.X} , then the renamed variables are {S,, 4y, By....Xp}. This
modification should be reflected in production also.

Step 3: We get of the productions of G; and G, to get productions of G as follows:

§ — 58y, where § and §, are starting symbols of grammars Gy and G, respectively and
) - productions and §, - productions remain unchanged.

r=Tufl,,
V = {Sl’Al’Bl""XI}U {SZ,A2,B2,n-X2}

Since, all productions of Gy and G, including § — S| 8, are in context-free form, so
GisaCFG.

Language generated by G :

L(G) = Language generated from (§; or S5)
= Language generated from S, or language generated from S,
= L(Gy) ot L(Gy) (Since, S and §, are starting symbols of G, and G, respectively,)
= I or L, (Since, G produces L, and G, produces L, )

=L+l

Hence, statement of the theorem s proved.

Example : Considerthe CFGs § - aSh|ab and § —» cSdd | cdd , which generate
languages Z; and L, respectively, Construct grammarfor L = I; + L.

Solution :
Let Gy generates 1 and G, generates Ly and G = (V,T, P, S) generates L = I + Ly.
Renaming the variables of G, and G, , we get

V,={(S,) and ¥,={S,}, where § - productions are § - aSyb | ab, and
5, -productions are §, —» ¢8,dd | cdd
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[ UNIT-4

PUSH DOWN AUTOMATA

After going through this chapter, you should be able to understand :

o Pushdownautomata

o Acceptance by final state and by empty stack
o Equivalence of CFL and PDA

o Interconversion

L]

Introduction to DCFL and DPDA

6.1 INTRODUCTION

APDA s an enhancement of finite automata (FA), Finite automata with a stack memory can be
viewed as pushdown automata. Addition of stack memory enhances the capability of Pushdown
automataas compared to finite automata. The stack memory is potentially infinite and it is a data
structure. Its operation is based on last - in - first - out (LIFO). It means, the last object pushed
onthe stack is popped first for operation. We assume a stack is long enough and linearly arranged.

We add or remove objects at the left end.

6.1.1 Model of Pushdown Automata (PDA)

A model of pushdown automatais shown in below figure. It consists of a finite tape, areading
head, which reads from the tape, a stack memory operating in LIFO fashion.

Input Tape
Reading _,{\
Head
>
Finite State Control * e Stack

FIGURE : Model of Pushdown Automata
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Thete are two alphabets ; one for input tape and another for stack. The stack alphabet is denoted
by r and input alphabet is denoted by 5 . PDA reads from both the alphabets ; one symbol
from the input and one symbol from the stack.

6.1.2 Mathematical Description of PDA
A pushdown automata s described by 7 - tuple (Q,E.1,8,4q,2q,F) , Where
1. Q isfiniteand nonempty setof states,
2.y isinputalphabet,
3. isfinite and nonempty set of pushdown symbols,
4, g isthe transition function which maps
From 0 x (Z U {g}) x T to(finitesubset of) 0 x I'*,
5. g,¢0,isthestarting state,
6. Z, €T ,isthestarting (top mostorinitial) stack symbol, and
7. F ¢ Q,isthesetoffinal states.

6.1.3 Moves of PDA
The move of PDA means that what are the options to proceed further after reading inputs in

some state and writing some string on the stack. As we have discussed earlier that PDA is

nondeterministic device having some finite mumber of choices of moves in each situation.
The move will be of two types :

1. Tnthefirsttype of move, an input symbol is read from the tape, it means, the headis advanced
and depending upon the topmost symbol on the stack and present state, PDA has number of
choices to proceed further.

2. Inthe secondtype of move, the input symbol is not read from the tape, it means, head is not
advanced and the topmost symbol of stack is used. Thetopmost of stack is modified without
reading the input symbol. It is also knownas an ¢ -move.

Mathematically first type of move is defined as follows.

8(9,8,2) ={( Py )W P3@g ) Py, )}  WheTE for 1< i < nyq,p, are states in
Q,ael, Zeland ael*,
PDA reads an input symbol a and one stack symbol Zin present state ¢ and for any value(s) of
i, enters state p,, replaces stack symbol Z bystring &, e * ,and head isadvanced one cell on
the tape. Now, the leftmost symbol of string o is assumed as the topmost symbol on the stack.
Mathematically second type of move is defined as follows.
8(9,6,2) = {( @ (P23 @2 s (Pps @)} , where for 1 < i < n,q, p, are states in
Qacl, Zel,and a eT*.
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=
=
=

. TR — 4
| | Z | A
250
Hq : . pl‘—. A .C.M

FIGURE(c): Move of PDA

6.1.4 Instantaneous Description (ID) of PDA

LetPDA M = (0,513, 4, Zy,F) , thenits configuration ata given instant can be defined by
instantaneous description (ID). An ID includes state, remaining input string, and remaining stack
string (symbols). So, anID s (¢,x,e) , where g € Q,xe Z*, @ e I'*.

The relation between two consecutive IDs s represented by the sign I——- ;

We say (¢,ax,Zp) 'xr(P,x,aﬁ) if § (g, @, Z) contains (p,c), where Z,f,0eT*,a
maybenullora €2, p,q € Q for M

Thereflexive and transiive closue ofthe relation |57 isdenotedby [
Properties :
1. If(q,x,a)ﬁ(p,e,a),where ael*xel* and p,g €Q,thenforall y X *,

4,5, ),

2, If (q,xy,a)l;}(p,y,a), where @ el*x,pel*, and pgq €@, then
(5,0 pea), and

300 (@x)lpe ), where a fel*xelt, and pgeQ, then

(g, % 7)]:}(11,6,/9}’), where y eI' *
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6.1.5 Acceptance by PDA

Let MbeaPDA, the accepted language is represented by N(M). We defined the acceptance by
PDA intwo ways.

L. Let M=(Q,LT4,q,,2,,F),then N(M)is accepted by final state such that
N(M )={w=(qo,w,20)‘ﬁ(q,,e,ﬂ), where ¢ € 0, weZ*Z,,fel'*, and

(I;EF}

Itis similar to the acceptance by FA discussed earlier. We define some final states and
the accepted language N(M) is the set of all input strings for which some choice of moves
leads to some final state.

2. Let M =(Q.2L.0,g0,Z,),thenN(M)is accepted by empty stack or null stack such
that N(M ) = {Wi(‘]mw,zo)‘u;(%e,e), where D E Q,W 62*}
The language N(M) is the set of all input strings for which some sequence of moves
causes the PDA to empty its stack.

Note : Ifacceptance is defined by empty stack then there is no meaning of final state and itis
represented by ¢ .

Example : consider a PDA M = ({g,q,,0,}1,{a,c}10.2;},0,40,Z0{4,}) Shown in
below figure. Check the acceptability of string aacaa.

a, Zy, az, a,a,€

a,a, aa
FIGURE : PDA accepting {a"ca" :n > 1}

Note : Edges are labeled with Input symbol, stack symbol, written symbol on the stack.
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Solution :
The transition function § is defined as follows :

0(qe:a,20) = {(90,0Z,)} »
8(99,2,0)={(gp,0a)},
d(go,c,a)={(g1,0)} »
8(q1,a,0) ={(g,,€)}, and

5(‘]1 »G’Zo) = {(qZ’ZO)}
Following moves are carried out in orderto check acceptability of string aacaa :

(4, 0acaa ,ZO)|-(q0,acaa saZy)
~(q,,caa ,0aZ )
—(q,,0a,aaZ ;)
~q1,0,0Z )
-0,6,20)

—4,.€,2,)

Hence, (4,.,aacaa ,Zo)lﬁ(qz,e,lo) .
Therefore, the string aacaa is accepted by 37

6.2 CONSTRUCTION OF PDA

In this section, we shall see how PDA's can be constructed.

Example 1 : Obtain a PDA to accept the language (M) = { wCw’| we (a+5)*} where

prt is reverse of W.
Solution:

Ttis clear from the language L(M) = { wCw"} thatif v = abb

then reverse of w denoted by j# will be % - pp, and the language L willbe ¢y,
i.¢., abbChba which is a string of palindrome.
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To accept the string :

The sequence of moves made by the PDA for the string aahChaa is shown below.
Initial ID

(9 aabCbaa, Z)) o (qy, abChaa, aZ;)
F (g, bCbaa, aaZ;)
(o, Chaa, bacZy)
|- (gy,baabaaZ;)

|- (q00,8aZ;)
1= (9002,
l" (ql ’E’ZO)
F (g eZ)
( Final Configuration )
Since g, isthe final state and inputstring is € in the final configuration, the string aabChaa
isaccepted by the PDA.,
To reject the string :
The sequence of moves made by the PDA for the string aabCbab is shown below,
Initial [D
(g aabCbab, Z,) F (gy, abCbab, aZy)

(995 bChab, aaZ,)
= (g0, Chab, baaZy)
= (g, bab, baaZ;)
= (g ab, auzy)
(g b ay)
( Final Configuration )
Since the transition &(q;, b, a) isnot defined, the string aabChab s not a palindrome and
the machine halts and the string is rejected by the PDA.

Example 2 : Obtain a PDA to accept the language L = { a" "} n 1} bya final state.
Solution :

The machine should accept n number of a's followed by n number of b's.
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6.3 DETERMINISTIC AND NONDETERMINISTIC PUSHDOWN AUTOMATA

In this section, we will discuss about the deterministic and nondeterministic behavior of pushdown
automata,

6.3.1 Nondeterministic PDA (NPDA)

Like NFA, nondeterministic PDA (NPDA) has finite number of choices for its inputs. As we
have discussed in the mathematical description that transition function § whichmaps from

0 x (X v {e}) x T to(finite subset of ) 0 x I’ *, Anondeterministic PDA accepts an input if

asequence of choices leads to some final state or causes PDA to empty its stack. Since, sometimes
it has more than one choice to move further on a particular input ; it means, PDA guesses the
right choice always, otherwise it will fail and will be in hang state.

Example : consider a nondeterministic PDA M = ({q,},{a.b}.{a,0,2},0.4,,2.4), for the
language 1, = {a"p" : n 2 1} ,where § is defined as follows:
(43,6, 2) = {(40,b),(qy,aZb)} (Two possiblemoves forinput ¢ onthetapeand Zon thestack),

8 (q0,0,8)={(g,€)} s and & (gy,b,b)={(g0,€)}
Check whether string w = gabb is accepted ornot ?

Solution : Initial configurationis (g, aabb, Z). Following movesare possible :

(y, aabb, ab) =~ (gs,abb,b) =+ ()
(qo,aabb,Z) {
(qy,aabb,aZb) ~~w (g,,abb,Zb)

(gy,abb,abb) (go;abb,aZbb)
(‘]o,bb.bb) (qo,bb,be)
(q0)b1 b)
(d,bb,abbb)  (40,bb,aZbbb)

(90,€,€)

0 9
Hence, w = aabhis accepted by empty stack.
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6.4 ACCEPTANCE OF LANGUAGE BY PDA
The language can be accepted by a Push Down Automata using two approaches,

1. Acceptance by Final State : The PDA accepts s input by consuming it and then itenters
in the final state,

2. Acceptance by empty stack : On reading the input string from initial configuration for
some PDA, the stack of PDA gets empty.

641 Equivalence of Empty Store and Final state acceptance

Theorem:
If M, =(0,,%,T,,8,,p,,Z,,4) isaPDA accepting CFL L by empty store then there
existsPDA M, =(0,,2,1',,8,p1,Z,,{g,}) whichaceepts L by final state.

Proof :
First we construct PDA M, based onPDA M, and then we prove that both accept L.

Step 1: Construction of PDA )/, based on given PDA i/,

3 is same for both PDAs. We add a new initial state and a new final state with given PDA .

0,0, =0,V {p, vy

The stack alphabet T', of PDA w, contains one additional symbol Z, with T .

So, I, =T, U{Z,}
The transition finction &, containsall the transitions of given PDA. 1, and twoadditional transitions
(Ry and Ry) asdefined as follows:

R :6)(pyi€,2y) =Py 2\2,)},

Ry:d,(q,a,2)=6,(q,0,2) forall (¢,0,Z)in Q, x (£ v {e}) x T,

(the original transitions of u, ), and
Ry:6,(9:€,2,)={(q,,€)} forall g € @,

Bythe Ry, v, moves fromitsinitial ID (p,, e, Z,) tothe initial D of 1, By Ry, &, usesallthe
transitionsof , after reaching the initial ID of i, and by using Ry , reaches the final state ¢ .
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The block diagram is shown in below figure.

€,2,,24,2, €,2,,4a
-—’<Pz } PDA M, ol 97

FIGURE : Block diagram of PDA u,

h 4

Step 2 : The language accepted by PDA M, and PDA M,

The behaviorsof M, and M, are same except the two by e -movesdefinedby Ry and Rj.
Letstring w ¢ [ andaccepted by M, , then

(plawazl)‘ﬂ'r(q!e7e) thre q € Q] (R%ll" ])
For M, , the initial IDis (p,,w,Z,) and it can be writtenas (p,,ewe,2,). So,

(PzaGWG,Zz)IE (P1sW,Z,Z,) (This initial D of M,)
l'i.;_; (‘Leazz) (b)' Ry and Result 1)

h;‘l(qf’eaa) ael”; (By R3)

Thus, if M, acceptsw, then M, also accepts it.
Itmeans L(M,)c L(M,) (Result 2)
Letstring w ¢ L andaccepted by PDA M,, then

(pewezy) i (PewliZy)  (ByR)  (Result3)

waeZ)  ByR) (Result 4)

E(qfiesa) ael‘; (By R3)

Note : The Result 3 is the initial ID of ,. The Result 4 shows the empty store for M, if
symbol Z, isnot there.
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For M, theinitial IDis (p,, w,Z,)

S0, (P1,%,Z,) 57~ (9,€,€), whete g € 0, (ByResult 3 and Result4) Thus, if M, accepts
w,then M, also accepts i,
[t means, L(M,) ¢ L(M,) (Result 5)

Therefore, .= L(M,)= 1(M,)  (From Result2and Result 5)
Hence, the statement of theorem is proved.

Example: Consider anondeterministic PDA 1 1= ({q0}, {a,b}, {a,b,8}, 8,4,,5,4) Which

acoepts the language /. = {a"p" : n > 1y byempty store, where § is defined as follows
6(gy,,8) = {(gp,ab), (g,,a85)} ~ (Two possible moves),
d(g0,a,0)={(g,€)}, and & (gy,b,b) = {(gy,€))
Construct an equivalent PDA. M, which accepts L in final state and check whether string
w = aabb is accepted or not ?

Solution : Following moves are carried out by PDA 3, in order to aceept yy = agbb

(gg>2abb,8) — (qy, aabb,aSh)
—(q,,abb, Sh)
—(q,,abb,abb)
—(qy,bb,bb)

'—(qo ’ b’ b)

B& (q0’€9€)

Hence, (%,aabbas) ,\;l (qo,e,e)
Therefore, y = qqbb isacceptedby M .
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[ UNIT-5 ]

TURING MACHINES

After going through this chapter, you should be able to understand :

Turing Machine

Design of TM

Computable functions

Recursively Enumerable languages
Church's Hypothesis & Counter machine
Types of Turing Machines

7.1 INTRODUCTION

The Turing machine is a generalized machine which can recognize all types of languages viz,
regular languages ( generated from regular grammar ), context free languages ( generated from
context free grammar ) and context sensitive languages (generated from context sensitive grammar).
Apart from these languages, the Turing machine also accepts the language generated from
unrestricted grammar. Thus, Turing machine can accept any generalized language. This chapter
mainly concentrates on building the Turing machines for any language.

7.2 TURING MACHINE MODEL

The Turing machine model is shown in below figure . It is a finite automaton connected to read -
write head with the following components :

. Tape
. Read - write head
. Control unit

Tape

LeJafafaf..Iblbfb]...T |
Read-write Head
Control
Unit

FIGURE : Turing machine model
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Tape : Itisatemporary storageandis dividedinto cells. Fach cell can store the information of
only one symbol. The string to be scanned will be stored from the Jeft most position on the tape.
The string to be scanned should end with infinite number of blanks. -

Read -write head : The read - write head can read a symbol from where itis pointingoand |
it can write into the tape to where the read - write head points to.

Control Unit : The reading/writing from / to the tape is determined by the control unit. The
different moves performed by the machine depends on the current scanned symbol and the
currentstate, The read - write head can move either towards Jeft or right e, movement can be
on both the directions. The various moves performed by the machine are ;

1. Change of state from one state to another state
2. The symbol pointing to by the read - write head can be replaced by another symbol.
3. Theread - write head nay move either towards feftor towards right.

The Turing machine can be represented using various notations suchas

’ Transition table
+  Instantancous description
. Transition diagram

7.2 Transition Table

The table below shows the transition table for some Turing machine. Later sections describe how
o obtain the transition table.

8 | Tape Symbols (1)
States a b X Y B
% @B | - * g, B) | -
o | @aR | @hD| - @ hR | -
@ Galy | - G X. B | @b D | -
% . : . @ LR | @nBB
0@ ) . . ;
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Note that for each state q, thete can be acorresponding entry for the symbolin 1, In this table
the symbols a and b are input symbols and can be denoted by the symbol 5, Thus S¢ T

excluding the symbol B, The symbol B indicates a blank character and usually the string ends
with infinite number of B's1, ., blank characters, Theundefined entries indicate that there are no
~transitions defined or there can be a transition fo dead state. When there is a transition to the

dead state, the machine halts and the input string is rejected by the machine. It is clear from the
table that

0% T(Ox Tx{LR})

where 0= {409, 5 t4}; 2={a, b}

T={a b XV B}

g, istheinitial state; B isa special symbol indicating blank character

F ={g,} whichisthe final stae,
Thus, a Turing Machine M can be defined as follows.
Definition: The Turing Machine M =(Q.5.T,8,4,,8,F ) where

(Q is setof finite states

3 isset of input alphabets

I issetoftape symbols

¢ istransition function @ xI'1o (Q xI'x{L,R})

g, 18the initial state ,

Bisaspecial symbol indicating blank character

F 0 1ssetof final states,

7.2.2 Instantaneous description (ID)

Unltke the ID described in PDA, in Turing machine (TM), the ID is defined on the whole string
{ moton the string to be scanned) and the current state of the machine,

Definition

AnIDof T™ isastringin aqp, where qisthe current state, « f is the string mads from tape
symbols denoted by 1'i.¢., ¢ and f e I'*. Theread - write head points to the first character of
the substring 8, The initial ID is denoted by ¢o8 where qisthe start state and the read - write

head pointsto the first symbol of ¢ from left. The final ID is denoted by 4B where ge F is
the final state and the read - write head pointsto the blank character denoted by B,
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Example : Consider the snapshot of a Turing machine
Tape
(o [ oa | ool og [l 2s | 2 2 | ] oo |

Read-write Head r

 Control
Unit

Inthis machine, each a e T' (1.¢, each o, belongsto the tape symbol). In this snapshot, the
symbol a; s under read - write head and the symbol towards left of g, 1.€., g, isthe current

state, Note hat, in the Turing machine, the symbol immediately towards left of the read - write
head willbe the current state of the machineand the symbol immediately towardsright of the
state will be the next symbol to be scanned, So, in this case an D is denoted by

a0, 9 Os By Ogronns
whete the substting @ ez, towards left of the state g, is the left sequence, the

spapshotof example. .
Suppose, there is a transition &gy, @) = (45,4, B)

Tt means that ifthe machine is in state ¢, and the next symbol fo bescanned is as, then the
machine enters info state g, replacing the symbol a; by b and R indicates thatthe read - write
headl ismoved one symbol towards right, The new configuration oblained is

0y 030, 0y 150400y g

This can be represented by a 10V 5 4,0,0,0, 454500y, |~ 13830 by 13050 Bgo

Sirilarly ifthe current ID of the Turing machite is ,a,a,0, 4,050,016
and there is 2 transition

6(¢y, 95 )=(g,.0,,L)
means fhatif the machin isin state ¢, and the nextsymbol to bescanned s ag, thenthe machine
enters into state ¢, replacing the symbol a; by ¢, and L indicates that the read - write head is
toved one ymbol towards left, The new configuration obiained is

0104 Ay llgarsre
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This can be represented by amove as  a,0,0,¢,4,4.050,85.. |* 40,0;0,4,C,050 0g.rn

This configuration indicates that the new state is ¢, , the next input symbo to be scanned
is g, . The actions performed by TM depends on

1. The current state.

2. The whole string to be scanned

3. The current position of the read - write head
The action performed by the machine consists of

1, Changing the states from one state to another

2. Replacing the symbol pointed to by the read - write head

3. Movement of the read - write head towards left orright.

7.2.3 The move of Turing Machine M can be defined as follows

Definition : Let M =(03T.6.4,8F) be a TM, Let the ID of M be
Uy ey G gy ool WhETE 05 €T fOT 1€ jSn-1, ¢ €0 isthe current stateand 4, as
the next symbol to scanned, Ifthere is a transition &g, a,) =(p, &, B

thenthe move of machine Mwill be a,a,8;0.a, 1§04 0000.0, | =018yl 1 BP3 (gt

[fthere is a transition 3. a.) =(p,b, )
then the move of machine M will be

7.24 Acceptance of a language by TM
The language accepted by TM is defined as follows,

Definition ;

Let M = (Q,5.1',8.4,,8,F) bea TM. The language L(M) accepted by M is defined as
L(M) = {wigywi- *ay p a, Where weS* pe F and oy, 0y € T}
i.e., setofall those words win x+ which causes M to move from start state g, tothe final
state p. The language accepted by TM is called recursively enumerable language.

The string w which is the string to be scanned, should end with infinite rumber of blanks.
nitially, the machine will be inthe start state ¢, withread - wrilehead pointing to the first symbol
- ofwitomleft Afler some sequence of moves, if e Turing machine enters info the final state and
halts, then we say that the string wis accepted by Turing machine.
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7.2.5 Differences between TM and PDA
Push Down Automa :

L

A PDA is a nondeterministic finite aufomaton coupled with a stack that can be used to store
astring ofarbitrary length,

2. 'The stack can be read and modified only at its top.

6.

%

A PDA chooses its next move based on its current state, the next input symbol and the
symbol at the top of the stack.

There are two ways in which the PDA may be allowed to signal acceptance. Oneis by
entering an accepting state, the other by emptying its stack.

D consisting of the state, remaining input and stack contents to describe the "current condition”
ofaPDA,

The languages accepted by PDA's either by final state or by empty stack, are exactly the
context - free languages.

A PDA languages lie strictly between regular languages and CSLs,

Turing Machines :

L.

The TM is an abstract computing machine with the power of both real computers and of
other mathematical definitions of what can be computed.

2. TM consists of afinte - state control and an infinite tape divided into cells.

T™ makes moves based on its current state and the tape symbol at the cell scanned by the
tapehead,

The blank is one of tape symbols but not input symbol,

TM accepts its input if it ever enters an accepting state.

The languages accepted by TM's are called Recursively Enumerable (RE) languages.
Instantaneous description of TM describes cument configumtion ofa TV by finife- lengthsiring,
Storage in the finite control helpsto designa T™ for a particular language.

A'TM can simulate the storage and control of 2 real computer by using one tapeto store all
the locations and their contents,

7.3 CONSTRUCTION OF TURING MACHINE (TM)

Tn this section, we shall see how TMs can be constructed.
Example 1: Obtain a Turing machine fo accept the language L = {0 "1" {21}

Solution : Note that n number of ('s should be followed by n number of 1's, For thislet us
take anexample of the string 1 = 6og01111. The string w should be accepted as it has four zeroes
followed by equal number of I's.
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General Procedure :

Let ¢, bethestart state and let the read - wrife head polnts tothe first symbol of the string o be
scanned. The general procedure to design TM for this case is shown below .

. Replacotheleftmost0by X and change thestateto g, and then move the read - write head

sowardstight. This is because, afterazero s replaced, e have to replace the comesponding
1 50 that number of zeroes matches with mumber of 1's.
7 Search for the lefimost | and replace it by the symbol Y and move towards ieft (soasto
obtainthe leftmost 0 again). Steps 1 and 2 canbe repeated.
Consider the situafion _
XX00YY1l

1

T
whete firsttwo 0's are replaced by Xs and firsttwo 's are replaced by Y. Inthis situation, the
read - write head pointsto the Teft most zero and the machine is in state ¢, . With fhisasthe

configuration, now letusdesign the ™.
Step1: Tnstate g, replace 0by X, change the state to ¢, and move the pointer towards

right. The transition for this can be of the form
5@(» 0} = ((h&l X« R)

The resulting configurationis shown below.
XXXOYYH

"
t
Step 2 : Instate ¢;, we have o obiain the left - most | and replaceitby Y. For his, let us move

the poirterto point to lefimost one. Whenthe pointerismoved owards 1, the symbols encountered
may be 0 and Y, Errespective what symbolis encountered, replace 0 by 0, Y by ¥, remain in state

g, and movethe pointer towards tight, The transitions for this can be of the form
E(QHG)m(QIs{}sR) _
5(%5}’)*(@]’}’!}2) .

When these transitions are repeatedly applied, the following configuration s obtained.

XXX0YY1L

1
‘A
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Step 3: Instate g,, if the input symbol to be scanned isa 1, then replace 1 by Y, change the
state 1o ¢, and move the pointer towards left. The transition for this can be ofthe form
Flgyl)=(g,,7 L)

and the following configuration is obtained.
XXX0YYYI

1

12
Note that the pointer is moved towards left. This is because, a zero is replaced by X and the
corresponding 1is replaced by Y. Now, we have to scan for the left most 0 againand so, the
pointer was move towards left.

$tep 4 : Note thatto obtain leftmost zero, we need f0 obtain right most X first. So, wescanfor -

the right most X. During this process we may encounter Y's and 0's . Replace Y by Y, 0 by 0,
remain i state g, only and move the pointer towards left. The transitions for this can beofthe

form §(qzv}r)“(QEiYaL)
5(4230):(‘?2 sGsL)
The following configurationis obtained
XXX0YYY1
::
92

Step5: Now, we have obtained the right most X. To get lefimost 0, replace X by X, change
the stafe fo ¢, and move the pointer towardsight. The transition for this can be of the form
5(q,,X )=(g5:X ,R)

and the following configurationisobtained
XXX0YYY!

1

g

Now, repeating the steps 1 through 5, we get the configuration shown below:
XXXXYYYY

i
93
Step 6 : Instate g, , ifthe scanned symbol is Y, it means that there ate no more 0's, If there are

1o 7etoes we should sce that there are no 1's. For this we change thestate o g, replace Yoy Y
and move the pointet towards right. The transition for this can be of the form
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§(qq:t )=(g,¥ . R)
and the following configuration is obtained
AXXXYYYY
t
VE
Instate g,, we should see that there are only Ys and no more 1's. So, as we canreplace Yoy Y

and remainin g, only. The transition forthis can be of the form

5(‘33!}’)*(‘33 I\ R}
Repeatedly applying this transition, the following configuration is obtained .
XXXXYYYYB
| 5
E
Note that the string ends with infinite number of blanks and so, instate g, if we encounter the
symbol B, means that end of string is encountered and there exists naumber of O's ending withn -
numberof 1's. So, instate g, , on input symbol B, change the state to ¢_, replace BbyB and
move the pointer towards right and the string is accepted. The transition for thiscanbe of the
form 0(45.8)=(¢,.B.R)

The following configuration is obtained
XXXXYYYYRB

i
&

So, the Turing machine to accept the language 1 ={¢" i n21}
is given by M =(0.51,8,4,B.F)
where
0=gntuis}; I={01}; T={0LXY 5]
g, €0 Isthe start state of machine; B eI isthe blank symbol,
F ={q,} isthe final state.
§ isshown below.
g O) = (g X, R)
8(9:,0)=(4,,0,R)
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The transitions can also be represented using tabular form as shown below,

§(q1,Y)={q,,Y ,R)
§(gy1) = (g2 ,L)
§(q,,Y ) =(q,1 1)
8(q4,0)={q,,0.1)
§(g9.X)={go: X R)
8{gs.Y)=(g5.7 . R)
(g5, Y)=(g5.Y . R)
§(g5,8)=(g4,8.8)

6 Tape Symbols (I}

States 0 1 X ¥ B

4 @ X.R) | - 2 gt R | -

& (9,:0,8) (@ 1. D) @1 R)

f (0;:0.L) | - X B | @D -

e : B (3, 1, R (g4, B, R)
¢ i : : : )

The transition table shown above can be represented as transition diagram as shown below:

YIYR YL
~OUOR ol

To accept the string .

The sequence of moves or computations (IDs) forthe string 0011 made by the Turing machine
are shown below:
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Titial [D :
goho11 |- X 011 |~ X 0g,11

b Xy, 0Pt L g XOY
- X011 FooXig
- Mg - XYY
- X0 - gt
o X&Yg! Xty
P ATy,

{ Final ID)

Example 2 : Obtain a Turing machine to accept the language L (M) = { 0" 1"2" [n2 1}

Solution : Note that n number of 0'sare followed by n mumber of {'s which intum are followed
by n number of 25, In simpleterms, the solution to this problem can be stated as follows:

Replace first nnumber of O's by X's, next n number of 's by Y's and next n number of 25by
7', Consider the situation where in firsttwo ('s are replaced by X's, next immediate two 1's are
replaced by V's and next two 2's are replaced by Z's as shown in figure 1 ).

XX00YY11ZZ22 XXXOYYHZZ22 XXXOYY11ZZ222
1 ? 1
g 4 4
(@) (b) ©

‘ FIGURE 1 : Various Configurations
Now, with figure 1(a). a as the current configuration, let us design the Turing machine. [n

 date g, if the next scanned symbol is 0 replace it by X, change the stale to g, and move the

pointer towards right and the situation shovn in figure 1(b) isobtained . The transition for this can
beof the form

(g0, 0)=(g;, 4,R)

Instate ¢, wehave to search forthe leftmost 1. Itis clear from figure 1(b) that, when we
are searching for the symbol 1, we may encounter the symbols 0 or Y. So, replace 0 by0,Yby
Y and move the pointer towards right and remain in state g, only. The transitions forthis can be
of the form 5(g.0)=(4,,0,R)

d{g..Y )={q;,T.R)
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The configuration shown in figure 1(c) is obtained. lnstate g,,0n encountering | change the
state 0 ¢, replace 1 by Y and move the pointer towards right. The transition for this can be of
the form

5(?13)“(@'25}’;}2)
and the configuration shown in figure 2(a) is obtained

XXXO0YYY12Z22 XXXOYYY1Z2722 XXXOYYY1ZZ22
) 1 ?
b 4 s
@ (b) ©)

FIGURE 2 : Various Configurations
In state g,, we have {o search for the leftmost 2. Itis clear from figure 2(a) that, when we
are searching for the symbol 2, we may encounter the symbols 1 o Z. So, replace 1 by 1, Z by
7 and move the pointer towards right and remain in state ¢, onlyand the configuration shownin
figure 2(b) is obtained. The transitions for this can be of the fortn
§(g92,1)=(42,L,R)
8(q,,2)=(q::4 R)
Instate g, , onencounteting 2, change the stateto g, replace 2 by Z and move the pointer
towards left. The transition for this can be of the form
8(g,.2)={g4.2,L)
and the configuration shown in figure 2(c) is obtained. Once the TM is instate ¢,, it means that

equal number of 0's, 1'sand 2's are replaced by equal number of X's, Y'sand Z's respectively.
Atthis point, next we have to search for the rightrnost X to get leftmost 0. During thisptocess, it
is clear from figure 2(c) that the symbols such as Z's, 1,5, Y's, 0's and X are scanned respectively
one afterthe other, So, replace Z by Z,1by 1, Yby Y, 0 by 0, move the pointer towards leftand

stay in state g, only. The transitions for this can be of the form
§(95,2)=(q5,2,L)
8{g;1)=(q3:, L)
8(gs.Y )=(q; JF ol
8{¢;:0)=(¢5.0.1)
Only on encountering X, replace X by X, change the state 10 g, and move the pointer
towards right to get leftmost 0. The transition for this can be of the form
§(g3,X)‘~=(qﬁ,X,R)
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All the steps shown above are repeated till the following configuration is obtained,
XXXYYYYZZIZ

T
%

In state g,, ifthe input symbol is Y, it means that there areno (s . If there are no U's we
should se that there are no 1's also. For this to happen change the state o g, replace Yoy Y
and move the pointer towards ight, The transition for this can be of the form

5(40;}’)*(‘?4 LR}

Tnstate ¢, search for only Y's, replace Y by Y, remain instate g, only and move the pointer -

towards right, The trapsition for this can be of the form
| d(ge. 0 )=(g4,¥ ,R)

Instate g, , if weencounter Z, it meansthat there are no 1's and so we should see fhat there

~ areno 2'sand only Z's should be present. So, on seanning the first Z, change the state to 4,
replace Z by Z and move the pointer towards right. "The transition for this canbe of the form
8(¢4:2)=(g5.2,R)

But, instate g, only Z's should be thereand no more?2's, So, as long as the scanned symbol
is 7, temain in state g, , replace Z by Z and move the pointer towards tight. But, once blank
symbol B is encountered change the state o ¢, replace B by B and move the pointer towards
right and say that the input string is accepted by the machine. The transitions for this can be of the
form 8(gs5:2)=(95,Z k)

5(q5,B)=(q¢.B.R)
where g, isthe final state, '
So, the TM to recognize the language L={0"I"2"{n21} i8 givenby
M =(0,5,T,0.4,8,F)
where
0 ={00disdsfindndsdsts  E=0 b2}
r={0,12X 1 Z B); g, istheinitial state
Bis blank character; F={gq. }isthefinal state
5 isshown below using the ttansition tmhle,
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r
States | 0 1 2 L X X B
g, 14,,%R g, LR
g |4,06R | g, Y%R g, YR
g, 2., LR lg, . ZL| g, ZR '
g, |40L 1g,LL g,,ZL1g,, YL g, X.R
g q.LR g, YR
%, LR (g5 B, B)
4,
The transition diagram for this can be of the form
YIYR  ZZR

MR R oL

Example 3 : Obtaina TMtoacceptthe language L = { | w & (0+1)¢} confainingthesubsting001.

Solution : The DA which accepts the language consisting of strings of 0's and 1's having a sub
string 001 is shown below :

The transition table for the DFA is shown below :
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0 ]
% 4 %
9 & (L
g, 4 4,
g, 4, 4,

W hive seen thatany language which is accepted bya DEA s regular. Asthe DFA processes
the input string from leftto ight in only one direction, TM also processes the inputstring inonly
one direction (unlike the previous examples, where the read - write header was moving i both
the directions), For each scanned input symbol  cither Oor 1), in whichever state the DFA was
in, TM also enters info the same states on same inut symbols, replacing 0 by O and { by Land
the read - write head moves towards tight. So, the trangition table for DFA and TM remains
same  the format may be different,Itis evident in'both the transition tables). 8o, the transition
tablefor TV to tecognize the language consisting of O's and I's with a substring 001 is shown

helow:
{ 1 B
4, q},O,R I I,R s
Q1 %SOSR chl%R
g, R LR
4, qgsO:R q;,s]:R q,‘,B,R
4
The TMisgivenby |
M m(Q,E,r,(s,%,B,F)
where

0=1{4y 402954,
T={0,1}; §- isdefined already

g, Istheinitial state; Bblank character

F={¢, }isthe final state

The transition diagram for this s shovm below,
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Exampled4: Obtaina Turing machine toaccept the language containing strings of (s
and 1's ending with 011,

Solution : The DFA which accepts the language consisting of strings of0's and 1's ending
with the string 001 is shown below :

The fransition table for the DFA 13 shown below:

) 0 1
4, 4, 9,
9, g g,
¢ | . 4 4,
g, 4 g

We have seen that any language which is accepted by a DFA is fegular, As the DFA processes
the input string from left to right in only one direction, TM also processes the input string in only
onedirection, For each scanned input symbol ( either 0 or 1), 1n whichever state the DFA was
in, TM also enters into the same states on same input symbols, replacing 0 by O and [ by | and
the read - write head moves towards right. So, the transition table for DFA and TM remains

same { the format may be different. It is evident in both the transition tables). So, the transition

table for TM to recognize the language consisting of ('s and 1's ending with a substring 001 is
shown below ; o
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§ 0 ! B

q, q,0.R ¢, LR

g, g0,k g, LR

4, g, 0.k g, LR

g, g,,0,R g, LR g, B, R
4,

The TMisgivenby M =(0.L.T.8,4.8.F)
where
0= {4y 40y} 5 2=011 5 T={01}
5 - s defimed already
¢, isthe nitial state ; B doesnot appear
F={ g, }isthe final state
The transition diagram for this is showm below:

1R

Example 5 Obtaina Turing machine to accept the language
L={wlwis evenand L= {ab}}
Solution :

The DFAtoacceptthe Janguage consisting of even number of characters s shown below
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The transition table for the DFA is shown below :

4 b
96 ] 4
g, 4, dy

We have seen that any language which is accepted by a DFA s reguler. As the DFA processes
the input string from left fo right in only one direction, TM also processes the input string inonly
one direction. For each scanned input symibol (cither aor b), in whichever state the DFA was in,
M also enters into the same states on same input symbols, replacing a by aand b by band the
read - write head moves towards fight, So, the transition table for DFA and TM remains same
(the format may be different). So, the transition table for TM to recognize the language consisting

of a's and b's having even mumber of symbols is shown below :

8 a b B
q, g R g, b, R g,,B,R
q, 3,4 R g,» R -
4 : :
The TMis givenby

M =(0,2,1,0,9,,B,F)
where |
0={q.q 5  I=lab}; T=lh
§- isdefined already ; g, istheinitial state

B does notappear ; F={ ¢, } isthe final state

‘The transition diagram of TM is given by
aaR
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Example 6 ObtainaTuring machine to accept a palindrome consisting of a's and b's of anylengfh.
Solution : Letus assume that the first symbol on the tape is blank character B and is followed
by the steing which in turn ends with blank character B. Now, we have to design a Turing machine
which aceepts the string, provided the string is a palindrome. For the string to be a palindrome,
the first and the last character should be same. The second character and last but one character
in the string should be same and so on. The procedute to accept only string of palindromes is
shown below. Let g0 be the start state of Turing machine.

Step 1: Move the read - write head to point to the first character of the string. The transition

for this can be of the form 5(44.B)=(4,,B,R)
Step 2: Instate g,,ifthe first character is the symbol a, replace it by B and change the state
10 ¢, and move the pointer towards right, The transition for this can be of the form
0(q1,a)=(q4,8,R)
Now , we move the read - write head to point to the last symbol of the string and the last

symbol should be a. The symbols scanned during this process area's, b'sand B. Replace aby
a, bby b and move the pointer fowards right. The transitions defined forthiscan be of the form

0(g2.a)=(q,.0,R)
6(g2.6)=(q,.0.R)
But, once the symbol B is encountered, chﬁnge the state to ¢, , replace B by B and move the
pointer towards left. The transition defined for this can be of the form
8(q,,B)=(9;,8.L)
In state g, , theread - write head points to the last character of the string, If the last character
is a, then change the stateto g, , teplacea by B and move the pointer towards left. The frapsitions
defined for this can be of the form

S(QhQ):(‘fé?B:‘L’)
At this point, we know that the first character is a and last character is also a. Now, reset the
read - write head to point to the first non blank character as shown in step.

In state g, ,if the last characteris B (blank character), it means that the given string isan odd
palindrome. So, replace B by B change the state to g, and move the pointer towards right. The
transition for this can be of the form

| 6(q4,B)=(q,;.B.R)}
Step 3 : Ifthe first character is the symbol b, replace it by B and change the state from ¢, 10 ¢,
and move the pointer towards right. The transition for this can be of the form
9{(q1,b)=(q5,B.R)
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Now, we move the read - write head to point to the last symbol of the string and the last
symbol should be b, The symbols scanned during this process are a's,b'sand B. Replaceabya,
b by band move the pointer towards right. The transitions defined for this can of the form

8(g5.0)=(g550,R)
6(¢5,0)=(g5,0,R)
But, once the symbol B is encountered, change the state o g, replace B by B and move
the potnter towards left. The transition defined for this can be of the form
§(q5.8)={(q5,8,0)
In state g, , the read - write head points to the last cheracter of the string, If the last character
is'b, then change the state o g, replace b by B and move the pointer towards left. The transitions
 defined for this can be of the form
5(g5,b)=(q4.B.L)

At this point, we know that the first character isband last character is also b. Now, reset the
read - write head to point to the first non blank character as shown in step 5

Instate g, , [fthe last character is B ( blank character ), it means that the givenstring isan

odd pafindrome. So, replace B by B, change the state to ¢, and move the pointer towards xight,
The transition for this can be of the form

| (g B1=(q5,B.8)
Stop4: In state ¢, ifthefirst symbol is biank character (B). the given string is even palindrome
and so change the state to g, , replace B by B and move the read - write head towardsright. The .
transition for this can be of the form

~ 8(q1,B)=(g5,8.R)
Step5: Resettheread - write head to point to the first non blank character. This can be done
~ asshown below.,

Ifthe first symbol of the string is a, step 2 is performed and if the first symbol of the stringis
b, step 3 is performed. After completion of stepZ or step 3, itisclear that the first symbol and the

fast symbol matchand the machine is currently in state ¢, Now, we have to reset the read - write
head to point to the first nonblank character in the string by repeatedly moving the head towards
left and remain n state g, . During this process, the symbols encountered may beaorborB
( blank character ). Replace aby a,b by band move the pointer towatds left. The transitions
defined for thiscanbeoftheform  6(q4,9)=(44,6,L)

8{g4:b)=(g4:0:L)
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But,if the symbol B is encountered , chango thestate to ¢ , teplace B by Band move the pointer
towatds right. the transition defined for this can be of the form

8(44,8)=(¢,,8,R)
After resetting the read - write head to the first non - blank character, repeat through step 1.
So, the TM toaccept strings of palindromes over { a,b } isgivenby 11 =(Q, ¥, 4, g,,8.F)
whete 0= {0,.4,,4,, 94, 45 9 4, } 5 E={a b} 5 T={ubB}; g, is the initial state
Bisthe blank character; F={ ¢, }; § is shown below using the transition table

r

g a b B

4, . - g,B, R
g, g,»B,R g,.B.R g,,B,R
4 g, R 4,50, R g,,B, L
g, g, B L - g,-B, R
q, g8 L Gl 4,,B.R
q, 28R g,,0,R g.:B. L
G . s Bl 3,,B.R
q, . < ‘

The transition diagram to accept palindromes over { a, b }is given by

BBR

The reader can trace the moves made by the machine for the strings abba, aba and aaba and is
left asan exercise.
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Example 7 : Constructa Turing maching which accepts the language of aba over Z={a,b}.

Solution : This TMis only for L={aba}
We will assume that on the input tape the string 'abal is placed like this

a b 1ta B | Bl .

T
‘The tape head will read out the sequence uptothe B character if'aba'is readout the TM will

helt after eading B.

The triplet along the edge written is { input read, output to be printed, direction)
Let us take the transition between start staieand g, is(a,a, R) thatis the current symbol

read from the tape is a then as a output a only has to be printed on the tape and then move the
tape head to the right. The tape will Jook like this

a |l bl a| B B
(
Againthe transition between ¢, and ¢, is(b, b, R). That means read b, print band move
right. Note that as tape head is moving ahead the states are getting changed.

a b ja | B | Bl
1

The TM will accept the language when it reaches to halt state. Halt state is always a accept
state forany TM. Hence the transition between ¢, and haltis (B, B, S). This means read B, print
B and stay there or there is no move left or right, Eventhough we write (B, B, L} or (B,B,R)
it is equally correct, Because afier all the complete input is already recognized and now we
simply want to enter into a accept state or final state. Note that for invalid inputs such as abb or
abotbab ..., there is either no path reaching to final state and for such inputs the TM gets
stucked in between. This indicates that these all invalid inputs can not be recognized by our TM.

The same TM can be tepresented by another method of transition table
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a b B
Start (g,,a.R) . 5
q, = (g,:5.R) .
4 (¢..a.R) . g
g, - : (HALT, B, 8)
HALT = w -

In the given transition table, we write the triplet in eachrow as :
(Next state, output to be ?dntcd, direction }
Thus TM can be represented by any of these methods.

Example 8 ! Design a TM that recognizes the set L= {0°1"|n = 03.

Solution : Here the TM checks for each one whether two 0's are present in the left side. If it
match then only it halts and accept the string.

The transition graph of the TM is,

FIGURE : Turing Machine for the given language = {0"1'inz 0}
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Example 11 : What does the Turing Machine described by the 5 - tuples,
{900,905 D)l gorhs g0 W9, B,::3,8).
(7,048 R, (g.1q,L, R) and (g..8.9,,8,8) Do when given a bit string
ag input 7

Solution ; The transition diagram of the TM is,

10,R . 00, R

0L R

FIGURE : Transition Diagram for the given TM
The TM hete reads an input and starts inverting 0's to 'sand 1'sto O's till thefirst 1.
After it hasinverted the first 1, it read the input symbol and keeps itas it is till the next I,
After encountering the | it starts repeating the cycle by inverting the symbol till next 1 It halts
when it encounters a blank symbol.

7.4 COMPUTABLE FUNCTIONS

A'Turing machine 1s a language acceptor which checks whether a string x s accepted by a
language L. In addition to that it may be viewed as computer which performs computations of
fumctions from infegers o integers, In traditional approach an integer is represented in unary, an
infeger ;> isrepresented by thestring ¢ .

Example 13 2 isrepresented as 2. Ifa fumetion has k arguments, i y,......4,, then these

integers are initially placed on the tape separated by 1's, s 010 % 1......10% .

Ifthe TM halts (whetherin or not in an acoepting stase) with atape consisting of0's for some m,

Turing machine.
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5(‘14_:1) ={gy, B, L)

(g0, 0 = (g0, 0. L)

6(q4,0) = (g6, 0, R) |
Ifinstate g, aB is encountered before 2.0, we have situation (i) described above, Enter state
g,andmove lefl, changing all 1'sto B's untllencountering a'B' This B is changed back fo a0,
state g, is entered, and Mhalts, |
6. gl =B R

8(gs5,0) = g5, B, B)

6(g0 ) =(gs, B, R)
| 8(9,B) = (g5, B, )
Ifin state g, @ 1 is encountered instead of (), the first block of 0's has besn exhausted, asin
 situation (i) above, M enters stafe g, toerase the rest of the tape, thenenters g, andhalts

Example 4 : Design a TM which computes the addition of two bos‘rt‘wa infegers.

Solution: LetT™M M =(0, {0, 1; #1,8,5) compuies the addition of two positive integers m
and 1, It means, the computed function £ m, n) defined as follows

} m+ntlf m,hzl)

i
1 onthe tape separates both the numbets m and n. Following values are possible for m andn.
l. m=n=0 (#1#.....istheinput),
2. m=0and n20 { 410" e i the nput ),
3. me0andn=0 (g1 1sthe input), and
4. me0and n20 { #0104 ... 18 the input)

 Several fechniques are possible for designing of M, some areas follows:
(a) M appends (writes) m afier n and erases the m from the left end.

(b) Mwrites 0 in place of 1 and erases one zero from the right or left end , This is possiblein
case of 0 of w0 only. Ifm=0orn=01then 1is replaced by #.

We use techniques (b) given above. M is shown in below figure.
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118 replaced by 0
inadvance

"&( IEn 0
LOR_ vt
b ]

3.%
048 ]
N

RS

Binee, | is replaced by O in
udvance, so erase ope Difn = 0

FIGURE : TM for addition of two posifive infegers

7.5 RECURSIVELY ENUMERABLE LANGUAGES
AlangageL overthealphabet 5, iscallodrecursively emmerabi i hereisa TM Mithatacceptevery woud
inL andeither rejocts( crashes)or ioopsforevmywordmlanguageﬂ&moomplemﬁofh

Accept(M) =1

Re ect(M )+ Loop M)=L'
When TM Mis sfll ranning on some input (of recursively enumetable languages) we cannever
tell whether Mwill eventually accept ifwe let it ran for long fime or M will run forever (in loop).

Example : Considera language (a+b) *bb(a+b)*.

TMforthislanguageis, b, 4, R) 8,5, K)

b,b, R
! Lt 2

¥

Halt

(& R)

FIGURE : Turing Machine for (a+b)*bb(a+b)*

Here the inputs are of three types.

. All words with bb=accepts (M) as soon as TM sees two consecutive bis it halts.

2. All strings without bb but ending in b = rejects (M). When TM sees 2 single b, it enters

© state2. Ifthe string is ending Wzthb TM will halt at state 2 which is not accepting state.

Hence it is rejected.

3, All strings without bb ending in ‘2 or blank B'= loop (M) here when the TM sees lastait
enters state 1. In this state on blank symbol it loops forever.
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1. First we will prove certain problems which canmot be sotved using TM.

2, Hchurches thesis is true this implies that problems cannot be solved by any computer or any
programming languages we might every develop. '

3. Thusin studying the capabilities and limitations of Turing machines we are indeed studying
fhe fundamental capabilities and limitations of any computational device we might even
construct.

It providesa general principle for algorithmic compuiationand, while not provable, gives strong
evidence that no more powerful models can be found.

7.7 COUNTER MACHINE

Counter machine has the same structure as the multistack machine, but in place of each stack is

a counter. Counters hold amy non negative integer, but we can onty distinguish between zero and
10N 2010 COUnters.

" Counter machines are off - line Turing machines whose storage tapes are semi - infinite, and
whose tape alphabets contain only two symbols, Z and B (blank). Furthermore the symbol Z,
which serves as a bottom of stack marker, appears initially on the cell scanned by the tape head
and niay never appear on any other cell. An integer i can be stored by moving the tape head i
gells to the right of Z. A stored number can be incremented or decremented by moving the tape
head rightor left. We can test whether a number is zero by checking whether Z is scanned by the
head, but we cannot directly test whether two numbers are equal.

! ¢l Read-only Inpux l Sl

BODRENDODE
ELbEREE

FIGURE : Counter Machine
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¢and § are customarily used for end markers on the input. Here 7 is the non blank symbol ott
each tape. An instantaneous description of a counter machine can be described by the state, the
input tape contents, the position of the input head, and the distance of the storage heads from the

sytbol Z ( shown here as d, and d,). We call these distances the counts on the tapes. The
comnter machine can only store a count an each tape and tell i that count is zero.

Power of Counter Machines‘

- Bverylanguage accepted by a counter Machine is recursively enumerable.
- Every language accepted by a one - counter machine isa CFL so a one - counter machine
is a special case of one - stack machinei.e, aPDA -

7.8 TYPES OF TURING MACHINES

Various types of Turing Machines ate :

1 Withmultiple tapes.

i With one tape but multiple heads,

i, Withtwo dimensional tapes.

iv. Nondeterministic Taring machines,
Tt s observed that computationally all these Turing Machines are equaliy powerful. That means
one type can compute the same that other can, However, the efficiency of computation may
vary. -
1. Turing machine with Two Way Infinite Tape
Thisisa TM that have one finite control and one tape which extends infinitely in both directions,

Input Firite Rcce;:»tfRejer:t
et frosmrssssns s Y.
control
lape

FIGURE : TMwith infinite Tape

Teturms out that this type of Turing machines are as powerfial ag one tape Tring machines whose
tapehasaleftend.
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2. Multiple Turing Machines :

) AcceptReject
nput Einite i

ool

tape 1

tapa 2

tape 3

FIGURE : Multiple Turing Machines

Amultiple Turing machine consists of a finite control with k tape heads and k tapes, each tape s
infinite in both directions. O a single move deperding on the sate of the finite control and the
symbol scanned by each ofthe tape heads, the machine can 3

1. Changestate.

2. Printanewsymbol on each ofthe cells scanned byits tape heads. \
3. Moveeach ofifstape heads, independently, one cell to the left orright orkeep it stationary,

Tnifially,the input appears on the firsttape and the other tapes are blank.
3. Nondeterministic Turing Machines :

Anondeterministic Turing machin s & device with  finite control and a single, one way infinite
tape. For a given state and tape symbol scazmed by the tape head, the machine has a finite
number of choices for the next tove, Each choios consists of anew state, atape symbol to print,
and adirection of head motion, Note that the non deterministic TM is not permitied fo make a
move inwiich the next state s selected from one choice, and the symbol printed and/ or direction.
ofhead motion are selected from other choices, The non deterrinistic TM accepls itg nput ifany
sequence of choices of moves leads o an accepting state,

Aswith the finite automaton, the addifion of ondeterminism to the Turing machine does not
allow the devioe to accept new languages.
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4 Multidimensional Turing Machines : @

 3.dimensional T

FIGURE : Muttidimensional Turing Machine
The multidimensional Turing machine has the usual finite control, but the tape consists ofa
K - dimensional array of cells infinite in all 2k directions, for some fixed k. Depending on the stateand
symbol scanned, the device changes state, prints a new symbol, and moves its tape head in oncof2k
directions, either positively or negatively, along one of the kaxes. Initially, the inputis along one axis, and
the head s at the left end of the input.At any time, only & finite numbér of rows in any dimension
contains nonblank symbols, and these rows each have onlya finite number of nonblank symbols

5 Multihead Turing Machines

Input . }:m?o ; .hmpﬂﬂaiw
fioad 1 __ hoadn
1 " lhead2 ;
Hlllllllllll
tape

FIGURE : Multihead Turing Machine

Ak~ head Turing machine has some fixed number, k, ofheads. The heads are numbered 1 through
k, and a move of the TM depends on the state and on the symbol scanned Dy each head. Inone
move, the heads may each move independently left, right or remain stationary.

6. Off - Line Turing Machines : R

Contral

pEwARIIEE
oy

L O
FIGURE : Off - line Turing Machine
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8.2 LINEAR BOUNDED AUTOMATA

" The Linear Bounded Automata (LBA) isa model which was originally developed as a model for
actual computers rather than model for computational process. A linear bounded automaton isa
restricted form of a non deterministic Turing machine.

Alinearbounded antomaton s multitrack Turing machine which has only one tapeand this tape
is exactly of same length as that of input.

"The linear bounded automaton (LBA) accepts the string in the similar masner as that of Turing
machine does. For LBA halfing means accepting, InLBA computation s restricted o an arca
bounded by length of the nput, This s very much similarto programeming environment where size
of variable is bounded by its data type.

<iaglalabiblbl>

o

Leftend Rightend
marker marker

Finite
control

FIGURE : Linear bounded automaton

The LBAis powerful than NPDA but less powerful than Turing machine. The input is placed on
the input tape with beginning and end markers. In the above figure the input is bounded
by <and >. :

A linear bounded antomata can be formally defined as:

LBA is 7 - tuple on deterministic Tuing machine with
M=(0,5, T, 6, 9o, Qoo Grjer) having
1. Twoextrasymbols of left end matker and right end marker which are not elementsof 7.

7. The input fies between these end markers. _
3, The TM cannot replace < or > with anything else nor move the tape head left of <or

rightof >.
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FORMAL LANGUAGES AND AUTOMATA THEORY

Fach problem P is a pair consisting of a setand a question, where the question can be applied fo
each element in the set, The setis called the domain of the problem, and its elements are called
the instances of the problem.

Example .

Domain={ All regular languages over some alphabet 5 ¥
Instance : L={w:wisawordover g endinginabb} ,
Question : Isunion of two regular languages regular 7

851 Decidabte and Undecidable Probiems

Arproblem is said to be decidable if
1. Ttslanguage is recursive, or
2. Ithassolution

Other problems which do not satisfy the above are undecidable. We restrict the answer of
decidable problems to " YES" or "NO"  Htheto is some algorithm exists for the problemn, then
outcome of the algorithm is either "WES” or "NO" but not both. Restricting the answers o only
"YES" o ™NO" we may not be able to cover the whole problems, still we can cover a lot of
problems. One question here, Why weare restricting our answers o only " YES"or "NO"?7The
answer s very simple ; we want the answers as simple s possible. |

Now, we say" If foraproblem, there exists an algorithm which tells that the answer is either
"YES" or "NO" then problem is decidable.”

~ fforaprobler both the answers are possible ; some times "YES" and sometimes "NO",
then problem is undecidable.

8.5.2 Decidable Problems for FA, Regular Grammars and Regular Languages

Some decidable problems are mentioned below :

1. Does FAacceptregular language?

2, Tsthe power of NFA and DFA same ?

3. I, and L, are tworegular languages. Are these closed under following
(ay  Union
()  Concatenation
{¢) Inersection
()  Complement
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Now, we analyse the following :
1, If H outputs "YES" and says that Q halts then Q tself would loop ( that's how we
constructed it ),
2. TfH outputs "NO" and says that Q loops then Q outputs "YES" and will halts.
Sinice, in either case H gives the wrong answer for Q. Therefore, H cannot work inall cases
and hence can'tanswer right for al) the inputs. This contradicts our assumption made carlier for
HP Hence, HP isundecidable.

Theorem ; HP of TM is undecidable.

Proof : HP of TM meansto decide whether ornot a TM halts for some input w. Wecanprove

this following the sinlar steps discussed in above theorem.,
86 UNIVERSAL TURING MACHINE

The Church - Turing thesis conjectured that anything that can be done on any existing digital
computer canalso be done by a TM. To prove this conjecture. A. M. Tuting was able o construct
a single TV which s the theoretieal analogue of a general purpose digital computer This machine
is called a Universal Turing Machine (UTM). He showed that the UTM s capable of initiafing
the operation of amy other TM, that s, it is areprogrammable TM. We can define this machine in
more formal wayas follows:

Definition : AUniversal Turing Machine  denoted as UTM) is a TM that cantake as inputn
atbitrary TM. 7, with anarbitrery fnput for 7, end then perfom the executionof T, onitsinput.

What Turing thus showed that a single TM canacts like a general purpose computer that stores

aprogram and its datain memory and then executes the program. We can describe UTMasa3
-tape TM where the description of TM, I, and itsinput string x € 4" arestored initiallyon the

firsttape, #,. The second tape, t, used o hold the simulated tape of 7, usingthe same format

 asused for deseribing the T, 7. The third tape, ¢, holds the state of T,
| _
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Now, suppose that a Taring machine, 7, is consisting of a finite number of configurations,

denoted by, ¢ Gy Cysms €, A et &, 58 pennns €, Tepresent the encoding of them, Then, we

can define the encoding of T, as follows .

P o G B EY |
Here, * and # are used only as separators, and cannot appear elsewhere. We use a pair of *'s o

enclose the encoding of each confignrationof T™, T

The case where 8(s,q) 18 undefined canbe encoded as follows :

450008 #
where thesymbols 5 , & and  standfor the encoding ofsymbols, s, a.and B ( Blardk character),
respectively. ‘
Working of UTM

Giiven a description of a TM, 7, and its inputs representation on the UTM tape, #, and the

starting symbol on tape, 1,, the UTM starts executing the quintuples of the encoded TMas -

follows:

1, The UTM gets the current state from tape, #, and the current input symbol from tape £, .

2. fhen, it matches the current state - symbol pait to the state symbol pairs in the program listed
ontape, t,. '

3. ifnomatch occurs, the UTM halts, otherwise it copies the next state info the current state
cell of tape, 1,, and perform the cotresponding write and move operations on tape, #,.

4, ifthe cuent state ontape, £, 18 the halt state, then the UTM halts, otherwise the UTM gocs

- back to step2.

8.7 POST'S CORRESPONDENCE PROBLEM {PCP)

Post's correspondence problem is a combinatorial problem formulated by Emil Post in 1946.
This problem has many applications inthe field theory of formal Tanguages.

Befinition :

A comrespondence system P is a finite set of ordered pairs of nonempiy strings over some alphabet.
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1. The problems whose solution times are bounded by polynomials of small degrec.
Example: bubble sort algorithm obtains n numbers in sorted order in polynomial time

P(r) = " - 2n+1 wherenis the lengthaofinput. Henoe, it comes under this group.

2, Second groupis made up of problems whese bestknown algorithm ate non polynormial
exanmple, ravelling salesman problem has complexity of O( o 2" whichis exponertial.
Hence, it comesunder this group.

A problem can be solved ifthere is analgorithm1o solve the given problem and time required i

expressed as polynomial p(n), n being length.ofmput siring, The problems of irst growp exe of

thiskind. |

The probleras of second group require arge aount of time o execule and evenrequire moderafe
size sothese problems are difficultto solve, Hence, problems of first kind are tractable or easy
and problems of second kind are intractable or bard.

89,4 P-Problem

P stands for deferministic polynomial fime, Adeterministic mackin at cach ime excoutes an
instruction. Depending on instruction, it then goes to next staie whichis unique,

Hence, ime complextty of deterministic TM s the meximum number of moves made by Mis
processingany input string of length, taken over all inputs of length 1.

Definition : AlangnageLLis said o bein class Pif there exists a( deterministic ) TM Msuch
that Misof time complexity P(n) for some polynomial P and M accepts L
Class P eonsists of those problem that are solvable in polynomial time by DIM.

89.2 NP -Problem
NP stands for pondeterministc polyﬁomial fime.
The class NP consists of those problems thatare verifiable in polynomial time. Whatwe mean

here s hat if we are given cerfificate of  solution then we can verify that the certificate is correct
in polynomial timen size of inpu problem.
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8.10 NP -COMPLETE AND NP - HARD PROBLEMS

A problem S is said o be NP- Complete problem if it satisfies the following two conditions.
. $eNP,and

2, For every other problems §, ¢ NP for some i=1,2,n, there is polynomial - time
ransformation from S, o § 1.¢.every probleminNP classpolynomial - e reducibletos,
We conclude one thing here thatif 5, is NP - complete then Sisalso NP - Complete.

Asaconsequence, if we could find a polynomial time algorithm for S, then wecan solveall NP

problems in polynomial ime, because all problems in NP classare polynomial - time recucibleto

each other.

"A problem P is said to be NP - Hard if it satisfies the second condition as NP - Complete, but
not necessarily the first condition.”.

The notion of NP - hardness plays an important role in the discussion about the relationship
hetween the complexity classes Pand NP, I isalso often used to define the complexity class NP
- Complete which is the intersection of NP and NP - Hard. Consequently, the class NP - Hard
can be understood as the class of problems that are NP - complete or harder.

Example : AnNP- Hard problem isthe decision problem SUBSET - SUM which isas follows.

" Givena set of integers, do any non empty subset of them add up to zero? Thisisa yes /no
question, and happens to be NP - complete ",

There ate also decision problems that are NP - Hard but not NP - Complete , for example, the

halting probletm of Turing machine. It s easy to prove that the halting problem is NP - Hard but
ot NP - Complete. Itis also easyto see that halting problem is not in NP since ll problems in
NP are decidable but the halting problem is not ( voilating the condition first given for NP -
complete languages ). -

In Complexity theory, the NP~ complete problems are the hardest problems in NP class, inthe
sense that they are the ones most ikely not fo be n P class, The reason is thet f we could fmda
way to solve any NP - complete problem quickly, then you could use thet algorithm to solveall
NP problems quickly.

Atpresenttime, all known algorifhms for NP - complete problems require ime whichisexponential
in the input size. It is unknown whether there are any faster algorithms for thesc are not.
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