
 

Department of Artificial Intelligence 
 

Academic Year 2023-24 

III. B.Tech I Semester 

Machine Learning 

(20APC3316) 

 

 
Prepared By 

                     Dr C Siva Balaji Yadav,  

  M.Tech,Ph.D, 

      HOD AI (AIDS & AIML) 

Department of AI, AITS 



 

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES :: TIRUPATI(AUTONOMOUS) 

Year: III Semester: I Branch of Study: AI & ML 

COURSE CODE COURSE TITLE L T P CREDITS 

20APC3316             Machine Learning 3 0 0 3 

 

Course Outcomes 

CO1: Ability to understand what is learning and why it is essential to the design of intelligent machines. 
CO2: Ability to design and implement various machine learning algorithms in a wide range of real-world applications. 
CO3: Acquire knowledge deep learning and be able to implement deep learning models for language, vision, speech, 
decision making, and more 
CO4: Ability to demonstrate feature selection and dimensionality reduction 
CO5: Ability to solve decision making problems using SVM(Support Vector Machines) and graphical models 

UNIT - 1: 

What is Machine Learning?, Examples of machine learning applications,  
supervised Learning: learning a class from examples, Vapnik- Chervonenkis dimension, probably approximately 
correct learning, noise, learning multiple classes, regression, model selection and generalization, dimensions of a 

supervised machine learning algorithm.  
Decision Tree Learning: Introduction, Decisions Tree representation, Appropriate problems for decision tree learning, 
the basic decision tree learning algorithm, Hypothesis space search in decision tree learning, Inductive bias in decision 
tree learning, issues in decision tree learning,  
Artificial Neural Networks: Introduction, Neural Network Representation – Problems – Perceptrons – Multilayer 
Networks and Back Propagation Algorithm, Remarks on the BACKPROPAGATION Algorithm, An illustrative Example: 
Face Recognition, Advanced Topics in Artificial Neural Networks. 

UNIT - 2: 

Evaluating Hypotheses: Motivation, Estimating hypothesis accuracy, basics of sampling theory, a general approach 
for deriving confidence intervals, differences in error of two hypothesis, comparing learning algorithms,  
Bayesian Learning: Introduction, Bayes Theorem, Bayes Theorem and Concept Learning, Maximum Likelihood and 
least squared error hypothesis, Maximum Likelihood hypothesis for predicting probabilities, Minimum Description 
Length Principle, Bayes Optimal Classifier, Gibbs Algorithm , Naïve Bayes Classifier , Bayesian Belief Network, EM 
Algorithm 

UNIT - 3: 

Dimensionality Reduction: Introduction, Subset selection, principle component analysis, feature embedding, factor 
analysis, singular value decomposition and matrix factorization, multidimensional scaling, linear discriminant 
analysis, canonical correlation analysis, Isomap, Locally linear embedding, laplacian eigenmaps,  
Clustering: Introduction, Mixture densities, K- Means clustering, Expectations- Maximization algorithm, Mixture of 
latent variable models, supervised learning after clustering, spectral clustering, Hierarchal clustering, Choosing the 

number of clusters.  

UNIT - 4: 

Linear Discrimination: Introduction, Generalizing the linear model, geometry of the linear discrimination, pair wise 
separation, parametric discrimination revisited, gradient descent, logistic discrimination, discrimination by regression, 
learning to rank,  

Multilayer Perceptrons: Introduction, the perceptron, training a perceptron, learning Boolean functions, multilayer 
perceptrons, MLP as a universal approximator, Back propagation algorithm, Training procedures, Tuning the network 
size, Bayesian view of learning, dimensionality reduction, learning time, deep learning 

UNIT - 5: 
Kernel Machines: Introduction, Optimal separating hyperplane, the non separable case: Soft Margin Hyperplane, ν-
SVM, kernel Trick, Vectorial kernels, defining kernels, multiple kernel learning, multicast kernel machines, kernel 
machines for regression, kernel machines for ranking, one-class kernel machines, large margin nearest neighbor 
classifier, kernel dimensionality reduction,  
Graphical models: Introduction, Canonical cases for conditional independence, generative models, d separation, belief 
propagation, undirected Graphs: Markov Random files, Learning the structure of a graphical model, influence 
diagrams. 

Text Books: 

1. Machine Learning – Tom M. Mitchell -  7 02l,oiaaudE lliH wrGcM  
2. Introduction to Machine learning, Ethem Alpaydin, PHI, 3rd Edition, 2014. 

 

Reference Books: 
1. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis Chapman and 
Hall/CRC; 2nd edition, 2014 
2. Machine Learning For Beginners: A Comprehensive Guide To Understand Machine Learning. How It Works 
And How Is Correlated To Artificial Intelligence And Deep Learning, Chris Neil, Alicex Ltd, 2020.  



 

 

 Mapping of course outcomes with program outcomes 

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 
PO1
0 

PO1
1 

PO1
2 

PSO
1 

PSO
2 

CO1 3 2 2 2 2       2 3 2 

CO2 3 2 2 2 2       2 3 2 

CO3 3 2 2 2        2 3  

CO4 2 3 2 2        2 2  

CO5 2 2 2            

          (Levels of Correlation, viz., 1-Low, 2-Moderate, 3 High) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2  

UNIT-1 
 

1. What Is Machine Learning? 

 

Machine learning is programming computers to optimize a performance criterion using 

example data or past experience. We have a model defined up to some parameters, and 

learning is the execution of a computer program to optimize the parameters of the model 

using the training data or past experience. The model may be predictive to make 

predictions in the future, or descriptive to gain knowledge from data, or both. 

 

Machine learning uses the theory of statistics in building mathematical models, because the 

core task is making inference from a sample. The role of computer science is twofold: 

First, in training, we need efficient algorithms to solve the optimization problem, as well as 

to store and process the massive amount of data we generally have. Second, once a model 

is learned, its representation and algorithmic solution for inference needs to be efficient as 

well. In certain applications, the efficiency of the learning or inference algorithm, namely, 

its space and time complexity, may be as important as its predictive accuracy. Application 

of machine learning methods to large databases is called data mining. The analogy is that a 

large volume of earth and raw material is extracted from a mine, which when processed 

leads to a small amount of very precious material. 

 

Its application areas are abundant: In addition to retail, in finance banks analyze their past 

data to build models to use in credit applications, fraud detection, and the stock market. In 

manufacturing, learning models are used for optimization, control, and troubleshooting. In 

medicine, learning programs are used for medical diagnosis. In telecommunications, call 

patterns are analyzed for network optimization and maximizing the quality of service. In 

science, large amounts of data in physics, astronomy, and biology can only be analyzed 

fast enough by computers. The World Wide Web is huge; it is constantly growing, and 

searching for relevant information cannot be done manually. But machine learning is not 

just a database problem; it is also a part of artificial intelligence. To be intelligent, a system 

that is in a changing environment should have the ability to learn. If the system can learn 

and adapt to such changes, the system designer need not foresee and provide solutions for 

all possible situations. Machine learning also helps us find solutions to many problems in 

vision, speech recognition, and robotics. 

 

2. Learning a Class from Examples 
 

Let us say we want to learn the class, C, of a “family car.” We have a set of examples of 

cars, and we have a group of people that we survey to whom we show these cars. The 

people look at the cars and label them; the cars that they believe are family cars   are 

positive examples, and the other cars are negative examples. Class learning is finding a 

description that is shared by all positive examples and none of the negative examples. 

 

Doing this, we can make a prediction: Given a car that we have not seen before, by 

checking with the description learned, we will be able to say whether it is a family car or 

not. Or we can do knowledge extraction: This study may be sponsored by a car company, 

and the aim may be to understand what people expect from a family car. 

 

After some discussions with experts in the field, let us say that we reach the conclusion 

that among all features a car may have, the features that separate a family car from other 
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cars are the price and engine power. These two attributes are the inputs to the class 

recognizer. Note that when we decide on this particular input representation, we are 

ignoring various other attributes as irrelevant. Though one may think of other attributes 

such as seating capacity and color that might be important for distinguishing among car 

types, we will consider only price and engine power to keep this example simple. 
 

 

 

Let us denote price as the first input attribute x1 (e.g., in U.S. dollars) and engine power as 

the second attribute x2 (e.g., engine volume in cubic centimeters). Thus we represent each 

car using two numeric values. 
 

 

 
we may have reason to believe that for a car to be a family car, its price and engine power 

should be in a certain range. 

 

 



4  

 

 
 

Margin: The margin, which is the distance between the boundary and the instances 

closest to it. 

 

 

 

 

Doubt: 
 

In some applications, a wrong decision may be very costly and in such a case, we can say 

that any instance that falls in between S and G is a case of doubt, which we cannot label 

with certainty due to lack of data. In such a case, the system rejects the instance and defers 

the decision to a human expert. 

1. Vapnik-Chervonenkis (VC) Dimension 

Let us say we have a dataset containing N points. These N points can be labeled in 2N 
ways as positive and negative. Therefore, 2N different learning problems can be defined by 

N data points. If for any of these problems, we can find a hypothesis h∈ H that separates 

the positive examples from the negative, then we say H shatters N points. That is, any 
learning problem definable by N examples can be learned with no error by a hypothesis 
drawn from H. The maximum number of points that can be shattered by H is called the 
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Vapnik-Chervonenkis (VC) dimension of H, is denoted as VC(H), and measures the 
capacity of H. 

 

In figure 2.6, we see that an axis-aligned rectangle can shatter four points in two 
dimensions. Then VC(H), when H is the hypothesis class of axis-aligned rectangles in two 
dimensions, is four. In calculating the VC dimension, it is enough that we find four points 

that can be shattered; it is not necessary that we be able to shatter any four points in two 
dimensions. 

 
 

 

 

 
VC dimension may seem pessimistic. It tells us that using a rectangle as our hypothesis class,  

we can learn only datasets containing four points and not more. 

 

 
4. Probably Approximately Correct (PAC) Learning 

 

Using the tightest rectangle, S, as our hypothesis, we would like to find how many examples 

we need. We would like our hypothesis to be approximately correct, namely, that the error 

probability be bounded by some value. We also would like to be confident in our hypothesis in 

that we want to know that our hypothesis will be correct most of the time (if not always); so we 

want to be probably correct as well (by a probability we can specify). 

 

PAC learning In Probably Approximately Correct (PAC) learning, given a class, C, and 

examples drawn from some unknown but fixed probability distribution, p(x), we want to find 

the number of examples, N, such that with probability at least 1 − δ, the hypothesis h has error 

at most ϵ, for arbitrary. 
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5. Noise 

 
Noise is any unwanted anomaly in the data and due to noise, the class may be more 

difficult to learn and zero error may be infeasible with a simple hypothesis class (see figure 

2.8). There are several interpretations of noise: 

_ There may be imprecision in recording the input attributes, which may shift the data 

points in the input space. 

_ There may be errors in labeling the data points, which may relabel positive instances as 

negative and vice versa. This is sometimes called teacher noise. 

_ There may be additional attributes, which we have not taken into account, that affect the 

label of an instance. Such attributes may be hidden or latent in that they may be 

unobservable. The effect of these neglected attributes is thus modeled as a random 

component and is included in “noise.” 
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Using the simple rectangle (unless its training error is much bigger) makes more sense 

because of the following: 

1. It is a simple model to use. It is easy to check whether a point is inside or outside a 

rectangle and we can easily check, for a future data instance, whether it is a positive or a 

negative instance. 

 

2. It is a simple model to train and has fewer parameters. It is easier to find the corner 

values of a rectangle than the control points of an arbitrary shape. With a small training set 

when the training instances differ a little bit, we expect the simpler model to change less 

than a complex model: A simple model is thus said to have less variance. On the other 

hand, a too simple model assumes more, is more rigid, and may fail if indeed the 

underlying class is not that simple: A simpler model has more bias. Finding the optimal 

model corresponds to minimizing both the bias and the variance. 

3. It is a simple model to explain. A rectangle simply corresponds to defining intervals 

on the two attributes. By learning a simple model, we can extract information from the raw 

data given in the training set. 

 

4. If indeed there is mislabeling or noise in input and the actual class is really a simple 

model like the rectangle, then the simple rectangle, because it has less variance and is less 

affected by single instances, will be a better discriminator than the wiggly shape, although 

the simple one may make slightly more errors on the training set. Given comparable 

empirical error, we say that a simple (but not too simple) model would generalize better 

than a complex model. This principle 

is known as Occam’s razor, which states that simpler explanations are more plausible and 
any unnecessary complexity should be shaved off. 

 

6. Learning Multiple Classes 
 

In the general case, we have K classes denoted as Ci, i = 1, . . . , K, and an input instance 

belongs to one and exactly one of them. The training set is now of the form 
 

 

 

 
An example is given in figure 2.9 with instances from three classes: family car, sports car, 

and luxury sedan. In machine learning for classification, we would like to learn the 

boundary separating the instances of one class from the instances of all other classes. Thus 

we view a K-class classification problem as K two-class problems. The training examples 

belonging to Ci are the positive instances of hypothesis hi and the examples of all other 

classes are the negative instances of hi . Thus in a K-class problem, we have K hypotheses 

to learn such that 
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For a given x, ideally only one of hi(x), i = 1, . . . , K is 1 and we can choose a class. But 

when no, or two or more, hi(x) is 1, we cannot choose a class, and this is the case of doubt 
and the classifier rejects such cases. 

If in a dataset, we expect to have all classes with similar distribution— shapes in the input 

space—then the same hypothesis class can be used for all classes. 

 

7. Regression 

In classification, given an input, the output that is generated is Boolean; 

it is a yes/no answer. When the output is a numeric value, what we would like to learn is 

not a class, C(x) ∈ {0, 1}, but is a numeric function. In machine learning, the function is 

not known but we have a training set of examples drawn from it. 
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We have 
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7. Dimensions of a Supervised Machine Learning Algorithm 
 

Let us now recapitulate and generalize. We have a sample 
 

 

 

The sample is independent and identically distributed (iid); the ordering is not important 

and all instances are drawn from the same joint distribution p(x, r). t indexes one of the N 

instances, xt is the arbitrary dimensional input, and rt is the associated desired output. rt is 

0/1 for two-class learning, is a K- dimensional binary vector (where exactly one of the 

dimensions is 1 and all others 0) for (K > 2)-class classification, and is a real value in 

regression. 

The aim is to build a good and useful approximation to rt using the model g(xt |θ). In doing 

this, there are three decisions we must make: 
 

1. Model we use in learning, denoted as g(x|θ) 

where g(· ) is the model, x is the input, and θ are the parameters. 

g(· ) defines the hypothesis class H, and a particular value of θ instantiates one hypothesis h 

∈ H. 
 

For example, in class learning, we have taken a rectangle as our model whose four 

coordinates make up θ; in linear regression, the model is the linear function of the input 

whose slope and intercept are the parameters learned from the data. 

 

The model (inductive bias), or H, is fixed by the machine learning system designer based 

on his or her knowledge of the application and the hypothesis h is chosen (parameters are 

tuned) by a learning algorithm using the training set, sampled from p(x, r). 

2. Loss function, L(· ), to compute the difference between the desired output, rt , and 

our approximation to it, g(xt |θ), given the current value of the parameters, θ. The 

approximation error, or loss, is the sum of losses over the individual instances. 
 
 

 

In class learning where outputs are 0/1, L(·) checks for equality or not; in regression, 

because the output is a numeric value, we have ordering information for distance and one 

possibility is to use the square of the difference. 

3. Optimization procedure to find θ∗ that minimizes the total error 
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9. Decision tree representation 
 

Decision tree learning is a method for approximating discrete-valued target functions, in 

which the learned function is represented by a decision tree. Learned trees can also be re- 

represented as sets of if-then rules to improve human readability. 

 

These learning methods are among the most popular of inductive inference algorithms 

and have been successfully applied to a broad range of tasks from learning to diagnose 

medical cases to learning to assess credit risk of loan applicants. 

 

Decision trees classify instances by sorting them down the tree from the root to some leaf 

node, which provides the classification of the instance. Each node in the tree specifies a 

test of some attribute of the instance, and each branch descending from that node 

corresponds to one of the possible values for this attribute. An instance is classified by 

starting at the root node of the tree, testing the attribute specified by this node, then moving 

down the tree branch corresponding to the value of the attribute in the given example. This 

process is then repeated for the subtree rooted at the new node. 
 

 

Figure 3.1 illustrates a typical learned decision tree. This decision tree classifies Saturday 

mornings according to whether they are suitable for playing tennis. 

For example, the instance 

(Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong 

 

In general, decision trees represent a disjunction of conjunctions of constraints on the 

attribute values of instances. Each path from the tree root to a leaf corresponds to a 

conjunction of attribute tests, and the tree itself to a disjunction of these conjunctions. For 

example, the decision tree shown in Figure 3.1 corresponds to the expression 

(Outlook = Sunny A Humidity = Normal) 

V (Outlook = Overcast) 

v (Outlook = Rain A Wind = Weak) 
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10. Appropriate problems for decision tree learning 
 

Although a variety of decision tree learning methods have been developed with somewhat 

differing capabilities and requirements, decision tree learning is generally best suited to 

problems with the following characteristics: 

Znstances are represented by attribute-value pairs. Instances are described by a fixed set 

of attributes (e.g., Temperature) and their values (e.g., Hot). The easiest situation for 

decision tree learning is when each attribute takes on a small number of disjoint possible 

values (e.g., Hot, Mild, Cold). However, extensions to the basic algorithm (discussed in 

Section 3.7.2) allow handling real-valued attributes as well (e.g., representing 

Temperature numerically). 

 

The targetfunction has discrete output values. The decision tree in Figure 3.1 assigns a 

boolean classification (e.g., yes or no) to each example. Decision tree methods easily 

extend to learning functions with more than two possible output values. A more substantial 

extension allows learning target functions with real-valued outputs, though the application 

of decision trees in this setting is less common. 

 

Disjunctive descriptions may be required. As noted above, decision trees naturally 

represent disjunctive expressions. 

 

0 The training data may contain errors. Decision tree learning methods are robust to 

errors, both errors in classifications of the training examples and errors in the attribute 

values that describe these examples. 

 

0 The training data may contain missing attribute values. Decision tree methods can be 

used even when some training examples have unknown values (e.g., if the Humidity of the 

day is known for only some of the training. 

 
11. The basic decision tree learning algorithm 

 
A. Which Attribute Is the Best Classifier? 

 

The central choice in the ID3 algorithm is selecting which attribute to test at each node in 

the tree. We would like to select the attribute that is most useful for classifying examples. 

What is a good quantitative measure of the worth of an attribute? We will define a 

statistical property, called informution gain, that measures how well a given attribute 

separates the training examples according to their target classification. ID3 uses this 

information gain measure to select among the candidate attributes at each step while 

growing the tree. 

 

B. Entropy measures homogeneity of examples 

In order to define information gain precisely, we begin by defining a measure commonly 
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used in information theory, called entropy, that characterizes the (im)purity of an arbitrary 

collection of examples. Given a collection S, containing positive and negative examples of 

some target concept, the entropy of S relative to this Boolean classification is 
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C. Information gain measures the expected reduction in entropy 

 

Given entropy as a measure of the impurity in a collection of training examples, we 

can now define a measure of the effectiveness of an attribute in classifying the training 

data. The measure we will use, called information gain, is simply the expected reduction in 

entropy caused by partitioning the examples according to this attribute. More precisely, the 

information gain, Gain(S, A) of an attribute A, relative to a collection of examples S, is 

defined as 

12. Hypothesis space search in decision tree learning 
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As with other inductive learning methods, ID3 can be characterized as searching a space of 

hypotheses for one that fits the training examples. The hypothesis space searched by ID3 is 

the set of possible decision trees. ID3 performs a simple-tocomplex, hill-climbing search 

through this hypothesis space, beginning with the empty tree, then considering 

progressively more elaborate hypotheses in search of a decision tree that correctly 

classifies the training data. The evaluation function 

 
 

 

that guides this hill-climbing search is the information gain measure. This search is 

depicted in Figure 3.5. By viewing ID in terms of its search space and search strategy, we 

can get some insight into its capabilities and limitations. 1~3's h ypothesis space of all 

decision trees is a complete space of finite discrete-valued functions, relative to the 

available attributes. Because every finite discrete-valued function can be represented by 

some decision tree, ID3 avoids one of the major risks of methods that search incomplete 

hypothesis spaces (such as methods that consider only conjunctive hypotheses): that the 

hypothesis space might not contain the target function. 

 

1. ID3 maintains only a single current hypothesis as it searches through the space of 

decision trees. This contrasts, for example, with the earlier version space candidate- 

~lirninat-od, which maintains the set of all hypotheses consistent with the available 

training examples. By determining only a single hypothesis, ID^ loses the capabilities that 

follow from explicitly representing all consistent hypotheses. For example, it does not have 

the ability to determine how many alternative decision trees are consistent with the 
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available training data, or to pose new instance queries that optimally resolve among these 

competing hypotheses. 

 

2. ID3 in its pure form performs no backtracking in its search. Once it,selects an 

attribute to test at a particular level in the tree, it never backtracks to reconsider this choice. 

Therefore, it is susceptible to the usual risks of hill-climbing search without backtracking: 

converging to locally optimal solutions that are not globally optimal. In the case of ID3, a 

locally optimal solution corresponds to the decision tree it selects along the single search 

path it explores. However, this locally optimal solution may be less desirable than trees 

that would have been encountered along a different branch of the search. Below we discuss 

an extension that adds a form of backtracking (post- pruning the decision tree). 

 

3. ID3 uses all training examples at each step in the search to make statistically based 

decisions regarding how to refine its current hypothesis. This contrasts with methods that 

make decisions incrementally, based on individual training examples (e.g., FIND- 

CANDIDATE-ELIMINATION 

) advantage of using statistical properties of all the examples (e.g., information gain) is that 

the resulting search is much less sensitive to errors in individual training examples. ID3 

can be easily extended to handle noisy training data by modifying its termination criterion 

to accept hypotheses that imperfectly fit the training data. 

 
 

 

 

13. Inductive bias in decision tree learning 
 

Given a collection of training examples, there are typically many decision trees consistent  

with these examples. Describing the inductive bias of ID3 therefore consists of describing 

the basis by which it chooses one of these consistent hypotheses over the others. Which of 

these decision trees does ID3 choose? 

 

It chooses the first acceptable tree it encounters in its simple-to-complex, hill climbing 

search through the space of possible trees. Roughly speaking, then, the ID3 search strategy 

(a) selects in favor of shorter trees over longer ones, and 
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(b) selects trees that place the attributes with highest information gain closest to the root. 

Because of the subtle interaction between the attribute selection heuristic used by ID3 and 

the particular training examples it encounters, it is difficult to characterize precisely the 

inductive bias exhibited by ID3. However, we can approximately characterize its bias as a 

preference for short decision trees over complex trees. 

 

Approximate inductive bias of ID3: Shorter trees are preferred over larger trees. 

In fact, one could imagine an algorithm similar to ID3 that exhibits precisely this inductive 

bias. Consider an algorithm that begins with the empty tree and searches breadth Jirst 

through progressively more complex trees, first considering all trees of depth 1, then all 

trees of depth 2, etc. Once it finds a decision tree consistent with the training data,   it 

returns the smallest consistent tree at that search depth (e.g., the tree with the fewest 

nodes). Let us call this breadth-first 

search algorithm BFS-ID3. BFS-ID3 finds a shortest decision tree and thus exhibits 

precisely the bias "shorter trees are preferred over longer trees." ID3 can be viewed as an 

efficient approximation to BFS- ID3, using a greedy heuristic search to attempt to find the 

shortest tree without conducting the entire breadth-first search through the hypothesis 

space. 

 

Because ID3 uses the information gain heuristic and a hill climbing strategy, it exhibits a 

more complex bias than BFS-ID3. In particular, it does not always find the shortest 

consistent tree, and it is biased to favor trees that place attributes with high information 

gain closest to the root. 

A closer approximation to the inductive bias of ID3: Shorter trees are preferred over 

longer trees. Trees that place high information gain attributes close to the root are preferred 

over those that do not. 

 

A. Restriction Biases and Preference Biases 

 

Consider the difference between the hypothesis space search in these two approaches: ID3 

searches a complete hypothesis space (i.e., one capable of expressing any finite discrete- 

valued function). It searches incompletely through this space, from simple to complex 

hypotheses, until its termination condition is met (e.g., until it finds a hypothesis consistent 

with the data). Its inductive bias is solely a consequence of the ordering of hypotheses by 

its search strategy. Its hypothesis space introduces no additional bias. 

 

The version space CANDIDATE-ELIMINATION algorithm searches an incomplete 

hypothesis space (i.e., one that can express only a subset of the potentially teachable 

concepts). It searches this space completely, finding every hypothesis consistent with the 

training data. Its inductive bias is solely a consequence of the expressive power of its 

hypothesis representation. Its search strategy introduces no additional bias. 

 

The inductive bias of ID3 is thus a preference for certain hypotheses over others (e.g., for 

shorter hypotheses), with no hard restriction on the hypotheses that can be eventually 

enumerated. This form of bias is typically called a preference bias (or, alternatively, a 

search bias). In contrast, the bias of the CANDIDATEELIMINATION Algorithm is in the 

form of a categorical restriction on the set of hypotheses considered. This form of bias is 

typically called a restriction bias (or, alternatively, a language bias). 
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A. Why Prefer Short Hypotheses? 

 
Is ID3's inductive bias favoring shorter decision trees a sound basis for generalizing 

beyond the training data? 

William of Occam was one of the first to discuss the question: 

 

Occam's razor: Prefer the simplest hypothesis that fits the data. 

 

Upon closer examination, it turns out there is a major difficulty with the above argument. 

By the same reasoning we could have argued that one should prefer decision trees 

containing exactly 17 leaf nodes 

with 11 nonleaf nodes, that use the decision attribute A1 at the root, and test attributes A2 

through All, in numerical order. 

 

A second problem with the above argument for Occam's razor is that the size of a 

hypothesis is determined by the particular representation used internally by the learner. 

Two learners using different internal representations could therefore anive at different 

hypotheses, both justifying their contradictory conclusions by Occam's razor!. 

 

This last argument shows that Occam's razor will produce two different hypotheses from 

the same training examples when it is applied by two learners that perceive these examples 

in terms of different internal representations. 

 

16. Issues in decision tree learning 

 

A. Avoiding Overfitting the Data 

The algorithm (DECISION TREE) grows each branch of the tree just deeply enough to 

perfectly classify the training examples. While this is sometimes a reasonable strategy, in 

fact it can lead to difficulties when there is noise in the data, or when the number of 

training examples is too small to produce a representative sample of the true target 

function. In either of these cases, this simple algorithm can produce trees that overfit the 

training examples. 

 

Definition: Given a hypothesis space H, a hypothesis h E H is said to overfit the 

training data if there exists some alternative hypothesis h' E H, such that h has 

smaller error than h' over the training examples, but h' has a smaller error than h 

over the entire distribution of instances. 

 

Overfitting is a significant practical difficulty for decision tree learning and many other 

learning methods. There are several approaches to avoiding overfitting in decision tree 

learning. 
These can be grouped into two classes: 
- approaches that stop growing the tree earlier, before it reaches the point where it 

perfectly classifies the training data, 
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- approaches that allow the tree to overfit the data, and then post-prune the tree. 

 

Although the first of these approaches might seem.more direct, the second approach of 

post-pruning overfit trees has been found to be more successful in practice. This is due to 

the difficulty in the first approach of estimating precisely when to stop growing the tree. 

Regardless of whether the correct tree size is found by stopping early or by post-pruning, a 

key question is what criterion is to be used to determine the correct final tree size. 
 

Approaches include: 

- Use a separate set of examples, distinct from the training examples, to evaluate the utility 

of post-pruning nodes from the tree. 

- Use all the available data for training, but apply a statistical test to estimate whether 

expanding (or pruning) a particular node is likely to produce an improvement beyond the 

training set. For example, Quinlan (1986) uses a chi-square test to estimate whether further 

expanding a node is likely to improve performance over the entire instance distribution, or 

only on the current sample of training data. 

- Use an explicit measure of the complexity for encoding the training examples and the 

decision tree, halting growth of the tree when this encoding size is minimized. This 

approach, based on a heuristic called the Minimum Description Length principle. 

 
B. Reduced error pruning 

How exactly might we use a validation set to prevent overfitting? One approach, called 

reduced-error pruning, is to consider each of the decision nodes in the.tree to be candidates 

for pruning. Pruning a decision node consists of removing the subtree rooted at that node, 

making it a leaf node, and assigning it the most common classification of the training 

examples affiliated with that node. 

 

Nodes are removed only if the resulting pruned tree performs no worse than-the original 

over the validation set. This has the effect that any leaf node added due to coincidental 

regularities in the training set is likely to be pruned because these same coincidences are 

unlikely to occur in the validation set. Nodes are pruned iteratively, always choosing the 

node whose removal most increases the decision tree accuracy over the validation set. 

Pruning of nodes continues until further pruning is harmful. 

 

The impact of reduced-error pruning on the accuracy of the decision tree is illustrated in 

Figure 3.7. 

C. Rule post-pruning 
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Rule post-pruning involves the following steps: 
1. Infer the decision tree from the training set, growing the tree until the training data is 

fit as well as possible and allowing overfitting to occur. 

2. Convert the learned tree into an equivalent set of rules by creating one rule for each 

path from the root node to a leaf node. 
3. Prune (generalize) each rule by removing any preconditions that result in improving 
its estimated accuracy. 

4. Sort the pruned rules by their estimated accuracy, and consider them in this sequence 
when classifying subsequent instances. 

 

Why convert the decision tree to rules before pruning? There are three main advantages. 

 

- Converting to rules allows distinguishing among the different contexts in which a 

decision node is used. Because each distinct path through the decision tree node produces a 

distinct rule, the pruning decision regarding that attribute test can be made differently for 

each path. In contrast, if the tree itself were pruned, the only two choices would be to 

remove the decision node completely, or to retain it in its original form. 

- Converting to rules removes the distinction between attribute tests that occur near the root 

of the tree and those that occur near the leaves. Thus, we avoid messy bookkeeping issues 

such as how to reorganize the tree if the root node is pruned while retaining part of the 

subtree below this test. 

- Converting to rules improves readability. Rules are often easier for to understand. 

 

D. Handling attributes with differing costs 

 

In some learning tasks the instance attributes may have associated costs. For example, in 

learning to classify medical diseases we might describe patients in terms of attributes such 

as Temperature, BiopsyResult, Pulse, BloodTestResults, etc. These attributes vary 

significantly in their costs, both in terms of monetary cost and cost to patient comfort. In 

such tasks, we would prefer decision trees that use low-cost attributes where possible, 

relying on high-cost attributes only when needed to produce reliable classifications. 

 
ID3 can be modified to take into account attribute costs by introducing a cost term into the 

attribute selection measure. For example, we might divide the Gain by the cost of the 

attribute, so that lower-cost attributes would be preferred. While such cost-sensitive 

measures do not guarantee finding an optimal cost-sensitive 

decision tree, they do bias the search in favor of low-cost attributes. 

 

Attribute cost is measured by the number of seconds required to obtain the attribute value 

by positioning and operating the sonar. They demonstrate that more efficient recognition 

strategies are learned, without sacrificing classification accuracy, by replacing the 

information gain attribute selection measure by the following measure. 
 

 

 

 
E. Handling training examples with missing attribute values 
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In certain cases, the available data may be missing values for some attributes. For example, 

in a medical domain in which we wish to predict patient outcome based on various 

laboratory tests, it may be that the lab test Blood-Test-Result is available only for a subset 

of the patients. In such cases, it is common to estimate the missing attribute value based on 

other examples for which this attribute has a known value. 

 

Consider the situation in which Gain(S, A) is to be calculated at node n in the decision tree 

to evaluate whether the attribute A is the best attribute to test at this decision node. 

Suppose that (x, c(x)) is one of the training examples in S and that the value A(x) is 

unknown. 

 

One strategy for dealing with the missing attribute value is to assign it the value that is 

most common among training examples at node n. Alternatively, we might assign it the 

most common value among examples at node n that have the classification c(x). The 

elaborated training example using this estimated value for A(x) can then be used directly 

by the existing decision tree learning algorithm. 

 

A second, more complex procedure is to assign a probability to each of the possible values 

of A rather than simply assigning the most common value to A(x). These probabilities can 

be estimated again based on the observed frequencies of the various values for A among 

the examples at node n. 

 
F. Incorporating continuous-valued attributes 

 

Our initial definition of ID3 is restricted to attributes that take on a discrete set of values. 

First, the target attribute whose value is predicted by the learned tree must be discrete 

valued. Second, the attributes tested in the decision nodes of the tree must also be discrete 

valued. This second restriction can easily be removed so that continuous-valued decision 

attributes can be incorporated into the learned tree. This can be accomplished by 

dynamically defining new discrete valued attributes that partition the continuous attribute 

value into a discrete set of intervals. 

 

14. Artificial neural networks 

 

Neural network learning methods provide a robust approach to approximating real-valued, 

discrete- valued, and vector-valued target functions. For certain types of problems, such as 

learning to interpret complex real-world sensor data, artificial neural networks are among 

the most effective learning methods currently known. 

 

Neural network representations: 

 

System ALVINN, which uses a learned ANN to steer an autonomous vehicle driving at 

normal speeds on public highways. The input to the neural network is a 30 x 32 grid of 

pixel intensities obtained from a forward-pointed camera mounted on the vehicle. The 

network output is the direction in which the vehicle is steered. The ANN is trained to 

mimic the observed steering commands of a human driving the vehicle for approximately 5 

minutes. ALVINN has used its learned networks to successfully drive at speeds up to 70 

miles per hour and for distances of 90 miles on public highways (driving in the left lane of 

a divided public highway, with other vehicles present). 



25  

 

 
 

 
 

Figure 4.1 illustrates the neural network representation used in one version of the ALVINN 

system, and illustrates the kind of representation typical of many ANN systems. The 

network is shown on the left side of the figure, with the input camera image depicted 

below it. Each node (i.e., circle) in the network diagram corresponds to the output of a 

single network unit, and the lines entering the node from below are its inputs. As can be 

seen, there are four units that receive inputs directly from all of the 30 x 32 pixels in the 

image. 

These are called "hidden" units because their output is available only within the network 

and is not available as part of the global network output. Each of these four hidden units 

computes a single real- valued output based on a weighted combination of its 960 inputs. 

These hidden unit outputs are then used as inputs to a second layer of 30 "output" units. 

 

Each output unit corresponds to a particular steering direction, and the output values of 

these units determine which steering direction is recommended most strongly. 

 

The diagrams on the right side of the figure depict the learned weight values associated 

with one of the four hidden units in this ANN. The large matrix of black and white boxes 

on the lower right depicts the weights from the 30 x 32 pixel inputs into the hidden unit. 

Here, a white box indicates a positive weight, a black box a negative weight, and the size 

of the box indicates the weight magnitude. 

 

 

 
The smaller rectangular diagram directly above the large matrix shows the weights from 

this hidden unit to each of the 30 output units. The network structure of ALVINN is 
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typical of many ANNs. Here the individual units are interconnected in layers that form a 

directed acyclic graph. In general, ANNs can be graphs with many types of structures- 

acyclic or cyclic, directed or undirected. This chapter will focus on the most common and 

practical ANN approaches, which are based on the BACKPROPAGATION algorithm. 

 

17. Perceptron 
 

 

 

 

 

 
 

 

A. Representational Power of Perceptrons 

 

We can view the perceptron as representing a hyperplane decision surface in the n- 

dimensional space of instances (i.e., points). The perceptron outputs a 1 for instances lying 

on one side of the hyperplane and outputs a -1 for instances lying on the other side, as 

illustrated in Figure 4.3. The equation for this decision 
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hyperplane is . Of course, some sets of positive and negative examples cannot be 

separated by any hyperplane. Those that can be separated are called linearly separable sets 

of examples. 
A single perceptron can be used to represent many boolean functions. For   example,   if 
we assume boolean values of 1 
(true) and -1 (false), then one way to use a two-input perceptron to implement the AND 
function is to set the weights wo 
= -3, and wl = wz = .5. 

 

Perceptrons can represent all of the primitive boolean functions AND, OR, NAND (1 
AND), and NOR (1 OR). Unfortunately, however, some boolean functions cannot be 

represented by a single perceptron, such as the XOR function whose value is 1 if and only 

if  

 
B. The Perceptron Training Rule 

 

Although we are interested in learning networks of many interconnected units, let us begin 

by understanding how to learn the weights for a single perceptron. Here the precise 

learning problem is to determine a weight vector that causes the perceptron to produce the 

correct if 1 output for each of the given training examples. 

Several algorithms are known to solve this learning problem. Here we consider two: the 
perceptron rule and the delta rule. 

These two algorithms are guaranteed to converge to somewhat different acceptable 

hypotheses, under somewhat different conditions. They are important to ANNs because 

they provide the basis for learning networks of many units. One way to learn an acceptable 

weight vector is to begin with random weights, then iteratively apply the perceptron to 

each training example, modifying the perceptron weights whenever it misclassifies an 

example. This process is repeated, iterating through the training examples as many times as 

needed until the perceptron classifies all training examples correctly. Weights are modified 

at each step according to the perceptron training rule, which revises the weight wi 

associated with input xi according to the rule 
 
 

 

Here t is the target output for the current training example, o is the output generated by the 

perceptron, and q is a positive constant called the learning rate. 

 

C. Gradient Descent and the Delta Rule 

 

Although the perceptron rule finds a successful weight vector when the training examples 

are linearly separable, it can fail to converge if the examples are not linearly separable. A 

second training rule, called the delta rule, is designed to overcome this difficulty. If the 

training examples are not linearly separable, the delta rule converges toward a best-fit 

approximation to the target concept. 

 

The key idea behind the delta rule is to use gradient descent to search the hypothesis space 

of possible weight vectors to find the weights that best fit the training examples. This rule 

is important because gradient descent provides the basis for the BACKPROPAGATION 
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algorithm, which can learn networks with many interconnected units. It is also important 

because gradient descent can serve as the basis for learning algorithms that must search 

through hypothesis spaces containing many different types of continuously parameterized 

hypotheses. 

 

The delta training rule is best understood by considering the task of training an 

unthresholded perceptron; that is, a linear unit for which the output o is given by 
 

Thus, a linear unit corresponds to the first stage of a perceptron, without the threshold. 

In order to derive a weight learning rule for linear units, let us begin by specifying a 

measure for the training error of a hypothesis (weight vector), relative to the training 
 

examples. Although there are many ways to define this error, one common measure that 

will turn out to be especially convenient is 

where D is the set of training examples, td is the target output for training example d, and 

od is the output of the linear unit for training example d. 

D. Derivation of the gradient descent rule 
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E. Stochastic approximation to gradient descent 

 

Gradient descent is an important general paradigm for learning. It is a strategy for 

searching through a large or infinite hypothesis space that can be applied whenever 

(1) the hypothesis space contains continuously parameterized hypotheses (e.g., the 

weights in a linear unit), and (2) the error can be differentiated with respect to these 

hypothesis parameters. The key practical difficulties in applying gradient descent are (1) 

converging to a local minimum can sometimes be quite slow (i.e., it can require many 

thousands of gradient descent steps), and (2) if there are multiple local minima in the error 

surface, then there is no guarantee that the procedure will find the global minimum. 
 

One common variation on gradient descent intended to alleviate these difficulties is called 
incremental gradient descent, or alternatively stochastic gradient descent. 

MULTILAYER NETWORKS AND THE BACKPROPAGATION ALGORITHM 
 

Single perceptrons can only express linear decision surfaces. In contrast, the kind of 

multilayer networks learned by the BACKPROPAGATION algorithm are capable of 

expressing a rich variety of nonlinear decision surfaces. 

This section discusses how to learn such multilayer networks using a gradient descent 

algorithm similar to that discussed in the previous section. 
 

 A Differentiable Threshold Unit 
 

At first we might be tempted to choose the linear units discussed in the previous section, 

for which we have already derived a gradient descent learning rule. However, multiple 

layers of cascaded linear units still produce only linear functions, and we prefer networks 

capable of representing highly nonlinear functions. The perceptron unit is another possible 

choice, but its discontinuous threshold makes it undifferentiable and hence unsuitable for 

gradient descent. What we need is a unit whose output is a nonlinear function of its inputs, 

but whose output is also a differentiable function of its inputs. One solution is the sigmoid 

unit-a unit very much like a perceptron, but based on a smoothed, differentiable threshold 

function. 
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The sigmoid unit is illustrated in Figure 4.6. Like the perceptron, the sigmoid unit first 

computes a linear combination of its inputs, then applies a threshold to the result. In the 

case of the sigmoid unit, however, the threshold output is a continuous function of its 

input. More precisely, the sigmoid unit computes its 
output o as 

 

 

 

is often called the sigmoid function or, alternatively, the logistic function. Note its output ranges 

Between 0 and 1, increasing monotonically with its input. 
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15. Remarks on the back propagation algorithm 

 
 

A. Convergence and Local Minima 

 

Despite the lack of assured convergence to the global minimum error, 

BACKPROPAGATION is a highly effective function approximation method in practice. 

When gradient descent falls into a local minimum with respect to one of these weights, it 

will not necessarily be in a local minimum with respect to the other weights. In fact, the 

more weights in the network, the more dimensions that might provide "escape routes" for 

gradient descent to fall away from the local minimum with respect to this single weight. 

 
A second perspective on local minima can be gained by considering the manner in which 

network weights evolve as the number of training iterations increases. Notice that if 

network weights are initialized to values near zero, then during early gradient descent steps 

the network will represent a very smooth function that is approximately linear in its inputs. 

This is because the sigmoid threshold function itself is approximately linear when the 

weights are close to zero . 

 

Despite the above comments, gradient descent over the complex error surfaces represented 

by ANNs is still poorly understood, and no methods are known to predict with certainty 

when local minima will cause difficulties. Common heuristics to attempt to alleviate the 

problem of local minima include: 
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Add a momentum term to the weight-update rule. 
-Use stochastic gradient descent rather than true gradient descent. 
-Train multiple networks using the same data, but initializing each network with different 
random weights. 

 

B. Representational Power of Feedforward Networks 

Function classes can be known 

Boolean functions: Every boolean function can be represented exactly by some network 

with two layers of units, although the number of hidden units required grows exponentially 

in the worst case with the number of network inputs. 

Continuous functions: Every bounded continuous function can be approximated with 

arbitrarily small error (under a finite norm) by a network with two layers of units. 
Arbitraryfunctions:Any function can be approximated to arbitrary accuracy by a network 
with three layers of units. 

 

C. Hidden Layer Representations 

 
One intriguing property of BACKPROPAGATION ability to discover useful intermediate 

representations at the hidden unit layers inside the network. Because training examples 

constrain only the network inputs and outputs, the weight- tuning procedure is free to set 

weights that define whatever hidden unit representation is most effective at minimizing the 

squared error E. This can lead BACKPROPAGATION to define new hidden layer features 

that are not explicit in the input representation, but which capture properties of the input 

instances that are most relevant to learning the target function. 

 

Consider, for example, the network shown in Figure 4.7. Here, the eight network inputs are 

connected to three hidden units, which are in turn connected to the eight output units. 

Because of this structure, the three hidden units will be forced to re-represent the eight 

input values in some way that captures their relevant features, so that this hidden layer 

representation can be used by the output units to compute the correct target values. 

 
Consider training the network shown in Figure 4.7 to learn the simple target function f (2) 
= 2, where 2 is a vector containing seven 0's and a single 1. The network must learn to 

reproduce the eight inputs at the corresponding eight output units. Although this is a simple 

function, the network in this case is constrained to use only three hidden units. Therefore, 

the essential information from all eight input units must be captured by the three learned 

hidden units. 
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When BACKPROPAGATION lied to this task, using each of the eight possible 

vectors as training examples, it successfully learns the target function. What hidden layer 

representation is created by the gradient descent BACKPROPAGATION algorithm? By 

examining the hidden unit values generated by the learned network for each of the eight 

possible input vectors, it is easy to see that the learned encoding is similar to the familiar 

standard binary encoding of eight values using three bits (e.g., 000,001,010,. . . , 111). 
The exact values of the hidden units for one typical run of BACKPROPAGATION in 

Figure 4.7. 
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PART-A (2 Marks) 
 

1. What is a Decision Tree? 

A. A decision tree is a hierarchical data structure implementing the divide-and-conquer 

strategy. It is an efficient nonparametric method, which can be used for both classification 

and regression. 

Decision trees classify instances by sorting them down the tree from the root to leaf node, 

which provides the classification of the instance. 
 

2. What is Clustering Methods? 

A. Clustering methods allow learning the mixture parameters from data. 

 

3. What is Parametric Methods? 

A. In parametric where we assume that the sample is drawn from some distribution that 
obeys a known model, for example, Gaussian. 

 

4. Define Kernel Machines. 

A. Kernel machines are maximum margin methods that allow the model to be written as 
a sum of the influences of a subset of the training instances. 

 

5. What is Multilayer Perceptron? 

The multilayer perceptron is an artificial neural network structure and is a nonparametric 

estimator that can be used for classification and regression 

6. Define Machine Learning. 

A. A computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P. 

 

7. What is Vapnik-Chervonenkis (VC) Dimension? 

A. The maximum number of points that can be shattered by H is called the Vapnik- 

Chervonenkis (VC) dimension of H, is denoted as VC(H), and measures the capacity of H. 
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PART-B (10 Marks) 

 

 
1. What are different Machine Learning Applications? 

2. Explain the basic decision tree learning algorithm. 

3. Explain Back Propagation Algorithm and remarks on the Back Propagation 

Algorithm. 

4. What is Decisions Tree representation, Appropriate problems for decision tree 

learning and the basic decision tree learning algorithm. 

5. What are Advanced Topics in Artificial Neural Networks? 

6. Compare Supervised and Unsupervised learning Techniques. 



39  

 

 

 

 
MOTIVATION:- 

UNIT-2 

EVALUATING HYPOTHESES 

 

In many cases it is important to evaluate the performance of learned hypotheses as precisely 
as possible. 

 
One reason is simply to understand whether to use the hypothesis. For instance, when 

learning from a limited-size database indicating the effectiveness of different medical 

treatments, it is important to understand as precisely as possible the accuracy of the learned 

hypotheses. A second reason is that evaluating hypotheses is an integral component of many 

learning methods. For example, in post-pruning decision trees to avoid overfitting, we must 

evaluate the impact of possible pruning steps on the accuracy of the resulting decision tree. 

 

Therefore it is important to understand the likely errors inherent in estimating the accuracy 

of the pruned and unpruned tree. Estimating the accuracy of a hypothesis is relatively 

straightforward when data is plentiful. However, when we must learn a hypothesis and 

estimate its future accuracy given only a limited set of data, two key difficulties arise: 

 

 Bias in the estimate:- First, the observed accuracy of the learned hypothesis over the 

training examples is often a poor estimator of its accuracy over future examples. Because the 

learned hypothesis was derived from these examples, they will typically provide an 

optimistically biased estimate of hypothesis accuracy over future examples. This is 

especially likely when the learner considers a very rich hypothesis space, enabling it to 

overfit the training examples. 

 Variance in the estimate. Second, even if the hypothesis accuracy is measured over 

an unbiased set of test examples independent of the training examples, the measured 

accuracy can still vary from the true accuracy, depending on the makeup of the particular set 

of test examples. The smaller the set of test examples, the greater the expectedvariance. 

 

ESTIMATING HYPOTHESIS ACCURACY:- 
 

When evaluating a learned hypothesis we are most often interested in estimating the 

accuracy with which it will classify future instances. At the same time, we would like to 

know the probable error in this accuracy estimate (i.e., what error bars to associate with this 

estimate). 

 

There is some space of possible instances X (e.g., the set of all people) over which various 

target functions may be defined (e.g., people who plan to purchase new skis this year). We 

assume that different instances in X may be encountered with different frequencies. A 
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convenient way to model this is to assume there is some unknown probability distribution D 

that defines the probability of encountering each instance in X (e-g., 23 might assign a 

higher probability to encountering 19-year-old people than 109-year-old people). Notice 23 

says nothing about whether x is a positive or negative example; it only detennines the 

probability that x will be encountered. The learning task is to learn the target concept or 

target function f by considering a space H of possible hypotheses. Training examples of the 

target function f are provided to the learner by a trainer who draws each instance 

independently, according to the distribution D, and who then forwards the instance x along 

with its correct target value f (x) to the learner. 

 

To illustrate, consider learning the target function "people who plan to purchase new skis 

this year," given a sample of training data collected by surveying people as they arrive at a 

ski resort. In this case the instance space X is the space of all people, who might be 

described by attributes such as their age, occupation, how many times they skied last year, 

etc. The distribution D specifies for each person x the probability that x will be encountered 

as the next person arriving at the ski resort. The target function 

f : X + {O,1) classifies each person according to whether or not they plan to purchase skis 

this year. 

 

 
Sample Error and True Error:- 

 

To answer these questions, we need to distinguish carefully between two notions of 

accuracy or, equivalently, error. One is the error rate of the hypothesis over the sample of 

data that is available. The other is the error rate of the hypothesis over the entire unknown 

distribution D of examples. We will call these the sample error and the true error 

respectively. 

 

The sample error of a hypothesis with respect to some sample S of instances drawn from X 

is the fraction of S that it misclassifies: 

 
Definition: The sample error (denoted errors(h)) of hypothesis h with respect to target 

function f and data sample S is 
 

where n is the number of examples in S, and the quantity S(f (x), h(x)) is 1 if f (x) # h(x), 

and 0 otherwise. 

 

The true error of a hypothesis is the probability that it will misclassify a single randomly 

drawn instance from the distribution D. 

Definition: The true error (denoted errorD(h))of hypothesis h with respect to target 

function f and distribution D, is the probability that h will misclassify an instance drawn at 

random according to D. 
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usually wish to know is the true error errorD(h) of the hypothesis, because this is the error 

we can expect when applying the hypothesis to future examples. All we can measure, 

however, is the sample error errors(h) of the hypothesis for the data sample S that we 

happen to have in hand. The main question considered in this section is "How good an 

estimate of errorD(h) is provided by errorS (h)?" 

 

Confidence Intervals for Discrete-Valued Hypotheses:- 

 

Here we give an answer to the question "How good an estimate of errorD(h) is provided by 

errorS (h)?' for the case in which h is a discrete-valued hypothesis. More specifically, 

suppose we wish to estimate the true error for some discrete- valued hypothesis h, based on 

its observed sample error over a sample S, where 

 

 the sample S contains n examples drawn independent of one another, and independent of

h, according to the probability distribution D 
 n ≥ 30

 hypothesis h commits r errors over these n examples (i.e., errors(h) = r / n).
Under these conditions, statistical theory allows us to make the following assertions: 

 

1. Given no other information, the most probable value of errorD(h) is errorS(h). 

2. With approximately 95% probability, the true error errorD(h) lies in the interval 
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A more accurate rule of thumb is that the above approximation works well when 
 

 

BASICS OF SAMPLING THEORY:- 

Error Estimation and Estimating Binomial Proportions:- 

 

Precisely how does the deviation between sample error and true error depend on the size of 

the data sample? This question is an instance of a well-studied problem in statistics: the 

problem of estimating the proportion of a population that exhibits some property, given the 

observed proportion over some random sample of the population. In our case, the property 

of interest is that h misclassifies the example. 

The key to answering this question is to note that when we measure the sample error we are 

performing an experiment with a random outcome. We first collect a random sample S of n 

independently drawn instances from the distribution D and then measure the sample error 

errors(h). As noted in the previous section, if we were to repeat this experiment many times, 

each time drawing a different random sample Si of size n, we would expect to observe 

different values for the various errorSi(h), depending on random differences in the makeup 

of the various Si. We say in such cases that errorSi(h), the outcome of the ith such 

experiment, is a random variable. In general, one can think of a random variable as the name 

of an experiment with a random outcome. The value of the random variable is the observed 

outcome of the random experiment. 

 

As taking the k no-of random experiments, histogram table describes a particular probability 

distribution called the Binomial distribution 
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A Binomial distribution gives the probability of observing r heads in a sample of n 

independent coin tosses, when the probability of heads on a single coin toss is p. It is defined 

by the probability function 

 
 

If the random variable X follows a Binomial distribution, then: 

 
 The probability Pr(X = r ) that X will take on the value r is given by P(r)

 The expected, or mean value of X, E[X],is
 

 
 The variance of X, Var(X), is

 The standard deviation of X, ax, is

 
For sufficiently large values of n the Binomial distribution is closely approximated by a 

Normal distribution with the same mean and variance. Most statisticians recommend using 

the Normal approximation only when np(1- p) >= 5. 

 
The Binomial Distribution:- 

 

A good way to understand the Binomial distribution is to consider the following problem. 

You are given a worn and bent coin and asked to estimate the probability that the coin will 

turn up heads when tossed. Let us call this unknown probability of heads p. You toss the 

coin n times and record the number of times r that it turns up heads. A reasonable estimate 

of p is r / n. Note that if the experiment were rerun, generating a new set of n coin tosses, we 

might expect the number of heads r to vary somewhat from the value measured in the first 

experiment, yielding a somewhat different estimate for p. The Binomial distribution 

describes for each possible value of r (i.e., from 0 to n), the probability of observing exactly 

r heads given a sample of n independent tosses of a coin whose true probability of heads is 

p. 

 

The detailed form of the Binomial distribution depends on the specific sample size n and the 

specific probability p or errorD(h). 
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The general setting to which the Binomial distribution applies is: 

 

1. There is a base, or underlying, experiment (e.g., toss of the coin) whose outcome can 

be described by a random variable, say Y. The random variable Y can take on two possible 

values (e.g., Y = 1 if heads, Y = 0 if tails). 

2. The probability that Y = 1 on any single trial of the underlying experiment is given 

by some constant p, independent of the outcome of any other experiment. The probability 

that Y = 0 is therefore (1 - p). Typically, p is not known in advance, and the problem is to 

estimate it. 

 

3. A series of n independent trials of the underlying experiment is performed (e.g., n 

independent coin tosses), producing the sequence of independent, identically distributed 

random variables Y1, Y2, . . . , Yn. Let R denote the number of trials for which Yi = 1 in 

this series of n experiments 

 

 
4. The probability that the random variable R will take on a specific value r (e.g., the 

probability of observing exactly r 

heads) is given by the Binomial distribution 

 

The Binomial distribution characterizes the probability of observing r heads from n coin flip 

experiments, as well as the probability of observing r errors in a data sample containing n 

randomly drawn instances. 

 

Mean and Variance:- 

Two properties of a random variable that are often of interest are its expected value (also 

called its mean value) and its variance. The expected value is the average of the values taken 

on by repeatedly sampling the random variable. More precisely 

 

Definition: Consider a random variable Y that takes on the possible values yl, . . . yn. The 
expected value of Y, E[Y], is 

 

 

In case the random variable Y is governed by a Binomial distribution, then it can be shown 

that 
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where n and p are the parameters of the Binomial distribution defined in above Equation 

 

A second property, the variance, captures the "width or "spread" of the probability 

distribution; that is, it captures how far the random variable is expected to vary from its 

mean value. 

 

Definition: The variance of a random variable Y, Var[Y], is 

 

The variance describes the expected squared error in using a single observation of Y to 

estimate its mean E[Y]. The square root of the variance is called the standard deviation of Y 

, denoted σY. 

Definition: The standard deviation of a random variable Y, σY, is 
 

 
In case the random variable Y is governed by a Binomial distribution, then the variance and 

standard deviation are given by 

 

Estimators, Bias, and Variance :- 

 
Now that we have shown that the random variable errors(h) obeys a Binomial distribution, 

we return to our primary question: What is the likely difference between errors(h) and the 

true error errorD(h)? Let us describe errors(h) and 

errorD(h) using the terms in Equation defining the Binomial distribution. We then have 
 

 

where n is the number of instances in the sample S, r is the number of instances from S 

misclassified by h, and p is the probability of misclassifying a single instance drawn from 

D. 

Statisticians call errors(h) an estimator for the true error errorD(h). In general, an estimator 

is any random variable used to estimate some parameter of the underlying population from 

which the sample is drawn. An obvious question to ask about any estimator is whether on 

average it gives the right estimate. We define the estimation bias to be the difference 

between the expected value of the estimator and the true value of the parameter. 

 
Definition: The estimation bias of an estimator Y for an arbitrary parameter p is 
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If the estimation bias is zero, we say that Y is an unbiased estimator for p. Notice this will 

be the case if the average of many random values of Y generated by repeated random 

experiments (i.e., E[Y]) converges toward p. Is errors(h) an unbiased estimator for 

errorD(h)? Yes, because for a Binomial distribution the expected value of r is equal to np . 

It follows, given that n is a constant, that the expected value of r / n is p. Two quick remarks 

are in order regarding the estimation bias. First, that testing the hypothesis on the training 

examples provides an optimistically biased estimate of hypothesis error,it is exactly this 

notion of estimation bias to which we were referring. In order for errors(h) to give an 

unbiased estimate of errorD(h), the hypothesis h and sample S must be chosen 

independently. Second, this notion of estimation bias should not be confused with the 

inductive bias of a learner. The estimation bias is a numerical quantity, whereas the 

inductive bias is a set of assertions. 

A second important property of any estimator is its variance. Given a choice among 

alternative unbiased estimators, it makes sense to choose the one with least variance. By our 

definition of variance, this choice will yield the smallest expected squared error between the 

estimate and the true value of the parameter. 

 

In general, given r errors in a sample of n independently drawn test examples, the standard 

deviation for errors(h) is given by 
 

 

which can be approximated by substituting r / n = errors(h) for p 
 

Confidence Intervals:- 

 

One common way to describe the uncertainty associated with an estimate is to give an 

interval within which the true value is expected to fall, along with the probability with which 

it is expected to fall into this interval. Such estimates are called confidence interval 

estimates. 

 

Definition: An N% confidence interval for some parameter p is an interval that is expected 

with probability N% to contain p. 

 

For a given value of N how can we find the size of the interval that contains N% of the 

probability mass? Unfortunately, for the Binomial distribution this calculation can be quite 

tedious. Fortunately, however, an easily calculated and very good approximation can be 

found in most cases, based on the fact that for sufficiently large sample sizes the Binomial 

distribution can be closely approximated by the Normal distribution. The Normal 
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distribution, summarized in is perhaps the most well-studied probability distribution in 

statistics. It is a bell-shaped distribution fully specified by its mean µ and standard deviation 

σ. For large n, any Binomial distribution is very closely approximated by a Normal 

distribution with the same mean and variance. 

 

 

 

 
A Normal distribution (also called a Gaussian distribution) is a bell-shaped distribution 

defined by the probability density function 
 

 

A Normal distribution is fully determined by two parameters in the above formula: µ and σ. 

If the random variable X follows a normal distribution, then: 

 The probability that X will fall into the interval (a, b) is given by

 The expected, or mean value of X, E[X], is
 

 

 The variance of X, Var(X), is

 The standard deviation of X, , is

The Central Limit Theorem (Section 5.4.1) states that the sum of a large number of 

independent, identically distributed random variables follows a distribution that is 

approximately Normal. 
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A GENERAL APPROACH FOR DERIVING CONFIDENCE INTERVALS:- 

 
It describe in detail how to derive confidence interval estimates for one particular case: 

estimating errorv(h) for a discrete-valued hypothesis h, based on a sample of n 

independently drawn instances. The approach described there illustrates a general approach 

followed in many estimation problems. In particular, we can see this as a problem of 

estimating the mean (expected value) of a population based on the mean of a randomly 

drawn sample of size n. 

The general process includes the following steps: 
 

1. Identify the underlying population parameter p to be estimated, for example, 

errorD(h). 

 

2. Define the estimator Y (e.g., errors(h)). It is desirable to choose a minimum 

variance, unbiased estimator. 

3. Determine the probability distribution Dy that governs the estimator Y, including its 

mean and variance. 

4. Determine the N% confidence interval by finding thresholds L and U such that N% 

of the mass in the probability distribution Dy falls between L and U. 

Central Limit Theorem:- 

 
One essential fact that simplifies attempts to derive confidence intervals is the Central Limit 

Theorem. Consider again our general setting, in which we observe the values of n 

independently drawn random variables Yl . . . Yn that obey the same unknown underlying 

probability distribution (e.g., n tosses of the same coin). Let p denote the mean of the 

unknown distribution governing each of the Yi and let a denote the standard deviation. We 

say that these variables Yi are independent, identically distributed random variables, 

because they describe independent experiments, each obeying the same underlying 

probability distribution. In an attempt to estimate the mean p of the distribution governing 

the Yi, we 

calculate the sample mean .The Central Limit Theorem states that the probability 

distribution governing        approaches a Normal distribution as n → ∞, regardless ofthe 

distribution that governs the underlying random variables Yi. Furthermore, the   mean   of 

the distribution governing    approaches µ and the standard deviation approaches . 

More precisely, Then as n → ∞, the distribution governing 
 

 

approaches a Normal distribution, with zero mean and standard deviation equal to 1. 
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DIFFERENCE IN ERROR OF TWO HYPOTHESES:- 

Consider the case where we have two hypotheses h1 and h2 for some discrete valued target 

function. Hypothesis h1 has been tested on a sample S1 containing n1 randomly drawn 

examples, and h2 has been tested on an independent sample S2 containing n2 examples 

drawn from the same distribution. Suppose we wish to estimate the difference d between the 

true errors of these two hypotheses. 

 
Although we will not prove it here, it can be shown that gives an unbiased estimate of d; 

 

that is E [a]= d 

 

to obtain the approximate variance of each of these distributions, we have 

 
 

Using the approximate variance a; given above, this approximate N% confidence interval 
estimate for d is 

 

we redefine as 
 

COMPARING LEARNING ALGORITHMS:- 
 

Often we are interested in comparing the performance of two learning algorithms LA and 

LB, rather than two specific hypotheses. What is an appropriate test for comparing learning 

algorithms, and how can we determine whether an observed difference between the 

algorithms is statistically significant? Although there is active debate within the machine- 

learning research community regarding the best method for comparison, we present here one 

reasonable approach. A discussion of alternative methods is given by Dietterich (1996). 

As usual, we begin by specifying the parameter we wish to estimate. Suppose we wish to 

determine which of LA and LB is the better learning method on average for learning some 

particular target function f. A reasonable way to define "on average" is to consider the 

relative performance of these two algorithms averaged over all the training sets of size n that 

might be drawn from the underlying instance distribution D. In other words, we wish to 

estimate the expected value of the difference in their errors 

 

where L(S) denotes the hypothesis output by learning method L when given the sample S of 

training data and where the subscript S Ϲ D indicates that the expected value is taken over 

samples S drawn according to the underlying instance distribution D. The above expression 
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describes the expected value of the difference in errors between learning methods LA and 

LB. 

Of course in practice we have only a limited sample Do of data when comparing learning 

methods. In such cases, one obvious approach to estimating the above quantity is to divide 

Do into a training set So and a disjoint test set To. 

The training data can be used to train both LA and LB, and the test data can be used to 

compare the accuracy of the two learned hypotheses. In other words, we measure the 

quantity 

Notice two key differences between this estimator and the quantity in Equation. First, we are 

using errorT0(h) to approximate errorD(h). Second, we are only measuring the difference in 

errors for one training set S0 rather than taking the expected value of this difference over all 

samples S that might be drawn from the distribution D. 

One way to improve on the estimator given by Equation is to repeatedly partition the data 

D0 into disjoint training and test sets and to take the mean of the test set errors for these 

different experiments. This procedure first partitions the data into k disjoint subsets of equal 

size, where this size is at least 30. It then trains and tests the learning algorithms k times, 

using each of the k subsets in turn as the test set, and using all remaining data as the training 

set. 

In this way, the learning algorithms are tested on k independent test sets, and the mean 

difference in errors            is returned as an estimate of the difference between the two 

learning algorithms. 

 

The quantity        returned by the procedure that can be taken as an estimate of the desired 

quantity from Equation 

More appropriately, we can view    as an estimate of the quantity 
 
 

 
BAYESIAN LEARNING INTRODUCTION 

 

Bayesian learning methods are relevant to our study of machine learning for two different 

reasons. First, Bayesian learning algorithms that calculate explicit probabilities for 

hypotheses, such as the naive Bayes classifier, are among the most practical approaches to 

certain types of learning problems. For example, Michie et al. (1994) provide a detailed 

study comparing the naive Bayes classifier to other learning algorithms, including decision 

tree and neural network algorithms. 

 

These researchers show that the naive Bayes classifier is competitive with these other 

learning algorithms in many cases and that in some cases it outperforms these other 
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methods. In this chapter we describe the naive Bayes classifier and provide a detailed 

example of its use. In particular, we discuss its application to the problem of learning to 

classify text documents such as electronic news articles. 

 

For such learning tasks, the naive Bayes classifier is among the most effective algorithms 

known. 

 

The second reason that Bayesian methods are important to our study of machine learning is 

that they provide a useful perspective for understanding many learning algorithms that do 

not explicitly manipulate probabilities. We also use a Bayesian analysis to justify a key 

design choice in neural network learning algorithms:choosing to minimize the sum of 

squared errors when searching the space of possible neural networks. We also derive an 

alternative error function, cross entropy, that is more appropriate than sum of squared errors 

when learning target functions that predict probabilities. We use a Bayesian perspective to 

analyze the inductive bias of decision tree learning algorithms that favor short decision trees 

and examine the closely related Minimum Description Length principle. A basic familiarity 

with Bayesian methods is important to understanding and characterizing the operation of 

many algorithms in machine learning. 

 

Features of Bayesian learning methods include: 

 

 Each observed training example can incrementally decrease or increase the estimated 

probability that a hypothesis is correct. This provides a more flexible approach to learning 

than algorithms that completely eliminate a hypothesis if it is found to be inconsistent with 

any single example.

 Prior knowledge can be combined with observed data to determine the final 

probability ~f a hypothesis. In Bayesian learning, prior knowledge is provided by asserting

(1) a prior probability for each candidate hypothesis, and (2) a probability distribution over 
observed data for each possible hypothesis. 
 Bayesian methods can accommodate hypotheses that make probabilistic predictions.
 New instances can be classified by combining the predictions of multiple 
hypotheses, weighted by their probabilities.
 Even in cases where Bayesian methods prove computationally intractable, they can 

provide a standard of optimal decision making against which other practical methods can be 

measured.

 
 

BAYES THEOREM:- 

 
In machine learning we are often interested in determining the best hypothesis from 

some space H, given the observed training data D. One way to specify what we mean by the 

best hypothesis is to say that we demand the most probable 

hypothesis, given the data D plus any initial knowledge about the prior probabilities of the 

various hypotheses in H. Bayes theorem provides a direct method for calculating such 

probabilities. More precisely, Bayes theorem provides a way to calculate the probability of a 

hypothesis based on its prior probability, the probabilities of observing various data given 

the hypothesis, and the observed data itself. 
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To define Bayes theorem precisely, let us first introduce a little notation. We shall write P(h) 

to denote the initial probability that hypothesis h holds, before we have observed the training 

data. P(h) is often called the prior probability of h and may reflect any background 

knowledge we have about the chance that h is a correct hypothesis. If we have no such prior 

knowledge, then we might simply assign the same prior probability to each candidate 

hypothesis. Similarly, we will write P(D) to denote the prior probability that training data D 

will be observed. Next, we will write P(D/h) to denote the probability of observing data D 

given some world in which hypothesis h holds. More generally, we write P(x/y) to denote 

the probability of x given y. In machine learning problems we are interested in the 

probability P (h/D) that h holds given the observed training data D. P (h/D) is called the 

posterior probability of h, because it reflects our confidence that h holds after we have seen 

the training data D. Notice the posterior probability P(h/D) reflects the influence of the 

training data D, in contrast to the prior probability P(h), which is independent of D. 

Bayes theorem is the cornerstone of Bayesian learning methods because it provides a way to 

calculate the posterior probability P(h/D), from the prior probability P(h), together with 

P(D) and P(D/h). 

Bayes theorem: 
 
 

 

As one might intuitively expect, P(h/D) increases with P(h) and with P(D/h) according to 

Bayes theorem. It is also reasonable to see that P(h/D) decreases as P(D) increases, because 

the more probable it is that D will be observed independent of h, the less evidence D 

provides in support of h. 

 

In many learning scenarios, the learner considers some set of candidate hypotheses H and is 

interested in finding the most probable hypothesis h ϵ H given the observed data D. Any 

such maximally probable hypothesis is called a Maximum a Posteriori (MAP) Hypothesis. 

We can determine the MAP hypotheses by using Bayes theorem to calculate the posterior 

probability of each candidate hypothesis. More precisely, we will say that hMAP is a MAP 

hypothesis provided. 

 

 

In some cases, we will assume that every hypothesis in H is equally probable a priori (P(hi) 

= P(hj) for all hi and hj in H). In this case we can further simplify Equation and need only 

consider the term P(D / h) to find the most probable hypothesis. P(D/h) is often called the 

likelihood of the data D given h, and any hypothesis that maximizes P(D/h) is called a 

maximum likelihood (ML) hypothesis, hML 
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BAYES THEOREM AND CONCEPT LEARNING:- 

 
Bayes theorem provides a principled way to calculate the posterior probability of each 

hypothesis given the training data, we can use it as the basis for a straightforward learning 

algorithm that calculates the probability for each possible hypothesis, then outputs the most 

probable. This section considers such a brute-force Bayesian concept learning algorithm, 

then compares it to concept learning algorithms. 

 

Product rule: probability of a conjunction of two events A and B 

 

 
Sum rule: probability of a disjunction of two events A and B 

 

 
Bayes theorem: the posterior probability P(h/D) of h given D 

 

 

 

 
Theorem of total probability: if events A1,. . . , An, are mutually exclusive with 

 

 

 
 

BRUTE-FORCE MAP LEARNING ALGORITHM 

 

1. For each hypothesis h in H, calculate the posterior probability 

 

 

 
2. Output the hypothesis hMAP with the highest posterior probability 

 

 

This algorithm may require significant computation, because it applies Bayes theorem to 

each hypothesis in H to calculate P(h/D). While this may prove impractical for large 

hypothesis spaces, the algorithm is still of interest because it provides a standard against 

which we may judge the performance of other concept learning algorithms. 

 

In order specify a Iearning problem for the BRUTE-FORCE MAP LEARNING algorithm 

we must specify what values are to be used for P(h) and for P(D/h). We may choose the 

probability distributions P(h) and P(D/h) in any way we wish, to describe our prior 
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knowledge about the learning task. Here let us choose them to be consistent with the 

following assumptions: 

 

1. The training data D is noise free (i.e., di = c(xi)). 

 
2. The target concept c is contained in the hypothesis space H 

 
3. We have no a priori reason to believe that any hypothesis is more probable than any 
other. 

 

Together these constraints imply that we should choose 
 

noise-free training data, the probability of observing classification di given h is just 1 if di = 
h(xi) and 0 if di ≠ h(xi). 

Therefore, 
 
 

 
 

In other words, the probability of data D given hypothesis h is 1 if D is consistent with h, 

and 0 otherwise. 

 
Given these choices for P(h) and for P(D/h) we now have a fully-defined problem for the 

above BRUTE-FORCE MAP LEARNING algorithm. Let us consider the first step of this 

algorithm, which uses Bayes theorem to compute the posterior probability P(h/D) of each 

hypothesis h given the observed training data D. 

 

Recalling Bayes theorem, we have 

 

First consider the case where h is inconsistent with the training data D. Since Equation 

defines P(D/h) to be 0 when h is inconsistent with D, we have 
 

 

The posterior probability of a hypothesis inconsistent with D is zero. Now consider the case 

where h is consistent with D. 

Since Equation defines P(D/h) to be 1 when h is consistent with D, we have P(D/h) to be 1 

if h is consistent with D 



55  

 

 

 

 

 
 

 

 

 

 

where VSH,D is the subset of hypotheses from H that are consistent with D. It is easy to 

verify that 

above, because the sum over all hypotheses of P(h /D) must be one and because the number 

of hypotheses from H consistent with D is by definition . Alternatively, we   can   derive 

P(D) from the theorem of total probability and the fact that the hypotheses are mutually 

exclusive 

 

 

 

 

 

 

 

 

 
 

To summarize, Bayes theorem implies that the posterior probability P(h /D) under our 

assumed P(h) and P(D/h) is 

 

 

 

 
the posterior probability for inconsistent hypotheses becomes zero while the total probability 

summing to one is shared equally among the remaining consistent hypotheses. The above 

analysis implies that under our choice for P(h) and P(D/h), every consistent hypothesis has 

posterior probability , and every inconsistent 

hypothesis has posterior probability 0. Every consistent hypothesis is, therefore, a MAP 

hypothesis. 

MAP Hypotheses and Consistent Learners:- 
 

The above analysis shows that in the given setting, every hypothesis consistent with D is a 

MAP hypothesis. This statement translates directly into an interesting statement about a 

general class of learners that we might call consistent learners. 

We will say that a learning algorithm is a consistent learner provided it outputs a hypothesis 

that commits zero errors over the training examples. Given the above analysis, we can 

conclude that every consistent learner outputs a MAP 
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hypothesis, i f we assume a uniform prior probability distribution over H (i.e., P(hi) = P(hj) 

for all i, j), and if we assume deterministic, noise free training data (i.e., P(D / h) =1 if D 

and h are consistent, and 0 otherwise). 

FIND-S searches the hypothesis space H from specific to general hypotheses, outputting a 

maximally specific consistent hypothesis (i.e., a maximally specific member of the version 

space). Because FIND-S outputs a consistent hypothesis, we know that it will output a MAP 

hypothesis under the probability distributions P(h) and P(D/h) defined above. Of course 

FIND-S does not explicitly manipulate probabilities at all-it simply outputs a maximally 

specific member 

 

 
of the version space. However, by identifying distributions for P(h) and P(D(h) under which 

its output hypotheses will be MAP hypotheses, we have a useful way of characterizing the 

behavior of FIND-S. Are there other probability distributions for P(h) and P(D1h) under 

which FIND-S outputs MAP hypotheses? Yes. Because FIND-S outputs a maximally specz$ 

 

c hypothesis from the version space, its output hypothesis will be a MAP hypothesis relative 

to any prior probability distribution that favors more specific hypotheses. More precisely, 

suppose 3-1 is any probability distribution P(h) over H that assigns P(h1) 2 P(hz) if hl is 

more specific than  h2.  Then it can be shown that FIND-S outputs a  MAP hypothesis 

assuming the prior distribution 3-1 and the same distribution P(D1h) discussed above. 

The Bayesian framework allows one way to characterize the behavior of learning 

algorithms, even when the learning algorithm does not explicitly manipulate probabilities. 

By identifying probability distributions P(h) and P(D/h) under which the algorithm outputs 

optimal (i.e., MAP) hypotheses, we can characterize the implicit assumptions, under which 

this algorithm behaves optimally. 

 

MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR HYPOTHESES:- 

Bayesian analysis can sometimes be used to show that a particular learning algorithm 

outputs MAP hypotheses even though it may not explicitly use Bayes rule or calculate 

probabilities in any form. 

 

We consider the problem of learning a continuous-valued target function-a problem faced by 

many learning approaches such as neural network learning, linear regression, and 

polynomial curve fitting. A straightforward Bayesian analysis will show that under certain 
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assumptions any learning algorithm that minimizes the squared error between the output 

hypothesis predictions and the training data will output a maximum likelihood hypothesis. 

The significance of this result is that it provides a Bayesian justification (under certain 

assumptions) for many neural network and other curve fitting methods that attempt to 

minimize the sum of squared errors over the training data. 

 

A simple example of such a problem is learning a linear function, though our analysis 

applies to learning arbitrary real- valued functions illustrates a linear target function f 

depicted by the solid line, and a set of noisy training examples of this target function. The 

dashed line corresponds to the hypothesis hML with least-squared training error, hence the 

maximum likelihood hypothesis. Notice that the maximum likelihood hypothesis is not 

necessarily identical to the correct hypothesis, f, because it is inferred from only a limited 

sample of noisy training data. 
 

 

Before showing why a hypothesis that minimizes the sum of squared errors in this setting is 

also a maximum likelihood hypothesis, let us quickly review two basic concepts from 

probability theory: probability densities and Normal distributions. First, in order to discuss 

probabilities over continuous variables such as e, we must introduce probability densities. 

The reason, roughly, is that we wish for the total probability over all possible values of the 

random variable to sum to one. In the case of continuous variables we cannot achieve this by 

assigning a finite probability to each of the infinite set of possible values for the random 

variable. Instead, we speak of a probability density for continuous variables such as e and 

require that the integral of this probability density over all possible values be one. In general 

we will use lower case p to refer to the probability density function, to distinguish it from a 

finite probability P (which we will sometimes refer to as a probability mass). The 

probability density p(x0) is the limit as E goes to zero, of times the probability that x will 

take on a value in the interval [xo, xo + 6). 

Probability density function: 

 
 

Second, we stated that the random noise variable e is generated by a Normal probability 

distribution. A Normal distribution is a smooth, bell-shaped distribution that can be 

completely characterized by its mean p and its standard deviation for a precise definition. 

Given this background we now return to the main issue: showing that the least-squared error 
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hypothesis is, in fact, the maximum likelihood hypothesis within our problem setting. We 

will show this by deriving the maximum likelihood hypothesis starting with our earlier 

definition Equation,but using lower case p to refer to the probability density 

 

 
we can write P(D/h) as the product of the various P(d/hi) 

 

we are writing the expression for the probability of di given that h is the correct description 

of the target function f, we will also substitute p = f (xi) = h(xi), yielding 

 

 
We now apply a transformation that is common in maximum likelihood calculations: 

 

Rather than maximizing the above complicated expression we shall choose to maximize its 

(less complicated) logarithm. This is justified because ln is a monotonic function of p. 

Therefore maximizing ln also maximizes p. 

 

 

The first term in this expression is a constant independent of h, and can therefore be 

discarded, yielding 
 
 

 

Maximizing this negative quantity is equivalent to minimizing the corresponding positive 

quantity. 
 

 

 
Finally, we can again discard constants that are independent of h. 
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MAXIMUM LIKELIHOOD HYPOTHESES FOR PREDICTING PROBABILITIES:- 
 

we determined that the maximum likelihood hypothesis is the one that minimizes the sum of 

squared errors over the training examples. In this section we derive an analogous criterion 

for a second setting that is common in neural network learning: learning to predict 

probabilities. 

 

Consider the setting in which we wish to learn a nondeterministic (probabilistic) 

function f : X -+ {0, 11, which has two discrete output values. For example, the instance 

space X might represent medical patients in terms of their symptoms, and the target function 

f (x) might be 1 if the patient survives the disease and 0 if not. Alternatively, X might 

represent loan applicants in terms of their past credit history, and f (x) might be 1 if the 

applicant successfully repays their next loan and 0 if not. In both of these cases we might 

well expect f to be probabilistic. For example, among a collection of patients exhibiting the 

same set of observable symptoms, we might find that 92% survive, and 8% do not. This 

unpredictability could arise from our inability to observe all the important distinguishing 

features of the patients, or from some genuinely probabilistic mechanism in the evolution of 

the disease. Whatever the source of the problem, the effect is that we have a target function f 

(x) whose output is a probabilistic function of the input. 

 
Given this problem setting, we might wish to learn a neural network (or other real- 

valued function approximator) whose output is the probability that f (x) = 1. In other 

words, we seek to learn the target function, f' : X + [O, 11, such that f '(x) = P( f (x) = 1). 

In the above medical patient example, if x is one of those indistinguishable patients of which 

92% survive, then f'(x) = 0.92 whereas the probabilistic function f (x) will be equal to 1 in 

92% of cases and equal to 0 in the remaining 8%. 

 
How can we learn f' using, say, a neural network? One obvious, bruteforce way would be 

to first collect the observed frequencies of 1's and 0's for each possible value of x and to then 

train the neural network to output the target frequency for each x. As we shall see below, we 

can instead train a neural network directly from the observed training examples of f, yet 

still derive a maximum likelihood hypothesis for f '. 

What criterion should we optimize in order to find a maximum likelihood hypothesis for f' 

in this setting? To answer this question we must first obtain an expression for P(D/h). Let us 

assume the training data D is of the form 

 
D = {(xl, dl) . . . (xm, dm)}, where di is the observed 0 or 1 value for f (xi). Recall that in 

the maximum likelihood, least- squared error analysis of the previous section, we made the 

simplifying assumption that the instances (xl . . . xm)were fixed. This enabled us to 

characterize the data by considering only the target values di. Although we could make a 

similar simplifying assumption in this case, let us avoid it here in order to demonstrate that it 

has no impact on the final outcome. Thus treating both xi and di as random variables, and 

assuming that each training example is drawn independently, we can write P(D/h) as 
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It is reasonable to assume, furthermore, that the probability of encountering any particular 

instance xi is independent of the hypothesis h. For example, the probability that our training 

set contains a particular patient xi is independent of our hypothesis about survival rates 

(though of course the survival d, of the patient does depend strongly on h). When x is 

independent of h we can rewrite the above expression as 

 

 
Now what is the probability P(di/h, xi) of observing di = 1 for a single instance xi, given a 

world in which hypothesis h 

holds? Recall that h is our hypothesis regarding the target function, which computes this 

very probability. Therefore, P(di = 1 / h, xi) = h(xi), and in general 

In order to substitute this into the Equation (6.8) for P(D/h), let us first " re-express it in a 

more mathematically manipulable form, as 

 
 

 
MINIMUM DESCRIPTION LENGTH PRINCIPLE:- 

The discussion of Occam's razor, a popular inductive bias that can be summarized as 

"choose the shortest explanation for the observed data." we discussed several arguments in 

the long-standing debate regarding Occam's razor. Here we consider a Bayesian perspective 

on this issue and a closely related principle called the Minimum Description Length 

(MDL)principle. 

 

The Minimum Description Length principle is motivated by interpreting the definition of 

hMAP in the light of basic concepts from information theory. Consider again the now 

familiar definition of hMAP. 

 

 
which can be equivalently expressed in terms of maximizing the log, 

 
 

or alternatively, minimizing the negative of this quantity 

 

Somewhat surprisingly, Equation can be interpreted as a statement that short hypotheses are 
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preferred, assuming a particular representation scheme for encoding hypotheses and data. To 

explain this, let us introduce a basic result from information theory: Consider the problem of 

designing a code to transmit messages drawn at random, where the probability of 

encountering message i is pi. We are interested here in the most compact code; that is, we 

are interested in the code that minimizes the expected number of bits we must transmit in 

order to encode a message drawn at random. Clearly, to minimize the expected code length 

we should assign shorter codes to messages that are more probable. We will refer to the 

number of bits required to encode message i using code C as the description length of 

message i with respect to C, which we denote by Lc(i) Let us interpret Equation in light of 

the above result from coding theory. 

 
-log, P(h) is the description length of h under the optimal encoding for the hypothesis space 

H. In other words, this is the size of the description of hypothesis h using this optimal 

representation. In our notation, LC, (h) =- log, P(h), where CH is the optimal code for 

hypothesis space H. 

 

 -log2 P(D1h) is the description length of the training data D given hypothesis h,
under its optimal encoding. In our notation, Lc,,,(Dlh) = 
- log, P(Dlh), where CD,is~ t he optimal code for describing data D assuming that 

both the sender and receiver know the hypothesis h. 

 

 Therefore we can rewrite Equation (6.16) to show that hMAP is the hypothesis h that 

minimizes the sum given by the description length of the hypothesis plus the description 

length of the data given the hypothesis.
 

 

where CH and CD/h are the optimal encodings for H and for D given h, respectively. 

 

The Minimum Description Length (MDL) principle recommends choosing the hypothesis 

that minimizes the sum of these two description lengths. Of course to apply this principle in 

practice we must choose specific encodings or representations appropriate for the given 

learning task. Assuming we use the codes C1 and C2 to represent the hypothesis and the 

data given the hypothesis, we can state the MDL principle as 

 

Minimum Description Length principle: Choose hMDL where 
 

 

The above analysis shows that if we choose C1 to be the optimal encoding of hypotheses 

CH, and if we choose C2 to be the optima encoding CD/h then . 

Intuitively, we can think of the MDL principle as recommending the shortest method for re- 

encoding the training data, where we count both the size of the hypothesis and any 

additional cost of encoding the data given this hypothesis. Let us consider an example. Thus 

the MDL principle provides a way of trading off hypothesis complexity for the number of 
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errors committed by the hypothesis. It might select a shorter hypothesis that makes a few 

errors over a longer hypothesis that perfectly classifies the training data. Viewed in this 

light, it provides one method for dealing with the issue of overfitting the data. 

BAYES OPTIMAL CLASSIFIER:- 

we have considered the question "what is the most probable hypothesis given the training 

data?' In fact, the question that is often of most significance is the closely related question 

"what is the most probable classification of the new instance given the training 

data?'Although it may seem that this second question can be answered by simply applying 

the MAP hypothesis to the new instance, in fact it is possible to do better. 

 

To develop some intuitions consider a hypothesis space containing three hypotheses, hl, h2, 

and h3. Suppose that the posterior probabilities of these hypotheses given the training data 

are .4, .3, and .3 respectively. Thus, hl is the MAP hypothesis. Suppose a new instance x is 

encountered, which is classified positive by hl, but negative by h2 and h3. Taking all 

hypotheses into account, the probability that x is positive is .4 (the probability associated 

with hi), and the probability that it is negative is therefore .6. The most probable 

classification (negative) in this case is different from the classification generated by the 

MAP hypothesis. 

In general, the most probable classification of the new instance is obtained by combining the 

predictions of all hypotheses, weighted by their posterior probabilities. If the possible 

classification of the new example can take on any value vj from some set V, then the 

probability P(vj/D) that the correct classification for the new instance is vj, is just 

 

The optimal classification of the new instance is the value vj , for which P (vj / D) is 

maximum. 

 
 

Bayes optimal classification: 
 

 

 
To illustrate in terms of the above example, the set of possible classifications of the new 

instance is , 

and 
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therefore 
 
 

 

and 
 

 
 

Any system that classifies new instances according to Equation is called a Bayes optimal 

classifier, or Bayes optimal learner. No other classification method using the same 

hypothesis space and same prior knowledge can outperform this method on average. This 

method maximizes the probability that the new instance is classified correctly, given the 

available data, hypothesis space, and prior probabilities over the hypotheses. 

 

Note one curious property of the Bayes optimal classifier is that the predictions it makes can 

correspond to a hypothesis not contained in H! Imagine using Equation to classify every 

instance in X. The labeling of instances defined in this way need not correspond to the 

instance labeling of any single hypothesis h from H. One way to view this situation is to 

think of the Bayes optimal classifier as effectively considering a hypothesis space H' 

different from the space of hypotheses H to which Bayes theorem is being applied. In 

particular, H' effectively includes hypotheses that perform comparisons between linear 

combinations of predictions from multiple hypotheses in H. 

 

GIBBS ALGORITHM:- 

 
Although the Bayes optimal classifier obtains the best performance that can be achieved 

from the given training data, it can be quite costly to apply. The expense is due to the fact 

that it computes the posterior probability for every hypothesis in H and then combines the 

predictions of each hypothesis to classify each new instance. 

 

An alternative, less optimal method is the Gibbs algorithm (see Opper and Haussler 1991), 

defined as follows: 

 

1. Choose a hypothesis h from H at random, according to the posterior probability 

distribution over H. 

 

2. Use h to predict the classification of the next instance x. 

 

Given a new instance to classify, the Gibbs algorithm simply applies a hypothesis drawn at 

random according to the current posterior probability distribution. Surprisingly, it can be 

shown that under certain conditions the expected misclassification error for the Gibbs 

algorithm is at most twice the expected error of the Bayes optimal classifier (Haussler et al. 
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1994). More precisely, the expected value is taken over target concepts drawn at random 

according to the prior probability distribution assumed by the learner. Under this condition, 

the expected value of the error of the Gibbs algorithm is at worst twice the expected value of 

the error of the Bayes optimal classifier. 

 

This result has an interesting implication for the concept learning problem described earlier. 

In particular, it implies that if the learner assumes a uniform prior over H, and if target 

concepts are in fact drawn from such a distribution when presented to the learner, then 

classifying the next instance according to a hypothesis drawn at random from the current 

version space (according to a uniform distribution), will have expected error at most twice 

that of the Bayes optimal classifier. Again, we have an example where a Bayesian analysis 

of a non-Bayesian algorithm yields insight into the performance of that algorithm. 

 

NAIVE BAYES CLASSIFIER:- 

One highly practical Bayesian learning method is the naive Bayes learner, often called the 

naive Bayes classifier. In some domains its performance has been shown to be comparable 

to that of neural network and decision tree learning. This section introduces the naive Bayes 

classifier; the next section applies it to the practical problem of learning to classify natural 

language text documents. 

 

The naive Bayes classifier applies to learning tasks where each instance x is described by a 

conjunction of attribute values and where the target function f ( x ) can take on any value 

from some finite set V. A set of training examples of the target function is provided, and a 

new instance is presented, described by the tuple of attribute values (a1, a2.. an). The 

learner is asked to predict the target value, or classification, for this new instance. 

 

The Bayesian approach to classifying the new instance is to assign the most probable 

target value, vMAP, given the attribute values (a1,a2 . . .an) that describe theinstance. 

 

 

 
We can use Bayes theorem to rewrite this expression as 

 

Now we could attempt to estimate the two terms in Equation based on the training data. It is 

easy to estimate each of the P(vj) simply by counting the frequency with which each target 

value vj occurs in the training data. However, estimating the different P(a1, a2..   . an|vj) 

terms in this fashion is not feasible unless we have a very, very large set of training data. 

The problem is that the number of these terms is equal to the number of possible instances 
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times the number of possible target values. Therefore, we need to see every instance in the 

instance space many times in order to obtain reliable estimates. The naive Bayes classifier is 

based on the simplifying assumption that the attribute values are conditionally independent 

given the target value. In other words, the assumption is that given the target value of the 

instance, the probability of observing the conjunction a1, a2.. .an, is just the product of the 

probabilities for the individual 

attributes: P(a1, a2   . . . an|   vj) =     P(ai / vj). Substituting this into Equation, we have 

the approach used by the naive Bayes classifier. 

 
Naive Bayes classifier: 

 

where denotes the target value output by the naive Bayes classifier. Notice that in a naive 

Bayes classifier the number of distinct     terms that must be estimated from the training 

data is just the number of distinct attribute values times the number of distinct target values- 

a much smaller number than if we were to estimate the P(a1, a2 . . . an |vj) terms as first 

contemplated. 

To summarize, the naive Bayes learning method involves a learning step in which the 

various P(vj) and P(ai | vj) terms are estimated, based on their frequencies over the training 

data. The set of these estimates corresponds to the learned hypothesis. This hypothesis is 

then used to classify each new instance by applying the rule in Equation. Whenever the 

naive Bayes assumption of conditional independence is satisfied, this naive Bayes 

classification is identical to the MAP classification. 

One interesting difference between the naive Bayes learning method and other learning 

methods we have considered is that there is no explicit search through the space of possible 

hypotheses (in this case, the space of possible hypotheses is the space of possible values that 

can be assigned to the various P(vj) and P(ai | vj) terms). Instead, the hypothesis is formed 

without searching, simply by counting the frequency of various data combinations within the 

training examples. 

ESTIMATING PROBABILITIES 

 

Up to this point we have estimated probabilities by the fraction of times the event is 

observed to occur over the total number of opportunities. For example, in the above case we 

estimated P(Wind = strong | Play Tennis = no) by the fraction      where n = 5 is the total 

number of training examples for which PlayTennis = no, and nc = 3 is the number of 

these for which Wind = strong. While this observed fraction provides a good estimate of the 

probability in many cases, it provides poor estimates when nc is very small. To see the 

difficulty, imagine that, in fact, the value of P(Wind = strong | PlayTennis = no) is .08 and 

that we have a sample containing only 5 examples for which PlayTennis = no. 

 
Then the most probable value for nc is 0. This raises two difficulties. Fir st, produces a 

biased underestimate of the probability. Second, when this probability estimate is zero, this 
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probability term will dominate the Bayes classifier if the future query contains Wind = 

strong. The reason is that the quantity calculated in Equation requires multiplying all the 

other probability terms by this zero value. To avoid this difficulty we can adopt a Bayesian 

approach to estimating the probability, using the m-estimate defined as follows. 

 

m-estimate of probability: 
 

 

Here, nc and n are defined as before, p is our prior estimate of the probability we wish to 

determine, and m is a constant called the equivalent sample size, which determines how 

heavily to weight p relative to the observed data. A typical method for choosing p in the 

absence of other information is to assume uniform priors; that is, if an attribute has k 

possible values we set p = 1/k. For example, in estimating P(Wind = strong | PlayTennis = 

no) we note the attribute Wind has two possible values, so uniform priors would 

correspond to choosing p = .5. Note that if m is zero, the m-estimate is equivalent to the 

simple fraction       . If both n and m are nonzero, then the observed fraction    and    prior 

p will be combined according to the weight m. The reason m is called the equivalent sample 

size is that Equation can be interpreted as augmenting the n actual observations by an 

additional m virtual samples distributed according to p. 

 

BAYESIAN BELIEF NETWORKS:- 

As discussed in the previous two sections, the naive Bayes classifier makes significant set of 

the assumption that the values of the attributes a1 . . .an, are conditionally independent 

given the target value v. This assumption dramatically reduces the complexity of learning 

the target function. When it is met, the naive Bayes classifier outputs the optimal Bayes 

classification. However, in many cases this conditional independence assumption is clearly 

overly restrictive. 

 

A Bayesian belief network describes the probability distribution governing a set of variables 

by specifying a set of conditional independence assumptions along with a set of conditional 

probabilities. In contrast to the naive Bayes classifier, which assumes that all the variables 

are conditionally independent given the value of the target variable, Bayesian belief 

networks allow stating conditional independence assumptions that apply to subsets of the 

variables. Thus, Bayesian belief networks provide an intermediate approach that is less 

constraining than the global assumption of conditional independence made by the naive 

Bayes classifier, but more tractable than avoiding conditional independence assumptions 

altogether. Bayesian belief networks are an active focus of current research, and a variety of 

algorithms have been proposed for learning them and for using them for inference. 

 

We define the joint space of the set of variables Y to be the cross product V(Yl) x V(Y2) x . 

. . V(Yn). In other words, each item in the joint space corresponds to one of the possible 

assignments of values to the tuple of variables (Yl . . . Yn). The probability distribution over 
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this joint space is called the joint probability distribution. The joint probability distribution 

specifies the probability for each of the possible variable bindings for the tuple (Yl . . . Yn). 

A Bayesian belief network describes the joint probability distribution for a set of variables. 

Conditional Independence:- 

 

Let us begin our discussion of Bayesian belief networks by defining precisely the notion of 

conditional independence. Let X, Y, and Z be three discrete-valued random variables. We 

say that X is conditionally independent of Y given Z if the probability distribution 

governing X is independent of the value of Y given a value for Z that is, if 
 

 

where xi ϵ V(X), yj ϵ V(Y), and Zk ϵ V(Z). We commonly write the above expressionin 

abbreviated form as P(X|Y, 

Z) = P(X|Z). This definition of conditional independence can be extended to sets of 

variables as well. We say that the set of variables X1 . . . Xl is conditionally independent of 

the set of variables Y1 . . . Ym given the set of variablesZ1 . . . Zn, if 

 

 

 

 
Note the correspondence between this definition and our use of conditional independence in 

the definition of the naive Bayes classifier. The naive Bayes classifier assumes that the 

instance attribute A1 is conditionally independent of instance attribute A2 given the target 

value V. This allows the naive Bayes classifier to calculate P(Al, A2 | V) in Equation as 

follows 

 

Equation is just the general form of the product rule of probability. Equation follows 

because if A1 is conditionally independent of A2 given V, then by our definition of 

conditional independence P (A1 |A2, V) =P(A1|V). 

 
 



68  

Representation:- 

 

A Bayesian belief network (Bayesian network for short) represents the joint probability 

distribution for a set of variables. represents the joint probability distribution over the 

boolean variables Storm, Lightning, Thunder, ForestFire, Campfire, and BusTourGroup. 

In general, a Bayesian network represents the joint probability distribution by specifying a 

set of conditional independence assumptions (represented by a directed acyclic graph), 

together with sets of local conditional probabilities. Each variable in the joint space is 

represented by a node in the Bayesian network. For each variable two types of information 

are specified. First, the network arcs represent the assertion that the variable is conditionally 

independent of its nondescendants in the network given its immediate predecessors in the 

network. We say X is a descendant of , Y if there is a directed path from Y to X. Second, a 

conditional probability table is given for each variable, describing the probability 

distribution for that variable given the values of its immediate predecessors. The joint 

probability for any desired assignment of values (y1, . . . , yn) to the tuple of network 

variables (Y1 . . . Yn)can be computed by the formula 
 

 

where Parents(Yi) denotes the set of immediate predecessors of Yi in the network. Note the 

values of P(yi|P arents(Yi)) are precisely the values stored in the conditional probability 

table associated with node Yi. To illustrate, the Bayesian network represents the joint 

probability distribution over the boolean variables Storm, Lightning, Thunder, Fire, 

Campfire, and BusTourGroup. Consider the node Campfire. The network nodes and arcs 

represent the assertion that Campfire is conditionally independent of its nondescendants 

Lightning and Thunder, given its immediate parents Storm and BusTourGroup. This 

means that once we know the value of the variables Storm and BusTourGroup, the 

variables Lightning and Thunder provide no additional information about Campfire. The 

right side of the figure shows the 

conditional probability table associated with the variable Campfire. The top left entry in this 

table, for example, expresses the assertion that 
 

 

Note this table provides only the conditional probabilities of Campjire given its parent 

variables Storm and BusTourGroup. The set of local conditional probability tables for all 

the variables, together with the set of conditional independence assumptions described by 

the network, describe the full joint probability distribution for the network. 

 

One attractive feature of Bayesian belief networks is that they allow a convenient way to 

represent causal knowledge such as the fact that Lightning causes Thunder. In the 
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terminology of conditional independence, we express this by stating that Thunder is 

conditionally independent of other variables in the network, given the value of Lightning. 

Note this conditional independence assumption is implied by the arcs in the Bayesian 

network. 

 
Inference 

 

We might wish to use a Bayesian network to infer the value of some target variable (e.g., 

ForestFire) given the observed values of the other variables. Of course, given that we are 

dealing with random variables it will not generally be correct to assign the target variable a 

single determined value. What we really wish to infer is the probability distribution for the 

target variable, which specifies the probability that it will take on each of its possible values 

given the observed values of the other variables. This inference step can be straightforward 

if values for all of the other variables in the network are known exactly. In the more general 

case we may wish to infer the probability distribution for some variable (e.g., ForestFire) 

given observed values for only a subset of the other variables (e.g., Thunder and 

BusTourGroup may be the only observed values available). In general, a Bayesian network 

can be used to compute the probability distribution for any subset of network variables given 

the values or distributions for any subset of the remaining variables. 

 

Exact inference of probabilities in general for an arbitrary Bayesian network is known to be 

NP-hard. 

 

Learning Bayesian Belief Networks 

 

Can we devise effective algorithms for learning Bayesian belief networks from training 

data? This question is a focus of much current research. Several different settings for this 

learning problem can be considered. First, the network structure might be given in advance, 

or it might have to be inferred from the training data. 

 

Second, all the network variables might be directly observable in each training example, or 

some might be unobservable. 

 

In the case where the network structure is given in advance and the variables are fully 

observable in the training examples, learning the conditional probability tables is 

straightforward. We simply estimate the conditional probability table entries just as we 

would for a naive Bayes classifier. 

 

In the case where the network structure is given but only some of the variable values are 

observable in the training data, the learning problem is more difficult. 

 

This problem is somewhat analogous to learning the weights for the hidden units in an 

artificial neural network, where the input and output node values are given but the hidden 

unit values are left unspecified by the training examples. 
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THE EM ALGORITHM 

 
In many practical learning settings, only a subset of the relevant instance features 

might be observable. For example, in training or using the Bayesian belief network, we 

might have data where only a subset of the network variables Storm, Lightning, Thunder, 

ForestFire, Campfire, and BusTourGroup have been observed. Many approaches have 

been proposed to handle the problem of learning in the presence of unobserved variables. if 

some variable is sometimes observed and sometimes not, then we can use the cases for 

which it has been observed to learn to predict its values when it is not. In this section we 

describe the EM algorithm (Dempster et al. 1977), a widely used approach to learning in the 

presence of unobserved variables. The EM algorithm can be used even for variables whose 

value is never directly observed, provided the general form of the probability distribution 

governing these variables is known. 

 

The EM algorithm has been used to train Bayesian belief networks (see Heckerman 1995) as 

well as radial basis function networks. The EM algorithm is also the basis for many 

unsupervised clustering algorithms (e.g., Cheeseman et al. 1988), and it is the basis for the 

widely used Baum-Welch forward-backward algorithm for learning Partially Observable 

Markov Models (Rabiner 1989). 

 

Estimating Means of k Gaussians 

 

The easiest way to introduce the EM algorithm is via an example. Consider a problem in 

which the data D is a set of instances generated by a probability distribution that is a mixture 

of k distinct Normal distributions. for the case where k 

= 2 and where the instances are the points shown along the x axis. Each instance is 

generated using a two-step process. First, one of the k Normal distributions is selected at 

random. Second, a single random instance xi is generated according to this selected 

distribution. This process is repeated to generate a set of data points as shown in the figure. 

To simplify our discussion, we consider the special case where the selection of the single 

Normal distribution at each step is based on choosing each with uniform probability, where 

each of the k Normal distributions has the same variance a2, and where a2 is known. The 

learning task is to output a hypothesis h = (FI, . . . pk) that describes the means of each of 

the k distributions. We would like to find a maximum likelihood hypothesis for these means; 

that is, a hypothesis h that maximizes p(D lh). 

 

Note it is easy to calculate the maximum likelihood hypothesis for the mean of a single 
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Normal distribution given the observed data instances XI, x2, . . . , xm drawn from this 

single distribution. This problem of finding the mean of a single distribution is just a special 

case of the problem discussed, Equation, where we showed that the maximum likelihood 

hypothesis is the one that minimizes the sum of squared errors over the m training instances. 

Restating Equation using our current notation, we have 
 

 

In this case, the sum of squared errors is minimized by the sample mean 

 

Our problem here, however, involves a mixture of k different Normal distributions, and we 

cannot observe which instances were generated by which distribution. 

 

Thus, we have a prototypical example of a problem involving hidden variables. In the 

example of Figure , we can think of the full description of each instance as the triple 

(xi,zi l , ziz), where xi is the observed value of the ith instance and where zil 

and zi2 indicate which of the two Normal distributions was used to generate the value 

xi. In particular, zij has the value 1 if xi was created by the jth Normal distribution 

and 0 otherwise. Here xi is the observed variable in the description of the instance, and 

zil and zi2 are hidden variables. If the values of zil and zi2 were observed, we 

could use Equation to solve for the means p1 and p2. Because they are not, we will 

instead use the EM algorithm. Applied to our k-means problem the EM algorithm searches 

for a maximum likelihood hypothesis by repeatedly re-estimating the expected values of the 

hidden variables zij given its current hypothesis (pI . . . pk), then recalculating the 

maximum likelihood hypothesis using these expected values for the hidden variables. 

 
We will first describe this instance of the EM algorithm, and later state the EM algorithm in 

its general form. 

 
' Applied to the problem of estimating the two means for Figure, the EM algorithm 

first initializes the hypothesis to h = 

(PI, p2), where p1 and p2 are arbitrary initial values. It then iteratively re-estimates h by 

repeating the following two steps until the procedure converges to a stationary value for h. 

Step 1: Calculate the expected value E[zij] of each hidden variable zi,, assuming the current 
hypothesis h = (p1, p2) holds. 

 

Step 2: Calculate a new maximum likelihood hypothesis h' = (pi, p;), assuming the value 

taken on by each hidden variable zij is its expected value E[zij] calculated in Step 1. Then 

replace the hypothesis h = (pl, p2) by the new hypothesis h' = (pi, pi) and iterate. 
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Let us examine how both of these steps can be implemented in practice. Step 1 must 

calculate the expected value of each zi,. This E[4] is just the probability that instance xi was 

generated by the jth Normal distribution 

 

Thus the first step is implemented by substituting the current values (µ1, µ2) and the 

observed xi into the above expression. 

 
In the second step we use the E[zij] calculated during Step 1 to derive a new maximum 

likelihood hypothesis h' = (µ’1, µ’2). 

AS we will discuss later, the maximum likelihood hypothesis in this case is given by 
 

 

 
Note this expression is similar to the sample mean from Equation that is used to estimate µ 

for a single Normal distribution. Our new expression is just the weighted sample mean for µj 

with each instance weighted by the expectation E[zij] that it was generated by the jth 

Normal distribution. 

The above algorithm for estimating the means of a mixture of k Normal distributions 

illustrates the essence of the EM approach: The current hypothesis is used to estimate the 

unobserved variables, and the expected values of these variables are then used to calculate 

an improved hypothesis. It can be proved that on each iteration through this loop, the EM 

algorithm increases the likelihood P(D/h) unless it is at a local maximum. The algorithm 

thus converges to a local maximum likelihood hypothesis for (µ1, µ2). 

 

General Statement of EM Algorithm 

 

Above we described an EM algorithm for the problem of estimating means of a mixture of 

Normal distributions. More generally, the EM algorithm can be applied in many settings 

where we wish to estimate some set of parameters Ɵ that describe an underlying probability 

distribution, given only the observed portion of the full data produced by this distribution. In 

the above two-means example the parameters of interest were Ɵ = (µ1, µ2), and the full 

data were the triples (xi, zil, zi2) of which only the xi were observed. In general 

let X = {xl, . . . , xm} denote the observed data in a set of m independently drawn 

instances, let Z = {zl, . . . , zm} denote the unobserved data in these same instances, and 

let Y = X U Z denote the full data. Note the unobserved Z can be treated as a random 

variable whose probability distribution depends on the unknown parameters Ɵ and on the 
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observed data X. Similarly, Y is a random variable because it is defined in terms of the 

random variable Z. In the remainder of this section we describe the general form of the EM 

algorithm. We use h to denote the current hypothesized values of the parameters Ɵ, and hl to 

denote the revised hypothesis that is estimated on each iteration of the EM algorithm. 

 

The EM algorithm searches for the maximum likelihood hypothesis hl by seeking the hl that 

maximizes E[ln P(Y|( hl)]. This expected value is taken over the probability distribution 

governing Y , which is determined by the unknown parameters Ɵ. Let us consider exactly 

what this expression signifies. First, P(Y/hl) is the likelihood of the full data Y given 

hypothesis hl. It is reasonable that we wish to find a hl that maximizes some function of this 

quantity. Second, maximizing the logarithm of this quantity In P(Y|hl) also maximizes 

P(Y|h1), as we have discussed on several occasions already. Third, we introduce the 

expected value E[ln P(Y|hl)] because the full data Y is itself a random variable. Given that 

the full data Y is a combination of the observed data X and unobserved data Z, we must 

average over the possible values of the unobserved Z, weighting each according to its 

probability. In other words we take the expected value E[ln P(Y|hl)] over the probability 

distribution governing the random variable Y. The distribution governing Y is determined by 

the completely known values for X, plus the distribution governing Z. 

 

What is the probability distribution governing Y? In general we will not know this 

distribution because it is determined by the parameters Ɵ that we are trying to estimate. 

Therefore, the EM algorithm uses its current hypothesis h in place of the actual parameters 

Ɵ to estimate the distribution governing Y. Let us define a function Q(h1/h) that gives E[ln 

P(Y|hl)] as a function of hl, under the assumption that Ɵ = h and given the observed portion 

X of the full data Y. 

 
 

 

 

We write this function Q in the form Q(h1/h) to indicate that it is defined in part by the 

assumption that the current hypothesis h is equal to Ɵ. In its general form, the EM algorithm 

repeats the following two steps until convergence: 

 

Step 1: Estimation (E) step: Calculate Q(h1/h) using the current hypothesis h and the 

observed data X to estimate the probability distribution over Y. 
 

 

Step 2: Maximization (M) step: Replace hypothesis h by the hypothesis h' that maximizes 
this Q function. 
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When the function Q is continuous, the EM algorithm converges to a stationary point of the 

likelihood function P(Y/hl). When this likelihood function has a single maximum, EM will 

converge to this global maximum likelihood estimate for h'. Otherwise, it is guaranteed only 

to converge to a local maximum. In this respect, EM shares some of the same limitations as 

other optimization methods such as gradient descent, line search, and conjugate gradient. 

Derivation of the k Means Algorithm 

 

To illustrate the general EM algorithm, let us use it to derive the algorithm given for 

estimating the means of a mixture of k Normal distributions. As discussed above, the k- 

means problem is to estimate the parameters Ɵ = (µ1.. . µk) 

that define the means of the k Normal distributions. We are given the observed data X = 

{(xi)}. The hidden variables Z = 

{(zil,. . . , zik)} in this case indicate which of the k Normal distributions was used to generate 

xi. 

To apply EM we must derive an expression for Q(h|h') that applies to our k-means problem. 

First, let us derive an expression for 1n p(Y| h').Note the probability p(yi|h') of a single 

instance yi = (xi ,Zil, . . Zik) of the full data can be written 
 

 

To verify this note that only one of the zij can have the value 1, and all others must be 0. 

Therefore, this expression gives the probability distribution for xi generated by the selected 

Normal distribution. Given this probability for a single instance p(yi|h'), the logarithm of the 

probability 1n p(Y| h')for all m instances in the data is 
 

 

Finally we must take the expected value of this 1n p(Y| h')over the probability distribution 

governing Y or, equivalently, over the distribution governing the unobserved components zij 

of Y. Note the above expression for In p(yi|h')is a linear function of these zij. In general, for 

any function f (z) that is a linear function of z, the following equality holds 
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PART-A (2 Marks) 

 

1. Define Bayes Theorem. 

A. In classification, Bayes’ rule is used to calculate the probabilities of the classes. 

 

2. What is Bernoulli Density? 

A. In a Bernoulli distribution, there are two outcomes: An event occurs or it does not; 

for example, an instance is a positive example of the class, or it is not. 
 

3. What is Regression? 

A. In regression, we would like to write the numeric output, called the dependent 

variable, as a function of the input, called the independent variable. 
 

4. What is Underfitting? 

A. If there is bias, this indicates that our model class does not contain 

the underfitting solution; this is underfitting. 
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PART-B (10 Marks) 
 

 
1. What are the different basics of Sampling Theory? 

2. Explain briefly about Bayes Theorem and Concept Learning? 

3. Explain about Gibbs Algorithm. 

4. What Bayesian Belief Network? 

5. Write a short notes on EM Algorithm? 

6. Explain Maximum Likelihood hypothesis for predicting probabilities. 

7. Write short notes of the following. 

a) Estimating hypothesis accuracy. 

b) Basics of sampling theory. 



77  

UNIT – 3 

DIMENSIONALITY REDUCTION 

 

Why Reduce Dimensionality? 
 

Reduces time complexity: Less computation 
 

Reduces space complexity: Lessparameters 
 

Saves the cost of observing the feature 
 

Simpler models are more robust on small datasets 
 

More interpretable; simpler explanation 
 

Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions 

Feature Selection vs Extraction 

Feature selection: Choosing k<d important features, ignoring the remaining d – k 

Subset selection algorithms 
 

Feature extraction: Project the original xi , i =1,...,d dimensions to new k<d dimensions, 

zj , j =1,...,k 

Principal components analysis (PCA), linear discriminant analysis (LDA), factor analysis 

(FA) 

Subset Selection 
 

There are 2
d 

subsets of d features 
 

Forward search: Add the best feature at each step 
 

Set of features F initially Ø. 

At each iteration, find the best new feature 
 

j = argmini E ( F È xi ) 

             Add xj to F if E ( F È xj ) < E ( F ) 

Hill-climbing O(d
2
) algorithm 

Backward search: Start with all features and remove one at a time, ifpossible. 

Floating search (Add k, remove l) Principal Cmponents Analysis (PCA) 



78  

Find a low-dimensional space such that when x is projected there, information loss is 
minimized. 

The projection of x on the direction of w is: z = w
T

x 

Find w such that Var(z) is maximized Var(z) = Var(w
T

x) = E[(w
T

x – w
T

μ)
2
] 

= E[(w
T

x – w
T

μ)(w
T

x – w
T

μ)] 

= E[w
T

(x – μ)(x – μ)
T

w] 

= w
T 

E[(x – μ)(x –μ)
T

]w = w
T 

∑ w 

where Var(x)= E[(x – μ)(x –μ)
T

] = ∑ 
 

Maximize Var(z) subject to ||w||=1 
 

∑w1 = αw1 that is, w1 is an eigenvector of ∑ 
 

Choose the one with the largest eigenvalue for Var(z) to be max 
 

Second principal component: Max Var(z2), s.t., ||w2||=1 

and orthogonal to w1 

∑ w2 = α w2 that is, w2 is another eigenvector of ∑ 

and so on. What PCA does z = WT(x – m) 

where the columns of W are the eigenvectors of ∑, and m is sample mean 

Centers the data at the origin and rotates the axes 

 

 

 

 

 
How to choose k ? 

 

Proportion of Variance (PoV) explained 
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1  2   k  

1  2  k  d 
 

 

when λi are sorted in descending order 
 

Typically, stop at PoV>0.9 
 

Scree graph plots of PoV vs k, stop at “elbow” 
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Factor Analysis 
 

Find a small number of factors z, which when combined generate x : 
 

xi – µi = vi1z1 + vi2z2 + ... + vikzk + εi where zj, j =1,...,k are the latent factors with 

E[ zj ]=0, Var(zj)=1, Cov(zi ,, zj)=0, i ≠ j , εi are the noise sources 

E[ εi ]= ψi, Cov(εi , εj) =0, i ≠ j, Cov(εi , zj) =0 , and vij are the factor loadings 

PCA vs FA 

PCA From x to z z = W
T

(x – µ) 
 

From z to x x – µ = Vz + ε 

 

FA 
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zr  zs  x r  x s 2 
Find θ that min Sammon st 



x 

x x 

Factor Analysis 

In FA, factors zj are stretched, rotated and translated to generate x 

 

 
Multidimensional Scaling 

 

Given pairwise distances between N points, 
 

dij, i,j =1,...,N 

place on a low-dim map s.t. distances are preserved. 
 

z = g (x | θ ) ress 
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Map of Europe by MDS 
 

 

 

 

Map from CIA – The World Factbook: http://www.cia.gov/ 

 

Linear Discriminant Analysis 

Find a low-dimensional space such that when x is projected classes are well 

separated. 

 

http://www.cia.gov/
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1 t 1 

t 1 1 1 

W W 

 

 

Find w that maximizes 

Between-class scatter: 

m   m  2  
  wT m   wT m   

2

 

1 2 1 2 

 

 wT m 1m  2) m  1 m 2
T 

w 

 

Within-class scatter: 

s2   wT xt  m 2r t 

  wT xt  m  xt  m  T 

wr t   wTS w 

where1 S 
t 1 1 

 

Fisher’s Linear Discriminant 

Find w that max 
wT S w 

Jw B 

wTS  w wT S w 

LDA soln: 

w  c  S1 m  m 
2 W 1 

Parametric 

soln: 

w  1 μ 

 μ2 

1 

w m  m T 
2 

1 2 
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when 
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px | Ci  ~ N μi , 
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Clustering 

Semiparametric Density Estimation 

Parametric: 

Assume a single model for p(x|Ci) (Chapter 4 and 5) 

Semiparametric: 

p(x|Ci) is a mixture of densities 

Multiple possible explanations/prototypes: 

Different handwriting styles, accents in speech 

 Nonparametric: 

No model; data speaks for itself 
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PART-A (2 Marks) 

 
 

1. What are Clustering Methods? 

A. Clustering methods allow learning the mixture parameters from data. 
 

2. What is EM Algorithm? 

A. The Expectation-Maximization (EM) algorithm is used in maximum 

likelihood estimation where the problem involves two sets of random 

variables of which one, X, is observable and the other, Z, is hidden. 

 

3. What is Dimensionality Reduction Method? 

A. Dimensionality reduction methods are used to find correlations between 

variables and thus group variables; clustering methods, on the other hand, are 

used to find similarities between instances and thus group instances. 

 

4. What is Hierarchical Clustering? 

A. There are also methods for clustering that only use similarities of instances, 

without any other requirement on the data; the aim is to find groups such that 

instances in a group are more similar to each other than instances in different 

groups. This is the approach taken by hierarchical clustering. 

 

5. What is Agglomerative clustering? 

A. An agglomerative clustering algorithm starts with N groups, each initially 

containing one training instance, merging similar groups to form larger 

groups, until there is a single one. 
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PART-B (10 Marks) 

 

 
1. What is Principle Component Analysis? 

2. Explain K- Means clustering? 

3. Explain about spectral clustering? 

4. Write a short notes on outlier detection. 

5. Explain how to choose the smoothing parameter? 

6. Write the differences between K- Means clustering and spectral clustering. 

7. Write about Hierarchal clustering. 
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Introduction 

UNIT-4 

In classification we define a set of discriminant functions gj(x), j = 1, . . . , K, and then 

we choose Ci if gi(x) = K maxj=1 gj(x)Previously, when we discussed methods for 

classification, we first estimated the prior probabilities, ˆP(Ci), and the class likelihoods, 

ˆp(x|Ci), then used Bayes’ rule to calculate the posterior densities. We then defined the 

discriminant functions in terms of the posterior, for example, 

gi(x) = log ˆP(Ci|x) 
 

This is called likelihood-based classification. 
 

We are now going to discuss discriminant-based classification where we assume a model 

directly for the discriminant, bypassing the estimation of likelihoods or posteriors. The 

discriminant-based approach, as inthe case of decision trees, makes an assumption on the form 

of the discriminant between the classes and makes no assumption about, or requires no 

knowledge of the densities—for example, whether they are Gaussian, or whether the inputs 

are correlated, and so forth. 

We define a model for the discriminant gi(x|Φi) explicitly parameterized with the set of 

parameters Φi , as opposed to a likelihood-based scheme that has implicit parameters in 

defining the likelihood densities. This is a different inductive bias: instead of making an 

assumption on the form of the class densities, we make an assumption on the form of the 

boundaries separating classes. 

 

Learning is the optimization of the model parameters Φi to maximize the quality of the 

separation, that is, the classification accuracy on a given labeled training set. This differs from 

the likelihood-based methods that search for the parameters that maximize sample likelihoods, 

separately for each class. 

 

In the discriminant-based approach, we do not care about correctly estimating the 

densities inside class regions; all we care about is the correct estimation of the boundaries 

between the class regions. Those who advocate the discriminant-based approach (e.g., Vapnik 

1995) state that estimating the class densities is a harder problem than estimating the class 

discriminants, and it does not make sense to solve a hard problem to solve an easier problem. 

This is of course true only when the discriminant can be approximated by a simple function. 

In this chapter, we concern ourselves with the simplest case where the discriminant functions 
are linear in 

x: 

 

 

 
 

The linear discriminant is used frequently mainly due to its simplicity: both the space and 

time complexities are O(d). The linear model is easy to understand: the final output is a 

weighted sum of the input attributes xj . The magnitude of the weight wj shows the importance 

of xj and its sign indicates if the effect is positive or negative. Most functions are additive in 

that the output is the sum of the effects of several attributes where the weights may be positive 
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(enforcing) or negative (inhibiting).For example, when a customer applies for credit, financial 

institutions calculate the applicant’s credit score that is generally written as a sum of the 

effects of various attributes; for example, yearly income has a positive effect (higher incomes 

increase the score. 

 

Generalizing the Linear Model 

 
When a linear model is not flexible enough, we can use the quadratic discriminant function 

and increase complexity, but this approach is O(d2) and we again have the bias/variance 

dilemma: 

 

 

 

 
 

the quadratic model, though is more general, requires much larger training sets and may 

overfit on small samples. An equivalent way is to preprocess the input by adding higher-order 

also called product terms. 

For example, with two inputs x1 and x2, we can define new variables 

z1 = x1, z2 = x2, z3 = x21 , z4 = x22 , z5 = x1x2 and take z = [z1, z2, z3, z4, z5]T as the input. 

The linear function defined in the five-dimensional z space corresponds to a nonlinear 

function in 

the two-dimensional x space. Instead of defining a nonlinear function (discriminant or 

regression) in the original space, what we do is to define a suitable nonlinear transformation to 

a new space where the function can be written in a linear form. 

We write the discriminant as 

 

 

 

 

 

 

Geometry of the Linear Discriminant 
 

 Two Classes

Let us start with the simpler case of two classes. In such a case, one discriminant function is 
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sufficient: 

 
This defines a hyperplane where w is the weight vector and w0 is the otherwise. The 

hyperplane divides the input space into two half-spaces: 

the decision region R1 for C1 andR2 for C2. Any x inR1 is on the positive side of the 

hyperplane and any x in R2 is on its negative side. When x is 0, g(x) = w0 and we see that if 

w0 > 0, the origin is on the positive side of the hyperplane, and if w0 < 0, the origin is on the 

negative side, and if w0 = 0, the hyperplane passes through the origin. 

 

Take two points x1 and x2 both on the decision surface; that is, g(x1) =g(x2) = 0, 

 

 

 

 

 

 

 

 
where xp is the normal projection of x onto the hyperplane and r gives us the distance from x 

to the hyperplane, negative if x is on the negative threshold. This latter name comes from the 

fact that the decision rule can be rewritten as follows: choose C1 if wT x > −w0, and choose 

C2 side, and positive if x is on the positive side. Calculating g(x) and noting that g(xp) = 0, we 

have 

 

 

 

 

 

 

 

 

 
 Multiple Classes

 
When there are K > 2 classes, there are K discriminant functions. When they are linear, we 

have 

 
We are going to talk about learning later on but for now, we 

assume that the parameters, wi,wi0, are computed so as to have 
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 Pairwise Separation

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Parametric Discrimination Revisited
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Gradient Descent 

In likelihood-based classification, the parameters were the sufficient statistics of 

p(x|Ci) and P(Ci), and the method we used to estimate the parameters is maximum likelihood. 

In the discriminant-based approach,the parameters are those of the discriminants, and they are 

optimized 

to minimize the classification error on the training set. When w denotes the set of parameters 

 

and E(w|X) is the error with parameters w on the given training set X, we look for 

In many cases, some of which we will see shortly, there is no analytical solution and we need 

to resort to iterative optimization methods, the most commonly employed being that of 

gradient descent. When E(w) is differentiable function of a vector of variables. 

 
Multilayer Perceptrons 

 
Artificial neural network models, one of which is the perceptron, take their inspiration 

from the brain. There are cognitive scientists and neuroscientists whose aim is to understand 

the functioning of the brain (Posner 1989; Thagard 2005), and toward this aim, build models 

of the natural neural networks in the brain and make simulation studies. 

 
 Understanding the Brain

 

According to Marr (1982), understanding an information processing system has three 

levels, called the levels of analysis: 

1. Computational theory corresponds to the goal of computation and an abstract definition of 

the task. 

2. Representation and algorithm is about how the input and the output are represented and 

about the specification of the algorithm for the transformation from the input to the output. 

3. Hardware implementation is the actual physical realization of the system. 

One example is sorting: The computational theory is to order a given set of elements. The 

representation may use integers, and the algorithm may be Quicksort. After compilation, the 

executable code for a particular processor sorting integers represented in binary is one 

hardware implementation. The idea is that for the same computational theory, there may be 

multiple 

representations and algorithms manipulating symbols in that representation. Similarly, for any 

given representation and algorithm, there may be multiple hardware implementations. We can 

use one of various sorting algorithms, and even the same algorithm can be compiled on 

computers with different processors and lead to different hardware implementations. 

 
To take another example, ‘6’, ‘VI’, and ‘110’ are three different representations of the 

number six. There is a different algorithm for addition depending on the representation used. 

Digital computers use binary representation and have circuitry to add in this representation, 

which is one particular hardware implementation. Numbers are represented differently and 

addition corresponds to a different set of instructions on an abacus, which is another hardware 

implementation. When we add two numbers in our head, we use another representation and an 



102  

algorithm suitable to that representation, which is implemented by the neurons. But all these 

different hardware implementations — for example, abacus, digital computer—implement the 

same computational theory, addition. 

The classic example is the difference between natural and artificial flying machines. A 

sparrow flaps its wings; a commercial airplane does not flap its wings but uses jet engines. 

The sparrow and the airplane are two hardware implementations built for different purposes, 

satisfying different constraints. But they both implement the same theory, which is 

aerodynamics. 
 

Neural Networks as a Paradigm for Parallel Processing 

 

Since the 1980s, computer systems with thousands of processors have been 

commercially available. The software for such parallel architectures, however, has not 

advanced as quickly as hardware. The reason for this is that almost all our theory of 

computation up to that point was based on serial, one- processor machines. We are not able to 

use the parallel machines we have efficiently because we cannot program them efficiently. 

 

There parallel processing are mainly two paradigms for parallel processing: In Single 

Instruction Multiple Data (SIMD) machines, all processors execute the same instruction but 

on different pieces of data. In Multiple Instruction Multiple Data (MIMD) machines, different  

processors may execute different instructions on different data. SIMD machines are easier to 

program because there is only one program to write. However, problems rarely have such a 

regular structure that they can be parallelized over a SIMD machine. 

MIMD machines are more general, but it is not an easy task to write separate programs for all 

the individual processors; additional problems are related to synchronization, data transfer 

between processors, and so forth. SIMD machines are also easier to build, and machines with 

more processors can be constructed if they are SIMD. In MIMD machines, processors are 

more complex, and a more complex communication network should be constructed for the 

processors to exchange data arbitrarily. 

 

Assume now that we can have machines where processors are a little bit more complex 

than SIMD processors but not as complex as MIMD processors. Assume we have simple 

processors with a small amount of local memory where some parameters can be stored. Each 

processor implements a fixed function and executes the same instructions as SIMD 

processors; but by loading different values into the local memory, they can be doing different 

things and the whole operation can be distributed over such processors. We will then have 

what we can call Neural Instruction Multiple Data (NIMD) machines, where each processor 

corresponds to a neuron, local parameters correspond to its synaptic weights, and the whole 

structure is a neural network. If the function implemented in each processor is simple and if 

the local memory is small, then many such processors can be fit on a single chip. 

 

The problem now is to distribute a task over a network of such processors and to 

determine the local parameter values. This is where learning comes into play: We do not need 

to program such machines and determine the parameter values ourselves if such machines can 

learn from examples. 

Thus, artificial neural networks are a way to make use of the parallel hardware we can 

build with current technology and—thanks to learning—they need not be programmed. 
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Therefore, we also save ourselves the effort of programming them. 

MLP as a Universal Approximator 

 
We can represent any Boolean function as a disjunction of conjunctions,and such a 

Boolean expression can be implemented by a multilayer perceptron with one hidden layer. 

Each conjunction is implemented by one hidden unit and the disjunction by the output unit. 

For example, 

 

 

We have seen previously how to implement AND and OR using perceptrons. So two 
perceptrons can in parallel implement the two AND, and another perceptron on top can OR 
them together. We see that the first layer maps inputs from the (x1, x2) to the (z1, z2) space 
defined by the first-layer perceptrons. Note that both inputs, (0,0) and (1,1),are mapped to 
(0,0) in the (z1, z2) space, allowing linear separability in this second space. 

Thus in the binary case, for every input combination where the output is 1, we define a hidden 

unit that checks for that particular conjunction of the input. The output layer then implements 

the disjunction. Note that this is just an existence proof, and such networks may not be 

practical 

as up to 2d hidden units may be necessary when there are d inputs. Such an architecture 
implements table lookup and does not generalize. 

 

We can extend this to the case where inputs are continuous to show that similarly, any 

arbitrary function with continuous input and outputs can be approximated with a multilayer 

perceptron. The proof of universal approximation is easy with two hidden layers. For every 

input case or region, that region can be delimited by hyperplanes on all sides using hidden 

units on the first hidden layer. A hidden unit in the second layer then ANDs them together to 

bound the region. 

 
Backpropagation Algorithm 

 

Training a multilayer perceptron is the same as training a perceptron; the only difference is 

that now the output is a nonlinear function of the input thanks to the nonlinear basis function 

in the hidden units. Considering the hidden units as inputs, the second layer is a perceptron 

and we already know how to update the parameters, vij, in this case, given the inputs zh. For 

the first-layer weights, whj , we use the chain rule to calculate the gradient: 

 

 
It is as if the error propagates from the output y back to the inputs and hence the name 
backpropagation 
was coined. 

 
A) Nonlinear Regression 

Let us first take the case of nonlinear regression (with a single output) calculated as 
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with zh computed by equation 

 

 

 

 

 

 
The error function over the whole sample in regression is 

 

 

 
The second layer is a perceptron with hidden units as the inputs, and we use the least-squares 
rule to update the second-layer weights: 

 

 

The first layer are also perceptrons with the hidden units as the output units but in updating 
the first-layer weights, we cannot use the least squares rule directly as we do not have a 
desired output specified for the hidden units. This is where the chain rule comes into play. We 
write 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The product of the first two terms (rt−yt)vh acts like the error term for hidden unit h. This 

error is backpropagated from the error to the hidden unit. (rt − yt) is the error in the output, 

weighted by the “responsibility”of the hidden unit as given by its weight vh. In the third term, 

zh(1 − zh) is the derivative of the sigmoid and xt j is the derivative of the weighted sum with 
respect to the weight whj . Note that the change in the first layer weight, Δwhj , makes use of 
the second-layer weight, vh. Therefore,we should calculate the changes in both layers and 
update the first-layer weights, making use of the old value of the second-layer weights, then 

update the second-layer weights. Weights, whj, vh are started from small random values 

initially, for example, in the range [−0.01, 0.01], so as not to saturate the sigmoids. It is also a 
good idea to normalize the inputs so that they all have 0 mean and unit variance and have the 



105  

same scale, since we use a single η parameter. 

 
With the learning equations given here, for each pattern, we compute the direction in which 

each parameter needs be changed and the magnitude of this change. 

In batch learning, we accumulate these changes over all patterns and make the change once 

after a complete pass over the whole training set is made, as shown in the previous update 

equations. 
 

B) Two-Class Discrimination 

When there are two classes, one output unit suffices: 

 

 

 

 

which approximates P(C1|xt ) and ˆP(C2|xt ) ≡ 1 − yt . 

The error function in this case is 

 

 
The update equations implementing gradient descent are 

 

 

 

 
As in the simple perceptron, the update equations for regression and classification are 

identical (which does not mean that the values are). 

C) Multi-class Discrimination 
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Training Procedures 
 

 Improving Convergence 
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Gradient descent has various advantages. It is simple. It is local; namely, the change in a 

weight uses only the values of the presynaptic and postsynaptic units and the error (suitably 

backpropagated). When online training is used, it does not need to store the training set and 

can adapt as the task to be learned changes. Because of these reasons, it can be (and is) 

implemented in hardware. But by itself, gradient descent converges slowly. When learning 

time is important, one can use more sophisticated optimization methods (Battiti 1992). Bishop 

(1995) discusses in detail the application of conjugate gradient and second-order methods to 

the training of multilayer perceptrons. However, there are two frequently used simple 

techniques that improve the performance of the gradient descent considerably, making 

gradient-based methods feasible in real applications. 

 

Let us say wi is any weight in a multilayer perceptron in any layer, including the biases. At 

each parameter update, successive Δwt i values may be so different that large oscillations may 

occur and slow convergence. t is the time index that is the epoch number in batch learning and 

the iteration number in online learning. The idea is to take a running average by incorporating 

the previous update in the current change as if there is a momentum due to previous updates: 

 

• Overtraining 
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In an application, d and K are predefined and H is the parameter that we play with to tune the 

complexity of the model. We know from previous chapters that an overcomplex model 

memorizes the noise in the training set and does not generalize to the validation set.   For 

example, we have previously seen this phenomenon in the case of polynomial regression where 

we noticed that in the presence of noise or small samples, increasing the polynomial order leads 

to worse generalization. Similarly in an MLP, when the number of hidden units is large, the 

generalization accuracy deteriorates, and the bias/variance dilemma also holds for the MLP, as it  

does for any statistical estimator (Geman, Bienenstock, and Doursat 1992). 

 Structuring the Network 
 

In some applications, we may believe that the input has a local structure. For example, in 

vision we know that nearby pixels are correlated and there are local features like edges and 

corners; any object, for example, a handwritten digit, may be defined as a combination of such 

primitives. 

 
Similarly, in speech, locality is in time and inputs close in time can be grouped as speech 

primitives. By combining these primitives, longer utterances, for example, speech phonemes, 

may be defined. In such a case when designing the MLP, hidden units are not connected to all 

input units because not all inputs are correlated. Instead, we define hidden units that define a 

window over the input space and are connected to only a small local subset of the inputs. This 

decreases the number of connections and therefore the number of free parameters (Le Cun et 

al. 1989). 

 

Tuning the Network Size 
 

Previously we saw that when the network is too large and has too many free 

parameters, generalization may not be well. To find the optimal network size, the most 

common approach is to try many different architectures,train them all on the training set, and 

choose the one that 

generalizes best to the validation set. Another approach is to incorporate this structural 

adaptation into the learning algorithm. There are two ways this can be done: 

 
1. In the destructive approach, we start with a large network and gradually remove units 
and/or connections that are not necessary. 

2. In the constructive approach, we start with a small network and gradually add units and/or 

connections to improve performance. 

 

One destructive method is weight decay where the idea is to remove unnecessary connections. 

Ideally to be able to determine whether a unit or connection is necessary, we need to train 

once with and once without and check the difference in error on a separate validation set. This 

is costly since it should be done for all combinations of such units/connections. 
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Bayesian View of Learning 
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Dimensionality Reduction 
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Deep learning 
 

Deep learning is a class of machine learning algorithms that: 

 

 use a cascade of multiple layers of nonlinear processing units for feature extraction 

and transformation. Each successive layer uses the output from the previous layer as 

input. 

 learn in supervised (e.g., classification) and/or unsupervised (e.g., pattern analysis) 

manners. 

 learn multiple levels of representations that correspond to different levels of 

abstraction; the levels form a hierarchy of concepts. 

 
In deep learning, each level learns to transform its input data into a slightly more abstract and 

composite representation. In an image recognition application, the raw input may be a matrix 

of pixels; the first representational layer may abstract the pixels and encode edges; the second 

layer may compose and encode arrangements of edges; the third layer may encode a nose and 

eyes; and the fourth layer may recognize that the image contains a face. Importantly, a deep 

learning process can learn which features to optimally place in which level on its own. 

The "deep" in "deep learning" refers to the number of layers through which the data is 

transformed. More precisely, deep learning systems have a substantial credit assignment path 

(CAP) depth. The CAP is the chain of transformations from input to output. CAPs describe 

potentially causal connections between input and output. For a feedforward neural network, 

the depth of the CAPs is that of the network and is the number of hidden layers plus one (as 

the output layer is also parameterized). For recurrent neural networks, in which a signal may 

propagate through a layer more than once, the CAP depth is potentially unlimited. No 

universally agreed upon threshold of depth divides shallow learning from deep learning, but 

most researchers agree that deep learning involves CAP depth > 2. CAP of depth 2 has been 

shown to be a universal approximator in the sense that it can emulate any function. Beyond 

that more layers do not add to the function approximator ability of the network. The extra 

layers help in learning features. 

Deep learning architectures are often constructed with a greedy layer-by-layer method. Deep 

learning helps to disentangle these abstractions and pick out which features improve 

performance. 

For supervised learning tasks, deep learning methods obviate feature engineering, by 

translating the data into compact intermediate representations akin to principal components, 

and derive layered structures that remove redundancy in representation. 

Deep learning algorithms can be applied to unsupervised learning tasks. This is an important 

benefit because unlabeled data are more abundant than labeled data. Examples of deep 

structures that can be trained in an unsupervised manner are neural history compressors and 

deep belief networks. 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Nonlinear_filter
https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Feature_engineering
https://en.wikipedia.org/wiki/Principal_Component_Analysis
https://en.wikipedia.org/wiki/Deep_belief_network
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PART-A (2 Marks) 

 
 

1. What is Linear Regression Model? 

A. In linear discrimination, we assume that instances of a class are linearly separable from 

instances of other classes. This is a discriminant based approach that estimates the 

parameters of the linear discriminant directly from a given labeled sample. 

 
2. What is Discrimination By Regression? 

A. In regression, the probabilistic model is rt = yt + Ԑ where Ԑ= N(0,σ2). If rt ∈{0, 1}, yt can be 

constrained to lie in this range using the sigmoid function. 

 
3. What is the perceptron? 

A. Artificial neural network models, one of which is the perceptron take their inspiration 

from the brain. There are cognitive scientists and neuroscientists whose aim is to 

understand the functioning of the brain and toward this aim, build models of the natural 

neural networks in the brain and make simulation studies. 

 
4. What is Bayesian Estimation? 

A. Bayesian estimation is used when we have some prior information regarding a parameter. 

For example, before looking at a sample to estimate the mean μ of a distribution, we may 

have some prior belief that it is close to 2, between 1 and 3. Such prior beliefs are 

especially important when we have a small sample. 

 
5. Explain Bayesian Approaches. 

A. Bayesian approaches have become popular recently with advances in computational 

power allowing us to sample from or approximate the posterior probabilities. 
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PART-B (10 Marks) 

 
 

1. Explain how to Generalize the linear model. 

2. Explain Discrimination By Regression. 

3. What is the perceptron and training a perceptron? 

4. What is Bayesian view of learning? 

5. Write a short notes on Deep Learning. 

6. Explain about Back propagation algorithm? 
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UNIT-5 
 

 

Kernel Machines 

 

Support vector machine (SVM) and later generalized under the name kernel machine, has 

been popular in recent years for a number of reasons: 

 

1. It is a discriminant-based method and uses Vapnik’s principle to never solve a more 

complex problem as a first step before the actual problem (Vapnik 1995). For example, in 

classification, when the task is to learn the discriminant, it is not necessary to estimate where 

the class densities p(x|Ci) or the exact posterior probability values P(Ci |x); we 

only need to estimate where the class boundaries lie, that is, x where P(Ci|x) = P(Cj |x). 

Similarly, for outlier detection, we do not need to estimate the full density p(x); we only need 

to find the boundary separating those x that have low p(x), that is, x where p(x) < θ, for some 

threshold θ ∈ (0, 1). 

 

2. After training, the parameter of the linear model, the weight vector, can be written down in 

terms of a subset of the training set, which are the so-called support vectors. In classification, 

these are the cases that are close to the boundary and as such, knowing them allows 

knowledge extraction: those are the uncertain or erroneous cases that lie in the vicinity of the 

boundary between two classes. Their number gives us an estimate of the generalization error, 

and, as we see below, being able to write the model parameter in terms of a set of instances 

allows kernelization. 

 

3. As we will see shortly, the output is written as a sum of the influences of support vectors 

and these are given by 

kernel functions that are application-specific measures of similarity between data instances. 

Previously, we talked about nonlinear basis functions allowing us to map the input to 

another space where a linear (smooth) solution is possible; the kernel function uses the same 

idea. 

 

4. Typically in most learning algorithms, data points are represented as vectors, and either dot 

product (as in the multilayer perceptrons) or Euclidean distance (as in radial basis function 

networks) is used. A kernel function allows us to go beyond that. For example, G1 and G2 

may be two graphs and K(G1,G2) may correspond to the number of shared paths, which we 

can calculate without needing to represent G1 or G2 explicitly as vectors. 

 

5. Kernel-based algorithms are formulated as convex optimization problems, and there is a 

single optimum that we can solve for analytically. Therefore we are no longer bothered with 

heuristics for learning rates, initializations, checking for convergence, and such. Of course, 

this does not mean that we do not have any hyperparameters for model selection; we do—any 

method needs them, to match the algorithm to the data at hand. 
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2. Optimal Separating Hyperplane 

 

Let us start again with two classes and use labels −1/ + 1 for the two classes. The 

sample is X ={xt, rt } where rt = +1 if xt ∈ C1 and rt = −1 if xt ∈ C2. We would like to find w 

and w0 such that wT xt + w0 ≥ +1 for rt = +1 

wT xt +w0≤−1 for rt = −1 which can be rewritten as rt (wTxt + w0) ≥ +1 

Note that we do not simply require 

rt (wTxt + w0) ≥ 0 

 
Not only do we want the instances to be on the right side of the hyperplane, but we also want 

them some distance away, for better generalization. 

The distance from the hyperplane to the instances closest to it on either side is called the 

margin, which we want to maximize for best generalization. Very early on, in section 2.1, we 

talked about the concept of the margin when we were talking about fitting a rectangle, and we 

said that it is better to take a rectangle halfway between S and G, to get a breathing space. This 

is so that in case noise shifts a test instance slightly, it will still be on the right side of the 

boundary. 

Similarly, now that we are using the hypothesis class of lines, the optimal separating 

hyperplane is the one that maximizes the margin. We remember from section 10.3 that the 

distance of xt to the discriminant is 

 

 

 

 

 

 

 

 

 
We would like to maximize ρ but there are an infinite number of solutions that we can 

get by scaling w and for a unique solution, we fix and thus, to maximize the margin, we 

minimize 

The task can therefore be defined as to 

 

 
This is a standard quadratic optimization problem, whose complexity depends on d, and it can 

be solved directly to find w and w0. Then, on both sides of the hyperplane, there will be 
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instances that are 1/||w|| away from the hyperplane and the total margin will be 2/||w||. 

 
In finding the optimal hyperplane, we can convert the optimization problem to a form whose 

complexity depends on N, the number of training instances, and not on d. Another advantage 

of this new formulation is that it will allow us to rewrite the basis functions in terms of kernel 

Functions. To get the new formulation, 

 

 

 

 
This should be minimized with respect to w,w0 and maximized with respect to αt ≥ 0. The 

saddle point gives the solution. This is a convex quadratic optimization problembecause 

themain term is convex and the linear constraints are also convex. Therefore, we can 

equivalently solve the dual problem, making use of the Karush-Kuhn- Tucker conditions. The 

dual is to maximize Lp with respect to αt, subject to the constraints 

 

 

 

 

 

 

 

 

 

 

 

 
that the gradient of Lp with respect to w and w0 are 0 

which we maximize with respect to αt only, subject to the constraints 

 

This can be solved using quadratic optimization methods. The size of the dual depends on N, 

sample size, and not on d, the input dimensionality. The upper bound for time complexity is 

O(N3), and the upper bound for space complexity is O(N2). 

Once we solve for αt , we see that though there are N of them, most vanish with αt = 0 and 

only a small percentage have αt > 0. The set of xt whose αt > 0 are the support vectors, and as 

 

 

 
we see in equation 13.5, w is written as the weighted sum of these training instances that are 
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selected as the support vectors. These are the xt that satisfy 

For numerical stability, it is advised that this be done for all support vectors and an average be 

taken. The discriminant thus found is called the support vector machine (SVM), 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
During testing, we do not enforce a margin. We calculate g(x) = wT x+ w0, and choose 

according to the sign of g(x): Choose C1 if g(x) > 0 and C2 otherwise 

3. The Nonseparable Case: Soft Margin Hyperplane 

 

If the data is not linearly separable, the algorithm we discussed earlier will not work. 

In such a case, if the two classes are not linearly separable such that there is no hyperplane to 

separate them, we look for the one that incurs slack variables the least error. We define slack 

variables, ξt ≥ 0, which store the deviation from the margin. There are two types of deviation: 

 
An instance may lie on the wrong side of the hyperplane and be misclassified. Or, it may be 

on the right side but may lie in the margin, namely, not sufficiently away from the hyperplane. 

Relaxing 

If ξt = 0, there is no problem with xt. If 0 < ξt < 1, xt is correctly classified but in the margin. 

If ξt ≥ 1, xt is misclassified . 

The number of misclassifications is #{ξt > 1}, and the number of non separable points is #{ξt 

> 0}. We define soft error as 
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subject to the constraint of equation 13.9. C is the penalty factor as in any regularization 

scheme trading off complexity, as measured by the L2 norm of the weight vector (similar to 

weight decay in multilayer perceptrons; and data misfit, as measured by the number of 

nonseparable points. Note that we are penalizing not only the misclassified points but also the 

ones in the margin for better generalization, though these latter would be correctly classified 

during testing. 

Finally we will get 

 

 

 

 
where μt are the new Lagrange parameters to guarantee the positivity of ξt. When we take the 

derivatives with respect to the parameters and set them to 0, we get: 
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Solving this, we see that as in the separable case, instances that lie on the correct side of 

the boundary with sufficient margin vanish with their αt = 0 (see figure 13.2). The support 

vectors have their αt > 0 and they 

define w, Of these, those whose αt < C are the ones that are on the margin, and we can use 

them to calculate w0; they have ξt = 0 and satisfy rt (wTxt + w0) = 1. Again, it is better to take 

an average over these w0 estimates. Those instances that are in the margin or misclassified 

have their αt = C. The nonseparable instances that we store as support vectors are the 

instances that we would have trouble correctly classifying if they were not in the training set; 

they would either be misclassified or classified correctly but not with enough confidence. We 

can say that the number 

of support vectors is an upper-bound estimate for the expected number of errors. And, 

actually, Vapnik (1995) has shown that the expected test error rate is 

 

 
 

where EN[·] denotes expectation over training sets of size N. The nice implication of this 

is that it shows that the error rate depends on the number of support vectors and not on the 

input dimensionality.it 
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4. ν-SVM 

There is another, equivalent formulation of the soft margin hyperplane that uses a parameter 

ν ∈ [0, 1] instead of C 

The objective function is 

 

 

 

 

 

 

 

 

 

 

 

 

 
5. Kernel Trick 

 

Instead of trying to fit a nonlinear model, we can map the problem to a new space by 

doing a nonlinear transformation using suitably chosen basis functions and then use a linear 

model in this new space. The linear model in the new space corresponds to a nonlinear model 

in the original space. This approach can be used in both classification and regression 

problems, and in the special case of classification, it can be used with any scheme. In the 

particular case of support vector machines, it leads to certain simplifications that we now 

discuss. 

Let us say we have the new dimensions calculated through the basis functions 

z = φ(x) where zj = φj(x), j = 1, . . . , k 
 

mapping from the d-dimensional x space to the k-dimensional z space where we write the 

discriminant as 

 
 
 
 
 

where we do not use a separate w0; we assume that z1 = φ1(x) ≡ 1. Generally, k is much 

larger than d and k may also be larger than N, and there lies the advantage of using the dual 
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form whose complexity depends on N, whereas if we used the primal it would depend on k. 

We also use the more general case of the soft margin hyperplane here because we have no 

guarantee that the problem is linearly separable in this new space. 

 
The problem is the same 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
This implies that if we have the kernel function, we do not need to map it to the new space at 

all. Actually, for any valid kernel, there does exist a corresponding mapping function, but it 

may be much simpler to use K(xt , x) rather than calculating φ(xt), φ(x) and taking the dot 

product. Many algorithms have been kernelized, as we will see in later sections, and that is 

why we have the name “kernel machines.” Thematrix of kernel values, K, where Kts Gram 
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matrix = K(xt , xs), is called the Gram matrix, which should be symmetric and positive 

semidefinite. 

6. Vectorial Kernels 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
defines a spherical kernel as in Parzen windows (chapter 8) where xt is the center and s, 

supplied by the user, defines the radius. 
 

One can have a Mahalanobis kernel, generalizing from the Euclidean Distance: 
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7. Multiple Kernel Learning 

 
It is possible to construct new kernels by combining simpler kernels. If K1(x,y) and K2(x,y) 

are valid kernels and c a constant, then 

 

 

 

 

 
 

are also valid. 

Different kernels may also be using different subsets of x. We can therefore see combining 

kernels as another way to fuse information from different sources where each kernel measures 
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similarity according to its domain. When we have input from two representations A and B 

 
where x = [xA, xB] is the concatenation of the two representations. That is, taking a sum of 

two kernels corresponds to doing a dot product in the concatenated feature vectors. One can 

generalize to a number of kernels 

 

which, similar to taking an average of classifiers (section 17.4), this time averages over 

kernels and frees us from the need to choose one particular kernel. It is also possible to take a 

weighted sum and also learn the weights from data 

 

 
subject to ηi ≥ 0, with or without the constraint of respectively known as convex or 

conic combination. This is called multiple kernel learning where we replace a single kernel 

with a weighted sum 

Finally kernel objective function becomes 

 

 

 
which we solve for both the support vector machine parameters αt and the kernel weights ηi . 

Then, the combination of multiple kernels also appear in the discriminant 

 

After training, ηi will take values depending on how the corresponding kernel Ki(xt , x) is 

useful in discriminating. It is also possible to localize kernels by defining kernel weights as a 

parameterized function of the input x, rather like the gating function in mixture of experts 

 

 

7. Multiclass Kernel Machines 

 
When there are K > 2 classes, the straightforward, one-vs.-all way is to define K two-class 

problems, each one separating one class from all other classes combined and learn K support 

vector machines gi(x), i = 1, . . . , K. 

That is, in training gi(x), examples of Ci are labeled +1 and examples of Ck, k _= i are labeled 

as −1. During testing, we calculate all gi(x) and choose the maximum. 
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Platt (1999) proposed to fit a sigmoid to the output of a single (2-class) SVM output to 

convert to a posterior probability. Similarly, one can train one layer of softmax outputs to 

minimize cross-entropy to generate K > 

2 posterior probabilities 

 

 

 

 
where fj(x) are the SVM outputs and yi are the posterior probability outputs. Weights vij are 

trained to minimize cross-entropy. Note, however, that as in stacking (section 17.9), the data 

on which we train vij should be different from the data used to train the base SVMs fj(x), to 

alleviate overfitting. Instead of the usual approach of building K two-class SVM classifiers to 

separate one from all the rest, as with any other classifier, one can build K(K − 1)/2 pairwise 

classifiers (see also section 10.4), each gij(x) taking examples of Ci with the label +1, 

examples of Cj with the label −1, and not using examples of the other classes. Separating 

classes in pairs is normally expected to be an easier job, with the additional advantage that 

because we use less data, the optimizations will be faster, noting however that we have O(K2) 

discriminants to train instead of O(K). 

 

In the general case, both one-vs.-all and pairwise separation are special cases of the error- 

correcting output codes that decompose a multiclass problem to a set of two-class problems 

Another possibility is to write a single multiclass optimization problem involving all classes 

 

 

 

 

 

 

 
where zt contains the class index of xt . The regularization terms minimizes the norms of all 

hyperplanes simultaneously, and the constraints are there to make sure that the margin 

between the actual class and any 
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other class is at least 2. The output for the correct class should be at least +1, the output of any 

other class should be at least −1, and the slack variables are defined to make up any 

difference. 

8. One-Class Kernel Machines 

 

Support vector machines, originally proposed for classification, are extended to regression by 

defining slack variables for deviations around the regression line, instead of the discriminant. 

We now see how SVM can be used for a restricted type of unsupervised learning, namely, for 

estimating regions of high density. We are not doing a full density estimation; rather, we want 

to find a boundary (so that it reads like a classification problem) that separates volumes of 

high density from volumes of low density (Tax and Duin 1999). Such a boundary can then be 

used for novelty or outlier detection. This is also called one-class classification. 

 

We consider a sphere with center a and radius R that we want to enclose as much as possible 

of the density, measured empirically as the enclosed training set percentage. At the same time, 

trading off with it, we want to find the smallest radius. We define slack variables for instances 

that lie outside (we only have one type of slack variable because we have examples from one 

class and we do not have any penalty for those inside), and we have a smoothness measure 

that is proportional to the radius: 
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Fig: One class svm 

 
 

Since γt ≥ 0, we can write this last as the constraint: 0 ≤ αt ≤ C. Plugging these into equation 

13.53, we get the dual that we maximize with respect to αt : 

 

 

 

 

 

 

 
When we solve this, we again see that most of the instances vanish with their αt = 0; these are 

the typical, highly likely instances that fall inside the sphere (figure 13.10). There are two type 

of support vectors with αt > 0: There are instances that satisfy 0 < αt < C and lie on the 

boundary, (ξt = 0), which we use to calculate R. Instances. 



128  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 
 

9. Kernel Dimensionality Reduction 

 

In the kernelized version, we work in the space of φ(x) instead of the original x and 

because, as usual, the dimensionality d of this new space may be much larger than the data set 

size N, we prefer to work with the N × N matrix XXT instead of the d × d matrix XTX. The 

projected data matrix is Φ = φ(X), and hence we work on the eigenvectors of ΦTΦ and hence 

of the kernel matrix K. 

Kernel PCA uses the eigenvectors and eigenvalues of the kernel matrix and this corresponds 

to doing a linear dimensionality reduction in the φ(x) space. When ci and λi are the 

corresponding eigenvectors and eigenvalues, the projected new k-dimensional values can be 

 
 

calculated as 

 
An example is given in figure 13.12 where we first use a quadratic kernel and then decrease 

dimensionality to two (out of five) using kernel PCA and implement a linear SVM there. Note 

that in the general case (e.g., with a Gaussian kernel), the eigenvalues do not necessarily 

decay and there is no guarantee that we can reduce dimensionality using kernel PCA. What 

we are doing here is multidimensional scaling using kernel values as the similarity values. For 
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example, by taking k = 2, one can visualize the data in the space induced by the kernel matrix, 

which can give us information as to how similarity is defined by the used kernel. Linear 

discriminality reduction can similarly be kernelized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction: 
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For example, knowing that the grass is wet, the probability that it rained can be calculated as 

follows 
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X and Y are conditionally independent events given a third event Z if 

 

 

 

 

 
In a graphical model, not all nodes are connected; actually, in general, a node is connected to 

only a small number of other nodes. Certain subgraphs imply conditional independence 

statements, and these allow us to break down a complex graph into smaller subsets in which 

inferences can be done locally and whose results are later propagated over the graph. There are 

three canonical cases and larger graphs are constructed using these as subgraphs 

2. Canonical Cases for Conditional Independence 

Case 1: Head-to-tail Connection 

We see here that X and Z are independent given Y: Knowing Y tells Z everything; knowing the 

state of X does not add any extra knowledge for Z; we write P(Z|Y,X) = P(Z|Y). We say that Y 

blocks the path from X to Z, or in other words, it separates them in the sense that if Y is 

removed, there is no path between X to Z. In this case, the joint is written as 

P(X, Y,Z) = P(X)P(Y|X)P(Z|Y) 

Writing the joint this way implies independence 

 

 

 

 

 
 
Typically, X is the cause of Y and Y is the cause of Z. For example, as seen in figure 16.2b, X 

can be cloudy sky, Y 

can be rain, and Z can be wet grass. We can propagate information along the chain. If we do not 

know the state of cloudy, we have 

P(R) = P(R|C)P(C) + P(R|∼C)P(∼C) = 0.38 

P(W) = P(W|R)P(R) + P(W|∼R)P(∼R) = 0.47 

 
Let us say, in the morning we see that the weather is cloudy; what can we say about the 

probability that the grass will be wet? To do this, we 
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Knowing that the weather is cloudy increased the probability of wet grass. We can also 

propagate evidence back using Bayes’ rule. Let us say that we were traveling and on our 

return, see that our grass is wet; what is the probability that the weather was cloudy that day? 

We use Bayes’ rule to invert the direction: 

 

 

 

 

 

 
Case 2: Tail-to-tail Connection 

X may be the parent of two nodes Y and Z, as shown in figure 16.3a. The joint density is 

written as 
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When its value is known, X blocks the path between Y and Z, or in other words, separates 
them. 

we see an example where cloudy weather influences both rain and the use of the sprinkler, one 

positively and the other negatively. Knowing that it rained, for example, we can invert the 

dependency using Bayes’ rule and infer the cause: 
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This is less than P(R) = 0.45; that is, knowing that the sprinkler is on decreases the probability 

that it rained because sprinkler and rain happens for different states of cloudy weather. If the 

sprinkler is known to be off, using the same approach, we find that P(R|∼S) = 0.55; the 

probability of rain increases this time. 

 
Case 3: Head-to-head Connection 

 
In a head-to-head node, there are two parents X and Y to a single node Z, as shown in figure 

16.4a. The joint density is written as P(X, Y,Z) = P(X)P(Y)P(Z|X, Y) X and Y are independent: 

P(X,Y) = P(X) · P(Y) (exercise 2); they become dependent when Z is known. The concept of 

blocking or separation is different for this case: The path between X and Y is blocked, or they 

are separated, when Z is not observed; when Z (or any of its descendants) is observed, they are 

not blocked, separated, nor are independent. 
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where we have used that P(W|R, S,C) = P(W|R, S); given R and S, W is independent of C: R 

and S between them block the path between W and C. Similarly, P(R,S|C) = P(R|C)P(S|C); 

given C, R and S are independent. 

 
We see the advantage of Bayesian networks here, which explicitly encode independencies and 

allow breaking down inference into calculation over small groups of variables that are 

propagated from evidence nodes to query nodes. 

 

We can calculate P(C|W) and have a diagnostic inference: 
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1. Example Graphical Models 
 

A. Naive Bayes’ Classifier 
For the case of classification, the corresponding graphical model is shown in figure 16.6a, 
with x as the input and C a multinomial variable taking 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
If the inputs are independent,which is called the naive Bayes’ classifier, because it ignores 

possible dependencies, namely, correlations, among the inputs and reduces a multivariate 

problem to a group of univariate problems: 

 

 

 

Figure 16.6a is a generative model of the process that creates the data. It is as if we first pick a 

class C at random by sampling from P(C), and then having fixed C, we pick an x by sampling 

from p(x|C). Thinking of data as sampled from a causal generative model that can be 

visualized as a graph can ease understanding and also inference in many domains. 

For example, in text categorization, generating a text may be thought of as the process where 

an author decides to write a document on a certain topic and then chooses the set of words 

accordingly. In bioinformatics, one area among many where a graphical approach used is the 

modelling of a phylogenetic tree; namely, a directed graph whose leaves are the current 

species, nonterminal nodes are past ancestors that split into multiple species during a 

speciation event, and the conditional probabilities depend on the evolutionary distance 

between a species and its ancestor. 
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B. Hidden Markov Model: 

 
Hidden Markov models (HMM) are an example of case 1 where three successive states qt−2, 

qt−1, qt correspond to three states on a chain in a first-order Markov model. The state at time 

t, qt , depends only on the state at time t −1, qt−1, and given qt−1, qt is independent of qt−2\ 

P(qt |qt−1, qt−2) = P(qt |qt−1) as given by the state transition probability matrix A (see figure 

16.7). Each hidden variable generates a discrete observation that is observed, 

as given by the observation probability matrix B. The forward-backward procedure of hidden 

Markov models is a special case of belief propagation that we will discuss shortly. 
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C. Linear Regression 

 

Linear regression can be visualized as a graphical model, as shown in figure 16.9. Input xt is 

drawn from a prior 

p(x) and the dependent variable rt depend on the input x, weights w (drawn from a prior 

parameterized 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
filling in C using S, which we in turn used to estimate R. Here, we write 
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4.d-Separation 

 
We now generalize the concept of blocking and separation under the name of d-separation, 

and we define it in a way so that for arbitrary subsets of nodes A, B, and C, we can check if A 

and B are independent given C. Jordan visualizes this as a ball bouncing over the graph and 

calls this the Bayes’ ball. We set the nodes in C to their values, place a 

ball at each node in A, let the balls move around according to a set of rules, and check whether 

a ball reaches any node in B. If this is the case, they are dependent; otherwise, they are 

independent. 

 

To check whether A and B are d-separated given C, we consider all possible paths between 

any node in A and any node in B. Any such path is blocked if 

(a) the directions of the edges on the path either meet head-to-tail (case 1)\or tail-to-tail (case 
2) and the node is in 

C, or 

(b) the directions of the edges on the path meet head-to-head (case 3) and neither that node nor 

any of its descendant is in C. If all paths are blocked, we say that A and B are d-separated, that 

is, independent, given C; otherwise, they are dependent. Examples are given in figure 16.10. 
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5. Belief Propagation 

 

Having discussed some inference examples by hand, we now are interested in an 

algorithm that can answer queries such as P(X|E) where X is any query node in the graph and 

E is any subset of evidence nodes whose values are set to certain value. Following Pearl 

(1988), we start with the simplest case of chains and gradually move on to more complex 

graphs. Our aim is to find the graph operation counterparts of probabilistic procedures such as 

Bayes’ rule or marginalization, so that the task of inference can be mapped to general purpose 

graphalgorithms. 

A. Chains 

 

A chain is a sequence of head-to-tail nodes with one root node without any parent; all 

other nodes have exactly one parent node, and all nodes except the very last, leaf, have a 

single child. If evidence is in the ancestors of X, we can just do a diagnostic inference and 

propagate evidence down the chain; if evidence is in the descendants of X, we can do a causal 

inference and propagate upward using Bayes’ rule. Let us see the general case where we have 

evidence in both directions, up the chain E+ and down the chain E− (see figure 16.11). Note 

that any evidence node separates X from the nodes on the chain on the other side of the 

evidence and their values do not affect p(X); this is true in both directions. 

 

We consider each node as a processor that receives messages from its neighbors and pass it 

along after some local calculation. Each node X locally calculates and stores two values: λ(X) 

≡ P(E−|X) is the propagated E− that X receives from its child and forwards to its parent, and 

π(X) ≡ P(X|E+) is the propagated E+ that X receives from its parent and passes on to its child. 
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where the second line follows from the fact that U blocks the path between X and E+. 

For the λ-messages, we have 

 

 

 

 

 

 
B. Trees 

 

Chains are restrictive because each node can have only a single parent and a single 

child, that is, a single cause and a single symptom. In a tree, each node may have several 

children but all nodes, except the single root, have exactly one parent. The same belief 

propagation also applies here with the difference from chains being that a node receives 

different λ-messages from its children, λY(X) denoting the message X receives from its child Y, 

and sends different π-messages to its children, πY (X) denoting the message X sends to its 

child Y. Again, we divide possible evidence to two parts, E− are nodes that are in the subtree 

rooted at the query node X, and E+ are evidence nodes elsewhere (see figure 16.12). Note that 

this second need not be an ancestor of X but may also be in a subtree rooted at a sibling of X. 

The important point is that again X separates E+ and E− so that we can write 

P(E+, E−|X) = P(E+|X)P(E−|X), and hence have 
 

P(X|E) = απ(X)λ(X) 
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where again α is a normalizing constant. λ(X) is the evidence in the subtree rooted at X, and if 

X has two children Y and Z, it can be calculated as 
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C. Polytrees 

 

In a tree, a node has a single parent, that is, a single cause. In a polytree, a node may 

have multiple parents, but we require that the graph be singly connected, which means that 

there is a single chain between any two nodes. If we remove X, the graph will split into two 

components. This is necessary so that we can continue splitting EX into E+ 

X and E− X, which are independent given X . 
 

If X has multiple parents Ui, i = 1, . . . , k, it receives π-messages from 
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D. Junction Trees 

 
If there is a loop, that is, if there is a cycle in the underlying undirected graph—for 

example, if the parents of X share a common ancestor—the algorithm we discussed earlier 

does not work. In such a case, there is more than one path on which to propagate evidence 

and, for example, while evaluating the probability at X, we cannot say that X separates E 

into E+ X and E− X as causal (upward) and diagnostic (downward) evidence; removing X does 

not split the graph into two. Conditioning them on X does not make them independent and the 

two can interact through some other path not involving X. 
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We can still use the same algorithm if we can convert the graph to a polytree. We define 

clique nodes that correspond to a set of original variables and connect them so that they form 

a tree. We can then run the same belief propagation algorithm with some modifications. 

This is the basic idea behind the junction tree algorithm. 

 

 

 

 

 

 

 

 

 

 

 
6. Learning the Structure of a Graphical Model 

 
Learning a graphical model has two parts. The first is the learning of parameters given 

a structure; this is relatively easier , and, in graphical models, conditional probability tables or 

their parameterizations can be trained to maximize the likelihood, or by using a Bayesian 

approach if suitable priors are known. 

 

The second, more difficult, and interesting part is to learn the graph structure .This is basically 

a model selection problem, and just like the incremental approaches for learning the structure 

of a multilayer perceptron , we can see this as a search in the space of all possible graphs. One 

can, for example, consider operators that can add/remove arcs and/or hidden nodes and then 

do a search evaluating the improvement at each step (using parameter learning at each 

intermediate iteration). Note, however, that to check for overfitting, one should regularize 

properly, corresponding to a Bayesian approach with a prior that favors simpler graphs 

(Neapolitan 2004). However, because the state space is large, it is most helpful if there is a 

human expert who can manually define causal relationships among variables and creates 

subgraphs of small groups of variables. 
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7. Influence Diagrams 

 

We generalized from probabilities to actions with risks, influence diagrams are 

graphical models that allow the generalization of graphical models to include decisions and 

utilities. An influence diagram contains chance nodes representing random variables that we 

use in graphical models .It also has decision nodes and a utility node. A decision node 

represents a choice of actions. A utility node is where the utility is calculated. Decisions may 

be based on chance nodes and may affect other chance nodes and the utility node. Inference 

on an influence diagram is an extension to belief propagation on a graphical model. Given 

evidence on some of the chance nodes, this evidence is propagated, and for each possible 

decision, the utility is calculated and the decision having the highest utility is chosen. Given 

the input, the decision node decides on a class, and for each choice we incur a certain utility 

(risk). 

8. Undirected Graphs: Markov Random Fields 

 
If the influences are symmetric, we represent them using an undirected graphical 

model, also known as a Markov random field. For example, neighboring pixels in an image 

tend to have the same color—that is, are correlated— 

and this correlation goes both ways. Directed and undirected graphs define conditional 

independence differently, and, hence, there are probability distributions that are represented 

by a directed graph and not by an undirected graph, and vice versa. 

Because there are no directions and hence no distinction between the head or the tail of 

an arc, the treatment of undirected graphs is simpler. For example, it is much easier to check if 

A and B are independent given C. We just check if after removing all nodes in C, we still have 

a path between a node in A and a node in B. If so, they are dependent, otherwise, if all paths 

between nodes in A and nodes in B pass through nodes in C such that removal of C leaves 

nodes of A and nodes of B in separate components, we have independence. 

 

In the case of an undirected graph, we do not talk about the parent or clique the child 

but about cliques, which are sets of nodes such that there exists a link between any two nodes 

in the set. A maximal clique has the maximum number of elements. Instead of conditional 

probabilities (implying a direction), in undirected graphs we have potential functions ψC(XC) 

where XC is the set of variables in clique C, and we define the joint distribution as the product 

of the potential functions of the maximal cliques of the graph 
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If we have the directed graph, it is easy to redraw it as an undirected graph, simply by 

dropping all the directions, and if a node has a single parent, we can set the pairwise potential 

function simply to the conditional probability. If the node has more than one parent, however, 

the “explaining away” phenomenon due to the head-to- head node makes the parents 

dependent, and hence we should have the parents in the same clique so that the clique 

potential includes all the parents. This is done by connecting all the parents of a node by links 

so that they are completely connected among them and form a clique. This is called 

“marrying” the parents, and the process is called moralization. Incidentally,moralization is 

one of the steps in generating a junction tree, which is undirected. 

 

It is straightforward to adapt the belief propagation algorithm to work on undirected 

graphs, and it is easier because the potential function is symmetric and we do not need to 

make a difference between causal and diagnostic evidence. Thus, we can do inference on 

undirected chains and trees. But in polytrees where a node has multiple parents and 

moralization necessarily creates loops, this would not work. One trick is to convert it to a 

 
 

factor graph that uses a second kind of factor nodes in addition to the variable nodes, and we 

write the joint distribution as a product of factors. 

 
It is possible to generalize the belief propagation algorithm to work on factor graphs; this is 

called the sum- product algorithm where there is the same idea of doing local computations 

once and propagating them through the graph as messages. The difference now is that there 

are two types of messages because there are two kinds of nodes, factors and variables, and we 

make a distinction between their messages. 
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PART-A (2 Marks) 

 
1. What is Graphical models? 

A. Graphical models represent the interaction between variables visually and have the 

advantage that inference over a large number of variables can be decomposed into a set 

of local calculations involving a small number of variables making use of conditional 

independencies. 

 
2. Explain about kernels. 

A. Kernel machines are maximum margin methods that allow the model to be written as a 

sum of the influences of a subset of the training instances. 

 
3. What are two paradigms for parallel processing? 

A. In Single Instruction Multiple Data (SIMD) machines, all processors execute the same 

instruction but on different pieces of data. In Multiple Instruction Multiple Data (MIMD) 

machines, different processors may execute different instructions on different data. 

 
4. Explain about On-Line Learning. 

A. In online learning, we do not write the error function over the whole sample but on 

individual instances. 
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PART-B (10 Marks) 

 
 

1. What is Optimal separating hyperplane and Soft Margin Hyperplane? 

2. Explain about kernels and multiple kernel learning. 

3. Explain about Generative Models. 

4. Explain about Learning the structure of a graphical model. 

5. Explain about large margin nearest neighbor classifier. 

6. Explain about kernel dimensionality reduction. 

7. Explain about the Learning the structure of a graphical model. 

8. Write about Markov Random files. 

9. Explain briefly about influence diagrams. 
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