ANNAMACHARYA
INSTITUTE OF TECHNOLOGY AND SCIENCES

(AUTONOMOUS)

Approved by AICTE, New Delhi & Permanent Affiliation to INTUA, Anantapur.
Three B. Tech Programmes (CSE , ECE & CE) are accredited by NBA, New Delhi,Accredited by NAAC with ‘A’ Grade , Bangalore.
A-grade awarded by AP Knowledge Mission. Recognized under sections 2(f) & 12(B) of UGC Act 1956.

Venkatapuram Village, Renigunta Mandal, Tirupati, Andhra Pradesh-517520.

Department of Artificial Intelligence

Academic Year 2023-24

lll. B.Tech | Semester
Machine Learning
(20APC3316)

Prepared By

Dr C Siva Balaji Yadav,
M.Tech,Ph.D,

HOD Al (AIDS & AIML)
Department of Al, AITS

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES :: TIRUPATI(AUTONOMOUS)

Year: III Semester: I Branch of Study: AI & ML
COURSE CODE COURSE TITLE L T P CREDITS
20APC3316 Machine Learning 3 0 0 3

Course Outcomes

CO1: Ability to understand what is learning and why it is essential to the design of intelligent machines.

CO2: Ability to design and implement various machine learning algorithms in a wide range of real-world applications.
CO3: Acquire knowledge deep learning and be able to implement deep learning models for language, vision, speech,
decision making, and more

CO4: Ability to demonstrate feature selection and dimensionality reduction

COS5: Ability to solve decision making problems using SVM(Support Vector Machines) and graphical models

UNIT - 1:

What is Machine Learning?, Examples of machine learning applications,

supervised Learning: learning a class from examples, Vapnik- Chervonenkis dimension, probably approximately
correct learning, noise, learning multiple classes, regression, model selection and generalization, dimensions of a
supervised machine learning algorithm.

Decision Tree Learning: Introduction, Decisions Tree representation, Appropriate problems for decision tree learning,
the basic decision tree learning algorithm, Hypothesis space search in decision tree learning, Inductive bias in decision
tree learning, issues in decision tree learning,

Artificial Neural Networks: Introduction, Neural Network Representation — Problems — Perceptrons — Multilayer
Networks and Back Propagation Algorithm, Remarks on the BACKPROPAGATION Algorithm, An illustrative Example:
Face Recognition, Advanced Topics in Artificial Neural Networks.

UNIT - 2:

Evaluating Hypotheses: Motivation, Estimating hypothesis accuracy, basics of sampling theory, a general approach
for deriving confidence intervals, differences in error of two hypothesis, comparing learning algorithms,

Bayesian Learning: Introduction, Bayes Theorem, Bayes Theorem and Concept Learning, Maximum Likelihood and
least squared error hypothesis, Maximum Likelihood hypothesis for predicting probabilities, Minimum Description
Length Principle, Bayes Optimal Classifier, Gibbs Algorithm , Naive Bayes Classifier , Bayesian Belief Network, EM
Algorithm

UNIT - 3:

Dimensionality Reduction: Introduction, Subset selection, principle component analysis, feature embedding, factor
analysis, singular value decomposition and matrix factorization, multidimensional scaling, linear discriminant
analysis, canonical correlation analysis, Isomap, Locally linear embedding, laplacian eigenmaps,

Clustering: Introduction, Mixture densities, K- Means clustering, Expectations- Maximization algorithm, Mixture of
latent variable models, supervised learning after clustering, spectral clustering, Hierarchal clustering, Choosing the
number of clusters.

UNIT - 4:

Linear Discrimination: Introduction, Generalizing the linear model, geometry of the linear discrimination, pair wise
separation, parametric discrimination revisited, gradient descent, logistic discrimination, discrimination by regression,
learning to rank,

Multilayer Perceptrons: Introduction, the perceptron, training a perceptron, learning Boolean functions, multilayer
perceptrons, MLP as a universal approximator, Back propagation algorithm, Training procedures, Tuning the network
size, Bayesian view of learning, dimensionality reduction, learning time, deep learning

UNIT - 5:

Kernel Machines: Introduction, Optimal separating hyperplane, the non separable case: Soft Margin Hyperplane, v-
SVM, kernel Trick, Vectorial kernels, defining kernels, multiple kernel learning, multicast kernel machines, kernel
machines for regression, kernel machines for ranking, one-class kernel machines, large margin nearest neighbor
classifier, kernel dimensionality reduction,

Graphical models: Introduction, Canonical cases for conditional independence, generative models, d separation, belief
propagation, undirected Graphs: Markov Random files, Learning the structure of a graphical model, influence
diagrams.

Text Books:
1. Machine Learning — Tom M. Mitchell - McGraw Hill Education, 2017
2. Introduction to Machine learning, Ethem Alpaydin, PHI, 3rd Edition, 2014.

Reference Books:

1. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis Chapman and
Hall/CRC; 2nd edition, 2014
2. Machine Learning For Beginners: A Comprehensive Guide To Understand Machine Learning. How It Works

And How Is Correlated To Artificial Intelligence And Deep Learning, Chris Neil, Alicex Ltd, 2020.

Mapping of course outcomes with program outcomes

PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 501 Yot ;01 50 gso
co1 |3 2 2 2 2 2 3 2
coz |3 2 2 2 2 2 3 2
co3 |3 2 2 2 2 3
coa |2 3 2 2 2 2
cos | 2 2 2

(Levels of Correlation, viz., 1-Low, 2-Moderate, 3 High)

UNIT-1

1. What Is Machine Learning?

Machine learning is programming computers to optimize a performance criterion using
example data or past experience. We have a model defined up to some parameters, and
learning is the execution of a computer program to optimize the parameters of the model
using the training data or past experience. The model may be predictive to make
predictions in the future, or descriptive to gain knowledge from data, or both.

Machine learning uses the theory of statistics in building mathematical models, because the
core task is making inference from a sample. The role of computer science is twofold:
First, in training, we need efficient algorithms to solve the optimization problem, as well as
to store and process the massive amount of data we generally have. Second, once a model
IS learned, its representation and algorithmic solution for inference needs to be efficient as
well. In certain applications, the efficiency of the learning or inference algorithm, namely,
its space and time complexity, may be as important as its predictive accuracy. Application
of machine learning methods to large databases is called data mining. The analogy is that a
large volume of earth and raw material is extracted from a mine, which when processed
leads to a small amount of very precious material.

Its application areas are abundant: In addition to retail, in finance banks analyze their past
data to build models to use in credit applications, fraud detection, and the stock market. In
manufacturing, learning models are used for optimization, control, and troubleshooting. In
medicine, learning programs are used for medical diagnosis. In telecommunications, call
patterns are analyzed for network optimization and maximizing the quality of service. In
science, large amounts of data in physics, astronomy, and biology can only be analyzed
fast enough by computers. The World Wide Web is huge; it is constantly growing, and
searching for relevant information cannot be done manually. But machine learning is not
just a database problem; it is also a part of artificial intelligence. To be intelligent, a system
that is in a changing environment should have the ability to learn. If the system can learn
and adapt to such changes, the system designer need not foresee and provide solutions for
all possible situations. Machine learning also helps us find solutions to many problems in
vision, speech recognition, and robotics.

2. Learning a Class from Examples

Let us say we want to learn the class, C, of a “family car.” We have a set of examples of
cars, and we have a group of people that we survey to whom we show these cars. The
people look at the cars and label them; the cars that they believe are family cars are
positive examples, and the other cars are negative examples. Class learning is finding a
description that is shared by all positive examples and none of the negative examples.

Doing this, we can make a prediction: Given a car that we have not seen before, by
checking with the description learned, we will be able to say whether it is a family car or
not. Or we can do knowledge extraction: This study may be sponsored by a car company,
and the aim may be to understand what people expect from a family car.

After some discussions with experts in the field, let us say that we reach the conclusion
that among all features a car may have, the features that separate a family car from other

2

cars are the price and engine power. These two attributes are the inputs to the class
recognizer. Note that when we decide on this particular input representation, we are
ignoring various other attributes as irrelevant. Though one may think of other attributes
such as seating capacity and color that might be important for distinguishing among car
types, we will consider only price and engine power to keep this example simple.

g
H-' b
T = =
=
K o S =
&= & =
= —— = =
=
=
L — L L L -
B oz P
Figure 2.1 Training ser for the clas=s of a *Ffamily car.™ Each dara poinn corre-

sponds 1 one example car, amnd the coordinares of the poinn indicare the price
and engrinee power of thar car. “+" demnores a positve excampdse of the class (a Family
carl, and *—" dempores a negarive example (ot a Famialy carl; in is anodther rype of
CHAD .

Let us denote price as the first input attribute x1 (e.g., in U.S. dollars) and engine power as
the second attribute x2 (e.g., engine volume in cubic centimeters). Thus we represent each
car using two numeric values.

=]

and its label denotes its type
. 1 if x is a positive example
— I 0 if x is a negative example

Each car is represented by such an ordered pair (x, r) and the training
sel contains W such examples

where t indexes different examples in the set; it does not represent time
or any such order.

we may have reason to believe that for a car to be a family car, its price and engine power
should be in a certain range.

(p; < price = p>) AND {e; = engine power < €a)

for suitable values of p1, po, €1, and e2. Equation 2.4 thus assumes C to

be a rectangle in the price-engine power space (see figure 2.2).

5._!; r
=
= »
E-.
e = = ¢
2 2
C =
K - * 2 =
- 3= =
.l'.
- .5 E
&= =
(=]
£ B 'F'.—i..:_-e
Figure 2.7 Fxamples of a8 hvpothesis class. The class of family car is a recrangls
in th+e price-enmgine poseT SEEace.

Margin: The margin, which is the distance between the boundary and the instances
closest to it.

K =
- o |"-||-_i'l
» = —— ——rar ./
o --'-'_c . :_‘-5
& T =
» =1 =
=
(=] =3
1 1 1 1

Figure 2.5 We choose the hypothesis with the largest margin. for best separa-
momn. The shaded instamnwres are those thar define (or support] chye margn: octher
Instameres can b removed withoor affecring k.

Doubt:

In some applications, a wrong decision may be very costly and in such a case, we can say
that any instance that falls in between S and G is a case of doubt, which we cannot label
with certainty due to lack of data. In such a case, the system rejects the instance and defers
the decision to a human expert.

1. Vapnik-Chervonenkis (VC) Dimension

Let us say we have a dataset containing N points. These N points can be labeled in 2N
ways as positive and negative. Therefore, 2N different learning problems can be defined by
N data points. If for any of these problems, we can find a hypothesis he H that separates
the positive examples from the negative, then we say H shatters N points. That is, any
learning problem definable by N examples can be learned with no error by a hypothesis
drawn from H. The maximum number of points that can be shattered by H is called the

Vapnik-Chervonenkis (VC) dimension of H, is denoted as VC(H), and measures the
capacity of H.

In figure 2.6, we see that an axis-aligned rectangle can shatter four points in two
dimensions. Then VC(H), when H is the hypothesis class of axis-aligned rectangles in two
dimensions, is four. In calculating the VC dimension, it is enough that we find four points
that can be shattered; it is not necessary that we be able to shatter any four points in two
dimensions.

a
¥

Figure Z.&6 An ads-ablpned recrangle can sharrer four podnes. (Only recrangles
CovVerimgg wo points are shooes.

VC dimension may seem pessimistic. It tells us that using a rectangle as our hypothesis class,
we can learn only datasets containing four points and not more.

4.Probably Approximately Correct (PAC) Learning

Using the tightest rectangle, S, as our hypothesis, we would like to find how many examples
we need. We would like our hypothesis to be approximately correct, namely, that the error
probability be bounded by some value. We also would like to be confident in our hypothesis in
that we want to know that our hypothesis will be correct most of the time (if not always); so we
want to be probably correct as well (by a probability we can specify).

PAC learning In Probably Approximately Correct (PAC) learning, given a class, C, and
examples drawn from some unknown but fixed probability distribution, p(x), we want to find
the number of examples, N, such that with probability at least 1 — 3, the hypothesis h has error
at most ¢, for arbitrary.

d=<1/2ande=>0

PiICAh<el=1-8

where CAh is the region of diference between C and h.

In our case, because § is the tightest possible rectangle, the error region
between C and h = § is the sum of four rectangular strips {see fipure 2.7).
We would like to make sure that the probability of a positive example
falling in here (and causing an error) is at most €. For any of these strips,
if we can guarantee that the probability is upper bounded by €/4, the
error is at most 4{e/4) = €. Note that we count the overlaps in the corners
twice, and the total actual error in this case is less than 4(e/4). The
probability that a randomly drawn example misses this strip is 1 — /4.
The probability that all ¥ independent draws miss the strip is (1 —e/4)%,
and the probability that all N independent draws miss any of the four
strips is at most 4{1 — /4, which we would like to be at most 5. We
have the inequality

(1 —x) = expl—x]
So if we choose N and & such that we have
dexpl—-eN/4]l = S

we can also write 4(1 — €/4W < §. Dividing both sides by 4, taking
(natural) log and rearranging terms, we have

N = (4/¢) logl{4/8))

= =
= o
= - =
=
= =

Figure 2.7 The difference berween fr and O is the sum of fowur rectanggular simips,
amne of which is shaded.

Therefore, provided that we take at least {4/e)logi(4/8) independent
examples from C and use the tightest rectangle as our hypothesis k, with
confidence probability at least 1 — &, a given point will be misclassified
with error probability at most €. We can have arbitrary large confidence
by decreasing & and arbitrary small error by decreasing €, and we see in
equation 2.7 that the number of examples is a slowly growing function of

1/ and 14, linear and logarithmic, respectively.

5. Noise

Noise is any unwanted anomaly in the data and due to noise, the class may be more
difficult to learn and zero error may be infeasible with a simple hypothesis class (see figure
2.8). There are several interpretations of noise:

_ There may be imprecision in recording the input attributes, which may shift the data
points in the input space.

_ There may be errors in labeling the data points, which may relabel positive instances as
negative and vice versa. This is sometimes called teacher noise.

_ There may be additional attributes, which we have not taken into account, that affect the
label of an instance. Such attributes may be hidden or latent in that they may be
unobservable. The effect of these neglected attributes is thus modeled as a random
component and is included in “noise.”

I\m == =
L=
=& =
L=
"""-..El-r\-f
R = =
= =
=

Y

xl

Figure 2.8 ‘When there is noise, there is mor 8 simple boundary berween the paos-
irve and nepgarive Imstances, and Fero mbisclassificarnon error may o be possible
with a simple hyvporhesis. A recrtangle is a simple hypothesis with four param-
erers defining the cornmers. An arbitrary closed form can be drawn by piecewises
funcrons with a larger numb-er of comirol poinus.

Using the simple rectangle (unless its training error is much bigger) makes more sense
because of the following:

1 It is a simple model to use. It is easy to check whether a point is inside or outside a
rectangle and we can easily check, for a future data instance, whether it is a positive or a
negative instance.

2, It is a simple model to train and has fewer parameters. It is easier to find the corner
values of a rectangle than the control points of an arbitrary shape. With a small training set
when the training instances differ a little bit, we expect the simpler model to change less
than a complex model: A simple model is thus said to have less variance. On the other
hand, a too simple model assumes more, is more rigid, and may fail if indeed the
underlying class is not that simple: A simpler model has more bias. Finding the optimal
model corresponds to minimizing both the bias and the variance.

3 It is a simple model to explain. A rectangle simply corresponds to defining intervals
on the two attributes. By learning a simple model, we can extract information from the raw
data given in the training set.

4, If indeed there is mislabeling or noise in input and the actual class is really a simple
model like the rectangle, then the simple rectangle, because it has less variance and is less
affected by single instances, will be a better discriminator than the wiggly shape, although
the simple one may make slightly more errors on the training set. Given comparable
empirical error, we say that a simple (but not too simple) model would generalize better
than a complex model. This principle

is known as Occam’s razor, which states that simpler explanations are more plausible and
any unnecessary complexity should be shaved off.

6. Learning Multiple Classes

In the general case, we have K classes denoted as Ci, i = 1, ..., K, and an input instance
belongs to one and exactly one of them. The training set is now of the form

where r has K dimensions and
| 1 ifx' e

[0 fx*eCj#i

An example is given in figure 2.9 with instances from three classes: family car, sports car,
and luxury sedan. In machine learning for classification, we would like to learn the
boundary separating the instances of one class from the instances of all other classes. Thus
we view a K-class classification problem as K two-class problems. The training examples
belonging to C; are the positive instances of hypothesis h; and the examples of all other
classes are the negative instances of hi . Thus in a K-class problem, we have K hypotheses
to learn such that

(1 fxreq

by = |0 fxrec,jdi

The total empirical error takes a sum over the predictions for all classes
over all instances:

N K
E({h), 1X) =3 3 1Rt} & rf)
[l j=1
L,
5 o O
= 1 o o O
i -
iy Cat
- - P s ™
— [Lacsnury sedon
1 :
— (|
Fomarn iy o i
P
Figure 2.9 There are three classes: family car. sporns car, and hooary sedam.
There are three hypotheses indaced, each one covering the instamwes of ons
Class amnd leaving curside the insrances of thye orther rwo dasses. 77 are reject

remons where no, or meore than one, class is chisemn.

For a given x, ideally only one of hi(x), i =1, ..., Kis 1 and we can choose a class. But
when no, or two or more, hi(x) is 1, we cannot choose a class, and this is the case of doubt
and the classifier rejects such cases.

If in a dataset, we expect to have all classes with similar distribution— shapes in the input
space—then the same hypothesis class can be used for all classes.

7.Regression
In classification, given an input, the output that is generated is Boolean;

it is a yes/no answer. When the output is a numeric value, what we would like to learn is
not a class, C(x) € {0, 1}, but is a numeric function. In machine learning, the function is
not known but we have a training set of examples drawn from it.

X = {x", r"} i,
where & = 9B If there is no noise, the task is interpolaticn. We would like
tor fined the Puncrtion Fix) that passes through these points such that we

hawe
= Fix")

In pelvrordal irnterpolatiorn, given & paoints, we fimd the (W — 1 1st degree
polymnomial that we can use o predict the curput for any 2. This is called
extrapolation if x is ourtside of the range of x* in the raining set. Im
timwe-series prediction,. for example, we have data up bo the present amnd

weie want to predict the valae Ffor the fummare. In regressiorn. there is noise
added o the ourput of the unknown function

= fix") =+ &

wheres fix) = | is the unknown function and e is random noise. The ex-
planation Ffor oise is thap there are exira hidden varables that we cannot
observe

o= Tt =]

where =¥ denowe those hidden variables., We would like to approximate

the cutpur by owur model gix}. The empirical error on the training set &0
is

e
El{glXx) = %E[H — a2}]*
r—1

Hecauss r and glx) are mumeric quantities. for example, = #|., there is
an orderineg defined on their values and we can define a distarnce between
values, as the sguare of the differemce, which gives us more inforomes-
ticn than egual/mot egual, as used in classificatdon. The sguare of the
difference is one error (lo=ss) funcrtion that can be used:; anaother is the ab-
solute value of the difference. We will see other examples in the coming
chapters.

COar aime is o find 1<) thar minimizes the empirical error. Apgain our
approach is the same; we assume a hypothesis class for g -} with a somall
set of parameters. If we assume that gix) is limear, we have

=f
Gix) = Waxy + - - - 4 WEND + Wo = & WXy + Wo
J=1

We have

Flx) = wax + wp

where wy and wp are the parameters to learm from data. The wy and wo
values should minimize
N
Efwy, Wl X} = — >t — (wgx® + wyd]®
B 2 |
Its mindimum point can be calculated by taking the partial derivatives
of E with respect to wy and wyp, setting them equal to 0, and solving for
the two unknowns:
2.xatr' —xrN
¥ AxE - N

Wp = T — WX

Wy =

10

whereX = 2, x" /N and T = 2, r' /N. The line found is shown in figure 1.2.
If the linear model is too simple, it is too constrained and incurs a
large approximation error, and in such a case, the output may be taken

as a higher-order function of the input—for example, quadratic
glx) = wax® + wix + wo
7. Dimensions of a Supervised Machine Learning Algorithm

Let us now recapitulate and generalize. We have a sample

The sample is independent and identically distributed (iid); the ordering is not important
and all instances are drawn from the same joint distribution p(x, r). t indexes one of the N
instances, xt is the arbitrary dimensional input, and rt is the associated desired output. rt is
0/1 for two-class learning, is a K- dimensional binary vector (where exactly one of the
dimensions is 1 and all others 0) for (K > 2)-class classification, and is a real value in
regression.

The aim is to build a good and useful approximation to rt using the model g(xt |¢). In doing
this, there are three decisions we must make:

1. Model we use in learning, denoted as g(x|6)

where g(-) is the model, x is the input, and & are the parameters.

g(-) defines the hypothesis class H, and a particular value of & instantiates one hypothesis h
€ H.

For example, in class learning, we have taken a rectangle as our model whose four
coordinates make up #; in linear regression, the model is the linear function of the input
whose slope and intercept are the parameters learned from the data.

The model (inductive bias), or H, is fixed by the machine learning system designer based
on his or her knowledge of the application and the hypothesis h is chosen (parameters are
tuned) by a learning algorithm using the training set, sampled from p(x, r).

2. Loss function, L(-), to compute the difference between the desired output, r' , and
our approximation to it, g(x' |#), given the current value of the parameters, 6. The
approximation error, or loss, is the sum of losses over the individual instances.

E(01X) = Y L(r*, g(x*10))
r

In class learning where outputs are 0/1, L(-) checks for equality or not; in regression,
because the output is a numeric value, we have ordering information for distance and one
possibility is to use the square of the difference.

3. Optimization procedure to find 6 that minimizes the totalerror

11

0* = argmin E(8| X)

9. Decision tree representation

Decision tree learning is a method for approximating discrete-valued target functions, in
which the learned function is represented by a decision tree. Learned trees can also be re-
represented as sets of if-then rules to improve human readability.

These learning methods are among the most popular of inductive inference algorithms
and have been successfully applied to a broad range of tasks from learning to diagnose
medical cases to learning to assess credit risk of loan applicants.

Decision trees classify instances by sorting them down the tree from the root to some leaf
node, which provides the classification of the instance. Each node in the tree specifies a
test of some attribute of the instance, and each branch descending from that node
corresponds to one of the possible values for this attribute. An instance is classified by
starting at the root node of the tree, testing the attribute specified by this node, then moving
down the tree branch corresponding to the value of the attribute in the given example. This
process is then repeated for the subtree rooted at the new node.

Sunny Overcass Raun

Hurmidity Yes Wind
High Normal Q}m 2 u’:::{
No Yes No Yes

FIGURE 3.1

A decision trec for the concept PlayTennis. An example is classified by sorting 1t through the tree
to the appropriate leaf node, then retuming the classification associated with this leaf (in this casc,
Yes or No). This tree classifies Saturday momings accocding 10 whether or not they are suaitzble for
playing tennis.

Figure 3.1 illustrates a typical learned decision tree. This decision tree classifies Saturday
mornings according to whether they are suitable for playing tennis.

For example, the instance

(Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong

In general, decision trees represent a disjunction of conjunctions of constraints on the
attribute values of instances. Each path from the tree root to a leaf corresponds to a
conjunction of attribute tests, and the tree itself to a disjunction of these conjunctions. For
example, the decision tree shown in Figure 3.1 corresponds to the expression

(Outlook = Sunny A Humidity = Normal)
V (Outlook = Overcast)
v (Outlook = Rain A Wind = Weak)

12

10. Appropriate problems for decision tree learning

Although a variety of decision tree learning methods have been developed with somewhat
differing capabilities and requirements, decision tree learning is generally best suited to
problems with the following characteristics:

Znstances are represented by attribute-value pairs. Instances are described by a fixed set
of attributes (e.g., Temperature) and their values (e.g., Hot). The easiest situation for
decision tree learning is when each attribute takes on a small number of disjoint possible
values (e.g., Hot, Mild, Cold). However, extensions to the basic algorithm (discussed in
Section 3.7.2) allow handling real-valued attributes as well (e.g., representing
Temperature numerically).

The targetfunction has discrete output values. The decision tree in Figure 3.1 assigns a
boolean classification (e.g., yes or no) to each example. Decision tree methods easily
extend to learning functions with more than two possible output values. A more substantial
extension allows learning target functions with real-valued outputs, though the application
of decision trees in this setting is less common.

Disjunctive descriptions may be required. As noted above, decision trees naturally
represent disjunctive expressions.

0 The training data may contain errors. Decision tree learning methods are robust to
errors, both errors in classifications of the training examples and errors in the attribute
values that describe these examples.

0 The training data may contain missing attribute values. Decision tree methods can be
used even when some training examples have unknown values (e.g., if the Humidity of the
day is known for only some of the training.

11. The basic decision tree learning algorithm
A. Which Attribute Is the Best Classifier?

The central choice in the 1D3 algorithm is selecting which attribute to test at each node in
the tree. We would like to select the attribute that is most useful for classifying examples.
What is a good quantitative measure of the worth of an attribute? We will define a
statistical property, called informution gain, that measures how well a given attribute
separates the training examples according to their target classification. ID3 uses this
information gain measure to select among the candidate attributes at each step while
growing the tree.

B. Entropy measures homogeneity of examples

In order to define information gain precisely, we begin by defining a measure commonly

13

used in information theory, called entropy, that characterizes the (im)purity of an arbitrary
collection of examples. Given a collection S, containing positive and negative examples of
some target concept, the entropy of S relative to this Boolean classification is

Entropy(§) = —pg ['-'-"Eg Pa — P-a_]ﬂgl Pa

IO E gy e, Targed arrribace, Addrdbader])
Exgrepies are the treining examples. Targer_anribuie v dhe aniribuie wihose valee év o be
predicred by e reee, Arributes i a dnt of other citribares Sar reay be feened dy o dearread
dercisicem tree. Renwms g decirion e phar correcily olossifies e given Exanrgples,
Cresie a Sood node for the tres
If mlf Exaesples are positive. Repom the cingle-node tree Rovw, with label = +
If all Exgeples are negative, Belurn the single-soade tree Foos,. with label = —
If Assribmies is cmply, Retarn the single-noda ree Roor, with label = most comenom valee of
Torgetomtrritate in Eyamples
w (hersise Begin
= 4 s the attribote From Astridares thet best® classifies Examples
The decision sttrfbuts for Root =— A
& For each possible vahse, oy, of A,
a Add B new tres branch belbow Roor, corresponding 0o che best A = wy
a Lot Excenpdes,, be the sabset of Examples thal have walue w For A
- Il Erxamples, is cmmphy
= Then below this mew branch sdd a leaf modde with babe]l = ms0SE commenosm
value: of Tarper st rribare im Examples
= Elze below this new branch add ihe paboree
IO Exvamples, . Toerperarerifere, Aftribures — [ALT

= [End
& HoeDarn Soor

* The best atribuse is the ome with Bighest inforsaarion gaim, &5 defined in Bguacion {34}

TARLE 3.1

Summary al the ID3 algoridhm gpecialized o leaming boolesn-vnbeed functions. [D3 @ & gresdy
aleporithm thal grows e oee op-down, ar esch mode sslecting the abiribmie that best classalies 1he
bocal ainimg examples. This process conlinues until the ores perfecily classifies the mmining examples,
or umtl all asribotes have been wsed.

where pg i= the proportion of positive examples in § and pg is the propoction of
megative examples in 5. In all calculations involving entropy we define O log O 1o
e b,

To illwstrate, suppose 5 iz a collection of 14 examples of some boolean
concept, incloding 9 positive and 5 negative examples (we adopt the notation
94, 5—] to sumumarize such a sample of data). Then the entropy of 5 relative to
thiz boolean classification is

Entropy([F+., 5=} = —(9/14) log,(9/14) — (5/14) log.(5/14)
= {1940 (3.2]
Motice that the entropy is O if all members of 5 belong Lo the same class. For
example, if all members are positive (pg = 1), then po is 0, and Erfropyi(d) =
—1 - loga{ly — 0 - log, 0 = —1 -0 — 0. log; = 0. Note the entropy is 1 when

the collection contains an egeal number of positive and negative examples. 1T
the collection contains unegual nmambers of positive and negative examples, the

14

eniropy is between O and 1. Figure 3.2 shows the form of the enteopy function
relative to a boolean classification, ps p-, varies between 0 and 1.

Ome interpretation of entropy from informeation theory is that it specifics the
minimuimn nuwmber of bits of information peeded to encode the classification of
an arbitrary member of & (le., o member of 5 drawn at random with wnifiorm
probability). For example. if pg is 1, the receiver knows the dravwn example will
he positive, =0 no message need be sent, and the entropy 15 zero. On the other hamd.
il pg is L5, one hir is reguired 1o indicate wwhether the drawn example is positdve
or negative, If po is LB, then a collection of messages can be encoded using on
average less than 1 bit per message by assipning shoner codes o collections of
positive examples and longer codes to less likely negative examples,

Thus far we have discussed enmopy in the special case where the target
classification is boolean, More generally, if the target attribute can take on o
different values, then the entropy of £ relative o this c-wise classification is
defined as

-

Errropy(S) = E — oy bogg oy (X3

=1

where iz the proportion of 5 belonging to class . Mode the logarithm is =6l
base 2 because entropy is a measure of the expected encoding length measured
in figs. Mote also that if the target attribute can take on o possible values, the
entropy can be as larpe as bog, oo

C. Information gain measures the expected reduction in entropy

Given entropy as a measure of the impurity in a collection of training examples, we
can now define a measure of the effectiveness of an attribute in classifying the training
data. The measure we will use, called information gain, is simply the expected reduction in
entropy caused by partitioning the examples according to this attribute. More precisely, the
information gain, Gain(S, A) of an attribute A, relative to a collection of examples S, is
defined as

12. Hypothesis space search in decision tree learning

(rainls, Ay = Entropy(8) — E |-3-| Entropy(5,)
v aloeni A I I

For example, suppose £ is a collection of training-example days described by
attributes incleding Wind, which can have the values Weak or Srromg. As before,
assume § is a collection containing 14 examples, [94-, 5—]. OFf these 14 examples,
suppose 6 of the positive and 2 of the negative examples have Wingd = Weak. and
the remainder have Wind = Srrong. The information gain duee to sorting the
criginal 14 examples by the anribute Wiked mav then be calculated as

Values{ Windy) = Weak, Sfrong
5 = [94,.5—]
Swest + [64,2—]

'Sir.l'm - r]+| 3_]

|5
I51

rain(S, Wind) = Entropv(8) — Z Ertropv(5,)

pel Weak, Sirongl

= Entropy(5) — (B/14VEmrropy Swan)
— (B 14y Enrrapy{ Sgrome)

= 0.940 — (87140811 — (6/14)1.00

= 0.048

As with other inductive learning methods, 1D3 can be characterized as searching a space of
hypotheses for one that fits the training examples. The hypothesis space searched by ID3 is
the set of possible decision trees. 1D3 performs a simple-tocomplex, hill-climbing search
through this hypothesis space, beginning with the empty tree, then considering
progressively more elaborate hypotheses in search of a decision tree that correctly
classifies the training data. The evaluation function

¥, 22, ... ¥4]

[%+3=]
oot |
/’}.’.ﬁn.q:.l iheercar h‘rl“\‘\
| 0 .00) [D7 L2 E] | L3 DG TF0 L] 4)
[E+3-] B0 3+

2 <{_> ?
/

Wi midritane rheceeld’ be rested here ™

Armany = (M. D208, 0501
i [Sy o Humtidine = O30 - (A5) 00 - (HSPO0 = 430
(Rl (S gy « Temperanere) = 70 - (ZSPO0 - (25 10 - (LS00 = 520
Gl [Sgyppre. Wil = 900 - (209) 10 - (1) OLE = 049

FIGLUHE 34

The partially learmned decision tree resulting feoen the fird slep of T03. The trairing examples ans
wored i the comesponding descendant moudes. The Cheercant descendand has only posibve acamples
and cherefore becomes & leaf node with classification Fes. The other two nodes will b further
cxpandead, by sedecring the noribesie widh highess information gain relagive o the pew subsets of
expmplhes,

that guides this hill-climbing search is the information gain measure. This search is
depicted in Figure 3.5. By viewing ID in terms of its search space and search strategy, we
can get some insight into its capabilities and limitations. 1~3's h ypothesis space of all
decision trees is a complete space of finite discrete-valued functions, relative to the
available attributes. Because every finite discrete-valued function can be represented by
some decision tree, ID3 avoids one of the major risks of methods that search incomplete
hypothesis spaces (such as methods that consider only conjunctive hypotheses): that the
hypothesis space might not contain the target function.

11D3 maintains only a single current hypothesis as it searches through the space of
decision trees. This contrasts, for example, with the earlier version space candidate-
~lirninat-od, which maintains the set of all hypotheses consistent with the available
training examples. By determining only a single hypothesis, ID” loses the capabilities that
follow from explicitly representing all consistent hypotheses. For example, it does not have
the ability to determine how many alternative decision trees are consistent with the

18

available training data, or to pose new instance queries that optimally resolve among these
competing hypotheses.

2 ID3 in its pure form performs no backtracking in its search. Once it,selects an
attribute to test at a particular level in the tree, it never backtracks to reconsider this choice.
Therefore, it is susceptible to the usual risks of hill-climbing search without backtracking:
converging to locally optimal solutions that are not globally optimal. In the case of ID3, a
locally optimal solution corresponds to the decision tree it selects along the single search
path it explores. However, this locally optimal solution may be less desirable than trees
that would have been encountered along a different branch of the search. Below we discuss
an extension that adds a form of backtracking (post- pruning the decision tree).

31D3 uses all training examples at each step in the search to make statistically based
decisions regarding how to refine its current hypothesis. This contrasts with methods that
make decisions incrementally, based on individual training examples (e.g., FIND-
CANDIDATE-ELIMINATION

) advantage of using statistical properties of all the examples (e.g., information gain) is that

the resulting search is much less sensitive to errors in individual training examples. 1D3
can be easily extended to handle noisy training data by modifying its termination criterion
to accept hypotheses that imperfectly fit the training data.

s
£
P

N

e
Y

A2
. -+ 4 = FIGUURE 15

e Hypothesis space search by 103,

- I searches through the space of
/’ 5 possibde declsion recs from simgplest

L] W incremingly comples, puided by the

mmformation gain beuristic.

13. Inductive bias in decision tree learning

Given a collection of training examples, there are typically many decision trees consistent
with these examples. Describing the inductive bias of ID3 therefore consists of describing
the basis by which it chooses one of these consistent hypotheses over the others. Which of
these decision trees does ID3 choose?

It chooses the first acceptable tree it encounters in its simple-to-complex, hill climbing
search through the space of possible trees. Roughly speaking, then, the 1D3 search strategy
(@) selects in favor of shorter trees over longer ones, and

19

(b) selects trees that place the attributes with highest information gain closest to the root.
Because of the subtle interaction between the attribute selection heuristic used by ID3 and
the particular training examples it encounters, it is difficult to characterize precisely the
inductive bias exhibited by ID3. However, we can approximately characterize its bias as a
preference for short decision trees over complex trees.

Approximate inductive bias of 1D3: Shorter trees are preferred over larger trees.

In fact, one could imagine an algorithm similar to 1D3 that exhibits precisely this inductive
bias. Consider an algorithm that begins with the empty tree and searches breadth Jirst
through progressively more complex trees, first considering all trees of depth 1, then all
trees of depth 2, etc. Once it finds a decision tree consistent with the training data, it
returns the smallest consistent tree at that search depth (e.g., the tree with the fewest
nodes). Let us call this breadth-first

search algorithm BFS-ID3. BFS-ID3 finds a shortest decision tree and thus exhibits
precisely the bias "shorter trees are preferred over longer trees.” ID3 can be viewed as an
efficient approximation to BFS- I1D3, using a greedy heuristic search to attempt to find the
shortest tree without conducting the entire breadth-first search through the hypothesis
space.

Because I1D3 uses the information gain heuristic and a hill climbing strategy, it exhibits a
more complex bias than BFS-1D3. In particular, it does not always find the shortest
consistent tree, and it is biased to favor trees that place attributes with high information
gain closest to the root.

A closer approximation to the inductive bias of 1D3: Shorter trees are preferred over
longer trees. Trees that place high information gain attributes close to the root are preferred
over those that do not.

A. Restriction Biases and Preference Biases

Consider the difference between the hypothesis space search in these two approaches: 1D3
searches a complete hypothesis space (i.e., one capable of expressing any finite discrete-
valued function). It searches incompletely through this space, from simple to complex
hypotheses, until its termination condition is met (e.g., until it finds a hypothesis consistent
with the data). Its inductive bias is solely a consequence of the ordering of hypotheses by
its search strategy. Its hypothesis space introduces no additional bias.

The version space CANDIDATE-ELIMINATION algorithm searches an incomplete
hypothesis space (i.e., one that can express only a subset of the potentially teachable
concepts). It searches this space completely, finding every hypothesis consistent with the
training data. Its inductive bias is solely a consequence of the expressive power of its
hypothesis representation. Its search strategy introduces no additional bias.

The inductive bias of 1D3 is thus a preference for certain hypotheses over others (e.g., for
shorter hypotheses), with no hard restriction on the hypotheses that can be eventually
enumerated. This form of bias is typically called a preference bias (or, alternatively, a
search bias). In contrast, the bias of the CANDIDATEELIMINATION Algorithm is in the
form of a categorical restriction on the set of hypotheses considered. This form of bias is
typically called a restriction bias (or, alternatively, a language bias).

20

A. Why Prefer Short Hypotheses?

Is ID3's inductive bias favoring shorter decision trees a sound basis for generalizing
beyond the training data?

William of Occam was one of the first to discuss the question:

Occam's razor: Prefer the simplest hypothesis that fits the data.

Upon closer examination, it turns out there is a major difficulty with the above argument.
By the same reasoning we could have argued that one should prefer decision trees
containing exactly 17 leaf nodes

with 11 nonleaf nodes, that use the decision attribute Al at the root, and test attributes A2
through All, in numerical order.

A second problem with the above argument for Occam's razor is that the size of a
hypothesis is determined by the particular representation used internally by the learner.
Two learners using different internal representations could therefore anive at different
hypotheses, both justifying their contradictory conclusions by Occam'’s razor!.

This last argument shows that Occam's razor will produce two different hypotheses from
the same training examples when it is applied by two learners that perceive these examples
in terms of different internal representations.

16. Issues in decision tree learning

A. Avoiding Overfitting the Data

The algorithm (DECISION TREE) grows each branch of the tree just deeply enough to
perfectly classify the training examples. While this is sometimes a reasonable strategy, in
fact it can lead to difficulties when there is noise in the data, or when the number of
training examples is too small to produce a representative sample of the true target
function. In either of these cases, this simple algorithm can produce trees that overfit the
training examples.

Definition: Given a hypothesis space H, a hypothesis h E H is said to overfit the
training data if there exists some alternative hypothesis h' E H, such that h has
smaller error than h' over the training examples, but h' has a smaller error than h
over the entire distribution of instances.

Overfitting is a significant practical difficulty for decision tree learning and many other
learning methods. There are several approaches to avoiding overfitting in decision tree
learning.

These can be grouped into two classes:

- approaches that stop growing the tree earlier, before it reaches the point where it
perfectly classifies the training data,

21

- approaches that allow the tree to overfit the data, and then post-prune the tree.

Although the first of these approaches might seem.more direct, the second approach of
post-pruning overfit trees has been found to be more successful in practice. This is due to
the difficulty in the first approach of estimating precisely when to stop growing the tree.
Regardless of whether the correct tree size is found by stopping early or by post-pruning, a
key question is what criterion is to be used to determine the correct final tree size.

Approaches include:

- Use a separate set of examples, distinct from the training examples, to evaluate the utility
of post-pruning nodes from the tree.

- Use all the available data for training, but apply a statistical test to estimate whether
expanding (or pruning) a particular node is likely to produce an improvement beyond the
training set. For example, Quinlan (1986) uses a chi-square test to estimate whether further
expanding a node is likely to improve performance over the entire instance distribution, or
only on the current sample of training data.

- Use an explicit measure of the complexity for encoding the training examples and the
decision tree, halting growth of the tree when this encoding size is minimized. This
approach, based on a heuristic called the Minimum Description Length principle.

B. Reduced error pruning

How exactly might we use a validation set to prevent overfitting? One approach, called
reduced-error pruning, is to consider each of the decision nodes in the.tree to be candidates
for pruning. Pruning a decision node consists of removing the subtree rooted at that node,
making it a leaf node, and assigning it the most common classification of the training
examples affiliated with that node.

Nodes are removed only if the resulting pruned tree performs no worse than-the original
over the validation set. This has the effect that any leaf node added due to coincidental
regularities in the training set is likely to be pruned because these same coincidences are
unlikely to occur in the validation set. Nodes are pruned iteratively, always choosing the
node whose removal most increases the decision tree accuracy over the validation set.
Pruning of nodes continues until further pruning is harmful.

The impact of reduced-error pruning on the accuracy of the decision tree is illustrated in
Figure 3.7.

C. Rule post-pruning

[1F =]) o
i —
—
;

0n7s - S —— e
Rl
g l:llll IF
d |
< pas o

| O traiming dats ——

O besd daka -
0SS & O test iala (iring prunisg) -
s L

L " . L . i s
n m 3 A0 50] m an w0 L]
STz of tree {number of nodes)

22

Rule post-pruning involves the following steps:

1 Infer the decision tree from the training set, growing the tree until the training data is
fit as well as possible and allowing overfitting to occur.

2. Convert the learned tree into an equivalent set of rules by creating one rule for each
path from the root node to a leaf node.

3. Prune (generalize) each rule by removing any preconditions that result in improving
its estimated accuracy.

4. Sort the pruned rules by their estimated accuracy, and consider them in this sequence
when classifying subsequent instances.

Why convert the decision tree to rules before pruning? There are three main advantages.

- Converting to rules allows distinguishing among the different contexts in which a
decision node is used. Because each distinct path through the decision tree node produces a
distinct rule, the pruning decision regarding that attribute test can be made differently for
each path. In contrast, if the tree itself were pruned, the only two choices would be to
remove the decision node completely, or to retain it in its original form.

- Converting to rules removes the distinction between attribute tests that occur near the root
of the tree and those that occur near the leaves. Thus, we avoid messy bookkeeping issues
such as how to reorganize the tree if the root node is pruned while retaining part of the
subtree below this test.

- Converting to rules improves readability. Rules are often easier for to understand.

D. Handling attributes with differing costs

In some learning tasks the instance attributes may have associated costs. For example, in
learning to classify medical diseases we might describe patients in terms of attributes such
as Temperature, BiopsyResult, Pulse, BloodTestResults, etc. These attributes vary
significantly in their costs, both in terms of monetary cost and cost to patient comfort. In
such tasks, we would prefer decision trees that use low-cost attributes where possible,
relying on high-cost attributes only when needed to produce reliable classifications.

ID3 can be modified to take into account attribute costs by introducing a cost term into the
attribute selection measure. For example, we might divide the Gain by the cost of the
attribute, so that lower-cost attributes would be preferred. While such cost-sensitive
measures do not guarantee finding an optimal cost-sensitive

decision tree, they do bias the search in favor of low-cost attributes.

Attribute cost is measured by the number of seconds required to obtain the attribute value
by positioning and operating the sonar. They demonstrate that more efficient recognition
strategies are learned, without sacrificing classification accuracy, by replacing the
information gain attribute selection measure by the following measure.

Gain®(§, A)
Cost(A)

E. Handling training examples with missing attribute values

23

In certain cases, the available data may be missing values for some attributes. For example,
in a medical domain in which we wish to predict patient outcome based on various
laboratory tests, it may be that the lab test Blood-Test-Result is available only for a subset
of the patients. In such cases, it is common to estimate the missing attribute value based on
other examples for which this attribute has a known value.

Consider the situation in which Gain(S, A) is to be calculated at node n in the decision tree
to evaluate whether the attribute A is the best attribute to test at this decision node.
Suppose that (x, c(x)) is one of the training examples in S and that the value A(x) is
unknown.

One strategy for dealing with the missing attribute value is to assign it the value that is
most common among training examples at node n. Alternatively, we might assign it the
most common value among examples at node n that have the classification c(x). The
elaborated training example using this estimated value for A(x) can then be used directly
by the existing decision tree learning algorithm.

A second, more complex procedure is to assign a probability to each of the possible values
of A rather than simply assigning the most common value to A(x). These probabilities can
be estimated again based on the observed frequencies of the various values for A among
the examples at node n.

F. Incorporating continuous-valued attributes

Our initial definition of ID3 is restricted to attributes that take on a discrete set of values.
First, the target attribute whose value is predicted by the learned tree must be discrete
valued. Second, the attributes tested in the decision nodes of the tree must also be discrete
valued. This second restriction can easily be removed so that continuous-valued decision
attributes can be incorporated into the learned tree. This can be accomplished by
dynamically defining new discrete valued attributes that partition the continuous attribute
value into a discrete set of intervals.

14. Artificial neural networks

Neural network learning methods provide a robust approach to approximating real-valued,
discrete- valued, and vector-valued target functions. For certain types of problems, such as
learning to interpret complex real-world sensor data, artificial neural networks are among
the most effective learning methods currently known.

Neural network representations:

System ALVINN, which uses a learned ANN to steer an autonomous vehicle driving at
normal speeds on public highways. The input to the neural network is a 30 x 32 grid of
pixel intensities obtained from a forward-pointed camera mounted on the vehicle. The
network output is the direction in which the vehicle is steered. The ANN is trained to
mimic the observed steering commands of a human driving the vehicle for approximately 5
minutes. ALVINN has used its learned networks to successfully drive at speeds up to 70
miles per hour and for distances of 90 miles on public highways (driving in the left lane of
a divided public highway, with other vehicles present).

24

Figure 4.1 illustrates the neural network representation used in one version of the ALVINN
system, and illustrates the kind of representation typical of many ANN systems. The
network is shown on the left side of the figure, with the input camera image depicted
below it. Each node (i.e., circle) in the network diagram corresponds to the output of a
single network unit, and the lines entering the node from below are its inputs. As can be
seen, there are four units that receive inputs directly from all of the 30 x 32 pixels in the
image.

These are called "hidden” units because their output is available only within the network
and is not available as part of the global network output. Each of these four hidden units
computes a single real- valued output based on a weighted combination of its 960 inputs.
These hidden unit outputs are then used as inputs to a second layer of 30 "output™ units.

Each output unit corresponds to a particular steering direction, and the output values of
these units determine which steering direction is recommended most strongly.

The diagrams on the right side of the figure depict the learned weight values associated
with one of the four hidden units in this ANN. The large matrix of black and white boxes
on the lower right depicts the weights from the 30 x 32 pixel inputs into the hidden unit.
Here, a white box indicates a positive weight, a black box a negative weight, and the size
of the box indicates the weight magnitude.

The smaller rectangular diagram directly above the large matrix shows the weights from
this hidden unit to each of the 30 output units. The network structure of ALVINN s

25

typical of many ANNs. Here the individual units are interconnected in layers that form a
directed acyclic graph. In general, ANNs can be graphs with many types of structures-
acyclic or cyclic, directed or undirected. This chapter will focus on the most common and
practical ANN approaches, which are based on the BACKPROPAGATION algorithm.

17. Perceptron

One type of ANN system is based on a unit called a perceptron, illustrated in
Figure 4.2. A perceptron takes a vector of real-valued inpuis, calculates a linear
combination of these inputs, then outputs a 1 if the result is greater than some
threshold and —1 otherwise. More precisely, given inputs xy through x,, the output
(X1, .- . %0) computed by the perceptron is

1 if wog 4 wyxy + waxs 4o+ wyx, = 0

OlXY, a s Xn) = { —1 otherwise

where each wy is a real-valued constant, or weight, that determines the contribution
of input x; to the perceptron output. Notice the quantity (—uwy) is a threshold that
the weighted combination of inputs wyx; 4 -« - 4 w,x, must surpass in order for
the perceplron o oulput 4 1.

To simplify notation, we imagine an addirional constant input xg = 1, al-
lowing us o write the above ineguality as 3 [o wpx; = 0, or in vector form as
i - ¥ = 0. For brevity, we will sometimes write the perceptron function as

(X)) = sgn{w - X
whers

1ir 0
sgriy) = { _1 otherwise

Leaming a perceptron involves choosing values for the weights wp, ..., w,.
Thercfore, the space H of candidate hypotheses considered in perceptron learning
is the set of all possible real-valued weight vectors.

H = {i | @ = W"+I

T !
. "
Wiy -Il\"'-”‘/; { Uil X wg x>0
o = =
=1 ol i
FIGURE 4.2
A percepiron.

A. Representational Power of Perceptrons

We can view the perceptron as representing a hyperplane decision surface in the n-
dimensional space of instances (i.e., points). The perceptron outputs a 1 for instances lying
on one side of the hyperplane and outputs a -1 for instances lying on the other side, as
illustrated in Figure 4.3. The equation for this decision

26

hyperplafie*is 0. Of course, some sets of positive and negative examples cannot be
separated by any hyperplane. Those that can be separated are called linearly separable sets
ofexamples.

A single perceptron can be used to represent many boolean functions. For example, if
we assume boolean values of 1

(true) and -1 (false), then one way to use a two-input perceptron to implement the AND
function is to set the weights wo

=-3,and wl =wz = .5.

Perceptrons can represent all of the primitive boolean functions AND, OR, NAND (1
AND), and NOR (1 OR). Unfortunately, however, some boolean functions cannot be
represented by a single perceptron, such as the XOR function whose value is 1 if and only
if =1 # x.

B. The Perceptron Training Rule

Although we are interested in learning networks of many interconnected units, let us begin
by understanding how to learn the weights for a single perceptron. Here the precise
learning problem is to determine a weight vector that causes the perceptron to produce the
correct if 1 output for each of the given training examples.

Several algorithms are known to solve this learning problem. Here we consider two: the
perceptron rule and the delta rule.

These two algorithms are guaranteed to converge to somewhat different acceptable
hypotheses, under somewhat different conditions. They are important to ANNs because
they provide the basis for learning networks of many units. One way to learn an acceptable
weight vector is to begin with random weights, then iteratively apply the perceptron to
each training example, modifying the perceptron weights whenever it misclassifies an
example. This process is repeated, iterating through the training examples as many times as
needed until the perceptron classifies all training examples correctly. Weights are modified
at each step according to the perceptron training rule, which revises the weight wi
associated with input xi according to the rule

Wy — w4 Aoy
where

Auy = nlf — a)x;

Here t is the target output for the current training example, o is the output generated by the
perceptron, and q is a positive constant called the learning rate.

C. Gradient Descent and the Delta Rule

Although the perceptron rule finds a successful weight vector when the training examples
are linearly separable, it can fail to converge if the examples are not linearly separable. A
second training rule, called the delta rule, is designed to overcome this difficulty. If the
training examples are not linearly separable, the delta rule converges toward a best-fit
approximation to the target concept.

The key idea behind the delta rule is to use gradient descent to search the hypothesis space
of possible weight vectors to find the weights that best fit the training examples. This rule
is important because gradient descent provides the basis for the BACKPROPAGATION

27

algorithm, which can learn networks with many interconnected units. It is also important
because gradient descent can serve as the basis for learning algorithms that must search
through hypothesis spaces containing many different types of continuously parameterized
hypotheses.

The delta training rule is best understood by considering the task of training an
unthresholded perceptron; that is, a linear unit for which the output o is given by

olF) = i ¥
Thus, a linear unit corresponds to the first stage of a perceptron, without the threshold.
In order to derive a weight learning rule for linear units, let us begin by specifying a
measure for the training error of a hypothesis (weight vector), relative to the training

- [
E() = 53 (1 —o04)
dgl

examples. Although there are many ways to define this error, one common measure that
will turn out to be especially convenient is

where D is the set of training examples, td is the target output for training example d, and
od is the output of the linear unit for training example d.

D. Derivation of the gradient descent rule

How can we calculate the direction of steepest descent along the ermmor surface?
This direction can be found by computing the derivative of E with respect to each
component of the vector . This vector derivative is called the gradienr of E with
respect o o0, written W E (@)

(<3

- aFE &E aE
VE(w) =]:mn. Ew_ln-"'u EH’.:;]

Maotice WV E(@) is itself a vector, whose components are the partial derivatives
of £ with respect to each of the wy;. When interprefed as a vecior in weight
speece, the gradient specifies the direcvion that produces the steepest increase in
E. The negative of this vector therefore gives the direction of steepest decrease.
For example, the arrow in Figure 4.4 shows the negated gradient —V E (i) for a
particular point in the wg, w; plane.

Since the gradient = ifies the direction of steecpest increase of £, the train-
ing rule for gradient descent is

ur d— e S S
where
Al = —n W E () (<.}

Here 5 is a positive constant called the learming rate, which determines the step
size in the gradient descent search, The negative sign is present because we want
o move the weight vector in the direction that decreases E. This training rule
can also be written in its component form

B A— B - SR
wheres

i E

45
B, (4.5)

Auy = —p

which makes it clear that steepest descent 15 achieved by alierimg each component
wi of @ in proportion to §5.

28

gradient can be obtained by differentiating £ from Equation (4.2), as

A K a 1 q
daey - H TR EE&“‘ a)
| a 2
= l_‘“zr_,-':i'w.- [ty — o2g)
= lZEmr—.:-} ® (s — o0
- 2|:|'-;1'.i' “ oy ? ¢
Fi -
= 3 s — o) s — B)
de L
aF
Fy = El:r,,_r—u_.;':ll:—.lru'-:l (4.6)

alic I

where x;y denotes the single input component x; for training example 4. We now
iE in terms of the linear unit inputs x;y, outputs

have an eguation that gives

Huiy

Iy, and target values iy associated with the training examples. Substituting Equa-
tion (4.5} into Equation (4.5) yields the weight update mule for gradient descent

Ay = sz{f;f — g} Xia

alis 0

E. Stochastic approximation to gradient descent

(4.7}

Gradient descent is an important general paradigm for learning. It is a strategy for
searching through a large or infinite hypothesis space that can be applied whenever

(1) the hypothesis space contains continuously parameterized hypotheses (e.g., the
weights in a linear unit), and (2) the error can be differentiated with respect to these
hypothesis parameters. The key practical difficulties in applying gradient descent are (1)
converging to a local minimum can sometimes be quite slow (i.e., it can require many
thousands of gradient descent steps), and (2) if there are multiple local minima in the error
surface, then there is no guarantee that the procedure will find the global minimum.

One common variation on gradient descent intended to alleviate these difficulties is called
incremental gradient descent, or alternatively stochastic gradient descent.

MULTILAYER NETWORKS AND THE BACKPROPAGATION ALGORITHM

Single perceptrons can only express linear decision surfaces. In contrast, the kind of
multilayer networks learned by the BACKPROPAGATION algorithm are capable of
expressing a rich variety of nonlinear decision surfaces.

This section discusses how to learn such multilayer networks using a gradient descent
algorithm similar to that discussed in the previous section.

« A Differentiable Threshold Unit

At first we might be tempted to choose the linear units discussed in the previous section,
for which we have already derived a gradient descent learning rule. However, multiple
layers of cascaded linear units still produce only linear functions, and we prefer networks
capable of representing highly nonlinear functions. The perceptron unit is another possible
choice, but its discontinuous threshold makes it undifferentiable and hence unsuitable for
gradient descent. What we need is a unit whose output is a nonlinear function of its inputs,
but whose output is also a differentiable function of its inputs. One solution is the sigmoid
unit-a unit very much like a perceptron, but based on a smoothed, differentiable threshold
function.

29

The sigmoid unit is illustrated in Figure 4.6. Like the perceptron, the sigmoid unit first
computes a linear combination of its inputs, then applies a threshold to the result. In the
case of the sigmoid unit, however, the threshold output is a continuous function of its
input. More precisely, the sigmoid unit computes its

output o as

where

=i o = o(net) = —
l1+e

FIGURE 4.6
The sigmoid threshold unit.

o is often called the sigmoid function or, alternatively, the logistic function. Note its output ranges
Between 0 and 1, increasing monotonically with its input.

The BACKPROPAGATION Algorithm

The BACKPROPAGATION algorithm learns the weights for a multilayer network,
given a network with a fixed set of units and interconnections. It employs gradi-
ent descent to attempt to minimize the squared error between the network output
values and the target values for these outputs. This section presents the BACKPROP-
AGATION algorithm, and the following section gives the derivation for the gradient
descent weight update rule used by BACKPROPAGATION.

Because we are considering networks with multiple output units rather than
single units as before, we begin by redefining E to sum the errors over all of the
network output units

E@W) = %E 2 (tra — Oxa)>

deD keoutputs

where outputs is the set of output units in the network, and 7y and o4, are the
target and output values associated with the kth output unit and training example d.

30

The learning problem faced by BACKPROPAGATION is to search a large hypoth-
esis space defined by all possible weight values for all the units in the network.
The situation can be visualized in terms of an error surface similar to that shown
for linear units in Figure 4.4. The error in that diagram is replaced by our new
definition of E, and the other dimensions of the space correspond now to all of
the weights associated with all of the units in the network. As in the case of

training a single unit, gradient descent can be used to attempt to find a hypothesis
to minimize E. '

BACKPROPAGATION(fraining examples, 1, Ay, Mogs . Ahidden)
Each training example is a pair of the form (%,1), where % is the vector of network input
values, and 1 is the vector of target network outpul values.

n is the learning rate (e.g., .03). n;, is the number of network inputs, npiggen the number of
units in the hidden layer, and ney the number of outpur units.
The input from wnit § into wnit [is denoved xj, and the weight from unit | to unit j is denoted
wj;.
w Create a feed-forward network with n;, inputs, mygde hidden units, and »,, output anits.
e Initialize all network weights to small random numbers {e.g., between — .05 and .05).
s Until the termination condition is met, Do

w For each (¥,7 } in rraining_examples, Do

Propagate the input forward through the network:

1. Input the instance X to the network and compute the output o, of every unit « in
the network.

Propagate the errors backward through the nefwork:
2. For each network output unit k, calcalate its emmor term 85

S +— opl(l — ou)dlng — o) (T4.3)
3. For each hidden unit %, calculate its error term &g
Bn —on(l —on) D wends (T4
REOU pud s

4. Update each network weight wy;
wyi Aoy

where
Ay = 0 & Xy (T4.5)

TABLE 4.2
The stochastic gradient descent version of the BACKPROPAGATION algorithm for feedforward networks

31

98 MACHINE LEARNING

BACKPROPAGATION(training _examples, n, Nin, Nout > Rhidden)
Each training example is a pair of the form (,1), where X is the vector of network input
values, and ¥ is the vector of target network output values.
n is the learning rate (e.g., .05). n;, is the number of network inputs, nhiggen the number of
units in the hidden layer, and noyu: the number of output units.
The input from unit i info unit j is denoted x;;, and the weight from unit i to unit j is denoted
wj.~.
o Create a feed-forward network with n;, inputs, nuigs.. hidden units, and n,,, output units.
e Initialize all network weights to small random numbers (e.g., between —.05 and .05).
e Until the termination condition is met, Do

e For each (%,7) in training_examples, Do

Propagate the input forward through the network:

1. Input the instance X to the network and compute the output o, of every unit « in
the network.

Propagate the errors backward through the network:

2. For each network output unit &, calculate its error term &;

8 «— or (1 — ox)t — 0k) (T4.3)
3. For each hidden unit A, calculate its error term §j
Bh—on(l—0n) Y wind ~ (T4.4)
keoutputs

4. Update each network weight w;;
wj; < Wj; + Awj;

where
Awj; = 1 xj; (T4.5)

TABLE 4.2
The stochastic gradient descent version of the BACKPROPAGATION algorithm for feedforward networks
containing two layers of sigmoid units.

One major difference in the case of multilayer networks is that the error sur-
face can have multiple local minima, in contrast to the single-minimum parabolic
error surface shown in Figure 4.4. Unfortunately, this means that gradient descent
is guaranteed only to converge toward some local minimum, and not necessarily
the global minimum error. Despite this obstacle, in practice BACKPROPAGATION has
been found to produce excellent results in many real-world applications.

The BACKPROPAGATION algorithm is presented in Table 4.2. The algorithm as
described here applies to layered feedforward networks containing two layers of
sigmoid units, with units at each layer connected to all units from the preceding
layer. This is the incremental, or stochastic, gradient descent version of BACK-
PROPAGATION. The notation used here is the same as that used in earlier sections,
with the following extensions:

32

Notice the algorithm in Table 4.2 begins by constructing a network with the
desired number of hidden and output units and initializing all network weights
to small random values. Given this fixed network structure, the main loop of the
algorithm then repeatedly iterates over the training examples. For each training
example, it applies the network to the example, calculates the error of the network
output for this example, computes the gradient with respect to the error on this
example, then updates all weights in the network. This gradient descent step is
iterated (often thousands of times, vsing the same training examples multiple
times) until the network performs acceptably well.

The gradient descent weight-update rule (Equation [T4.5] in Table 4.2) is
similar to the delta training rule (Equation [4.10]). Like the delta rule, it updates
each weight in proportion to the learning rate 5, the input value x;; to which
the weight is applied, and the error in the output of the unit. The only differ-
ence is that the error (r — o) in the delta rule is replaced by a more complex
error term, 8;. The exact form of 3; follows from the derivation of the weight-
tuning rule given in Section 4.5.3. To understand it intuitively, first consider
how # is computed for each network owufpur unit k (Equation [T4.3] in the al-
gorithm). 8; is simply the familiar (5 — op) from the delta rule, multiplied by
the factor ex(1 — o), which is the derivative of the sigmoid squashing function.
The &, value for each hidden unit h has a similar form (Equation [T4.4] in the
algorithm). Howewver, since training examples provide target values 1, only for
network outputs, no target values are directly available to indicate the error of
hidden units’ values. Instead, the error term for hidden unit & is calculated by
summing the error terms §; for each output unit influenced by A, weighting each
of the 8’s by wy,, the weight from hidden unit / to output unit k. This weight
characterizes the degree to which hidden unit & is “responsible for” the error in
output unit k.

15. Remarks on the back propagation algorithm

A. Convergence and Local Minima

Despite the lack of assured convergence to the global minimum error,
BACKPROPAGATION is a highly effective function approximation method in practice.
When gradient descent falls into a local minimum with respect to one of these weights, it
will not necessarily be in a local minimum with respect to the other weights. In fact, the
more weights in the network, the more dimensions that might provide “escape routes™ for
gradient descent to fall away from the local minimum with respect to this single weight.

A second perspective on local minima can be gained by considering the manner in which
network weights evolve as the number of training iterations increases. Notice that if
network weights are initialized to values near zero, then during early gradient descent steps
the network will represent a very smooth function that is approximately linear in its inputs.
This is because the sigmoid threshold function itself is approximately linear when the
weights are close to zero .

Despite the above comments, gradient descent over the complex error surfaces represented
by ANNSs is still poorly understood, and no methods are known to predict with certainty
when local minima will cause difficulties. Common heuristics to attempt to alleviate the
problem of local minima include:

33

Add a momentum term to the weight-update rule.

-Use stochastic gradient descent rather than true gradient descent.

-Train multiple networks using the same data, but initializing each network with different
random weights.

B. Representational Power of Feedforward Networks

Function classes can be known

Boolean functions: Every boolean function can be represented exactly by some network
with two layers of units, although the number of hidden units required grows exponentially
in the worst case with the number of network inputs.

Continuous functions: Every bounded continuous function can be approximated with
arbitrarily small error (under a finite norm) by a network with two layers of units.

Arbitraryfunctions: Any function can be approximated to arbitrary accuracy by a network
with three layers of units.

C. Hidden Layer Representations

One intriguing property of BACKPROPAGATION ability to discover useful intermediate
representations at the hidden unit layers inside the network. Because training examples
constrain only the network inputs and outputs, the weight- tuning procedure is free to set
weights that define whatever hidden unit representation is most effective at minimizing the
squared error E. This can lead BACKPROPAGATION to define new hidden layer features
that are not explicit in the input representation, but which capture properties of the input
instances that are most relevant to learning the target function.

Consider, for example, the network shown in Figure 4.7. Here, the eight network inputs are
connected to three hidden units, which are in turn connected to the eight output units.
Because of this structure, the three hidden units will be forced to re-represent the eight
input values in some way that captures their relevant features, so that this hidden layer
representation can be used by the output units to compute the correct target values.

Consider training the network shown in Figure 4.7 to learn the simple target function f (2)
= 2, where 2 is a vector containing seven 0's and a single 1. The network must learn to
reproduce the eight inputs at the corresponding eight output units. Although this is a simple
function, the network in this case is constrained to use only three hidden units. Therefore,
the essential information from all eight input units must be captured by the three learned
hidden units.

Towpruet Hidden Churt ok
Walues
TR MRy —s B9 A3 s — ILE LR
TRy — a5 99 90— OO0
O NN HE)Y — 0 T 27 — ACH 1 On[wsd
(HEFI(HHKY = a9 Ly | — A I e
(HWHIT KKy — 3 A5 Ak — L L]
OO0 Ty — 01 .11 SR — OO
D OOOOO0O1TD — 'O 0 A8 — (OO0
(HHHHKKH}L - a0 JOL Ak — L]

FHGLURE 4.7

4
¢
i

When BACKPROPAGATION lied to this task, using each of the eight possible
vectors as training examples, it successfully learns the target function. What hidden layer
representation is created by the gradient descent BACKPROPAGATION algorithm? By
examining the hidden unit values generated by the learned network for each of the eight
possible input vectors, it is easy to see that the learned encoding is similar to the familiar
standard binary encoding of eight values using three bits (e.g., 000,001,010,. . ., 111).
The exact values of the hidden units for one typical run of BACKPROPAGATION in
Figure 4.7.

AN ILLUSTRATIVE EXAMPLE: FACE RECOGNITION

To illustrate some of the practical design choices involved in applying BACKPROPA-
GAaTION, this section discusses applying it to a learning task involving face recogni-
tion. All image data and code used to produce the examples described in this sec-
tion are available at World Wide Web site http://www.cs.cmu.edu/~tom/mibook.
html, along with complete documentation on how to use the code. Why not try it
yourself?

The learning task here involves classifying camera images of faces of various
people in various poses. Images of 20 different people were collected, including
approximately 32 images per person, varying the person’s expression (happy, sad,
angry, neutral), the direction in which they were looking (left, right, straight ahead,
up), and whether or not they were wearing sunglasses. As can be seen from the
example images in Figure 4.10, there is also variation in the background behind
the person, the clothing worn by the person, and the position of the person’s
face within the image. In total, 624 greyscale images were collected, each with a
resolution of 120 = 128, with each image pixel described by a greyscale intensity
value between (0 (black) and 255 (white).

A variety of target functions can be learned from this image data. For ex-
ample, given an image as input we could train an ANN to output the identity of
the person, the direction in which the person is facing, the gender of the person,
whether or not they are wearing sunglasses, etc. All of these target functions can
be learned to high accuracy from this image data, and the reader is encouraged
to try out these experiments. In the remainder of this section we consider one
particular task: learning the direction in which the person is facing (to their left,
right, straight ahead, or upward).

35

30 x 32 resolution input images

left straight right up

= = =ee 3 6 3
2 & : ' P ™

SN,

Network weights after 1 iteration through each training example

left slraight} riiht ui

Network weights after 100 iterations through each training example

FIGURE 4.10

Learning an artificial neural network to recognize face pose. Here a 960 x 3 x 4 network is trained
on grey-level images of faces (see top), to predict whether a person is looking to their left, right,
dhead, or up. After training on 260 such images, the network achieves an accuracy of 90% over a
separate test set. The learned network weights are shown after one weight-tuning iteration through
the training examples and after 100 iterations. Each output unit (lefl, straight, right, up) hes four
weights, shown by dark (negative) and light (positive) blocks. The leftmost block corresponds to
the weight wyg, which determines the unit threshold, and the three blocks to the right comrespond to
weights on inputs from the three hidden units. The weights from the image pixels into each hidden
uril are also shown, with each weight plotted in the position of the corresponding image pixel.

36

PART-A (2 Marks)

1. What is a Decision Tree?

A. A decision tree is a hierarchical data structure implementing the divide-and-conquer
strategy. It is an efficient nonparametric method, which can be used for both classification
and regression.

Decision trees classify instances by sorting them down the tree from the root to leaf node,
which provides the classification of the instance.

2. What is Clustering Methods?
A. Clustering methods allow learning the mixture parameters from data.

3. What is Parametric Methods?
A. In parametric where we assume that the sample is drawn from some distribution that
obeys a known model, for example, Gaussian.

4, Define Kernel Machines.
A. Kernel machines are maximum margin methods that allow the model to be written as
a sum of the influences of a subset of the training instances.

5. What is Multilayer Perceptron?
The multilayer perceptron is an artificial neural network structure and is a nonparametric

estimator that can be used for classification and regression

6. Define Machine Learning.
A. A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P.

7. What is Vapnik-Chervonenkis (VC) Dimension?

A. The maximum number of points that can be shattered by H is called the Vapnik-
Chervonenkis (VC) dimension of H, is denoted as VC(H), and measures the capacity of H.

37

o

PART-B (10 Marks)

What are different Machine Learning Applications?

Explain the basic decision tree learning algorithm.

Explain Back Propagation Algorithm and remarks on the Back Propagation
Algorithm.

What is Decisions Tree representation, Appropriate problems for decision tree
learning and the basic decision tree learning algorithm.

What are Advanced Topics in Artificial Neural Networks?

Compare Supervised and Unsupervised learning Techniques.

38

UNIT-2
EVALUATING HYPOTHESES

MOTIVATION:-

In many cases it is important to evaluate the performance of learned hypotheses as precisely
as possible.

One reason is simply to understand whether to use the hypothesis. For instance, when
learning from a limited-size database indicating the effectiveness of different medical
treatments, it is important to understand as precisely as possible the accuracy of the learned
hypotheses. A second reason is that evaluating hypotheses is an integral component of many
learning methods. For example, in post-pruning decision trees to avoid overfitting, we must
evaluate the impact of possible pruning steps on the accuracy of the resulting decision tree.

Therefore it is important to understand the likely errors inherent in estimating the accuracy
of the pruned and unpruned tree. Estimating the accuracy of a hypothesis is relatively
straightforward when data is plentiful. However, when we must learn a hypothesis and
estimate its future accuracy given only a limited set of data, two key difficulties arise:

> Bias in the estimate:- First, the observed accuracy of the learned hypothesis over the
training examples is often a poor estimator of its accuracy over future examples. Because the
learned hypothesis was derived from these examples, they will typically provide an
optimistically biased estimate of hypothesis accuracy over future examples. This is
especially likely when the learner considers a very rich hypothesis space, enabling it to
overfit the training examples.

> Variance in the estimate. Second, even if the hypothesis accuracy is measured over
an unbiased set of test examples independent of the training examples, the measured
accuracy can still vary from the true accuracy, depending on the makeup of the particular set

of test examples. The smaller the set of test examples, the greater the expectedvariance.

ESTIMATING HYPOTHESIS ACCURACY: :-

When evaluating a learned hypothesis we are most often interested in estimating the
accuracy with which it will classify future instances. At the same time, we would like to
know the probable error in this accuracy estimate (i.e., what error bars to associate with this
estimate).

There is some space of possible instances X (e.g., the set of all people) over which various
target functions may be defined (e.g., people who plan to purchase new skis this year). We
assume that different instances in X may be encountered with different frequencies. A

39

convenient way to model this is to assume there is some unknown probability distribution D
that defines the probability of encountering each instance in X (e-g., 23 might assign a
higher probability to encountering 19-year-old people than 109-year-old people). Notice 23
says nothing about whether x is a positive or negative example; it only detennines the
probability that x will be encountered. The learning task is to learn the target concept or
target function f by considering a space H of possible hypotheses. Training examples of the
target function f are provided to the learner by a trainer who draws each instance
independently, according to the distribution D, and who then forwards the instance x along
with its correct target value f (x) to the learner.

To illustrate, consider learning the target function "people who plan to purchase new skis
this year,” given a sample of training data collected by surveying people as they arrive at a
ski resort. In this case the instance space X is the space of all people, who might be
described by attributes such as their age, occupation, how many times they skied last year,
etc. The distribution D specifies for each person x the probability that x will be encountered
as the next person arriving at the ski resort. The target function

f: X + {0,1) classifies each person according to whether or not they plan to purchase skis
this year.

Sample Error and True Error:-

To answer these questions, we need to distinguish carefully between two notions of
accuracy or, equivalently, error. One is the error rate of the hypothesis over the sample of
data that is available. The other is the error rate of the hypothesis over the entire unknown
distribution D of examples. We will call these the sample error and the true error
respectively.

The sample error of a hypothesis with respect to some sample S of instances drawn from X
is the fraction of S that it misclassifies:

Definition: The sample error (denoted errors(h)) of hypothesis h with respect to target
function f and data sample S is

errors(h) = % 25(f(x), A(x))

xe§

where n is the number of examples in S, and the quantity S(f (x), h(x)) is 1 if f (X) # h(x),
and 0 otherwise.

The true error of a hypothesis is the probability that it will misclassify a single randomly
drawn instance from the distribution D.

Definition: The true error (denoted errorp(h))of hypothesis h with respect to target
function f and distribution D, is the probability that h will misclassify an instance drawn at
random according to D.

40

errorp(h) = ifgj[f(x) £ h(x)]

Here the notation Pr denotes that the probability is taken over the instan

xeD .
distribution D.
usually wish to know is the true error errorp(h) of the hypothesis, because this is the error
we can expect when applying the hypothesis to future examples. All we can measure,
however, is the sample error errors(h) of the hypothesis for the data sample S that we
happen to have in hand. The main question considered in this section is "How good an
estimate of errorD(h) is provided by errorS (h)?"

Confidence Intervals for Discrete-Valued Hypotheses:-

Here we give an answer to the question "How good an estimate of errorD(h) is provided by
errorS (h)?" for the case in which h is a discrete-valued hypothesis. More specifically,
suppose we wish to estimate the true error for some discrete- valued hypothesis h, based on
its observed sample error over a sample S, where

e the sample S contains n examples drawn independent of one another, and independent of
h, according to the probability distribution D

e n>30

¢ hypothesis h commits r errors over these n examples (i.e., errors(h) = r/ n).

Under these conditions, statistical theory allows us to make the following assertions:

1. Given no other information, the most probable value of errorD(h) is errorS(h).
2. With approximately 95% probability, the true error errorD(h) lies in the interval

rrorg(h)(1 — errors(h))
n

errors(h) + 1.96‘/ ¢

The above expression for the 95% confidence interval can be generalized to
.any desired confidence level. The constant 1.96 is used in case we desire a 95%
confidence interval. A different constant, zy, is used to calculate the N% confi-
dence interval. The general expression for approximate N% confidence intervals

‘for errorp(h) is
€ITor errorp(h) 1S the ObServea sample error .3uU. HOWEVEL, We a0 0T eXpect ums

to be a perfect estimate of the true error. If we were to collect a second sample
§" containing 40 new randomly drawn examples, we might expect the sample
error errorg(h) to vary slightly from the sample error errors(h). We expect a
difference due to the random differences in the makeup of S and §’. In fact, if
we repeated this experiment over and over, each time drawing a new sample
§; containing 40 new examples, we would find that for approximately 95% of
these experiments, the calculated interval would contain the true error. For this
reason, we call this interval the 95% confidence interval estimate for errorp(h).
In the current example, where r = 12 and n = 40, the 95% confidence interval is,
according to the above expression, 0.30 + (1.96 - .07) = 0.30 + .14.
41

errors(h)(1 — errors(h))

errors(h) £+ zN\/
rn

where the constant zy is chosen depending on the desired confidence lével, using
the values of zy given in Table 5.1.

Confidence level N%: 50% 68% 80% 90% 95% O98%% 99%
Constant zy: 067 100 128 164 196 233 258

TABLE 5.1
Values of zy for two-sided N% confidence intervals.

A more accurate rule of thumb is that the above approximation works well when

n errors(h)(1 — errors(h)) =5

BASICS OF SAMPLING THEORY :-
Error Estimation and Estimating Binomial Proportions:-

Precisely how does the deviation between sample error and true error depend on the size of
the data sample? This question is an instance of a well-studied problem in statistics: the
problem of estimating the proportion of a population that exhibits some property, given the
observed proportion over some random sample of the population. In our case, the property
of interest is that h misclassifies the example.

The key to answering this question is to note that when we measure the sample error we are
performing an experiment with a random outcome. We first collect a random sample S of n
independently drawn instances from the distribution D and then measure the sample error
errors(h). As noted in the previous section, if we were to repeat this experiment many times,
each time drawing a different random sample Si of size n, we would expect to observe
different values for the various errorSi(h), depending on random differences in the makeup
of the various Si. We say in such cases that errorSi(h), the outcome of the ith such
experiment, is a random variable. In general, one can think of a random variable as the name
of an experiment with a random outcome. The value of the random variable is the observed
outcome of the random experiment.

As taking the k no-of random experiments, histogram table describes a particular probability
distribution called the Binomial distribution

42

o0.14 Binomial diswibution for n =40, p =0.3
o.az}f 1 H

Q.08 |-]

P(r)
]
8

A Binomial distribution gives the probability of observing r heads in a sample of n
independent coin tosses, when the probability of heads on a single coin toss is p. It is defined
by the probability function

n!
ri(n - r)!

P(?’) _ . pr(l — p)k—!‘

If the random variable X follows a Binomial distribution, then:

. The probability Pr(X = r) that X will take on the value r is given by P(r)
. The expected, or mean value of X, E[X],is
E[X]=np

. The variance of X, Var(X), is
Var(X) =np(l — p)

. The standard deviation of X, ax, is

ay =/ np(l — p)
For sufficiently large values of n the Binomial distribution is closely approximated by a
Normal distribution with the same mean and variance. Most statisticians recommend using
the Normal approximation only when np(1- p) >=5.

The Binomial Distribution:-

A good way to understand the Binomial distribution is to consider the following problem.
You are given a worn and bent coin and asked to estimate the probability that the coin will
turn up heads when tossed. Let us call this unknown probability of heads p. You toss the
coin n times and record the number of times r that it turns up heads. A reasonable estimate
of p is r / n. Note that if the experiment were rerun, generating a new set of n coin tosses, we
might expect the number of heads r to vary somewhat from the value measured in the first
experiment, yielding a somewhat different estimate for p. The Binomial distribution
describes for each possible value of r (i.e., from 0 to n), the probability of observing exactly
r heads given a sample of n independent tosses of a coin whose true probability of heads is

p.

The detailed form of the Binomial distribution depends on the specific sample size n and the
specific probability p or errorD(h).

43

The general setting to which the Binomial distribution applies is:

1 There is a base, or underlying, experiment (e.g., toss of the coin) whose outcome can
be described by a random variable, say Y. The random variable Y can take on two possible
values (e.g., Y = 1 if heads, Y = 0 iftails).

2 The probability that Y = 1 on any single trial of the underlying experiment is given
by some constant p, independent of the outcome of any other experiment. The probability
that Y = 0 is therefore (1 - p). Typically, p is not known in advance, and the problem is to
estimate it.

3 A series of n independent trials of the underlying experiment is performed (e.g., n
independent coin tosses), producing the sequence of independent, identically distributed
random variables Y1, Y2, . . ., Yn. Let R denote the number of trials for which ¥y; =1 in
this series of n experiments

AT = >
£ = 1
4 The probability that the random variable R will take on a specific value r (e.g., the

probability of observing exactly r
heads) is given by the Binomial distribution

!

Pr(R=r) = m pPra-p

The Binomial distribution characterizes the probability of observing r heads from n coin flip
experiments, as well as the probability of observing r errors in a data sample containing n
randomly drawn instances.

Mean and Variance:-

Two properties of a random variable that are often of interest are its expected value (also
called its mean value) and its variance. The expected value is the average of the values taken
on by repeatedly sampling the random variable. More precisely

Definition: Consider a random variable Y that takes on the possible values yI, . . . yn. The
expected value of Y, E[Y], is

E[Y)= D> »Pr(¥ =)

i=1
In case the random variable Y is governed by a Binomial distribution, then it can be shown

that
E[Y]=np

44

where n and p are the parameters of the Binomial distribution defined in above Equation

A second property, the variance, captures the "width or "spread" of the probability
distribution; that is, it captures how far the random variable is expected to vary from its
mean value.

Definition: The variance of a random variable Y, Var[Y], is

Var[Y] = E[(Y — E[Y]?]

The variance describes the expected squared error in using a single observation of Y to
estimate its mean E[Y]. The square root of the variance is called the standard deviation of Y
, denoted c.

Definition: The standard deviation of a random variable Y, o, is
oy =+ E[(¥Y — E[Y])?]

In case the random variable Y is governed by a Binomial distribution, then the variance and
standard deviation are given by

Var[Y] = np(1 — p)
oy = vnp(l—p)
Estimators, Bias, and Variance :-
Now that we have shown that the random variable errors(h) obeys a Binomial distribution,
we return to our primary question: What is the likely difference between errors(h) and the

true error errorD(h)? Let us describe errors(h) and
errorD(h) using the terms in Equation defining the Binomial distribution. We then have

errors(h) =

= |~

errorp(h) = p

where n is the number of instances in the sample S, r is the number of instances from S
misclassified by h, and p is the probability of misclassifying a single instance drawn from
D.

Statisticians call errors(h) an estimator for the true error errorD(h). In general, an estimator

is any random variable used to estimate some parameter of the underlying population from
which the sample is drawn. An obvious question to ask about any estimator is whether on
average it gives the right estimate. We define the estimation bias to be the difference
between the expected value of the estimator and the true value of the parameter.

Definition: The estimation bias of an estimator Y for an arbitrary parameter p is

45

E[Y]—p

If the estimation bias is zero, we say that Y is an unbiased estimator for p. Notice this will
be the case if the average of many random values of Y generated by repeated random
experiments (i.e., E[Y]) converges toward p. Is errors(h) an unbiased estimator for
errorD(h)? Yes, because for a Binomial distribution the expected value of r is equal to np .
It follows, given that n is a constant, that the expected value of r / n is p. Two quick remarks
are in order regarding the estimation bias. First, that testing the hypothesis on the training
examples provides an optimistically biased estimate of hypothesis error,it is exactly this
notion of estimation bias to which we were referring. In order for errors(h) to give an
unbiased estimate of errorD(h), the hypothesis h and sample S must be chosen
independently. Second, this notion of estimation bias should not be confused with the
inductive bias of a learner. The estimation bias is a numerical quantity, whereas the
inductive bias is a set of assertions.

A second important property of any estimator is its variance. Given a choice among
alternative unbiased estimators, it makes sense to choose the one with least variance. By our
definition of variance, this choice will yield the smallest expected squared error between the
estimate and the true value of the parameter.

In general, given r errors in a sample of n independently drawn test examples, the standard
deviation for errors(h) is given by

G, p(l1—p)
Terrors(h) = ;r = p(Tp

which can be approximated by substituting r / n = errors(h) for p

errors(h)(1 — errorg(h))
Derrorsth) A 7

Confidence Intervals:-

One common way to describe the uncertainty associated with an estimate is to give an
interval within which the true value is expected to fall, along with the probability with which
it is expected to fall into this interval. Such estimates are called confidence interval
estimates.

Definition: An N% confidence interval for some parameter p is an interval that is expected
with probability N% to contain p.

For a given value of N how can we find the size of the interval that contains N% of the
probability mass? Unfortunately, for the Binomial distribution this calculation can be quite
tedious. Fortunately, however, an easily calculated and very good approximation can be
found in most cases, based on the fact that for sufficiently large sample sizes the Binomial
distribution can be closely approximated by the Normal distribution. The Normal

46

distribution, summarized in is perhaps the most well-studied probability distribution in
statistics. It is a bell-shaped distribution fully specified by its mean p and standard deviation
o. For large n, any Binomial distribution is very closely approximated by a Normal
distribution with the same mean and variance.

- Mormal distribution swith mean 0, standard deviation 1

2 T - r T

0.35 [! .
03 - i .
o2s ' .
oz | -
015 | -
o1 F : 8
0.05 + : .

=3 -2 =1 LA 1 z 3

A Normal distribution (also called a Gaussian distribution) is a bell-shaped distribution
defined by the probability density function

poxy — L Aemee
~ 2T a2
A Normal distribution is fully determined by two parameters in the above formula: p and ¢ .

If the random variable X follows a normal distribution, then:

o The probability that X will fall into the interval (a, b) is given by

f plxddx

The expected, or mean value of X, E[X], is
E\X]=pu

Var(X) = o?
o The variance of X, Var(X), is

° “* The standard deviation of X, , is

oy =0

The Central Limit Theorem (Section 5.4.1) states that the sum of a large number of
independent, identically distributed random variables follows a distribution that is

approximately Normal.

47

A GENERAL APPROACH FOR DERIVING CONFIDENCE INTERVALS:-

It describe in detail how to derive confidence interval estimates for one particular case:
estimating errory(h) for a discrete-valued hypothesis h, based on a sample of n
independently drawn instances. The approach described there illustrates a general approach
followed in many estimation problems. In particular, we can see this as a problem of
estimating the mean (expected value) of a population based on the mean of a randomly
drawn sample of size n.

The general process includes the following steps:

1 Identify the underlying population parameter p to be estimated, for example,
errorD(h).

2 Define the estimator Y (e.g., errors(h)). It is desirable to choose a minimum
variance, unbiased estimator.

3 Determine the probability distribution Dy that governs the estimator Y, including its
mean and variance.

4 Determine the N% confidence interval by finding thresholds L and U such that N%
of the mass in the probability distribution Dy falls between L and U.

Central Limit Theorem:-

One essential fact that simplifies attempts to derive confidence intervals is the Central Limit
Theorem. Consider again our general setting, in which we observe the values of n
independently drawn random variables Y| . . . Yn that obey the same unknown underlying
probability distribution (e.g., n tosses of the same coin). Let p denote the mean of the
unknown distribution governing each of the Yi and let a denote the standard deviation. We
say that these variables Yi are independent, identically distributed random variables,
because they describe independent experiments, each obeying the same underlying
probability distribution. In an attempt to estimate the mean p of the distribution governing
the Yi, we

calculate the sample mean ¥, = %I)jg":q:sntral Limit Theorem states that the probability
> n— o0

distribution governing YH approaches a Normal distribution as n — oo, regardless ofthe
distribgtion that governs the underlying random variables Yi. Furthermore, the mean of
the distribution governing ¥. approaches p and the standard deviation approaches .

More precisely, Then as n — oo, the distribution governing

n— K
7

approaches a Normal distribution, with zero mean and standard deviation equal to 1.

48

DIFFERENCE IN ERROR OF TWO HYPOTHESES:-

Consider the case where we have two hypotheses h1 and h2 for some discrete valued target
function. Hypothesis h1 has been tested on a sample S1 containing n1 randomly drawn
examples, and h2 has been tested on an independent sample S2 containing n2 examples
drawn from the same distribution. Suppose we wish to estimate the difference d between the

true errors of these two hypotheses.
d = errorp(hy) —errorp(hy) ;
Although we will not prove it here, it can be shown that gives an unbiased estimate of d;

that is 7 E[a]=d

to obtain the approximate variance of each of these distributions, we have
o2 a ETTOTS: (h1)(1 —errorg,(h1)) - errorg,(hy)(1 — errors,(h;))
d. ~Z

ni n2

Using the approximate variance a; given above, this approximate N% confidence interval
estimate for d is

. ‘/errorsl (h 1)(1ﬂ: errors,(h1)) + errors, {kg}(lﬂ: errors,(h2))

we redefine as

)

d = errors(h1) —errorg(ha)

COMPARING LEARNING ALGORITHMS:-

Often we are interested in comparing the performance of two learning algorithms LA and
LB, rather than two specific hypotheses. What is an appropriate test for comparing learning
algorithms, and how can we determine whether an observed difference between the
algorithms is statistically significant? Although there is active debate within the machine-
learning research community regarding the best method for comparison, we present here one
reasonable approach. A discussion of alternative methods is given by Dietterich (1996).

As usual, we begin by specifying the parameter we wish to estimate. Suppose we wish to

determine which of LA and LB is the better learning method on average for learning some

particular target function f. A reasonable way to define "on average" is to consider the

relative performance of these two algorithms averaged over all the training sets of size n that

might be drawn from the underlying instance distribution D. In other words, we wish to
sé:"p[errorzw:f(LA(S)) — errorp(Ls(S))]

estimate the expected value of the difference in their errors

where L(S) denotes the hypothesis output by learning method L when given the sample S of
training data and where the subscript S C D indicates that the expected value is taken over
samples S drawn according to the underlying instance distribution D. The above expression

49

describes the expected value of the difference in errors between learning methods LA and
LB.

Of course in practice we have only a limited sample Do of data when comparing learning
methods. In such cases, one obvious approach to estimating the above quantity is to divide
Do into atraining set So and a disjoint test set To.

The training data can be used to train both LA and LB, and the test data can be used to
errory,(L4(S0)) — errorg,(Lp(S0))

compare the accuracy of the two learned hypotheses. In other words, we measure the

quantity

Notice two key differences between this estimator and the quantity in Equation. First, we are

using errorT0(h) to approximate errorD(h). Second, we are only measuring the difference in

errors for one training set SQ rather than taking the expected value of this difference over all

samples S that might be drawn from the distribution D .

One way to improve on the estimator given by Equation is to repeatedly partition the data
DO into disjoint training and test sets and to take the mean of the test set errors for these
different experiments. This procedure first partitions the data into k disjoint subsets of equal
size, where this size is at least 30. It then trains and tests the learning algorithms k times,
using each of the k subsets in turn as the test set, and using all remaining data as the training
set.

In this way, the learning algorithms are tested on k independent test sets, and the mean

difference inerrors & is returned as an estimate of the difference between the two
learning algorithms.

The quantity 8 returned by the procedure that can be taken as an estimate of the desired
quantity from Equation

More appropriately, we can view 8 as an estimate of the quantity

E lerrorp(La(8)) —errorp(Lg(S)]
5CDy

BAYESIAN LEARNING INTRODUCTION

Bayesian learning methods are relevant to our study of machine learning for two different
reasons. First, Bayesian learning algorithms that calculate explicit probabilities for
hypotheses, such as the naive Bayes classifier, are among the most practical approaches to
certain types of learning problems. For example, Michie et al. (1994) provide a detailed
study comparing the naive Bayes classifier to other learning algorithms, including decision
tree and neural network algorithms.

These researchers show that the naive Bayes classifier is competitive with these other
learning algorithms in many cases and that in some cases it outperforms these other

50

methods. In this chapter we describe the naive Bayes classifier and provide a detailed
example of its use. In particular, we discuss its application to the problem of learning to
classify text documents such as electronic news articles.

For such learning tasks, the naive Bayes classifier is among the most effective algorithms
known.

The second reason that Bayesian methods are important to our study of machine learning is
that they provide a useful perspective for understanding many learning algorithms that do
not explicitly manipulate probabilities. We also use a Bayesian analysis to justify a key
design choice in neural network learning algorithms:choosing to minimize the sum of
squared errors when searching the space of possible neural networks. We also derive an
alternative error function, cross entropy, that is more appropriate than sum of squared errors
when learning target functions that predict probabilities. We use a Bayesian perspective to
analyze the inductive bias of decision tree learning algorithms that favor short decision trees
and examine the closely related Minimum Description Length principle. A basic familiarity
with Bayesian methods is important to understanding and characterizing the operation of
many algorithms in machine learning.

Features of Bayesian learning methods include:

. Each observed training example can incrementally decrease or increase the estimated
probability that a hypothesis is correct. This provides a more flexible approach to learning
than algorithms that completely eliminate a hypothesis if it is found to be inconsistent with
any single example.

. Prior knowledge can be combined with observed data to determine the final
probability ~f a hypothesis. In Bayesian learning, prior knowledge is provided by asserting
(1) a prior probability for each candidate hypothesis, and (2) a probability distribution over
observed data for each possible hypothesis.

. Bayesian methods can accommodate hypotheses that make probabilistic predictions.
. New instances can be classified by combining the predictions of multiple
hypotheses, weighted by their probabilities.

. Even in cases where Bayesian methods prove computationally intractable, they can

provide a standard of optimal decision making against which other practical methods can be
measured.

BAYES THEOREM:-

In machine learning we are often interested in determining the best hypothesis from
some space H, given the observed training data D. One way to specify what we mean by the
best hypothesis is to say that we demand the most probable

hypothesis, given the data D plus any initial knowledge about the prior probabilities of the
various hypotheses in H. Bayes theorem provides a direct method for calculating such
probabilities. More precisely, Bayes theorem provides a way to calculate the probability of a
hypothesis based on its prior probability, the probabilities of observing various data given
the hypothesis, and the observed data itself.

51

To define Bayes theorem precisely, let us first introduce a little notation. We shall write P(h)
to denote the initial probability that hypothesis h holds, before we have observed the training
data. P(h) is often called the prior probability of h and may reflect any background
knowledge we have about the chance that h is a correct hypothesis. If we have no such prior
knowledge, then we might simply assign the same prior probability to each candidate
hypothesis. Similarly, we will write P(D) to denote the prior probability that training data D
will be observed. Next, we will write P(D/h) to denote the probability of observing data D
given some world in which hypothesis h holds. More generally, we write P(x/y) to denote
the probability of x given y. In machine learning problems we are interested in the
probability P (h/D) that h holds given the observed training data D. P (h/D) is called the
posterior probability of h, because it reflects our confidence that h holds after we have seen
the training data D. Notice the posterior probability P(h/D) reflects the influence of the
training data D, in contrast to the prior probability P(h), which is independent of D.

Bayes theorem is the cornerstone of Bayesian learning methods because it provides a way to
calculate the posterior probability P(h/D), from the prior probability P(h), together with
P(D) and P(D/h).

Bayes theorem:

P LI By P ()
Fag Fo

Ph| D)y —

As one might intuitively expect, P(h/D) increases with P(h) and with P(D/h) according to
Bayes theorem. It is also reasonable to see that P(h/D) decreases as P(D) increases, because
the more probable it is that D will be observed independent of h, the less evidence D
provides in support of h.

In many learning scenarios, the learner considers some set of candidate hypotheses H and is
interested in finding the most probable hypothesis h € H given the observed data D. Any
such maximally probable hypothesis is called a Maximum a Posteriori (MAP) Hypothesis.
We can determine the MAP hypotheses by using Bayes theorem to calculate the posterior
probability of each candidate hypothesis. More precisely, we will say that hMAP is a MAP
hypothesis provided.

hayap = argmax P(h|D)
heH

_ P(DIh) P(h)
A T PD)

= argmax P(D|h) P(h)
heH

In some cases, we will assume that every hypothesis in H is equally probable a priori (P(hi)
= P(hj) for all hi and hj in H). In this case we can further simplify Equation and need only
consider the term P(D / h) to find the most probable hypothesis. P(D/h) is often called the
likelihood of the data D given h, and any hypothesis that maximizes P(D/h) is called a
maximum likelihood (ML) hypothesis, hML

52

hyi = argmax P(D|k)
heH

BAYES THEOREM AND CONCEPT LEARNING:-

Bayes theorem provides a principled way to calculate the posterior probability of each
hypothesis given the training data, we can use it as the basis for a straightforward learning
algorithm that calculates the probability for each possible hypothesis, then outputs the most
probable. This section considers such a brute-force Bayesian concept learning algorithm,

then compares it to concept learning algorithms.

Product rule: probability of a conjunction of two events A and B
P(A A B) = P(A|B)P(B) = P(B|A)P(A)
Sum rule: probability of a disjunction of two events A and B
P(AvV B)=P(A)+ P(B)- P(AAB)
Bayes theorem: the posterior probability P(h/D) of h given D

Py P Oa)

PCh| D)y — (55

Theorem of total probability: if events A1,. . ., An, are mutually eggﬁbg Wiy — v

=By = E FPLB| AP (A D)

=T

BRUTE-FORCE MAP LEARNING ALGORITHM
1. For each hypothesis h in H, calculate the posterior probability

P(D|h) P(h)

PhID) = DS

2. Output the hypothesis hMAP with the highest posterior probability

Frpararp — argmax P (|
heHA

This algorithm may require significant computation, because it applies Bayes theorem to
each hypothesis in H to calculate P(h/D). While this may prove impractical for large
hypothesis spaces, the algorithm is still of interest because it provides a standard against

which we may judge the performance of other concept learning algorithms.

In order specify a learning problem for the BRUTE-FORCE MAP LEARNING algorithm
we must specify what values are to be used for P(h) and for P(D/h). We may choose the

probability distributions P(h) and P(D/h) in any way we wish, to describe our prior

53

knowledge about the learning task. Here let us choose them to be consistent with the
following assumptions:

1. The training data D is noise free (i.e., di = c(xi)).

2. The target concept c is contained in the hypothesis space H

3. We have no a priori reason to believe that any hypothesis is more probable than any
other.

Together these constraints imply that we should choose

P(h)y = for all » in H

| H |

noise-free training data, the probability of observing classification di given h is just 1 if dj =
h(xi) and O if di # h(xi).
Therefore,

1if d; = h(x,-) for all dg in D

0 otherwise

P(D|h) = {

In other words, the probability of data D given hypothesis h is 1 if D is consistent with h,
and O otherwise.

Given these choices for P(h) and for P(D/h) we now have a fully-defined problem for the
above BRUTE-FORCE MAP LEARNING algorithm. Let us consider the first step of this
algorithm, which uses Bayes theorem to compute the posterior probability P(h/D) of each
hypothesis h given the observed training data D.

Recalling Bayes theorem, we have

First consider the case where h is inconsistent with the training data D. Since Equation
defines P(D/h) to be 0 when h is inconsistent with D, we have

P(h|D) = % =0 if k is inconsistent with D

The posterior probability of a hypothesis inconsistent with D is zero. Now consider the case
where h is consistent with D.

Since Equation defines P(D/h) to be 1 when h is consistent with D, we have P(D/h) to be 1
if h is consistent with D

54

1. L
P(h|D) = —2L

if k is consistent with D

" |VSa,pl

where VSH.D is the subset of hypotheses from H that are consistent with D. It is easy o
verify that

above, because the sum over all hypotheses of P(h /D) must be one and because the number
of hypotheses from H consistefit with D is by definition . Alternatively, we can derive
P(D) from the theorem of total probability and the fact that the hypotheses are mutually
exclusive

P(D|h)P(h)

P(ID) = =

P(D) = ¥ P(DIR) P(h)
hyeH

To summarize, Bayes theorem implies that the posterior probability P(h /D) under our
assumed P(h) and P(D/h) is

m if h is consistent with D

P(h|D) =
0 otherwise

the posterior probability for inconsistent hypotheses becomes zero while the total probability
summing to one is shared equally among the remaining consistent hypotheses. The above
analysis implies that under our choice for P(h) and"P(ﬁh), every consistent hypothesis has
posterior probability , and every inconsistent
hypothesis has posterior probability 0. Every consistent hypothesis is, therefore, a MAP
hypothesis.

MAP Hypotheses and Consistent Learners:-

The above analysis shows that in the given setting, every hypothesis consistent with D is a
MAP hypothesis. This statement translates directly into an interesting statement about a
general class of learners that we might call consistent learners.

We will say that a learning algorithm is a consistent learner provided it outputs a hypothesis
that commits zero errors over the training examples. Given the above analysis, we can
conclude that every consistent learner outputs a MAP

55

IV Sw o)
g

hypothesis, i f we assume a uniform prior probability distribution over H (i.e., P(hi) = P(h;)
forall i, j), and if we assume deterministic, noise free training data (i.e., P(D/ h) =1if D
and h are consistent, and O otherwise).

FIND-S searches the hypothesis space H from specific to general hypotheses, outputting a
maximally specific consistent hypothesis (i.e., a maximally specific member of the version
space). Because FIND-S outputs a consistent hypothesis, we know that it will output a MAP
hypothesis under the probability distributions P(h) and P(D/h) defined above. Of course
FIND-S does not explicitly manipulate probabilities at all-it simply outputs a maximally
specific member

i A 1
P(h) P(HID1) | P(hID1,D2)

hypotheses hypotheses

of the version space. However, by identifying distributions for P(h) and P(D(h) under which
its output hypotheses will be MAP hypotheses, we have a useful way of characterizing the
behavior of FIND-S. Are there other probability distributions for P(h) and P(D1h) under
which FIND-S outputs MAP hypotheses? Yes. Because FIND-S outputs a maximally specz$

¢ hypothesis from the version space, its output hypothesis will be a MAP hypothesis relative
to any prior probability distribution that favors more specific hypotheses. More precisely,
suppose 3-1 is any probability distribution P(h) over H that assigns P(hl) 2 P(hz) if hl is
more specific than h2. Then it can be shown that FIND-S outputs a MAP hypothesis
assuming the prior distribution 3-1 and the same distribution P(D1h) discussed above.

The Bayesian framework allows one way to characterize the behavior of learning
algorithms, even when the learning algorithm does not explicitly manipulate probabilities.
By identifying probability distributions P(h) and P(D/h) under which the algorithm outputs
optimal (i.e., MAP) hypotheses, we can characterize the implicit assumptions, under which
this algorithm behaves optimally.

MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR HYPOTHESES:-

Bayesian analysis can sometimes be used to show that a particular learning algorithm
outputs MAP hypotheses even though it may not explicitly use Bayes rule or calculate
probabilities in any form.

We consider the problem of learning a continuous-valued target function-a problem faced by
many learning approaches such as neural network learning, linear regression, and
polynomial curve fitting. A straightforward Bayesian analysis will show that under certain

56

assumptions any learning algorithm that minimizes the squared error between the output
hypothesis predictions and the training data will output a maximum likelihood hypothesis.
The significance of this result is that it provides a Bayesian justification (under certain
assumptions) for many neural network and other curve fitting methods that attempt to
minimize the sum of squared errors over the training data.

A simple example of such a problem is learning a linear function, though our analysis
applies to learning arbitrary real- valued functions illustrates a linear target function f
depicted by the solid line, and a set of noisy training examples of this target function. The
dashed line corresponds to the hypothesis hML with least-squared training error, hence the
maximum likelihood hypothesis. Notice that the maximum likelihood hypothesis is not
necessarily identical to the correct hypothesis, f, because it is inferred from only a limited
sample of noisy training data.

Before showing why a hypothesis that minimizes the sum of squared errors in this setting is
also a maximum likelihood hypothesis, let us quickly review two basic concepts from
probability theory: probability densities and Normal distributions. First, in order to discuss
probabilities over continuous variables such as e, we must introduce probability densities.
The reason, roughly, is that we wish for the total probability over all possible values of the
random variable to sum to one. In the case of continuous variables we cannot achieve this by
assigning a finite probability to each of the infinite set of possible values for the random
variable. Instead, we speak of a probability density for continuous variables such as e and
require that the integral of this probability density over all possible values be one. In general
we will use lower case p to refer to the probability density function, to distinguish it from a
finite probability P (which we will sometimes refer to as a probability mass). The
probability density p(x0) is the limit as E goes to zero, of times the probability that x will
take on a value in the interval [xo, X0 + 6).

Probability density function:
pxo) = lim = P(xo < x < x0+€)

Second, we stated that the random noise variable e is generated by a Normal probability
distribution. A Normal distribution is a smooth, bell-shaped distribution that can be
completely characterized by its mean p and its standard deviation for a precise definition.

Given this background we now return to the main issue: showing that the least-squared error
57

hypothesis is, in fact, the maximum likelihood hypothesis within our problem setting. We
will show this by deriving the maximum likelihood hypothesis starting with our earlier
definition Equation,but using lower case p to refer to the probability density

hy = argmax p(Dh)
heH

we can write P(D/h) as the product of the various P(d/hi)

hyr = argmax n p(di|h)
heH £=1

we are writing the expression for the probability of di given that h is the correct description
of the target function f, we will also substitute p = f (xi) = h(xi), yielding

~ iy -

hyr = argmaxHJ_

heH ;_]

B O o
= argmaxn e

N

4

Q
(3=

We now apply a transformation that is common in maximum likelihood calculations:

Rather than maximizing the above complicated expression we shall choose to maximize its
(less complicated) logarithm. This is justified because In is a monotonic function of p.
Therefore maximizing In also maximizes p.

hy, = argmax y_In - -—(d,~ — h(x;))?

heH V 202

i=l

The first term in this expression is a constant independent of h, and can therefore be
discarded, yielding

1
hm—mmz 557 (@ —hGx)’

heH

i=1

Maximizing this negative quantity is equivalent to minimizing the corresponding positive
quantity.

m=mm2w@hwf

hed 4

Finally, we can again discard constants that are independent of h.

hu. = argrng(d, —h(x))’ >8

heH

i=1

MAXIMUM LIKELIHOOD HYPOTHESES FOR PREDICTING PROBABILITIES:-

we determined that the maximum likelihood hypothesis is the one that minimizes the sum of
squared errors over the training examples. In this section we derive an analogous criterion
for a second setting that is common in neural network learning: learning to predict
probabilities.

Consider the setting in which we wish to learn a nondeterministic (probabilistic)
function £ : X -+ {0, 11, which has two discrete output values. For example, the instance
space X might represent medical patients in terms of their symptoms, and the target function
£ (X) might be 1 if the patient survives the disease and 0 if not. Alternatively, X might
represent loan applicants in terms of their past credit history, and £ (x) might be 1 if the
applicant successfully repays their next loan and O if not. In both of these cases we might
well expect £ to be probabilistic. For example, among a collection of patients exhibiting the
same set of observable symptoms, we might find that 92% survive, and 8% do not. This
unpredictability could arise from our inability to observe all the important distinguishing
features of the patients, or from some genuinely probabilistic mechanism in the evolution of
the disease. Whatever the source of the problem, the effect is that we have a target function f
(x) whose output is a probabilistic function of the input.

Given this problem setting, we might wish to learn a neural network (or other real-
valued function approximator) whose output is the probability that £ (x) = 1. In other
words, we seek to learn the target function, f' : X + [O, 11, such that £ '(x) = P(f (x) = 1).
In the above medical patient example, if X is one of those indistinguishable patients of which
92% survive, then f'(x) = 0.92 whereas the probabilistic function £ (x) will be equal to 1 in
92% of cases and equal to O in the remaining 8%.

How can we learn £' using, say, a neural network? One obvious, bruteforce way would be
to first collect the observed frequencies of 1's and O's for each possible value of x and to then
train the neural network to output the target frequency for each x. As we shall see below, we
can instead train a neural network directly from the observed training examples of £, yet
still derive a maximum likelihood hypothesis for f'.

What criterion should we optimize in order to find a maximum likelihood hypothesis for £’
in this setting? To answer this question we must first obtain an expression for P(D/h). Let us
assume the training data D is of the form

D ={(xI, dl) ... (xm, dm)}, where di is the observed 0 or 1 value for f (xi). Recall that in
the maximum likelihood, least- squared error analysis of the previous section, we made the
simplifying assumption that the instances (x| . . . xm)were fixed. This enabled us to
characterize the data by considering only the target values di. Although we could make a
similar simplifying assumption in this case, let us avoid it here in order to demonstrate that it
has no impact on the final outcome. Thus treating both xi and di as random variables, and
assuming that each training example is drawn independently, we can write P(D/h) as

POIR = PG, diit) 59
: i=1

It is reasonable to assume, furthermore, that the probability of encountering any particular
instance xj is independent of the hypothesis h. For example, the probability that our training
set contains a particular patient xi is independent of our hypothesis about survival rates
(though of course the survival d, of the patient does depend strongly on h). When x is
independent of h we can rewrite the above expression as

P(Dlh) = 1-[Px;, dith) = H P(difh, x;y P(x;)
i=1

i=1

Now what is the probability P(di/h, xi) of observing di = 1 for a single instance xi, given a
world in which hypothesis h
holds? Recall that h is our hypothesis regarding the target function, which computes this

very probability. Therefore, P(di = 1/ h, xi) = h(xi), and in general

h(xg) if di =1
P(dilh, x;) =
(1—h(x))ifd; =0

In order to substitute this into the Equation (6.8) for P(D/h), let us first " re-express it in a
more mathematically manipulable form, as
P(dilh, x;) = hOe)4 (1 — h(x))' 4

MINIMUM DESCRIPTION LENGTH PRINCIPLE:-

The discussion of Occam’s razor, a popular inductive bias that can be summarized as
"choose the shortest explanation for the observed data.” we discussed several arguments in
the long-standing debate regarding Occam's razor. Here we consider a Bayesian perspective
on this issue and a closely related principle called the Minimum Description Length
(MDL)principle.

The Minimum Description Length principle is motivated by interpreting the definition of
hMAP in the light of basic concepts from information theory. Consider again the now
familiar definition of hMAP.

hyrap = argmax P(D|h)P(h)
heH

which can be equivalently expressed in terms of maximizing the log,
Byap = argmax log, P(D|h) + log, P(h)}
or alternatively, minimizing the negative of this quantity
hyap = 31"'8;{'1'“ —log, P(D|h) —log, P(h)

Somewhat surprisingly, Equation can be interpreted as a statement that short hypotheses are

60

preferred, assuming a particular representation scheme for encoding hypotheses and data. To
explain this, let us introduce a basic result from information theory: Consider the problem of
designing a code to transmit messages drawn at random, where the probability of
encountering message i is pi. We are interested here in the most compact code; that is, we
are interested in the code that minimizes the expected number of bits we must transmit in
order to encode a message drawn at random. Clearly, to minimize the expected code length
we should assign shorter codes to messages that are more probable. We will refer to the
number of bits required to encode message i using code C as the description length of
message i with respect to C, which we denote by Lc(i) Let us interpret Equation in light of
the above result from coding theory.

-log, P(h) is the description length of h under the optimal encoding for the hypothesis space
H. In other words, this is the size of the description of hypothesis h using this optimal
representation. In our notation, LC, (h) =- log, P(h), where CH is the optimal code for
hypothesis space H.

o -log2 P(D1h) is the description length of the training data D given hypothesis h,
under its optimal encoding. In our notation, Lc,,,(Dlh) =

- log, P(DIh), where CD,is~ t he optimal code for describing data D assuming that
both the sender and receiver know the hypothesis h.

o Therefore we can rewrite Equation (6.16) to show that hMAP is the hypothesis h that
minimizes the sum given by the description length of the hypothesis plus the description
length of the data given the hypothesis.

hyap = arg’lt:ninLcH(k) + Ly, (DIR)

where CH and CD/h are the optimal encodings for H and for D given h, respectively.

The Minimum Description Length (MDL) principle recommends choosing the hypothesis
that minimizes the sum of these two description lengths. Of course to apply this principle in
practice we must choose specific encodings or representations appropriate for the given
learning task. Assuming we use the codes C1 and C2 to represent the hypothesis and the
data given the hypothesis, we can state the MDL principle as

Minimum Description Length principle: Choose hMDL where

rarps = arg:nﬁﬁn Lo, (B)Y + L, (D)
e
The above analysis shows that if we choose C1 to be the optimal encoding of hypotheses
CH, and if we choose (416 ﬁe’fﬁébptima encoding CD/h then .

Intuitively, we can think of the MDL principle as recommending the shortest method for re-
encoding the training data, where we count both the size of the hypothesis and any
additional cost of encoding the data given this hypothesis. Let us consider an example. Thus
the MDL principle provides a way of trading off hypothesis complexity for the number of

61

errors committed by the hypothesis. It might select a shorter hypothesis that makes a few
errors over a longer hypothesis that perfectly classifies the training data. Viewed in this
light, it provides one method for dealing with the issue of overfitting the data.

BAYES OPTIMAL CLASSIFIER:-

we have considered the question "what is the most probable hypothesis given the training
data?' In fact, the question that is often of most significance is the closely related question
"what is the most probable classification of the new instance given the training
data?' Although it may seem that this second question can be answered by simply applying
the MAP hypothesis to the new instance, in fact it is possible to do better.

To develop some intuitions consider a hypothesis space containing three hypotheses, hl, h2,
and h3. Suppose that the posterior probabilities of these hypotheses given the training data
are .4, .3, and .3 respectively. Thus, h| is the MAP hypothesis. Suppose a new instance X is
encountered, which is classified positive by hl, but negative by h2 and h3. Taking all
hypotheses into account, the probability that x is positive is .4 (the probability associated
with hi), and the probability that it is negative is therefore .6. The most probable
classification (negative) in this case is different from the classification generated by the
MAP hypothesis.

In general, the most probable classification of the new instance is obtained by combining the
predictions of all hypotheses, weighted by their posterior probabilities. If the possible
classification of the new example can take on any value vj from some set V, then the
probability P(vj/D) that the correct classification for the new instance is vj, is just

P{v;| D) = E F(v;lh:) Pk | D)
LrE=r-i

The optimal classification of the new instance is the value vj , for which P (vj / D) is
maximum.

Bayes optimal classification:
argirrax E v VY P (R | 1)

upEW e

To illustrate in terms of the above example, the set of possible classifications of the neW = t<&. &}
instance is

and

P(h11D) = .4, P(Slh)) =0, P(@lhy) =1
P(hy|D) = .3, P(Slh) =1, P(®lh) =0
P(h3|D) = .3, P(©lh3) =1, P(®lh3) =0

62

therefore

E PR P | D)y = 4
LTE=F-4
E PSR PR |\ D)y — O
TE=Fr
and

argmax » P(v;lh)P(h;|D) = ©
vEl@.8) el

Any system that classifies new instances according to Equation is called a Bayes optimal
classifier, or Bayes optimal learner. No other classification method using the same
hypothesis space and same prior knowledge can outperform this method on average. This
method maximizes the probability that the new instance is classified correctly, given the
available data, hypothesis space, and prior probabilities over the hypotheses.

Note one curious property of the Bayes optimal classifier is that the predictions it makes can
correspond to a hypothesis not contained in H! Imagine using Equation to classify every
instance in X. The labeling of instances defined in this way need not correspond to the
instance labeling of any single hypothesis h from H. One way to view this situation is to
think of the Bayes optimal classifier as effectively considering a hypothesis space H'
different from the space of hypotheses H to which Bayes theorem is being applied. In
particular, H' effectively includes hypotheses that perform comparisons between linear
combinations of predictions from multiple hypotheses in H.

GIBBS ALGORITHM:-

Although the Bayes optimal classifier obtains the best performance that can be achieved
from the given training data, it can be quite costly to apply. The expense is due to the fact
that it computes the posterior probability for every hypothesis in H and then combines the
predictions of each hypothesis to classify each new instance.

An alternative, less optimal method is the Gibbs algorithm (see Opper and Haussler 1991),
defined as follows:

1. Choose a hypothesis h from H at random, according to the posterior probability
distribution over H.

2. Use h to predict the classification of the next instance x.

Given a new instance to classify, the Gibbs algorithm simply applies a hypothesis drawn at
random according to the current posterior probability distribution. Surprisingly, it can be
shown that under certain conditions the expected misclassification error for the Gibbs
algorithm is at most twice the expected error of the Bayes optimal classifier (Haussler et al.

63

1994). More precisely, the expected value is taken over target concepts drawn at random
according to the prior probability distribution assumed by the learner. Under this condition,
the expected value of the error of the Gibbs algorithm is at worst twice the expected value of
the error of the Bayes optimal classifier.

This result has an interesting implication for the concept learning problem described earlier.
In particular, it implies that if the learner assumes a uniform prior over H, and if target
concepts are in fact drawn from such a distribution when presented to the learner, then
classifying the next instance according to a hypothesis drawn at random from the current
version space (according to a uniform distribution), will have expected error at most twice
that of the Bayes optimal classifier. Again, we have an example where a Bayesian analysis
of a non-Bayesian algorithm yields insight into the performance of that algorithm.

NAIVE BAYES CLASSIFIER:-

One highly practical Bayesian learning method is the naive Bayes learner, often called the
naive Bayes classifier. In some domains its performance has been shown to be comparable
to that of neural network and decision tree learning. This section introduces the naive Bayes
classifier; the next section applies it to the practical problem of learning to classify natural
language text documents.

The naive Bayes classifier applies to learning tasks where each instance x is described by a
conjunction of attribute values and where the target function f (X) can take on any value
from some finite set V. A set of training examples of the target function is provided, and a
new instance is presented, described by the tuple of attribute values (a1, a2.. an). The
learner is asked to predict the target value, or classification, for this new instance.

The Bayesian approach to classifying the new instance is to assign the most probable
target value, VMAP, given the attribute values (a1,a2 . . .an) that describe theinstance.

Varap — argmax FP(v;lar, az...an)
eV

We can use Bayes theorem to rewrite this expression as

ax Llar.az ... an|v)P(v;)
v,eV Play, a»...ay)

VaraApP

= argmaXx P(a;,az .. -anfvj)P(”f_)

UJEV

Now we could attempt to estimate the two terms in Equation based on the training data. It is
easy to estimate each of the P(vj) simply by counting the frequency with which each target

value vj occurs in the training data. However, estimating the different P(@1, 82.. . an|Vj)
terms in this fashion is not feasible unless we have a very, very large set of training data.
The problem is that the number of these terms is equal to the number of possible instances

64

times the number of possible target values. Therefore, we need to see every instance in the
instance space many times in order to obtain reliable estimates. The naive Bayes classifier is
based on the simplifying assumption that the attribute values are conditionally independent
given the target value. In other words, the assumption is that given the target value of the
instance, the probability of observing the conjunction a1, a2.. .an, is just the product of the
probabilities for the individual

[1

attributes: P(a1,a2 ...an| vj)= " P(ai/vj). Substituting this into Equation, we have
the approach used by the naive Bayes classifier.

Naive Bayes classifier:

onp = argmax P(v) l_[Pia:lvy)
where denotes the target value output by the naive Bayes classifier. Notice that in a naive
Bayes classifier the number of distinct ~ terms that must be estimated from the training
data is just the number of distinct attribute values times the number of distinct target values-
a much smaller number than if we were to estimate the P(a1, a2 . . . an |vj) terms as first
contemplated.

To summarize, the naive Bayes learning method involves a learning step in which the
various P(vj) and P(ai | vj) terms are estimated, based on their frequencies over the training
data. The set of these estimates corresponds to the learned hypothesis. This hypothesis is
then used to classify each new instance by applying the rule in Equation. Whenever the
naive Bayes assumption of conditional independence is satisfied, this naive Bayes
classification is identical to the MAP classification.

One interesting difference between the naive Bayes learning method and other learning
methods we have considered is that there is no explicit search through the space of possible
hypotheses (in this case, the space of possible hypotheses is the space of possible values that
can be assigned to the various P(vj) and P(ai | vj) terms). Instead, the hypothesis is formed
without searching, simply by counting the frequency of various data combinations within the
training examples.

ESTIMATING PROBABILITIES

Up to this point we have estimated probabilities by the fraction of times the event is

obsgrved to occur over the total number of opportunities. For example, in the above case we
¢ Re

estifhated P(Wind = strong | Play Tennis = no) by the fraction 'n where n =5 is the total
number of training examples for which PlayTennis = no, and nc = 3 is the number of
these for which Wind = strong. While this observed fraction provides a good estimate of the
probability in many cases, it provides poor estimates when nc is very small. To see the
difficulty, imagine that, in fact, the value of P(Wind = strong | PlayTennis = no) is .08 and
that we have a sample containing only 5 examples for which PlayTennis = no.

fe
Then the most probable value for nc is 0. This raises two difficulties. Fift st, produces a
biased underestimate of the probability. Second, when this probability estimate is zero, this

65

probability term will dominate the Bayes classifier if the future query contains Wind =
strong. The reason is that the quantity calculated in Equation requires multiplying all the
other probability terms by this zero value. To avoid this difficulty we can adopt a Bayesian
approach to estimating the probability, using the m-estimate defined as follows.

m-estimate of probability:

n.+mp
n+m

Here, nc and n are defined as before, p is our"prlor estimate of the probability we wish to
determine, and m is a constant called the equ,l,valent sample size, which determines how
heavily to wﬁight p relative to the observed data. A typical method for choosing p in the
absence of other information is to assume uniform priors; that is, if an attribute has k
possible values we set p = 1/k. For example, in estimating P(Wind = strong | PlayTennis =
no) we note the attribute Wind has two possible values, so uniform priors would
correspond to choosing p = .5. Note that if m is zero, the m-estimate is equivalent to the
simple fraction . Ifboth n and m are nonzero, then the observed fraction and prior
p will be combined according to the weight m. The reason m is called the equivalent sample
size is that Equation can be interpreted as augmenting the n actual observations by an
additional m virtual samples distributed according to p.

BAYESIAN BELIEF NETWORKS:-

As discussed in the previous two sections, the naive Bayes classifier makes significant set of
the assumption that the values of the attributes al . . .an, are conditionally independent
given the target value v. This assumption dramatically reduces the complexity of learning
the target function. When it is met, the naive Bayes classifier outputs the optimal Bayes
classification. However, in many cases this conditional independence assumption is clearly
overly restrictive.

A Bayesian belief network describes the probability distribution governing a set of variables
by specifying a set of conditional independence assumptions along with a set of conditional
probabilities. In contrast to the naive Bayes classifier, which assumes that all the variables
are conditionally independent given the value of the target variable, Bayesian belief
networks allow stating conditional independence assumptions that apply to subsets of the
variables. Thus, Bayesian belief networks provide an intermediate approach that is less
constraining than the global assumption of conditional independence made by the naive
Bayes classifier, but more tractable than avoiding conditional independence assumptions
altogether. Bayesian belief networks are an active focus of current research, and a variety of
algorithms have been proposed for learning them and for using them for inference.

We define the joint space of the set of variables Y to be the cross product V(YI) x V(Y2) x.
. V(Yn). In other words, each item in the joint space corresponds to one of the possible
assignments of values to the tuple of variables (Y1 . .. Yn). The probability distribution over

66

this joint space is called the joint probability distribution. The joint probability distribution
specifies the probability for each of the possible variable bindings for the tuple (YI. .. Yn).

A Bayesian belief network describes the joint probability distribution for a set of variables.
Conditional Independence:-

Let us begin our discussion of Bayesian belief networks by defining precisely the notion of
conditional independence. Let X, Y, and Z be three discrete-valued random variables. We
say that X is conditionally independent of Y given Z if the probability distribution
governing X is independent of the value of Y given a value for Z that is, if

Vxi, yjy) PX=xlY =y;, Z=2) = P(X =x,|1Z = %)

where xi € V(X), yj € V(Y), and Zk € V(Z). We commonly write the above expressionin
abbreviated form as P(X|Y,

Z) = P(X|Z). This definition of conditional independence can be extended to sets of
variables as well. We say that the set of variables X1 . . . X| is conditionally independent of
the set of variables Y1 . .. Ym given the set of variablesZ1 . . . Zn, if

P(Xy..Xi\ ... Y, Z1..2)=P(X1...X)|1Z21... Zp)

Note the correspondence between this definition and our use of conditional independence in
the definition of the naive Bayes classifier. The naive Bayes classifier assumes that the
instance attribute A1 is conditionally independent of instance attribute A2 given the target
value V. This allows the naive Bayes classifier to calculate P(Al, A2 | V) in Equation as
follows

P(A1, A2|V) = P(A1|A2, V) P(A2]V)
= P(A|V)P(A2]V)

Equation is just the general form of the product rule of probability. Equation follows
because if Al is conditionally independent of A2 given V, then by our definition of
conditional independence P (A1 |A2, V) =P(A1|V).

58 .§5-B -8B -5-B
C 04 01 08 0.2
=C 06 09 02 0.8

67

Representation:-

A Bayesian belief network (Bayesian network for short) represents the joint probability
distribution for a set of variables. represents the joint probability distribution over the
boolean variables Storm, Lightning, Thunder, ForestFire, Campfire, and BusTourGroup.
In general, a Bayesian network represents the joint probability distribution by specifying a
set of conditional independence assumptions (represented by a directed acyclic graph),
together with sets of local conditional probabilities. Each variable in the joint space is
represented by a node in the Bayesian network. For each variable two types of information
are specified. First, the network arcs represent the assertion that the variable is conditionally
independent of its nondescendants in the network given its immediate predecessors in the
network. We say X is a descendant of , Y if there is a directed path from Y to X. Second, a
conditional probability table is given for each variable, describing the probability
distribution for that variable given the values of its immediate predecessors. The joint
probability for any desired assignment of values (y1, . . . , yn) to the tuple of network

variables (Y1 . .. Yn)can be computed by the formula

P(yys-osy0) = [[P(vil Parents(¥))
i=1

where Parents(Yi) denotes the set of immediate predecessors of Yi in the network. Note the
values of P(yi|P arents(Yi)) are precisely the values stored in the conditional probability
table associated with node Yi. To illustrate, the Bayesian network represents the joint
probability distribution over the boolean variables Storm, Lightning, Thunder, Fire,
Campfire, and BusTourGroup. Consider the node Campfire. The network nodes and arcs
represent the assertion that Campfire is conditionally independent of its nondescendants
Lightning and Thunder, given its immediate parents Storm and BusTourGroup. This
means that once we know the value of the variables Storm and BusTourGroup, the
variables Lightning and Thunder provide no additional information about Campfire. The
right side of the figure shows the

conditional probability table associated with the variable Campfire. The top left entry in this
table, for example, expresses the assertion that

P(Campfire = True|Storm = True, BusTourGroup = True) = 0.4

Note this table provides only the conditional probabilities of Campjire given its parent
variables Storm and BusTourGroup. The set of local conditional probability tables for all
the variables, together with the set of conditional independence assumptions described by
the network, describe the full joint probability distribution for the network.

One attractive feature of Bayesian belief networks is that they allow a convenient way to
represent causal knowledge such as the fact that Lightning causes Thunder. In the

68

terminology of conditional independence, we express this by stating that Thunder is
conditionally independent of other variables in the network, given the value of Lightning.
Note this conditional independence assumption is implied by the arcs in the Bayesian
network.

Inference

We might wish to use a Bayesian network to infer the value of some target variable (e.g.,
ForestFire) given the observed values of the other variables. Of course, given that we are
dealing with random variables it will not generally be correct to assign the target variable a
single determined value. What we really wish to infer is the probability distribution for the
target variable, which specifies the probability that it will take on each of its possible values
given the observed values of the other variables. This inference step can be straightforward
if values for all of the other variables in the network are known exactly. In the more general
case we may wish to infer the probability distribution for some variable (e.g., ForestFire)
given observed values for only a subset of the other variables (e.g., Thunder and
BusTourGroup may be the only observed values available). In general, a Bayesian network
can be used to compute the probability distribution for any subset of network variables given
the values or distributions for any subset of the remaining variables.

Exact inference of probabilities in general for an arbitrary Bayesian network is known to be
NP-hard.

Learning Bayesian Belief Networks

Can we devise effective algorithms for learning Bayesian belief networks from training
data? This question is a focus of much current research. Several different settings for this
learning problem can be considered. First, the network structure might be given in advance,
or it might have to be inferred from the training data.

Second, all the network variables might be directly observable in each training example, or
some might be unobservable.

In the case where the network structure is given in advance and the variables are fully
observable in the training examples, learning the conditional probability tables is
straightforward. We simply estimate the conditional probability table entries just as we
would for a naive Bayes classifier.

In the case where the network structure is given but only some of the variable values are
observable in the training data, the learning problem is more difficult.

This problem is somewhat analogous to learning the weights for the hidden units in an
artificial neural network, where the input and output node values are given but the hidden
unit values are left unspecified by the training examples.

69

THE EM ALGORITHM

In many practical learning settings, only a subset of the relevant instance features
might be observable. For example, in training or using the Bayesian belief network, we
might have data where only a subset of the network variables Storm, Lightning, Thunder,
ForestFire, Campfire, and BusTourGroup have been observed. Many approaches have
been proposed to handle the problem of learning in the presence of unobserved variables. if
some variable is sometimes observed and sometimes not, then we can use the cases for
which it has been observed to learn to predict its values when it is not. In this section we
describe the EM algorithm (Dempster et al. 1977), a widely used approach to learning in the
presence of unobserved variables. The EM algorithm can be used even for variables whose
value is never directly observed, provided the general form of the probability distribution
governing these variables is known.

The EM algorithm has been used to train Bayesian belief networks (see Heckerman 1995) as
well as radial basis function networks. The EM algorithm is also the basis for many
unsupervised clustering algorithms (e.g., Cheeseman et al. 1988), and it is the basis for the
widely used Baum-Welch forward-backward algorithm for learning Partially Observable
Markov Models (Rabiner 1989).

Estimating Means of k Gaussians

The easiest way to introduce the EM algorithm is via an example. Consider a problem in
which the data D is a set of instances generated by a probability distribution that is a mixture
of k distinct Normal distributions. for the case where k

= 2 and where the instances are the points shown along the x axis. Each instance is
generated using a two-step process. First, one of the k Normal distributions is selected at
random. Second, a single random instance xi is generated according to this selected
distribution. This process is repeated to generate a set of data points as shown in the figure.
To simplify our discussion, we consider the special case where the selection of the single
Normal distribution at each step is based on choosing each with uniform probability, where
each of the k Normal distributions has the same variance a2, and where a2 is known. The
learning task is to output a hypothesis h = (FI, . . . pk) that describes the means of each of
the k distributions. We would like to find a maximum likelihood hypothesis for these means;
that is, a hypothesis h that maximizes p(D Ih).

plx)

X
Note it is easy to calculate the maximum likelihood hypothesis for the mean of a single

70

Normal distribution given the observed data instances XI, x2, ..., xm drawn from this
single distribution. This problem of finding the mean of a single distribution is just a special
case of the problem discussed, Equation, where we showed that the maximum likelihood
hypothesis is the one that minimizes the sum of squared errors over the m training instances.
Restating Equation using our current notation, we have

My, = argmin Y~ (x; — p)°

e i=1

In this case, the sum of squared errors is minimized by the sample mean

N .
HML = m ;Ii
Our problem here, however, involves a mixture of k different Normal distributions, and we
cannot observe which instances were generated by which distribution.

Thus, we have a prototypical example of a problem involving hidden variables. In the
example of Figure , we can think of the full description of each instance as the triple
(xi,zi 1 , ziz), where xi is the observed value of the ith instance and where zil
and zi2 indicate which of the two Normal distributions was used to generate the value

xi. |In particular, zij has the value 1 if xi was created by the jth Normal distribution
and 0 otherwise. Here xi is the observed variable in the description of the instance, and
zil and zi2 are hidden variables. If the values of zil and zi2 were observed, we
could use Equation to solve for the means p1 and p2. Because they are not, we will
instead use the EM algorithm. Applied to our k-means problem the EM algorithm searches
for a maximum likelihood hypothesis by repeatedly re-estimating the expected values of the
hidden variables zij given its current hypothesis (pI ... pk), then recalculating the
maximum likelihood hypothesis using these expected values for the hidden variables.

We will first describe this instance of the EM algorithm, and later state the EM algorithm in
its general form.

Applied to the problem of estimating the two means for Figure, the EM algorithm
first initializes the hypothesis to h =

(PI1, p2), where pl and p2 are arbitrary initial values. It then iteratively re-estimates h by
repeating the following two steps until the procedure converges to a stationary value for h.

Step 1: Calculate the expected value E[zij] of each hidden variable zi,, assuming the current
hypothesis h = (p1, p2) holds.

Step 2: Calculate a new maximum likelihood hypothesis h' = (pi, p;), assuming the value
taken on by each hidden variable zij is its expected value E[zij] calculated in Step 1. Then
replace the hypothesis h = (pl, p2) by the new hypothesis h' = (pi, pi) and iterate.

71

Let us examine how both of these steps can be implemented in practice. Step 1 must
calculate the expected value of each zi,. This E[4] is just the probability that instance xi was
generated by the jth Normal distribution

Pa = xilp = ;)
Y2 p(x =Kl =)

- # (x; —_u;)z

E[z;] =

4

- —_)2
Y2 e S (ki =btn)

Thus the first step is implemented by substituting the current values (u1, p2) and the
observed Xi into the above expression.

In the second step we use the EJzij] calculated during Step 1 to derive a new maximum
likelihood hypothesis h' = (u’1, B’2).
AS we will discuss later, the maximum likelihood hypothesis in this case is given by

o Xz Elzy) %
! i=1 Elz;j]

Note this expression is similar to the sample mean from Equation that is used to estimate p
for a single Normal distribution. Our new expression is just the weighted sample mean for p;j

with each instance weighted by the expectation E[zij] that it was generated by the jth
Normal distribution.

The above algorithm for estimating the means of a mixture of k Normal distributions
illustrates the essence of the EM approach: The current hypothesis is used to estimate the
unobserved variables, and the expected values of these variables are then used to calculate
an improved hypothesis. It can be proved that on each iteration through this loop, the EM
algorithm increases the likelihood P(D/h) unless it is at a local maximum. The algorithm
thus converges to a local maximum likelihood hypothesis for (u1, p2).

General Statement of EM Algorithm

Above we described an EM algorithm for the problem of estimating means of a mixture of
Normal distributions. More generally, the EM algorithm can be applied in many settings
where we wish to estimate some set of parameters O that describe an underlying probability
distribution, given only the observed portion of the full data produced by this distribution. In
the above two-means example the parameters of interest were © = (u1, u2), and the full
data were the triples (xi, zil, zi2) of whichonlythe xi were observed. In general
let X = {x1, ..., xm} denote the observed data in a set of m independently drawn
instances, let Z= {z1, ..., zm} denote the unobserved data in these same instances, and
let Y = X U Z denote the full data. Note the unobserved Z can be treated as a random
variable whose probability distribution depends on the unknown parameters © and on the

72

observed data X. Similarly, Y is a random variable because it is defined in terms of the
random variable Z. In the remainder of this section we describe the general form of the EM

algorithm. We use h to denote the current hypothesized values of the parameters O, and hl to
denote the revised hypothesis that is estimated on each iteration of the EM algorithm.

The EM algorithm searches for the maximum likelihood hypothesis h! by seeking the h! that

maximizes E[In P(Y|(h')]. This expected value is taken over the probability distribution
governing Y , which is determined by the unknown parameters ©. Let us consider exactly

what this expression signifies. First, P(Y/h') is the likelihood of the full data Y given
hypothesis h!. It is reasonable that we wish to find a h! that maximizes some function of this
quantity. Second, maximizing the logarithm of this quantity In P(Y|h|) also maximizes
P(Y|h1), as we have discussed on several occasions already. Third, we introduce the

expected value E[In P(Y|h|)] because the full data Y is itself a random variable. Given that
the full data Y is a combination of the observed data X and unobserved data Z, we must
average over the possible values of the unobserved Z, weighting each according to its

probability. In other words we take the expected value E[In P(Y|h|)] over the probability
distribution governing the random variable Y. The distribution governing Y is determined by
the completely known values for X, plus the distribution governing Z.

What is the probability distribution governing Y? In general we will not know this
distribution because it is determined by the parameters © that we are trying to estimate.
Therefore, the EM algorithm uses its current hypothesis h in place of the actual parameters

O to estimate the distribution governing Y. Let us define a function Q(hllh) that gives E[In

P(Ylhl)] as a function of h', under the assumption that © = h and given the observed portion
X of the full data Y.

Q(K'|h) = E[ln p(Y|K')|h, X]

We write this function Q in the form Q(hllh) to indicate that it is defined in part by the
assumption that the current hypothesis h is equal to ©. In its general form, the EM algorithm
repeats the following two steps until convergence:

Step 1: Estimation (E) step: Calculate Q(hllh) using the current hypothesis h and the
observed data X to estimate the probability distribution over Y.

Q(#'|h) < Elln P(Y|K)|h, X]

Step 2: Maximization (M) step: Replace hypothesis h by the hypothesis h* that maximizes

this Q function.
h <« argmax Q(K'|h)
b!

73

When the function Q is continuous, the EM algorithm converges to a stationary point of the
likelihood function P(Y/h'). When this likelihood function has a single maximum, EM will
converge to this global maximum likelihood estimate for h'. Otherwise, it is guaranteed only
to converge to a local maximum. In this respect, EM shares some of the same limitations as
other optimization methods such as gradient descent, line search, and conjugate gradient.

Derivation of the k Means Algorithm

To illustrate the general EM algorithm, let us use it to derive the algorithm given for
estimating the means of a mixture of k Normal distributions. As discussed above, the k-
means problem is to estimate the parameters © = (u1.. . pk)

that define the means of the k Normal distributions. We are given the observed data X =
{(xi)}. The hidden variables Z =

{(il,. . ., zik)} in this case indicate which of the k Normal distributions was used to generate
Xi.
To apply EM we must derive an expression for Q(h|h") that applies to our k-means problem.

First, let us derive an expression for 1n p(Y| h*).Note the probability p(yilh*) of a single
instance yi = (i ,Zil, . . Zik) of the full data can be written

1

o

T
e gfz-[:‘Zq(-“f HJ-)

pGilh") = p(xi, zity . .., ziklW') =

To verify this note that only one of the zij can have the value 1, and all others must be 0.
Therefore, this expression gives the probability distribution for xi generated by the selected
Normal distribution. Given this probability for a single instance p(yilh®), the logarithm of the
probability 1n p(Y| h*)for all m instances in the data is

InP(Y|K) = In[] pCult)
=1

In p(yilh')

™ i

1 1 & :
I — = Y 2 —)2
. (s 247 jz=l:z,(xf i))

!

It
_

Finally we must take the expected value of this 1n p(Y| h")over the probability distribution
governing Y or, equivalently, over the distribution governing the unobserved components zij
of Y. Note the above expression for In p(yilh")is a linear function of these zij. In general, for
any function f (z) that is a linear function of z, the following equality holds

E[f(@] = f(ElzD

74

PART-A (2 Marks)

1 Define Bayes Theorem.
A. In classification, Bayes’ rule is used to calculate the probabilities of the classes.

2. What is Bernoulli Density?
A. In a Bernoulli distribution, there are two outcomes: An event occurs or it does not;
for example, an instance is a positive example of the class, or it is not.

3. What is Regression?
A. In regression, we would like to write the numeric output, called the dependent
variable, as a function of the input, called the independent variable.

4. What is Underfitting?

A. If there is bias, this indicates that our model class does not contain
the underfitting solution; this is underfitting.

75

PART-B (10 Marks)

What are the different basics of Sampling Theory?

Explain briefly about Bayes Theorem and Concept Learning?
Explain about Gibbs Algorithm.

What Bayesian Belief Network?

Write a short notes on EM Algorithm?

Explain Maximum Likelihood hypothesis for predicting probabilities.

Write short notes of the following.
Estimating hypothesis accuracy.

Basics of sampling theory.

76

UNIT -3
DIMENSIONALITY REDUCTION

Why Reduce Dimensionality?

[] Reduces time complexity: Less computation

[J Reduces space complexity: Lessparameters

[J Saves the cost of observing the feature

[Simpler models are more robust on small datasets
LI More interpretable; simpler explanation

[Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions

Feature Selection vs Extraction

[] Feature selection: Choosing k<d important features, ignoring the remaining d — k

Subset selection algorithms

[Feature extraction: Project the original xi , i =1,...,d dimensions to new k<d dimensions,
zj,j=1,..k

Principal components analysis (PCA), linear discriminant analysis (LDA), factor analysis
(FA)

Subset Selection
[l There are 2d subsets of d features
[] Forward search: Add the best feature at each step

[Set of features F initially @.
L At each iteration, find the best new feature

j=argmini E (FEXi)

[Addxjto FifE(FEXj)<E(F)

[1 Hill-climbing O(dz) algorithm

[] Backward search: Start with all features and remove one at a time, ifpossible.

[J Floating search (Add k, remove) Principal Cmponents Analysis (PCA)

77

[J Find a low-dimensional space such that when x is projected there, information loss is
minimized.

[] The projection of x on the direction of wis: z = wTx

[Find w such that Var(z) is maximized Var(z) = Var(w'x) = E[w'x—w x)?]
= E[w x—w p)(w'x-w'p)]

= E[W' (x —p)(x— 1) W]

=w! E[(x - p)(x) w=w' T w

where Var(x)= E[(X — g)(x—) '] =3

[] Maximize Var(z) subject to |jw||=1

>wl = awl that is, w1 is an eigenvector of)’

Choose the one with the largest eigenvalue for Var(z) to be max

[] Second principal component: Max Var(z2), s.t., |w2||=1
and orthogonal to w1

> w2 = a w2 that is, w2 is another eigenvector of
and so on. What PCA does z=WT(x —m)
where the columns of W are the eigenvectors of >, and m is sample mean

Centers the data at the origin and rotates the axes

A A

IS - -
- <y I

[

=
N

How to choose k ?

[Proportion of Variance (PoV) explained

78

AL+ A2 +00+ Ak
A+ A2 +0+ Ak ++Ad

when Aj are sorted in descending order

[Typically, stop at PoV>0.9

[Scree graph plots of PoV vs kK, stop at “elbow”

Eigenvalues

Prop of var

200

100

(a) Scree graph for Optdigits

10 20 30 40 50 60 70
Eigenvectors

(b) Proportion of variance explained

10 20 30 40 50 60 70
Eigenvectors

79

3{]_ ___________ SRRREEREEERE .,.__....__._.t ________________________ , ____________ SREEREREREEE .,.__________,.
: : : 2 2 : : : :
5 A S i | | |
. . ; 2 3 e i . . .
33 33 52 253 8 : : :
: : : 6% 2 : : X
0] fo e ILS ______ 3...1 ____________ e oo ket QJ dee
: 3 - -8 & g 0 : ' '
. 8r 5.5 o g 6
5 1 a 0.
g ; 2.9 o8 041 6.5
g OF - e timns T [S k. R L A L ot : és
= T 7 7 : :
@© o] : 0 : {5}
0 Z : 58 5 6
b= 1 ;99 9 ’t 2.6
(S || S e SR P T 1 .
1 :
! 94 4'I 9
. . 1:
B, Ty . C L G e L T e L
; ' 40 4 ; : : : :
4; 4
4 4
Y] IR ____________ ____________ ____________ 54__._4 _____ ____________
40 | | i ; ; i i i
-40 =30 =20 -10 0 10 20 30 40

First Eigenvector

Factor Analysis

[Find a small number of factors z, which when combined generate x :
Xi — Mi = Vvilzl + vi2z2 + ... + vikzk + €i where zj, j =1,...,k are the latent factors with
E[zj]=0, Var(zj)=1, Cov(zi ,, zj)=0, i #j , &i are the noise sources

E|[i |= i, Cov(si , gj) =0, i #j, Cov(ei , zj) =0, and vij are the factor loadings

PCA vs FA
[J] PCA From xto z 7= WT(x— 1)
[FA From z to x X—U=Vz+eg

e () Ql O O <f ST

’\I':;:“::ub/ov (> (> < > O Q Q variables
F

X,

PCA A

Factor Analysis

[In FA, factors zj are stretched, rotated and translated to generate x

A A

~

Y

N

Multidimensional Scaling

[] Given pairwise distances between N points,

dij, i,j =1,...,.N
place on a low-dim map s.t. distances are preserved.
z=g (x| @) Find @ that min Sammon stress
er_ ZSH‘#r_ XS \,2
7
r s
© X) X —X
2
r 2
S
r s
(9(x 0)-g(x 10)
= z -
2
r s
X =X

81

Map of Europe by MDS

2000 - - A e B
1500

1000 -

500

_spp Flisbon L Madridi .. S . S S

~1000[--- - B R R B AR B Rt T e ranbul

- Athens

4500 e S S S T S

5000 i i ; ; ; ;

1]
—2500 —2000 —1500 —1000 —500 0] 500 1000 1500 2000

T

B ——
e T < = I
——as —= S -
P = = > = S =
P’ASI_-:\?_&‘:_? - == = st = Lo = = s == - s -

Map from CIA — The World Factbook: http://www.cia.gov/

Linear Discriminant Analysis
Find a low-dimensional space such that when x is projected classes are well

separated.

82

http://www.cia.gov/

[l Find w that maximizes

[] Between-class scatter:

(m-m } :QNTm ~w'm)21

2 2

=w'(m-mj)mermPw
1 Within-class scatter:

szzz (ngé—m)Zrt1
:ZWT(xtt—mth—m)Twrt?WTSW 1

where,S | : :

Fisher’s Linear Discriminant

[0 Find w that max

w'Sw)

Jw="2___ = [w(mrm)|

w's w W w'S,w

1LDA soln:

w=c-S1t(m —m)
2 w 1

1 Parametric

soln:
—p2)

w=2"(p

83

when

p(x]Ci)~N (ui,2)

Isomap

* Geodesic distance is the distance along the manifold that
the data lies in, as opposed to the Euclidean distance in
the input space

% Geodesic
. distance

FEuclidean ™.
distance

Isomap

® Instancesr and s are connected in the graph if
| | x*x3| | <e or if x®is one of the k neighbors of x*
The edge length is ||x™-x5|]|
® Fortwo nodes r and s not connected, the distance is equal to
the shortest path between them
¢ Once the NxN distance matrix is thus formed, use MDS to find
a lower-dimensional mapping

Optdigits after Isomap (with neighbormooa grapn)

_‘] 50 1 1 1
-150 -100 100 150

Mztlab source from http://web mit edufeoenscifisomapyfisomap. html

Optdigits after l=omap (with neighbomooa grapn).

150 | . .
-i50 -100 50 100 150

Mztlab source from hitp:/fweb. mit edu/cocoscifisomap/isomap. heml

Clustering

Semiparametric Density Estimation

0 Parametric:
Assume a single model for p(x|Ci) (Chapter 4 and 5)

[Semiparametric:
p(x|Ci) is a mixture of densities

Multiple possible explanations/prototypes:

Different handwriting styles, accents in speech

e Nonparametric:
No model; data speaks for itself

Classes vs. Clusters

* Supervised: X = { xf,rt}, * Unsupervised : X ={ xt},
» Classes C,1i=1,...,.K » Clusters G;, i =1,...,k

K k
p(x):Zp(chf)P(C,-) p(x)= lep(x|6i)‘p(6i)
where p(x|C)~N(u,,Y.;) where p(x| G)~N (1, X.:)

o ©={P(G), i, X s, * 0= {P(G), 1 XY

p(C) 2ty _ 2K
P(Ci): TE m; = i y Labels, rt; ?
f !

B erf(xf —m, Ixf = ml.)T
2.0

Mixture Densities

plx) - 2 x| 6)P(G)

where @G; : the mixture components/groups/clusters
P(G;) : mixture proportions (priors)

p(x|G;) : component densities

Gaussian mixture where p(x|G,) ~- N(y;, ¥,)
paI'EIIIlEtEI’S‘D = {P (gi): Hi Y }ki=1

unlabeled sample X={x},_, (unsupervised learning)

k-Means Clustering

¢ Find k reference vectors (prototypes/codebookvectors/
codewords) which best represent data

* Referencevectors, m;, J=1,...,k

» Use nearest (most similar) reference:

et | = minfx* - m,|
J

* Reconstruction error

B({m), [X)=3.Z 5[-m

;. { m, |
l 0 otherwise

k-means Clustering

Initialize m;.i=1..... k, for example, to k random !
Repeat
For all 2t € X
if || — m;| = min; ||&* — m;||

otherwise

For all m;.2 =1

m; -—Zib “"/Zf”

until m; converge

k-means Clustering

One disadvantage:
* Alocalsearch procedure

* Thefinal m; highly depend on the initial m;

The methods to initial m;
* Randomlyselect kinstances
e Calculatethe meanofall dataand add small random vectors

» Calculate the principal component partitioning the datainto k
groups, and then take the means of these groups

Encoding/Decoding

Encoder Decoder

; Communication @_
| line ‘
i

Find closest

5

b = 1 if”xt =L = mj_in“xt ‘mj” Error is "x’—mi ’2
" |0 otherwise

Expectation-Maximization Algorithm

- An expectation-maximization (EM) algorithm is used in
statistics for finding maximum likelihood estimates of parameters in
probabilistic models, where the model depends on unobserved
latent variables.

- EMis an iterative method which alternates between performing an
expectation (E) step,

= which computes an expectation of the log likelihood with respect to the
current estimate of the distribution for the latent variables,

and a maximization (M) step,

= which computes the parameters which maximize the expected log
likelihood found on the E step.

E- and M-steps

[terate the two steps

E-step: Estimate the expectation of the log likelihood
given X and current @

M-step: Find new @’ given z, X, and old ®.
E-step:Q (D@)=E| £, (DX, Z)|X, D' |
M-step: @' =arg mng(d)l(D’)

Anincrease in 9 increases incomplete likelihood
(proven by Laird and Rubin (1977))

L(@"X)= L(2'|X)

EM In Gaussian Mixtures

* Define indicator variables zt ={z¢, , z, ,..., z{; }
zt; = 1if x* belongs to G;, 0 otherwise; assume p(x|G;)~N(u;,Y.;)

¢ zis the multinomial distribution from k categories with prior
probabilities TT;.

* E-step: (Seep. 169-p. 170)
Q(@|D')=E[L, (DX, Z)| X, @']

B —)
p(x16.9')P(G,)

where E[zf ‘X,CD’] =

- 2,p(x1G,,9)P(G)
=P(GIx', @)=k

-30 ! 1 | |)
-40 - -20 -10 0 10 20

X

Data points and the fitted Gaussians by EM, initialized by one k-means iteration of Figure 7.2.
Unlike in k-means, EM allows estimating the covariance matrices. h;indicates the contours of
the estimated Gaussian densities.

PART-A (2 Marks)

1. What are Clustering Methods?
A. Clustering methods allow learning the mixture parameters from data.

2. What is EM Algorithm?

A. The Expectation-Maximization (EM) algorithm is wused in maximum
likelihood estimation where the problem involves two sets of random
variables of which one, X, is observable and the other, Z, is hidden.

3. What is Dimensionality Reduction Method?

A. Dimensionality reduction methods are used to find correlations between
variables and thus group variables; clustering methods, on the other hand, are
used to find similarities between instances and thus group instances.

4, What is Hierarchical Clustering?

A. There are also methods for clustering that only use similarities of instances,
without any other requirement on the data; the aim is to find groups such that
instances in a group are more similar to each other than instances in different
groups. This is the approach taken by hierarchical clustering.

5. What is Agglomerative clustering?

A. An agglomerative clustering algorithm starts with N groups, each initially
containing one training instance, merging similar groups to form larger
groups, until there is a single one.

PART-B (10 Marks)

What is Principle Component Analysis?

Explain K- Means clustering?

Explain about spectral clustering?

Write a short notes on outlier detection.

Explain how to choose the smoothing parameter?

Write the differences between K- Means clustering and spectral clustering.

Write about Hierarchal clustering.

UNIT-4

Introduction

In classification we define a set of discriminant functions gj(x), j=1, ..., K, and then
we choose Ci if gi(x) = K maxj=1 gj(x)Previously, when we discussed methods for
classification, we first estimated the prior probabilities, "P(Ci), and the class likelihoods,
"p(x|Ci), then used Bayes’ rule to calculate the posterior densities. We then defined the
discriminant functions in terms of the posterior, for example,
gi(x) = log "P(Ci|x)

This is called likelihood-based classification.

We are now going to discuss discriminant-based classification where we assume a model
directly for the discriminant, bypassing the estimation of likelihoods or posteriors. The
discriminant-based approach, as inthe case of decision trees, makes an assumption on the form
of the discriminant between the classes and makes no assumption about, or requires no
knowledge of the densities—for example, whether they are Gaussian, or whether the inputs
are correlated, and so forth.

We define a model for the discriminant gi(x|®i) explicitly parameterized with the set of
parameters @i , as opposed to a likelihood-based scheme that has implicit parameters in
defining the likelihood densities. This is a different inductive bias: instead of making an
assumption on the form of the class densities, we make an assumption on the form of the
boundaries separating classes.

Learning is the optimization of the model parameters @i to maximize the quality of the
separation, that is, the classification accuracy on a given labeled training set. This differs from
the likelihood-based methods that search for the parameters that maximize sample likelihoods,
separately for each class.

In the discriminant-based approach, we do not care about correctly estimating the
densities inside class regions; all we care about is the correct estimation of the boundaries
between the class regions. Those who advocate the discriminant-based approach (e.g., Vapnik
1995) state that estimating the class densities is a harder problem than estimating the class
discriminants, and it does not make sense to solve a hard problem to solve an easier problem.
This is of course true only when the discriminant can be approximated by a simple function.

In this chapter, we concern ourselves with the simplest case where the discriminant functions
are linear in

X.
) o
gi (X |Wi, wio) = w]lx + Wip = > WijXj + Wio
J=1

The linear discriminant is used frequently mainly due to its simplicity: both the space and
time complexities are O(d). The linear model is easy to understand: the final output is a
weighted sum of the input attributes xj . The magnitude of the weight wj shows the importance
of xj and its sign indicates if the effect is positive or negative. Most functions are additive in
that the output is the sum of the effects of several attributes where the weights may be positive

96

(enforcing) or negative (inhibiting).For example, when a customer applies for credit, financial
institutions calculate the applicant’s credit score that is generally written as a sum of the
effects of various attributes; for example, yearly income has a positive effect (higher incomes
increase the score.

Generalizing the Linear Model

When a linear model is not flexible enough, we can use the quadratic discriminant function
and increase complexity, but this approach is O(d2) and we again have the bias/variance
dilemma:

gi (X|Wi, Wi, Wig) = XTWiX + WiX + Wip

the quadratic model, though is more general, requires much larger training sets and may
overfit on small samples. An equivalent way is to preprocess the input by adding higher-order
also called product terms.

For example, with two inputs x1 and x2, we can define new variables

71 =x1,22 =x2,23 = x21, 74 = x22 , 75 = x1x2 and take z = [z1, z2, 23, z4, z5]" as the input.
The linear function defined in the five-dimensional z space corresponds to a nonlinear
function in

the two-dimensional x space. Instead of defining a nonlinear function (discriminant or
regression) in the original space, what we do is to define a suitable nonlinear transformation to
a new space where the function can be written in a linear form.

We write the discriminant as

B
gi(x) = > wjgij(x)
j=1

where ¢;;(x) are basis functions.

Geometry of the Linear Discriminant

e TwoClasses
Let us start with the simpler case of two classes. In such a case, one discriminant function is

gix) Jiix) —ge(x)
(wix +wig) — (Wwix +wa)
(w1 — wa)Tx = (wig — wan)

T'x +wy

W
and we

chooge (1 ifgix)>0
?_ C» otherwise

sufficient:

This defines a hyperplane where w is the weight vector and w0 is the otherwise. The
hyperplane divides the input space into two half-spaces:

the decision region R1 for C1 andR2 for C2. Any x inR1 is on the positive side of the
hyperplane and any x in R2 is on its negative side. When x is 0, g(x) = w0 and we see that if
w0 > 0, the origin is on the positive side of the hyperplane, and if w0 < 0, the origin is on the
negative side, and if w0 = 0, the hyperplane passes through the origin.

Take two points x1 and x2 both on the decision surface; that is, g(x1) =g(x2) =0,
wix, +wy = wlix: +wy
wl(x; —x2) = 0

and we see that w is normal to any vector lyving on the hyperplane. Let us
rewrite x as (Duda, Hart, and Stork 2001)

X=Xp+F—
P
(1w ||

where xp is the normal projection of x onto the hyperplane and r gives us the distance from x
to the hyperplane, negative if x is on the negative threshold. This latter name comes from the
fact that the decision rule can be rewritten as follows: choose C1 if w' x > —w0, and choose
C2 side, and positive if x is on the positive side. Calculating g(x) and noting that g(xp) = 0, we

have

_ gix)
llw|

We see then that the distance to origin is

Thus wy determines the location of the hyperplane with respect to the
origin, and w determines its orientation.

e Multiple Classes

When there are K > 2 classes, there are K discriminant functions. When they are linear, we
have

gi(x|wi, wio) = w] X + wig
We are going to talk about learning later on but for now, we
assume that the parameters, wi,wi0, are computed so as to have

i (>0 ifxec
gi(X|Wi, Wio ~ | =0 otherwise

for all x in the training set. Using such discriminant functions corre-
sponds to assuming that all classes are linearly separable; thart is, for
each class Cj, there exists a hyperplane H; such that all x = C; lie on its
positive side and all x € C;, j # i lie on its negative side.

During testing, given x, ideally, we should have only one g;(x),j =
1,...,K greater than 0 and all others should be less than 0, but this is
not always the case: The positive half-spaces of the hyperplanes may
overlap, or, we may have a case where all g;(x) < 0. These may be taken
as reject cases, but the usual approach is to assign x to the class having
the highest discriminant:

Choose C; if gi(x) = ma:-cf}":] gi(x)

e Pairwise Separation

If the classes are not linearly separable, one approach is to divide it into
a set of linear problems. One possibility is pairwise separation of classes
(Duda, Hart, and Stork 2001). It uses K(K — 1)/2 linear discriminants,
gij(x), one for every pair of distinct classes:
dij(xIwij, Wijo) = wiix + wijo
The parameters w;;, j # i are computed during training so as to have
=0 if x = C;
gijlx) = =0 iftx=eC; i,j=1,....Kandi#j
don’t care otherwise

that is, if x' = Cy where k £ i,k # J, then x" is not used during training
of gijix).

e Parametric Discrimination Revisited

if thhe class densities, pix | Cy)., are Gaussian and
share @& COMUIMTOI COVAriance matrix, thhe ddscrimminant funcrtion is linear

@i} = vl a - wia

where the parameters can be analyiically calculated as
L = ="y

Mo = *%Hf-z_lﬂf = log P Oc;)

Given a dataset. we first calcularte the estimartes for gr;, and = and then
pluz the estimates, e, S, in eguation 1012 and calcualate the parametenrs

of rthe linear discrimimnanc.
Let us again see the special case where there are mwo classes. We defime
M = FP{C Ix) and PI{Co |Ixc)y = 1 — o Then in classificatiom, we

o= S
choose 7y 1F 1 - = 1 amnd « 'z ortherwise

lo.gy]—_Ly =

logv/(1 — v} 1s known as the logir transformaton or log odds of yv. In
the case of two normal classes sharing a common covariance maltrix, the
log odds is linear:

. PiC1Ix) P(C1]x)

logit(P(C =1 — log —— 127
ogit(P(C1Ix)) = log 750~y = 198 5ie 1)
pixici) o, PlC)
pi(x|Cz2) PiCz)
(2m) 42|z Viexp[—(1/2)x — pu) TE " x — py)]

(2m)-4/2 || -1 2exp[—(1/2)x — pu)TE VN (x — p)1
T

= wix +wy

log

PiCh)
P(Cz)

og og

where

w = E 1 —)

wo = —2(m) E G -) log%
The inverse of logit
PiCy|x)

1 — PicCyx)
is the logistic function, also called the sigmeid function
1
1 +exp[—(wlix i+ wy)]

log =wlix + wy

P(Cy|x) = sigmoid(w!x + wy) =

During training, we estimate m1p,mm2,5 and plug these estimates in
equation 10.14 to calculate the discriminant parameters. During testing,
given x, we can either

1. calculate gix) = w!x + wyp and choose C; if g(x) = 0, or
2. calculate y = sigmoid(w?x + wy) and choose ¢y if ¥ = 0.5,

because sigmoid(0) = 0.5. In this latter case, sigmoid wransforms the
discriminant value to a posterior probability. This is valid when there
are two classes and one discriminant; we see in sectdon 10.7 how we can
estimate posterior probabilities for K = 2.

Gradient Descent

In likelihood-based classification, the parameters were the sufficient statistics of
p(x|Ci) and P(Ci), and the method we used to estimate the parameters is maximum likelihood.
In the discriminant-based approach,the parameters are those of the discriminants, and they are
optimized
to minimize the classification error on the training set. When w denotes the set of parameters

wh = argl%n E(w|X)
and E(w|X) is the error with parameters w on the given training set X, we look for

In many cases, some of which we will see shortly, there is no analytical solution and we need
to resort to iterative optimization methods, the most commonly employed being that of
gradient descent. When E(w) is differentiable function of a vector of variables.

Multilayer Perceptrons

Artificial neural network models, one of which is the perceptron, take their inspiration
from the brain. There are cognitive scientists and neuroscientists whose aim is to understand
the functioning of the brain (Posner 1989; Thagard 2005), and toward this aim, build models
of the natural neural networks in the brain and make simulation studies.

o Understanding theBrain

According to Marr (1982), understanding an information processing system has three
levels, called the levels of analysis:
1. Computational theory corresponds to the goal of computation and an abstract definition of
the task.
2. Representation and algorithm is about how the input and the output are represented and
about the specification of the algorithm for the transformation from the input to the output.
3. Hardware implementation is the actual physical realization of the system.

One example is sorting: The computational theory is to order a given set of elements. The
representation may use integers, and the algorithm may be Quicksort. After compilation, the
executable code for a particular processor sorting integers represented in binary is one
hardware implementation. The idea is that for the same computational theory, there may be
multiple
representations and algorithms manipulating symbols in that representation. Similarly, for any
given representation and algorithm, there may be multiple hardware implementations. We can
use one of various sorting algorithms, and even the same algorithm can be compiled on
computers with different processors and lead to different hardware implementations.

To take another example, ‘6°, ‘VI’, and ‘110° are three different representations of the
number six. There is a different algorithm for addition depending on the representation used.
Digital computers use binary representation and have circuitry to add in this representation,
which is one particular hardware implementation. Numbers are represented differently and
addition corresponds to a different set of instructions on an abacus, which is another hardware
implementation. When we add two numbers in our head, we use another representation and an

101

algorithm suitable to that representation, which is implemented by the neurons. But all these
different hardware implementations — for example, abacus, digital computer—implement the
same computational theory, addition.

The classic example is the difference between natural and artificial flying machines. A
sparrow flaps its wings; a commercial airplane does not flap its wings but uses jet engines.
The sparrow and the airplane are two hardware implementations built for different purposes,
satisfying different constraints. But they both implement the same theory, which is
aerodynamics.

Neural Networks as a Paradigm for Parallel Processing

Since the 1980s, computer systems with thousands of processors have been
commercially available. The software for such parallel architectures, however, has not
advanced as quickly as hardware. The reason for this is that almost all our theory of
computation up to that point was based on serial, one- processor machines. We are not able to
use the parallel machines we have efficiently because we cannot program them efficiently.

There parallel processing are mainly two paradigms for parallel processing: In Single
Instruction Multiple Data (SIMD) machines, all processors execute the same instruction but
on different pieces of data. In Multiple Instruction Multiple Data (MIMD) machines, different
processors may execute different instructions on different data. SIMD machines are easier to
program because there is only one program to write. However, problems rarely have such a
regular structure that they can be parallelized over a SIMD machine.

MIMD machines are more general, but it is not an easy task to write separate programs for all

the individual processors; additional problems are related to synchronization, data transfer
between processors, and so forth. SIMD machines are also easier to build, and machines with
more processors can be constructed if they are SIMD. In MIMD machines, processors are
more complex, and a more complex communication network should be constructed for the
processors to exchange data arbitrarily.

Assume now that we can have machines where processors are a little bit more complex
than SIMD processors but not as complex as MIMD processors. Assume we have simple
processors with a small amount of local memory where some parameters can be stored. Each
processor implements a fixed function and executes the same instructions as SIMD
processors; but by loading different values into the local memory, they can be doing different
things and the whole operation can be distributed over such processors. We will then have
what we can call Neural Instruction Multiple Data (NIMD) machines, where each processor
corresponds to a neuron, local parameters correspond to its synaptic weights, and the whole
structure is a neural network. If the function implemented in each processor is simple and if
the local memory is small, then many such processors can be fit on a single chip.

The problem now is to distribute a task over a network of such processors and to
determine the local parameter values. This is where learning comes into play: We do not need
to program such machines and determine the parameter values ourselves if such machines can
learn from examples.

Thus, artificial neural networks are a way to make use of the parallel hardware we can
build with current technology and—thanks to learning—they need not be programmed.

102

Therefore, we also save ourselves the effort of programming them.
MLP as a Universal Approximator

We can represent any Boolean function as a disjunction of conjunctions,and such a
Boolean expression can be implemented by a multilayer perceptron with one hidden layer.
Each conjunction is implemented by one hidden unit and the disjunction by the output unit.
For example,

x1 XOR x> = (x1 AND ~ x5) OR (~ x3 AND x»)

We have seen previously how to imﬁlement AND and OR using perceptrons. So two
perceptrons can In parallel implement the two AND, and another ferceptron on top can OR
them together. We see that the first layer maps inputs from the (x1, x2) to the (z1, z2) space
defined by the first-layer perceptrons. Note that both inputs, (0,0) and (1,1),are mapped to
(0,0) in the (z1, z2) space, allowing linear separability in this second space.

Thus in the binary case, for every input combination where the output is 1, we define a hidden
unit that checks for that particular conjunction of the input. The output layer then implements
the disjunction. Note that this is just an existence proof, and such networks may not be
practical

as up to 29 hidden units may be necessary when there are d inputs. Such an architecture
implements table lookup and does not generalize.

We can extend this to the case where inputs are continuous to show that similarly, any
arbitrary function with continuous input and outputs can be approximated with a multilayer
perceptron. The proof of universal approximation is easy with two hidden layers. For every
input case or region, that region can be delimited by hyperplanes on all sides using hidden
units on the first hidden layer. A hidden unit in the second layer then ANDs them together to
bound the region.

Backpropagation Algorithm

Training a multilayer perceptron is the same as training a perceptron; the only difference is
that now the output is a nonlinear function of the input thanks to the nonlinear basis function
in the hidden units. Considering the hidden units as inputs, the second layer is a perceptron
and we already know how to update the parameters, vij, in this case, given the inputs z. For
the first-layer weights, whj, we use the chain rule to calculate the gradient:

JoF oF dy; 0z

0wy 0y 0Zp OWh; _
Itis as 1m Ui error propagates 1om the output y back to the inputs and hence the name
backpropagation
was coined.

A) Nonlinear Regression
Let us first take the case of nonlinear regression (with a single output) calculated as

H
}.?I — z '..rhz,:'ﬁl A 1.!.':'
h=1

with z, computed by equation
|

i = 1,....H
1 +exp [— (Zf,-zl WhjiXj + Who)]

zp = sigmoid(w] x) =

The output y; are perceptrons in the second layer taking the hidden
units as their inputs
The error function over the whole sample in regression is

E(CW,v| X)) = L) E:(,—t — yt)2
- r

The second layer is a perceptron with hidden units as the inputs, and we use the least-squares
rule to update the second-layer weights:

Avp =n D (r' —y")z,

t
The first layer are also perceptrons with the hidden units as the output units but in updating
the first-layer weights, we cannot use the least squares rule directly as we do not have a
desired output specified for the hidden units. This is where the chain rule comes into play. We
write

A\\'hj

v o7

0z}

8‘\'}1]

t
(! 1 ’ > ¢ = N
—'721:—” —¥) 3_,’.’, lh(l_zh)‘\jl

v

EL/dVE Bvi/dzt :
J0E' /oy oy' [0z, 52;] | dWnj

N> (r' — ¥) vazh (1 — z})X5
I

The product of the first two terms (r'~y")vn acts like the error term for hidden unit h. This
error is backpropagated from the error to the hidden unit. (r' —y') is the error in the output,
weighted by the “responsibility”of the hidden unit as given by its weight vi. In the third term,
Zn(1 — zn) is the derivative of the sigmoid and x' j is the derivative of the weighted sum with
respect to the weight wyj . Note that the change in the first layer weight, Awhn;j , makes use of
the second-layer weight, va. Therefore,we should calculate the changes in both layers and
update the first-layer weights, making use of the old value of the second-layer weights, then
update the second-layer weights. Weights, whj, vn are started from small random values
initially, for example, in the range [—0.01, 0.01], so as not to saturate the sigmoids. It is also a
good idea to normalize the inputs so that they all have 0 mean and unit variance and have the

same scale, since we use a single » parameter.

With the learning equations given here, for each pattern, we compute the direction in which
each parameter needs be changed and the magnitude of this change.

In batch learning, we accumulate these changes over all patterns and make the change once
after a complete pass over the whole training set is made, as shown in the previous update
equations.

B) Two-Class Discrimination
When there are two classes, one output unit suffices:
H
y! = sigmoid Z. VhZy + Vo
h=1

which approximates P(C1|xt) and "P(C2|xt) =1 —yt.

The error function in this case is

E(W,vIX)=->rlogy' + (1 -r')log(l-y")

[

The update equations implementing gradient descent are

Avp = nX(r'—y9z,
[
Awpj = N (r' =y) vnzp(l — z;)x5
[
As in the simple perceptron, the update equations for regression and classification are
identical (which does not mean that the values are).

C) Multi-class Discrimination

In a (K = 2)-class classification problem, there are K outputs

H
of = > VinZp + Vio
h=1

and we use softmax to indicate the dependency between classes; namely,
they are mutally exclusive and exhaustive:

exp o;

vl = _— T
>k EXPp O,

e

Initialize all v;; and wy; to rand(—0.01,0.01)
Repeat
For all (x',r') = X in random order
Forh=1,... . H
zp — sigmoid(w] x")
Fori=1,...,K
vi=vlz
Fori=1,...,K
Av; = nirl —yhz
Forh=1,.... H
Awp = n(Z;(rf — ¥ vin)zn(l — zp)x*
Fori=1,...,K
Vi — Vi + A
Forh=1,....H
Wi — Wi+ Awy
Until convergence

Figure Backpropagation algorithm for training a multilayer perceptron
for regression with K outputs. This code can easily be adapted for two-class
classification (by setting a single sigmoid output) and to K > 2 classification (by
using softmax outputs).

where y; approximates P(C;|x"). The error function is

E(W,VIX) = => > rlogy!

I I

and we get the update equations using gradient descent:

. — T [[
AVin n> it —yhz}
I

Awnj = n Z {ZU’:‘? - }"ftt'vfh} 2.51 (1 — z;r}'}"'.[.,f
f I

Richard and Lippmann (1991) have shown that given a network of
enough complexity and sufficient training data, a suitably trained mul-
tilayer perceptron estimates posterior probabilities.

Training Procedures

o Improving Convergence

Gradient descent has various advantages. It is simple. It is local; namely, the change in a
weight uses only the values of the presynaptic and postsynaptic units and the error (suitably
backpropagated). When online training is used, it does not need to store the training set and
can adapt as the task to be learned changes. Because of these reasons, it can be (and is)
implemented in hardware. But by itself, gradient descent converges slowly. When learning
time is important, one can use more sophisticated optimization methods (Battiti 1992). Bishop
(1995) discusses in detail the application of conjugate gradient and second-order methods to
the training of multilayer perceptrons. However, there are two frequently used simple
techniques that improve the performance of the gradient descent considerably, making
gradient-based methods feasible in real applications.

Let us say wi is any weight in a multilayer perceptron in any layer, including the biases. At

each parameter update, successive Awt i values may be so different that large oscillations may

occur and slow convergence. t is the time index that is the epoch number in batch learning and

the iteration number in online learning. The idea is to take a running average by incorporating

the previous updatre in the current change as if there is a momentum due to previous updates:
oE i1

Awl! — _ o w Al
Aw; r]awf AW

o is generally taken between 0.5 and 1.0. This approach is especially
useful when online learning is used, where as a result we get an effect of
averaging and smooth the trajectory during convergence. The disadvan-
tage is that the past i't.wr-"l values should be stored in extra memory.

Adaptive Learning Rate

In gradient descent, the learning factor n determines the magnitude of
change to be made in the parameter. It is generally taken between 0.0
and 1.0, mostly less than or equal to 0.2. It can be made adaptve for
faster convergence, where it is kept large when learning takes place and
is decreased when learning slows down:

A — +a if E'*T = E!
2= | —bn otherwise

Thus we increase n by a constant amount if the error on the training set
decreases and decrease it geometrically if it increases. Because E may
oscillate from one epoch to another, it is a better idea to take the average
of the past few epochs as E'.

Overtraining

A multilayver perceptron with 4 inputs, H hidden units, and K outputs
has H{d + 1) weights in the first laver and K(H + 1) weights in the second
layer. Both the space and time complexity of an MLP is @(H - (K + d)).
When e denotes the number of training epochs, training time complexity
is Me-H-(K +d)).

In an application, d and K are predefined and H is the parameter that we play with to tune the
complexity of the model. We know from previous chapters that an overcomplex model
memorizes the noise in the training set and does not generalize to the validation set. For
example, we have previously seen this phenomenon in the case of polynomial regression where
we noticed that in the presence of noise or small samples, increasing the polynomial order leads
to worse generalization. Similarly in an MLP, when the number of hidden units is large, the
generalization accuracy deteriorates, and the bias/variance dilemma also holds for the MLP, as it
does for any statistical estimator (Geman, Bienenstock, and Doursat 1992).

e Structuring the Network

In some applications, we may believe that the input has a local structure. For example, in
vision we know that nearby pixels are correlated and there are local features like edges and
corners; any object, for example, a handwritten digit, may be defined as a combination of such
primitives.

Similarly, in speech, locality is in time and inputs close in time can be grouped as speech
primitives. By combining these primitives, longer utterances, for example, speech phonemes,
may be defined. In such a case when designing the MLP, hidden units are not connected to all
input units because not all inputs are correlated. Instead, we define hidden units that define a
window over the input space and are connected to only a small local subset of the inputs. This
decreases the number of connections and therefore the number of free parameters (Le Cun et
al. 1989).

Tuning the Network Size

Previously we saw that when the network is too large and has too many free
parameters, generalization may not be well. To find the optimal network size, the most
common approach is to try many different architectures,train them all on the training set, and
choose the one that
generalizes best to the validation set. Another approach is to incorporate this structural
adaptation into the learning algorithm. There are two ways this can be done:

1. Inthe destructive approach, we start with a large network and gradually remove units
and/or connections that are not necessary.

2. In the constructive approach, we start with a small network and gradually add units and/or
connections to improve performance.

One destructive method is weight decay where the idea is to remove unnecessary connections.
Ideally to be able to determine whether a unit or connection is necessary, we need to train
once with and once without and check the difference in error on a separate validation set. This
is costly since it should be done for all combinations of such units/connections.

|ThE Bayesian approach in training neural networks considers the param-
eters, namely, connection weights, w;j, as random variables drawn from
a prior distribution p(w;)} and computes the posterior probability given
the data

piXiwip(iw)
p(X)

piwl|X) =

where w 1s the vector of all weights of the network. The MAP estimate w
is the mode of the posterior

Wyap = arg m_'gxlﬂgp{wl}(]

Taking the log of equation
logp(w|X) =logp(X|w) +logpiw) + C

The first term on the right is the log likelihood, and the second is the
log of the prior. If the weights are independent and the prior is taken as
Gaussian, N0, 1/2A)

2

Wy
Y — -) __h L - " ——L
piw) |j|ptwj]lm ere p(w; c EPLP[2{”21]]

the MAP estimate minimizes the augmented error function

E'=E + Allw|?

where E is the usual classification or regression error (negative log like-
lihood). This augmented error is exactly the error function we used in
welght decay. Using a large A assumes small variability
in parameters, puts a larger force on them to be close to 0, and takes
the prior more into account than the data; if A is small, then the allowed
variability of the parameters is larger. This approach of removing unnec-
essary parameters is known as ridge regression in statistics.

Dimensionality Reduction

IN AN APPLICATION, whether it is classification or regression, observa-
tion data that we believe contain information are taken as inputs and fed
to the syvstem for decision making. Ideally, we should not need feamre
selection or extraction as a separate process; the classifier (or regressor)
should be able to use whichever features are necessary, discarding the
irrelevant. However, there are several reasons why we are interested in
reducing dimensionality as a separate preprocessing step:

= In most learning algorithms, the complexity depends on the number of
input dimensions, d, as well as on the size of the darta sample, N, and
for reduced memory and computation, we are interested in reducing
the dimensionality of the problem. Decreasing d also decreases the
complexity of the inference algorithm during rtesting.

When an input is decided to be unnecessary, we save the cost of ex-
tracting it

Simpler models are more robust on small datasets. Simpler models
have less variance, that is, they vary less depending on the particulars

of a sample, including noise, outliers, and so forth.

When data can be explained with fewer feamres, we get a better idea
about the process that underlies the data and this allows knowledge
extraction.

When data can be represented in a few dimensions without loss of
informartion, it can be plotted and analyzed visually for structure and
outliers.

There are two main methods for reducing dimensionality: feature se-
lection and featare extraction. In feature selection, we are interested in
finding k of the d dimensions that give us the most information and we
discard the other (d — k) dimensions. We are going to discuss subset
selecrion as a feamre selection method.

In feature extraction, we are interested in finding a new set of k di-
mensions that are combinations of the original d dimensions. These
methods mav be supervised or unsupervised depending on whether or
not they use the ourput informartion. The best known and most widely
used feature extraction methods are Principal Componernts Analysis (PCA)
and Linear Discriminant Analysis (LDA), which are both linear projection
methods, unsupervised and supervised respectively. PCA bears much
similarity to two other unsupervised linear projection methods, which we
also discuss—namely, Factor Analysis (FA) and Multudimensional Scaling
(MDS). As examples of nonlinear dimensionality reduction, we are going
to see Isometric feature mapping (Isomap) and Locally Linear Embedding
(LLE).

Deep learning

Deep learning is a class of machine learning algorithms that:

e use a cascade of multiple layers of nonlinear processing units for feature extraction
and transformation. Each successive layer uses the output from the previous layer as
input.
learn in supervised (e.g., classification) and/or unsupervised (e.g., pattern analysis)
manners.

learn multiple levels of representations that correspond to different levels of
abstraction; the levels form a hierarchy of concepts.

In deep learning, each level learns to transform its input data into a slightly more abstract and
composite representation. In an image recognition application, the raw input may be a matrix
of pixels; the first representational layer may abstract the pixels and encode edges; the second
layer may compose and encode arrangements of edges; the third layer may encode a nose and
eyes; and the fourth layer may recognize that the image contains a face. Importantly, a deep
learning process can learn which features to optimally place in which level on its own.

The "deep™ in "deep learning” refers to the number of layers through which the data is
transformed. More precisely, deep learning systems have a substantial credit assignment path
(CAP) depth. The CAP is the chain of transformations from input to output. CAPs describe
potentially causal connections between input and output. For a feedforward neural network,
the depth of the CAPs is that of the network and is the number of hidden layers plus one (as
the output layer is also parameterized). For recurrent neural networks, in which a signal may
propagate through a layer more than once, the CAP depth is potentially unlimited. No
universally agreed upon threshold of depth divides shallow learning from deep learning, but
most researchers agree that deep learning involves CAP depth > 2. CAP of depth 2 has been
shown to be a universal approximator in the sense that it can emulate any function. Beyond
that more layers do not add to the function approximator ability of the network. The extra
layers help in learning features.

Deep learning architectures are often constructed with a greedy layer-by-layer method. Deep
learning helps to disentangle these abstractions and pick out which features improve
performance.

For supervised learning tasks, deep learning methods obviate feature engineering, by
translating the data into compact intermediate representations akin to principal components,
and derive layered structures that remove redundancy in representation.

Deep learning algorithms can be applied to unsupervised learning tasks. This is an important
benefit because unlabeled data are more abundant than labeled data. Examples of deep
structures that can be trained in an unsupervised manner are neural history compressors and
deep belief networks.

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Nonlinear_filter
https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Feature_engineering
https://en.wikipedia.org/wiki/Principal_Component_Analysis
https://en.wikipedia.org/wiki/Deep_belief_network

PART-A (2 Marks)

1. What is Linear Regression Model?

A. In linear discrimination, we assume that instances of a class are linearly separable from
instances of other classes. This is a discriminant based approach that estimates the
parameters of the linear discriminant directly from a given labeled sample.

What is Discrimination By Regression?
. In regression, the probabilistic model is ri =yt + € where €= N(0,62). If r €{0, 1}, y:can be

constrained to lie in this range using the sigmoid function.

What is the perceptron?

. Artificial neural network models, one of which is the perceptron take their inspiration
from the brain. There are cognitive scientists and neuroscientists whose aim is to
understand the functioning of the brain and toward this aim, build models of the natural

neural networks in the brain and make simulation studies.

What is Bayesian Estimation?

. Bayesian estimation is used when we have some prior information regarding a parameter.

For example, before looking at a sample to estimate the mean p of a distribution, we may
have some prior belief that it is close to 2, between 1 and 3. Such prior beliefs are

especially important when we have a small sample.

Explain Bayesian Approaches.
. Bayesian approaches have become popular recently with advances in computational

power allowing us to sample from or approximate the posterior probabilities.

PART-B (10 Marks)

Explain how to Generalize the linear model.

Explain Discrimination By Regression.

What is the perceptron and training a perceptron?
What is Bayesian view of learning?

Write a short notes on Deep Learning.

Explain about Back propagation algorithm?

Kernel Machines

Support vector machine (SVM) and later generalized under the name kernel machine, has
been popular in recent years for a number of reasons:

1. It is a discriminant-based method and uses Vapnik’s principle to never solve a more
complex problem as a first step before the actual problem (Vapnik 1995). For example, in
classification, when the task is to learn the discriminant, it is not necessary to estimate where
the class densities p(x|Ci) or the exact posterior probability values P(Ci |x); we

only need to estimate where the class boundaries lie, that is, x where P(Ci|x) = P(Cj |x).
Similarly, for outlier detection, we do not need to estimate the full density p(x); we only need
to find the boundary separating those x that have low p(x), that is, x where p(x) < @, for some

threshold 6 € (0, 1).

2. After training, the parameter of the linear model, the weight vector, can be written down in
terms of a subset of the training set, which are the so-called support vectors. In classification,
these are the cases that are close to the boundary and as such, knowing them allows
knowledge extraction: those are the uncertain or erroneous cases that lie in the vicinity of the
boundary between two classes. Their number gives us an estimate of the generalization error,
and, as we see below, being able to write the model parameter in terms of a set of instances
allows kernelization.

3. As we will see shortly, the output is written as a sum of the influences of support vectors
and these are given by

kernel functions that are application-specific measures of similarity between data instances.

Previously, we talked about nonlinear basis functions allowing us to map the input to
another space where a linear (smooth) solution is possible; the kernel function uses the same
idea.

4. Typically in most learning algorithms, data points are represented as vectors, and either dot
product (as in the multilayer perceptrons) or Euclidean distance (as in radial basis function
networks) is used. A kernel function allows us to go beyond that. For example, G1 and G2
may be two graphs and K(G1,G2) may correspond to the number of shared paths, which we
can calculate without needing to represent G1 or G2 explicitly as vectors.

5. Kernel-based algorithms are formulated as convex optimization problems, and there is a
single optimum that we can solve for analytically. Therefore we are no longer bothered with
heuristics for learning rates, initializations, checking for convergence, and such. Of course,
this does not mean that we do not have any hyperparameters for model selection; we do—any
method needs them, to match the algorithm to the data at hand.

2. Optimal Separating Hyperplane

Let us start again with two classes and use labels —1/ + 1 for the two classes. The
sample is X ={xt, rt } where rt = +1 if xt € C1 and rt =—1 if xt € C2. We would like to find w
and wO such that wT xt + w0 > +1 for rt = +1

wT xt +w0<—1 for rt = —1 which can be rewritten as rt (wTxt + w0) > +1

Note that we do not simply require
rt (wTxt + w0) >0

Not only do we want the instances to be on the right side of the hyperplane, but we also want
them some distance away, for better generalization.

The distance from the hyperplane to the instances closest to it on either side is called the
margin, which we want to maximize for best generalization. Very early on, in section 2.1, we
talked about the concept of the margin when we were talking about fitting a rectangle, and we
said that it is better to take a rectangle halfway between S and G, to get a breathing space. This
is so that in case noise shifts a test instance slightly, it will still be on the right side of the
boundary.

Similarly, now that we are using the hypothesis class of lines, the optimal separating

hyperplane is the one that maximizes the margin. We remember from section 10.3 that the
distance of xt to the discriminant is

[wTx® + wyl
w

which, when r* € {1, +1], can be written as

rriw’x' + wp)
ffwl

and we would like this to be at least some value p:
llw 1

™ riiw! xt + wy) » p, V1
[lwel

We would like to maximize p but there are an infinite number of solutions that we can
get by scaling w and for a unique solution, we fix and thus, to maximize the margin, we
minimize
The task can therefore be defined as to

1 3 3 ' :
min = |iw |© subject to r’lw"x' +Wp) = +1, Vit

This is a standard quadratic optimization problem, whose complexity depends on d, and it can
be solved directly to find w and wO. Then, on both sides of the hyperplane, there will be

115

instances that are 1/||w|| away from the hyperplane and the total margin will be 2/||w||.

In finding the optimal hyperplane, we can convert the optimization problem to a form whose
complexity depends on N, the number of training instances, and not on d. Another advantage
of this new formulation is that it will allow us to rewrite the basis functions in terms of kernel
Functions. To get the new formulation,

1 @ me in e .
Lp = —lIwl?- % o [r(w'x' +wp) - 1]
=1

1 - -
< lwll’ 5ot weT

x4 Wyl + E“Il
This should be minimized with respect to w,w0 and maximized with respect to ar > 0. The
saddle point gives the solution. This is a convex quadratic optimization problembecause
themain term is convex and the linear constraints are also convex. Therefore, we can
equivalently solve the dual problem, making use of the Karush-Kuhn- Tucker conditions. The

dual is to maximize Lp with respect to az, subject to the constraints

and also that of =

oL,

Plugring these into eguation 1 3.4, we get the dual
(‘:!‘\ = = =

I i i i} Sl =
—i(wTw) — w? S ofrTxt W > ot = > oxt

r g r

x

——fwTw) + > ox

1
1

-,—,\ S et ot r T r T (x")T x* S ot
. = -

that the gradient of Lp with respect to w and w0 are 0
which we maximize with respect to az only, subject to the constraints

irs’r" 0, and o = 0, ¥t

This can be solved using quadratic optimization methods. The size of the dual depends on N,
sample size, and not on d, the input dimensionality. The upper bound for time complexity is
O(N3), and the upper bound for space complexity is O(N2).

Once we solve for ar , we see that though there are N of them, most vanish with az = 0 and

only a small percentage have at > 0. The set of xt whose a¢ > 0 are the support vectors, and as
FlwTe +wp) =1
we see in equation 13.5, w is written as the weighted sum of these training instances that are

116

selected as the support vectors. These are the xt that satisfy
For numerical stability, it is advised that this be done for all support vectors and an average be
taken. The discriminant thus found is called the support vector machine (SVM),

':l-::l 0.5 1

Figure 121 For a rwo-class problem where the mstamncre=s of the clas=ses are
showvm by plus sipgns amwed dors, che thick e is the bounmdary amnd the dashed Hnes
define the marmins on ather side. Circled instamnwes are thye supnport vweciors.

During testing, we do not enforce a margin. We calculate g(x) = wT x+ w0, and choose
according to the sign of g(x): Choose C1 if g(x) > 0 and C2 otherwise

3. The Nonseparable Case: Soft Margin Hyperplane

If the data is not linearly separable, the algorithm we discussed earlier will not work.
In such a case, if the two classes are not linearly separable such that there is no hyperplane to
separate them, we look for the one that incurs slack variables the least error. We define slack
variables, &t > 0, which store the deviation from the margin. There are two types of deviation:

r’:wT:r(’ +wob =1 .EI
An instance may lie on the wrong side of the hyperplane and be misclassified. Or, it may be
on the right side but may lie in the margin, namely, not sufficiently away from the hyperplane.
Relaxing

If &t = 0, there is no problem with xt. If 0 < &t < 1, xt is correctly classified but in the margin.
If &t > 1, xt is misclassified .

The number of misclassifications is #{&t > 1}, and the number of non separable points is #{&t
> 0}. We define soft error as

2E
I

and add this as a penalty term:

r

subject to the constraint of equation 13.9. C is the penalty factor as in any regularization
scheme trading off complexity, as measured by the L2 norm of the weight vector (similar to
weight decay in multilayer perceptrons; and data misfit, as measured by the number of
nonseparable points. Note that we are penalizing not only the misclassified points but also the

ones in the margin for better generalization, though these latter would be correctly classified
during testing.

Finally we will get

wit+ O3 - Y o' [rfiwT s +wa) -1+ 5] -3 p'E*
r T T

where ut are the new Lagrange parameters to guarantee the positivity of & When we take the
derivatives with respect to the parameters and set them to 0, we get:

I.TI r.! xr

o . .
i o =
Figure 1 3.2 n clas=sifying an instamnsce, there are four possible cases: I (=), the
insrance is omn the cormect side and Far anvvay from chve mmarging o gl = 1, BT
In (b, £ 0O: in i= omn the rght ssde amnd on cthwe margin. o {ch, £ apla®i M <«
E = liiris oo thve migha side bur is in the marpn and mor safflcienchy anweay . Do Odb,
£ 1 = gix"1 > 1;dn is ae the wronge =side—his = 8 mdsclassificadon. All cases
excepr (@) are support vecrors. I verms of cthe daal varmable, i (al, o [T W=}
' = O im (ch arsd ol oet i

I

—_—
o

Iy

Sxr
=

Since gz = O, this Iast immplies that O = o = .

- Pluggsing these into
eguation 1311, we get the dual that we masxamize with respect to o=

Lag— > of — .1—,,\« S xfoctrtr=

r =

subject 10

S ofr® = 0 and O =<

=

Solving this, we see that as in the separable case, instances that lie on the correct side of
the boundary with sufficient margin vanish with their az = 0 (see figure 13.2). The support
vectors have their oz > 0 and they

define w, Of these, those whose ar < C are the ones that are on the margin, and we can use
them to calculate wO; they have & = 0 and satisfy rt (wTxt + w0) = 1. Again, it is better to take
an average over these w0 estimates. Those instances that are in the margin or misclassified
have their ar = C. The nonseparable instances that we store as support vectors are the
instances that we would have trouble correctly classifying if they were not in the training set;
they would either be misclassified or classified correctly but not with enough confidence. We
can say that the number

of support vectors is an upper-bound estimate for the expected number of errors. And,
actually, Vapnik (1995) has shown that the expected test error rate is

Ex[# of support vectors]

N

Ey|Plerror)] =

where EN[-] denotes expectation over training sets of size N. The nice implication of this
is that it shows that the error rate depends on the number of support vectors and not on the
input dimensionality. it

implie=s that we defime error if the instance is on the
“swrong side or if the margin is less than 1. This is called the hinge loss. If
¥ = wix® + wg is the output and »* is the desired output, hinge loss is
defined as

if vy *f == 1
— Wit otherwise

Lpsmge (3. ") =

10 = N L b 0 O
T T T T T T

4, v-SVM

There is another, equivalent formulation of the soft margin hyperplane that uses a parameter
v € [0, 1] instead of C
The objective function is

I ;
T £

P !
'I'I'IZII_-_EII-'II":' — WOk

subject o
W T x w2 g — E, BT =0, =D

& Is a new parameter that is a variable of the optimization problem aoud
scales the margin: the margin is now Zo 0 lwill. v has been shown o be a

lower bound on the fraction of support vectors and an upper bound on
the fractiom of instances having margin errors (3, #{Ef = 0}). The dual is

= ——}T_._:izct’rr'r"*"cx"

subject 1o

S oy — 0. 0O = o' —1- S at =< »
— '\ —

L 4 r

5.Kernel Trick

Instead of trying to fit a nonlinear model, we can map the problem to a new space by
doing a nonlinear transformation using suitably chosen basis functions and then use a linear
model in this new space. The linear model in the new space corresponds to a nonlinear model
in the original space. This approach can be used in both classification and regression
problems, and in the special case of classification, it can be used with any scheme. In the
particular case of support vector machines, it leads to certain simplifications that we now
discuss.

Let us say we have the new dimensions calculated through the basis functions
z=¢(X) where zj = j(X), j=1,...,k

mapping from the d-dimensional x space to the k-dimensional z space where we write the
discriminant as

glz) wiz

glx) = wikp(x)
k

> wydy(x)
i

where we do not use a separate w0; we assume that z1 = p1(x) = 1. Generally, k is much
larger than d and k may also be larger than N, and there lies the advantage of using the dual

120

form whose complexity depends on N, whereas if we used the primal it would depend on k.
We also use the more general case of the soft margin hyperplane here because we have no
guarantee that the problem is linearly separable in this new space.

The problem is the same
1

Lp = wi - CS &

r
except that now the constraints are defined in the new space
Pwigix') =1 — E°
The Lagrangian is

" 3-('V'__‘-E’—Yot'lr’wrdﬁx‘t— 1 + | — S s

L 3 4 L 4

>

When we take the derivatives with respect to the parameters and set
them to O, we get

w = > o'rghix")
r

— C—of —p* =09
dual is now

=) SRS o
o — ;\ S o rt r T i) hi(xT)
g — r 5

subject to

En”r’ — 0 and @ =< o' = ,wr
E

The idea in kernel rmachines is to replace the inner product of ba-
mis functions, ¢} Tghix™). by a kermel funcrion, Ki{x". x*), between in-
stances in the orginal inpur space. 5o instead of mapping two instances
x' and x* o the z-space and doing a dot proeduct there, we directly apply
thhe kermel function in the original space.

L i .
La = E o — ;E Eur' Pl ol -l il

I 5

The kernel function also shows up in the discriminant

gix) = wigix) =N a'r'¢p(x)TPp(x)

I

= Y o' K, x)

This implies that if we have the kernel function, we do not need to map it to the new space at
all. Actually, for any valid kernel, there does exist a corresponding mapping function, but it
may be much simpler to use K(xt , x) rather than calculating @(xt), ¢(x) and taking the dot
product. Many algorithms have been kernelized, as we will see in later sections, and that is

why we have the name “kernel machines.” Thematrix of kernel values, K, where Kts Gram

121

matrix = K(xt , xs), is called the Gram matrix, which should be symmetric and positive

semidefinite.
6. Vectorial Kernels

The most popular, general-purpose kernel functions are
= polyvnomials of degree g:

Ki(x®*_x) = (xTx + 1)9
where g is selected by the user. For example, when g =2 and d = 2,
Kix, ») = (xTy + 1)°

— (X131 + x2ye =+ 1)~

= 1 =+ 2xy37 + ZX2ye + 2ZX X2V Ve + X3V + X3V3
cosresponds to the inner product of the basis function (Cherkassky
and Mulier 1998):

Pilx) = [1, V23, V2x2, 2

% 05 1 15 2
Figure 13,4 The discrimmnam and margins found by a polynomial kernel of
degree 2. Circled instances are the support veciors.

An example is given in figure 13.4. When g = 1, we have the lincar

kernel that corresponds to the original formulation.
radial-basis furnctions:
x* — xii* ;

Kix* x) =exp | — —
=5

defines a spherical kernel as in Parzen windows (chapter 8) where xt is the center and s,
supplied by the user, defines the radius.

One can have a Mahalanobis kernel, generalizing from the Euclidean Distance:

Kix'.x) = exp —.—tlx’ —x)Ts ' - x:J

ch s =0

=25
- =
_i- +

i’*ﬂik-ﬂ':‘
)

THee,

- -

ol gt =t
[a] 1 =2

Figure 135 Ty boandary and marmins foarmed by the Canssian kermel winsh dif
ferenr spread valwes, 57 We ger smoocivwer boursdaries with lerger spreasds.

wihere § is a oovariance matrix. O, i the most general case,

F Dlx-'.x'v_

Kix", x) = exp Se2

for some distance function 22(x, x).

sigmoidal functions:

Ki(x*.x) = tanh{2x"x* + 1)

7. Multiple Kernel Learning

It is possible to construct new kernels by combining simpler kernels. If K1(x,y) and K2(x,y)
are valid kernels and c a constant, then

[cKilx, ¥)
Kix,¥yl=1 Kjlxy)+ Kz (x, y)
| Kilxyl-Kzlx, y)

are also valid.

Different kernels may also be using different subsets of x. We can therefore see combining

kernels as another way to fuse information from different sources where each kernel measures

Kalxa.wa) + Kelxg vgd = ahaina)Tabalya) + dhyixe) dhglyg)
Plx)Tgpiy)

Kilx, ¥l

similarity according to its domain. When we have input from two representations A and B

where x = [XA, xB] is the concatenation of the two representations. That is, taking a sum of
two kernels corresponds to doing a dot product in the concatenated feature vectors. One can

generalize to a number of kernels

m
Kix,y) =% Kilx, ¥l

=1
which, similar to taking an average of classifiers (section 17.4), this time averages over

kernels and frees us from the need to choose one particular kernel. It is also possible to take a
weighted sum and also learn the weights from data

m

Kix,¥) = ¥ nikiix, ¥

subject to #i >0, with or without the constraint of =™ =1 respectively known as convex or
conic combination. This is called multiple kernel learning where we replace a single kernel
with a weighted sum

Finally kernel objective function becomes

Li=% o l)l B oatalr e Y mka it x)
24 :

which we solve for both the support vector machine parameters az and the kernel weights #i .

Then, the combination of multiple kernels also appear in the discriminant

gla) =¥ o' 3 nekia’ x)
T i

After training, ni will take values depending on how the corresponding kernel Ki(xt , X) is
useful in discriminating. It is also possible to localize kernels by defining kernel weights as a

parameterized function of the input X, rather like the gating function in mixture of experts

glx) = E._'."r-'lql.::g ekt x)
T [

7.Multiclass Kernel Machines

When there are K > 2 classes, the straightforward, one-vs.-all way is to define K two-class
problems, each one separating one class from all other classes combined and learn K support
vector machines gi(x),i=1,..., K.

That is, in training gi(x), examples of Ci are labeled +1 and examples of Ck, k =i are labeled

as —1. During testing, we calculate all gi(x) and choose the maximum.

124

Platt (1999) proposed to fit a sigmoid to the output of a single (2-class) SVM output to
convert to a posterior probability. Similarly, one can train one layer of softmax outputs to
minimize cross-entropy to generate K >

2 posterior probabilities

K
vilx) = 3 vifi(x) + vig
=1

where fj(x) are the SVM outputs and yi are the posterior probability outputs. Weights vij are
trained to minimize cross-entropy. Note, however, that as in stacking (section 17.9), the data
on which we train vij should be different from the data used to train the base SVMs fj(x), to
alleviate overfitting. Instead of the usual approach of building K two-class SVM classifiers to
separate one from all the rest, as with any other classifier, one can build K(K — 1)/2 pairwise
classifiers (see also section 10.4), each gij(x) taking examples of Ci with the label +1,
examples of Cj with the label —1, and not using examples of the other classes. Separating
classes in pairs is normally expected to be an easier job, with the additional advantage that
because we use less data, the optimizations will be faster, noting however that we have O(K2)

discriminants to train instead of O(K).

In the general case, both one-vs.-all and pairwise separation are special cases of the error-
correcting output codes that decompose a multiclass problem to a set of two-class problems
Another possibility is to write a single multiclass optimization problem involving all classes

!

K
min l' SiwmiP+cS VE
< i T

subject to

wex' +wroz=zwiX' +wo +2-E,Vi#zand E = 0

where zt contains the class index of xt . The regularization terms minimizes the norms of all
hyperplanes simultaneously, and the constraints are there to make sure that the margin

between the actual class and any

other class is at least 2. The output for the correct class should be at least +1, the output of any
other class should be at least —1, and the slack variables are defined to make up any
difference.

8. One-Class Kernel Machines

Support vector machines, originally proposed for classification, are extended to regression by
defining slack variables for deviations around the regression line, instead of the discriminant.
We now see how SVM can be used for a restricted type of unsupervised learning, namely, for
estimating regions of high density. We are not doing a full density estimation; rather, we want
to find a boundary (so that it reads like a classification problem) that separates volumes of
high density from volumes of low density (Tax and Duin 1999). Such a boundary can then be

used for novelty or outlier detection. This is also called one-class classification.

We consider a sphere with center a and radius R that we want to enclose as much as possible
of the density, measured empirically as the enclosed training set percentage. At the same time,
trading off with it, we want to find the smallest radius. We define slack variables for instances
that lie outside (we only have one type of slack variable because we have examples from one
class and we do not have any penalty for those inside), and we have a smoothness measure

that is proportional to the radius:
min R + C> &'
subject 1o

Ix* —all =R®° +E and £ =0, V¢

Adding the constraints, we get the lLagrangian, which we write keeping
in mind that | x* —all = (x* —a)T(x* —a):

L,=R>+C>E — > o (R? + &* (X)) Tx* |- 2a™x* sa“al)

3
with ' = 0 and y; = O being the Lagrange multipliers. Taking the deriva-
tive with respect to the parameters, we get
oL
IR
of

_R — _'R ‘— 1\" E

I =

Fig: One class svm

Since yt > 0, we can write this last as the constraint: 0 < az < C. Plugging these into equation
13.53, we get the dual that we maximize with respect to at :

L= ol -5 ¥ ol (x) T

i |':

subject to

0= o' =< and inr']

When we solve this, we again see that most of the instances vanish with their az = 0; these are
the typical, highly likely instances that fall inside the sphere (figure 13.10). There are two type
of support vectors with az > 0: There are instances that satisfy 0 < atr < C and lie on the
boundary, (¢t = 0), which we use to calculate R. Instances.

xf —alF =R (E =0

thaat satisfv o = [EF =) ke cutside the boundary and are the ontliers.
From equaticn 13.5%, we see thar the center o is written as a weighted
surme of the support vectors.

T'hen given a test input x, we say that ir is amn ouatlier if

Hae — el = B~
O
xTxw — FaTx @ a - B

Fsing kermel foncrons, allow as 1o go beyond a sphere and define
boundaries of arbitrary shapes. Replacing the dor product whth a kermel
functicn, vwe et (subject o the same constrainits

Lo = 2 o Kix". x") — 5 5 o e Ki{x", x%)

For example. usinge a polynomial kermel of degree 2 allows arbitrary
quadratic surfaces to be used. IF we use a Gaussian kernel {eqguation 13 .30),
wiz have a union of local spheres. We reject x as an outlier if

Kix x} — 2 :: o K, T 4 o oot ", xT) = B2
r =

The third term does nor depend on x and i= therefore a constant {we
wu=se this as an egquality 1o salve for B where x is an instance on the mear-
gink Inn the case of a Gauvussian kermel where Kix, x] = 1, the comdition
reduces toe

S o K, T o R

9. Kernel Dimensionality Reduction

In the kernelized version, we work in the space of ¢(x) instead of the original x and
because, as usual, the dimensionality d of this new space may be much larger than the data set
size N, we prefer to work with the N x N matrix XXT instead of the d x d matrix XTX. The
projected data matrix is @ = ¢(X), and hence we work on the eigenvectors of ®T® and hence

of the kernel matrix K.

Kernel PCA uses the eigenvectors and eigenvalues of the kernel matrix and this corresponds
to doing a linear dimensionality reduction in the ¢(X) space. When ci and i are the

corresponding eigenvectors and eigenvalues, the projected new k-dimensional values can be

.;-':_EI =y .-c'_'r._.l =1,..., kEt=1,...,1! N
calculated as

An example is given in figure 13.12 where we first use a quadratic kernel and then decrease

dimensionality to two (out of five) using kernel PCA and implement a linear SVM there. Note
that in the general case (e.g., with a Gaussian kernel), the eigenvalues do not necessarily
decay and there is no guarantee that we can reduce dimensionality using kernel PCA. What

we are doing here is multidimensional scaling using kernel values as the similarity values. For

128

example, by taking k = 2, one can visualize the data in the space induced by the kernel matrix,
which can give us information as to how similarity is defined by the used kernel. Linear

discriminality reduction can similarly be kernelized.

(a) Cuadratic kameal in the x space

=05 a 0.5

(b} Linear karnal in the z spaca

1. Introduction:

Graphical models, also called Bavesian networks, belief networks, or prob-
abilistic networks, are composed of nodes and arcs between the nodes.
Each mode corresponds to a random variable, X, and has a value corre-
sponding to the probability of the random variable, P(X). If there is a
directed arc from node X to node ¥, this indicates that X has a direct
influence on Y. This influence is specified by the conditdonal probability
P{Y|X). The network i a directed acyclic graph (DAG); namely, there are
no cycles. The nodes and the arcs between the nodes define the strec-
teere of the network, and the conditional probabilities are the paramerers
given the structure.

0 .l- t-.re:l .-l--!_

SRR | Ay e

@ L e Bl B

Figmure 1.1 Bayvesian mserwork modeldmng char rain is the cause of wer grass.

We s=eez that these three values completely specly the joint distmibatbion
of PF(IR_ Wi IE MR} = 0.4, then P{—-R)] = 0.5, and similarly P{-—-W | R} = .1
and F{—~W|—K)l = 0_EB. The joint is written as

PiRE. i) = F{RIPIW|R)

We can calculate the individaal (marginal) probability of wet grass by
surrerring up over the possible values thar its parent node can cake:

A) = EFI_E.'H-'I = FP{WI|RIFIR} + PFIH|—R)P|—HF]
=]
== OF -4 5+ 0.2 - 0.6 = 048

If swe knew that it rained. the prababilicy of wet grass weounld be 0.9 §f
we knew for sure that it did neoe, it svoald be as low as (.25 not kooseinge
whether it rained or mmot, the probability is O.48_

For example, knowing that the grass is wet, the probability that it rained can be calculated as

follows

) P(WIR)P(R) —
I’(RI“ _' = Pl“"l :O.t:)

Knowing that the grass is wet increased the probability of rain from 0.4
to O.75; this is because P(W|R) is high and P(W|—-R) is low.

We form graphs by adding nodes and arcs and generate dependencies.
X and Y are independent events if

pl(X.Y) = P(XIP(Y)

X and Y are conditionally independent events given a third event Z if

P{X,.Y|Z)=PIXIZ)P(YI\Z)
which can also be rewritten as

P{X1Y,Z) = PiX|Z)

X and Y are conditionally independent events given a third event Z if

PIX,YIZ) = PIX|Z)PIY|Z)

which can also be rewritten as

PMX|Y,Z) =PIX|Z)
In a graphical model, not all nodes are connected; actually, in general, a node is connected to
only a small number of other nodes. Certain subgraphs imply conditional independence
statements, and these allow us to break down a complex graph into smaller subsets in which
inferences can be done locally and whose results are later propagated over the graph. There are
three canonical cases and larger graphs are constructed using these as subgraphs

2. Canonical Cases for Conditional Independence
Case 1: Head-to-tail Connection

We see here that X and Z are independent given Y: Knowing Y tells Z everything; knowing the
state of X does not add any extra knowledge for Z; we write P(Z|Y,X) = P(Z]Y). We say that Y
blocks the path from X to Z, or in other words, it separates them in the sense that if Y is
removed, there is no path between X to Z. In this case, the joint is written as
P(X, Y,Z) = P(X)P(Y|X)P(Z]Y)
Writing the joint this way implies independence

PIX. Y, Z} PIX)PIYIXIPLZ|Y)

PEIY)
PX.Y) PIXIPY|X)

MIIXY)

Typically, X is the cause of Y and Y is the cause of Z. For example, as seen in figure 16.2b, X

can be cloudy sky, Y
can be rain, and Z can be wet grass. We can propagate information along the chain. If we do not
know the state of cloudy, we have

P(R) = P(RIC)P(C) + P(R|~C)P(~C) = 0.38

P(W) = P(WIR)P(R) + P(W|~R)P(~R) = 0.47

Let us say, in the morning we see that the weather is cloudy; what can we say about the

probability that the grass will be wet? To do this, we

131

T e o
po

—_—

Ay — LA

.-"fr Z-h:u-_l-. H"l =
M T et A oo

Fipgure 16.2 Head-ro-rail comnoecomorn. (a) Thoaree odes are conmecied seraally. X
arcd F are iedependent given the mrermmeediace mode T2 H(FZ0V XD P{LIZ ¥ (D)
Frxammyple: Cloudy wearher causes raim, which inm noarm causes wen grass.

need o propagate evidence Arst to the interomediate mode B, and then Bo
thve query mode .

F{WIC) = PIWIRIFIRI|IC) + PIW|—RIFPI—RI|C) = 0O.756

Knowing that the weather is cloudy increased the probability of wet grass. We can also
propagate evidence back using Bayes’ rule. Let us say that we were traveling and on our
return, see that our grass is wet; what is the probability that the weather was cloudy that day?
We use Bayes’ rule to invert the direction:

PIW | CyP{C) =

P{CIW) = £ = — 0.65

Knowing that the grass is wet increased the probability of cloudy weather
from its default {(prior) value of 0.4 1o O.65.

Case 2: Tail-to-tail Connection
X may be the parent of two nodes Y and Z, as shown in figure 16.3a. The joint density is

written as

PY,E) = PUXIPLY | X)PLEZX)

iy Sdaedad B Faample

IS o e ol i | MMy =0%
e Tl I e T s MM -y =010

Figure 162 Tail-uo-rail connectiore. X is the parent of owo nodes ¥ amnd £ The
1w child poedies are indepersdernn pven the parens: POY X, S FPi¥IX]1. Im the

exampsls, cloudy wearther causes rain and also makes us less Lkely 1o tarn the
sprinkler om

Mormally ¥ and £ are dependent through X; given X, they become
independent:
PIX.Y.Z) PIXIPMYIXIP{EZ|X)

PlY.,.ZiX) = == = =
X) PlXx

= F(¥|X)IP{Z]|X}

When its value is known, X blocks the path between Y and Z, or in other words, separates
them.

we see an example where cloudy weather influences both rain and the use of the sprinkler, one
positively and the other negatively. Knowing that it rained, for example, we can invert the
dependency using Bayes’ rule and infer the cause:

Py — NS
oy — O,

B .__"-.':- — Wl
_ | |l =Sy —=—0OnnDo

e Belodded (e Fxsmple

Figure 16.4 Head-ro-head connecdon. A msede has reeo parenes thar are imsdepen-
dent unlles= the child is given. For example, an evenn meay bave revo independena
fa= R

FPILS IR 0C) P LS | — O WP —a)
- | - — — — = — - — —
F{R|C) CTES] + PIR|—C} =53

o_z==

PLRICIFIC)Y . IR CRFCh
i) T EoPOR,.C)
FILREICIEIC)
FIRICIAC) + PR —C PP —C)

Mot that thiz valae is larger thamn POC) knoswinge thart it radinsed -
creased the probabilinsy that the sweather is clowady.

Im Fpure 16.3a, if X is ot knuonerm, kroswinge ¥, for example, we can infer
A wwhickh we can tfren use to imfer F. I fipure 16 3b. knonwinge the state of
thhe sprinkler has amn effect omn the probability that it rained. IF we ko
thhat the sprinkler is o,

PR

= (. ED

FiR|E) = E PIR.CISF) = PFIRICIAICIS) + PIR|—C1F(—C15)
=

This is less than P(R) = 0.45; that is, knowing that the sprinkler is on decreases the probability

that it rained because sprinkler and rain happens for different states of cloudy weather. If the

sprinkler is known to be off, using the same approach, we find that P(R|~S) = 0.55; the

probability of rain increases this time.

Case 3: Head-to-head Connection

In a head-to-head node, there are two parents X and Y to a single node Z, as shown in figure
16.4a. The joint density is written as P(X, Y,Z) = P(X)P(Y)P(Z|X, Y) X and Y are independent:
P(X)Y) = P(X) - P(Y) (exercise 2); they become dependent when Z is known. The concept of
blocking or separation is different for this case: The path between X and Y is blocked, or they
are separated, when Z is not observed; when Z (or any of its descendants) is observed, they are
not blocked, separated, nor are independent.

We see For example in figure 164k that node W has bwo parentes, B
amnd 5. and thus its probability is conditioned on the values of those twwo,
U | . 5 k.

Mot knowing anyvthing else, the probability that gprass is wet is calow-
lated by marginalizinge over the jodne:s
FOW) = PIW_ R 5)

=
— PIWI|IKEF. 5SS+ PFIW|—R, SIFL—-RKE_S5)
+FI{WIR. -5SI1PIR, —~S) -+ FIW|—-F, -5l —RKR,—51]
PIW|IKE. SRS - FIW | -RK_SiIiPI—RIF{IS5]
+F{IWIR, - SI1PIRIF{C~—~-5]1 + P W|—R, —%51Fi({—RI1FI[—5)
— o.sz

Mo, let us say that we knaow that the sprinkler is o, and we check
how this affects the probabdlity. This is a causal (predictive) inferemoe:
FIWIS) = > PFiw,R|%)

=
= FIMIE.SIPIRIS) + FIW|—-RK, SIFPL—-FKI|I5)
= PR, SI1IPIR) = PFIW | —-R.SF)1FP(—M)
= .=
We see that PFI{W IS = PF{W i knowing thar the sprinkler is on. the probssa-
bility of wer grass increases._

We can also calocualare the probabiliny thar the sprimkler is on, given that
thie grass is wet. This is a diapmostic inferemnce.

P PLHWI|S (S) o
PISIW) = S — O35

(S| = M5, that is, knowing that the grass is wet increased the
prabability of having the sprinkler on. Boww let us assume that it rained_
Themn we have
LS |R., W] —

= O.21
which i= less than FPISIWI. This iz called esgrilainirng away; given that
wee kmuows it rained, the probability of sprinkler causing the wer grass de-
creases. Knowing that the prass is wet, rain and sprinkler become depern-
dent. Similarly., FIS|—R. W) = FPILS5|W . We see the same behavior wihien
we compare PRI) and PFPLCRITW, S {ecercise 30

134

F{W R, S}PISIRY FP{W|R,5)F(5])
PLW R N i | RS

Figure 16.5 Larger grapis are formed by combining simpler subppraphs ower
which informanon is propagared using the implied condidbomnal indepernsdencies.

We can construct larger praphs by combining such subgpraph=s. For ex-
ample, in mure 1 6.5 where we combine the mvwio subesraphs, we can, Faor
example., calcularte the probability of havinge wet grass if it is clowody:

P I1C) HPIW L R_S|C)
®.5

FiW._ K S|C) +~ PO, —R, 5|0

+P{W R, -S| - PIW, — R, —5 |70
FiWI IR, &5, CiFPdR. 50

+ i | —-R . 5. CIF{—F,%5|C)

+ I K, —-S. CIFP R, -5 |)

+ i —RK, -5, C}FP{—F, 5|00
FIiWIR.SI1IFIOR|CIFOE|C)

+F{ | —-R, SIiPI-R|CIFI{S|C)

+F{W R, ~SIFPFIRICIFPL-5|C}

+ | —R, -5} —K | -5)

where we have used that P(W|R, S,C) = P(W|R, S); given R and S, W is independent of C: R
and S between them block the path between W and C. Similarly, P(R,S|C) = P(R|C)P(S|C);
given C, R and S are independent.

We see the advantage of Bayesian networks here, which explicitly encode independencies and
allow breaking down inference into calculation over small groups of variables that are
propagated from evidence nodes to query nodes.

We can calculate P(C|W) and have a diagnostic inference:

PIWI|CIP(C)

(CIW) =
P P{W)

1. Example Graphical Models

A. Naive Bayes’ Classifier
For the case of classification, the corresponding graphical model is shown in figure 16.6a,
with x as the input and C a multinomial variable taking

, e B
_ S

] e N ol [| —
AN _E,,,-/" T

B - TN T T,

|'fff_ = | i xy e |
M e "m,____ﬂd_,--’ A

(=1 o

Figure 16.5 fal Graphical modsl Tor classificatone. (b Manee Bayes”™ classifier
assuamnes mdep-erade s inperrs.

omre af K scaves For the cdlass code. Bayes' rale allows a diagnosis, as i
thie rain and wet grass case we saw in Arure 161
Pl i)

= o=
i i

If the inputs are independent,which is called the naive Bayes’ classifier, because it ignores
possible dependencies, namely, correlations, among the inputs and reduces a multivariate

problem to a group of univariate problems:

Figure 16.6a is a generative model of the process that creates the data. It is as if we first pick a
class C at random by sampling from P(C), and then having fixed C, we pick an x by sampling

from p(x|C). Thinking of data as sampled from a causal generative model that can be

visualized as a graph can ease understanding and also inference in many domains.

For example, in text categorization, generating a text may be thought of as the process where
an author decides to write a document on a certain topic and then chooses the set of words
accordingly. In bioinformatics, one area among many where a graphical approach used is the
modelling of a phylogenetic tree; namely, a directed graph whose leaves are the current
species, nonterminal nodes are past ancestors that split into multiple species during a
speciation event, and the conditional probabilities depend on the evolutionary distance

between a species and its ancestor.

B. Hidden Markov Model:

Hidden Markov models (HMM) are an example of case 1 where three successive states qt—2,
qt—1, gt correspond to three states on a chain in a first-order Markov model. The state at time
t, gt , depends only on the state at time t —1, qt—1, and given qt—1, gt is independent of qt—2\
P(qt |qt—1, qt—2) = P(qt |qt—1) as given by the state transition probability matrix A (see figure
16.7). Each hidden variable generates a discrete observation that is observed,

as given by the observation probability matrix B. The forward-backward procedure of hidden
Markov models is a special case of belief propagation that we will discuss shortly.

l:.lri‘- -II-)"'_ _ _-\-H\‘l
R

B =¥ | oD l

“r! ¢ H CD

Figure 156.F7 Hidden Markov model can be drasamn as a graphical mwoedel where g°
are the hidden srtares amnd shaded 7 are observed.

Coupled FINIME (d)Switch ng FINARA

Figure 16.8 Differen: rvpes of HMM model differen: assumpons abour the way
the observed dara (shown shaded) is generarted from Markov sequences of latern
varables_

C. Linear Regression

Linear regression can be visualized as a graphical model, as shown in figure 16.9. Input xt is
drawn from a prior

p(x) and the dependent variable rt depend on the input X, weights w (drawn from a prior

parameterized

o, Le, piw) ~ N(0,a 1)), and noise €

it Wl o — AT X, E)

Nhere are & such pairs] im the training set, which is shown by the recs-
anguular piloate in the pure. Given a new input x". the aim is to estimate
", wwhdch will be E e I, w -

IF'he weeight=s w are ot given bur they can be estitmared using the traie-
ing set of [A r]. Just as in eguation 169, where O is the caunse of B amnd
5, where we wsed

FiR |5 F = EI".H.-\::) =FLE|JCHIFLC|S) +— FLR]|—C}PL—C15)

Figure 16.9 EBayesaan network for inear regression.

filling in C using S, which we in turn used to estimate R. Here, we write

| pir |, wiplw|X, ridw

| pir|x, w AL WD W) ‘(w !le'u’w
pir)

| plr' |’ w) [[plrf |, wiplwidw
I

4.d-Separation

We now generalize the concept of blocking and separation under the name of d-separation,
and we define it in a way so that for arbitrary subsets of nodes A, B, and C, we can check if A
and B are independent given C. Jordan visualizes this as a ball bouncing over the graph and
calls this the Bayes’ ball. We set the nodes in C to their values, place a

ball at each node in A, let the balls move around according to a set of rules, and check whether

a ball reaches any node in B. If this is the case, they are dependent; otherwise, they are

independent.

To check whether A and B are d-separated given C, we consider all possible paths between
any node in A and any node in B. Any such path is blocked if

(a) the directions of the edges on the path either meet head-to-tail (case 1)\or tail-to-tail (case
2) and the node is in

C,or
(b) the directions of the edges on the path meet head-to-head (case 3) and neither that node nor
any of its descendant is in C. If all paths are blocked, we say that A and B are d-separated, that

is, independent, given C; otherwise, they are dependent. Examples are given in figure 16.10.

Figure 16.10 BExamples of d-separacgorn. The path BCDF s blocked given O
because C is a ail-rto-1ail node. BEF G is blocked by F because F is a head-ro-1ail
node. BEFD is blocked unless F (or &) is given.

5.Belief Propagation

Having discussed some inference examples by hand, we now are interested in an
algorithm that can answer queries such as P(X|E) where X is any query node in the graph and
E is any subset of evidence nodes whose values are set to certain value. Following Pearl
(1988), we start with the simplest case of chains and gradually move on to more complex
graphs. Our aim is to find the graph operation counterparts of probabilistic procedures such as
Bayes’ rule or marginalization, so that the task of inference can be mapped to general purpose

graphalgorithms.

A. Chains

A chain is a sequence of head-to-tail nodes with one root node without any parent; all
other nodes have exactly one parent node, and all nodes except the very last, leaf, have a
single child. If evidence is in the ancestors of X, we can just do a diagnostic inference and
propagate evidence down the chain; if evidence is in the descendants of X, we can do a causal
inference and propagate upward using Bayes’ rule. Let us see the general case where we have
evidence in both directions, up the chain E+ and down the chain E— (see figure 16.11). Note
that any evidence node separates X from the nodes on the chain on the other side of the

evidence and their values do not affect p(X); this is true in both directions.

We consider each node as a processor that receives messages from its neighbors and pass it

along after some local calculation. Each node X locally calculates and stores two values: A(X)
= P(E—|X) is the propagated E— that X receives from its child and forwards to its parent, and

7(X) = P(X|E+) is the propagated E+ that X receives from its parent and passes on to its child.

:!(1.']) a ;",:] . _
OO OO

Figure 16.11 Inference along a chain

PEIX)PIX) PEYE-|XIPIX)
P(E} PIE}
PIE*|XIPIE-|XIP(X)
PE)
PIX|E*}PEYIPIE-IXIPIX)
P{X}PLE)
P X|E*}PIET|X) = arr{ XDAX)

Given these initial conditions, we can devise recursive formmulas bo preops-
agate evidence along the chain.
For the wm-messages, we have

N = PIXIE®) =3 PIX|L, E*MPILTIE")
Lr

P NIF VP IES) = BT PO b ()

where the second line follows from the fact that U blocks the path between X and E+.

For the A-messages, we have

AlX) PIE™|X) EP!J’.' LYIMY(X)

-
Y PIE|Y)P(Y|X) = ¥ POYIXIA(Y)

B. Trees

Chains are restrictive because each node can have only a single parent and a single
child, that is, a single cause and a single symptom. In a tree, each node may have several
children but all nodes, except the single root, have exactly one parent. The same belief
propagation also applies here with the difference from chains being that a node receives
different 1-messages from its children, AY(X) denoting the message X receives from its child Y,
and sends different z-messages to its children, zY (X) denoting the message X sends to its
child Y. Again, we divide possible evidence to two parts, E— are nodes that are in the subtree
rooted at the query node X, and E+ are evidence nodes elsewhere (see figure 16.12). Note that
this second need not be an ancestor of X but may also be in a subtree rooted at a sibling of X.

The important point is that again X separates E+ and E— so that we can write

P(E+, E-|X) = P(E+X)P(E—|X), and hence have

P(X|E) = ar(X)A(X)

where again « is a normalizing constant. 1(X) is the evidence in the subtree rooted at X, and if
X has two children Y and Z, it can be calculated as

A(X) = P(EIX) = P(E;,E31X)
= P(E;|X)P(E;1X) = Ay(X)Az(X)

Figure 156.12 In a ree, 8 noade may have several children bar a singls parenit.

Im the general case if & has oy childremn, Y. 7 = L. ... e then we mualti-
plv all their A values:

m
ALX]T) = :—_I ..'l.z:_ (X

Omee N accuamulares A evidence from its children’s A-messages, it progs-
agates It up o its parents

Ax i) = 3 ALK PPIXILD
=
Similarly and in the otbher direcrion, 7wiX] is the evidence elsewhere
that is accumulated im P{LME*) and passed on to X as a ir-emessajire:

X)) = PIXIEx) =3 PIXILWIPILIEL) = & PIX L)y (L)

This calculated o valaee is then propagated down o X's children. Mote
thiat wihar ¥ receives from X s what X receives from its parent L7 aredd
also from its other child Z; opether they make unp Ef {see figure 16512}

Ty LK) = FPLXIE-) = PLXIE. ES)

Figure 16,13 In a polviree, a node may have several children and several par-
ents, bur the graph is singly connecied; thart is, there is a single chain bertween
[y and Y; passing thoough X

| P(EzZIX.Ex)PI{XIEx) P(EzIX)P(XIE%)

_ P{EZ) P{EZ)
= XA (X I (X)

Again, if ¥ has not one sibling Z but multiple, we need to take a product

over all their A values:

T (X)) = a | | AniXtmiX)

s

C. Polytrees

In a tree, a node has a single parent, that is, a single cause. In a polytree, a node may
have multiple parents, but we require that the graph be singly connected, which means that
there is a single chain between any two nodes. If we remove X, the graph will split into two
components. This is necessary so that we can continue splitting EX into E+

X and E— X, which are independent given X .

If X has multiple parents Ui, i=1, ..., Kk, it receives z-messages from

all of them, 7y (7,), which it combines as follows:

(X)) P(X|Ex) = P{X.Ef,x.Edfioxo----Einx)
SN S PIXIU Uz, L UG YPIULIES) - - - PUURILES,)

Uz oz &

LS
SN S PIXIU U L U) [] e (U)
Jz U2 1=3

Lix
and passes it on to its several children Y. j =

T X)) = a] | Ani{X)miX)

svJ

In this case when X has multiple parents, a A-message X passes on
1o one of its parents U; combines not only the evidence X receives from
its children but also the r-messages X receives from its other parents
U,.r # i; they together make up E_,

Ax (L) — PlE; x1X)
xs X Upr s lU)

> D PlEL . EfS _ x1X. U5 Ul PUX, Up 54| Uy)
[sy

.S PIEX | X)IPIEG . xUrsa)P X Urgs, U) P{Ur 42| Ut)
3

== PlU_ ;N E], SPE],

l P(EZIX) et Lirss X Ly as X

)
Pl) PlX | Ugss, Uy PLUA 51Uy)
e

P{EZIXYPU 5 ES _ x YP(X U £..Uy)

pea—

~-
<

AX) [] rx (U PIXIU

¢ .t

ALX) D P(X\Uh...., Ux) [| ex(Ue)
- e re

As in a tree, to find its overall A, the parent multiplies the A-messages
it receives from its children:

m
AlX) = r1 '\’,'-\-.

D. Junction Trees

If there is a loop, that is, if there is a cycle in the underlying undirected graph—for
example, if the parents of X share a common ancestor—the algorithm we discussed earlier
does not work. In such a case, there is more than one path on which to propagate evidence

and, for example, while evaluating the probability at X, we cannot say that X separates E

into E+ X and E— X as causal (upward) and diagnostic (downward) evidence; removing X does
not split the graph into two. Conditioning them on X does not make them independent and the

two can interact through some other path not involving X.

We can still use the same algorithm if we can convert the graph to a polytree. We define
clique nodes that correspond to a set of original variables and connect them so that they form

a tree. We can then run the same belief propagation algorithm with some modifications.

This is the basic idea behind the junction tree algorithm.

Figure I6&6. 132 (a) A mulnply connecred graph, and (b) its corresponding juncruion
ree with nodes clustered.
6. Learning the Structure of a Graphical Model

Learning a graphical model has two parts. The first is the learning of parameters given

a structure; this is relatively easier , and, in graphical models, conditional probability tables or

their parameterizations can be trained to maximize the likelihood, or by using a Bayesian

approach if suitable priors are known.

The second, more difficult, and interesting part is to learn the graph structure .This is basically
a model selection problem, and just like the incremental approaches for learning the structure
of a multilayer perceptron , we can see this as a search in the space of all possible graphs. One
can, for example, consider operators that can add/remove arcs and/or hidden nodes and then
do a search evaluating the improvement at each step (using parameter learning at each
intermediate iteration). Note, however, that to check for overfitting, one should regularize
properly, corresponding to a Bayesian approach with a prior that favors simpler graphs
(Neapolitan 2004). However, because the state space is large, it is most helpful if there is a
human expert who can manually define causal relationships among variables and creates

subgraphs of small groups of variables.

7. Influence Diagrams

We generalized from probabilities to actions with risks, influence diagrams are
graphical models that allow the generalization of graphical models to include decisions and
utilities. An influence diagram contains chance nodes representing random variables that we
use in graphical models .It also has decision nodes and a utility node. A decision node
represents a choice of actions. A utility node is where the utility is calculated. Decisions may
be based on chance nodes and may affect other chance nodes and the utility node. Inference
on an influence diagram is an extension to belief propagation on a graphical model. Given
evidence on some of the chance nodes, this evidence is propagated, and for each possible
decision, the utility is calculated and the decision having the highest utility is chosen. Given
the input, the decision node decides on a class, and for each choice we incur a certain utility
(risk).

. Undirected Graphs: Markov Random Fields

If the influences are symmetric, we represent them using an undirected graphical
model, also known as a Markov random field. For example, neighboring pixels in an image
tend to have the same color—that is, are correlated—
and this correlation goes both ways. Directed and undirected graphs define conditional
independence differently, and, hence, there are probability distributions that are represented
by a directed graph and not by an undirected graph, and vice versa.

Because there are no directions and hence no distinction between the head or the tail of
an arc, the treatment of undirected graphs is simpler. For example, it is much easier to check if
A and B are independent given C. We just check if after removing all nodes in C, we still have
a path between a node in A and a node in B. If so, they are dependent, otherwise, if all paths
between nodes in A and nodes in B pass through nodes in C such that removal of C leaves
nodes of A and nodes of B in separate components, we have independence.

In the case of an undirected graph, we do not talk about the parent or clique the child
but about cliques, which are sets of nodes such that there exists a link between any two nodes
in the set. A maximal clique has the maximum number of elements. Instead of conditional
probabilities (implying a direction), in undirected graphs we have potential functions wC(XC)
where XC is the set of variables in clique C, and we define the joint distribution as the product
of the potential functions of the maximal cliques of the graph

piX) ,.L-"]-] Polic)

where ¥ i= the normalization constant to make sure that 2y p(X) = 1:

=3 [Tweix)

X e

If we have the directed graph, it is easy to redraw it as an undirected graph, simply by
dropping all the directions, and if a node has a single parent, we can set the pairwise potential
function simply to the conditional probability. If the node has more than one parent, however,
the “explaining away” phenomenon due to the head-to- head node makes the parents
dependent, and hence we should have the parents in the same clique so that the clique
potential includes all the parents. This is done by connecting all the parents of a node by links
so that they are completely connected among them and form a clique. This is called
“marrying” the parents, and the process is called moralization. Incidentally,moralization is
one of the steps in generating a junction tree, which is undirected.

It is straightforward to adapt the belief propagation algorithm to work on undirected
graphs, and it is easier because the potential function is symmetric and we do not need to
make a difference between causal and diagnostic evidence. Thus, we can do inference on
undirected chains and trees. But in polytrees where a node has multiple parents and

moralization necessarily creates loops, this would not work. One trick is to convert it to a

a1 oy
plX]} ?]I.lll'- Xzl

factor graph' that uses a second kind of factor nodes in addition to the variable nodes, and we

write the joint distribution as a product of factors.

It is possible to generalize the belief propagation algorithm to work on factor graphs; this is
called the sum- product algorithm where there is the same idea of doing local computations
once and propagating them through the graph as messages. The difference now is that there
are two types of messages because there are two kinds of nodes, factors and variables, and we

make a distinction between their messages.

PART-A (2 Marks)

What is Graphical models?

. Graphical models represent the interaction between variables visually and have the

advantage that inference over a large number of variables can be decomposed into a set
of local calculations involving a small number of variables making use of conditional

independencies.

Explain about kernels.
. Kernel machines are maximum margin methods that allow the model to be written as a

sum of the influences of a subset of the training instances.

What are two paradigms for parallel processing?
. In Single Instruction Multiple Data (SIMD) machines, all processors execute the same
instruction but on different pieces of data. In Multiple Instruction Multiple Data (MIMD)

machines, different processors may execute different instructions on different data.

Explain about On-Line Learning.
. In online learning, we do not write the error function over the whole sample but on

individual instances.

1.
2.
3.
4.
5.
6.
7.
8.
9.

PART-B (10 Marks)

What is Optimal separating hyperplane and Soft Margin Hyperplane?
Explain about kernels and multiple kernel learning.

Explain about Generative Models.

Explain about Learning the structure of a graphical model.

Explain about large margin nearest neighbor classifier.

Explain about kernel dimensionality reduction.

Explain about the Learning the structure of a graphical model.

Write about Markov Random files.

Explain briefly about influence diagrams.

	UNIT-1
	1. What Is Machine Learning?
	2. Learning a Class from Examples
	1. Vapnik-Chervonenkis (VC) Dimension
	4. Probably Approximately Correct (PAC) Learning
	5. Noise
	6. Learning Multiple Classes
	7. Regression
	7. Dimensions of a Supervised Machine Learning Algorithm
	9. Decision tree representation
	(Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong
	(Outlook = Sunny A Humidity = Normal)

	10. Appropriate problems for decision tree learning
	11. The basic decision tree learning algorithm
	B. Entropy measures homogeneity of examples
	C. Information gain measures the expected reduction in entropy
	12. Hypothesis space search in decision tree learning
	13. Inductive bias in decision tree learning
	A. Restriction Biases and Preference Biases
	A. Why Prefer Short Hypotheses?
	16. Issues in decision tree learning
	Definition: Given a hypothesis space H, a hypothesis h E H is said to overfit the training data if there exists some alternative hypothesis h' E H, such that h has smaller error than h' over the training examples, but h' has a smaller error than h ove...
	B. Reduced error pruning
	C. Rule post-pruning
	D. Handling attributes with differing costs
	E. Handling training examples with missing attribute values
	F. Incorporating continuous-valued attributes
	14. Artificial neural networks
	Neural network representations:
	17. Perceptron
	B. The Perceptron Training Rule
	C. Gradient Descent and the Delta Rule
	D. Derivation of the gradient descent rule
	MULTILAYER NETWORKS AND THE BACKPROPAGATION ALGORITHM
	 A Differentiable Threshold Unit
	15. Remarks on the back propagation algorithm
	B. Representational Power of Feedforward Networks
	C. Hidden Layer Representations
	PART-A (2 Marks)
	2. What is Clustering Methods?
	3. What is Parametric Methods?
	4. Define Kernel Machines.
	5. What is Multilayer Perceptron?
	6. Define Machine Learning.
	PART-B (10 Marks)

	UNIT-2 EVALUATING HYPOTHESES
	ESTIMATING HYPOTHESIS ACCURACY:-
	Sample Error and True Error:-
	Confidence Intervals for Discrete-Valued Hypotheses:-
	 n ≥ 30

	BASICS OF SAMPLING THEORY:-
	The Binomial Distribution:-
	Mean and Variance:-
	Estimators, Bias, and Variance :-
	Confidence Intervals:-
	A GENERAL APPROACH FOR DERIVING CONFIDENCE INTERVALS:-
	errorD(h).

	Central Limit Theorem:-
	DIFFERENCE IN ERROR OF TWO HYPOTHESES:-
	COMPARING LEARNING ALGORITHMS:-
	BAYESIAN LEARNING INTRODUCTION
	BAYES THEOREM:-
	Bayes theorem:
	BAYES THEOREM AND CONCEPT LEARNING:-
	BRUTE-FORCE MAP LEARNING ALGORITHM
	MAP Hypotheses and Consistent Learners:-
	MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR HYPOTHESES:-
	Probability density function:
	MINIMUM DESCRIPTION LENGTH PRINCIPLE:-

	BAYES OPTIMAL CLASSIFIER:-
	Bayes optimal classification:

	GIBBS ALGORITHM:-
	NAIVE BAYES CLASSIFIER:-
	Naive Bayes classifier:
	m-estimate of probability:

	BAYESIAN BELIEF NETWORKS:-
	Conditional Independence:-
	Representation:-
	Inference
	Learning Bayesian Belief Networks
	THE EM ALGORITHM
	Estimating Means of k Gaussians
	General Statement of EM Algorithm
	Derivation of the k Means Algorithm
	xi.

	PART-A (2 Marks)

	DIMENSIONALITY REDUCTION
	Why Reduce Dimensionality?
	Reduces space complexity: Lessparameters
	Simpler models are more robust on small datasets
	Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions Feature Selection vs Extraction
	Subset selection algorithms
	Principal components analysis (PCA), linear discriminant analysis (LDA), factor analysis (FA)
	There are 2d subsets of d features
	Set of features F initially Ø.
	Backward search: Start with all features and remove one at a time, ifpossible. Floating search (Add k, remove l) Principal Cmponents Analysis (PCA)
	The projection of x on the direction of w is: z = wTx
	Maximize Var(z) subject to ||w||=1
	Choose the one with the largest eigenvalue for Var(z) to be max
	∑ w2 = α w2 that is, w2 is another eigenvector of ∑ and so on. What PCA does z = WT(x – m)
	How to choose k ?
	when λi are sorted in descending order
	Scree graph plots of PoV vs k, stop at “elbow”
	Find a small number of factors z, which when combined generate x :
	E[εi]= ψi, Cov(εi , εj) =0, i ≠ j, Cov(εi , zj) =0 , and vij are the factor loadings PCA vs FA
	Factor Analysis
	Multidimensional Scaling
	dij, i,j =1,...,N
	Map of Europe by MDS
	Linear Discriminant Analysis
	Find w that maximizes Between-class scatter:

	Within-class scatter:
	Fisher’s Linear Discriminant Find w that max
	LDA soln:
	Parametric
	Semiparametric Density Estimation Parametric:
	Semiparametric:
	Multiple possible explanations/prototypes: Different handwriting styles, accents in speech
	No model; data speaks for itself
	PART-B (10 Marks)
	Generalizing the Linear Model
	Geometry of the Linear Discriminant
	 Multiple Classes
	 Pairwise Separation
	Gradient Descent
	Multilayer Perceptrons
	Neural Networks as a Paradigm for Parallel Processing
	MLP as a Universal Approximator
	B) Two-Class Discrimination
	C) Multi-class Discrimination
	• Overtraining
	 Structuring the Network
	Tuning the Network Size
	PART-A (2 Marks)
	2. What is Discrimination By Regression?
	3. What is the perceptron?
	4. What is Bayesian Estimation?
	5. Explain Bayesian Approaches.
	PART-B (10 Marks) (1)
	UNIT-5
	Kernel Machines
	2. Optimal Separating Hyperplane
	3. The Nonseparable Case: Soft Margin Hyperplane
	4. ν-SVM
	5. Kernel Trick
	6. Vectorial Kernels
	7. Multiple Kernel Learning
	7. Multiclass Kernel Machines
	8. One-Class Kernel Machines
	9. Kernel Dimensionality Reduction
	1. Introduction:
	2. Canonical Cases for Conditional Independence Case 1: Head-to-tail Connection
	Case 2: Tail-to-tail Connection
	Case 3: Head-to-head Connection
	1. Example Graphical Models
	B. Hidden Markov Model:
	C. Linear Regression
	4.d-Separation
	5. Belief Propagation
	A. Chains
	B. Trees
	C. Polytrees
	D. Junction Trees
	6. Learning the Structure of a Graphical Model

	7. Influence Diagrams
	8. Undirected Graphs: Markov Random Fields
	PART-A (2 Marks)
	2. Explain about kernels.
	3. What are two paradigms for parallel processing?
	4. Explain about On-Line Learning.
	PART-B (10 Marks)

