

Object Oriented Programming through JAVA

(AK20)

ANNAMACHARYA INTITUTE OF TECHNOLOGY & SCIENCES:: TIRUPATHI

(Autonomous Institution - UGC, Govt. of India)
(Recognized under 2(f) and 12 (B) of UGC ACT 1956)

(Affiliated to JNTUA, Anantapuramu, Approved by AICTE - Accredited by NBA & NAAC – ‘A’
Grade, Accredited by Institute of Engineers, Kolkata, A-Grade Awarded by AP Knowledge

Mission)
Tirupathi, Andhrapradesh - 517 520

Department of Artificial Intelligence

Course Material

for

Object Oriented Programming through JAVA

(AK20)

Course Code :
Regulations :
Class :
Branch :

Department of Computer Science & Engineering

ANNAMACHARYA INTITUTE OF TECHNOLOGY & SCIENCES:: TIRUPATHI

(Autonomous Institution - UGC, Govt. of India)
(Recognized under 2(f) and 12 (B) of UGC ACT 1956)

(Affiliated to JNTUA, Anantapuramu, Approved by AICTE - Accredited by NBA & NAAC – ‘A’
Grade, Accredited by Institute of Engineers, Kolkata, A-Grade Awarded by AP Knowledge

Mission)
Tirupathi, Andhrapradesh - 517 520

20APC3004/20APC3304
AK20
II Year II Semester
AIDS/AIML

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 1 of 113

Syllabus : Unit-1
Object Oriented Thinking: History of Java, Java Buzzwords, Overview of OOP Classes and Objects:
Classes, Objects, Simple Java Program, Methods, Constructors, this Keyword, Garbage Collection, Data
Types, Variables, Arrays, Operators, Control Statements, Overloading of Methods and Constructors,
Parameter Passing, Recursion, String Class and String handling methods.

The History and Evolution of Java:
Java history is interesting to know. The history of java starts from Green Team. Java team members
(also known as Green Team), initiated a revolutionary task to develop a language for digital devices such
as set-top boxes, televisions etc.

For the green team members, it was an advance concept at that time. But, it was suited for
internet programming. Later, Java technology
as incorporated by Netscape.

James Gosling

Currently, Java is used in internet programming, mobile devices, games, e-business solutions
etc. There are given the major points that describes the history of java.

1. James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java language project
in June 1991. The small team of sun engineers called Green Team.

2. Originally designed for small, embedded systems in electronic appliances like set-top boxes.

3. Firstly, it was called "Greentalk" by James Gosling and file extension was .gt.

4. After that, it was called Oak and was developed as a part of the Green project.

Why Oak name for java language?

5. Why Oak? Oak is a symbol of strength and choosen as a national tree of many countries
like U.S.A., France, Germany, Romania etc.

6. In 1995, Oak was renamed as "Java" because it was already a trademark by Oak
Technologies.

Why Java name for java language?

7. Why they choosed java name for java language? The team gathered to choose a new name. The
suggested words were "dynamic", "revolutionary", "Silk", "jolt", "DNA" etc. They wanted

http://en.wikipedia.org/wiki/James_Gosling

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 2 of 113

something that reflected the essence of the technology: revolutionary, dynamic, lively, cool,
unique, and easy to spell and fun to say.

According to James Gosling "Java was one of the top choices along with Silk". Since java was so
unique, most of the team members preferred java.

8. Java is an island of Indonesia where first coffee was produced (called java coffee).

9. Notice that Java is just a name not an acronym.

10. Originally developed by James Gosling at Sun Microsystems (which is now a subsidiary
of Oracle Corporation) and released in 1995.

11. In 1995, Time magazine called Java one of the Ten Best Products of 1995.

12. JDK 1.0 released in(January 23, 1996).

Java Version History
There are many java versions that has been released. Current stable release of Java is Java SE 8.

1. JDK Alpha and Beta (1995)

2. JDK 1.0 (23rd Jan, 1996)

3. 3. JDK 1.1 (19th Feb, 1997)

4. 4. J2SE 1.2 (8th Dec, 1998)

5. 5. J2SE 1.3 (8th May, 2000)

6. 6. J2SE 1.4 (6th Feb, 2002)

7. J2SE 5.0 (30th Sep, 2004)

8. Java SE 6 (11th Dec, 2006)

9. Java SE 7 (28th July, 2011)

10. Java SE 8 (18th March, 2014)

Java Lineage:

Java is related to C++, which is a direct descendant of C. Much of the character of Java is
inherited from these two languages. From C, Java derives its syntax. Many of Java's object-
oriented features were influenced by C++. In fact, several of Java's defining characteristics come
from--or are responses to--its predecessors.

Java is a high-level, third generation programming language, like C, FORTRAN, Smalltalk, Perl,
and many others. You can use Java to write computer applications that play games, store data
or do any of the thousands of other things computer software can do. Java is a programming
language created by James Gosling from Sun Microsystems (Sun) in 1991.

The first publicly available version of Java (Java 1.0) was released in 1995. Java is most similar to
C. However although Java shares much of C's syntax.The concepts are related to c++.

Birth of C language:

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 3 of 113

The C Programming Language by Brian Kernighan and Dennis Ritchie (Prentice-Hall, 1978). C
was formally standardized in December 1989, when the American National Standards Institute
(ANSI) standard for C was adopted .The creation of C was a direct result of the need for a
structured, efficient, high-level language that could replace assembly code when creating
systems programs.

• Ease-of-use versus power

• Safety versus efficiency

• Rigidity versus extensibility.

C++: The Next Step
During the late 1970s and early 1980s, C became the dominant computer programming
language, and it is still widely used today. Since C is a successful and useful language, you
might ask why a need for something else existed.

The answer is complexity. Throughout the history of programming, the increasing complexity
of programs has driven the need for better ways to manage that complexity. C++ is a response
to that need. To better understand why managing program complexity is fundamental to the
creation of C++.
.As programs continued to grow, high-level languages were introduced that gave the
programmer more tools with which to handle complexity.
The Stage Is Set for Java
Java is a general-purpose computer programming language that is concurrent, class-based,
object-oriented, and specifically designed to have as few implementation dependencies as
possible.

It is intended to let application developers "write once, run anywhere" (WORA), meaning that
compiled Java code can run on all platforms that support Java without the need for
recompilation.
Java applications are typically compiled to byte code that can run on any Java virtual machine
(JVM) regardless of computer architecture.
As of 2016, Java is one of the most popular programming languages in use, particularly for

client-server web applications, with a reported 9 million developers.

Java was originally developed by James Gosling at Sun Microsystems (which has since been
acquired by Oracle Corporation) and released in 1995 as a core component of Sun
Microsystems' Java platform. The language derives much of its syntax from C and C++, but it has
fewer low- level facilities than either of them.

 Following are the differences Between C and C++ :

C C++

1. C is Procedural Language.

1. C++ is non Procedural i.e Object
oriented Language.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 4 of 113

2. No virtual Functions are present in C
2. The concept of virtual Functions are
used in C++.

3. In C, Polymorphism is not possible.

3. The concept of polymorphism is used in
C++.
Polymorphism is the most Important
Feature of OOPS.

4. Operator overloading is not possible in C.

4. Operator overloading is one of the
greatest Feature of C++.

5. Top down approach is used in Program
Design.

5. Bottom up approach adopted in
Program Design.

6. No namespace Feature is present in C
Language.

6. Namespace Feature is present in
C++ for avoiding Name collision.

7. Multiple Declaration of global variables
are allowed.

7. Multiple Declaration of global
varioables are not allowed.

8. In C
 scanf() Function used for Input.
 printf() Function used for output.

8. In C++
 Cin>> Function used for Input.
 Cout<< Function used for output.

9. Mapping between Data and Function is
difficult and complicated.

9. Mapping between Data and
Function can be used using
"Objects"

10. In C, we can call main() Function through
other Functions

10. In C++, we cannot call main()
Function through other functions.

11. C requires all the variables to be defined
at the starting of a scope.

11. C++ allows the declaration of
variable anywhere in the scope i.e at
time of its First use.

12. No inheritance is possible in C. 12. Inheritance is possible in C++

13. In C, malloc() and calloc() Functions are
used for Memory Allocation and free()
function for memory Deallocating.

13.In C++, new and delete operators
are used for Memory Allocating and
Deallocating.

14. It supports built-in and primitive data
types.

14. It support both built-in and user
define data types.

15. In C, Exception Handling is not present. 15. In C++, Exception Handling is
done with Try and Catch block.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 5 of 113

 Difference between c++& java

C++ Java

C++ is not a purely object-oriented
programming, since it is possible to
write C++ programs without using a class or an
object.

Java is purely an object-oriented
programming language, since it is not
possible to write a Java program without
using at least one class.

Pointers are available in C++. We cannot create and use pointers in Java.

Allocating memory and de-allocating
memory is the responsibility of the
programmer.

Allocation and de-allocation of memory will be
taken care of by JVM.

C++ has goto statement. Java does not have goto statement.

Automatic casting is available in C++. In some cases, implicit casting is available. But
it is advisable that the programmer should use
casting wherever possible.

Operator overloading is available in C++. It is not available in Java.

#define, typedef and header files are available in
C++.

#define, typedef and header are not available in
Java, but there are means to achieve them.

There are 3 access specifiers in C++: private, public
and protected.

Java supports 4 access specifiers: private, public,
protected, and default.

There are constructors and destructors in C++. Only constructors are there in Java. No destructors
are available in this language.

The Creation of Java:

James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike Sheridan conceived Java at
Sun Microsystems, Inc. in 1991. It took 18 months to develop the first working version.

This language was initially called “Oak” but was renamed “Java” in 1995. Between the initial

implementation of Oak in the fall of 1992 and the public announcement of Java in the spring of
1995, many more people contributed to the design and evolution of the language.

Bill Joy, Arthur van Hoff, Jonathan Payane, Frank Yellin, and Tim Lindholm were Key
contributors to the maturing of the original prototype.
Somewhat surprisingly, the original impetus for java was not the Internet! Instead, the primary
motivation was the need for a platform-independent (that is, architecture-neutral) language
that could be used to create software to be embedded in various consumer electronic devices,
such as microwave ovens and remote controls.

The trouble with C and C++(and most other languages) is that they are designed to be
compiled for a specific target. Although it is possible to compile a C++ program for just about
any type of CPU, to do so requires a full C++ compiler targeted for that CPU. The problem is
that compilers are expensive and time- consuming to create.

An easier - and more cost – efficient – solution was needed. In an attempt of find such a

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 6 of 113

solution, Gosling and others began work on a portable, platform-independent language that
could be used to produce code that would run on a variety of CPUs under differing
environments. This effort ultimately led to the creation of Java.

 Most programmers learn early in their careers that portable programs are as
elusive as they are desirable. While the quest for a way to create efficient,
portable (plat form - independent) programs is nearly as old as the discipline of
programming itself, it had taken a back seat to other, more pressing problems.

 Java derives much of its character from C and C++. This is by intent. The java
designer knew that using the familiar syntax of C and echoing the object-oriented
features of C++ would make their language appealing to the legions of experienced
C/C++ programmers.

First, Java was designed, tested, and refined by real, working programmers. It is a
language grounded in the needs and experiences of the people who devised it. Thus, Java
is also a programmer’s language. Second. Java is cohesive and logically consistent. Third,
except for those constraints imposed by the Internet environment, java gives you, the
programmer, full control. If you program well, your programs reflect it.

Computer languages evolve for two reasons: to adapt to changes in environment and to
implement advances in the art of programming. The environmental change that prompted
java was the need for platform-independent programs destined for distribution on the
Internet. However, java also embodies changes in the way that people approach the writing
of programs. Thus, java is not a language that exists in isolation. Rather, it is the current
instance of an ongoing process begun many years ago. This fact alone is enough to ensure
java a place in computer language history. Java is to Internet programming what C was to
systems programming: a revolutionary force that will change the world.

The c# connection:

Many of its innovative features, constructs, and concepts have become part of the baseline
for any new language. The success of Java is simply too important to ignore .Perhaps the
most important example of Java’s influence is C#. Created by Microsoft to support the .NET
Framework, C# is closely related to Java.

What's Similar Between C# and Java?
C# and Java are actually quite similar, from an application developer's perspective. The
major similarities of these languages are

1. All Objects are References
2. Garbage Collection
3. Both C# and Java are Type-Safe Languages
4. Both C# and Java Are "Pure" Object-Oriented Languages
5. Single Inheritance
6. Built-in Thread and Synchronization Support
7. Formal Exception Handling

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 7 of 113

8. Built-in Unicode Support
What's Different Between C# and Java?

While C# and Java are similar in many ways, they also have some differences.

1. Formal Exception Handling

2. Java Will Run on "Any" Operating System

3. C# and Java Language Interoperability

4. C# Is a More Complex Language than Java

5. C# and Java Keyword Comparison

6. Operator

7. Delegate

8. Synchronized

9. Threading and synchronization
How java changed the internet
 The Internet helped JAVA to the forefront of programming and JAVA in turn had a
great impact on the Internet. While simplifying the web programming JAVA innovated a new type of
networked program called the applet that changed the way the online world thought about content.
JAVA also addressed some of main issues associated with the Internet like portability and security.

1.Java Applets

An applet is a special kind of Java program that is designed to be transmitted over the Internet
and automatically executed by a Java-compatible web browser. Furthermore, an applet is
downloaded on demand, without further interaction with the user. If the user clicks a link that
contains an applet, the applet will be automatically downloaded and run in the browser.
Applets are intended to be small programs. They are typically used to display data provided by
the server, handle user input, or provide simple functions, such as a loan calculator, that
execute locally, rather than on the server. In essence, the applet allows some functionality to be
moved from the server to the client.

The creation of the applet changed Internet programming because it expanded the universe of
objects that can move about freely in cyberspace. In general, there are two very broad
categories of objects that are transmitted between the server and the client: passive
information and dynamic, active programs. For example, when you read your e-mail, you are
viewing passive data. Even when you download a program, the program’s code is still only
passive data until you execute it. By contrast, the applet is a dynamic, self-executing program.
Such a program is an active agent on the client computer, yet it is initiated by the server. As
desirable as dynamic, networked programs are, they also present serious problems in the areas
of security and portability. Obviously, a program that downloads and executes automatically on
the client computer must be prevented from doing harm. It must also be able to run in a variety
of different environments and under different operating systems.

2,Security : As we know when we download a normal program we are taking a risk, because the
code that we are downloading might contain a virus of any other harmful code. At the core of
the problem is the fact that malicious code can cause its damage as it has gained unauthorized

http://en.wikipedia.org/wiki/Java_applet
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Client_%28computing%29

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 8 of 113

access to system resources. In order for JAVA to enable applets to be downloaded and executed
on the client computer safely, it was necessary to prevent an applet from launching such an
attack. JAVA achieved this protection by confining an applet to the JAVA execution environment
and not allowing its access to other parts of the computer.

3.Portability : It is a major aspect of the Internet because there are many different types of
computers and operating systems connected to it. Some means of generating portable
executable code was needed.

Java’s magic: The byte code:

The key that allows Java to solve both the security and the portability problems is that the
output of a Java compiler is not executable code. Rather, it is bytecode. Bytecode is a set of
instructions designed to be executed by the Java run-time system known as Java Virtual
Machine (JVM). That is, in its standard form, the JVM is an interpreter for bytecode.
Translating a Java program into bytecode helps makes it easier to run a program in a wide
variety of environments.

The reason is straightforward: only the JVM needs to be implemented for each platform. Once
the run-time package exists for a given system, any Java program can run on it. Although the
details of JVM will differ from platform to platform, all interpret the same Java bytecode.

The fact that a Java program is interpreted also helps to make it secure. Because the execution
of every Java program is under the control of the JVM, the JVM can contain the program and
prevent it from generating side effects outside of the system.

Although Java was designed for interpretation, there is technically nothing about Java that
prevents on-the-fly compilation of bytecode into native code. Along these lines, Sun supplies its
Just In Time (JIT) compiler for bytecode, which is included in the Java 2 release.

When JIT compiler is part of the JVM, it compiles bytecode into the executable code in real
time, on a piece-by-piece, demand basis. It is not possible to compile an entire Java program
into executable code all at once, because Java performs various run time checks that can be
done only at run time. Instead, the JIT compiles code as it is needed, during execution.

Servlets: java on the server side
Java would also be useful on the server side. The result was the servlet. A servlet is a small
program that executes on the server. Just as applets dynamically extend the functionality of a
web browser, servlets dynamically extend the functionality of a web server. Thus, with the
advent of the servlet,Java spanned both sides of the client/server connection.
The servlet offers several advantages, including increased performance.Because servlets (like all
Java programs) are compiled into bytecode and executed by the JVM, they are highly portable.
Thus, the same servlet can be used in a variety of different server environments. The only
requirements are that the server support the JVM and a servlet container.

Q. Explain about java buzz words

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 9 of 113

java Buzzwords:

• Simple

• Secure

• Portable

• Object-oriented

• Robust

• Multithreaded

• Architecture-neutral

• Interpreted

• High performance

• Distributed

• Dynamic

1. Compiled and Interpreter:- Java has both Compiled and Interpreter Feature Program of java is
First Compiled and Then it is must to Interpret it .First of all The Program of java is Compiled then
after Compilation it creates Bytes Codes rather than Machine Language.

Then After Bytes Codes are Converted into the Machine Language is Converted into the Machine
Language with the help of the Interpreter So For Executing the java Program First of all it is necessary to
Compile it then it must be Interpreter .

2).Platform Independent:- Java Language is Platform Independent means program of java is
Easily transferable because after Compilation of java program bytes code will be created then
we have to just transfer the Code of Byte Code to another Computer.

This is not necessary for computers having same Operating System in which the code of the java is
Created and Executed After Compilation of the Java Program We easily Convert the Program of the java
top the another Computer for Execution.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 10 of 113

3. Object-Oriented:- We Know that is purely OOP Language that is all the Code of the java Language is
Written into the classes and Objects So For This feature java is Most Popular Language because it also
Supports Code Reusability, Maintainability etc.

4. Robust and Secure:- The Code of java is Robust andMeans ot first checks the reliability of the code
before Execution When We trying to Convert the Higher data type into the Lower Then it Checks the
Demotion of the Code the It Will Warns a User to Not to do this So it is called as Robust
Secure : When We convert the Code from One Machine to Another the First Check the Code either it is

Effected by the Virus or not or it Checks the Safety of the Code if code contains the Virus then it will

never Executed that code on to the Machine.

5. Distributed:- Java is Distributed Language Means because the program of java is compiled onto one

machine can be easily transferred to machine and Executes them on another machine because facility of

Bytes Codes So java is Specially designed For Internet Users which uses the Remote Computers For

Executing their Programs on local machine after transferring the Programs from Remote Computers or

either from the internet.

6. Simple Small and Familiar:- is a simple Language Because it contains many features of other

Languages like c and C++ and Java Removes Complexity because it doesn’t use pointers, Storage Classes

and Go to Statements and java Doesn’t support Multiple Inheritance

7. Multithreaded and Interactive:- Java uses Multithreaded Techniques For Execution Means Like in

other in Structure Languages Code is Divided into the Small Parts Like These Code of java is divided into

the Smaller parts those are Executed by java in Sequence and Timing Manner this is Called as

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 11 of 113

Multithreaded In this Program of java is divided into the Small parts those are Executed by Compiler of

java itself Java is Called as Interactive because Code of java Supports Also CUI and Also GUI Programs

8. Dynamic and Extensible Code:- Java has Dynamic and Extensible Code Means With the Help of OOPS

java Provides Inheritance and With the Help of Inheritance we Reuse the Code that is Pre-defined and

Also uses all the built in Functions of java and Classes

9. Secure: Java was designed with security in mind. As Java is intended to be used in

networked/distributor environments so it implements several security mechanisms to protect you

against malicious code that might try to invade your file system.

For example: The absence of pointers in Java makes it impossible for applications to gain access to

memory locations without proper authorization as memory allocation and referencing model is

completely opaque to the programmer and controlled entirely by the underlying run- time platform .

10. Architectural Neutral: One of the key feature of Java that makes it different from other

programming languages is architectural neutral (or platform independent). This means that the

programs written on one platform can run on any other platform without having to rewrite or recompile

them. In other words, it follows 'Write-once-run-anywhere' approach.

Java programs are compiled into byte-code format which does not depend on any machine architecture

but can be easily translated into a specific machine by a Java Virtual Machine (JVM) for that machine.

This is a significant advantage when developing applets or applications that are downloaded from the

Internet and are needed to run on different systems.

11. Portable : The portability actually comes from architecture-neutrality. In C/C++, source code may run

slightly differently on different hardware platforms because of how these platforms implement

arithmetic operations. In Java, it has been simplified.

Unlike C/C++, in Java the size of the primitive data types are machine independent. For example, an int

in Java is always a 32-bit integer, and float is always a 32-bit IEEE 754 floating point number. These

consistencies make Java programs portable among different platforms such as Windows, Unix and Mac .

12. Interpreted : Unlike most of the programming languages which are either complied or interpreted,

Java is both complied and interpreted The Java compiler translates a java source file to bytecodes and

the Java interpreter executes the translated byte codes directly on the system that implements the Java

Virtual Machine. These two steps of compilation and interpretation allow extensive code checking and

improved security

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 12 of 113

13. High performance: Java programs are complied to portable intermediate form know as bytecodes,
rather than to native machine level instructions and JVM executes Java bytecode on. Any machine on
which it is installed. This architecture means that Java programs are faster than program or scripts
written in purely interpreted languages but slower than C and C++ programsthat compiled to native
machine languages.

1.2.4 The Evolution of Java:

Introduction:

Introduction to Object Oriented Programming

Languages like Pascal, C, FORTRAN, and COBOL are called procedure oriented Programming languages
since in these languages, a programmer uses procedures or functions to perform a task When the
programmer wants to write a program, he will first divide the task into separate sub tasks, each of which
is expressed as functions/ procedures This approach is called procedure oriented approach.

The languages like C++ and Java use classes and object in their programs and are called Object Oriented
Programming languages the main task is divided into several modules and these are represented as
classes. Each class can perform some tasks for which several methods are written in a class This
approach is called Object Oriented approach.

Q. Object Oriented Concepts:/The Key Attributes Of Object Oriented Programming :

Object means a real word entity such as pen, chair, table etc. Object-Oriented Programming is
a methodology or paradigm to design a program using classes and objects. It simplifies the
software development and maintenance by providing some concepts:

1. Class

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 13 of 113

2. Object

3. Abstraction

4. Polymorphism

5. Inheritance

6. Encapsulation

7. Dynamic Binding

8. Message passing

Apart from these concepts, there are some other terms which are used in Object-Oriented design:
o Coupling
o Cohesion
o Association
o Aggregation
o Composition

1. Object :
1. Any entity that has state and behavior is known as an object. For example: chair,
pen, table, keyboard, bike etc. It can be physical and logical.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 14 of 113

An Object is a real time entity An object is an instance of a class Instance means physically happening An

object will have some properties and it can perform some actions.

We must acquire an actual, physical copy of the object and assign it to that variable We can do this using

new operator The new operator dynamically allocates memory for an object and returns a reference to

it This reference is, more or less, the address in memory of the object allocated by new This reference is

then stored in the variable Thus, in Java, all class objects must be dynamically allocated.

2. Class:
In object-oriented programming, a class is a programming language constructs that is used as a

blueprint to create objects This blueprint includes attributes and methods that the created objects all
share Usually, a class represents a person, place, or thing - it is an abstraction of a concept within a
computer program Fundamentally, it encapsulates the state and behavior of that which it conceptually
represents It encapsulates state through data placeholders called member variables; it encapsulates
behavior through reusable code called methods.

(Or)

Collection of objects is called class. It is a logical entity.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 15 of 113

3. Inheritance:

Inheritance in java is a mechanism in which one object acquires all the properties and behaviors of
parent object. The idea behind inheritance in java is that you can create new classes that are built upon
existing classes. When you inherit from an existing class, you can reuse methods and fields of parent
class, and you can add new methods and fields also.

Inheritance represents the IS-A relationship, also known as parent-child relationship.

1.For Method Overriding (so runtime polymorphism can be achieved).
2. For Code Reusability.

Types of inheritance in java

On the basis of class, there can be three types of inheritance in java: single, multilevel and hierarchical

.In java programming, multiple and hybrid inheritance is supported through interface only.

Single inheritance is easy to understand. When a class extends another one class only then we call it a

single inheritance.

1. Multiple Inheritance

Multiple Inheritance” refers to the concept of one class extending (Or inherits) more than one

base class. The inheritance we learnt earlier had the concept of one base class or parent. The

problem with “multiple inheritance” is that the derived class will have to manage the dependency

on two base classes.

1. Multilevel Inheritance:
Multilevel inheritance refers to a mechanism in OO technology where one can inherit from a derived

class, thereby making this derived class the base class for the new class. As you can see in below flow

diagram C is subclass or child class of B and B is a child class of A.

2. Hierarchical Inheritance:
Such kind of inheritance one class is inherited by many sub classes. In below example class B,C and D

inherits the same class A. A is parent class (or base class) of B,C & D.

Example:

3. Hybrid Inheritance
In simple terms you can say that Hybrid inheritance is a combination of Single and Multiple inheritance.

A typical flow diagram would look like below. A hybrid inheritance can be achieved in the java in a same

way as multiple inheritance can be!! Using interfaces.

yes you heard it right. By using interfaces you can have multiple as well as hybrid inheritance in
Java.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 16 of 113

4. Polymorphism:

Polymorphism in java is a concept by which we can perform a single action by different ways.

Polymorphism is derived from 2 greek words: poly and morphs. The word "poly" means many and

"morphs" means forms. So polymorphism means many forms.

There are two types of polymorphism in java: compile time polymorphism and runtime polymorphism.

We can perform polymorphism in java by method overloading and method overriding.

1. If you overload static method in java, it is the example of compile time
polymorphism. Runtime Polymorphism in Java

2. Runtime polymorphism or Dynamic Method Dispatch is a process in which a call to an
overridden method is resolved at runtime rather than compile-time.

4. Abstraction: It is a process of hiding the implementation details and showing only
functionality to the user.

1. Another way, it shows only important things to the user and hides the internal details
for example sending sms, you just type the text and send the message. You don't know
the internal processing about the message delivery.

2. Abstraction lets you focus on what the object does instead of how it does it.

3. An abstract class is a class that is declared abstract—it may or may not include
abstract methods. Abstract classes cannot be instantiated, but they can be subclass.

6. Encapsulation:
Binding (or wrapping) code and data together into a single unit is known as encapsulation. For example:

capsule, it is wrapped with different medicines.

A java class is the example of encapsulation. Java bean is the fully encapsulated class because all
the data members are private here.

 improves maintainability and flexibility and re-usability

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 17 of 113

 The fields can be made read-only or write-only

 User would not be knowing what is going on behind the scene.

7. Dynamic Binding:
Association of method definition to the method call is known as binding. There are two types of
binding: Static binding and dynamic binding.

Static Binding

The binding which can be resolved at compile time by compiler is known as static or early
binding. All the static, private and final methods have always been bonded at compile-
time. It resolves the problems related method overloading.

Dynamic Binding

When compiler is not able to resolve the call/binding at compile time, such binding is known as
Dynamic or late Binding. Overriding is a perfect example of dynamic binding as in overriding
both parent and child classes have same method. Thus while calling the overridden method, the
compiler gets confused between parent and child class method(since both the methods have
same name).

8. Message passing:

Message passing is a method by which an object sends data to another object or requests other
object to invoke method. This is also known as interfacing.It acts like a messenger from one
object to other object to convey specific instructions. Message Passing involves specifying the
name of objects, the name of the function, and the information to be sent.

Coupling

Coupling refers to the knowledge or information or dependency of another class. It arises when classes
are aware of each other. If a class has the details information of another class, there is strong coupling.
In Java, we use private, protected, and public modifiers to display the visibility level of a class, method,
and field. You can use interfaces for the weaker coupling because there is no concrete implementation.
Cohesion
Cohesion refers to the level of a component which performs a single well-defined task. A single well-
defined task is done by a highly cohesive method. The weakly cohesive method will split the task into
separate parts. The java.io package is a highly cohesive package because it has I/O related classes and
interface. However, the java.util package is a weakly cohesive package because it has unrelated classes
and interfaces.
Association
Association represents the relationship between the objects. Here, one object can be associated with
one object or many objects. There can be four types of association between the objects:

o One to One

o One to Many

o Many to One, and

o Many to Many

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 18 of 113

Let's understand the relationship with real-time examples. For example, One country can have one
prime minister (one to one), and a prime minister can have many ministers (one to many). Also, many
MP's can have one prime minister (many to one), and many ministers can have many departments
(many to many).

Association can be undirectional or bidirectional.
Aggregation
Aggregation is a way to achieve Association. Aggregation represents the relationship where one object
contains other objects as a part of its state. It represents the weak relationship between objects. It is
also termed as a has-a relationship in Java. Like, inheritance represents the is-a relationship. It is
another way to reuse objects.
Composition
The composition is also a way to achieve Association. The composition represents the relationship
where one object contains other objects as a part of its state. There is a strong relationship between the
containing object and the dependent object. It is the state where containing objects do not have an
independent existence. If you delete the parent object, all the child objects will be deleted
automatically.

JVM ARCHITECTURE

1. Class loader sub system: JVM's class loader sub system performs 3 tasks

a. It loads .class file into memory.

b. It verifies byte code instructions.

c. It allots memory required for the program.

2. Run time data area: This is the memory resource used by JVM and it is divided into 5 parts

a. Method area: Method area stores class code and method code.

b. Heap: Objects are created on heap.

c. Java stacks: Java stacks are the places where the Java methods are executed. A Java

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 19 of 113

stack contains frames. On each frame, a separate method is executed.

d. Program counter registers: The program counter registers store memory address of
the instruction to be executed by the micro processor.

e. Native method stacks: The native method stacks are places where native methods
(for example, C language programs) are executed. Native method is a function, which is
written in another language other than Java.

3. Native method interface: Native method interface is a program that connects native
methods libraries (C header files) with JVM for executing native methods.

4. Native method library: holds the native libraries information.

1. Execution engine: Execution engine contains interpreter and JIT compiler, which

covert byte code into machine code. JVM uses optimization technique to decide
which part to be interpreted and which part to be used with JIT compiler. The
HotSpot represent the block of code executed by JIT compiler.

Java Runtime Environment (JRE)

Java Runtime Environment contains JVM, class libraries and other supporting components. As
you know the Java source code is compiled into bytecode by Java compiler. This bytecode will
be stored in class files. During runtime, this bytecode will be loaded, verified and JVM
interprets the bytecode into machine code which will be executed in the machine in which
the Java program runs.

A Java Runtime Environment performs the following main tasks respectively.

1. Loads the class ::This is done by the class loader

2. Verifies the bytecode ::This is done by bytecode verifier.

3. Interprets the bytecode ::This is done by the JVM

Class loader
Class loader loads all the class files required to execute the program. Class loader makes the

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 20 of 113

program secure by separating the namespace for the classes obtained through the network
from the classes available locally. Once the bytecode is loaded successfully, then next step is
bytecode verification by bytecode verifier.

Byte code verifier
The bytecode verifier verifies the byte code to see if any security problems are there in the
code. It checks the byte code and ensures the followings.

1. The code follows JVM specifications.

2. There is no unauthorized access to memory.

3. The code does not cause any stack overflows.

4. There are no illegal data conversions in the code such as float to object references.
Once this code is verified and proven that there is no security issues with the code, JVM will
convert the byte code into machine code which will be directly executed by the machine in
which the Java program runs.

Just in Time Compiler
You might have noticed the component “Just in Time” (JIT) compiler in Figure 3. This is a
component which helps the program execution to happen faster.
As we discussed earlier when the Java program is executed, the byte code is interpreted by
JVM. But this interpretation is a slower process. To overcome this difficulty, JRE include the
component JIT compiler. JIT makes the execution faster.

If the JIT Compiler library exists, when a particular bytecode is executed first time, JIT complier
compiles it into native machine code which can be directly executed by the machine in which
the Java program runs.

Once the byte code is recompiled by JIT compiler, the execution time needed will be much
lesser. This compilation happens when the byte code is about to be executed and hence the
name “Just in Time”.

Simple program

To create a simple java program, you need to create a class that contains main method.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 21 of 113

Requirement for Java Program

 install the JDK if you don't have installed it,
 set path of the jdk/bin directory.

Eg: computer->properties->advanced->environmentvariables->new -> variable name:path
variablevalue: C:\Program Files\Java\jdk1.6.0_26\bin below->new->
variable name:classpath

variablevalue: C:\Program Files\Java\jdk1.6.0_26\bin; and then press “ok”
create the java program in notepad and save as “classname.java”
eg:-Hai.java

compile and run the java program To compile java program C:\>javac Hai.java

To run program C:\>java Hai Program:
class Simple{

public static void main(String args[]){ System.out.println("Hello Java");
}

}

Compile Time:

Run Time:

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 22 of 113

 class keyword is used to declare a class in java.
 public keyword is an access modifier which represents visibility, it means it is visible

to all.
 static is a keyword, if we declare any method as static, it is known as static method.

The core advantage of static method is that there is no need to create object to
invoke the static method. The main method is executed by the JVM, so it doesn't
require to create object to invoke the main method. So it saves memory.

 void is the return type of the method, it means it doesn't return any value.
 main represents startup of the program.
 String[] args is used for command line argument. We will learn it later.
 System.out.println() is used print statement. We will learn about the internal

working of System.out.println statement later.

A Second Short Program
/*
Here is another short
example. Call this file
"Example2.java".
*/
class Example2 {
public static void main(String args []) {
int num; // this declares a variable called num
num = 100; // this assigns num the value 100
System.out.println("This is num: " + num);
num = num * 2;
System.out.print("The value of num * 2 is ");

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 23 of 113

System.out.println(num);
}
}
When you run this program, you will see the following output:
This is num: 100
The value of num * 2 is 200

Lexical Issues: Java programs are a collection of whitespace, identifiers, literals,comments, operators,
separators, and keywords.

Whitespace
Java is a free-form language. This means that you do not need to follow any special indentation rules.

For instance, the Example program could have been written all on one
line or in any other strange way you felt like typing it, as long as there was at least one whitespace
character between each token that was not already delineated by an operator or separator. In Java,
whitespace is a space, tab, or newline.

Identifiers
Identifiers are used to name things, such as classes, variables, and methods. An identifier may be any
descriptive sequence of uppercase and lowercase letters, numbers, or the underscore and dollar-sign
characters. (The dollar-sign character is not intended for general use.) They must not begin with a
number, lest they be confused with a numeric literal. Again, Java is case-sensitive, so VALUE is a
different identifier than Value.
Some examples of valid identifiers are
1.AvgTemp 2. count 3.a4 4. $test 5.this_is_ok

Invalid identifier names include these:

1.2 count 2. high-temp 3. Not/ok

Literals
A constant value in Java is created by using a literal representation of it. For example, here are some
literals:
1.100 2.98.6 3.‘X’ 4.“This is a test”
Left to right, the first literal specifies an integer, the next is a floating-point value, the third is a character
constant, and the last is a string. A literal can be used anywhere a value of its type is allowed.

Comments
As mentioned, there are three types of comments defined by Java. You have already seen two: single-
line and multiline. The third type is called a documentation comment. This type
of comment is used to produce an HTML file that documents your program. The documentation
comment begins with a /** and ends with a */.

Separators
In Java, there are a few characters that are used as separators. The most commonly used separator in

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 24 of 113

Java is the semicolon. As you have seen, it is used to terminate statements. The separators are shown
in the following table.

Java Keywords

Access modifiers: private, protected, public, default

Class, method, variable
modifiers:

abstract, class, extends, final, implements, interface, native, new, static,
strictfp, synchronized, transient, volatile

Flow control:
break, case, continue, default, do, else, for, if, instance of,
return,switch, while

Package control: import, package

Primitive types: boolean, char, byte, short, int, long, float, double

Error handling: assert, catch, finally, throw, throws, try

Enumeration: Enum

Others: super, this, void

Unused: const, goto

Java class libraries:
Two of Java’s built-in methods:
println() and print(). As mentioned, these methods are available through System.out.
System is a class predefined by Java that is automatically included in your programs. In
the larger view, the Java environment relies on several built-in class libraries that contain
many built-in methods that provide support for such things as I/O, string handling,
networking, and graphics. The standard classes also provide support for a graphical user
interface (GUI).

List of Library Classes in Java:

Library classes Purpose of the class

Java.io Use for input and output functions.

Java.lang Use for character and string operation.

http://www.codejava.net/java-core/the-java-language/private-keyword
http://www.codejava.net/java-core/the-java-language/protected-keyword
http://www.codejava.net/java-core/the-java-language/public-keyword
http://www.codejava.net/java-core/the-java-language/abstract-keyword
http://www.codejava.net/java-core/the-java-language/class-keyword
http://www.codejava.net/java-core/the-java-language/extends-keyword
http://www.codejava.net/java-core/the-java-language/final-keyword
http://www.codejava.net/java-core/the-java-language/implements-keyword
http://www.codejava.net/java-core/the-java-language/interface-keyword
http://www.codejava.net/java-core/the-java-language/native-keyword
http://www.codejava.net/java-core/the-java-language/new-keyword
http://www.codejava.net/java-core/the-java-language/java-keyword-static
http://www.codejava.net/java-core/the-java-language/java-keyword-strictfp
http://www.codejava.net/java-core/the-java-language/synchronized-keyword
http://codejava.net/java-core/the-java-language/transient-keyword
http://www.codejava.net/java-core/the-java-language/volatile-keyword
http://www.codejava.net/java-core/the-java-language/break-keyword
http://www.codejava.net/java-core/the-java-language/switch-case-construct
http://www.codejava.net/java-core/the-java-language/switch-case-construct
http://www.codejava.net/java-core/the-java-language/switch-case-construct
http://www.codejava.net/java-core/the-java-language/switch-case-construct
http://www.codejava.net/java-core/the-java-language/switch-case-construct
http://www.codejava.net/java-core/the-java-language/do-while-construct
http://www.codejava.net/java-core/the-java-language/if-else-construct
http://www.codejava.net/java-core/the-java-language/for-keyword
http://www.codejava.net/java-core/the-java-language/if-else-construct
http://www.codejava.net/java-core/the-java-language/instanceof-keyword
http://www.codejava.net/java-core/the-java-language/return-keyword
http://www.codejava.net/java-core/the-java-language/return-keyword
http://www.codejava.net/java-core/the-java-language/do-while-construct
http://www.codejava.net/java-core/the-java-language/import-keyword
http://www.codejava.net/java-core/the-java-language/package-keyword
http://www.codejava.net/java-core/the-java-language/boolean-keyword
http://www.codejava.net/java-core/the-java-language/char-keyword
http://www.codejava.net/java-core/the-java-language/float-keyword
http://www.codejava.net/java-core/the-java-language/double-keyword
http://www.codejava.net/java-core/the-java-language/java-keyword-assert
http://www.codejava.net/java-core/the-java-language/try-catch-finally-construct
http://www.codejava.net/java-core/the-java-language/try-catch-finally-construct
http://www.codejava.net/java-core/the-java-language/throw-and-throws-keywords
http://www.codejava.net/java-core/the-java-language/throw-and-throws-keywords
http://www.codejava.net/java-core/the-java-language/try-catch-finally-construct
http://www.codejava.net/java-core/the-java-language/super-keyword
http://www.codejava.net/java-core/the-java-language/this-keyword
http://www.codejava.net/java-core/the-java-language/void-keyword

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 25 of 113

Java.awt Use for windows interface.

Java.util Use for develop utility programming.

Java.applet Use for applet.

Java.net Used for network communication.

Java.math Used for various mathematical calculations like power, square root etc.

We will come across different library classes, which basically deal with input/output operation.

Java Comments
The java comments are statements that are not executed by the compiler and interpreter. The
comments can be used to provide information or explanation about the variable, method, class or any
statement. It can also be used to hide program code for specific time.
Types of Java Comments
There are 3 types of comments in java.

 Single Line Comment

 Multi Line Comment

 Documentation Comment

Java Single Line Comment
The single line comment is used to comment only one line.
Syntax:
//This is single line comment

Java Multi Line Comment
The multi line comment is used to comment multiple lines of code.
Syntax:
/* This is
multi line comment
*/

Java Documentation Comment
The documentation comment is used to create documentation API. To create documentation API, you
need to use javadoc tool.
Syntax:
/** This is documentation comment
*/
Introducing Classes
The General Form of a Class

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 26 of 113

A class is declared by use of the class keyword. The classes that have been used up to this point are
actually very limited examples of its complete form. Classes can (and usually do) get much more
complex. A simplified general form of a class definition is shown here:
class classname {
type instance-variable1;
type instance-variable2;
// ...
type instance-variableN;
type methodname1(parameter-list) {
// body of method
}
type methodname2(parameter-list) {
// body of method
}
// ...
type methodnameN(parameter-list) {
// body of method
}
}
A Simple Class
class Box {
double width;
double height;
double depth;
}
// This class declares an object of type Box.
 class BoxDemo {
public static void main(String args[]) {
Box mybox = new Box();
double vol;
// assign values to mybox's instance variables
mybox.width = 10;
mybox.height = 20;
mybox.depth = 15;
// compute volume of box
vol = mybox.width * mybox.height * mybox.depth;
System.out.println("Volume is " + vol);
}
}
Declaring Objects

The new operator dynamically allocates (that is, allocates at run time) memory for an object and returns
a reference to it. This reference is, more or less, the address in memory of the object allocated by new.
This reference is then stored in the variable. Thus, in Java, all class objects must be dynamically
allocated. Let’s look at the details of this procedure.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 27 of 113

In the preceding sample programs, a line similar to the following is used to declare
an object of type Box:

Box mybox = new Box();
This statement combines the two steps just described. It can be rewritten like this to show
each step more clearly:

Box mybox; // declare reference to object
mybox = new Box(); // allocate a Box object

The first line declares mybox as a reference to an object of type Box. At this point, mybox
does not yet refer to an actual object.

Assigning Object Reference Variables
Box b1 = new Box();

Box b2 = b1;
You might think that b2 is being assigned a reference to a copy of the object referred to byb1. That is,
you might think that b1 and b2 refer to separate and distinct objects.

Data Types, Arrays and Variables:
Primitive types: boolean, byte, char, double, float, int, long, short Integers This group includes byte,
short, int, and long, which are for whole-valued signed numbers.
Floating-point numbers This group includes float and double, which represent numbers with fractional
precision.

Characters This group includes char, which represents symbols in a character set,like letters and
numbers.
Boolean This group includes boolean, which is a special type for representing true/false values.
Integers
Java defines four integer types: byte, short, int, and long. All of these are signed, positive and negative
values. Java does not support unsigned, positive-only integers.

byte
The smallest integer type is byte. This is a signed 8-bit type that has a range from –128 to
127. Variables of type byte are especially useful when you’re working with a stream of data from a
network or file.
Ex:
declares two byte variables called b and c:
byte b, c;
short
short is a signed 16-bit type. It has a range from –32,768 to 32,767. It is probably the least used Java
type. Here are some examples of short variable declarations:

http://www.codejava.net/java-core/the-java-language/boolean-keyword
http://www.codejava.net/java-core/the-java-language/byte-keyword
http://www.codejava.net/java-core/the-java-language/char-keyword
http://www.codejava.net/java-core/the-java-language/double-keyword
http://www.codejava.net/java-core/the-java-language/float-keyword
http://www.codejava.net/java-core/the-java-language/int-keyword
http://www.codejava.net/java-core/the-java-language/long-keyword
http://www.codejava.net/java-core/the-java-language/short-keyword

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 28 of 113

short s; short t; int
The most commonly used integer type is int. It is a signed 32-bit type that has a range from –
2,147,483,648 to 2,147,483,647.
Ex:-int lightspeed;
long
long is a signed 64-bit type and is useful for those occasions where an int type is not large enough to
hold the desired value.
Ex:- long distance;
Floating Point:
There are two kinds of floating-point types, float and double, which represent single- and double-
precision numbers, respectively

float
The type float specifies a single-precision value that uses 32 bits of storage. Single precision is faster on
some processors and takes half as much space as double precision.
Ex:-float hightemp, lowtemp;
double
Double precision, as denoted by the double keyword, uses 64 bits to store a value. Double precision is
actually faster than single precision
ex:-double pi, r, a;
Characters
In Java, the data type used to store characters is char. However, C/C++ programmers
beware: char in Java is not the same as char in C or C++. In C/C++, char is 8 bits wide. This
is not the case in Java. Instead, Java uses Unicode to represent characters. Unicode defines a fully
international character set that can represent all of the characters found in all human languages.
Unicode required 16 bits. Thus, in Java char is a 16-bit type. The range of a char is 0 to 65,536. There are
no negative chars. The standard set of characters known as ASCII still ranges from 0 to 127 as always.
Ex:- char ch1, ch2;
Boolean:
Booleans
Java has a primitive type, called boolean, for logical values. It can have only one of two possible values,
true or false.
Ex-boolean b;
Example:
public class PrimitiveDemo {
public static void main(String[] args) {
byte b =100;
short s =123;
int v = 123543;

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 29 of 113

int calc = -9876345;
long amountVal = 1234567891;
float intrestRate = 12.25f;
double sineVal = 12345.234d;
 boolean flag = true;
boolean val = false;
char ch1 = 88; // code for X
char ch2 = 'Y';
System.out.println("byte Value = "+ b);
System.out.println("short Value = "+ s);
System.out.println("int Value = "+ v);
System.out.println("int second Value = "+ calc);
System.out.println("long Value = "+ amountVal);
System.out.println("float Value = "+ intrestRate);
System.out.println("double Value = "+ sineVal);
System.out.println("boolean Value = "+ flag);
System.out.println("boolean Value = "+ val);
System.out.println("char Value = "+ ch1);
System.out.println("char Value = "+ ch2);
}
}

Summary of Data Types:

Variables

The variable is the basic unit of storage in a Java program. A variable is defined by
the combination of an identifier, a type, and an optional initialize.
Declaring a Variable

type identifier [= value][, identifier [= value] …];
type is one of Java’s atomic types, or the name of a class or interface. The identifier is the name of the
variable. You can initialize the variable by specifying an equal sign and a value.
int a, b, c; // declares three ints, a, b, and c.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 30 of 113

int d = 3, e, f = 5; // declares three more ints, initializing d and f.
byte z = 22; // initializes z.
double pi = 3.14159; // declares an approximation of pi.
char x = 'x'; // the variable x has the value 'x'.
The identifiers that you choose have nothing intrinsic in their names that indicates their type.
Java allows any properly formed identifier to have any declared type.

Dynamic Initialization
Although the preceding examples have used only constants as initializers, Java allows variables to be
initialized dynamically, using any expression valid at the time the variable is declared.
For example, here is a short program that computes the length of the hypotenuse of a right triangle
given the lengths of its two opposing sides:
// Demonstrate dynamic initialization

class DynInit {
public static void main(String args[]) {
double a = 3.0, b = 4.0;
// c is dynamically initialized
double c = Math.sqrt(a * a + b * b);
System.out.println("Hypotenuse is " + c);
}
}

Q. Explain scope of variable
Scope of the Variable:
Scope and Lifetime of Variables. The scope of a variable defines the section of the code in which the
variable is visible. As a general rule, variables that are defined within a block are not accessible outside
that block. The lifetime of a variable refers to how long the variable exists before it is destroyed.

Class Level Scope
In Java, there are some variables that you want to be able to access from anywhere within a Java class.
The scope of these variables will need to be at the class level, and there is only one way to create
variables at that level – just inside the class but outside of any methods. Let's take a look at an example:

You will notice that the variables have been defined at the top of the class, before any methods.
This is simply a convention; you can define your class-level variables anywhere in the class (so
long as it's outside of any methods in the class). However, it is good practice to put these
variables at the top so it's easier to see where they all are.

Method Scope
Some variables you might want to make temporary and preferably they are used for only one method.
This would be an example of method scope. Here's a pretty typical example of a variable in method
scope using an example of Java's main method:

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 31 of 113

The variable x in the example is created inside the method. When the method ends, the variable
reference goes away and there is no way to access that variable any longer. You cannot use that same
variable x in another method because it only exists in the main method's scope and that is it.

Here's another example of method scope, except this time the variable got passed in as a

parameter to the method:
The above example is the typical example of a setter method. The purpose of a setter method
as you might recall is to set a class variable to a particular value from somewhere outside of the
class. The above example is a pretty clean example of this. Now let's look at the same example,
except now we'll use a conflicting variable name.

So, what's going on with the variable scope here? And what is "this"? The this keyword helps Java to
differentiate between the local scope variable (the method scope variable) and the class variable. This.
username tells Java that you are referencing the class variable. So, the setter above sets the method-
scope variable called name to the class variable called name. The variable scope here is not in conflict
because Java knows which variable to access because of the "this" keyword. You could also do this:

However the above is something you probably won't be doing often (if at all!) because you're setting the
local, temporary variable to the value of the more permanent one.

Loop Scope

Any variables created inside of a loop are LOCAL TO THE LOOP. This means that once you exit the loop,
the variable can no longer be accessed! This includes any variables created in the loop signature. Take a
look at the following two for loop examples:

In the first example, x can ONLY be used inside of the for loop. In the second example, you are
free to use x inside of the loop as well as outside of the loop because it was declared outside of

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 32 of 113

the loop (it has been declared at method scope).

Q. Explain about Type Conversion or casting OR Explain about Widening and narrowing
Type Conversion and Casting

Assigning a value of one type to a variable of another type is known as Type Casting.

Java supports two types of castings – primitive data type casting and reference type casting.
Reference type casting is nothing but assigning one Java object to another object. It comes with
very strict rules and is explained clearly in Object Casting. Now let us go for data type casting.

Java data type casting comes with 3 flavors.

1. Implicit casting

2. Explicit casting

3. Boolean casting.

1. automatic type conversion.: Implicit casting (widening conversion)

A data type of lower size (occupying less memory) is assigned to a data type of higher
size. This is done implicitly by the JVM. The lower size is widened to higher size. This is also
named as automatic type conversion.

Examples:

1

2

int x = 10; // occupies 4 bytes
double y = x; // occupies 8 bytes
System.out.println(y); // prints 10.0

1. Casting Incompatible Types: Explicit casting (narrowing conversion)

A data type of higher size (occupying more memory) cannot be assigned to a data type of
lower size. This is not done implicitly by the JVM and requires explicit casting; a casting
operation to be performed by the programmer. The higher size is narrowed to lower size.

1
2

double x = 10.5; // 8 bytes
int y = x; // 4 bytes ; raises compilation error

In the above code, 8 bytes double value is narrowed to 4 bytes int value. It raises error. Let us
explicitly type cast it.

1
2

double x = 10.5;
int y = (int) x;

The double x is explicitly converted to int y. The thumb rule is, on both sides, the same data type should
exist.

Boolean casting
A boolean value cannot be assigned to any other data type. Except boolean, all the remaining 7

http://way2java.com/casting-operations/object-casting/

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 33 of 113

data types can be assigned to one another either implicitly or explicitly; but boolean cannot.
We say, boolean is incompatible for conversion. Maximum we can assign a boolean value to
another boolean.

Following raises error.

1
2

boolean x = true;
int y = x; // error

1
2

boolean x = true;
int y = (int) x; // error

byte –> short –> int –> long –> float –> double

In the above statement, left to right can be assigned implicitly and right to left requires explicit casting.
That is, byte can be assigned to short implicitly but short to byte requires explicit casting.

Operators in java Language:

Arithmetic operators

Operator Use Description

+ x + y Adds x and y

-
x - y Subtracts y from x

-x Arithmetically negates x

* x * y Multiplies x by y

/ x / y Divides x by y

% x % y Computes the remainder of dividing x by y

Operator Use Description

++
x++ y = x++; is the same as y = x; x = x + 1;

++x y = ++x; is the same as x = x + 1; y = x;

--
x-- y = x--; is the same as y = x; x = x - 1;

--x y = --x; is the same as x = x - 1; y = x;

Java Example:

public class BasicArithmeticDemo
{
public static void main(String[] args)
{
int number1 = 10; int number2 = 5;

//calculating number1 + number2;

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 34 of 113

int sum = number1 + number2;

//calculating number1 - number2;
int difference = number1 - number2;

//calculating number1 * number2;
 int product = number1 * number2;

//calculating number1 / number2;
int quot = number1 / number2;

//calculating number1 % number2;
int rem = number1 % number2;

//Displaying the values
System.out.println("number1 : "+number1);
System.out.println("number2 : "+number2);
System.out.println("sum : "+sum);
System.out.println("difference : "+difference);
System.out.println("product : "+product);
System.out.println("quot : "+quot);
System.out.println("rem : "+rem);
}

Relational Operators

Operator Use Description

> x > y x is greater than y

>= x >= y x is greater than or equal to y

< x < y x is less than y

<= x <= y x is less than or equal to y

== x == y x is equal to y

!= x != y x is not equal to y

class ComparisonDemo {
public static void main(String[] args){
 int value1 = 1;
int value2 = 2;
if(value1 == value2)
System.out.println("value1 == value2");
if(value1 != value2)
System.out.println("value1 != value2");
if(value1 > value2)
System.out.println("value1 > value2");
if(value1 < value2)
System.out.println("value1 < value2");

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 35 of 113

if(value1 <= value2)
System.out.println("value1 <= value2");
}
}

Bitwise Operators

Operator Use Evaluates to true if

~ ~x Bitwise complement of x

& x & y AND all bits of x and y

| x | y OR all bits of x and y

^ x ^ y XOR all bits of x and y

>> x >> y Shift x right by y bits, with sign extension

>>> x >>> y Shift x right by y bits, with 0 fill

<< x << y Shift x left by y bits

public class BitwiseLogicalOpDemo {
public static void main(String[] args) {
//Integer bitwise logical operator

int a = 65; // binary representation 1000001
 int b = 33; // binary representation 0100001
System.out.println("a & b= " + (a & b));
System.out.println("a | b= " + (a | b));
System.out.println("a ^ b= " + (a ^ b));
System.out.println("~a= " + ~a);

}}

The Bitwise NOT
Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of its operand. For
example, the number 42, which has the following bit pattern:
00101010
becomes 11010101
after the NOT operator is applied.
The Bitwise AND
The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced in all other cases.
Here is an example:
00101010 42
&00001111 15

00001010 10
The Bitwise OR
The OR operator, |, combines bits such that if either of the bits in the operands is a 1, then the resultant

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 36 of 113

bit is a 1, as shown here:
00101010 42
|
00001111 15

00101111 47
The Bitwise XOR
The XOR operator, ^, combines bits such that if exactly one operand is 1, then the result is 1. Otherwise,
the result is zero. The following example shows the effect of the ^. This example also demonstrates a
useful attribute of the XOR operation. Notice how the bit pattern of 42 is inverted wherever the second
operand has a 1 bit. Wherever the second operand has a 0 bit, the first operand is unchanged. You will
find this property useful when performing some types of bit manipulations.
00101010 42
^
00001111 15

00100101 37
The Left Shift
The left shift operator, <<, shifts all of the bits in a value to the left a specified number of times. It has
this general form: value << num

Here, num specifies the number of positions to left-shift the value in value. That is, the << moves all of
the bits in the specified value to the left by the number of bit positions specified by num. For each shift
left, the high-order bit is shifted out (and lost), and a zero is brought in on the right. This means that
when a left shift is applied to an int operand,bits are lost once they are shifted past bit position 31. If the
operand is a long, then bits are lost after bit position 63

Java Right Shift Operator
The Java right shift operator >> is used to move the value of the left operand to right by the number of
bits specified by the right operand.
Java Right Shift Operator Example

1. public OperatorExample{
2. public static void main(String args[]){
3. System.out.println(10>>2);//10/2^2=10/4=2
4. System.out.println(20>>2);//20/2^2=20/4=5
5. System.out.println(20>>3);//20/2^3=20/8=2
6. }}

Output:
2
5
2

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 37 of 113

Java Shift Operator Example: >> vs >>> (Unsigned right shift Operator)
1. public class OperatorExample{
2. public static void main(String args[]){
3. //For positive number, >> and >>> works same
4. System.out.println(20>>2);
5. System.out.println(20>>>2);
6. //For negative number, >>> changes parity bit (MSB) to 0
7. System.out.println(-20>>2);
8. System.out.println(-20>>>2);
9. }}

Output:
5
5
-5
1073741819

Logical Boolean Operators

Operator Use Evaluates to true if

&& x && y Both x and y are true

|| x || y Either x or y are true

! !x x is not true

Eg:-
public class BitwiseLogicalOpDemo {
 public static void main(String[] args) {
//Integer bitwise logical operator
int a = 65; // binary representation 1000001
int b = 33; // binary representation 0100001
System.out.println("a && b= " + (a && b));
System.out.println("a | |b= " + (a | |b));
System.out.println("!a= " + !a);

}}

Assignment Operators

Operator Use Shortcut for

= x = y x = y

+= x += y x = x + y

-= x -= y x = x - y

*= x *= y x = x * y

/= x /= y x = x / y

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 38 of 113

%= x %= y x = x % y

&= x &= y x = x & y (also works for boolean values)

|= x |= y x = x | y (also works for boolean values)

^= x ^= y x = x ^ y (also works for boolean values)

>>= x >>= y x = x >> y

>>>= x >>>= y x = x >>> y

<<= x <<= y x = x << y

class AssignOptrDemo
{

public static void main(String[] args)
{

int a = 10, b = 15, c = 15;
System.out.println("Assignment and shortcut assignment operators");
System.out.println(" a = " + (a = 15));
System.out.println(" Addition = " + (a += b));
System.out.println(" Subtraction = " + (c -= b));
System.out.println(" Division = " + (a /= 2));
System.out.println(" Multiplication = " + (a *= 2));

}
}

Other Operators

Operator Use Description

() (x + y) * z Require operator precedence

?: z = b ? x : y Equivalent to: if (b) { z = x; } else { z = y; }

[] array[0] Access array element

. str.length() Access object method or field

(type) int x = (int) 1.2; Cast from one type to another

new d = new Date(); Create a new object

instanceof o instanceof String Check for object type, returning boolean

Short-Circuit Logical Operators :
Java provides two interesting Boolean operators not found in some other computer languages. These
are secondary versions of the Boolean AND and OR operators, and are commonly known as short-circuit
logical operators. As you can see from the preceding table, the OR operator results in true when A is
true, no matter what B is. Similarly, the AND operator results in false when A is false, no matter what B
is. If you use the || and && forms, rather than the | and & forms of these operators.
if (denom != 0 && num / denom > 10)

Since the short-circuit form of AND (&&) is used, there is no risk of causing a run-time exception when
denom is zero. If this line of code were written using the single & version of AND, both sides would be
evaluated, causing a run-time exception when denom is zero

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 39 of 113

The ? Operator
The value of a variable often depends on whether a particular boolean expression is or is not true and
on nothing else. For instance one common operation is setting the value of a variable to the maximum
of two quantities. In Java you might write

if (a > b) { max = a;
}
else { max = b;
}

Setting a single variable to one of two states based on a single condition is such a common use of if-else
that a shortcut has been devised for it, the conditional operator, ?:. Using the conditional operator you
can rewrite the above example in a single line like this:

max = (a > b) ? a : b;

(a > b) ? a : b; is an expression which returns one of two values, a or b. The condition, (a > b), is tested. If
it is true the first value, a, is returned. If it is false, the second value, b, is returned.
Whichever value is returned is dependent on the conditional test, a > b. The condition can be any
expression which returns a Boolean value.
class ByteShift {
public static void main(String args[]) {
byte a = 64, b;
int i;
i = a << 2;
b = (byte) (a << 2); System.out.println("Original value of a: " + a);
System.out.println("i and b: " + i + " " + b);
} }
The output generated by this program is shown here:
Original value of a: 64 i and b: 256 0
Operator Precedence

Highest

++ (postfix) – – (postfix)

++ (prefix) – – (prefix) ~ ! + (unary) – (unary) (type-cast)

* / %

+ –

>> >>> <<

> >= < <= instanceof

== !=

&

^

|

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 40 of 113

&&

||

?:

−>

= op=

Lowest

Java Control Statements | Control Flow in Java
Java compiler executes the code from top to bottom. The statements in the code are executed
according to the order in which they appear. However, Java provides statements that can be used to
control the flow of Java code. Such statements are called control flow statements. It is one of the
fundamental features of Java, which provides a smooth flow of program.

Java provides three types of control flow statements.
1. Decision Making statements

o if statements
o switch statement

2. Loop statements
o do while loop
o while loop
o for loop
o for-each loop

3. Jump statements
o break statement
o continue statement

Decision-Making statements:
As the name suggests, decision-making statements decide which statement to execute and when.
Decision-making statements evaluate the Boolean expression and control the program flow depending
upon the result of the condition provided. There are two types of decision-making statements in Java,
i.e., If statement and switch statement.

1) If Statement:
In Java, the "if" statement is used to evaluate a condition. The control of the program is diverted
depending upon the specific condition. The condition of the If statement gives a Boolean value, either
true or false. In Java, there are four types of if-statements given below.

1. Simple if statement
2. if-else statement
3. if-else-if ladder
4. Nested if-statement

Let's understand the if-statements one by one.
1) Simple if statement:
It is the most basic statement among all control flow statements in Java. It evaluates a Boolean
expression and enables the program to enter a block of code if the expression evaluates to true.

https://www.javatpoint.com/java-tutorial

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 41 of 113

Syntax of if statement is given below.
if(condition) {
statement 1; //executes when condition is true
}
Consider the following example in which we have used the if statement in the java code.
Student.java

1. public class Student {
2. public static void main(String[] args) {
3. int x = 10;
4. int y = 12;
5. if(x+y > 20) {
6. System.out.println("x + y is greater than 20");
7. }
8. }
9. }

Output:
x + y is greater than 20

2) if-else statement

The if-else statement is an extension to the if-statement, which uses another block of code, i.e., else
block. The else block is executed if the condition of the if-block is evaluated as false.
Syntax:

1. if(condition) {
2. statement 1; //executes when condition is true
3. }
4. else{
5. statement 2; //executes when condition is false
6. }

Consider the following example.

Student.java
1. public class Student {
2. public static void main(String[] args) {
3. int x = 10;
4. int y = 12;
5. if(x+y < 10) {
6. System.out.println("x + y is less than 10");
7. } else {
8. System.out.println("x + y is greater than 20");
9. }
10. }
11. }

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 42 of 113

Output:
x + y is greater than 20

3) if-else-if ladder:

The if-else-if statement contains the if-statement followed by multiple else-if statements. In other
words, we can say that it is the chain of if-else statements that create a decision tree where the program
may enter in the block of code where the condition is true. We can also define an else statement at the
end of the chain.

Syntax of if-else-if statement is given below.
1. if(condition 1) {
2. statement 1; //executes when condition 1 is true
3. }
4. else if(condition 2) {
5. statement 2; //executes when condition 2 is true
6. }
7. else {
8. statement 2; //executes when all the conditions are false
9. }

Consider the following example.
Student.java

1. public class Student {
2. public static void main(String[] args) {
3. String city = "Delhi";
4. if(city == "Meerut") {
5. System.out.println("city is meerut");
6. }else if (city == "Noida") {
7. System.out.println("city is noida");
8. }else if(city == "Agra") {
9. System.out.println("city is agra");
10. }else {
11. System.out.println(city);
12. }
13. }
14. }

Output:
Delhi

4. Nested if-statement

In nested if-statements, the if statement can contain a if or if-else statement inside another if or else-if
statement.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 43 of 113

Syntax of Nested if-statement is given below.
1. if(condition 1) {
2. statement 1; //executes when condition 1 is true
3. if(condition 2) {
4. statement 2; //executes when condition 2 is true
5. }
6. else{
7. statement 2; //executes when condition 2 is false
8. }
9. }

Consider the following example.

Student.java
1. public class Student {
2. public static void main(String[] args) {
3. String address = "Delhi, India";
4.
5. if(address.endsWith("India")) {
6. if(address.contains("Meerut")) {
7. System.out.println("Your city is Meerut");
8. }else if(address.contains("Noida")) {
9. System.out.println("Your city is Noida");
10. }else {
11. System.out.println(address.split(",")[0]);
12. }
13. }else {
14. System.out.println("You are not living in India");
15. }
16. }
17. }

Output:
Delhi

Switch Statement:

In Java, Switch statements are similar to if-else-if statements. The switch statement contains multiple
blocks of code called cases and a single case is executed based on the variable which is being switched.
The switch statement is easier to use instead of if-else-if statements. It also enhances the readability of
the program.

Points to be noted about switch statement:

o The case variables can be int, short, byte, char, or enumeration. String type is also supported
since version 7 of Java

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 44 of 113

o Cases cannot be duplicate

o Default statement is executed when any of the case doesn't match the value of expression. It is
optional.

o Break statement terminates the switch block when the condition is satisfied.
It is optional, if not used, next case is executed.

o While using switch statements, we must notice that the case expression will be of the same type
as the variable. However, it will also be a constant value.

The syntax to use the switch statement is given below.
1. switch (expression){
2. case value1:
3. statement1;
4. break;
5. .
6. .
7. .
8. case valueN:
9. statementN;
10. break;
11. default:
12. default statement;
13. }

Consider the following example to understand the flow of the switch statement.

Student.java
1. public class Student implements Cloneable {
2. public static void main(String[] args) {
3. int num = 2;
4. switch (num){
5. case 0:
6. System.out.println("number is 0");
7. break;
8. case 1:
9. System.out.println("number is 1");
10. break;
11. default:
12. System.out.println(num);
13. }
14. }
15. }

Output:
2

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 45 of 113

While using switch statements, we must notice that the case expression will be of the same type as the
variable. However, it will also be a constant value. The switch permits only int, string, and Enum type
variables to be used.

Loop Statements
In programming, sometimes we need to execute the block of code repeatedly while some condition
evaluates to true. However, loop statements are used to execute the set of instructions in a repeated
order. The execution of the set of instructions depends upon a particular condition.

In Java, we have three types of loops that execute similarly. However, there are differences in their
syntax and condition checking time.

1. for loop
2. while loop
3. do-while loop

Let's understand the loop statements one by one.

Java for loop
In Java, for loop is similar to C and C++. It enables us to initialize the loop variable, check the condition,
and increment/decrement in a single line of code. We use the for loop only when we exactly know the
number of times, we want to execute the block of code.

for(initialization;condition; increment/decrement) {
//block of statements
}

The flow chart for the for-loop is given below.

Consider the following example to understand the proper functioning of the for loop in java.

Calculation.java
1. public class Calculattion {
2. public static void main(String[] args) {
3. // TODO Auto-generated method stub
4. int sum = 0;
5. for(int j = 1; j<=10; j++) {
6. sum = sum + j;
7. }
8. System.out.println("The sum of first 10 natural numbers is " + sum);
9. }

https://www.javatpoint.com/java-for-loop
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 46 of 113

10. }

Output:
The sum of first 10 natural numbers is 55

Java for-each loop
Java provides an enhanced for loop to traverse the data structures like array or collection. In the for-
each loop, we don't need to update the loop variable. The syntax to use the for-each loop in java is given
below.

1. for(data_type var : array_name/collection_name){
2. //statements
3. }

Consider the following example to understand the functioning of the for-each loop in Java.
Calculation.java

1. public class Calculation {
2. public static void main(String[] args) {
3. // TODO Auto-generated method stub
4. String[] names = {"Java","C","C++","Python","JavaScript"};
5. System.out.println("Printing the content of the array names:\n");
6. for(String name:names) {
7. System.out.println(name);
8. }
9. }
10. }

Output:
Printing the content of the array names:

Java
C
C++
Python
JavaScript

Java while loop
The while loop is also used to iterate over the number of statements multiple times. However, if we
don't know the number of iterations in advance, it is recommended to use a while loop. Unlike for loop,
the initialization and increment/decrement doesn't take place inside the loop statement in while loop.

It is also known as the entry-controlled loop since the condition is checked at the start of the loop. If the
condition is true, then the loop body will be executed; otherwise, the statements after the loop will be
executed.

The syntax of the while loop is given below.
while(condition){

https://www.javatpoint.com/java-while-loop

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 47 of 113

//looping statements
}

The flow chart for the while loop is given in the following image.

Consider the following example.

Calculation .java
1. public class Calculation {
2. public static void main(String[] args) {
3. // TODO Auto-generated method stub
4. int i = 0;
5. System.out.println("Printing the list of first 10 even numbers \n");
6. while(i<=10) {
7. System.out.println(i);
8. i = i + 2;
9. }
10. }
11. }

Output:
Printing the list of first 10 even numbers

0
2
4
6
8
10

Java do-while loop
The do-while loop checks the condition at the end of the loop after executing the loop statements.
When the number of iteration is not known and we have to execute the loop at least once, we can use
do-while loop.

https://www.javatpoint.com/java-do-while-loop

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 48 of 113

It is also known as the exit-controlled loop since the condition is not checked in advance. The syntax of
the do-while loop is given below.

do
{
//statements
} while (condition);

The flow chart of the do-while loop is given in the following image.

Consider the following example to understand the functioning of the do-while loop in Java.

Calculation.java
1. public class Calculation {
2. public static void main(String[] args) {
3. // TODO Auto-generated method stub
4. int i = 0;
5. System.out.println("Printing the list of first 10 even numbers \n");
6. do {
7. System.out.println(i);
8. i = i + 2;
9. }while(i<=10);
10. }
11. }

Output:
Printing the list of first 10 even numbers
0
2
4
6
8
10

Jump Statements
Jump statements are used to transfer the control of the program to the specific statements. In other
words, jump statements transfer the execution control to the other part of the program. There are two
types of jump statements in Java, i.e., break and continue.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 49 of 113

Java break statement
As the name suggests, the break statement is used to break the current flow of the program and
transfer the control to the next statement outside a loop or switch statement. However, it breaks only
the inner loop in the case of the nested loop.

The break statement cannot be used independently in the Java program, i.e., it can only be written
inside the loop or switch statement.

The break statement example with for loop

Consider the following example in which we have used the break statement with the for loop.

BreakExample.java
1. public class BreakExample {
2.
3. public static void main(String[] args) {
4. // TODO Auto-generated method stub
5. for(int i = 0; i<= 10; i++) {
6. System.out.println(i);
7. if(i==6) {
8. break;
9. }
10. }
11. }
12. }

Output:
0
1
2
3
4
5
6

break statement example with labeled for loop

Calculation.java
1. public class Calculation {
2.
3. public static void main(String[] args) {
4. // TODO Auto-generated method stub
5. a:
6. for(int i = 0; i<= 10; i++) {
7. b:

https://www.javatpoint.com/java-break

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 50 of 113

8. for(int j = 0; j<=15;j++) {
9. c:
10. for (int k = 0; k<=20; k++) {
11. System.out.println(k);
12. if(k==5) {
13. break a;
14. }
15. }
16. }
17.
18. }
19. }
20.
21.
22. }

Output:
0
1
2
3
4
5

Java continue statement
Unlike break statement, the continue statement doesn't break the loop, whereas, it skips the specific
part of the loop and jumps to the next iteration of the loop immediately.

Consider the following example to understand the functioning of the continue statement in Java.
1. public class ContinueExample {
2.
3. public static void main(String[] args) {
4. // TODO Auto-generated method stub
5.
6. for(int i = 0; i<= 2; i++) {
7.
8. for (int j = i; j<=5; j++) {
9.
10. if(j == 4) {
11. continue;
12. }
13. System.out.println(j);
14. }
15. }
16. }

https://www.javatpoint.com/java-continue

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 51 of 113

17.
18. }

Output:
0
1
2
3
5
1
2
3
5
2
3
5

return
The last control statement is return. The return statement is used to explicitly return from
a method. That is, it causes program control to transfer back to the caller of the method.
As such, it is categorized as a jump statement.

// Demonstrate
return. class
Return {
public static void main(String args[])
{ boolean t = true;
System.out.println("Before the
return."); if(t) return; // return to
caller System.out.println("This won't
execute.");
}
}
The output from this program is shown here:
Before the return.

Arrays

An array is a collection of similar type of elements which has contiguous memory location.

Java array is an object which contains elements of a similar data type. Additionally, The elements of an
array are stored in a contiguous memory location. It is a data structure where we store similar elements.
We can store only a fixed set of elements in a Java array.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 52 of 113

Array in Java is index-based, the first element of the array is stored at the 0th index, 2nd element is
stored on 1st index and so on.
In Java, array is an object of a dynamically generated class. Java array inherits the Object class, and
implements the Serializable as well as Cloneable interfaces. We can store primitive values or objects in
an array in Java.

Advantage of Java Array
 Code Optimization: It makes the code optimized, we can retrieve or sort the data easily.
 Random access: We can get any data located at any index position.

Disadvantage of Java Array

 Size Limit: We can store only fixed size of elements in the array. It doesn't grow its
size at runtime. To solve this problem, collection framework is used in java.

Types of Array in java
There are two types of array.

 Single Dimensional Array
 Multidimensional Array

Single Dimensional Array in Java
Syntax to Declare an Array in Java

dataType[] arr; (or)
dataType []arr; (or)
dataType arr[];

Instantiation of an Array in Java
arrayRefVar=new datatype[size];

Example

1. //Java Program to illustrate how to declare, instantiate, initialize
2. //and traverse the Java array.
3. class Testarray{
4. public static void main(String args[]){
5. int a[]=new int[5];//declaration and instantiation
6. a[0]=10;//initialization
7. a[1]=20;
8. a[2]=70;
9. a[3]=40;
10. a[4]=50;

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 53 of 113

11. //traversing array
12. for(int i=0;i<a.length;i++)//length is the property of array
13. System.out.println(a[i]);
14. }}

Declaration, Instantiation and Initialization of Java Array
We can declare, instantiate and initialize the java array together by:

int a[]={33,3,4,5};//declaration, instantiation and initialization

Let's see the simple example to print this array.
1. //Java Program to illustrate the use of declaration, instantiation
2. //and initialization of Java array in a single line
3. class Testarray1{
4. public static void main(String args[]){
5. int a[]={33,3,4,5};//declaration, instantiation and initialization
6. //printing array
7. for(int i=0;i<a.length;i++)//length is the property of array
8. System.out.println(a[i]);
9. }}

Array Length
To find out how many elements an array has, use the length property:
Example
String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};
System.out.println(cars.length);// Outputs 4

For-each Loop for Java Array
1. //Java Program to print the array elements using for-each loop
2. class Testarray1{
3. public static void main(String args[]){
4. int arr[]={33,3,4,5};
5. //printing array using for-each loop
6. for(int i:arr)
7. System.out.println(i);
8. }}

Passing Array to a Method in Java
We can pass the java array to method so that we can reuse the same logic on any array.

1. //Java Program to demonstrate the way of passing an array
2. //to method.
3. class Testarray2{
4. //creating a method which receives an array as a parameter
5. static void min(int arr[]){
6. int min=arr[0];
7. for(int i=1;i<arr.length;i++)
8. if(min>arr[i])

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 54 of 113

9. min=arr[i];
10.
11. System.out.println(min);
12. }
13. public static void main(String args[]){
14. int a[]={33,3,4,5};//declaring and initializing an array
15. min(a);//passing array to method
16. }}

Anonymous Array in Java
Java supports the feature of an anonymous array, so you don't need to declare the array while passing
an array to the method.

1. //Java Program to demonstrate the way of passing an anonymous array
2. //to method.
3. public class TestAnonymousArray{
4. //creating a method which receives an array as a parameter
5. static void printArray(int arr[]){
6. for(int i=0;i<arr.length;i++)
7. System.out.println(arr[i]);
8. }
9.
10. public static void main(String args[]){
11. printArray(new int[]{10,22,44,66});//passing anonymous array to method
12. }}

Returning Array from the Method
1. //Java Program to return an array from the method
2. class TestReturnArray{
3. //creating method which returns an array
4. static int[] get(){
5. return new int[]{10,30,50,90,60};
6. }
7.
8. public static void main(String args[]){
9. //calling method which returns an array
10. int arr[]=get();
11. //printing the values of an array
12. for(int i=0;i<arr.length;i++)
13. System.out.println(arr[i]);
14. }}

ArrayIndexOutOfBoundsException
The Java Virtual Machine (JVM) throws an ArrayIndexOutOfBoundsException if length of the array in
negative, equal to the array size or greater than the array size while traversing the array.
//Java Program to demonstrate the case of

1. //ArrayIndexOutOfBoundsException in a Java Array.
2. public class TestArrayException{
3. public static void main(String args[]){

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 55 of 113

4. int arr[]={50,60,70,80};
5. for(int i=0;i<=arr.length;i++){
6. System.out.println(arr[i]);
7. }

8. }}

Multidimensional Array in Java
Arrays can have more than one dimension, these arrays-of-arrays are called multidimensional arrays.

They are very similar to standard arrays with the exception that they have multiple sets of square

brackets after the array identifier. A two dimensional array can be though of as a grid of rows and

columns.

Syntax to Declare Multidimensional Array in Java
dataType[][] arrayRefVar; (or)
dataType [][]arrayRefVar; (or)
dataType arrayRefVar[][]; (or)
dataType []arrayRefVar[];

Example to instantiate Multidimensional Array in Java
int[][] arr=new int[3][3];//3 row and 3 column

Example to initialize Multidimensional Array in Java
1. arr[0][0]=1;
2. arr[0][1]=2;
3. arr[0][2]=3;
4. arr[1][0]=4;
5. arr[1][1]=5;
6. arr[1][2]=6;
7. arr[2][0]=7;
8. arr[2][1]=8;
9. arr[2][2]=9;

Example of Multidimensional Java Array

Let's see the simple example to declare, instantiate, initialize and print the 2Dimensional array.
1. //Java Program to illustrate the use of multidimensional array
2. class Testarray3{

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 56 of 113

3. public static void main(String args[]){
4. //declaring and initializing 2D array
5. int arr[][]={{1,2,3},{2,4,5},{4,4,5}};
6. //printing 2D array
7. for(int i=0;i<3;i++){
8. for(int j=0;j<3;j++){
9. System.out.print(arr[i][j]+" ");
10. }
11. System.out.println();
12. }
13. }}

Jagged Array in Java

If we are creating odd number of columns in a 2D array, it is known as a jagged array. In other words, it
is an array of arrays with different number of columns.

1. //Java Program to illustrate the jagged array
2. class TestJaggedArray{
3. public static void main(String[] args){
4. //declaring a 2D array with odd columns
5. int arr[][] = new int[3][];
6. arr[0] = new int[3];
7. arr[1] = new int[4];
8. arr[2] = new int[2];
9. //initializing a jagged array
10. int count = 0;
11. for (int i=0; i<arr.length; i++)
12. for(int j=0; j<arr[i].length; j++)
13. arr[i][j] = count++;
14.
15. //printing the data of a jagged array
16. for (int i=0; i<arr.length; i++){
17. for (int j=0; j<arr[i].length; j++){
18. System.out.print(arr[i][j]+" ");
19. }
20. System.out.println();//new line
21. }
22. }
23. }

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 57 of 113

What is the class name of Java array?

In Java, an array is an object. For array object, a proxy class is created whose name can be obtained by
getClass().getName() method on the object.

1. //Java Program to get the class name of array in Java
2. class Testarray4{
3. public static void main(String args[]){
4. //declaration and initialization of array
5. int arr[]={4,4,5};
6. //getting the class name of Java array
7. Class c=arr.getClass();
8. String name=c.getName();
9. //printing the class name of Java array
10. System.out.println(name);
11.
12. }}

Copying a Java Array

We can copy an array to another by the arraycopy() method of System class.

Syntax of arraycopy method
public static void arraycopy(Object src, int srcPos, Object dest, int destPos, int length)

Example of Copying an Array in Java
1. //Java Program to copy a source array into a destination array in Java
2. class TestArrayCopyDemo {
3. public static void main(String[] args) {
4. //declaring a source array
5. char[] copyFrom = { 'd', 'e', 'c', 'a', 'f', 'f', 'e', 'i', 'n', 'a', 't', 'e', 'd' };
6. //declaring a destination array
7. char[] copyTo = new char[7];
8. //copying array using System.arraycopy() method
9. System.arraycopy(copyFrom, 2, copyTo, 0, 7);
10. //printing the destination array
11. System.out.println(String.valueOf(copyTo));
12. }
13. }

Output:

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 58 of 113

14. caffein

Cloning an Array in Java

Since, Java array implements the Cloneable interface, we can create the clone of the Java array. If we
create the clone of a single-dimensional array, it creates the deep copy of the Java array. It means, it will
copy the actual value. But, if we create the clone of a multidimensional array, it creates the shallow
copy of the Java array which means it copies the references.

1. //Java Program to clone the array
2. class Testarray1{
3. public static void main(String args[]){
4. int arr[]={33,3,4,5};
5. System.out.println("Printing original array:");
6. for(int i:arr)
7. System.out.println(i);
8. System.out.println("Printing clone of the array:");
9. int carr[]=arr.clone();
10. for(int i:carr)
11. System.out.println(i);
12. System.out.println("Are both equal?");
13. System.out.println(arr==carr);
14. }}

Output:
Printing original array:
33
3
4
5
Printing clone of the array:
33
3
4
5
Are both equal?
false

Q. Explain about toString() and deepToString() method
To print Java array in a meaningful way, you don't need to look further because your very own
Collection framework provides lots of array utility methods in java.util.Arrays class. Here we
have toString() and deepToString() method to print array in Java.

import java.util.Arrays;
 /** * Java Program to print arrays in Java.
 * We will learn how to print String, int,

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 59 of 113

 * byte and two dimensional arrays in Java by using toString() and
 * deepToString() method of Arrays class.
 */
 public class PrintArrayInJava{ public static void main(String args[]) {
 // Example 1 : print int array in Java
 int[] primes = {5, 7, 11, 17, 19, 23, 29, 31, 37};
 System.out.println("Prime numbers : " + primes); // Not OK
 System.out.println("Real prime numbers : " + Arrays.toString(primes)); //Ok
 // Example 2 : print String array in Java
 String[] buzzwords = {"Java", "Android", "iOS", "Scala", "Python"};
 System.out.println("Buzzing .." + buzzwords);
 System.out.println("Not buzzing? try again : " + Arrays.toString(buzzwords));
 // Example 3 : print two dimensional array in Java
 String[][] phones = {{"Apple", "iPhone"}, {"Samsung", "Galaxy"}, {"Sony", "Xperia"}};
 System.out.println("Hot phones .. " + phones);
 System.out.println("Not hot? See again.." + Arrays.deepToString(phones));
 // Example 4 : print byte array in Java
 String random = "In Java programming langue, array is object";
 byte[] bytes = random.getBytes();
 System.out.println("What is inside bytes : " + bytes);
 System.out.println("Not visible, check closely .." + Arrays.toString(bytes));
 }
 }
 Output: Prime numbers : [I@5eb1404f
 Real prime numbers : [5, 7, 11, 17, 19, 23, 29, 31, 37]
 Buzzing ..[Ljava.lang.String;@46f5331a
 Not buzzing? try again : [Java, Android, iOS, Scala, Python]
 Hot phones .. [[Ljava.lang.String;@57398044
 Not hot? See again..[[Apple, iPhone], [Samsung, Galaxy], [Sony, Xperia]]
 What is inside bytes : [B@31602bbc
 Not visible, check closely ..[73, 110, 32, 74, 97, 118, 97, 32, 112,
 114, 111, 103, 114, 97, 109, 109, 105,
 110, 103, 32, 108, 97, 110, 97, 103, 117, 101, 44, 32, 97, 114, 114, 97, 121, 32, 105,
 115, 32, 111, 98, 106, 101, 99, 116]

Naming Conventions of the Different Identifiers
The following table shows the popular conventions used for the different identifiers.

Identifiers
Type

Naming Rules Examples

Class It should start with the uppercase letter.
It should be a noun such as Color, Button, System, Thread,
etc. Use appropriate words, instead of acronyms.

public class Employee
{
//code snippet
}

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 60 of 113

Interface It should start with the uppercase letter.
It should be an adjective such as Runnable, Remote,
ActionListener.
Use appropriate words`, instead of acronyms.

interface Printable
{
//code snippet
}

Method It should start with lowercase letter.
It should be a verb such as main(), print(), println().
If the name contains multiple words, start it with a
lowercase letter followed by an uppercase letter such as
actionPerformed().

class Employee
{
// method
void draw()
{
//code snippet
}
}

Variable It should start with a lowercase letter such as id, name.
It should not start with the special characters like &
(ampersand), $ (dollar), _ (underscore).
If the name contains multiple words, start it with the
lowercase letter followed by an uppercase letter such as
firstName, lastName.
Avoid using one-character variables such as x, y, z.

class Employee
{
// variable
int id;
//code snippet
}

Package It should be a lowercase letter such as java, lang.
If the name contains multiple words, it should be separated
by dots (.) such as java.util, java.lang.

//package
package com.javatpoint;
class Employee
{
//code snippet
}

Constant It should be in uppercase letters such as RED, YELLOW.
If the name contains multiple words, it should be separated
by an underscore(_) such as MAX_PRIORITY.
It may contain digits but not as the first letter.

class Employee
{
//constant
static final int MIN_AGE =
18;
//code snippet
}

CamelCase in Java naming conventions
Java follows camel-case syntax for naming the class, interface, method, and variable.

If the name is combined with two words, the second word will start with uppercase letter always such as
actionPerformed(), firstName, ActionEvent, ActionListener, etc.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 61 of 113

Q. Write a short note on Class and Objects

Objects and Classes in Java
In object-oriented programming technique, we design a program using objects and classes.
An object in Java is the physical as well as a logical entity, whereas, a class in Java is a logical entity only.

class in Java
A class is a group of objects which have common properties. It is a template or blueprint from which
objects are created. It is a logical entity. It can't be physical.
A class in Java can contain:

o Fields
o Methods
o Constructors
o Blocks
o Nested class and interface

Syntax to declare a class:
class <class_name>{
 //field;
 //method;
}

Instance variable in Java
A variable which is created inside the class but outside the method is known as an instance variable.
Instance variable doesn't get memory at compile time. It gets memory at runtime when an object or
instance is created. That is why it is known as an instance variable.

Method in Java
In Java, a method is like a function which is used to expose the behavior of an object.

Advantage of Method
o Code Reusability
o Code Optimization
o new keyword in Java
o The new keyword is used to allocate memory at runtime. All objects get memory in Heap

memory area.

Object and Class Example: main within the class

In this example, we have created a Student class which has two data members id and name. We are
creating the object of the Student class by new keyword and printing the object's value.

Here, we are creating a main() method inside the class.
File: Student.java

1. //Java Program to illustrate how to define a class and fields
2. //Defining a Student class.
3. class Student{
4. //defining fields
5. int id;//field or data member or instance variable

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 62 of 113

6. String name;
7. //creating main method inside the Student class
8. public static void main(String args[]){
9. //Creating an object or instance
10. Student s1=new Student();//creating an object of Student
11. //Printing values of the object
12. System.out.println(s1.id);//accessing member through reference variable
13. System.out.println(s1.name);
14. }
15. }

Output:
0
null

Object and Class Example: main outside the class
In real time development, we create classes and use it from another class. It is a better approach than
previous one. Let's see a simple example, where we are having main() method in another class.
We can have multiple classes in different Java files or single Java file. If you define multiple classes in a
single Java source file, it is a good idea to save the file name with the class name which has main()
method.

File: TestStudent1.java
1. //Java Program to demonstrate having the main method in
2. //another class
3. //Creating Student class.
4. class Student{
5. int id;
6. String name;
7. }
8. //Creating another class TestStudent1 which contains the main method
9. class TestStudent1{
10. public static void main(String args[]){
11. Student s1=new Student();
12. System.out.println(s1.id);
13. System.out.println(s1.name);
14. }
15. }

3 Ways to initialize object
There are 3 ways to initialize object in Java.

1. By reference variable
2. By method
3. By constructor

1) Object and Class Example: Initialization through reference

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 63 of 113

Initializing an object means storing data into the object. Let's see a simple example where we are going
to initialize the object through a reference variable.

File: TestStudent2.java
1. class Student{
2. int id;
3. String name;
4. }
5. class TestStudent2{
6. public static void main(String args[]){
7. Student s1=new Student();
8. s1.id=101;
9. s1.name="Sonoo";
10. System.out.println(s1.id+" "+s1.name);//printing members with a white space
11. }
12. }

Output:
101 Sonoo

We can also create multiple objects and store information in it through reference variable.

File: TestStudent3.java
1. class Student{
2. int id;
3. String name;
4. }
5. class TestStudent3{
6. public static void main(String args[]){
7. //Creating objects
8. Student s1=new Student();
9. Student s2=new Student();
10. //Initializing objects
11. s1.id=101;
12. s1.name="Sonoo";
13. s2.id=102;
14. s2.name="Amit";
15. //Printing data
16. System.out.println(s1.id+" "+s1.name);
17. System.out.println(s2.id+" "+s2.name);
18. }
19. }

Output:
101 Sonoo

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 64 of 113

102 Amit

2) Object and Class Example: Initialization through method
In this example, we are creating the two objects of Student class and initializing the value to these
objects by invoking the insertRecord method. Here, we are displaying the state (data) of the objects by
invoking the displayInformation() method.

File: TestStudent4.java
1. class Student{
2. int rollno;
3. String name;
4. void insertRecord(int r, String n){
5. rollno=r;
6. name=n;
7. }
8. void displayInformation(){System.out.println(rollno+" "+name);}
9. }
10. class TestStudent4{
11. public static void main(String args[]){
12. Student s1=new Student();
13. Student s2=new Student();
14. s1.insertRecord(111,"Karan");
15. s2.insertRecord(222,"Aryan");
16. s1.displayInformation();
17. s2.displayInformation();
18. }
19. }

Output:
111 Karan
222 Aryan

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 65 of 113

As you can see in the above figure, object gets the memory in heap memory area. The reference
variable refers to the object allocated in the heap memory area. Here, s1 and s2 both are reference
variables that refer to the objects allocated in memory.
Object and Class Example: Employee
Let's see an example where we are maintaining records of employees.
File: TestEmployee.java

1. class Employee{
2. int id;
3. String name;
4. float salary;
5. void insert(int i, String n, float s) {
6. id=i;
7. name=n;
8. salary=s;
9. }
10. void display(){System.out.println(id+" "+name+" "+salary);}
11. }
12. public class TestEmployee {
13. public static void main(String[] args) {
14. Employee e1=new Employee();
15. Employee e2=new Employee();
16. Employee e3=new Employee();
17. e1.insert(101,"ajeet",45000);
18. e2.insert(102,"irfan",25000);
19. e3.insert(103,"nakul",55000);
20. e1.display();
21. e2.display();
22. e3.display();
23. }
24. }

Output:
101 ajeet 45000.0
102 irfan 25000.0
103 nakul 55000.0

Object and Class Example: Rectangle
There is given another example that maintains the records of Rectangle class.

File: TestRectangle1.java

1. class Rectangle{
2. int length;
3. int width;
4. void insert(int l, int w){
5. length=l;

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 66 of 113

6. width=w;
7. }
8. void calculateArea(){System.out.println(length*width);}
9. }
10. class TestRectangle1{
11. public static void main(String args[]){
12. Rectangle r1=new Rectangle();
13. Rectangle r2=new Rectangle();
14. r1.insert(11,5);
15. r2.insert(3,15);
16. r1.calculateArea();
17. r2.calculateArea();
18. }
19. }

Output:
55
45

What are the different ways to create an object in Java?

There are many ways to create an object in java. They are:

o By new keyword

o By newInstance() method

o By clone() method

o By deserialization

o By factory method etc.

Anonymous object
Anonymous simply means nameless. An object which has no reference is known as an anonymous
object. It can be used at the time of object creation only.

If you have to use an object only once, an anonymous object is a good approach. For example:
new Calculation();//anonymous object

Calling method through a reference:
1. Calculation c=new Calculation();
2. c.fact(5);

Calling method through an anonymous object
1. new Calculation().fact(5);

Let's see the full example of an anonymous object in Java.
1. class Calculation{
2. void fact(int n){

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 67 of 113

3. int fact=1;
4. for(int i=1;i<=n;i++){
5. fact=fact*i;
6. }
7. System.out.println("factorial is "+fact);
8. }
9. public static void main(String args[]){
10. new Calculation().fact(5);//calling method with anonymous object
11. }
12. }

Output:
Factorial is 120

Creating multiple objects by one type only
We can create multiple objects by one type only as we do in case of primitives.
Initialization of primitive variables:

int a=10, b=20;
Initialization of refernce variables:

Rectangle r1=new Rectangle(), r2=new Rectangle();//creating two objects

Let's see the example:
1. //Java Program to illustrate the use of Rectangle class which
2. //has length and width data members
3. class Rectangle{
4. int length;
5. int width;
6. void insert(int l,int w){
7. length=l;
8. width=w;
9. }
10. void calculateArea(){System.out.println(length*width);}
11. }
12. class TestRectangle2{
13. public static void main(String args[]){
14. Rectangle r1=new Rectangle(),r2=new Rectangle();//creating two objects
15. r1.insert(11,5);
16. r2.insert(3,15);
17. r1.calculateArea();
18. r2.calculateArea();
19. }
20. }

Output:
55

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 68 of 113

45

Real World Example: Account

File: TestAccount.java
1. //Java Program to demonstrate the working of a banking-system
2. //where we deposit and withdraw amount from our account.
3. //Creating an Account class which has deposit() and withdraw() methods
4. class Account{
5. int acc_no;
6. String name;
7. float amount;
8. //Method to initialize object
9. void insert(int a,String n,float amt){
10. acc_no=a;
11. name=n;
12. amount=amt;
13. }
14. //deposit method
15. void deposit(float amt){
16. amount=amount+amt;
17. System.out.println(amt+" deposited");
18. }
19. //withdraw method
20. void withdraw(float amt){
21. if(amount<amt){
22. System.out.println("Insufficient Balance");
23. }else{
24. amount=amount-amt;
25. System.out.println(amt+" withdrawn");
26. }
27. }
28. //method to check the balance of the account
29. void checkBalance(){System.out.println("Balance is: "+amount);}
30. //method to display the values of an object
31. void display(){System.out.println(acc_no+" "+name+" "+amount);}
32. }
33. //Creating a test class to deposit and withdraw amount
34. class TestAccount{
35. public static void main(String[] args){
36. Account a1=new Account();
37. a1.insert(832345,"Ankit",1000);
38. a1.display();
39. a1.checkBalance();

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 69 of 113

40. a1.deposit(40000);
41. a1.checkBalance();
42. a1.withdraw(15000);
43. a1.checkBalance();
44. }
45. }

Output:
832345 Ankit 1000.0
Balance is: 1000.0
40000.0 deposited
Balance is: 41000.0
15000.0 withdrawn
Balance is: 26000.0

Q. Explain about Constructors in Java

Constructors in Java
In Java, a constructor is a block of codes similar to the method. It is called when an instance of
the class is created. At the time of calling constructor, memory for the object is allocated in the memory.
It is a special type of method whic h is used to initialize the object.
Every time an object is created using the new() keyword, at least one constructor is called.
It calls a default constructor if there is no constructor available in the class. In such case, Java compiler
provides a default constructor by default.

Rules for creating Java constructor

There are two rules defined for the constructor.

1. Constructor name must be the same as its class name

2. A Constructor must have no explicit return type

3. A Java constructor cannot be abstract, static, final, and synchronized

Types of Java constructors

There are two types of constructors in Java:

1. Default constructor

2. no-argument constructor

3. Parameterized constructor

Java Default Constructor
A constructor is called "Default Constructor" when it doesn't have any parameter.
Syntax of default constructor:

<class_name>(){}

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/object-and-class-in-java

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 70 of 113

Example of default constructor

In this example, we are creating the no-arg constructor in the Bike class. It will be invoked at the time of
object creation.

1. //Java Program to create and call a default constructor
2. class Bike1{
3. int bikeNo;
4. float bikecost;
5. String bikeName;
6. //main method
7. public static void main(String args[]){
8. //calling a default constructor
9. Bike1 b=new Bike1();
10. System.out.println("bikeNo=" + b.bikeno);
11. System.out.println("bikeCost=" + b.bikeCost);
12. System.out.println("bikeName=" + b.bikeName);
13.
14. }
15. }

Output:
bikeNo=0
bikeCost=0.0f
bikeName=null

no-argument constructor
Similar to methods, a Java constructor may or may not have any parameters (arguments).
If a constructor does not accept any parameters, it is known as a no-argument constructor. For example
class Main {
 int i;
 // constructor with no parameter
 private Main() {
 i = 5;
 System.out.println("Constructor is called");
 }

 public static void main(String[] args) {

 // calling the constructor without any parameter

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 71 of 113

 Main obj = new Main();
 System.out.println("Value of i: " + obj.i);
 }
}
output:

Constructor is called
Value of i: 5

Java Parameterized Constructor
A constructor which has a specific number of parameters is called a parameterized constructor.

Why use the parameterized constructor?
The parameterized constructor is used to provide different values to distinct objects. However, you can
provide the same values also.

Example of parameterized constructor
In this example, we have created the constructor of Student class that have two parameters. We can
have any number of parameters in the constructor.

1. //Java Program to demonstrate the use of the parameterized constructor.
2. class Student4{
3. int id;
4. String name;
5. //creating a parameterized constructor
6. Student4(int i,String n){
7. id = i;
8. name = n;
9. }
10. //method to display the values
11. void display(){System.out.println(id+" "+name);}
12.
13. public static void main(String args[]){
14. //creating objects and passing values
15. Student4 s1 = new Student4(111,"Karan");
16. Student4 s2 = new Student4(222,"Aryan");
17. //calling method to display the values of object
18. s1.display();
19. s2.display();
20. }
21. }

Output:
111 Karan
222 Aryan

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 72 of 113

Constructor Overloading in Java

In Java, a constructor is just like a method but without return type. It can also be overloaded like Java
methods.

Constructor overloading in Java is a technique of having more than one constructor with different
parameter lists. They are arranged in a way that each constructor performs a different task. They are
differentiated by the compiler by the number of parameters in the list and their types.

Example of Constructor Overloading
1. //Java program to overload constructors
2. class Student5{
3. int id;
4. String name;
5. int age;
6. //creating two arg constructor
7. Student5(int i,String n){
8. id = i;
9. name = n;
10. }
11. //creating three arg constructor
12. Student5(int i,String n,int a){
13. id = i;
14. name = n;
15. age=a;
16. }
17. void display(){System.out.println(id+" "+name+" "+age);}
18.
19. public static void main(String args[]){
20. Student5 s1 = new Student5(111,"Karan");
21. Student5 s2 = new Student5(222,"Aryan",25);
22. s1.display();
23. s2.display();
24. }
25. }

output:
111 Karan 0
222 Aryan 25

Difference between constructor and method in Java

There are many differences between constructors and methods. They are given below.

Java Constructor Java Method

https://www.javatpoint.com/method-overloading-in-java

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 73 of 113

A constructor is used to initialize the state of an object. A method is used to expose the behavior
of an object.

A constructor must not have a return type. A method must have a return type.

The constructor is invoked implicitly. The method is invoked explicitly.

The Java compiler provides a default constructor if you don't
have any constructor in a class.

The method is not provided by the
compiler in any case.

The constructor name must be same as the class name. The method name may or may not be
same as the class name.

Java Copy Constructor
There is no copy constructor in Java. However, we can copy the values from one object to another like
copy constructor in C++.
There are many ways to copy the values of one object into another in Java. They are:

o By constructor
o By assigning the values of one object into another

o By clone() method of Object class

In this example, we are going to copy the values of one object into another using Java constructor.
1. //Java program to initialize the values from one object to another object.
2. class Student6{
3. int id;
4. String name;
5. //constructor to initialize integer and string
6. Student6(int i,String n){
7. id = i;
8. name = n;
9. }
10. //constructor to initialize another object
11. Student6(Student6 s){
12. id = s.id;
13. name =s.name;
14. }
15. void display(){System.out.println(id+" "+name);}
16.
17. public static void main(String args[]){
18. Student6 s1 = new Student6(111,"Karan");
19. Student6 s2 = new Student6(s1);
20. s1.display();
21. s2.display();

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 74 of 113

22. }
23. }

Output:
111 Karan
111 Karan

Copying values without constructor
We can copy the values of one object into another by assigning the objects values to another object. In
this case, there is no need to create the constructor.

1. class Student7{
2. int id;
3. String name;
4. Student7(int i,String n){
5. id = i;
6. name = n;
7. }
8. Student7(){}
9. void display(){System.out.println(id+" "+name);}
10.
11. public static void main(String args[]){
12. Student7 s1 = new Student7(111,"Karan");
13. Student7 s2 = new Student7();
14. s2.id=s1.id;
15. s2.name=s1.name;
16. s1.display();
17. s2.display();
18. }
19. }

Output:
111 Karan
111 Karan

Q) Does constructor return any value?
Yes, it is the current class instance (You cannot use return type yet it returns a value).
Can constructor perform other tasks instead of initialization?
Yes, like object creation, starting a thread, calling a method, etc. You can perform any operation in the
constructor as you perform in the method.
Is there Constructor class in Java?
Yes.
What is the purpose of Constructor class?
Java provides a Constructor class which can be used to get the internal information of a constructor in
the class. It is found in the java.lang.reflect package.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 75 of 113

Method in Java
In general, a method is a way to perform some task. Similarly, the method in Java is a collection of
instructions that performs a specific task. It provides the reusability of code. We can also easily modify
code using methods.

Method Declaration
The method declaration provides information about method attributes, such as visibility, return-type,
name, and arguments. It has six components that are known as method header, as we have shown in
the following figure.

Method Signature: Every method has a method signature. It is a part of the method declaration. It
includes the method name and parameter list.

Access Specifier: Access specifier or modifier is the access type of the method. It specifies the visibility
of the method. Java provides four types of access specifier:

o Public: The method is accessible by all classes when we use public specifier in our application.

o Private: When we use a private access specifier, the method is accessible only in the classes in
which it is defined.

o Protected: When we use protected access specifier, the method is accessible within the same
package or subclasses in a different package.

o Default: When we do not use any access specifier in the method declaration, Java uses default
access specifier by default. It is visible only from the same package only.

Return Type: Return type is a data type that the method returns. It may have a primitive data type,
object, collection, void, etc. If the method does not return anything, we use void keyword.

Method Name: It is a unique name that is used to define the name of a method. It must be
corresponding to the functionality of the method. Suppose, if we are creating a method for subtraction
of two numbers, the method name must be subtraction(). A method is invoked by its name.

Parameter List: It is the list of parameters separated by a comma and enclosed in the pair of
parentheses. It contains the data type and variable name. If the method has no parameter, left the
parentheses blank.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 76 of 113

Method Body: It is a part of the method declaration. It contains all the actions to be performed. It is
enclosed within the pair of curly braces.

example:

Single-word method name: sum(), area()

Multi-word method name: areaOfCircle(), stringComparision()

It is also possible that a method has the same name as another method name in the same class, it is
known as method overloading.

Types of Method
There are two types of methods in Java:

o Predefined Method
o User-defined Method

Predefined Method
In Java, predefined methods are the method that is already defined in the Java class libraries is known as
predefined methods. It is also known as the standard library method or built-in method. We can
directly use these methods just by calling them in the program at any point. Some pre-defined methods
are length(), equals(), compareTo(), sqrt(), etc. When we call any of the predefined methods in our
program, a series of codes related to the corresponding method runs in the background that is already
stored in the library.

Each and every predefined method is defined inside a class. Such as print() method is defined in
the java.io.PrintStream class. It prints the statement that we write inside the method. For
example, print("Java"), it prints Java on the console.

Let's see an example of the predefined method.

Demo.java
1. public class Demo
2. {
3. public static void main(String[] args)
4. {
5. // using the max() method of Math class
6. System.out.print("The maximum number is: " + Math.max(9,7));
7. }
8. }

Output:
The maximum number is: 9

In the above example, we have used three predefined methods main(), print(), and max(). We have
used these methods directly without declaration because they are predefined. The print() method is a

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 77 of 113

method of PrintStream class that prints the result on the console. The max() method is a method of
the Math class that returns the greater of two numbers.

User-defined Method
The method written by the user or programmer is known as a user-defined method. These methods are
modified according to the requirement.

How to Create a User-defined Method
Let's create a user defined method that checks the number is even or odd. First, we will
//user defined method

1. public static void findEvenOdd(int num)
2. {
3. //method body
4. if(num%2==0)
5. System.out.println(num+" is even");
6. else
7. System.out.println(num+" is odd");
8. }

1. public class Addition
2. {
3. public static void main(String[] args)
4. {
5. int a = 19;
6. int b = 5;
7. //method calling
8. int c = add(a, b); //a and b are actual parameters
9. System.out.println("The sum of a and b is= " + c);
10. }
11. //user defined method
12. public static int add(int n1, int n2) //n1 and n2 are formal parameters
13. {
14. int s;
15. s=n1+n2;
16. return s; //returning the sum
17. }
18. }

Output:
The sum of a and b is= 24

Static Method
A method that has static keyword is known as static method. In other words, a method that belongs to a
class rather than an instance of a class is known as a static method. We can also create a static method
by using the keyword static before the method name.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 78 of 113

The main advantage of a static method is that we can call it without creating an object. It can access
static data members and also change the value of it. It is used to create an instance method. It is invoked
by using the class name. The best example of a static method is the main() method.

Display.java
1. public class Display
2. {
3. public static void main(String[] args)
4. {
5. show();
6. }
7. static void show()
8. {
9. System.out.println("It is an example of static method.");
10. }
11. }

Output:
It is an example of a static method.

Instance Method
The method of the class is known as an instance method. It is a non-static method defined in the class.
Before calling or invoking the instance method, it is necessary to create an object of its class. Let's see an
example of an instance method.

InstanceMethodExample.java
1. public class InstanceMethodExample
2. {
3. public static void main(String [] args)
4. {
5. //Creating an object of the class
6. InstanceMethodExample obj = new InstanceMethodExample();
7. //invoking instance method
8. System.out.println("The sum is: "+obj.add(12, 13));
9. }
10. int s;
11. //user-defined method because we have not used static keyword
12. public int add(int a, int b)
13. {
14. s = a+b;
15. //returning the sum
16. return s;
17. }
18. }

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 79 of 113

Output:
The sum is: 25

There are two types of instance method:

o Accessor Method

o Mutator Method

Accessor Method: The method(s) that reads the instance variable(s) is known as the accessor method.
We can easily identify it because the method is prefixed with the word get. It is also known as getters. It
returns the value of the private field. It is used to get the value of the private field.

Example
1. public int getId()
2. {
3. return Id;
4. }

Mutator Method: The method(s) read the instance variable(s) and also modify the values. We can easily
identify it because the method is prefixed with the word set. It is also known as setters or modifiers. It
does not return anything. It accepts a parameter of the same data type that depends on the field. It is
used to set the value of the private field.

Example
1. public void setRoll(int roll)
2. {
3. this.roll = roll;
4. }

Example of accessor and mutator method

Student.java
1. public class Student
2. {
3. private int roll;
4. private String name;
5. public int getRoll() //accessor method
6. {
7. return roll;
8. }
9. public void setRoll(int roll) //mutator method
10. {
11. this.roll = roll;
12. }
13. public String getName()
14. {

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 80 of 113

15. return name;
16. }
17. public void setName(String name)
18. {
19. this.name = name;
20. }
21. public void display()
22. {
23. System.out.println("Roll no.: "+roll);
24. System.out.println("Student name: "+name);
25. }
26. }

Abstract Method
The method that does not has method body is known as abstract method. In other words, without an
implementation is known as abstract method. It always declares in the abstract class. It means the class
itself must be abstract if it has abstract method. To create an abstract method, we use the
keyword abstract.

Syntax
abstract void method_name();

Example of abstract method
Demo.java

1. abstract class Demo //abstract class
2. {
3. //abstract method declaration
4. abstract void display();
5. }
6. public class MyClass extends Demo
7. {
8. //method impelmentation
9. void display()
10. {
11. System.out.println("Abstract method?");
12. }
13. public static void main(String args[])
14. {
15. //creating object of abstract class
16. Demo obj = new MyClass();
17. //invoking abstract method
18. obj.display();
19. }
20. }

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 81 of 113

Output:
Abstract method...

Factory method
A Factory Pattern or Factory Method Pattern says that just define an interface or abstract class for
creating an object but let the subclasses decide which class to instantiate. In other words, subclasses
are responsible to create the instance of the class.

The Factory Method Pattern is also known as Virtual Constructor.

Advantage of Factory Design Pattern

o Factory Method Pattern allows the sub-classes to choose the type of objects to create.

o It promotes the loose-coupling by eliminating the need to bind application-specific classes into
the code. That means the code interacts solely with the resultant interface or abstract class, so
that it will work with any classes that implement that interface or that extends that abstract
class.

Usage of Factory Design Pattern

o When a class doesn't know what sub-classes will be required to create

o When a class wants that its sub-classes specify the objects to be created.

o When the parent classes choose the creation of objects to its sub-classes.

UML for Factory Method Pattern

o We are going to create a Plan abstract class and concrete classes that extends the Plan abstract
class. A factory class GetPlanFactory is defined as a next step.

o GenerateBill class will use GetPlanFactory to get a Plan object. It will pass information
(DOMESTICPLAN / COMMERCIALPLAN / INSTITUTIONALPLAN) to GetPalnFactory to get the type
of object it needs.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 82 of 113

Calculate Electricity Bill : A Real World Example of Factory Method

Step 1: Create a Plan abstract class.
1. import java.io.*;
2. abstract class Plan{
3. protected double rate;
4. abstract void getRate();
5.
6. public void calculateBill(int units){
7. System.out.println(units*rate);
8. }
9. }//end of Plan class.

Step 2: Create the concrete classes that extends Plan abstract class.
1. class DomesticPlan extends Plan{
2. //@override
3. public void getRate(){
4. rate=3.50;
5. }
6. }//end of DomesticPlan class.
1. class CommercialPlan extends Plan{
2. //@override
3. public void getRate(){
4. rate=7.50;
5. }
6. /end of CommercialPlan class.
1. class InstitutionalPlan extends Plan{
2. //@override
3. public void getRate(){

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 83 of 113

4. rate=5.50;
5. }
6. /end of InstitutionalPlan class.

Step 3: Create a GetPlanFactory to generate object of concrete classes based on given information..
1. class GetPlanFactory{
2.
3. //use getPlan method to get object of type Plan
4. public Plan getPlan(String planType){
5. if(planType == null){
6. return null;
7. }
8. if(planType.equalsIgnoreCase("DOMESTICPLAN")) {
9. return new DomesticPlan();
10. }
11. else if(planType.equalsIgnoreCase("COMMERCIALPLAN")){
12. return new CommercialPlan();
13. }
14. else if(planType.equalsIgnoreCase("INSTITUTIONALPLAN")) {
15. return new InstitutionalPlan();
16. }
17. return null;
18. }
19. }//end of GetPlanFactory class.

Step 4: Generate Bill by using the GetPlanFactory to get the object of concrete classes by passing an
information such as type of plan DOMESTICPLAN or COMMERCIALPLAN or INSTITUTIONALPLAN.

1. import java.io.*;
2. class GenerateBill{
3. public static void main(String args[])throws IOException{
4. GetPlanFactory planFactory = new GetPlanFactory();
5.
6. System.out.print("Enter the name of plan for which the bill will be generated: ");
7. BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
8.
9. String planName=br.readLine();
10. System.out.print("Enter the number of units for bill will be calculated: ");
11. int units=Integer.parseInt(br.readLine());
12.
13. Plan p = planFactory.getPlan(planName);
14. //call getRate() method and calculateBill()method of DomesticPaln.
15.
16. System.out.print("Bill amount for "+planName+" of "+units+" units is: ");
17. p.getRate();
18. p.calculateBill(units);

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 84 of 113

19. }
20. }//end of GenerateBill class.

Call By Value

Call by Value means calling a method with a parameter as value. Through this, the argument value is
passed to the parameter.

public class Tester{
 public static void main(String[] args){
 int a = 30;
 int b = 45;
 System.out.println("Before swapping, a = " + a + " and b = " + b);
 // Invoke the swap method
 swapFunction(a, b);
 System.out.println("\n**Now, Before and After swapping values will be same here**:");
 System.out.println("After swapping, a = " + a + " and b is " + b);
 }
 public static void swapFunction(int a, int b) {
 System.out.println("Before swapping(Inside), a = " + a + " b = " + b);
 // Swap n1 with n2
 int c = a;
 a = b;
 b = c;
 System.out.println("After swapping(Inside), a = " + a + " b = " + b);
 }
}
Output
This will produce the following result −
Before swapping, a = 30 and b = 45
Before swapping(Inside), a = 30 b = 45
After swapping(Inside), a = 45 b = 30
Now, Before and After swapping values will be same here:
After swapping, a = 30 and b is 45

Call By Reference

Java uses only call by value while passing reference variables as well. It creates a copy of references and
passes them as valuable to the methods. As reference points to same address of object, creating a copy
of reference is of no harm. But if new object is assigned to reference it will not be reflected.
public class JavaTester {
 public static void main(String[] args) {
 IntWrapper a = new IntWrapper(30);
 IntWrapper b = new IntWrapper(45);
 System.out.println("Before swapping, a = " + a.a + " and b = " + b.a);
 // Invoke the swap method
 swapFunction(a, b);

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 85 of 113

 System.out.println("\n**Now, Before and After swapping values will be different here**:");
 System.out.println("After swapping, a = " + a.a + " and b is " + b.a);
 }
 public static void swapFunction(IntWrapper a, IntWrapper b) {
 System.out.println("Before swapping(Inside), a = " + a.a + " b = " + b.a);
 // Swap n1 with n2
 IntWrapper c = new IntWrapper(a.a);
 a.a = b.a;
 b.a = c.a;
 System.out.println("After swapping(Inside), a = " + a.a + " b = " + b.a);
 }
}
class IntWrapper {
 public int a;
 public IntWrapper(int a){ this.a = a;}
}
This will produce the following result −
Output
Before swapping, a = 30 and b = 45
Before swapping(Inside), a = 30 b = 45
After swapping(Inside), a = 45 b = 30
Now, Before and After swapping values will be different here:
After swapping, a = 45 and b is 30

Variable Arguments(var-args)

JDK 1.5 enables you to pass a variable number of arguments of the same type to a method. The
parameter in the method is declared as follows −

typeName... parameterName

In the method declaration, you specify the type followed by an ellipsis (...). Only one variable-length
parameter may be specified in a method, and this parameter must be the last parameter. Any regular
parameters must precede it.

Example
public class VarargsDemo {

 public static void main(String args[]) {
 // Call method with variable args
 printMax(34, 3, 3, 2, 56.5);
 printMax(new double[]{1, 2, 3});
 }

 public static void printMax(double... numbers) {
 if (numbers.length == 0) {
 System.out.println("No argument passed");
 return;

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 86 of 113

 }

 double result = numbers[0];

 for (int i = 1; i < numbers.length; i++)
 if (numbers[i] > result)
 result = numbers[i];
 System.out.println("The max value is " + result);
 }
}
This will produce the following result −
Output
The max value is 56.5
The max value is 3.0

The finalize() Method

It is possible to define a method that will be called just before an object's final destruction by the
garbage collector. This method is called finalize(), and it can be used to ensure that an object
terminates cleanly.

For example, you might use finalize() to make sure that an open file owned by that object is closed.

To add a finalizer to a class, you simply define the finalize() method. The Java runtime calls that
method whenever it is about to recycle an object of that class.

Inside the finalize() method, you will specify those actions that must be performed before an object is
destroyed.

The finalize() method has this general form −
protected void finalize() {
 // finalization code here
}

Here, the keyword protected is a specifier that prevents access to finalize() by code defined outside its
class.

This means that you cannot know when or even if finalize() will be executed. For example, if your
program ends before garbage collection occurs, finalize() will not execute.

Java static keyword
The static keyword in Java is used for memory management mainly.
The static can be:

1. Variable (also known as a class variable)
2. Method (also known as a class method)
3. Block
4. Nested class

1) Java static variable
If you declare any variable as static, it is known as a static variable.

https://www.javatpoint.com/java-tutorial

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 87 of 113

o The static variable can be used to refer to the common property of all objects (which is not
unique for each object), for example, the company name of employees, college name of
students, etc.

o The static variable gets memory only once in the class area at the time of class loading.
Advantages of static variable
It makes your program memory efficient (i.e., it saves memory).
Example of static variable

1. //Java Program to demonstrate the use of static variable
2. class Student{
3. int rollno;//instance variable
4. String name;
5. static String college ="AITS";//static variable
6. //constructor
7. Student(int r, String n){
8. rollno = r;
9. name = n;
10. }
11. //method to display the values
12. void display (){System.out.println(rollno+" "+name+" "+college);}
13. }
14. //Test class to show the values of objects
15. public class TestStaticVariable1{
16. public static void main(String args[]){
17. Student s1 = new Student(111,"Karan");
18. Student s2 = new Student(222,"Aryan");
19. //we can change the college of all objects by the single line of code
20. //Student.college="BBDIT";
21. s1.display();
22. s2.display();
23. }
24. }

Output:
111 Karan AITS
222 Aryan AITS

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 88 of 113

Program of the counter without static variable
In this example, we have created an instance variable named count which is incremented in the
constructor. Since instance variable gets the memory at the time of object creation, each object will
have the copy of the instance variable. If it is incremented, it won't reflect other objects. So each object
will have the value 1 in the count variable.

1. //Java Program to demonstrate the use of an instance variable
2. //which get memory each time when we create an object of the class.
3. class Counter{
4. int count=0;//will get memory each time when the instance is created
5.
6. Counter(){
7. count++;//incrementing value
8. System.out.println(count);
9. }
10.
11. public static void main(String args[]){
12. //Creating objects
13. Counter c1=new Counter();
14. Counter c2=new Counter();
15. Counter c3=new Counter();
16. }
17. }

Output:
1
1
1

Program of counter by static variable
As we have mentioned above, static variable will get the memory only once, if any object changes the
value of the static variable, it will retain its value.

1. //Java Program to illustrate the use of static variable which
2. //is shared with all objects.
3. class Counter2{

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 89 of 113

4. static int count=0;//will get memory only once and retain its value
5.
6. Counter2(){
7. count++;//incrementing the value of static variable
8. System.out.println(count);
9. }
10.
11. public static void main(String args[]){
12. //creating objects
13. Counter2 c1=new Counter2();
14. Counter2 c2=new Counter2();
15. Counter2 c3=new Counter2();
16. }
17. }

Output:
1
2
3

2) Java static method
If you apply static keyword with any method, it is known as static method.

o A static method belongs to the class rather than the object of a class.

o A static method can be invoked without the need for creating an instance of a class.

o A static method can access static data member and can change the value of it.
Example of static method

1. //Java Program to demonstrate the use of a static method.
2. class Student{
3. int rollno;
4. String name;
5. static String college = "AITS";
6. //static method to change the value of static variable
7. static void change(){
8. college = "AITS-TPT";
9. }
10. //constructor to initialize the variable
11. Student(int r, String n){
12. rollno = r;
13. name = n;
14. }
15. //method to display values
16. void display(){System.out.println(rollno+" "+name+" "+college);}
17. }
18. //Test class to create and display the values of object
19. public class TestStaticMethod{

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 90 of 113

20. public static void main(String args[]){
21. Student.change();//calling change method
22. //creating objects
23. Student s1 = new Student(111,"Karan");
24. Student s2 = new Student(222,"Aryan");
25. Student s3 = new Student(333,"Sonoo");
26. //calling display method
27. s1.display();
28. s2.display();
29. s3.display();
30. }
31. }

Output:
 111 Karan AITS-TPT
 222 Aryan AITS-TPT
 333 Sonoo AITS-TPT

1. //Java Program to get the cube of a given number using the static method
2.
3. class Calculate{
4. static int cube(int x){
5. return x*x*x;
6. }
7.
8. public static void main(String args[]){
9. int result=Calculate.cube(5);
10. System.out.println(result);
11. }
12. }

Output:125
Restrictions for the static method
There are two main restrictions for the static method. They are:

1. The static method can not use non static data member or call non-static method directly.

2. this and super cannot be used in static context.
1. class A{
2. int a=40;//non static
3.
4. public static void main(String args[]){
5. System.out.println(a);
6. }
7. }

Output:Compile Time Error

Q) Why is the Java main method static?

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 91 of 113

Ans) It is because the object is not required to call a static method. If it were a non-static method, JVM
creates an object first then call main() method that will lead the problem of extra memory allocation.
3) Java static block

o Is used to initialize the static data member.

o It is executed before the main method at the time of classloading.
Example of static block
class A2{

1. static{System.out.println("static block is invoked");}
2. public static void main(String args[]){
3. System.out.println("Hello main");
4. }
5. }

Output:static block is invoked
 Hello main

Q) Can we execute a program without main() method?
Ans) No, one of the ways was the static block, but it was possible till JDK 1.6. Since JDK 1.7, it is not
possible to execute a Java class without the main method
.class A3{

1. static{
2. System.out.println("static block is invoked");
3. System.exit(0);
4. }
5. }

Output:
static block is invoked

Since JDK 1.7 and above, output would be:
Error: Main method not found in class A3, please define the main method as:
 public static void main(String[] args)
or a JavaFX application class must extend javafx.application.Application
this keyword in Java

There can be a lot of usage of Java this keyword. In Java, this is a reference variable that refers to the
current object.

Usage of Java this keyword
Here is given the 6 usage of java this keyword.

https://www.javatpoint.com/jvm-java-virtual-machine
https://www.javatpoint.com/jvm-java-virtual-machine
https://www.javatpoint.com/jvm-java-virtual-machine
https://www.javatpoint.com/java-main-method
https://www.javatpoint.com/java-main-method

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 92 of 113

1. this can be used to refer current class instance variable.
2. this can be used to invoke current class method (implicitly)
3. this() can be used to invoke current class constructor.

4. this can be passed as an argument in the method call.

5. this can be passed as argument in the constructor call.

6. this can be used to return the current class instance from the method.

1) this: to refer current class instance variable

The this keyword can be used to refer current class instance variable. If there is ambiguity between the
instance variables and parameters, this keyword resolves the problem of ambiguity.

Understanding the problem without this keyword

Let's understand the problem if we don't use this keyword by the example given below:
1. class Student{
2. int rollno;
3. String name;
4. float fee;
5. Student(int rollno,String name,float fee){
6. rollno=rollno;
7. name=name;
8. fee=fee;
9. }
10. void display(){System.out.println(rollno+" "+name+" "+fee);}
11. }
12. class TestThis1{
13. public static void main(String args[]){
14. Student s1=new Student(111,"ankit",5000f);
15. Student s2=new Student(112,"sumit",6000f);
16. s1.display();
17. s2.display();
18. }}

Output:
0 null 0.0
0 null 0.0

In the above example, parameters (formal arguments) and instance variables are same. So, we are using
this keyword to distinguish local variable and instance variable.

Solution of the above problem by this keyword
1. class Student{
2. int rollno;
3. String name;

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 93 of 113

4. float fee;
5. Student(int rollno,String name,float fee){
6. this.rollno=rollno;
7. this.name=name;
8. this.fee=fee;
9. }
10. void display(){System.out.println(rollno+" "+name+" "+fee);}
11. }
12.
13. class TestThis2{
14. public static void main(String args[]){
15. Student s1=new Student(111,"ankit",5000f);
16. Student s2=new Student(112,"sumit",6000f);
17. s1.display();
18. s2.display();
19. }}

Output:
111 ankit 5000.0
112 sumit 6000.0

If local variables(formal arguments) and instance variables are different, there is no need to use this
keyword like in the following program:

Program where this keyword is not required
1. class Student{
2. int rollno;
3. String name;
4. float fee;
5. Student(int r,String n,float f){
6. rollno=r;
7. name=n;
8. fee=f;
9. }
10. void display(){System.out.println(rollno+" "+name+" "+fee);}
11. }
12.
13. class TestThis3{
14. public static void main(String args[]){
15. Student s1=new Student(111,"ankit",5000f);
16. Student s2=new Student(112,"sumit",6000f);
17. s1.display();
18. s2.display();
19. }}

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 94 of 113

Output:
111 ankit 5000.0
112 sumit 6000.0

2) this: to invoke current class method
You may invoke the method of the current class by using the this keyword. If you don't use the this
keyword, compiler automatically adds this keyword while invoking the method. Let's see the example

1. class A{
2. void m(){System.out.println("hello m");}
3. void n(){
4. System.out.println("hello n");
5. //m();//same as this.m()
6. this.m();
7. }
8. }
9. class TestThis4{
10. public static void main(String args[]){
11. A a=new A();
12. a.n();
13. }}

Output:
hello n
hello m

3) this() : to invoke current class constructor
The this() constructor call can be used to invoke the current class constructor. It is used to reuse the
constructor. In other words, it is used for constructor chaining.

Calling default constructor from parameterized constructor:
1. class A{
2. A(){System.out.println("hello a");}

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 95 of 113

3. A(int x){
4. this();
5. System.out.println(x);
6. }
7. }
8. class TestThis5{
9. public static void main(String args[]){
10. A a=new A(10);
11. }}

Output:
hello a
10

Calling parameterized constructor from default constructor:
1. class A{
2. A(){
3. this(5);
4. System.out.println("hello a");
5. }
6. A(int x){
7. System.out.println(x);
8. }
9. }
10. class TestThis6{
11. public static void main(String args[]){
12. A a=new A();
13. }}

Output:
5
hello a

Real usage of this() constructor call
The this() constructor call should be used to reuse the constructor from the constructor. It maintains the
chain between the constructors i.e. it is used for constructor chaining. Let's see the example given below
that displays the actual use of this keyword.

1. class Student{
2. int rollno;
3. String name,course;
4. float fee;
5. Student(int rollno,String name,String course){
6. this.rollno=rollno;
7. this.name=name;
8. this.course=course;
9. }

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 96 of 113

10. Student(int rollno,String name,String course,float fee){
11. this(rollno,name,course);//reusing constructor
12. this.fee=fee;
13. }
14. void display(){System.out.println(rollno+" "+name+" "+course+" "+fee);}
15. }
16. class TestThis7{
17. public static void main(String args[]){
18. Student s1=new Student(111,"ankit","java");
19. Student s2=new Student(112,"sumit","java",6000f);
20. s1.display();
21. s2.display();
22. }}

Output:
111 ankit java 0.0
112 sumit java 6000.0

Rule: Call to this() must be the first statement in constructor.
1. class Student{
2. int rollno;
3. String name,course;
4. float fee;
5. Student(int rollno,String name,String course){
6. this.rollno=rollno;
7. this.name=name;
8. this.course=course;
9. }
10. Student(int rollno,String name,String course,float fee){
11. this.fee=fee;
12. this(rollno,name,course);//C.T.Error
13. }
14. void display(){System.out.println(rollno+" "+name+" "+course+" "+fee);}
15. }
16. class TestThis8{
17. public static void main(String args[]){
18. Student s1=new Student(111,"ankit","java");
19. Student s2=new Student(112,"sumit","java",6000f);
20. s1.display();
21. s2.display();
22. }}

Output:
Compile Time Error: Call to this must be first statement in constructor

4) this: to pass as an argument in the method

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 97 of 113

The this keyword can also be passed as an argument in the method. It is mainly used in the event
handling. Let's see the example:

1. class S2{
2. void m(S2 obj){
3. System.out.println("method is invoked");
4. }
5. void p(){
6. m(this);
7. }
8. public static void main(String args[]){
9. S2 s1 = new S2();
10. s1.p();
11. }
12. }

Output:
method is invoked

Application of this that can be passed as an argument:
In event handling (or) in a situation where we have to provide reference of a class to another one. It is
used to reuse one object in many methods.

5) this: to pass as argument in the constructor call
We can pass the this keyword in the constructor also. It is useful if we have to use one object in multiple
classes. Let's see the example:

1. class B{
2. A4 obj;
3. B(A4 obj){
4. this.obj=obj;
5. }
6. void display(){
7. System.out.println(obj.data);//using data member of A4 class
8. }
9. }
10.
11. class A4{
12. int data=10;
13. A4(){
14. B b=new B(this);
15. b.display();
16. }
17. public static void main(String args[]){
18. A4 a=new A4();
19. }

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 98 of 113

20. }

Output:10

6) this keyword can be used to return current class instance
We can return this keyword as an statement from the method. In such case, return type of the method
must be the class type (non-primitive). Let's see the example:

Syntax of this that can be returned as a statement
return_type method_name(){
return this;
}

Example of this keyword that you return as a statement from the method
1. class A{
2. A getA(){
3. return this;
4. }
5. void msg(){System.out.println("Hello java");}
6. }
7. class Test1{
8. public static void main(String args[]){
9. new A().getA().msg();
10. }
11. }

Output:
Hello java

Proving this keyword
Let's prove that this keyword refers to the current class instance variable. In this program, we are
printing the reference variable and this, output of both variables are same.

1. class A5{
2. void m(){
3. System.out.println(this);//prints same reference ID
4. }
5. public static void main(String args[]){
6. A5 obj=new A5();
7. System.out.println(obj);//prints the reference ID
8. obj.m();
9. }
10. }

Output:
A5@22b3ea59

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 99 of 113

A5@22b3ea59

Java String

In Java , string is basically an object that represents sequence of char values. An array
of characters works same as Java string. For example:
char[] ch={'j','a','v','a','t','p','o','i','n','t'};

String s=new String(ch);

is same as:
String s="javatpoint";

Java String class provides a lot of methods to perform operations on strings such as compare(), concat(),
equals(), split(), length(), replace(), compareTo(), intern(), substring() etc.
The java.lang.String class implements Serializable, Comparable and CharSequence interfaces

CharSequence Interface
The CharSequence interface is used to represent the sequence of characters. String, StringBuffer
and StringBuilder
classes implement it. It means, we can create strings in Java by using these three classes.

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/StringBuffer-class
https://www.javatpoint.com/StringBuffer-class
https://www.javatpoint.com/StringBuilder-class
https://www.javatpoint.com/StringBuilder-class

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 100 of 113

The Java String is immutable which means it cannot be changed. Whenever we change any string, a new
instance is created. For mutable strings, you can use StringBuffer and StringBuilder classes.

We will discuss immutable string later. Let's first understand what String in Java is and how to create the
String object.

How to create a string object?

There are two ways to create String object:

1. By string literal

2. By new keyword

1) String Literal

Java String literal is created by using double quotes. For Example:
String s="welcome";

Each time you create a string literal, the JVM checks the "string constant pool" first. If the string already
exists in the pool, a reference to the pooled instance is returned. If the string doesn't exist in the pool, a
new string instance is created and placed in the pool. For example:
String s1="Welcome";
String s2="Welcome";//It doesn't create a new instance

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 101 of 113

2) By new keyword
String s=new String("Welcome");//creates two objects and one reference variable
In such case, JVM
will create a new string object in normal (non-pool) heap memory, and the literal "Welcome" will be
placed in the string constant pool. The variable s will refer to the object in a heap (non-pool).

StringExample.java
1. public class StringExample{
2. public static void main(String args[]){
3. String s1="java";//creating string by Java string literal
4. char ch[]={'s','t','r','i','n','g','s'};
5. String s2=new String(ch);//converting char array to string
6. String s3=new String("example");//creating Java string by new keyword
7. System.out.println(s1);
8. System.out.println(s2);
9. System.out.println(s3);
10. }}

Output:
java
strings
example

Java String class methods

The java.lang.String class provides many useful methods to perform operations on sequence of char
values.

No. Method Description

1 char charAt(int index)

It returns char value for the particular
index

https://www.javatpoint.com/jvm-java-virtual-machine
https://www.javatpoint.com/jvm-java-virtual-machine
https://www.javatpoint.com/java-string-charat
https://www.javatpoint.com/java-string-charat

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 102 of 113

2 int length()

It returns string length

3 static String format(String format, Object... args)

It returns a formatted string.

4 static String format(Locale l, String format, Object...
args)

It returns formatted string with given
locale.

5 String substring(int beginIndex)

It returns substring for given begin
index.

6 String substring(int beginIndex, int endIndex)

It returns substring for given begin
index and end index.

7 boolean contains(CharSequence s)

It returns true or false after matching
the sequence of char value.

8 static String join(CharSequence delimiter,
CharSequence... elements)

It returns a joined string.

9 static String join(CharSequence delimiter, Iterable<?
extends CharSequence> elements)

It returns a joined string.

10 boolean equals(Object another)

It checks the equality of string with the
given object.

11 boolean isEmpty()

It checks if string is empty.

12 String concat(String str)

It concatenates the specified string.

13 String replace(char old, char new)

It replaces all occurrences of the
specified char value.

14 String replace(CharSequence old, CharSequence new)

It replaces all occurrences of the
specified CharSequence.

15 static String equalsIgnoreCase(String another)

It compares another string. It doesn't
check case.

16 String[] split(String regex)

It returns a split string matching regex.

17 String[] split(String regex, int limit)

It returns a split string matching regex
and limit.

18 String intern()

It returns an interned string.

https://www.javatpoint.com/java-string-length
https://www.javatpoint.com/java-string-length
https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-contains
https://www.javatpoint.com/java-string-contains
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-equals
https://www.javatpoint.com/java-string-equals
https://www.javatpoint.com/java-string-isempty
https://www.javatpoint.com/java-string-isempty
https://www.javatpoint.com/java-string-concat
https://www.javatpoint.com/java-string-concat
https://www.javatpoint.com/java-string-replace
https://www.javatpoint.com/java-string-replace
https://www.javatpoint.com/java-string-replace
https://www.javatpoint.com/java-string-replace
https://www.javatpoint.com/java-string-equalsignorecase
https://www.javatpoint.com/java-string-equalsignorecase
https://www.javatpoint.com/java-string-split
https://www.javatpoint.com/java-string-split
https://www.javatpoint.com/java-string-split
https://www.javatpoint.com/java-string-split
https://www.javatpoint.com/java-string-intern
https://www.javatpoint.com/java-string-intern

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 103 of 113

19 int indexOf(int ch)

It returns the specified char value
index.

20 int indexOf(int ch, int fromIndex)

It returns the specified char value index
starting with given index.

21 int indexOf(String substring)

It returns the specified substring index.

22 int indexOf(String substring, int fromIndex)

It returns the specified substring index
starting with given index.

23 String toLowerCase()

It returns a string in lowercase.

24 String toLowerCase(Locale l)

It returns a string in lowercase using
specified locale.

25 String toUpperCase()

It returns a string in uppercase.

26 String toUpperCase(Locale l)

It returns a string in uppercase using
specified locale.

27 String trim()

It removes beginning and ending spaces
of this string.

28 static String valueOf(int value)

It converts given type into string. It is an
overloaded method.

public class StringMethodsDemo {
 public static void main(String[] args) {
 String targetString = "Java is fun to learn";
 String s1= "JAVA";
 String s2= "Java";
 String s3 = " Hello Java ";
 System.out.println("Char at index 2(third position): " + targetString.charAt(2));
 System.out.println("After Concat: "+ targetString.concat("-Enjoy-"));
 System.out.println("Checking equals ignoring case: " +s2.equalsIgnoreCase(s1));
 System.out.println("Checking equals with case: " +s2.equals(s1));
 System.out.println("Checking Length: "+ targetString.length());
 System.out.println("Replace function: "+ targetString.replace("fun", "easy"));
 System.out.println("SubString of targetString: "+ targetString.substring(8));
 System.out.println("SubString of targetString: "+ targetString.substring(8, 12));
 System.out.println("Converting to lower case: "+ targetString.toLowerCase());
 System.out.println("Converting to upper case: "+ targetString.toUpperCase());
 System.out.println("Triming string: " + s3.trim());
 System.out.println("searching s1 in targetString: " + targetString.contains(s1));
 System.out.println("searching s2 in targetString: " + targetString.contains(s2));

https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-tolowercase
https://www.javatpoint.com/java-string-tolowercase
https://www.javatpoint.com/java-string-tolowercase
https://www.javatpoint.com/java-string-tolowercase
https://www.javatpoint.com/java-string-touppercase
https://www.javatpoint.com/java-string-touppercase
https://www.javatpoint.com/java-string-touppercase
https://www.javatpoint.com/java-string-touppercase
https://www.javatpoint.com/java-string-trim
https://www.javatpoint.com/java-string-trim
https://www.javatpoint.com/java-string-valueof
https://www.javatpoint.com/java-string-valueof

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 104 of 113

 char [] charArray = s2.toCharArray();
 System.out.println("Size of char array: " + charArray.length);
 System.out.println("Printing last element of array: " + charArray[3]);
 }

}
Output:
Char at index 2(third position): v
After Concat: Java is fun to learn-Enjoy-
Checking equals ignoring case: true
Checking equals with case: false
Checking Length: 20
Replace function: Java is easy to learn
SubString of targetString: fun to learn
SubString of targetString: fun
Converting to lower case: java is fun to learn
Converting to upper case: JAVA IS FUN TO LEARN
Triming string: Hello Java
searching s1 in targetString: false
searching s2 in targetString: true
Size of char array: 4
Printing last element of array: a

Immutable String in Java
A String is an unavoidable type of variable while writing any application program. String references are
used to store various attributes like username, password, etc. In Java, String objects are immutable.
Immutable simply means unmodifiable or unchangeable.

Once String object is created its data or state can't be changed but a new String object is created.
1. class Testimmutablestring{
2. public static void main(String args[]){
3. String s="Sachin";
4. s.concat(" Tendulkar");//concat() method appends the string at the end
5. System.out.println(s);//will print Sachin because strings are immutable objects
6. }
7. }

Output:
Sachin

Now it can be understood by the diagram given below. Here Sachin is not changed but a new object is
created with Sachin Tendulkar. That is why String is known as immutable.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 105 of 113

As you can see in the above figure that two objects are created but s reference variable still refers to
"Sachin" not to "Sachin Tendulkar".

But if we explicitly assign it to the reference variable, it will refer to "Sachin Tendulkar" object.

For example:
Testimmutablestring1.java

1. class Testimmutablestring1{
2. public static void main(String args[]){
3. String s="Sachin";
4. s=s.concat(" Tendulkar");
5. System.out.println(s);
6. }
7. }

Output:
Sachin Tendulkar

In such a case, s points to the "Sachin Tendulkar". Please notice that still Sachin object is not modified.

Why String objects are immutable in Java?
As Java uses the concept of String literal. Suppose there are 5 reference variables, all refer to one object
"Sachin". If one reference variable changes the value of the object, it will be affected by all the reference
variables. That is why String objects are immutable in Java.

Following are some features of String which makes String objects immutable.

1. ClassLoader:
A ClassLoader in Java uses a String object as an argument. Consider, if the String object is modifiable, the
value might be changed and the class that is supposed to be loaded might be different.

To avoid this kind of misinterpretation, String is immutable.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 106 of 113

2. Thread Safe:
As the String object is immutable we don't have to take care of the synchronization that is required
while sharing an object across multiple threads.

3. Security:
As we have seen in class loading, immutable String objects avoid further errors by loading the correct
class. This leads to making the application program more secure. Consider an example of banking
software. The username and password cannot be modified by any intruder because String objects are
immutable. This can make the application program more secure.

4. Heap Space:
The immutability of String helps to minimize the usage in the heap memory. When we try to declare a
new String object, the JVM checks whether the value already exists in the String pool or not. If it exists,
the same value is assigned to the new object. This feature allows Java to use the heap space efficiently.

Why String class is Final in Java?
The reason behind the String class being final is because no one can override the methods of the String
class. So that it can provide the same features to the new String objects as well as to the old ones.

Java StringBuffer Class

Java StringBuffer class is used to create mutable (modifiable) String objects. The StringBuffer class in
Java is the same as String class except it is mutable i.e. it can be changed.

Important Constructors of StringBuffer Class

Constructor Description

StringBuffer() It creates an empty String buffer with the initial capacity of 16.

StringBuffer(String str) It creates a String buffer with the specified string..

StringBuffer(int capacity) It creates an empty String buffer with the specified capacity as length.

Important methods of StringBuffer class

Modifier and
Type

Method Description

public
synchronized
StringBuffer

append(String s) It is used to append the specified string with this string.
The append() method is overloaded like append(char),
append(boolean), append(int), append(float),
append(double) etc.

public insert(int offset, String It is used to insert the specified string with this string at

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 107 of 113

synchronized
StringBuffer

s) the specified position. The insert() method is overloaded
like insert(int, char), insert(int, boolean), insert(int, int),
insert(int, float), insert(int, double) etc.

public
synchronized
StringBuffer

replace(int startIndex,
int endIndex, String str)

It is used to replace the string from specified startIndex
and endIndex.

public
synchronized
StringBuffer

delete(int startIndex, int
endIndex)

It is used to delete the string from specified startIndex and
endIndex.

public
synchronized
StringBuffer

reverse() is used to reverse the string.

public int capacity() It is used to return the current capacity.

public void ensureCapacity(int
minimumCapacity)

It is used to ensure the capacity at least equal to the given
minimum.

public char charAt(int index) It is used to return the character at the specified position.

public int length() It is used to return the length of the string i.e. total
number of characters.

public String substring(int
beginIndex)

It is used to return the substring from the specified
beginIndex.

public String substring(int
beginIndex, int
endIndex)

It is used to return the substring from the specified
beginIndex and endIndex.

What is a mutable String?

A String that can be modified or changed is known as mutable String. StringBuffer and StringBuilder
classes are used for creating mutable strings.
package com.basics;
import java.lang.*;

class StringBufferExample{
public static void main(String args[]){
StringBuffer sb=new StringBuffer("Hello ");
sb.append("Java");//now original string is changed

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 108 of 113

System.out.println(sb);//prints Hello Java

sb.insert(1,"Java");//now original string is changed
System.out.println(sb);//prints HJavaello

sb.replace(1,3,"Java");
System.out.println(sb);//prints HJavalo

sb.delete(1,3);
System.out.println(sb);//prints Hlo

sb.reverse();
System.out.println(sb);//prints olleH

StringBuffer sb1=new StringBuffer();
System.out.println(sb1.capacity());//default 16
sb1.append("Hello");
System.out.println(sb1.capacity());//now 16
sb1.append("java is my favourite language");
System.out.println(sb1.capacity());//now (16*2)+2=34 i.e (oldcapacity*2)+2

sb1.ensureCapacity(10);//now no change
System.out.println(sb1.capacity());//now 34
sb1.ensureCapacity(50);//now (34*2)+2
System.out.println(sb1.capacity());//now 70

}
}
Output:
Hello Java
HJavaello Java
HJavavaello Java
Hvavaello Java
avaJ olleavavH
16
16
34
34
70

Java StringBuilder Class

Important Constructors of StringBuilder class

Constructor Description

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 109 of 113

StringBuilder() It creates an empty String Builder with the initial capacity of 16.

StringBuilder(String str) It creates a String Builder with the specified string.

StringBuilder(int length) It creates an empty String Builder with the specified capacity as length.

Important methods of StringBuilder class

Method Description

public StringBuilder
append(String s)

It is used to append the specified string with this string. The append()
method is overloaded like append(char), append(boolean),
append(int), append(float), append(double) etc.

public StringBuilder insert(int
offset, String s)

It is used to insert the specified string with this string at the specified
position. The insert() method is overloaded like insert(int, char),
insert(int, boolean), insert(int, int), insert(int, float), insert(int, double)
etc.

public StringBuilder replace(int
startIndex, int endIndex, String
str)

It is used to replace the string from specified startIndex and endIndex.

public StringBuilder delete(int
startIndex, int endIndex)

It is used to delete the string from specified startIndex and endIndex.

public StringBuilder reverse() It is used to reverse the string.

public int capacity() It is used to return the current capacity.

public void ensureCapacity(int
minimumCapacity)

It is used to ensure the capacity at least equal to the given minimum.

public char charAt(int index) It is used to return the character at the specified position.

public int length() It is used to return the length of the string i.e. total number of
characters.

public String substring(int
beginIndex)

It is used to return the substring from the specified beginIndex.

public String substring(int
beginIndex, int endIndex)

It is used to return the substring from the specified beginIndex and
endIndex.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 110 of 113

package com.basics;
import java.lang.*;

class StringBuilderExample{
public static void main(String args[]){
StringBuilder sb=new StringBuilder("Hello ");
sb.append("Java");//now original string is changed
System.out.println(sb);//prints Hello Java

sb.insert(1,"Java");//now original string is changed
System.out.println(sb);//prints HJavaello

sb.replace(1,3,"Java");
System.out.println(sb);//prints HJavalo

sb.delete(1,3);
System.out.println(sb);//prints Hlo

sb.reverse();
System.out.println(sb);//prints olleH

StringBuilder sb1=new StringBuilder();
System.out.println(sb1.capacity());//default 16
sb1.append("Hello");
System.out.println(sb1.capacity());//now 16
sb1.append("Java is my favourite language");
System.out.println(sb1.capacity());//now (16*2)+2=34 i.e (oldcapacity*2)+2

StringBuilder sb2=new StringBuilder();
System.out.println(sb2.capacity());//default 16
sb2.append("Hello");
System.out.println(sb2.capacity());//now 16
sb2.append("Java is my favourite language");
System.out.println(sb2.capacity());//now (16*2)+2=34 i.e (oldcapacity*2)+2
sb2.ensureCapacity(10);//now no change
System.out.println(sb2.capacity());//now 34
sb2.ensureCapacity(50);//now (34*2)+2
System.out.println(sb2.capacity());//now 70
}
}
Output:
Hello Java
HJavaello Java
HJavavaello Java
Hvavaello Java

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 111 of 113

avaJ olleavavH
16
16
34
16
16
34
34
70

Difference between String and StringBuffer
There are many differences between String and StringBuffer. A list of differences between String and
StringBuffer are given below:

No. String StringBuffer

1) The String class is immutable. The StringBuffer class is mutable.

2) String is slow and consumes more memory when we
concatenate too many strings because every time it
creates new instance.

StringBuffer is fast and consumes less
memory when we concatenate t
strings.

3) String class overrides the equals() method of Object
class. So you can compare the contents of two strings by
equals() method.

StringBuffer class doesn't override the
equals() method of Object class.

4) String class is slower while performing concatenation
operation.

StringBuffer class is faster while
performing concatenation operation.

5) String class uses String constant pool. StringBuffer uses Heap memory

Performance Test of String and StringBuffer

ConcatTest.java
1. public class ConcatTest{
2. public static String concatWithString() {
3. String t = "Java";
4. for (int i=0; i<10000; i++){
5. t = t + "Tpoint";
6. }
7. return t;
8. }
9. public static String concatWithStringBuffer(){
10. StringBuffer sb = new StringBuffer("Java");
11. for (int i=0; i<10000; i++){

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 112 of 113

12. sb.append("Tpoint");
13. }
14. return sb.toString();
15. }
16. public static void main(String[] args){
17. long startTime = System.currentTimeMillis();
18. concatWithString();
19. System.out.println("Time taken by Concating with String: "+(System.currentTimeMillis()-

startTime)+"ms");
20. startTime = System.currentTimeMillis();
21. concatWithStringBuffer();
22. System.out.println("Time taken by Concating with StringBuffer: "+(System.currentTimeMillis()-

startTime)+"ms");
23. }
24. }

Output:
Time taken by Concating with String: 578ms
Time taken by Concating with StringBuffer: 0ms

The above code, calculates the time required for concatenating a string using the String class and
StringBuffer class.

Difference between StringBuffer and StringBuilder
Java provides three classes to represent a sequence of characters: String, StringBuffer, and StringBuilder.
The String class is an immutable class whereas StringBuffer and StringBuilder classes are mutable. There
are many differences between StringBuffer and StringBuilder. The StringBuilder class is introduced since
JDK 1.5.

No. StringBuffer StringBuilder

1) StringBuffer is synchronized i.e. thread safe. It
means two threads can't call the methods of
StringBuffer simultaneously.

StringBuilder is non-synchronized i.e. not thread
safe. It means two threads can call the methods
of StringBuilder simultaneously.

2) StringBuffer is less efficient than StringBuilder. StringBuilder is more efficient than StringBuffer.

3) StringBuffer was introduced in Java 1.0 StringBuilder was introduced in Java 1.5

Performance Test of StringBuffer and StringBuilder

Let's see the code to check the performance of StringBuffer and StringBuilder classes.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit1 (Basics, Class, Objects, Methods, Strings)

Collected & Prepared By: T. SREENIVASULA REDDY Page 113 of 113

ConcatTest.java
1. //Java Program to demonstrate the performance of StringBuffer and StringBuilder classes.
2. public class ConcatTest{
3. public static void main(String[] args){
4. long startTime = System.currentTimeMillis();
5. StringBuffer sb = new StringBuffer("Java");
6. for (int i=0; i<10000; i++){
7. sb.append("Tpoint");
8. }
9. System.out.println("Time taken by StringBuffer: " + (System.currentTimeMillis() -

 startTime) + "ms");
10. startTime = System.currentTimeMillis();
11. StringBuilder sb2 = new StringBuilder("Java");
12. for (int i=0; i<10000; i++){
13. sb2.append("Tpoint");
14. }
15. System.out.println("Time taken by StringBuilder: " + (System.currentTimeMillis() -

 startTime) + "ms");
16. }
17. }

Output:
Time taken by StringBuffer: 16ms
Time taken by StringBuilder: 0ms

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 1 of 54

Inheritance: It is a mechanism in which one class acquires the property of another class. For

example, a child inherits the traits of his/her parents. With inheritance, we can reuse the fields and
methods of the existing class. Hence, inheritance facilitates Reusability and is an important concept of
OOPs.

use inheritance in java:
 For Method Overriding (so runtime polymorphism can be achieved).

 For Code Reusability.

Important terminology:
Super Class: The class whose features are inherited is known as super class (or a base class or a parent
class).

Sub Class: The class that inherits the other class is known as a subclass(or a derived class, extended
class, or child class). The subclass can add its own fields and methods in addition to the super class fields
and methods.

Reusability: Inheritance supports the concept of “reusability”, i.e. when we want to create a new class
and there is already a class that includes some of the code that we want, we can derive our new class
from the existing class. By doing this, we are reusing the fields and methods of the existing class.

How to use inheritance in Java
The keyword used for inheritance is extends.

Syntax :
class derived-class extends base-class {
 //methods and fields
}
Example: In the below example of inheritance, class Bicycle is a base class, class MountainBike is a
derived class that extends Bicycle class and class Test is a driver class to run program.
// Java program to illustrate the
// concept of inheritance

// base class
class Bicycle {
 // the Bicycle class has two fields
 public int gear;
 public int speed;

 // the Bicycle class has one constructor
 public Bicycle(int gear, int speed){
 this.gear = gear;
 this.speed = speed;
 }
 // the Bicycle class has three methods
 public void applyBrake(int decrement) {
 speed -= decrement;
 }
 public void speedUp(int increment){

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 2 of 54

 speed += increment; }

 // toString() method to print info of Bicycle
 public String toString() {
 return ("No of gears are " + gear + "\n"
 + "speed of bicycle is " + speed);
 }
}

// derived class
class MountainBike extends Bicycle {
 // the MountainBike subclass adds one more field
 public int seatHeight;
 // the MountainBike subclass has one constructor
 public MountainBike(int gear, int speed, int startHeight){
 // invoking base-class(Bicycle) constructor
 super(gear, speed);
 seatHeight = startHeight;
 }
 // the MountainBike subclass adds one more method
 public void setHeight(int newValue){
 seatHeight = newValue;
 }
 // overriding toString() method
 // of Bicycle to print more info
 @Override public String toString() {
 return (super.toString() + "\nseat height is "+ seatHeight);
 }
}

// driver class
public class Test {
 public static void main(String args[]){
 MountainBike mb = new MountainBike(3, 100, 25);
 System.out.println(mb.toString());
 }
}

Output
No of gears are 3
speed of bicycle is 100
seat height is 25
Illustrative image of the program:

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 3 of 54

Member Access and Inheritance
Although a subclass includes all of the members of its super class, it cannot access those members of the
super class that have been declared as private.
For example, consider the following simple class hierarchy:
/* In a class hierarchy, private members remain private to their class. This program contains an error
and will not compile.
*/
// Create a superclass.
class A {
int i; // public by default
private int j; // private to A
void setij(int x, int y) {
i = x; j = y;
}
}
// A's j is not accessible here.

class B extends A { int total;
void sum() {
total = i + j; // ERROR, j is not accessible here
}
}

class Access {
public static void main(String args[]) { B subOb = new B();
subOb.setij(10, 12); subOb.sum();
System.out.println("Total is " + subOb.total);
}
}

Types of Inheritance in Java
Below are the different types of inheritance which are supported by Java.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 4 of 54

Single Inheritance: In single inheritance, subclasses inherit the features of one superclass. In the image
below, class A serves as a base class for the derived class B.

// Java program to illustrate the
// concept of single inheritance
class ParentClass{
 int a;
 void setData(int a) {
 this.a = a;
 }
}
class ChildClass extends ParentClass{
 void showData() {
 System.out.println("Value of a is " + a);
 }
}

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 5 of 54

public class SingleInheritance {
 public static void main(String[] args) {
 ChildClass obj = new ChildClass();
 obj.setData(100);
 obj.showData();
 }
}
Output
Value of a is 100

2. Multilevel Inheritance: In Multilevel Inheritance, a derived class will be inheriting a base class and
as well as the derived class also act as the base class to other class. In the below image, class A serves as
a base class for the derived class B, which in turn serves as a base class for the derived class C. In Java, a
class cannot directly access the grandparent’s members.

// Java program to illustrate the
// concept of Multilevel inheritance
class ParentClass{
 int a;
 void setData(int a) {
 this.a = a;
 }
}
class ChildClass extends ParentClass{
 void showData() {
 System.out.println("Value of a is " + a);
 }
}
class ChildChildClass extends ChildClass{
 void display() {
 System.out.println("Inside ChildChildClass!");
 }
}
public class MultipleInheritance {
 public static void main(String[] args) {

https://www.geeksforgeeks.org/g-fact-91/

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 6 of 54

 ChildChildClass obj = new ChildChildClass();
 obj.setData(100);
 obj.showData();
 obj.display();
 }
}
Output
Value of a is 100
Inside CHldChild Class!

3. Hierarchical Inheritance: In Hierarchical Inheritance, one class serves as a superclass (base class)
for more than one subclass. In the below image, class A serves as a base class for the derived class B, C
and D.

// Java program to illustrate the
// concept of Hierarchical inheritance
class ParentClass{
 int a;
 void setData(int a) {
 this.a = a;
 }
}
class ChildClass extends ParentClass{
 void showData() {
 System.out.println("Inside ChildClass!");
 System.out.println("Value of a is " + a);
 }
}
class ChildClassToo extends ParentClass{
 void display() {
 System.out.println("Inside ChildClassToo!");
 System.out.println("Value of a is " + a);
 }
}
public class HierarchicalInheritance {
 public static void main(String[] args) {
 ChildClass child_obj = new ChildClass();

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 7 of 54

 child_obj.setData(100);
 child_obj.showData();

 ChildClassToo childToo_obj = new ChildClassToo();
 childToo_obj.setData(200);
 childToo_obj.display();
 }
}

Output
Inside ChildClass!
Value of a is 100
Inside ChildClassToo!
Value of a is 100

4. Multiple Inheritance (Through Interfaces): In Multiple inheritances, one class can have more
than one superclass and inherit features from all parent classes. Please note that Java
does not support multiple inheritances with classes. In java, we can achieve multiple inheritances only
through Interfaces. In the image below, Class C is derived from interface A and B.

// Java program to illustrate the
// concept of Multiple inheritance

https://www.geeksforgeeks.org/java-and-multiple-inheritance/
https://www.geeksforgeeks.org/java-and-multiple-inheritance/
https://www.geeksforgeeks.org/interfaces-in-java/

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 8 of 54

interface CollegeData{
 public void collegeDetail();
 public void studentData();
}

interface HostelData{
 public void hostelDetail();
 public void studentRecord();
}

public class StudentRecord implements CollegeData, HostelData{
 @Override
 public void hostelDetail() {
 System.out.println("Hostel Name : RAMA");
 System.out.println("Hostel location : AITS");
 }

 @Override
 public void studentRecord() {
 System.out.println("Student selected on based : Percentage, Financial condition");
 }

 @Override
 public void collegeDetail() {
 System.out.println("College Name : AITS");
 System.out.println("College Grade : A");
 System.out.println("University of College : JNTUA");
 }

 @Override
 public void studentData() {
 System.out.println("courses of Student : MCA, MTECH, MBA, BCA");
 }

 public static void main (String[] args) {
 StudentRecord obj = new StudentRecord();
 obj.collegeDetail();
 obj.studentData();
 obj.hostelDetail();
 obj.studentData();
 }
}

Output
College Name : AITS
College Grade : A

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 9 of 54

University of College : JNTUA
courses of Student : MCA, MTECH, MBA, BCA
Hostel Name : RAMA
Hostel location : AITS
courses of Student : MCA, MTECH, MBA, BCA

5. Hybrid Inheritance(Through Interfaces): It is a mix of two or more of the above types of
inheritance. Since java doesn’t support multiple inheritances with classes, hybrid inheritance is also not
possible with classes. In java, we can achieve hybrid inheritance only through Interfaces.

public class ClassA {
 public void dispA() {
 System.out.println("disp() method of ClassA");
 }
}
public interface InterfaceB {
 public void show();
}
public interface InterfaceC {
 public void show();
}
public class ClassD extends ClassA implements InterfaceB,InterfaceC{
 public void show() {
 System.out.println("show() method implementation");
 }
 public void dispD() {
 System.out.println("disp() method of ClassD");
 }
 public static void main(String args[]) {
 ClassD d = new ClassD();
 d.dispD();
 d.show();
 }
}

Output :
disp() method of ClassD
show() method implementation

https://www.geeksforgeeks.org/interfaces-in-java/

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 10 of 54

Using super
The super keyword in Java is a reference variable which is used to refer immediate parent
class object. Whenever you create the instance of subclass, an instance or object of parent
class is created implicitly which is referred by super reference variable.
Usage of Java super Keyword

 Super() can be used to refer immediate parent class instance variable.

 Super() can be used to invoke immediate parent class method.

 super() can be used to invoke immediate parent class constructor.

super has two general forms.
The first calls the superclass’ constructor.
The second is used to access a member of the superclass that has been hidden by a member of a
subclass.
Using super to Call Superclass Constructors
A subclass can call a constructor defined by its superclass by use of the following form of
super: super(arg-list);
Here, arg-list specifies any arguments needed by the constructor in the superclass.
super() must always be the first statement executed inside a subclass’ constructor.
The super keyword can also be used to invoke the parent class constructor. Let's see a simple example:
class Animal{
Animal(){
System.out.println("animal is created");
}
}
class Dog extends Animal{
Dog(){
super();
System.out.println("dog is created");
}
}

class TestSuper{
public static void main(String args[]){
Dog d=new Dog();
}
}

OUTPUT:
animal is created dog is created
To initialize all the property, we are using parent class constructor from child class.
 class Person{
int id; String name;
Person(int id,String name){
this.id=id; this.name=name;

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 11 of 54

}
}
class Emp extends Person{
float salary;
Emp(int id,String name,float salary){
super(id,name);//reusing parent constructor
 this.salary=salary;
}
void display(){
System.out.println(id+" "+name+" "+salary);
}
}
class TestSuper5{
public static void main(String[] args){
Emp e1=new Emp(1,"ankit",45000f);
e1.display();
}
}

A Second Use for super
The second form of super acts somewhat like this, except that it always refers to the superclass of the
subclass in which it is used. This usage has the following general form:

super.member
Here, member can be either a method or an instance variable.
This second form of super is most applicable to situations in which member names of a subclass hide
members by the same name in the superclass.

// Using super to overcome name hiding.
class A{
int i;
}
// Create a subclass by extending class A
class B extends A{
int i; // this i hides the i in A
B(int a, int b){
super.i = a; // i in A
i = b; // i in B
}

void show() {
System.out.println("i in superclass: " + super.i);
System.out.println("i in subclass: " + i);
}
}
class UseSuper{
public static void main(String args[]) {

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 12 of 54

B subOb = new B(1, 2);
subOb.show();
}
}
This program displays the following:
i in superclass: 1 i in subclass: 2

Important facts about inheritance in Java
Default superclass: Except Object class, which has no superclass, every class has one and only one
direct superclass (single inheritance). In the absence of any other explicit superclass, every class is
implicitly a subclass of the Object class.

Superclass can only be one: A superclass can have any number of subclasses. But a subclass can have
only one superclass. This is because Java does not support multiple inheritances with classes. Although
with interfaces, multiple inheritances are supported by java.

Inheriting Constructors: A subclass inherits all the members (fields, methods, and nested classes)
from its superclass. Constructors are not members, so they are not inherited by subclasses, but the
constructor of the superclass can be invoked from the subclass.

Private member inheritance: A subclass does not inherit the private members of its parent class.
However, if the superclass has public or protected methods(like getters and setters) for accessing its
private fields, these can also be used by the subclass.

Java IS-A type of Relationship.
IS-A is a way of saying: This object is a type of that object. Let us see how the extends keyword is used to
achieve inheritance.
public class SolarSystem {
}
public class Earth extends SolarSystem {
}
public class Mars extends SolarSystem {
}
public class Moon extends Earth {
}
Now, based on the above example, in Object-Oriented terms, the following are true:-
SolarSystem the superclass of Earth class.
SolarSystem the superclass of Mars class.
Earth and Mars are subclasses of SolarSystem class.
Moon is the subclass of both Earth and SolarSystem classes.

class SolarSystem {
}
class Earth extends SolarSystem {
}
class Mars extends SolarSystem {
}
public class Moon extends Earth {
 public static void main(String args[])

https://www.geeksforgeeks.org/object-class-in-java/
https://www.geeksforgeeks.org/object-class-in-java/
https://www.geeksforgeeks.org/java-and-multiple-inheritance/

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 13 of 54

 { SolarSystem s = new SolarSystem();
 Earth e = new Earth();
 Mars m = new Mars();

 System.out.println(s instanceof SolarSystem);
 System.out.println(e instanceof Earth);
 System.out.println(m instanceof SolarSystem);
 }
}
Output

true
true
true

What all can be done in a Subclass?
In sub-classes we can inherit members as is, replace them, hide them, or supplement them with new
members:
The inherited fields can be used directly, just like any other fields.
We can declare new fields in the subclass that are not in the superclass.
The inherited methods can be used directly as they are.
We can write a new instance method in the subclass that has the same signature as the one in the
superclass, thus overriding it (as in the example above, toString() method is overridden).
We can write a new static method in the subclass that has the same signature as the one in the
superclass, thus hiding it.
We can declare new methods in the subclass that are not in the superclass.
We can write a subclass constructor that invokes the constructor of the superclass, either implicitly or by
using the keyword super.

Java Access Modifiers
In Java, the access specifiers (also known as access modifiers) used to restrict the scope or accessibility
of a class, constructor, variable, method or data member of class and interface. There are four access
specifiers, and their list is below.

default (or) no modifier
public
protected
private
In java, we can not employ all access specifiers on everything. The following table describes where we
can apply the access specifiers.

https://www.geeksforgeeks.org/overriding-in-java/
https://www.geeksforgeeks.org/g-fact-63/
https://www.geeksforgeeks.org/super-keyword/

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 14 of 54

Let's look at the following example java code, which generates an error because a class does not allow
private access specifier unless it is an inner class.
In java, the accessibility of the members of a class or interface depends on its access specifiers. The
following table provides information about the visibility of both data members and methods.

 The public members can be accessed everywhere.

 The private members can be accessed only inside the same class.

 The protected members are accessible to every child class (same package or other packages).

 The default members are accessible within the same package but not outside the package.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 15 of 54

class ParentClass{
 int a = 10;
 public int b = 20;
 protected int c = 30;
 private int d = 40;

 void showData() {
 System.out.println("Inside ParentClass");
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 System.out.println("c = " + c);
 System.out.println("d = " + d);
 }
}

class ChildClass extends ParentClass{
 void accessData() {
 System.out.println("Inside ChildClass");
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 System.out.println("c = " + c);
 //System.out.println("d = " + d); // private member can't be accessed
 }

}
public class AccessModifiersExample {
 public static void main(String[] args) {
 ChildClass obj = new ChildClass();
 obj.showData();
 obj.accessData();

Java Constructors in Inheritance
It is very important to understand how the constructors get executed in the inheritance concept. In the
inheritance, the constructors never get inherited to any child class.
In java, the default constructor of a parent class called automatically by the constructor of its child class.
That means when we create an object of the child class, the parent class constructor executed, followed
by the child class constructor executed.
class ParentClass{
 int a;
 ParentClass(){
 System.out.println("Inside ParentClass constructor!");
 }
}
class ChildClass extends ParentClass{
 ChildClass(){

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 16 of 54

 System.out.println("Inside ChildClass constructor!!");
 }
}
class ChildChildClass extends ChildClass{
 ChildChildClass(){
 System.out.println("Inside ChildChildClass constructor!!");
 }
}
public class ConstructorInInheritance {
 public static void main(String[] args) {
 ChildChildClass obj = new ChildChildClass();
 }
}
Output:
Inside ParentClass constructor!
Inside ChildClass constructor!
Inside ChildChildClass constructor!
However, if the parent class contains both default and parameterized constructor, then only the default
constructor called automatically by the child class constructor.
class ParentClass{
 int a;
 ParentClass(int a){
 System.out.println("Inside ParentClass parameterized constructor!");
 this.a = a;
 }
 ParentClass(){
 System.out.println("Inside ParentClass default constructor!");
 }
}
class ChildClass extends ParentClass{
 ChildClass(){
 System.out.println("Inside ChildClass constructor!!");
 }
}
public class ConstructorInInheritance {
 public static void main(String[] args) {
 ChildClass obj = new ChildClass();
 }
}
Output:
Inside ParentClass default constructor!
Inside ChildClass constructor!!
The parameterized constructor of parent class must be called explicitly using the super keyword.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 17 of 54

Java final keyword
In java, the final is a keyword and it is used with the following things.

 With variable (to create constant)

 With method (to avoid method overriding)

 With class (to avoid inheritance)

Let's look at each of the above.

final with variables
When a variable defined with the final keyword, it becomes a constant, and it does not allow us to
modify the value. The variable defined with the final keyword allows only a one-time assignment, once a
value assigned to it, never allows us to change it again.
public class FinalVariableExample {
 public static void main(String[] args) {
 final int a = 10;
 System.out.println("a = " + a);
 a = 100; // Can't be modified
 }
}

final with methods
When a method defined with the final keyword, it does not allow it to override. The final method
extends to the child class, but the child class can not override or re-define it. It must be used as it has
implemented in the parent class.
class ParentClass{
 int num = 10;
 final void showData() {
 System.out.println("Inside ParentClass showData() method");
 System.out.println("num = " + num);
 }
}
class ChildClass extends ParentClass{
 void showData() {
 System.out.println("Inside ChildClass showData() method");
 System.out.println("num = " + num);
 }
}

public class FinalKeywordExample {
 public static void main(String[] args) {
 ChildClass obj = new ChildClass();
 obj.showData();
 }
}

final with class
When a class defined with final keyword, it can not be extended by any other class.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 18 of 54

final class ParentClass{
 int num = 10;
 void showData() {
 System.out.println("Inside ParentClass showData() method");
 System.out.println("num = " + num);
 }
}

class ChildClass extends ParentClass{
}
public class FinalKeywordExample {
 public static void main(String[] args) {
 ChildClass obj = new ChildClass();
 }
}

Java Pylymorphism
The polymorphism is the process of defining same method with different implementation. That means
creating multiple methods with different behaviors.
In java, polymorphism implemented using method overloading and method overriding.

Ad hoc polymorphism(Compile Time)
The ad hoc polymorphism is a technique used to define the same method with different
implementations and different arguments. In a java programming language, ad hoc polymorphism
carried out with a method overloading concept.
In ad hoc polymorphism the method binding happens at the time of compilation. Ad hoc polymorphism
is also known as compile-time polymorphism. Every function call binded with the respective overloaded
method based on the arguments.
The ad hoc polymorphism implemented within the class only.
// Java Program for Method overloading
// By using Different Types of Arguments

// Class 1
// Helper class
class Helper {
 // Method with 2 integer parameters
 static int Multiply(int a, int b) {

 // Returns product of integer numbers
 return a * b;
 }

 // Method 2
 // With same name but with 2 double parameters
 static double Multiply(double a, double b) {

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 19 of 54

 // Returns product of double numbers
 return a * b;
 }
}

// Class 2
// Main class
class GFG {
 // Main driver method
 public static void main(String[] args) {
 // Calling method by passing
 // input as in arguments
 System.out.println(Helper.Multiply(2, 4));
 System.out.println(Helper.Multiply(5.5, 6.3));
 }
}
Output:
8
34.65
// Java program for Method Overloading
// by Using Different Numbers of Arguments

// Class 1
// Helper class
class Helper {

 // Method 1
 // Multiplication of 2 numbers
 static int Multiply(int a, int b) {
 // Return product
 return a * b;
 }

 // Method 2
 // // Multiplication of 3 numbers
 static int Multiply(int a, int b, int c) {
 // Return product
 return a * b * c;
 }
}

// Class 2
// Main class
class GFG {

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 20 of 54

 // Main driver method
 public static void main(String[] args) {
 // Calling method by passing
 // input as in arguments
 System.out.println(Helper.Multiply(2, 4));
 System.out.println(Helper.Multiply(2, 7, 3));
 }
}
Output:
8
42

Pure polymorphism
The pure polymorphism is a technique used to define the same method with the same arguments but
different implementations. In a java programming language, pure polymorphism carried out with a
method overriding concept.
In pure polymorphism, the method binding happens at run time. Pure polymorphism is also known as
run-time polymorphism. Every function call binding with the respective overridden method based on the
object reference.
When a child class has a definition for a member function of the parent class, the parent class function is
said to be overridden.
The pure polymorphism implemented in the inheritance concept only.
// Java Program for Method Overriding

// Class 1
// Helper class
class Parent {
 // Method of parent class
 void Print() {
 // Print statement
 System.out.println("parent class");
 }
}

// Class 2
// Helper class
class subclass1 extends Parent {
 // Method
 void Print() { System.out.println("subclass1"); }
}

// Class 3
// Helper class
class subclass2 extends Parent {
 // Method
 void Print() {

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 21 of 54

 // Print statement
 System.out.println("subclass2");
 }
}

// Class 4
// Main class
class GFG {
 // Main driver method
 public static void main(String[] args) {
 // Creating object of class 1
 Parent a;
 // Now we will be calling print methods
 // inside main() method
 a = new subclass1();
 a.Print();
 a = new subclass2();
 a.Print();
 }
}
Output:
subclass1
subclass2

Java Method Overriding
The method overriding is the process of re-defining a method in a child class that is already defined in
the parent class. When both parent and child classes have the same method, then that method is said to
be the overriding method.
The method overriding enables the child class to change the implementation of the method which
aquired from parent class according to its requirement.
In the case of the method overriding, the method binding happens at run time. The method binding
which happens at run time is known as late binding. So, the method overriding follows late binding.
The method overriding is also known as dynamic method dispatch or run time polymorphism or pure
polymorphism.
class ParentClass{
 int num = 10;
 void showData() {
 System.out.println("Inside ParentClass showData() method");
 System.out.println("num = " + num);
 }

}

class ChildClass extends ParentClass{

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 22 of 54

 void showData() {
 System.out.println("Inside ChildClass showData() method");
 System.out.println("num = " + num);
 }
}

public class PurePolymorphism {
 public static void main(String[] args) {
 ParentClass obj = new ParentClass();
 obj.showData();

 obj = new ChildClass();
 obj.showData();

 }
}

Inside ParentClass showData() method
Num=10
Inside ChildClass showData() method
Num=10

While overriding a method, we must follow the below list of rules.

 Static methods can not be overridden.

 Final methods can not be overridden.

 Private methods can not be overridden.

 Constructor can not be overridden.

 An abstract method must be overridden.

 Use super keyword to invoke overridden method from child class.

 The return type of the overriding method must be same as the parent has it.

 The access specifier of the overriding method can be changed, but the visibility must increase
but not decrease.

For example, a protected method in the parent class can be made public, but not private, in the child
class.
If the overridden method does not throw an exception in the parent class, then the child class overriding
method can only throw the unchecked exception, throwing a checked exception is not allowed.
If the parent class overridden method does throw an exception, then the child class overriding method
can only throw the same, or subclass exception, or it may not throw any exception.

Java Abstract Class
An abstract class is a class that created using abstract keyword. In other words, a class prefixed with
abstract keyword is known as an abstract class.
In java, an abstract class may contain abstract methods (methods without implementation) and also
non-abstract methods (methods with implementation).
An abstract class can not be instantiated but can be referenced. That means we can not create
an object of an abstract class, but base reference can be created.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 23 of 54

import java.util.*;

abstract class Shape {
 int length, breadth, radius;
 Scanner input = new Scanner(System.in);
 abstract void printArea();
}

class Rectangle extends Shape {
 void printArea() {
 System.out.println("*** Finding the Area of Rectangle ***");
 System.out.print("Enter length and breadth: ");
 length = input.nextInt();
 breadth = input.nextInt();
 System.out.println("The area of Rectangle is: " + length * breadth);
 }
}

class Triangle extends Shape {
 void printArea() {
 System.out.println("\n*** Finding the Area of Triangle ***");
 System.out.print("Enter Base And Height: ");
 length = input.nextInt();
 breadth = input.nextInt();
 System.out.println("The area of Triangle is: " + (length * breadth) / 2);
 }
}

class Cricle extends Shape {
 void printArea() {
 System.out.println("\n*** Finding the Area of Cricle ***");
 System.out.print("Enter Radius: ");
 radius = input.nextInt();
 System.out.println("The area of Cricle is: " + 3.14f * radius * radius);
 }
}

public class AbstractClassExample {
 public static void main(String[] args) {
 Rectangle rec = new Rectangle();
 rec.printArea();

 Triangle tri = new Triangle();
 tri.printArea();

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 24 of 54

 Cricle cri = new Cricle();
 cri.printArea();
 }
}

Output:
*** Finding the Area of Rectangle ***
Enter length and breadth: 2 4
The area of Rectangle is: 8
*** Finding the Area of Triangle ***
Enter Base And Height: 4 5
The area of Triangle is: 10
*** Finding the Area of Cricle ***
Enter Radius: 6
The area of Cricle is: 113.04

In the above example program, the child class objects are created to invoke the overridden abstract
method. But we may also create base class reference and assign it with child class instance to invoke the
same. The main method of the above program can be written as follows that produce the same output.
public static void main(String[] args) {
 Shape obj = new Rectangle(); //Base class reference to Child class instance
 obj.printArea();

 obj = new Triangle();
 obj.printArea();

 obj = new Cricle();
 obj.printArea();

An abstract class must follow the below list of rules.
An abstract class must be created with abstract keyword.
An abstract class can be created without any abstract method.
An abstract class may contain abstract methods and non-abstract methods.
An abstract class may contain final methods that can not be overridden.
An abstract class may contain static methods, but the abstract method can not be static.
An abstract class may have a constructor that gets executed when the child class object created.
An abstract method must be overridden by the child class, otherwise, it must be defined as an abstract
class.
An abstract class can not be instantiated but can be referenced.

Java Object Class
In java, the Object class is the super most class of any class hierarchy. The Object class in the java
programming language is present inside the java.lang package.
Every class in the java programming language is a subclass of Object class by default.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 25 of 54

The Object class is useful when you want to refer to any object whose type you don't know. Because it is
the superclass of all other classes in java, it can refer to any type of object.
Methods of Object class
The following table depicts all built-in methods of Object class in java.

Method Description
Return
Value

getClass() Returns Class class object object

hashCode() returns the hashcode number for object being used. int

equals(Object
obj)

compares the argument object to calling object. boolean

clone() Compares two strings, ignoring case int

concat(String) Creates copy of invoking object object

toString() eturns the string representation of invoking object. String

notify() wakes up a thread, waiting on invoking object's monitor. void

notifyAll() wakes up all the threads, waiting on invoking object's monitor. void

wait() causes the current thread to wait, until another thread notifies. void

wait(long,int) causes the current thread to wait for the specified milliseconds and
nanoseconds, until another thread notifies.

void

finalize() It is invoked by the garbage collector before an object is being garbage
collected.

void

1. toString()
Syntax:
public String toString()
This function is used to extract the String representation of an object. This String representation can be
easily modified according to the need For e.g., in case there is a class Office that needs that its head of
that branch must be displayed with location whenever one calls this function. Thus representation
depends entirely on the object and useful while debugging.
2. hashCode()
Syntax:
public int hashCode()
This function returns the hexadecimal representation of the object’s memory address, which is helpful
in the case of equating 2 objects as 2 objects are said to equal only if their hashcode matched, as per

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 26 of 54

implementation present in the Object class. But if one overrides the equals() method of Object class,
super implementation becomes inactive for that class’s objects.
3. equals(Object obj)
Syntax:
public boolean equals(Object obj)
This method is used to override the default implementation of the equals method to compare 2 objects
using their hashcode and returns true or false accordingly. In case you want to implement your own
logic to compare 2 objects of your class, you must override the equals method.
4. getClass()
Syntax:
public final Class getClass()
This method returns the reference of a Class object that helps to retrieve various information about the
current class. Below are examples of instance methods of Class

 getSimpleName(): Returns the name of the class.
 getSuperClass(): Returns the reference of the superclass of the specified class.
 getInterfaces(): Returns the array of references of Class type for all the interfaces that have

been implemented in a specified class.
 isAnnotation(): Returns True is the specified class is an annotation otherwise false.
 getFields(): Returns the list of fields of the specified class.
 getMethods(): Returns the list of instance methods of the class.

5. finalize()
Syntax:
protected void finalize() throws Throwable
This method is called whenever JVM depicts that there is no more reference exit to that object so that
garbage collection can be performed. There is nothing defined in finalize function in the Object class and
returns nothing. Thus the subclasses can implement it to perform some action but must not rely on
when it will be invoked as the thread that invokes it does not hold a user-visible authentication lock.
Any exception occurs while finalize() halts its execution; thus, it must be handled with precautions.
6. clone()
Syntax:
protected Object clone() throws CloneNotSupportedException
This method of Object class is meant to be overridden in a subclass in case Cloneable Interface is
implemented in it, and this method is used to clone, i.e. creating a copy of that object with values in
member variables, using aobj.clone() syntax. In case one class does not implement the Cloneable
interface, CloneNotSupportedException is thrown.
By default, this method checks if the Cloneable interface has been implemented in this case, but in case
you want to override this method according to your logic, you can easily do this using the following
syntax:-
protected Object clone() throws CloneNotSupportedException
or
public Object clone() throws CloneNotSupportedException
Example:
package Try;
public class Desk implements Cloneable{
private int id;

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 27 of 54

private String Mid;
Desk(int id,String mid){
this.id=id;
this.Mid = mid;
}
@Override
public String toString()
{
return getClass().getName() + "@" + Integer.toHexString(hashCode());
}
@Override
public int hashCode()
{
return id;
}
public boolean equals(Desk dd){
return this.id == dd.id;
}
@Override
protected void finalize()
{
System.out.println("Lets call Fialize");
}
@Override
protected Desk clone() {
return this;
}
public static void main(String[] args){
Desk d1=new Desk(123,"344");
Desk d2=new Desk(234,"344");
System.out.println("toString Representation " + d1.toString());
System.out.println("HashCode for this object "+d1.hashCode());
System.out.println("Comparing 2 objects using equals method "+ d1.equals(d2));
Desk d3=d2.clone(); // cloning d2 object
System.out.println("Comparing clone object with original "+d2.equals(d3));
d1=d2=d3=null;
System.gc();
}
}
Output:

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 28 of 54

Below three methods of Object class are used in case you need to implement multithreading behavior
and need synchronization between different threads.

7. wait()
This method is used to put the current thread in the waiting state until any other thread notifies. The
time needs to be specified in the function in milliseconds for which you need to resume the thread
execution. There are three definitions for this function as given below:

 public final void wait()
 public final void wait(long timeout)
 public final void wait(long timeout, int nanos)

Note: InterruptedException is thrown by this method.
8. notify()
Syntax:
public final void notify()
9. notifyAll()
This method is used to wake up all the threads waiting in the waiting queue.
Syntax:
public final void notifyAll()

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 29 of 54

Java Package
A java package is a group of similar types of classes, interfaces and sub-packages.
Package in java can be categorized in two form,

 built-in package and

 user-defined package.

Advantage of Java Package
1) Java package is used to categorize the classes and interfaces so that they can be easily maintained.
2) Java package provides access protection.
3) Java package removes naming collision.

Simple example of java package
The package keyword is used to create a package in java.

//save as Simple.java
package mypack;
public class Simple{
 public static void main(String args[]){
 System.out.println("Welcome to package");
 }
}
How to compile java package
If you are not using any IDE, you need to follow the syntax given below:
Syntax: javac -d directory javafilename

For example
javac -d . Simple.java

How to run java package program

To Compile: javac -d . Simple.java

https://www.javatpoint.com/package
https://www.javatpoint.com/package

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 30 of 54

To Run: java mypack.Simple

Output:Welcome to package

How to access package from another package?
There are three ways to access the package from outside the package.

 import package.*;

 import package.classname;

 fully qualified name.

1.) Using packagename.*
If you use package.* then all the classes and interfaces of this package will be accessible but not
subpackages.
The import keyword is used to make the classes and interface of another package accessible to the
current package.

Example of package that import the packagename.*
//save by A.java
package pack;
public class A{
 public void msg(){System.out.println("Hello");}
}

//save by B.java
package mypack;
import pack.*;

class B{
 public static void main(String args[]){
 A obj = new A();
 obj.msg();
 }
}
Output:Hello

2) Using packagename.classname
If you import package.classname then only declared class of this package will be accessible.
Example of package by import package.classname
//save by A.java

package pack;
public class A{
 public void msg(){System.out.println("Hello");}
}

//save by B.java
package mypack;
import pack.A;

https://www.javatpoint.com/package
https://www.javatpoint.com/package

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 31 of 54

class B{
 public static void main(String args[]){
 A obj = new A();
 obj.msg();
 }
}
Output:Hello

3) Using fully qualified name
If you use fully qualified name then only declared class of this package will be accessible. Now there is
no need to import. But you need to use fully qualified name every time when you are accessing the class
or interface.
It is generally used when two packages have same class name e.g. java.util and java.sql packages contain
Date class.

Example of package by import fully qualified name
//save by A.java
package pack;
public class A{
 public void msg(){System.out.println("Hello");}
}

//save by B.java
package mypack;
class B{
 public static void main(String args[]){
 pack.A obj = new pack.A();//using fully qualified name
 obj.msg();
 }
}
Output:Hello

Subpackage in java
Package inside the package is called the subpackage. It should be created to categorize the package
further.
Example of Subpackage
package com.javatpoint.core;
class Simple{
 public static void main(String args[]){
 System.out.println("Hello subpackage");
 }
}

To Compile: javac -d . Simple.java

To Run: java com.javatpoint.core.Simple

Output:Hello subpackage

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 32 of 54

How to send the class file to another directory or drive?
There is a scenario, I want to put the class file of A.java source file in classes folder of c: drive. For
example:

//save as Simple.java
package mypack;
public class Simple{
 public static void main(String args[]){
 System.out.println("Welcome to package");
 }
}
To Compile:
e:\sources> javac -d c:\classes Simple.java
To Run:

To run this program from e:\source directory, you need to set classpath of the directory where the class file resides.

e:\sources> set classpath=c:\classes;.;

e:\sources> java mypack.Simple

Another way to run this program by -classpath switch of java:
The -classpath switch can be used with javac and java tool.
To run this program from e:\source directory, you can use -classpath switch of java that tells where to
look for class file. For example:
e:\sources> java -classpath c:\classes mypack.Simple
Output:Welcome to package

Ways to load the class files or jar files

There are two ways to load the class files temporary and permanent.

Temporary
By setting the classpath in the command prompt
By -classpath switch
Permanent
By setting the classpath in the environment variables
By creating the jar file, that contains all the class files, and copying the jar file in the jre/lib/ext folder.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 33 of 54

Rule: There can be only one public class in a java source file and it must be saved by the public class
name.
//save as C.java otherwise Compilte Time Error

class A{}
class B{}
public class C{}

How to put two public classes in a package?

If you want to put two public classes in a package, have two java source files containing one public class, but
keep the package name same. For example:

//save as A.java

package javatpoint;
public class A{}
//save as B.java

package javatpoint;
public class B{}

Interface in Java
 Interfaces are one of the core concepts of Java programming which are majorly used in Java

design patterns.

 An interface provides specifications of what a class should do or not and how it should do. An
interface in Java basically has a set of methods that class may or may not apply.

 It also has capabilities to perform a function. The methods in interfaces do not contain any body.

 These abstract methods are implemented by classes before accessing them.

 An interface in Java is a mechanism which we mainly use to achieve abstraction and multiple
inheritances in Java.

 An interface provides a set of specifications that other classes must implement.

 We can implement multiple Java Interfaces by a Java class. All methods of an interface are
implicitly public and abstract. The word abstract means these methods have no method body,
only method signature.

 Java Interface also represents the IS-A relationship of inheritance between two classes.

 An interface can inherit or extend multiple interfaces.

 We can implement more than one interface in our class.

 Since Java 8, we can have static and default methods in an interface.

 Since Java 9, we can also include private methods in an interface.

Why use Java interface?
There are mainly three reasons to use interface. They are given below.

 It is used to achieve abstraction.

 By interface, we can support the functionality of multiple inheritance.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 34 of 54

 It can be used to achieve loose coupling.

How to declare an interface?
An interface is declared by using the interface keyword. It provides total abstraction; means all the
methods in an interface are declared with the empty body, and all the fields are public, static and final
by default. A class that implements an interface must implement all the methods declared in the
interface.

Syntax:
1. interface <interface_name>{
2.
3. // declare constant fields
4. // declare methods that abstract
5. // by default.
6. }

The relationship between classes and interfaces
As shown in the figure given below, a class extends another class, an interface extends another
interface, but a class implements an interface.

Java Interface Example: Bank
Let's see another example of java interface which provides the implementation of Bank interface.
File: TestInterface2.java

1. interface Bank{

2. float rateOfInterest();

3. }

4. class SBI implements Bank{

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 35 of 54

5. public float rateOfInterest(){return 9.15f;}

6. }

7. class PNB implements Bank{

8. public float rateOfInterest(){return 9.7f;}

9. }

10. class TestInterface2{

11. public static void main(String[] args){

12. Bank b=new SBI();

13. System.out.println("ROI: "+b.rateOfInterest());

14. }}

Output:
ROI: 9.15

Multiple inheritance in Java by interface
If a class implements multiple interfaces, or an interface extends multiple interfaces, it is known as
multiple inheritance.

// Java program to demonstrate
// the multiple inheritance
// in interface

// Interface to implement the
// addition and subtraction methods
interface Add_Sub {
 public void add(double x, double y);
 public void subtract(double x, double y);
}

// Interface to implement the
// multiplication and division
interface Mul_Div {

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 36 of 54

 public void multiply(double x, double y);
 public void divide(double x, double y);
}

// Calculator interface which extends
// both the above defined interfaces
interface Calculator extends Add_Sub, Mul_Div {
 public void printResult(double result);
}

// Calculator class which
// implements the above
// interface
public class MyCalculator implements Calculator {

 // Implementing the addition
 // method
 public void add(double x, double y)
 {
 double result = x + y;
 printResult(result);
 }

 // Implementing the subtraction
 // method
 public void subtract(double x, double y)
 {
 double result = x - y;
 printResult(result);
 }

 // Implementing the multiplication
 // method
 public void multiply(double x, double y)
 {
 double result = x * y;
 printResult(result);
 }

 // Implementing the division
 // method
 public void divide(double x, double y)
 {
 double result = x / y;
 printResult(result);

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 37 of 54

 }

 // Implementing a method
 // to print the result
 public void printResult(double result)
 {
 System.out.println(
 "The result is : " + result);
 }

 // Driver code
 public static void main(String args[])
 {

 // Creating the object of
 // the calculator
 MyCalculator c = new MyCalculator();
 c.add(5, 10);
 c.subtract(35, 15);
 c.multiply(6, 9);
 c.divide(45, 6);
 }
}

Q) Multiple inheritance is not supported through class in java, but it is possible by an
interface, why?
As we have explained in the inheritance chapter, multiple inheritance is not supported in the case
of class because of ambiguity. However, it is supported in case of an interface because there is no
ambiguity. It is because its implementation is provided by the implementation class. For example:

1. interface Printable{
2. void print();
3. }
4. interface Showable{
5. void print();
6. }
7.
8. class TestInterface3 implements Printable, Showable{
9. public void print(){System.out.println("Hello");}
10. public static void main(String args[]){
11. TestInterface3 obj = new TestInterface3();
12. obj.print();
13. }
14. }

Output:

https://www.javatpoint.com/object-and-class-in-java

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 38 of 54

Hello
As you can see in the above example, Printable and Showable interface have same methods but its
implementation is provided by class TestTnterface1, so there is no ambiguity.

Interface inheritance
A class implements an interface, but one interface extends another interface.

1. interface Printable{
2. void print();
3. }
4. interface Showable extends Printable{
5. void show();
6. }
7. class TestInterface4 implements Showable{
8. public void print(){System.out.println("Hello");}
9. public void show(){System.out.println("Welcome");}
10.
11. public static void main(String args[]){
12. TestInterface4 obj = new TestInterface4();
13. obj.print();
14. obj.show();
15. }
16. }

Output:
Hello
Welcome

Java 8 Default Method in Interface
Since Java 8, we can have method body in interface. But we need to make it default method. Let's see
an example:
File: TestInterfaceDefault.java

1. interface Drawable{
2. void draw();
3. default void msg(){System.out.println("default method");}
4. }
5. class Rectangle implements Drawable{
6. public void draw(){System.out.println("drawing rectangle");}
7. }
8. class TestInterfaceDefault{
9. public static void main(String args[]){
10. Drawable d=new Rectangle();
11. d.draw();
12. d.msg();
13. }}

Output:
drawing rectangle

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 39 of 54

default method

Java 8 Static Method in Interface
Since Java 8, we can have static method in interface. Let's see an example:
File: TestInterfaceStatic.java

1. interface Drawable{
2. void draw();
3. static int cube(int x){return x*x*x;}
4. }
5. class Rectangle implements Drawable{
6. public void draw(){System.out.println("drawing rectangle");}
7. }
8.
9. class TestInterfaceStatic{
10. public static void main(String args[]){
11. Drawable d=new Rectangle();
12. d.draw();
13. System.out.println(Drawable.cube(3));
14. }}

Output:
drawing rectangle
27

Q) What is marker or tagged interface?
An interface which has no member is known as a marker or tagged interface, for example, Serializable
, Cloneable, Remote, etc. They are used to provide some essential information to the JVM so that JVM
may perform some useful operation.

1. /How Serializable interface is written?
2. public interface Serializable{
3. }

Java Nested Interface
An interface, i.e., declared within another interface or class, is known as a nested interface. The nested
interfaces are used to group related interfaces so that they can be easy to maintain. The nested
interface must be referred to by the outer interface or class. It can't be accessed directly.
Points to remember for nested interfaces

There are given some points that should be remembered by the java programmer.
o The nested interface must be public if it is declared inside the interface, but it can have any

access modifier if declared within the class.
o Nested interfaces are declared static

Syntax of nested interface which is declared within the interface
1. interface interface_name{
2. ...
3. interface nested_interface_name{
4. ...
5. }

https://www.javatpoint.com/serialization-in-java
https://www.javatpoint.com/serialization-in-java

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 40 of 54

6. }

Syntax of nested interface which is declared within the class
1. class class_name{
2. ...
3. interface nested_interface_name{
4. ...
5. }
6. }

Example of nested interface which is declared within the interface
In this example, we will learn how to declare the nested interface and how we can access it.
TestNestedInterface1.java

1. interface Showable{
2. void show();
3. interface Message{
4. void msg();
5. }
6. }
7. class TestNestedInterface1 implements Showable.Message{
8. public void msg(){System.out.println("Hello nested interface");}
9.
10. public static void main(String args[]){
11. Showable.Message message=new TestNestedInterface1();//upcasting here
12. message.msg();
13. }
14. }

Output:
hello nested interface

Internal code generated by the java compiler for nested interface Message
The java compiler internally creates a public and static interface as displayed below:

1. public static interface Showable$Message
2. {
3. public abstract void msg();
4. }

Example of nested interface which is declared within the class
Let's see how we can define an interface inside the class and how we can access it.
TestNestedInterface2.java

1. class A{
2. interface Message{
3. void msg();
4. }
5. }
6.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 41 of 54

7. class TestNestedInterface2 implements A.Message{
8. public void msg(){System.out.println("Hello nested interface");}
9.
10. public static void main(String args[]){
11. A.Message message=new TestNestedInterface2();//upcasting here
12. message.msg();
13. }
14. }

Output:
hello nested interface

Can we define a class inside the interface?
Yes, if we define a class inside the interface, the Java compiler creates a static nested class. Let's see
how can we define a class within the interface:

1. interface M{
2. class A{}
3. }

Difference between abstract class and interface
Abstract class and interface both are used to achieve abstraction where we can declare the abstract
methods. Abstract class and interface both can't be instantiated.
But there are many differences between abstract class and interface that are given below.

Abstract class Interface

1) Abstract class can have abstract and non-
abstract methods.

Interface can have only abstract methods. Since Java
8, it can have default and static methods also.

2) Abstract class doesn't support multiple
inheritance.

Interface supports multiple inheritance.

3) Abstract class can have final, non-final, static
and non-static variables.

Interface has only static and final variables.

4) Abstract class can provide the implementation
of interface.

Interface can't provide the implementation of
abstract class.

5) The abstract keyword is used to declare
abstract class.

The interface keyword is used to declare interface.

6) An abstract class can extend another Java class
and implement multiple Java interfaces.

An interface can extend another Java interface only.

7) An abstract class can be extended using
keyword "extends".

An interface can be implemented using keyword
"implements".

8) A Java abstract class can have class members Members of a Java interface are public by default.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 42 of 54

like private, protected, etc.

9)Example:
public abstract class Shape{
public abstract void draw();
}

Example:
public interface Drawable{
void draw();
}

Simply, abstract class achieves partial abstraction (0 to 100%) whereas interface achieves fully
abstraction (100%).

Understanding Java Nested Classes and Java Inner Classes

In Java programming, nested and inner classes often go hand in hand. A class that is defined within
another class is called a nested class. An inner class, on the other hand, is a non-static type, a particular
specimen of a nested class. This article attempts to elaborate on these two ideas of designing classes.
Java Nested Class

Types of Nested classes

There are two types of nested classes non-static and static nested classes. The non-static nested classes
are also known as inner classes.

Non-static nested class (inner class)
 Member inner class

 Anonymous inner class

 Local inner class

Static nested class

Type Description

https://www.developer.com/java

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 43 of 54

Member Inner Class A class created within class and outside method.

Anonymous Inner
Class

A class created for implementing an interface or extending class. The java
compiler decides its name.

Local Inner Class A class was created within the method.

Static Nested Class A static class was created within the class.

Nested Interface An interface created within class or interface.

A nested class refers to the idea of defining one class inside another class. The scope of the nested class
is bounded by the scope of the enclosing classes. That means if Pearl is a class defined within, say,
the Oyster class, the object of Pearl cannot exist without the existence of an Oyster object and the class
within the class, Pearl, can access all the members of the Oyster class, including private members. But,
the external class, such as Oyster, cannot access the members of Pearl class. Here’s an example of the
classes’ use:
package ocean;

public class Oyster {

 class Pearl{
 String pearl="member";
 private String privatePearl="private member";
 protected String protectedPearl="protected member";
 public String publicPearl="public member";

 public Pearl() {
 oyster="sdfsds"; // OK!
 privateOyster="sdcdscs"; // OK!
 protectedOyster="svsfdf"; // OK!
 publicOyster="sdfdfsd"; // OK!
 }
 }

 String oyster="member";
 private String privateOyster="private member";
 protected String protectedOyster="protected member";
 public String publicOyster="public member";

 public Oyster(){
 pearl="sddsfsd"; // not OK!
 privatePearl="sdfdfdfs"; // not OK!
 protectedPearl="svsfdf"; // not OK!
 publicPearl="sdfdfsd"; // not OK!

https://www.javatpoint.com/member-inner-class
https://www.javatpoint.com/anonymous-inner-class
https://www.javatpoint.com/anonymous-inner-class
https://www.javatpoint.com/local-inner-class
https://www.javatpoint.com/static-nested-class
https://www.javatpoint.com/nested-interface

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 44 of 54

 }
}
A nested class also can be declared locally within a block as well, such as seen in the following example:
package ocean;

public class Oyster {

 public void testfunc(){

 class A{
 private String s="A";
 public String getA(){
 return s;
 }
 }

 {
 class B{
 private String s="B";
 public String getB(){
 return s;
 }
 }

 B b=new B();
 System.out.println(b.getB());
 }

 A a=new A();
 System.out.println(a.getA());
 }
 public static void main(String[] args) {
 Oyster os=new Oyster();
 os.testfunc();
 }
}
Now, the nested class can be of two types, a static nested class and a non-static nested class. A nested
class, Pearl, which is declared static with the static modifier, cannot access the members of the
enclosing class Oyster directly because the nested class Pearl is now static. As a result, it needs an object
of the Oyster class to access the members of its enclosing class. Static nested classes are very rarely
used.
package ocean;

public class Oyster {

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 45 of 54

 static class Pearl{
 String pearl="member";
 private String privatePearl="private member";
 protected String protectedPearl="protected member";
 public String publicPearl="public member";

 public Pearl() {
 oyster="sdfsds"; // Not OK!
 privateOyster="sdcdscs"; // Not OK!
 protectedOyster="svsfdf"; // Not OK!
 publicOyster="sdfdfsd"; // Not OK!

 Oyster os=new Oyster();

 os.oyster="sdfsds"; // OK!
 os.privateOyster="sdcdscs"; // OK!
 os.protectedOyster="svsfdf"; // OK!
 os.publicOyster="sdfdfsd"; // OK!

 }
 }

 String oyster="member";
 private String privateOyster="private member";
 protected String protectedOyster="protected member";
 public String publicOyster="public member";

 // ...

}

Java Member Inner class
A non-static class that is created inside a class but outside a method is called member inner class. It is
also known as a regular inner class. It can be declared with access modifiers like public, default, private,
and protected.
Syntax:
class Outer{
 //code
 class Inner{
 //code
 }
}

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 46 of 54

Java Member Inner Class Example
In this example, we are creating a msg() method in the member inner class that is accessing the private
data member of the outer class.

TestMemberOuter1.java
class TestMemberOuter1{
 private int data=30;
 class Inner{
 void msg(){System.out.println("data is "+data);}
 }
 public static void main(String args[]){
 TestMemberOuter1 obj=new TestMemberOuter1();
 TestMemberOuter1.Inner in=obj.new Inner();
 in.msg();
 }
}

Output:

data is 30

How to instantiate Member Inner class in Java?
An object or instance of a member's inner class always exists within an object of its outer class. The new
operator is used to create the object of member inner class with slightly different syntax.
The general form of syntax to create an object of the member inner class is as follows:
Syntax:

OuterClassReference.new MemberInnerClassConstructor();

Example:
obj.new Inner();
Here, OuterClassReference is the reference of the outer class followed by a dot which is followed by the
new operator.

Internal working of Java member inner class
The java compiler creates two class files in the case of the inner class. The class file name of the inner
class is "Outer$Inner". If you want to instantiate the inner class, you must have to create the instance of
the outer class. In such a case, an instance of inner class is created inside the instance of the outer class.

Internal code generated by the compiler
The Java compiler creates a class file named Outer$Inner in this case. The Member inner class has the
reference of Outer class that is why it can access all the data members of Outer class including private.
import java.io.PrintStream;
class Outer$Inner
{
 final Outer this$0;
 Outer$Inner()
 { super();
 this$0 = Outer.this;
 }

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 47 of 54

 void msg()
 {
 System.out.println((new StringBuilder()).append("data is ")
 .append(Outer.access$000(Outer.this)).toString());
 }
}

Java Anonymous inner class
Java anonymous inner class is an inner class without a name and for which only a single object is
created. An anonymous inner class can be useful when making an instance of an object with certain
"extras" such as overloading methods of a class or interface, without having to actually subclass a class.
In simple words, a class that has no name is known as an anonymous inner class in Java. It should be
used if you have to override a method of class or interface. Java Anonymous inner class can be created
in two ways:

 Class (may be abstract or concrete).

 Interface

Java anonymous inner class example using class
TestAnonymousInner.java
abstract class Person{
 abstract void eat();
}
class TestAnonymousInner{
 public static void main(String args[]){
 Person p=new Person(){
 void eat(){System.out.println("nice fruits");}
 };
 p.eat();
 }
}

Output:

nice fruits

Internal working of given code
Person p=new Person(){
void eat(){System.out.println("nice fruits");}
};

1. A class is created, but its name is decided by the compiler, which extends the Person class and
provides the implementation of the eat() method.

2. An object of the Anonymous class is created that is referred to by 'p,' a reference variable of
Person type.

Internal class generated by the compiler
import java.io.PrintStream;
static class TestAnonymousInner$1 extends Person
{

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 48 of 54

 TestAnonymousInner$1(){}
 void eat()
 {
 System.out.println("nice fruits");
 }
}

Java anonymous inner class example using interface
interface Eatable{
 void eat();
}
class TestAnnonymousInner1{
 public static void main(String args[]){
 Eatable e=new Eatable(){
 public void eat(){System.out.println("nice fruits");}
 };
 e.eat();
 }
}

Output:

nice fruits

Internal working of given code
It performs two main tasks behind this code:
Eatable p=new Eatable(){
void eat(){System.out.println("nice fruits");}
};

1. A class is created, but its name is decided by the compiler, which implements the Eatable
interface and provides the implementation of the eat() method.

2. An object of the Anonymous class is created that is referred to by 'p', a reference variable of the
Eatable type.

Internal class generated by the compiler
import java.io.PrintStream;
static class TestAnonymousInner1$1 implements Eatable
{
TestAnonymousInner1$1(){}
void eat(){System.out.println("nice fruits");}
}

Java Local inner class
A class i.e., created inside a method, is called local inner class in java. Local Inner Classes are the inner
classes that are defined inside a block. Generally, this block is a method body. Sometimes this block can
be a for loop, or an if clause. Local Inner classes are not a member of any enclosing classes. They belong
to the block they are defined within, due to which local inner classes cannot have any access modifiers

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 49 of 54

associated with them. However, they can be marked as final or abstract. These classes have access to
the fields of the class enclosing it.
If you want to invoke the methods of the local inner class, you must instantiate this class inside the
method.

Java local inner class example
LocalInner1.java
public class localInner1{
 private int data=30;//instance variable
 void display(){
 class Local{
 void msg(){System.out.println(data);}
 }
 Local l=new Local();
 l.msg();
 }
 public static void main(String args[]){
 localInner1 obj=new localInner1();
 obj.display();
 }
}

Output:
30

Internal class generated by the compiler
In such a case, the compiler creates a class named Simple$1Local that has the reference of the outer
class.
import java.io.PrintStream;
class localInner1$Local
{
 final localInner1 this$0;
 localInner1$Local()
 {
 super();
 this$0 = Simple.this;
 }
 void msg()
 {
 System.out.println(localInner1.access$000(localInner1.this));
 }
}

Rule: Local variables can't be private, public, or protected.

Rules for Java Local Inner class
1) Local inner class cannot be invoked from outside the method.
2) Local inner class cannot access non-final local variable till JDK 1.7. Since JDK 1.8, it is possible
to access the non-final local variable in the local inner class.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 50 of 54

Example of local inner class with local variable
LocalInner2.java
class localInner2{
 private int data=30;//instance variable
 void display(){
 int value=50;//local variable must be final till jdk 1.7 only
 class Local{
 void msg(){System.out.println(value);}
 }
 Local l=new Local();
 l.msg();
 }
 public static void main(String args[]){
 localInner2 obj=new localInner2();
 obj.display();
 }
}

Output:
50

Java static nested class
A static class is a class that is created inside a class, is called a static nested class in Java. It cannot access
non-static data members and methods. It can be accessed by outer class name.

 It can access static data members of the outer class, including private.

 The static nested class cannot access non-static (instance) data members or

Java static nested class example with instance method
TestOuter1.java
class TestOuter1{
 static int data=30;
 static class Inner{
 void msg(){System.out.println("data is "+data);}
 }
 public static void main(String args[]){
 TestOuter1.Inner obj=new TestOuter1.Inner();
 obj.msg();
 }
}
Output:
data is 30
In this example, you need to create the instance of static nested class because it has instance method
msg(). But you don't need to create the object of the Outer class because the nested class is static and
static properties, methods, or classes can be accessed without an object.

Internal class generated by the compiler
import java.io.PrintStream;

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 51 of 54

static class TestOuter1$Inner
{
TestOuter1$Inner(){}
void msg(){
System.out.println((new StringBuilder()).append("data is ")
.append(TestOuter1.data).toString());
}
}

Java static nested class example with a static method
If you have the static member inside the static nested class, you don't need to create an instance of the
static nested class.
TestOuter2.java
public class TestOuter2{
 static int data=30;
 static class Inner{
 static void msg(){System.out.println("data is "+data);}
 }
 public static void main(String args[]){
 TestOuter2.Inner.msg();//no need to create the instance of static nested class
 }
}
Output:
data is 30

Java local class

1. Java local class :
2. Scope of java Local classes
3. Accessing members in local class
4. Shadowing and java local class

1. Java local class :
Sometimes we can declare a class inside any block such as instance block or constructor or method or if
block, such type of inner classes are called local inner classes or local classes. You can define a java local
class inside any block. For example, you can define a local class in a method body, a for loop, or
an if clause.
The main purpose of local inner class is to define logic that required instantly to use in local scope.
class Outer {
// a Class inside Constructor
Outer(){
class ConstructorLocal {
}
}

https://javabydeveloper.com/non-static-inner-class/

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 52 of 54

// a class inside instance block
{
class Local{
}
}
// a class inside static block
static {
class StaticLocal{
}
}
// a class inside method
public void add(int a, int b) {
class MethodLocal {
}
// a class inside if block
if(a > b) {
class Local{
}
}
}
}

2. Scope of java Local classes
We can access local class only within the method or block where we declared it. That is from outside of
the block we can’t access. As the scope of local inner classes is very less, this type of inner classes are
most rarely used type of inner classes. Mostly this kind of use cases we can see in multi threading
programming.
Example
class Outer {
public void methodOne() {
class Inner{
public void sum(int i,int j) {
System.out.println("The sum:"+(i+j));
}
}
// out side of this method Local Inner class can't be accessed
Inner i = new Inner();
i.sum(10,20);
i.sum(100,200);
}
public static void main(String[] args) {
//Inner i = new Inner(); can not access
//new Outer().new Inner(); can not access
new Outer().methodOne();
}
}

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 53 of 54

Output :
The sum:30
The sum:300

3. Accessing members in local class
1. If we are declaring java local class inside instance block or method then we can access both static and
non static members of outer class directly.
2. But if we are declaring inner class inside static method or block then we can access
only static members of outer class directly and we can’t access instance members directly.
3. We can access constants directly inside local classes and we can declare also. A final variable is a
constant, so that we can access final members directly.
4. Only allowed modifiers for local classes are final, abstract and strictfp.

Example
class Outer{
int x = 10;
static int y = 20;
static final int z = 30;
static {
// Defining class in static area
class Inner {
static int m = 40;// Cant declare static members in non static inner type
static final int n = 50;
public void methodTwo() {
System.out.println(x);// can not access instance members
System.out.println(y);//20
System.out.println(z);//30
}
}
}
public void methodOne() {
class Inner {
static int m = 40;// Cant declare static members in non static inner type
static final int n = 50;
public void methodTwo() {
System.out.println(x);//10
System.out.println(y);//20
System.out.println(n);//50
}
}
Inner i=new Inner();
i.methodTwo();
}
public static void main(String[] args) {
new Outer().methodOne();
}

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 2 (Inheritance, Polymorphism, Interfaces, packages)

Collected & Prepared By: T. SREENIVASULA REDDY Page 54 of 54

}

4. Shadowing and java local class
If a declaration of a type such as a member variable or a parameter name in a particular scope has the
same name as another declaration in the enclosing scope, then the declaration shadows the declaration
of the enclosing scope. You cannot refer to a shadowed declaration by its name alone. The following
example demonstrates this.
public class LocalClassShadowingExample {
int x = 10;
int y = 20;
static final int z = 30;
public void methodOne() {
class Inner {
//static int m = 40;// Cant declare static members in non static inner type
int x = 90;
static final int z = 100;
public void methodTwo(int x) {
System.out.println("x=> "+x);//111
System.out.println("y=> "+y);//20
System.out.println("z=> "+z);//100
System.out.println("this.x=> "+this.x);//90
System.out.println("LocalClassShadowingExample.this.x=> "+LocalClassShadowingExample.this.x);
System.out.println("LocalClassShadowingExample.z=> "+LocalClassShadowingExample.z);
}
}
Inner i=new Inner();
i.methodTwo(111);
}
public static void main(String[] args) {
new LocalClassShadowingExample().methodOne();
}
}

Output :
x=> 111
y=> 20
z=> 100
this.x=> 90
LocalClassShadowingExample.this.x=> 10
LocalClassShadowingExample.z=> 30

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 1 of 55

EXCEPTION HANDLING

Introduction

o An exception is an event that occurs during the execution of a program

that disrupts the normal flow of instruction.

Or

o An abnormal condition that disrupts Normal program flow.

o There are many cases where abnormal conditions happen during

program execution, such as

o Trying to access an out - of – bounds array elements.

o The file you try to open may not exist.

o The file we want to load may be missing or in the wrong format.

o The other end of your network connection may be non – existence.

o If these cases are not prevented or at least handled properly, either the

program will be aborted abruptly, or the incorrect results or status will be

produced.

o When an error occurs with in the java method, the method creates an

exception object and hands it off to the runtime system.

o The exception object contains information about the exception including

its type and the state of the program when the error occurred. The

runtime system is then responsible for finding some code to handle the

error.

o In java creating an exception object and handling it to the runtime system

is called throwing an exception.

o Exception is an object that is describes an exceptional (i.e. error)

condition that has occurred in a piece of code at run time.

o When a exceptional condition arises, an object representing that

exception is created and thrown in the method that caused the error. That

method may choose to handle the exception itself, or pass it on. Either

way, at some point, the exception is caught and processed.

o Exceptions can be generated by the Java run-time system, or they can be

manually generated by your code.

o System generated exceptions are automatically thrown by the Java runtime

system

General form of Exception

Handling block try {

// block of code to monitor for errors

}

catch (ExceptionType1 exOb) {
// exception handler for ExceptionType1

}

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 2 of 55

No

Exception Throws exception object

arise or

No Exceptional Handler

appropriat

Catch

block

Optional part
Finally Block

e

Catch Block

Try Block

catch (ExceptionType2 exOb) {
// exception handler for ExceptionType2

}
// ...

finally {

// block of code to be executed before try block ends

}

By using exception to managing errors, Java programs have have the

following advantage over traditional error management techniques:

– Separating Error handling code from regular code.

– Propagating error up the call stack.

– Grouping error types and error differentiation.

For Example:

class Exc0 {

public static void main(String

args[]) { int d = 0;

int a = 42 / d;

}

}

When the Java run-time system detects the attempt to divide by zero, it constructs a

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 3 of 55

new exception object and then throws this exception. This causes the execution of Exc0 to stop, because
once an exception has been thrown, it must be caught by an exception handler and dealt with
immediately. In this example, we haven’t supplied any exception handlers of our own, so the exception
is caught by the default handler provided by the Java run-time system. Any exception that is not caught
by your program will ultimately be processed by the default handler. The default handler displays a
string describing the exception, prints a stack trace from the point at which the exception occurred, and
terminates the program. Here is the output generated when this example is executed.

java.lang.ArithmeticException: /

by zero at Exc0.main(Exc0.java:4)

Notice how the class name, Exc0; the method name, main; the filename,

Exc0.java; and the line number, 4

Hierarchy of Java Exception classes

The java.lang.Throwable class is the root class of Java Exception hierarchy inherited by

two subclasses: Exception and Error. The hierarchy of Java Exception classes is given

below:

Types of Java Exceptions

There are mainly two types of exceptions: checked and unchecked. An error is

considered as the unchecked exception. However, according to Oracle, there are three

types of exceptions namely:

1. Checked Exception

2. Unchecked Exception

3. Error

Difference between Checked and Unchecked
Exceptions

1) Checked Exception

The classes that directly inherit the Throwable class except RuntimeException and Error

are known as checked exceptions. For example, IOException, SQLException, etc. Checked

exceptions are checked at compile-time.

2) Unchecked Exception

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 4 of 55

The classes that inherit the RuntimeException are known as unchecked exceptions. For

example, ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException,

etc. Unchecked exceptions are not checked at compile-time, but they are checked at

runtime.

3) Error

Error is irrecoverable. Some example of errors are OutOfMemoryError,

VirtualMachineError, AssertionError etc.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 5 of 55

Java Exception Keywords

Java provides five keywords that are used to handle the exception. The following table

describes each.

Keyword Description

try The "try" keyword is used to specify a block where we should place an exception

code. It means we can't use try block alone. The try block must be followed by

either catch or finally.

catch The "catch" block is used to handle the exception. It must be preceded by try block

which means we can't use catch block alone. It can be followed by finally block later.

finally The "finally" block is used to execute the necessary code of the program. It is

executed whether an exception is handled or not.

throw The "throw" keyword is used to throw an exception.

throws The "throws" keyword is used to declare exceptions. It specifies that there may

occur an exception in the method. It doesn't throw an exception. It is always used

with method signature.

Java Exception Handling Example

Let's see an example of Java Exception Handling in which we are using a try-catch

statement to handle the exception.

JavaExceptionExample.java

1. public class JavaExceptionExample{

2. public static void main(String args[]){

3. try{

4. //code that may raise exception

5. int data=100/0;

6. }catch(ArithmeticException e){System.out.println(e);}

7. //rest code of the program

8. System.out.println("rest of the code...");

9. }

10. }

Output:

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 6 of 55

Exception in thread main java.lang.ArithmeticException:/ by zero

rest of the code...

In the above example, 100/0 raises an ArithmeticException which is handled by a try-

catch block.

Common Scenarios of Java Exceptions

There are given some scenarios where unchecked exceptions may occur. They are as

follows:

1) A scenario where ArithmeticException occurs

If we divide any number by zero, there occurs an ArithmeticException.

1. int a=50/0;//ArithmeticException

2) A scenario where NullPointerException occurs

If we have a null value in any variable, performing any operation on the variable throws

a NullPointerException.

1. String s=null;

2. System.out.println(s.length());//NullPointerException

3) A scenario where NumberFormatException occurs

If the formatting of any variable or number is mismatched, it may result into

NumberFormatException. Suppose we have a string variable that has characters;

converting this variable into digit will cause NumberFormatException.

1. String s="abc";

2. int i=Integer.parseInt(s);//NumberFormatException

4) A scenario where ArrayIndexOutOfBoundsException occurs

When an array exceeds to it's size, the ArrayIndexOutOfBoundsException occurs. there

may be other reasons to occur ArrayIndexOutOfBoundsException. Consider the

following statements.

1. int a[]=new int[5];

2. a[10]=50; //ArrayIndexOutOfBoundsException

Java try-catch block

https://www.javatpoint.com/java-variables
https://www.javatpoint.com/java-string

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 7 of 55

Java try block

Java try block is used to enclose the code that might throw an exception. It must be

used within the method.

If an exception occurs at the particular statement in the try block, the rest of the block

code will not execute. So, it is recommended not to keep the code in try block that will

not throw an exception.

Java try block must be followed by either catch or finally block.

Syntax of Java try-catch
1. try{

2. //code that may throw an exception

3. }catch(Exception_class_Name ref){}

Syntax of try-finally block
1. try{

2. //code that may throw an exception

3. }finally{}

Java catch block

Java catch block is used to handle the Exception by declaring the type of exception

within the parameter. The declared exception must be the parent class exception (i.e.,

Exception) or the generated exception type. However, the good approach is to declare

the generated type of exception.

The catch block must be used after the try block only. You can use multiple catch block

with a single try block.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 8 of 55

Internal Working of Java try-catch block

The JVM firstly checks whether the exception is handled or not. If exception is not

handled, JVM provides a default exception handler that performs the following tasks:

o Prints out exception description.

o Prints the stack trace (Hierarchy of methods where the exception occurred).

o Causes the program to terminate.

But if the application programmer handles the exception, the normal flow of the

application is maintained, i.e., rest of the code is executed.

Problem without exception handling

Let's try to understand the problem if we don't use a try-catch block.

Example 1

TryCatchExample1.java

1. public class TryCatchExample1 {

2.

3. public static void main(String[] args) {

4.

5. int data=50/0; //may throw exception

6.

7. System.out.println("rest of the code");

8.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 9 of 55

9. }

10.

11. }

Output:
Exception in thread "main" java.lang.ArithmeticException: / by zero

As displayed in the above example, the rest of the code is not executed (in such case,

the rest of the code statement is not printed).

There might be 100 lines of code after the exception. If the exception is not handled, all

the code below the exception won't be executed.

Solution by exception handling

Let's see the solution of the above problem by a java try-catch block.

Example 2

TryCatchExample2.java

1. public class TryCatchExample2 {

2.

3. public static void main(String[] args) {

4. try

5. {

6. int data=50/0; //may throw exception

7. }

8. //handling the exception

9. catch(ArithmeticException e)

10. {

11. System.out.println(e);

12. }

13. System.out.println("rest of the code");

14. }

15.

16. }

Output:
java.lang.ArithmeticException: / by zero

rest of the code

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 10 of 55

As displayed in the above example, the rest of the code is executed, i.e., the rest of the

code statement is printed.

Example 3

In this example, we also kept the code in a try block that will not throw an exception.

TryCatchExample3.java

1. public class TryCatchExample3 {

2.

3. public static void main(String[] args) {

4. try

5. {

6. int data=50/0; //may throw exception

7. // if exception occurs, the remaining statement will not exceute

8. System.out.println("rest of the code");

9. }

10. // handling the exception

11. catch(ArithmeticException e)

12. {

13. System.out.println(e);

14. }

15.

16. }

17.

18. }

Output:
java.lang.ArithmeticException: / by zero

Here, we can see that if an exception occurs in the try block, the rest of the block code

will not execute.

Example 4

Here, we handle the exception using the parent class exception.

TryCatchExample4.java

1. public class TryCatchExample4 {

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 11 of 55

2.

3. public static void main(String[] args) {

4. try

5. {

6. int data=50/0; //may throw exception

7. }

8. // handling the exception by using Exception class

9. catch(Exception e)

10. {

11. System.out.println(e);

12. }

13. System.out.println("rest of the code");

14. }

15.

16. }

Output:
java.lang.ArithmeticException: / by zero

rest of the code

Example 5

Let's see an example to print a custom message on exception.

TryCatchExample5.java

1. public class TryCatchExample5 {

2.

3. public static void main(String[] args) {

4. try

5. {

6. int data=50/0; //may throw exception

7. }

8. // handling the exception

9. catch(Exception e)

10. {

11. // displaying the custom message

12. System.out.println("Can't divided by zero");

13. }

14. }

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 12 of 55

15.

16. }

Output:
Can't divided by zero

Example 6

Let's see an example to resolve the exception in a catch block.

TryCatchExample6.java

1. public class TryCatchExample6 {

2.

3. public static void main(String[] args) {

4. int i=50;

5. int j=0;

6. int data;

7. try

8. {

9. data=i/j; //may throw exception

10. }

11. // handling the exception

12. catch(Exception e)

13. {

14. // resolving the exception in catch block

15. System.out.println(i/(j+2));

16. }

17. }

18. }

Output:
25

Example 7

In this example, along with try block, we also enclose exception code in a catch block.

TryCatchExample7.java

1. public class TryCatchExample7 {

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 13 of 55

2.

3. public static void main(String[] args) {

4.

5. try

6. {

7. int data1=50/0; //may throw exception

8.

9. }

10. // handling the exception

11. catch(Exception e)

12. {

13. // generating the exception in catch block

14. int data2=50/0; //may throw exception

15.

16. }

17. System.out.println("rest of the code");

18. }

19. }

Output:
Exception in thread "main" java.lang.ArithmeticException: / by zero

Here, we can see that the catch block didn't contain the exception code. So, enclose

exception code within a try block and use catch block only to handle the exceptions.

Example 8

In this example, we handle the generated exception (Arithmetic Exception) with a

different type of exception class (ArrayIndexOutOfBoundsException).

TryCatchExample8.java

1. public class TryCatchExample8 {

2.

3. public static void main(String[] args) {

4. try

5. {

6. int data=50/0; //may throw exception

7.

8. }

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 14 of 55

9. // try to handle the ArithmeticException using ArrayIndexOutOfBoundsException

10. catch(ArrayIndexOutOfBoundsException e)

11. {

12. System.out.println(e);

13. }

14. System.out.println("rest of the code");

15. }

16.

17. }

Output:
Exception in thread "main" java.lang.ArithmeticException: / by zero

Example 9

Let's see an example to handle another unchecked exception.

TryCatchExample9.java

1. public class TryCatchExample9 {

2.

3. public static void main(String[] args) {

4. try

5. {

6. int arr[]= {1,3,5,7};

7. System.out.println(arr[10]); //may throw exception

8. }

9. // handling the array exception

10. catch(ArrayIndexOutOfBoundsException e)

11. {

12. System.out.println(e);

13. }

14. System.out.println("rest of the code");

15. }

16.

17. }

Output:
java.lang.ArrayIndexOutOfBoundsException: 10

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 15 of 55

rest of the code

Example 10

Let's see an example to handle checked exception.

TryCatchExample10.java

1. import java.io.FileNotFoundException;

2. import java.io.PrintWriter;

3.

4. public class TryCatchExample10 {

5.

6. public static void main(String[] args) {

7.

8.

9. PrintWriter pw;

10. try {

11. pw = new PrintWriter("jtp.txt"); //may throw exception

12. pw.println("saved");

13. }

14. // providing the checked exception handler

15. catch (FileNotFoundException e) {

16.

17. System.out.println(e);

18. }

19. System.out.println("File saved successfully");

20. }

21. }

Output:
File saved successfully

Java Multi-catch block

A try block can be followed by one or more catch blocks. Each catch block must contain

a different exception handler. So, if you have to perform different tasks at the

occurrence of different exceptions, use java multi-catch block.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 16 of 55

Points to remember
o At a time only one exception occurs and at a time only one catch block is executed.

o All catch blocks must be ordered from most specific to most general, i.e. catch for

ArithmeticException must come before catch for Exception.

Flowchart of Multi-catch Block

Example 1

Let's see a simple example of java multi-catch block.

MultipleCatchBlock1.java

1. public class MultipleCatchBlock1 {

2.

3. public static void main(String[] args) {

4.

5. try{

6. int a[]=new int[5];

7. a[5]=30/0;

8. }

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 17 of 55

9. catch(ArithmeticException e)

10. {

11. System.out.println("Arithmetic Exception occurs");

12. }

13. catch(ArrayIndexOutOfBoundsException e)

14. {

15. System.out.println("ArrayIndexOutOfBounds Exception occurs");

16. }

17. catch(Exception e)

18. {

19. System.out.println("Parent Exception occurs");

20. }

21. System.out.println("rest of the code");

22. }

23. }

Output:
Arithmetic Exception occurs

rest of the code

Example 2

MultipleCatchBlock2.java

1. public class MultipleCatchBlock2 {

2.

3. public static void main(String[] args) {

4.

5. try{

6. int a[]=new int[5];

7.

8. System.out.println(a[10]);

9. }

10. catch(ArithmeticException e)

11. {

12. System.out.println("Arithmetic Exception occurs");

13. }

14. catch(ArrayIndexOutOfBoundsException e)

15. {

16. System.out.println("ArrayIndexOutOfBounds Exception occurs");

17. }

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 18 of 55

18. catch(Exception e)

19. {

20. System.out.println("Parent Exception occurs");

21. }

22. System.out.println("rest of the code");

23. }

24. }

Output:
ArrayIndexOutOfBounds Exception occurs

rest of the code

In this example, try block contains two exceptions. But at a time only one exception

occurs and its corresponding catch block is executed.

MultipleCatchBlock3.java

1. public class MultipleCatchBlock3 {

2.

3. public static void main(String[] args) {

4.

5. try{

6. int a[]=new int[5];

7. a[5]=30/0;

8. System.out.println(a[10]);

9. }

10. catch(ArithmeticException e)

11. {

12. System.out.println("Arithmetic Exception occurs");

13. }

14. catch(ArrayIndexOutOfBoundsException e)

15. {

16. System.out.println("ArrayIndexOutOfBounds Exception occurs");

17. }

18. catch(Exception e)

19. {

20. System.out.println("Parent Exception occurs");

21. }

22. System.out.println("rest of the code");

23. }

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 19 of 55

24. }

Output:
Arithmetic Exception occurs

rest of the code

Example 4

In this example, we generate NullPointerException, but didn't provide the corresponding

exception type. In such case, the catch block containing the parent exception

class Exception will invoked.

MultipleCatchBlock4.java

1. public class MultipleCatchBlock4 {

2.

3. public static void main(String[] args) {

4.

5. try{

6. String s=null;

7. System.out.println(s.length());

8. }

9. catch(ArithmeticException e)

10. {

11. System.out.println("Arithmetic Exception occurs");

12. }

13. catch(ArrayIndexOutOfBoundsException e)

14. {

15. System.out.println("ArrayIndexOutOfBounds Exception occurs");

16. }

17. catch(Exception e)

18. {

19. System.out.println("Parent Exception occurs");

20. }

21. System.out.println("rest of the code");

22. }

23. }

Output:
Parent Exception occurs

rest of the code

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 20 of 55

Example 5

Let's see an example, to handle the exception without maintaining the order of

exceptions (i.e. from most specific to most general).

MultipleCatchBlock5.java

1. class MultipleCatchBlock5{

2. public static void main(String args[]){

3. try{

4. int a[]=new int[5];

5. a[5]=30/0;

6. }

7. catch(Exception e){System.out.println("common task completed");}

8. catch(ArithmeticException e){System.out.println("task1 is completed");}

9. catch(ArrayIndexOutOfBoundsException e){System.out.println("task 2 completed");}

10. System.out.println("rest of the code...");

11. }

12. }

Output:
Compile-time error

Java Nested try block

In Java, using a try block inside another try block is permitted. It is called as nested try

block. Every statement that we enter a statement in try block, context of that exception

is pushed onto the stack.

For example, the inner try block can be used to

handle ArrayIndexOutOfBoundsException while the outer try block can handle

the ArithemeticException (division by zero).

Why use nested try block

Sometimes a situation may arise where a part of a block may cause one error and the

entire block itself may cause another error. In such cases, exception handlers have to be

nested.

Syntax:

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 21 of 55

1.

2. //main try block

3. try

4. {

5. statement 1;

6. statement 2;

7. //try catch block within another try block

8. try

9. {

10. statement 3;

11. statement 4;

12. //try catch block within nested try block

13. try

14. {

15. statement 5;

16. statement 6;

17. }

18. catch(Exception e2)

19. {

20. //exception message

21. }

22.

23. }

24. catch(Exception e1)

25. {

26. //exception message

27. }

28. }

29. //catch block of parent (outer) try block

30. catch(Exception e3)

31. {

32. //exception message

33. }

34.

Java Nested try Example

Example 1

Let's see an example where we place a try block within another try block for two

different exceptions.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 22 of 55

NestedTryBlock.java

1. public class NestedTryBlock{

2. public static void main(String args[]){

3. //outer try block

4. try{

5. //inner try block 1

6. try{

7. System.out.println("going to divide by 0");

8. int b =39/0;

9. }

10. //catch block of inner try block 1

11. catch(ArithmeticException e)

12. {

13. System.out.println(e);

14. }

15.

16.

17. //inner try block 2

18. try{

19. int a[]=new int[5];

20.

21. //assigning the value out of array bounds

22. a[5]=4;

23. }

24.

25. //catch block of inner try block 2

26. catch(ArrayIndexOutOfBoundsException e)

27. {

28. System.out.println(e);

29. }

30.

31.

32. System.out.println("other statement");

33. }

34. //catch block of outer try block

35. catch(Exception e)

36. {

37. System.out.println("handled the exception (outer catch)");

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 23 of 55

38. }

39.

40. System.out.println("normal flow..");

41. }

42. }

Output:

When any try block does not have a catch block for a particular exception, then the

catch block of the outer (parent) try block are checked for that exception, and if it

matches, the catch block of outer try block is executed.

If none of the catch block specified in the code is unable to handle the exception, then

the Java runtime system will handle the exception. Then it displays the system generated

message for that exception.

Example 2

Let's consider the following example. Here the try block within nested try block (inner try

block 2) do not handle the exception. The control is then transferred to its parent try

block (inner try block 1). If it does not handle the exception, then the control is

transferred to the main try block (outer try block) where the appropriate catch block

handles the exception. It is termed as nesting.

NestedTryBlock.java

1. public class NestedTryBlock2 {

2.

3. public static void main(String args[])

4. {

5. // outer (main) try block

6. try {

7.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 24 of 55

8. //inner try block 1

9. try {

10.

11. // inner try block 2

12. try {

13. int arr[] = { 1, 2, 3, 4 };

14.

15. //printing the array element out of its bounds

16. System.out.println(arr[10]);

17. }

18.

19. // to handles ArithmeticException

20. catch (ArithmeticException e) {

21. System.out.println("Arithmetic exception");

22. System.out.println(" inner try block 2");

23. }

24. }

25.

26. // to handle ArithmeticException

27. catch (ArithmeticException e) {

28. System.out.println("Arithmetic exception");

29. System.out.println("inner try block 1");

30. }

31. }

32.

33. // to handle ArrayIndexOutOfBoundsException

34. catch (ArrayIndexOutOfBoundsException e4) {

35. System.out.print(e4);

36. System.out.println(" outer (main) try block");

37. }

38. catch (Exception e5) {

39. System.out.print("Exception");

40. System.out.println(" handled in main try-block");

41. }

42. }

43. }

Output:

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 25 of 55

Java finally block

Java finally block is a block used to execute important code such as closing the

connection, etc.

Java finally block is always executed whether an exception is handled or not. Therefore,

it contains all the necessary statements that need to be printed regardless of the

exception occurs or not.

The finally block follows the try-catch block.

Flowchart of finally block

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 26 of 55

Note: If you don't handle the exception, before terminating the program, JVM executes
finally block (if any).

Why use Java finally block?
o finally block in Java can be used to put "cleanup" code such as closing a file, closing

connection, etc.

o The important statements to be printed can be placed in the finally block.

Usage of Java finally

Let's see the different cases where Java finally block can be used.

Case 1: When an exception does not occur

Let's see the below example where the Java program does not throw any exception, and

the finally block is executed after the try block.

TestFinallyBlock.java

1. class TestFinallyBlock {

2. public static void main(String args[]){

3. try{

4. //below code do not throw any exception

5. int data=25/5;

6. System.out.println(data);

7. }

8. //catch won't be executed

9. catch(NullPointerException e){

10. System.out.println(e);

11. }

12. //executed regardless of exception occurred or not

13. finally {

14. System.out.println("finally block is always executed");

15. }

16.

17. System.out.println("rest of phe code...");

18. }

19. }

Output:

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 27 of 55

Case 2: When an exception occurs but not handled by the catch
block

Let's see the the fillowing example. Here, the code throws an exception however the

catch block cannot handle it. Despite this, the finally block is executed after the try block

and then the program terminates abnormally.

TestFinallyBlock1.java

1. public class TestFinallyBlock1{

2. public static void main(String args[]){

3.

4. try {

5.

6. System.out.println("Inside the try block");

7.

8. //below code throws divide by zero exception

9. int data=25/0;

10. System.out.println(data);

11. }

12. //cannot handle Arithmetic type exception

13. //can only accept Null Pointer type exception

14. catch(NullPointerException e){

15. System.out.println(e);

16. }

17.

18. //executes regardless of exception occured or not

19. finally {

20. System.out.println("finally block is always executed");

21. }

22.

23. System.out.println("rest of the code...");

24. }

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 28 of 55

25. }

Output:

Case 3: When an exception occurs and is handled by the catch
block

Example:

Let's see the following example where the Java code throws an exception and the catch

block handles the exception. Later the finally block is executed after the try-catch block.

Further, the rest of the code is also executed normally.

TestFinallyBlock2.java

1. public class TestFinallyBlock2{

2. public static void main(String args[]){

3.

4. try {

5.

6. System.out.println("Inside try block");

7.

8. //below code throws divide by zero exception

9. int data=25/0;

10. System.out.println(data);

11. }

12.

13. //handles the Arithmetic Exception / Divide by zero exception

14. catch(ArithmeticException e){

15. System.out.println("Exception handled");

16. System.out.println(e);

17. }

18.

19. //executes regardless of exception occurred or not

20. finally {

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 29 of 55

21. System.out.println("finally block is always executed");

22. }

23.

24. System.out.println("rest of the code...");

25. }

26. }

Output:

Rule: For each try block there can be zero or more catch blocks, but only one finally block.

Note: The finally block will not be executed if the program exits (either by calling
System.exit() or by causing a fatal error that causes the process to abort).

Java throw Exception

In Java, exceptions allows us to write good quality codes where the errors are checked at

the compile time instead of runtime and we can create custom exceptions making the

code recovery and debugging easier.

Java throw keyword

The Java throw keyword is used to throw an exception explicitly.

We specify the exception object which is to be thrown. The Exception has some

message with it that provides the error description. These exceptions may be related to

user inputs, server, etc.

We can throw either checked or unchecked exceptions in Java by throw keyword. It is

mainly used to throw a custom exception.

We can also define our own set of conditions and throw an exception explicitly using

throw keyword. For example, we can throw ArithmeticException if we divide a number

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 30 of 55

by another number. Here, we just need to set the condition and throw exception using

throw keyword.

The syntax of the Java throw keyword is given below.

throw Instance i.e.,

1. throw new exception_class("error message");

Let's see the example of throw IOException.

1. throw new IOException("sorry device error");

Where the Instance must be of type Throwable or subclass of Throwable. For example,

Exception is the sub class of Throwable and the user-defined exceptions usually extend

the Exception class.

Java throw keyword Example

Example 1: Throwing Unchecked Exception

In this example, we have created a method named validate() that accepts an integer as a

parameter. If the age is less than 18, we are throwing the ArithmeticException otherwise

print a message welcome to vote.

TestThrow1.java

In this example, we have created the validate method that takes integer value as a

parameter. If the age is less than 18, we are throwing the ArithmeticException otherwise

print a message welcome to vote.

1. public class TestThrow1 {

2. //function to check if person is eligible to vote or not

3. public static void validate(int age) {

4. if(age<18) {

5. //throw Arithmetic exception if not eligible to vote

6. throw new ArithmeticException("Person is not eligible to vote");

7. }

8. else {

9. System.out.println("Person is eligible to vote!!");

10. }

11. }

12. //main method

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 31 of 55

13. public static void main(String args[]){

14. //calling the function

15. validate(13);

16. System.out.println("rest of the code...");

17. }

18. }

Output:

The above code throw an unchecked exception. Similarly, we can also throw unchecked

and user defined exceptions.

Note: If we throw unchecked exception from a method, it is must to handle the exception or
declare in throws clause.

If we throw a checked exception using throw keyword, it is must to handle the exception

using catch block or the method must declare it using throws declaration.

Example 2: Throwing Checked Exception

Note: Every subclass of Error and RuntimeException is an unchecked exception in Java. A
checked exception is everything else under the Throwable class.

TestThrow2.java

1. import java.io.*;

2.

3. public class TestThrow2 {

4.

5. //function to check if person is eligible to vote or not

6. public static void method() throws FileNotFoundException {

7.

8. FileReader file = new FileReader("C:\\Users\\Anurati\\Desktop\\abc.txt");

9. BufferedReader fileInput = new BufferedReader(file);

10.

11.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 32 of 55

12. throw new FileNotFoundException();

13.

14. }

15. //main method

16. public static void main(String args[]){

17. try

18. {

19. method();

20. }

21. catch (FileNotFoundException e)

22. {

23. e.printStackTrace();

24. }

25. System.out.println("rest of the code...");

26. }

27. }

Output:

Example 3: Throwing User-defined Exception
exception is everything else under the Throwable class.

TestThrow3.java

1. // class represents user-defined exception

2. class UserDefinedException extends Exception

3. {

4. public UserDefinedException(String str)

5. {

6. // Calling constructor of parent Exception

7. super(str);

8. }

9. }

10. // Class that uses above MyException

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 33 of 55

11. public class TestThrow3

12. {

13. public static void main(String args[])

14. {

15. try

16. {

17. // throw an object of user defined exception

18. throw new UserDefinedException("This is user-defined exception");

19. }

20. catch (UserDefinedException ude)

21. {

22. System.out.println("Caught the exception");

23. // Print the message from MyException object

24. System.out.println(ude.getMessage());

25. }

26. }

27. }

Output:

Java Exception Propagation

An exception is first thrown from the top of the stack and if it is not caught, it drops

down the call stack to the previous method. If not caught there, the exception again

drops down to the previous method, and so on until they are caught or until they reach

the very bottom of the call stack. This is called exception propagation.

Note: By default Unchecked Exceptions are forwarded in calling chain (propagated).

Exception Propagation Example

TestExceptionPropagation1.java

1. class TestExceptionPropagation1{

2. void m(){

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 34 of 55

3. int data=50/0;

4. }

5. void n(){

6. m();

7. }

8. void p(){

9. try{

10. n();

11. }catch(Exception e){System.out.println("exception handled");}

12. }

13. public static void main(String args[]){

14. TestExceptionPropagation1 obj=new TestExceptionPropagation1();

15. obj.p();

16. System.out.println("normal flow...");

17. }

18. }

Output:
exception handled

 normal flow...

In the above example exception occurs in the m() method where it is not handled, so it

is propagated to the previous n() method where it is not handled, again it is propagated

to the p() method where exception is handled.

Exception can be handled in any method in call stack either in the main() method, p()

method, n() method or m() method.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 35 of 55

Note: By default, Checked Exceptions are not forwarded in calling chain (propagated).

Exception Propagation Example

TestExceptionPropagation1.java

1. class TestExceptionPropagation2{

2. void m(){

3. throw new java.io.IOException("device error");//checked exception

4. }

5. void n(){

6. m();

7. }

8. void p(){

9. try{

10. n();

11. }catch(Exception e){System.out.println("exception handeled");}

12. }

13. public static void main(String args[]){

14. TestExceptionPropagation2 obj=new TestExceptionPropagation2();

15. obj.p();

16. System.out.println("normal flow");

17. }

18. }

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 36 of 55

Output:
Compile Time Error

Java throws keyword

The Java throws keyword is used to declare an exception. It gives an information to

the programmer that there may occur an exception. So, it is better for the programmer

to provide the exception handling code so that the normal flow of the program can be

maintained.

Exception Handling is mainly used to handle the checked exceptions. If there occurs any

unchecked exception such as NullPointerException, it is programmers' fault that he is

not checking the code before it being used.

Syntax of Java throws
1. return_type method_name() throws exception_class_name{

2. //method code

3. }

Which exception should be declared?

Ans: Checked exception only, because:

o unchecked exception: under our control so we can correct our code.

o error: beyond our control. For example, we are unable to do anything if there occurs

VirtualMachineError or StackOverflowError.

Advantage of Java throws keyword

Now Checked Exception can be propagated (forwarded in call stack).

It provides information to the caller of the method about the exception.

Java throws Example

Let's see the example of Java throws clause which describes that checked exceptions

can be propagated by throws keyword.

Testthrows1.java

1. import java.io.IOException;

2. class Testthrows1{

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 37 of 55

3. void m()throws IOException{

4. throw new IOException("device error");//checked exception

5. }

6. void n()throws IOException{

7. m();

8. }

9. void p(){

10. try{

11. n();

12. }catch(Exception e){System.out.println("exception handled");}

13. }

14. public static void main(String args[]){

15. Testthrows1 obj=new Testthrows1();

16. obj.p();

17. System.out.println("normal flow...");

18. }

19. }

Output:
exception handled

normal flow...

Rule: If we are calling a method that declares an exception, we must either caught or
declare the exception.

There are two cases:

1. Case 1: We have caught the exception i.e. we have handled the exception using try/catch

block.

2. Case 2: We have declared the exception i.e. specified throws keyword with the method.

Case 1: Handle Exception Using try-catch block

In case we handle the exception, the code will be executed fine whether exception

occurs during the program or not.

Testthrows2.java

1. import java.io.*;

2. class M{

3. void method()throws IOException{

4. throw new IOException("device error");

5. }

6. }

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 38 of 55

7. public class Testthrows2{

8. public static void main(String args[]){

9. try{

10. M m=new M();

11. m.method();

12. }catch(Exception e){System.out.println("exception handled");}

13.

14. System.out.println("normal flow...");

15. }

16. }

Output:
exception handled

 normal flow...

Case 2: Declare Exception

o In case we declare the exception, if exception does not occur, the code will be

executed fine.

o In case we declare the exception and the exception occurs, it will be thrown at

runtime because throws does not handle the exception.

Let's see examples for both the scenario.

A) If exception does not occur

Testthrows3.java

1. import java.io.*;

2. class M{

3. void method()throws IOException{

4. System.out.println("device operation performed");

5. }

6. }

7. class Testthrows3{

8. public static void main(String args[])throws IOException{//declare exception

9. M m=new M();

10. m.method();

11.

12. System.out.println("normal flow...");

13. }

14. }

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 39 of 55

Output:
device operation performed

 normal flow...

B) If exception occurs

Testthrows4.java

1. import java.io.*;

2. class M{

3. void method()throws IOException{

4. throw new IOException("device error");

5. }

6. }

7. class Testthrows4{

8. public static void main(String args[])throws IOException{//declare exception

9. M m=new M();

10. m.method();

11.

12. System.out.println("normal flow...");

13. }

14. }

Output:

Difference between throw and throws in Java

The throw and throws is the concept of exception handling where the throw keyword

throw the exception explicitly from a method or a block of code whereas the throws

keyword is used in signature of the method.

There are many differences between throw and throws keywords. A list of differences

between throw and throws are given below:

Sr.
no.

Basis of Differences throw throws

https://www.javatpoint.com/throw-keyword
https://www.javatpoint.com/throws-keyword-and-difference-between-throw-and-throws

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 40 of 55

1. Definition Java throw keyword is used

throw an exception explicitly in

the code, inside the function or

the block of code.

Java throws keyword

is used in the method

signature to declare

an exception which

might be thrown by

the function while the

execution of the code.

2. Type of exception Using

throw keyword, we can

only propagate

unchecked exception i.e.,

the checked exception

cannot be propagated

using throw only.

Using throws keyword, we can

declare both checked and

unchecked exceptions. However,

the throws keyword can be used

to propagate checked

exceptions only.

3. Syntax The throw keyword is followed

by an instance of Exception to

be thrown.

The throws keyword is

followed by class

names of Exceptions

to be thrown.

4. Declaration throw is used within the

method.

throws is used with

the method signature.

5. Internal implementation We are allowed to throw only

one exception at a time i.e. we

cannot throw multiple

exceptions.

We can declare

multiple exceptions

using throws keyword

that can be thrown by

the method. For

example, main()

throws IOException,

SQLException.

Java throw Example

TestThrow.java

1. public class TestThrow {

2. //defining a method

3. public static void checkNum(int num) {

4. if (num < 1) {

5. throw new ArithmeticException("\nNumber is negative, cannot calculate square");

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 41 of 55

6. }

7. else {

8. System.out.println("Square of " + num + " is " + (num*num));

9. }

10. }

11. //main method

12. public static void main(String[] args) {

13. TestThrow obj = new TestThrow();

14. obj.checkNum(-3);

15. System.out.println("Rest of the code..");

16. }

17. }

Output:

Java throws Example

TestThrows.java

1. public class TestThrows {

2. //defining a method

3. public static int divideNum(int m, int n) throws ArithmeticException {

4. int div = m / n;

5. return div;

6. }

7. //main method

8. public static void main(String[] args) {

9. TestThrows obj = new TestThrows();

10. try {

11. System.out.println(obj.divideNum(45, 0));

12. }

13. catch (ArithmeticException e){

14. System.out.println("\nNumber cannot be divided by 0");

15. }

16.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 42 of 55

17. System.out.println("Rest of the code..");

18. }

19. }

Output:

Java throw and throws Example

TestThrowAndThrows.java

1. public class TestThrowAndThrows

2. {

3. // defining a user-defined method

4. // which throws ArithmeticException

5. static void method() throws ArithmeticException

6. {

7. System.out.println("Inside the method()");

8. throw new ArithmeticException("throwing ArithmeticException");

9. }

10. //main method

11. public static void main(String args[])

12. {

13. try

14. {

15. method();

16. }

17. catch(ArithmeticException e)

18. {

19. System.out.println("caught in main() method");

20. }

21. }

22. }

Output:

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 43 of 55

Difference between final, finally and finalize

The final, finally, and finalize are keywords in Java that are used in exception handling.

Each of these keywords has a different functionality. The basic difference between final,

finally and finalize is that the final is an access modifier, finally is the block in Exception

Handling and finalize is the method of object class.

Along with this, there are many differences between final, finally and finalize. A list of

differences between final, finally and finalize are given below:

Sr.
no.

Key final finally finalize

1. Definition final is the keyword

and access modifier

which is used to

apply restrictions on a

class, method or

variable.

finally is the block in

Java Exception

Handling to execute

the important code

whether the exception

occurs or not.

finalize is the method

in Java which is used to

perform clean up

processing just before

object is garbage

collected.

2. Applicable

to

Final keyword is used

with the classes,

methods and

variables.

Finally block is always

related to the try and

catch block in

exception handling.

finalize() method is

used with the objects.

3. Functionality (1) Once declared,

final variable

becomes constant

and cannot be

modified.

(2) final method

cannot be overridden

by sub class.

(3) final class cannot

be inherited.

(1) finally block runs

the important code

even if exception

occurs or not.

(2) finally block cleans

up all the resources

used in try block

finalize method

performs the cleaning

activities with respect

to the object before its

destruction.

https://www.javatpoint.com/final-keyword
https://www.javatpoint.com/finally-block-in-exception-handling
https://www.javatpoint.com/java-object-finalize-method

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 44 of 55

4. Execution Final method is

executed only when

we call it.

Finally block is

executed as soon as

the try-catch block is

executed.

It's execution is not

dependant on the

exception.

finalize method is

executed just before

the object is destroyed.

Java final Example

Let's consider the following example where we declare final variable age. Once declared

it cannot be modified.

FinalExampleTest.java

1. public class FinalExampleTest {

2. //declaring final variable

3. final int age = 18;

4. void display() {

5.

6. // reassigning value to age variable

7. // gives compile time error

8. age = 55;

9. }

10.

11. public static void main(String[] args) {

12.

13. FinalExampleTest obj = new FinalExampleTest();

14. // gives compile time error

15. obj.display();

16. }

17. }

Output:

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 45 of 55

In the above example, we have declared a variable final. Similarly, we can declare the

methods and classes final using the final keyword.

Java finally Example

Let's see the below example where the Java code throws an exception and the catch

block handles that exception. Later the finally block is executed after the try-catch block.

Further, the rest of the code is also executed normally.

FinallyExample.java

1. public class FinallyExample {

2. public static void main(String args[]){

3. try {

4. System.out.println("Inside try block");

5. // below code throws divide by zero exception

6. int data=25/0;

7. System.out.println(data);

8. }

9. // handles the Arithmetic Exception / Divide by zero exception

10. catch (ArithmeticException e){

11. System.out.println("Exception handled");

12. System.out.println(e);

13. }

14. // executes regardless of exception occurred or not

15. finally {

16. System.out.println("finally block is always executed");

17. }

18. System.out.println("rest of the code...");

19. }

20. }

Output:

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 46 of 55

Java finalize Example

FinalizeExample.java

1. public class FinalizeExample {

2. public static void main(String[] args)

3. {

4. FinalizeExample obj = new FinalizeExample();

5. // printing the hashcode

6. System.out.println("Hashcode is: " + obj.hashCode());

7. obj = null;

8. // calling the garbage collector using gc()

9. System.gc();

10. System.out.println("End of the garbage collection");

11. }

12. // defining the finalize method

13. protected void finalize()

14. {

15. System.out.println("Called the finalize() method");

16. }

17. }

Output:

Exception Handling with Method Overriding
in Java

There are many rules if we talk about method overriding with exception handling.

Some of the rules are listed below:

o If the superclass method does not declare an exception

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 47 of 55

o If the superclass method does not declare an exception, subclass overridden

method cannot declare the checked exception but it can declare unchecked

exception.

o If the superclass method declares an exception

o If the superclass method declares an exception, subclass overridden method can

declare same, subclass exception or no exception but cannot declare parent

exception.

If the superclass method does not declare an exception

Rule 1: If the superclass method does not declare an exception, subclass overridden
method cannot declare the checked exception.

Let's consider following example based on the above rule.

TestExceptionChild.java

1. import java.io.*;

2. class Parent{

3.

4. // defining the method

5. void msg() {

6. System.out.println("parent method");

7. }

8. }

9.

10. public class TestExceptionChild extends Parent{

11.

12. // overriding the method in child class

13. // gives compile time error

14. void msg() throws IOException {

15. System.out.println("TestExceptionChild");

16. }

17.

18. public static void main(String args[]) {

19. Parent p = new TestExceptionChild();

20. p.msg();

21. }

22. }

Output:

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 48 of 55

Rule 2: If the superclass method does not declare an exception, subclass overridden
method cannot declare the checked exception but can declare unchecked exception.

TestExceptionChild1.java

1. import java.io.*;

2. class Parent{

3. void msg() {

4. System.out.println("parent method");

5. }

6. }

7.

8. class TestExceptionChild1 extends Parent{

9. void msg()throws ArithmeticException {

10. System.out.println("child method");

11. }

12.

13. public static void main(String args[]) {

14. Parent p = new TestExceptionChild1();

15. p.msg();

16. }

17. }

Output:

If the superclass method declares an exception

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 49 of 55

Rule 1: If the superclass method declares an exception, subclass overridden method can
declare the same subclass exception or no exception but cannot declare parent exception.

Example in case subclass overridden method declares parent
exception

TestExceptionChild2.java

1. import java.io.*;

2. class Parent{

3. void msg()throws ArithmeticException {

4. System.out.println("parent method");

5. }

6. }

7.

8. public class TestExceptionChild2 extends Parent{

9. void msg()throws Exception {

10. System.out.println("child method");

11. }

12.

13. public static void main(String args[]) {

14. Parent p = new TestExceptionChild2();

15.

16. try {

17. p.msg();

18. }

19. catch (Exception e){}

20.

21. }

22. }

Output:

Example in case subclass overridden method declares same
exception

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 50 of 55

TestExceptionChild3.java

1. import java.io.*;

2. class Parent{

3. void msg() throws Exception {

4. System.out.println("parent method");

5. }

6. }

7.

8. public class TestExceptionChild3 extends Parent {

9. void msg()throws Exception {

10. System.out.println("child method");

11. }

12.

13. public static void main(String args[]){

14. Parent p = new TestExceptionChild3();

15.

16. try {

17. p.msg();

18. }

19. catch(Exception e) {}

20. }

21. }

Output:

Example in case subclass overridden method declares subclass
exception

TestExceptionChild4.java

1. import java.io.*;

2. class Parent{

3. void msg()throws Exception {

4. System.out.println("parent method");

5. }

6. }

7.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 51 of 55

8. class TestExceptionChild4 extends Parent{

9. void msg()throws ArithmeticException {

10. System.out.println("child method");

11. }

12.

13. public static void main(String args[]){

14. Parent p = new TestExceptionChild4();

15.

16. try {

17. p.msg();

18. }

19. catch(Exception e) {}

20. }

21. }

Output:

Example in case subclass overridden method declares no
exception

TestExceptionChild5.java

1. import java.io.*;

2. class Parent {

3. void msg()throws Exception{

4. System.out.println("parent method");

5. }

6. }

7.

8. class TestExceptionChild5 extends Parent{

9. void msg() {

10. System.out.println("child method");

11. }

12.

13. public static void main(String args[]){

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 52 of 55

14. Parent p = new TestExceptionChild5();

15.

16. try {

17. p.msg();

18. }

19. catch(Exception e) {}

20.

21. }

22. }

Output:

Java Custom Exception

In Java, we can create our own exceptions that are derived classes of the Exception class.

Creating our own Exception is known as custom exception or user-defined exception.

Basically, Java custom exceptions are used to customize the exception according to user

need.

Consider the example 1 in which InvalidAgeException class extends the Exception class.

Using the custom exception, we can have your own exception and message. Here, we

have passed a string to the constructor of superclass i.e. Exception class that can be

obtained using getMessage() method on the object we have created.

Why use custom exceptions?

Java exceptions cover almost all the general type of exceptions that may occur in the

programming. However, we sometimes need to create custom exceptions.

Following are few of the reasons to use custom exceptions:

o To catch and provide specific treatment to a subset of existing Java exceptions.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 53 of 55

o Business logic exceptions: These are the exceptions related to business logic and

workflow. It is useful for the application users or the developers to understand the exact

problem.

In order to create custom exception, we need to extend Exception class that belongs to

java.lang package.

Consider the following example, where we create a custom exception named

WrongFileNameException:

1. public class WrongFileNameException extends Exception {

2. public WrongFileNameException(String errorMessage) {

3. super(errorMessage);

4. }

5. }

Note: We need to write the constructor that takes the String as the error message and it is
called parent class constructor.

Example 1:

Let's see a simple example of Java custom exception. In the following code, constructor

of InvalidAgeException takes a string as an argument. This string is passed to

constructor of parent class Exception using the super() method. Also the constructor of

Exception class can be called without using a parameter and calling super() method is

not mandatory.

TestCustomException1.java

1. // class representing custom exception

2. class InvalidAgeException extends Exception

3. {

4. public InvalidAgeException (String str)

5. {

6. // calling the constructor of parent Exception

7. super(str);

8. }

9. }

10.

11. // class that uses custom exception InvalidAgeException

12. public class TestCustomException1

13. {

14.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 54 of 55

15. // method to check the age

16. static void validate (int age) throws InvalidAgeException{

17. if(age < 18){

18.

19. // throw an object of user defined exception

20. throw new InvalidAgeException("age is not valid to vote");

21. }

22. else {

23. System.out.println("welcome to vote");

24. }

25. }

26.

27. // main method

28. public static void main(String args[])

29. {

30. try

31. {

32. // calling the method

33. validate(13);

34. }

35. catch (InvalidAgeException ex)

36. {

37. System.out.println("Caught the exception");

38.

39. // printing the message from InvalidAgeException object

40. System.out.println("Exception occured: " + ex);

41. }

42.

43. System.out.println("rest of the code...");

44. }

45. }

Output:

Example 2:

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit 3 (Exception Handling,)

Collected & Prepared By: T. SREENIVASULA REDDY Page 55 of 55

TestCustomException2.java

1. // class representing custom exception

2. class MyCustomException extends Exception

3. {

4.

5. }

6.

7. // class that uses custom exception MyCustomException

8. public class TestCustomException2

9. {

10. // main method

11. public static void main(String args[])

12. {

13. try

14. {

15. // throw an object of user defined exception

16. throw new MyCustomException();

17. }

18. catch (MyCustomException ex)

19. {

20. System.out.println("Caught the exception");

21. System.out.println(ex.getMessage());

22. }

23.

24. System.out.println("rest of the code...");

25. }

26. }

Output:

 Multithreading

3. Explain with example, suspending and resuming threads in Java

The suspend() method of thread class puts the thread from running to waiting state. This

method is used if you want to stop the thread execution and start it again when a certain event

occurs. This method allows a thread to temporarily cease execution. The suspended thread can

be resumed using the resume() method.

Program:

1. public class JavaSuspendExp extends Thread

2. {

3. public void run()

4. {

5. for(int i=1; i<5; i++)

6. {

7. try

8. {

9. // thread to sleep for 500 milliseconds

10. sleep(500);

11. System.out.println(Thread.currentThread().getName());

12. }catch(InterruptedException e){System.out.println(e);}

13. System.out.println(i);

14. }

15. }

16. public static void main(String args[])

17. {

18. // creating three threads

19. JavaSuspendExp t1=new JavaSuspendExp ();

20. JavaSuspendExp t2=new JavaSuspendExp ();

21. JavaSuspendExp t3=new JavaSuspendExp ();

22. // call run() method

23. t1.start();

24. t2.start();

25. // suspend t2 thread

26. t2.suspend();

27. // call run() method

28. t3.start();

29. }

30. }

Output:

The resume() method of thread class is only used with suspend() method. This method is used to resume

a thread which was suspended using suspend() method. This method allows the suspended thread to start

again.

program:

public class JavaResumeExp extends Thread

{

 public void run()

 {

 for(int i=1; i<5; i++)

 {

 try

 {

 // thread to sleep for 500 milliseconds

 sleep(500);

 System.out.println(Thread.currentThread().getName());

 }catch(InterruptedException e){System.out.println(e);}

 System.out.println(i);

 }

 }

 public static void main(String args[])

 {

 // creating three threads

 JavaResumeExp t1=new JavaResumeExp ();

 JavaResumeExp t2=new JavaResumeExp ();

 JavaResumeExp t3=new JavaResumeExp ();

 // call run() method

 t1.start();

 t2.start();

 t2.suspend(); // suspend t2 thread

 // call run() method

 t3.start();

 t2.resume(); // resume t2 thread

 }

}

output:

4.What is Daemon Thread
Daemon thread in Java is a service provider thread that provides services to the user thread. Its life depend
on the mercy of user threads i.e. when all the user threads dies, JVM terminates this thread automatically.

There are many java daemon threads running automatically e.g. gc, finalizer etc.

5.How Inter-thread Communication is done in java?
Inter-thread communication or Co-operation is all about allowing synchronized threads to communicate
with each other.

Cooperation (Inter-thread communication) is a mechanism in which a thread is paused running in its
critical section and another thread is allowed to enter (or lock) in the same critical section to be executed.It
is implemented by following methods of Object class:

wait()
notify()
notifyAll()
1) wait() method
The wait() method causes current thread to release the lock and wait until either another thread invokes
the notify() method or the notifyAll() method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor, so it must be called from the synchronized method
only otherwise it will throw exception.

 It waits until object is notified.

2) notify() method
The notify() method wakes up a single thread that is waiting on this object's monitor. If any threads are
waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the
discretion of the implementation.

Syntax:

public final void notify()
3) notifyAll() method
Wakes up all threads that are waiting on this object's monitor.

Syntax:

public final void notifyAll()
program:
class Customer{
int amount=10000;

synchronized void withdraw(int amount){
System.out.println("going to withdraw...");

if(this.amount<amount){
System.out.println("Less balance; waiting for deposit...");
try{wait();}catch(Exception e){}
}
this.amount-=amount;
System.out.println("withdraw completed...");

}

synchronized void deposit(int amount){
System.out.println("going to deposit...");
this.amount+=amount;
System.out.println("deposit completed... ");
notify();
}
}

class Test{
public static void main(String args[]){
final Customer c=new Customer();
new Thread(){
public void run(){c.withdraw(15000);}
}.start();
new Thread(){
public void run(){c.deposit(10000);}
}.start();

}}
output:

6.Write a java program to create threads with different priorities.
program:
import java.lang.*;
class ThreadDemo extends Thread {
 public void run()
 {t
 System.out.println("Inside run method");
 }
 public static void main(String[] args)
 {
 ThreadDemo t1 = new ThreadDemo();
 ThreadDemo t2 = new ThreadDemo();
 ThreadDemo t3 = new ThreadDemo();

 System.out.println("t1 thread priority : "
 + t1.getPriority());

 System.out.println("t2 thread priority : "
 + t2.getPriority());

 System.out.println("t3 thread priority : "
 + t3.getPriority());
 t1.setPriority(2);
 t2.setPriority(5);
 t3.setPriority(8);
 System.out.println("t1 thread priority : "
 + t1.getPriority());

 System.out.println("t2 thread priority : "
 + t2.getPriority());

 System.out.println("t3 thread priority : "
 + t3.getPriority());

 System.out.println(
 "Currently Executing Thread : "
 + Thread.currentThread().getName());

 System.out.println(
 "Main thread priority : "
 + Thread.currentThread().getPriority());
 Thread.currentThread().setPriority(10);

 System.out.println(
 "Main thread priority : "
 + Thread.currentThread().getPriority());
 }
}

output:
t1 thread priority : 5
t2 thread priority : 5
t3 thread priority : 5
t1 thread priority : 2
t2 thread priority : 5
t3 thread priority : 8
Currently Executing Thread : main
Main thread priority : 5
Main thread priority : 10

7.Why thread is called a light weight process? What are the different things shared by

different threads of a single process? What are the benefits of this sharing

Threads are sometimes called lightweight processes because they have their own stack but can access
shared data. Because threads share the same address space as the process and other threads within the
process, the operational cost of communication between the threads is low, which is an advantage.
When a process starts, it is assigned memory and resources. Each thread in the process shares that
memory and resources. In single-threaded processes, the process contains one thread. The process and
the thread are one and the same, and there is only one thing happening.

9.Discuss about join keyword.
 join() method
The join() method in Java is provided by the java.lang.Thread class that permits one thread to wait until
the other thread to finish its execution. Suppose th be the object the class Thread whose thread is doing
its execution currently, then the th.join(); statement ensures that th is finished before the program does
the execution of the next statement. When there are more than one thread invoking the join() method,
then it leads to overloading on the join() method that permits the developer or programmer to mention
the waiting period. However, similar to the sleep() method in Java, the join() method is also dependent
on the operating system for the timing, so we should not assume that the join() method waits equal to
the time we mention in the parameters. The following are the three overloaded join() methods.

Description of The Overloaded join() Method
join(): When the join() method is invoked, the current thread stops its execution and the thread goes into
the wait state. The current thread remains in the wait state until the thread on which the join() method is
invoked has achieved its dead state. If interruption of the thread occurs, then it throws the
InterruptedException.

Syntax:

public final void join() throws InterruptedException
join(long mls): When the join() method is invoked, the current thread stops its execution and the thread
goes into the wait state. The current thread remains in the wait state until the thread on which the join()
method is invoked called is dead or the wait for the specified time frame(in milliseconds) is over.

Syntax:

public final synchronized void join(long mls) throws InterruptedException, where mls is in milliseconds
join(long mls, int nanos): When the join() method is invoked, the current thread stops its execution and
go into the wait state. The current thread remains in the wait state until the thread on which the join()
method is invoked called is dead or the wait for the specified time frame(in milliseconds + nanos) is over.

Syntax:

public final synchronized void join(long mls, int nanos) throws InterruptedException, where mls is in
milliseconds.

10.Explain the synchronization of multiple threads in Java with an example.

Synchronization

Synchronization in Java is the capability to control the access of multiple threads to any shared
resource.

Java Synchronization is better option where we want to allow only one thread to access the

shared resource.

Example:

class Table{
 synchronized void printTable(int n){//synchronized method

 for(int i=1;i<=5;i++){

 System.out.println(n*i);

 try{

 Thread.sleep(400);
 }catch(Exception e){System.out.println(e);}

 }

 }

}

class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t;

}
public void run(){

t.printTable(5);

}

}

class MyThread2 extends Thread{
Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){
t.printTable(100);

}

}

public class TestSynchronization2{

public static void main(String args[]){
Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();
}

}

output:

 5

 10

 15
 20

 25

 100

 200

 300
 400

 500

11.Explain thread states with block diagram. And, Associate methods to each state

Thread States in Java
A thread is a program in execution created to perform a specific task. Life cycle of a Java thread

starts with its birth and ends on its death.

The start() method of the Thread class is used to initiate the execution of a thread and it goes

into runnable state and the sleep() and wait() methods of the Thread class sends the thread into
non runnable state.

After non runnable state, thread again comes into runnable state and starts its execution. The

run() method of thread is very much important. After executing the run() method, the lifecycle of

thread is completed.

All these phases of threads are the states of thread in Java

To work with threads in a program, it is important to identify thread state. The following figure

shows thread states in Java thread life cycle.

Thread States in Java
A thread is a path of execution in a program that goes through the following states of a thread. The five
states are as follows:

New
Runnable
Running
Blocked (Non-runnable state)
Dead

New (Newborn State)

When an instance of the Thread class is created a new thread is born and is known to be in New-born
state. That is, when a thread is born, it enters into new state but its execution phase has not been started
yet on the instance.

In simpler terms, Thread object is created but it cannot execute any program statement because it is not
in an execution state of the thread. Only start() method can be called on a new thread; otherwise, an
IllegalThreadStateException will be thrown.

Runnable State
The second phase of a new-born thread is the execution phase. When the start() method is called on a
the new instance of a thread, it enters into a runnable state.
In the runnable state, thread is ready for execution and is waiting for availability of the processor (CPU
time). There are many threads that are ready for execution, they all are waiting in a queue (line).

If all threads have equal priority, a time slot is assigned for each thread execution on the basis of first-
come, first-serve manner by CPU. The process of allocating time to threads is known as time slicing. A
thread can come into runnable state from running, waiting, or new states.

Running State
Running means Processor (CPU) has allocated time slot to thread for its execution. When thread scheduler
selects a thread from the runnable state for execution, it goes into running state. Look at the above figure.

In running state, processor gives its time to the thread for execution and executes its run method. It is the
state where thread performs its actual functions. A thread can come into running state only from runnable
state.

A running thread may give up its control in any one of the following situations and can enter into the
blocked state.

When sleep() method is invoked on a thread to sleep for specified time period, the thread is out of queue
during this time period. The thread again reenters into the runnable state as soon as this time period is
elapsed.
When a thread is suspended using suspend() method for some time in order to satisfy some conditions.
A suspended thread can be revived by using resume() method.
When wait() method is called on a thread to wait for some time. The thread in wait state can be run again
using notify() or notifyAll() method.

Blocked State
A thread is considered to be in the blocked state when it is suspended, sleeping, or waiting for some time
in order to satisfy some condition.

Dead State
A thread dies or moves into dead state automatically when its run() method completes the execution of
statements. That is, a thread is terminated or dead when a thread comes out of run() method. A thread
can also be dead when the stop() method is called.

During the life cycle of thread in Java, a thread moves from one state to another state in a variety of ways.
This is because in multithreading environment, when multiple threads are executing, only one thread can
use CPU at a time.

All other threads live in some other states, either waiting for their turn on CPU or waiting for satisfying
some conditions. Therefore, a thread is always in any of the five states.

12.What is race condition?
A condition in which the critical section (a part of the program where shared memory is accessed) is
concurrently executed by two or more threads. It leads to incorrect behavior of a program.

In layman terms, a race condition can be defined as, a condition in which two or more threads compete
together to get certain shared resources.

For example, if thread A is reading data from the linked list and another thread B is trying to delete the
same data. This process leads to a race condition that may result in run time error.

 I/O Operations

1.What is a stream? Explain its types.

Java provides I/O Streams to read and write data where, a Stream represents an input source or an output
destination which could be a file, i/o devise, other program etc.

In general, a Stream will be an input stream or, an output stream.

InputStream − This is used to read data from a source.
OutputStream − This is used to write data to a destination.
Based on the data they handle there are two types of streams −

Byte Streams − These handle data in bytes (8 bits) i.e., the byte stream classes read/write data of 8 bits.
Using these you can store characters, videos, audios, images etc.
Character Streams − These handle data in 16 bit Unicode. Using these you can read and write text data
only.
Standard Streams
In addition to above mentioned classes Java provides 3 standard streams representing the input and,
output devices.

Standard Input − This is used to read data from user through input devices. keyboard is used as standard
input stream and represented as System.in.
Standard Output − This is used to project data (results) to the user through output devices. A computer
screen is used for standard output stream and represented as System.out.

Standard Error − This is used to output the error data produced by the user's program and usually a
computer screen is used for standard error stream and represented as System.err.

2.List classes that are used by Byte streams for input and output operation

ByteStream Classes
ByteStream classes are used to read bytes from the input stream and write bytes to the output
stream. In other words, we can say that ByteStream classes read/write the data of 8-bits. We can
store video, audio, characters, etc., by using ByteStream classes. These classes are part of the java.io
package.

The ByteStream classes are divided into two types of classes, i.e., InputStream and OutputStream.
These classes are abstract and the super classes of all the Input/Output stream classes.

InputStream Class
The InputStream class provides methods to read bytes from a file, console or memory. It is an abstract
class and can't be instantiated; however, various classes inherit the InputStream class and override
its methods. The subclasses of InputStream class are given in the following table.
SN Class Description
1 BufferedInputStream This class provides methods to read bytes from the
 buffer.
2 ByteArrayInputStream This class provides methods to read bytes from the
 byte array.
3 DataInputStream This class provides methods to read Java primitive
 data types.
4 FileInputStream This class provides methods to read bytes from a file.
5 FilterInputStream This class contains methods to read bytes from the
 other input streams, which are used as the primary
 source of data.
6 ObjectInputStream This class provides methods to read objects.
7 PipedInputStream This class provides methods to read from a piped
 output stream to which the piped input stream must
 be connected.
8 SequenceInputStream This class provides methods to connect multiple Input

OutputStream Class
The OutputStream is an abstract class that is used to write 8-bit bytes to the stream. It is the
superclass of all the output stream classes. This class can't be instantiated; however, it is inherited
by various subclasses that are given in the following table.

SN Class Description
1 BufferedOutputStream This class provides methods to write the bytes to the
 buffer.
2 ByteArrayOutputStream This class provides methods to write bytes to the byte
 array.
3 DataOutputStream This class provides methods to write the java
 primitive data types.
4 FileOutputStream This class provides methods to write bytes to a file.
5 FilterOutputStream This class provides methods to write to other output
 streams.

6 ObjectOutputStream This class provides methods to write objects.
7 PipedOutputStream It provides methods to write bytes to a piped output
 stream.
8 PrintStream It provides methods to print Java primitive data types.

3.List classes that are used by character streams for input and List output operation

CharacterStream Classes

The java.io package provides CharacterStream classes to overcome the limitations of ByteStream

classes, which can only handle the 8-bit bytes and is not compatible to work directly with the

Unicode characters. CharacterStream classes are used to work with 16-bit Unicode characters.

They can perform operations on characters, char arrays and Strings.

However, the CharacterStream classes are mainly used to read characters from the source and

write them to the destination. For this purpose, the CharacterStream classes are divided into

two types of classes, I.e., Reader class and Writer class.

Reader Class

Reader class

is used to read the 16-bit characters from the input stream. However, it is an abstract class and

can't be instantiated, but there are various subclasses that inherit the Reader class and override

the methods of the Reader class. All methods of the Reader class throw an IOException. The

subclasses of the Reader class are given in the following table.

SN Class Description

1. BufferedReader This class provides methods to read characters

 from the buffer.

2. CharArrayReader This class provides methods to read characters
 from the char array.

3. FileReader This class provides methods to read characters

 from the file.

4. FilterReader This class provides methods to read characters

 from the underlying character input stream.

5 InputStreamReader This class provides methods to convert bytes to
 characters.

6 PipedReader This class provides methods to read characters

 from the connected piped output stream.

7 StringReader This class provides methods to read characters

 from a string.

Writer Class

Writer class is used to write 16-bit Unicode characters to the output stream. The methods of the

Writer class generate IOException. Like Reader class, Writer class is also an abstract class that

cannot be instantiated; therefore, the subclasses of the Writer class are used to write the

characters onto the output stream. The subclasses of the Writer class are given in the below
table.

SN Class Description

1 BufferedWriter This class provides methods to write characters to

 the buffer.
2 FileWriter This class provides methods to write characters to

 the file.

3 CharArrayWriter This class provides methods to write the

 characters to the character array.
4 OutpuStreamWriter This class provides methods to convert from bytes

 to characters.

5 PipedWriter This class provides methods to write the

 characters to the piped output stream.

6 StringWriter This class provides methods to write the

 characters to the string.

4.Illustrate PrintWriter Class to handle console output.

Java PrintWriter class

Java PrintWriter class is the implementation of Writer class. It is used to print the formatted
representation of objects to the text-output stream.

Program:

import java.io.PrintWriter;

public class PrintWriterDemo {

 public static void main(String args[]) {
 PrintWriter pw = new PrintWriter(System.out, true);

 pw.println("This is a string");

 int i = -7;

 pw.println(i);

 double d = 4.5e-7;
 pw.println(d);

 }

}

5.Write a program to copy one file to another using try with resources block

import java.io.FileOutputStream;

public class TryWithResources {
public static void main(String args[]){

 // Using try-with-resources

try(FileOutputStream fileOutputStream =newFileOutputStream("/java7-new-

features/src/abc.txt")){

String msg = "Welcome to javaTpoint!";

byte byteArray[] = msg.getBytes(); //converting string into byte array
fileOutputStream.write(byteArray);

System.out.println("Message written to file successfuly!");

}catch(Exception exception){

 System.out.println(exception);

}
}

}

6.Write a program to create and write a string in a file

Program:

import java.io.IOException;

import java.nio.file.Files;

import java.nio.file.Path;

// Main class

public class GFG {

 // Main driver method

 public static void main(String[] args)

 throws IOException
 {

 // Assigning the content of the file

 String text

 = "Welcome to geekforgeeks\nHappy Learning!";

 // Defining the file name of the file

 Path fileName = Path.of(

 "/Users/mayanksolanki/Desktop/demo.docx");

 Files.writeString(fileName, text);

 String file_content = Files.readString(fileName);

 System.out.println(file_content);

 }

}

Output:
Welcome to geekforgeeks

Happy Learning!

7.WAP to display the contents of the file

import java.util.Scanner;

import java.io.*;

public class CodesCracker

{
 public static void main(String[] args)

 {

 String fname;

 Scanner scan = new Scanner(System.in);

 // enter filename along with its extension
 System.out.print("Enter the Name of File: ");

 fname = scan.nextLine();

 String line = null;

 try
 {

 FileReader fileReader = new FileReader(fname);

 // always wrap the FileReader in BufferedReader

 BufferedReader bufferedReader = new BufferedReader(fileReader);

 while((line = bufferedReader.readLine()) != null)

 {

 System.out.println(line);

 }

 // always close the file after its use

 bufferedReader.close();

 }

 catch(IOException ex)

 {

 System.out.println("\nError occurred");
 System.out.println("Exception Name: " +ex);

 }

 }

}

Output:

 Generics

1.What are Generics?

Generics in Java

The Java Generics programming is introduced in J2SE 5 to deal with type-safe objects. It makes
the code stable by detecting the bugs at compile time.

Before generics, we can store any type of objects in the collection, i.e., non-generic. Now generics

force the java programmer to store a specific type of objects.

 OR
Generics means parameterized types. The idea is to allow type (Integer, String, … etc., and user-

defined types) to be a parameter to methods, classes, and interfaces. Using Generics, it is possible

to create classes that work with different data types. An entity such as class, interface, or method

that operates on a parameterized type is a generic entity.

2.Write a program to Illustrate the working of Generic class in Java

class TestGenerics3{

public static void main(String args[]){

MyGen<Integer> m=new MyGen<Integer>();

m.add(2);
//m.add("vivek");//Compile time error

System.out.println(m.get());

}}

output:

2

3.Write a program to Illustrate the working of generic method in Java

Program:

public class TestGenerics4{

 public static < E > void printArray(E[] elements) {
 for (E element : elements){

 System.out.println(element);

 }

 System.out.println();

 }
 public static void main(String args[]) {

 Integer[] intArray = { 10, 20, 30, 40, 50 };

 Character[] charArray = { 'J', 'A', 'V', 'A', 'T','P','O','I','N','T' };

 System.out.println("Printing Integer Array");

 printArray(intArray);

 System.out.println("Printing Character Array");

 printArray(charArray);

 }

}

Output

Printing Integer Array

10

20
30

40

50

Printing Character Array

J
A

V

A

T

P

O
I

N

T

4.Implement bounded type parameters using extends Comparable object.

Program:

public class MaximumTest {

 // determines the largest of three Comparable objects

 public static <T extends Comparable<T>> T maximum(T x, T y, T z) {
 T max = x; // assume x is initially the largest

 if(y.compareTo(max) > 0) {

 max = y; // y is the largest so far

 }

 if(z.compareTo(max) > 0) {

 max = z; // z is the largest now

 }

 return max; // returns the largest object

 }

 public static void main(String args[]) {

 System.out.printf("Max of %d, %d and %d is %d\n\n",

 3, 4, 5, maximum(3, 4, 5));

 System.out.printf("Max of %.1f,%.1f and %.1f is %.1f\n\n",

 6.6, 8.8, 7.7, maximum(6.6, 8.8, 7.7));

 System.out.printf("Max of %s, %s and %s is %s\n","pear",

 "apple", "orange", maximum("pear", "apple", "orange"));

 }
}

Output
Max of 3, 4 and 5 is 5

Max of 6.6,8.8 and 7.7 is 8.8

Max of pear, apple and orange is pear

5.Write a program to illustrate the working of generic constructors

Program:

class Test {

 //Generics constructor

 public <T> Test(T item){

 System.out.println("Value of the item: " + item);
 System.out.println("Type of the item: "

 + item.getClass().getName());

 }

}

public class GenericsTest {
 public static void main(String args[]){

 //String type test

 Test test1 = new Test("Test String.");

 Test test2 = new Test(100);

 }
}

Output:

Value of the item: Test String.

Type of the item: java.lang.String

Value of the item: 100

Type of the item: java.lang.Integer

6.What are the restrictions to be remembered while using generics

Restrictions on Generics

 To use Java generics effectively, you must consider the following restrictions:

 Cannot Instantiate Generic Types with Primitive Types

 Cannot Create Instances of Type Parameters

 Cannot Declare Static Fields Whose Types are Type Parameters

 Cannot Use Casts or instanceof With Parameterized Types

 Cannot Create Arrays of Parameterized Types

 Cannot Create, Catch, or Throw Objects of Parameterized Types

 Cannot Overload a Method Where the Formal Parameter Types of Each Overload Erase to the
Same Raw Type.

 Collection Framework

1.What is collection Framework
Collections in Java

The Collection in Java is a framework that provides an architecture to store and manipulate the group of
objects.

Java Collections can achieve all the operations that you perform on a data such as searching, sorting,
insertion, manipulation, and deletion.

Java Collection means a single unit of objects. Java Collection framework provides many interfaces (Set,
List, Queue, Deque) and classes (ArrayList, Vector, LinkedList, PriorityQueue, HashSet, LinkedHashSet,
TreeSet).
What is Collection in Java
A Collection represents a single unit of objects, i.e., a group.
What is a framework in Java

 It provides readymade architecture.

 It represents a set of classes and interfaces.

 It is optional.
What is Collection framework
The Collection framework represents a unified architecture for storing and manipulating a g1roup of
objects. It has:
1.Interfaces and its implementations, i.e., classes
2.Algorithm

2.What are legacy classes

Legacy Class in Java

In the past decade, the Collection framework didn't include in Java. In the early version of Java,

we have several classes and interfaces which allow us to store objects. After adding the Collection

framework in JSE 1.2, for supporting the collections framework, these classes were re-
engineered. So, classes and interfaces that formed the collections framework in the older version

of Java are known as Legacy classes. For supporting generic in JDK5, these classes were re-

engineered.

All the legacy classes are synchronized. The java.util package defines the following legacy classes:

1.HashTable

2.Stack

3.Dictionary

4.Properties

5.Vector

3.Draw the hierarchy of collection framework.

Hierarchy of Collection Framework

Let us see the hierarchy of Collection framework. The java.util package contains all the classes

and interfaces

for the Collection framework.

4.WAP to traverse ArrayList elements using the Iterator interface

import java.util.ArrayList;

import java.util.Iterator;

class Main {

 public static void main(String[] args){

 ArrayList<String> languages = new ArrayList<>();

 // Add elements in the array list

 languages.add("Java");

 languages.add("Python");

 languages.add("JavaScript");

 languages.add("Swift");

 // Create a variable of Iterator

 // store the iterator returned by iterator()

 Iterator<String> iterate = languages.iterator();

 System.out.print("ArrayList: ");

 // loop through ArrayList till it has all elements

 // Use methods of Iterator to access elements

 while(iterate.hasNext()){

 System.out.print(iterate.next());

 System.out.print(", ");

 }

 }

}

Output

ArrayList: Java, Python, JavaScript, Swift

5.WAP to add and traverse elements in a Linked List.

import java.util.*;

public class LinkedList1{

 public static void main(String args[]){

 LinkedList<String> al=new LinkedList<String>();

 al.add("Ravi");

 al.add("Vijay");

 al.add("Ravi");

 al.add("Ajay");

 Iterator<String> itr=al.iterator();

 while(itr.hasNext()){

 System.out.println(itr.next());

 }

 }

}

Output:

 Ravi

 Vijay

 Ravi

 Ajay

6.WAP to insert, remove and display elements in a stack

import java.util.Stack;

public class Demo {

 public static void main (String args[]) {

 Stack stack = new Stack();

 stack.push("Apple");

 stack.push("Mango");

 stack.push("Guava");

 stack.push("Pear");

 stack.push("Orange");

 System.out.println("The stack elements are: " + stack);

 }

}

Output

The stack elements are: [Apple, Mango, Guava, Pear, Orange]

7.WAP to insert, remove and display elements in a queue

import java.util.LinkedList;

import java.util.Queue;

public class Example {

 public static void main(String[] args) {

 Queue<Integer> q = new LinkedList<>();

 q.add(6);

 q.add(1);

 q.add(8);

 q.add(4);

 q.add(7);

 System.out.println("The queue is: " + q);

 int num1 = q.remove();

System.out.println("The element deleted from the head is: " + num1);

System.out.println("The queue after deletion is: " + q);

int head = q.peek();

System.out.println("The head of the queue is: " + head);

int size = q.size();

System.out.println("The size of the queue is: " + size);

}

}

Output

The queue is: [6, 1, 8, 4, 7]

The element deleted from the head is: 6

The queue after deletion is: [1, 8, 4, 7]

The head of the queue is: 1

The size of the queue is: 4

8.Demonstrate the methods in StringTokenizer class with an example

Methods Description

boolean hasMoreTokens() It checks if there is more tokens available.

String nextToken() It returns the next token from the

 StringTokenizer object.

String nextToken(String delim) It returns the next token based on the delimiter.

boolean hasMoreElements() It is the same as hasMoreTokens() method.

Object nextElement() It is the same as nextToken() but its return type is

 Object.

int countTokens() It returns the total number of tokens.

EXAMPLES:

import java.util.StringTokenizer;

public class Simple{

 public static void main(String args[]){

 StringTokenizer st = new StringTokenizer("my name is khan"," ");

 while (st.hasMoreTokens()) {

 System.out.println(st.nextToken());

 }

 }

}

Output:

my

name

is

khan

 Applets

1.What is an applet?

Applet is a special type of program that is embedded in the webpage to generate the dynamic

content. It runs inside the browser and works at client side.

 OR

An applet is a Java program that can be embedded into a web page. It runs inside the web

browser and works at client side. An applet is embedded in an HTML page using the APPLET or

OBJECT tag and hosted on a web server. Applets are used to make the website more dynamic

and entertaining.

2.Write a simple applet that displays “hello world” and explain its working.

import java.applet.Applet;

import java.awt.Graphics;

public class HelloWorld extends Applet

{

 public void paint(Graphics g)

 {

 g.drawString("Hello World", 20, 20);

 }

}

3.Explain the concept of applet to applet communication with suitable program

Applet Communication

java.applet.AppletContext class provides the facility of communication between applets. We

provide the name of applet through the HTML file. It provides getApplet() method that returns

the object of Applet.

Syntax:public Applet getApplet(String name){}

Example of Applet Communication

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

public class ContextApplet extends Applet implements ActionListener{

Button b;

public void init(){

b=new Button("Click");

b.setBounds(50,50,60,50);

add(b);

b.addActionListener(this);

}

public void actionPerformed(ActionEvent e){

AppletContext ctx=getAppletContext();

Applet a=ctx.getApplet("app2");

a.setBackground(Color.yellow);

}

}

myapplet.html

<html>

<body>

<applet code="ContextApplet.class" width="150" height="150" name="app1">

</applet>

<applet code="First.class" width="150" height="150" name="app2">

</applet>

</body>

</html>

4.What for repaint() method is used?

The repaint method is an asynchronous method of applet class. When call to repaint method is

made, it performs a request to erase and perform redraw of the component after a small delay in
time.

5.Differentiate between paint() and repaint() functions.

Paint() and Repaint()

paint(): This method holds instructions to paint this component. In Java Swing, we can change

the paintComponent() method instead of paint() method as paint calls paintBorder(),

paintComponent() and paintChildren() methods. We cannot call this method directly instead we

can call repaint().

repaint(): This method cannot be overridden. It controls the update() -> paint() cycle. We can call

this method to get a component to repaint itself. If we have done anything to change the look of

the component but not the size then we can call this method.

6.Present the structure of a Java Applet

OR

7.Discuss in detail about Applet life cycle

Applet Life Cycle in Java

In Java, an applet

is a special type of program embedded in the web page to generate dynamic content. Applet is a

class in Java.

The applet life cycle can be defined as the process of how the object is created, started, stopped,

and destroyed during the entire execution of its application. It basically has five core methods

namely init(), start(), stop(), paint() and destroy().These methods are invoked by the browser to

execute.

Along with the browser, the applet also works on the client side, thus having less processing

time.

init(): The init() method is the first method to run that initializes the applet. It can be invoked

only once at the time of initialization. The web browser creates the initialized objects, i.e., the

web browser (after checking the security settings) runs the init() method within the applet.

start(): The start() method contains the actual code of the applet and starts the applet. It is
invoked immediately after the init() method is invoked. Every time the browser is loaded or

refreshed, the start() method is invoked. It is also invoked whenever the applet is maximized,

restored, or moving from one tab to another in the browser. It is in an inactive state until the

init() method is invoked.

stop(): The stop() method stops the execution of the applet. The stop () method is invoked

whenever the applet is stopped, minimized, or moving from one tab to another in the browser,
the stop() method is invoked. When we go back to that page, the start() method is invoked again.

destroy(): The destroy() method destroys the applet after its work is done. It is invoked when the

applet window is closed or when the tab containing the webpage is closed. It removes the applet

object from memory and is executed only once. We cannot start the applet once it is destroyed.

paint(): The paint() method belongs to the Graphics class in Java. It is used to draw shapes like
circle, square, trapezium, etc., in the applet. It is executed after the start() method and when the

browser or applet windows are resized.

8.How to pass the parameters to an Applet? Explain with example

Parameter in Applet

We can get any information from the HTML file as a parameter. For this purpose, Applet class

provides a method named getParameter().

 Syntax:

public String getParameter(String parameterName)

Example of using parameter in Applet:

import java.applet.Applet;

import java.awt.Graphics;

public class UseParam extends Applet{

public void paint(Graphics g){

String str=getParameter("msg");

g.drawString(str,50, 50);

}

Swings:

1.Explain the delegation event model.

Delegation Event Model

The Delegation Event model is defined to handle events in GUI programming languages. The GUI

stands for Graphical User Interface, where a user graphically/visually interacts with the system.

The GUI programming is inherently event-driven; whenever a user initiates an activity such as a

mouse activity, clicks, scrolling, etc., each is known as an event that is mapped to a code to

respond to functionality to the user. This is known as event handling.

In this section, we will discuss event processing and how to implement the delegation event

model in Java. We will also discuss the different components of an Event Model.

The Delegation Event Model has the following key participants namely:

Source - The source is an object on which event occurs. Source is responsible for providing

information of the occurred event to it's handler. Java provide as with classes for source object.

Listener - It is also known as event handler.Listener is responsible for generating response to

an event. From java implementation point of view the listener is also an object. Listener waits

until it receives an event. Once the event is received , the listener process the event an then

returns.

2.Explain procedure to handle mouse events in Java with an example program

Java MouseListener Interface

The Java MouseListener is notified whenever you change the state of mouse. It is notified against

MouseEvent. The MouseListener interface is found in java.awt.event package. It has five

methods.

Methods of MouseListener interface

The signature of 5 methods found in MouseListener interface are given below:

public abstract void mouseClicked(MouseEvent e);

public abstract void mouseEntered(MouseEvent e);

public abstract void mouseExited(MouseEvent e);

public abstract void mousePressed(MouseEvent e);

public abstract void mouseReleased(MouseEvent e);

program:

import java.awt.*;

import java.awt.event.*;

public class MouseListenerExample extends Frame implements MouseListener{

 Label l;

 MouseListenerExample(){

 addMouseListener(this);

 l=new Label();

 l.setBounds(20,50,100,20);

 add(l);

 setSize(300,300);

 setLayout(null);

 setVisible(true);

 }

 public void mouseClicked(MouseEvent e) {

 l.setText("Mouse Clicked");

 }

 public void mouseEntered(MouseEvent e) {

 l.setText("Mouse Entered");

 }

 public void mouseExited(MouseEvent e) {

 l.setText("Mouse Exited");

 }

 public void mousePressed(MouseEvent e) {

 l.setText("Mouse Pressed");

 }

 public void mouseReleased(MouseEvent e) {

 l.setText("Mouse Released");

 }

public static void main(String[] args) {

 new MouseListenerExample();

}

}

4,Discuss about list box and choice boxes

Java JList

The object of JList class represents a list of text items. The list of text items can be set up so that

the user can choose either one item or multiple items. It inherits JComponent class.

Java AWT Choice

The object of Choice class is used to show popup menu

of choices. Choi

ce selected by user is shown on the top of a menu. It inherits Component class.

5.Explain Jtree Swing components with suitable example.

Java JTree

The JTree class is used to display the tree structured data or hierarchical data. JTree is a complex

component. It has a 'root node' at the top most which is a parent for all nodes in the tree. It

inherits JComponent class.

Program:

import javax.swing.*;

import javax.swing.tree.DefaultMutableTreeNode;

public class TreeExample {

JFrame f;

TreeExample(){

 f=new JFrame();

 DefaultMutableTreeNode style=new DefaultMutableTreeNode("Style");

 DefaultMutableTreeNode color=new DefaultMutableTreeNode("color");

 DefaultMutableTreeNode font=new DefaultMutableTreeNode("font");

 style.add(color);

 style.add(font);

 DefaultMutableTreeNode red=new DefaultMutableTreeNode("red");

 DefaultMutableTreeNode blue=new DefaultMutableTreeNode("blue");

 DefaultMutableTreeNode black=new DefaultMutableTreeNode("black");

 DefaultMutableTreeNode green=new DefaultMutableTreeNode("green");

 color.add(red); color.add(blue); color.add(black); color.add(green);

 JTree jt=new JTree(style);

 f.add(jt);

 f.setSize(200,200);

 f.setVisible(true);

}

public static void main(String[] args) {

 new TreeExample();

}}

Output:

6.What is MVC architecture in Java?

MVC Architecture in Java

The Model-View-Controller (MVC) is a well-known design pattern in the web development field.

It is way to organize our code. It specifies that a program or application shall consist of data

model, presentation information and control information.

The model designs based on the MVC architecture follow MVC design pattern. The application

logic is separated from the user interface while designing the software using model designs.

The MVC pattern architecture consists of three layers:

Model: It represents the business layer of application. It is an object to carry the data that can

also contain the logic to update controller if data is changed.

View: It represents the presentation layer of application. It is used to visualize the data that the

model contains.

Controller: It works on both the model and view. It is used to manage the flow of application,

i.e. data flow in the model object and to update the view whenever data is changed.

7.What are the advantages of MVC architecture?

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit Wise Bit Bank

Collected & Prepared By: T. SREENIVASULA REDDY Page 1 of 4

QNO Questions

 UNIT-1 (OOPS Basics, Class, Object, String Handling)

1 Bytecode is executed by JVM leads to the portability and security of Java?

2 Use of pointers is not a Java features?

3

What should be the execution order, if a class has a method, static block, instance block, and
constructor, as shown below?
public class First_C {
 public void myMethod()
 {
 System.out.println("Method");
 }
 {
 System.out.println(" Instance Block");
 }
 public void First_C()
 {
 System.out.println("Constructor ");
 }
 static {
 System.out.println("static block");
 }
 public static void main(String[] args) {
 First_C c = new First_C();
 c.First_C();
 c.myMethod();
 }
}
Ans: Static block, instance block, constructor, and method

4
Evaluate the following Java expression, if x=3, y=5, and z=10:
++z + y - y + z + x++
Ans: 24

5

Which of the following for loop declaration is not valid?
a. for (int i = 99; i >= 0; i / 9)
b. for (int i = 7; i <= 77; i += 7)
c. for (int i = 20; i >= 2; - -i)
d. for (int i = 2; i <= 20; i = 2* i)
Answer: (a)

6
a. An interface with no fields or methods is known as a Marker Interface

7
Which option is false about the final keyword?
a. A final method cannot be overridden in its subclasses.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit Wise Bit Bank

Collected & Prepared By: T. SREENIVASULA REDDY Page 2 of 4

b. A final class cannot be extended.
c. A final class cannot extend other classes.
d. A final method can be inherited.
Answer: (c)

8 String memory memory a String is stored, when we create a string using new operator?

9 Import keyword is used for accessing the features of a package?

10 In java, jar stands for Java ARchive

11 How many threads can be executed at a time? Multiple threads

12 Modulus operator, %, can be applied to Both Integers and floating – point numbers

13 Box obj = new Box(); is a valid declaration of an object of class Box?

14 super can be used in a subclass to call the constructor of superclass?

15 Polymorphism technique is used to method overriding in java

16
A class member declared protected becomes a member of subclass of which type? private
member

17 multiple inheritance in Java can be implemented by using interfaces

18 All classes in Java are inherited from which class? java.lang.Object

19
If super class and subclass have same variable name, which keyword should be used to use
super class? super

20
In order to restrict a variable of a class from inheriting to subclass, how variable should be
declared? private

 UNIT-2 (Inheritance, Packages, Interfaces)

1 The import statement is used to include another Java package in a Java source file.

2
A subclass can call a constructor method defined by its super class by use of the super
keyword.

3 URL stands for Uniform Resource Locator

4 super keyword can be used in a subclass to call the constructor of superclass?

5 polymorphism is supported by method overriding in Java?

6 extends keyword must be used to inherit a class?

7 A class member declared protected becomes a member of subclass of private member

8 multiple inheritance in Java can be implemented by using interfaces

9 All classes in Java are inherited from which class? java.lang.Object

10
If super class and subclass have same variable name, which keyword should be used to use
super class? super.variablename

11
In order to restrict a variable of a class from inheriting to subclass, how variable should be
declared? private

12 Java.lang is superclass of String and StringBuffer class?

13 + operator can be used to concatenate two or more String objects?

14 length() method of class String is used to obtain a length of String object?

15 charAt() method of class String is used to extract a single character from a String object?

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit Wise Bit Bank

Collected & Prepared By: T. SREENIVASULA REDDY Page 3 of 4

16 java.lang package contain all the Java’s built in exceptions?

17
Can a class implement more than one interfaces? Yes, a class can implement more than one
interfaces.

18
What methods would a class that implements the java.lang.CharSequence interface have to
implement? charAt, length, subSequence, and toString.

19

 Is the following interface valid?
public interface Marker {
}
Ans: Yes. Methods are not required.

20
For every interface written in a java file, .class file will be generated after compilation? True or
False? True. For every interface written in a java file, .class file will be generated after
compilation.

 UNIT-3 (Exception Handling, I/O Operations, Generic Programming)

1
NullPointerException exception will be thrown if we use null reference for an arithmetic
operation?

2 Exception class is used to create user defined exception?

3
What is the use of try & catch? It allows us to manually handle the exception, It allows to fix
errors, It prevents automatic terminating of the program in cases when an exception occurs

4 throw Keywords are used for generating an exception manually?

5 package keywords is used to define packages in Java?

6 Packages is a mechanism for naming and visibility control of a class and its content?

7
public access specifiers can be used for a class so that its members can be accessed by a
different class in the different package?

8 java package stores all the standard java classes?

9 interfaces can be used to fully abstract a class from its implementation?

10 implements is a keyword used by a class to use an interface defined previously?

11

Which of these is an incorrect array declaration?
a) int arr[] = new int[5]
b) int [] arr = new int[5]
c) int arr[] = new int[5]
d) int arr[] = int [5] new

12

What will be the output of the following Java code?
 int arr[] = new int [5];
 System.out.print(arr);
Ans: Class name@ hashcode in hexadecimal form

13 When does method overloading is determined? At compile time

14 java.lang class is superclass of String and StringBuffer class?

15 super keyword can be used in a subclass to call the constructor of superclass?

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through JAVA

AY: 2021-2022

Unit Wise Bit Bank

Collected & Prepared By: T. SREENIVASULA REDDY Page 4 of 4

16 final keywords can be used to prevent Method overriding?

17

At line number 2 in the following code, choose 3 valid data-type attributes/qualifiers among
“final, static, native, public, private, abstract, protected”

public interface Status
 {
 /* insert qualifier here */ int MY_VALUE = 10;
 }
a) final, native, private
b) final, static, protected
c) final, private, abstract
d) final, static, public

18 abstract keywords are used to define an abstract class?

19 java.lang packages contains abstract keyword?

20

Which of these is correct way of inheriting class A by class B?
a) class B + class A {}
b) class B inherits class A {}
c) class B extends A {}
d) class B extends class A {}

1. Which of these is used to perform all input & output operations in Java?

A. streams B. Variables C. classes D. Methods

 Answer: A

2. What does AWT stands for?

A. All Window Tools B. All Writing Tools C. Abstract Window Toolkit D. Abstract Writing Toolkit

Answer: Option C

3. In java, how many streams are created for us automatically?

A. 2 B. 3 C. 4 D. 5

 Answer :B
4. Which method is used to write a byte to the current output stream?
A. public void write(int)throws IOException
B. public void write(byte[])throws IOException
C. public void flush()throws IOException
D. public void close()throws IOException

Answer :A
5.Which method is used to write an array of byte to the current output stream?
A. public void write(int)throws IOException
B. public void write(byte[])throws IOException
C. public void flush()throws IOException
D. public void close()throws IOException

Answer :B
6. ___________ returns true if called on a file and returns false when called on a directory.

A. IsFile()
B. Isfile()
C. isFile()
D. isfile()

Answer:C

7.What will be output for the following code?

 import java.io.*;

 class files

 {

 public static void main(String args[])

 {

 File obj = new File(""/java/system"");

 System.out.print(obj.getName());

javascript:%20void(0)
javascript:%20void(0)
javascript:%20void(0)
javascript:%20void(0)

 }

}

8. Which is Commonly used Methods of ByteArrayOutputStream class?

A) ByteArrayOutputStream()

B) ByteArrayOutputStream(int size)

C) public synchronized void writeTo(OutputStream out) throws IOException

D) Both A & B

Answer:C

9. Which class can be used to read data line by line by readLine() method?

A) BufferedReader

B) InputStreamReader

C) DataInputStream

D) None of the above

Answer:A

10. Which package includes StringTokenizer which tokenizes a string into independent words?

A) java.awt
B) java.applet
C) java.util
D) java.lang

Answer:C

11. Which of these is a process of writing the state of an object to a byte stream?
a) Serialization
b) Externalization
c) File Filtering
d) All of the mentioned

Answer:A

12. Which of these is a method of ObjectOutput interface used to finalize the output state so that any buffers are cleared?
a) clear()
b) flush()
c) fflush()
d) close()

Answer:B

13. Consider the following two statements

int x = 25;

Integer y = new Integer(33);

What is the difference between these two statements?

A. Primitive data types

B. primitive data type and an object of a wrapper class

C. Wrapper class

D. None of the above

14. What will be the output of the following Java program?

 class Output

 {

 public static void main(String args[])

 {

 Integer i = new Integer(257);

 byte x = i.byteValue();

 System.out.print(x);

 }

 }

15. What will be the output of the following Java program?

 class Output

 {

 public static void main(String args[])

 {

 Integer i = new Integer(257);

 float x = i.floatValue();

 System.out.print(x);

 }

 }

16. What will be the output of the following Java program?

 class Output

 {

 public static void main(String args[])

 {

 Long i = new Long(256);

 System.out.print(i.hashCode());

 }

 }

17. Which of these type parameters is used for a generic methods to return and accept any type of object?
a) K
b) N
c) T
d) V

Answer:C

18. Which of these type parameters is used for a generic methods to return and accept a number?
a) K
b) N
c) T
d) V

Answer:B

19. What will be the output of the following Java code?

 class multithreaded_programing

 {

 public static void main(String args[])

 {

 Thread t = Thread.currentThread();

 System.out.println(t);

 }

20. Which method is called internally by Thread start() method?

A. execute()
B. run()
C. launch()
D. main()
Answer:B
21. Number of threads in below java program is
public class ThreadExtended extends Thread {

 public void run() {
 System.out.println("\nThread is running now\n");
 }

 public static void main(String[] args) {

 ThreadExtended threadE = new ThreadExtended();

 threadE.start();
 }
}

22. Which method is used to make main thread to wait for all child threads
A. Join ()
B. Sleep ()
C. Wait ()
D. Stop ()
Answer:A

23. Which of these are types of multitasking?
A. Process basedB. Thread basedC. Process and Thread basedD. None of the mentioned
Answer:C

24. The method of the thread is called before the method and carries out any initialisation.
A) suspend, resume
B) start, run
C) start, stop
D) resume, suspend
Answer:B

25. What will be the output of the program?

class Test extends Thread {
public
 void run()
 {
 System.out.println("Run");
 }
} class Myclass {
public
 static void main(String[] args)
 {
 Test t = new Test();
 t.start();
 }
}

26. Which of these packages contain all the collection classes?
a) java.lang
b) java.util
c) java.net
d) java.awt
Answer:B

27. What is Collection in Java?
a) A group of objects
b) A group of classes
c) A group of interfaces
d) None of the mentioned
Answer:A

28. What will be the output of the following Java program?

 import java.util.*;
 class Array
 {
 public static void main(String args[])
 {
 int array[] = new int [5];
 for (int i = 5; i > 0; i--)
 array[5-i] = i;
 Arrays.fill(array, 1, 4, 8);
 for (int i = 0; i < 5 ; i++)

 System.out.print(array[i]);
 }
 }
29. What will be the output of the following Java program?

 import java.util.*;
 class Bitset
 {
 public static void main(String args[])
 {
 BitSet obj = new BitSet(5);
 for (int i = 0; i < 5; ++i)
 obj.set(i);
 obj.clear(2);
 System.out.print(obj);
 }
 }
30. Which of this interface must contain a unique element?
A. Set B. List C. Array d. Collection
Answer:A

31. What is the output of this program?
 import java.util.*;
 class Array
 {
 public static void main(String args[])
 {
 int array[] = new int [5];
 for (int i = 5; i > 0; i--)
 array[5 - i] = i;
 Arrays.sort(array);
 for (int i = 0; i < 5; ++i)
 System.out.print(array[i]);;
 }
 }

32. What is the output of this program?
 import java.util.*;
 class Collection_Algos
 {
 public static void main(String args[])
 {
 LinkedList list = new LinkedList();
 list.add(new Integer(2));
 list.add(new Integer(8));
 list.add(new Integer(5));
 list.add(new Integer(1));
 Iterator i = list.iterator();
 Collections.reverse(list);
 Collections.sort(list);
 while(i.hasNext())
 System.out.print(i.next() + " ");
 }
 }

33. Which class is used to generate random number?

a. java.lang.Object b. java.util.randomNumber
c.java.util.Random d. java.util.Object
Answer:C

34. The interface Comparable contains the method ___________
A toCompare
B compare
C compareTo
D compareWith
Answer:C

35. Iterator and ListIterator can iterate through __________
A List
B Set
C Map
D All the answers are true
Answer:A

36. The collection is a ____________

A.framework and interface

B.framework and class

C.only interface

D.only class
Answer:A

37. WT stands for ?

A. All Window Toolkit
B. Abstract Work Toolkit
C. Abstract Window Toolkit
D. Abstract Window Text

Answer:C

38. What is the super class of all components of Java?

A. java.all.Component
B. all.awt.Component
C. java.awt.Component
D. awt.Component

Answer:C

39. How many layout managers defined in java.awt package?

A. 2
B. 3
C. 4
D. 5

Answer:D

40. A ___________ dictates the style of arranging the components in a container.

A. border layout
B. grid layout
C. panel
D. layout manager

Answer:D
41. Which method used to place some text in the text field?

A. getText(String str)
B. setText(String str)
C. putText(String str)
D. None of the above

Answer:B
42.Which method used to change the foreground (text) color of components like text field?

A. setBackground(Color clr)
B. setForeground(Color clr)
C. setColor(Color clr)
D. setEditable(boolean state)
Answer:B

43. Which of these functions is called to display the output of an applet?
a) display()
b) paint()
c) displayApplet()
d) PrintApplet()
Answer:B

44. What is the Message is displayed in the applet made by the following Java program?

 import java.awt.*;

 import java.applet.*;

 public class myapplet extends Applet

 {

 public void paint(Graphics g)

 {

 g.drawString("A Simple Applet", 20, 20);

 }
 }

45. What is the length of the application box made by the following Java program?

 import java.awt.*;

 import java.applet.*;

 public class myapplet extends Applet

 {

 public void paint(Graphics g)

 {

 g.drawString("A Simple Applet", 20, 20);

 }
 }

46. Applets are designed to be embedded within an __________.

A. Javascript
B. Css
C. HTML
D. SQL
Answer:C

47. Which of the following is required to view an applet?

A. JCM
B. JDM
C. JVM
D. Java class
Answer:C

48. ___________ method is defined in Graphics class, it is used to output a string in an applet.

A. display()
B. Print()
C. drawString()
D. transient()

Answer:C

49. when an applet is terminated the following sequence of methods calls takes place?

A) stop(),paint(),destroy()

B) destroy(),stop(),paint()

C) destroy(),stop()
D) stop(),destroy()
Answer:D

50. Package of drawstring() method is
A. java.applet B. java.io C. javax.swing D. java.awt

Answer:D

51. Which of these methods can be used to know which key is pressed?
A. getActionEvent()B. getActionKey()C. getModifier()D. getKey()

Answer:C

52. MouseEvent is subclass of which of these classes?

a) ComponentEvent

b) ContainerEvent

c) ItemEvent
d) InputEvent
Answer:D

53. Which of the following contains both date and time?

a) java.io.date

b) java.sql.date

c) java.util.date

d) java.util.dateTime
 Answer:D

54. Which of the following is advantage of using PreparedStatement in Java?

a) Slow performance

b) Encourages SQL injection

c) Prevents SQL injection
d) More memory usage
Answer:C

55. Which of the following is used to call stored procedure?

a) Statement

b) PreparedStatement

c) CallableStatment
d) CalledStatement
Answer:C

56. he doGet() method in the example extracts values of the parameter’s type and number by using __________

a) request.getParameter()

b) request.setParameter()

c) responce.getParameter()

d) responce.getAttribute()
Answer:A

57. How many JDBC driver types does Sun define?
a) One
b) Two
c) Three
d) Four
Answer:D

58. Which JDBC driver Type(s) is(are) the JDBC-ODBC bridge?
a) Type 1
b) Type 2
c) Type 3
d) Type 4
Answer:A

59. DriverManager.getConnection(_______ , ______ , ______)

What are the two parameters that are included?

a) URL or machine name where server runs, Password, User ID

b) URL or machine name where server runs, User ID, Password

c) User ID, Password, URL or machine name where server runs
d) Password, URL or machine name where server runs, User ID
Answer:B

60. What are the major components of the JDBC?
A. DriverManager, Driver, Connection, Statement, and ResultSet

B. DriverManager, Driver, Connection, and Statement
C. DriverManager, Statement, and ResultSet

 D. DriverManager, Connection, Statement, and ResultSet
Answer:A

61. Select the packages in which JDBC classes are defined?
A. jdbc and javax.jdbc

B. rdb and javax.rdb
C.jdbc and java.jdbc.sql

D. sql and javax.sql
Answer:D

62. ________ is an open source DBMS product that runs on UNIX, Linux and Windows.

A. MySQL
B. JSP/SQL

C. JDBC/SQL
D. Sun ACCESS

Answer:A

63. Which of the following class is derived from the container class?

 (a) Component (b) Panel
 (c) MenuComponent (d) List

Answer:
64. .Name of the class used to represent a GUI application window, which is optionally

 resizable and can have a title bar, an icon, and menus.
 (a)Window (b)Panel

 (c)Dialog (d)Frame
Answer:

65. Package of drawString() method is________
 (a)java.applet (b)java.io

 (c)javax.swing (d)java.awt
Answer:
66. Object which can store group of other object is called______

 (a)Collection object (b)Java object
 (c)Package (d)Wrapper

Answer:A
67. Which of these methods can be used to know which key is pressed?

(a) getModifier() (b)getActionKey
(c) getActionEvent() (d)getKey()

Answer:A
68. Swing components that don’t rely on Native GUI are reffered to as __________

(a)Ligthweight component (b)heavy weight component
(c) GUI component (d) Non GUI component
Answer:A

69. When applet is dead, it automatically invokes the_____method when
 We quit the browser.

 (a)Paint() (b) Stop()
 (c) Destroy() (d) Final()

Answer:C
70. can you use setBackground() method to set the background color for ____?

(a) Component (b) Container
(c) JComponent (d) All three

Answer:A
71. Which of the following is used to interpret and execute Java Applet Classes Hosted by HTML?

 (a)Appletviewer (b)Appletscreen
 (c)Appletwatcher (d)Appletshow

Answer:A

72. ______package contains all the classes and methods required for Event handling in java.
 (a) java.applet (b) java.awt

 (c) java.event (d) java.awt.event
Answer:B

73. _____ method are used to register a mouse motion listener.
(a) addMouseO

(b) addMouseListenerO
(c) addMouseMotionListnerO

(d) eventMouseMotionListenerO
Answer:C

74. ____ is super class of all the events.
(a) EventObjeet (b) EventClass

(c) AetionEvent (d) ItemEvent
Answer:A

75. If scroll bar is manipulated______ event will be notified.
(a) AetionEvent (b) ComponentEvent

(c) AdjustmentEvent (d) WindowEvent
Answer:C

76. ______method can be used to obtain the command name for invoking ActionEvent object.
 (a) getCommand() (b) getActionCommand()

 (c) getActionEvent() (d) getActionEventCommand()
Answer:B

77. When the size of component is changed, __ event is generated.
 (a) ComponentEvent (b) ContainerEvent

 (c) FocusEvent (d) InputEvent
Answer:A

78. ____ is superclass of Container Event class.
 (a) WindowEvent (b) ComponentEvent

 (c) ItemEvent (d) InputEvent
Answer:B

79. The_______interface is used to handle the menu events.
 (a) ContainerListener (b) FocusListener

 (c) ActionListener (d) WindowListner
Answer:C
80. __________ creates a dropdown list of textual entries

a. Choice b. Checkbox c. Textbox d. TextComponent

Answer:A

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through Java

AY: 2021-2022

Object Oriented Programming Through Java Unit Wise Bit Bank

Collected & Prepared By: T. SREENIVASULA REDDY Page 1 of 3

QNO Questions

 UNIT-1 (OOPS Basics, Class, Object, String Handling)

 2 Marks Questions

1 What is meant by Object Oriented Programming?

2 What is a constructor? What is the purpose of a constructor in a class?

3 What is the advantage of using “this” keyword, explain?

4
What are the core OOP’s concepts?

5 What are objects? How are they created from a class?

6 List some java keywords?

7 When do we declare the members of the class as static explain with example?

8 Explain what is meant by garbage collection?

9 What is a Method? What is the purpose of Methods in a class?

10 What is an array?

11 What is the difference between String and String Buffer?

12 What is static variable and static method?

13 What is short-Circuit operator?

14 What is Garbage collection?

15 What is arraycopy method? Explain with syntax.

16 What is wrapper class?

17 Name some JavaDoc Comments.

18 What is vector? How is it different from an array?

19 Give any 4 differences between C++ and Java.

 8 Marks Questions

1 Write about the Java language BUZZWORDS.

2
Explain the structure of Java program.

Explain the working of Java Virtual Machine (JVM).

3

How many data types are in java? Explain with ranges.

What is an operator? Explain different types of operators.

4
Explain briefly type Conversion and type casting.

Explain the general Syntax of writing an application program in java. Also explain the steps
to run an application Java programs.

5
What are the shortcomings of procedural programming? How does object oriented
programming overcome those shortcomings?

6 Write a java Program to demonstrate Constructor Overloading.

7 Explain the various methods of Parameter passing.

8
Compare in terms of their Functions the following pairs of statements.
for loop
while & do-while.

9 Explain selection Statements with an example.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through Java

AY: 2021-2022

Object Oriented Programming Through Java Unit Wise Bit Bank

Collected & Prepared By: T. SREENIVASULA REDDY Page 2 of 3

10 Explain about String Handling functions with an example

11 Explain differences between StringBuffer and StringBuilder classes

12 Explain about static block and static methods in java

13 Illustrate with examples: static and final.

 UNIT-2 (Inheritance, Packages, Interfaces)

 2 Marks Questions

1 Explain the usage of Java packages.

2 What are different types of access modifiers (Access specifiers)?

3 What is an Object and how do you allocate memory to it?

4 What is a package? How to define a package?

5 What is the difference between this () and super ()?

6 Define super class and subclass?

7 What is meant by Inheritance?

8 What is meant by Static binding, Dynamic binding?

9 What is an Interface?

10 What is final modifier?

11 What are object wrappers? Give example.

12 Define polymorphism.

13 What are the methods under "object" class / java.lang.Object.

14 Explain toString method of object class.

15 What is reflection?

16 What is object cloning?

17 Write the application of proxies.

18 Differentiate shallow copy and deep copy in cloning.

19

 8 Marks Questions

1 What are the different forms of inheritance? Explain.

2 Write a Java Program to implement method Overloading and method overriding?

3
Explain Abstract classes with an example program? Also describe the properties of abstract
classes?

4 What is a Package? Explain the Packages with an example and how to import packages?

5 Describe interfaces & how to implement it with a Java Program?

6
Describe Dynamic Method dispatch and the use of final keyword in Java with relevant
Programs?

7 What is multiple inheritance and how to perform it in Java?

8
Give a detailed sketch of the differences between Single, Multilevel & Hierarchial
Inheritance?

9
Is there multiple inheritance in Java? If not, whether there is an alternative to implement
Multiple inheritance?

10 Explain about inner classes and its importance in Java

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: TIRUPATHI
AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Regulation:
AK20

Subject Code:
20APC3004

Subject Name : Object Oriented Programming
Through Java

AY: 2021-2022

Object Oriented Programming Through Java Unit Wise Bit Bank

Collected & Prepared By: T. SREENIVASULA REDDY Page 3 of 3

11
Develop a message abstract class which contains playMessage abstract method. Write a
different sub-classes like TextMessage, VoiceMessage and FaxMessage classes for to
implementing the playMessage method.

12
Develop an Interest interface which contains simpleInterest and compInterest methods and
static final field of Rate 25%. Write a class to implement those methods.

13 Explain the different methods supported in Object class with example.

14 What is object cloning? Explain deep copy and shallow copy with examples.

15
Develop a abstract Reservation class which has Reserve abstract method. Implement the
sub-classes like ReserveTrain and ReserveBus classes and implement the same.

16
Develop a Library interface which has drawbook(), returnbook() (with fine), checkstatus()
and reservebook() methods. All the methods tagged with public.

17
Develop a static Inner class called Pair which has MinMax method for finding min and max
values from the array.

18 Explain static nested class and inner class with examples.

19
What is the difference between an abstract class and an interface? What is the use of
interface? Write a program in java to illustrate the use of an interface.

20 Explain the procedure to call super class members with examples

 UNIT-3 (Exception Handling, I/O Operations, Generic Programming)

 2 Marks Questions

1 What is Exception Handling?

2 What are the 2 methods by which we may stop threads?

3 What is the use of throw & throws clause?

4 What is an uncaught exception?

5 Describe Built in Exception?

6 What is the use of try and catch block in java?

7 What are runtime exceptions?

8 How to create custom exceptions?

9 How to create custom exceptions?

 8 Marks Questions

1 How the exceptions are handled in java? OR Explain exception handling mechanism in java?

2 what are checked and unchecked exceptions in java?

3 With a program illustrate user defined exception handling.

4 How to handle multiple catch blocks for a nested try block? Explain with an example.

5 What are the uses of ‘throw’ and ‘throws’ clauses for exception handling?

6 How Java handle overflows and underflows?

MultiThreading

1. What is the use of isAlive()? (2M)

2. What is multithreading? In how many ways
Java implements multithreading? Explain one

of these ways with suitable example. (4M)

3. Explain with example, suspending and

resuming threads in Java. (4M)

4. What is a daemon thread? (2M)

5. How inter thread communication is done in
Java? (4M)

6. Write a java program to create threads with

different priorities. (4M)

7. Why thread is called a light weight process?

What are the different things shared by
different threads of a single process? What are

the benefits of this sharing? (4M)

8. Mention any application for which

multithreading is not desired. (2M)

9. Discuss about join keyword. (2M)

10. Explain the synchronization of multiple threads
in Java with an example. (4M)

11. Explain thread states with block diagram. And,

Associate methods to each state.

12. What is race condition? (2M)

a. A _____________ is a program that is executing.

b. ____________ multitasking is the feature that

allows your computer to run two or more

programs concurrently.

c. Single-threaded systems use an approach

called an __________ with polling.
d. A thread‟s priority is used to decide when to

switch from one running thread to the next is

called a __________

e. Java‟s multithreading system is built upon the

____ class, its methods, and its companion
interface, _____.

f. static Thread __________ method returns a

reference to the thread in which it is called.

g. The sleep() method in Thread might throw an

__________.

h. A _________ is a data structure that controls the
state of a collection of threads as a whole.

i. The _______ method causes the thread from

which it is called to suspend execution for the

specified period of milliseconds.

j. To implement Runnable, a class need only
implement a single method called ________

k. _________ method executes a call to run().

l. The ___________ method returns true if the

thread upon which it is called is still running.

m. To set a thread‟s priority, use the __________

method, which is a member of Thread.
n. _______ wakes up a thread that called wait() on

the same object.

o. What will be the output of the following Java

code? What is the name of the thread in the

following Java Program? What is the priority of
the thread in the following Java Program?

class multithreaded_programing

 {

 public static void main(String args[])

 {
 Thread t = Thread.currentThread();

 System.out.println(t);

 }

 }

I/O Operations

1. What is a stream? Explain its types. (2M)
2. List classes that are used by Byte streams for

input and output operation. (2M)

3. List classes that are used by character streams

for input and output operation. (2M)

4. Illustrate PrintWriter Class to handle console
output. (2M)

5. Write a program to copy one file to another

using try with resources block.(4M)

6. Write a program to create and write a string in

a file

7. WAP to display the contents of the file

a. A _______ is linked to a physical device by the

Java I/O system.

b. __________ are used to perform all input &

output operations in Java
c. _______________ class is used to read from byte

array

d. System class contains three predefined stream

variables: ________________________

e. ________ class contains the methods print() &

println()
f. int read() throws ______________

g. ______________ streams uses Writer and Reader

classes for input & output operations.

h. _____________ class is used to read from a file

i. FileInputStream(String fileName) throws ____
j. _____________ is returned by read() method is

end of file (EOF) is encountered

k. The try-with-resources statement can be used

only with those resources that implement the

__________ interface defined by java.lang.

l. AutoCloseable is inherited by the ___________
interface in java.io.

m. The list of suppressed exceptions can be

obtained by using the ____________ method

defined by Throwable.

n. What will be the output of the following Java

program if input given is „abcqfghqbcd‟?

 class Input_Output

 {

 public static void main(String args[]) throws

IOException
 {

 char c;

 BufferedReader obj = new

BufferedReader(new

InputStreamReader(System.in));

 do
 {

 c = (char) obj.read();

 System.out.print(c);

 } while(c != 'q');

 }
 }

o. What will be the output of the following Java

program if input given is “abc‟def/‟egh”?

 class Input_Output

 {
 public static void main(String args[]) throws

IOException

 {

 char c;

 BufferedReader obj = new
BufferedReader(new

InputStreamReader(System.in));

 do

 {

 c = (char) obj.read();

 System.out.print(c);
 } while(c!='\'');

 }

 }

p. What will be the output of the following Java
program?

 class output

 {

 public static void main(String args[])

 {

 String a="hello i love java";
 System.out.println(indexof('i')+"

"+indexof('o')+" "+lastIndexof('i')+" "+lastIndexof('o')

));

 }

 }

q. What will be the output of the following Java

program?

 class output

 {

 public static void main(String args[])
 {

 char c[]={'a','1','b',' ','A','0'];

 for (int i = 0; i < 5; ++i)

 {

 if(Character.isDigit(c[i]))
 System.out.println(c[i]" is a digit");

 if(Character.isWhitespace(c[i]))

 System.out.println(c[i]" is a

Whitespace character");

 if(Character.isUpperCase(c[i]))

 System.out.println(c[i]" is an Upper
case Letter");

 if(Character.isUpperCase(c[i]))

 System.out.println(c[i]" is a lower case

Letter");

 i = i + 3;

 }
 }

 }

r. What will be the output of the following Java

program if input given is “Hello stop World”?

class Input_Output
 {

 public static void main(String args[]) throws

IOException

 {

 string str;

 BufferedReader obj = new
BufferedReader(new

InputStreamReader(System.in));

 do

 {

 str = (char) obj.readLine();
 System.out.print(str);

 } while(!str.equals("strong"));

 }

 }

s. What will be the output of the following Java
program?

 class output

 {

 public static void main(String args[])

 {
 StringBuffer s1 = new StringBuffer("Hello");

 s1.setCharAt(1,x);

 System.out.println(s1);

 }

 }

Generic Programming

1. What are Generics? (2M)

2. Write a program to Illustrate the working of

Generic class in Java. (4M)

3. Write a program to Illustrate the working of
generic method in Java (4M)

4. Implement bounded type parameters using

extends Comparable object. (4M)

5. Write a program to illustrate the working of

generic constructors (4M)

6. What are the restrictions to be remembered
while using generics. (2M)

a. generics means _____________

b. ___________ is the superclass of all other

classes
c. The syntax for declaring a generic class:

d. The full syntax for declaring a reference to a

generic class and instance creation:

e. A class that implements ___________ defines
objects that can be ordered.

Collection Framework

1. What is collection Framework?(2M)

2. What are legacy classes? (2M)

3. Draw the hierarchy of collection framework.
(2M)

4. WAP to traverse ArrayList elements using the

Iterator interface. (2M)

5. WAP to add and traverse elements in a Linked
List. (2M)

6. WAP to insert, remove and display elements in

a stack. (4M)

7. WAP to insert, remove and display elements in

a queue. (4M)

8. Demonstrate the methods in StringTokenizer
class with an example. (4M)

a. The _________________ package contains the

Collections Framework

b. An ___________ offers a general-purpose,
standardized way of accessing the elements

within a collection, one at a time

c. ____________ class object can be used to form a

dynamic array

d. ____________ is the interface of legacy

e. ArrayList class implements a dynamic array by
extending _____________ class.

f. _______________ method can be used to increase

the capacity of ArrayList object manually

g. What will be the output of the following Java

program?

 import java.util.*;

 class Arraylist

 {

 public static void main(String args[])
 {

 ArrayList obj = new ArrayList();

 obj.add("A");

 obj.add("B");

 obj.add("C");
 obj.add(1, "D");

 System.out.println(obj);

 }

 }

h. What will be the output of the following Java
program?

 import java.util.*;

 class Output

 {

 public static void main(String args[])
 {

 ArrayList obj = new ArrayList();

 obj.add("A");

 obj.ensureCapacity(3);

 System.out.println(obj.size());

 }
 }

Applets

1. What is an applet? (2M)

2. Write a simple applet that displays “hello

world” and explain its working.(4M)
3. Explain the concept of applet to applet

communication with suitable program. (4M)

4. What for repaint() method is used? (2M)

5. Differentiate between paint() and repaint()

functions. (2M)
6. Present the structure of a Java Applet (2M)

7. Discuss in detail about Applet life cycle. (4M)

8. How to pass the parameters to an Applet?

Explain with example. (4M)

a. Applets do not need a _________ method.
b. The _____________ method is the first method to

be called in an applet.

c. The ___________ method is called each time an

AWT-based applet‟s output must be redrawn.

d. Whenever the applet requires to redraw its
output, it is done by using method

e. ____________ method is defined in Graphics

class, it is used to output a string in an applet.

Swings
1. Explain the delegation event model. (4M)

2. Explain procedure to handle mouse events in

Java with an example program. (4M)

3. Design a Java front end for a login page using

swing components with the Gridlayout
manager (4M)

4. Discuss about list box and choice boxes. (2M)

5. Explain Jtree Swing components with suitable

example. (4M)

6. What is MVC architecture in Java? (4M)

7. What are the advantages of MVC architecture?
(2M)

8. Write a Java Swing Program to design a form

that contains button, text field, password field,

radio button and combo button in a frame.

(8M)

a. The ActionListener Interface defines the

__________ method that is invoked when an

action event occurs.

b. public class JButton extends ______________

implements ______________
c. public class JLabel extends ______________

d. public class JPasswordField extends

e. The BorderLayout provides ____________

constants for each region
f. The Java _________________ class is used to

arrange the components in a rectangular grid.

g. The BoxLayout class provides ___________

constants.

h. The Java ______________ class manages the

components such that only one component is
visible at a time.

Code: 15A05403

B.Tech II Year II Semester (R15) Regular Examinations May/June 2017

OBJECT ORIENTED PROGRAMMING USING JAVA
(Common to CSE & IT)

Time: 3 hours Max. Marks: 70

PART - A
(Compulsory Question)

1 Answer the following: (10 X 02 = 20 Marks)
 (a) Explain about commands javac, java.
 (b) List any four predefined packages in java.
 (c) What is multitasking?
 (d) Define an event in java.
 (e) Demonstrate the use of “?” operator.
 (f) Differences between the object oriented program and procedural oriented programming.
 (g) Explain about Bitwise operators in java.
 (h) Explain the normal flow of a thread with neat diagram.
 (i) List out event sources.
 (j) Explain parameter passing methods in java.

PART - B
(Answer all five units, 5 X 10 = 50 Marks)

UNIT - I

2 (a) Explain briefly buzzwords of java.
 (b) Explain any four object oriented programming features.
 OR
3 (a) Explain about arrays in java with an example program.
 (b) Write a java program to perform matrix multiplication.

UNIT - II

4 (a) Explain about StringTokenizer class in java with example.
 (b) In how many ways a package can be imported. Explain with an example program.
 OR

5 (a) What is a constructor? Explain constructor overloading with an example.
 (b) What is a method? Explain method overloading with example.

UNIT - III

6 (a) Define a package. Write down the steps to create a package.
 (b) Define an interface. Explain about implementing an interface with example.
 OR

7 (a) What is an exception? Explain various exception types.
 (b) Write a java program using all keywords of exception handling.

Contd. in page 2

Page 1 of 2

R15

www.ManaResults.co.in

Code: 15A05403

UNIT - IV

8 (a) Write a java program that creates a thread by extending the thread class.
 (b) Explain about thread priorities in java with suitable example.
 OR

9 (a) Explain about the ways to create an applet with example.
 (b) How to pass parameters to an applet? Explain with an example.

UNIT - V

10 (a) List and explain various AWT components in java.

 (b) Explain about event delegation model.

 OR
11 Explain the following layout managers.

 (a) Border layout.

 (b) Grid layout.

 (c) Flow layout.

Page 2 of 2

R15

www.ManaResults.co.in

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Java Programming
Model Paper – R13

II CSE II Semester
Duration: 3hrs Max Marks: 75

Answer all the following

 PART-A (Marks 25)

1. (a) What are the properties of object oriented programming?

(b)what is method overriding?

(c)Define an Exception.What is meant by Exception Handling?

(d)List some of the classes available in collection?

 (e)List the compponents of Swing?

(f)Discuss briefly about streams.

(g)What is inheritance?

(h)What is thraed priority?

(i)What are the steps involved in connecting the database?

(j)What is an event?

Answer all the questions either (a) or (b)

 PART – B (Marks: 5*10=50)

2. (a)Discuss in detail about inheritance. Also write its benefits.

 (OR)

(b)Describe about Type conversion. Also explain how casting is used to perform type conversion between

incompatible types.

 3. (a) What is inheritance ? Explain different types of inheritance.

 (OR)

 (b) How a method can be overridden? Explain.

 4. (a) Give the class hierarchy in Java related to exception handling. Briefly explain each class.

(OR)

 (b)What is a thread? Explain the states of a thread with an example.

 5. (a) Explain in detail about collection interfaces.

(OR)

 (b) Explain in details about primary input and output operations.

 6. (a) Explain in detail about the classification of swing components.

 (OR)

 (b)Explain in brief about events and event sources.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Java Programming
Model Paper –2 (R13)

II CSE II Semester
Duration: 3hrs Max Marks: 75

Answer all the following

 PART-A (Marks 25)

1 (a) Discuss briefly about recursion.
(b) Define package
(c) Differences between multi tasking and multi threading.
(d) Discuss briefly about hash table class.
(e) Explain in brief about layout manager.
(f) What is an operator? list various tupes.
(g) List different types of access specifies.
(h) List the keywords used to handle exceptions.
(i) Define character streams.
(j) Define Applet.
 PART – B (Marks:5*10=50)

Answer all the questions (Either (a) or (b))

2 (a)What is constraint explain the constant types with examples.
 (OR)
(b)What is a method ?How a method is used in the class? Explain.

 3 (a) Explain the usage of Abstract classes and methods.
 (OR)
 (b)Discuss how inheritances are defined and implemented.
 4 (a)What is multithreading? Explain.

(OR)
 (b)What is synchronization? Explain with suitable example.
 5 (a)Write short notes on the following collection framework classes.

1) Random 2) Scanner
 (OR)
 (b)Write a short notes on
 1) Connection interface
 2)Statement object
 3)Inner join
 4)Execute Query Method.
 6 (a)Write a simple awing application in java.
 (OR)
 (b)Write the difference between applets and applications.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Java Programming
Model Paper –3 (R13)

II CSE II Semester
Duration: 3hrs Max Marks: 75

Answer all the following

 PART-A (Marks 25)

 1. (a) List the data typed]s present in java.

(b)Explain in brief about interfaces.

(c)What is meant by checked exception and unchecked exception.

(d)How statements call can be used? Also list the types of methods in statement class.

(e)Discuss about Jframe and Jpanel.

(f)Discuss briefly about enumerated data types.

(g)what is CLASSPATH.

(h)What is multithreading?

(i)List the types of JDBC drivers present in java.

(j)What are event sources?

 PART – B (Marks:5*10=50)

Answer all the questions (Either (a) or (b))

 1. (a)List the primitive data types of java. Explain each of them in detail.

 (OR)

 (b)What are the different types of array? List out the advantages of using arrays?

 2. (a)Write in detail about super class and subclasses.

 (OR)

 (b)Write the differences between interfaces and abstract.

 3. (a)How are finally statements used in java? Explain in detail.

 (OR)

 (b)Is it possible to interrupt a thread? Explain.

 4. (a) Explain inn detail about hash table class.

 (OR)

 (b) Explain in detail about the types of drivers in JDBC.

 5. (a) Discuss in detail about swing components.

 (OR)

 (b)Explain about various event classes.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Java Programming
Model Paper –4 (R13)

II CSE II Semester
Duration: 3hrs Max Marks: 75

Answer all the following

 PART-A (Marks 25)

1. (a) What are the OOPs features?
 (b) Compare Procedural and OOP Languages?.

(c) Explain about control statements in java?.

(d) Explain about method overloading with example?

(e) Explain about the usage of super keyword with an example?
(f) Explain how interfaces are implemented with an example?.

(g) Explain the following: try, catch, throw, throws, finally

(h) Explain the creation of threads with an example?
(i)List the types of JDBC drivers present in java.

(j)What are event sources.and Explain the life cycle of an applet?

 PART – B (Marks:5*10=50)

Answer all the questions (Either (a) or (b))

2. (a) What is type casting and conversion? When it is required?
(b). What is an array? How arrays are declared in javawith an example?

 (OR)

 (c) Explain about method overloading with example? Explain about constructor overloading with example?
3 (a) What is method overriding? How methods overriding is achieved in Java, with an example?.

 (OR)

 (b) How multiple inheritances are achieved in java with the interfaces? Explain with an example?
4 (a) What are the checked Exceptions and Unchecked Exceptions? Explain some of these
exceptions with an example and also give the difference between them.
 (OR)

 (b) How the priorities can be assigned to threads? Explain with example?
5 (a) Explain the difference between: i) Vector and Array List. ii) Enumeration and Iterator.
 (OR)

 (b)Explain in deatil about the types of drivers in JDBC.

6 (a) Define event. Give examples of events. Define event handler. How it handles events?

 (OR)

 (b) Explain about layout manager? With an example?.

 E
ng

in
ee

rs
hu

b
A

nd
ro

id
 A

pp

 E
ng

in
ee

rs
hu

b
A

nd
ro

id
 A

pp

www.Engineershub.in www.Engineershub.in

Code No: R09220503 R09 Set No. 2

II B.Tech II Semester Examinations,December-January, 2012
OBJECT ORIENTED PROGRAMMING

Common to Information Technology, Computer Science And Engineering,
Electronics And Communication Engineering, Electrical And Electronics

Engineering
Time: 3 hours Max Marks: 75

Answer any FIVE Questions
All Questions carry equal marks

? ? ? ? ?

1. (a) Discuss member access using Inheritance.

(b) What are the advantages of Inheritance? [8+7]

2. (a) Explain about various expressions in java.

(b) Discuss in detail about type conversion and casting. [7+8]

3. (a) What is meant by uncaught exceptions? Explain it with suitable examples.

(b) Explain with suitable examples about the usage of try and catch statements.
[7+8]

4. What is meant by encapsulation? Explain how encapsulation is achieved in JAVA.
[15]

5. (a) State and explain the simple Applet display methods.

(b) Write Java code for a simple Banner Applet and explain it. [7+8]

6. (a) Give illustrations on explicit interface member implementations.

(b) How Interfaces can be validated? Explain with example. [7+8]

7. What is meant by virtual key codes? Write a sample Java program to demonstrate
some virtual key codes. [15]

8. (a) Discuss about wait(), notify() and notifyAll() methods in Java.

(b) What is meant by a Deadlock? Is it possible to occur in a multithreaded
program? Justify your answer with a sample Java program. [7+8]

? ? ? ? ?

1

 E
ng

in
ee

rs
hu

b
A

nd
ro

id
 A

pp

 E
ng

in
ee

rs
hu

b
A

nd
ro

id
 A

pp

www.Engineershub.in www.Engineershub.in

Code No: R09220503 R09 Set No. 4

II B.Tech II Semester Examinations,December-January, 2012
OBJECT ORIENTED PROGRAMMING

Common to Information Technology, Computer Science And Engineering,
Electronics And Communication Engineering, Electrical And Electronics

Engineering
Time: 3 hours Max Marks: 75

Answer any FIVE Questions
All Questions carry equal marks

? ? ? ? ?

1. (a) Briefly explain Stream Tokenizer class.

(b) Write a program to illustrate the use of stream tokenizer class. [8+7]

2. Discuss about various methods defined in the following classes:

(a) ImageIcon

(b) JLabel

(c) JTextField

(d) JButton [15]

3. (a) Write short notes on history of Java.

(b) What is a data type? Explain various data types available in Java. [7+8]

4. (a) Write a Java program to concatenate two given strings.

(b) Write a Java program to convert all the letters in a string to upper case.

(c) Discuss the usage of the method “valueof()” with an example. [5+5+5]

5. (a) How to request a service from an object through a message?

(b) Write a simple Java program to display a message “welcome to oops” by using
the member function creating an object to call particular member function.

[7+8]

6. (a) Explain in detail about various forms of inheritance?

(b) Discuss about Specialization in detail. [7+8]

7. Discuss in detail about Menu bars, Menus and Dialog boxes. [15]

8. Discuss in detail about various Enumerations and Annotations in Java. Write
sample Java programs to describe each of them. [15]

? ? ? ? ?

2

 E
ng

in
ee

rs
hu

b
A

nd
ro

id
 A

pp

 E
ng

in
ee

rs
hu

b
A

nd
ro

id
 A

pp

www.Engineershub.in www.Engineershub.in

Code No: R09220503 R09 Set No. 1

II B.Tech II Semester Examinations,December-January, 2012
OBJECT ORIENTED PROGRAMMING

Common to Information Technology, Computer Science And Engineering,
Electronics And Communication Engineering, Electrical And Electronics

Engineering
Time: 3 hours Max Marks: 75

Answer any FIVE Questions
All Questions carry equal marks

? ? ? ? ?

1. (a) Explain about type conversion with an example.

(b) Explain about wrapper class with an examples. [7+8]

2. Discuss the following string operations:

(a) String Literals

(b) String concatenation

(c) String conversion

(d) String constructors [15]

3. (a) What is meant by Auto-Unboxing? Explain with an example.

(b) Discuss clearly about type wrappers in Java. [8+7]

4. (a) Does a super class variable be used to refer a sub class object. Explain with
an example.

(b) Explain about the extension of a class from another class with a program.
[8+7]

5. (a) Discuss various constructors for FlowLayout? Explain them.

(b) Write a sample Java program to demonstrate the usage of BoarderLayout.
[7+8]

6. List out various Swing component classes and explain them clearly. [15]

7. (a) Discuss in detail about Buffered Byte Stream class with an example.

(b) Demonstrate Sequence Input Stream with a program.

(c) Write down the benefits of streams in java. [7+5+3]

8. Explain following terms with an example for each

(a) abstraction

(b) information hiding

(c) dynamic binding

(d) reusability. [15]

? ? ? ? ?

3

 E
ng

in
ee

rs
hu

b
A

nd
ro

id
 A

pp

 E
ng

in
ee

rs
hu

b
A

nd
ro

id
 A

pp

www.Engineershub.in www.Engineershub.in

Code No: R09220503 R09 Set No. 3

II B.Tech II Semester Examinations,December-January, 2012
OBJECT ORIENTED PROGRAMMING

Common to Information Technology, Computer Science And Engineering,
Electronics And Communication Engineering, Electrical And Electronics

Engineering
Time: 3 hours Max Marks: 75

Answer any FIVE Questions
All Questions carry equal marks

? ? ? ? ?

1. State and explain various constructors and methods defined in the JTree, JScroll-
Pane and JComboBox classes. [15]

2. (a) Explain the term “Annotation” in Java. Discuss how to specify the annotation
retention policy.

(b) Discuss in detail about the single-member annotations with a sample Java
program. [8+7]

3. (a) Write a program illustrating ‘this’ keyword. Explain it.

(b) Write short note on garbage collection. [7+8]

4. (a) What is inheritance? How inheritance promotes software reuse?

(b) How to create class by inheriting from existing class? [7+8]

5. (a) Discuss about various methods defined by Pleader and Writer classes.

(b) Write a program that illustrates file writes. [8+7]

6. (a) Give illustration on finalize(), equals and to string() methods.

(b) Define substitutability and discuss its needs. [8+7]

7. What are the various adapter classes that implements commonly used Listener
interfaces? Write a sample Java program to demonstrate an Adapter. [15]

8. What are the Java’s built-in exceptions? List the checked exceptions defined in the
Java.lang and explain them clearly with suitable examples. [15]

? ? ? ? ?

4

Code: 13A05403 R13
B.Tech II Year II Semester (R13) Supplementary Examinations December 2016

JAVA PROGRAMMING
(Common to CSE and IT)

Time: 3 hours Max. Marks: 70
PART – A

(Compulsory Question)

1 Answer the following: (10 X 02 = 20 Marks)
(a) What is the role of JVM?
(b) Compare and contrast equals () versus = =.
(c) Discuss garbage collection.
(d) Demonstrate the usage of super keyword.
(e) Explain throws clause.
(f) Discuss Byte Array Output Stream.
(g) Explicate the life cycle of a thread.
(h) Why do we need cookies?
(i) Discuss components and containers of swings.
(j) What are the two swing key features?

PART – B
(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I
2 Write a program for matrix multiplication using two dimensional arrays.

OR
3 (a) Discuss string constructors.

(b) Differentiate between string and string buffer with an apt example, signifying their usage.

UNIT – II
4 What is the difference between an abstract class and an interface? What is the use of interface? Write a

program in java to illustrate the use of an interface.
OR

5 Define a package. Why do we need packages? Illustrate with suitable example, class member access
with respect to packages.

UNIT – III
6 Describe the java throwable class hierarchy and the types of exceptions. Can you claim multiple

exceptions in a method declaration? Illustrate by means of an example.
OR

7 (a) What is the difference between the reader and writer classes? Show the stream class hierarchy as
defined in java.io.package.

(b) Discuss the stream benefits.
UNIT – IV

8 Illustrate with an example, the two ways we can synchronize the code when two or more threads are
trying to access it.

OR
9 Discuss Applet’s life cycle methods. Illustrate with an example passing parameters to applets.

UNIT – V
10 What are swings in java? Write a program in java to illustrate the use of swing controls.

OR
11 Compare and contrast Java AWT and Java Swing. Give a brief synopsis of methods and their

description of component class widely used in swings.

www.jntufastresult.com

Firs
tRanker

Code: R7411302

B.Tech IV Year I Semester (R07) Supplementary Examinations, May 2013

OBJECT ORIENTED PROGRAMMING
(Electronics & Control Engineering)

Time: 3 hours Max. Marks: 80
Answer any FIVE questions

All questions carry equal marks

1. (a) Explain various data types in java. Write at least 8 types with examples for each.
 (b) What is meant by type conversion and type casting? List out the differences between the two.

2. (a) What is an object? Explain how do we create objects in java? Explain with suitable example.
 (b) What are constructors and destructor functions? Explain different types of constructors.

3. (a) Explain the peculiarity of java in providing multiple inheritances.
 (b) List out the differences between method overloading and method overriding.

4. (a) Explain the way of implementing exploration of package using java.io.
 (b) Discuss the various levels of access protection available for package and their implications.

5. (a) Give the list of unchecked exceptions in java with their meaning.
 (b) Explain multithreading by extending thread class. Give an example.

6. What are the methods supported by mouse listener and mouse motion listener interface?
Explain each of them with examples.

7. (a) Explain the life cycle of an applet.
 (b) List out the differences between an applet program and application program.

8. Explain the following:
 (a) String handling.
 (b) Datagram’s.
 (c) Inet addresses.

R07

www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.comwww.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Code: R7220506

B.Tech II Year II Semester (R07) Supplementary Examinations December/January 2015/2016

OBJECT ORIENTED PROGRAMMING
(Common to CSE, IT, ECC & CSS)
(For 2008 regular admitted batch only)

Time: 3 hours Max. Marks: 80

 Answer any FIVE questions
All questions carry equal marks

1 (a) What is the difference between object based and object oriented programming?
 (b) How does java differ from C language?

2 (a) Write a java program to find greatest common divisor of given two numbers.
 (b) Write a java program to check whether the given number is palindrome or not.

3 (a) What is abstract class? Explain with an example.
 (b) Explain the procedure to call super class members with examples.

4 (a) Write a brief note on variables in interfaces.
 (b) Discuss briefly about Math class.

5 (a) Explain multithreading by creating multiple threads (more than two).
 (b) What is the use of Alive () and join () functions in multithreading?

6 What is the task performed by Layout manager? Explain different layout managers.

7 (a) Explain the use of JTable class with an example.
 (b) What are the mandatory attributes of applet tag? Explain them.

8 (a) Explain the usage of URL Connection class with an example.
 (b) Explain any two classes available in java.util package with suitable examples.

R07

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Code: 9A05402

B.Tech II Year II Semester (R09) Supplementary Examinations December/January 2015/2016
OBJECT ORIENTED PROGRAMMING

(Common to CSS, IT & CSE)

Time: 3 hours Max. Marks: 70
 Answer any FIVE questions

All questions carry equal marks

1 (a) Explain the need for object oriented programming paradigm.
 (b) What are the components of java architecture? Explain in detail.
 (c) Describe with a flow chart, how various tools are used in application development.

2 (a) What is a method? Write the differences between method and constructor.
 (b) Explain “this” keyword.

3 (a) Explain dynamic method dispatch with an example.
 (b) List and explain the methods defined in the Object class.

4 Explain the classes:
 (a) CharacterArrayWriter.
 (b) BufferedReader.
 (c) BufferedWriter.
 (d) Pushbackreader.

5 (a) What is synchronization? Why is thread synchronization important for multithreaded programs?
 (b) What is multitasking? Give an example.

6 (a) Describe about the Canvas component in AWT.
 (b) Explain about Scrollbar AWT control.

7 (a) Explain the use of JTable class with an example.
 (b) What are the mandatory attributes of applet tag? Explain them.

8 (a) Discuss about internet addressing in TCP/IP.
 (b) What is the use of Inet Address class?

R09

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Code: 9A05402

B.Tech II Year II Semester (R09) Supplementary Examinations May/June 2016
OBJECT ORIENTED PROGRAMMING

(Common to ECE, CSS, IT & CSE)

Time: 3 hours Max. Marks: 70
 Answer any FIVE questions

All questions carry equal marks

1 Distinguish the following terms:
 (a) Objects and classes.
 (b) Data abstraction and data encapsulation.

2 (a) Write a java program to find greatest common divisor of given two numbers.
 (b) Write a java program to check whether the given number is palindrome or not.

3 (a) Compare method overloading with method overriding.
 (b) Define inheritance and write its uses.
 (c) Write short notes on early binding and late binding.

4 (a) Explain about StringTokenizer class?
 (b) Write a java program to find Date and Time.

5 (a) Give the general form of an exception handling block.
 (b) What are the consequences that occur when having multiple catch clauses?

6 (a) What is an InputEvent? Briefly discuss its sub classes.
 (b) Describe any four window events.

7 Explain the following swing control with an example:
 (a) JCheckBox.
 (b) JradioButton.

8 Explain sockets ‘send’, write a simple file transfer server program in java that

takes input file name from client and contents of the file to the client.

R09/SS

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Code: 13A05403

B.Tech II Year II Semester (R13) Regular & Supplementary Examinations May/June 2016
JAVA PROGRAMMING
(Common to CSE and IT)

Time: 3 hours Max. Marks: 70

PART - A
(Compulsory Question)

1 Answer the following: (10 X 02 = 20 Marks)
 (a) What is JIT?
 (b) Write short note on JDK.
 (c) What is type conversion in java?
 (d) What is constructor?
 (e) What is super keyword?
 (f) What is wrapper?
 (g) Define multithreaded programming.
 (h) List the inetaddress class methods.
 (i) Define cookies.
 (j) What is socket?

PART - B
(Answer all five units, 5 X 10 = 50 Marks)

UNIT - I

2 Explain working of java virtual machine (JVM) also explain how java is architectural neutral.
 OR
3 Explain data types in java.

UNIT - II

4 What is inheritance? Explain the different types of inheritance supported by java with example
program.

 OR
5 Explain the constructor and method overloading in java.

UNIT - III

6 What is exception handling? Explain how exceptions are handled in java programming.
 OR

7 Explain the process of reading the contents of a file by using file input stream class in java with
suitable program.

UNIT - IV

8 Define multithreading. Explain with an example of an application that needs multithreading.
 OR

9 What is TCP? Explain the process of creating TCP connections in client and server side in java
programming.

UNIT - V

10 What is swing component? Explain any three components of swing with syntax.
 OR

11 How to create a main menu by using swings with suitable program?

R13
www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 Code: 9A05402

 B.Tech II Year II Semester (R09) Supplementary Examinations May/June 2017
OBJECT ORIENTED PROGRAMMING

(Common to CSS, IT & CSE)

 Time: 3 hours Max. Marks: 70

Answer any FIVE questions
All questions carry equal marks

1 (a) Differentiate message passing and procedure call.
 (b) Explain different types of inheritance.

2 (a) Develop a java program to simulate the working of simple calculator operations.
 (b) For any given triangle, the length of the hypotenuse is given by the square root of the sum of

squares of other two sides. Develop a program that calculates the longest side when other two
sides are provided as arguments.

3 (a) What is dynamic method dispatch? Write a java program to illustrate dynamic method dispatch.
 (b) Explain the procedure to call super class members with examples.

4 (a) How is polymorphism achieved in java? Write a program to show the same.
 (b) Write a sample program to illustrate packages.

5 (a) Define synchronization. Write a program to solve producer-consumer problem.
 (b) Describe any two types of exceptions with example program.

6 Explain AWT user interface components in detail.

7 (a) List the limitations of AWT. Describe the MVC architecture.
 (b) Write an example and explain JApplet.

8 Write note on the following:
 (a) Difference between ports and sockets.
 (b) Enumerations and auto boxing.

R09 www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Code: 13A05403

B.Tech II Year II Semester (R13) Supplementary Examinations December/January 2015/2016

JAVA PROGRAMMING
(Common to CSE and IT)

 Time: 3 hours Max. Marks: 70

PART – A
(Compulsory Question)

1 Answer the following: (10 X 02 = 20 Marks)
 (a) State any four features of java.
 (b) What is byte code? Explain why java is called as true object oriented language.
 (c) Describe general structure of Java class with example.
 (d) Explain method overloading with Java example.
 (e) What is four major differences between interface & class?
 (f) What is exception? How it is handled? Explain with suitable example.
 (g) What is synchronization? Explain with suitable example.
 (h) Differentiate between java applet & java application.
 (i) Explain TCP/IP client socket & TCP/IP server sockets.
 (j) Discuss Components & containers in swings.

PART – B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

2 What is operator? Explain in detail arithmetic operator, bitwise operator, incremental & decrement
operator with proper example. Write a program to demonstrating increment & decrement operator using
conditional operator.

 OR
3 What is array? Discuss one dimensional & two dimensional arrays. Write a program for declaring &

initializing two dimensional arrays.

UNIT – II

4 What are constructors & parameterized constructors? Explain in detail with example. Write a program
for constructor to use ‘this’ keyword.

 OR
5 Explain different types of inheritance in detail with example. Write a program to implement following

inheritance, assume suitable method.

Contd. in page 2

Page 1 of 2

R13

Class Name: Student

Member Variables:
Roll_NO, Name

Member Variables:
Member_NO.

Class Name: Library

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Code: 13A05403

UNIT – III

6 Explain the following terms in detail with respect to exception handling: Try, catch, and throw, finally.
Write a program using try, catch, and throw, finally statement

 OR
7 Explain classification of stream classes. Explain various types of byte stream classes & character

stream classes in detail.

 UNIT – IV

8 What is thread? Explain in detail about life cycle of thread with diagram. Explain resuming & stopping
threads.

 OR
9 What is an applet? Explain in detail about applet life cycle with suitable diagram. Write a program to

draw circle & rectangle filled with red color.

UNIT – V

10 Explain Jtree & give the sequential steps to use Jtree control of swing, also give syntax of four
constructors of Jtree class.

 OR
11 Explain the following terms in detail with examples:

(i) Component.
(ii) Container.
(iii) Layout managers.

Page 2 of 2

R13 www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Code: 13A05403

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017

JAVA PROGRAMMING
(Common to IT & CSE)

Time: 3 hours Max. Marks: 70

PART - A
(Compulsory Question)

1 Answer the following: (10 X 02 = 20 Marks)
 (a) What is overridden method?
 (b) What are the logical operators?
 (c) What is operator?
 (d) What is function overloading?
 (e) Define switch statement.
 (f) What is overloading constructor?
 (g) Define nested loops.
 (h) What are try and catch keywords in java? Explain.
 (i) What is synchronization?
 (j) What is deadlock?

PART - B
(Answer all five units, 5 X 10 = 50 Marks)

UNIT - I

2 (a) Explain object oriented programming.
 (b) Explain control statements in java.
 OR
3 (a) Explain iteration using multidimensional array in java.
 (b) Write a java program for factorial of a given number n using recursion.

UNIT - II

4 (a) Write java program to add methods width, height and length for box class.
 (b) Explain implementation of nested interfaces in java.
 OR

5 (a) Write a java program subclass contain cube for super class contain width, height and length for
inheritance.

 (b) Explain multithreading in java.

UNIT - III

6 (a) Explain exceptional handling with an example program.
 (b) Explain generic interfaces.
 OR

7 (a) Explain reading and writing strings in java with an example program.
 (b) Explain reading and writing files in java.

Contd. in page 2

Page 1 of 2

R13
www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Code: 13A05403

UNIT - IV

8 (a) Explain creation of threads in Java with an example program.
 (b) Write thread communication.
 OR

9 (a) Explain parameter passing in applets with an example program.
 (b) Explain handling mouse events.

UNIT - V

10 (a) Explain java swings different buttons with an example program.
 (b) Explain network interfaces.
 OR

11 (a) Write java program to create main menu and drawing rectangle.
 (b) Explain event handling using swings.

Page 2 of 2

R13
www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Code: 15A05403

B.Tech II Year II Semester (R15) Regular Examinations May/June 2017

OBJECT ORIENTED PROGRAMMING USING JAVA
(Common to CSE & IT)

Time: 3 hours Max. Marks: 70

PART - A
(Compulsory Question)

1 Answer the following: (10 X 02 = 20 Marks)
 (a) Explain about commands javac, java.
 (b) List any four predefined packages in java.
 (c) What is multitasking?
 (d) Define an event in java.
 (e) Demonstrate the use of “?” operator.
 (f) Differences between the object oriented program and procedural oriented programming.
 (g) Explain about Bitwise operators in java.
 (h) Explain the normal flow of a thread with neat diagram.
 (i) List out event sources.
 (j) Explain parameter passing methods in java.

PART - B
(Answer all five units, 5 X 10 = 50 Marks)

UNIT - I

2 (a) Explain briefly buzzwords of java.
 (b) Explain any four object oriented programming features.
 OR
3 (a) Explain about arrays in java with an example program.
 (b) Write a java program to perform matrix multiplication.

UNIT - II

4 (a) Explain about StringTokenizer class in java with example.
 (b) In how many ways a package can be imported. Explain with an example program.
 OR

5 (a) What is a constructor? Explain constructor overloading with an example.
 (b) What is a method? Explain method overloading with example.

UNIT - III

6 (a) Define a package. Write down the steps to create a package.
 (b) Define an interface. Explain about implementing an interface with example.
 OR

7 (a) What is an exception? Explain various exception types.
 (b) Write a java program using all keywords of exception handling.

Contd. in page 2

Page 1 of 2

R15
www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Code: 15A05403

UNIT - IV

8 (a) Write a java program that creates a thread by extending the thread class.
 (b) Explain about thread priorities in java with suitable example.
 OR

9 (a) Explain about the ways to create an applet with example.
 (b) How to pass parameters to an applet? Explain with an example.

UNIT - V

10 (a) List and explain various AWT components in java.

 (b) Explain about event delegation model.

 OR
11 Explain the following layout managers.

 (a) Border layout.

 (b) Grid layout.

 (c) Flow layout.

Page 2 of 2

R15
www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

	20. Which method is called internally by Thread start() method?
	22. Which method is used to make main thread to wait for all child threads

