
1

HTML

What is HTML?

HTML is the standard markup language for creating Web pages.

• HTML stands for Hyper Text Markup Language

• HTML describes the structure of Web pages using markup

• HTML elements are the building blocks of HTML pages

• HTML elements are represented by tags

• HTML tags label pieces of content such as "heading", "paragraph", "table", and so on

• Browsers do not display the HTML tags, but use them to render the content of the

page

<!DOCTYPE html>

<html>

<head>

<title>Page Title</title>

</head>

<body>

<h1>My First Heading</h1>

<p>My first paragraph.</p>

</body>

</html>

Output:

Explanation

• The <!DOCTYPE html> declaration defines this document to be HTML5

• The <html> element is the root element of an HTML page

• The <head> element contains meta information about the document

• The <title> element specifies a title for the document

• The <body> element contains the visible page content

• The <h1> element defines a large heading

• The <p> element defines a paragraph

HTML Tags

HTML tags are element names surrounded by angle brackets:

<tagname>content goes here...</tagname>

• HTML tags normally come in pairs like <p> and </p>

• The first tag in a pair is the start tag, the second tag is the end tag

• The end tag is written like the start tag, but with a forward slash inserted before the

tag name

Web Browsers

The purpose of a web browser (Chrome, IE, Firefox, Safari) is to read HTML documents and

display them.

The browser does not display the HTML tags, but uses them to determine how to display the

document

HTML Page Structure

2

Below is a visualization of an HTML page structure:

The <!DOCTYPE> declaration represents the document type, and helps browsers to display

web pages correctly.

It must only appear once, at the top of the page (before any HTML tags).

The <!DOCTYPE> declaration is not case sensitive.
HTML Versions

Since the early days of the web, there have been many versions of HTML:

Version Year

HTML 1991

HTML 2.0 1995

HTML 3.2 1997

HTML 4.01 1999

XHTML 2000

HTML5 2014

HTML History

Since the early days of the World Wide Web, there have been many versions of HTML:

Year Version

1989 Tim Berners-Lee invented www

1991 Tim Berners-Lee invented HTML

1993 Dave Raggett drafted HTML+

1995 HTML Working Group defined HTML 2.0

1997 W3C Recommendation: HTML 3.2

1999 W3C Recommendation: HTML 4.01

2000 W3C Recommendation: XHTML 1.0

2008 WHATWG HTML5 First Public Draft

2012 WHATWG HTML5 Living Standard

2014 W3C Recommendation: HTML5

3

2016 W3C Candidate Recommendation: HTML 5.1

2017 W3C Recommendation: HTML5.1 2nd Edition

2017 W3C Recommendation: HTML5.2

Write HTML Using Notepad or TextEdit

Web pages can be created and modified by using professional HTML editors.

However, for learning HTML we recommend a simple text editor like Notepad (PC) or

TextEdit (Mac).

Steps to create a web page

1. Open Notepad

2. Write or copy some HTML into Notepad.

3. Save the file on your computer. Select File > Save as in the Notepad menu.

4. Name the file "index.htm" and set the encoding to UTF-8 (which is the preferred

encoding for HTML files).

5. Open the saved HTML file in your favorite browser (double click on the file, or right-

click - and choose "Open with")

HTML Headings

HTML headings are defined with the <h1> to <h6> tags.

<h1> defines the most important heading. <h6> defines the least important heading:

<!DOCTYPE html>

<html>

<body>

<h1>This is heading 1</h1>

<h2>This is heading 2</h2>

<h3>This is heading 3</h3>

<h4>This is heading 4</h4>

<h5>This is heading 5</h5>

<h6>This is heading 6</h6>

</body>

</html>

Output

HTML Paragraphs

HTML paragraphs are defined with the <p> tag:

<!DOCTYPE html>

<html>

<body>

4

<p>This is a paragraph.</p>

<p>This is another paragraph.</p>

</body>

</html>

Output

This is a paragraph.

This is another paragraph.

HTML Links

HTML links are defined with the <a> tag=> Attribute and href tag=> Hypertext REFerence:

<!DOCTYPE html>

<html>

<body>

<h2>HTML Links</h2>

<p>HTML links are defined with the a tag:</p>

This is a link

</body>

</html>

Output

Explanation

The link's destination is specified in the href attribute.

Attributes are used to provide additional information about HTML elements.

You will learn more about attributes in a later chapter.

HTML Images

HTML images are defined with the tag.

The source file (src), alternative text (alt), width, and height are provided as attributes:

<!DOCTYPE html>

<html>

<body>

<h2>HTML Images</h2>

<p>HTML images are defined with the imgtag:</p>

</body>

</html>

Output

http://www.w3schools.com/

5

HTML Attributes

Attributes provide additional information about HTML elements.

• All HTML elements can have attributes

• Attributes provide additional information about an element

• Attributes are always specified in the start tag

• Attributes usually come in name/value pairs like: name="value"

The src Attribute

HTML images are defined with the tag.

The filename of the image source is specified in the src attribute:

The width and height Attributes

Images in HTML have a set of size attributes, which specifies the width and height of the

image

<!DOCTYPE html>

<html>

<body>

<h2>HTML Images</h2>

<p>HTML images are defined with the imgtag:</p>

</body>

</html>

Output

6

The style Attribute

The style attribute is used to specify the styling of an element, like color, font, size etc.

<!DOCTYPE html>

<html>

<body>

<h2>The style Attribute</h2>

<p>The style attribute is used to specify the styling of an element, like color:</p>

<p style="color:red">I am a paragraph.</p>

</body>

</html>

Output

The title Attribute

Here, a title attribute is added to the <p> element. The value of the title attribute will be

displayed as a tooltip when you mouse over the paragraph:

<!DOCTYPE html>

<html>

<body>

<h2 title="I'm a header in size h2">The title Attribute</h2>

<p title="I'm a tooltip">

Mouse over this paragraph, to display the title attribute as a tooltip.

</p>

</body>

</html>

Output

HTML Horizontal Rules

The <hr> tag defines a thematic break in an HTML page, and is most often displayed as a

horizontal rule.

The <hr> element is used to separate content (or define a change) in an HTML page:

<!DOCTYPE html>

<html>

<body>

<h1>This is heading 1</h1>

<p>This is some text.</p>

<hr>

<h2>This is heading 2</h2>

<p>This is some other text.</p>

<hr>

<h2>This is heading 2</h2>

<p>This is some other text.</p>

</body>

7

</html>

Output

The HTML <head> Element

The HTML <head> element has nothing to do with HTML headings.

The <head> element is a container for metadata. HTML metadata is data about the HTML

document. Metadata is not displayed.

The <head> element is placed between the <html> tag and the <body> tag:

<!DOCTYPE html>

<html>

<head>

<title>My First HTML</title>

<meta charset="UTF-8">

</head>

<body>

<p>The HTML head element contains meta data.</p>

<p>Meta data is data about the HTML document.</p>

</body>

</html>

Output

How to View HTML Source?

Have you ever seen a Web page and wondered "Hey! How did they do that?"

View HTML Source Code:

Right-click in an HTML page and select "View Page Source" (in Chrome) or "View Source"

(in IE), or similar in other browsers. This will open a window containing the HTML source

code of the page.

Inspect an HTML Element:

Right-click on an element (or a blank area), and choose "Inspect" or "Inspect Element" to see

what elements are made up of (you will see both the HTML and the CSS). You can also edit

the HTML or CSS on-the-fly in the Elements or Styles panel that opens.

HTML Background Color

The background-color property defines the background color for an HTML element.

This example sets the background color for a page to powderblue:

(<body bgcolor="red;">)

<!DOCTYPE html>

<html>

8

<body style="background-color:powderblue;">

<h1>This is a heading</h1>

<p>This is a paragraph.</p>

</body>

</html>

Output

HTML Text Color

The color property defines the text color for an HTML element:

<!DOCTYPE html>

<html>

<body>

<h1 style="color:blue;">This is a heading</h1>

<p style="color:red;">This is a paragraph.</p>

</body>

</html>

Output

HTML Fonts

The font-family property defines the font to be used for an HTML element:

<!DOCTYPE html>

<html>

<body>

<h1 style="font-family:wingdings;">This is a heading</h1>

<p style="font-family:courier;">The above paragraph is written in " wingdings font

" and the content is " This is a heading ".

This papragraph is written in " Courier font "</p>

</body>

</html>

Output

HTML Text Alignment

The text-align property defines the horizontal text alignment for an HTML element:

<!DOCTYPE html>

<html>

<body>

<h1 style="text-align:Left;">left Heading</h1>

<h1 style="text-align:center;">Center Heading</h1>

<h1 style="text-align:Right;">Right Heading</h1>

</body>

9

</html>

Output

HTML Formatting Elements

In the previous chapter, you learned about the HTML style attribute.

HTML also defines special elements for defining text with a special meaning.

HTML uses elements like and <i> for formatting output, like bold or italic text.

Formatting elements were designed to display special types of text:

• - Bold text

• - Important text

• <i> - Italic text

• - Emphasized text

• <mark> - Marked text

• <small> - Small text

• - Deleted text

• <ins> - Inserted text

• <sub> - Subscript text

• <sup> - Superscript text

HTML <bdo> for Bi-Directional Override

The HTML <bdo> element defines bi-directional override.

The <bdo> element is used to override the current text direction:

<!DOCTYPE html>

<html>

<body>

<p>If your browser supports bi-directional override (bdo), the next line will be written from

right to left (rtl):</p>

<bdo dir="rtl">This line will be written from right to left</bdo>

</body>

</html>

Output

HTML Comment Tags

You can add comments to your HTML source by using the following syntax:

<!-- Write your comments here -->

Notice that there is an exclamation point (!) in the opening tag, but not in the closing tag.

Note: Comments are not displayed by the browser, but they can help document your HTML

source code.

With comments you can place notifications and reminders in your HTML:

<!DOCTYPE html>

<html>

<body>

<!-- This is a comment -->

<p>This is a testing for comment.</p>

<!-- Comments are not displayed in the browser -->

10

</body>

</html>

Output

HTML Colors

HTML colors are specified using predefined color names, or RGB, HEX, HSL, RGBA,

HSLA values.

Named Colors Sorted by HEX Value

Colorname HEX RGB

Black 0 0,0,0

Blue 0000FF 0,0,255

Brown A52A2A 165,42,42

DeepPink FF1493 2,55,20,147

Gold FFD700 255,215,0

Green 8000 0,128,0

Magenta FF00FF 255,0,255

Maroon 800000 128,0,0

Orange FFA500 255,165,0

Red FF0000 255,0,0

White FFFFFF 25,52,55,255

Background Color or Background

You can set the background color for HTML elements:

(<body bgcolor="red;">)

<!DOCTYPE html>

<html>

<body>

<h1 style="background-color:DodgerBlue;">Hello World</h1>

<p style="background-color:Tomato;">

• HTML stands for Hyper Text Markup Language

• HTML describes the structure of Web pages using markup

• HTML elements are the building blocks of HTML pages

• HTML elements are represented by tags

• HTML tags label pieces of content such as "heading", "paragraph", "table", and so

on

• Browsers do not display the HTML tags, but use them to render the content of the

page

</p>

</body>

</html>

Output

Text Color

You can set the color of text:

<!DOCTYPE html>

11

<html>

<body>

<h3 style="color:Tomato;">Hello World</h3>

<p style="color:DodgerBlue;">Hello World</p>

<p style="color:MediumSeaGreen;">Hello World</p>

</body>

</html>

Output

Border Color

You can set the color of borders:

<!DOCTYPE html>

<html>

<body>

<h1 style="border: 2px solid Tomato;">Hello World</h1>

<h1 style="border: 2px solid DodgerBlue;">Hello World</h1>

<h1 style="border: 2px solid Violet;">Hello World</h1>

</body>

</html>

Output

Color Values

In HTML, colors can also be specified using RGB values, HEX values, HSL values, RGBA

values, and HSLA values:

Same as color name "Tomato":

RGB Value

In HTML, a color can be specified as an RGB value, using this formula:

rgb(red, green, blue)

Each parameter (red, green, and blue) defines the intensity of the color between 0 and 255.

For example, rgb(255, 0, 0) is displayed as red, because red is set to its highest value (255)

and the others are set to 0.

To display the color black, all color parameters must be set to 0, like this: rgb(0, 0, 0).

To display the color white, all color parameters must be set to 255, like this: rgb(255, 255,

255).

HEX Value

In HTML, a color can be specified using a hexadecimal value in the form:

#rrggbb

Where rr (red), gg (green) and bb (blue) are hexadecimal values between 00 and ff (same as

decimal 0-255).

For example, #ff0000 is displayed as red, because red is set to its highest value (ff) and the

others are set to the lowest value (00).

HSL Value

In HTML, a color can be specified using hue, saturation, and lightness (HSL) in the form:

12

hsl(hue, saturation, lightness)

Hue is a degree on the color wheel from 0 to 360. 0 is red, 120 is green, and 240 is blue.

Saturation is a percentage value, 0% means a shade of gray, and 100% is the full color.

Lightness is also a percentage, 0% is black, 50% is neither light or dark, 100% is white

Saturation

Saturation can be described as the intensity of a color.

100% is pure color, no shades of gray

50% is 50% gray, but you can still see the color.

0% is completely gray, you can no longer see the color.

Lightness

The lightness of a color can be described as how much light you want to give the color,

where 0% means no light (black), 50% means 50% light (neither dark nor light) 100% means

full lightness (white).

RGBA Value

RGBA color values are an extension of RGB color values with an alpha channel - which

specifies the opacity for a color.

An RGBA color value is specified with:

rgba(red, green, blue, alpha)

The alpha parameter is a number between 0.0 (fully transparent) and 1.0 (not transparent at

all):

HSLA Value

HSLA color values are an extension of HSL color values with an alpha channel - which

specifies the opacity for a color.

An HSLA color value is specified with:

hsla(hue, saturation, lightness, alpha)

The alpha parameter is a number between 0.0 (fully transparent) and 1.0 (not transparent at

all):

HTML Lists

Unordered HTML List

An unordered list starts with the tag. Each list item starts with the tag.

The list items will be marked with bullets (small black circles) by default:

Unordered HTML List - Choose List Item Marker

The CSS list-style-type property is used to define the style of the list item marker:

Value Description

disc Sets the list item marker to a bullet (default)

circle Sets the list item marker to a circle

square Sets the list item marker to a square

none The list items will not be marked

<!DOCTYPE html>

<html>

<body>

<h2>Unordered List with Disc Bullets</h2>

<ul style="list-style-type:disc">

Coffee

Tea

Milk

<h2>Unordered List with Circle Bullets</h2>

<ul style="list-style-type:circle">

Coffee

13

Tea

Milk

<h2>Unordered List with Square Bullets</h2>

<ul style="list-style-type:square">

Coffee

Tea

Milk

<h2>Unordered List without Bullets</h2>

Coffee

Tea

Milk

</body>

</html>

Output

Ordered HTML List

An ordered list starts with the tag. Each list item starts with the tag.

The list items will be marked with numbers by default:

<!DOCTYPE html>

<html>

<body>

<h2>An ordered HTML list</h2>

Coffee

Tea

Milk

</body>

</html>

Output

14

Ordered HTML List - The Type Attribute

The type attribute of the tag, defines the type of the list item marker:

<!DOCTYPE html>

<html>

<body>

<h2>Ordered List with Numbers</h2>

<ol type="1">

Coffee

Tea

Milk

</body>

</html>

Output

Type Description

type="1" The list items will be numbered with numbers (default)

type="A" The list items will be numbered with uppercase letters

type="a" The list items will be numbered with lowercase letters

type="I" The list items will be numbered with uppercase roman numbers

type="i" The list items will be numbered with lowercase roman numbers

type="3" The list items will be numbered with number 3

type="A"

start="4"

The list items will be numbered with uppercase letters from D

type="a"

start="4"

The list items will be numbered with lowercase letters from d

type="I"

start="4"

The list items will be numbered with uppercase roman numbers from IV

type="i"

start="4"

The list items will be numbered with lowercase roman numbers from iv

Ordered List with Numbers

1. Coffee

2. Tea

3. Milk

15

Ordered List with Letters

A. Coffee

B. Tea

C. Milk

Ordered List with Lowercase Letters

a. Coffee

b. Tea

c. Milk

Ordered List with Roman Numbers

I. Coffee

II. Tea

III. Milk

Ordered List with Numbers starting from 4

4. Coffee

5. Tea

6. Milk

Ordered List with Uppercase letters starting from 4

D. Coffee

E. Tea

F. Milk

Ordered List with Lowercase letters starting from 4

a. Coffee

b. Tea

c. Milk

Ordered List with Roman letters starting from 4

IV. Coffee

V. Tea

VI. Milk

Ordered List with Roman letters starting from 4

iv. Coffee

v. Tea

vi. Milk

HTML Description Lists

HTML also supports description lists.

A description list is a list of terms, with a description of each term.

The <dl> tag defines the description list, the <dt> tag defines the term (name), and

the <dd> tag describes each term:

<!DOCTYPE html>

<html>

<body>

<h2>A Description List</h2>

<dl>

<dt>Coffee</dt>

<dd>- black hot drink</dd>

<dt>Milk</dt>

<dd>- white cold drink</dd>

</dl>

</body>

</html>

Output

16

Nested HTML Lists

List can be nested (lists inside lists):

<!DOCTYPE html>

<html>

<body>

<h2>A Nested List</h2>

<p>List can be nested (lists inside lists):</p>

Coffee

Tea

Black tea

Green tea

Milk

</body>

</html>

Output

Control List Counting

By default, an ordered list will start counting from 1. If you want to start counting from a

specified number, you can use the start attribute:

<!DOCTYPE html>

<html>

<body>

<h2>The start attribute</h2>

<p>By default, an ordered list will start counting from 1. Use the start attribute to start

counting from a specified number:</p>

<ol start="50">

Coffee

Tea

Milk

<ol type="I" start="50">

Coffee

Tea

Milk

</body>

</html>

17

Output

Defining an HTML Table

An HTML table is defined with the <table> tag.

Each table row is defined with the <tr> tag. A table header is defined with the <th> tag. By

default, table headings are bold and centered. A table data/cell is defined with the <td> tag.

<!DOCTYPE html>

<html>

<table border = "1">

<tr>

<th>Name</th>

<th>Oops</th>

<th>dbms</th>

</tr>

<tr>

<td>Jill</td>

<td>80</td>

<td>50</td>

</tr>

<tr>

<td>Eve</td>

<td>50</td>

<td>94</td>

</tr>

<tr>

<td>John</td>

<td>90</td>

<td>80</td>

</tr>

</table>

</html>

Output

HTML Table - Cells that Span Many Columns& Rows, Caption

To make a cell span more than one column, use the colspan attribute:

18

To make a cell span more than one row, use the rowspan attribute:

To add a caption to a table, use the <caption> tag:

<!DOCTYPE html>

<html>

<table border = "1">

<caption>Marks Statement</caption>

<tr>

<!--Rowspan merges n number of rows

colspan merges n number of columns

-->

<th rowspan=2>Name</th><th colspan=3>Marks</th>

</tr>

<tr>

<tr>

<th>Oops</th><th>Dbms</th><th>Java</th>

</tr>

<td>Jill</td><td>80</td><td>50</td><td>50</td>

</tr>

<tr>

<td>Eve</td><td>50</td><td>94</td><td>50</td>

</tr>

<tr>

<td>John</td><td>90</td><td>80</td><td>50</td>

</tr>

</table>

</html>

Output

Use the HTML <table> element to define a table

Use the HTML <tr> element to define a table row

Use the HTML <td> element to define a table data

Use the HTML <th> element to define a table heading

Use the HTML <caption> element to define a table caption

Use the CSS border property to define a border

Use the CSS border-collapse property to collapse cell borders

Use the CSS padding property to add padding to cells

Use the CSS text-align property to align cell text

Use the CSS border-spacing property to set the spacing between cells

19

Use the colspan attribute to make a cell span many columns

20

Use the rowspan attribute to make a cell span many rows

Use the id attribute to uniquely define one table

Attributes of table tag

Define Table: <TABLE></TABLE>

Columns to Span: <TH COLSPAN=?>

Rows to Span: <TH ROWSPAN=?>

Desired Width: <TH WIDTH=?> – (in pixels)

Width Percent: <TH WIDTH="%"> – (percentage of table)

Cell Color: <TH BGCOLOR="#$$$$$$">

Table Caption: <CAPTION></CAPTION>

Alignment: <CAPTION ALIGN=TOP|BOTTOM> – (above/below
table)

Table Border: <TABLE BORDER=?></TABLE>

Cell Spacing: <TABLE CELLSPACING=?>

Cell Padding: <TABLE CELLPADDING=?>

Desired Width: <TABLE WIDTH=?> – (in pixels)

Width Percent: <TABLE WIDTH="%"> – (percentage of page)

Table Row: <TR></TR>

Alignment: <TR ALIGN=LEFT|RIGHT|
CENTER|MIDDLE|BOTTOM

VALIGN=TOP|BOTTOM|MIDDLE>

Table Cell: <TD></TD> – (must appear within table rows)

Alignment: <TD ALIGN=LEFT|RIGHT|
CENTER|MIDDLE|BOTTOM

VALIGN=TOP|BOTTOM|MIDDLE>

No linebreaks: <TD NOWRAP>

Columns to Span: <TD COLSPAN=?>

Rows to Span: <TD ROWSPAN=?>

Desired Width: <TD WIDTH=?>

Width Percent: <TD WIDTH="%"> – (percentage of table)

Cell Color: <TD BGCOLOR="#$$$$$$">

Table Header: <TH></TH> – (same as data, except bold centered)

Alignment: <TH ALIGN=LEFT|RIGHT|
CENTER|MIDDLE|BOTTOM

VALIGN=TOP|BOTTOM|MIDDLE>

No Linebreaks: <TH NOWRAP>

Attributes of <tr> tag

Attribute name Notes

21

<tr align=""> Sets the horizontal alignment for the contents of each <td> element in a

table row.

<trvalign=""> Sets the vertical alignment of all content in a table row.

<trbgcolor=""> Sets the background color for a single table row in an HTML table.

<tr background=""> Identifies the URL of a file to be used as a background image for a table

row.

<trbordercolor=""> Sets the border color for all inside borders of a table row.

Attributes of <td > tag

Attribute name Notes

<td nowrap> NOWRAP indicates that text should not wrap in the cell.

<td bgcolor=""> Sets the background color of a single cell in a table.

<td
bordercolor="">

Sets the color of the entire border around a cell.

<td

background="">

Specifies the URL of an image file to be used as the <td>

element background image.

<td colspan=""> Indicates how many columns a cell should take up.

<td align=""> Was used to specify the alignment of the contents of a single

table data cell. This attribute has been deprecated. Use CSS to control

alignment of the contents of a table data cell.

<td width=""> Was used to set the width of a table data cell to a value that

would override the default width. This attribute has been deprecated.
Use CSS to control layout of data cells in HTML tables.

HTML - Frames

HTML frames are used to divide your browser window into multiple sections where each

section can load a separate HTML document. A collection of frames in the browser window

is known as a frameset. The window is divided into frames in a similar way the tables are

organized: into rows and columns.

Disadvantages of Frames

There are few drawbacks with using frames, so it's never recommended to use frames in your

webpages −

• Some smaller devices cannot cope with frames often because their screen is not big

enough to be divided up.

• Sometimes your page will be displayed differently on different computers due to

different screen resolution.

• The browser's back button might not work as the user hopes.

• There are still few browsers that do not support frame technology.

Creating Frames

To use frames on a page we use <frameset> tag instead of <body> tag. The <frameset> tag

defines, how to divide the window into frames. The rows attribute of <frameset> tag defines

horizontal frames and cols attribute defines vertical frames. Each frame is indicated by

<frame> tag and it defines which HTML document shall open into the frame.

Note − The <frame> tag deprecated in HTML5. Do not use this element.

Red.html

<!DOCTYPE html>

<html>

<body style="background-color:red;">

<h1>This is a heading</h1>

<p>This is a paragraph.</p>

https://html.com/attributes/tr-align/
https://html.com/attributes/tr-valign/
https://html.com/attributes/tr-bgcolor/
https://html.com/attributes/tr-background/
https://html.com/attributes/tr-bordercolor/
https://html.com/attributes/td-nowrap/
https://html.com/attributes/td-bgcolor/
https://html.com/attributes/td-bordercolor/
https://html.com/attributes/td-bordercolor/
https://html.com/attributes/td-background/
https://html.com/attributes/td-background/
https://html.com/attributes/td-colspan/
https://html.com/attributes/td-align/
https://html.com/attributes/td-width/

22

</body>

</html>

Green.html

<!DOCTYPE html>

<html>

<body style="background-color:green;">

<h1>This is a heading</h1>

<p>This is a paragraph.</p>

</body>

</html>

Blue.html

<!DOCTYPE html>

<html>

<body style="background-color:blue;">

<h1>This is a heading</h1>

<p>This is a paragraph.</p>

</body>

</html>

Horzframes.html

<!DOCTYPE html>

<html>

<head>

<title>HTML Frames</title>

</head>

<frameset rows = "10%,80%,10%">

<frame name = "top" src = "red.html" />

<frame name = "main" src = "blue.html" />

<frame name = "bottom" src = "green.html" />

<noframes>

<body>Your browser does not support frames.</body>

</noframes>

</frameset>

</html>

output

Vertframes.html

<!DOCTYPE html>

<html>

<head>

<title>HTML Frames</title>

</head>

<frameset cols = "25%,50%,25%">

<frame name = "left" src = "red.html" />

23

<frame name = "center" src = "blue.html" />

<frame name = "right" src = "green.html" />

<noframes>

<body>Your browser does not support frames.</body>

</noframes>

</frameset>

</html>

output

Mixedframes.html

<html>

<frameset cols="25%,*" scrolling="no" noresize>

<frame name = "top" src = "red.html" />

<frameset rows="50%,*" scrolling="no" noresize>

<frame name = "main" src = "blue.html" />

<frame name = "bottom" src = "green.html" />

</frameset>

</html>

Output

The <frameset> Tag Attributes

Following are important attributes of the <frameset> tag −

Sr.No Attribute & Description

1

cols

Specifies how many columns are contained in the frameset and the size of each

column. You can specify the width of each column in one of the four ways −

Absolute values in pixels. For example, to create three vertical frames, use cols =

"100, 500, 100".

A percentage of the browser window. For example, to create three vertical frames,

24

use cols = "10%, 80%, 10%".

Using a wildcard symbol. For example, to create three vertical frames, use cols =

"10%, *, 10%". In this case wildcard takes remainder of the window.

As relative widths of the browser window. For example, to create three vertical

frames, use cols = "3*, 2*, 1*". This is an alternative to percentages. You can use

relative widths of the browser window. Here the window is divided into sixths: the

first column takes up half of the window, the second takes one third, and the third

takes one sixth.

2

rows

This attribute works just like the cols attribute and takes the same values, but it is

used to specify the rows in the frameset. For example, to create two horizontal frames,

use rows = "10%, 90%". You can specify the height of each row in the same way as

explained above for columns.

3

border

This attribute specifies the width of the border of each frame in pixels. For example,

border = "5". A value of zero means no border.

4

frameborder

This attribute specifies whether a three-dimensional border should be displayed

between frames. This attribute takes value either 1 (yes) or 0 (no). For example

frameborder = "0" specifies no border.

5

framespacing

This attribute specifies the amount of space between frames in a frameset. This can

take any integer value. For example framespacing = "10" means there should be 10

pixels spacing between each frames.

The <frame> Tag Attributes

Following are the important attributes of <frame> tag −

Sr.No Attribute & Description

1

src

This attribute is used to give the file name that should be loaded in the frame. Its

value can be any URL. For example, src = "/html/top_frame.htm" will load an HTML

file available in html directory.

2

name

25

This attribute allows you to give a name to a frame. It is used to indicate which frame

a document should be loaded into. This is especially important when you want to

create links in one frame that load pages into an another frame, in which case the

second frame needs a name to identify itself as the target of the link.

3

frameborder

This attribute specifies whether or not the borders of that frame are shown; it

overrides the value given in the frameborder attribute on the <frameset> tag if one is

given, and this can take values either 1 (yes) or 0 (no).

4

marginwidth

This attribute allows you to specify the width of the space between the left and right

of the frame's borders and the frame's content. The value is given in pixels. For

example marginwidth = "10".

5

marginheight

This attribute allows you to specify the height of the space between the top and

bottom of the frame's borders and its contents. The value is given in pixels. For

example marginheight = "10".

6

noresize

By default, you can resize any frame by clicking and dragging on the borders of a

frame. The noresize attribute prevents a user from being able to resize the frame. For

example noresize = "noresize".

7

scrolling

This attribute controls the appearance of the scrollbars that appear on the frame. This

takes values either "yes", "no" or "auto". For example scrolling = "no" means it

should not have scroll bars.

8

longdesc

This attribute allows you to provide a link to another page containing a long

description of the contents of the frame. For example longdesc =

"framedescription.htm"

 Page 1 of 68

Javascript

https://www.tutorialspoint.com/javascript/javascript_overview.htm

What is JavaScript ?

JavaScript is a dynamic computer programming language. It is lightweight and most commonly used as a part

of web pages, whose implementations allow client-side script to interact with the user and make dynamic

pages. It is an interpreted programming language with object-oriented capabilities.

JavaScript was first known as LiveScript, but Netscape changed its name to JavaScript, possibly because of

the excitement being generated by Java. JavaScript made its first appearance in Netscape 2.0 in 1995 with the

name LiveScript. The general-purpose core of the language has been embedded in Netscape, Internet

Explorer, and other web browsers.

The ECMA-262 Specification defined a standard version of the core JavaScript language.

 JavaScript is a lightweight, interpreted programming language.

 Designed for creating network-centric applications.

 Complementary to and integrated with Java.

 Complementary to and integrated with HTML.

 Open and cross-platform

Client-Side JavaScript

Client-side JavaScript is the most common form of the language. The script should be included in or

referenced by an HTML document for the code to be interpreted by the browser.

It means that a web page need not be a static HTML, but can include programs that interact with the user,

control the browser, and dynamically create HTML content.

The JavaScript client-side mechanism provides many advantages over traditional CGI server-side scripts. For

example, you might use JavaScript to check if the user has entered a valid e-mail address in a form field.

The JavaScript code is executed when the user submits the form, and only if all the entries are valid, they

would be submitted to the Web Server.

JavaScript can be used to trap user-initiated events such as button clicks, link navigation, and other actions

that the user initiates explicitly or implicitly.

Advantages of JavaScript

The merits of using JavaScript are −

 Less server interaction − You can validate user input before sending the page off to the server. This

saves server traffic, which means less load on your server.

 Immediate feedback to the visitors − They don't have to wait for a page reload to see if they have

forgotten to enter something.

 Increased interactivity − You can create interfaces that react when the user hovers over them with a

mouse or activates them via the keyboard.

 Richer interfaces − You can use JavaScript to include such items as drag-and-drop components and

sliders to give a Rich Interface to your site visitors.

Limitations of JavaScript

We cannot treat JavaScript as a full-fledged programming language. It lacks the following important features

−

 Client-side JavaScript does not allow the reading or writing of files. This has been kept for security

reason.

 JavaScript cannot be used for networking applications because there is no such support available.

 JavaScript doesn't have any multi-threading or multiprocessor capabilities.

Once again, JavaScript is a lightweight, interpreted programming language that allows you to build

interactivity into otherwise static HTML pages.

https://www.tutorialspoint.com/javascript/javascript_overview.htm
http://www.ecma-international.org/publications/index.html

 Page 2 of 68

Applications of Javascript Programming

As mentioned before, Javascript is one of the most widely used programming languages (Front-end as well

as Back-end). It has it's presence in almost every area of software development.

 Client side validation - This is really important to verify any user input before submitting it to the

server and Javascript plays an important role in validting those inputs at front-end itself.

 Manipulating HTML Pages - Javascript helps in manipulating HTML page on the fly. This helps in

adding and deleting any HTML tag very easily using javascript and modify your HTML to change its

look and feel based on different devices and requirements.

 User Notifications - You can use Javascript to raise dynamic pop-ups on the webpages to give

different types of notifications to your website visitors.

 Back-end Data Loading - Javascript provides Ajax library which helps in loading back-end data

while you are doing some other processing. This really gives an amazing experience to your website

visitors.

 Presentations - JavaScript also provides the facility of creating presentations which gives website look

and feel. JavaScript provides RevealJS and BespokeJS libraries to build a web-based slide

presentations.

 Server Applications - Node JS is built on Chrome's Javascript runtime for building fast and scalable

network applications. This is an event based library which helps in developing very sophisticated

server applications including Web Servers.

JavaScript - Syntax

JavaScript can be implemented using JavaScript statements that are placed within the <script>...

</script> HTML tags in a web page.

You can place the <script> tags, containing your JavaScript, anywhere within your web page, but it is

normally recommended that you should keep it within the <head> tags.

The <script> tag alerts the browser program to start interpreting all the text between these tags as a script. A

simple syntax of your JavaScript will appear as follows.

<script ...>

 JavaScript code

</script>

The script tag takes two important attributes −

 Language − This attribute specifies what scripting language you are using. Typically, its value will be

javascript. Although recent versions of HTML (and XHTML, its successor) have phased out the use of

this attribute.

 Type − This attribute is what is now recommended to indicate the scripting language in use and its

value should be set to "text/javascript".

<script language = "javascript" type = "text/javascript">

 JavaScript code

</script>

<html>

<body>

<scriptlanguage="javascript"type="text/javascript">

 document.write("Hello World!")

// COMMENT LINE

</script>

</body>

</html>

OUTPUT

 Page 3 of 68

Hello World!

Whitespace and Line Breaks

JavaScript ignores spaces, tabs, and newlines that appear in JavaScript programs. You can use spaces, tabs,

and newlines freely in your program and you are free to format and indent your programs in a neat and

consistent way that makes the code easy to read and understand.

Semicolons are Optional

Simple statements in JavaScript are generally followed by a semicolon character, just as they are in C, C++,

and Java. JavaScript, however, allows you to omit this semicolon if each of your statements are placed on a

separate line. For example, the following code could be written without semicolons.

<scriptlanguage="javascript"type="text/javascript">

<!--

 var1 =10

 var2 =20

//-->

</script>

But when formatted in a single line as follows, you must use semicolons −

<scriptlanguage="javascript"type="text/javascript">

<!--

 var1 =10; var2 =20;

//-->

</script>

Note − It is a good programming practice to use semicolons.

Case Sensitivity

JavaScript is a case-sensitive language. This means that the language keywords, variables, function names,

and any other identifiers must always be typed with a consistent capitalization of letters.

So the identifiers Time and TIME will convey different meanings in JavaScript.

NOTE − Care should be taken while writing variable and function names in JavaScript.

Comments in JavaScript

JavaScript supports both C-style and C++-style comments, Thus −

 Any text between a // and the end of a line is treated as a comment and is ignored by JavaScript.

 Any text between the characters /* and */ is treated as a comment. This may span multiple lines.

 JavaScript also recognizes the HTML comment opening sequence <!--. JavaScript treats this as a

single-line comment, just as it does the // comment.

 The HTML comment closing sequence --> is not recognized by JavaScript so it should be written as //-

->.

Example

The following example shows how to use comments in JavaScript.

<scriptlanguage="javascript"type="text/javascript">

<!--

// This is a comment. It is similar to comments in C++

/*

 * This is a multi-line comment in JavaScript

 * It is very similar to comments in C Programming

 */

//-->

</script>

Enabling JavaScript in Browsers

 Page 4 of 68

All the modern browsers come with built-in support for JavaScript. Frequently, you may need to enable or

disable this support manually. This chapter explains the procedure of enabling and disabling JavaScript

support in your browsers: Internet Explorer, Firefox, chrome, and Opera.

JavaScript in Internet Explorer

Here are simple steps to turn on or turn off JavaScript in your Internet Explorer −

 Follow Tools → Internet Options from the menu.

 Select Security tab from the dialog box.

 Click the Custom Level button.

 Scroll down till you find Scripting option.

 Select Enable radio button under Active scripting.

 Finally click OK and come out

To disable JavaScript support in your Internet Explorer, you need to select Disable radio button under Active

scripting.

JavaScript in Firefox

Here are the steps to turn on or turn off JavaScript in Firefox −

 Open a new tab → type about: config in the address bar.

 Then you will find the warning dialog. Select I’ll be careful, I promise!

 Then you will find the list of configure options in the browser.

 In the search bar, type javascript.enabled.

 There you will find the option to enable or disable javascript by right-clicking on the value of that

option → select toggle.

If javascript.enabled is true; it converts to false upon clicking toogle. If javascript is disabled; it gets enabled

upon clicking toggle.

JavaScript in Chrome

Here are the steps to turn on or turn off JavaScript in Chrome −

 Click the Chrome menu at the top right hand corner of your browser.

 Select Settings.

 Click Show advanced settings at the end of the page.

 Under the Privacy section, click the Content settings button.

 In the "Javascript" section, select "Do not allow any site to run JavaScript" or "Allow all sites to run

JavaScript (recommended)".

JavaScript - Placement in HTML File

There is a flexibility given to include JavaScript code anywhere in an HTML document. However the most

preferred ways to include JavaScript in an HTML file are as follows −

 Script in <head>...</head> section.

 Script in <body>...</body> section.

 Script in <body>...</body> and <head>...</head> sections.

 Script in an external file and then include in <head>...</head> section.

In the following section, we will see how we can place JavaScript in an HTML file in different ways.

JavaScript in <head>...</head> section

If you want to have a script run on some event, such as when a user clicks somewhere, then you will place

that script in the head as follows −

<html>

<head>

<scripttype="text/javascript">

<!--

function sayHello(){

 alert("Hello World")

 Page 5 of 68

}

//-->

</script>

</head>

<body>

<inputtype="button"onclick="sayHello()"value="Say Hello"/>

</body>

</html>

OUTPUT

JavaScript in <body>...</body> section

If you need a script to run as the page loads so that the script generates content in the page, then the script

goes in the <body> portion of the document. In this case, you would not have any function defined using

JavaScript. Take a look at the following code.

<html>

<head>

</head>

<body>

<scripttype="text/javascript">

<!--

 document.write("Hello World")

//-->

</script>

<p>This is web page body </p>

</body>

</html>

OUTPUT

Hello World

This is web page body

JavaScript in <body> and <head> Sections

You can put your JavaScript code in <head> and <body> section altogether as follows −

<html>

<head>

<scripttype="text/javascript">

<!--

function sayHello(){

 alert("Hello World")

}

 Page 6 of 68

//-->

</script>

</head>

<body>

<scripttype="text/javascript">

<!--

 document.write("Hello World")

//-->

</script>

<inputtype="button"onclick="sayHello()"value="Say Hello"/>

</body>

</html>

OUTPUT

JavaScript in External File

As you begin to work more extensively with JavaScript, you will be likely to find that there are cases where

you are reusing identical JavaScript code on multiple pages of a site.

You are not restricted to be maintaining identical code in multiple HTML files. The script tag provides a

mechanism to allow you to store JavaScript in an external file and then include it into your HTML files.

Here is an example to show how you can include an external JavaScript file in your HTML code

using script tag and its src attribute.

<html>

<head>

<scripttype="text/javascript"src="filename.js"></script>

</head>

<body>

</body>

</html>

To use JavaScript from an external file source, you need to write all your JavaScript source code in a simple

text file with the extension ".js" and then include that file as shown above.

For example, you can keep the following content in filename.js file and then you can use sayHello function

in your HTML file after including the filename.js file.

function sayHello() {

 alert("Hello World")

}

 Page 7 of 68

JavaScript - Variables

JavaScript Datatypes

One of the most fundamental characteristics of a programming language is the set of data types it supports.

These are the type of values that can be represented and manipulated in a programming language.

JavaScript allows you to work with three primitive data types −

 Numbers, eg. 123, 120.50 etc.

 Strings of text e.g. "This text string" etc.

 Boolean e.g. true or false.

JavaScript also defines two trivial data types, null and undefined, each of which defines only a single value.

In addition to these primitive data types, JavaScript supports a composite data type known as object. We will

cover objects in detail in a separate chapter.

Note − JavaScript does not make a distinction between integer values and floating-point values. All numbers

in JavaScript are represented as floating-point values. JavaScript represents numbers using the 64-bit floating-

point format defined by the IEEE 754 standard.

JavaScript Variables

Like many other programming languages, JavaScript has variables. Variables can be thought of as named

containers. You can place data into these containers and then refer to the data simply by naming the container.

Before you use a variable in a JavaScript program, you must declare it. Variables are declared with

the var keyword as follows.

<scripttype="text/javascript">

<!--

var money;

var name;

//-->

</script>

You can also declare multiple variables with the same var keyword as follows −

<scripttype="text/javascript">

<!--

var money, name;

//-->

</script>

Storing a value in a variable is called variable initialization. You can do variable initialization at the time of

variable creation or at a later point in time when you need that variable.

For instance, you might create a variable named money and assign the value 2000.50 to it later. For another

variable, you can assign a value at the time of initialization as follows.

<scripttype="text/javascript">

<!--

var name ="Ali";

var money;

 money =2000.50;

//-->

</script>

Note − Use the var keyword only for declaration or initialization, once for the life of any variable name in a

document. You should not re-declare same variable twice.

JavaScript is untyped language. This means that a JavaScript variable can hold a value of any data type.

Unlike many other languages, you don't have to tell JavaScript during variable declaration what type of value

 Page 8 of 68

the variable will hold. The value type of a variable can change during the execution of a program and

JavaScript takes care of it automatically.

JavaScript Variable Scope

The scope of a variable is the region of your program in which it is defined. JavaScript variables have only

two scopes.

 Global Variables − A global variable has global scope which means it can be defined anywhere in

your JavaScript code.

 Local Variables − A local variable will be visible only within a function where it is defined. Function

parameters are always local to that function.

Within the body of a function, a local variable takes precedence over a global variable with the same name. If

you declare a local variable or function parameter with the same name as a global variable, you effectively

hide the global variable. Take a look into the following example.

<html>

<bodyonload= checkscope();>

<scripttype="text/javascript">

<!--

var myVar ="global";// Declare a global variable

function checkscope(){

var myVar ="local";// Declare a local variable

 document.write(myVar);

}

//-->

</script>

</body>

</html>

OUTPUT

local

JavaScript Variable Names

While naming your variables in JavaScript, keep the following rules in mind.

 You should not use any of the JavaScript reserved keywords as a variable name. These keywords are

mentioned in the next section. For example, break or boolean variable names are not valid.

 JavaScript variable names should not start with a numeral (0-9). They must begin with a letter or an

underscore character. For example, 123test is an invalid variable name but _123test is a valid one.

 JavaScript variable names are case-sensitive. For example, Name and name are two different

variables.

JavaScript Reserved Words

A list of all the reserved words in JavaScript are given in the following table. They cannot be used as

JavaScript variables, functions, methods, loop labels, or any object names.

abstract else instanceof switch

boolean enum int synchronized

break export interface this

byte extends long throw

case false native throws

 Page 9 of 68

catch final new transient

char finally null true

class float package try

const for private typeof

continue function protected var

debugger goto public void

default if return volatile

delete implements short while

do import static with

double in super

Operators

JavaScript supports the following types of operators.

 Arithmetic Operators

 Comparison Operators

 Logical (or Relational) Operators

 Assignment Operators

 Conditional (or ternary) Operators

Arithmetic Operators

<html>

<body>

<scripttype="text/javascript">

<!--

var a =33;

var b =10;

var c ="Test";

var linebreak ="
";

 document.write("a + b = ");

 result = a + b;

 document.write(result);

 document.write(linebreak);

 document.write("a - b = ");

 result = a - b;

 document.write(result);

 document.write(linebreak);

 document.write("a / b = ");

 Page 10 of 68

 result = a / b;

 document.write(result);

 document.write(linebreak);

 document.write("a % b = ");

 result = a % b;

 document.write(result);

 document.write(linebreak);

 document.write("a + b + c = ");

 result = a + b + c;

 document.write(result);

 document.write(linebreak);

 a =++a;

 document.write("++a = ");

 result =++a;

 document.write(result);

 document.write(linebreak);

 b =--b;

 document.write("--b = ");

 result =--b;

 document.write(result);

 document.write(linebreak);

//-->

</script>

 Set the variables to different values and then try...

</body>

</html>

OUTPUT

a + b = 43

a - b = 23

a / b = 3.3

a % b = 3

a + b + c = 43Test

++a = 35

--b = 8

Set the variables to different values and then try...

Comparison Operators

<html>

<body>

<scripttype="text/javascript">

<!--

var a =10;

var b =20;

var linebreak ="
";

 Page 11 of 68

 document.write("(a == b) =>");

 result =(a == b);

 document.write(result);

 document.write(linebreak);

 document.write("(a < b) =>");

 result =(a < b);

 document.write(result);

 document.write(linebreak);

 document.write("(a > b) =>");

 result =(a > b);

 document.write(result);

 document.write(linebreak);

 document.write("(a != b) =>");

 result =(a != b);

 document.write(result);

 document.write(linebreak);

 document.write("(a >= b) =>");

 result =(a >= b);

 document.write(result);

 document.write(linebreak);

 document.write("(a <= b) =>");

 result =(a <= b);

 document.write(result);

 document.write(linebreak);

//-->

</script>

 Set the variables to different values and different operators and then try...

</body>

</html>

OUTPUT

(a == b) => false

(a < b) => true

(a > b) => false

(a != b) => true

(a >= b) => false

a <= b) => true

Set the variables to different values and different operators and then try...

Logical Operators

<html>

<body>

<scripttype="text/javascript">

<!--

 Page 12 of 68

var a =true;

var b =false;

var linebreak ="
";

 document.write("(a && b) =>");

 result =(a && b);

 document.write(result);

 document.write(linebreak);

 document.write("(a || b) =>");

 result =(a || b);

 document.write(result);

 document.write(linebreak);

 document.write("!(a && b) =>");

 result =(!(a && b));

 document.write(result);

 document.write(linebreak);

//-->

</script>

<p>Set the variables to different values and different operators and then try...</p>

</body>

</html>

OUTPUT

(a && b) => false

(a || b) => true

!(a && b) => true

Set the variables to different values and different operators and then try...

Bitwise Operators

<html>

<body>

<scripttype="text/javascript">

<!--

var a =2;// Bit presentation 10

var b =3;// Bit presentation 11

var linebreak ="
";

 document.write("(a & b) =>");

 result =(a & b);

 document.write(result);

 document.write(linebreak);

 document.write("(a | b) =>");

 result =(a | b);

 document.write(result);

 document.write(linebreak);

 document.write("(a ^ b) =>");

 Page 13 of 68

 result =(a ^ b);

 document.write(result);

 document.write(linebreak);

 document.write("(~b) =>");

 result =(~b);

 document.write(result);

 document.write(linebreak);

 document.write("(a << b) =>");

 result =(a << b);

 document.write(result);

 document.write(linebreak);

 document.write("(a >> b) =>");

 result =(a >> b);

 document.write(result);

 document.write(linebreak);

//-->

</script>

<p>Set the variables to different values and different operators and then try...</p>

</body>

</html>

OUTPUT

(a & b) => 2

(a | b) => 3

(a ^ b) => 1

(~b) => -4

(a << b) => 16

(a >> b) => 0

Set the variables to different values and different operators and then try...

Assignment Operators

<html>

<body>

<scripttype="text/javascript">

<!--

var a =33;

var b =10;

var linebreak ="
";

 document.write("Value of a => (a = b) =>");

 result =(a = b);

 document.write(result);

 document.write(linebreak);

 document.write("Value of a => (a += b) =>");

 result =(a += b);

 document.write(result);

 Page 14 of 68

 document.write(linebreak);

 document.write("Value of a => (a -= b) =>");

 result =(a -= b);

 document.write(result);

 document.write(linebreak);

 document.write("Value of a => (a *= b) =>");

 result =(a *= b);

 document.write(result);

 document.write(linebreak);

 document.write("Value of a => (a /= b) =>");

 result =(a /= b);

 document.write(result);

 document.write(linebreak);

 document.write("Value of a => (a %= b) =>");

 result =(a %= b);

 document.write(result);

 document.write(linebreak);

//-->

</script>

<p>Set the variables to different values and different operators and then try...</p>

</body>

</html>

OUTPUT

Value of a => (a = b) => 10

Value of a => (a += b) => 20

Value of a => (a -= b) => 10

Value of a => (a *= b) => 100

Value of a => (a /= b) => 10

Value of a => (a %= b) => 0

Set the variables to different values and different operators and then try...

Miscellaneous Operator

We will discuss two operators here that are quite useful in JavaScript: the conditional operator (? :) and

the typeof operator.

Conditional Operator (? :)

The conditional operator first evaluates an expression for a true or false value and then executes one of the

two given statements depending upon the result of the evaluation.

? : (Conditional)
If Condition is true? Then value X : Otherwise value Y

<html>

<body>

<scripttype="text/javascript">

<!--

var a =10;

 Page 15 of 68

var b =20;

var linebreak ="
";

 document.write ("((a > b) ? 100 : 200) =>");

 result =(a > b)?100:200;

 document.write(result);

 document.write(linebreak);

 document.write ("((a < b) ? 100 : 200) =>");

 result =(a < b)?100:200;

 document.write(result);

 document.write(linebreak);

//-->

</script>

<p>Set the variables to different values and different operators and then try...</p>

</body>

</html>

OUTPUT

((a > b) ? 100 : 200) => 200

((a < b) ? 100 : 200) => 100

Set the variables to different values and different operators and then try...

typeof Operator

The typeof operator is a unary operator that is placed before its single operand, which can be of any type. Its

value is a string indicating the data type of the operand.

The typeof operator evaluates to "number", "string", or "boolean" if its operand is a number, string, or boolean

value and returns true or false based on the evaluation.

Here is a list of the return values for the typeof Operator.

Type String Returned by typeof

Number "number"

String "string"

Boolean "boolean"

Object "object"

Function "function"

Undefined "undefined"

Null "object"

<html>

<body>

<scripttype="text/javascript">

<!--

var a =10;

 Page 16 of 68

var b ="String";

var linebreak ="
";

 result =(typeof b =="string"?"B is String":"B is Numeric");

 document.write("Result =>");

 document.write(result);

 document.write(linebreak);

 result =(typeof a =="string"?"A is String":"A is Numeric");

 document.write("Result =>");

 document.write(result);

 document.write(linebreak);

//-->

</script>

<p>Set the variables to different values and different operators and then try...</p>

</body>

</html>

OUTPUT

Result => B is String

Result => A is Numeric

Set the variables to different values and different operators and then try...

JavaScript - if...else Statement

JavaScript supports the following forms of if..else statement −

 if statement

 if...else statement

 if...else if... statement.

if statement

The if statement is the fundamental control statement that allows JavaScript to make decisions and execute

statements conditionally.

Syntax

The syntax for a basic if statement is as follows −

if (expression) {

 Statement(s) to be executed if expression is true

}

<html>

<body>

<scripttype="text/javascript">

<!--

var age =20;

if(age >18){

 document.write("Qualifies for driving");

}

//-->

</script>

<p>Set the variable to different value and then try...</p>

</body>

 Page 17 of 68

</html>

OUTPUT

Qualifies for driving
Set the variable to different value and then try...

if...else statement

The 'if...else' statement is the next form of control statement that allows JavaScript to execute statements in a

more controlled way.

Syntax

if (expression) {

 Statement(s) to be executed if expression is true

} else {

 Statement(s) to be executed if expression is false

}

<html>

<body>

<scripttype="text/javascript">

<!--

var age =15;

if(age >18){

 document.write("Qualifies for driving");

}else{

 document.write("Does not qualify for driving");

}

//-->

</script>

<p>Set the variable to different value and then try...</p>

</body>

</html>

OUTPUT

Does not qualify for driving

Set the variable to different value and then try...

if...else if... statement

The if...else if... statement is an advanced form of if…else that allows JavaScript to make a correct decision

out of several conditions.

Syntax

The syntax of an if-else-if statement is as follows −

if (expression 1) {

 Statement(s) to be executed if expression 1 is true

} else if (expression 2) {

 Statement(s) to be executed if expression 2 is true

} else if (expression 3) {

 Statement(s) to be executed if expression 3 is true

} else {

 Statement(s) to be executed if no expression is true

}

<html>

 Page 18 of 68

<body>

<scripttype="text/javascript">

<!--

var book ="maths";

if(book =="history"){

 document.write("History Book");

}elseif(book =="maths"){

 document.write("Maths Book");

}elseif(book =="economics"){

 document.write("Economics Book");

}else{

 document.write("Unknown Book");

}

//-->

</script>

<p>Set the variable to different value and then try...</p>

</body>

<html>

OUTPUT

Maths Book
Set the variable to different value and then try...

JavaScript - Switch Case

Syntax

The objective of a switch statement is to give an expression to evaluate and several different statements to

execute based on the value of the expression. The interpreter checks each case against the value of the

expression until a match is found. If nothing matches, a default condition will be used.

switch (expression) {

 case condition 1: statement(s)

 break;

 case condition 2: statement(s)

 break;

 ...

 case condition n: statement(s)

 break;

 default: statement(s)

}

<html>

<body>

<scripttype="text/javascript">

<!--

var grade ='A';

 document.write("Entering switch block
");

switch(grade){

case'A': document.write("Good job
");

break;

 Page 19 of 68

case'B': document.write("Pretty good
");

break;

case'C': document.write("Passed
");

break;

case'D': document.write("Not so good
");

break;

case'F': document.write("Failed
");

break;

default: document.write("Unknown grade
")

}

 document.write("Exiting switch block");

//-->

</script>

<p>Set the variable to different value and then try...</p>

</body>

</html>

OUTPUT

Entering switch block

Good job

Exiting switch block

Set the variable to different value and then try...

Break statements play a major role in switch-case statements. Try the following code that uses switch-case

statement without any break statement.

<html>

<body>

<scripttype="text/javascript">

<!--

var grade ='A';

 document.write("Entering switch block
");

switch(grade){

case'A': document.write("Good job
");

case'B': document.write("Pretty good
");

case'C': document.write("Passed
");

case'D': document.write("Not so good
");

case'F': document.write("Failed
");

default: document.write("Unknown grade
")

}

 document.write("Exiting switch block");

//-->

</script>

<p>Set the variable to different value and then try...</p>

 Page 20 of 68

</body>

</html>

OUTPUT

Entering switch block

Good job

Pretty good

Passed

Not so good

Failed

Unknown grade

Exiting switch block

Set the variable to different value and then try...

JavaScript - While Loops

Syntax

The syntax of while loop in JavaScript is as follows −

while (expression) {

 Statement(s) to be executed if expression is true

}

<html>

<body>

<scripttype="text/javascript">

<!--

var count =0;

 document.write("Starting Loop ");

while(count <10){

 document.write("Current Count : "+ count +"
");

 count++;

}

 document.write("Loop stopped!");

//-->

</script>

<p>Set the variable to different value and then try...</p>

</body>

</html>

OUTPUT

Starting Loop

Current Count : 0

Current Count : 1

Current Count : 2

Current Count : 3

Current Count : 4

Current Count : 5

 Page 21 of 68

Current Count : 6

Current Count : 7

Current Count : 8

Current Count : 9

Loop stopped!

Set the variable to different value and then try...

The do...while Loop

Syntax

The syntax for do-while loop in JavaScript is as follows −

do {

 Statement(s) to be executed;

} while (expression);

Note − Don’t miss the semicolon used at the end of the do...while loop.

<html>

<body>

<scripttype="text/javascript">

<!--

var count =0;

 document.write("Starting Loop"+"
");

do{

 document.write("Current Count : "+ count +"
");

 count++;

}

while(count <5);

 document.write ("Loop stopped!");

//-->

</script>

<p>Set the variable to different value and then try...</p>

</body>

</html>

OUTPUT

Starting Loop

Current Count : 0

Current Count : 1

Current Count : 2

Current Count : 3

Current Count : 4

Loop Stopped!

Set the variable to different value and then try...

JavaScript - For Loop

Syntax

The syntax of for loop is JavaScript is as follows −

for (initialization; test condition; iteration statement) {

 Statement(s) to be executed if test condition is true

}

 Page 22 of 68

<html>

<body>

<scripttype="text/javascript">

<!--

var count;

 document.write("Starting Loop"+"
");

for(count =0; count <10; count++){

 document.write("Current Count : "+ count);

 document.write("
");

}

 document.write("Loop stopped!");

//-->

</script>

<p>Set the variable to different value and then try...</p>

</body>

</html>

OUTPUT

Starting Loop

Current Count : 0

Current Count : 1

Current Count : 2

Current Count : 3

Current Count : 4

Current Count : 5

Current Count : 6

Current Count : 7

Current Count : 8

Current Count : 9

Loop stopped!

Set the variable to different value and then try...

JavaScript for...in loop

The for...in loop is used to loop through an object's properties. As we have not discussed Objects yet, you

may not feel comfortable with this loop. But once you understand how objects behave in JavaScript, you will

find this loop very useful.

Syntax

The syntax of ‘for..in’ loop is −

for (variablename in object) {

 statement or block to execute

}

In each iteration, one property from object is assigned to variablename and this loop continues till all the

properties of the object are exhausted.

<html>

<body>

<scripttype="text/javascript">

<!--

var aProperty;

 Page 23 of 68

 document.write("Navigator Object Properties
");

for(aProperty in navigator){

 document.write(aProperty);

 document.write("
");

}

 document.write ("Exiting from the loop!");

//-->

</script>

<p>Set the variable to different object and then try...</p>

</body>

</html>

OUTPUT

Navigator Object Properties

serviceWorker

webkitPersistentStorage

webkitTemporaryStorage

geolocation

doNotTrack

onLine

languages

language

userAgent

product

platform

appVersion

appName

appCodeName

hardwareConcurrency

maxTouchPoints

vendorSub

vendor

productSub

cookieEnabled

mimeTypes

plugins

javaEnabled

getStorageUpdates

getGamepads

webkitGetUserMedia

vibrate

getBattery

sendBeacon

registerProtocolHandler

unregisterProtocolHandler

Exiting from the loop!

Set the variable to different object and then try...

JavaScript - Loop Control

 Page 24 of 68

JavaScript provides break and continue statements. These statements are used to immediately come out of

any loop or to start the next iteration of any loop respectively.

Break Statement

The following example illustrates the use of a break statement with a while loop. Notice how the loop breaks

out early once x reaches 5 and reaches to document.write (..) statement just below to the closing curly brace –

<html>

<body>

<scripttype="text/javascript">

<!--

var x =1;

 document.write("Entering the loop
");

while(x <20){

if(x ==5){

break;// breaks out of loop completely

}

 x = x +1;

 document.write(x +"
");

}

 document.write("Exiting the loop!
");

//-->

</script>

<p>Set the variable to different value and then try...</p>

</body>

</html>

OUTPUT

Entering the loop

2

3

4

5

Exiting the loop!

Set the variable to different value and then try...

Continue Statement

This example illustrates the use of a continue statement with a while loop. Notice how the continue

statement is used to skip printing when the index held in variable x reaches 5 –

<html>

<body>

<scripttype="text/javascript">

<!--

var x =1;

 document.write("Entering the loop
");

while(x <10){

 x = x +1;

 Page 25 of 68

if(x ==5){

continue;// skip rest of the loop body

}

 document.write(x +"
");

}

 document.write("Exiting the loop!
");

//-->

</script>

<p>Set the variable to different value and then try...</p>

</body>

</html>

OUTPUT

Entering the loop

2

3

4

6

7

8

9

10

Exiting the loop!

Set the variable to different value and then try...

Using Labels to Control the Flow

Starting from JavaScript 1.2, a label can be used with break and continue to control the flow more precisely.

A label is simply an identifier followed by a colon (:) that is applied to a statement or a block of code. We

will see two different examples to understand how to use labels with break and continue.

Note − Line breaks are not allowed between the ‘continue’ or ‘break’ statement and its label name. Also,

there should not be any other statement in between a label name and associated loop.

<html>

<body>

<scripttype="text/javascript">

<!--

 document.write("Entering the loop!
");

 outerloop:// This is the label name

for(var i =0; i <5; i++){

 document.write("Outerloop: "+ i +"
");

 innerloop:

for(var j =0; j <5; j++){

if(j >3)break;// Quit the innermost loop

if(i ==2)break innerloop;// Do the same thing

if(i ==4)break outerloop;// Quit the outer loop

 document.write("Innerloop: "+ j +"
");

}

}

 document.write("Exiting the loop!
");

//-->

 Page 26 of 68

</script>

</body>

</html>

OUTPUT

Entering the loop!

Outerloop: 0

Innerloop: 0

Innerloop: 1

Innerloop: 2

Innerloop: 3

Outerloop: 1

Innerloop: 0

Innerloop: 1

Innerloop: 2

Innerloop: 3

Outerloop: 2

Outerloop: 3

Innerloop: 0

Innerloop: 1

Innerloop: 2

Innerloop: 3

Outerloop: 4

Exiting the loop!

Example 2

<html>

<body>

<scripttype="text/javascript">

<!--

 document.write("Entering the loop!
");

 outerloop:// This is the label name

for(var i =0; i <3; i++){

 document.write("Outerloop: "+ i +"
");

for(var j =0; j <5; j++){

if(j ==3){

continue outerloop;

}

 document.write("Innerloop: "+ j +"
");

}

}

 document.write("Exiting the loop!
");

//-->

</script>

</body>

 Page 27 of 68

</html>

OUTPUT

Entering the loop!

Outerloop: 0

Innerloop: 0

Innerloop: 1

Innerloop: 2

Outerloop: 1

Innerloop: 0

Innerloop: 1

Innerloop: 2

Outerloop: 2

Innerloop: 0

Innerloop: 1

Innerloop: 2

Exiting the loop!

JavaScript - Functions

Function Definition

<script type = "text/javascript">

<!--

 function functionname(parameter-list) {

 statements

 }

 //-->

</script>

<scripttype="text/javascript">

<!--

function sayHello(){

 alert("Hello there");

}

//-->

</script>

Calling a Function

<html>

<head>

<scripttype="text/javascript">

function sayHello(){

 document.write ("Hello there!");

}

</script>

</head>

<body>

<p>Click the following button to call the function</p>

 Page 28 of 68

<form>

<inputtype="button"onclick="sayHello()"value="Say Hello">

</form>

<p>Use different text in write method and then try...</p>

</body>

</html>

OUTPUT

Function Parameters

<html>

<head>

<scripttype="text/javascript">

function sayHello(name, age){

 document.write (name +" is "+ age +" years old.");

}

</script>

</head>

<body>

<p>Click the following button to call the function</p>

<form>

<inputtype="button"onclick="sayHello('Zara',7)"value="Say Hello">

</form>

<p>Use different parameters inside the function and then try...</p>

</body>

</html>

OUTPUT

The return Statement

<html>

<head>

<scripttype="text/javascript">

 Page 29 of 68

function concatenate(first, last){

var full;

 full = first + last;

return full;

}

function secondFunction(){

var result;

 result = concatenate('IND','IA');

 document.write (result);

}

</script>

</head>

<body>

<p>Click the following button to call the function</p>

<form>

<inputtype="button"onclick="secondFunction()"value="Call Function">

</form>

<p>Use different parameters inside the function and then try...</p>

</body>

</html>

OUTPUT

JavaScript - Events
Events are a part of the Document Object Model (DOM) Level 3 and every HTML element contains a set of events which
can trigger JavaScript Code.

onclick Event Type

This is the most frequently used event type which occurs when a user clicks the left button of his
mouse. You can put your validation, warning etc., against this event type.

<body>

<p>Click the following button and see result</p>

<form>

<inputtype="button"onclick="sayHello()"value="Say Hello"/>

</form>

</body>

 Page 30 of 68

onsubmit Event Type
<body>

<formmethod="POST"action="t.cgi"onsubmit="return validate()">

<inputtype="submit"value="Submit"/>

</form>

</body>

onmouseover and onmouseout

These two event types will help you create nice effects with images or even with text as well.
The onmouseover event triggers when you bring your mouse over any element and
the onmouseout triggers when you move your mouse out from that element.

<html>

<head>

<scripttype="text/javascript">

<!--

function over(){

 document.write ("Mouse Over");

}

function out(){

 document.write ("Mouse Out");

}

//-->

</script>

</head>

<body>

<p>Bring your mouse inside the division to see the result:</p>

<divonmouseover="over()"onmouseout="out()">

<h2> This is inside the division </h2>

</div>

</body>

</html>

HTML 5 Standard Events

Attribute Description

Offline Triggers when the document goes offline

Onabort Triggers on an abort event

onafterprint Triggers after the document is printed

onbeforeonload Triggers before the document loads

onbeforeprint Triggers before the document is printed

 Page 31 of 68

onblur Triggers when the window loses focus

oncanplay Triggers when media can start play, but might has to stop for buffering

oncanplaythrough Triggers when media can be played to the end, without stopping for buffering

onchange Triggers when an element changes

onclick Triggers on a mouse click

oncontextmenu Triggers when a context menu is triggered

ondblclick Triggers on a mouse double-click

ondrag Triggers when an element is dragged

ondragend Triggers at the end of a drag operation

ondragenter Triggers when an element has been dragged to a valid drop target

ondragleave Triggers when an element is being dragged over a valid drop target

ondragover Triggers at the start of a drag operation

ondragstart Triggers at the start of a drag operation

ondrop Triggers when dragged element is being dropped

ondurationchange Triggers when the length of the media is changed

onemptied Triggers when a media resource element suddenly becomes empty.

onended Triggers when media has reach the end

onerror Triggers when an error occur

onfocus Triggers when the window gets focus

onformchange Triggers when a form changes

onforminput Triggers when a form gets user input

onhaschange Triggers when the document has change

oninput Triggers when an element gets user input

oninvalid Triggers when an element is invalid

onkeydown Triggers when a key is pressed

onkeypress Triggers when a key is pressed and released

 Page 32 of 68

onkeyup Triggers when a key is released

onload Triggers when the document loads

onloadeddata Triggers when media data is loaded

onloadedmetadata Triggers when the duration and other media data of a media element is loaded

onloadstart Triggers when the browser starts to load the media data

onmessage Triggers when the message is triggered

onmousedown Triggers when a mouse button is pressed

onmousemove Triggers when the mouse pointer moves

onmouseout Triggers when the mouse pointer moves out of an element

onmouseover Triggers when the mouse pointer moves over an element

onmouseup Triggers when a mouse button is released

onmousewheel Triggers when the mouse wheel is being rotated

onoffline Triggers when the document goes offline

onoine Triggers when the document comes online

ononline Triggers when the document comes online

onpagehide Triggers when the window is hidden

onpageshow Triggers when the window becomes visible

onpause Triggers when media data is paused

onplay Triggers when media data is going to start playing

onplaying Triggers when media data has start playing

onpopstate Triggers when the window's history changes

onprogress Triggers when the browser is fetching the media data

onratechange Triggers when the media data's playing rate has changed

onreadystatechange Triggers when the ready-state changes

onredo Triggers when the document performs a redo

onresize Triggers when the window is resized

 Page 33 of 68

onscroll Triggers when an element's scrollbar is being scrolled

onseeked
Triggers when a media element's seeking attribute is no longer true, and the seeking

has ended

onseeking Triggers when a media element's seeking attribute is true, and the seeking has begun

onselect Triggers when an element is selected

onstalled Triggers when there is an error in fetching media data

onstorage Triggers when a document loads

onsubmit Triggers when a form is submitted

onsuspend
Triggers when the browser has been fetching media data, but stopped before the entire

media file was fetched

ontimeupdate Triggers when media changes its playing position

onundo Triggers when a document performs an undo

onunload Triggers when the user leaves the document

onvolumechange Triggers when media changes the volume, also when volume is set to "mute"

onwaiting Triggers when media has stopped playing, but is expected to resume

JavaScript - Objects Overview

JavaScript is an Object Oriented Programming (OOP) language. A programming language can be called

object-oriented if it provides four basic capabilities to developers −

 Encapsulation − the capability to store related information, whether data or methods, together in an

object.

 Aggregation − the capability to store one object inside another object.

 Inheritance − the capability of a class to rely upon another class (or number of classes) for some of its

properties and methods.

 Polymorphism − the capability to write one function or method that works in a variety of different

ways.

Objects are composed of attributes. If an attribute contains a function, it is considered to be a method of the

object, otherwise the attribute is considered a property.

Object Properties

Object properties can be any of the three primitive data types, or any of the abstract data types, such as

another object. Object properties are usually variables that are used internally in the object's methods, but can

also be globally visible variables that are used throughout the page.

The syntax for adding a property to an object is −

objectName.objectProperty = propertyValue;

For example − The following code gets the document title using the "title" property of the document object.

 Page 34 of 68

var str = document.title;

Object Methods

Methods are the functions that let the object do something or let something be done to it. There is a small

difference between a function and a method – at a function is a standalone unit of statements and a method is

attached to an object and can be referenced by the this keyword.

Methods are useful for everything from displaying the contents of the object to the screen to performing

complex mathematical operations on a group of local properties and parameters.

For example − Following is a simple example to show how to use the write() method of document object to

write any content on the document.

document.write("This is test");

User-Defined Objects

All user-defined objects and built-in objects are descendants of an object called Object.

The new Operator

The new operator is used to create an instance of an object. To create an object, the new operator is followed

by the constructor method.

In the following example, the constructor methods are Object(), Array(), and Date(). These constructors are

built-in JavaScript functions.

var employee =newObject();

var books =newArray("C++","Perl","Java");

var day =newDate("August 15, 1947");

The Object() Constructor

A constructor is a function that creates and initializes an object. JavaScript provides a special constructor

function called Object()to build the object. The return value of the Object() constructor is assigned to a

variable.

The variable contains a reference to the new object. The properties assigned to the object are not variables and

are not defined with the var keyword.

Example 1

Try the following example; it demonstrates how to create an Object.

<html>

<head>

<title>User-defined objects</title>

<script type = "text/javascript">

 var book = new Object(); // Create the object

 book.subject = "Perl"; // Assign properties to the object

 book.author = "Mohtashim";

</script>

</head>

<body>

<script type = "text/javascript">

 document.write("Book name is : " + book.subject + "
");

 document.write("Book author is : " + book.author + "
");

</script>

 Page 35 of 68

</body>

</html>

OUTPUT

Book name is : Perl

Book author is : Mohtashim

Example 2

This example demonstrates how to create an object with a User-Defined Function. Here this keyword is used

to refer to the object that has been passed to a function.

<html>

<head>

<title>User-defined objects</title>

<script type = "text/javascript">

 function book(title, author) {

 this.title = title;

 this.author = author;

 }

</script>

</head>

<body>

<script type = "text/javascript">

 var myBook = new book("Perl", "Mohtashim");

 document.write("Book title is : " + myBook.title + "
");

 document.write("Book author is : " + myBook.author + "
");

</script>

</body>

</html>

OUTPUT

Book title is : Perl

Book author is : Mohtashim

Defining Methods for an Object

The previous examples demonstrate how the constructor creates the object and assigns properties. But we

need to complete the definition of an object by assigning methods to it.

Example

Try the following example; it shows how to add a function along with an object.

<html>

<head>

<title>User-defined objects</title>

<script type = "text/javascript">

 // Define a function which will work as a method

 function addPrice(amount) {

 this.price = amount;

 Page 36 of 68

 }

 function book(title, author) {

 this.title = title;

 this.author = author;

 this.addPrice = addPrice; // Assign that method as property.

 }

</script>

</head>

<body>

<script type = "text/javascript">

 var myBook = new book("Perl", "Mohtashim");

 myBook.addPrice(100);

 document.write("Book title is : " + myBook.title + "
");

 document.write("Book author is : " + myBook.author + "
");

 document.write("Book price is : " + myBook.price + "
");

</script>

</body>

</html>

OUTPUT

Book title is : Perl

Book author is : Mohtashim

Book price is : 100

The 'with' Keyword

The ‘with’ keyword is used as a kind of shorthand for referencing an object's properties or methods.

The object specified as an argument to with becomes the default object for the duration of the block that

follows. The properties and methods for the object can be used without naming the object.

Syntax

The syntax for with object is as follows −

with (object) {

 properties used without the object name and dot

}

<html>

<head>

<title>User-defined objects</title>

<script type = "text/javascript">

 // Define a function which will work as a method

 function addPrice(amount) {

 with(this) {

 price = amount;

 }

 }

 Page 37 of 68

 function book(title, author) {

 this.title = title;

 this.author = author;

 this.price = 0;

 this.addPrice = addPrice; // Assign that method as property.

 }

</script>

</head>

<body>

<script type = "text/javascript">

 var myBook = new book("Perl", "Mohtashim");

 myBook.addPrice(100);

 document.write("Book title is : " + myBook.title + "
");

 document.write("Book author is : " + myBook.author + "
");

 document.write("Book price is : " + myBook.price + "
");

</script>

</body>

</html>

OUTPUT

Book title is : Perl

Book author is : Mohtashim

Book price is : 100

JavaScript Native Objects

JavaScript has several built-in or native objects. These objects are accessible anywhere in your program and

will work the same way in any browser running in any operating system.

Here is the list of all important JavaScript Native Objects −

 JavaScript Number Object

 JavaScript Boolean Object

 JavaScript String Object

 JavaScript Array Object

 JavaScript Date Object

 JavaScript Math Object

 JavaScript RegExp Object

JavaScript - The Number Object

The Number object represents numerical date, either integers or floating-point numbers. In general, you

do not need to worry about Number objects because the browser automatically converts number literals to

instances of the number class.

Syntax

The syntax for creating a number object is as follows −

var val = new Number(number);

In the place of number, if you provide any non-number argument, then the argument cannot be converted

into a number, it returnsNaN (Not-a-Number).

 Page 38 of 68

Number Properties

Here is a list of each property and their description.

Sr.No. Property & Description

1 MAX_VALUE
The largest possible value a number in JavaScript can have 1.7976931348623157E+308

2 MIN_VALUE
The smallest possible value a number in JavaScript can have 5E-324

3 NaN

Equal to a value that is not a number.

4 NEGATIVE_INFINITY
A value that is less than MIN_VALUE.

5 POSITIVE_INFINITY

A value that is greater than MAX_VALUE

6 prototype

A static property of the Number object. Use the prototype property to assign new properties

and methods to the Number object in the current document

7 constructor

Returns the function that created this object's instance. By default this is the Number object.

In the following sections, we will take a few examples to demonstrate the properties of Number.

Number Methods

1. The Number object contains only the default methods that are a part of every object's definition.

Sr.No. Method & Description

1 toExponential()

Forces a number to display in exponential notation, even if the number is in the range in

which JavaScript normally uses standard notation.

2 toFixed()
Formats a number with a specific number of digits to the right of the decimal.

3 toLocaleString()

Returns a string value version of the current number in a format that may vary according to a

browser's local settings.

4 toPrecision()

Defines how many total digits (including digits to the left and right of the decimal) to display

of a number.

5 toString()

Returns the string representation of the number's value.

https://www.tutorialspoint.com/javascript/number_max_value.htm
https://www.tutorialspoint.com/javascript/number_min_value.htm
https://www.tutorialspoint.com/javascript/number_nan.htm
https://www.tutorialspoint.com/javascript/number_negative_infinity.htm
https://www.tutorialspoint.com/javascript/number_positive_infinity.htm
https://www.tutorialspoint.com/javascript/object_prototype.htm
https://www.tutorialspoint.com/javascript/number_constructor.htm
https://www.tutorialspoint.com/javascript/number_toexponential.htm
https://www.tutorialspoint.com/javascript/number_tofixed.htm
https://www.tutorialspoint.com/javascript/number_tolocalestring.htm
https://www.tutorialspoint.com/javascript/number_toprecision.htm
https://www.tutorialspoint.com/javascript/number_tostring.htm

 Page 39 of 68

6 valueOf()
Returns the number's value.

In the following sections, we will have a few examples to explain the methods of Number.

JavaScript - The Boolean Object

The Boolean object represents two values, either "true" or "false". If value parameter is omitted or is 0, -0,

null, false, NaN,undefined, or the empty string (""), the object has an initial value of false.

Syntax

Use the following syntax to create a boolean object.

var val = new Boolean(value);

Boolean Properties

Here is a list of the properties of Boolean object −

Sr.No. Property & Description

1 constructor

Returns a reference to the Boolean function that created the object.

2 prototype
The prototype property allows you to add properties and methods to an object.

In the following sections, we will have a few examples to illustrate the properties of Boolean object.

Boolean Methods

Here is a list of the methods of Boolean object and their description.

Sr.No. Method & Description

1 toSource()

Returns a string containing the source of the Boolean object; you can use this string to create

an equivalent object.

2 toString()

Returns a string of either "true" or "false" depending upon the value of the object.

3 valueOf()
Returns the primitive value of the Boolean object.

In the following sections, we will have a few examples to demonstrate the usage of the Boolean methods.

JavaScript - The Strings Object

The String object lets you work with a series of characters; it wraps Javascript's string primitive data type

with a number of helper methods.

As JavaScript automatically converts between string primitives and String objects, you can call any of the

helper methods of the String object on a string primitive.

Syntax

Use the following syntax to create a String object −

var val = new String(string);

The String parameter is a series of characters that has been properly encoded.

String Properties

Here is a list of the properties of String object and their description.

https://www.tutorialspoint.com/javascript/number_valueof.htm
https://www.tutorialspoint.com/javascript/boolean_constructor.htm
https://www.tutorialspoint.com/javascript/object_prototype.htm
https://www.tutorialspoint.com/javascript/boolean_tosource.htm
https://www.tutorialspoint.com/javascript/boolean_tostring.htm
https://www.tutorialspoint.com/javascript/boolean_valueof.htm

 Page 40 of 68

Sr.No. Property & Description

1 constructor
Returns a reference to the String function that created the object.

2 length
Returns the length of the string.

3 prototype

The prototype property allows you to add properties and methods to an object.

In the following sections, we will have a few examples to demonstrate the usage of String properties.

String Methods

Here is a list of the methods available in String object along with their description.

Sr.No. Method & Description

1 charAt()

Returns the character at the specified index.

2 charCodeAt()
Returns a number indicating the Unicode value of the character at the given index.

3 concat()
Combines the text of two strings and returns a new string.

4 indexOf()

Returns the index within the calling String object of the first occurrence of the specified

value, or -1 if not found.

5 lastIndexOf()

Returns the index within the calling String object of the last occurrence of the specified value,

or -1 if not found.

6 localeCompare()

Returns a number indicating whether a reference string comes before or after or is the same as

the given string in sort order.

7 match()
Used to match a regular expression against a string.

8 replace()

Used to find a match between a regular expression and a string, and to replace the matched

substring with a new substring.

9 search()

Executes the search for a match between a regular expression and a specified string.

10 slice()

https://www.tutorialspoint.com/javascript/string_constructor.htm
https://www.tutorialspoint.com/javascript/string_length.htm
https://www.tutorialspoint.com/javascript/object_prototype.htm
https://www.tutorialspoint.com/javascript/string_charat.htm
https://www.tutorialspoint.com/javascript/string_charcodeat.htm
https://www.tutorialspoint.com/javascript/string_concat.htm
https://www.tutorialspoint.com/javascript/string_indexof.htm
https://www.tutorialspoint.com/javascript/string_lastindexof.htm
https://www.tutorialspoint.com/javascript/string_localecompare.htm
https://www.tutorialspoint.com/javascript/string_match.htm
https://www.tutorialspoint.com/javascript/string_replace.htm
https://www.tutorialspoint.com/javascript/string_search.htm
https://www.tutorialspoint.com/javascript/string_slice.htm

 Page 41 of 68

Extracts a section of a string and returns a new string.

11 split()
Splits a String object into an array of strings by separating the string into substrings.

12 substr()
Returns the characters in a string beginning at the specified location through the specified

number of characters.

13 substring()
Returns the characters in a string between two indexes into the string.

14 toLocaleLowerCase()

The characters within a string are converted to lower case while respecting the current locale.

15 toLocaleUpperCase()
The characters within a string are converted to upper case while respecting the current locale.

16 toLowerCase()
Returns the calling string value converted to lower case.

17 toString()

Returns a string representing the specified object.

18 toUpperCase()
Returns the calling string value converted to uppercase.

19 valueOf()

Returns the primitive value of the specified object.

String HTML Wrappers

Here is a list of the methods that return a copy of the string wrapped inside an appropriate HTML tag.

Sr.No. Method & Description

1 anchor()

Creates an HTML anchor that is used as a hypertext target.

2 big()
Creates a string to be displayed in a big font as if it were in

a <big> tag.

3 blink()
Creates a string to blink as if it were in a <blink> tag.

4 bold()
Creates a string to be displayed as bold as if it were in a

 tag.

https://www.tutorialspoint.com/javascript/string_split.htm
https://www.tutorialspoint.com/javascript/string_substr.htm
https://www.tutorialspoint.com/javascript/string_substring.htm
https://www.tutorialspoint.com/javascript/string_tolocalelowercase.htm
https://www.tutorialspoint.com/javascript/string_tolocaleuppercase.htm
https://www.tutorialspoint.com/javascript/string_tolowercase.htm
https://www.tutorialspoint.com/javascript/string_tostring.htm
https://www.tutorialspoint.com/javascript/string_touppercase.htm
https://www.tutorialspoint.com/javascript/string_valueof.htm
https://www.tutorialspoint.com/javascript/string_anchor.htm
https://www.tutorialspoint.com/javascript/string_big.htm
https://www.tutorialspoint.com/javascript/string_blink.htm
https://www.tutorialspoint.com/javascript/string_bold.htm

 Page 42 of 68

5 fixed()
Causes a string to be displayed in fixed-pitch font as if it

were in a <tt> tag

6 fontcolor()
Causes a string to be displayed in the specified color as if it

were in a tag.

7 fontsize()

Causes a string to be displayed in the specified font size as

if it were in a tag.

8 italics()

Causes a string to be italic, as if it were in an <i> tag.

9 link()
Creates an HTML hypertext link that requests another

URL.

10 small()
Causes a string to be displayed in a small font, as if it were

in a <small> tag.

11 strike()

Causes a string to be displayed as struck-out text, as if it

were in a <strike> tag.

12 sub()

Causes a string to be displayed as a subscript, as if it were

in a <sub> tag

13 sup()

Causes a string to be displayed as a superscript, as if it were

in a <sup> tag

JavaScript - The Arrays Object

The Array object lets you store multiple values in a single variable. It stores a fixed-size sequential

collection of elements of the same type. An array is used to store a collection of data, but it is often more

useful to think of an array as a collection of variables of the same type.

Syntax

Use the following syntax to create an Array object −

var fruits = new Array("apple", "orange", "mango");

The Array parameter is a list of strings or integers. When you specify a single numeric parameter with the

Array constructor, you specify the initial length of the array. The maximum length allowed for an array is

4,294,967,295.

You can create array by simply assigning values as follows −

var fruits = ["apple", "orange", "mango"];

https://www.tutorialspoint.com/javascript/string_fixed.htm
https://www.tutorialspoint.com/javascript/string_fontcolor.htm
https://www.tutorialspoint.com/javascript/string_fontsize.htm
https://www.tutorialspoint.com/javascript/string_italics.htm
https://www.tutorialspoint.com/javascript/string_link.htm
https://www.tutorialspoint.com/javascript/string_small.htm
https://www.tutorialspoint.com/javascript/string_strike.htm
https://www.tutorialspoint.com/javascript/string_sub.htm
https://www.tutorialspoint.com/javascript/string_sup.htm

 Page 43 of 68

You will use ordinal numbers to access and to set values inside an array as follows.

fruits[0] is the first element

fruits[1] is the second element

fruits[2] is the third element

Array Properties

Here is a list of the properties of the Array object along with their description.

Sr.No. Property & Description

1 constructor

Returns a reference to the array function that created the object.

2 index
The property represents the zero-based index of the match in the string

3 input
This property is only present in arrays created by regular expression matches.

4 length

Reflects the number of elements in an array.

5 prototype
The prototype property allows you to add properties and methods to an object.

In the following sections, we will have a few examples to illustrate the usage of Array properties.

Array Methods

Here is a list of the methods of the Array object along with their description.

Sr.No. Method & Description

1 concat()

Returns a new array comprised of this array joined with other array(s) and/or value(s).

2 every()
Returns true if every element in this array satisfies the provided testing function.

3 filter()

Creates a new array with all of the elements of this array for which the provided filtering

function returns true.

4 forEach()

Calls a function for each element in the array.

5 indexOf()

Returns the first (least) index of an element within the array equal to the specified value, or -1

if none is found.

6 join()

Joins all elements of an array into a string.

https://www.tutorialspoint.com/javascript/array_constructor.htm
https://www.tutorialspoint.com/javascript/array_length.htm
https://www.tutorialspoint.com/javascript/object_prototype.htm
https://www.tutorialspoint.com/javascript/array_concat.htm
https://www.tutorialspoint.com/javascript/array_every.htm
https://www.tutorialspoint.com/javascript/array_filter.htm
https://www.tutorialspoint.com/javascript/array_foreach.htm
https://www.tutorialspoint.com/javascript/array_indexof.htm
https://www.tutorialspoint.com/javascript/array_join.htm

 Page 44 of 68

7 lastIndexOf()
Returns the last (greatest) index of an element within the array equal to the specified value, or

-1 if none is found.

8 map()
Creates a new array with the results of calling a provided function on every element in this

array.

9 pop()

Removes the last element from an array and returns that element.

10 push()
Adds one or more elements to the end of an array and returns the new length of the array.

11 reduce()

Apply a function simultaneously against two values of the array (from left-to-right) as to

reduce it to a single value.

12 reduceRight()

Apply a function simultaneously against two values of the array (from right-to-left) as to

reduce it to a single value.

13 reverse()
Reverses the order of the elements of an array -- the first becomes the last, and the last

becomes the first.

14 shift()
Removes the first element from an array and returns that element.

15 slice()

Extracts a section of an array and returns a new array.

16 some()
Returns true if at least one element in this array satisfies the provided testing function.

17 toSource()
Represents the source code of an object

18 sort()

Sorts the elements of an array

19 splice()
Adds and/or removes elements from an array.

20 toString()
Returns a string representing the array and its elements.

21 unshift()

https://www.tutorialspoint.com/javascript/array_lastindexof.htm
https://www.tutorialspoint.com/javascript/array_map.htm
https://www.tutorialspoint.com/javascript/array_pop.htm
https://www.tutorialspoint.com/javascript/array_push.htm
https://www.tutorialspoint.com/javascript/array_reduce.htm
https://www.tutorialspoint.com/javascript/array_reduceright.htm
https://www.tutorialspoint.com/javascript/array_reverse.htm
https://www.tutorialspoint.com/javascript/array_shift.htm
https://www.tutorialspoint.com/javascript/array_slice.htm
https://www.tutorialspoint.com/javascript/array_some.htm
https://www.tutorialspoint.com/javascript/array_tosource.htm
https://www.tutorialspoint.com/javascript/array_sort.htm
https://www.tutorialspoint.com/javascript/array_splice.htm
https://www.tutorialspoint.com/javascript/array_tostring.htm
https://www.tutorialspoint.com/javascript/array_unshift.htm

 Page 45 of 68

Adds one or more elements to the front of an array and returns the new length of the array.

JavaScript - The Math Object

The math object provides you properties and methods for mathematical constants and functions. Unlike other

global objects,Math is not a constructor. All the properties and methods ofMath are static and can be called

by using Math as an object without creating it.

Thus, you refer to the constant pi as Math.PI and you call thesine function as Math.sin(x), where x is the

method's argument.

Syntax

The syntax to call the properties and methods of Math are as follows

var pi_val = Math.PI;

var sine_val = Math.sin(30);

Math Properties

Here is a list of all the properties of Math and their description.

Sr.No. Property & Description

1 E \
Euler's constant and the base of natural logarithms, approximately 2.718.

2 LN2

Natural logarithm of 2, approximately 0.693.

3 LN10

Natural logarithm of 10, approximately 2.302.

4 LOG2E
Base 2 logarithm of E, approximately 1.442.

5 LOG10E

Base 10 logarithm of E, approximately 0.434.

6 PI

Ratio of the circumference of a circle to its diameter, approximately 3.14159.

7 SQRT1_2
Square root of 1/2; equivalently, 1 over the square root of 2, approximately 0.707.

8 SQRT2

Square root of 2, approximately 1.414.

In the following sections, we will have a few examples to demonstrate the usage of Math properties.

Math Methods

Here is a list of the methods associated with Math object and their description

Sr.No. Method & Description

1 abs()

https://www.tutorialspoint.com/javascript/math_e.htm
https://www.tutorialspoint.com/javascript/math_ln2.htm
https://www.tutorialspoint.com/javascript/math_ln10.htm
https://www.tutorialspoint.com/javascript/math_log2e.htm
https://www.tutorialspoint.com/javascript/math_log10e.htm
https://www.tutorialspoint.com/javascript/math_pi.htm
https://www.tutorialspoint.com/javascript/math_sqrt1_2.htm
https://www.tutorialspoint.com/javascript/math_sqrt2.htm
https://www.tutorialspoint.com/javascript/math_abs.htm

 Page 46 of 68

Returns the absolute value of a number.

2 acos()
Returns the arccosine (in radians) of a number.

3 asin()
Returns the arcsine (in radians) of a number.

4 atan()

Returns the arctangent (in radians) of a number.

5 atan2()
Returns the arctangent of the quotient of its arguments.

6 ceil()

Returns the smallest integer greater than or equal to a number.

7 cos()

Returns the cosine of a number.

8 exp()
Returns EN, where N is the argument, and E is Euler's constant, the base of the natural logarithm.

9 floor()

Returns the largest integer less than or equal to a number.

10 log()
Returns the natural logarithm (base E) of a number.

11 max()
Returns the largest of zero or more numbers.

12 min()

Returns the smallest of zero or more numbers.

13 pow()
Returns base to the exponent power, that is, base exponent.

14 random()
Returns a pseudo-random number between 0 and 1.

15 round()

Returns the value of a number rounded to the nearest integer.

16 sin()
Returns the sine of a number.

17 sqrt()

https://www.tutorialspoint.com/javascript/math_acos.htm
https://www.tutorialspoint.com/javascript/math_asin.htm
https://www.tutorialspoint.com/javascript/math_atan.htm
https://www.tutorialspoint.com/javascript/math_atan2.htm
https://www.tutorialspoint.com/javascript/math_ceil.htm
https://www.tutorialspoint.com/javascript/math_cos.htm
https://www.tutorialspoint.com/javascript/math_exp.htm
https://www.tutorialspoint.com/javascript/math_floor.htm
https://www.tutorialspoint.com/javascript/math_log.htm
https://www.tutorialspoint.com/javascript/math_max.htm
https://www.tutorialspoint.com/javascript/math_min.htm
https://www.tutorialspoint.com/javascript/math_pow.htm
https://www.tutorialspoint.com/javascript/math_random.htm
https://www.tutorialspoint.com/javascript/math_round.htm
https://www.tutorialspoint.com/javascript/math_sin.htm
https://www.tutorialspoint.com/javascript/math_sqrt.htm

 Page 47 of 68

Returns the square root of a number.

18 tan()
Returns the tangent of a number.

19 toSource()
Returns the string "Math".

JavaScript - Document Object Model or DOM

Every web page resides inside a browser window which can be considered as an object.

A Document object represents the HTML document that is displayed in that window. The Document object

has various properties that refer to other objects which allow access to and modification of document content.

The way a document content is accessed and modified is called the Document Object Model, or DOM. The

Objects are organized in a hierarchy. This hierarchical structure applies to the organization of objects in a

Web document.

 Window object − Top of the hierarchy. It is the outmost element of the object hierarchy.

 Document object − Each HTML document that gets loaded into a window becomes a document

object. The document contains the contents of the page.

 Form object − Everything enclosed in the <form>...</form> tags sets the form object.

 Form control elements − The form object contains all the elements defined for that object such as text

fields, buttons, radio buttons, and checkboxes.

Here is a simple hierarchy of a few important objects −

There are several DOMs in existence. The following sections explain each of these DOMs in detail and

describe how you can use them to access and modify document content.

 The Legacy DOM − This is the model which was introduced in early versions of JavaScript language.

It is well supported by all browsers, but allows access only to certain key portions of documents, such

as forms, form elements, and images.

 The W3C DOM − This document object model allows access and modification of all document content

and is standardized by the World Wide Web Consortium (W3C). This model is supported by almost

all the modern browsers.

 The IE4 DOM − This document object model was introduced in Version 4 of Microsoft's Internet

Explorer browser. IE 5 and later versions include support for most basic W3C DOM features.

https://www.tutorialspoint.com/javascript/math_tan.htm
https://www.tutorialspoint.com/javascript/math_tosource.htm
https://www.tutorialspoint.com/javascript/javascript_legacy_dom.htm
https://www.tutorialspoint.com/javascript/javascript_w3c_dom.htm
https://www.tutorialspoint.com/javascript/javascript_ie4_dom.htm

 Page 48 of 68

DOM compatibility

If you want to write a script with the flexibility to use either W3C DOM or IE 4 DOM depending on their

availability, then you can use a capability-testing approach that first checks for the existence of a method or

property to determine whether the browser has the capability you desire. For example −

if (document.getElementById) {

 // If the W3C method exists, use it

} else if (document.all) {

 // If the all[] array exists, use it

} else {

 // Otherwise use the legacy DOM

}

JavaScript - The Date Object

The Date object is a datatype built into the JavaScript language. Date objects are created with the new Date(

) as shown below.

Once a Date object is created, a number of methods allow you to operate on it. Most methods simply allow

you to get and set the year, month, day, hour, minute, second, and millisecond fields of the object, using either

local time or UTC (universal, or GMT) time.

The ECMAScript standard requires the Date object to be able to represent any date and time, to millisecond

precision, within 100 million days before or after 1/1/1970. This is a range of plus or minus 273,785 years, so

JavaScript can represent date and time till the year 275755.

Syntax

You can use any of the following syntaxes to create a Date object using Date() constructor.

new Date()

new Date(milliseconds)

new Date(datestring)

new Date(year,month,date[,hour,minute,second,millisecond])

Note − Parameters in the brackets are always optional.

Here is a description of the parameters −

 No Argument − With no arguments, the Date() constructor creates a Date object set to the current date

and time.

 milliseconds − When one numeric argument is passed, it is taken as the internal numeric

representation of the date in milliseconds, as returned by the getTime() method. For example, passing

the argument 5000 creates a date that represents five seconds past midnight on 1/1/70.

 datestring − When one string argument is passed, it is a string representation of a date, in the format

accepted by the Date.parse() method.

 7 agruments − To use the last form of the constructor shown above. Here is a description of each

argument −

o year − Integer value representing the year. For compatibility (in order to avoid the Y2K

problem), you should always specify the year in full; use 1998, rather than 98.

o month − Integer value representing the month, beginning with 0 for January to 11 for

December.

o date − Integer value representing the day of the month.

o hour − Integer value representing the hour of the day (24-hour scale).

o minute − Integer value representing the minute segment of a time reading.

o second − Integer value representing the second segment of a time reading.

o millisecond − Integer value representing the millisecond segment of a time reading.

 Page 49 of 68

Date Properties

Here is a list of the properties of the Date object along with their description.

Sr.No. Property & Description

1 constructor
Specifies the function that creates an object's prototype.

2 prototype
The prototype property allows you to add properties and methods to an object

In the following sections, we will have a few examples to demonstrate the usage of different Date properties.

Date Methods

Here is a list of the methods used with Date and their description.

Sr.No. Method & Description

1 Date()
Returns today's date and time

2 getDate()

Returns the day of the month for the specified date according to local time.

3 getDay()
Returns the day of the week for the specified date according to local time.

4 getFullYear()
Returns the year of the specified date according to local time.

5 getHours()

Returns the hour in the specified date according to local time.

6 getMilliseconds()
Returns the milliseconds in the specified date according to local time.

7 getMinutes()

Returns the minutes in the specified date according to local time.

8 getMonth()

Returns the month in the specified date according to local time.

9 getSeconds()
Returns the seconds in the specified date according to local time.

10 getTime()

Returns the numeric value of the specified date as the number of milliseconds since January 1, 1970,

00:00:00 UTC.

11 getTimezoneOffset()
Returns the time-zone offset in minutes for the current locale.

https://www.tutorialspoint.com/javascript/date_constructor.htm
https://www.tutorialspoint.com/javascript/object_prototype.htm
https://www.tutorialspoint.com/javascript/date_date.htm
https://www.tutorialspoint.com/javascript/date_getdate.htm
https://www.tutorialspoint.com/javascript/date_getday.htm
https://www.tutorialspoint.com/javascript/date_getfullyear.htm
https://www.tutorialspoint.com/javascript/date_gethours.htm
https://www.tutorialspoint.com/javascript/date_getmilliseconds.htm
https://www.tutorialspoint.com/javascript/date_getminutes.htm
https://www.tutorialspoint.com/javascript/date_getmonth.htm
https://www.tutorialspoint.com/javascript/date_getseconds.htm
https://www.tutorialspoint.com/javascript/date_gettime.htm
https://www.tutorialspoint.com/javascript/date_gettimezoneoffset.htm

 Page 50 of 68

12 getUTCDate()
Returns the day (date) of the month in the specified date according to universal time.

13 getUTCDay()

Returns the day of the week in the specified date according to universal time.

14 getUTCFullYear()

Returns the year in the specified date according to universal time.

15 getUTCHours()
Returns the hours in the specified date according to universal time.

16 getUTCMilliseconds()

Returns the milliseconds in the specified date according to universal time.

17 getUTCMinutes()
Returns the minutes in the specified date according to universal time.

18 getUTCMonth()
Returns the month in the specified date according to universal time.

19 getUTCSeconds()

Returns the seconds in the specified date according to universal time.

20 getYear()
Deprecated - Returns the year in the specified date according to local time. Use getFullYear instead.

21 setDate()

Sets the day of the month for a specified date according to local time.

22 setFullYear()

Sets the full year for a specified date according to local time.

23 setHours()
Sets the hours for a specified date according to local time.

24 setMilliseconds()

Sets the milliseconds for a specified date according to local time.

25 setMinutes()

Sets the minutes for a specified date according to local time.

26 setMonth()
Sets the month for a specified date according to local time.

27 setSeconds()

Sets the seconds for a specified date according to local time.

https://www.tutorialspoint.com/javascript/date_getutcdate.htm
https://www.tutorialspoint.com/javascript/date_getutcday.htm
https://www.tutorialspoint.com/javascript/date_getutcfullyear.htm
https://www.tutorialspoint.com/javascript/date_getutchours.htm
https://www.tutorialspoint.com/javascript/date_getutcmilliseconds.htm
https://www.tutorialspoint.com/javascript/date_getutcminutes.htm
https://www.tutorialspoint.com/javascript/date_getutcmonth.htm
https://www.tutorialspoint.com/javascript/date_getutcseconds.htm
https://www.tutorialspoint.com/javascript/date_getyear.htm
https://www.tutorialspoint.com/javascript/date_setdate.htm
https://www.tutorialspoint.com/javascript/date_setfullyear.htm
https://www.tutorialspoint.com/javascript/date_sethours.htm
https://www.tutorialspoint.com/javascript/date_setmilliseconds.htm
https://www.tutorialspoint.com/javascript/date_setminutes.htm
https://www.tutorialspoint.com/javascript/date_setmonth.htm
https://www.tutorialspoint.com/javascript/date_setseconds.htm

 Page 51 of 68

28 setTime()
Sets the Date object to the time represented by a number of milliseconds since January 1, 1970,

00:00:00 UTC.

29 setUTCDate()
Sets the day of the month for a specified date according to universal time.

30 setUTCFullYear()
Sets the full year for a specified date according to universal time.

31 setUTCHours()

Sets the hour for a specified date according to universal time.

32 setUTCMilliseconds()
Sets the milliseconds for a specified date according to universal time.

33 setUTCMinutes()

Sets the minutes for a specified date according to universal time.

34 setUTCMonth()

Sets the month for a specified date according to universal time.

35 setUTCSeconds()
Sets the seconds for a specified date according to universal time.

36 setYear()

Deprecated - Sets the year for a specified date according to local time. Use setFullYear instead.

37 toDateString()
Returns the "date" portion of the Date as a human-readable string.

38 toGMTString()
Deprecated - Converts a date to a string, using the Internet GMT conventions. Use toUTCString

instead.

39 toLocaleDateString()
Returns the "date" portion of the Date as a string, using the current locale's conventions.

40 toLocaleFormat()

Converts a date to a string, using a format string.

41 toLocaleString()

Converts a date to a string, using the current locale's conventions.

42 toLocaleTimeString()
Returns the "time" portion of the Date as a string, using the current locale's conventions.

43 toSource()

https://www.tutorialspoint.com/javascript/date_settime.htm
https://www.tutorialspoint.com/javascript/date_setutcdate.htm
https://www.tutorialspoint.com/javascript/date_setutcfullyear.htm
https://www.tutorialspoint.com/javascript/date_setutchours.htm
https://www.tutorialspoint.com/javascript/date_setutcmilliseconds.htm
https://www.tutorialspoint.com/javascript/date_setutcminutes.htm
https://www.tutorialspoint.com/javascript/date_setutcmonth.htm
https://www.tutorialspoint.com/javascript/date_setutcseconds.htm
https://www.tutorialspoint.com/javascript/date_setyear.htm
https://www.tutorialspoint.com/javascript/date_todatestring.htm
https://www.tutorialspoint.com/javascript/date_togmtstring.htm
https://www.tutorialspoint.com/javascript/date_tolocaledatestring.htm
https://www.tutorialspoint.com/javascript/date_tolocaleformat.htm
https://www.tutorialspoint.com/javascript/date_tolocalestring.htm
https://www.tutorialspoint.com/javascript/date_tolocaletimestring.htm
https://www.tutorialspoint.com/javascript/date_tosource.htm

 Page 52 of 68

Returns a string representing the source for an equivalent Date object; you can use this value to

create a new object.

44 toString()

Returns a string representing the specified Date object.

45 toTimeString()

Returns the "time" portion of the Date as a human-readable string.

46 toUTCString()
Converts a date to a string, using the universal time convention.

47 valueOf()

Returns the primitive value of a Date object.

Converts a date to a string, using the universal time convention.

Date Static Methods

In addition to the many instance methods listed previously, the Date object also defines two static methods.

These methods are invoked through the Date() constructor itself.

Sr.No. Method & Description

1 Date.parse()
Parses a string representation of a date and time and returns the internal millisecond representation

of that date.

2 Date.UTC()

Returns the millisecond representation of the specified UTC date and time.

Regular Expressions and RegExp Object

A regular expression is an object that describes a pattern of characters.

The JavaScript RegExp class represents regular expressions, and both String and RegExp define methods

that use regular expressions to perform powerful pattern-matching and search-and-replace functions on text.

Syntax

A regular expression could be defined with the RegExp ()constructor, as follows −

var pattern = new RegExp(pattern, attributes);

or simply

var pattern = /pattern/attributes;

Here is the description of the parameters −

 pattern − A string that specifies the pattern of the regular expression or another regular expression.

 attributes − An optional string containing any of the "g", "i", and "m" attributes that specify global,

case-insensitive, and multi-line matches, respectively.

Brackets

Brackets ([]) have a special meaning when used in the context of regular expressions. They are used to find a

range of characters.

Sr.No. Expression & Description

1 [...]

https://www.tutorialspoint.com/javascript/date_tostring.htm
https://www.tutorialspoint.com/javascript/date_totimestring.htm
https://www.tutorialspoint.com/javascript/date_toutcstring.htm
https://www.tutorialspoint.com/javascript/date_valueof.htm
https://www.tutorialspoint.com/javascript/date_parse.htm
https://www.tutorialspoint.com/javascript/date_utc.htm

 Page 53 of 68

Any one character between the brackets.

2 [^...]
Any one character not between the brackets.

3 [0-9]
It matches any decimal digit from 0 through 9.

4 [a-z]

It matches any character from lowercase a through lowercase z.

5 [A-Z]
It matches any character from uppercase A through uppercase Z.

6 [a-Z]

It matches any character from lowercase a through uppercase Z.

The ranges shown above are general; you could also use the range [0-3] to match any decimal digit ranging

from 0 through 3, or the range [b-v] to match any lowercase character ranging from b through v.

Quantifiers

The frequency or position of bracketed character sequences and single characters can be denoted by a special

character. Each special character has a specific connotation. The +, *, ?, and $ flags all follow a character

sequence.

Sr.No. Expression & Description

1 p+

It matches any string containing one or more p's.

2 p*
It matches any string containing zero or more p's.

3 p?

It matches any string containing at most one p.

4 p{N}
It matches any string containing a sequence of N p's

5 p{2,3}
It matches any string containing a sequence of two or three p's.

6 p{2, }

It matches any string containing a sequence of at least two p's.

7 p$
It matches any string with p at the end of it.

8 ^p
It matches any string with p at the beginning of it.

 Page 54 of 68

Examples

Following examples explain more about matching characters.

Sr.No. Expression & Description

1 [^a-zA-Z]
It matches any string not containing any of the characters ranging from a through z and A through Z.

2 p.p
It matches any string containing p, followed by any character, in turn followed by another p.

3 ^.{2}$

It matches any string containing exactly two characters.

4 (.*)
It matches any string enclosed within and .

5 p(hp)*

It matches any string containing a p followed by zero or more instances of the sequence hp.

Literal characters

Sr.No. Character & Description

1 Alphanumeric
Itself

2 \0

The NUL character (\u0000)

3 \t
Tab (\u0009

4 \n

Newline (\u000A)

5 \v

Vertical tab (\u000B)

6 \f
Form feed (\u000C)

7 \r

Carriage return (\u000D)

8 \xnn

The Latin character specified by the hexadecimal number nn; for example, \x0A is the same as \n

9 \uxxxx
The Unicode character specified by the hexadecimal number xxxx; for example, \u0009 is the same

 Page 55 of 68

as \t

10 \cX
The control character ^X; for example, \cJ is equivalent to the newline character \n

Metacharacters

A metacharacter is simply an alphabetical character preceded by a backslash that acts to give the combination

a special meaning.

For instance, you can search for a large sum of money using the '\d' metacharacter: /([\d]+)000/, Here \d will

search for any string of numerical character.

The following table lists a set of metacharacters which can be used in PERL Style Regular Expressions.

Sr.No. Character & Description

1 .
a single character

2 \s

a whitespace character (space, tab, newline)

3 \S
non-whitespace character

4 \d

a digit (0-9)

5 \D

a non-digit

6 \w
a word character (a-z, A-Z, 0-9, _)

7 \W

a non-word character

8 [\b]
a literal backspace (special case).

9 [aeiou]
matches a single character in the given set

10 [^aeiou]

matches a single character outside the given set

11 (foo|bar|baz)
matches any of the alternatives specified

Modifiers

Several modifiers are available that can simplify the way you work with regexps, like case sensitivity,

searching in multiple lines, etc.

 Page 56 of 68

Sr.No. Modifier & Description

1 i
Perform case-insensitive matching.

2 m
Specifies that if the string has newline or carriage return characters, the ^ and $ operators will

now match against a newline boundary, instead of a string boundary

3 g
Performs a global matchthat is, find all matches rather than stopping after the first match.

RegExp Properties

Here is a list of the properties associated with RegExp and their description.

Sr.No. Property & Description

1 constructor

Specifies the function that creates an object's prototype.

2 global
Specifies if the "g" modifier is set.

3 ignoreCase
Specifies if the "i" modifier is set.

4 lastIndex

The index at which to start the next match.

5 multiline
Specifies if the "m" modifier is set.

6 source

The text of the pattern.

In the following sections, we will have a few examples to demonstrate the usage of RegExp properties.

RegExp Methods

Here is a list of the methods associated with RegExp along with their description.

Sr.No. Method & Description

1 exec()
Executes a search for a match in its string parameter.

2 test()

Tests for a match in its string parameter.

3 toSource()
Returns an object literal representing the specified object; you can use this value to create a new

object.

https://www.tutorialspoint.com/javascript/regexp_constructor.htm
https://www.tutorialspoint.com/javascript/regexp_global.htm
https://www.tutorialspoint.com/javascript/regexp_ignorecase.htm
https://www.tutorialspoint.com/javascript/regexp_lastindex.htm
https://www.tutorialspoint.com/javascript/regexp_multiline.htm
https://www.tutorialspoint.com/javascript/regexp_source.htm
https://www.tutorialspoint.com/javascript/regexp_exec.htm
https://www.tutorialspoint.com/javascript/regexp_test.htm
https://www.tutorialspoint.com/javascript/regexp_tosource.htm

 Page 57 of 68

4 toString()
Returns a string representing the specified object.

JavaScript - Errors & Exceptions Handling

There are three types of errors in programming: (a) Syntax Errors, (b) Runtime Errors, and (c) Logical Errors.

Syntax Errors

Syntax errors, also called parsing errors, occur at compile time in traditional programming languages and at

interpret time in JavaScript.

For example, the following line causes a syntax error because it is missing a closing parenthesis.

<script type = "text/javascript">

<!--

 window.print(;

 //-->

</script>

When a syntax error occurs in JavaScript, only the code contained within the same thread as the syntax error

is affected and the rest of the code in other threads gets executed assuming nothing in them depends on the

code containing the error.

Runtime Errors

Runtime errors, also called exceptions, occur during execution (after compilation/interpretation).

For example, the following line causes a runtime error because here the syntax is correct, but at runtime, it is

trying to call a method that does not exist.

<script type = "text/javascript">

<!--

 window.printme();

 //-->

</script>

Exceptions also affect the thread in which they occur, allowing other JavaScript threads to continue normal

execution.

Logical Errors

Logic errors can be the most difficult type of errors to track down. These errors are not the result of a syntax

or runtime error. Instead, they occur when you make a mistake in the logic that drives your script and you do

not get the result you expected.

You cannot catch those errors, because it depends on your business requirement what type of logic you want

to put in your program.

The try...catch...finally Statement

The latest versions of JavaScript added exception handling capabilities. JavaScript implements

the try...catch...finally construct as well as the throw operator to handle exceptions.

You can catch programmer-generated and runtime exceptions, but you cannot catch JavaScript syntax

errors.

Here is the try...catch...finally block syntax −

<scripttype="text/javascript">

<!--

try{

// Code to run

[break;]

}

catch(e){

https://www.tutorialspoint.com/javascript/regexp_tostring.htm

 Page 58 of 68

// Code to run if an exception occurs

[break;]

}

[finally {

// Code that is always executed regardless of

// an exception occurring

}]

//-->

</script>

The try block must be followed by either exactly one catch block or one finally block (or one of both). When

an exception occurs in the try block, the exception is placed in e and the catch block is executed. The

optional finally block executes unconditionally after try/catch.

Examples

Here is an example where we are trying to call a non-existing function which in turn is raising an exception.

Let us see how it behaves without try...catch−

<html>

<head>

<scripttype="text/javascript">

<!--

function myFunc(){

var a =100;

 alert("Value of variable a is : "+ a);

}

//-->

</script>

</head>

<body>

<p>Click the following to see the result:</p>

<form>

<inputtype="button"value="Click Me"onclick="myFunc();"/>

</form>

</body>

</html>

Output

 Page 59 of 68

Now let us try to catch this exception using try...catch and display a user-friendly message. You can also

suppress this message, if you want to hide this error from a user.

<html>

<head>

<scripttype="text/javascript">

<!--

function myFunc(){

var a =100;

try{

 alert("Value of variable a is : "+ a);

}

catch(e){

 alert("Error: "+ e.description);

}

}

//-->

</script>

</head>

<body>

<p>Click the following to see the result:</p>

<form>

<inputtype="button"value="Click Me"onclick="myFunc();"/>

</form>

</body>

</html>

You can use finally block which will always execute unconditionally after the try/catch. Here is an example.

<html>

<head>

<scripttype="text/javascript">

<!--

function myFunc(){

var a =100;

try{

 alert("Value of variable a is : "+ a);

}

catch(e){

 alert("Error: "+ e.description);

}

 finally {

 alert("Finally block will always execute!");

}

}

 Page 60 of 68

//-->

</script>

</head>

<body>

<p>Click the following to see the result:</p>

<form>

<inputtype="button"value="Click Me"onclick="myFunc();"/>

</form>

</body>

</html>

The throw Statement

You can use throw statement to raise your built-in exceptions or your customized exceptions. Later these

exceptions can be captured and you can take an appropriate action.

Example

The following example demonstrates how to use a throw statement.

<html>

<head>

<scripttype="text/javascript">

<!--

function myFunc(){

var a =100;

var b =0;

try{

if(b ==0){

throw("Divide by zero error.");

}else{

var c = a / b;

}

}

catch(e){

 alert("Error: "+ e);

}

}

//-->

</script>

</head>

<body>

<p>Click the following to see the result:</p>

<form>

<inputtype="button"value="Click Me"onclick="myFunc();"/>

</form>

 Page 61 of 68

</body>

</html>

You can raise an exception in one function using a string, integer, Boolean, or an object and then you can

capture that exception either in the same function as we did above, or in another function using

a try...catch block.

The onerror() Method

The onerror event handler was the first feature to facilitate error handling in JavaScript. The error event is

fired on the window object whenever an exception occurs on the page.

<html>

<head>

<scripttype="text/javascript">

<!--

 window.onerror =function(){

 alert("An error occurred.");

}

//-->

</script>

</head>

<body>

<p>Click the following to see the result:</p>

<form>

<inputtype="button"value="Click Me"onclick="myFunc();"/>

</form>

</body>

</html>

The onerror event handler provides three pieces of information to identify the exact nature of the error −

 Error message − The same message that the browser would display for the given error

 URL − The file in which the error occurred

 Line number− The line number in the given URL that caused the error

Here is the example to show how to extract this information.

Example

<html>

<head>

<scripttype="text/javascript">

<!--

 window.onerror =function(msg, url, line){

 alert("Message : "+ msg);

 alert("url : "+ url);

 alert("Line number : "+ line);

}

//-->

 Page 62 of 68

</script>

</head>

<body>

<p>Click the following to see the result:</p>

<form>

<inputtype="button"value="Click Me"onclick="myFunc();"/>

</form>

</body>

</html>

You can display extracted information in whatever way you think it is better.

You can use an onerror method, as shown below, to display an error message in case there is any problem in

loading an image.

<imgsrc="myimage.gif"onerror="alert('An error occurred loading the image.')"/>

You can use onerror with many HTML tags to display appropriate messages in case of errors.

JavaScript - Form Validation

Form validation normally used to occur at the server, after the client had entered all the necessary data and

then pressed the Submit button. If the data entered by a client was incorrect or was simply missing, the server

would have to send all the data back to the client and request that the form be resubmitted with correct

information. This was really a lengthy process which used to put a lot of burden on the server.

JavaScript provides a way to validate form's data on the client's computer before sending it to the web server.

Form validation generally performs two functions.

 Basic Validation − First of all, the form must be checked to make sure all the mandatory fields are

filled in. It would require just a loop through each field in the form and check for data.

 Data Format Validation − Secondly, the data that is entered must be checked for correct form and

value. Your code must include appropriate logic to test correctness of data.

Example

We will take an example to understand the process of validation. Here is a simple form in html format.

<html>

<head>

<title>Form Validation</title>

<scripttype="text/javascript">

<!--

// Form validation code will come here.

//-->

</script>

</head>

<body>

<formaction="/cgi-bin/test.cgi"name="myForm"onsubmit="return(validate());">

<tablecellspacing="2"cellpadding="2"border="1">

<tr>

<tdalign="right">Name</td>

<td><inputtype="text"name="Name"/></td>

 Page 63 of 68

</tr>

<tr>

<tdalign="right">EMail</td>

<td><inputtype="text"name="EMail"/></td>

</tr>

<tr>

<tdalign="right">Zip Code</td>

<td><inputtype="text"name="Zip"/></td>

</tr>

<tr>

<tdalign="right">Country</td>

<td>

<selectname="Country">

<optionvalue="-1"selected>[choose yours]</option>

<optionvalue="1">USA</option>

<optionvalue="2">UK</option>

<optionvalue="3">INDIA</option>

</select>

</td>

</tr>

<tr>

<tdalign="right"></td>

<td><inputtype="submit"value="Submit"/></td>

</tr>

</table>

</form>

</body>

</html>

OUTPUT

Basic Form Validation

First let us see how to do a basic form validation. In the above form, we are calling validate() to validate data

when onsubmit event is occurring. The following code shows the implementation of this validate() function.

 Page 64 of 68

<scripttype="text/javascript">

<!--

// Form validation code will come here.

function validate(){

if(document.myForm.Name.value ==""){

 alert("Please provide your name!");

 document.myForm.Name.focus();

returnfalse;

}

if(document.myForm.EMail.value ==""){

 alert("Please provide your Email!");

 document.myForm.EMail.focus();

returnfalse;

}

if(document.myForm.Zip.value ==""|| isNaN(document.myForm.Zip.value)||

 document.myForm.Zip.value.length !=5){

 alert("Please provide a zip in the format #####.");

 document.myForm.Zip.focus();

returnfalse;

}

if(document.myForm.Country.value =="-1"){

 alert("Please provide your country!");

returnfalse;

}

return(true);

}

//-->

</script>

Data Format Validation

Now we will see how we can validate our entered form data before submitting it to the web server.

The following example shows how to validate an entered email address. An email address must contain at

least a ‘@’ sign and a dot (.). Also, the ‘@’ must not be the first character of the email address, and the last

dot must at least be one character after the ‘@’ sign.

Example

Try the following code for email validation.

<scripttype="text/javascript">

<!--

function validateEmail(){

var emailID = document.myForm.EMail.value;

 atpos = emailID.indexOf("@");

 dotpos = emailID.lastIndexOf(".");

if(atpos <1||(dotpos - atpos <2)){

 alert("Please enter correct email ID")

 document.myForm.EMail.focus();

returnfalse;

 Page 65 of 68

}

return(true);

}

//-->

</script>

DHTML JavaScript

DHTML stands for Dynamic HTML. Dynamic means that the content of the web page can be customized or

changed according to user inputs i.e. a page that is interactive with the user. In earlier times, HTML was used

to create a static page. It only defined the structure of the content that was displayed on the page. With the help

of CSS, we can beautify the HTML page by changing various properties like text size, background color etc.

The HTML and CSS could manage to navigate between static pages but couldn’t do anything else. If 1000

users view a page that had their information for eg. Admit card then there was a problem because 1000 static

pages for this application build to work. As the number of users increase, the problem also increases and at

some point it becomes impossible to handle this problem.

To overcome this problem, DHTML came into existence. DHTML included JavaScript along with HTML and

CSS to make the page dynamic. This combo made the web pages dynamic and eliminated this problem of

creating static page for each user. To integrate JavaScript into HTML, a Document Object Model(DOM) is

made for the HTML document. In DOM, the document is represented as nodes and objects which are accessed

by different languages like JavaScript to manipulate the document.

HTML document include JavaScript:: The JavaScript document is included in our html page using the html

tag. <src> tag is used to specify the source of external JavaScript file.

Following are some of the tasks that can be performed with JavaScript:

 Performing html tasks

 Performing CSS tasks

 Handling events

 Validating inputs

Example 1: Example to understand how to use JavaScript in DHTML.

<html>

 <head>

 <title>DOM programming</title>

 Page 66 of 68

 </head>

 <body>

 <h1>GeeksforGeeks</h1>

 <p id = "geeks">Hello Geeks!</p>

 <script style = "text/javascript">

 document.getElementById("geeks").innerHTML =

 "A computer science portal for geeks";

 </script>

 </body>

</html>

Output

Explanation: In the above example, change the text of paragraph which using id. Document is an object of

html that is displayed in the current window or object of DOM. The getElementById(id) gives the element id.

The innerHTML defines the content within the id element. The id attribute is used to change HTML document

and its property. Paragraph content changed by document id. For example:

document.getElementById(“geeks”).style.color = “blue”; It is used to set the paragraph color using id of

elements.

Example 2: Creating an alert on click of a button.

<html>

 <head>

 <title>Create an alert</title>

 </head>

 <body>

 <h1 id = "para1">GeeksforGeeks</h1>

 <input type = "Submit" onclick = "Click()"/>

 <script style = "text/javascript">

 function Click() {

 document.getElementById("para1").style.color = "#009900";

 window.alert("Color changed to green");

 }

 </script>

 </body>

</html>

Output

 Page 67 of 68

Explanation: In this example, creating a function that will be invoked on click of a button and it changes the

color of text and display the alert on the screen. window is an object of current window whose inbuilt method

alert() is invoked in Click() function.

Example 3: Validate input data using JavaScript.

<html>

 <head>

 <title>Validate input data</title>

 </head>

 <body>

 <p>Enter graduation percentage:</p>

 <input id="perc">

 <button type="button" onclick="Validate()">Submit</button>

 <p id="demo"></p>

 <script>

 function Validate() {

 var x, text;

 x = document.getElementById("perc").value;

 if (isNaN(x) || x < 60) {

 window.alert("Not selected in GeeksforGeeks");

 } else {

 document.getElementById("demo").innerHTML =

 "Selected: Welcome to GeeksforGeeks";

 document.getElementById("demo").style.color = "#009900";

 }

 }

 </script>

 </body>

</html>

Output

 Page 68 of 68

Explanation: In this example, make a validate() function which ensures the user is illegible or not. If user enters

> 60 then selected otherwise not selected.

JavaScript Events

HTML events are "things" that happen to HTML elements.

When JavaScript is used in HTML pages, JavaScript can "react" on these events.

HTML Events

An HTML event can be something the browser does, or something a user does.

Here are some examples of HTML events:

 An HTML web page has finished loading
 An HTML input field was changed
 An HTML button was clicked

Often, when events happen, you may want to do something.

JavaScript lets you execute code when events are detected.

HTML allows event handler attributes, with JavaScript code, to be added to HTML elements.

With single quotes:

<elementevent='some JavaScript'>

With double quotes:

<elementevent="some JavaScript">

In the following example, an onclick attribute (with code), is added to a <button> element:

Example

<button onclick="document.getElementById('demo').innerHTML = Date()">The time is?</button>

In the example above, the JavaScript code changes the content of the element with id="demo".

In the next example, the code changes the content of its own element (using this.innerHTML):

Example

<button onclick="this.innerHTML = Date()">The time is?</button>

JavaScript code is often several lines long. It is more common to see event attributes calling functions

Example

<button onclick="displayDate()">The time is?</button>

Window frames

Example

Change the location of the first frame:

window.frames[0].location = "https://www.w3schools.com/jsref/";

Definition and Usage

The frames property returns an array with all window objects in the window.

The frames property is read-only.

The windows can be accessed by index numbers. The first index is 0.

The Window History Object

The history object contains the URLs visited by the user (in the browser window).

The history object is a property of the window object.

The history object is accessed with:

window.history or just history:

Examples

let length = window.history.length;

let length = history.length;

History Object Properties and Methods

Property/Method Description

back() Loads the previous URL (page) in the history list

forward() Loads the next URL (page) in the history list

https://www.w3schools.com/jsref/met_his_back.asp
https://www.w3schools.com/jsref/met_his_forward.asp

go() Loads a specific URL (page) from the history list

length Returns the number of URLs (pages) in the history list

Window getComputedStyle()

Example

Get the computed background color of an element:

const element = document.getElementById("test");

const cssObj = window.getComputedStyle(element, null);

let bgColor = cssObj.getPropertyValue("background-color");

More examples below.

Definition and Usage

The getComputedStyle() method gets the computed CSS properties and values of an HTML element.

The getComputedStyle() method returns a CSSStyleDeclaration object.

Computed Style

The computed style is the style used on the element after all styling sources have been applied.

Style sources: external and internal style sheets, inherited styles, and browser default styles.

See Also:

The CSSStyleDeclaration Object.

Syntax
window.getComputedStyle(element, pseudoElement)

https://www.w3schools.com/jsref/met_his_go.asp
https://www.w3schools.com/jsref/prop_his_length.asp
https://www.w3schools.com/jsref/obj_cssstyledeclaration.asp

Parameters

Parameter Description

element
Required.

The element to get the computed style for.

pseudoElement
Optional.

A pseudo-element to get.

Return Value

Type Description

An object A CSSStyleDeclaration object with all the CSS properties and values of the element.

More Examples

Get all the computed styles from an element:

const element = document.getElementById("test");

const cssObj = window.getComputedStyle(element, null);

let text = "";

for (x in cssObj) {

 cssObjProp = cssObj.item(x)

 text += cssObjProp + " = " + cssObj.getPropertyValue(cssObjProp) + "
";

}

Get computed font size of the first letter in an element (using pseudo-element):

const element = document.getElementById("test"); const cssObj = window.getComputedStyle(element, ":first-letter")

let size = cssObj.getPropertyValue("font-size");

Window innerHeight

Example

Get the window height:

let height = window.innerHeight;

let height = innerHeight;

More examples below.

Definition and Usage

The innerHeight property returns the height of a window's content area.

The innerHeight property is read only.

See Also:

The innerWidth Property.

The outerWidth Property.

The outerHeight Property.

Syntax
window.innerHeight

or just:

innerHeight

Return Value

Type Description

A number The the inner height of the browser window's content area in pixels.

More Examples

All height and width properties:

https://www.w3schools.com/jsref/prop_win_innerwidth.asp
https://www.w3schools.com/jsref/prop_win_outerwidth.asp
https://www.w3schools.com/jsref/prop_win_outerheight.asp

let text =

"<p>innerWidth: " + window.innerWidth + "</p>" +

"<p>innerHeight: " + window.innerHeight + "</p>" +

"<p>outerWidth: " + window.outerWidth + "</p>" +

"<p>outerHeight: " + window.outerHeight + "</p>";

Window innerWidth

Example

Get window width:

let width = window.innerWidth;

let width = innerWidth;

More examples below.

Definition and Usage

The innerWidth property returns the width of a window's content area.

The innerWidth property is read-only.

See Also:

The innerHeight Property.

The outerWith Property.

The outerHeight Property.

Syntax
window.innerWidth

or just:

innerWidth

Return Value

https://www.w3schools.com/jsref/prop_win_innerheight.asp
https://www.w3schools.com/jsref/prop_win_outerwidth.asp
https://www.w3schools.com/jsref/prop_win_outerheight.asp

Type Description

A number The the inner width of the browser window's content area in pixels.

More Examples

All height and width properties:

let text =

"<p>innerWidth: " + window.innerWidth + "</p>" +

"<p>innerHeight: " + window.innerHeight + "</p>" +

"<p>outerWidth: " + window.outerWidth + "</p>" +

"<p>outerHeight: " + window.outerHeight + "</p>";

Window length

Example

How many windows are in the window:

let length = window.length;

More examples below.

Definition and Usage

The length property returns the number of (framed) windows in the window.

The length property is read-only.

The windows can be accessed by index numbers. The first index is 0.

Note

A frame can be any embedding element:

<frame>, <iframe>, <embed>, <object>, etc.

See Also:

The frames property

The frameElement Property

Syntax
window.length

Return Value

Type Description

A number The number of windows in the current window.

Window localStorage

Example

Set and retrieve localStorage name/value pair:

localStorage.setItem("lastname", "Smith");

localStorage.getItem("lastname");

More examples below.

Definition and Usage

The localStorage object allows you to save key/value pairs in the browser.

Note

The localStorage object stores data with no expiration date.

The data is not deleted when the browser is closed, and are available for future sessions.

See Also:

The sessionStorage Object which stores data for one session.

https://www.w3schools.com/jsref/prop_win_frames.asp
https://www.w3schools.com/jsref/prop_win_frameelement.asp
https://www.w3schools.com/jsref/prop_win_sessionstorage.asp

(The data is deleted when the browser window is closed)

Syntax
window.localStorage

or just:

localStorage

Save Data to Local Storage

localStorage.setItem(key, value);

Read Data from Local Storage

let lastname = localStorage.getItem(key);

Remove Data from Local Storage

localStorage.removeItem(key);

Remove All (Clear Local Storage)

localStorage.clear();

Parameters

Parameter Description

key
Required.

The name of a key.

value
Required.

The value of the key.

Return Value

Type Description

An object A localStorage object.

More Examples

Count the number of times a user has clicked a button:

if (localStorage.clickcount) {

 localStorage.clickcount = Number(localStorage.clickcount) + 1;

} else {

 localStorage.clickcount = 1;

}

Window Location

The Window Location Object

The location object contains information about the current URL.

The location object is a property of the window object.

The location object is accessed with:

window.location or just location

Examples

let origin = window.location.origin;

let origin = location.origin;

Location Object Properties

Property Description

hash Sets or returns the anchor part (#) of a URL

host Sets or returns the hostname and port number of a URL

hostname Sets or returns the hostname of a URL

href Sets or returns the entire URL

origin Returns the protocol, hostname and port number of a URL

pathname Sets or returns the path name of a URL

port Sets or returns the port number of a URL

protocol Sets or returns the protocol of a URL

https://www.w3schools.com/jsref/prop_loc_hash.asp
https://www.w3schools.com/jsref/prop_loc_host.asp
https://www.w3schools.com/jsref/prop_loc_hostname.asp
https://www.w3schools.com/jsref/prop_loc_href.asp
https://www.w3schools.com/jsref/prop_loc_origin.asp
https://www.w3schools.com/jsref/prop_loc_pathname.asp
https://www.w3schools.com/jsref/prop_loc_port.asp
https://www.w3schools.com/jsref/prop_loc_protocol.asp

search Sets or returns the querystring part of a URL

Location Object Methods

Method Description

assign() Loads a new document

reload() Reloads the current document

replace() Replaces the current document with a new one

Window moveBy()

Example

Open a new window and move it 250px relative to its current position:

function openWin(){

 myWindow = window.open('', '', 'width=400, height=400');

}

function moveWin(){

 myWindow.moveBy(250, 250);

}

More examples below.

Definition and Usage

The moveBy() method moves a window a number of pixels relative to its current coordinates.

See Also:

The moveTo() Method

The resizeBy() Method

The resizeTo() Method

https://www.w3schools.com/jsref/prop_loc_search.asp
https://www.w3schools.com/jsref/met_loc_assign.asp
https://www.w3schools.com/jsref/met_loc_reload.asp
https://www.w3schools.com/jsref/met_loc_replace.asp
https://www.w3schools.com/jsref/met_win_moveto.asp
https://www.w3schools.com/jsref/met_win_resizeby.asp
https://www.w3schools.com/jsref/met_win_resizeto.asp

Syntax
window.moveBy(x, y)

Parameters

Parameter Description

x

Required.

A positive or negative number.

The number of pixels to move the window horizontally.

y

Required.

A positive or negative number.

The number of pixels to move the window vertically.

Return Value

NONE

Window moveTo()

Example

Open a new window, and move it to position 500 x 100:

function openWin(){

 myWindow = window.open('', '', 'width=400, height=200');

}

function moveWin(){

 myWindow.moveTo(500, 100);

}

More examples below.

Definition and Usage

The moveTo() method moves a window to the specified coordinates.

See Also:

The moveBy() Method

The resizeBy() Method

The resizeTo() Method

Syntax
window.moveTo(x, y)

Parameters

Parameter Description

x

Required.

A positive or negative number.

The horizontal coordinate to move to.

y

Required.

A positive or negative number.

The vertical coordinate to move to.

Return Value

NONE

More Examples

Using moveTo() together with moveBy():

function moveWinTo() {

 myWindow.moveTo(150, 150);

}

function moveWinBy() {

 myWindow.moveBy(75, 50);

}

https://www.w3schools.com/jsref/met_win_moveby.asp
https://www.w3schools.com/jsref/met_win_resizeby.asp
https://www.w3schools.com/jsref/met_win_resizeto.asp

Window name

Examples

Get window name:

let name = window.name;

Set window name:

window.name = "myWindowName";

More examples below.

Definition and Usage

The name property sets or returns the name of the window.

Note

A windows does not need to have a name.

Syntax

Return the name property:

window.name

Set the name property:

window.name = winName

Property Value

Type Description

winName The name of the window.

Return Value

Type Description

A string
The name of the window.

Or "view" (If the window has no name).

More Examples

Open a frame with a special name:

const otherWindow = window.open();

otherWindow.name = "Butterfly";

Window Navigator

The Window Navigator Object

The navigator object contains information about the browser.

The navigator object is a property of the window object.

The navigator object is accessed with:

window.navigator or just navigator:

Examples

let url = window.navigator.language;

let url = navigator.language;

Navigator Object Properties

Property Description

appCodeName Returns browser code name

appName Returns browser name

appVersion Returns browser version

https://www.w3schools.com/jsref/prop_nav_appcodename.asp
https://www.w3schools.com/jsref/prop_nav_appname.asp
https://www.w3schools.com/jsref/prop_nav_appversion.asp

cookieEnabled Returns true if browser cookies are enabled

geolocation Returns a geolocation object for the user's location

language Returns browser language

onLine Returns true if the browser is online

platform Returns browser platform

product Returns browser engine name

userAgent Returns browser user-agent header

Navigator Object Methods

Method Description

javaEnabled() Returns true if the browser has Java enabled

taintEnabled() Removed in JavaScript version 1.2 (1999).

Window open()

Example 1

Open "www.w3schools.com" in a new browser tab:

window.open("https://www.w3schools.com");

More examples below.

Definition and Usage

The open() method opens a new browser window, or a new tab, depending on your browser settings and the

parameter values.

See Also:

The close() method.

https://www.w3schools.com/jsref/prop_nav_cookieenabled.asp
https://www.w3schools.com/jsref/prop_nav_geolocation.asp
https://www.w3schools.com/jsref/prop_nav_language.asp
https://www.w3schools.com/jsref/prop_nav_online.asp
https://www.w3schools.com/jsref/prop_nav_platform.asp
https://www.w3schools.com/jsref/prop_nav_product.asp
https://www.w3schools.com/jsref/prop_nav_useragent.asp
https://www.w3schools.com/jsref/met_nav_javaenabled.asp
https://www.w3schools.com/jsref/met_nav_taintenabled.asp
https://www.w3schools.com/jsref/met_win_close.asp

Syntax
window.open(URL, name, specs, replace)

Parameters

Parameter Description

URL

Optional.

The URL of the page to open.

If no URL is specified, a new blank window/tab is opened

name

Optional.

The target attribute or the name of the window.

The following values are supported:

Value Description

_blank URL is loaded into a new window, or tab. This is the default

_parent URL is loaded into the parent frame

_self URL replaces the current page

_top URL replaces any framesets that may be loaded

name The name of the window (does not specify the title of the window)

specs

Optional.

A comma-separated list of items, no whitespaces.

The following values are supported:

fullscreen=yes|no|1|0
Whether or not to display the browser in full-screen mode. Default is no. A window in full-

screen mode must also be in theater mode. IE only

height=pixels The height of the window. Min. value is 100

left=pixels The left position of the window. Negative values not allowed

location=yes|no|1|0 Whether or not to display the address field. Opera only

menubar=yes|no|1|0 Whether or not to display the menu bar

resizable=yes|no|1|0 Whether or not the window is resizable. IE only

scrollbars=yes|no|1|0 Whether or not to display scroll bars. IE, Firefox & Opera only

status=yes|no|1|0 Whether or not to add a status bar

titlebar=yes|no|1|0
Whether or not to display the title bar. Ignored unless the calling application is an HTML

Application or a trusted dialog box

toolbar=yes|no|1|0 Whether or not to display the browser toolbar. IE and Firefox only

top=pixels The top position of the window. Negative values not allowed

width=pixels The width of the window. Min. value is 100

replace

Deprecated

Specifies whether the URL creates a new entry or replaces the current entry in the history list.

The following values are supported:

 true - URL replaces the current document in the history list
 false - URL creates a new entry in the history list

Window print() Method

Example

Print the current page:

window.print();

Definition and Usage

The print() method prints the contents of the current window.

The print() method opens the Print Dialog Box, which lets the user to select preferred printing options.

Syntax
window.print()

Parameters

None

Technical Details

Return

Value:
No return value

Window prompt()

Example 1

Prompt for a user name and output a message:

let person = prompt("Please enter your name", "Harry Potter");

if (person != null) {

 document.getElementById("demo").innerHTML =

 "Hello " + person + "! How are you today?";

}

More examples below.

Definition and Usage

The prompt() method displays a dialog box that prompts the user for input.

The prompt() method returns the input value if the user clicks "OK", otherwise it returns null.

Note

A prompt box is used if you want the user to input a value.

When a prompt box pops up, the user will have to click either "OK" or "Cancel" to proceed.

Do not overuse this method. It prevents the user from accessing other parts of the page until the box is closed.

See Also:

The alert() Method

The confirm() Method

Syntax
prompt(text, defaultText)

Parameters

Parameter Description

text
Optional.

The text to display in the dialog box.

defaultText
Optional.

The default input text.

Return Value

Parameter Description

A string
If the user clicks "OK", the input value is returned.

Otherwise null is returned.

More Examples

Prompt for his favourite drink:

let text;

let favDrink = prompt("What's your favorite cocktail drink?");

switch(favDrink) {

 case"Coca-Cola":

 text = "Excellent choice! Coca-Cola is good for your soul.";

 break;

 case"Pepsi":

 text = "Pepsi is my favorite too!";

 break;

https://www.w3schools.com/jsref/met_win_alert.asp
https://www.w3schools.com/jsref/met_win_confirm.asp

 case"Sprite":

 text = "Really? Are you sure the Sprite is your favorite?";

 break;

 default:

 text = "I have never heard of that one!";

}

Window removeEventListener()

Example

Remove a "mousemove" event handler:

window.removeEventListener("mousemove", myFunction);

Definition and Usage

The removeEventListener() method removes an event handler from a window.

Document Methods

The addEventListener() Method

The removeEventListener() Method

Element Methods

The addEventListener() Method

The removeEventListener() Method

Tutorials

HTML DOM EventListener

The Complete List of DOM Events

https://www.w3schools.com/jsref/met_document_addeventlistener.asp
https://www.w3schools.com/jsref/met_document_removeeventlistener.asp
https://www.w3schools.com/jsref/met_element_addeventlistener.asp
https://www.w3schools.com/jsref/met_element_removeeventlistener.asp
https://www.w3schools.com/js/js_htmldom_eventlistener.asp
https://www.w3schools.com/jsref/dom_obj_event.asp

Syntax
window.removeEventListener(event, function, capture)

Parameters

Parameter Description

event

Required.

The name of the event to remove.

Do not use the "on" prefix.

use "click" instead of "onclick".

All HTML DOM events are listed in the:

HTML DOM Event Object Reference.

function
Required.

The function to remove.

capture

Optional (default = false).

true - Remove the handler from capturing.

false- Remove the handler from bubbling.

If the event handler was attached two times, one with capturing and one with bubbling, each must

be removed separately.

Window resizeBy()

Example 1

Open a new window, and resize (increase) the width and height:

function openWin() {

 myWindow = window.open("", "", "width=100, height=100");

}

function resizeWin() {

 myWindow.resizeBy(250, 250);

}

Window resizeTo()

https://www.w3schools.com/jsref/dom_obj_event.asp

Example 1

Open a new window, and resize it to 300 x 300:

function openWin() {

 myWindow = window.open("", "", "width=200, height=100");

}

function resizeWin() {

 myWindow.resizeTo(300, 300);

}

More examples below.

Definition and Usage

The resizeTo() method resizes a window to a new width and height.

See Also:

The resizeBy() Method

The moveTo() Method

The moveTo() Method

Syntax
window.resizeTo(width, height)

Parameters

Parameter Description

width
Required.

The new window width, in pixels

height
Required.

The new window height, in pixels

https://www.w3schools.com/jsref/met_win_resizeby.asp
https://www.w3schools.com/jsref/met_win_moveby.asp
https://www.w3schools.com/jsref/met_win_moveto.asp

Return Value

NONE

More Examples

Using resizeTo() with resizeBy():

function resizeWinTo() {

 myWindow.resizeTo(800, 600);

}

function resizeWinBy() {

 myWindow.resizeBy(-100, -50);

}

Window Screen

The Window Screen Object

The screen object contains information about the visitor's screen.

Screen Object Properties

Property Description

availHeight Returns the height of the screen (excluding the Windows Taskbar)

availWidth Returns the width of the screen (excluding the Windows Taskbar)

colorDepth Returns the bit depth of the color palette for displaying images

height Returns the total height of the screen

pixelDepth Returns the color resolution (in bits per pixel) of the screen

width Returns the total width of the screen

https://www.w3schools.com/jsref/prop_screen_availheight.asp
https://www.w3schools.com/jsref/prop_screen_availwidth.asp
https://www.w3schools.com/jsref/prop_screen_colordepth.asp
https://www.w3schools.com/jsref/prop_screen_height.asp
https://www.w3schools.com/jsref/prop_screen_pixeldepth.asp
https://www.w3schools.com/jsref/prop_screen_width.asp

Window screenLeft

Example

Return the x and y coordinates of the window:

let x = window.screenLeft;

let y = window.screenTop;

Definition and Usage

The screenLeft property returns the x (horizontal) position of a window, relative to the screen.

See Also:

The screenTop Property

The screenX Property

The screenY Property

Syntax
window.screenLeft

Return Value

Type Description

A number The x (horizontal) position of the window relative to the screen, in pixels.

Window screenTop

Example

Return the x and y coordinates of the window:

let x = window.screenLeft;

let y = window.screenTop;

https://www.w3schools.com/jsref/prop_win_screentop.asp
https://www.w3schools.com/jsref/prop_win_screenx.asp
https://www.w3schools.com/jsref/prop_win_screeny.asp

Definition and Usage

The screenTop property returns the y (vertical) position of the window relative to the screen.

See Also:

The screenLeft Property

The screenX Property

The screenY Property

Syntax
window.screenTop

Return Value

Type Description

A number The y (vertical) position of the window relative to the screen, in pixels.

Browser Support

window.screenTop is supported in all modern browsers:

Window scrollBy()

Example

Scroll the document 100px horizontally:

window.scrollBy(100, 0);

Scroll the document 100px vertically:

window.scrollBy(0, 100);

More examples below.

https://www.w3schools.com/jsref/prop_win_screenleft.asp
https://www.w3schools.com/jsref/prop_win_screenx.asp
https://www.w3schools.com/jsref/prop_win_screeny.asp

Definition and Usage

The scrollBy() method scrolls the document by the specified number of pixels.

Note

For the scrollBy() method to work, the document must be larger than the screen, and the scrollbar must be

visible.

See Also:

The scrollTo() method.

Syntax
window.scrollBy(x, y)

or just:

scrollBy(x, y)

Parameters

Parameter Description

x

Required.

Number of pixels to scroll (horizontally).

Positive values scroll to the right, negative values to the left.

y

Required.

Number ofpixels to scroll (vertically).

Positive values scroll down, negative values scroll up.

Return Value

NONE

https://www.w3schools.com/jsref/met_win_scrollto.asp

More Examples

Scroll the document up and down:

<button onclick="scrollWin(0, 50)">Scroll down</button>

<button onclick="scrollWin(0, -50)">Scroll up</button>

<script>

function scrollWin(x, y) {

 window.scrollBy(x, y);

}

</script>

Scroll the document right and left:

<button onclick="scrollWin(100, 0)">Scroll right</button>

<button onclick="scrollWin(-100, 0)">Scroll left</button>

<script>

function scrollWin(x, y) {

 window.scrollBy(x, y);

}

</script>

Window scrollTo()

Example

Scroll the document to the horizontal position 500:

window.scrollTo(500, 0);

Scroll the document to the vertical position 500:

window.scrollTo(0, 500);

More examples below.

Definition and Usage

The scrollTo() method scrolls the document to specified coordinates.

Note

For the scrollTo() method to work, the document must be larger than the screen, and the scrollbar must be

visible.

See Also:

The scrollBy() method.

Syntax
window.scrollTo(x, y)

or just:

scrollTo(x, y)

Parameters

Parameter Description

x
Required.

The coordinate to scroll to (horizontally), in pixels.

y
Required.

The coordinate to scroll to (vertically), in pixels.

Return Value

NONE

More Examples

Scroll the document to position 300 horizontally and 500 vertically:

window.scrollTo(300, 500);

Window setTimeout()

https://www.w3schools.com/jsref/met_win_scrollby.asp

Examples

Wait 5 seconds for the greeting:

const myTimeout = setTimeout(myGreeting, 5000);

Use clearTimeout(myTimeout) to prevent myGreeting from running:

const myTimeout = setTimeout(myGreeting, 5000);

function myStopFunction() {

 clearTimeout(myTimeout);

}

More examples below.

Definition and Usage

The setTimeout() method calls a function after a number of milliseconds.

1 second = 1000 milliseconds.

Notes

The setTimeout() is executed only once.

If you need repeated executions, use setInterval() instead.

Use the clearTimeout() method to prevent the function from starting.

To clear a timeout, use the id returned from setTimeout():

myTimeout = setTimeout(function, milliseconds);

Then you can to stop the execution by calling clearTimeout():

clearTimeout(myTimeout);

See Also:

The clearTimeout() Method

The setInterval() Method

https://www.w3schools.com/jsref/met_win_cleartimeout.asp
https://www.w3schools.com/jsref/met_win_setinterval.asp

The clearInterval() Method

Syntax
setTimeout(function, milliseconds, param1, param2, ...)

Parameters

Parameter Description

function
Required.

The function to execute.

milliseconds

Optional.

Number of milliseconds to wait before executing.

Default value is 0.

param1,

param2,

...

Optional.

Parameters to pass to the function.

Not supported in IE9 and earlier.

Return Value

Type Description

A number
The id of the timer.

Use this id with clearTimeout(id) to cancel the timer.

More Examples

Display an alert box after 3 seconds (3000 milliseconds):

let timeout;

function myFunction() {

 timeout = setTimeout(alertFunc, 3000);

}

function alertFunc() {

https://www.w3schools.com/jsref/met_win_clearinterval.asp

 alert("Hello!");

}

Window status

Example

Set the text in the status bar:

window.status = "Some text in the status bar!!";

Definition and Usage

The status property is deprecated.

It should be avoided to prevent RUN-TIME ERRORS in the future.

Syntax
window.status

Return Value

The text displayed in the status bar

Window stop()

Example

Stop the loading of a window:

window.stop();

Definition and Usage

The stop() method stops window loading.

The stop() method is the same as clicking stop in the browser.

Note

The stop() method can be used to stop loading an image if it takes too long.

Syntax
window.stop()

Parameters

NONE

Return Value

NONE

Window Console Object

The Console Object

The console object provides access to the browser's debugging console.

The console object is a property of the window object.

The console object is accessed with:

window.console or just console

Examples

window.console.error("You made a mistake");

console.error("You made a mistake");

Console Object Methods

Method Description

assert() Writes an error message to the console if a assertion is false

clear() Clears the console

https://www.w3schools.com/jsref/met_console_assert.asp
https://www.w3schools.com/jsref/met_console_clear.asp

count() Logs the number of times that this particular call to count() has been called

error() Outputs an error message to the console

group()

Creates a new inline group in the console. This indents following console messages by an additional

level, until console.groupEnd() is called

groupCollapsed()

Creates a new inline group in the console. However, the new group is created collapsed. The user will

need to use the disclosure button to expand it

groupEnd() Exits the current inline group in the console

info() Outputs an informational message to the console

log() Outputs a message to the console

table() Displays tabular data as a table

time() Starts a timer (can track how long an operation takes)

timeEnd() Stops a timer that was previously started by console.time()

trace() Outputs a stack trace to the console

warn() Outputs a warning message to the console

Window History

The Window History Object

The history object contains the URLs visited by the user (in the browser window).

The history object is a property of the window object.

The history object is accessed with:

window.history or just history:

Examples

let length = window.history.length;

let length = history.length;

https://www.w3schools.com/jsref/met_console_count.asp
https://www.w3schools.com/jsref/met_console_error.asp
https://www.w3schools.com/jsref/met_console_group.asp
https://www.w3schools.com/jsref/met_console_groupcollapsed.asp
https://www.w3schools.com/jsref/met_console_groupend.asp
https://www.w3schools.com/jsref/met_console_info.asp
https://www.w3schools.com/jsref/met_console_log.asp
https://www.w3schools.com/jsref/met_console_table.asp
https://www.w3schools.com/jsref/met_console_time.asp
https://www.w3schools.com/jsref/met_console_timeend.asp
https://www.w3schools.com/jsref/met_console_trace.asp
https://www.w3schools.com/jsref/met_console_warn.asp

History Object Properties and Methods

Property/Method Description

back() Loads the previous URL (page) in the history list

forward() Loads the next URL (page) in the history list

go() Loads a specific URL (page) from the history list

length Returns the number of URLs (pages) in the history list

Window Location

The Window Location Object

The location object contains information about the current URL.

The location object is a property of the window object.

The location object is accessed with:

window.location or just location

Examples

let origin = window.location.origin;

let origin = location.origin;

Location Object Properties

Property Description

hash Sets or returns the anchor part (#) of a URL

host Sets or returns the hostname and port number of a URL

hostname Sets or returns the hostname of a URL

href Sets or returns the entire URL

https://www.w3schools.com/jsref/met_his_back.asp
https://www.w3schools.com/jsref/met_his_forward.asp
https://www.w3schools.com/jsref/met_his_go.asp
https://www.w3schools.com/jsref/prop_his_length.asp
https://www.w3schools.com/jsref/prop_loc_hash.asp
https://www.w3schools.com/jsref/prop_loc_host.asp
https://www.w3schools.com/jsref/prop_loc_hostname.asp
https://www.w3schools.com/jsref/prop_loc_href.asp

origin Returns the protocol, hostname and port number of a URL

pathname Sets or returns the path name of a URL

port Sets or returns the port number of a URL

protocol Sets or returns the protocol of a URL

search Sets or returns the querystring part of a URL

Location Object Methods

Method Description

assign() Loads a new document

reload() Reloads the current document

replace() Replaces the current document with a new one

Window Navigator

The Window Navigator Object

The navigator object contains information about the browser.

The navigator object is a property of the window object.

The navigator object is accessed with:

window.navigator or just navigator:

Examples

let url = window.navigator.language;

let url = navigator.language;

Navigator Object Properties

Property Description

https://www.w3schools.com/jsref/prop_loc_origin.asp
https://www.w3schools.com/jsref/prop_loc_pathname.asp
https://www.w3schools.com/jsref/prop_loc_port.asp
https://www.w3schools.com/jsref/prop_loc_protocol.asp
https://www.w3schools.com/jsref/prop_loc_search.asp
https://www.w3schools.com/jsref/met_loc_assign.asp
https://www.w3schools.com/jsref/met_loc_reload.asp
https://www.w3schools.com/jsref/met_loc_replace.asp

appCodeName Returns browser code name

appName Returns browser name

appVersion Returns browser version

cookieEnabled Returns true if browser cookies are enabled

geolocation Returns a geolocation object for the user's location

language Returns browser language

onLine Returns true if the browser is online

platform Returns browser platform

product Returns browser engine name

userAgent Returns browser user-agent header

Navigator Object Methods

Method Description

javaEnabled() Returns true if the browser has Java enabled

taintEnabled() Removed in JavaScript version 1.2 (1999).

Window Screen

The Window Screen Object

The screen object contains information about the visitor's screen.

Screen Object Properties

Property Description

availHeight Returns the height of the screen (excluding the Windows Taskbar)

availWidth Returns the width of the screen (excluding the Windows Taskbar)

https://www.w3schools.com/jsref/prop_nav_appcodename.asp
https://www.w3schools.com/jsref/prop_nav_appname.asp
https://www.w3schools.com/jsref/prop_nav_appversion.asp
https://www.w3schools.com/jsref/prop_nav_cookieenabled.asp
https://www.w3schools.com/jsref/prop_nav_geolocation.asp
https://www.w3schools.com/jsref/prop_nav_language.asp
https://www.w3schools.com/jsref/prop_nav_online.asp
https://www.w3schools.com/jsref/prop_nav_platform.asp
https://www.w3schools.com/jsref/prop_nav_product.asp
https://www.w3schools.com/jsref/prop_nav_useragent.asp
https://www.w3schools.com/jsref/met_nav_javaenabled.asp
https://www.w3schools.com/jsref/met_nav_taintenabled.asp
https://www.w3schools.com/jsref/prop_screen_availheight.asp
https://www.w3schools.com/jsref/prop_screen_availwidth.asp

colorDepth Returns the bit depth of the color palette for displaying images

height Returns the total height of the screen

pixelDepth Returns the color resolution (in bits per pixel) of the screen

width Returns the total width of the screen

How to create printer friendly web page using

javascript

When you create a web page you usually keep in mind how it will rendered on the browser and its usability.

Sometime, depending upon the content, you also know that your page might be printed by end user. User will

click specially open the printable version and take its print or sometime he will directly print your webpage.

Now what are the issues here –

The web page is not printer friendly therefore the content might get distorted while printing it into a A4 size

paper.

The print will contain unnecessary links and images while have no use in printable version.

The webpage might have dark background which will lead to wastage of print ink.

Some text might have light colors which may not be visible clear on a black & white printout.

If you create separate printable view then it will involve another user action which sometimes user don’t do.

There is a clean solution to this problem using the media attribute in the link tag. By using you can specify on

which media a particular style sheet will be applicable. Therefore you can have different style sheet for printer

and browser screen and user don’t have to worry about this.

Now lets start making it printer friendly. First of all create three different style sheets. One for screen, one for

print and one which will contain common classes. Include this css in page and add desired media value i.e. for

printer add media = print and for screen css add media = screen. Don’t specify the media for the common css.

<link href=”style-common.css” rel=”stylesheet” type=”text/css” /><link href=”style-screen.css”

media=”screen” rel=”stylesheet” type=”text/css” /><link href=”style-print.css” media=”print” rel=”stylesheet”

type=”text/css” />

JavaScript Forms

JavaScript Form Validation

HTML form validation can be done by JavaScript.

If a form field (fname) is empty, this function alerts a message, and returns false, to prevent the form from being

submitted:

https://www.w3schools.com/jsref/prop_screen_colordepth.asp
https://www.w3schools.com/jsref/prop_screen_height.asp
https://www.w3schools.com/jsref/prop_screen_pixeldepth.asp
https://www.w3schools.com/jsref/prop_screen_width.asp

JavaScript Example

function validateForm() {

 let x = document.forms["myForm"]["fname"].value;

 if (x == "") {

 alert("Name must be filled out");

 returnfalse;

 }

}

The function can be called when the form is submitted:

HTML Form Example

<form name="myForm" action="/action_page.php"onsubmit="return validateForm()" method="post">

Name: <input type="text" name="fname">

<input type="submit" value="Submit">

</form>

JavaScript Can Validate Numeric Input

JavaScript is often used to validate numeric input:

Please input a number between 1 and 10

JavaScript Form Validation

HTML form validation can be done by JavaScript.

If a form field (fname) is empty, this function alerts a message, and returns false, to prevent the form from being

submitted:

JavaScript Example

function validateForm() {

 let x = document.forms["myForm"]["fname"].value;

 if (x == "") {

 alert("Name must be filled out");

 returnfalse;

 }

}

The function can be called when the form is submitted:

HTML Form Example

<form name="myForm" action="/action_page.php"onsubmit="return validateForm()" method="post">

Name: <input type="text" name="fname">

<input type="submit" value="Submit">

</form>

JavaScript Can Validate Numeric Input

JavaScript is often used to validate numeric input:

Please input a number between 1 and 10

ADVERTISEMENT

Automatic HTML Form Validation

HTML form validation can be performed automatically by the browser:

If a form field (fname) is empty, the required attribute prevents this form from being submitted:

HTML Form Example

<form action="/action_page.php" method="post">

 <input type="text" name="fname"required>

 <input type="submit" value="Submit">

</form>

Automatic HTML form validation does not work in Internet Explorer 9 or earlier.

Data Validation

Data validation is the process of ensuring that user input is clean, correct, and useful.

Typical validation tasks are:

 has the user filled in all required fields?

 has the user entered a valid date?
 has the user entered text in a numeric field?

Most often, the purpose of data validation is to ensure correct user input.

Validation can be defined by many different methods, and deployed in many different ways.

Server side validation is performed by a web server, after input has been sent to the server.

Client side validation is performed by a web browser, before input is sent to a web server.

HTML Constraint Validation

HTML5 introduced a new HTML validation concept called constraint validation.

HTML constraint validation is based on:

 Constraint validation HTMLInput Attributes
 Constraint validation CSS Pseudo Selectors
 Constraint validation DOM Properties and Methods

Constraint Validation HTML Input Attributes

Attribute Description

disabled Specifies that the input element should be disabled

max Specifies the maximum value of an input element

min Specifies the minimum value of an input element

pattern Specifies the value pattern of an input element

required Specifies that the input field requires an element

type Specifies the type of an input element

For a full list, go to HTML Input Attributes.

https://www.w3schools.com/html/html_form_attributes.asp

Constraint Validation CSS Pseudo Selectors

Selector Description

:disabled Selects input elements with the "disabled" attribute specified

:invalid Selects input elements with invalid values

:optional Selects input elements with no "required" attribute specified

:required Selects input elements with the "required" attribute specified

:valid Selects input elements with valid values

JavaScript HTML DOM - Changing CSS

The HTML DOM allows JavaScript to change the style of HTML elements.

Changing HTML Style

To change the style of an HTML element, use this syntax:

document.getElementById(id).style.property = new style

The following example changes the style of a <p> element:

Example

<html>

<body>

<p id="p2">Hello World!</p>

<script>

document.getElementById("p2").style.color = "blue";

</script>

</body>

</html>

Using Events

The HTML DOM allows you to execute code when an event occurs.

Events are generated by the browser when "things happen" to HTML elements:

 An element is clicked on
 The page has loaded
 Input fields are changed

You will learn more about events in the next chapter of this tutorial.

This example changes the style of the HTML element with id="id1", when the user clicks a button:

Example

<!DOCTYPE html>

<html>

<body>

<h1 id="id1">My Heading 1</h1>

<button type="button"

onclick="document.getElementById('id1').style.color = 'red'">

Click Me!</button>

</body>

</html>

JavaScript HTML DOM

With the HTML DOM, JavaScript can access and change all the elements of an HTML document.

The HTML DOM (Document Object Model)

When a web page is loaded, the browser creates a Document Object Model of the page.

The HTML DOM model is constructed as a tree of Objects:

The HTML DOM Tree of Objects

With the object model, JavaScript gets all the power it needs to create dynamic HTML:

 JavaScript can change all the HTML elements in the page
 JavaScript can change all the HTML attributes in the page
 JavaScript can change all the CSS styles in the page
 JavaScript can remove existing HTML elements and attributes
 JavaScript can add new HTML elements and attributes
 JavaScript can react to all existing HTML events in the page
 JavaScript can create new HTML events in the page

What You Will Learn

In the next chapters of this tutorial you will learn:

 How to change the content of HTML elements
 How to change the style (CSS) of HTML elements
 How to react to HTML DOM events
 How to add and delete HTML elements

JavaScript - HTML DOM Methods

HTML DOM methods are actions you can perform (on HTML Elements).

HTML DOM properties are values (of HTML Elements) that you can set or change.

The DOM Programming Interface

The HTML DOM can be accessed with JavaScript (and with other programming languages).

In the DOM, all HTML elements are defined as objects.

The programming interface is the properties and methods of each object.

A property is a value that you can get or set (like changing the content of an HTML element).

A method is an action you can do (like add or deleting an HTML element).

Example

The following example changes the content (the innerHTML) of the <p> element with id="demo":

Example

<html>

<body>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = "Hello World!";

</script>

</body>

</html>

In the example above, getElementById is a method, while innerHTML is a property.

The getElementById Method

The most common way to access an HTML element is to use the id of the element.

In the example above the getElementById method used id="demo" to find the element.

The innerHTML Property

The easiest way to get the content of an element is by using the innerHTML property.

The innerHTML property is useful for getting or replacing the content of HTML elements.

The innerHTML property can be used to get or change any HTML element, including <html> and <body>.

JavaScript HTML DOM Document

The HTML DOM document object is the owner of all other objects in your web page.

The HTML DOM Document Object

The document object represents your web page.

If you want to access any element in an HTML page, you always start with accessing the document object.

Below are some examples of how you can use the document object to access and manipulate HTML.

Finding HTML Elements

Method Description

document.getElementById(id) Find an element by element id

document.getElementsByTagName(name) Find elements by tag name

document.getElementsByClassName(name) Find elements by class name

Changing HTML Elements

Property Description

element.innerHTML = new html content Change the inner HTML of an element

element.attribute = new value Change the attribute value of an HTML element

element.style.property = new style Change the style of an HTML element

Method Description

element.setAttribute(attribute, value) Change the attribute value of an HTML element

Adding and Deleting Elements

Method Description

document.createElement(element) Create an HTML element

document.removeChild(element) Remove an HTML element

document.appendChild(element) Add an HTML element

document.replaceChild(new, old) Replace an HTML element

document.write(text) Write into the HTML output stream

JavaScript HTML DOM Elements

his page teaches you how to find and access HTML elements in an HTML page.

Finding HTML Elements

Often, with JavaScript, you want to manipulate HTML elements.

To do so, you have to find the elements first. There are several ways to do this:

 Finding HTML elements by id
 Finding HTML elements by tag name
 Finding HTML elements by class name
 Finding HTML elements by CSS selectors
 Finding HTML elements by HTML object collections

Finding HTML Element by Id

The easiest way to find an HTML element in the DOM, is by using the element id.

This example finds the element with id="intro":

Example

const element = document.getElementById("intro");

If the element is found, the method will return the element as an object (in element).

If the element is not found, element will contain null.

Finding HTML Elements by Tag Name

This example finds all <p> elements:

Example

const element = document.getElementsByTagName("p");

This example finds the element with id="main", and then finds all <p> elements inside "main":

Example

const x = document.getElementById("main");

const y = x.getElementsByTagName("p");

JavaScript HTML DOM Animation

Learn to create HTML animations using JavaScript.

A Basic Web Page

To demonstrate how to create HTML animations with JavaScript, we will use a simple web page:

Example

<!DOCTYPE html>

<html>

<body>

<h1>My First JavaScript Animation</h1>

<div id="animation">My animation will go here</div>

</body>

</html>

Create an Animation Container

All animations should be relative to a container element.

Example

<div id ="container">

 <div id ="animate">My animation will go here</div>

</div>

Style the Elements

The container element should be created with style = "position: relative".

The animation element should be created with style = "position: absolute".

Example

#container {

 width: 400px;

 height: 400px;

 position: relative;

 background: yellow;

}

#animate {

 width: 50px;

 height: 50px;

 position: absolute;

 background: red;

}

JavaScript HTML DOM Events

HTML DOM allows JavaScript to react to HTML events:

Mouse Over Me

Click Me

Reacting to Events

A JavaScript can be executed when an event occurs, like when a user clicks on an HTML element.

To execute code when a user clicks on an element, add JavaScript code to an HTML event attribute:

onclick=JavaScript

Examples of HTML events:

 When a user clicks the mouse
 When a web page has loaded
 When an image has been loaded
 When the mouse moves over an element
 When an input field is changed
 When an HTML form is submitted
 When a user strokes a key

In this example, the content of the <h1> element is changed when a user clicks on it:

Example

<!DOCTYPE html>

<html>

<body>

<h1 onclick="this.innerHTML = 'Ooops!'">Click on this text!</h1>

</body>

</html>

In this example, a function is called from the event handler:

Example

<!DOCTYPE html>

<html>

<body>

<h1 onclick="changeText(this)">Click on this text!</h1>

<script>

function changeText(id) {

 id.innerHTML = "Ooops!";

}

</script>

</body>

</html>

JavaScript HTML DOM EventListener

The addEventListener() method

Example

Add an event listener that fires when a user clicks a button:

document.getElementById("myBtn").addEventListener("click", displayDate);

The addEventListener() method attaches an event handler to the specified element.

The addEventListener() method attaches an event handler to an element without overwriting existing event

handlers.

You can add many event handlers to one element.

You can add many event handlers of the same type to one element, i.e two "click" events.

You can add event listeners to any DOM object not only HTML elements. i.e the window object.

The addEventListener() method makes it easier to control how the event reacts to bubbling.

When using the addEventListener() method, the JavaScript is separated from the HTML markup, for better

readability and allows you to add event listeners even when you do not control the HTML markup.

You can easily remove an event listener by using the removeEventListener() method.

Syntax
element.addEventListener(event, function, useCapture);

The first parameter is the type of the event (like "click" or "mousedown" or any other HTML DOM Event.)

The second parameter is the function we want to call when the event occurs.

https://www.w3schools.com/jsref/dom_obj_event.asp

The third parameter is a boolean value specifying whether to use event bubbling or event capturing. This

parameter is optional.

Note that you don't use the "on" prefix for the event; use "click" instead of "onclick".

Add an Event Handler to an Element

Example

Alert "Hello World!" when the user clicks on an element:

element.addEventListener("click", function(){ alert("Hello World!"); });

You can also refer to an external "named" function:

Example

Alert "Hello World!" when the user clicks on an element:

element.addEventListener("click", myFunction);

function myFunction() {

 alert ("Hello World!");

}

JavaScript HTML DOM Navigation

With the HTML DOM, you can navigate the node tree using node relationships.

DOM Nodes

According to the W3C HTML DOM standard, everything in an HTML document is a node:

 The entire document is a document node
 Every HTML element is an element node
 The text inside HTML elements are text nodes
 Every HTML attribute is an attribute node (deprecated)
 All comments are comment nodes

With the HTML DOM, all nodes in the node tree can be accessed by JavaScript.

New nodes can be created, and all nodes can be modified or deleted.

Node Relationships

The nodes in the node tree have a hierarchical relationship to each other.

The terms parent, child, and sibling are used to describe the relationships.

 In a node tree, the top node is called the root (or root node)
 Every node has exactly one parent, except the root (which has no parent)
 A node can have a number of children
 Siblings (brothers or sisters) are nodes with the same parent

<html>

 <head>

 <title>DOM Tutorial</title>

 </head>

 <body>

 <h1>DOM Lesson one</h1>

 <p>Hello world!</p>

 </body>

</html>

From the HTML above you can read:

 <html> is the root node
 <html> has no parents
 <html> is the parent of <head> and <body>
 <head> is the first child of <html>
 <body> is the last child of <html>

and:

 <head> has one child: <title>
 <title> has one child (a text node): "DOM Tutorial"
 <body> has two children: <h1> and <p>
 <h1> has one child: "DOM Lesson one"
 <p> has one child: "Hello world!"
 <h1> and <p> are siblings

Navigating Between Nodes

You can use the following node properties to navigate between nodes with JavaScript:

 parentNode
 childNodes[nodenumber]
 firstChild
 lastChild
 nextSibling
 previousSibling

Child Nodes and Node Values

A common error in DOM processing is to expect an element node to contain text.

Example:

<title id="demo">DOM Tutorial</title>

The element node <title> (in the example above) does not contain text.

It contains a text node with the value "DOM Tutorial".

The value of the text node can be accessed by the node's innerHTML property:

myTitle = document.getElementById("demo").innerHTML;

Accessing the innerHTML property is the same as accessing the nodeValue of the first child:

myTitle = document.getElementById("demo").firstChild.nodeValue;

Accessing the first child can also be done like this:

myTitle = document.getElementById("demo").childNodes[0].nodeValue;

All the (3) following examples retrieves the text of an <h1> element and copies it into a <p> element:

Example

<html>

<body>

<h1 id="id01">My First Page</h1>

<p id="id02"></p>

<script>

document.getElementById("id02").innerHTML = document.getElementById("id01").innerHTML;

</script>

</body>

</html>

Example

<html>

<body>

<h1 id="id01">My First Page</h1>

<p id="id02"></p>

<script>

document.getElementById("id02").innerHTML = document.getElementById("id01").firstChild.nodeValue;

</script>

</body>

</html>

Example

<html>

<body>

<h1 id="id01">My First Page</h1>

<p id="id02">Hello!</p>

<script>

document.getElementById("id02").innerHTML = document.getElementById("id01").childNodes[0].nodeValue;

</script>

</body>

</html>

InnerHTML

In this tutorial we use the innerHTML property to retrieve the content of an HTML element.

However, learning the other methods above is useful for understanding the tree structure and the navigation of

the DOM.

DOM Root Nodes

There are two special properties that allow access to the full document:

 document.body - The body of the document
 document.documentElement - The full document

Example

<html>

<body>

<h2>JavaScript HTMLDOM</h2>

<p>Displaying document.body</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = document.body.innerHTML;

</script>

</body>

</html>

Example

<html>

<body>

<h2>JavaScript HTMLDOM</h2>

<p>Displaying document.documentElement</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = document.documentElement.innerHTML;

</script>

</body>

</html>

The nodeName Property

The nodeName property specifies the name of a node.

 nodeName is read-only
 nodeName of an element node is the same as the tag name
 nodeName of an attribute node is the attribute name
 nodeName of a text node is always #text
 nodeName of the document node is always #document

Example

<h1 id="id01">My First Page</h1>

<p id="id02"></p>

<script>

document.getElementById("id02").innerHTML = document.getElementById("id01").nodeName;

</script>

Note:nodeName always contains the uppercase tag name of an HTML element.

The nodeValue Property

The nodeValue property specifies the value of a node.

 nodeValue for element nodes is null
 nodeValue for text nodes is the text itself
 nodeValue for attribute nodes is the attribute value

The nodeType Property

The nodeType property is read only. It returns the type of a node.

Example

<h1 id="id01">My First Page</h1>

<p id="id02"></p>

<script>

document.getElementById("id02").innerHTML = document.getElementById("id01").nodeType;

</script>

The most important nodeType properties are:

Node Type Example

ELEMENT_NODE 1 <h1 class="heading">W3Schools</h1>

ATTRIBUTE_NODE 2 class = "heading" (deprecated)

TEXT_NODE 3 W3Schools

COMMENT_NODE 8 <!-- This is a comment -->

DOCUMENT_NODE 9 The HTML document itself (the parent of <html>)

DOCUMENT_TYPE_NODE 10 <!Doctype html>

Type 2 is deprecated in the HTML DOM (but works). It is not deprecated in the XML DOM.

JavaScript HTML DOM Elements (Nodes)

dding and Removing Nodes (HTML Elements)

Creating New HTML Elements (Nodes)

To add a new element to the HTML DOM, you must create the element (element node) first, and then append it

to an existing element.

 Example

<div id="div1">

 <p id="p1">This is a paragraph.</p>

 <p id="p2">This is another paragraph.</p>

</div>

<script>

const para = document.createElement("p");

const node = document.createTextNode("This is new.");

para.appendChild(node);

const element = document.getElementById("div1");

element.appendChild(para);

</script>

Example Explained

This code creates a new <p> element:

const para = document.createElement("p");

To add text to the <p> element, you must create a text node first. This code creates a text node:

const node = document.createTextNode("This is a new paragraph.");

Then you must append the text node to the <p> element:

para.appendChild(node);

Finally you must append the new element to an existing element.

This code finds an existing element:

const element = document.getElementById("div1");

This code appends the new element to the existing element:

element.appendChild(para);

JavaScript HTML DOM Collections

The HTMLCollection Object

The getElementsByTagName() method returns an HTMLCollection object.

An HTMLCollection object is an array-like list (collection) of HTML elements.

The following code selects all <p> elements in a document:

Example

const myCollection = document.getElementsByTagName("p");

The elements in the collection can be accessed by an index number.

To access the second <p> element you can write:

myCollection[1]

Note: The index starts at 0.

HTML HTMLCollection Length

The length property defines the number of elements in an HTMLCollection:

Example

myCollection.length

The length property is useful when you want to loop through the elements in a collection:

Example

Change the text color of all <p> elements:

const myCollection = document.getElementsByTagName("p");

for (let i = 0; i < myCollection.length; i++) {

 myCollection[i].style.color = "red";

}

An HTMLCollection is NOT an array!

An HTMLCollection may look like an array, but it is not.

You can loop through the list and refer to the elements with a number (just like an array).

However, you cannot use array methods like valueOf(), pop(), push(), or join() on an HTMLCollection.

JavaScript HTML DOM Node Lists

The HTML DOM NodeList Object

A NodeList object is a list (collection) of nodes extracted from a document.

A NodeList object is almost the same as an HTMLCollection object.

Some (older) browsers return a NodeList object instead of an HTMLCollection for methods like

getElementsByClassName().

All browsers return a NodeList object for the property childNodes.

Most browsers return a NodeList object for the method querySelectorAll().

The following code selects all <p> nodes in a document:

Example

const myNodeList = document.querySelectorAll("p");

The elements in the NodeList can be accessed by an index number.

To access the second <p> node you can write:

myNodeList[1]

Note: The index starts at 0.

HTML DOM Node List Length

The length property defines the number of nodes in a node list:

Example

myNodelist.length

The length property is useful when you want to loop through the nodes in a node list:

Example

Change the color of all <p> elements in a node list:

const myNodelist = document.querySelectorAll("p");

for (let i = 0; i < myNodelist.length; i++) {

 myNodelist[i].style.color = "red";

}

Website Management and Authoring Tools

Overview

Throughout this course, you have learned to create websites by writing code, including HTML, CSS, and

Javascript. Being able to understand websites at a code level is a valuable skill for anyone, but is especially

essential if you might be doing web design or development as part of your future career. Virtually every

organization uses the web to do its work, so knowledge of HTML, CSS, and Javascript are highly desirable and

marketable skills for many jobs. Although it's important to understand the code behind the scenes, let's face it -

Developing all your web pages by hand can be pretty time consuming. This is why there are a variety of web

authoring tools, applications that enable users to create websites using a familiar, easy-to-use interface, much

like a word processing program. These tools also provide a rich variety of other features for managing websites.

Also, there are a growing number of tools available on-line that enable novice users to create websites simply

by selecting a template and entering their content into web-based form fields. This unit will explore some of

these software applications and online tools.

Ajax Tutorial

AJAX tutorial covers concepts and examples of AJAX technology for beginners and professionals.

AJAX is an acronym for Asynchronous JavaScript and XML. It is a group of inter-related technologies like

JavaScript, DOM, XML, HTML/XHTML, CSS, XMLHttpRequest etc.

AJAX allows you to send and receive data asynchronously without reloading the web page. So it is fast.

AJAX allows you to send only important information to the server not the entire page. So only valuable data

from the client side is routed to the server side. It makes your application interactive and faster.

Where it is used?

There are too many web applications running on the web that are using ajax technology like gmail,

facebook,twitter, google map, youtube etc.

Understanding Synchronous vs Asynchronous

Before understanding AJAX, let’s understand classic web application model and ajax web application model

first.

Synchronous (Classic Web-Application Model)

A synchronous request blocks the client until operation completes i.e. browser is unresponsive. In such case,

javascript engine of the browser is blocked.

As you can see in the above image, full page is refreshed at request time and user is blocked until request

completes.

https://www.javatpoint.com/javascript-tutorial
https://www.javatpoint.com/xml-tutorial
https://www.javatpoint.com/html-tutorial
https://www.javatpoint.com/xhtml-tutorial
https://www.javatpoint.com/css-tutorial
https://www.javatpoint.com/understanding-xmlhttprequest

Let's understand it another way.

Asynchronous (AJAX Web-Application Model)

An asynchronous request doesn’t block the client i.e. browser is responsive. At that time, user can perform

another operations also. In such case, javascript engine of the browser is not blocked.

As you can see in the above image, full page is not refreshed at request time and user gets response from the

ajax engine.

Let's try to understand asynchronous communication by the image given below.

AJAX Technologies

As describe earlier, ajax is not a technology but group of inter-related technologies. AJAX technologies

includes:

 HTML/XHTML and CSS
 DOM
 XML or JSON
 XMLHttpRequest
 JavaScript

HTML/XHTML and CSS

These technologies are used for displaying content and style. It is mainly used for presentation.

DOM

It is used for dynamic display and interaction with data.

XML or JSON

For carrying data to and from server. JSON (Javascript Object Notation) is like XML but short and faster than

XML.

XMLHttpRequest

For asynchronous communication between client and server. For more visit next page.

JavaScript

It is used to bring above technologies together.

Independently, it is used mainly for client-side validation.

Understanding XMLHttpRequest

1. XMLHttpRequest

https://www.javatpoint.com/ajax-tutorial
https://www.javatpoint.com/html-tutorial
https://www.javatpoint.com/xhtml-tutorial
https://www.javatpoint.com/css-tutorial
https://www.javatpoint.com/xml-tutorial
https://www.javatpoint.com/json-tutorial
https://www.javatpoint.com/understanding-xmlhttprequest
https://www.javatpoint.com/javascript-tutorial
https://www.javatpoint.com/understanding-synchronous-vs-asynchronous
https://www.javatpoint.com/understanding-xmlhttprequest

2. Properties of XMLHttpRequest
3. Methods of XMLHttpRequest

An object of XMLHttpRequest is used for asynchronous communication between client and server.

It performs following operations:

1. Sends data from the client in the background
2. Receives the data from the server
3. Updates the webpage without reloading it.

Properties of XMLHttpRequest object

The common properties of XMLHttpRequest object are as follows:

Property Description

onReadyStateChange It is called whenever readystate attribute changes. It must not be used with synchronous requests.

readyState

represents the state of the request. It ranges from 0 to 4.

0 UNOPENED open() is not called.

1 OPENED open is called but send() is not called.

2 HEADERS_RECEIVED send() is called, and headers and status are available.

3 LOADING Downloading data; responseText holds the data.

4 DONE The operation is completed fully.

reponseText returns response as text.

responseXML returns response as XML

Methods of XMLHttpRequest object

The important methods of XMLHttpRequest object are as follows:

Method Description

https://www.javatpoint.com/understanding-xmlhttprequest
https://www.javatpoint.com/understanding-xmlhttprequest

void open(method, URL) opens the request specifying get or post method and url.

void open(method, URL, async) same as above but specifies asynchronous or not.

void open(method, URL, async, username, password) same as above but specifies username and password.

void send() sends get request.

void send(string) send post request.

setRequestHeader(header,value) it adds request headers.

How AJAX works?

AJAX communicates with the server using XMLHttpRequest object. Let's try to understand the flow of ajax or

how ajax works by the image displayed below.

As you can see in the above example, XMLHttpRequest object plays a important role.

1. User sends a request from the UI and a javascript call goes to XMLHttpRequest object.

2. HTTP Request is sent to the server by XMLHttpRequest object.

3. Server interacts with the database using JSP, PHP, Servlet, ASP.net etc.

4. Data is retrieved.

5. Server sends XML data or JSON data to the XMLHttpRequest callback function.

6. HTML and CSS data is displayed on the browser.

Ajax Java Example

To create ajax example, you need to use any server-side language e.g. Servlet, JSP, PHP, ASP.Net etc. Here we

are using JSP for generating the server-side code.

In this example, we are simply printing the table of the given number.

Steps to create ajax example with jsp

You need to follow following steps:

1. load the org.json.jar file
2. create input page to receive any text or number
3. create server side page to process the request
4. provide entry in web.xml file

Load the org.json.jar file

download this example, we have included the org.json.jar file inside the WEB-INF/lib directory.

create input page to receive any text or number

In this page, we have created a form that gets input from the user. When user clicks on the showTable button,

sendInfo() function is called. We have written all the ajax code inside this function.

We have called the getInfo() function whenever ready state changes. It writes the returned data in the web page

dynamically by the help of innerHTML property.

table1.html

1. <html>
2. <head>
3. <script>
4. var request;
5. function sendInfo()
6. {
7. var v=document.vinform.t1.value;

https://www.javatpoint.com/ajax-tutorial
https://www.javatpoint.com/servlet-tutorial
https://www.javatpoint.com/jsp-tutorial
https://www.javatpoint.com/php-tutorial
https://www.javatpoint.com/asp-net-tutorial

8. var url="index.jsp?val="+v;
9.
10. if(window.XMLHttpRequest){
11. request=new XMLHttpRequest();
12. }
13. else if(window.ActiveXObject){
14. request=new ActiveXObject("Microsoft.XMLHTTP");
15. }
16.
17. try
18. {
19. request.onreadystatechange=getInfo;
20. request.open("GET",url,true);
21. request.send();
22. }
23. catch(e)
24. {
25. alert("Unable to connect to server");
26. }
27. }
28.
29. function getInfo(){
30. if(request.readyState==4){
31. var val=request.responseText;
32. document.getElementById('amit').innerHTML=val;
33. }
34. }
35.
36. </script>
37. </head>
38. <body>
39. <marquee><h1>This is an example of ajax</h1></marquee>
40. <form name="vinform">
41. <input type="text" name="t1">
42. <input type="button" value="ShowTable" onClick="sendInfo()">
43. </form>
44.
45.
46.
47. </body>
48. </html>

create server side page to process the request

In this jsp page, we printing the table of given number.

index.jsp

1. <%
2. int n=Integer.parseInt(request.getParameter("val"));
3.
4. for(int i=1;i<=10;i++)
5. out.print(i*n+"
");
6.
7. %>

web.xml

1. <?xml version="1.0" encoding="UTF-8"?>
2. <web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
3. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4. xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
5. http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
6.
7. <session-config>
8. <session-timeout>
9. 30
10. </session-timeout>
11. </session-config>
12. <welcome-file-list>
13. <welcome-file>table1.html</welcome-file>
14. </welcome-file-list>
15. </web-app>

Ajax Java Example with Database

In this example, we are interacting with the database. You don't have to make any extra effort. Only write the

database logic in you server side page.

In this example, we have written the server side code inside the index.jsp file.

Steps to create ajax example with database through jsp

You need to follow following steps:

1. load the org.json.jar file
2. create input page to receive any text or number
3. create server side page to process the request

create input page to receive any text or number

In this page, we have created a form that gets input from the user. When user press any key sendInfo() function

is called. We have written all the ajax code inside this function.

We have called the getInfo() function whenever ready state changes. It writes the returned data in the web page

dynamically by the help of innerHTML property.

table1.html

1. <html>
2. <head>
3. <script>
4. var request;
5. function sendInfo()
6. {
7. var v=document.vinform.t1.value;
8. var url="index.jsp?val="+v;
9.
10. if(window.XMLHttpRequest){
11. request=new XMLHttpRequest();
12. }
13. else if(window.ActiveXObject){
14. request=new ActiveXObject("Microsoft.XMLHTTP");
15. }
16.
17. try{
18. request.onreadystatechange=getInfo;
19. request.open("GET",url,true);
20. request.send();
21. }catch(e){alert("Unable to connect to server");}
22. }
23.
24. function getInfo(){
25. if(request.readyState==4){
26. var val=request.responseText;
27. document.getElementById('amit').innerHTML=val;
28. }
29. }
30.
31. </script>
32. </head>
33. <body>
34. <marquee><h1>This is an example of ajax</h1></marquee>
35. <form name="vinform">
36. Enter id:<input type="text" name="t1" onkeyup="sendInfo()">
37. </form>

https://www.javatpoint.com/ajax-tutorial
https://www.javatpoint.com/javascript-innerHTML

38.
39.
40.
41. </body>
42. </html>

create server side page to process the request

In this jsp page, we printing the id and name of the employee for the given id.

index.jsp

1. <%@ page import="java.sql.*"%>
2.
3. <%
4. String s=request.getParameter("val");
5. if(s==null || s.trim().equals("")){
6. out.print("Please enter id");
7. }else{
8. int id=Integer.parseInt(s);
9. out.print(id);
10. try{
11. Class.forName("com.mysql.jdbc.Driver");
12. Connection con=DriverManager.getConnection("jdbc:mysql://localhost:3306/mdb","root","root");
13. PreparedStatement ps=con.prepareStatement("select * from emp where id=?");
14. ps.setInt(1,id);
15. ResultSet rs=ps.executeQuery();
16. while(rs.next()){
17. out.print(rs.getInt(1)+" "+rs.getString(2));
18. }
19. con.close();
20. }catch(Exception e){e.printStackTrace();}
21. }
22. %>

download this ajax example

https://www.javatpoint.com/src/ajax/ajaxexampled.zip

Output

AJAX JSON Example

We can get JSON data by AJAX code. AJAX provides facility to get response asynchronously. It doesn't reload

the page and saves bandwidth.

AJAX JSON Example

Let's see a simple example of getting JSON data using AJAX code.

1. <html>
2. <head>
3. <meta content="text/html; charset=utf-8">
4. <title>AJAX JSON by Javatpoint</title>
5. <script type="application/javascript">
6. function load()
7. {
8. var url = "http://date.jsontest.com/";//use any url that have json data
9. var request;
10.
11. if(window.XMLHttpRequest){
12. request=new XMLHttpRequest();//for Chrome, mozilla etc
13. }
14. else if(window.ActiveXObject){
15. request=new ActiveXObject("Microsoft.XMLHTTP");//for IE only
16. }
17. request.onreadystatechange = function(){
18. if (request.readyState == 4)
19. {
20. var jsonObj = JSON.parse(request.responseText);//JSON.parse() returns JSON object
21. document.getElementById("date").innerHTML = jsonObj.date;
22. document.getElementById("time").innerHTML = jsonObj.time;
23. }
24. }
25. request.open("GET", url, true);
26. request.send();
27. }
28. </script>
29. </head>
30. <body>
31.
32. Date:

33. Time:

34.
35. <button type="button" onclick="load()">Load Information</button>
36. </body>
37. </html>

Output:

Date:

Time:

PHP Introduction

PHP code is executed on the server.

What You Should Already Know

Before you continue you should have a basic understanding of the following:

 HTML
 CSS
 JavaScript

If you want to study these subjects first, find the tutorials on our Home page.

What is PHP?

 PHP is an acronym for "PHP: Hypertext Preprocessor"
 PHP is a widely-used, open source scripting language
 PHP scripts are executed on the server
 PHP is free to download and use

PHP is an amazing and popular language!

It is powerful enough to be at the core of the biggest blogging system on the web (WordPress)!

It is deep enough to run large social networks!

It is also easy enough to be a beginner's first server side language!

What is a PHP File?

 PHP files can contain text, HTML, CSS, JavaScript, and PHP code
 PHP code is executed on the server, and the result is returned to the browser as plain HTML
 PHP files have extension ".php"

What Can PHP Do?

 PHP can generate dynamic page content
 PHP can create, open, read, write, delete, and close files on the server

https://www.w3schools.com/html/default.asp
https://www.w3schools.com/css/default.asp
https://www.w3schools.com/js/default.asp
https://www.w3schools.com/default.asp

 PHP can collect form data
 PHP can send and receive cookies
 PHP can add, delete, modify data in your database
 PHP can be used to control user-access
 PHP can encrypt data

With PHP you are not limited to output HTML. You can output images or PDF files. You can also output any

text, such as XHTML and XML.

Why PHP?

 PHP runs on various platforms (Windows, Linux, Unix, Mac OS X, etc.)
 PHP is compatible with almost all servers used today (Apache, IIS, etc.)
 PHP supports a wide range of databases
 PHP is free. Download it from the official PHP resource: www.php.net
 PHP is easy to learn and runs efficiently on the server side

What's new in PHP 7

 PHP 7 is much faster than the previous popular stable release (PHP 5.6)
 PHP 7 has improved Error Handling
 PHP 7 supports stricter Type Declarations for function arguments
 PHP 7 supports new operators (like the spaceship operator: <=>)

PHP Installation

What Do I Need?

To start using PHP, you can:

 Find a web host with PHP and MySQL support
 Install a web server on your own PC, and then install PHP and MySQL

Use a Web Host With PHP Support

If your server has activated support for PHP you do not need to do anything.

Just create some .php files, place them in your web directory, and the server will automatically parse them for

you.

http://www.php.net/

You do not need to compile anything or install any extra tools.

Because PHP is free, most web hosts offer PHP support.

Set Up PHP on Your Own PC

However, if your server does not support PHP, you must:

 install a web server
 install PHP
 install a database, such as MySQL

The official PHP website (PHP.net) has installation instructions for PHP: http://php.net/manual/en/install.php

PHP Online Compiler / Editor

With w3schools' online PHP compiler, you can edit PHP code, and view the result in your browser.

<?php

$txt = "PHP";

echo"I love $txt!";

?>

I love PHP!

PHP Syntax

A PHP script is executed on the server, and the plain HTML result is sent back to the browser.

Basic PHP Syntax

A PHP script can be placed anywhere in the document.

A PHP script starts with <?php and ends with ?>:

http://php.net/manual/en/install.php

<?php

// PHP code goes here

?>

The default file extension for PHP files is ".php".

A PHP file normally contains HTML tags, and some PHP scripting code.

Below, we have an example of a simple PHP file, with a PHP script that uses a built-in PHP function "echo" to

output the text "Hello World!" on a web page:

ExampleGet your own PHP Server

<!DOCTYPE html>

<html>

<body>

<h1>My first PHP page</h1>

<?php

echo"Hello World!";

?>

</body>

</html>

Note: PHP statements end with a semicolon (;).

PHP Comments

Comments in PHP

A comment in PHP code is a line that is not executed as a part of the program. Its only purpose is to be read by

someone who is looking at the code.

Comments can be used to:

 Let others understand your code
 Remind yourself of what you did - Most programmers have experienced coming back to their own work a year

or two later and having to re-figure out what they did. Comments can remind you of what you were thinking
when you wrote the code

https://www.w3schools.com/spaces/

PHP supports several ways of commenting:

ExampleGet your own PHP Server

Syntax for single-line comments:

<!DOCTYPE html>

<html>

<body>

<?php

// This is a single-line comment

This is also a single-line comment

?>

</body>

</html>

ExampleGet your own PHP Server

Syntax for multiple-line comments:

<!DOCTYPE html>

<html>

<body>

<?php

/*

This is a multiple-lines comment block

that spans over multiple

lines

*/

?>

</body>

</html>

ExampleGet your own PHP Server

Using comments to leave out parts of the code:

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

<!DOCTYPE html>

<html>

<body>

<?php

// You can also use comments to leave out parts of a code line

$x = 5/* + 15 */ + 5;

echo $x;

?>

</body>

</html>

PHP Variables

Variables are "containers" for storing information.

Creating (Declaring) PHP Variables

In PHP, a variable starts with the $ sign, followed by the name of the variable:

ExampleGet your own PHP Server

<?php

$txt = "Hello world!";

$x = 5;

$y = 10.5;

?>

After the execution of the statements above, the variable $txt will hold the value Hello world!, the variable

$x will hold the value 5, and the variable $y will hold the value 10.5.

Note: When you assign a text value to a variable, put quotes around the value.

Note: Unlike other programming languages, PHP has no command for declaring a variable. It is created the

moment you first assign a value to it.

Think of variables as containers for storing data.

https://www.w3schools.com/spaces/

PHP Variables

A variable can have a short name (like x and y) or a more descriptive name (age, carname, total_volume).

Rules for PHP variables:

 A variable starts with the $ sign, followed by the name of the variable
 A variable name must start with a letter or the underscore character
 A variable name cannot start with a number
 A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _)
 Variable names are case-sensitive ($age and $AGE are two different variables)

Remember that PHP variable names are case-sensitive!

ADVERTISEMENT

Output Variables

The PHP echo statement is often used to output data to the screen.

The following example will show how to output text and a variable:

ExampleGet your own PHP Server

<?php

$txt = "W3Schools.com";

echo"I love $txt!";

?>

The following example will produce the same output as the example above:

ExampleGet your own PHP Server

<?php

$txt = "W3Schools.com";

echo"I love " . $txt . "!";

?>

The following example will output the sum of two variables:

ExampleGet your own PHP Server

<?php

$x = 5;

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

$y = 4;

echo $x + $y;

?>

Note: You will learn more about the echo statement and how to output data to the screen in the next chapter.

PHP is a Loosely Typed Language

In the example above, notice that we did not have to tell PHP which data type the variable is.

PHP automatically associates a data type to the variable, depending on its value. Since the data types are not set

in a strict sense, you can do things like adding a string to an integer without causing an error.

In PHP 7, type declarations were added. This gives an option to specify the data type expected when declaring a

function, and by enabling the strict requirement, it will throw a "Fatal Error" on a type mismatch.

You will learn more about strict and non-strict requirements, and data type declarations in the PHP

Functions chapter.

PHP echo and print Statements

With PHP, there are two basic ways to get output: echo and print.

In this tutorial we use echo or print in almost every example. So, this chapter contains a little more info about

those two output statements.

PHP echo and print Statements

echo and print are more or less the same. They are both used to output data to the screen.

The differences are small: echo has no return value while print has a return value of 1 so it can be used in

expressions. echo can take multiple parameters (although such usage is rare) while print can take one

argument. echo is marginally faster than print.

The PHP echo Statement

The echo statement can be used with or without parentheses: echo or echo().

https://www.w3schools.com/php/php_functions.asp
https://www.w3schools.com/php/php_functions.asp

Display Text

The following example shows how to output text with the echo command (notice that the text can contain

HTML markup):

ExampleGet your own PHP Server

<?php

echo"<h2>PHP is Fun!</h2>";

echo"Hello world!
";

echo"I'm about to learn PHP!
";

echo"This ", "string ", "was ", "made ", "with multiple parameters.";

?>

Display Variables

The following example shows how to output text and variables with the echo statement:

ExampleGet your own PHP Server

<?php

$txt1 = "Learn PHP";

$txt2 = "W3Schools.com";

$x = 5;

$y = 4;

echo"<h2>" . $txt1 . "</h2>";

echo"Study PHP at " . $txt2 . "
";

echo $x + $y;

?>

PHP Data Types

PHP Data Types

Variables can store data of different types, and different data types can do different things.

PHP supports the following data types:

 String
 Integer
 Float (floating point numbers - also called double)
 Boolean
 Array
 Object

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

 NULL
 Resource

PHP String

A string is a sequence of characters, like "Hello world!".

A string can be any text inside quotes. You can use single or double quotes:

ExampleGet your own PHP Server

<?php

$x = "Hello world!";

$y = 'Hello world!';

echo $x;

echo"
";

echo $y;

?>

PHP Integer

An integer data type is a non-decimal number between -2,147,483,648 and 2,147,483,647.

Rules for integers:

 An integer must have at least one digit
 An integer must not have a decimal point
 An integer can be either positive or negative
 Integers can be specified in: decimal (base 10), hexadecimal (base 16), octal (base 8), or binary (base 2) notation

In the following example $x is an integer. The PHP var_dump() function returns the data type and value:

ExampleGet your own PHP Server

<?php

$x = 5985;

var_dump($x);

?>

PHP Strings

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

A string is a sequence of characters, like "Hello world!".

PHP String Functions

In this chapter we will look at some commonly used functions to manipulate strings.

strlen() - Return the Length of a String

The PHP strlen() function returns the length of a string.

ExampleGet your own PHP Server

Return the length of the string "Hello world!":

<?php

echo strlen("Hello world!"); // outputs 12

?>

str_word_count() - Count Words in a String

The PHP str_word_count() function counts the number of words in a string.

ExampleGet your own PHP Server

Count the number of word in the string "Hello world!":

<?php

echo str_word_count("Hello world!"); // outputs 2

?>

PHP Numbers

In this chapter we will look in depth into Integers, Floats, and Number Strings.

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

PHP Numbers

One thing to notice about PHP is that it provides automatic data type conversion.

So, if you assign an integer value to a variable, the type of that variable will automatically be an integer. Then,

if you assign a string to the same variable, the type will change to a string.

This automatic conversion can sometimes break your code.

PHP Integers

2, 256, -256, 10358, -179567 are all integers.

An integer is a number without any decimal part.

An integer data type is a non-decimal number between -2147483648 and 2147483647 in 32 bit systems, and

between -9223372036854775808 and 9223372036854775807 in 64 bit systems. A value greater (or lower) than

this, will be stored as float, because it exceeds the limit of an integer.

Note: Another important thing to know is that even if 4 * 2.5 is 10, the result is stored as float, because one of

the operands is a float (2.5).

Here are some rules for integers:

 An integer must have at least one digit
 An integer must NOT have a decimal point
 An integer can be either positive or negative
 Integers can be specified in three formats: decimal (10-based), hexadecimal (16-based - prefixed with 0x) or

octal (8-based - prefixed with 0)

PHP has the following predefined constants for integers:

 PHP_INT_MAX - The largest integer supported
 PHP_INT_MIN - The smallest integer supported
 PHP_INT_SIZE - The size of an integer in bytes

PHP has the following functions to check if the type of a variable is integer:

 is_int()
 is_integer() - alias of is_int()
 is_long() - alias of is_int()

ExampleGet your own PHP Server

Check if the type of a variable is integer:

<?php

$x = 5985;

var_dump(is_int($x));

$x = 59.85;

var_dump(is_int($x));

?>

ADVERTISEMENT

PHP Floats

A float is a number with a decimal point or a number in exponential form.

2.0, 256.4, 10.358, 7.64E+5, 5.56E-5 are all floats.

The float data type can commonly store a value up to 1.7976931348623E+308 (platform dependent), and have a

maximum precision of 14 digits.

PHP has the following predefined constants for floats (from PHP 7.2):

 PHP_FLOAT_MAX - The largest representable floating point number
 PHP_FLOAT_MIN - The smallest representable positive floating point number
 PHP_FLOAT_MAX - The smallest representable negative floating point number
 PHP_FLOAT_DIG - The number of decimal digits that can be rounded into a float and back without precision loss
 PHP_FLOAT_EPSILON - The smallest representable positive number x, so that x + 1.0 != 1.0

PHP has the following functions to check if the type of a variable is float:

 is_float()
 is_double() - alias of is_float()

ExampleGet your own PHP Server

Check if the type of a variable is float:

<?php

$x = 10.365;

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

var_dump(is_float($x));

?>

PHP Infinity

A numeric value that is larger than PHP_FLOAT_MAX is considered infinite.

PHP has the following functions to check if a numeric value is finite or infinite:

 is_finite()
 is_infinite()

However, the PHP var_dump() function returns the data type and value:

ExampleGet your own PHP Server

Check if a numeric value is finite or infinite:

<?php

$x = 1.9e411;

var_dump($x);

?>

PHP NaN

NaN stands for Not a Number.

NaN is used for impossible mathematical operations.

PHP has the following functions to check if a value is not a number:

 is_nan()

However, the PHP var_dump() function returns the data type and value:

ExampleGet your own PHP Server

Invalid calculation will return a NaN value:

<?php

$x = acos(8);

https://www.w3schools.com/php/func_math_is_finite.asp
https://www.w3schools.com/php/func_math_is_infinite.asp
https://www.w3schools.com/spaces/
https://www.w3schools.com/php/func_math_is_nan.asp
https://www.w3schools.com/spaces/

var_dump($x);

?>

PHP Numerical Strings

The PHP is_numeric() function can be used to find whether a variable is numeric. The function returns true if

the variable is a number or a numeric string, false otherwise.

ExampleGet your own PHP Server

Check if the variable is numeric:

<?php

$x = 5985;

var_dump(is_numeric($x));

$x = "5985";

var_dump(is_numeric($x));

$x = "59.85" + 100;

var_dump(is_numeric($x));

$x = "Hello";

var_dump(is_numeric($x));

?>

Note: From PHP 7.0: The is_numeric() function will return FALSE for numeric strings in hexadecimal form

(e.g. 0xf4c3b00c), as they are no longer considered as numeric strings.

PHP Casting Strings and Floats to Integers

Sometimes you need to cast a numerical value into another data type.

The (int), (integer), or intval() function are often used to convert a value to an integer.

ExampleGet your own PHP Server

Cast float and string to integer:

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

<?php

// Cast float to int

$x = 23465.768;

$int_cast = (int)$x;

echo $int_cast;

echo"
";

// Cast string to int

$x = "23465.768";

$int_cast = (int)$x;

echo $int_cast;

?>

PHP Math

PHP has a set of math functions that allows you to perform mathematical tasks on numbers.

PHP pi() Function

The pi() function returns the value of PI:

ExampleGet your own PHP Server

<?php

echo(pi()); // returns 3.1415926535898

?>

PHP min() and max() Functions

The min() and max() functions can be used to find the lowest or highest value in a list of arguments:

ExampleGet your own PHP Server

<?php

echo(min(0, 150, 30, 20, -8, -200)); // returns -200

echo(max(0, 150, 30, 20, -8, -200)); // returns 150

?>

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

ADVERTISEMENT

PHP abs() Function

The abs() function returns the absolute (positive) value of a number:

ExampleGet your own PHP Server

<?php

echo(abs(-6.7)); // returns 6.7

?>

PHP sqrt() Function

The sqrt() function returns the square root of a number:

ExampleGet your own PHP Server

<?php

echo(sqrt(64)); // returns 8

?>

PHP round() Function

The round() function rounds a floating-point number to its nearest integer:

ExampleGet your own PHP Server

<?php

echo(round(0.60)); // returns 1

echo(round(0.49)); // returns 0

?>

Random Numbers

The rand() function generates a random number:

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

ExampleGet your own PHP Server

<?php

echo(rand());

?>

To get more control over the random number, you can add the optional min and max parameters to specify the

lowest integer and the highest integer to be returned.

For example, if you want a random integer between 10 and 100 (inclusive), use rand(10, 100):

ExampleGet your own PHP Server

<?php

echo(rand(10, 100));

?>

Complete PHP Math Reference

For a complete reference of all math functions, go to our complete PHP Math Reference.

The PHP math reference contains description and example of use, for each function.

PHP Constants

Constants are like variables except that once they are defined they cannot be changed or undefined.

PHP Constants

A constant is an identifier (name) for a simple value. The value cannot be changed during the script.

A valid constant name starts with a letter or underscore (no $ sign before the constant name).

Note: Unlike variables, constants are automatically global across the entire script.

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/
https://www.w3schools.com/php/php_ref_math.asp

Create a PHP Constant

To create a constant, use the define() function.

Syntax

define(name, value, case-insensitive)

Parameters:

 name: Specifies the name of the constant
 value: Specifies the value of the constant
 case-insensitive: Specifies whether the constant name should be case-insensitive. Default is false

ExampleGet your own PHP Server

Create a constant with a case-sensitive name:

<?php

define("GREETING", "Welcome to W3Schools.com!");

echo GREETING;

?>

ExampleGet your own PHP Server

Create a constant with a case-insensitive name:

<?php

define("GREETING", "Welcome to W3Schools.com!", true);

echo greeting;

?>

ADVERTISEMENT

PHP Constant Arrays

In PHP7, you can create an Array constant using the define() function.

ExampleGet your own PHP Server

Create an Array constant:

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

<?php

define("cars", [

 "Alfa Romeo",

 "BMW",

 "Toyota"

]);

echo cars[0];

?>

Constants are Global

Constants are automatically global and can be used across the entire script.

ExampleGet your own PHP Server

This example uses a constant inside a function, even if it is defined outside the function:

<?php

define("GREETING", "Welcome to W3Schools.com!");

function myTest() {

 echo GREETING;

}

myTest();

?>

PHP Operators

PHP Operators

Operators are used to perform operations on variables and values.

PHP divides the operators in the following groups:

 Arithmetic operators
 Assignment operators
 Comparison operators
 Increment/Decrement operators

https://www.w3schools.com/spaces/

 Logical operators
 String operators
 Array operators
 Conditional assignment operators

PHP Arithmetic Operators

The PHP arithmetic operators are used with numeric values to perform common arithmetical operations, such as

addition, subtraction, multiplication etc.

Operator Name Example Result Show it

+ Addition $x + $y Sum of $x and $y

- Subtraction $x - $y Difference of $x and $y

* Multiplication $x * $y Product of $x and $y

/ Division $x / $y Quotient of $x and $y

% Modulus $x % $y Remainder of $x divided by $y

** Exponentiation $x ** $y Result of raising $x to the $y'th power

PHP Assignment Operators

The PHP assignment operators are used with numeric values to write a value to a variable.

The basic assignment operator in PHP is "=". It means that the left operand gets set to the value of the

assignment expression on the right.

Assignment Same as... Description Show it

x = y x = y
The left operand gets set to the value of the expression on the

right

x += y x = x + y Addition

x -= y x = x - y Subtraction

x *= y x = x * y Multiplication

x /= y x = x / y Division

x %= y x = x % y Modulus

ADVERTISEMENT

PHP Comparison Operators

The PHP comparison operators are used to compare two values (number or string):

Operator Name Example Result Show it

== Equal $x == $y Returns true if $x is equal to $y

=== Identical
$x ===

$y
Returns true if $x is equal to $y, and they are of the same type

!= Not equal
$x !=

$y
Returns true if $x is not equal to $y

<> Not equal
$x <>

$y
Returns true if $x is not equal to $y

!== Not identical
$x !==

$y
Returns true if $x is not equal to $y, or they are not of the same type

> Greater than $x > $y Returns true if $x is greater than $y

< Less than $x < $y Returns true if $x is less than $y

>=
Greater than or

equal to

$x >=

$y
Returns true if $x is greater than or equal to $y

<=
Less than or equal

to

$x <=

$y
Returns true if $x is less than or equal to $y

<=> Spaceship
$x <=>

$y

Returns an integer less than, equal to, or greater than zero, depending on if $x is less

than, equal to, or greater than $y. Introduced in PHP 7.

PHP Increment / Decrement Operators

The PHP increment operators are used to increment a variable's value.

The PHP decrement operators are used to decrement a variable's value.

Operator Name Description Show it

++$x Pre-increment Increments $x by one, then returns $x

$x++ Post-increment Returns $x, then increments $x by one

--$x Pre-decrement Decrements $x by one, then returns $x

$x-- Post-decrement Returns $x, then decrements $x by one

PHP Logical Operators

The PHP logical operators are used to combine conditional statements.

Operator Name Example Result Show it

and And $x and $y True if both $x and $y are true

or Or $x or $y True if either $x or $y is true

xor Xor $x xor $y True if either $x or $y is true, but not both

&& And $x && $y True if both $x and $y are true

|| Or $x || $y True if either $x or $y is true

! Not !$x True if $x is not true

PHP String Operators

PHP has two operators that are specially designed for strings.

Operator Name Example Result Show it

. Concatenation $txt1 . $txt2
Concatenation of $txt1 and

$txt2

.= Concatenation assignment $txt1 .= $txt2 Appends $txt2 to $txt1

PHP Array Operators

The PHP array operators are used to compare arrays.

Operator Name Example Result Show it

+ Union $x + $y Union of $x and $y

== Equality $x == $y Returns true if $x and $y have the same key/value pairs

=== Identity
$x ===

$y

Returns true if $x and $y have the same key/value pairs in the same order and of the same

types

!= Inequality $x != $y Returns true if $x is not equal to $y

<> Inequality $x <> $y Returns true if $x is not equal to $y

!==
Non-

identity
$x !== $y Returns true if $x is not identical to $y

PHP Conditional Assignment Operators

The PHP conditional assignment operators are used to set a value depending on conditions:

Operator Name Example Result Show it

?: Ternary
$x = expr1 ?

expr2 : expr3

Returns the value of $x.

The value of $x is expr2 if expr1 = TRUE.

The value of $x is expr3 if expr1 = FALSE

?? Null coalescing $x = expr1 ?? expr2
Returns the value of $x.

The value of $x is expr1 if expr1 exists, and is not NULL.

If expr1 does not exist, or is NULL, the value of $x is expr2.

Introduced in PHP 7

PHP Exercises

Test Yourself With Exercises

Exercise:

Multiply 10 with 5, and output the result.

echo 10 5;

PHP if...else...elseif Statements

Conditional statements are used to perform different actions based on different conditions.

PHP Conditional Statements

Very often when you write code, you want to perform different actions for different conditions. You can use

conditional statements in your code to do this.

In PHP we have the following conditional statements:

 if statement - executes some code if one condition is true
 if...else statement - executes some code if a condition is true and another code if that condition is false
 if...elseif...else statement - executes different codes for more than two conditions
 switch statement - selects one of many blocks of code to be executed

PHP - The if Statement

The if statement executes some code if one condition is true.

Syntax

if (condition) {

 code to be executed if condition is true;

}

ExampleGet your own PHP Server

Output "Have a good day!" if the current time (HOUR) is less than 20:

<?php

$t = date("H");

if ($t <"20") {

 echo"Have a good day!";

}

?>

ADVERTISEMENT

PHP - The if...else Statement

The if...else statement executes some code if a condition is true and another code if that condition is false.

Syntax

if (condition) {

 code to be executed if condition is true;

} else {

 code to be executed if condition is false;

}

ExampleGet your own PHP Server

Output "Have a good day!" if the current time is less than 20, and "Have a good night!" otherwise:

<?php

$t = date("H");

if ($t <"20") {

 echo"Have a good day!";

} else {

 echo"Have a good night!";

}

?>

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

PHP - The if...elseif...else Statement

The if...elseif...else statement executes different codes for more than two conditions.

Syntax

if (condition) {

 code to be executed if this condition is true;

} elseif (condition) {

 code to be executed if first condition is false and this condition is true;

} else {

 code to be executed if all conditions are false;

}

ExampleGet your own PHP Server

Output "Have a good morning!" if the current time is less than 10, and "Have a good day!" if the current time is

less than 20. Otherwise it will output "Have a good night!":

<?php

$t = date("H");

if ($t <"10") {

 echo"Have a good morning!";

} elseif ($t <"20") {

 echo"Have a good day!";

} else {

 echo"Have a good night!";

}

?>

PHP - The switch Statement

The switch statement will be explained in the next chapter.

https://www.w3schools.com/spaces/

PHP Exercises

Test Yourself With Exercises

Exercise:

Output "Hello World" if $a is greater than $b.

$a = 50;

$b = 10;

> {

 echo "Hello World";

}

PHP switch Statement

The switch statement is used to perform different actions based on different conditions.

The PHP switch Statement

Use the switch statement to select one of many blocks of code to be executed.

Syntax

switch (n) {

 case label1:

 code to be executed if n=label1;

 break;

 case label2:

 code to be executed if n=label2;

 break;

 case label3:

 code to be executed if n=label3;

 break;

 ...

 default:

 code to be executed if n is different from all labels;

}

This is how it works: First we have a single expression n (most often a variable), that is evaluated once. The

value of the expression is then compared with the values for each case in the structure. If there is a match, the

block of code associated with that case is executed. Use break to prevent the code from running into the next

case automatically. The default statement is used if no match is found.

ExampleGet your own PHP Server

<?php

$favcolor = "red";

switch ($favcolor){

 case"red":

 echo"Your favorite color is red!";

 break;

 case"blue":

 echo"Your favorite color is blue!";

 break;

 case"green":

 echo"Your favorite color is green!";

 break;

 default:

 echo"Your favorite color is neither red, blue, nor green!";

}

?>

ADVERTISEMENT

PHP Exercises

Test Yourself With Exercises

Exercise:

Create a switch statement that will output "Hello" if $color is "red", and "welcome" if $color is "green".

 ($color) {

 "red":

 echo "Hello";

 break;

 "green":

 echo "Welcome";

https://www.w3schools.com/spaces/

 break;

}

PHP Loops

In the following chapters you will learn how to repeat code by using loops in PHP.

PHP Loops

Often when you write code, you want the same block of code to run over and over again a certain number of

times. So, instead of adding several almost equal code-lines in a script, we can use loops.

Loops are used to execute the same block of code again and again, as long as a certain condition is true.

In PHP, we have the following loop types:

 while - loops through a block of code as long as the specified condition is true
 do...while - loops through a block of code once, and then repeats the loop as long as the specified condition

is true
 for - loops through a block of code a specified number of times
 foreach - loops through a block of code for each element in an array

The following chapters will explain and give examples of each loop type.

PHP while Loop

The while loop - Loops through a block of code as long as the specified condition is true.

The PHP while Loop

The while loop executes a block of code as long as the specified condition is true.

Syntax

while (condition is true) {

 code to be executed;

}

Examples

The example below displays the numbers from 1 to 5:

ExampleGet your own PHP Server

<?php

$x = 1;

while($x <= 5) {

 echo"The number is: $x
";

 $x++;

}

?>

Example Explained

 $x = 1; - Initialize the loop counter ($x), and set the start value to 1
 $x <= 5 - Continue the loop as long as $x is less than or equal to 5
 $x++; - Increase the loop counter value by 1 for each iteration

This example counts to 100 by tens:

ExampleGet your own PHP Server

<?php

$x = 0;

while($x <= 100) {

 echo"The number is: $x
";

 $x+=10;

}

?>

Example Explained

 $x = 0; - Initialize the loop counter ($x), and set the start value to 0
 $x <= 100 - Continue the loop as long as $x is less than or equal to 100
 $x+=10; - Increase the loop counter value by 10 for each iteration

PHP do while Loop

The do...while loop - Loops through a block of code once, and then repeats the loop as long as the specified

condition is true.

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

The PHP do...while Loop

The do...while loop will always execute the block of code once, it will then check the condition, and repeat

the loop while the specified condition is true.

Syntax

do {

 code to be executed;

} while (condition is true);

Examples

The example below first sets a variable $x to 1 ($x = 1). Then, the do while loop will write some output, and

then increment the variable $x with 1. Then the condition is checked (is $x less than, or equal to 5?), and the

loop will continue to run as long as $x is less than, or equal to 5:

ExampleGet your own PHP Server

<?php

$x = 1;

do {

 echo"The number is: $x
";

 $x++;

} while ($x <= 5);

?>

Note: In a do...while loop the condition is tested AFTER executing the statements within the loop. This

means that the do...while loop will execute its statements at least once, even if the condition is false. See

example below.

This example sets the $x variable to 6, then it runs the loop, and then the condition is checked:

ExampleGet your own PHP Server

<?php

$x = 6;

do {

 echo"The number is: $x
";

 $x++;

} while ($x <= 5);

?>

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

PHP for Loop

The for loop - Loops through a block of code a specified number of times.

The PHP for Loop

The for loop is used when you know in advance how many times the script should run.

Syntax

for (init counter; test counter; increment counter) {

 code to be executed for each iteration;

}

Parameters:

 init counter: Initialize the loop counter value
 test counter: Evaluated for each loop iteration. If it evaluates to TRUE, the loop continues. If it evaluates to

FALSE, the loop ends.
 increment counter: Increases the loop counter value

Examples

The example below displays the numbers from 0 to 10:

ExampleGet your own PHP Server

<?php

for ($x = 0; $x <= 10; $x++){

 echo"The number is: $x
";

}

?>

Example Explained

 $x = 0; - Initialize the loop counter ($x), and set the start value to 0
 $x <= 10; - Continue the loop as long as $x is less than or equal to 10
 $x++ - Increase the loop counter value by 1 for each iteration

This example counts to 100 by tens:

https://www.w3schools.com/spaces/

ExampleGet your own PHP Server

<?php

for ($x = 0; $x <= 100; $x+=10){

 echo"The number is: $x
";

}

?>

Example Explained

 $x = 0; - Initialize the loop counter ($x), and set the start value to 0
 $x <= 100; - Continue the loop as long as $x is less than or equal to 100
 $x+=10 - Increase the loop counter value by 10 for each iteration

PHP foreach Loop

The foreach loop - Loops through a block of code for each element in an array.

The PHP foreach Loop

The foreach loop works only on arrays, and is used to loop through each key/value pair in an array.

Syntax

foreach ($array as$value) {

 code to be executed;

}

For every loop iteration, the value of the current array element is assigned to $value and the array pointer is

moved by one, until it reaches the last array element.

Examples

The following example will output the values of the given array ($colors):

ExampleGet your own PHP Server

<?php

$colors = array("red", "green", "blue", "yellow");

foreach ($colors as $value) {

 echo"$value
";

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

}

?>

The following example will output both the keys and the values of the given array ($age):

ExampleGet your own PHP Server

<?php

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");

foreach($age as $x => $val) {

 echo"$x = $val
";

}

?>

PHP Break and Continue

PHP Break

You have already seen the break statement used in an earlier chapter of this tutorial. It was used to "jump out"

of a switch statement.

The break statement can also be used to jump out of a loop.

This example jumps out of the loop when x is equal to 4:

ExampleGet your own PHP Server

<?php

for ($x = 0; $x <10; $x++) {

 if ($x == 4) {

 break;

 }

 echo"The number is: $x
";

}

?>

PHP Continue

The continue statement breaks one iteration (in the loop), if a specified condition occurs, and continues with

the next iteration in the loop.

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

This example skips the value of 4:

ExampleGet your own PHP Server

<?php

for ($x = 0; $x <10; $x++) {

 if ($x == 4) {

 continue;

 }

 echo"The number is: $x
";

}

?>

PHP Functions

The real power of PHP comes from its functions.

PHP has more than 1000 built-in functions, and in addition you can create your own custom functions.

PHP Built-in Functions

PHP has over 1000 built-in functions that can be called directly, from within a script, to perform a specific task.

Please check out our PHP reference for a complete overview of the PHP built-in functions.

PHP User Defined Functions

Besides the built-in PHP functions, it is possible to create your own functions.

 A function is a block of statements that can be used repeatedly in a program.
 A function will not execute automatically when a page loads.
 A function will be executed by a call to the function.

Create a User Defined Function in PHP

A user-defined function declaration starts with the word function:

https://www.w3schools.com/spaces/
https://www.w3schools.com/php/php_ref_overview.asp

Syntax

function functionName() {

 code to be executed;

}

Note: A function name must start with a letter or an underscore. Function names are NOT case-sensitive.

Tip: Give the function a name that reflects what the function does!

In the example below, we create a function named "writeMsg()". The opening curly brace ({) indicates the

beginning of the function code, and the closing curly brace (}) indicates the end of the function. The function

outputs "Hello world!". To call the function, just write its name followed by brackets ():

ExampleGet your own PHP Server

<?php

function writeMsg() {

 echo"Hello world!";

}

writeMsg(); // call the function

?>

ADVERTISEMENT

PHP Function Arguments

Information can be passed to functions through arguments. An argument is just like a variable.

Arguments are specified after the function name, inside the parentheses. You can add as many arguments as you

want, just separate them with a comma.

The following example has a function with one argument ($fname). When the familyName() function is called,

we also pass along a name (e.g. Jani), and the name is used inside the function, which outputs several different

first names, but an equal last name:

ExampleGet your own PHP Server

<?php

function familyName($fname) {

 echo"$fname Refsnes.
";

}

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

familyName("Jani");

familyName("Hege");

familyName("Stale");

familyName("Kai Jim");

familyName("Borge");

?>

The following example has a function with two arguments ($fname and $year):

ExampleGet your own PHP Server

<?php

function familyName($fname, $year) {

 echo"$fname Refsnes. Born in $year
";

}

familyName("Hege", "1975");

familyName("Stale", "1978");

familyName("Kai Jim", "1983");

?>

PHP is a Loosely Typed Language

In the example above, notice that we did not have to tell PHP which data type the variable is.

PHP automatically associates a data type to the variable, depending on its value. Since the data types are not set

in a strict sense, you can do things like adding a string to an integer without causing an error.

In PHP 7, type declarations were added. This gives us an option to specify the expected data type when

declaring a function, and by adding the strict declaration, it will throw a "Fatal Error" if the data type

mismatches.

In the following example we try to send both a number and a string to the function without using strict:

ExampleGet your own PHP Server

<?php

function addNumbers(int $a, int $b) {

 return $a + $b;

}

echo addNumbers(5, "5 days");

// since strict is NOT enabled "5 days" is changed to int(5), and it will return 10

?>

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

To specify strict we need to set declare(strict_types=1);. This must be on the very first line of the PHP

file.

In the following example we try to send both a number and a string to the function, but here we have added the

strict declaration:

ExampleGet your own PHP Server

<?phpdeclare(strict_types=1); // strict requirement

function addNumbers(int $a, int $b) {

 return $a + $b;

}

echo addNumbers(5, "5 days");

// since strict is enabled and "5 days" is not an integer, an error will be thrown

?>

The strict declaration forces things to be used in the intended way.

PHP Default Argument Value

The following example shows how to use a default parameter. If we call the function setHeight() without

arguments it takes the default value as argument:

ExampleGet your own PHP Server

<?phpdeclare(strict_types=1); // strict requirement

function setHeight(int $minheight = 50) {

 echo"The height is : $minheight
";

}

setHeight(350);

setHeight(); // will use the default value of 50

setHeight(135);

setHeight(80);

?>

PHP Functions - Returning values

To let a function return a value, use the return statement:

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

ExampleGet your own PHP Server

<?phpdeclare(strict_types=1); // strict requirement

function sum(int $x, int $y) {

 $z = $x + $y;

 return $z;

}

echo"5 + 10 = " . sum(5, 10) . "
";

echo"7 + 13 = " . sum(7, 13) . "
";

echo"2 + 4 = " . sum(2, 4);

?>

PHP Return Type Declarations

PHP 7 also supports Type Declarations for the return statement. Like with the type declaration for function

arguments, by enabling the strict requirement, it will throw a "Fatal Error" on a type mismatch.

To declare a type for the function return, add a colon (:) and the type right before the opening curly ({

)bracket when declaring the function.

In the following example we specify the return type for the function:

ExampleGet your own PHP Server

<?phpdeclare(strict_types=1); // strict requirement

function addNumbers(float $a, float $b) : float {

 return $a + $b;

}

echo addNumbers(1.2, 5.2);

?>

You can specify a different return type, than the argument types, but make sure the return is the correct type:

ExampleGet your own PHP Server

<?phpdeclare(strict_types=1); // strict requirement

function addNumbers(float $a, float $b) : int {

 return (int)($a + $b);

}

echo addNumbers(1.2, 5.2);

?>

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

Passing Arguments by Reference

In PHP, arguments are usually passed by value, which means that a copy of the value is used in the function and

the variable that was passed into the function cannot be changed.

When a function argument is passed by reference, changes to the argument also change the variable that was

passed in. To turn a function argument into a reference, the & operator is used:

ExampleGet your own PHP Server

Use a pass-by-reference argument to update a variable:

<?php

function add_five(&$value) {

 $value += 5;

}

$num = 2;

add_five($num);

echo $num;

?>

PHP Exercises

Test Yourself With Exercises

Exercise:

Create a function named myFunction.

 {

 echo "Hello World!";

}

PHP Arrays

An array stores multiple values in one single variable:

https://www.w3schools.com/spaces/

ExampleGet your own PHP Server

<?php

$cars = array("Volvo", "BMW", "Toyota");

echo"I like " . $cars[0] . ", " . $cars[1] . " and " . $cars[2] . ".";

?>

What is an Array?

An array is a special variable, which can hold more than one value at a time.

If you have a list of items (a list of car names, for example), storing the cars in single variables could look like

this:

$cars1 = "Volvo";

$cars2 = "BMW";

$cars3 = "Toyota";

However, what if you want to loop through the cars and find a specific one? And what if you had not 3 cars, but

300?

The solution is to create an array!

An array can hold many values under a single name, and you can access the values by referring to an index

number.

Create an Array in PHP

In PHP, the array() function is used to create an array:

array();

In PHP, there are three types of arrays:

 Indexed arrays - Arrays with a numeric index
 Associative arrays - Arrays with named keys
 Multidimensional arrays - Arrays containing one or more arrays

ADVERTISEMENT

https://www.w3schools.com/spaces/

Get The Length of an Array - The count() Function

The count() function is used to return the length (the number of elements) of an array:

ExampleGet your own PHP Server

<?php

$cars = array("Volvo", "BMW", "Toyota");

echo count($cars);

?>

Complete PHP Array Reference

For a complete reference of all array functions, go to our complete PHP Array Reference.

The reference contains a brief description, and examples of use, for each function!

PHP Exercises

Test Yourself With Exercises

Exercise:

Use the correct function to output the number of items in an array.

$fruits = array("Apple", "Banana", "Orange");

echo ;

PHP Indexed Arrays

PHP Indexed Arrays

There are two ways to create indexed arrays:

The index can be assigned automatically (index always starts at 0), like this:

$cars = array("Volvo", "BMW", "Toyota");

or the index can be assigned manually:

https://www.w3schools.com/spaces/
https://www.w3schools.com/php/php_ref_array.asp

$cars[0] = "Volvo";

$cars[1] = "BMW";

$cars[2] = "Toyota";

The following example creates an indexed array named $cars, assigns three elements to it, and then prints a text

containing the array values:

ExampleGet your own PHP Server

<?php

$cars = array("Volvo", "BMW", "Toyota");

echo"I like " . $cars[0] . ", " . $cars[1] . " and " . $cars[2] . ".";

?>

Loop Through an Indexed Array

To loop through and print all the values of an indexed array, you could use a for loop, like this:

ExampleGet your own PHP Server

<?php

$cars = array("Volvo", "BMW", "Toyota");

$arrlength = count($cars);

for($x = 0; $x < $arrlength; $x++) {

 echo $cars[$x];

 echo"
";

}

?>

ADVERTISEMENT

Complete PHP Array Reference

For a complete reference of all array functions, go to our complete PHP Array Reference.

The reference contains a brief description, and examples of use, for each function!

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/
https://www.w3schools.com/php/php_ref_array.asp

PHP Exercises

Test Yourself With Exercises

Exercise:

Output the second item in the $fruits array.

$fruits = array("Apple", "Banana", "Orange");

echo ;

PHP Associative Arrays

PHP Associative Arrays

Associative arrays are arrays that use named keys that you assign to them.

There are two ways to create an associative array:

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");

or:

$age['Peter'] = "35";

$age['Ben'] = "37";

$age['Joe'] = "43";

The named keys can then be used in a script:

ExampleGet your own PHP Server

<?php

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");

echo"Peter is " . $age['Peter'] . " years old.";

?>

Loop Through an Associative Array

To loop through and print all the values of an associative array, you could use a foreach loop, like this:

https://www.w3schools.com/spaces/

ExampleGet your own PHP Server

<?php

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");

foreach($age as $x => $x_value) {

 echo"Key=" . $x . ", Value=" . $x_value;

 echo"
";

}

?>

ADVERTISEMENT

Complete PHP Array Reference

For a complete reference of all array functions, go to our complete PHP Array Reference.

The reference contains a brief description, and examples of use, for each function!

PHP Exercises

Test Yourself With Exercises

Exercise:

Create an associative array containing the age of Peter, Ben and Joe.

$age = array("Peter" "35", "Ben" "37", "Joe" "43");

PHP Multidimensional Arrays

In the previous pages, we have described arrays that are a single list of key/value pairs.

However, sometimes you want to store values with more than one key. For this, we have multidimensional

arrays.

https://www.w3schools.com/spaces/
https://www.w3schools.com/php/php_ref_array.asp

PHP - Multidimensional Arrays

A multidimensional array is an array containing one or more arrays.

PHP supports multidimensional arrays that are two, three, four, five, or more levels deep. However, arrays more

than three levels deep are hard to manage for most people.

The dimension of an array indicates the number of indices you need to select an element.

 For a two-dimensional array you need two indices to select an element
 For a three-dimensional array you need three indices to select an element

PHP - Two-dimensional Arrays

A two-dimensional array is an array of arrays (a three-dimensional array is an array of arrays of arrays).

First, take a look at the following table:

Name Stock Sold

Volvo 22 18

BMW 15 13

Saab 5 2

Land Rover 17 15

We can store the data from the table above in a two-dimensional array, like this:

$cars = array (

 array("Volvo",22,18),

 array("BMW",15,13),

 array("Saab",5,2),

 array("Land Rover",17,15)

);

Now the two-dimensional $cars array contains four arrays, and it has two indices: row and column.

To get access to the elements of the $cars array we must point to the two indices (row and column):

ExampleGet your own PHP Server

<?php

echo $cars[0][0].": In stock: ".$cars[0][1].", sold: ".$cars[0][2].".
";

echo $cars[1][0].": In stock: ".$cars[1][1].", sold: ".$cars[1][2].".
";

echo $cars[2][0].": In stock: ".$cars[2][1].", sold: ".$cars[2][2].".
";

echo $cars[3][0].": In stock: ".$cars[3][1].", sold: ".$cars[3][2].".
";

?>

We can also put a for loop inside another for loop to get the elements of the $cars array (we still have to point

to the two indices):

ExampleGet your own PHP Server

<?php

for ($row = 0; $row <4; $row++) {

 echo"<p>Row number $row</p>";

 echo"";

 for ($col = 0; $col <3; $col++) {

 echo"".$cars[$row][$col]."";

 }

 echo"";

}

?>

Complete PHP Array Reference

For a complete reference of all array functions, go to our complete PHP Array Reference.

The reference contains a brief description, and examples of use, for each function!

PHP Sorting Arrays

The elements in an array can be sorted in alphabetical or numerical order, descending or ascending.

PHP - Sort Functions For Arrays

In this chapter, we will go through the following PHP array sort functions:

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/
https://www.w3schools.com/php/php_ref_array.asp

 sort() - sort arrays in ascending order
 rsort() - sort arrays in descending order
 asort() - sort associative arrays in ascending order, according to the value
 ksort() - sort associative arrays in ascending order, according to the key
 arsort() - sort associative arrays in descending order, according to the value
 krsort() - sort associative arrays in descending order, according to the key

Sort Array in Ascending Order - sort()

The following example sorts the elements of the $cars array in ascending alphabetical order:

ExampleGet your own PHP Server

<?php

$cars = array("Volvo", "BMW", "Toyota");

sort($cars);

?>

The following example sorts the elements of the $numbers array in ascending numerical order:

ExampleGet your own PHP Server

<?php

$numbers = array(4, 6, 2, 22, 11);

sort($numbers);

?>

ADVERTISEMENT

Sort Array in Descending Order - rsort()

The following example sorts the elements of the $cars array in descending alphabetical order:

ExampleGet your own PHP Server

<?php

$cars = array("Volvo", "BMW", "Toyota");

rsort($cars);

?>

The following example sorts the elements of the $numbers array in descending numerical order:

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

ExampleGet your own PHP Server

<?php

$numbers = array(4, 6, 2, 22, 11);

rsort($numbers);

?>

Sort Array (Ascending Order), According to Value - asort()

The following example sorts an associative array in ascending order, according to the value:

ExampleGet your own PHP Server

<?php

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");

asort($age);

?>

Sort Array (Ascending Order), According to Key - ksort()

The following example sorts an associative array in ascending order, according to the key:

ExampleGet your own PHP Server

<?php

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");

ksort($age);

?>

Sort Array (Descending Order), According to Value - arsort()

The following example sorts an associative array in descending order, according to the value:

ExampleGet your own PHP Server

<?php

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");

arsort($age);

?>

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

Sort Array (Descending Order), According to Key - krsort()

The following example sorts an associative array in descending order, according to the key:

ExampleGet your own PHP Server

<?php

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");

krsort($age);

?>

Complete PHP Array Reference

For a complete reference of all array functions, go to our complete PHP Array Reference.

The reference contains a brief description, and examples of use, for each function!

PHP Exercises

Test Yourself With Exercises

Exercise:

Use the correct array method to sort the $colors array alphabetically.

$colors = array("red", "green", "blue", "yellow");

;

PHP Global Variables - Superglobals

Superglobals were introduced in PHP 4.1.0, and are built-in variables that are always available in all scopes.

PHP Global Variables - Superglobals

Some predefined variables in PHP are "superglobals", which means that they are always accessible, regardless

of scope - and you can access them from any function, class or file without having to do anything special.

https://www.w3schools.com/spaces/
https://www.w3schools.com/php/php_ref_array.asp

The PHP superglobal variables are:

 $GLOBALS
 $_SERVER
 $_REQUEST
 $_POST
 $_GET
 $_FILES
 $_ENV
 $_COOKIE
 $_SESSION

The next chapters will explain some of the superglobals, and the rest will be explained in later chapters.

PHP Superglobal - $GLOBALS

Super global variables are built-in variables that are always available in all scopes.

PHP $GLOBALS

$GLOBALS is a PHP super global variable which is used to access global variables from anywhere in the PHP

script (also from within functions or methods).

PHP stores all global variables in an array called $GLOBALS[index]. The index holds the name of the variable.

The example below shows how to use the super global variable $GLOBALS:

ExampleGet your own PHP Server

<?php

$x = 75;

$y = 25;

function addition() {

 $GLOBALS['z'] = $GLOBALS['x'] + $GLOBALS['y'];

}

addition();

echo $z;

?>

https://www.w3schools.com/spaces/

In the example above, since z is a variable present within the $GLOBALS array, it is also accessible from

outside the function!

PHP Superglobal - $_SERVER

Super global variables are built-in variables that are always available in all scopes.

PHP $_SERVER

$_SERVER is a PHP super global variable which holds information about headers, paths, and script locations.

The example below shows how to use some of the elements in $_SERVER:

ExampleGet your own PHP Server

<?php

echo$_SERVER['PHP_SELF'];

echo"
";

echo$_SERVER['SERVER_NAME'];

echo"
";

echo$_SERVER['HTTP_HOST'];

echo"
";

echo$_SERVER['HTTP_REFERER'];

echo"
";

echo$_SERVER['HTTP_USER_AGENT'];

echo"
";

echo$_SERVER['SCRIPT_NAME'];

?>

The following table lists the most important elements that can go inside $_SERVER:

Element/Code Description

$_SERVER['PHP_SELF'] Returns the filename of the currently executing script

$_SERVER['GATEWAY_INTERFACE']
Returns the version of the Common Gateway Interface (CGI) the server is

using

https://www.w3schools.com/spaces/

$_SERVER['SERVER_ADDR'] Returns the IP address of the host server

$_SERVER['SERVER_NAME'] Returns the name of the host server (such as www.w3schools.com)

$_SERVER['SERVER_SOFTWARE'] Returns the server identification string (such as Apache/2.2.24)

$_SERVER['SERVER_PROTOCOL'] Returns the name and revision of the information protocol (such as HTTP/1.1)

$_SERVER['REQUEST_METHOD'] Returns the request method used to access the page (such as POST)

$_SERVER['REQUEST_TIME'] Returns the timestamp of the start of the request (such as 1377687496)

$_SERVER['QUERY_STRING'] Returns the query string if the page is accessed via a query string

$_SERVER['HTTP_ACCEPT'] Returns the Accept header from the current request

$_SERVER['HTTP_ACCEPT_CHARSET']
Returns the Accept_Charset header from the current request (such as utf-

8,ISO-8859-1)

$_SERVER['HTTP_HOST'] Returns the Host header from the current request

$_SERVER['HTTP_REFERER']
Returns the complete URL of the current page (not reliable because not all

user-agents support it)

$_SERVER['HTTPS'] Is the script queried through a secure HTTP protocol

$_SERVER['REMOTE_ADDR'] Returns the IP address from where the user is viewing the current page

$_SERVER['REMOTE_HOST'] Returns the Host name from where the user is viewing the current page

$_SERVER['REMOTE_PORT']
Returns the port being used on the user's machine to communicate with the

web server

$_SERVER['SCRIPT_FILENAME'] Returns the absolute pathname of the currently executing script

$_SERVER['SERVER_ADMIN']

Returns the value given to the SERVER_ADMIN directive in the web server

configuration file (if your script runs on a virtual host, it will be the value

defined for that virtual host) (such as someone@w3schools.com)

$_SERVER['SERVER_PORT']
Returns the port on the server machine being used by the web server for

communication (such as 80)

$_SERVER['SERVER_SIGNATURE'] Returns the server version and virtual host name which are added to server-

generated pages

$_SERVER['PATH_TRANSLATED'] Returns the file system based path to the current script

$_SERVER['SCRIPT_NAME'] Returns the path of the current script

$_SERVER['SCRIPT_URI'] Returns the URI of the current page

PHP Superglobal - $_REQUEST

Super global variables are built-in variables that are always available in all scopes.

PHP $_REQUEST

PHP $_REQUEST is a PHP super global variable which is used to collect data after submitting an HTML form.

The example below shows a form with an input field and a submit button. When a user submits the data by

clicking on "Submit", the form data is sent to the file specified in the action attribute of the <form> tag. In this

example, we point to this file itself for processing form data. If you wish to use another PHP file to process

form data, replace that with the filename of your choice. Then, we can use the super global variable

$_REQUEST to collect the value of the input field:

ExampleGet your own PHP Server

<html>

<body>

<form method="post" action="<?phpecho$_SERVER['PHP_SELF'];?>">

 Name: <input type="text" name="fname">

 <input type="submit">

</form>

<?php

if ($_SERVER["REQUEST_METHOD"] == "POST") {

 // collect value of input field

 $name = $_REQUEST['fname'];

 if (empty($name)) {

 echo"Name is empty";

 } else {

https://www.w3schools.com/spaces/

 echo $name;

 }

}

?>

</body>

</html>

PHP Superglobal - $_POST

Super global variables are built-in variables that are always available in all scopes.

PHP $_POST

PHP $_POST is a PHP super global variable which is used to collect form data after submitting an HTML form

with method="post". $_POST is also widely used to pass variables.

The example below shows a form with an input field and a submit button. When a user submits the data by

clicking on "Submit", the form data is sent to the file specified in the action attribute of the <form> tag. In this

example, we point to the file itself for processing form data. If you wish to use another PHP file to process form

data, replace that with the filename of your choice. Then, we can use the super global variable $_POST to

collect the value of the input field:

ExampleGet your own PHP Server

<html>

<body>

<form method="post" action="<?phpecho$_SERVER['PHP_SELF'];?>">

 Name: <input type="text" name="fname">

 <input type="submit">

</form>

<?php

if ($_SERVER["REQUEST_METHOD"] == "POST") {

 // collect value of input field

 $name = $_POST['fname'];

 if (empty($name)) {

 echo"Name is empty";

 } else {

https://www.w3schools.com/spaces/

 echo $name;

 }

}

?>

</body>

</html>

PHP Superglobal - $_GET

Super global variables are built-in variables that are always available in all scopes.

PHP $_GET

PHP $_GET is a PHP super global variable which is used to collect form data after submitting an HTML form

with method="get".

$_GET can also collect data sent in the URL.

Assume we have an HTML page that contains a hyperlink with parameters:

<html>

<body>

Test $GET

</body>

</html>

When a user clicks on the link "Test $GET", the parameters "subject" and "web" are sent to "test_get.php", and

you can then access their values in "test_get.php" with $_GET.

The example below shows the code in "test_get.php":

ExampleGet your own PHP Server

<html>

<body>

<?php

https://www.w3schools.com/spaces/

echo"Study " . $_GET['subject'] . " at " . $_GET['web'];

?>

</body>

</html>

PHP Regular Expressions

What is a Regular Expression?

A regular expression is a sequence of characters that forms a search pattern. When you search for data in a text,

you can use this search pattern to describe what you are searching for.

A regular expression can be a single character, or a more complicated pattern.

Regular expressions can be used to perform all types of text search and text replace operations.

Syntax

In PHP, regular expressions are strings composed of delimiters, a pattern and optional modifiers.

$exp = "/w3schools/i";

In the example above, / is the delimiter, w3schools is the pattern that is being searched for, and i is a

modifier that makes the search case-insensitive.

The delimiter can be any character that is not a letter, number, backslash or space. The most common delimiter

is the forward slash (/), but when your pattern contains forward slashes it is convenient to choose other

delimiters such as # or ~.

Regular Expression Functions

PHP provides a variety of functions that allow you to use regular expressions. The preg_match(),

preg_match_all() and preg_replace() functions are some of the most commonly used ones:

Function Description

preg_match() Returns 1 if the pattern was found in the string and 0 if not

preg_match_all() Returns the number of times the pattern was found in the string, which may also be 0

preg_replace() Returns a new string where matched patterns have been replaced with another string

Using preg_match()

The preg_match() function will tell you whether a string contains matches of a pattern.

ExampleGet your own PHP Server

Use a regular expression to do a case-insensitive search for "w3schools" in a string:

<?php

$str = "Visit W3Schools";

$pattern = "/w3schools/i";

echo preg_match($pattern, $str); // Outputs 1

?>

Using preg_match_all()

The preg_match_all() function will tell you how many matches were found for a pattern in a string.

ExampleGet your own PHP Server

Use a regular expression to do a case-insensitive count of the number of occurrences of "ain" in a string:

<?php

$str = "The rain in SPAIN falls mainly on the plains.";

$pattern = "/ain/i";

echo preg_match_all($pattern, $str); // Outputs 4

?>

Using preg_replace()

The preg_replace() function will replace all of the matches of the pattern in a string with another string.

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

ExampleGet your own PHP Server

Use a case-insensitive regular expression to replace Microsoft with W3Schools in a string:

<?php

$str = "Visit Microsoft!";

$pattern = "/microsoft/i";

echo preg_replace($pattern, "W3Schools", $str); // Outputs "Visit W3Schools!"

?>

PHP Form Handling

The PHP superglobals $_GET and $_POST are used to collect form-data.

PHP - A Simple HTML Form

The example below displays a simple HTML form with two input fields and a submit button:

ExampleGet your own PHP Server

<html>

<body>

<form action="welcome.php" method="post">

Name: <input type="text" name="name">

E-mail: <input type="text" name="email">

<input type="submit">

</form>

</body>

</html>

When the user fills out the form above and clicks the submit button, the form data is sent for processing to a

PHP file named "welcome.php". The form data is sent with the HTTP POST method.

To display the submitted data you could simply echo all the variables. The "welcome.php" looks like this:

<html>

<body>

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

Welcome <?php echo $_POST["name"]; ?>

Your email address is: <?php echo $_POST["email"]; ?>

</body>

</html>

The output could be something like this:

Welcome John

Your email address is john.doe@example.com

The same result could also be achieved using the HTTP GET method:

ExampleGet your own PHP Server

<html>

<body>

<form action="welcome_get.php" method="get">

Name: <input type="text" name="name">

E-mail: <input type="text" name="email">

<input type="submit">

</form>

</body>

</html>

and "welcome_get.php" looks like this:

<html>

<body>

Welcome <?php echo $_GET["name"]; ?>

Your email address is: <?php echo $_GET["email"]; ?>

</body>

</html>

The code above is quite simple. However, the most important thing is missing. You need to validate form data

to protect your script from malicious code.

Think SECURITY when processing PHP forms!

This page does not contain any form validation, it just shows how you can send and retrieve form data.

https://www.w3schools.com/spaces/

However, the next pages will show how to process PHP forms with security in mind! Proper validation of form

data is important to protect your form from hackers and spammers!

PHP Form Validation

This and the next chapters show how to use PHP to validate form data.

PHP Form Validation

Think SECURITY when processing PHP forms!

These pages will show how to process PHP forms with security in mind. Proper validation of form data is

important to protect your form from hackers and spammers!

The HTML form we will be working at in these chapters, contains various input fields: required and optional

text fields, radio buttons, and a submit button:

The validation rules for the form above are as follows:

Field Validation Rules

Name Required. + Must only contain letters and whitespace

E-mail Required. + Must contain a valid email address (with @ and .)

Website Optional. If present, it must contain a valid URL

Comment Optional. Multi-line input field (textarea)

Gender Required. Must select one

First we will look at the plain HTML code for the form:

ADVERTISEMENT

Text Fields

The name, email, and website fields are text input elements, and the comment field is a textarea. The HTML

code looks like this:

Name: <input type="text" name="name">

E-mail: <input type="text" name="email">

Website: <input type="text" name="website">

Comment: <textarea name="comment" rows="5" cols="40"></textarea>

Radio Buttons

The gender fields are radio buttons and the HTML code looks like this:

Gender:

<input type="radio" name="gender" value="female">Female

<input type="radio" name="gender" value="male">Male

<input type="radio" name="gender" value="other">Other

The Form Element

The HTML code of the form looks like this:

<form method="post" action="<?phpecho htmlspecialchars($_SERVER["PHP_SELF"]);?>">

When the form is submitted, the form data is sent with method="post".

What is the $_SERVER["PHP_SELF"] variable?

The $_SERVER["PHP_SELF"] is a super global variable that returns the filename of the currently executing

script.

So, the $_SERVER["PHP_SELF"] sends the submitted form data to the page itself, instead of jumping to a

different page. This way, the user will get error messages on the same page as the form.

What is the htmlspecialchars() function?

The htmlspecialchars() function converts special characters to HTML entities. This means that it will replace

HTML characters like < and > with < and >. This prevents attackers from exploiting the code by injecting

HTML or Javascript code (Cross-site Scripting attacks) in forms.

Big Note on PHP Form Security

The $_SERVER["PHP_SELF"] variable can be used by hackers!

If PHP_SELF is used in your page then a user can enter a slash (/) and then some Cross Site Scripting (XSS)

commands to execute.

Cross-site scripting (XSS) is a type of computer security vulnerability typically found in Web

applications. XSS enables attackers to inject client-side script into Web pages viewed by other users.

Assume we have the following form in a page named "test_form.php":

<form method="post" action="<?phpecho$_SERVER["PHP_SELF"];?>">

Now, if a user enters the normal URL in the address bar like "http://www.example.com/test_form.php", the

above code will be translated to:

<form method="post" action="test_form.php">

So far, so good.

However, consider that a user enters the following URL in the address bar:

http://www.example.com/test_form.php/%22%3E%3Cscript%3Ealert('hacked')%3C/script%3E

In this case, the above code will be translated to:

<form method="post" action="test_form.php/"><script>alert('hacked')</script>

This code adds a script tag and an alert command. And when the page loads, the JavaScript code will be

executed (the user will see an alert box). This is just a simple and harmless example how the PHP_SELF

variable can be exploited.

Be aware of that any JavaScript code can be added inside the <script> tag! A hacker can redirect the user to

a file on another server, and that file can hold malicious code that can alter the global variables or submit the

form to another address to save the user data, for example.

How To Avoid $_SERVER["PHP_SELF"] Exploits?

$_SERVER["PHP_SELF"] exploits can be avoided by using the htmlspecialchars() function.

The form code should look like this:

<form method="post" action="<?phpecho htmlspecialchars($_SERVER["PHP_SELF"]);?>">

The htmlspecialchars() function converts special characters to HTML entities. Now if the user tries to exploit

the PHP_SELF variable, it will result in the following output:

<form method="post" action="test_form.php/"><script>alert('hacked')</script>">

The exploit attempt fails, and no harm is done!

Validate Form Data With PHP

The first thing we will do is to pass all variables through PHP's htmlspecialchars() function.

When we use the htmlspecialchars() function; then if a user tries to submit the following in a text field:

<script>location.href('http://www.hacked.com')</script>

- this would not be executed, because it would be saved as HTML escaped code, like this:

<script>location.href('http://www.hacked.com')</script>

The code is now safe to be displayed on a page or inside an e-mail.

We will also do two more things when the user submits the form:

1. Strip unnecessary characters (extra space, tab, newline) from the user input data (with the PHP trim() function)
2. Remove backslashes (\) from the user input data (with the PHP stripslashes() function)

The next step is to create a function that will do all the checking for us (which is much more convenient than

writing the same code over and over again).

We will name the function test_input().

Now, we can check each $_POST variable with the test_input() function, and the script looks like this:

ExampleGet your own PHP Server

<?php

// define variables and set to empty values

$name = $email = $gender = $comment = $website = "";

if ($_SERVER["REQUEST_METHOD"] == "POST") {

 $name = test_input($_POST["name"]);

 $email = test_input($_POST["email"]);

https://www.w3schools.com/spaces/

 $website = test_input($_POST["website"]);

 $comment = test_input($_POST["comment"]);

 $gender = test_input($_POST["gender"]);

}

function test_input($data) {

 $data = trim($data);

 $data = stripslashes($data);

 $data = htmlspecialchars($data);

 return $data;

}

?>

Notice that at the start of the script, we check whether the form has been submitted using

$_SERVER["REQUEST_METHOD"]. If the REQUEST_METHOD is POST, then the form has been

submitted - and it should be validated. If it has not been submitted, skip the validation and display a blank form.

However, in the example above, all input fields are optional. The script works fine even if the user does not

enter any data.

The next step is to make input fields required and create error messages if needed.

PHP Forms - Required Fields

This chapter shows how to make input fields required and create error messages if needed.

PHP - Required Fields

From the validation rules table on the previous page, we see that the "Name", "E-mail", and "Gender" fields are

required. These fields cannot be empty and must be filled out in the HTML form.

Field Validation Rules

Name Required. + Must only contain letters and whitespace

E-mail Required. + Must contain a valid email address (with @ and .)

Website Optional. If present, it must contain a valid URL

Comment Optional. Multi-line input field (textarea)

Gender Required. Must select one

In the previous chapter, all input fields were optional.

In the following code we have added some new variables: $nameErr, $emailErr, $genderErr, and $websiteErr.

These error variables will hold error messages for the required fields. We have also added an if else statement

for each $_POST variable. This checks if the $_POST variable is empty (with the PHP empty() function). If it

is empty, an error message is stored in the different error variables, and if it is not empty, it sends the user input

data through the test_input() function:

<?php

// define variables and set to empty values

$nameErr = $emailErr = $genderErr = $websiteErr = "";

$name = $email = $gender = $comment = $website = "";

if ($_SERVER["REQUEST_METHOD"] == "POST") {

 if (empty($_POST["name"])) {

 $nameErr = "Name is required";

 } else {

 $name = test_input($_POST["name"]);

 }

 if (empty($_POST["email"])){

 $emailErr = "Email is required";

 } else {

 $email = test_input($_POST["email"]);

 }

 if (empty($_POST["website"])){

 $website = "";

 } else {

 $website = test_input($_POST["website"]);

 }

 if (empty($_POST["comment"])) {

 $comment = "";

 } else {

 $comment = test_input($_POST["comment"]);

 }

 if (empty($_POST["gender"])) {

 $genderErr = "Gender is required";

 } else{

 $gender = test_input($_POST["gender"]);

 }

}

?>

ADVERTISEMENT

PHP - Display The Error Messages

Then in the HTML form, we add a little script after each required field, which generates the correct error

message if needed (that is if the user tries to submit the form without filling out the required fields):

ExampleGet your own PHP Server

<form method="post" action="<?phpecho htmlspecialchars($_SERVER["PHP_SELF"]);?>">

Name: <input type="text" name="name">

* <?phpecho $nameErr;?>

E-mail:

<input type="text" name="email">

* <?phpecho $emailErr;?>

Website:

<input type="text" name="website">

<?phpecho $websiteErr;?>

Comment: <textarea name="comment" rows="5" cols="40"></textarea>

Gender:

<input type="radio" name="gender" value="female">Female

<input type="radio" name="gender" value="male">Male

<input type="radio" name="gender" value="other">Other

* <?phpecho $genderErr;?>

<input type="submit" name="submit" value="Submit">

https://www.w3schools.com/spaces/

</form>

PHP Forms - Validate E-mail and URL

This chapter shows how to validate names, e-mails, and URLs.

PHP - Validate Name

The code below shows a simple way to check if the name field only contains letters, dashes, apostrophes and

whitespaces. If the value of the name field is not valid, then store an error message:

$name = test_input($_POST["name"]);

if (!preg_match("/^[a-zA-Z-']*$/",$name)) {

 $nameErr = "Only letters and white space allowed";

}

The preg_match() function searches a string for pattern, returning true if the pattern exists, and false

otherwise.

PHP - Validate E-mail

The easiest and safest way to check whether an email address is well-formed is to use PHP's filter_var()

function.

In the code below, if the e-mail address is not well-formed, then store an error message:

$email = test_input($_POST["email"]);

if (!filter_var($email, FILTER_VALIDATE_EMAIL)) {

 $emailErr = "Invalid email format";

}

PHP - Validate URL

The code below shows a way to check if a URL address syntax is valid (this regular expression also allows

dashes in the URL). If the URL address syntax is not valid, then store an error message:

https://www.w3schools.com/php/func_regex_preg_match.asp

$website = test_input($_POST["website"]);

if (!preg_match("/\b(?:(?:https?|ftp):\/\/|www\.)[-a-z0-9+&@#\/%?=~_|!:,.;]*[-a-z0-9+&@#\/%=~_|]/i",$website)) {

 $websiteErr = "Invalid URL";

}

ADVERTISEMENT

PHP - Validate Name, E-mail, and URL

Now, the script looks like this:

ExampleGet your own PHP Server

<?php

// define variables and set to empty values

$nameErr = $emailErr = $genderErr = $websiteErr = "";

$name = $email = $gender = $comment = $website = "";

if ($_SERVER["REQUEST_METHOD"] == "POST") {

 if (empty($_POST["name"])) {

 $nameErr = "Name is required";

 } else {

 $name = test_input($_POST["name"]);

 // check if name only contains letters and whitespace

 if (!preg_match("/^[a-zA-Z-']*$/",$name)) {

 $nameErr = "Only letters and white space allowed";

 }

 }

 if (empty($_POST["email"])) {

 $emailErr = "Email is required";

 } else {

 $email = test_input($_POST["email"]);

 // check if e-mail address is well-formed

 if (!filter_var($email, FILTER_VALIDATE_EMAIL)) {

 $emailErr = "Invalid email format";

 }

 }

 if (empty($_POST["website"])) {

https://www.w3schools.com/spaces/

 $website = "";

 } else {

 $website = test_input($_POST["website"]);

 // check if URL address syntax is valid (this regular expression also allows dashes in the URL)

 if (!preg_match("/\b(?:(?:https?|ftp):\/\/|www\.)[-a-z0-9+&@#\/%?=~_|!:,.;]*[-a-z0-9+&@#\/%=~_|]/i",$website)) {

 $websiteErr = "Invalid URL";

 }

 }

 if (empty($_POST["comment"])) {

 $comment = "";

 } else {

 $comment = test_input($_POST["comment"]);

 }

 if (empty($_POST["gender"])) {

 $genderErr = "Gender is required";

 } else {

 $gender = test_input($_POST["gender"]);

 }

}

?>

PHP Complete Form Example

This chapter shows how to keep the values in the input fields when the user hits the submit button.

PHP - Keep The Values in The Form

To show the values in the input fields after the user hits the submit button, we add a little PHP script inside the

value attribute of the following input fields: name, email, and website. In the comment textarea field, we put the

script between the <textarea> and </textarea> tags. The little script outputs the value of the $name, $email,

$website, and $comment variables.

Then, we also need to show which radio button that was checked. For this, we must manipulate the checked

attribute (not the value attribute for radio buttons):

Name: <input type="text" name="name" value="<?phpecho $name;?>">

E-mail: <input type="text" name="email" value="<?phpecho $email;?>">

Website: <input type="text" name="website" value="<?phpecho $website;?>">

Comment: <textarea name="comment" rows="5" cols="40"><?phpecho $comment;?></textarea>

Gender:

<input type="radio" name="gender"

<?phpif (isset($gender) && $gender=="female") echo"checked";?>

value="female">Female

<input type="radio" name="gender"

<?phpif (isset($gender) && $gender=="male") echo"checked";?>

value="male">Male

<input type="radio" name="gender"

<?phpif (isset($gender) && $gender=="other") echo"checked";?>

value="other">Other

PHP - Complete Form Example

Here is the complete code for the PHP Form Validation Example:

PHP Date and Time

The PHP date() function is used to format a date and/or a time.

The PHP Date() Function

The PHP date() function formats a timestamp to a more readable date and time.

Syntax

date(format,timestamp)

Parameter Description

format Required. Specifies the format of the timestamp

timestamp Optional. Specifies a timestamp. Default is the current date and time

A timestamp is a sequence of characters, denoting the date and/or time at which a certain event occurred.

Get a Date

The required format parameter of the date() function specifies how to format the date (or time).

Here are some characters that are commonly used for dates:

 d - Represents the day of the month (01 to 31)
 m - Represents a month (01 to 12)
 Y - Represents a year (in four digits)
 l (lowercase 'L') - Represents the day of the week

Other characters, like"/", ".", or "-" can also be inserted between the characters to add additional formatting.

The example below formats today's date in three different ways:

ExampleGet your own PHP Server

<?php

echo"Today is " . date("Y/m/d") . "
";

echo"Today is " . date("Y.m.d") . "
";

echo"Today is " . date("Y-m-d") . "
";

echo"Today is " . date("l");

?>

ADVERTISEMENT

PHP Tip - Automatic Copyright Year

Use the date() function to automatically update the copyright year on your website:

ExampleGet your own PHP Server

© 2010-<?phpecho date("Y");?>

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

Get a Time

Here are some characters that are commonly used for times:

 H - 24-hour format of an hour (00 to 23)
 h - 12-hour format of an hour with leading zeros (01 to 12)
 i - Minutes with leading zeros (00 to 59)
 s - Seconds with leading zeros (00 to 59)
 a - Lowercase Ante meridiem and Post meridiem (am or pm)

The example below outputs the current time in the specified format:

ExampleGet your own PHP Server

<?php

echo"The time is " . date("h:i:sa");

?>

Note that the PHP date() function will return the current date/time of the server!

Get Your Time Zone

If the time you got back from the code is not correct, it's probably because your server is in another country or

set up for a different timezone.

So, if you need the time to be correct according to a specific location, you can set the timezone you want to use.

The example below sets the timezone to "America/New_York", then outputs the current time in the specified

format:

ExampleGet your own PHP Server

<?php

date_default_timezone_set("America/New_York");

echo"The time is " . date("h:i:sa");

?>

Create a Date With mktime()

The optional timestamp parameter in the date() function specifies a timestamp. If omitted, the current date and

time will be used (as in the examples above).

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

The PHP mktime() function returns the Unix timestamp for a date. The Unix timestamp contains the number of

seconds between the Unix Epoch (January 1 1970 00:00:00 GMT) and the time specified.

Syntax

mktime(hour, minute, second, month, day, year)

The example below creates a date and time with the date() function from a number of parameters in the

mktime() function:

ExampleGet your own PHP Server

<?php

$d=mktime(11, 14, 54, 8, 12, 2014);

echo"Created date is " . date("Y-m-d h:i:sa", $d);

?>

Create a Date From a String With strtotime()

The PHP strtotime() function is used to convert a human readable date string into a Unix timestamp (the

number of seconds since January 1 1970 00:00:00 GMT).

Syntax

strtotime(time, now)

The example below creates a date and time from the strtotime() function:

ExampleGet your own PHP Server

<?php

$d=strtotime("10:30pm April 15 2014");

echo"Created date is " . date("Y-m-d h:i:sa", $d);

?>

PHP is quite clever about converting a string to a date, so you can put in various values:

ExampleGet your own PHP Server

<?php

$d=strtotime("tomorrow");

echo date("Y-m-d h:i:sa", $d) . "
";

$d=strtotime("next Saturday");

echo date("Y-m-d h:i:sa", $d) . "
";

$d=strtotime("+3 Months");

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

echo date("Y-m-d h:i:sa", $d) . "
";

?>

However, strtotime() is not perfect, so remember to check the strings you put in there.

More Date Examples

The example below outputs the dates for the next six Saturdays:

ExampleGet your own PHP Server

<?php

$startdate = strtotime("Saturday");

$enddate = strtotime("+6 weeks", $startdate);

while ($startdate < $enddate) {

 echo date("M d", $startdate) . "
";

 $startdate = strtotime("+1 week", $startdate);

}

?>

The example below outputs the number of days until 4th of July:

ExampleGet your own PHP Server

<?php

$d1=strtotime("July 04");

$d2=ceil(($d1-time())/60/60/24);

echo"There are " . $d2 ." days until 4th of July.";

?>

.

Calling System Calls

A system call is used by an application to request service from the operating system. System calls use machine

code instructions, which causes the processor to change modes. Changing the mode gets the OS to perform

restricted actions; for example, accessing hardware devices or server space available.

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

Every OS provides a library that sits between normal programs and the rest of the operating system, such as the

Windows API. This library handles low-level details of passing information to the kernel and switching to

supervisor mode.

You can use the exec function to call external functions.

For maximum security, use exec only when PHP code doesn't provide the same

functionality.

For example, if you'd like to get information about how much space is available on the server, execute the df

command, shown in Example 11-29. However, this is assuming you're on a Unix host.

Example 11-29. Executing df and displaying the results

<?php exec("df",$output_lines,$return_value); echo ("Command returned a value of

$return_value."); echo "</pre>"; foreach ($output_lines as $output) { echo

"$o"; } echo "</pre>"; ?>

PHP Connect to MySQL

PHP 5 and later can work with a MySQL database using:

 MySQLi extension (the "i" stands for improved)

 PDO (PHP Data Objects)

Earlier versions of PHP used the MySQL extension. However, this extension was deprecated in 2012.

Should I Use MySQLi or PDO?

If you need a short answer, it would be "Whatever you like".

Both MySQLi and PDO have their advantages:

PDO will work on 12 different database systems, whereas MySQLi will only work with MySQL databases.

So, if you have to switch your project to use another database, PDO makes the process easy. You only have to

change the connection string and a few queries. With MySQLi, you will need to rewrite the entire code - queries

included.

Both are object-oriented, but MySQLi also offers a procedural API.

Both support Prepared Statements. Prepared Statements protect from SQL injection, and are very important for

web application security.

MySQL Examples in Both MySQLi and PDO Syntax

In this, and in the following chapters we demonstrate three ways of working with PHP and MySQL:

 MySQLi (object-oriented)

 MySQLi (procedural)

 PDO

MySQLi Installation

For Linux and Windows: The MySQLi extension is automatically installed in most cases, when php5 mysql

package is installed.

For installation details, go to: http://php.net/manual/en/mysqli.installation.php

PDO Installation

For installation details, go to: http://php.net/manual/en/pdo.installation.php

ADVERTISEMENT

Open a Connection to MySQL

Before we can access data in the MySQL database, we need to be able to connect to the server:

Example (MySQLi Object-Oriented)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

// Create connection

$conn = new mysqli($servername, $username, $password);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

echo"Connected successfully";

?>

Note on the object-oriented example above:

$connect_error was broken until PHP 5.2.9 and 5.3.0. If you need to ensure compatibility with PHP versions

prior to 5.2.9 and 5.3.0, use the following code instead:

// Check connection

if (mysqli_connect_error()) {

http://php.net/manual/en/mysqli.installation.php
http://php.net/manual/en/pdo.installation.php
https://www.w3schools.com/spaces/

 die("Database connection failed: " . mysqli_connect_error());

}

Example (MySQLi Procedural)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

// Create connection

$conn = mysqli_connect($servername, $username, $password);

// Check connection

if (!$conn) {

 die("Connection failed: " . mysqli_connect_error());

}

echo"Connected successfully";

?>

Example (PDO)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

try {

 $conn = new PDO("mysql:host=$servername;dbname=myDB", $username, $password);

 // set the PDO error mode to exception

 $conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 echo"Connected successfully";

} catch(PDOException $e) {

 echo"Connection failed: " . $e->getMessage();

}

?>

Note: In the PDO example above we have also specified a database (myDB). PDO require a valid database to

connect to. If no database is specified, an exception is thrown.

Tip: A great benefit of PDO is that it has an exception class to handle any problems that may occur in our

database queries. If an exception is thrown within the try{ } block, the script stops executing and flows directly

to the first catch(){ } block.

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

Close the Connection

The connection will be closed automatically when the script ends. To close the connection before, use the

following:

MySQLi Object-Oriented:Get your own PHP Server

$conn->close();

MySQLi Procedural:Get your own PHP Server

mysqli_close($conn);

PDO:Get your own PHP Server

$conn = null;

PHP Create a MySQL Database

A database consists of one or more tables.

You will need special CREATE privileges to create or to delete a MySQL database.

Create a MySQL Database Using MySQLi and PDO

The CREATE DATABASE statement is used to create a database in MySQL.

The following examples create a database named "myDB":

Example (MySQLi Object-oriented)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

// Create connection

$conn = new mysqli($servername, $username, $password);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

// Create database

$sql = "CREATE DATABASE myDB";

if ($conn->query($sql) === TRUE) {

 echo"Database created successfully";

} else {

 echo"Error creating database: " . $conn->error;

}

$conn->close();

?>

Note: When you create a new database, you must only specify the first three arguments to the mysqli object

(servername, username and password).

Tip: If you have to use a specific port, add an empty string for the database-name argument, like this: new

mysqli("localhost", "username", "password", "", port)

ADVERTISEMENT

Example (MySQLi Procedural)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

// Create connection

$conn = mysqli_connect($servername, $username, $password);

// Check connection

if (!$conn) {

 die("Connection failed: " . mysqli_connect_error());

}

// Create database

$sql = "CREATE DATABASE myDB";

if (mysqli_query($conn, $sql)) {

 echo"Database created successfully";

https://www.w3schools.com/spaces/

} else {

 echo"Error creating database: " . mysqli_error($conn);

}

mysqli_close($conn);

?>

Note: The following PDO example create a database named "myDBPDO":

Example (PDO)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

try {

 $conn = new PDO("mysql:host=$servername", $username, $password);

 // set the PDO error mode to exception

 $conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $sql = "CREATE DATABASE myDBPDO";

 // use exec() because no results are returned

 $conn->exec($sql);

 echo"Database created successfully
";

} catch(PDOException $e) {

 echo $sql . "
" . $e->getMessage();

}

$conn = null;

?>

PHP MySQL Create Table

A database table has its own unique name and consists of columns and rows.

Create a MySQL Table Using MySQLi and PDO

The CREATE TABLE statement is used to create a table in MySQL.

https://www.w3schools.com/spaces/

We will create a table named "MyGuests", with five columns: "id", "firstname", "lastname", "email" and

"reg_date":

CREATE TABLE MyGuests (

id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY,

firstname VARCHAR(30) NOT NULL,

lastname VARCHAR(30) NOT NULL,

email VARCHAR(50),

reg_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP

)

Notes on the table above:

The data type specifies what type of data the column can hold. For a complete reference of all the available data

types, go to our Data Types reference.

After the data type, you can specify other optional attributes for each column:

 NOT NULL - Each row must contain a value for that column, null values are not allowed

 DEFAULT value - Set a default value that is added when no other value is passed

 UNSIGNED - Used for number types, limits the stored data to positive numbers and zero

 AUTO INCREMENT - MySQL automatically increases the value of the field by 1 each time a new

record is added

 PRIMARY KEY - Used to uniquely identify the rows in a table. The column with PRIMARY KEY

setting is often an ID number, and is often used with AUTO_INCREMENT

Each table should have a primary key column (in this case: the "id" column). Its value must be unique for each

record in the table.

The following examples shows how to create the table in PHP:

Example (MySQLi Object-oriented)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

https://www.w3schools.com/sql/sql_datatypes.asp
https://www.w3schools.com/spaces/

// sql to create table

$sql = "CREATE TABLE MyGuests (

id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY,

firstname VARCHAR(30) NOT NULL,

lastname VARCHAR(30) NOT NULL,

email VARCHAR(50),

reg_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP

)";

if ($conn->query($sql) === TRUE) {

 echo"Table MyGuests created successfully";

} else {

 echo"Error creating table: " . $conn->error;

}

$conn->close();

?>

Example (MySQLi Procedural)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = mysqli_connect($servername, $username, $password, $dbname);

// Check connection

if (!$conn) {

 die("Connection failed: " . mysqli_connect_error());

}

// sql to create table

$sql = "CREATE TABLE MyGuests (

id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY,

firstname VARCHAR(30) NOT NULL,

lastname VARCHAR(30) NOT NULL,

email VARCHAR(50),

reg_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP

)";

if (mysqli_query($conn, $sql)) {

https://www.w3schools.com/spaces/

 echo"Table MyGuests created successfully";

} else {

 echo"Error creating table: " . mysqli_error($conn);

}

mysqli_close($conn);

?>

Example (PDO)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDBPDO";

try {

 $conn = new PDO("mysql:host=$servername;dbname=$dbname", $username, $password);

 // set the PDO error mode to exception

 $conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 // sql to create table

 $sql = "CREATE TABLE MyGuests (

 id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY,

 firstname VARCHAR(30) NOT NULL,

 lastname VARCHAR(30) NOT NULL,

 email VARCHAR(50),

 reg_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP

)";

 // use exec() because no results are returned

 $conn->exec($sql);

 echo"Table MyGuests created successfully";

} catch(PDOException $e) {

 echo $sql . "
" . $e->getMessage();

}

$conn = null;

?>

PHP MySQL Insert Data

https://www.w3schools.com/spaces/

Insert Data Into MySQL Using MySQLi and PDO

After a database and a table have been created, we can start adding data in them.

Here are some syntax rules to follow:

 The SQL query must be quoted in PHP

 String values inside the SQL query must be quoted

 Numeric values must not be quoted

 The word NULL must not be quoted

The INSERT INTO statement is used to add new records to a MySQL table:

INSERT INTO table_name (column1, column2, column3,...)

VALUES (value1, value2, value3,...)

To learn more about SQL, please visit our SQL tutorial.

In the previous chapter we created an empty table named "MyGuests" with five columns: "id", "firstname",

"lastname", "email" and "reg_date". Now, let us fill the table with data.

Note: If a column is AUTO_INCREMENT (like the "id" column) or TIMESTAMP with default update of

current_timesamp (like the "reg_date" column), it is no need to be specified in the SQL query; MySQL will

automatically add the value.

The following examples add a new record to the "MyGuests" table:

Example (MySQLi Object-oriented)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

$sql = "INSERT INTO MyGuests (firstname, lastname, email)

VALUES ('John', 'Doe', 'john@example.com')";

if ($conn->query($sql) === TRUE) {

https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/spaces/

 echo"New record created successfully";

} else {

 echo"Error: " . $sql . "
" . $conn->error;

}

$conn->close();

?>

ADVERTISEMENT

Example (MySQLi Procedural)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = mysqli_connect($servername, $username, $password, $dbname);

// Check connection

if (!$conn) {

 die("Connection failed: " . mysqli_connect_error());

}

$sql = "INSERT INTO MyGuests (firstname, lastname, email)

VALUES ('John', 'Doe', 'john@example.com')";

if (mysqli_query($conn, $sql)) {

 echo"New record created successfully";

} else {

 echo"Error: " . $sql . "
" . mysqli_error($conn);

}

mysqli_close($conn);

?>

Example (PDO)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

https://www.w3schools.com/spaces/
https://www.w3schools.com/spaces/

$dbname = "myDBPDO";

try {

 $conn = new PDO("mysql:host=$servername;dbname=$dbname", $username, $password);

 // set the PDO error mode to exception

 $conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $sql = "INSERT INTO MyGuests (firstname, lastname, email)

 VALUES ('John', 'Doe', 'john@example.com')";

 // use exec() because no results are returned

 $conn->exec($sql);

 echo"New record created successfully";

} catch(PDOException $e) {

 echo $sql . "
" . $e->getMessage();

}

$conn = null;

?>

PHP MySQL Get Last Inserted ID

Get ID of The Last Inserted Record

If we perform an INSERT or UPDATE on a table with an AUTO_INCREMENT field, we can get the ID of the

last inserted/updated record immediately.

In the table "MyGuests", the "id" column is an AUTO_INCREMENT field:

CREATE TABLE MyGuests (

id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY,

firstname VARCHAR(30) NOT NULL,

lastname VARCHAR(30) NOT NULL,

email VARCHAR(50),

reg_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP

)

The following examples are equal to the examples from the previous page (PHP Insert Data Into MySQL),

except that we have added one single line of code to retrieve the ID of the last inserted record. We also echo the

last inserted ID:

Example (MySQLi Object-oriented)Get your own PHP Server

<?php

$servername = "localhost";

https://www.w3schools.com/php/php_mysql_insert.asp
https://www.w3schools.com/spaces/

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

$sql = "INSERT INTO MyGuests (firstname, lastname, email)

VALUES ('John', 'Doe', 'john@example.com')";

if ($conn->query($sql) === TRUE) {

 $last_id = $conn->insert_id;

 echo"New record created successfully. Last inserted ID is: " . $last_id;

} else {

 echo"Error: " . $sql . "
" . $conn->error;

}

$conn->close();

?>

ADVERTISEMENT

Example (MySQLi Procedural)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = mysqli_connect($servername, $username, $password, $dbname);

// Check connection

if (!$conn) {

 die("Connection failed: " . mysqli_connect_error());

}

$sql = "INSERT INTO MyGuests (firstname, lastname, email)

VALUES ('John', 'Doe', 'john@example.com')";

if (mysqli_query($conn, $sql)) {

https://www.w3schools.com/spaces/

 $last_id = mysqli_insert_id($conn);

 echo"New record created successfully. Last inserted ID is: " . $last_id;

} else {

 echo"Error: " . $sql . "
" . mysqli_error($conn);

}

mysqli_close($conn);

?>

Example (PDO)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDBPDO";

try {

 $conn = new PDO("mysql:host=$servername;dbname=$dbname", $username, $password);

 // set the PDO error mode to exception

 $conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $sql = "INSERT INTO MyGuests (firstname, lastname, email)

 VALUES ('John', 'Doe', 'john@example.com')";

 // use exec() because no results are returned

 $conn->exec($sql);

 $last_id = $conn->lastInsertId();

 echo"New record created successfully. Last inserted ID is: " . $last_id;

} catch(PDOException $e) {

 echo $sql . "
" . $e->getMessage();

}

$conn = null;

?>

PHP MySQL Insert Multiple Records

Insert Multiple Records Into MySQL Using MySQLi and PDO

Multiple SQL statements must be executed with the mysqli_multi_query() function.

The following examples add three new records to the "MyGuests" table:

https://www.w3schools.com/spaces/

Example (MySQLi Object-oriented)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

$sql = "INSERT INTO MyGuests (firstname, lastname, email)

VALUES ('John', 'Doe', 'john@example.com');";

$sql .= "INSERT INTO MyGuests (firstname, lastname, email)

VALUES ('Mary', 'Moe', 'mary@example.com');";

$sql .= "INSERT INTO MyGuests (firstname, lastname, email)

VALUES ('Julie', 'Dooley', 'julie@example.com')";

if ($conn->multi_query($sql) === TRUE) {

 echo"New records created successfully";

} else {

 echo"Error: " . $sql . "
" . $conn->error;

}

$conn->close();

?>

Note that each SQL statement must be separated by a semicolon.

PHP MySQL Prepared Statements

Prepared statements are very useful against SQL injections.

Prepared Statements and Bound Parameters

https://www.w3schools.com/spaces/

A prepared statement is a feature used to execute the same (or similar) SQL statements repeatedly with high

efficiency.

Prepared statements basically work like this:

1. Prepare: An SQL statement template is created and sent to the database. Certain values are left

unspecified, called parameters (labeled "?"). Example: INSERT INTO MyGuests VALUES(?, ?, ?)

2. The database parses, compiles, and performs query optimization on the SQL statement template, and

stores the result without executing it

3. Execute: At a later time, the application binds the values to the parameters, and the database executes

the statement. The application may execute the statement as many times as it wants with different values

Compared to executing SQL statements directly, prepared statements have three main advantages:

 Prepared statements reduce parsing time as the preparation on the query is done only once (although the

statement is executed multiple times)

 Bound parameters minimize bandwidth to the server as you need send only the parameters each time,

and not the whole query

 Prepared statements are very useful against SQL injections, because parameter values, which are

transmitted later using a different protocol, need not be correctly escaped. If the original statement

template is not derived from external input, SQL injection cannot occur.

Prepared Statements in MySQLi

The following example uses prepared statements and bound parameters in MySQLi:

Example (MySQLi with Prepared Statements)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

// prepare and bind

$stmt = $conn->prepare("INSERT INTO MyGuests (firstname, lastname, email) VALUES (?, ?, ?)");

https://www.w3schools.com/spaces/

$stmt->bind_param("sss", $firstname, $lastname, $email);

// set parameters and execute

$firstname = "John";

$lastname = "Doe";

$email = "john@example.com";

$stmt->execute();

$firstname = "Mary";

$lastname = "Moe";

$email = "mary@example.com";

$stmt->execute();

$firstname = "Julie";

$lastname = "Dooley";

$email = "julie@example.com";

$stmt->execute();

echo"New records created successfully";

$stmt->close();

$conn->close();

?>

Code lines to explain from the example above:

"INSERT INTO MyGuests (firstname, lastname, email) VALUES (?, ?, ?)"

In our SQL, we insert a question mark (?) where we want to substitute in an integer, string, double or blob

value.

Then, have a look at the bind_param() function:

$stmt->bind_param("sss", $firstname, $lastname, $email);

This function binds the parameters to the SQL query and tells the database what the parameters are. The "sss"

argument lists the types of data that the parameters are. The s character tells mysql that the parameter is a string.

The argument may be one of four types:

 i - integer

 d - double

 s - string

 b - BLOB

We must have one of these for each parameter.

By telling mysql what type of data to expect, we minimize the risk of SQL injections.

Note: If we want to insert any data from external sources (like user input), it is very important that the data is

sanitized and validated.

PHP MySQL Select Data

Select Data From a MySQL Database

The SELECT statement is used to select data from one or more tables:

SELECT column_name(s) FROM table_name

or we can use the * character to select ALL columns from a table:

SELECT * FROM table_name

To learn more about SQL, please visit our SQL tutorial.

Select Data With MySQLi

The following example selects the id, firstname and lastname columns from the MyGuests table and displays it

on the page:

Example (MySQLi Object-oriented)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/spaces/

$sql = "SELECT id, firstname, lastname FROM MyGuests";

$result = $conn->query($sql);

if ($result->num_rows >0) {

 // output data of each row

 while($row = $result->fetch_assoc()) {

 echo"id: " . $row["id"]. " - Name: " . $row["firstname"]. " " . $row["lastname"]. "
";

 }

} else {

 echo"0 results";

}

$conn->close();

?>

Code lines to explain from the example above:

First, we set up an SQL query that selects the id, firstname and lastname columns from the MyGuests table. The

next line of code runs the query and puts the resulting data into a variable called $result.

Then, the function num_rows() checks if there are more than zero rows returned.

If there are more than zero rows returned, the function fetch_assoc() puts all the results into an associative

array that we can loop through. The while() loop loops through the result set and outputs the data from the id,

firstname and lastname columns.

The following example shows the same as the example above, in the MySQLi procedural way:

Example (MySQLi Procedural)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = mysqli_connect($servername, $username, $password, $dbname);

// Check connection

if (!$conn) {

 die("Connection failed: " . mysqli_connect_error());

}

$sql = "SELECT id, firstname, lastname FROM MyGuests";

$result = mysqli_query($conn, $sql);

https://www.w3schools.com/spaces/

if (mysqli_num_rows($result) >0) {

 // output data of each row

 while($row = mysqli_fetch_assoc($result)) {

 echo"id: " . $row["id"]. " - Name: " . $row["firstname"]. " " . $row["lastname"]. "
";

 }

} else {

 echo"0 results";

}

mysqli_close($conn);

?>

PHP MySQL Use The WHERE Clause

Select and Filter Data From a MySQL Database

The WHERE clause is used to filter records.

The WHERE clause is used to extract only those records that fulfill a specified condition.

SELECT column_name(s) FROM table_name WHERE column_name operator value

To learn more about SQL, please visit our SQL tutorial.

Select and Filter Data With MySQLi

The following example selects the id, firstname and lastname columns from the MyGuests table where the

lastname is "Doe", and displays it on the page:

Example (MySQLi Object-oriented)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/spaces/

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

$sql = "SELECT id, firstname, lastname FROM MyGuests WHERE lastname='Doe'";

$result = $conn->query($sql);

if ($result->num_rows >0) {

 // output data of each row

 while($row = $result->fetch_assoc()) {

 echo"id: " . $row["id"]. " - Name: " . $row["firstname"]. " " . $row["lastname"]. "
";

 }

} else {

 echo"0 results";

}

$conn->close();

?>

Code lines to explain from the example above:

First, we set up the SQL query that selects the id, firstname and lastname columns from the MyGuests table

where the lastname is "Doe". The next line of code runs the query and puts the resulting data into a variable

called $result.

Then, the function num_rows() checks if there are more than zero rows returned.

If there are more than zero rows returned, the function fetch_assoc() puts all the results into an associative

array that we can loop through. The while() loop loops through the result set and outputs the data from the id,

firstname and lastname columns.

The following example shows the same as the example above, in the MySQLi procedural way:

Example (MySQLi Procedural)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = mysqli_connect($servername, $username, $password, $dbname);

// Check connection

if (!$conn) {

 die("Connection failed: " . mysqli_connect_error());

}

https://www.w3schools.com/spaces/

$sql = "SELECT id, firstname, lastname FROM MyGuests WHERE lastname='Doe'";

$result = mysqli_query($conn, $sql);

if (mysqli_num_rows($result) >0) {

 // output data of each row

 while($row = mysqli_fetch_assoc($result)) {

 echo"id: " . $row["id"]. " - Name: " . $row["firstname"]. " " . $row["lastname"]. "
";

 }

} else {

 echo"0 results";

}

mysqli_close($conn);

?>

PHP MySQL Use The ORDER BY Clause

Select and Order Data From a MySQL Database

The ORDER BY clause is used to sort the result-set in ascending or descending order.

The ORDER BY clause sorts the records in ascending order by default. To sort the records in descending order,

use the DESC keyword.

SELECT column_name(s) FROM table_name ORDER BY column_name(s) ASC|DESC

To learn more about SQL, please visit our SQL tutorial.

Select and Order Data With MySQLi

The following example selects the id, firstname and lastname columns from the MyGuests table. The records

will be ordered by the lastname column:

Example (MySQLi Object-oriented)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/spaces/

$dbname = "myDB";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

$sql = "SELECT id, firstname, lastname FROM MyGuests ORDER BY lastname";

$result = $conn->query($sql);

if ($result->num_rows >0) {

 // output data of each row

 while($row = $result->fetch_assoc()) {

 echo"id: " . $row["id"]. " - Name: " . $row["firstname"]. " " . $row["lastname"]. "
";

 }

} else {

 echo"0 results";

}

$conn->close();

?>

Code lines to explain from the example above:

First, we set up the SQL query that selects the id, firstname and lastname columns from the MyGuests table.

The records will be ordered by the lastname column. The next line of code runs the query and puts the resulting

data into a variable called $result.

Then, the function num_rows() checks if there are more than zero rows returned.

If there are more than zero rows returned, the function fetch_assoc() puts all the results into an associative

array that we can loop through. The while() loop loops through the result set and outputs the data from the id,

firstname and lastname columns.

The following example shows the same as the example above, in the MySQLi procedural way:

Example (MySQLi Procedural)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

https://www.w3schools.com/spaces/

$conn = mysqli_connect($servername, $username, $password, $dbname);

// Check connection

if (!$conn) {

 die("Connection failed: " . mysqli_connect_error());

}

$sql = "SELECT id, firstname, lastname FROM MyGuests ORDER BY lastname";

$result = mysqli_query($conn, $sql);

if (mysqli_num_rows($result) >0) {

 // output data of each row

 while($row = mysqli_fetch_assoc($result)) {

 echo"id: " . $row["id"]. " - Name: " . $row["firstname"]. " " . $row["lastname"]. "
";

 }

} else {

 echo"0 results";

}

mysqli_close($conn);

?>

PHP MySQL Delete Data

Delete Data From a MySQL Table Using MySQLi and PDO

The DELETE statement is used to delete records from a table:

DELETE FROM table_name

WHERE some_column = some_value

Notice the WHERE clause in the DELETE syntax: The WHERE clause specifies which record or records

that should be deleted. If you omit the WHERE clause, all records will be deleted!

To learn more about SQL, please visit our SQL tutorial.

Let's look at the "MyGuests" table:

id firstname lastname email reg_date

1 John Doe john@example.com 2014-10-22 14:26:15

2 Mary Moe mary@example.com 2014-10-23 10:22:30

3 Julie Dooley julie@example.com 2014-10-26 10:48:23

https://www.w3schools.com/sql/default.asp

The following examples delete the record with id=3 in the "MyGuests" table:

Example (MySQLi Object-oriented)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

// sql to delete a record

$sql = "DELETE FROM MyGuests WHERE id=3";

if ($conn->query($sql) === TRUE) {

 echo"Record deleted successfully";

} else {

 echo"Error deleting record: " . $conn->error;

}

$conn->close();

?>

PHP MySQL Update Data

Update Data In a MySQL Table Using MySQLi and PDO

The UPDATE statement is used to update existing records in a table:

UPDATE table_name

SET column1=value, column2=value2,...

WHERE some_column=some_value

Notice the WHERE clause in the UPDATE syntax: The WHERE clause specifies which record or records

that should be updated. If you omit the WHERE clause, all records will be updated!

To learn more about SQL, please visit our SQL tutorial.

https://www.w3schools.com/spaces/
https://www.w3schools.com/sql/default.asp

Let's look at the "MyGuests" table:

id firstname lastname email reg_date

1 John Doe john@example.com 2014-10-22 14:26:15

2 Mary Moe mary@example.com 2014-10-23 10:22:30

The following examples update the record with id=2 in the "MyGuests" table:

Example (MySQLi Object-oriented)Get your own PHP Server

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

$sql = "UPDATE MyGuests SET lastname='Doe' WHERE id=2";

if ($conn->query($sql) === TRUE) {

 echo"Record updated successfully";

} else {

 echo"Error updating record: " . $conn->error;

}

$conn->close();

?>

PHP MySQL Limit Data Selections

Limit Data Selections From a MySQL Database

MySQL provides a LIMIT clause that is used to specify the number of records to return.

The LIMIT clause makes it easy to code multi page results or pagination with SQL, and is very useful on large

tables. Returning a large number of records can impact on performance.

https://www.w3schools.com/spaces/

Assume we wish to select all records from 1 - 30 (inclusive) from a table called "Orders". The SQL query

would then look like this:

$sql = "SELECT * FROM Orders LIMIT 30";

When the SQL query above is run, it will return the first 30 records.

What if we want to select records 16 - 25 (inclusive)?

Mysql also provides a way to handle this: by using OFFSET.

The SQL query below says "return only 10 records, start on record 16 (OFFSET 15)":

$sql = "SELECT * FROM Orders LIMIT 10 OFFSET 15";

You could also use a shorter syntax to achieve the same result:

$sql = "SELECT * FROM Orders LIMIT 15, 10";

Notice that the numbers are reversed when you use a comma.

PHP Form Handling

The PHP superglobals $_GET and $_POST are used to collect form-data.

PHP - A Simple HTML Form

The example below displays a simple HTML form with two input fields and a submit button:

ExampleGet your own PHP Server

<html>

<body>

<form action="welcome.php" method="post">

Name: <input type="text" name="name">

E-mail: <input type="text" name="email">

<input type="submit">

</form>

https://www.w3schools.com/spaces/

</body>

</html>

When the user fills out the form above and clicks the submit button, the form data is sent for processing to a

PHP file named "welcome.php". The form data is sent with the HTTP POST method.

To display the submitted data you could simply echo all the variables. The "welcome.php" looks like this:

<html>

<body>

Welcome <?php echo $_POST["name"]; ?>

Your email address is: <?php echo $_POST["email"]; ?>

</body>

</html>

The output could be something like this:

Welcome John

Your email address is john.doe@example.com

The same result could also be achieved using the HTTP GET method:

ExampleGet your own PHP Server

<html>

<body>

<form action="welcome_get.php" method="get">

Name: <input type="text" name="name">

E-mail: <input type="text" name="email">

<input type="submit">

</form>

</body>

</html>

and "welcome_get.php" looks like this:

<html>

<body>

Welcome <?php echo $_GET["name"]; ?>

Your email address is: <?php echo $_GET["email"]; ?>

https://www.w3schools.com/spaces/

</body>

</html>

The code above is quite simple. However, the most important thing is missing. You need to validate form data

to protect your script from malicious code.

Think SECURITY when processing PHP forms!

This page does not contain any form validation, it just shows how you can send and retrieve form data.

However, the next pages will show how to process PHP forms with security in mind! Proper validation of form

data is important to protect your form from hackers and spammers!

GET vs. POST

Both GET and POST create an array (e.g. array(key1 => value1, key2 => value2, key3 => value3, ...)). This

array holds key/value pairs, where keys are the names of the form controls and values are the input data from

the user.

Both GET and POST are treated as $_GET and $_POST. These are superglobals, which means that they are

always accessible, regardless of scope - and you can access them from any function, class or file without having

to do anything special.

$_GET is an array of variables passed to the current script via the URL parameters.

$_POST is an array of variables passed to the current script via the HTTP POST method.

When to use GET?

Information sent from a form with the GET method is visible to everyone (all variable names and values are

displayed in the URL). GET also has limits on the amount of information to send. The limitation is about 2000

characters. However, because the variables are displayed in the URL, it is possible to bookmark the page. This

can be useful in some cases.

GET may be used for sending non-sensitive data.

Note: GET should NEVER be used for sending passwords or other sensitive information!

When to use POST?

Information sent from a form with the POST method is invisible to others (all names/values are embedded

within the body of the HTTP request) and has no limits on the amount of information to send.

Moreover POST supports advanced functionality such as support for multi-part binary input while uploading

files to server.

However, because the variables are not displayed in the URL, it is not possible to bookmark the page.

Developers prefer POST for sending form data.

Next, lets see how we can process PHP forms the secure way!

PHP Exercises

Test Yourself With Exercises

Exercise:

If the form in the white section below gets submitted, how can you, in welcome.php, output the value from the

"first name" field?

<form action="welcome.php" method="get">

First name: <input type="text" name="fname">

</form>

<html>

<body>

Welcome <?php echo ; ?>

</body>

</html>

PHP Cookies

What is a Cookie?

A cookie is often used to identify a user. A cookie is a small file that the server embeds on the user's computer.

Each time the same computer requests a page with a browser, it will send the cookie too. With PHP, you can

both create and retrieve cookie values.

Create Cookies With PHP

A cookie is created with the setcookie() function.

Syntax

setcookie(name, value, expire, path, domain, secure, httponly);

Only the name parameter is required. All other parameters are optional.

PHP Create/Retrieve a Cookie

The following example creates a cookie named "user" with the value "John Doe". The cookie will expire after

30 days (86400 * 30). The "/" means that the cookie is available in entire website (otherwise, select the

directory you prefer).

We then retrieve the value of the cookie "user" (using the global variable $_COOKIE). We also use the

isset() function to find out if the cookie is set:

ExampleGet your own PHP Server

<?php

$cookie_name = "user";

$cookie_value = "John Doe";

setcookie($cookie_name, $cookie_value, time() + (86400 * 30), "/"); // 86400 = 1 day

?>

<html>

<body>

<?php

if(!isset($_COOKIE[$cookie_name])) {

 echo"Cookie named '" . $cookie_name . "' is not set!";

} else {

 echo"Cookie '" . $cookie_name . "' is set!
";

 echo"Value is: " . $_COOKIE[$cookie_name];

}

?>

</body>

</html>

Note: The setcookie() function must appear BEFORE the <html> tag.

Note: The value of the cookie is automatically URLencoded when sending the cookie, and automatically

decoded when received (to prevent URLencoding, use setrawcookie() instead).

https://www.w3schools.com/spaces/

PHP Sessions

A session is a way to store information (in variables) to be used across multiple pages.

Unlike a cookie, the information is not stored on the users computer.

What is a PHP Session?

When you work with an application, you open it, do some changes, and then you close it. This is much like a

Session. The computer knows who you are. It knows when you start the application and when you end. But on

the internet there is one problem: the web server does not know who you are or what you do, because the HTTP

address doesn't maintain state.

Session variables solve this problem by storing user information to be used across multiple pages (e.g.

username, favorite color, etc). By default, session variables last until the user closes the browser.

So; Session variables hold information about one single user, and are available to all pages in one application.

Tip: If you need a permanent storage, you may want to store the data in a database.

Start a PHP Session

A session is started with the session_start() function.

Session variables are set with the PHP global variable: $_SESSION.

Now, let's create a new page called "demo_session1.php". In this page, we start a new PHP session and set

some session variables:

ExampleGet your own PHP Server

<?php

// Start the session

session_start();

?>

<!DOCTYPE html>

<html>

<body>

https://www.w3schools.com/php/php_mysql_intro.asp
https://www.w3schools.com/spaces/

<?php

// Set session variables

$_SESSION["favcolor"] = "green";

$_SESSION["favanimal"] = "cat";

echo"Session variables are set.";

?>

</body>

</html>

HTTP authentication with PHP ¶

It is possible to use the header() function to send an "Authentication Required" message to the client

browser causing it to pop up a Username/Password input window. Once the user has filled in a username and a

password, the URL containing the PHP script will be called again with the predefined

variablesPHP_AUTH_USER, PHP_AUTH_PW, and AUTH_TYPE set to the user name, password and

authentication type respectively. These predefined variables are found in the $_SERVER array. Only "Basic"

and "Digest" authentication methods are supported. See the header() function for more information.

An example script fragment which would force client authentication on a page is as follows:

Example #1 Basic HTTP Authentication example

<?php

if (!isset($_SERVER['PHP_AUTH_USER'])) {

header('WWW-Authenticate: Basic realm="My Realm"');

header('HTTP/1.0 401 Unauthorized');

echo 'Text to send if user hits Cancel button';

exit;

} else {

echo "<p>Hello {$_SERVER['PHP_AUTH_USER']}.</p>";

echo "<p>You entered {$_SERVER['PHP_AUTH_PW']} as your password.</p>";

}

?>

Example #2 Digest HTTP Authentication example

This example shows you how to implement a simple Digest HTTP authentication script. For more information

read the » RFC 2617.

<?php

$realm = 'Restricted area';

//user => password

$users = array('admin' =>'mypass', 'guest' =>'guest');

if (empty($_SERVER['PHP_AUTH_DIGEST'])) {

https://www.php.net/manual/en/features.http-auth.php#features.http-auth
https://www.php.net/manual/en/function.header.php
https://www.php.net/manual/en/reserved.variables.php
https://www.php.net/manual/en/reserved.variables.php
https://www.php.net/manual/en/reserved.variables.server.php
https://www.php.net/manual/en/function.header.php
http://www.faqs.org/rfcs/rfc2617

header('HTTP/1.1 401 Unauthorized');

header('WWW-Authenticate: Digest realm="'.$realm.

'",qop="auth",nonce="'.uniqid().'",opaque="'.md5($realm).'"');

die('Text to send if user hits Cancel button');

}

// analyze the PHP_AUTH_DIGEST variable

if (!($data = http_digest_parse($_SERVER['PHP_AUTH_DIGEST'])) ||

!isset($users[$data['username']]))

die('Wrong Credentials!');

// generate the valid response

$A1 = md5($data['username'] . ':' . $realm . ':' . $users[$data['username']]);

$A2 = md5($_SERVER['REQUEST_METHOD'].':'.$data['uri']);

$valid_response =

md5($A1.':'.$data['nonce'].':'.$data['nc'].':'.$data['cnonce'].':'.$data['qop'].':'.$A2);

if ($data['response'] != $valid_response)

die('Wrong Credentials!');

// ok, valid username & password

echo 'You are logged in as: ' . $data['username'];

// function to parse the http auth header

function http_digest_parse($txt)

{

// protect against missing data

$needed_parts = array('nonce'=>1, 'nc'=>1, 'cnonce'=>1, 'qop'=>1, 'username'=>1,

'uri'=>1, 'response'=>1);

$data = array();

$keys = implode('|', array_keys($needed_parts));

preg_match_all('@(' . $keys . ')=(?:([\'"])([^\2]+?)\2|([^\s,]+))@', $txt, $matches,

PREG_SET_ORDER);

foreach ($matches as $m) {

$data[$m[1]] = $m[3] ? $m[3] : $m[4];

unset($needed_parts[$m[1]]);

}

return $needed_parts ? false : $data;

}

?>

Note: Compatibility Note

Please be careful when coding the HTTP header lines. In order to guarantee maximum compatibility with all

clients, the keyword "Basic" should be written with an uppercase "B", the realm string must be enclosed in

double (not single) quotes, and exactly one space should precede the 401 code in the HTTP/1.0 401 header line.

Authentication parameters have to be comma-separated as seen in the digest example above.

Instead of simply printing out PHP_AUTH_USER and PHP_AUTH_PW, as done in the above example, you

may want to check the username and password for validity. Perhaps by sending a query to a database, or by

looking up the user in a dbm file.

Watch out for buggy Internet Explorer browsers out there. They seem very picky about the order of the headers.

Sending the WWW-Authenticate header before the HTTP/1.0 401 header seems to do the trick for now.

Note: Configuration Note

PHP uses the presence of an AuthType directive to determine whether external authentication is in effect.

Note, however, that the above does not prevent someone who controls a non-authenticated URL from stealing

passwords from authenticated URLs on the same server.

Both Netscape Navigator and Internet Explorer will clear the local browser window's authentication cache for

the realm upon receiving a server response of 401. This can effectively "log out" a user, forcing them to re-enter

their username and password. Some people use this to "time out" logins, or provide a "log-out" button.

Example #3 HTTP Authentication example forcing a new name/password

<?php

function authenticate() {

header('WWW-Authenticate: Basic realm="Test Authentication System"');

header('HTTP/1.0 401 Unauthorized');

echo "You must enter a valid login ID and password to access this resource\n";

exit;

}

if (!isset($_SERVER['PHP_AUTH_USER']) ||

($_POST['SeenBefore'] == 1 &&$_POST['OldAuth'] == $_SERVER['PHP_AUTH_USER'])) {

authenticate();

} else {

echo "<p>Welcome: " . htmlspecialchars($_SERVER['PHP_AUTH_USER']) . "
";

echo "Old: " . htmlspecialchars($_REQUEST['OldAuth']);

echo "<form action='' method='post'>\n";

echo "<input type='hidden' name='SeenBefore' value='1' />\n";

echo "<input type='hidden' name='OldAuth' value=\"" .

htmlspecialchars($_SERVER['PHP_AUTH_USER']) . "\" />\n";

echo "<input type='submit' value='Re Authenticate' />\n";

echo "</form></p>\n";

}

?>

PHP Error Handling

Error handling in PHP is simple. An error message with filename, line number and a message describing the

error is sent to the browser.

PHP Error Handling

When creating scripts and web applications, error handling is an important part. If your code lacks error

checking code, your program may look very unprofessional and you may be open to security risks.

This tutorial contains some of the most common error checking methods in PHP.

We will show different error handling methods:

 Simple "die()" statements

 Custom errors and error triggers

 Error reporting

Basic Error Handling: Using the die() function

The first example shows a simple script that opens a text file:

Example

<?php

$file=fopen("mytestfile.txt","r");

?>

If the file does not exist you might get an error like this:

Warning: fopen(mytestfile.txt) [function.fopen]: failed to open stream:

No such file or directory in C:\webfolder\test.php on line 2

To prevent the user from getting an error message like the one above, we test whether the file exist before we

try to access it:

Example

<?php

if(file_exists("mytestfile.txt")) {

 $file = fopen("mytestfile.txt", "r");

} else {

 die("Error: The file does not exist.");

}

?>

Now if the file does not exist you get an error like this:

Error: The file does not exist.

The code above is more efficient than the earlier code, because it uses a simple error handling mechanism to

stop the script after the error.

However, simply stopping the script is not always the right way to go. Let's take a look at alternative PHP

functions for handling errors.

Creating a Custom Error Handler

Creating a custom error handler is quite simple. We simply create a special function that can be called when an

error occurs in PHP.

This function must be able to handle a minimum of two parameters (error level and error message) but can

accept up to five parameters (optionally: file, line-number, and the error context):

Syntax

error_function(error_level,error_message,

error_file,error_line,error_context)

Parameter Description

error_level
Required. Specifies the error report level for the user-defined error. Must be a value

number. See table below for possible error report levels

error_message Required. Specifies the error message for the user-defined error

error_file Optional. Specifies the filename in which the error occurred

error_line Optional. Specifies the line number in which the error occurred

error_context
Optional. Specifies an array containing every variable, and their values, in use when the

error occurred

Error Report levels

These error report levels are the different types of error the user-defined error handler can be used for:

Value Constant Description

1 E_ERROR A fatal run-time error. Execution of the script is stopped

2 E_WARNING A non-fatal run-time error. Execution of the script is not stopped

8 E_NOTICE
A run-time notice. The script found something that might be an error,

but could also happen when running a script normally

256 E_USER_ERROR
A fatal user-generated error. This is like an E_ERROR, except it is

generated by the PHP script using the function trigger_error()

512 E_USER_WARNING
A non-fatal user-generated warning. This is like an E_WARNING,

except it is generated by the PHP script using the function

trigger_error()

1024 E_USER_NOTICE
A user-generated notice. This is like an E_NOTICE, except it is

generated by the PHP script using the function trigger_error()

2048 E_STRICT Not strictly an error.

8191 E_ALL
All errors and warnings (E_STRICT became a part of E_ALL in PHP

5.4)

Now lets create a function to handle errors:

function customError($errno, $errstr) {

 echo "Error: [$errno] $errstr
";

 echo "Ending Script";

 die();

}

The code above is a simple error handling function. When it is triggered, it gets the error level and an error

message. It then outputs the error level and message and terminates the script.

Now that we have created an error handling function we need to decide when it should be triggered.

Set Error Handler

The default error handler for PHP is the built in error handler. We are going to make the function above the

default error handler for the duration of the script.

It is possible to change the error handler to apply for only some errors, that way the script can handle different

errors in different ways. However, in this example we are going to use our custom error handler for all errors:

set_error_handler("customError");

Since we want our custom function to handle all errors, the set_error_handler() only needed one parameter,

a second parameter could be added to specify an error level.

Example

Testing the error handler by trying to output variable that does not exist:

<?php

//error handler function

function customError($errno, $errstr) {

 echo"Error: [$errno] $errstr";

}

//set error handler

set_error_handler("customError");

//trigger error

echo($test);

?>

The output of the code above should be something like this:

Error: [8] Undefined variable: test

Trigger an Error

In a script where users can input data it is useful to trigger errors when an illegal input occurs. In PHP, this is

done by the trigger_error() function.

Example

In this example an error occurs if the "test" variable is bigger than "1":

<?php

$test=2;

if ($test>=1){

 trigger_error("Value must be 1 or below");

}

?>

The output of the code above should be something like this:

Notice: Value must be 1 or below

in C:\webfolder\test.php on line 6

An error can be triggered anywhere you wish in a script, and by adding a second parameter, you can specify

what error level is triggered.

Possible error types:

 E_USER_ERROR - Fatal user-generated run-time error. Errors that can not be recovered from.

Execution of the script is halted

 E_USER_WARNING - Non-fatal user-generated run-time warning. Execution of the script is not halted

 E_USER_NOTICE - Default. User-generated run-time notice. The script found something that might be

an error, but could also happen when running a script normally

Example

In this example an E_USER_WARNING occurs if the "test" variable is bigger than "1". If an

E_USER_WARNING occurs we will use our custom error handler and end the script:

<?php

//error handler function

function customError($errno, $errstr) {

 echo"Error: [$errno] $errstr
";

 echo"Ending Script";

 die();

}

//set error handler

set_error_handler("customError",E_USER_WARNING);

//trigger error

$test=2;

if ($test>=1) {

 trigger_error("Value must be 1 or below",E_USER_WARNING);

}

?>

The output of the code above should be something like this:

Error: [512] Value must be 1 or below

Ending Script

Now that we have learned to create our own errors and how to trigger them, lets take a look at error logging.

Error Logging

By default, PHP sends an error log to the server's logging system or a file, depending on how the error_log

configuration is set in the php.ini file. By using the error_log() function you can send error logs to a specified

file or a remote destination.

Sending error messages to yourself by e-mail can be a good way of getting notified of specific errors.

Send an Error Message by E-Mail

In the example below we will send an e-mail with an error message and end the script, if a specific error occurs:

<?php

//error handler function

function customError($errno, $errstr) {

 echo"Error: [$errno] $errstr
";

 echo"Webmaster has been notified";

 error_log("Error: [$errno] $errstr",1,

 "someone@example.com","From: webmaster@example.com");

}

//set error handler

set_error_handler("customError",E_USER_WARNING);

//trigger error

$test=2;

if ($test>=1) {

 trigger_error("Value must be 1 or below",E_USER_WARNING);

}

?>

The output of the code above should be something like this:

Error: [512] Value must be 1 or below

Webmaster has been notified

And the mail received from the code above looks like this:

Error: [512] Value must be 1 or below

This should not be used with all errors. Regular errors should be logged on the server using the default PHP

logging system.

jQuery Tutorial

jQuery is a JavaScript Library.

jQuery greatly simplifies JavaScript programming.

jQuery is easy to learn.

Examples in Each Chapter

Our "Try it Yourself" editor makes it easy to learn jQuery. You can edit code and view the result in your

browser:

Example

$(document).ready(function(){

 $("p").click(function(){

 $(this).hide();

 });

});

Click on the "Try it Yourself" button to see how it works.

jQuery Exercises

Test Yourself With Exercises

Exercise:

Use the correct selector to hide all <p> elements.

$(" ").hide();

Start the Exercise

ADVERTISEMENT

jQuery Examples

Learn by examples! At W3Schools you will find a lot of jQuery examples to edit and test yourself.

jQuery Quiz Test

Test your jQuery skills at W3Schools!

https://www.w3schools.com/jquery/exercise_jq.asp?filename=exercise_jq_selectors1

My Learning

Track your progress with the free "My Learning" program here at W3Schools.

Log in to your account, and start earning points!

This is an optional feature. You can study W3Schools without using My Learning.

jQuery References

At W3Schools you will find a complete reference of all jQuery selectors, methods, properties and events.

jQuery Reference

jQuery Introduction

The purpose of jQuery is to make it much easier to use JavaScript on your website.

What You Should Already Know

Before you start studying jQuery, you should have a basic knowledge of:

 HTML
 CSS
 JavaScript

If you want to study these subjects first, find the tutorials on our Home page.

What is jQuery?

jQuery is a lightweight, "write less, do more", JavaScript library.

The purpose of jQuery is to make it much easier to use JavaScript on your website.

https://www.w3schools.com/jquery/jquery_ref_overview.asp
https://www.w3schools.com/html/default.asp
https://www.w3schools.com/css/default.asp
https://www.w3schools.com/js/default.asp
https://www.w3schools.com/default.asp

jQuery takes a lot of common tasks that require many lines of JavaScript code to accomplish, and wraps them

into methods that you can call with a single line of code.

jQuery also simplifies a lot of the complicated things from JavaScript, like AJAX calls and DOM manipulation.

The jQuery library contains the following features:

 HTML/DOM manipulation
 CSS manipulation
 HTML event methods
 Effects and animations
 AJAX
 Utilities

Tip: In addition, jQuery has plugins for almost any task out there.

Why jQuery?

There are lots of other JavaScript libraries out there, but jQuery is probably the most popular, and also the most

extendable.

Many of the biggest companies on the Web use jQuery, such as:

 Google
 Microsoft
 IBM
 Netflix

Will jQuery work in all browsers?

The jQuery team knows all about cross-browser issues, and they have written this knowledge into the jQuery

library. jQuery will run exactly the same in all major browsers.

jQuery Get Started

Adding jQuery to Your Web Pages

There are several ways to start using jQuery on your web site. You can:

 Download the jQuery library from jQuery.com

 Include jQuery from a CDN, like Google

Downloading jQuery

There are two versions of jQuery available for downloading:

 Production version - this is for your live website because it has been minified and compressed

 Development version - this is for testing and development (uncompressed and readable code)

Both versions can be downloaded from jQuery.com.

The jQuery library is a single JavaScript file, and you reference it with the HTML <script> tag (notice that the

<script> tag should be inside the <head> section):

<head>

<script src="jquery-3.6.3.min.js"></script>

</head>

Tip: Place the downloaded file in the same directory as the pages where you wish to use it.

jQuery CDN

If you don't want to download and host jQuery yourself, you can include it from a CDN (Content Delivery

Network).

Google is an example of someone who host jQuery:

Google CDN:

<head>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.3/jquery.min.js"></script>

</head>

One big advantage of using the hosted jQuery from Google:

Many users already have downloaded jQuery from Google when visiting another site. As a result, it will be

loaded from cache when they visit your site, which leads to faster loading time. Also, most CDN's will make

sure that once a user requests a file from it, it will be served from the server closest to them, which also leads to

faster loading time

http://jquery.com/download/

jQuery Syntax

With jQuery you select (query) HTML elements and perform "actions" on them.

jQuery Syntax

The jQuery syntax is tailor-made for selecting HTML elements and performing some action on the element(s).

Basic syntax is: $(selector).action()

 A $ sign to define/access jQuery

 A (selector) to "query (or find)" HTML elements

 A jQuery action() to be performed on the element(s)

Examples:

$(this).hide() - hides the current element.

$("p").hide() - hides all <p> elements.

$(".test").hide() - hides all elements with class="test".

$("#test").hide() - hides the element with id="test".

Are you familiar with CSS selectors?

jQuery uses CSS syntax to select elements. You will learn more about the selector syntax in the next chapter of

this tutorial.

Tip: If you don't know CSS, you can read our CSS Tutorial.

The Document Ready Event

You might have noticed that all jQuery methods in our examples, are inside a document ready event:

$(document).ready(function(){

 // jQuery methods go here...

https://www.w3schools.com/css/default.asp

});

This is to prevent any jQuery code from running before the document is finished loading (is ready).

It is good practice to wait for the document to be fully loaded and ready before working with it. This also allows

you to have your JavaScript code before the body of your document, in the head section.

Here are some examples of actions that can fail if methods are run before the document is fully loaded:

 Trying to hide an element that is not created yet

 Trying to get the size of an image that is not loaded yet

Tip: The jQuery team has also created an even shorter method for the document ready event:

$(function(){

 // jQuery methods go here...

});

Use the syntax you prefer. We think that the document ready event is easier to understand when reading the

code.

jQuery Selectors

jQuery selectors are one of the most important parts of the jQuery library.

jQuery Selectors

jQuery selectors allow you to select and manipulate HTML element(s).

jQuery selectors are used to "find" (or select) HTML elements based on their name, id, classes, types, attributes,

values of attributes and much more. It's based on the existing CSS Selectors, and in addition, it has some own

custom selectors.

All selectors in jQuery start with the dollar sign and parentheses: $().

https://www.w3schools.com/cssref/css_selectors.asp

The element Selector

The jQuery element selector selects elements based on the element name.

You can select all <p> elements on a page like this:

$("p")

Example

When a user clicks on a button, all <p> elements will be hidden:

Example

$(document).ready(function(){

 $("button").click(function(){

 $("p").hide();

 });

});

The #id Selector

The jQuery #id selector uses the id attribute of an HTML tag to find the specific element.

An id should be unique within a page, so you should use the #id selector when you want to find a single, unique

element.

To find an element with a specific id, write a hash character, followed by the id of the HTML element:

$("#test")

Example

When a user clicks on a button, the element with id="test" will be hidden:

Example

$(document).ready(function(){

 $("button").click(function(){

 $("#test").hide();

 });

});

The .class Selector

The jQuery .class selector finds elements with a specific class.

To find elements with a specific class, write a period character, followed by the name of the class:

$(".test")

Example

When a user clicks on a button, the elements with class="test" will be hidden:

Example

$(document).ready(function(){

 $("button").click(function(){

 $(".test").hide();

 });

});

More Examples of jQuery Selectors

Syntax Description Example

$("*") Selects all elements

$(this) Selects the current HTML element

$("p.intro") Selects all <p> elements with class="intro"

$("p:first") Selects the first <p> element

$("ul li:first") Selects the first element of the first

$("ul li:first-child") Selects the first element of every

$("[href]") Selects all elements with an href attribute

$("a[target='_blank']") Selects all <a> elements with a target attribute value equal to "_blank"

$("a[target!='_blank']")
Selects all <a> elements with a target attribute value NOT equal to

"_blank"

$(":button") Selects all <button> elements and <input> elements of type="button"

$("tr:even") Selects all even <tr> elements

$("tr:odd") Selects all odd <tr> elements

Use our jQuery Selector Tester to demonstrate the different selectors.

For a complete reference of all the jQuery selectors, please go to our jQuery Selectors Reference.

https://www.w3schools.com/jquery/trysel.asp
https://www.w3schools.com/jquery/jquery_ref_selectors.asp

Functions In a Separate File

If your website contains a lot of pages, and you want your jQuery functions to be easy to maintain, you can put

your jQuery functions in a separate .js file.

When we demonstrate jQuery in this tutorial, the functions are added directly into the <head> section. However,

sometimes it is preferable to place them in a separate file, like this (use the src attribute to refer to the .js file):

Example

<head>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.3/jquery.min.js"></script>

<script src="my_jquery_functions.js"></script>

</head>

jQuery Exercises

Test Yourself With Exercises

Exercise:

Use the correct selector to hide all <p> elements.

$(" ").hide();

Start the Exercise

jQuery Event Methods

jQuery is tailor-made to respond to events in an HTML page.

https://www.w3schools.com/jquery/exercise_jq.asp?filename=exercise_jq_selectors1

What are Events?

All the different visitors' actions that a web page can respond to are called events.

An event represents the precise moment when something happens.

Examples:

 moving a mouse over an element

 selecting a radio button

 clicking on an element

The term "fires/fired" is often used with events. Example: "The keypress event is fired, the moment you press

a key".

Here are some common DOM events:

Mouse Events Keyboard Events Form Events Document/Window Events

click keypress submit load

dblclick keydown change resize

mouseenter keyup focus scroll

mouseleave blur unload

jQuery Syntax For Event Methods

In jQuery, most DOM events have an equivalent jQuery method.

To assign a click event to all paragraphs on a page, you can do this:

$("p").click();

The next step is to define what should happen when the event fires. You must pass a function to the event:

$("p").click(function(){

 // action goes here!!

});

ADVERTISEMENT

Commonly Used jQuery Event Methods

$(document).ready()

The $(document).ready() method allows us to execute a function when the document is fully loaded. This

event is already explained in the jQuery Syntax chapter.

click()

The click() method attaches an event handler function to an HTML element.

The function is executed when the user clicks on the HTML element.

The following example says: When a click event fires on a <p> element; hide the current <p> element:

Example

$("p").click(function(){

 $(this).hide();

});

dblclick()

The dblclick() method attaches an event handler function to an HTML element.

The function is executed when the user double-clicks on the HTML element:

Example

$("p").dblclick(function(){

 $(this).hide();

});

mouseenter()

The mouseenter() method attaches an event handler function to an HTML element.

The function is executed when the mouse pointer enters the HTML element:

Example

$("#p1").mouseenter(function(){

 alert("You entered p1!");

});

mouseleave()

The mouseleave() method attaches an event handler function to an HTML element.

The function is executed when the mouse pointer leaves the HTML element:

https://www.w3schools.com/jquery/jquery_syntax.asp

Example

$("#p1").mouseleave(function(){

 alert("Bye! You now leave p1!");

});

mousedown()

The mousedown() method attaches an event handler function to an HTML element.

The function is executed, when the left, middle or right mouse button is pressed down, while the mouse is over

the HTML element:

Example

$("#p1").mousedown(function(){

 alert("Mouse down over p1!");

});

mouseup()

The mouseup() method attaches an event handler function to an HTML element.

The function is executed, when the left, middle or right mouse button is released, while the mouse is over the

HTML element:

Example

$("#p1").mouseup(function(){

 alert("Mouse up over p1!");

});

hover()

The hover() method takes two functions and is a combination of the mouseenter() and mouseleave()

methods.

The first function is executed when the mouse enters the HTML element, and the second function is executed

when the mouse leaves the HTML element:

Example

$("#p1").hover(function(){

 alert("You entered p1!");

},

function(){

 alert("Bye! You now leave p1!");

});

focus()

The focus() method attaches an event handler function to an HTML form field.

The function is executed when the form field gets focus:

Example

$("input").focus(function(){

 $(this).css("background-color", "#cccccc");

});

blur()

The blur() method attaches an event handler function to an HTML form field.

The function is executed when the form field loses focus:

Example

$("input").blur(function(){

 $(this).css("background-color", "#ffffff");

});

The on() Method

The on() method attaches one or more event handlers for the selected elements.

Attach a click event to a <p> element:

Example

$("p").on("click", function(){

 $(this).hide();

});

Attach multiple event handlers to a <p> element:

Example

$("p").on({

 mouseenter: function(){

 $(this).css("background-color", "lightgray");

 },

 mouseleave: function(){

 $(this).css("background-color", "lightblue");

 },

 click: function(){

 $(this).css("background-color", "yellow");

 }

});

jQuery Exercises

Test Yourself With Exercises

Exercise:

Use the correct event to hide all <p> elements with a "click".

$("p"). (function(){

 $(this).hide();

});

Start the Exercise

jQuery Event Methods

For a full jQuery event reference, please go to our jQuery Events Reference.

jQuery Effects - Hide and Show

Hide, Show, Toggle, Slide, Fade, and Animate. WOW!

https://www.w3schools.com/jquery/exercise_jq.asp?filename=exercise_jq_events1
https://www.w3schools.com/jquery/jquery_ref_events.asp

Examples

jQuery hide()

Demonstrates a simple jQuery hide() method.

jQuery hide()

Another hide() demonstration. How to hide parts of text.

jQuery hide() and show()

With jQuery, you can hide and show HTML elements with the hide() and show() methods:

Example

$("#hide").click(function(){

 $("p").hide();

});

$("#show").click(function(){

 $("p").show();

});

Syntax:

$(selector).hide(speed,callback);

$(selector).show(speed,callback);

The optional speed parameter specifies the speed of the hiding/showing, and can take the following values:

"slow", "fast", or milliseconds.

The optional callback parameter is a function to be executed after the hide() or show() method completes (you

will learn more about callback functions in a later chapter).

The following example demonstrates the speed parameter with hide():

Example

$("button").click(function(){

 $("p").hide(1000);

});

https://www.w3schools.com/jquery/tryit.asp?filename=tryjquery_hide
https://www.w3schools.com/jquery/tryit.asp?filename=tryjquery_hide_explanations

jQuery Effects - Fading

With jQuery you can fade elements in and out of visibility.

Examples

jQuery fadeIn()

Demonstrates the jQuery fadeIn() method.

jQuery fadeOut()

Demonstrates the jQuery fadeOut() method.

jQuery fadeToggle()

Demonstrates the jQuery fadeToggle() method.

jQuery fadeTo()

Demonstrates the jQuery fadeTo() method.

jQuery Fading Methods

With jQuery you can fade an element in and out of visibility.

jQuery has the following fade methods:

 fadeIn()
 fadeOut()
 fadeToggle()
 fadeTo()

jQuery fadeIn() Method

The jQuery fadeIn() method is used to fade in a hidden element.

Syntax:

$(selector).fadeIn(speed,callback);

https://www.w3schools.com/jquery/tryit.asp?filename=tryjquery_fadein
https://www.w3schools.com/jquery/tryit.asp?filename=tryjquery_fadeout
https://www.w3schools.com/jquery/tryit.asp?filename=tryjquery_fadetoggle
https://www.w3schools.com/jquery/tryit.asp?filename=tryjquery_fadeto

The optional speed parameter specifies the duration of the effect. It can take the following values: "slow",

"fast", or milliseconds.

The optional callback parameter is a function to be executed after the fading completes.

The following example demonstrates the fadeIn() method with different parameters:

Example

$("button").click(function(){

 $("#div1").fadeIn();

 $("#div2").fadeIn("slow");

 $("#div3").fadeIn(3000);

});

jQuery Effects - Sliding

The jQuery slide methods slide elements up and down.

Examples

jQuery slideDown()

Demonstrates the jQuery slideDown() method.

jQuery slideUp()

Demonstrates the jQuery slideUp() method.

jQuery slideToggle()

Demonstrates the jQuery slideToggle() method.

jQuery Sliding Methods

With jQuery you can create a sliding effect on elements.

jQuery has the following slide methods:

 slideDown()
 slideUp()

https://www.w3schools.com/jquery/tryit.asp?filename=tryjquery_slide_down
https://www.w3schools.com/jquery/tryit.asp?filename=tryjquery_slide_up
https://www.w3schools.com/jquery/tryit.asp?filename=tryjquery_slide_toggle

 slideToggle()

jQuery slideDown() Method

The jQuery slideDown() method is used to slide down an element.

Syntax:

$(selector).slideDown(speed,callback);

The optional speed parameter specifies the duration of the effect. It can take the following values: "slow",

"fast", or milliseconds.

The optional callback parameter is a function to be executed after the sliding completes.

The following example demonstrates the slideDown() method:

Example

$("#flip").click(function(){

 $("#panel").slideDown();

});

ADVERTISEMENT

jQuery slideUp() Method

The jQuery slideUp() method is used to slide up an element.

Syntax:

$(selector).slideUp(speed,callback);

The optional speed parameter specifies the duration of the effect. It can take the following values: "slow",

"fast", or milliseconds.

The optional callback parameter is a function to be executed after the sliding completes.

The following example demonstrates the slideUp() method:

Example

$("#flip").click(function(){

 $("#panel").slideUp();

});

jQuery slideToggle() Method

The jQuery slideToggle() method toggles between the slideDown() and slideUp() methods.

If the elements have been slid down, slideToggle() will slide them up.

If the elements have been slid up, slideToggle() will slide them down.

$(selector).slideToggle(speed,callback);

The optional speed parameter can take the following values: "slow", "fast", milliseconds.

The optional callback parameter is a function to be executed after the sliding completes.

The following example demonstrates the slideToggle() method:

Example

$("#flip").click(function(){

 $("#panel").slideToggle();

});

jQuery Exercises

Test Yourself With Exercises

Exercise:

Use a jQuery method to slide up a <div> element.

$("div"). ();

Start the Exercise

https://www.w3schools.com/jquery/exercise_jq.asp?filename=exercise_jq_slide1

jQuery Effects Reference

For a complete overview of all jQuery effects, please go to our jQuery Effect Referenc

jQuery Effects - Animation

With jQuery, you can create custom animations.

jQuery

jQuery Animations - The animate() Method

The jQuery animate() method is used to create custom animations.

Syntax:

$(selector).animate({params},speed,callback);

The required params parameter defines the CSS properties to be animated.

The optional speed parameter specifies the duration of the effect. It can take the following values: "slow",

"fast", or milliseconds.

The optional callback parameter is a function to be executed after the animation completes.

The following example demonstrates a simple use of the animate() method; it moves a <div> element to the

right, until it has reached a left property of 250px:

Example

$("button").click(function(){

 $("div").animate({left: '250px'});

});

By default, all HTML elements have a static position, and cannot be moved.

To manipulate the position, remember to first set the CSS position property of the element to relative, fixed, or

absolute!

https://www.w3schools.com/jquery/jquery_ref_effects.asp

jQuery animate() - Manipulate Multiple Properties

Notice that multiple properties can be animated at the same time:

Example

$("button").click(function(){

 $("div").animate({

 left: '250px',

 opacity: '0.5',

 height: '150px',

 width: '150px'

 });

});

Is it possible to manipulate ALL CSS properties with the animate() method?

Yes, almost! However, there is one important thing to remember: all property names must be camel-cased when

used with the animate() method: You will need to write paddingLeft instead of padding-left, marginRight

instead of margin-right, and so on.

Also, color animation is not included in the core jQuery library.

If you want to animate color, you need to download the Color Animations plugin from jQuery.com.

jQuery animate() - Using Relative Values

It is also possible to define relative values (the value is then relative to the element's current value). This is done

by putting += or -= in front of the value:

Example

$("button").click(function(){

 $("div").animate({

 left: '250px',

 height: '+=150px',

 width: '+=150px'

 });

});

jQuery animate() - Using Pre-defined Values

http://plugins.jquery.com/

You can even specify a property's animation value as "show", "hide", or "toggle":

Example

$("button").click(function(){

 $("div").animate({

 height: 'toggle'

 });

});

jQuery animate() - Uses Queue Functionality

By default, jQuery comes with queue functionality for animations.

This means that if you write multiple animate() calls after each other, jQuery creates an "internal" queue with

these method calls. Then it runs the animate calls ONE by ONE.

So, if you want to perform different animations after each other, we take advantage of the queue functionality:

Example 1

$("button").click(function(){

 var div = $("div");

 div.animate({height: '300px', opacity: '0.4'}, "slow");

 div.animate({width: '300px', opacity: '0.8'}, "slow");

 div.animate({height: '100px', opacity: '0.4'}, "slow");

 div.animate({width: '100px', opacity: '0.8'}, "slow");

});

The example below first moves the <div> element to the right, and then increases the font size of the text:

Example 2

$("button").click(function(){

 var div = $("div");

 div.animate({left: '100px'}, "slow");

 div.animate({fontSize: '3em'}, "slow");

});

jQuery Exercises

Test Yourself With Exercises

Exercise:

Use the animate() method to move a <div> element 250 pixels to the right.

$("div").animate({ : ' '});

Start the Exercise

jQuery Effects Reference

For a complete overview of all jQuery effects, please go to our jQuery Effect Reference.

jQuery Stop Animations

The jQuery stop() method is used to stop animations or effects before it is finished.

Click to slide down/up the panel

Examples

jQuery stop() sliding

Demonstrates the jQuery stop() method.

jQuery stop() animation (with parameters)

Demonstrates the jQuery stop() method.

jQuery stop() Method

The jQuery stop() method is used to stop an animation or effect before it is finished.

The stop() method works for all jQuery effect functions, including sliding, fading and custom animations.

https://www.w3schools.com/jquery/exercise_jq.asp?filename=exercise_jq_animate1
https://www.w3schools.com/jquery/jquery_ref_effects.asp
https://www.w3schools.com/jquery/tryit.asp?filename=tryjquery_stop_slide
https://www.w3schools.com/jquery/tryit.asp?filename=tryjquery_stop_params

Syntax:

$(selector).stop(stopAll,goToEnd);

The optional stopAll parameter specifies whether also the animation queue should be cleared or not. Default is

false, which means that only the active animation will be stopped, allowing any queued animations to be

performed afterwards.

The optional goToEnd parameter specifies whether or not to complete the current animation immediately.

Default is false.

So, by default, the stop() method kills the current animation being performed on the selected element.

The following example demonstrates the stop() method, with no parameters:

Example

$("#stop").click(function(){

 $("#panel").stop();

});

jQuery Exercises

Test Yourself With Exercises

Exercise:

Use a jQuery method to stop the animation effect of a <div> element.

$("div"). ();

Start the Exercise

jQuery Effects Reference

For a complete overview of all jQuery effects, please go to our jQuery Effect Reference.

jQuery Callback Functions

https://www.w3schools.com/jquery/exercise_jq.asp?filename=exercise_jq_stop1
https://www.w3schools.com/jquery/jquery_ref_effects.asp

A callback function is executed after the current effect is 100% finished.

jQuery Callback Functions

JavaScript statements are executed line by line. However, with effects, the next line of code can be run even

though the effect is not finished. This can create errors.

To prevent this, you can create a callback function.

A callback function is executed after the current effect is finished.

Typical syntax: $(selector).hide(speed,callback);

Examples

The example below has a callback parameter that is a function that will be executed after the hide effect is

completed:

Example with Callback

$("button").click(function(){

 $("p").hide("slow", function(){

 alert("The paragraph is now hidden");

 });

});

The example below has no callback parameter, and the alert box will be displayed before the hide effect is

completed:

Example without Callback

$("button").click(function(){

 $("p").hide(1000);

 alert("The paragraph is now hidden");

});

	Javascript
	What is JavaScript ?
	Client-Side JavaScript
	Advantages of JavaScript
	Limitations of JavaScript
	Applications of Javascript Programming

	JavaScript - Syntax
	Whitespace and Line Breaks
	Semicolons are Optional
	Case Sensitivity
	Comments in JavaScript
	Example

	Enabling JavaScript in Browsers
	JavaScript in Internet Explorer
	JavaScript in Firefox
	JavaScript in Chrome

	JavaScript - Placement in HTML File
	JavaScript in <head>...</head> section
	JavaScript in <body>...</body> section
	JavaScript in <body> and <head> Sections
	JavaScript in External File

	JavaScript - Variables
	JavaScript Datatypes
	JavaScript Variables
	JavaScript Variable Scope
	JavaScript Variable Names
	JavaScript Reserved Words
	Operators
	Comparison Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators
	Miscellaneous Operator
	Conditional Operator (? :)

	typeof Operator

	JavaScript - if...else Statement
	if statement
	Syntax

	if...else statement
	Syntax

	if...else if... statement
	Syntax

	JavaScript - Switch Case
	Syntax

	JavaScript - While Loops
	Syntax
	The do...while Loop
	Syntax

	JavaScript - For Loop
	Syntax

	JavaScript for...in loop
	Syntax

	JavaScript - Loop Control
	Using Labels to Control the Flow

	JavaScript - Functions
	Function Definition
	Calling a Function
	Function Parameters
	The return Statement

	JavaScript - Events
	onclick Event Type
	onsubmit Event Type
	onmouseover and onmouseout
	HTML 5 Standard Events

	JavaScript - Objects Overview
	Object Properties
	Object Methods
	User-Defined Objects
	The new Operator
	The Object() Constructor
	Example 1
	Example 2

	Defining Methods for an Object
	Example

	The 'with' Keyword
	Syntax

	JavaScript Native Objects

	JavaScript - The Number Object
	Syntax
	Number Properties
	Number Methods

	JavaScript - The Boolean Object
	Syntax
	Boolean Properties
	Boolean Methods

	JavaScript - The Strings Object
	Syntax
	String Properties
	String Methods
	String HTML Wrappers

	JavaScript - The Arrays Object
	Syntax
	Array Properties
	Array Methods

	JavaScript - The Math Object
	Syntax
	Math Properties
	Math Methods

	JavaScript - Document Object Model or DOM
	DOM compatibility

	JavaScript - The Date Object
	Syntax
	Date Properties
	Date Methods
	Date Static Methods

	Regular Expressions and RegExp Object
	Syntax
	Brackets
	Quantifiers
	Examples

	Literal characters
	Metacharacters
	Modifiers
	RegExp Properties
	RegExp Methods

	JavaScript - Errors & Exceptions Handling
	Syntax Errors
	Runtime Errors
	Logical Errors
	The try...catch...finally Statement
	Examples

	The throw Statement
	Example

	The onerror() Method
	Example

	JavaScript - Form Validation
	Example
	Basic Form Validation
	Data Format Validation
	Example

	DHTML JavaScript
	JavaScript Events
	HTML Events
	Example
	Example (1)

	Window frames
	Example
	Definition and Usage
	The Window History Object
	Examples

	History Object Properties and Methods

	Window getComputedStyle()
	Example
	Definition and Usage
	Computed Style
	See Also:
	Syntax
	Parameters
	Return Value
	More Examples

	Window innerHeight
	Example
	Definition and Usage
	See Also:
	Syntax
	Return Value
	More Examples

	Window innerWidth
	Example
	Definition and Usage
	See Also:
	Syntax
	Return Value
	More Examples

	Window length
	Example
	Definition and Usage
	Note
	See Also:
	Syntax
	Return Value

	Window localStorage
	Example
	Definition and Usage
	Note
	See Also:
	Syntax
	Save Data to Local Storage
	Read Data from Local Storage
	Remove Data from Local Storage
	Remove All (Clear Local Storage)

	Parameters
	Return Value
	More Examples

	Window Location
	The Window Location Object
	Examples

	Location Object Properties
	Location Object Methods

	Window moveBy()
	Example
	Definition and Usage
	See Also:
	Syntax
	Parameters
	Return Value

	Window moveTo()
	Example
	Definition and Usage
	See Also:
	Syntax
	Parameters
	Return Value
	More Examples

	Window name
	Examples
	Definition and Usage
	Note
	Syntax
	Property Value
	Return Value
	More Examples

	Window Navigator
	The Window Navigator Object
	Examples

	Navigator Object Properties
	Navigator Object Methods

	Window open()
	Example 1
	Definition and Usage
	See Also:
	Syntax
	Parameters

	Window print() Method
	Example
	Definition and Usage
	Syntax
	Parameters
	Technical Details

	Window prompt()
	Example 1
	Definition and Usage
	Note
	See Also:
	Syntax
	Parameters
	Return Value
	More Examples

	Window removeEventListener()
	Example
	Definition and Usage
	Document Methods
	Element Methods
	Tutorials
	Syntax
	Parameters

	Window resizeBy()
	Example 1

	Window resizeTo()
	Example 1
	Definition and Usage
	See Also:
	Syntax
	Parameters
	Return Value
	More Examples

	Window Screen
	The Window Screen Object
	Screen Object Properties

	Window screenLeft
	Example
	Definition and Usage
	See Also:
	Syntax
	Return Value

	Window screenTop
	Example
	Definition and Usage
	See Also:
	Syntax
	Return Value
	Browser Support

	Window scrollBy()
	Example
	Definition and Usage
	Note
	See Also:
	Syntax
	Parameters
	Return Value
	More Examples

	Window scrollTo()
	Example
	Definition and Usage
	Note
	See Also:
	Syntax
	Parameters
	Return Value
	More Examples

	Window setTimeout()
	Examples
	Definition and Usage
	Notes
	See Also:
	Syntax
	Parameters
	Return Value
	More Examples

	Window status
	Example
	Definition and Usage
	Syntax
	Return Value

	Window stop()
	Example
	Definition and Usage
	Note
	Syntax
	Parameters
	Return Value

	Window Console Object
	The Console Object
	Examples

	Console Object Methods

	Window History
	The Window History Object
	Examples

	History Object Properties and Methods

	Window Location (1)
	The Window Location Object
	Examples

	Location Object Properties
	Location Object Methods

	Window Navigator (1)
	The Window Navigator Object
	Examples

	Navigator Object Properties
	Navigator Object Methods

	Window Screen (1)
	The Window Screen Object
	Screen Object Properties

	How to create printer friendly web page using javascript
	JavaScript Forms
	JavaScript Form Validation
	JavaScript Example
	HTML Form Example

	JavaScript Can Validate Numeric Input
	JavaScript Form Validation (1)
	JavaScript Example
	HTML Form Example

	JavaScript Can Validate Numeric Input (1)
	Automatic HTML Form Validation
	HTML Form Example

	Data Validation
	HTML Constraint Validation
	Constraint Validation HTML Input Attributes
	Constraint Validation CSS Pseudo Selectors

	JavaScript HTML DOM - Changing CSS
	Changing HTML Style
	Example

	Using Events
	Example

	JavaScript HTML DOM
	The HTML DOM (Document Object Model)
	The HTML DOM Tree of Objects

	What You Will Learn

	JavaScript - HTML DOM Methods
	The DOM Programming Interface
	Example
	Example

	The getElementById Method
	The innerHTML Property

	JavaScript HTML DOM Document
	The HTML DOM Document Object
	Finding HTML Elements
	Changing HTML Elements
	Adding and Deleting Elements

	JavaScript HTML DOM Elements
	Finding HTML Elements
	Finding HTML Element by Id
	Example

	Finding HTML Elements by Tag Name
	Example
	Example (1)

	JavaScript HTML DOM Animation
	A Basic Web Page
	Example

	Create an Animation Container
	Example

	Style the Elements
	Example

	JavaScript HTML DOM Events
	Reacting to Events
	Example
	Example (1)

	JavaScript HTML DOM EventListener
	The addEventListener() method
	Example

	Syntax
	Add an Event Handler to an Element
	Example
	Example (1)

	JavaScript HTML DOM Navigation
	DOM Nodes
	Node Relationships
	Navigating Between Nodes
	Child Nodes and Node Values
	Example:
	Example
	Example (1)
	Example (2)

	InnerHTML
	DOM Root Nodes
	Example
	Example (1)

	The nodeName Property
	Example

	The nodeValue Property
	The nodeType Property
	Example

	JavaScript HTML DOM Elements (Nodes)
	Creating New HTML Elements (Nodes)
	Example

	Example Explained

	JavaScript HTML DOM Collections
	The HTMLCollection Object
	Example

	HTML HTMLCollection Length
	Example
	Example (1)

	JavaScript HTML DOM Node Lists
	The HTML DOM NodeList Object
	Example

	HTML DOM Node List Length
	Example
	Example (1)

	Website Management and Authoring Tools
	Overview

	Ajax Tutorial
	Where it is used?

	Understanding Synchronous vs Asynchronous
	Synchronous (Classic Web-Application Model)
	Asynchronous (AJAX Web-Application Model)

	AJAX Technologies
	HTML/XHTML and CSS
	DOM
	XML or JSON
	XMLHttpRequest
	JavaScript

	Understanding XMLHttpRequest
	Properties of XMLHttpRequest object
	Methods of XMLHttpRequest object

	How AJAX works?
	Ajax Java Example
	Steps to create ajax example with jsp
	Load the org.json.jar file
	create input page to receive any text or number
	create server side page to process the request
	web.xml

	Ajax Java Example with Database
	Steps to create ajax example with database through jsp
	create input page to receive any text or number
	create server side page to process the request
	Output

	AJAX JSON Example
	AJAX JSON Example

	PHP Introduction
	What You Should Already Know
	What is PHP?
	What is a PHP File?
	What Can PHP Do?
	Why PHP?
	What's new in PHP 7

	PHP Installation
	What Do I Need?
	Use a Web Host With PHP Support
	Set Up PHP on Your Own PC
	PHP Online Compiler / Editor

	PHP Syntax
	Basic PHP Syntax
	ExampleGet your own PHP Server

	Note: PHP statements end with a semicolon (;).
	PHP Comments
	Comments in PHP
	ExampleGet your own PHP Server
	ExampleGet your own PHP Server (1)
	ExampleGet your own PHP Server (2)

	PHP Variables
	Creating (Declaring) PHP Variables
	ExampleGet your own PHP Server

	PHP Variables
	Output Variables
	ExampleGet your own PHP Server
	ExampleGet your own PHP Server (1)
	ExampleGet your own PHP Server (2)

	PHP is a Loosely Typed Language

	PHP echo and print Statements
	PHP echo and print Statements
	The PHP echo Statement
	ExampleGet your own PHP Server
	ExampleGet your own PHP Server (1)

	PHP Data Types
	PHP Data Types
	PHP String
	ExampleGet your own PHP Server

	PHP Integer
	ExampleGet your own PHP Server

	PHP Strings
	PHP String Functions
	strlen() - Return the Length of a String
	ExampleGet your own PHP Server

	str_word_count() - Count Words in a String
	ExampleGet your own PHP Server

	PHP Numbers
	PHP Numbers
	PHP Integers
	ExampleGet your own PHP Server

	PHP Floats
	ExampleGet your own PHP Server

	PHP Infinity
	ExampleGet your own PHP Server

	PHP NaN
	ExampleGet your own PHP Server

	PHP Numerical Strings
	ExampleGet your own PHP Server

	PHP Casting Strings and Floats to Integers
	ExampleGet your own PHP Server

	PHP Math
	PHP pi() Function
	ExampleGet your own PHP Server

	PHP min() and max() Functions
	ExampleGet your own PHP Server

	PHP abs() Function
	ExampleGet your own PHP Server

	PHP sqrt() Function
	ExampleGet your own PHP Server

	PHP round() Function
	ExampleGet your own PHP Server

	Random Numbers
	ExampleGet your own PHP Server
	ExampleGet your own PHP Server (1)

	Complete PHP Math Reference

	PHP Constants
	PHP Constants
	Create a PHP Constant
	Syntax
	ExampleGet your own PHP Server
	ExampleGet your own PHP Server (1)

	PHP Constant Arrays
	ExampleGet your own PHP Server

	Constants are Global
	ExampleGet your own PHP Server

	PHP Operators
	PHP Operators
	PHP Arithmetic Operators
	PHP Assignment Operators
	PHP Comparison Operators
	PHP Increment / Decrement Operators
	PHP Logical Operators
	PHP String Operators
	PHP Array Operators
	PHP Conditional Assignment Operators
	PHP Exercises
	Test Yourself With Exercises
	Exercise:

	PHP if...else...elseif Statements
	PHP Conditional Statements
	PHP - The if Statement
	Syntax
	ExampleGet your own PHP Server

	PHP - The if...else Statement
	Syntax
	ExampleGet your own PHP Server

	PHP - The if...elseif...else Statement
	Syntax
	ExampleGet your own PHP Server

	PHP - The switch Statement
	PHP Exercises
	Test Yourself With Exercises
	Exercise:

	PHP switch Statement
	The PHP switch Statement
	Syntax
	ExampleGet your own PHP Server

	PHP Exercises
	Test Yourself With Exercises
	Exercise:

	PHP Loops
	PHP Loops

	PHP while Loop
	The PHP while Loop
	Syntax
	Examples
	ExampleGet your own PHP Server
	Example Explained
	ExampleGet your own PHP Server (1)
	Example Explained (1)

	PHP do while Loop
	The PHP do...while Loop
	Syntax
	Examples
	ExampleGet your own PHP Server
	ExampleGet your own PHP Server (1)

	PHP for Loop
	The PHP for Loop
	Syntax
	Examples
	ExampleGet your own PHP Server
	Example Explained
	ExampleGet your own PHP Server (1)
	Example Explained (1)

	PHP foreach Loop
	The PHP foreach Loop
	Syntax
	Examples
	ExampleGet your own PHP Server
	ExampleGet your own PHP Server (1)

	PHP Break and Continue
	PHP Break
	ExampleGet your own PHP Server

	PHP Continue
	ExampleGet your own PHP Server

	PHP Functions
	PHP Built-in Functions
	PHP User Defined Functions
	Create a User Defined Function in PHP
	Syntax
	ExampleGet your own PHP Server

	PHP Function Arguments
	ExampleGet your own PHP Server
	ExampleGet your own PHP Server (1)

	PHP is a Loosely Typed Language
	ExampleGet your own PHP Server
	ExampleGet your own PHP Server (1)

	PHP Default Argument Value
	ExampleGet your own PHP Server

	PHP Functions - Returning values
	ExampleGet your own PHP Server

	PHP Return Type Declarations
	ExampleGet your own PHP Server
	ExampleGet your own PHP Server (1)

	Passing Arguments by Reference
	ExampleGet your own PHP Server

	PHP Exercises
	Test Yourself With Exercises
	Exercise:

	PHP Arrays
	ExampleGet your own PHP Server
	What is an Array?
	Create an Array in PHP
	Get The Length of an Array - The count() Function
	ExampleGet your own PHP Server

	Complete PHP Array Reference
	PHP Exercises
	Test Yourself With Exercises
	Exercise:

	PHP Indexed Arrays
	PHP Indexed Arrays
	ExampleGet your own PHP Server

	Loop Through an Indexed Array
	ExampleGet your own PHP Server

	Complete PHP Array Reference
	PHP Exercises
	Test Yourself With Exercises
	Exercise:

	PHP Associative Arrays
	PHP Associative Arrays
	ExampleGet your own PHP Server

	Loop Through an Associative Array
	ExampleGet your own PHP Server

	Complete PHP Array Reference
	PHP Exercises
	Test Yourself With Exercises
	Exercise:

	PHP Multidimensional Arrays
	PHP - Multidimensional Arrays
	PHP - Two-dimensional Arrays
	ExampleGet your own PHP Server
	ExampleGet your own PHP Server (1)

	Complete PHP Array Reference

	PHP Sorting Arrays
	PHP - Sort Functions For Arrays
	Sort Array in Ascending Order - sort()
	ExampleGet your own PHP Server
	ExampleGet your own PHP Server (1)

	Sort Array in Descending Order - rsort()
	ExampleGet your own PHP Server
	ExampleGet your own PHP Server (1)

	Sort Array (Ascending Order), According to Value - asort()
	ExampleGet your own PHP Server

	Sort Array (Ascending Order), According to Key - ksort()
	ExampleGet your own PHP Server

	Sort Array (Descending Order), According to Value - arsort()
	ExampleGet your own PHP Server

	Sort Array (Descending Order), According to Key - krsort()
	ExampleGet your own PHP Server

	Complete PHP Array Reference
	PHP Exercises
	Test Yourself With Exercises
	Exercise:

	PHP Global Variables - Superglobals
	PHP Global Variables - Superglobals

	PHP Superglobal - $GLOBALS
	PHP $GLOBALS
	ExampleGet your own PHP Server

	PHP Superglobal - $_SERVER
	PHP $_SERVER
	ExampleGet your own PHP Server

	PHP Superglobal - $_REQUEST
	PHP $_REQUEST
	ExampleGet your own PHP Server

	PHP Superglobal - $_POST
	PHP $_POST
	ExampleGet your own PHP Server

	PHP Superglobal - $_GET
	PHP $_GET
	ExampleGet your own PHP Server

	PHP Regular Expressions
	What is a Regular Expression?
	Syntax
	Regular Expression Functions
	Using preg_match()
	ExampleGet your own PHP Server

	Using preg_match_all()
	ExampleGet your own PHP Server

	Using preg_replace()
	ExampleGet your own PHP Server

	PHP Form Handling
	PHP - A Simple HTML Form
	ExampleGet your own PHP Server
	ExampleGet your own PHP Server (1)

	PHP Form Validation
	PHP Form Validation
	Text Fields
	Radio Buttons
	The Form Element
	Big Note on PHP Form Security
	How To Avoid $_SERVER["PHP_SELF"] Exploits?
	Validate Form Data With PHP
	ExampleGet your own PHP Server

	PHP Forms - Required Fields
	PHP - Required Fields
	PHP - Display The Error Messages
	ExampleGet your own PHP Server

	PHP Forms - Validate E-mail and URL
	PHP - Validate Name
	PHP - Validate E-mail
	PHP - Validate URL
	PHP - Validate Name, E-mail, and URL
	ExampleGet your own PHP Server

	PHP Complete Form Example
	PHP - Keep The Values in The Form
	PHP - Complete Form Example

	PHP Date and Time
	The PHP Date() Function
	Syntax

	Get a Date
	ExampleGet your own PHP Server

	PHP Tip - Automatic Copyright Year
	ExampleGet your own PHP Server

	Get a Time
	ExampleGet your own PHP Server

	Get Your Time Zone
	ExampleGet your own PHP Server

	Create a Date With mktime()
	Syntax
	ExampleGet your own PHP Server

	Create a Date From a String With strtotime()
	Syntax
	ExampleGet your own PHP Server
	ExampleGet your own PHP Server (1)

	More Date Examples
	ExampleGet your own PHP Server
	ExampleGet your own PHP Server (1)
	Calling System Calls
	Example 11-29. Executing df and displaying the results

	PHP Connect to MySQL
	Should I Use MySQLi or PDO?
	MySQL Examples in Both MySQLi and PDO Syntax
	MySQLi Installation
	PDO Installation
	Open a Connection to MySQL
	Example (MySQLi Object-Oriented)Get your own PHP Server
	Example (MySQLi Procedural)Get your own PHP Server
	Example (PDO)Get your own PHP Server

	Close the Connection
	MySQLi Object-Oriented:Get your own PHP Server
	MySQLi Procedural:Get your own PHP Server
	PDO:Get your own PHP Server

	PHP Create a MySQL Database
	Create a MySQL Database Using MySQLi and PDO
	Example (MySQLi Object-oriented)Get your own PHP Server
	Example (MySQLi Procedural)Get your own PHP Server
	Example (PDO)Get your own PHP Server

	PHP MySQL Create Table
	Create a MySQL Table Using MySQLi and PDO
	Example (MySQLi Object-oriented)Get your own PHP Server
	Example (MySQLi Procedural)Get your own PHP Server
	Example (PDO)Get your own PHP Server

	PHP MySQL Insert Data
	Insert Data Into MySQL Using MySQLi and PDO
	Example (MySQLi Object-oriented)Get your own PHP Server
	Example (MySQLi Procedural)Get your own PHP Server
	Example (PDO)Get your own PHP Server

	PHP MySQL Get Last Inserted ID
	Get ID of The Last Inserted Record
	Example (MySQLi Object-oriented)Get your own PHP Server
	Example (MySQLi Procedural)Get your own PHP Server
	Example (PDO)Get your own PHP Server

	PHP MySQL Insert Multiple Records
	Insert Multiple Records Into MySQL Using MySQLi and PDO
	Example (MySQLi Object-oriented)Get your own PHP Server

	PHP MySQL Prepared Statements
	Prepared Statements and Bound Parameters
	Prepared Statements in MySQLi
	Example (MySQLi with Prepared Statements)Get your own PHP Server

	PHP MySQL Select Data
	Select Data From a MySQL Database
	Select Data With MySQLi
	Example (MySQLi Object-oriented)Get your own PHP Server
	Example (MySQLi Procedural)Get your own PHP Server

	PHP MySQL Use The WHERE Clause
	Select and Filter Data From a MySQL Database
	Select and Filter Data With MySQLi
	Example (MySQLi Object-oriented)Get your own PHP Server
	Example (MySQLi Procedural)Get your own PHP Server

	PHP MySQL Use The ORDER BY Clause
	Select and Order Data From a MySQL Database
	Select and Order Data With MySQLi
	Example (MySQLi Object-oriented)Get your own PHP Server
	Example (MySQLi Procedural)Get your own PHP Server

	PHP MySQL Delete Data
	Delete Data From a MySQL Table Using MySQLi and PDO
	Example (MySQLi Object-oriented)Get your own PHP Server

	PHP MySQL Update Data
	Update Data In a MySQL Table Using MySQLi and PDO
	Example (MySQLi Object-oriented)Get your own PHP Server

	PHP MySQL Limit Data Selections
	Limit Data Selections From a MySQL Database

	PHP Form Handling
	PHP - A Simple HTML Form
	ExampleGet your own PHP Server
	ExampleGet your own PHP Server (1)

	GET vs. POST
	When to use GET?
	When to use POST?
	PHP Exercises
	Test Yourself With Exercises
	Exercise:

	PHP Cookies
	What is a Cookie?
	Create Cookies With PHP
	Syntax

	PHP Create/Retrieve a Cookie
	ExampleGet your own PHP Server

	PHP Sessions
	What is a PHP Session?
	Start a PHP Session
	ExampleGet your own PHP Server

	HTTP authentication with PHP
	PHP Error Handling
	PHP Error Handling
	Basic Error Handling: Using the die() function
	Example
	Example (1)

	Creating a Custom Error Handler
	Syntax
	Error Report levels
	Set Error Handler
	Example
	Trigger an Error
	Example (1)
	Example (2)
	Error Logging
	Send an Error Message by E-Mail

	jQuery Tutorial
	Examples in Each Chapter
	Example

	jQuery Exercises
	Test Yourself With Exercises
	Exercise:
	jQuery Examples
	jQuery Quiz Test
	My Learning
	jQuery References

	jQuery Introduction
	What You Should Already Know
	What is jQuery?
	Why jQuery?

	jQuery Get Started
	Adding jQuery to Your Web Pages
	Downloading jQuery
	jQuery CDN
	Google CDN:

	jQuery Syntax
	jQuery Syntax
	The Document Ready Event

	jQuery Selectors
	jQuery Selectors
	The element Selector
	Example

	The #id Selector
	Example

	The .class Selector
	Example

	More Examples of jQuery Selectors
	Functions In a Separate File
	Example

	jQuery Exercises
	Test Yourself With Exercises
	Exercise:

	jQuery Event Methods
	What are Events?
	jQuery Syntax For Event Methods
	Commonly Used jQuery Event Methods
	Example
	Example (1)
	Example (2)
	Example (3)
	Example (4)
	Example (5)
	Example (6)
	Example (7)
	Example (8)

	The on() Method
	Example
	Example (1)

	jQuery Exercises
	Test Yourself With Exercises
	Exercise:
	jQuery Event Methods

	jQuery Effects - Hide and Show
	Examples
	jQuery hide() and show()
	Example
	Example (1)

	jQuery Effects - Fading
	Examples
	jQuery Fading Methods
	jQuery fadeIn() Method
	Example

	jQuery Effects - Sliding
	Examples
	jQuery Sliding Methods
	jQuery slideDown() Method
	Example

	jQuery slideUp() Method
	Example

	jQuery slideToggle() Method
	Example

	jQuery Exercises
	Test Yourself With Exercises
	Exercise:
	jQuery Effects Reference

	jQuery Effects - Animation
	jQuery Animations - The animate() Method
	Example

	jQuery animate() - Manipulate Multiple Properties
	Example

	jQuery animate() - Using Relative Values
	Example

	jQuery animate() - Using Pre-defined Values
	Example

	jQuery animate() - Uses Queue Functionality
	Example 1
	Example 2

	jQuery Exercises
	Test Yourself With Exercises
	Exercise:
	jQuery Effects Reference

	jQuery Stop Animations
	Examples
	jQuery stop() Method
	Example

	jQuery Exercises
	Test Yourself With Exercises
	Exercise:
	jQuery Effects Reference

	jQuery Callback Functions
	jQuery Callback Functions
	Example with Callback
	Example without Callback

