
K. Shanmugam, MCA, AITS CC - Unit-1 Page 1

UNIT -1
The ERA of Cloud Computing

What is cloud?
cloud computing means storing and accessing the data and programs on remote servers that are hosted on
the internet instead of the computer’s hard drive or local server. Cloud computing is also referred to as
Internet-based computing.

Introduction of Cloud Computing
Cloud Computing is the delivery of computing services such as servers, storage, databases, networking,
software, analytics, intelligence, and more, over the Cloud (Internet).

Cloud Computing provides an alternative to the on-premises datacentre. With an on-premises datacentre, we
have to manage everything, such as purchasing and installing hardware, virtualization, installing the
operating system, and any other required applications, setting up the network, configuring the firewall, and
setting up storage for data. After doing all the set-up, we become responsible for maintaining it through its
entire lifecycle.
But if we choose Cloud Computing, a cloud vendor is responsible for the hardware purchase and
maintenance. They also provide a wide variety of software and platform as a service. We can take any required
services on rent. The cloud computing services will be charged based on usage.

K. Shanmugam, MCA, AITS CC - Unit-1 Page 2

The Motivations For Cloud

1.1 Cloud Computing Everywhere

 In a short time, cloud computing has become significant. Consider the following examples of situations that
involve cloud computing.

 A startup leases cloud facilities for its web site; the company can pay for additional facilities as web
traffic grows.

 An individual uses a smart phone to check Internet of Things (IoT) devices in their residence.

 An enterprise company leases facilities and software for business functions, such as payroll,
accounting, and billing.

 Students working on a team project use a browser to edit a shared document.

 A patient wears a medical device that periodically uploads readings for analysis; their doctor is alerted
if a medical problem is detected.

 A seasonal company leases computing facilities during four peak months each year; the company
doesn’t pay for facilities at other times.

 A teenager logs into a social media site and uploads photos.

 A retail company leases facilities at the end of each fiscal year to run data analytics software that
analyzes sales for the year.

 An individual uses a streaming service to watch a movie; a copy of the movie is kept in a facility near
the family’s residence.

 The recipient of a package uses a tracking number to learn about the current location of the package
and the expected delivery time

1.2 A Facility For Flexible Computing

Many of the examples illustrate a key aspect of cloud computing: flexibility to accommodate both incremental
growth and cyclic demand. A cloud offers flexible computing facilities (servers and software), storage facilities,
and communication facilities (Internet connections).

Incremental growth. The startup scenario shows why incremental growth is important. A small startup can
begin by leasing minimal cloud facilities (e.g., enough to support a basic web site), and then increase its lease
as the business grows. Similarly, the startup can begin by leasing minimal software (e.g., basic web and
payment processing software), and then add database and accounting software later. The cloud provider will
be able to satisfy computing needs even if the startup grows into a substantial enterprise business.

Cyclic demand. Even if a company does not engage in seasonal business, demand for computing changes
throughout the year. Reports may be generated at the end of each month or each quarter as well as at the end

K. Shanmugam, MCA, AITS CC - Unit-1 Page 3

of the year. Sales activity and order processing often spike at the end of the month as sales staff work to meet
their monthly quotas. Cloud allows companies to lease additional facilities to accommodate such demand.

NOTE: Cloud computing allows each customer to increase or decrease their use of cloud facilities at any time;
a customer only pays for the facilities they use.

1.3 The Start Of Cloud: The Power Wall And Multiple Cores

What has motivated the shift to cloud computing? This chapter considers how cloud arose. The next chapters
provide an overview of cloud, and describe the rise of cloud providers. Later chapters explore cloud
infrastructure and technologies.
Two intertwined factors contributed to the start of the cloud paradigm.

 Technological: limits on speed forced a move to parallelism

 Economic: changes in technology changed IT costs

We begin by looking at the technological factor, and then examine how the new technology changed the cost
of acquiring and running equipment and software.
Throughout the 1980s and early 1990s, chip manufacturers produced a series of processors that had more
functionality and higher speed than the previous model. As a consequence, individual computers became
more powerful each year while costs remained approximately the same.
By the late 1990s, the chip industry faced a serious limitation. Moore’s Law — the prediction that the number
of transistors would double every eighteen months — meant that the size of a given transistor was shrinking.
More transistors were squeezed together on a chip each year.

Industry uses the term multicore processor to describe a chip with multiple processors. A dual core chip
contains two processors, a quad core chip contains four, and soon. Multicore processors form one of the
fundamental building blocks for cloud computing. Unlike the processors used in consumer products,
however, the multicore processors used in cloud systems.

1.4 From Multiple Cores To Multiple Machines

Although they offer increased processing power on a chip, multiple cores do not solve the problem of arbitrary
scale. The cores on a chip all share underlying memory and I/O access. Unfortunately, as the number of
cores increases, I/O and memory accesses become a bottleneck.

How can more powerful computers be constructed? The science research community was among the first
groups to explore a design that provided the basis for cloud. As scientific instruments, such as colliders and
space telescopes, moved to digital technologies, the amount of data grew beyond the capabilities of even the
most powerful supercomputers.

The resulting configuration, which became known as a cluster architecture, has a key advantage: processing
power can be increased incrementally by adding additional inexpensive commodity computers.

Using multiple computers for scientific computations poses a software challenge: a calculation must be
divided into pieces so that each piece can be handled by one of the smaller computers in the cluster. Although
the approach does not work well in some cases, the science community found ways to use a cluster for many
of its important computational problems. Thus, the cluster architecture became accepted as the best way to
build affordable, incrementally expandable supercomputers.

1.5 From Clusters To Web Sites And Load Balancing

As the World Wide Web grew in popularity in the 1990s, the traffic to each web site increased. As in the
science community, the limitation on the speed of a given processor presented a challenge to the staff
responsible for running web sites, and they also considered how to use multiple personal computers to solve
the problem.
Web sites and scientific computing systems differ in a fundamental way. Supercomputer clusters intended for
scientific calculations are designed so that small computers can work together on one computation at a time.
In contrast, a web site must be designed to process many independent requests simultaneously. For example,
considera retail web site. One user may be looking at tools while another shops for clothing, and so on, with
little overlap among the web pages they visit.

K. Shanmugam, MCA, AITS CC - Unit-1 Page 4

The question arose: how can a web site scale to accommodate thousands of users? Part of the answer came
from a technology that has become a fundamental component in cloud computing: a load balancer. Typically
implemented as a special-purpose hardware device, a load balancer divides incoming traffic among a set of
computers that run servers. Figure 1.1 illustrates the idea. As the figure shows, a server may need to access a
company database (e.g., to validate a customer’s account during checkout).

Load balancing technology ensures that all communication from a given customer goes to the same server.
The scheme has a key advantage: successive requests from a customer go back to the server that handled
earlier requests, making it possible for the server to retain information and use it for a later request. From the
web site owner’s point of view, if the site has N servers, load balancing means that each server handles
approximately 1/N of the customers. At any time, a site could be expanded merely by adding additional
servers; the load balancer automatically includes the new servers when dividing traffic.

1.6 Racks Of Server Computers

As demand increased for facilities composed of many smaller computers, computer vendors responded by
changing the shape of computers to make it easier to store many computers in a small space. Instead of large
enclosures that had significant amounts of empty space inside, designers focused on finding ways to reduce
the size. Furthermore, they redesigned the enclosures to fit into tall metal equipment cabinets called racks.
Before computers, racks had been used for telephone equipment, and were widely available. A full-size rack is
approximately six and one-half feet tall, two feet wide, and three and one-half feet deep. The rack contains
metal mounting bars called rails to which equipment can be attached.

Server computers can be stacked vertically in a rack. A full rack contains fortytwo Units of space, where a
Unit is 1.752 inches. A server is designed to be one unit tall, written 1U. In principle, one could stack forty-
two 1U servers in each rack, as Figure 1.2 illustrates.

K. Shanmugam, MCA, AITS CC - Unit-1 Page 5

In practice, additional constraints usually mean that a rack is not full of servers. For example, at least one
slot in a rack (usually the top of the rack) contains a network switch used to provide network connections for
the servers in the rack. In addition, some slots may be left empty to allow air flow to keep the servers from
overheating.

1.7 The Economic Motivation For A Centralized Data Center

The availability of low-cost servers and the ability to collect multiple servers into a rack may seem
insignificant. From the point of view of IT management, however, collecting servers into a small place has an
important advantage: lower cost.
There are two aspects:

 Operating expenses (opex): lower recurring cost

 Capital expenses (capex): lower equipment cost

Lower operating expenses. To understand how placing servers in racks can reduce operating expenses, recall
that the low cost of computer hardware made it easy for each group in a large organization to acquire its own
computing facilities. While hardware costs were falling, the recurring cost of IT staff increased because
demand for trained IT professionals caused salaries to rise. Each group hired staff, and because technology
changes rapidly, each group had to pay for training to keep their staff up-to-date.
Ironically, the availability of low-cost personal computers, which everyone assumed would lower overall
expenses, created a situation in which an organization faced much higher costs because each department
purchased many computers and then hired their own staff to manage them. By the 2000s, many
organizations became concerned about rising IT costs. An executive at one company quipped,
 Cheap computers have turned into a major expense.
Organizations faced an IT staffing dilemma. On the one hand, allowing every department to hire and train its
own IT staff to maintain skills results in unnecessary duplication. Some of the skills are only needed
infrequently when problems arise.
The availability of high-speed computer networks allows an organization to optimize costs by consolidating
server equipment into a single physical location. Instead of locating a server in each department, the
organization places all servers in racks in a central facility, and hires a small, centralized staff to maintain the
servers. Employees in departments can access the servers over a network. Such a centralized facility has
become known as a data center†.
Lower capital expenses. The data center approach has an advantage of reducing overall equipment cost. If
server computers are distributed throughout an organization, each individual department must choose when
to upgrade their server.

NOTE: †Although the term computing center may seem more appropriate than data center, industry had used
the term computing center decades earlier to describe a centralized mainframe facility; using a new name
helped avoid the impression of moving backward.

K. Shanmugam, MCA, AITS CC - Unit-1 Page 6

1.8 Origin Of The Term “In The Cloud”

As Figure 1.1† illustrates, we use a cloud to depict the Internet in diagrams. The cloud represents a
set of networks and the equipment that interconnects the networks. Saying a data center is “in the
cloud” is technically inaccurate because the servers in a data center are not part of the Internet
itself. Instead, servers are merely computers that attach to the Internet, and should be depicted

outside the cloud, with network connections leading to the cloud.

NOTE: Although technically inaccurate, the phrase in the cloud arose because early data centers
were located close to networking equipment at Internet peering points rather than in separate
buildings.

1.9 Centralization Once Again

Surprisingly, after many decades of increasing decentralization, the move to data centers reverses the trend
and moves back toward a more centralized model. The next chapter considers how public cloud providers
extend centralization further by creating data centers with servers for multiple organizations. We can
summarize:
NOTE: For decades, the low cost of computers encouraged decentralization. The power wall and cost of IT
staffing favor a return to a centralized model that consolidates computing facilities into data centers.

Elastic Computing And Its Advantages

2.1 Introduction

It explains how software enables a set of servers to be used in an entirely new way. It describes the key
concept of elastic computing and explains how virtualization enables cloud owners to scale services. The
chapter also describes business models that arose in the cloud industry. The next chapter describes how
public cloud companies arose that use elastic computing. Later chapters explain the underlying
infrastructure and technologies that enable elastic computing as well as software systems used to manage
deployments in a cloud

2.2 Multi-Tenant Clouds

The previous chapter points out that consolidating servers into a single data center has economic advantages
for an organization because the organization can negotiate quantity discounts on the purchase of equipment
and the organization spends less on the recurring cost of maintaining and training IT staff. Cloud providers
extend the advantages to a larger scale. In particular, instead of handling computing for one organization, a
cloud provider builds a data center (or multiple data centers) that can handle computing for many customers.

We use the term multi-tenant to refer to a data center that serves customers from multiple organizations. We
will see that the technologies used in cloud systems are designed to support multi-tenant computing and keep
the data of each customer safe. Interestingly, the idea of multi-tenant clouds applies to groups within a single
organization. For example, the finance department may want to keep all data completely separate from the
rest of the organization, or a business unit may choose to keep its records separate from other business units.

2.3 The Concept Of Elastic Computing

A fundamental aspect of cloud computing centers on the ability of a customer to lease servers and only pay
for the number of servers they need. A customer can choose to lease a few servers or many. More important, a
customer can change the allocation dynamically, adding servers during peak times and decreasing the
number of servers during times they are not needed. We use the term elastic computing to describe such a
dynamic service.

How can a cloud owner increase and decrease the number of servers allocated to a given customer? One early
approach allocated a set of physical servers. A provider restricted a customer to a few sizes. For example, a
customer could lease a full rack of servers, a half rack, or a quarter rack, or multiples of the sizes. However,
such an approach is relatively inflexible because it requires a provider to dedicate a set of physical resources
to each customer.

K. Shanmugam, MCA, AITS CC - Unit-1 Page 7

2.4 Using Virtualized Servers For Rapid Change

A technology emerged that allows a cloud provider to offer fast, flexible allocation at low cost. Surprisingly, the
technology does not involve allocating sets of physical servers. Instead, a cloud owner runs software on each
physical server that allows the cloud owner to create a set of virtualized servers. Later, we will learn more
about virtualization technologies, such as Virtual Machines and Containers; for now, it is sufficient to
understand three important properties of virtualized servers:

 Rapid creation and removal

 Physical sharing

 Logical isolation

Rapid creation and removal. Virtualized servers are managed entirely by software. Management software
can create or remove a new virtualized server at any time, without changing or rebooting physical servers.

Physical sharing. Because it consists of a software artifact, a virtualized server is similar to a computer
program. Each virtualized server must run on a physical server, and multiple virtualized servers can run on a
given physical server concurrently.

Logical isolation. Although multiple virtualized servers can run on a single physical server at the same time,
each virtualized server is completely isolated from the others. Thus, the data and computations performed by
one virtualized server cannot be observed or affected by another.

2.5 How Virtualized Servers Aid Providers

From a cloud provider’s point of view, the ability to virtualize servers provides the basis for elastic computing
and makes cloud computing economically viable. A cloud provider only needs to use computer software to
increase or decrease the number of servers a customer is leasing. Furthermore, the use of virtualized servers
allows a provider to accommodate the changing needs of many customers. Even with the overhead of
checking a customer’s account and configuring the newly-created virtualized server, creation takes
milliseconds, not minutes or hours. More important, because the provider does not need to reconfigure or
reboot physical servers, a provider can accommodate the creation of thousands of virtualized servers as
needed.

Because virtualization technologies guarantee isolation, a cloud provider can place virtualized servers on
physical servers without regard to the owner, the apps they will run, or the data they will handle.

The ability to run arbitrary virtualized servers together on a given physical server means that when a provider
needs to choose where to run a virtualized server, the choice can be made in a way that provides the best
benefit to the provider, without regard to the owner of the new virtualized server or the owners of the other
virtualized servers that are running. In particular, a provider tries to avoid placing too many virtualized
servers on the same physical server because each virtualized server will receive less processing power,
causing customer complaints. To avoid such problems, a provider can use virtualized server placement to
balance the load across all physical servers in the data center†. That is, when creating a virtualized server, a
provider can choose a physical server that is lightly loaded.

To summarize: Using virtualized servers provides invaluable advantages for cloud providers, including the
ability to scale the service and the ability to balance the load and avoid overloading a physical server while
other physical servers remain idle.

2.6 How Virtualized Servers Help A Customer

To a customer, a virtualized server appears to act like a physical server. A virtualized server allows apps to
communicate over the Internet. That is, like a physical server, each virtualized server is assigned an Internet
address. In one virtualization technology, the match between a virtualized server and a physical server is so
accurate that a virtualized server can boot a standard operating system and then allow a user to run standard
apps, just as if the operating system runs on the physical server. The point is:

NOTE: To a customer, a virtualized server appears to act like a physical server and apps running on a
virtualized server can communicate over the Internet.

K. Shanmugam, MCA, AITS CC - Unit-1 Page 8

We have seen how using virtualized servers benefits a cloud provider, but if a virtualized server merely acts
like a physical server, how does a customer benefit? A few advantages for customers include:

 Ease of creating and deploying new services. Cloud providers and thirdparty vendors offer software
that makes it easy to create new apps for a cloud environment. In addition, they offer software that
can deploy an app in the cloud, including software that replicates an app on multiple virtualized
servers.

 Rapid scaling of a service. Scaling an app to handle more users means adding more copies. If an app
runs on virtualized servers, new copies can be created quickly (e.g., as requests arrive over the
Internet).

 Safe and rapid testing of new software or new versions. Before deploying new apps or new versions of
software, most large organizations deploy the software on an isolated test system before installing it in
production. Virtualized servers allow an organization to create isolated virtualized servers for a test
system without interfering with the production systems.

2.7 Business Models For Cloud Providers

As cloud computing emerged, companies were created. Questions arose: what is the best structure for
companies engaged in the cloud industry, and how can a company generate revenue? Should a single
company handle both physical facilities (air conditioning, power, and building security) and data center
facilities, or should separate companies handle the two aspects? Should a single cloud company handle both
the cloud hardware (e.g., servers and network equipment) and software (e.g., the software to create and
control virtualized servers, the operating systems, and apps running on the servers), or should separate
companies handle hardware and software?

To categorize companies in the cloud industry, a classification arose that divides companies into three broad
categories. Although they are somewhat loosely-defined and overlap, the categories help clarify the major roles
of companies. Each category uses the phrase as a service.

 Infrastructure as a Service (IaaS)
 Platform as a Service (PaaS)
 Software as a Service (SaaS)

The next sections explain each of the categories.

2.8 Intrastructure as a Service (IaaS)

In the simplest case, an IaaS company offers physical resources, such as a building, power, and air
conditioning. Typically, IaaS companies also provide servers, networking equipment, and basic data storage
facilities (e.g., block storage on disk). An IaaS company may offer customers many additional services, such
as load balancers, data backup, network security, a way to boot both physical and virtualized servers, and
assignment of Internet addresses. An IaaS customer does not need to manage or control the cloud
infrastructure. A customer can choose which operating systems and applications run, and may have the
ability to control network access (e.g., to configure a firewall). The most advanced IaaS companies use
operating systems that can scale the customer’s services and the facilities allocated to a customer up or down
as needs vary.

2.9 Platform as a Service (PaaS)

The primary goal of PaaS is a facility that allows a customer to build and deploy software in a cloud without
spending effort configuring or managing the underlying facility. A company offering PaaS may provide both
basic infrastructure and facilities for software development and deployment. Basic infrastructure includes
many of the IaaS facilities, such as servers, storage facilities, operating systems, databases, and network
connections. Facilities for software development and deployment include compilers, middleware, program
libraries, runtime systems (e.g., Java runtime and .NET runtime), and services that host a customer’s
applications. To emphasize its focus on providing a convenient environment for software development, PaaS is
sometimes called application Platform as a Service (aPaaS), and was formerly named Framework as a Service
(FaaS), referring to programming frameworks.

Although it is often associated with cloud intrastructure as described above, PaaS can also appear in other
forms. For example, some PaaS companies sell software development tools that allow a customer to build and

K. Shanmugam, MCA, AITS CC - Unit-1 Page 9

deploy apps on the customer’s internal network (i.e., behind the customer’s firewall). Other PaaS companies
sell a software development tool intended for a cloud environment, but require the customer to obtain servers,
storage, network connections and other cloud facilities separately (e.g., from an IaaS company or cloud
provider).

2.10 Software as a Service (SaaS)

Software as a Service refers to a subscription model in which a customer pays a monthly fee to use software
rather than make a one-time purchase. Cloud computing has enabled the SaaS industry by providing a way
for SaaS vendors to scale their offerings to handle arbitrarily many customers.

When a user accesses a SaaS application, the application runs on a server in a cloud data center rather than
on the user’s computer. Files that the user creates are stored in the cloud data center rather than on the
user’s local device. Well-known SaaS services include Microsoft’s Office 365 in which each customer pays a
monthly fee to use programs in the Office suite, such as Word, Excel, and PowerPoint.

SaaS Vendors claim the approach has three advantages: d

 Universal access
 Guaranteed synchronization
 High availability

Universal access. SaaS software can be accessed at any time from any device. A user either launches a
special app or uses a web browser to access the SaaS site. After entering a login and password, the user can
invoke the SaaS app and access a set of files. The universal access guarantee means a user will be able to
access the same apps and the same files from any device.

Guaranteed synchronization. The term synchronization refers to keeping data identical across multiple
devices. With conventional software, synchronization problems arise because a user must load a copy of a file
onto a device before using the file. If a user places copies of a file on two devices and then uses one device to
change the file, the changes do not automatically appear in the copy on the other device. Instead, a user must
manage file synchronization by manually copying the changed version to other devices. We say that the copies
can be “out of sync.”
The SaaS synchronization guarantee arises because only one copy of each file exists. All changes are applied
to a single copy of the file, even if the changes are made using two devices. Consequently, a file created or
modified using one device will appear when the user logs in and uses another device; the user will never need
to resynchronize the copies across multiple devices.

High availability. Most data centers have uninterruptible power systems that use generators and/or battery
backup systems. Thus, the data center can continue operating during a power outage. In addition, the data
storage facilities at a data center usually include a backup mechanism, and many store the backups at
another physical location. Thus, even if a major catastrophe destroys the data center, a user’s data can be
recovered from a backup.
2.11 A Special Case: Desktop as a Service (DaaS)

Many groups have adopted the phrase as a Service to describe their particular market segment, including
Network as a Service, Security as a Service, Disaster Recover as a Service, and Mobile Backend as a Service
(providing communication between mobile apps and the cloud software they use). One particular form of SaaS
stands out as especially relevant to cloud computing. Known as Desktop as a Service (DaaS), the system
implements remote desktop access. Like other SaaS offerings, a user runs an app on a local device (i.e., a thin
client) that connects the user to DaaS software running in a cloud data center. Instead of providing access to
a single app, however, DaaS paints a desktop on the user’s screen and allows the user to click on icons, run
apps, browse files, and perform other actions exactly as if the desktop was local. The desktop that the user
sees, the operating system that supplies the desktop, and the apps a user invokes all run on a server in the
cloud instead of the user’s local device.

We have already seen the advantages of SaaS systems, and DaaS extends them to all of a user’s computing,
not just one app. In terms of synchronization, DaaS stores all of a user’s files and apps in the cloud data
center. So, instead of merely synchronizing data for one particular app, DaaS ensures that all data and all
apps remain synchronized. Similarly, all of a user’s computing has high availability, and a user can access
the desktop from any device at any time.

K. Shanmugam, MCA, AITS CC - Unit-1 Page 10

Types Of Clouds And Cloud Providers

3.1 Introduction

The discussion of the business models. The chapter explains how a large company can use cloud technology
internally and how public cloud providers arose to sell cloud services.

3.2 Private And Public Clouds

Cloud computing technologies have been used in two fundamental ways. To describe the two, industry uses
the terms:

 Private Cloud – an internal cloud used only by one organization
 Public Cloud – a commercial service used by multiple customers

The next sections examine each of the types along with underlying motivations. Later sections explain how
organizations use combinations and variations.

3.3 Private Cloud

 We use the term private cloud to describe a cloud data center that is owned and operated by an organization
and restricted to the organization’s computing. The organization can further reduce costs by employing cloud
technologies. To understand why, suppose three servers have been collected from department A and five from
department B. If the servers remain dedicated to departments, a given server may be underutilized or
overutilized. More important, if the computing demands of departments vary, one department’s servers may
be overloaded, while another department’s servers are underutilized. When a server becomes oversubscribed,
critical business functions can suffer. From an economic point of view, underutilized servers represent
unwarranted cost, and the inability to expand facilities quickly represents a risk to business

Instead of physical servers, the approach allows departments to create and assign virtualized servers to
balance the load across all physical servers. The point is:

NOTE: When an organization uses cloud technology on an internal data center, we say that the organization
owns and operates a private cloud. A private cloud can avoid underutilized as well as oversubscribed
resources by spreading computing across all physical servers.

3.4 Public Cloud

A company that offers cloud computing to its customers is said to operate a public cloud, and the company is
known as a public cloud provider. For an organization, subscribing to a public cloud constitutes the chief
alternative to operating a private cloud internally. When using a public cloud, an organization leases services,
including virtualized servers, and then uses the leased facilities to perform computation. We can summarize:

NOTE: A company that offers cloud services to customers is known as a public cloud provider, and the cloud
facility that such a company operates is known as a public cloud facility.

A large customer may also choose to pay for additional services, such as enhanced data backup, a specialized
security service, and database administration. Customers who intend to create and deploy their own apps,
may subscribe to a PaaS service that makes it easy to create software and run apps in the provider’s cloud. A
smaller public cloud customer may choose to subscribe to specific SaaS services, such as a service that runs
a web site for the customer or software used to prepare documents.

3.5 The Advantages Of Public Cloud

Why would a corporation choose to use a public cloud provider? Cloud providers advertise three main
advantages:

 Economic – much lower cost than a private cloud
 Expertise – access to a staff with expertise on many topics
 Advanced services – offerings not available elsewhere

K. Shanmugam, MCA, AITS CC - Unit-1 Page 11

The economic advantage. Because they serve multiple tenants, cloud providers operate data centers that are
much larger than private cloud data centers owned and operated by individual organizations. Therefore,
public cloud providers benefit from economy of scale: they can spread costs among more customers, and can
negotiate larger discounts on commodity servers and network equipment. For example, instead of
conventional (i.e., expensive) network switches, providers use what the industry calls whitebox switches. The
disadvantage of a whitebox switch is that it only includes basic packet forwarding hardware, and does not
provide software that an IT manager can use to configure and control the switch. To operate their whitebox
switches, cloud providers employ a technology known as Software Defined Networking (SDN). A manager
connects a computer to each of the switches, and runs SDN control software on the computer. The manager
can then interact with the control software to specify the desired configuration, and the control software
installs forwarding tables in the whitebox switches that fulfill the manager’s specifications.

NOTE: By sharing IT expertise across multiple tenants, negotiating large discounts on commodity servers, and
using SDN to control whitebox network switches, a public cloud provider can operate a cloud data center for
substantially less than it costs to operate a private cloud data center.

The expertise advantage. Because it is much larger than the IT department in a single company, a public
cloud provider can afford to maintain a staff with specialized expertise. Thus, customers have access to
expertise on a much wider range of topics than a local IT staff can provide.

In addition to traditional data center software, such as operating systems, relational database services, and
technologies for virtualized servers, cloud providers now include expertise on the broad topic of Artificial
Intelligence (AI) and a technology that AI uses, machine learning (ML) software.

The advanced services advantage. Initially, providers investigated AI/ML as a way to automate the
management of data center hardware and software. For example, by using ML to monitor network traffic, a
provider can detect anomalies, such as misrouted traffic or unexplained spikes in load. Industry uses the
term AIops to refer to the use of AI/ML to automate data center operations.

More recently, cloud providers have begun offering AIops as a service to customers. In addition to monitoring
and automating the deployment and operation of customer apps, providers offer advanced services that use
AI/ML software to analyze business data. For example, some AI/ML offerings help companies understand
sales trends and can help spot repeat customers.

NOTE: Advanced services offered by providers give customers access to AI/ML software and allow customers
to create and deploy applications quickly, easily, and safely.

3.6 Provider Lock-In

Public cloud providers compete to attract new customers and entice existing customers to increase their
monthly subscription. One approach focuses on offering specialized services that are not available elsewhere.
For example, a provider may offer customers a network management service that allows each customer to
monitor and control the network used internally (i.e., between the customer’s virtualized servers) and
externally (i.e., between a customer’s virtualized servers and the rest of the Internet). Because it interacts with
the provider’s network control system, such a service is inherently linked to the provider.

In addition to advanced services that link to the provider’s infrastructure, cloud providers usually offer a
migration service that makes it easy for a corporate customer to move their computing into the provider’s
public cloud. To entice customers to switch from another provider, a provider may also offer cloud-to-cloud
migration services.

We can summarize: Industry uses the term lock-in to refer to the practice of using enticements and obstacles
that make it inconvenient or expensive for customers to move to another cloud provider.

3.7 The Advantages Of Private Cloud

It may seem that the advantages of public cloud — lower cost, access to specialized expertise, and advanced
services — will drive all companies to use public cloud services. However, private cloud offers advantages:

 Retention of control and visibility
 Reduced latency with on-premises facilities
 Insurance against future rate hikes

K. Shanmugam, MCA, AITS CC - Unit-1 Page 12

Retention of control and visibility. A public cloud customer does not have access to the underlying
infrastructure. If a problem arises, a customer can only report the visible symptoms, but cannot perform root
cause analysis because only the cloud provider can examine the network switches and physical servers.

For organizations in a regulated industry, regulations may require the organization to control the placement
and transmission of data as well as the hardware and software used. A private cloud makes it possible for
such an organization to comply with the rules.

 Reduced latency with on-premises facilities. Because they are located within a company, private cloud
facilities are said to be on-premises (on-prem). The delay between employees and a private cloud data center
can be significantly lower than the delay to a public cloud, especially if an organization is geographically
distant from a public cloud site. An organization with multiple sites may be able to further reduce la tency by
placing a private cloud data center at each site. If computation and communication remains primarily within
a site, the improvement can be noticeable.

Insurance against future rate hikes. Provider lock-in presents a long-term liability for a company. As time
goes by, a customer adopts more of the provider’s services, and the cost of changing providers increases. A
provider can raise rates without fear of losing customers. The point is:

NOTE: Although public cloud seems to offer several compelling advantages, private cloud gives a company
more control, can reduce latency, and guards against future rate hikes by a provider.

3.8 Hybrid Cloud

Instead of choosing between public and private clouds, some organizations opt for a compromise that offers
some of the advantages of each. Known as a hybrid cloud, the compromise means an organization uses a
public cloud provider for some computing, and runs a private cloud for the rest. The balance between the two
depends on the organization’s needs as well as cost. Examples of why an organization might adopt a hybrid
cloud approach include:

 Control when needed
 Computation overflow

Control when needed. We said that some organizations must comply with regulations. For example, a
government contractor may need to store classified data on servers with controlled access. Using a hybrid
approach allows such a company to enforce restricted access for its private cloud, and reduce overall costs by
pushing other data and computations to the public cloud.

Computational overflow. Imagine an organization that uses a private cloud for most of their computing
needs. During the organization’s peak business season, the private cloud may have insufficient resources to
handle the load. Rather than add additional servers, which will remain underutilized most of the time, the
organization can send some of the computation to a public cloud during the peak period. To make overflow
processing convenient, public cloud providers offer software that helps automate the process. In essence, the
software makes the customer’s private cloud compatible with the provider’s public cloud, meaning that a
customer can move overflow from their private cloud to the public cloud with little or no effort.

We can summarize: Using a hybrid cloud allows a company to enforce restrictions on data and computations
in their private cloud and reduce costs by pushing the rest to a public cloud; the hybrid approach can also be
used to handle overflow.

3.9 Multi-Cloud

Because provider lock-in represents a potential long-term liability, large organizations try to avoid dependence
on a single public cloud provider. To take advantage of public cloud services while avoiding lock-in, large
organizations adopt an approach that has become known as multi-cloud, which means an organization
becomes a customer of more than one public cloud provider. The division of computation among providers
depends on the structure of the organization and its IT needs. As an example, consider a large corporation
with business units. It may be possible to assign some business units to one cloud provider and other
business units to another.

Although it avoids lock-in, using multiple cloud providers introduces challenges. It may not be easy, for
example, to switch computation or data from one cloud provider to another. Services available from one

K. Shanmugam, MCA, AITS CC - Unit-1 Page 13

provider may not match the services available from another. Even if a service is available from multiple
providers, the organization may need to write specialized software either to translate from one system to
another, or to combine the output from the two providers to generate data for the entire organization.

3.10 Hyperscalers

Industry uses the term hyperscale to refer to the largest cloud computing facilities, and the term hyperscalers
to refer to the companies that own and operate such facilities. Social media and search companies, such as
Facebook, Twitter, and Google were among the earliest to build giant data centers to support their respective
businesses. Because such companies focus on consumers, early definitions of hyperscale measured the
number of simultaneous users data centers could handle. The shift to more generalpurpose cloud computing
has made the measure of users irrelevant, and the definition has shifted to a measurement of how much a
company spends on data center infrastructure. The numbers are huge. By 2018, Google, Amazon, Microsoft,
Facebook, and Alibaba were spending about $11B per year just on new servers.

In terms of the public cloud services used by large enterprise organizations, three hyperscalers stand out:

 Amazon’s AWS (Amazon Web Services)
 Microsoft’s Azure Cloud
 Google’ GCP (Google Cloud Platform)

Growth of the cloud industry has been rapid, especially for the top two providers. Initially, Amazon built data
centers to support its online retail business. In 2006, before most enterprises were even aware of general
cloud computing, Amazon launched AWS. In early 2010, Microsoft released Windows Azure, and four years
later renamed it Azure Cloud. In 2012, cloud services formed an insignificant percentage of revenue for both
Amazon and Microsoft. By 2018, just six years later, Microsoft reported that cloud services generated $32.2B
or 29% of total revenue. By 2018, AWS generated $25.7B for Amazon or 11% of total revenue.

Hyperscalers are shifting spending to match a shift in services. In 2018, for example, Microsoft revealed it had
invested $20B to create its Azure Cloud platform. Now that the data centers have been built, hyperscalers are
shifting investment toward AI/ML technologies that will allow them to automate management of their cloud
infrastructure and offer advanced services to customers.

K. Shanmugam, MCA, AITS CC - Unit-2 Page 1

Unit -2

Cloud infrastructure and Virtualization

What is Virtualization?

Virtualization is technology that you can use to create virtual representations of servers, storage, networks,
and other physical machines. Virtual software mimics the functions of physical hardware to run multiple
virtual machines simultaneously on a single physical machine. Businesses use virtualization to use their
hardware resources efficiently and get greater returns from their investment. It also powers cloud computing
services that help organizations manage infrastructure more efficiently.

Why is virtualization important?

By using virtualization, you can interact with any hardware resource with greater flexibility. Physical servers
consume electricity, take up storage space, and need maintenance. You are often limited by physical
proximity and network design if you want to access them. Virtualization removes all these limitations by
abstracting physical hardware functionality into software. You can manage, maintain, and use your hardware
infrastructure like an application on the web.

Virtualization example

Consider a company that needs servers for three functions:

 Store business email securely

 Run a customer-facing application

 Run internal business applications

Each of these functions has different configuration requirements: The email application requires more storage
capacity and a Windows operating system.The customer-facing application requires a Linux operating system
and high processing power to handle large volumes of website traffic.The internal business application
requires iOS and more internal memory (RAM).

To meet these requirements, the company sets up three different dedicated physical servers for each
application. The company must make a high initial investment and perform ongoing maintenance and
upgrades for one machine at a time. The company also cannot optimize its computing capacity. It pays 100%
of the servers’ maintenance costs but uses only a fraction of their storage and processing capacities.

Efficient hardware use

With virtualization, the company creates three digital servers, or virtual machines, on a single physical server.
It specifies the operating system requirements for the virtual machines and can use them like the physical
servers. However, the company now has less hardware and fewer related expenses.

Infrastructure as a service

The company can go one step further and use a cloud instance or virtual machine from a cloud computing
provider such as AWS. AWS manages all the underlying hardware, and the company can request server
resources with varying configurations. All the applications run on these virtual servers without the users
noticing any difference. Server management also becomes easier for the company’s IT team.

What are the benefits of virtualization?

Virtualization provides several benefits to any organization:

Efficient resource use

Virtualization improves hardware resources used in your data center. For example, instead of running one
server on one computer system, you can create a virtual server pool on the same computer system by using
and returning servers to the pool as required. Having fewer underlying physical servers frees up space in your
data center and saves money on electricity, generators, and cooling appliances.

K. Shanmugam, MCA, AITS CC - Unit-2 Page 2

Automated IT management

Now that physical computers are virtual, you can manage them by using software tools. Administrators create
deployment and configuration programs to define virtual machine templates. You can duplicate your
infrastructure repeatedly and consistently and avoid error-prone manual configurations.

Faster disaster recovery

When events such as natural disasters or cyberattacks negatively affect business operations, regaining access
to IT infrastructure and replacing or fixing a physical server can take hours or even days. By contrast, the
process takes minutes with virtualized environments. This prompt response significantly improves resiliency
and facilitates business continuity so that operations can continue as scheduled.

Data Center Infrastructure And Equipment

Introduction

The first part of the text presents the general concept of cloud computing and its use in private and public
clouds. This chapter begins a deeper look by describing data center infrastructure and the equipment used,
including cooling systems, which have become a critical part of data center design. Remaining chapters in the
section discuss virtualization and its role in cloud computing.

Physically, a data center consists of a building, or part of a building, that houses the equipment. Often, a data
center occupies a single large open area without walls. Like a giant retail store, columns are spread
throughout the area to support the ceiling. A data center can be huge. Flexential’s ComPark data center in
Denver comprises 148,000 square feet of space in a single large room. The distance from one end to the other
is 710 feet, more than two football fields laid end to end. The largest data centers, especially the ones
operated by media companies, can exceed 1,000,000 square feet. Physically, racks holding equipment are
placed side by side in rows, leaving aisles between them. Logically, however, a data center is not merely
composed of long rows of racks. Instead, a data center is built by replicating a basic set of equipment known
as a pod, sometimes written PoD for Point of Delivery†.

NOTE: Rather than installing individual racks and mounting individual servers, a data center owner can
acquire and install a pre-built pod.

Pod Size

How large is a pod? Data center owners have experimented with a variety of sizes. An early design created
pods with over 200 racks per pod. The industry has moved to smaller sizes, where a pod with 48 racks is
considered “large,” and an average-size pod contains 12 to 16 racks. Although shipping considerations favor
smaller pre-built pods, three other factors have motivated the change:

 Incremental growth

 Manageability

 Power and cooling

Incremental growth. Choosing a smaller pod size allows a data center owner to grow the data center
continuously in small increments rather than waiting until a large pod is justified. Manageability.
Management tools allow a data center owner to manage each pod independently. A smaller pod size makes it
easier to find and repair problems, and keeps problems contained within a pod. Power and cooling.
Interestingly, electrical power and cooling have become a major consideration when choosing a pod size. The
next section explains why.

Power And Cooling For A Pod

Power consumption and cooling dominate many aspects of data center design because data centers consume
huge amounts of power. For example, the Inner Mongolia Information Park owned by China Telecom
consumes over 150 Megawatts of electric power.

To put the number in perspective, the Yale Environment 360 notes that 150 Megawatts is approximately the
amount of electrical power consumed by a city of a million people.

K. Shanmugam, MCA, AITS CC - Unit-2 Page 3

How are pod size and power consumption related? Each pod has a dedicated electrical feed, which means the
size of a pod determines the amount of power the pod requires. Industry uses the informal term power density
to refer to the power needed for a rack, and observers have noted that power density has increased over the
past years as servers gained more cores and network equipment moved to higher data rates.

Cooling is the counterpart to power. As it consumes power, electronic equipment produces heat. To prevent it
from malfunctioning and eventually burning out, the equipment must be cooled. Consequently, as power
consumption increased, the need for cooling also increased. When we think of data center equipment, it is
easy to focus on servers and network switches.

NOTE: Because the electronic systems in a data center generate substantial amounts of heat, the systems
that remove heat have become major parts of the data center infrastructure

Designers have invented several ways to reduce heat, including:

 Raised floor pathways and air cooling

 Thermal containment and hot/cold aisles d Exhaust ducts (chimneys)

 Lights-out data centers

Raised Floor Pathways AndAir Cooling

Data centers employ a design pioneered by IBM in the 1950s for mainframe computers: raised floor. A metal
support structure supports a floor from one to four feet above the concrete floor of the building. The space
between the real floor and the raised floor can be used to hold power cables and for air cooling. Large outdoor
air conditioning units (compressors) surround the building, and pipes carry compressed refrigerant to indoor
units where it is used to chill air.

A raised floor consists of square tiles that are 60 cm (approximately 17 inches) on a side.

NOTE: Current data center designs push chilled air under a raised floor. Perforated floor tiles under each rack
allow the chilled air to flow upward through the rack to cool equipment.

Thermal Containment AndHot/ColdAisles

Hot air leaves each piece of equipment, venting into the data center. Overall air flow in the data center must
be designed carefully to move hot air away from the racks, ensuring that it cannot be accidentally drawn back
into another piece of electronic equipment. In particular, a designer must ensure that the hot air leaving one
piece of electronic equipment is not pulled into another piece.

A technique known as thermal containment (or aisle containment) offers one solution. The idea is to direct
heat to contained areas. To use the approach, an owner places a cover on the front of each rack and leaves
the back of the rack open. Equipment is arranged to pull cold air from the sides of the rack and vent hot air
out the back. Containment can be further enhanced by orienting racks to create an aisle with the fronts of
racks facing each other and then an aisle with the backs of racks facing each other.

To keep hot air from collecting near the racks, a set of fans in the ceiling pulls the hot air upward and sends it
through ducts back to the indoor air conditioning units. Thus, air circulates throughout the data center
continuously. Cool air is forced under the floor and upward through the racks, absorbing heat from the
equipment. The heated air is drawn upward and sent back to the indoor air conditioning units, where the
heat is removed and the cool air is pumped under the raised floor again.

Exhaust Ducts (Chimneys)

Despite fans in the ceiling that draw hot air upward, the temperature near racks with high power density can
be higher than other areas of a data center. Designers refer to such areas as hot spots.

A Possible Future Of Liquid Cooling

Although most data centers currently use chilled air to cool electronic components, power density continues
to increase. For example, a pod that currently consumes 600 Kilowatts of electrical power, may soon need
more cooling. Unfortunately, merely pumping chilled air through electronic equipment can only remove a
limited amount of heat in a given time.

K. Shanmugam, MCA, AITS CC - Unit-2 Page 4

Supercomputers that use liquid cooling contain hydraulic systems that pump cool liquid across each of the
electronic circuits.

When it changes from air cooling to liquid cooling, a data center must install hydraulic equipment to circulate
cold liquid refrigerant to the racks and return heated refrigerant to the cooling unit.

NOTE: Although it can remove more heat than air cooling, changing to liquid cooling requires an owner to
replace most of the data center infrastructure

Network Equipment And Multi-Port Server Interfaces.

Network connectivity forms the second most important service that cloud providers offer. A network switch in
each rack connects to each server in the rack and provides communication among the servers as well as
communication to the rest of the data center and the Internet. Data center switches use Ethernet technology,
and the switches are sometimes called Ethernet switches

Lights-Out Data Centers

An operational paradigm has been invented that helps reduce heat in a data center: minimize any extraneous
use of electricity. In particular, avoid keeping an area lit when no humans are working in the area. Known as
a lights-out data center, the scheme means that entire parts of the data center operate in the dark. To
minimize the time lights must be on, servers, network switches, and storage equipment are accessed and
managed over a network.

For example, we will see that each network switch in a data center has at least two connections that can be
used to reach other switches or the Internet.

NOTE: In addition to thermal containment and vertical ducts over hot spots for cooling, some data centers
follow a lights-out approach in which a data center operates in the dark. As well as reducing energy costs,
using automated management systems with a lights-out approach reduces staff costs and avoids both human
error and malicious attacks.

Network Equipment And Multi-Port Server Interfaces

Network connectivity forms the second most important service that cloud providers offer. A network switch in
each rack connects to each server in the rack and provides communication among the servers as well as
communication to the rest of the data center and the Internet. Data center switches use Ethernet technology,
and the switches are sometimes called Ethernet switches.

K. Shanmugam, MCA, AITS CC - Unit-2 Page 5

Network Equipment And Multi-Port Server Interfaces

Network connectivity forms the second most important service that cloud providers offer. A network switch in
each rack connects to each server in the rack and provides communication among the servers as well as
communication to the rest of the data center and the Internet. Data center switches use Ethernet technology,
and the switches are sometimes called Ethernet switches.

In most data centers, network cables run along open cages suspended above the racks. The switch in each
rack is usually placed near the top, giving rise to the term Top-of-Rack switch (ToR switch)†. To permit rapid
data transfers, the connections between the ToR switch and each server must operate at high speed. Initially,
data centers used 1 Gigabit per second (Gbps) Ethernet leading to the name GigE. More recently, data centers
have used 10 Gbps and 40 Gbps technologies.

Smart Network Interfaces AndOffload

Network processing requires computation. Each time a packet arrives at a server, fields in the packet headers
must be examined to determine whether the packet has been formed correctly and whether the packet is
destined to the server. Similarly, each time a packet is sent, headers must be added to the data. In a
conventional computer, software in the operating system performs all packet processing tasks, which means
the processor spends time handling each packet.

NOTE: Using a smart NIC to offload packet processing means the network can operate at full speed and
instead of spending time on packet processing tasks, a processor can be devoted to users’ computations.

North-South AndEast-West Network Traffic

Recall that each rack in a data center contains a Top-of-Rack (ToR) network switch that connects to each of
the servers in the rack. Two questions arise: how should the ToR switches in all the racks be interconnected
to form a network in the data center, and how should the data center network connect to the Internet?

A variety of network architectures have been used in data centers. Although many variations exist, we can
group them into two broad categories based on the type of traffic they are intended to handle:

 North-south traffic

 East-west traffic

North-south traffic. Industry uses the term north-south traffic to describe traffic sent between arbitrary
computers on the Internet and servers in a data center. Recall, for example, that early data centers focused
on large-scale web sites. Web traffic falls into the category of north-south traffic.

How should a data center network be designed to handle web traffic? In theory, the data center could use the
arrangement that Figure 1.1† depicts — a single load balancer dividing incoming requests among all servers
in the data center. In practice, however, a network device that performs load balancing has a limited number
of connections. Therefore, to accommodate large scale, a network must be designed as a hierarchy with an
initial load balancer dividing requests among a second level of load balancers.

K. Shanmugam, MCA, AITS CC - Unit-2 Page 6

An actual network is much more complex than the simplistic version in the figure. For example, instead of
using specialized load balancer devices, the load balancing function is built into network switches.

If one thinks of the figure as a map, requests arriving from the Internet flow from north to south, and replies
flow from south to north. Hence, web traffic is classified as north-south traffic.

 East-west traffic. As data centers moved from large-scale web service to cloud computing, network traffic
patterns changed. Consider a company using cloud computing.

Network Hierarchies, Capacity, AndFat Tree Designs

Arranging a data center network as a hierarchy has a disadvantage: links near the top of the hierarchy carry
more traffic than links farther away. To understand capacity, look again at Figure 4.2. The link between the
Internet and the first load balancer carries 100% of the traffic that enters and leaves the data center. At the
next level down, however, the traffic is divided among the pods. If the data center contains P pods, each of the
P links that connects the first load balancer and the load balancer for a pod only needs to carry 1/P of the
data.

The networking industry uses the colloquial term pipe to refer to a network connection, and talks about data
flowing through the pipe, analogous to the way a liquid flows through a conventional pipe.

High Capacity And Link Aggregation

For a data center that handles high volumes of traffic, links near the top of the hierarchy can require
extremely high capacity.

A data center owner must face two constraints:

 Capacities available commercially

 Cost of high-capacity network hardware

Capacities available commercially. Network hardware is not available in arbitrary capacities. Only specific
capacities have been standardized. Ethernet hardware is available for 1, 10, 40, 100, and 400 Gigabits per
second (Gbps), but not 6 Gbps. Thus, a hierarchy must be designed carefully to use combinations of
capacities that match commercially available hardware. Cost of high-capacity network hardware. A second
factor that must be considered is the cost of network hardware. The cost of high-capacity network hardware is
significantly higher than the cost of hardware with lower capacity, and the cost disparity is especially high for
networks that cover long distances.

K. Shanmugam, MCA, AITS CC - Unit-2 Page 7

A Leaf-Spine Network Design For East-West Traffic

How can a data center network be designed that handles large volumes of east-west traffic without using a
hierarchical design? The answer lies in parallelism and a form of load balancing. The specific approach used
in data centers is known as a leaf-spine network architecture‡. In leaf-spine terminology, each Top-of-Rack
switch is called a leaf. The data center owner adds an additional set of spine switches and connects each leaf
switch to each spine switch.

The leaf-spine architecture offers two main advantages over a hierarchical design:

 Higher capacity for east-west traffic

 Redundant paths to handle failures Higher capacity for east-west traffic.

To understand the capacity, consider traffic traveling east-west from one rack to another

NOTE: A leaf-spine architecture allows a data center owner to increase network capacity incrementally merely
by adding more spine switches.

Redundant paths to handle failures. To understand how leaf-spine accommodates failure, consider Figure 4.6
which illustrates the leaf-spine configuration in Figure 4.5 after spine switch 3 has failed.

As the figure shows, removing a single spine switch reduces capacity, but does not disrupt communication
because three paths still remain between any pair of racks. Of course, packet forwarding in the switches must
be changed to accommodate the failure by dividing traffic among the spines that remain functional.

Scaling A Leaf-Spine Architecture With A Super Spine

Although it works for small numbers of racks, connecting all racks to each spine switch does not scale to tens
of thousands of racks because the largest switches do not have tens of thousands of ports. To handle scaling,
a data center uses a separate leafspine network to connect the racks in each pod.

K. Shanmugam, MCA, AITS CC - Unit-2 Page 8

External Internet Connections

How does a super spine architecture connect to the Internet? The incoming Internet connection may pass
through a router, a hardware firewall, or other equipment, and eventually reaches a special switch. In fact,
most data centers dedicate at least two switches to each connection in case one switch fails

The advantage of the super spine architecture should be clear: short paths across the data center for both
internal and external traffic without requiring high-capacity links. When two servers in a rack communicate,
packets flow from one to the other through the Top-of-Rack (i.e., leaf) switch.

Storage In A Data Center

Data center providers follow the same basic approach for storage facilities as they do for computational
facilities: parallelism. That is, instead of a single, large disk storage mechanism, the physical storage facilities
used in data centers consist of many inexpensive, commodity disks. Early data centers used
electromechanical disks, sometimes called spinning disks. Modern data centers use Solid State Disks (SSDs).

Although the shift to solid state disk technology has increased reliability, the most significant change in data
center storage arises from a change in the placement of storage equipment. To understand the change, recall
that many early data centers were designed to support large-scale web service. Data centers used
conventional PCs that each had their own disk.

From the point of view of software running on a server, block storage behaves exactly like a local disk except
that transfers must pass across a network. Network communication introduces latency, which means that
accessing block storage over a network can take longer than accessing a local disk.

Unified Data Center Networks

Early data center storage facilities used specialized network hardware that was designed to optimize remote
storage access. The specialized hardware was expensive and required running extra cables. Interestingly, the
use of specialized hardware is fading, and data centers are now using a single network for storage access as
well as other communication. Ethernet hardware emerged that offers both high capacity and relatively low
cost, and the leaf-spine architecture emerged that supports east-west traffic (storage access is a special form
of east-west traffic). Consequently, data centers have moved to a unified network that handles all traffic.

NOTE: The availability of low-cost Ethernet hardware and a leaf-spine network architecture has allowed data
centers to eliminate special purpose storage networks and move to a single, unified network that carries
storage access traffic as well as other traffic.

Virtual Machines

 Introduction

The previous chapter describes the basic infrastructure of a data center, including physical infrastructure,
such as power and cooling, as well as racks, pods, servers, networks, and storage facilities. This chapter
begins the description of virtualization mechanisms and technologies that allow a cloud owner to use the
facilities to provide elastic computing. The chapter explores the concept of a Virtual Machine and the support

K. Shanmugam, MCA, AITS CC - Unit-2 Page 9

systems needed to create and manage Virtual Machines. The next chapters describe an alternative
virtualization technology used in data centers, containers. Subsequent chapters consider virtual networks
and virtual storage facilities.

Approaches To Virtualization

The concept of virtual machines existed long before cloud computing was invented. The technologies used to
implement virtual machines can be divided into three broad categories:

 Software emulation

 Para-virtualization

 Full virtualization

Software emulation. The idea of using software to emulate a computer has many applications. One use
involves accommodating heterogeneous computers. Suppose a user who has a particular type of computer,
C1, wants to run a program, P, that has been compiled for another type of computer, C2. A piece of software
called a software emulator solves the problem. The emulator treats program P as data by repeatedly reading
an instruction, doing whatever C2 would do, and then moving to the next instruction.

The software emulation approach has been especially popular as a way to make a new programming language
available quickly. Before a language can be used on a particular type of computer, someone must write a
compiler that translates programs into instructions the computer understands.

To implement a compiler for a new programming language, use an existing language to build two tools: a
compiler and a software emulator. To simplify writing the tools, define a hypothetical computer (i.e., a type of
virtual machine). Build a compiler that translates programs written in the new language into code for the
hypothetical machine.

Although it offers the advantages of being general and making it easy to move apps to new types of
computers, software emulation has a major disadvantage that makes it unattractive as the primary form of
virtualization used in data centers: software emulation adds significant overhead resulting in slow execution.

NOTE: Although it increases the portability of compilers and other apps, software emulation incurs significant
execution overhead, making it ineligible as a primary form of virtualization in a data center.

Para-virtualization. Now classified as para-virtualization, an approach to virtualization pioneered in the 1960s
is designed to allow multiple operating systems to run on a single computer at the same time.

NOTE: An early form of virtualization known as para-virtualization allows multiple operating systems to run
on a computer at the same time by using a piece of software known as a hypervisor to control the operating
systems. Para-virtualization has the advantage of allowing high speed execution and the disadvantage of
requiring code to be altered to replace privileged instructions before it can be run.

Full virtualization. Like para virtualization, the approach known as full virtualization allows multiple
operating systems to run on the same computer at the same time. Furthermore, full virtualization avoids the
overhead of software emulation and allows operating system code to run unaltered. The next sections explain
full virtualization in more detail. For now, it is sufficient to know.

NOTE: Full virtualization allows multiple operating systems to run on a single computer at the same time and
at high speed without requiring operating system code to be altered.

Properties Of Full Virtualization

The full virtualization technologies currently used to support Virtual Machines (VMs) in cloud data centers
have three key properties: d Emulation of commercial instruction sets d Isolated facilities and operation d
Efficient, low-overhead execution.

Emulation of commercial instruction sets. To a customer, a VM appears to be identical to a conventional
computer, including the complete instruction set. Code that has been compiled to run on a commercial
computer will run on a VM unchanged. In fact, a VM can boot and run a commercial operating system, such
as Microsoft Windows or Linux.

K. Shanmugam, MCA, AITS CC - Unit-2 Page 10

Isolated facilities and operation. Although multiple VMs on a given server can each run an operating system
at the same time, the underlying system completely isolates each VM from the others.

Efficient, low-overhead execution. The most important and surprising aspect of VM technology arises from the
low overhead a VM imposes.

NOTE: When an application runs on a VM, most instructions execute as fast as they do when the application
executes directly on the underlying processor.

Conceptual Organization Of VM Systems

The general idea behind VM is straightforward: load software onto a server that allows the cloud provider to
create one or more VMs. Allow the tenant who owns each VM to boot an operating system on the VM, and
then use the operating system to launch one or more applications.

The key piece of software responsible for creating and managing VMs is known as a hypervisor. We think of a
hypervisor as controlling the underlying hardware. Each VM the hypervisor creates is independent of other
VMs.

Efficient Execution AndProcessor Privilege Levels

The question arises, how can an application running in a VM operate at hardware speed.

To understand how a VM runs apps at hardware speed, consider how an operating system runs apps on a
conventional computer. When a user launches an app, the operating system loads the code for the app into
the computer’s memory. The operating system then instructs.

the processor to start executing the code. Execution proceeds at the hardware rate because the processor
executes code for the app directly without going “through” the operating system.

An application cannot be allowed to execute all possible instructions or the computer would be vulnerable to
hackers who might steal information or use the computer in a crime To prevent such problems, the processor
hardware used in a conventional computer has two privilege levels or modes of operation. Operating system
code runs in kernel mode, which allows the operating system to perform all possible instructions. When it
switches the processor to application code, the operating system also changes to user mode, which means
only basic instructions are available.

K. Shanmugam, MCA, AITS CC - Unit-2 Page 11

User mode means an app can access memory that has been allocated to the app, and the app can perform
basic instructions, such as addition or subtraction. However, an app cannot access memory owned by the
operating system or the memory owned by other apps.

Extending Privilege To A Hypervisor

When a server runs a hypervisor and VMs, the software uses the same approach as an operating system uses
to run apps, except that the processor employs three levels of privilege: one for the hypervisor, a second for an
operating system, and a third for apps. Only the hypervisor can create a VM and allocate memory to the VM.
The operating system is restricted to the memory that has been allocated to its VM.

illustrates software in memory when a VM runs and shows some of the transitions among privilege levels as a
hypervisor starts a VM, the operating system in the VM launches an app, the app calls an operating system
service, and the operating system eventually exits (i.e., shuts down the VM).

Levels Of Trust

We can think of the three processor modes as imposing three levels of trust. When it runs in hypervisor mode,
the processor can perform any operation available on the hardware. Thus, the hypervisor code is trusted
completely. When it runs in kernel mode, the processor restricts the set of operations to ensure that the
operating system cannot affect other VMs or the hypervisor. Because the hardware mode prevents
interferences, the operating system code does not need to be trusted as much as hypervisor code.

Of course, each entity in the trust hierarchy need to be trusted to manage entities under it. When it creates a
VM, a hypervisor must be trusted to configure the hardware correctly to ensure the VM is isolated from other
VMs. Similarly, when an operating system runs an app, the operating system must be trusted to configure the
hardware to keep the app protected from other app.

NOTE: The software used for VMs runs a trust hierarchy controlled by processor modes. A hypervisor is
trusted to establish and manage VMs, an operating system is trusted to create and manage a set of apps, and
an app runs with the least trust. An attempt to exceed the trust boundary causes the processor to return
control to the software at the next higher trust level.

Levels Of Trust And I/O Devices

Adding an extra level of privilege makes I/O devices problematic. To understand why, consider how an
operating system manages I/O devices (e.g., a screen, keyboard, disk, and network interface) on a
conventional computer. When it boots on a conventional computer, the operating system uses a hardware
mechanism known as a bus to communicate with I/O devices.

We can now understand why a dilemma arises when a server runs multiple virtual machines. Each virtual
machine will run its own operating system, and a virtual machine can boot a standard operating system. On
the one hand, a standard operating system will try to use the bus to take ownership of all I/O devices.

K. Shanmugam, MCA, AITS CC - Unit-2 Page 12

Virtual I/O Devices

VM technology uses an interesting approach to handle I/O: virtual I/O devices. When it creates a VM, a
hypervisor creates a set of virtual I/O devices for the VM to use. A virtual I/O device is implemented by
software. When an operating system on a VM attempts to use the bus to access an I/O device, the access
violates privilege, which means the hypervisor is invoked.

software, and then arranges to send the response to the operating system as if a physical device responded.
That is, the hypervisor makes it appear that the response appears to come over the bus.

NOTE: From an operating system’s point of view, a virtual device is indistinguishable from a real device
because communication with a virtual device uses the same bus operations that communication with a
physical device uses.

Virtual Device Details

The use of virtual devices introduces two approaches, and both have been used:

 Invent a new, imaginary device

 Emulate an existing hardware device

Invent a new, imaginary device. Because it is implemented with software, a virtual device can have any
properties a programmer imagines†. Communication between the operating system and the device uses the
standard bus operations, but the details of what I/O operations the device supports and how data moves
between the operating system and the device are controlled by the virtual device, which gives an opportunity
for an improved design.

Emulate an existing hardware device. The alternative to creating an imaginary device consists of building
software that emulates an existing hardware device. To understand the motivation for emulation, consider the
availability of device driver software. When it boots and discovers a device, an operating system must load
device driver software that can interact with the device (i.e., send I/O requests to the device and receive
responses).

An Example Virtual Device

As an example of a virtual device, consider a virtual disk†. Because data centers locate storage facilities
separate from servers, all disk I/O requires communication over the data center network. Virtual disk
software handles the situation easily by providing a standard disk interface to an operating system and also
communicating over the network.

As the figure shows, virtual disk code occupies a position between an operating system that runs in a VM and
the network code in the hypervisor. When it communicates with the operating system, the virtual disk acts
like a hardware device, using standard bus communication to receive requests and supply responses. For a
disk, a request either writes data to the disk or reads data from the disk.

A VM As A Digital Object

K. Shanmugam, MCA, AITS CC - Unit-2 Page 13

A VM differs from a real server in a significant way: a VM is created and managed entirely by software. A
hypervisor must keep a record of the VM, the region(s) of memory that have been allocated to the VM, the
virtual I/O devices that have been created for the VM (including disk space that has been allocated in the
data center storage facility), and the current status of the VM (e.g., whether the VM is currently running or
has been suspended to allow another VM to run).

NOTE: Because a VM is implemented with software, all the pieces of a VM can be collected together into a
digital object.

VM Migration

The ability to collect all the pieces of a VM into a digital object has great significance, and data centers take
advantage of it. Suppose, for example, that a data center manager receives an alert that a power supply is
about to fail on a server. The manager can instruct the hypervisor to stop all the VMs running on the server,
save a copy of each VM on disk, and then shut the server down. The manager can replace the server
hardware, reboot the server, reload all the VMs, and resume operating, allowing each of them to continue
where it left off.

Although it allows one to stop and restart a server, the ability to convert a VM to a digital object enables
something much more important in cloud data centers: VM migration. That is, a VM can be moved. The basic
idea is straightforward: stop a VM that is running on one server, convert the VM to a digital object, send the
bytes across the network to a new server, and resume the VM on the new server.

Migration has many other uses. For example, during periods of especially light load, a data center manager
can migrate VMs away from an area of servers and then power down the empty servers to reduce power
consumption.

Live Migration Using Three Phases

We have seen that it is possible to convert a VM into a digital object if the VM has been stopped.
Unfortunately, it takes time to stop a VM, send it across a network, and then restart it. What happens if the
VM is communicating over the network? Perhaps the VM is accessing a database or downloading a file.

To enable live migration, the amount of time a VM is unavailable must be minimized. The technique used
divides migration into three phases:

Phase 1: pre-copy
 Phase 2: stop-and-copy
 Phase 3: post-copy

Phase 1: pre-copy. In phase 1, the entire memory of the VM is copied to the new server while the VM
continues to run. Of course, some pages in memory will be changed after they are copied; a record is kept of
the pages that changed.

Phase 2: stop-and-copy. In phase 2, the VM is temporarily suspended, and any pages that changed after the
phase 1 copy are copied again. The virtual memory system on modern servers makes it easy to detect which
pages have been changed (i.e., are dirty). Thus, the set of changed pages can be identified quickly.

Phase 3: post-copy. In phase 3, the hypervisor sends remaining state information to the hypervisor on the
new server. The state information includes items that are needed to resume (i.e., unsuspend) the VM,
including the contents of registers when the VM was suspended. The hypervisor on the new server uses the
information to allow the VM to continue executing.

NOTE: A three-phase approach that minimizes the time a VM is unavailable makes live migration feasible.

Running Virtual Machines In An Application

The previous sections describe how VM technology uses a hypervisor that runs directly on server hardware.
Interestingly, an alternative form of VM technology has been developed that allows a hypervisor to run on a
conventional operating system (i.e., on a user’s laptop).

K. Shanmugam, MCA, AITS CC - Unit-2 Page 14

On a conventional computer, we think of an operating system rather than a hypervisor as owning and
controlling the hardware. We use the term host operating system to describe the main operating system.

As expected, each VM must run an operating system, which is called a guest operating system

Three questions arise concerning a system that runs a hosted hypervisor on a conventional computer

 How is it possible?

 What benefit does it offer a user?

 Is the technology useful in a cloud data center?

Once we understand how a hosted hypervisor works, we will discuss how a user can benefit.

Facilities That Make A Hosted Hypervisor Possible

Two facilities allow a hosted hypervisor and a guest OS to operate correctly without high privilege: a processor
mechanism that supports virtualization and a way to map guest OS operations onto the host operating
system’s services. Modern processors include a special virtualization mechanism that enables a hosted
hypervisor to create VMs that each run a guest.

A hosted hypervisor arranges a mapping between I/O requests that a guest OS makes and services in the
host operating system. For example, when a guest OS communicates over a network, the hosted hypervisor
forwards the requests to the host operating system in such a way that the guest OS has the illusion of using a
hardware interface.

Interestingly, a hosted hypervisor can arrange for some files or file systems to be shared between the guest
and host operating systems.

NOTE: Because a hosted hypervisor can map I/O requests from a guest operating system onto services offered
by the host operating system, it is possible for applications running on VMs and applications running on the
host to share files.

How A User Benefits From A Hosted Hypervisor

A hosted hypervisor allows a user to run multiple operating systems on a single computer. Multiboot
mechanisms also allow a user to boot multiple operating systems, but a user can only boot one system at a
given time. A hosted hypervisor has a distinct advantage because a user can run multiple systems
simultaneously and can switch from one system to another without rebooting the compute.

NOTE: Unlike a multiboot mechanism, a hosted hypervisor allows a user to run multiple operating systems
simultaneously and switch among them quickly.

K. Shanmugam, MCA, AITS CC - Unit-2 Page 15

Containers

Introduction

It considers an alternative form of server virtualization that has become popular for use in data centers:
container technology. The chapter explains the motivation for containers and describes the underlying
technology.

The Advantages And Disadvantages Of VMs

To understand the motivation for containers, we must consider the advantages and disadvantages of VMs.
The chief advantage of the VM approach lies in its support of arbitrary operating systems. VM technology
virtualizes processor hardware and creates an emulation so close to an actual processor that a conventional
operating system built to run directly on hardware can run inside a VM with no change.

VM technology also has some disadvantages. Creating a VM takes time. In particular, VM creation requires
booting an operating system. Furthermore, the VM approach places computational overhead on the server.

NOTE: Although VM technology has the advantage of allowing the owner of a VM to choose an operating
system, VM creation entails the overhead of booting an operating system, and running multiple VMs on a
server imposes computational overhead because each operating system schedules apps and runs background
processes.

Traditional Apps And Elasticity On Demand

VM technology works well in situations where a virtual server persists for a long time (e.g., days) or a user
needs the freedom to choose an operating system. In many instances, however, a user only runs a single
application and does not need all the facilities in an operating system. A user who only runs a single app can
use a cloud service to handle rapid elasticity — the number of copies of the app can increase or decrease
quickly as demand rises and falls. In such cases, the overhead of booting an operating system makes VM
technology unattractive. The question arises: “Can an alternative virtualization technology be devised that
avoids the overhead of booting an operating system?

A conventional operating system includes a facility that satisfies most of the need: support for concurrent
processes. When a user launches an app, the operating system creates a process to run the app, and process
creation takes much less time than booting an operating system.

Unfortunately, apps running on an operating system do not solve the problem completely because an
operating system does not ensure complete isolation among apps run by multiple tenants. In particular, most
operating systems assume apps will share network access.

NOTE: Although it allows apps to be started and terminated quickly, a traditional operating system running
apps does not suffice for a multitenant cloud service because processes share facilities, such as a network
address and a file system that allow an app to obtain information about other apps.

Isolation Facilities In An Operating System

Starting with the earliest systems, operating systems designers have discovered ways to isolate the
computations and data owned by one user from those of another. Most operating systems use virtual memory

K. Shanmugam, MCA, AITS CC - Unit-2 Page 16

hardware to provide each process with a separate memory address space and ensure that a running app
cannot see or alter memory locations owned by other apps. User IDs provide additional isolation by assigning
an owner to each running process and each file, and forbidding a process owned by one user from accessing
or removing an object owned by another user.

Linux Namespaces Used For Isolation

Some of the most significant advances in isolation mechanisms have arisen in the open source community;
cloud computing has spurred adoption. Under various names, such as jails, the community has incorporated
isolation mechanisms into the Linux operating system

The mechanisms control various aspects of isolation. For example, the process ID namespace allows each
isolated app to use its own set of process IDs 0, 1, 2..., and so on. Instead of all processes sharing the single
Internet address that the host owns, the network namespace allows a process to be assigned a unique
Internet address.

One of the most interesting aspects of namespace isolation arises because the mechanisms block access to
administrative information about other isolated applications running on the same host.

NOTE: Isolation facilities in an operating system make it possible to run multiple apps on a computer without
interference and without allowing an app to learn about other isolated apps.

The Container Approach For Isolated Apps

 When an app uses operating system mechanisms to enforce isolation, the app remains protected from other
apps. Conceptually, we think of the app as running in its own environment, surrounded by walls that keep
others out. Industry uses the term container to capture the idea of an environment that surrounds and
protects an app while the app runs.

As the figure illustrates, it is possible to run conventional apps outside of containers at the same time as
containers.

K. Shanmugam, MCA, AITS CC - Unit-2 Page 17

NOTE: A container consists of an isolated environment in which an application can run. A container runs on
a conventional operating system, and multiple containers can run on the same operating system
concurrently. Each container provides isolation, which means an application in one container cannot interfere
with an application in another container.

Docker Containers

One particular container technology has become popular for use with cloud systems. The technology resulted
from an open source project known as Docker†. The Docker approach has become prominent for four main
reasons:

 Tools that enable rapid and easy development of containers

 An extensive registry of software for use with containers

 Techniques that allow rapid instantiation of an isolated app

 Reproducible execution across hosts

Development tools. The Docker technology provides an easy way to develop apps that can be deployed in an
isolated environment. Unlike a conventional programming system in which a programmer must write
significant pieces of code, Docker uses a high-level approach that allows a programmer to combine large pre-
built code modules into a single image that runs when a container is deployed.

The Docker model does not separate a container from its contents. That is, one does not first start a
Docker container running and then choose an app to run inside the container. Instead, a programmer creates
all the software needed for a container, including an app to run, and places the software in an image file. A
separate image file must be created for each app. When an image file runs, a container is created to run the
app. We say the app has been containerized.

Extensive registry of software. In addition to the basic tools programmers can use to create software for
containers, the Docker project has produced Docker Hub, an extensive registry of open source software that is
ready to use.

Rapid instantiation. Because a container does not require a full operating system, a container is much
smaller than a VM. Consequently, the time required to download a container can be an order of magnitude
less than the time required to download a VM. In addition, Docker uses an early binding approach that
combines all the libraries and other run-time software that will be needed to run the container into an image
file

Reproducible execution. Once a Docker container has been built, the container image becomes immutable—
the image remains unchanged, independent of the number of times the image runs in a container.
Furthermore, because all the necessary software components have been built in, a container image performs
the same on any system.

NOTE: Docker technology makes app development easy, offers a registry of pre-built software, optimizes the
time required to start a container, and guarantees reproducible execution.

Docker Terminology AndDevelopment Tools

Like many large efforts, the Docker project has spawned new terminology. In addition to tools used to create
and launch an app, the extended environment includes tools used to deploy and control copies of running
containers. Rather than examine all aspects of Docker, we will focus on the basics

K. Shanmugam, MCA, AITS CC - Unit-2 Page 18

A Docker image is a file that can be executed, and a container is the execution of an image. Some ambiguity
occurs because an image can have two forms: a partial image that forms a building block, and a container
image that includes all the software needed for a particular app.

A Docker container image is not an executable file, and cannot be launched the same way one launches a
conventional app. Instead, one must use the command docker run to specify that an image is to be run as a
Docker container. The next section describes the structure of Docker software, and explains why containers
require a nonstandard approach.

Docker Software Components

Illustrates a set of containers running independently the same way a process runs, execution of Docker
containers requires additional software support. In particular, containers operate under the control of an
application known as a Docker daemon (dockerd). In addition, Docker provides a user interface program,
docker.

The dockerd program, which remains running in background at all times, contains several key subsystems.
In addition to a subsystem that launches and terminates containers, dockerd contains a subsystem used to
build images and a subsystem used to download items from a registry. A user does not interact with dockerd
directly. Instead, dockerd provides two interfaces through which a user can make requests and obtain
information:

 A RESTful interface intended for applications

 A Command Line Interface (CLI) intended for humans

K. Shanmugam, MCA, AITS CC - Unit-2 Page 19

RESTful Interface. As the next section of the text explains, customers of cloud services do not usually create
and manage containers manually. Instead, they use orchestration software to deploy and manage sets of
containers.
Command Line Interface. To accommodate situations when a human needs to manage containers manually,
dockerd offers an interactive command-line interface that allows a user to enter one command at a time and
receive a response.

To construct a container image, a programmer creates a Dockerfile, places the file in the current directory,
and runs:
 docker build .

Where the dot specifies that Docker should look in the current directory for a Dockerfile that specifies how to
build the image. Recall that Docker does not store images in the user’s directory. Instead, dockerd stores the
images. When it completes successfully, a build command will print a name for the container image that was
produced and stored. An image name consists of a hash that is twelve characters long and meaningless to a
human. For example, Docker might use the hash f34cd9527ae6 as the name of an image.

To run an image as a container, a programmer invokes the run command and supplies the image name. For
example, to run the image described above, a programmer enters:
 docker run f34cd9527ae6
Docker stores images until the user decides to remove them. To review the list of all saved images, a user can
enter:
 docker images
which will print a list of all the saved images along with their names and the time at which each was created.

Base Operating System AndFiles

Recall that a container uses facilities in the host operating system. However, in addition to layers of app
software, most container images include a layer of software known as a base operating system that acts as an
interface to the underlying host operating system.
Think of a base operating system as a shim layer between app software in the container and the underlying
host operating system. Apps running in the container make calls to the base operating system which then
makes calls to the host operating system. When building a container image, a programmer starts by
specifying a base operating system; base operating systems are available in registries.

K. Shanmugam, MCA, AITS CC - Unit-2 Page 20

Think of a base operating system as a shim layer between app software in the container and the underlying
host operating system. Apps running in the container make calls to the base operating system which then
makes calls to the host operating system. When building a container image, a programmer starts by
specifying a base operating system; base operating systems are available in registries.

NOTE: Unless a programmer connects a container to permanent storage, changes made to local files when a
container runs will not be saved for subsequent invocations of the container image.

Items In A Dockerfile

A Dockerfile specifies a sequence of steps to be taken to build a container image. This section provides a short
overview of the items that can appear in a Dockerfile†.
Each item in a Dockerfile begins with a keyword. The following paragraphs each describe one of the keywords.
FROM. The FROM keyword, which specifies a base operating system to use for the image, must appear as the
first keyword in a Dockerfile. For example, to use the alpine Linux base, one specifies:
 FROM alpine.

RUN. The RUN keyword specifies that a program should be run to add a new layer to the image. The name is
unfortunately confusing because the “running” takes place when the image is built rather than when the
container runs. For example, to execute the apk program during the build and request that it add Python and
Pip to the image, a programmer uses:
 RUN apk add py22--pip

ENTRYPOINT. A programmer must specify where execution begins when a container starts running.
COPY and ADD. Both the COPY and the older ADD keywords can be used to add directories and files to the
file system being constructed for the image (i.e., the file system that will be available when the image runs in a
container).
The ADD keyword allows a programmer to specify local files or give a URL that specifies a remote file.
Furthermore, ADD understands how to decompress and open archives. In many cases, however, opening an
archive results in extra, unneeded files in the image, making the image larger than necessary.
EXPOSE and VOLUME. Although EXPOSE deals with Internet access and VOLUME deals with file systems,
both specify a way to connect a container to the outside world. EXPOSE specifies protocol port numbers that
the container is designed to use. For example, an image that contains a web server might specify that the
container is designed to use port 80:
 EXPOSE 80
VOLUME specifies a mount point in the image file system where an external file system can connect. That is,
VOLUME provides a way for a container to connect to persistent storage in a data center. VOLUME does not
specify a remote storage location, nor does it specify how the connection to a remote location should be made.
Instead, such details must be specified when a user starts a container.

An Example Dockerfile

Figure 6.9 contains a trivial example of a Dockerfile that specifies alpine to be the base operating system and
specifies that file /bin/echo (i.e., the Linux echo command) should be run when the container starts. When it
runs as a container, the image prints hi there†.

K. Shanmugam, MCA, AITS CC - Unit-2 Page 21

 FROM alpine ENTRYYPOINTT [[""//bin//echo"",, ""hi there""]]

Virtual Networks

Introduction
It defines the east west traffic pattern, and explains that a leaf-spine architecture that handles such traffic
has evolved to replace the older hierarchical architecture. It also points out that instead of requiring a data
center to add new switches with higher capacity links, the leaf-spine approach accommodates scaling merely
by adding additional switches.

Conflicting Goals For A Data Center Network

Interestingly, data center network designers face a challenge of balancing between two conflicting goals:

 Universal connectivity

 Safe, isolated communication

Universal connectivity. It should be obvious that systems across the entire data center must be able to
communicate with one another. When they run, apps communicate with databases, the apps running on
other servers, storage facilities, and, possibly, with computers on the global Internet. Furthermore, to give a
provider freedom to place VMs and containers on arbitrary physical servers, the network must guarantee
universal connectivit— a pair of apps must be able to communicate independent of the physical servers on
which they run.

Although universal connectivity across a data center is required, a customer of a multi-tenant data center
also demands a guarantee that outsiders will not have access to the customer’s systems or communication.
That is, a customer needs assurance that their computing systems are isolated from other tenants and their
communication is safe. Ideally, each customer would like a separate network that only connects the
customer’s VMs and containers.

NOTE: On the one hand, to permit VMs and containers to communicate between arbitrary physical servers, a
data center network must provide universal connectivity. On the other hand, a given tenant seeks a network
architecture that keeps their VMs and containers isolated and safe.

Virtual Networks, Overlays, And Under lays

How can a provider keep each tenant’s traffic isolated from other tenants’ traffic? A cloud service with
thousands of tenants makes separate physical networks impractical. The answer lies in an approach known
as network virtualization.
Conceptually, each virtual network links a tenant’s virtual machines and containers. Figure 7.1 illustrates the
idea by showing two virtual networks that each link four VMs. Keep in mind that the two networks in the
figure are fiction. In reality, each VM runs on a server in a rack, and racks are connected by spine switches.
Suppose, for example, that VM 2 and VM 5 run on servers in separate racks. The network path between them
includes two leaf switches and at least a spine switch.

We use the term overlay network to refer to a virtual network that does not actually exist but which in effect
has been created by configuring switches to restrict communication. We use the term underlay network to
refer to the underlying physical network that provides connections among entities in a virtual network.

K. Shanmugam, MCA, AITS CC - Unit-2 Page 22

NOTE: The term overlay network refers to a virtual network created by configuring switches, and the term
underlay network refers to the underlying physical network that provides actual network connections.

Virtual Local Area Networks (VLANs)

Cloud providers have used a variety of network virtualization technologies. One of the earliest technologies is
known by the name Virtual Local Area Network (VLAN). VLANs are part of the Ethernet standard, and the
Ethernet switches used in data centers support the use of VLANs.

A traditional switch without VLANs forms a single network. A set of computers connect to ports on the switch,
and all the computers can communicate. When a network administrator uses a VLAN switch, the
administrator assigns each port on the switch a small integer known as the port’s VLAN tag.
An administrator can configure multiple switches that all use VLAN tags consistently. When a packet arrives,
hardware adds the port’s VLAN tag to the packet, and the tag remains in place when the packet is sent to
another switch.

It may seem that VLAN technology suffices for a data center. Indeed, smaller data centers have used VLANs.
However, two limits prevent the technology from handling large cloud data centers. First, each VLAN tag
consists of twelve bits, which limits the technology to 4096 VLANs.
NOTE: VLAN technology imposes a set of virtual overlay networks on a set of switches, and each computer
attached to the switches is assigned to one of the virtual networks. The technology does not solve the problem
of separate virtual networks for tenants in a large data center.

Scaling VLANs To A Data Center With VXLAN

Network switches are designed to send arbitrary packets among computers, including Internet packets and
other types. The ability to communicate over the Internet has become so important that data centers now use
Internet packets almost exclusively. The addresses used on Internet packets are known as IP addresses
(Internet Protocol Addresses). Switches throughout each data center are configured to examine IP addresses
and forward packets.

Engineers observed that Internet packets could be used to extend VLAN technology to a scale sufficient for the
largest data centers. They devised a technology known as Virtual Extensible LAN (VXLAN) that many data
centers us.

VXLAN uses multicast technology to make delivery of packets efficient. To understand how it works, imagine a
dozen VMs all on the same VLAN.

NOTE: VXLAN technology uses Internet packets to scale the VLAN approach to a size that suffices for a large
data center.

A Virtual Network Switch Within A Server

The use of VMs and containers complicates data center networking in two ways. First, unlike a traditional
network that assigns an IP address to each physical computer, a data center usually assigns a separate IP
address to each virtual machine. Thus, when multiple VMs run on the same physical server, multiple
addresses will be assigned to the server. Second, if two VMs in the same server communicate, packets must
be forwarded from one to the other (provided the forwarding rules permit such communication).

How can a hypervisor forward packets among the VMs it has created? One answer lies in a virtual network
switch, such as Open v Switch.

NOTE: A piece of software known as a virtual network switch allows a server to assign each VM its own IP
address and forward packets among the VMs and the data center network; a virtual switch can be configured
to follow the same forwarding rules as other data center switches.

Network Address Translation (NAT)

K. Shanmugam, MCA, AITS CC - Unit-2 Page 23

Recall that container technology allows an app to run in a separate environment, isolated and protected from
other containers. The question arises, does each container have its own IP address, or do containers all share
the IP address of the host OS? The answer is that container technology supports three possibilities:

 A container can clone the host’s IP address

 A container can receive a new IP address

 A container can use address translation

A container can clone the host’s IP address. If a container uses the same IP address as the host OS, we say
that the container has cloned the address. Using the same address as the host OS means the container’s
network use may conflict with the use by normal apps or other containers that have cloned the address.
A container can receive a new IP address. Each container can be assigned a unique IP address, and the host
operating system can use a virtual switch to provide connectivity, as described in the previous section.

A container can use address translation. Address translation was invented and widely deployed before cloud
computing arose. In fact, many individuals have used NAT technology either from a wireless router in their
residence or a Wi-Fi hot spot, such as those in coffee shops and hotels.

When used with containers, NAT software runs in the host operating system. When a container that uses NAT
begins execution, the container requests an IP address, and the NAT software responds to the request by
assigning an IP address from a set of reserved, private IP addresses that cannot be used on the Internet.

NOTE: A container can clone the host’s IP address, be assigned a unique IP address, or use Network Address
Translation (NAT) technology to operate safely with other containers running on the same server.

Managing Virtualization AndMobility

Managing a conventional network is relatively straightforward because the network and the devices connected
to the network remain relatively stable. Of course, the owner must configure each switch by specifying a set of
rules the switch will use to process packets. Once a configuration has been entered, however, the network will
perform correctly until a piece of equipment fail.
Configuring and managing the network in a cloud data center poses a complex challenge for three reasons:

 Complex interconnections among switches

 Multiple levels of virtualization

 Arbitrary placement of addressable entities and migration

Complex interconnections among switches. To understand the complexity of a physical network, look again at
Figure 4.7†. Imagine configuring each switch to have correct forwarding rules for destinations on the global
Internet as well as for each possible destination in the data center. Consider that the configuration in a switch
must specify all equal-cost paths for a destination, allowing ECMP hardware to balance the load across all the
paths.
Multiple levels of virtualization. Consider the configuration needed for VXLAN technology. Each switch in the
data center must be configured with an IP address, and IP forwarding must be working correctly before
VXLAN can be added. Furthermore, IP multicast must also be configured, and operating correctly because
VXLAN uses IP multicast.

Arbitrary placement of addressable entities and migration. A provider can place addressable entities — VMs
and containers — on arbitrary physical servers . As a consequence, the IP addresses that belong to a given
tenant may be spread across the data center.

NOTE: The complex interconnections, multiple levels of virtualization, arbitrary placement of addressable
entities, and VM migration make configuring and operating a data center network especially difficult.

Automated Network Configuration And Operation

How can thousands of switches arranged in a complex interconnection be configured correctly and efficiently?
How can the forwarding information be updated when a VM moves? The answers lie in technologies that
automate the configuration and operation of networks. Examples include:

 Spanning Tree Protocol

 Standard routing protocols

K. Shanmugam, MCA, AITS CC - Unit-2 Page 24

Spanning Tree Protocol. The Ethernet network technology used in data centers allows a sender to broadcast
a packet. When a set of switches are connected in a cycle, broadcast causes a potential problem because one
switch forwards a copy to another, which forwards to another, and eventually the original switch receives a
copy, causing the cycle to repeat forever.
Standard routing protocols. Like most networks, data center networks employ standard routing protocols
that propagate routing information automatically. The protocols, including OSPF (Open Shortest Path First)
and BGP (Border Gateway Protocol), learn about possible destinations inside the data center and on the global
Internet, compute a shortest path to each destination, and install forwarding rules in switches to send
packets along the shortest paths.

Software Defined Networking

A technology for automated network mangement known as Software Defined Networking (SDN) stands out as
especially important for data centers. SDN allows a manager to specify high-level policies†, and uses a
computer program to configure and monitor network switches according to the policies. That is, instead of
relying on humans, a data center owner can use software to master the complexity and handle the necessary
low-level details. Software can accommodate a large data center, can handle multiple levels of virtualization,
and can update forwarding rules when VMs migrate.

The SDN approach uses a dedicated computer to run SDN software. The computer runs a conventional
operating system, typically Linux, an SDN controller app, and a management app (or apps).

As the figure shows, the logical connections between an SDN controller and each switch employ bidirectional
communication that allows data to flow in either direction. In addition to the controller sending configuration
to the switch, the controller can monitor the status of the switch itself and the links to other switches.

The Open Flow Protocol

A key component of SDN technology, the Open Flow protocol standard defines the communication available to
an SDN controller. That is, Open Flow specifies both the form and meaning of messages that can pass
between a controller and a switch. To use SDN, a switch needs an Open Flow module; the switches used in
data centers include such support.

How does Open Flow control packet forwarding? The basic idea is straightforward: a controller installs a set of
forwarding rules in each switch. Each rule describes a particular type of packet and specifies the output port
over which the packet should be sent. When a packet arrives at the switch, the switch hardware checks each
of the rules, finds one that matches the packet, and sends the packet over the specified port.

A forwarding rule uses items in a packet header to decide where the packet should be sent. For example, a
rule can examine fields that specify the application being used, directing packets that carry World Wide Web
traffic out one port, packets that carry database traffic out another port, and all other packets out a third
port. Alternatively a forwarding rule can examine the packet’s destination, directing packets destined for the
global Internet out one port and packets destined for servers inside the data center out another port.

K. Shanmugam, MCA, AITS CC - Unit-2 Page 25

Programmable Networks

As described above, the first generation of SDN software uses static forwarding rules, where each rule
specifies a set of header fields in a packet and an output port for packets that match the rule

The chief limitation of static forwarding rules lies in the overhead needed to handle exceptions: a packet that
does not match any rule must be sent to the controller†. When it receives an exception, the controller
examines the policies, chooses an action to use (which may include dropping the packet), installs new
forwarding rules in the switches, and then sends the packet back to the switch for processing according to the
new rules.

A second generation of SDN has been designed to reduce the need for a controller to handle each exception by
placing a computer program in each switch; we use the term programmable network to describe the idea.
Instead of a conventional language, the second generation uses a special programming language named P4.
The point is:

NOTE: The second generation of SDN technology allows an SDN controller to install a computer program
written in the P4 language in each switch. The use of a program means a switch can handle exceptions locally
without sending each exception to the controller.

Virtual Storage

Introduction

the infrastructure used in data centers, including the idea of separating disks from servers. In this part of the
text describe virtualization technologies that run on top of the infrastructure, including virtual machines,
containers, and virtual networks. It completes the description of virtualization technologies by examining the
virtual storage facilities used in data centers. The concepts of remote block storage, remote file storage, and
the facilities used to provide them

Persistent Storage: Disks AndFiles

We will learn that the storage facilities used in data centers employ the same designs as the storage
mechanisms used on a conventional computer
The term persistent storage (or non-volatile storage) refers to a data storage mechanism that retains data after
the power has been removed. We can distinguish between two forms of persistent storage;

 Persistent storage devices

 Persistent storage abstractions

Persistent storage devices. A conventional computer uses a separate physical device to provide persistent
storage. By the 1960s, the computer industry adopted electromechanical devices called disks that use
magnetized particles on a surface to store data. The industry now uses Solid State Disk (SSD) technology with
no moving parts.

Persistent storage abstractions. Users do not deal directly with disk hardware. Instead, an operating system
provides two abstractions that users find intuitive and convenient: named files and hierarchical directories,

K. Shanmugam, MCA, AITS CC - Unit-2 Page 26

which are also known as folders. The file abstraction offers two important properties: files can vary in size and
can store arbitrary data (e.g., a short text document, a spreadsheet, a photo, or a two-hour movie). The
hierarchical directory abstraction allows a user to name each file and to organize files into meaningful groups.

The Disk Interface Abstraction

A disk device provides a block-oriented interface. That is, the hardware can only store and retrieve fixed-sized
blocks of data. Traditional disks define a block to consist of 512 bytes of data; to increase performance, some
newer disks offer blocks of 4096 bytes†. The blocks on a disk are numbered starting at zero (0, 1, 2,...). To
store data on a disk, the operating system must pass two items to the disk device: a block of data and a block
number

The File Interface Abstraction

An operating system contains a software module known as a file system that users and applications use to
create and manipulate files. Unlike a disk interface, a file system provides a large set of operations that the
operating system maps onto the underlying disk hardware.

The chief difference between the operations used with files and those used with disk hardware arises from the
transfer size. Unlike a disk device, a file system provides a byte-oriented interface.
NOTE: The interfaces used for persistent storage mechanisms follow one of two abstractions. Disk hardware
uses a block-oriented abstraction, and file systems use a byte-oriented abstraction.
Local And Remote Storage

We use the term local storage device to characterize a disk connected directly to a computer. Industry also
uses the term Directly Attached Storage (DAS). The connection occurs over a piece of hardware known as an
I/O bus, and all interaction between the processor and the disk occurs over the bus. Both electromechanical
disks and solid state disks connect over a bus, and either can provide local storage.
We use the term remote storage to characterize a persistent storage mechanism that is not attached directly
to a computer, but is instead reachable over a computer network

K. Shanmugam, MCA, AITS CC - Unit-2 Page 27

Two Types Of Remote Storage Systems

The first remote systems appeared in the 1980s, shortly after Local Area Networks (LANs) became available
and almost two decades before cloud data centers were invented. Interestingly, commercial systems for each
of the two remote storage paradigms appeared within the span of a few years:

 Byte-oriented remote file access

 Block-oriented remote disk access

Byte-oriented remote file access. In the 1980s, as organizations moved from shared departmental computers
to individual workstations that each had local storage, sharing files became inconvenient. When a group
collaborated on a document, they had to send copies to each other.

Block-oriented remote disk access. In the 1980s, systems known as diskless workstations became
commercially available. Such systems do not have local storage; they require the owner to purchase a storage
server that manages a disk for the workstation to use. When it needs to fetch or store a disk block, the
operating system on the diskless workstation sends a request over the network to a server.

NOTE: Commercial remote storage systems first appeared in the 1980s. Both remote file access mechanisms
and remote disk access mechanisms were in wide use before cloud data centers appeared.

Network Attached Storage (NAS)Technology

Three implementations of storage servers have been used:

 Host-based

 Server-based

 Specialized hardware

Host-based. A storage server consists of a computer that has network access, directly-attached local storage,
and software to handle requests that arrive over the network. In principle, any computer can act as a storage
server once server software has been loaded. Most operating systems already include software that allows a
user to share files.

Server-based. Using dedicated, high-speed server hardware can increase performance and allow a storage
server to scale beyond the capabilities of a host-based system. Increased processing power (i.e., more cores)
allows a server to handle many requests per second and a large memory allows the server to cache data in
memory.

Specialized hardware. To be useful in a cloud data center, a file server must offer both high performance and
durability. The performance requirements are obvious: a data center has many tenants, and each tenant may
choose to share files among many VMs and containers.

Industry has adopted the term Network Attached Storage (NAS) to refer to specialized systems that provide
scalable remote file storage systems suitable for a data center. The hardware used in a NAS system is
ruggedized to withstand heavy use

NOTE: Network Attached Storage (NAS) systems use specialized hardware and software to provide remote file
storage. The high performance and durability of NAS systems make them suitable for use in data centers.

K. Shanmugam, MCA, AITS CC - Unit-2 Page 28

Storage Area Network (SAN)Technology

Industry uses the term Storage Area Network (SAN‡)to describe a remote storage system that employs a
block-oriented interface to provide a remote disk interface. Analogous to NAS, the term SAN implies that the
system has optimized, ruggedized hardware and software that provide the performance and durability needed
in a data center.

Early SAN technology includes two components: a server and a network optimized for storage traffic. Some of
the motivation for a special network arose because early data centers used a hierarchical network
architecture optimized for web traffic (i.e., north-south traffic).

A second motivation for a separate storage network arose from capacity and latency requirements. In terms of
capacity, a hierarchical data center network means increasing the capacity of links at higher levels

NOTE: Storage Area Network (SAN) technology provides remote disk access. To handle scale, SANs use
specialized equipment. Early SANs use a specialized, dedicated network with low latency and high capacity to
keep storage traffic separate from other traffic.

Mapping Virtual Disks To Physical Disks

How does a SAN server work? The server has one or more local disks that it uses to store blocks on behalf of
clients. The server does not merely allocate one physical disk to each client. Instead, the server provides each
client with a virtual disk. When software creates an entity that needs disk storage (e.g., when a VM is
created), the software sends a message to the SAN server giving a unique ID for the new entity and specifying
a disk size measured in blocks.

When it receives a request to create a disk for a new entity, the server uses the client’s unique ID to form a
virtual disk map. The map has an entry for each block of the virtual disk, 0 1, and so on. For each entry, the
server finds an unused block on one of the local disks, allocates the block to the new entity, and fills in the
entry with information about how to access the block.

To an entity using the SAN server, the server provides the abstraction of a single physical disk. Therefore, the
entity will refer to blocks as, 0, 1, 2, and so on. When a read or write request arrives at the SAN server, the
server uses the client’s ID to find the map for the client

Hyper-Converged Infrastructure
The specialized networks used in early SANs were expensive. The move to leafspine networks and the
availability of much less expensive high-capacity Ethernet hardware changes the economics of SANs. Instead
of using a special-purpose network, SAN hardware has been redesigned to allow it to communicate over a
conventional data center network.
Industry uses the term converged network to describe a network that carries multiple types of traffic. To
characterize a data center network that carries all types of traffic, including SAN storage traffic, industry uses
the term Hyper-Converged Infrastructure (HCI).

NOTE: Because data centers shifted to the leaf-spine network architecture that has the capacity necessary for
storage traffic and the cost of Ethernet hardware fell, SAN producers changed from the use of special purpose
networks to a Hyper-Converged Infrastructure that sends all traffic over the data center network.

K. Shanmugam, MCA, AITS CC - Unit-2 Page 29

A Comparison Of NASand SANTechnology

The question arises: is NAS or SAN better for a cloud data center? The short answer is that neither is always
better. Each has advantages in some situations. The following sections highlight some of the advantages and
disadvantages of each technology

NAS Advantages AndDisadvantages

A NAS system allows apps to share individual files. A NAS system, such as NSF, can blend remote directories
into the local file hierarchy, hiding the differences and making remote file access transparent to a user.
Because it presents a normal file system interface with the usual open-read-write-close semantics, NAS works
equally well with any app.

A final advantage of NAS arises because the actual file system resides on a NAS server. Therefore, only file
data passes across the network. The server maintains all metadata (e.g., directories and inodes). In terms of
disadvantages, because each operating system defines its own type of file system, each NAS is inherently
linked to a particular OS. Thus, a user cannot choose to run an arbitrary operating system unless it supports
the NAS file system. Even if all computers accessing NAS and the NAS server run the same operating system,
they must all agree on accounting details. For example, because each file has an owner and access
permissions, all computers that access a file must agree on user IDs.

SAN Advantages And Disadvantages

The block access paradigm has the advantage of working with any operating system. A user can create a VM
running Windows and another VM running Linux. Using integers to identify blocks has the advantage of
making the mapping from a client’s block number to a block on a local disk extremely efficient. Of course, the
remote disk paradigm has some disadvantages. Because each entity has its own virtual disk, entities cannot
share individual files easily. Furthermore, although it works well for virtual machines, containers cannot use
a block-oriented interface directly. Finally, because a file system resides on an entity using a SAN, the file
system must transfer metadata over the network to the SAN site.

Object Storage

The previous sections describe two types of cloud storage technologies: block storage that uses the remote
disk paradigm (SAN) and byte-oriented storage that uses the remote file paradigm (NAS). The two paradigms
seem to suffice for all needs. A remote disk system allows an operating system to run the same as if the
computer has a local disk attached. A remote file system can be used to store and share any digital object,
including documents, images, recordings, and web pages. However, a remote file system mechanism
inherently depends on a particular operating system, and can only be accessed by apps that can run on the
operating system.

As cloud systems emerged, a question arose: can an alternative storage mechanism be devised that allows
arbitrary apps running on arbitrary operating systems to store and share arbitrary data items? The question
has been answered by object store or key-value store technologies†. An object store system has three
characteristics that make it especially popular in a cloud environment:

 Stores arbitrary objects

 Offers universal accessibility and scale

Remains independent of the operating system Stores arbitrary objects. Like a file system, an object store can
contain arbitrary objects, and objects can be grouped together into buckets, analogous to file folders.

Offers universal accessibility and scale. An object store uses a general-purpose interface that any app can
use, and scales to allow many simultaneous accesses, including apps in containers. Typically, an object store
offers a RESTful interface. That is, an object store employs the http protocol that a browser uses to access a
web page. Remains independent of the operating system. Unlike a NAS system, an object store does not
depend on a specific operating system or file system. Instead, an app running on an arbitrary operating
system can access the object store to save and retrieve objects, making it useful for both VMs and containers.

K. Shanmugam, MCA, AITS CC - Unit-3 Page 1

Automation and Orchestration
Automation

Introduction
It explains why cloud systems need automated support mechanisms. It examines aspects of automation,
including procedures that have been automated as well as conceptual levels of automation. Most important, it
explains why so many automation systems have arisen. The next chapter examines one example of
orchestration technology in detail.
Groups That Use Automation

Automation focuses on making tasks easier and faster for humans to perform. Cloud automation mechanisms
have been developed for three categories of users:

 Individual customers

 Large cloud customers

 Cloud providers

Individual customers. Individual subscribers often use SaaS apps, such as a document editing system that
allows a set of users to share and edit documents cooperatively. To make such services convenient, providers
typically offer access through a web browser or a dedicated app that the user downloads. The interfaces
presented to individuals hide details, allowing a user to focus on using the services.

Providers often offer ways for individuals to try more advanced services. For example, to encourage individuals
to create web sites, providers offer free trials with step-by-step instructions and a point-and-click web
interface. When a user makes a request, the provider may create a virtual machine or container, allocate
storage, configure network access, and launch web server software. The point is that when an individual uses
a point-and-click interface to access a service, the interface must be backed by underlying automated systems
that handle many chores on behalf of the individual.

Large cloud customers. Unlike a typical individual, an enterprise company or other organization that moves
to a public cloud needs tools to control and manage computing. Two types of automated tools are available for
large cloud customers. One type, available from the provider or a third party, allows a customer to download
and run the tools to deploy and manage apps. The next chapters explain examples, including Kubernetes,
which automates deployment and operation of a service built with containers, and Hadoop, that automates
MapReduce computations. The other type consists of tools offered by a provider that allow large customers to
configure, deploy, and manage apps and services without downloading software.

Cloud providers. Cloud providers have devised some of the most sophisticated and advanced automation
tools, and use them to manage cloud data centers. The next sections consider the scope of the problems that
providers face and the ways automation can help. When thinking about automated tools, remember that in
addition to building tools to configure, monitor, and manage the underlying cloud infrastructure, a provider
also creates tools that handle requests from cloud customers automatically. Tools are available that
accommodate requests from both individual customers and large organizational customers.

The Need For Automation In A Data Center

Consider the tasks of building and operating a large data center. In each case, the effort can be daunting.
After installing a raised floor, air conditioning facilities, and thousands of racks, equipment must be loaded
into each rack. Each piece of equipment must be connected to both a power source and to the data center
network. However, such installation is only the beginning. Each piece of equipment must be assigned a
network address, and the switches must be configured to forward packets along a shortest path from any
source to any destination, including destinations outside the data center. Each server must be configured to
run appropriate software. For example, a server that will host VMs must be configured to run a type 1
hypervisor.

After all the facilities have been installed and configured, operating a data center is much more complex than
operating IT facilities for a single organization. Four aspects of a cloud data center stand out.

 Extreme scale

 Diverse services

 Constant change

K. Shanmugam, MCA, AITS CC - Unit-3 Page 2

 Human error

Extreme scale. A cloud provider must accommodate thousands of tenants. Although some tenants will be
individuals, others will be major enterprise customers. Each enterprise customer may deploy dozens of VMs
and hundreds of containerized services. The total number of services can become extremely large.

Diverse services. Unlike an enterprise, a cloud data center provider allows each customer to choose software
and services to run. Consequently, the cloud data center may run software for thousands of services at the
same time.

Constant change. A data center provider must handle dynamically changing requirements, with the response
time dependent on the change. At one extreme, when a new tenant appears, the tenant must sign a contract
and plan how to migrate its data and computation to the cloud, which gives the provider ample time to
configure facilities for the new tenant. At the other extreme, a tenant can request a new VM or deploy a
container at any time, and the data provider must accommodate the request quickly.

Human error. Data center operators report that:

 Many problems in a data center can be traced to human error.

An Example Deployment

To understand data center operations, consider a simplistic example: deploying a VM. Previous chapters
describe some of the details. Figure 9.1 lists example steps a provider takes when deploying a single VM.

It should be obvious that performing each step manually will require a significant amount of time.
Consequently, automation is needed to perform operations quickly and to accommodate the scale of a data
center.

We can summarize:Because even a trivial procedure, such as deploying a VM, requires multiple configuration
steps, manual operation does not suffice —operating an entire data center efficiently requires automation.

What Can Be Automated?

The short answer is that because they involve the management of data and computer software, almost all
operational tasks in a data center can be automated. Recall, for example, that some data centers use a
“lights-out” approach in which automated systems run the data center.† The previous chapters describe
many facilities and services that a data center provider must manage. The following lists example items that
can be automated, and provides a short summary for each.

 Creation and deployment of new virtual resources The creation of new virtual machines and
containers; new virtual storage facilities, including virtual disk images (SAN) and initial contents of
virtual file systems (NAS); new virtual networks, including VLANS, IP subnets, IP forwarding, IP
multicast, and extended VLANs (VXLAN).

 Workload monitoring and accounting Measurement of the load on servers, storage facilities, and
networks; tracking each tenant’s resource use and computing charges; identification of hot spots;

K. Shanmugam, MCA, AITS CC - Unit-3 Page 3

long-term trends, including capacity assessment and predictions of when additional physical facilities
will be needed.

 Optimizations Optimizations for both initial deployments and subsequent changes; the initial
placement of VMs and containers to handle balancing the load across physical servers; minimization
of the latency between applications and storage, and minimization of network traffic; VM migration,
including migration to increase performance or to minimize power consumption.

 Safety and recovery Scheduled backups of tenant’s data; server monitoring; monitoring of network
equipment and fast re-routing around failed switches or links; monitoring of storage equipment,
including detecting failures of redundant power supplies and redundant disks (RAID systems);
automated restart of VMs and containers; auditing and compliance enforcement.

 Software update and upgrade Keeping apps and operating system images updated to the latest
versions; upgrading to new releases and versions of software as specified by a tenant; providing
facilities a tenant can use to update their private software and deploy new versions; aid in achieving
continuous deployment of a tenant’s apps.

 Administration of security policies Deploying network security across the data center in accordance
with the provider’s policies, including firewall facilities; protecting each tenant’s data and
computation; facilities for the management of secrets and encryption keys.

Levels Of Automation

Various models have been devised to describe the extent to which automation can be used in a data center.
Although no single model can capture all the possibilities, a basic model can help explain the extent to which
automation can be applied. Figure 9.2 breaks automation into five levels (plus a zero level for completely
manual operation).

Level 1: Automated preparation and configuration. Level 1 refers to the automation of tasks that are
performed before installation occurs. Industry sometimes uses the term offline to refer to such tasks because
they can occur before computation begins.

Level 2: Automated monitoring and measurement. Level 2 automation refers to monitoring a data center and
making measurements available to human operators. The items that can be monitored include both physical
and virtual resources. For example, in addition to servers, network links and switchs, and the disks used in
storage facilities, a data center owner usually monitors the power and cooling equipment. Monitoring often
focuses on performance, and includes the load on each server, the traffic on each link in the network, and the
performance of storage systems.

Level 3: Automated analysis of trends and prediction. Level 3 automation enhances level 2 monitoring by
adding analytic capabilities. Instead of merely using threshold values to trigger alerts, a level 3 system can
collect measurements over a long period and use software to analyze changes and trends. For example,
suppose that the average load on a given network link increases at a rate of 3% each month. As long as the
value remains below the alert threshold, a level 2 system will not report a problem. Furthermore, even if a
human operator looks at a report of link loads each month, the operator may not spot the trend amid all the
other links. Analytic software used at level 3 makes it possible to monitor thousands of links without missing
long-term trends. From a data center owner’s point of view, the key advantage of level 3 analysis lies in the
ability to predict needs, allowing the data center owner to plan ahead rather than waiting for a crisis to occur.

K. Shanmugam, MCA, AITS CC - Unit-3 Page 4

Level 4: Automated identification of root causes. Level 4 automation uses data gathered from monitoring
along with knowledge of both the data center infrastructure and layers of virtualization that have been added
to deduce the cause of problems. Deduction implies that level 4 automation employs Artificial Intelligence (AI)
technologies that can understand relationships and reason about cause and effect.

Level 5: Automated remediation of problems. Level 5 automation extends the ideas of a level 4 system by
adding automated problem solving. Remedial actions may be straightforward (e.g., restarting a VM that has
crashed or rebooting a storage server) or complicated (e.g., running a program to reconfigure network
forwarding for a particular destination or a set of destinations).

AIops: Using Machine Learning And Artificial Intelligence

Higher levels of automation require sophisticated software systems. For example, Levels 3 and above may use
machine learning (ML) software. The top levels may use additional forms of Artificial Intelligence (AI).

Industry uses the term AIops (Artificial Intelligence operations) to describe an automation system that uses AI
and can operate a data center without human intervention. When AIops was first proposed, the task of
operating a data center seemed too complex for AI to handle. However, AI automation systems continue to
gain capabilities.

A Plethora Of Automation Tools

Dozens of tools and technologies have been created to automate various aspects of data center operations.
Many questions arise concerning the tools. Which is the best?

Does a given data center need to use more than one? Do they all work well together, or are there cases where
two or more tools attempt to follow conflicting choices? Perhaps the most puzzling question is: “Why have so
many tools been designed?” The answer lies in two observations:

 Operating a data center is an extremely complex task

 It is easiest to automate each small part of the task independently

Management complexity. As we have seen, data center operations encompass a broad set of facilities and
services, both physical and virtual. In addition, a data center owner must manage a broad variety of
computation, networking, and storage mechanisms in the presence of continuous change. Despite the
breadth of services and large scale, complexity also arises because no optimum choices exist. For example,
consider VM placement. An operator may have multiple goals. One goal might focus on avoiding hot spots. To
achieve the goal, a new VM should be placed on a lightly-loaded server. A second goal might focus on
minimizing network traffic. To achieve the goal, a new VM should be placed near other VMs owned by the
same tenant. A third goal might focus on keeping VMs near the storage server the VM will use. A fourth goal
might focus on placing active VMs on a subset of servers, making it possible to reduce power costs by
powering down some servers. Although each goal seems laudable, finding a location that optimizes all of them
simultaneously may be impossible. The point is:

NOTE: A data center owner may have multiple, conflicting goals. Even with an automated system, it may be
impossible to find a way to satisfy all goals simultaneously.

Automating each small task independently. Although it may be impossible to build an automation that
optimizes all goals, it is possible to design small tools that each help automate one small task. Such tools can
be especially useful if they relieve humans from tasks that involve tedious details. Human error is a source of
many problems, and a tool is less prone to making errors. For example, a tool does not make typing errors
when configuring a device or service.

NOTE: Many data center automation tools exist because each tool handles one small task. Small tools work
well for tasks that involve details because using a tool can reduce errors.

Automation Of Manual Data Center Practices

Another reason so many data center automation tools exist arose as a consequence of earlier operational
procedures. That is, many tools are designed to automate tasks that humans had been performing manually.
To understand the tools, one must know how humans operated data centers. Figure 9.3 illustrates an
example workflow for manual configuration.

K. Shanmugam, MCA, AITS CC - Unit-3 Page 5

A key principle underlies the division into steps: a given human will not have expertise across all aspects of
data center operations. As the example illustrates, steps in the workflow are chosen to allow each step to be
handled with limited expertise. Thus, a human who configures the network does not need to know how to
configure a VM or storage.

The example workflow helps explain another aspect of automation tools, their limited scope. Tools are created
to help humans perform operational tasks. Because each human operator has limited expertise, a tool
designed to help an operator focuses on oneaspect of data center operations. As a result, although tools help
automate each step, the overall workflow remains the same. We can summarize:

NOTE: Because automation tools evolved to help human operators who each have limited expertise, each tool
tends to focus on one aspect of data center operations.

Zero Touch Provisioning And Infrastructure As Code

One particular use of automation has emerged as necessary for large scale: automated configuration. As we
have seen, even a trivial operation, such as deploying a VM, requires a significant amount of configuration. A
cloud provider must configure servers, networks, storage, databases, and software systems continuously.
Furthermore, each vendor creates their own specialized configuration language, and a data center contains
hardware and software from many vendors. Consequently, many automation systems have been devised to
handle configuration.

The first step toward automated configuration is straightforward. Instead of requiring a human to learn
details, an automation tool can allow humans to specify items in a vendor-independent language. The tool
reads the specification and translates the requirements into the vendor-specific configuration language, and
passes the appropriate commands to the hardware or software system being configured. In other words, a tool
allows a human to specify the values to be used without specifying how to install those values in the
underlying systems. The operator does not need to interact with the system being configured.

Industry uses the term Zero Touch Provisioning (ZTP) and the more awkward term Infrastructure as Code
(IaC) to refer to a process where a data center operator creates a specification and uses software to read the
specification and configure underlying systems. Two approaches have been used: push and pull. The push
version follows the traditional pattern of installing a configuration: a tool reads a specification and performs
the commands needed to configure the underlying system. The pull version requires an entity to initiate
configuration. For example, when a new software system starts, the system can be designed to pull
configuration information from a server.

Declarative, Imperative, And Intent-Based

Specifications The specifications used with automated tools can take many forms, and the question arises,
“What form should be used?” Two aspects have become important:

 Declarative vs. imperative

K. Shanmugam, MCA, AITS CC - Unit-3 Page 6

 Intent-based vs. detailed

Declarative vs. imperative. An imperative specification states an action to be performed. For example, an
imperative specification to assign an IP address to a VM might have the form:

 Assign IP address 192.168.1.17 to the VM’s Ethernet interface

Although they may seem to work, imperative specifications follow the paradigm of early binding by specifying
operations for the underlying system and values to be used. The result can be misleading and ambiguous.
What happens, for example, if a VM does not have an Ethernet interface, but instead has some other type of
network interface? What happens if a VM has multiple Ethernet interfaces?

A declarative specification focuses on the result rather than the steps used to achieve it. For example, a
declarative specification for IP address assignment might have the form:

 Main IP address: 192.168.1.17

Notice that a well-stated declarative specification handles the case where a VM has a non-Ethernet network
interface as well as the case there a VM has multiple network interfaces.

Intent-based vs. detailed. Industry uses the term intent-based to characterize a specification that allows a
human to state the desired outcome without giving details about how to achieve the desired outcome or
specific values to be used. For example, an intent-based specification for IP address assignment might state:
 Each VM receives a unique IP address on the tenant’s IP subnet

without specifying the IP address to be used on each VM. Intent-based specifications offer generality and
flexibility. Because they do not dictate steps to be taken, intentbased specifications allow many possible
implementations to be used. Because they do not dictate values to be used, intent-based specifications allow
configuration tools the freedom to assign any values that produce the desired outcome and thereby encourage
innovation. The point is:

Using a declarative, intent-based configuration specification can help eliminate ambiguity and increase both
generality and flexibility. An intent-based specification gives tools freedom to choose an implementation that
produces the desired outcome.

The Evolution Of Automation Tools

Because cloud is new, automation tools and technologies continue to evolve. For example, consider container
deployment and networking. Kubernetes, described in the next chapter, provides a large set of tools that can
be used to manage containerized software deployments. Various additional tools and technologies have been
created to control network communication among containers. By default, Kubernetes assigns a unique IP
address to each group of containers (called a pod). Doing so means network forwarding can be arranged to
allow containers in a group to communicate and run microservices, even if the containers run on multiple
servers. Docker software takes the approach of using a virtual layer 3 bridge to allow containers to
communicate. Other tools are available that can configure an overlay network for containers such that each
host has a separate IP subnet and each container on a host has a unique address. Finally, a tool is available
to provide secure network communication for containers and microservices. The point is that even
fundamentals, such as container networking, continue to evolve.

Automated Replication And Parallelism

Introduction

It considers the topic of orchestration in which an automated system configures, controls, and manages all
aspects of a service. The chapter examines one orchestration technology in detail. A later chapter explains the
microservices programming paradigm that orchestration enables.

The Legacy Of Automating Manual Procedures

As the previous chapter points out, the easiest way to build an automation tool consists of starting with the
manual processes humans use and looking for ways to have software handle some steps automatically. The
cartoonist Rube Goldberg understood our tendency to automate manual processes, and made fun of the

K. Shanmugam, MCA, AITS CC - Unit-3 Page 7

consequences in some of his cartoons. In one cartoon, for example, Goldberg shows an automatic
transmission. Surprisingly, Goldberg’s vehicle still has a gearshift lever. When shifting is required, a large
mechanical arm extends upward from the floorboards of the vehicle, the mechanical hand grabs the gearshift
lever, and the arm moves the lever exactly the way a human driver would. We laugh at such nonsensical
contraptions, but there is an underlying point:

NOTE: Automating a manual process can lead to a clumsy, inefficient solution that mimics human actions
instead of taking an entirely new approach.

Orchestration: Automation With A Larger Scope

In the case of cloud data centers, early automation systems derived from manual processes led to separation
of functionality, with some tools helping deploy virtualized servers, others handling network configuration,
and so on. The question arose: can designers find a way to build more comprehensive systems that cross
functional boundaries and handle all aspects needed for a service? The move to containers made the question
especially relevant for three reasons:

 Rapid creation

 Short lifetime

 Replication

Rapid creation. The low-overhead of containers means that it takes significantly less time to create a
container than to create a VM. An automated system is needed because a human would take an intolerably
long time performing the steps required to create a container.

Short lifetime. Unlike a VM that remains in place semi-permanently once created, a container is ephemeral.
A container resembles an application process: a typical container is created when needed, performs one
application task, and then exits.

Replication. Replication is key for containers. When demand for a particular service increases, multiple
containers for the service can be created and run simultaneously, analogous to creating multiple concurrent
processes to handle load. When demand for a service declines, unneeded container replicas can be
terminated.

Industry uses the term orchestration to refer to an automated system that coordinates the many subsystems
needed to configure, deploy, operate, and monitor software systems and services.

We can summarize: Unlike an automation tool that focuses on one aspect of data center operations, an
orchestration system coordinates all the subsystems needed to operate a service, including deploying
containers and configuring both network communication and storage.

In addition to automated configuration and deployment, a container orchestrator usually handles three key
aspects of system management:

 Dynamic scaling of services

 Coordination across multiple servers

 Resilience and automatic recovery

Dynamic scaling of services An orchestrator starts one or more copies of a container running, and then
monitors demand. When demand increases, the orchestrator automatically increases the number of
simultaneous copies. When demand decreases, the orchestrator reduces the number of copies, either by
allowing copies to exit without replacing them or by terminating idle copies.

Coordination across multiple servers. Although multiple containers can run on a given physical server,
performance suffers if too many containers execute on one server. Therefore, to manage a large-scale service,
an orchestrator deploys copies of a container on multiple physical servers. The orchestrator monitors
performance, and balances the load by starting new copies on lightly-loaded servers.

Resilience and automatic recovery. An orchestrator can monitor an individual container or a group of
containers that provide a service. If a container fails or the containers providing a service become
unreachable, the orchestrator can either restart the failed containers or switch over to a backup set, thereby
guaranteeing that the service remains available at all times.

K. Shanmugam, MCA, AITS CC - Unit-3 Page 8

Kubernetes: An Example Container Orchestration System

Various groups have designed orchestration systems that manage the deployment and operation of services
using containers. We will examine a technology that was developed at Google and later moved to open source.
The technology has become popular. Known as Kubernetes and abbreviated K8s†, the technology manages
many aspects of running a service‡. Figure 10.1 lists seven features of Kubernetes.

Service naming and discovery. Kubernetes allows a service to be accessed through a domain name or an IP
address. Once a name or address has been assigned, applications can use the name or address to reach the
container that runs the service. Typically, names and addresses are configured to be global, allowing
applications running outside the data center to access the service.

Load balancing. Kubernetes does not limit a service to a single container. Instead, if traffic is high,
Kubernetes can automatically create multiple copies of the container for a service, and use a load balancer† to
divide incoming requests among the copies.

Storage orchestration. Kubernetes allows an operator to mount remote storage automatically when a
container runs. The system can accommodate many types of storage, including local storage and storage from
a public cloud provider.

Optimized container placement. When creating a service, an operator specifies a cluster of servers (called
nodes) that Kubernetes can use to run containers for the service. The operator specifies the processor and
memory (RAM) that each container will need. Kubernetes places containers on nodes in the cluster in a way
that optimizes the use of servers.

Automated recovery. Kubernetes manages containers. After creating a container, Kubernetes does not make
the container available to clients until the container is running and ready to provide service. Kubernetes
automatically replaces a container that fails, and terminates a container that stops responding to a user-
defined health check.

Management of configurations and secrets. Kubernetes separates management information from container
images, allowing users to change the information needed for configuration and management without
rebuilding container images. In addition to storing conventional configuration information, such as network
and storage configurations, Kubernetes allows one to store sensitive information, such as passwords,
authentication tokens, and encryption keys.

Automated rollouts and rollbacks. Kubernetes allows an operator to roll out a new version of a service at a
specified rate. That is, a user can create a new version of a container image, and tell Kubernetes to start
replacing running containers with the new version (i.e., repeatedly terminate an existing container and start a

K. Shanmugam, MCA, AITS CC - Unit-3 Page 9

replacement container running the new image). More important, Kubernetes allows each new container to
inherit all the resources the old container owned.

Limits On Kubernetes Scope

Although it handles many functions, Kubernetes does omit some aspects of deploying and managing
containerized software. Kubernetes

 Does not focus on a specific application type

 Does not manage source code or build containers

 Does not supply event-passing middleware

 Does not handle monitoring or event logging

Does not focus on a specific application type. Kubernetes is application agnostic in the sense that it can be
used for an arbitrary type of application and an arbitrary programming paradigm. For example, it can be used
to deploy stateful or stateless applications. It can be used with serverless or traditional client-server
paradigms, and can support arbitrary workloads. Although it increases generality, remaining independent of
the application type means that Kubernetes does not include special facilities for any specific type.

Does not manage source code or build containers. Kubernetes relies on conventional container technology
to handle source code and build containers. Throughout the chapter, we will assume the use of Docker
containers. Thus, when it deploys a container on a node, we will assume the node runs Linux along with the
Docker software needed to run a container (i.e., dockerd).

Does not supply event-passing middleware. One programming paradigm used with containers passes
asynchronous events among containers. Kubernetes does not supply the middleware needed to pass events,
but instead assumes a programmer will use an extant middleware facility.

Does not handle monitoring or event logging. Kubernetes monitors and controls containers, but does not
provide built-in mechanisms to collect, log, or report measurements. Some proof-of-concept systems are
available for monitoring, but their use is optional.

The Kubernetes Cluster Model

Kubernetes is a sprawling technology that comprises many software components. To add further complexity,
the components allow one to configure the system in a variety of ways, and various sources use inconsistent
terminology when describing Kubernetes. As a result, Kubernetes can be difficult to understand, especially for
beginners. One important key to understanding the software lies in starting with a conceptual model that
clarifies the overall purpose and structure of the system. The model helps explain how individual software
components fit into the overall picture.

Kubernetes provides container orchestration, which means it automates the deployment and operation of a
set of one or more containers to provide a computation service.

Software in a cluster can be divided into two conceptual categories: one category contains software invoked by
the owner of the cluster to create and operate containers. The other category contains software invoked by
users of the cluster to obtain access to a container. Figure 10.2 depicts the conceptual organization of a
Kubernetes cluster, and shows the roles of an owner and users.

K. Shanmugam, MCA, AITS CC - Unit-3 Page 10

The point is: When studying Kubernetes software components, it is important to remember that an owner
invokes some software components to create and operate the cluster, and users invoke other components
when they access the cluster.

Kubernetes Pods

According to the conceptual model above, Kubernetes deploys a set of one or more containers. In fact,
Kubernetes deploys one or more running copies of a complete application program. Many applications do
indeed consist of a single container. However, some programming paradigms, such as the microservices
paradigm†, encourage a software engineer to divide an application into small autonomous pieces that each
run as a container. The pieces are tightly-coupled which means they are designed to work together, usually by
communicating over the network. To run a copy of a multicontainer application, all containers for the
application must be started, and the network must be configured to provide communication.

Kubernetes uses the term pod to refer to an application. Thus, a pod can consist of a single container or
multiple containers; single container pods are typical. A pod defines the smallest unit of work that Kubernetes
can deploy. When it deploys an instance of a pod, Kubernetes places all containers for the pod on the same
node.

In terms of networking, Kubernetes assigns an IP address to each running pod. If a pod has multiple
containers, all containers in the pod share the IP address. Communication among containers in the pod
occurs over the localhost network interface, just as if the containers in the pod were processes running on a
single computer. The use of a single IP address for all containers means a programmer must be careful to
avoid multiple containers attempting to use the same transport layer port. For example, if one of the
containers in a pod uses port 80 for a web server, none of the other containers will be allowed to allocate port
80.

Pod Creation, Templates, And Binding Times

How does a programmer create a pod? Kubernetes uses a late binding approach in which a programmer
creates a template for the pod (sometimes called a pod manifest) that specifies items to use when running the
pod. A template assigns a name to the pod, specifies which container or containers to run, lists the network
ports the pod will use, and specifies the version of the Kubernetes API to use with the pod. A template can use
yaml or json formats; Figure 10.3 shows an example.

K. Shanmugam, MCA, AITS CC - Unit-3 Page 11

When it deploys a pod on a node, Kubernetes stores information from the template with the running pod.
Thus, changes to a template apply to any new pods that are created from the template, but have no effect on
already running pods. In particular, the metadata specifications in the example are kept with each running
pod, including labels that contain information useful for humans. For example, the purpose label has no
intrinsic meaning, but a copy is stored with a pod when the pod is created from the template, meaning a
running pod will have a label purpose with the value web-server. Tools allow humans to search for running
pods with a label purpose=web-server. We will see that Kubernetes software components use template
information stored with the pod to control and operate the pod.

Init Containers

In addition to containers that perform the intended function of the pod, Kubernetes allows a designer to
include one or more init containers. All init containers in a pod must complete successfully before the main
containers are started. As the name implies, an init container is intended to perform initialization that might
be needed before the main containers run.

One particular form of initialization is especially pertinent to containers: testing the environment to ensure
that the facilities the main containers need are available. The point is to guarantee that the main containers
will not encounter problems. For example, a main container may have external mount points that connect to
external storage. An init container can check the external storage and either exit normally if the storage is
available, or exit with an error status if the storage is unavailable. Similarly, an init container can check
repositories or other computational services that containers in the pod use.

Why not incorporate checks into the main containers? There are multiple reasons, but one stands out: a given
container may only require some facilities in the environment. If a container finds the facilities it needs, the
container will start running. However, other containers may fail because the facilities they need are not
available, leaving the pod partially running. Serializing the tests and completing them before any containers
run avoids a problem in which some containers in the pod start successfully and others do not.

 The point is: A pod designer uses a set of init containers to check the environment before the main
containers of the pod execute. Doing so guarantees that either all the main containers in a pod start
successfully or none of them start.

Kubernetes Terminology: Nodes And Control Plane

Because the software is designed to run in a data center, Kubernetes uses a broad definition of a node to be a
computational engine on which software runs. A node can be a physical server, but is likely to be a virtual
machine. When an owner creates a cluster, the owner specifies a set of nodes that can be used to run the
cluster, and Kubernetes spreads containers from the cluster across the nodes.

K. Shanmugam, MCA, AITS CC - Unit-3 Page 12

Kubernetes uses the term Control Plane (also known by the term master) to refer to the software components
that an owner uses to create and operate containers. When the control plane software runs on a node, the
node is known as a master node.

Kubernetes made an unfortunate choice of terminology by calling a node that Kubernetes uses to run
containers a Kubernetes node. Some sources use the term worker node, which helps clarify the meaning. We
will use the terms master node and worker node to make the purpose of each node explicit.

A typical Kubernetes cluster runs a single copy of the control plane components, and all control-plane
components run on a single master node. It is possible to create a high-availability cluster by running
multiple copies of the control plane software on multiple master nodes. Because such deployments represent
an exception, our discussion will assume that only one copy of the control plane software runs and all the
control plane software components run on a single master node.

Control Plane Software Components

The Kubernetes control plane software consists of five main software components. Figure 10.4 lists the names
and purpose of each.

API server. Sometimes labeled the kube-api-server, the API server provides an interface to all the control
plane components. Whenever a human or a management app needs to interrogate or control a cluster,
communication goes through the API server.

Scheduler. Sometimes labeled the kube-scheduler, the Scheduler handles the assignment of pods to nodes in
the cluster. It watches for a pod that is ready to run but has not yet been assigned to a node. It then chooses
a node on which to run the pod and binds the pod to the node. The Scheduler remains executing after the
initial deployment of pods, which allows Kubernetes to increase the number of pods in the cluster
dynamically.

Cluster State Store. The Cluster State Store holds information about the cluster, including the set of nodes
available to the cluster, the pods that are running, and the nodes on which the pods are currently running.
When something changes in the cluster, the Cluster Store must be updated. For example, when a pod is
assigned to a node, the Scheduler records the assignment in the Cluster Store.

Kubernetes uses the etcd key-value technology as the underlying storage technology. Etcd is a reliable
distributed system that keeps multiple copies of each key-value pair and uses a consensus algorithm to
ensure that a value can be retrieved even if one copy is damaged or lost.

Controller Manager. Sometimes called the kube-controller-manager, the Controller Manager component
consists of a daemon that remains running while the cluster exists. The daemon uses a synchronous
paradigm to run a set of control loops that are sometimes called controllers†. Kubernetes includes useful
controllers, such as a Replication Controller, Endpoints Controller, and Namespace Controller. In addition to
running controllers, the Controller Manager performs housekeeping functions such as garbage collection of
events, terminated pods, and unused nodes.

Cloud Controller Manager. The Cloud Controller Manager provides an interface to the underlying cloud

provider system. Such an interface allows Kubernetes to request changes and to probe the underlying cloud

system when errors occur. For example, Kubernetes may need to request changes to network routes or

K. Shanmugam, MCA, AITS CC - Unit-3 Page 13

request storage system mounts. The interface also allows Kubernetes to check the status of hardware. For

example, when a node stops responding, Kubernetes can check whether the cloud provider lists the node as

having failed.

Communication Among Control Plane Components

Recall that we assume a cluster has a single master node that runs the control plane components for the

cluster. Control plane components communicate with one another, and some components communicate with

outside endpoints. All internal communication goes through the API server. With the exception of the Cloud

Controller Manager, which uses a provider-specific protocol to communicate with the cloud system, external

communication also goes through the API server. Thus, we think of the API server as forming a central

switchboard. Figure 10.5 illustrates the idea by showing communication paths among the control plane

components on a master node.

Worker Node Software Components

Each worker node runs software components that control and manage the pods running on the node. In fact,

a pod is merely an environment, so the software components manage the containers that comprise each pod.

Figure 10.6 lists the main software components.

Service Proxy. Sometimes called the kube-proxy, the Service Proxy is responsible for configuring network

forwarding on the node to provide network connectivity for the pods running on the node. Specifically, the

Service Proxy configures the Linux iptables facility.

Kubelet. The Kubelet component provides the interface between the control plane and the worker node. It

contacts the API server, watches the set of pods bound to the node, and handles the details of running the

pods on the node. Kubelet sets up the environment to ensure that each pod is isolated from other pods, and

interfaces with the Container Runtime system to run and monitor containers. Kubelet also monitors the pods

running on the node, and reports their status back to the API server.

K. Shanmugam, MCA, AITS CC - Unit-3 Page 14

Kubelet includes a copy of the cAdvisor software that collects and summarizes statistics about pods. Kubelet

then exports the summary through a Summary API, making them available to monitoring software (e.g.,

Metrics Server).

Container Runtime. Kubernetes does not include a Container Runtime system. Instead, it uses a

conventional container technology, and assumes that each node runs conventional Container Runtime

software. Although Kubernetes allows other container systems to be used, most implementations use Docker

Engine. When Kubernetes needs to deploy containers, Kubelet interacts with the Container Runtime system

to perform the required task.

Kubernetes Features

The previous sections only cover basic concepts. Kubernetes contains many additional features and facilities,

some of which are quite sophisticated and complex. The following highlights some of the most significant.

 Replicas. When deploying a cluster, an owner can specify and control the number of replicas for the

pod. In essence, an owner can explicitly control how an application scales out to handle higher load.

 Deployments. Kubernetes uses the term Deployment to refer to a specific technology that offers an

automated technology for scale out. Like other Kubernetes facilities, Deployments follow the intent-

based approach. An owner specifies the desired number of replicas and the Deployment system

maintains the required number of replicas automatically.

 StatefulSets. The StatefulSets facility allows an owner to create and manage stateful applications. A

user can deploy a set of pods with guaranteed ordering. Each pod in the set is assigned a unique

identity, and the system guarantees that the identity will persist.

 DaemonSet. The DaemonSet facility allows an owner to run a copy of a pod on all nodes in a cluster

(or some of them). As the name implies, the facility is typically used to deploy a permanently-running

daemon process that other containers on the node can use.

 Garbage Collection. Kubernetes objects have dependencies. For example, a Replicaset owns a set of

pods. When the owner of an object terminates, the object should also be terminated (e.g., collected).

The Garbage Collection facility allows one to set dependencies and specify how and when terminated

objects should be collected.

 TTL Controller for Finished Resources. The TTL Controller allows an owner to specify a maximum time

after an object has finished (either terminates normally or fails) before the object must be collected.

The value is known as a Time-To-Live (TTL), which leads to the name of the facility.

K. Shanmugam, MCA, AITS CC - Unit-3 Page 15

 Job. The job facility creates a specified number of pods, and monitors their progress. When a specified

number of the pods complete, the Job facility terminates the others. If all pods exit before the required

number has been reached, the Job facility restarts the set. As an example, the facility can be used to

guarantee that one pod runs to completion.

 CronJob. The CronJob facility allows an owner to schedule a job to be run periodically (e.g., every

hour, every night, every weekend, or once a month). The idea and the name are derived from the Unix

cron program, and the CronJob facility uses the same specification format as cron.

 Services. The Services facility allows an owner to create a set of pods and specify an access policy for

the set. In essence, the Services facility hides the details of individual pods and passes each request to

one of the pods automatically. Decoupling a Service from the underlying pods allows pods to exit and

restart without affecting any apps that use the service. The facility works well for a microservices

architecture, as described.

For many tasks, Kubernetes offers a choice between two approaches: the ability to issue explicit, detailed

commands or the use of an automated system that handles details.

We can summarize: Kubernetes offers many facilities, and often allows one to choose between a mechanism

that offers explicit control and a mechanism that handles the task automatically.

K. Shanmugam, MCA, AITS CC - Unit-3 Page 16

K. Shanmugam, MCA, AITS CC - Unit-4 Page 1

Unit - 4

The MapReduce Paradigm

Introduction

It explains the MapReduce paradigm, a widely-used approach to create applications that can scale.

MapReduce is one of the earliest software designs that has been adopted for use in cloud systems. We will

consider how it works and why it is especially appropriate for a cloud environment. Successive chapters in

this part of the text explain other software designs used to build cloud applications, including microservices

and the serverless paradigm.

Software In A Cloud Environment

The move to cloud computing has raised many questions about software. How should new software be

designed for a cloud environment? Are new programming languages needed? What algorithms work best, and

can better algorithms be designed for a cloud? Do the paradigms and tools used to build conventional

software work for the cloud, or are new paradigms and tools needed? Will dynamically loaded libraries and

related technologies work in the cloud? How should apps be structured to optimize performance in a cloud?

Cloud-Native Vs. Conventional Software

It many seem that the questions about software are moot. After all, a Virtual Machine can run a conventional

operating system. If a VM in the cloud runs the same operating system as a conventional computer, most

apps can be transported from the computer to the VM without being rewritten. In fact, most apps can be

transferred to the VM in binary form.

NOTE: If a VM runs the same operating system as a conventional computer, apps that run on the computer

will run on the VM without being recompiled.

In the case of cloud computing, industry uses the term cloud-native software to refer to software that has

been designed specifically for a cloud environment. The search for ways to build cloud-native software has

been spurred by optimism that new software may yield significant benefits, such as:

 Improved security

 Reduced software flaws

 Enhanced performance

 Increased scalability

 Higher reliability.

Improved security. Cloud infrastructure introduces entirely new security weaknesses. Perhaps new

programming paradigms and tools could help software engineers avoid the weaknesses and make software

more secure.

Reduced software flaws. The flaws in current software systems are well known. Perhaps new tools and

paradigms could help software engineers build cloud software that has fewer flaws.

Enhanced performance. Although it is possible to port extant software to the cloud by running a VM, the

software is not designed to exploit cloud facilities. Perhaps the software community can find ways to build

cloud-native software that computes answers more quickly than conventional software.

Increased scalability. A cloud offers extreme parallelism. Perhaps software engineers can find ways to build

systems that scale to handle large numbers of users.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 2

Higher reliability. In addition to increasing scale, parallelism offers a chance to increase reliability. Perhaps

software could arrange to perform a computation on multiple computers at the same time, using a consensus

algorithm to select the final answer.

Using Data Center Servers For Parallel Processing

One of the most significant differences between the hardware in a data center and a conventional computer

lies in the amount of simultaneous processing power available. A conventional computer has a few cores, and

a data center contains many physical servers that each have many cores. Thus, the hardware in a data center

should be able to perform a large computation in a fraction of the time required by the hardware in a single

computer. The problem must be divided into pieces, the pieces must each be assigned to a separate

processor, and the results must be collected. The approach has been used quite successfully to solve large

scientific problems.

Exploiting parallelism to solve a single problem requires three conceptual steps that form the basis for most

parallel processing technologies.

 Partitioning

 Parallel computation

 Combination of results

Partioning. A problem must be divided into subproblems, such that each subproblem can be handled

separately. For some problems, partitioning is difficult, but for others, it can be easy and fast. Many image

processing problems fall into the easy category. Consider, for example, searching a high-resolution radio

telescope image for a desired artifact. If N processors are available, the image can be divided into N

subimages, and each can be sent to one processor. In essence, an image is a rectangular array of pixels that

can be divided into several smaller rectangular arrays.

Parallel computation. In the second phase, processors work simultaneously on their part of the problem. If

the subproblems can be solved independently, the processors can work simultaneously at full speed. Thus, if

a single processor takes time T to solve a problem, N processors working simultaneously can solve the

problem in time T/ N. Using parallel processing in a data center seems especially exciting because a data

center has thousands of processors. If a processing task takes an hour, using 60 processors could reduce the

time to a minute; using 600 processors could reduce the time to less than 10 seconds.

Combination of results. In most cases, once the subproblems have been solved, the results must be

combined to produce a final answer. In the case of searching a telescope image, for example, the artifact may

be detected in multiple subimages. More important, the artifact may occur along a border between two

subimages, causing two of the processors to report a partial discovery. Thus, combining the results requires a

final processing step to check results along the borders between subimages.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 3

Tradeoffs And Limitations Of The Parallel Approach

Although it works well for some computation, the parallel approach has drawbacks that make it unsuitable

for others. Five drawbacks stand out.

 Unsplittable problems

 Limited parallelism

 Resource use and cost

 Competition from databases

 Communication overhead

Unsplittable problems. The parallel approach does not work well for problems that cannot be easily

partitioned. In some cases, the computation required to divide the problem into independent subproblems

takes more time than parallelism saves.

Limited parallelism. Recall that when using N processors the processing time is T/ N. Thus, as the number

of processors increases, the time decreases. However, increasing N means dividing a problem into smaller and

smaller pieces. At some point, smaller granularity becomes useless (e.g., dividing an image into individual

pixels makes no sense).

Resource use and cost. Because a cloud provider charges for computational resources, using N processors

may cost N times as much as one processor. Furthermore, the user’s contract may place a limit on the

number of simultaneous processors in use. Interestingly, in the best case, as the number of simultaneous

processors increases, the time a processor is used will decrease.

Competition from databases. The question arises: is it worth building specialized software to implement the

split, process, and combine steps needed for parallel processing? Researchers David DeWitt and Michael

Stonebreaker have presented evidence and analysis that shows commercially-available software systems can

handle many problems as well as specialized parallel systems. In particular, a modern Database Management

System (DBMS), which is sometimes called a Relational Database Management System (RDBMS), is designed

to use multiple servers to perform database operations in parallel automatically, without requiring specialized

software. Moreover, many data processing problems can be handled by database operations.

Communication overhead. Sending traffic over a network may present the most significant drawback of the

parallel approach. Many computations are I/O-bound, which means a computer spends much more time

reading the input data from a file and writing output data to a file than it does performing actual

computations. When splitting the problem, data must be transferred over the network to each of the N

processors being used. In the worst case, the software performing the split must obtain the data from a

remote storage server, and then send each piece to other storage servers. As computing proceeds, each of the

processors must read its piece of the data from one of the storage servers. Consequently, the data will cross

the network twice. For an I/Obound computation, the extra I/O may mean that using a parallel approach

takes longer than a non-parallel approach.

The MapReduce Programming Paradigm

Sometimes called an algorithm, the MapReduce programming paradigm extends the basic concept of parallel

processing in a significant way. Instead of using a single processor to combine results, MapReduce uses

parallel processing.

The data has already been split among a set of processors, so why not have each of them perform the combine

step after performing the processing step? The answer is that in step two, each processor produces a set of

results, but in the third step, results from all the processors must be coordinated and combined to produce

the final answer. A trivial example will illustrate the combine step. After using the example to review basics,

we will discuss alternative designs and tradeoffs.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 4

Consider the problem of counting the occurrence of words in a textbook. That is, for each word that appears

in the book, the output will list a count of how many times the word occurs. As one might expect, articles,

prepositions, and conjunctions will occur most frequently. For example, Figure 11.2 lists the counts of the

eight words that occur most frequently in one book.

How can parallel processing be used to compute the frequency of words? Assume the book is divided into N

files, where each file contains the text for a single chapter. One way to split the computation among multiple

processors consists of assigning each chapter to a processor. The result of the computation will be N files,

where each file contains a list of words in the chapter along with a count of how many times the word occurs

in the chapter. For example, Figure 11.3 shows the top eight words on the lists from the first three chapters of

a textbook.

The answer lies in redistributing the chapter summaries to a set of K processors. For example, we might

decide to run the combination algorithms on five parallel processors and use the first letter of each word as a

way to divide words among the five. We might assign words starting with the letters A, B, C, D, and E to

processor 1, words starting with F, G, H, I, and J to processor 2, and so on. Figure 11.4 lists the division.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 5

MapReduce uses the term Map to refer to computation performed on the first set of processors, the term

Shuffle to refer to the redistribution of data items to a second set of processors, and the term Reduce to refer

to the processing performed on the second set of parallel processors. Figure 11.5 illustrates the five steps

involved in MapReduce processing.

In the figure, data flows left-to-right through each of the labeled steps. Initially, all the data arrives at the Split

step, which divides the data among Map processors. The Shuffle step occurs between Map processing and

Reduce processing.

Mathematical Description of MapReduce

Splitting Inputs

K. Shanmugam, MCA, AITS CC - Unit-4 Page 6

Parallelism And Data Size

For our trivial example of counting words in a book, the use of parallel processing may seem irrelevant.

Indeed, the computation can easily be handled by a single computer. The use of parallelism and a MapReduce

approach merely represents unwarranted overhead. In many large problems, however, using parallelism can

be justified because the problem involves a huge amount of data and both the Map and Reduce steps involve

complex computation.

The amount of computation required for the Map and Reduce steps must be considered as well as the

importance of obtaining results quickly and the cost. The point is:

NOTE: Programmers should remain aware that MapReduce is only intended for problems that involve complex

processing on extremely large volumes of data. When applied to smaller problems, MapReduce merely

introduces unnecessary overhead.

Data Access And Data Transmission

A more efficient approach obtains the size of the data from the underlying storage system without actually

reading the data. Furthermore, if the Map processors can each access the storage system directly, the only

data that needs to pass from the Split computation to a Map processor consists of an object name and a

range of bytes in that object. Of course, placing processing near the data can also reduce the load on the

network; we will see that tools are available to help optimize data transfer.

Only the output from a Map computation is passed on through the Shuffle to the Reduce processors. Thus,

once a Map computation finishes processing, the data can be discarded. Typically, a Map computation places

intermediate results in a local file. The contents can then be sent through the Shuffle. As an alternative, it is

possible to arrange for the Map computation to write data to a global store, and then arrange for the Reduce

K. Shanmugam, MCA, AITS CC - Unit-4 Page 7

processors to access the store. However, doing so may require two transfers across the data network instead

of one.

Thus, when arranging a data transmission scheme, a programmer must consider the size of the mapped data

as well the size of the original data.

NOTE: When using MapReduce, a programmer must consider data transmission. Mapped data can be much

smaller than the input data. If the input data resides on a global storage system, data copying can be reduced

by arranging for Map processors to access the data directly rather than arranging for the Split computation to

access the data and send pieces to each Map processor.

Apache Hadoop

The idea of MapReduce was pioneered at Google, where it is used to process Web data and generate results

for search queries. It was popularized by Apache Hadoop, an open source project that has produced a set of

tools that can be used to implement MapReduce. Social media and search companies, including Google,

Facebook, Yahoo!, and Amazon, use Hadoop, as do scientists and academics.

Like many open source projects, Hadoop has received contributions from many groups and individuals. The

software has evolved through three major versions, and has grown to gargantuan size. In addition to the basic

system, auxiliary tools and enhancements are available that increase performance and reliability. Third-party

software is also available that extends various aspects of Hadoop. Consequently, our brief description of

Hadoop only covers the basics.

The Two Major Parts Of Hadoop

Hadoop software can be divided into two major parts that work together:

 Processing component

 Distributed file system

Processing component. Hadoop’s processing component provides software that automates MapReduce

processing. To use Hadoop, a user must build a piece of software to perform the Map function and a piece of

software to perform the Reduce function. The user must also configure Hadoop. The processing component

contains software that uses the configuration information to deploy copies of the Map code on multiple

processors, split the data among them, configure network addresses for the shuffle step, and deploy copies of

the Reduce code.

Distributed file system. Recall that moving data from storage to Map processors and moving mapped data to

Reduce processors can form significant sources of overhead when using the MapReduce paradigm. Hadoop

addresses the problem directly by defining its own distributed file system that holds the data being processed.

Known as the Hadoop Distributed File System (HDFS), the system provides high-speed access tailored to the

specific requirements of MapReduce. To understand how Hadoop optimizes processing, one needs to

understand the Hadoop infrastructure. The next section explains the model.

Hadoop Hardware Cluster Model

To understand the motivation for Hadoop’s distributed file system one must understand the hardware system

for which Hadoop was designed. Hadoop uses the term cluster to refer to a set of interconnected computers

that run Hadoop. In the original configuration, each computer in the cluster had a local disk. Figure 11.6

illustrates cluster hardware.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 8

To achieve high degrees of parallelism, a Hadoop cluster needs many nodes. A typical cluster contains

between 1,000 and 4,000 nodes with approximately 40 nodes per rack. In terms of node capabilities, because

MapReduce processing focuses on data, disk space is often more important than processing power.

HDFS Components: DataNodes And A NameNode

HDFS divides each file into fixed-size blocks of 128 Megabytes per block, and defines two types of nodes used

to store files. A set of DataNodes each holds blocks from the files being stored. For example, a DataNode with

12 Terabytes of disk space can store up to 98,304 blocks. A single NameNode provides the binding between a

file name and the location of blocks in the file (i.e., DataNodes on which blocks of the file have been stored).

Conceptually, the NameNode contains a table for each file. The table has an entry for each block of the file,

and the entry specifies one or more DataNodes where copies of the block have been stored.

Block Replication And Fault Tolerance

A given HDFS has exactly one NameNode, which means the overall file system has a single point of failure. If

the NameNode fails or becomes unreachable, the entire file system becomes unusable. Various attempts have

been made to increase the system’s fault tolerance, including saving snapshots of the NameNode for use in

recovery after failure and a High Availability version of Hadoop that has a redundant NameNode.

ameNode. Despite having only one NameNode, HDFS provides redundancy for the data stored in files. When

storing a data block, HDFS creates redundant copies and distributes the copies across multiple nodes.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 9

Hadoop is topology aware, which means that the software understands the interconnections among hardware

units in the cluster. In particular, HDFS understands that nodes in a given rack receive power from the same

source and connect to the same Top-of-Rack switch. Thus, when it distributes redundant copies of a block,

HDFS uses the topology to choose locations that maximize fault tolerance.

HDFS And MapReduce

The Hadoop design links the MapReduce computation and HDFS. Three aspects stand out:

 Optimal split size

 File semantics optimized for MapReduce

 Colocation of computation

Optimal split size. Knowing that the underlying file system stores large, fixed-size blocks allows a Hadoop

user to optimize performance. In particular, because data will be stored in HDFS blocks, a programmer can

optimize performance by splitting the input data into chunks that each fit into a single block. Of course, it

may not be possible to divide input data on arbitrary byte boundaries.

As a result, very little storage space is wasted by placing full records in each block and leaving any remainder

of the block empty. The point is:

NOTE: When using Hadoop with an HDFS file system, a programmer can optimize performance by choosing to

split data into chunks that each fit into a single HDFS block.

File semantics optimized for MapReduce. Interestingly, HDFS is not a generalpurpose file system, and it

does not provide the usual set of file operations. Instead, HDFS only offers two basic data operations:

sequential read and append. That is, when an application reads from an HDFS file, the software fetches

successive blocks of the file as needed. Similarly, when an application adds data to the end of a file, HDFS

creates new blocks as data is generated, places copies of each block on multiple DataNodes, and updates the

table in the NameNode.The limited functionality allows HDFS to be optimized.

NOTE: HDFS is optimized for the file operations that MapReduce needs: sequential read and the ability to

append data onto a file.

Colocation of computation. Perhaps the most significant link between HDFS and MapReduce processing

occurs because Hadoop locates MapReduce processing on the same nodes that store the data. In particular,

Hadoop attempts to perform Map processing on the DataNodes that hold the data to be processed.

NOTE: Hadoop achieves high performance by scheduling each computation on the same nodes that hold the

data for the computation.

Using Hadoop With Other File Systems

Recall that Hadoop was designed to work with HDFS and run on a hardware cluster in which each node has a

local disk. Can Hadoop be run in a cloud data center that does not have local storage on each node? The

short answer is yes.

Hadoop has been used with many file systems, including NAS and object stores. The disadvantage of using

remote storage lies in transmission overhead, as described previously. The Split step must move data from

remote storage to the processor performing the split, and the pieces must be written back to remote storage.

Then, the Map software must read pieces and process them.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 10

Using Hadoop For MapReduce Computations

How can one use Hadoop? Two basic approaches are possible:

 Manual setup and configuration

 Cloud provider facilities

Manual setup and configuration. Hadoop software is freely available. Downloads of experimental versions as

well as stable production versions can be obtained from:

 hadoop.apache.org

Cloud provider facilities. When running Hadoop in a public cloud, a programmer can follow one of two

approaches. In one approach, a programmer leases a set of VMs, downloads the Hadoop software, and

deploys a cluster manually. In the other approach, a programmer uses a special interface that the provider

offers. The interface allows a programmer to specify parameters for a Hadoop cluster, and invokes an

automated system that configures the cluster. Thus, a programmer can use Hadoop without setting up and

managing the software manually.

Hadoop’s Support For Programming Languages

Hadoop software includes interfaces that support multiple programming languages. That is, a programmer

who decides to write Map and Reduce functions can choose a programming language, which can differ from

the language in which Hadoop is implemented. Popular language interfaces include:

 Hadoop’s Java API for Java programs

 Hadoop’s Streaming mechanism for scripting languages (e.g., Python)

 Hadoop’s Pipe API for use with C and C++

The key idea is that Hadoop gives a programmer the freedom to choose a language that is appropriate to the

problem being solved:

NOTE: Unlike software systems that restrict programmers to one programming language, Hadoop offers

mechanisms that give a programmer a choice among popular languages.

Micro services

Introduction

It introduces an alternative way to structure software that takes advantage of multiple computers in a data

center to scale computation. Instead of focusing on one problem, however, the approach divides each

application into pieces, allowing the pieces to scale independently, as needed.

Traditional Monolithic Applications

How should an application program be structured? Software engineers have grappled with the question for

decades. One of the key aspects arises from the question of whether to build each application as a single, self-

contained program or to divide applications into multiple pieces that work together. Each approach has

advantages and disadvantages.

Industry uses the term monolithic to characterize an application constructed as a single, self-contained piece

of software. Monolithic applications tend to be both large and complex. Internally, they contain code to

perform many functions that can span a wide range.

As an example of a monolithic application, consider an application program that provides an online shopping

service. To access the service, a user launches a browser and enters the URL of the service, which connects to

K. Shanmugam, MCA, AITS CC - Unit-4 Page 11

the application in question. The application allows the user to select items, specify shipping, enter payment

information, and rate the experience.

Monolithic Applications In A Data Center

Can a traditional monolithic application run in a data center? Yes. A tenant can launch and use a VM to run

monolithic applications, exactly the way they run on a traditional server. However, software engineers have

pointed out that the monolithic approach has some disadvantages and an alternate approach may be better

for a cloud environment. In particular, monolithic applications cannot be replicated as quickly as cloud-native

applications. First, starting a VM has higher overhead than starting a container. Second, a monolithic design

means all code must be downloaded when the application starts, even if pieces are not used.

To understand why downloading code causes unnecessary overhead, consider the shopping example and

remember that many cloud systems handle scale by creating copies of an application as needed and allowing

the copies to expire when they complete. In the case of online shopping, many users peruse a catalog without

logging in, without making a purchase or arranging shipping, and without filling out the experience

questionnaire. For such customers, the application only invokes the catalog search function; code for other

functions must be downloaded, but is not used.

The Micro services Approach

The micro services approach to software, sometimes called a micro services architecture, divides functionality

into multiple, independent applications. Each of the independent applications is much smaller than a

monolithic program, and only handles one function. To perform a task, the independent applications

communicate over a network.

The micro services approach can be used in two ways: to implement a new application or to divide an existing

monolithic application. We use the term disaggregation to refer to the division of a monolithic application into

micro services. Figure 12.2 illustrates one possible way to disaggregate the monolithic online shopping

application from Figure 12.1

K. Shanmugam, MCA, AITS CC - Unit-4 Page 12

The Advantages Of Micro services

It may seem that the micro services approach merely introduces the extra overhead of running multiple, small

applications and using network communication among the pieces instead of internal function invocation. In a

cloud environment, however, the micro services approach has advantages that can outweigh the overhead.

The advantages can be divided into two broad categories: advantages for software development and

advantages for operations and maintenance.

1. Advantages For Software Development

The micro services approach offers several advantages for software development:

 Smaller scope and better modularity

 Smaller teams

 Less complexity

 Choice of programming language

 More extensive testing

Smaller scope and better modularity. The micro services approach means software engineers focus on one

small piece of the problem at a time and define clean interfaces. The limited scope encourages better

decomposition and allows engineers to understand each piece completely. As a result, engineers are less likely

to make mistakes or overlook corner cases.

Smaller teams. As the old saying goes, “too many cooks spoil the broth.” When a large number of software

engineers attempt to build a large piece of software, they must all agree on many details. Because a micro

service can be designed and implemented independent of other micro services, each micro service only

requires a small development team, meaning that the resulting code will be more uniform and less prone to

errors.

Less complexity. Complexity leads to errors, and the monolithic approach creates complexity. For example, a

monolithic design allows global variables to be shared among all pieces of code. By contrast, the micro

services approach eliminates global variables, and requires designers to document the exact interfaces among

pieces.

Choice of programming language. When using the monolithic approach, all code must be written in a single

programming language. With the micro services approach, software engineers can choose the best language

for each service.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 13

More extensive testing. Testing and debugging form a key part of the software development process.

Unfortunately, testing a monolithic program poses a challenge because the pieces can interact. Thus, many

combinations of inputs must be used to guarantee that interactions among the pieces do not result in errors.

2. Advantages For Operations And Maintenance

The micro services approach also offers operational advantages:

 Rapid deployment

 Improved fault isolation

 Better control of scaling

 Compatibility with containers and orchestration systems

 Independent upgrade of each service

Rapid deployment. Because each service is small, the micro services approach means a given micro service

can be created, tested, and deployed rapidly. Thus, the implementation of a micro service can be changed

easily and quickly.

Improved fault isolation. Dividing an application into multiple micro services makes fault isolation easier.

When a problem occurs, a manager can identify and test the misbehaving micro service while allowing

applications and other micro services to continue normal operations.

Better control of scaling. Each micro service can be scaled independently. In our trivial example, the micro

services are only used by one application. In practice, if multiple applications use a given service, the micro

service can be scaled to handle the load without scaling other services that are not heavily used.

Compatibility with containers and orchestration systems. A key distinction between the monolithic

approach and the micro services approach arises from the underlying platforms needed. Because it is small

and only performs one task, a micro service fits best into the container paradigm. Furthermore, using

containers means that micro services can be monitored, scaled, and load balanced by a conventional

container orchestration system, such as Kubernetes.

Independent upgrade of each service. Once an improved version of a micro service has been created, the

new version can be introduced without stopping existing applications and without disturbing other micro

services. Moreover, a manager can change a micro service without needing to recompile and replace entire

monolithic applications that use the service.

The Potential Disadvantages Of Micro services

Although it offers many advantages, the micro services approach also has potential disadvantages, including:

 Cascading errors

 Duplication of functionality and overlap

 Management complexity

 Replication of data and transmission overhead

 Increased security attack surface

 Workforce training

Cascading errors. One of the advantages of a monolithic application lies in the property of being self-

contained. If a function contains an error, the application may fail, but other applications will continue. In the

micro services approach, one micro service can invoke another, which can invoke another, and so on. If one of

the micro services fails, the failure may affect many others as well as the applications that use them.

Duplication of functionality and overlap. Interestingly, the ease with which micro services can be created

invites software engineers to deploy many. For example, some large enterprises report having hundreds of

K. Shanmugam, MCA, AITS CC - Unit-4 Page 14

micro services deployed. When functionality is needed that differs slightly from an existing micro service, it is

often easier to create a completely new one than to modify the existing micro service.

Management complexity. Each micro service must be monitored and managed. Micro services make

management more complex. Although orchestration and automation tools help, with hundreds of micro

services running simultaneously, it can be difficult for a manager to understand their behaviors,

interdependencies, and the interactions among them.

Replication of data and transmission overhead. Recall that the monolithic approach allows functions to

share global data, Although it can lead to problems, sharing has the advantage of efficiency, especially in

cases where functions access large sets of data. The micro services approach requires each micro service to

obtain a copy of the needed data, either from a storage server or by being passed a copy when the micro

service is invoked.

Increase security attack surface. We use the term security attack surface to refer to the points in a system

that can be used to launch an attack. A monolithic application represents a single attack point. By

disaggregating an application into many independent pieces, the micro services approach creates multiple

points that an attacker can try to exploit.

Workforce training. When following the monolithic approach, a software engineer divides the code into

modules that make the application easy to create and maintain. In contrast, the micro services approach

requires software engineers to consider the cost of running each micro service as well as the communication

costs incurred in accessing data or passing it from one micro service to another.

Micro services Granularity

How much functionality should be packed into each micro service? The question of micro service size forms

one of the key decisions a software engineer faces when following the micro services approach. As an example

of granularity choices, consider the example structure for the online shopping service. Although the figure

shows a single micro service for payment processing, other designs are possible. Payment processing may

involve:

 Applying customer discounts or promotional codes

 Splitting charges (e.g., among multiple credit cards)

 Authorizing the customer’s credit card(s)

 Authorizing the customer’s PayPal account

K. Shanmugam, MCA, AITS CC - Unit-4 Page 15

There is no easy answer. However, three heuristics can help developers choose a granularity:

 Business process modeling

 Identification of common functionality

 Adaptive resizing and restructuring

Business process modeling. One rule-of-thumb suggests that each micro service should be based on a

business process. Instead of merely disaggregating existing applications, development teams are encouraged

to ask how the applications are being used. What are the steps along the work flow? Once they have been

identified, the steps can be transformed into micro services.

Identification of common functionality. A second rule-of-thumb follows good software engineering practice:

when designing a piece of software, consider the pieces of software that can use it, and ensure it satisfies all

of them. The idea applies directly to micro service design: instead of building a micro service for exactly one

application, consider how related applications might use the service and plan accordingly.

Adaptive resizing and restructuring. The small size of a micro service means it can be redesigned quickly.

The third rule-of-thumb takes advantage of the size: iterate to find the best size and structure for a micro

service. In most cases, software engineers will make reasonable choices initially. However, requirements can

change. Suppose, for example, an organization decides to deploy a new application that has minor overlap

with existing applications.

However, the interface remains backward-compatible, which allows requests from the online shopping micro

service to work exactly as before. We can summarize:

NOTE: Three heuristics help designers choose a granularity for micro services: model a business process,

identify functionality common to multiple applications, and adaptively resize and restructure as needed. The

small size of micro services makes restructuring easy and accommodates new applications and new

underlying functionality.

Communication Protocols Used For Micro services

Two questions arise about the communication among micro services, and we will see that the two are related:

 What communication protocols do micro services use?

K. Shanmugam, MCA, AITS CC - Unit-4 Page 16

 What communication paradigms do micro services follow?

This section examines communication protocols; the next section discusses common paradigms that micro

services use.

For the transport layer protocol, most micro services use the Transmission Control Protocol (TCP), with TCP

being sent in Internet Protocol (IP) packets.

TCP merely delivers streams of bytes between a pair of communicating entities. When communicating over

TCP, the pair must also employ a transfer protocol that defines how bytes are organized into messages. In

essence, the set of transfer protocol messages defines the service being offered.

Thus, a software engineer merely needs to choose one when designing a micro service. We will consider two

examples:

 HTTP – The Hyper Text Transfer Protocol used in the Web

 gRPC – An open source† high-performance, universal RPC framework

HTTP. When an entity uses HTTP to communicate with a micro service, data can flow in either direction. That

is, the entity can send data to the micro service or request that the micro service send data. To communicate,

the entity sends one or more request messages to which the micro service responds. In addition to specifying

an operation to be performed, each request message specifies a data item by giving the item’s name in the

form of a Uniform Resource Identifier (URI).

gRPC. Unlike most transfer protocols, gRPC does not define a specific set of operations that can be performed.

Instead, it provides a general framework for communication and allows a specific set of operations to be

defined for each instance (i.e., for each micro service).

To understand gRPC, one must know that the Remote Procedure Call (RPC) approach has been used to build

distributed systems for decades. The general idea is straightforward: create a program that runs on multiple

computers by placing one or more of the procedures from the program on remote computers.

NOTE: RPC technologies allow one to create and test a conventional program and then generate code that

allows some of the procedures to be placed on a remote computer.

To achieve transparency, RPC technologies generate code known as stubs. In the program, a stub replaces

each procedure that has been moved to a remote computer; on the remote computer, a stub calls the

procedure with a local procedure call, exactly like a program does

K. Shanmugam, MCA, AITS CC - Unit-4 Page 17

NOTE: gRPC extends traditional RPC technology by supporting many programming languages, allowing the

user to define data serialization, and supporting streaming of multiple data items.

Communication Among Micro services

A variety of interactions have been used with micro services. The interactions can be divided into two broad

types:

 Request-response (REST interface)

 Data streaming (continuous interface)

Request-response. Software engineers use the term REST or RESTful† to describe the request-response style

of interaction used on the Web: a web browser sends a request to which a web server responds. A micro

service that uses request-response interaction follows the same pattern of accepting a request and returning a

response. Any further interaction between the micro service and the entity using the micro service requires

another request. Saying that a micro service uses a REST API usually implies that the micro service uses

HTTP as its transfer protocol.

Data streaming. A major disadvantage of request-response interaction arises in cases when a micro service

needs to return many items in response to a request. To adhere to the request-response approach, the entity

using the micro service must make repeated requests. Of course, a micro service can combine a small number

of items into a single response (e.g., by sending the equivalent of a zip file).

We can now understand an important distinction between traditional RPC and gRPC: the interactions they

support. A traditional RPC follows a request-response interaction: each call to a remote procedure causes a

single message to travel over the network to the computer containing the remote procedure and a single

message to travel back. gRPC extends remote procedure call to allow a remote procedure to stream multiple

data items in response to a request.

Micro services have also used variations of basic communication interactions. For example, some micro

services follow the publish-subscribe variant of data streaming†. An entity contacts a micro service and

specifies a topic. The network connection remains open perpetually, and the micro service sends any data

items that arrive for the specified topic. Other entities contact the micro service to send data items; each data

item is labeled with a topic. The name arises because the senders are said to “publish” information on various

topics, and receivers are said to “subscribe” to specific topics.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 18

Using A Service Mesh Proxy

 When creating a micro service, a designer does not need to use a single technology or a single interaction for

all communication. Instead, a separate choice can be made for each aspect of communication. For example, a

micro service that uses gRPC to communicate with other micro services may choose to expose a REST

interaction for entities that use the micro service. In addition, recall that the micro service approach allows

each micro service to be scaled independently. That is, additional instances of a micro service can be created

as needed. Several questions arise:

 What software creates instances of a micro service?

 How are requests forwarded to a given instance?

 How can requests be translated to an internal form?

 How does one micro service discover another?

Industry uses the term service mesh to refer to software systems that handle such tasks. One aspect stands

out: forwarding of requests. A service mesh uses a straightforward approach: instead of allowing entities to

contact an instance of a micro service directly, have the entities contact a proxy that manages a set of

instances and forwards each request to one instance. Figure 12.7 illustrates a service mesh proxy.

NOTE: The use of a proxy allows a micro service to be scaled and isolates the communication used internally

from the communication used to access the micro service.

The Potential For Deadlock

Although the micro service approach has many advantages, a distributed system composed of many micro

services can fail in unexpected ways. Such designs are especially susceptible to circular dependencies where a

set of micro services all depend on one another. If each micro service in the cycle is waiting for another micro

service, a deadlock can result.

It may seem that automated scale out makes micro services immune to deadlock. Suppose micro service A

depends on micro service B. Even if an instance of B remains blocked, when A attempts to use B, another

instance of B will be created. With thousands of independent micro services, however, circular dependencies

can arise in subtle ways that may not be obvious to the software engineers who create and maintain the micro

services.

To see how circular dependencies can be introduced, consider a trivial example of four micro services: a time

service, a location service, a file storage service, and an authentication service. Although the services access

one another, the system runs with no problems. The file storage service uses the time service to obtain the

time of day that it uses for timestamps on files.

Once the time service is restarted running the new code, the system continues to operate correctly. However,

a subtle circular dependency has been created in the boot sequence that can cause a deadlock. Figure 12.8

illustrates the dependency cycle and a series of events that can cause a deadlock.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 19

Note that because each micro service is designed and implemented independently, a software engineer who

modifies one service may be unaware of how the modification will affect dependencies. Moreover, the effect

can remain hidden until an unusual situation arises, such as restarting after a power failure. The important

point is:

NOTE: Because micro services are developed and maintained independently, circular dependencies can

remain hidden.

Micro services Technologies

Many technologies have been created to aid software engineers in the design and operation of micro services.

For example, commercial and open source service mesh technologies exist, including Linkerd, a project of the

Cloud Native Computing Foundation (CNCF), and Istio, a project joint among Google, IBM, and Lyft. In

addition, many frameworks exist that help developers create and manage micro services, including Spring

Boot.

Controller-Based Management Software

It focuses on software that automates the management of resources. The chapter explains controller based

designs and concepts of declarative specification and automated state transition.

Traditional Distributed Application Management

An understanding of controller-based designs begins with understanding how traditional distributed systems

are managed. For example, consider a distributed application deployed throughout an organization. Suppose

the application maintains information about employees. One way to deploy such an application requires each

department to run an instance of the application that stores data about the employees in the department†.

Authorized users run client applications that access the instance. The design works especially well if most

accesses have high locality (i.e., accesses that originate in a given department usually refer to employees in

the same department). Using multiple instances means the system is general because it allows an authorized

user in any department to access information about an employee in other departments, and the system is

efficient because most accesses go to the local copy.

If a network has failed and communication has been cut off, the operator can diagnose and repair the

problem. The point is:

NOTE: Because a traditional distributed system runs instances on many physical computers, managing such

a system usually employs a monitoring tool that alerts a human operator when a server application stops

responding.

Periodic Monitoring

K. Shanmugam, MCA, AITS CC - Unit-4 Page 20

How does an automated monitoring tool work? To test an instance, many tools send a special management

message to which the application responds. If no response arrives, the tool might retry once and then alert

the operator about the problem. To avoid flooding an instance with a continual stream of monitoring requests,

most tools check periodically. For example, a tool might check each instance once every thirty seconds.

A monitoring tool runs in background and never terminates. The code is arranged to repeat a set of steps

indefinitely. Algorithm 13.1 lists the steps taken to monitor the instances in a traditional distributed system.

Some management systems provide support for periodic execution of a monitoring application. In such

systems, the algorithm can be implemented by writing a piece of code for the two steps and configuring the

system to execute the code once every 30 seconds. In other systems, the algorithm is implemented as a

background process. To prevent the process from terminating, the code must specify an infinite iteration

informally known as an infinite loop. To perform an action periodically rather than continually, the designer

must insert an explicit delay in the loop†. For example, Figure 13.1 shows the arrangement of code used to

implement Algorithm 13.1 as a process.

Managing Cloud-Native Applications

Most cloud-native applications use container replication to scale out services. Can a system similar to

Algorithm 13.1 be used to monitor cloud-native applications? Unfortunately, a cloud-native application is

K. Shanmugam, MCA, AITS CC - Unit-4 Page 21

much more complex than a traditional distributed system. To understand the complexity, consider a few

differences.

First, consider the difference in instances. A traditional distributed application consists of a fixed set of static

instances. For example, the employee information system described above has one instance for each

department in an organization. By contrast, cloud-native applications deploy instances dynamically as

needed, creating additional instances to scale out an application.

Second, consider the difference in instance locations. In a traditional distributed system, the location of each

instance is known in advance and never changes. In the employee information system, for example, each

department runs its copy of the application on the same computer in its department.

Third, consider the structure of applications. Unlike traditional distributed systems in which each application

is constructed as a monolithic program, cloud-native applications consist of disaggregated programs that run

as multiple micro services.

Fourth, consider application persistence. A traditional application instance executes as a server process that

starts when a computer boots, and remains running until the computer shuts down. In contrast, cloud-native

software runs in containers. Typically, a container is designed to service one request and then terminate; a

new container is created for each request, possibly at a new location.

The point is: Monitoring a cloud-native application involves monitoring multiple micro services that are each

composed of a varying number of instances at changing locations, with each instance only persisting for a

short time.

Control Loop Concept

The term control loop originated in control theory, and is used in automation systems to refer to a non-

terminating cycle that adjusts a system to reach a specified state. For example, consider a residential HVAC

system with a thermostat used to regulate temperature. A user specifies a temperature, and the HVAC system

automatically adjusts the temperature to match the value the user specified. In terms of a control loop, the

user specifies a desired state, and the control loop in the thermostat adjusts the system to make the actual

temperature match the value the user selected. Thus, a control loop implements a declarative, intent-based

interface in which the user merely specifies the intended result and the control loop implements the changes

needed to achieve the result.

We can imagine the thermostat repeating three basic steps: measurement, comparison, and performing

heating or cooling. The cycle starts by measuring the current temperature. The thermostat then compares the

measured value to the temperature the user has specified. If the two temperatures differ, the thermostat

instructs the system to heat or cool the air to move the system toward the desired temperature; if the two

K. Shanmugam, MCA, AITS CC - Unit-4 Page 22

temperatures are equal, the system has reached the desired state, and the thermostat instructs the system to

stop heating or cooling.

Control Loop Delay, Hysteresis, And Instability The delay step in a control loop is optional, but can be

important for two reasons. First, taking measurements too rapidly can waste resources and lead to

unexpected behavior. For example, consider a remote wireless thermometer that runs on battery power.

Because temperature changes slowly, transmitting measurements continually without delay wastes battery

power.

As an example of unexpected behavior, consider a control loop that positions a robot arm. Suppose a

measurement finds that the arm is currently X millimeters to the left of the desired position. The control loop

will send a command that moves the arm X millimeters to the right. Moving a mechanical arm takes time. If

the control system measures the arm position immediately after sending the command, the arm will only have

started to move, and will remain Y millimeters to the left of the desired position. Therefore, the control loop

mechanism will send an additional command to move the arm Y millimeters to the right.

We use the term hysteresis to refer to the lag between the time a change is initiated and the time it takes

effect†. Hysteresis is important because it can cause unexpected results. The robot arm example shows that a

second iteration of the control loop can send an unwanted command to move the arm. To understand the

worst case, consider a control loop that measures the position ten times a second, and suppose it takes two

seconds to move the arm.

Interestingly, once it has detected that the robot arm has moved too far, the control loop will attempt to

correct the problem by sending commands that move the arm back in the opposite direction. Depending on

the speed of the loop, overcompensation can occur for the reverse motion — delay in moving the arm can

result in multiple commands being sent, and the arm will eventually move too far in the reverse direction.

Thus, the arm can oscillate back and forth, never stopping at the desired position.

In a badly designed system, instead of converging on the desired state, oscillations can cause a system to run

wild. For the robot arm, instead of moving toward the desired position, the distance can increase, causing the

arm to move farther and farther away from the desired position on each oscillation.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 23

The point is: If a control loop takes measurements before a change has time to take effect, the results can be

unexpected; adding a delay to the loop may be necessary to prevent oscillations and guarantee that the

system convergences on the desired state.

The Kubernetes Controller Paradigm And Control Loop

A programmer who writes traditional control loop code for an IoT device must plan the loop carefully to

prevent unintended behavior that can result from taking measurements too quickly. Interestingly, cloud

orchestration systems, including Kubernetes, employ a variant of a control loop that eliminates periodic

measurements.

We can now understand how a controller can manage container deployments and microservices: the software

employs an intent-based control loop. We use the term controller pattern to characterize the design.

Conceptually, each Kubernetes controller:

 Runs a control loop indefinitely

 Compares the actual and desired states of the system

 Makes adjustments to achieve the desired state

An Event-Driven Implementation Of A Control Loop

How can Kubernetes obtain accurate information about the actual state of the system without repeatedly

polling to take measurements? The answer lies in an eventdriven control loop. Instead of arranging for the

controller to check status periodically, an event-driven control loop configures components to inform the

controller whenever a change occurs.

Typically, event-driven systems use message passing. When a change occurs, the controller receives a

message about the change. For example, when the specification file changes, a file system component sends

the controller a message. Similarly, the orchestration component sends the controller a message when an

instance exits.

In essence, using an event-driven approach reverses the responsibility for obtaining information about the

state of the system. In a traditional control loop, the controller actively polls the system to obtain the

information; in an event-driven control loop, the controller waits passively to be informed when a change

occurs. Figure 13.4 shows the steps an event-driven controller follows to react to incoming messages.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 24

We can summarize: The controller paradigm used by Kubernetes follows a declarative, intent-based approach

in which a user specifies the desired state of a service and a controller continually adjusts the system to move

toward the desired state. Using an event-driven implementation for a controller avoids needless polling.

Components Of A Kubernetes Controller

Conceptually, Kubernetes runs multiple, independent controllers. In practice, Kubernetes implements all

controllers with a single background daemon process, the kube-controller-manager. Kubernetes divides each

controller into three pieces:

 Informer or SharedInformer (watcher)

 Workqueue and Dispatcher

 Workers

Informer or SharedInformer. An Informer, also called a watcher, looks for changes in the state of

Kubernetes objects and sends an event to the Workqueue whenever a change occurs. Although it is possible

to use a traditional control loop that periodically requests state information from the Kubernetes API server,

the use of informers reduces overhead. To avoid polling a list to find new items, Kubernetes includes a

Listwatcher component that generates a notification about the creation of a new instance or a change in a

current instance.

Workqueue and Dispatcher. The Workqueue contains a list of changes that have occurred in the state of the

service. New items are added when a change occurs, and a Dispatcher removes items as they are processed.

When an item appears on the Workqueue, it may mean that the current state of the service no longer adheres

to the desired state.

Workers. When it extracts an item from the Workqueue, the Dispatcher checks the specification. If the

system no longer conforms to the desired state, the Dispatcher invokes a worker to make adjustments to

move toward the desired state (e.g., by creating a new instance to replace one that has completed). As with

most cloud facilities, it is possible to scale a controller by creating multiple workers.

Although the description above implies that the controller operates continuously, Kubernetes does provide a

way for a controller to run periodically. A value known as ResyncPeriod specifies when a controller should

revalidate all items in the cache. In essence, ResyncPeriod specifies the time at which the controller compares

the current state to the desired state and takes action accordingly. Of course, a designer must be careful not

to set ResyncPeriod too low or the controller will incur a high computational load needlessly.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 25

Custom Resources And Custom Controllers

Kubernetes defines a set of core resources and controllers that cover most of the common tasks associated

with deploying and managing a cluster that includes multiple pods. Despite the broad scope of the built-in

facilities, a user may wish to define a new resource or a new controller to handle a special-purpose task,

possibly interacting with systems outside of Kubernetes. Therefore, Kubernetes provides mechanisms that

allow a user to define custom resources and build custom controllers that extend the built-in facilities. A

customized controller can manage built-in resources or custom resources; the combination of a new custom

resource and a custom controller to manage the resource can be useful.

Like built-in controllers, a custom controller employs the event-driven approach. To create a custom

controller, a software engineer must write code for the basic components: a Workqueue, Worker(s) to process

events, and either a SharedInformer, if the controller maintains information about multiple pods, or an

Informer/watcher, if the controller has small scope. Although creating such components may seem complex,

the kube-controller-manager handles many of the details. Thus, a software engineer can focus on the code

related to the application, and does not need to write code to store events or for the control loop. To further

make the task easy, many examples and tutorials exist that explain the steps needed. Interestingly, a custom

controller can run as a set of pods or as a process that is external to Kubernetes.

The point is: In addition to an extensive set of built-in controllers and pre-defined resources, Kubernetes

allows a user to define custom resources and custom controllers

Kubernetes Custom Resource Definition (CRD)

Kubernetes provides a facility that helps a software engineer create a custom resource. Known as the Custom

Resource Definition (CRD), the facility allows one to define new objects and then integrate them with a

Kubernetes cluster. Once it has been defined, a new object can be used exactly like a native Kubernetes

object.

To understand how CRD can help raise the level of abstraction, consider an example. Suppose an application

uses a database. A variety of database technologies exists, and the details differ. Although it is possible to

build an application for one specific technology, doing so limits generality and means the application must be

rewritten before it can be used with a different type of database.

As the figure shows, a proxy service fits between applications and underlying databases. Instead of accessing

a database directly, an application invokes the proxy service. Each database technology defines a specific set

K. Shanmugam, MCA, AITS CC - Unit-4 Page 26

of commands that must be used to communicate with the database (i.e., a database-specific API). The proxy

accepts a generic set of database requests from applications. To fulfill a request, the proxy translates the

request into database-specific commands, and issues the commands to the underlying database. That is, a

proxy service offers a single, generic interface that applications use, and only the proxy needs to understand

the details of underlying databases. The key point is that an application can switch from one database to

another without being modified.

The CRD facility in Kubernetes offers the same benefits as a proxy without requiring a user to create and

manage a separate service. To use CRD, a software engineer creates a Custom Resource Definition that

accepts generic database commands just as a proxy does. The CRD might be named Database. The software

engineer creates a specification for the CRD along with code that translates generic requests into database-

specific commands (e.g., for Redis or MongoDB). Thus, a Database CRD functions like a proxy service, but

instead of running and managing a separate service, Kubernetes can manage instances of the CRD.

Service Mesh Management Tools

Despite all the facilities in Kubernetes, additional tools are available that offer ways to manage services.

Management functions include service discovery, health checking, secure communication among a set of

services, key-value object storage, and support for deploying an application across multiple data centers.

Examples include HashiCorp Consul, Istio, and Linkerd from the Cloud Native Computing Foundation (CNCF)

project.

Most service mesh tools have been designed to work with Kubernetes. One of the main arguments in favor of

mesh management tools arises from the need for security. Kubernetes provides a way to deploy services, and

a mesh management tool can ensure that communication among services remains secure. In addition, a

mesh management tool may offer additional control functions for Kubernetes clusters.

Reactive Or Dynamic Planning

The demands on cloud applications can change quickly, and we use the term reactive planning to refer to the

rapid planning required to accommodate new conditions. Because the term reactive has a somewhat negative

connotation compared to proactive, some managers say that cloud management systems conduct dynamic

planning.

The idea of reactive/dynamic planning is straightforward: adapt quickly to the constant stream of changes in

both the environment and demand by planning a new desired state and moving the service to the desired

state. The controller paradigm and control loops can be used to implement reactive/dynamic planning.

Interestingly, constant change may mean that a particular service never reaches a steady state. Instead, the

management system adapts to continual changes by constantly revising the desired state of the service.

Provided controllers are designed to make useful decisions and accommodate any hysteresis introduced by

queues, the service can continue to change without becoming unstable.

A Goal: The Operator Pattern

Most controllers handle routine, repetitive tasks. Industry uses the term operator pattern to describe an

envisioned control system that can handle the remaining management tasks that normally require a human

operator, such as identifying anomalies, diagnosing problems, understanding how and when to apply and

deploy software updates, and how to delete resources associated with a service when the service is shut down.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 27

Serverless Computing And Event Processing

Introduction

It considers facilities cloud providers offer that enable programmers to create, deploy, and scale applications

quickly, easily, and at low cost. It explains why such facilities have gained popularity and can reduce costs for

a cloud customer that offers a service.

Traditional Client-Server Architecture

To understand the advantages of serverless computing, one must first understand the traditional client-server

architecture that network applications use. We will review the basic ideas and then consider the expertise

required to deploy and operate a server.

When application programs communicate over a network, they follow the client server paradigm, which

divides applications into two categories based on how they initiate communication. One of the two programs

must be designed to start first and remain ready to be contacted. The other application must be designed to

initiate contact. We use the terms client and server† to describe the two categories:

 Server: an application that runs first and waits for contact

 Client: an application the contacts a server

Note: the categories only refer to the initial contact between the two: once network communication has been

established, data can flow in either direction.

Scaling A Traditional Server To Handle Multiple Clients

In a traditional client-server architecture, a server scales by using concurrent execution to handle multiple

clients at the same time. That is, the server does not handle one client and then go on to the next. Instead,

the server repeatedly waits for a client to initiate communication and then creates a concurrent process to

handle the client. Thus, at any time, N + 1 server processes are running: a master server that clients contact,

and N instances of the server that are each handling an active client. To handle multiple clients, the computer

on which a server runs must have more memory and processing power than a computer that runs a client.

Figure 14.2 illustrates a concurrent server handling three clients.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 28

The figure makes it appear that four independent application programs are running on the server computer.

In fact, they are all copies of one server application. When a connection arrives from a new client, the master

server copy calls fork (or the equivalent) to create a new process to handle the client.

Conceptually, the application for a concurrent server integrates two aspects of a server into a single

application program:

 Fulfilling the service being offered

 Replicating and scaling the server

Fulfilling the service. A client contacts a server to access a service. Typically, a client sends a request to

which the server sends a reply. The chief function of a server lies in interacting with clients to fulfill clients’

requests.

Replicating and scaling. The second aspect of a server arises from the techniques used to replicate and scale

the server. A traditional concurrent server uses contact from a new client to trigger the creation of a separate

process to handle the client.

The important point is: In a traditional server, a single application contains code to replicate the server to

handle multiple simultaneous clients as well as code to interact with a given client and handle the client’s

requests.

Scaling A Server In A Cloud Environment

A traditional concurrent server replicates copies of itself automatically to handle multiple clients

simultaneously. However, all copies must run on the same physical computer. The approach does not work

well in a cloud environment because cloud systems achieve large scale by replicating instances across many

physical machines. Consequently, complex software systems must be used to run servers in a cloud data

center. The systems handle instance management by deploying copies as needed and must also handle

network communication by arranging to forward traffic from each client through a proxy to the correct

instance.

The Economics Of Servers In The Cloud

As previous chapters describe, a large set of management technologies exist that can be used to deploy and

operate services, including orchestration systems, proxies, load balancers, and service mesh management

software. In terms of cost, many of the software technologies follow the open source model, making them free.

Thus, it may seem that open source software allows a cloud customer to port existing servers to the cloud and

then deploy and scale the servers at little extra cost. That is, a customer only needs to have basic server

software, lease a set of VMs, and use open source software to handle deployment and scaling.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 29

Unfortunately, two costs can be significant:

 Unused capacity

 Expertise and training

Unused capacity. Because setting up a VM takes time, a customer must plan ahead by allocating sufficient

VMs to handle the expected peak load. As a result, the customer must pay for VMs that remain idle during

off-peak times.

Expertise and training. Although open source management systems are free, using such technologies

effectively and safely requires a significant amount of expertise that lies outside the typical expertise of a

software engineer. Thus, a customer must hire experts. A customer that uses multi-cloud, must have

expertise for each cloud system. Furthermore, because cloud technologies continue to evolve, the customer

must pay for training to keep their staff up to date.

The Serverless Computing Approach

In response to the need for server management, cloud providers created a way that a cloud customer can pay

to have the provider handle all tasks associated with running the customer’s servers. The industry has

adopted the name serverless computing to refer to the approach. To an outsider, the name seems

inappropriate because the underlying system does indeed run servers and uses the client-server model of

interaction. However, providers assert that from a customer’s point of view, the facilities are “serverless” in the

sense that the customer can build and run software to fulfill users’ requests without thinking about the

deployment and replication of servers, without configuring network names and addresses for servers, and

without leasing VMs to run the servers. To help eliminate confusion, the industry sometimes uses the

alternative name Function as a Service (FaaS)†. The name arises because a cloud customer writes code that

performs the main function of the server and allows the provider to handle deployment.

To summarize: Also known as Function as a Service (FaaS), the serverless computing approach allows a cloud

customer to avoid dealing with servers by paying a cloud provider to deploy and scale the customer’s servers.

Why would a customer pay a provider to deploy servers? The customer can reduce overall cost. First, the

customer can avoid charges for unused capacity because the provider only charges fees for the time a server

is being used. That is, instead of creating VMs, the provider only runs a copy of a server when needed.

Second, a provider amortizes the cost of experts and their training over all customers, making it less

expensive for each customer. The reduction in local expertise can be especially significant for customers that

follow the multi-cloud approach of using more than one provider.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 30

The point is: Because a provider amortizes the cost of expertise among all customers and only charges for the

time a server is used, the serverless approach can cost a customer less than running servers themselves.

What happens if no one uses a given server? In some cases, a provider imposes a minimum monthly fee.

However, other providers offer service without a minimum fee, meaning that if no one uses a server in a given

period, the customer pays nothing. Industry uses the term scale to zero to refer to such services.

In terms of accommodating large numbers of clients, the serverless approach offers great flexibility. Unlike a

self-managed set of servers that require a customer to plan for a peak load, serverless computing allows

arbitrary scale. Industry uses the term scale to infinity to characterize a serverless system that does not place

a limit on scale. In practice, of course, a provider must set some limits, but the idea is that the limits lie

beyond what a typical customer will ever need.

Stateless Servers And Containers

Despite building on extant technologies, the serverless approach introduces two key features that distinguish

it from the traditional server approach:

 The use of stateless servers

 Adherence to an event-driven paradigm

The use of stateless servers. We use the term state to refer to data related to clients that a server stores

internally. The term stateful server refers to a server that stores state information; and the term stateless

server refers to a server that does not store state information. Stateful servers store information for two

reasons. First, keeping information related to a given client allows a server to provide continuity across

multiple contacts by the client. Second, keeping state information allows a server to share information among

multiple clients. A stateful approach works well for a traditional server because the server runs on a single

computer.

Thus, state information does not persist for more than one client connection. To capture the idea that

serverless computing focuses on running a single, stateless function in each container (i.e., FaaS), some

engineers say that serverless computing runs stateless functions.

NOTE: Because it uses containers and can run on multiple physical servers, a serverless computing system

requires server code to be stateless.

It is important to distinguish between a stateful server and a server that keeps data in a database or

persistent storage. Statefulness only refers to the information a server keeps in memory while the server runs.

When a server exits, state information disappears. In contrast, data stored on an external storage system

(e.g., a database, a file on NAS, or an object store) persists after the server exits; a later section contains an

example.

The point is: Although serverless computing requires servers to follow a stateless design, a server may store

and retrieve data from a database or persistent storage, such as a file on NAS or an object store.

Adherence to an event-driven paradigm. The previous chapter describes controller-based management

software in general and the event-driven paradigm that Kubernetes controllers use. Serverless computing

adopts the paradigm, and generalizes it. The underlying cloud system generates events when changes occur

(e.g., when a physical server fails). In addition, serverless systems count each server access as an event. For

example, in addition to a REST interface that accepts contact via HTTP, some serverless systems provide

management interface or other programmatic interface components that allow a human user to interact with

the system or a computer program to use a protocol other than HTTP. A contact from any of the interfaces

counts as an event.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 31

The Architecture Of A Serverless Infrastructure

Serverless computing adopts the technology Kubernetes uses for controllers and follows the same general

architecture. The chief components include an event queue, a set of interface components that insert events

into the queue, and a dispatcher that repeatedly extracts an event and assigns a worker node to process the

event. In the case of serverless computing, worker nodes run the server code. Figure 14.4 illustrates the

components in a serverless intrastructure.

An Example Of Serverless Processing

Netflix uses the AWS Lambda event-driven facility for video transcoding, a step taken to prepare each new

video for customers to download†. The arrangement has become a canonical example of serverless computing.

Figure 14.5 lists the basic steps taken to transcode a video.

Events trigger each of the serverless processing steps. When a content provider uploads a new video, the

system places the new video in an Amazon S3 bucket. The S3 object storage system generates an event that

triggers a serverless function to divide the video into segments that are each five minutes long. When a

segment arrives in an S3 bucket, another event triggers a serverless function that processes and transcodes

the segment. Thus, transcoding can proceed in parallel. Figure 14.6 illustrates how video data flows through

the system and how events trigger processing.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 32

Potential Disadvantages Of Serverless Computing

It may seem that compared to traditional server designs, serverless computing offers three unbeatable

advantages: the ability to scale arbitrarily, no need to manage servers, and lower overall cost. Despite its

advantages, serverless computing does have potential disadvantages.

NOTE:

K. Shanmugam, MCA, AITS CC - Unit-4 Page 33

DevOps

Introduction

This chapter takes a different approach by describing a methodology that software teams use to build and

deploy software. The chapter gives the motivation, describes the methodology, and explains why it is

especially appropriate for cloud software.

Software Creation And Deployment

To understand methodologies for engineering software, one must understand a few basic ideas, starting with

how software is created and deployed. Software development starts with a business need. An organization

identifies how their business can benefit from new software. If no commercial software satisfies the need, the

organization uses its staff to create new software. In theory, after an initial engineering effort, the software

remains available indefinitely, leading to a two-step deployment:

Step 1. An initial engineering effort creates, tests, and deploys a new piece of software, making it available for

use .

Step 2. Authorized users invoke the software as needed, possibly over a span of many years.

The Realistic Software Development Cycle

In practice, the simplistic two-step deployment described above only suffices for the most trivial computer

programs. As Chapter 12 describes, large, complex pieces of code contain errors despite the best efforts of

software engineers. Whenever an error is discovered, software engineers must change the code to correct the

error and then deploy the new version.

In addition to repair of errors, other factors may require software to be changed. For example, most software

systems depend on an underlying operating system and/or libraries. If the vendor changes the operating

system or the libraries, the software may need to be changed (or at least recompiled) to work with the new OS.

Even if the OS does not change, users may suggest new features, extensions, or other changes to improve the

program. As a result, a realistic software development process involves continual update.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 34

Large Software Projects And Teams

Because building and deploying software is complex, building and operating a nontrivial software system

requires a team of people to work together. In fact, because the overall process involves a wide range of

expertise, multiple teams each focus on one aspect. Most organizations divide the effort into three basic

teams.

 Development team

 Quality Assurance team

 Operations team

Development team. The Development team consists of software engineers who start with a list of

requirements, create a design, specify all the pieces, choose a programming language (or languages) and

programming tools, and write the code.

Quality Assurance team. Before new software can be released to users, a Quality Assurance (QA) team

performs extensive testing to ensure the software fulfills the requirements and works correctly.

Operations team. After testing the new software and certifying that it meets the requirements, the Quality

Assurance team passes the software to an Operations team. The Operations team handles deployment,

including configuring the set of users authorized to use the software, network addresses, and related details.

The operations team also has responsibility for monitoring the execution, restarting after failure, planning

backups, and creating multiple instances to handle scale.

Disadvantages Of Using Multiple Teams

Dividing the effort among multiple teams has the advantage of allowing each team to focus its effort and

expertise on one particular aspect of software production. However, the separate team approach has

disadvantages, including:

 Conflicting management objectives

 Competition and finger pointing

K. Shanmugam, MCA, AITS CC - Unit-4 Page 35

 Long development cycle

Conflicting management objectives. Each team has a manager who sets objectives and rewards for the

team, and the rewards may differ. For example, the manager of the Development team might emphasize rapid

development by offering a bonus for delivering software quickly, and the manager of the Quality Assurance

team might emphasize taking time to be thorough by offering a bonus for finding errors.

Competition and finger pointing. The division into tasks inevitably leads to competition among teams and a

tendency to blame other teams when problems occur. For example, if they find the software difficult to deploy

and manage, members of the Operations team may blame the Development team for a poor design. Similarly,

if the Operations team requests modifications or improvements, the Development team may blame them for

delaying release of the software.

Long development cycle. Using a separate team for each part of the software project means each team waits

until its task has been completed before passing the project on to the next team. With no overlap among

teams, the total time from start to full operation can be months. We say that the long cycle results in a big

bang (i.e., a major release) rather than a set of small, incremental improvements. To characterize the

interactions among teams in a traditional software development process, industry says that a team completes

its task and then throws the project over the wall to the next team.

Although it may seem trivial, the notion of conceptual walls separating teams that each handle one step of the

software process explains a key idea:

NOTE: The traditional approach to software development in which a team completes its task before passing

the project on to the next team can result in a long delay between a change being initiated and the

deployment of a new version of software that incorporates the change.

The DevOps Approach

For decades, software engineers have looked for ways to reduce the time required to create, test, and deploy

new versions of software. A methodology known as Agile (sometimes written agile) focuses on self-organizing

teams that work closely with users during planning and development, flexible and rapid responses to

changes, continual and incremental software creation and improvement, and early delivery of software, even

before all features are available.

The DevOps methodology adopts and extends the Agile approach. Instead of merely concentrating on building

software applications that will be sold to customers who run them, DevOps focuses on software that will be

K. Shanmugam, MCA, AITS CC - Unit-4 Page 36

deployed and managed by a local Operations team. Consequently, as the name implies, DevOps squeezes the

three traditional teams (Development, Quality Assurance, and Operations) into a coordinated.

Including the Operations team in the software creation process helps ensure that the resulting software can

be managed. For example, suppose the operations team intends to deploy the software using server less

computing. As we have seen, server less computing requires server software to be stateless. Thus, the

Operations team can inform developers about the intent, resulting in a stateless design.

Continuous Integration (CI): A Short Change Cycle

In a traditional software process, a long update time encourages developers to collect as many changes as

possible into each release. Doing so further extends the time between releases. Industry uses the term major

release to characterize a new version of the software that incorporates many changes.

Like the Agile methodology, DevOps espouses a philosophy of Continuous Integration (CI) in which the

development team makes small changes in the software continuously rather than waiting to collect changes

into a major release. Two ideas help make continual integration efficient and effective.

 The use of advanced development tools

 Continual testing of small pieces

The use of automated development tools. In a traditional software process, programmers write new code,

place the code in a source repository, and build a new version of the program. Advanced development tools

reduce the time required for development by automatically building a new version of the program whenever a

programmer changes a piece of the code. Of course, the tools manage versions carefully to keep work-in-

progress separate from the current production version.

Continual testing of small pieces. To achieve high quality, changes must be tested before new versions of

software can be placed into production. To make rapid testing practical, software must be divided into small

pieces because exhaustive testing of a large, monolithic application can take days or weeks. That is,

disaggregating software into smaller pieces (i.e., following the micro services approach) helps reduce the time

required to test each change.

NOTE: To accelerate the software development cycle, DevOps divides software into small pieces that can be

changed and tested quickly.

Continuous Delivery (CD):Deploying Versions Rapidly

In a traditional environment, the Operations team chooses a specific time and date to deploy each major

software release. To minimize disruption, the team schedules a release to occur when use is minimal, such as

at night or on a weekend. The change from one version to another can be abrupt: the operations team must

terminate the old version before making the new version available. Users are typically warned in advance of a

new release, allowing them to plan for the change.

The idea of scheduling a time for each major release does not work well in a cloud environment. To

understand why, think of releasing a new version of micro service M. Many other services may depend on M

being available. If the operations team stops all instances of M, the action may have a ripple effect that also

stops critical services. Thus, stopping software before a new release may be inconvenient or impossible.

Fortunately, most cloud software uses containers. Because it exits once it handles a request, a container

disappears quickly. Therefore, an operations team can allow old instances of the software to continue until

they exit, and phase in the new version by using it for new instances.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 37

Cautious Deployment: Sandbox, Canary, And Blue/Green

Even though a module has been tested, most organizations proceed cautiously. That is, the organization does

not merely deploy the new version into production. Instead, the organization may choose deployment

strategies, such as:

 Sandbox trial

 Canary deployment

 Blue/Green deployment

Sandbox trial. One deployment approach creates a completely separate copy of the production environment

for a trial deployment. As the term sandbox implies, the environment is isolated from the production

environment. Thus, the new module can be tested to see that it interacts correctly with other modules without

any risk to the production system. Duplication means the sandbox approach incurs high cost. Isolation from

the production environment may mean a sandbox trial may not catch all errors.

Canary deployment. The canary approach overcomes some of the disadvantages of the sandbox approach.

Canary does not use a separate environment for testing. Instead, the production environment is divided into

two parts. Most users continue using the old software, and a few “canary” users are switched to the new

version. Like a canary in a coal mine, the canary users serve as an early warning in case problems arise in the

new version. Once the canary deployment succeeds, all users are switched to the new version.

Blue/Green deployment. Like the canary approach, the blue/green approach divides the production

environment into two parts, known as blue and green. The blue part is reserved for testing the new version,

while the green part continues to run the old version. Once testing completes, the two parts are reversed, with

the blue version becoming the production version, and the green version used to test the next version.

Although the brief descriptions above make deployment strategies seem straightforward, many details

complicate the implementation. The facilities must be managed carefully to ensure that a new software

module will not produce incorrect results or cause harm. If a problem occurs, it must be possible to roll back

to a previous, stable version quickly.

NOTE: Because it involves many details and requires rapid reactions when problems arise, continuous

deployment requires a separate tool to manage versions, testing, and trial deployments, and to roll back to a

previous version if a problem arises.

Difficult Aspects Of The DevOps Approach

Although it offers the advantages of rapid and continuous integration and deployment, DevOps does not offer

a magical and painless way to improve software development. Some of the downsides include:

 Change of culture and rewards

 Higher risk resulting from rapid deployment

 System-wide failures as opposed to module failurers

Change of culture and rewards. As we have seen, moving to DevOps requires a complete change in

organizational structure and work culture. Instead of separate teams and separate management for

development, testing, and operations, DevOps requires the groups to work together. Instead of rewarding

competition, DevOps rewards cooperation. It can be difficult for managers and engineers to embrace a major

change in their value system and adjust to the new approach.

K. Shanmugam, MCA, AITS CC - Unit-4 Page 38

Higher risk resulting from rapid deployment. Despite the safeguards and careful testing, any approach

that emphasizes rapid deployment of new software versions increases the risk of introducing problems. One

approach to managing risk consists of making changes in two steps. The first step introduces additions and

support functions the new version will need, and the second step makes the change to use the support

functions.

System-wide failures as opposed to module failures. To enable rapid deployment of new versions, DevOps

(and Agile) focus on testing small modules. An important software principle declares that two failure modes

can occur: an individual module or a system of many modules. An individual module fails if it does not

correctly compute the intended function. Surprisingly, the interactions among modules can cause a system to

fail even if all modules perform correctly. For example, a deadlock can occur if modules have circular

dependencies. Dividing software into smaller modules helps streamline development by making it easier and

faster to test a given module. However, increasing the number of modules increases the interactions among

them, making it more difficult to test interactions.

K. Shanmugam, MCA, AITS CC - Unit-5 Page 1

UNIT -5

Edge Computing And IIoT

Introduction

Previous chapters explain conventional cloud data centers. The chapters describe various aspects of cloud
computing facilities, including infrastructure, virtualization technologies, orchestration systems, and
programming paradigms. In a conventional cloud environment, computing, storage, and most communication
occurs within each data center.

This chapter considers an alternative design known as edge computing. Instead of concentrating cloud
facilities in a single geographic location, an edge architecture places some computational facilities near the
source of data.

The Latency Disadvantage Of Cloud

That the move to a private cloud reverses a long-term trend in computing and moves back toward a
centralized model. Public data centers represent a larger move toward centralization because a given cloud
data center houses computing facilities used by many organizations. Although the cloud approach has many
advantages, it does have the disadvantage of introducing higher network latency because a data center is
remote from the customers it serves. As we have seen, cloud providers attempt to minimize network latency in
two ways:

 The use of multiple, geographically diverse sites

 Low-latency network connection

The use of multiple, geographically diverse sites. To reduce latency, a public cloud provider does not collect all
its facilities into a single data center. Instead, a provider creates multiple data centers, and places them at
geographic locations (sometimes called zones) near sets of customers. For example, a provider might spread
multiple data centers across North America, Europe, and so on.
Low-latency network connections. The second technique providers use to minimize latency involves low-
latency network connections. A large enterprise customer may choose to lease a direct connection from the
customer site to a cloud data center.
NOTE: Although public cloud providers employ optimizations to minimize latency, the cloud model introduces
a delay between a customer and an application running in a cloud data center.
Situations Where Latency Matters

 Is latency important? In many situations, no. When a corporation performs routine business (e.g., recording
sales transactions or submitting monthly payroll information), a slight delay is unnoticeable. In some
situations, however, low delay can be crucial, either financially or otherwise. In the financial industry, for
example, a small delay in making stock trades can result in a huge loss. In the health care industry, a small
delay in receiving data from a patient monitor can delay activation of an implanted medical treatment device.

NOTE: Although the cloud approach works well for traditional computation, the network latency incurred
when sending data between a customer and a remote data center can make cloud computing inappropriate
for some applications.

Industries That Need Low Latency

Consumers seldom worry about low latency. For example, when a user interacts with the controls in their
smart home (e.g., to change the temperature), small delays go unnoticed. However, industries that employ
real-time control systems —sensors and actuators that monitor and control processing — rely on low delay.
Systems that provide fast responses to human users (e.g., responses to keystrokes a user enters) also need
low latency.

K. Shanmugam, MCA, AITS CC - Unit-5 Page 2

Of course, not all sensors require low latency. Even some medical devices do not require instant responses.
For example, wearable medical devices exist that collect biometric data for long-term trend analysis, either by
an AI program or a human medical professional. Such devices typically accumulate measurements over
multiple hours or multiple days before uploading values to the cloud.

Moving Computing To The Edge

How can cloud computing be adapted to meet the requirements for low latency? The answer lies in an
architecture known as edge computing. The idea is straightforward: place some of the computing facilities
near each source of information, and perform initial processing locally. Simultaneously run applications in a
cloud data center, and use the cloud applications to handle computational-intensive tasks. The term edge
arises because cloud data centers typically connect to a centralized point of the Internet, whereas networking
professionals say that users’ devices connect to the “edge” of the Internet. Hence, computation performed near
such devices occurs near the edge.

To understand how local computing can help, consider a simplistic case: a sensing device.

The application running in the cloud has access to powerful computing facilities, and can perform
computationally intensive processing, such as running AI software to analyze the sensor data. Meanwhile, the
app on the user’s cell phone handles local tasks. The app uses Bluetooth to communicate with the sensor and
gather data. It can also perform basic data processing before sending the data on to the cloud. For example,
electrical interference (e.g., from lightning) can temporarily disrupt communication with the sensor. The
application running in the cloud has access to powerful computing facilities, and can perform
computationally intensive processing, such as running AI software to analyze the sensor data. Meanwhile, the
app on the user’s cell phone handles local tasks. The app uses Bluetooth to communicate with the sensor and
gather data. It can also perform basic data processing before sending the data on to the cloud. For example,
electrical interference (e.g., from lightning) can temporarily disrupt communication with the sensor.

The application running in the cloud has access to powerful computing facilities, and can perform
computationally intensive processing, such as running AI software to analyze the sensor data. Meanwhile, the
app on the user’s cell phone handles local tasks. The app uses Bluetooth to communicate with the sensor and
gather data. It can also perform basic data processing before sending the data on to the cloud. For example,
electrical interference (e.g., from lightning) can temporarily disrupt communication with the sensor.

To expand local computing capabilities, the edge computing approach places a miniature data center near
locations that require low latency responses. Software running in the edge data center performs computation

K. Shanmugam, MCA, AITS CC - Unit-5 Page 3

that requires low latency, and software running in a cloud data center performs computations that do not
require rapid responses.

NOTE: The edge computing approach places small, auxiliary data centers near locations that require low
latency responses. Software in the edge data center handles low-latency computations locally and runs other
computations in a cloud data center.

Extending Edge Computing To A Fog Hierarchy

Where should edge data centers be placed? The locations and sizes depend on the applications being
supported and the latency requirements. To achieve the lowest possible latency, an edge facility must be as
close to each user as possible (e.g., in each cell tower). For applications with less stringent requirements, an
edge computing facility might serve a neighborhood of multiple cell towers or a geographic region with many
neighborhoods.

To distinguish between edge facilities located adjacent to end users and edge facilities that serve larger
geographic regions, industry sometimes uses the term fog data center to refer to an intermediate data center
that serves a larger geographic area.

NOTE: Industry reserves the term edge data center for a small data center directly adjacent to endpoints, and
uses the term fog data center to refer to an intermediate data center in an edge hierarchy.

Caching At Multiple Levels Of A Hierarchy

Although the description above focuses on computation, a multi-level hierarchy of edge and fog data centers
permits another optimization: data caching. When an endpoint requests information, an application running
in the nearest edge data center can obtain the requested information, store a copy locally, and return a copy
to the requester. If another endpoint subsequently requests the same information, a copy will be returned
from the edge data center without any need to contact the original source.

Caching can be used at all levels of the hierarchy, and works for data flowing in either direction. For example,
suppose a hierarchy contains a cloud data center at the top, two fog data centers that each serve a region,
and edge data centers in each region.

K. Shanmugam, MCA, AITS CC - Unit-5 Page 4

As endpoints generate data, the data flows upward, and each data center keeps a cached copy. Thus, if an
endpoint connected to edge data center edge 1 generates data, edge 1 caches a copy and forwards the data to
fog 1, which keeps a cached copy and forwards a copy to the cloud, which also keeps a copy in its cache. If
another endpoint connected to edge 1 requests the data, edge 1 will return the values from its cache.
Similarly, if an endpoint attached to edge 2 requests a copy, edge 2 will obtain the data from fog 1, cache a
copy and return a copy to the endpoint that made the request.

As the figure indicates, caching also applies to data items flowing down the hierarchy, and can include items
that span multiple applications. As an example, consider a supply chain management system for a retailer
with multiple stores.

NOTE: In addition to performing computations, a hierarchy of edge and fog data centers can cache arbitrary
information at each level. Caching lowers latency when the system receives multiple requests for a given data
item.

An Automotive Example

A single application may benefit by using multiple levels of the hierarchy. To see how, consider the automotive
industry, which is working to create a system to support connected vehicles†. Once the system becomes
operational, each vehicle, whether selfdriven or driven by a human, will communicate with nearby vehicles as
well as with communication facilities permanently placed near roadways.

 Three aspects of the connected vehicle system lend themselves to the edge computing approach.

 Low latency / real-time requirements

 Geographic locality and awareness

 The wide scope needed for route planning and navigation

Low latency / real-time requirements. Because vehicles travel at high speed, collision avoidance systems
operate locally. Such systems maintain information about the position and direction of surrounding vehicles,
allowing them to calculate actions quickly when a problem occurs.

Geographic locality and awareness. To calculate a safe speed and choose an action that will avoid a collision,
a collision avoidance system must also have information about local road conditions.

For example, is the roadway rough or has it become covered with ice? Similarly, a vehicle must be informed
when an accident closes the road or when traffic ahead stops unexpectedly.

The wide scope needed for route planning and navigation. Route planning systems use map data to perform a
global optimization: the system chooses a path that minimizes the travel time over the entire trip. However,
navigation systems must also adapt to local conditions, routing around temporary problems.

K. Shanmugam, MCA, AITS CC - Unit-5 Page 5

The items described above suggest how automotive systems might use a hierarchy of edge computing
facilities. A vehicle can track adjacent vehicles directly.

At the next level of the hierarchy, we can imagine a set of data centers that each serve a small area. The data
center runs software that collects and correlates information from multiple edge facilities. For example, by
receiving reports of rain on various roads, software can calculate the path of a rain storm as it moves through
the area and warn vehicles before they encounter the storm. Information in such data centers tends to change
slowly (e.g., in minutes instead of seconds).

At the third level of the hierarchy, we can imagine a set of regional data centers that each collect and process
information from areas within their region.

NOTE: The envisioned system for connected vehicles illustrates how a hierarchy of small edge and fog data
centers can provide low-latency responses and manage information over a range of geographic areas.

Edge Computing And IIoT

The term Industrial Internet of Things (IIoT) refers to an enhanced, larger-scale version of the Internet of
Things. The primary difference between consumer IoT systems and Industrial IoT systems lies in the
importance: a company depends on an IIoT system as part of a critical business function.

As an example of IIoT, consider automated manufacturing. The assembly line in an automated factory
consists of robots at each station plus conveyors that move items down the line. Raw materials enter at one
end, and finished products emerge at the other end. Because such assembly lines form a critical aspect of the
company’s business, the company loses money if the line stops. Consequently, sensors at each stage of the
assembly line monitor items entering the assembly line, robots along the line, the progress of the entire line,
and the quality of the items being manufactured.

An automated assembly line illustrates the characteristics often found in IIoT applications that distinguish
them from most consumer IoT applications:

 Specific latency requirements

 Geospatial knowledge

 Large volumes of data with various QoS requirements

 A need for data filtering

 High availability requirements

 Security requirements

Specific latency requirements. Instead of a general desire for high performance, IIoT applications have specific
requirement.

Geospatial knowledge. An IIoT system must be aware of locations and spatial relationships (e.g., the location
of a failure and the set of surrounding systems that will be affected).

Large volumes of data with various QoS requirements. IIoT applications often employ many sensors and video
cameras that each generate data continuously, resulting in large volumes of data; technologies such as 5G
wireless enable especially high traffic volumes.

A need for data filtering. It does not make sense to send all the raw data gathered from sensors to the cloud
for processing because data transport and computational cycles incur expense. More important, because a
local edge data center can handle items that require immediate action, applications running in the cloud only
need data that allows them to analyze long-term trends (e.g., whether a given factory has more failures than
other factories).

 High availability requirements. Because a company depends on IIoT systems to sustain their business, the
systems must be reliable. Thus, IIoT may need to employ redundancy (e.g., have multiple sensors monitor a
given piece of equipment in case one fails and reports incorrect values).

Security requirements. IIoT systems must be secure from attack, and it must be possible to keep the data
they gather confidential. For example, a robot should not accept a command that is not authenticated, and a
biometric sensor should not send medical data over a network until the data has been encrypted.

K. Shanmugam, MCA, AITS CC - Unit-5 Page 6

NOTE: An IIoT system may transfer multiple types of data, each with its own requirements for performance,
availability, and security.

Communication For IIoT

A typical IIoT application involves many sensors generating data and multiple applications running in a
hierarchy of edge and fog centers processing the data and (possibly) issuing commands that control the
underlying devices. As the previous section points out, the system must meet specific requirements for
Quality of Service.

 Completely decentralized

 Suitable for industrial use

 Publish-Subscribe interactions

 Flexible data handling capabilities

 Support for an edge hierarch

Completely decentralized. Unlike communication systems that rely on a process to distribute data to
subscribers, DDS avoids a single point of failure while minimizing latency by using direct communication.
DDS can also use multicast transmission over a network to reach multiple applications efficiently.

Suitable for industrial use. DDS offers the high reliability needed for IIoT applications. It can be configured
to meet performance requirements and to prioritize specific types of data. In addition, DDS offers the ability to
authenticate control messages and encrypt data traffic.

Publish-Subscribe interactions. DDS offers a publish-subscribe communication mechanism that allows each
application to choose the data the application will receive. An application running in the edge may choose to
receive all data from a given sensor, and an application running in a fog center may choose to ignore the raw
data and only receive periodic summaries.

Flexible data handling capabilities. DDS provides flexibility that allows users to specify filtering and QoS on
a per-interaction basis. For example, suppose a sensor system publishes data. One subscriber may choose to
receive all data while another chooses to receive only values beyond a specified threshold. Each subscriber
can also negotiate Quos requirements independently.

Support for an edge hierarchy. DDS can be configured to form a distributed system where some of the
participating applications run in an edge data center and others run in fog centers at higher levels of a
hierarchy. The hierarchy can extend to include public clouds as the highest level.

Decentralization Once Again

That computing started with expensive centralized mainframes, and that the advent of small, low-cost
computers encouraged a move to a completely decentralized model with many computers connected by
computer networks and the Internet. Also recall that cloud computing moved us back to a centralized model
and increased centralization made it easier and less expensive to manage computing facilities.

Edge computing adds a final ironic twist to the evolution of computing. Edge proponents point out that cloud
computing has the weakness of high latency, and assert that a distributed architecture can overcome the
weakness.

NOTE: In an ironic twist, edge computing moves away from centralized clouds, which arose to overcome the
weaknesses of distributed computing, back toward a distributed model.

K. Shanmugam, MCA, AITS CC - Unit-5 Page 7

Cloud Security And Privacy

Introduction

It describe many of the advantages of cloud computing. This chapter considers a disadvantage: security
vulnerabilities that arise in a cloud environment.

Cloud-Specific Security Problems

How does the use of cloud make it difficult for an organization’s IT staff to manage security and privacy?
Several factors contribute to increase the complexity of managing cloud computation, communication, and
data storage.

 Lack of control and visibility

 An infrastructure shared with outsiders

 Many services with interdependencies among them

 Dynamic execution environment with bursts

 Remote access for all users

 Extensive use of software from the cloud provider and third parties

Lack of control and visibility. In a traditional IT environment, the staff controls the hardware and software
facilities, and can investigate the root cause when problems arise. In a cloud environment, however, a tenant
cannot configure or examine the underlying systems, and must trust that the provider’s staff has configured
security protections correctly.

An infrastructure shared with outsiders. Unlike a traditional IT infrastructure that serves one organization,
multiple tenants share cloud infrastructure. In theory, virtualization technologies used for computation,
communication, and storage provide isolation between a given tenant and other tenants.

Many services with interdependencies among them. As we have seen, cloud systems encourage a micro
services design in which many small services run independently with communication among them. In theory,
a micro service can be protected from unauthorized access or attack as effectively as a traditional application.

Dynamic execution environment with bursts. Orchestration systems achieve elasticity by expanding
services as needed, with new instances spread across multiple physical servers. Such systems often exhibit
burst behavior in which many new instances appear within a short span of time.

K. Shanmugam, MCA, AITS CC - Unit-5 Page 8

Remote access for all users. In a traditional IT setting, both the facilities being accessed and the employees
accessing the facilities reside in a single location. Cloud computing reverses the situation because a tenant’s
employees, whether working in their organization’s offices or at home, must use a remote access mechanism.

Extensive use of software from the cloud provider and third parties. Perhaps the most significant security
weakness in cloud systems has arisen from a major shift in software. A traditional IT department either
purchased software from well-known (and trusted) suppliers or hired software engineers to create custom
software from scratch. Building cloud-native software has added complexity, such as designing micro services
that can be orchestrated.

NOTE: Although cloud computing provides many benefits, cloud introduces new security risks. Vulnerabilities
include: dependence on the provider to configure protection, sharing infrastructure with outsiders, increased
attack surfaces caused by microservices, a dynamic execution environment, remote access, and the extensive
use of open source software obtained from public repositories.

Security In A Traditional Infrastructure

To understand the motivation behind some of the new security techniques being used in cloud systems, one
must understand traditional approaches to security and see why the traditional techniques do not work well
in a cloud environment.

 Insiders vs. outsiders

 Perimeter security

 Demilitarized zones (DMZs)

 Standing privileges divided into a few levels

Insiders vs. outsiders. A traditional IT infrastructure divides people into major groups: insiders and
outsiders. Insiders include employees and contractors who work for the organization. Temporary insider
status may be granted to IT vendors when they need to install or repair hardware and software systems.

Perimeter security. Traditional security systems follow the fortress approach by enclosing all the campus IT
facilities with conceptual walls that secure the perimeter. That is, to prevent attackers from launching attacks
from outside, the organization deploys security mechanisms at each connection to the outside world to
control access.

Demilitarized zones (DMZs). One particular perimeter security mechanism that prevents unwanted access
consists of placing a demilitarized zone on each external connection. The idea is straightforward: instead of
allowing arbitrary network traffic, restrict access to a specific set of servers.

 Standing privileges divided into a few levels. Traditional security uses a semi permanent assignment of
privileges to individuals in a scheme known as standing privileges. That is, once an individual has been
assigned a privilege level, the assignment remains unchanged from day to day.

Why Traditional Methods Do Not Suffice For The Cloud

As we have seen, the algorithms that cloud providers use to allocate VMs and containers choose a location for
each new instance that avoids hot spots. That is, instead of devoting a physical set of servers to a given
tenant, a physical server may run VMs and containers from multiple tenants. More important, even if the
provider uses virtual networking technology to give each tenant a separate virtual network, traffic from
multiple tenants passes over the underlying physical network links, which means potential attacks may arise
from within the facility.

In a cloud environment, a tenant cannot rely on traditional perimeter security to define the inside and outside
of their network.

The use of micro services further complicates the cloud environment. To minimize risks, an organization must
follow the Principle of Least Privilege (PoLP) and give an individual the least privilege the individual needs to
perform their job.

In a cloud environment, instead of granting broad access privileges, the security system must allow each
individual to be authorized for specific types of access for specific services.

K. Shanmugam, MCA, AITS CC - Unit-5 Page 9

The Zero Trust Security Model

Consider perimeter less security (sometimes called borderless security). Without a perimeter, how can a
tenant know which individuals should be allowed to access and manage services? The answer lies in a zero
trust security model. The idea is straightforward: assign each user a set of privileges for each possible service.

Moving to a zero trust model can be difficult because it requires choosing a balance between security and
convenience. As an example, consider a web page that an employee can use to find another employee’s email
address. Further suppose the lookup mechanism involves two services, one that allows a user to enter an
employee’s name and returns the employee’s ID, and another that takes an employee ID as input and returns
the employee’s email address. A naive implementation of zero trust security checks the user’s authorization at
each step. First, the web page asks the user to enter login and password credentials. The web page then
invokes the name lookup micro service, which also prompts the user to reenter the same credentials. Once
the name lookup succeeds, the web page invokes the email lookup service, which prompts the user for
credentials.

In practice, implementing a zero trust model requires a centralized mechanism that handles identity (i.e.,
passwords and authentication), as explained in the next section. Attempting to implement a zero trust model
without such a system introduces security holes because it leaves each subsystem free to assign levels of
privilege without coordination across all subsystems.

Identity Management

How can a set of micro services be designed to remain secure without using separate logins for each service
and without requiring each invocation to check a user’s credentials? The answer lies in a software system for
Identity Management (IdM). To avoid having separate authentication for each service, an identity management
system uses a Single Sign On (SSO), which means a user has the same login and password credentials for all
services. The system stores information about each individual, including their login, password, and access
rights.

In addition to merely providing a way to check on access rights, an identity management system can be
designed to return a digital capability. The capability can be passed to other services, allowing each service to
determine whether a user is authorized to access the service without requiring the user to enter their
credentials multiple times.

NOTE: An Identity Management system, which stores information about users’ identities and their access
rights, uses a single login for all services, authenticates users, ensures only authorized users access each
service, and allows a user to enter credentials once for each task.

Privileged Access Management (PAM)

Controlling access for IT staff forms a special case of Identity Management. Because they need permissions to
install, configure, and operate systems, IT staff members have the administrative or super user level of
privilege.

A Privileged Access Management (PAM) system handles identity management for privileged accounts. One
significant feature of PAM systems arises from their emphasis on limited privilege: instead of a master
password that grants administrative privilege on any system, a staff member only has privilege on the systems
the staff member administers.

Some PAM systems provide further checks on the use of accounts. For example, when adding a staff member
to the system, the manager configures a primary set of systems for which the staff member has full
responsibility and a secondary set for which the staff member serves as backup when staff with primary
responsibility are not available.

AI Technologies And Their Effect On Security

Interestingly, Artificial Intelligence (AI) technologies influence security in both positive and negative ways. On
the one hand, attackers can use AI techniques to bypass safeguards and gain unauthorized access to data or
systems. On the other hand, AI techniques can be used to strengthen safeguards

K. Shanmugam, MCA, AITS CC - Unit-5 Page 10

As an example of attackers using AI, consider an attack where AI technology was used to fool an employee
rather than to target the company’s IT systems from the outside. The approach is known as a deep fake.

As a positive use of AI, recall that PAM systems, discussed above, can alert a manager if a staff member’s ID
is used to obtain privileged access to systems for which the staff member does not have primary
responsibility.

One final aspect of security analytics arises from context. Suppose a given user always logs into the HR
system and uses the system to update the employee database. If the user accesses the employee database
directly, the identity management system will grant access because the user is authorized for such access.

NOTE: Although they enable new types of attacks, AI technologies can also be used to increase the
effectiveness of safeguards.

Protecting Remote Access

Many organizations permit employees to access the organization’s traditional IT infrastructure from remote
locations. When an organization moves to cloud computing, remote access becomes the default mode of
interaction. A further complication arises with remote access because many organizations now allow
employees to use their own devices and to have multiple devices (e.g., a phone and a laptop).

Many questions arise about remote access. How can an organization keep data and computations safe if
employees can download items from the cloud onto their own devices? How can an organization ensure that
communication sent over the Internet between an employee’s device and the cloud data center remain
confidential.

 Keep all communication confidential

 Protect and isolate business data

 Enforce workflow security

Keep all communication confidential. When an employee uses the Internet, steps must be taken to prevent
outsiders from eavesdropping. For example, consider an employee who uses a Wi-Fi network, whether in their
home or in a public location, such as a coffee shop. An outsider can easily capture all the packets sent from
or to the employee’s device.

Protect and isolate business data. Remote access introduces an additional danger: an employee may lose a
device that contains confidential business data. Many instances exist where employees accidentally left their
laptop or cell phone in a taxi cab, airplane, or other public location.

Enforce workflow security. As an employee performs a task, data may move from the cloud to the
employee’s device and back. Each set of data will have specific requirements.

NOTE: Because cloud systems rely on remote access, an organization must take care to protect business
communication and business data as the data moves to and from employees’ devices.

Privacy In A Cloud Environment

Security systems enforce protections to guarantee the confidentiality, integrity, and availability of data. In
addition, organizations must comply with regulations that require special treatment for some forms of data
(e.g., in the US, HIPAA regulations apply to the collection, storage, and transmission of data containing
individuals’ medical information). We use the term privacy to refer to keeping sensitive information about an
individual safe from public dissemination.

It may seem that privacy can be achieved merely by keeping each individual’s data confidential.

Privacy protection cannot focus only on the data at hand. Because the Internet contains so much information
about individuals, it may be possible to identify individuals by combining data and statistics from many
sources.

NOTE: Instead of merely protecting personal data, an organization must ask whether any new data including
aggregate statistics, can be used in combination with data from other sources to deduce information about
individuals. In addition, other aspects of security must be chosen to prevent violations of privacy.

K. Shanmugam, MCA, AITS CC - Unit-5 Page 11

Back Doors, Side Channels, And Other Concerns

Interestingly, privacy considerations intertwine with other aspects of data security. For example, one attack
on privacy starts by targeting cloud-based email accounts to discover ways to steal credentials. Once
credentials have been stolen, the attacker uses them to launch attacks against web applications. In 2020,
Threat post reported that stolen credentials were used in twenty-one percent of attacks involving the hacking
of web applications, resulting in the exposure of more than sixty million records containing personal data.

Because multiple tenants and multiple applications from a given tenant share the underlying infrastructure,
an organization must be careful to avoid possible back doors and side channels that allow data to leak to
unintended recipients.

As we have seen, cloud systems rely on virtualization to isolate computation, communication, and storage
systems. The hardware and software technologies used for virtualization work well, and most achieve
complete isolation.

Cloud Providers As Partners For Security And Privacy

When it moves its computing to the cloud, an organization must learn to use the configuration and
management interfaces the provider offers. Unfortunately, a new interface can be difficult to master, and
small mistakes can lead to security problems. According to the 2019 Data Breach Investigation Report by
Verizon, for example, misconfiguration of storage systems accounted for twenty-one percent of unwanted data
exposures.

How can a tenant ensure that its systems remain secure? One answer comes from a change in overall
philosophy. In a traditional IT infrastructure, the IT staff follows a maxim that keeps attackers at bay: “trust
no outsiders.” In a cloud environment ,however, an IT staff becomes dependent on the cloud provider.

The challenges that arise from learning and using a provider’s configuration and management interfaces
become especially complex in a multi cloud environment. More important, security systems available from one
provider may not be available from another. Thus, it becomes essential to work with each provider to ensure
uniform policies.

 A final aspect of cooperation with a provider arises when an incident occurs or when an anomaly has been
detected. In some cases, a tenant may be able to analyze the problem, discover the cause, and affect a repair.

NOTE: A tenant must view a provider as a partner and work closely with the provider on security, both to
ensure policies have been configured correctly and to handle problems that arise in the underlying
infrastructure.

Controlling The Complexity Of Cloud-Native Systems

Introduction

It considers approaches that have been used to help manage complexity and reduce errors.

 Sources Of Complexity In Cloud Systems

 Myriad technologies and tools

 Layers of virtualization

 Use of third-party software

 The need for elastic scale

Although each factor does indeed add difficulty to the design of cloud software, the most significant factor
that makes cloud designs complicated arises from the inherent complexity involved in distributed systems
design. Software engineers building cloud systems face the same problems that plague all concurrent and
distributed systems, but must contend with the problems at much larger scale and in a much more dynamic
execution environment than traditional distributed computing designs.

K. Shanmugam, MCA, AITS CC - Unit-5 Page 12

NOTE: Cloud-native software magnifies the problems inherent in concurrent and distributed systems.

Inherent Complexity In Large Distributed Systems

Distributed computing systems use multiple processors attached to a computer network (e.g., the Internet) to
achieve parallelism. Each processor runs an operating system that allows multiple processes to execute
concurrently. Such systems exhibit well known problems, including:

 Inconsistencies among copies of data

 Vulnerability to instance explosion

 Unexpected consequences of delay

 A potential for deadlock

Inconsistencies among copies of data.

A distributed system consists of multiple programs running on separate processors. Therefore, copies of
pertinent data must be sent over computer networks to each processor. Except for a few specialized
applications, data items change as computation proceeds

Vulnerability to instance explosion. Distributed systems often create additional processes as load
increases. For example, when a request arrives at a concurrent server, the server creates a new process to
handle the request. The new process may invoke services on other processors, causing them to create
additional processes.

Unexpected consequences of delay. The modules of a distributed system communicate over a computer
network, and the delay depends on the network traffic. Traffic from other systems can change delays
drastically, leading to unexpected behavior.

A potential for deadlock. Most concurrent and distributed systems use synchronous communication among
a set of processes. That is, a process sends a request to a service and blocks until a reply arrives. Process A
can block waiting for process B, which blocks to wait for process C. Once C sends a reply, B can finish and
send a reply to A, which can continue running.

Designing A Flawless Distributed System

 The inherent problems described above raise many questions about cloud software, including:

 Is it impossible for a large, complex system to be flawless?

 How will a set of interdependent micro services behave in the wild?

 Can flaws be detected before a system has been implemented?

 Can a tool help a designer know where to look for potential flaws?

It may seem that the answers lie in exhaustive testing (i.e., testing all possible computations and all possible
interactions among processes). However, the possible execution sequences in a distributed system make
exhaustive testing infeasible. To see why, consider communication. Recall that the delay on networks
connecting processors varies. More important, one cannot merely test the system with delays ranging from
short to long because delays vary over time.

NOTE: Exhaustive testing of a large distributed system requires an in feasibly long time.

System Modeling

If designers cannot rely on testing to uncover flaws in cloud software systems, what can they do? One
approach centers on modeling. The idea is straightforward: create a model of the system and use the model to
predict and understand how the system will behave. A variety of models and modeling tools have been created
that can help designers understand various properties of distributed systems. The models can be divided into
two broad categories:

K. Shanmugam, MCA, AITS CC - Unit-5 Page 13

 Operational models

 Analytical models

Operational models. An operational model uses a simulator to mimic a running system. A simulator does not
perform actual computation nor does it run in real time. Instead, the simulator only focuses on key events,
such as the exchange of messages among processors. The simulator estimates how the running system will
behave and when each event will occur.

For example, the simulator can estimate how long a given program will compute after a message arrives and
where the program will send the next message. Similarly, instead of measuring the transmission of messages
over a network, a simulator estimates the delay that each message will experience.

Analytical models. Analytical models help a designer understand how a distributed system will behave
before the system has been implemented. How can one understand a system before code has been written?
The general idea is to express each of the pieces in a high-level, abstract way, and then analyze the abstract
representation to reason about the program.

Mathematical Models

The question arises, “Can one create a model of software that can be used to analyze correctness without
requiring a human to imagine the software running?” The Programming Language research community has
considered the question for decades, and has explored several approaches. The models use various forms of
mathematics, including:

 First-order logic

 Temporal logic

 State machine models

 Graph-theoretic models

Each form defines a set of terms and symbols, along with their precise mathematical meaning that allow one
to express facts about a program and then reason about the facts. In particular, various forms allow one to
reason about the program’s correctness or performance. For example, temporal logic allows one to write
formulas that express desired properties of safety (e.g., two copies of the code will not cache a data object at
the same time), and live ness (e.g., the program will send a response when it receives a request).

An Example Graph Model To Help Avoid Deadlock

With respect to the problem of deadlock described above, a question arises, “Can a designer ensure that a
software system remains deadlock free?” One might imagine a tool that performs the needed analysis. The
imagined tool could read the source code for the system and report whether the system will eventually
deadlock. Unfortunately, no such tool can be built because the problem is equivalent to the well-known
halting problem, meaning that solving the problem is mathematically impossible.

If we cannot build a tool that finds all deadlocks, what can be done? Although tools cannot identify deadlocks
absolutely, a tool can be built that identifies modules that could lead to deadlock and those that could not.
Such a tool has two advantages. First, in a system with hundreds of modules, the tool may identify cycles that
a human would not notice.

One way to construct a tool that can identify potential deadlocks consists of building a graph of dependencies
among modules. The tool can then analyze the graph to find cycles. The designer considers each of the cycles
to look for potential deadlocks. We will see additional ways a dependency graph can be used.

K. Shanmugam, MCA, AITS CC - Unit-5 Page 14

A Graph Model For A Startup Sequence

As a second application of a graph model, consider starting a set of communicating services following a power
failure. That is, assume that multiple services must be started. A given service may use other services during
startup (e.g., a file storage service may invoke a time service to obtain the current time and set the local
clock). If a service is not available when needed, the invoker will try repeatedly. If a dependency cycle exists, a
form of deadlock known as live lock will occur in which each service repeatedly tries to invoke another service,
but no responses arrive because none of the services has successfully started.

K. Shanmugam, MCA, AITS CC - Unit-5 Page 15

To compute a startup sequence, one can reverse the idea of dependency by building a predecessor graph
where an edge from node X to node Y means module X must be started before module Y can be started.

Modeling Using Mathematics

As an example of a more mathematical approach to modeling, consider TLA+†, a modeling system that has
been used for cloud software by companies, including Intel, Amazon, and Microsoft. Unlike the simplistic
graph model described above, TLA+ allows a designer to create a model (called a specification) that expresses
complex properties of a program. The designer can then use a tool to analyze the specification and check for
correctness and other conditions. TLA+ has the following characteristics:

 Is based on mathematical logic

 Models a high-level abstraction of a real system

 Uses the notion of system state and state transitions

 Includes a high-level interface for algorithms

 Is especially difficult to learn and master

Is based on mathematical logic. TLA+ requires properties and conditions about a program to be expressed
using mathematics. The system cannot derive a specification from source code, but instead requires a human
to use mathematical notation. A TLA+ specification resembles a mathematical derivation or proof more than a
computer program. Instead of being integrated into the course code, a TLA+ specification is kept separate.

Models a high-level abstraction of a real system. TLA+ describes abstract properties of a program without
giving details. For example, a designer might use TLA+ to specify that x is an integer without giving
implementation details, such as whether x is thirty-two bits long or sixty-four bits long, whether x is
represented in ones-complement or twos-complement arithmetic, or whether x is stored in big-endian or little-
endian order. Similarly, a designer might specify that q and r are processes, without saying whether q and r
run on the same processor or on processors connected by a network.

Uses the notion of system state and state transitions. Rather then specifying operational steps the way a
programming language does, TLA+ describes the global state of a system by giving the values for all variables.
The specification describes how variables change as the system transitions from a given state to a next state.
Like most mathematical formulations, TLA+ does not specify an exact outcome. Instead, it specifies the set of
possible outcomes, which allows a human to reason about the possible next states of a system and their
properties.

Includes a high-level interface for algorithms. In its basic form, TLA+ does indeed resemble mathematics
more than a programming system. To make TLA+ more palatable to software engineers, TLA+ includes a high-
level interface that handles common situations. Named Plus Cal, the interface allows one to enter a
specification that appears more like an algorithm. A tool translates a Plus Cal specification to an equivalent
TLA+ specification, thereby hiding many details from the user. Although most software engineers will find it
less intimidating than TLA+, Plus Cal has limited power, meaning that it may be unable to handle all the
specifications for a system.

K. Shanmugam, MCA, AITS CC - Unit-5 Page 16

NOTE: Although it can be practical and helpful, a mathematical modeling system, such as TLA+, can be
intimidating and difficult to master.

An Example TLA+ Specification

The description of TLA+ above gives an overview and lists its general characteristics. A concrete example will
help clarify TLA+ further. Of course, a small example cannot include all capabilities and complexities of TLA+.
However, the example will illustrate some of the mathematical notation that TLA+ uses and show that even a
trivial specification requires substantial effort.
Our example uses a pattern that arises in many cloud systems: a proxy. When an application needs to
contact a service, the application sends a request to a proxy, which forwards the request to one of the target
instances of the service. When the target responds, the proxy forwards the response to the application. Each
request contains a sequence number that the application uses to match a response to a request. The target
returns the sequence number that it receives along with its response.

System State
And State Changes

A TLA+ specification describes the total state of the system. That is, a specification gives the values of all
variables. In practice, mathematical models do not attempt to represent all data items associated with each
process. Instead, a mathematical model abstracts away details and focuses only on a few key items. Our
example focuses on the messages being sent as key values to be considered. Thus, our TLA+ model only needs
to specify variables associated with messages, and does not need to specify the variables used by the
application, proxy, and target processes. In more complex cases, of course, the state of a system will contain
many variables.

The state of a system (i.e., the values of variables) changes over time. Thus, in addition to specifying a set of
variables, TLA+ must also specify how the variables change. In the proxy communication example, when a
target responds to a request, the target sends a new response. Conceptually, the system state contains a
response variable, and the value of the variable changes when a target responds. In a programming language,
one writes an assignment statement that updates a variable. For example, the following adds 1 to variable x:
 x =x +1
In mathematics, the above equation makes no sense. To denote a modified value, mathematicians append an
apostrophe to a variable name and pronounce it prime. Therefore, to specify that the value of variable x
increases by 1, a mathematician writes:

 x’ = x + 1

The equation makes sense mathematically because it is not self-contradictory. TLA+ employs the
mathematical approach. Thus, when reading a TLA+ specification, one must remember that an equation
involving the prime version of a name represents a modification of a variable rather than a new variable.

Interestingly, TLA+ does not have an explicit representation of time. Instead, one must use items in the state
to specify temporal sequences. To understand how time can be represented by state variables, consider the
four numbered steps in Figure 18.5. To model the steps, one might choose to define a variable named step.
When the step variable has value 1, the values of other variables represent the state of the system during step

K. Shanmugam, MCA, AITS CC - Unit-5 Page 17

1 in the figure. Similarly, when the step variable has the value 2, the value of other variables represent the
state of the system during step 2, and so on.

The Form Of A TLA+ Specification

A specification begins with a module name and declarations analogous to those found in a computer program.

The EXTENDS keyword allows a specification to reference pre-defined sets. For example, TLA+ defines the set
Naturals to be the natural numbers (i.e., non-negative integers), and the set Integers, to be the set of all
integers. It also defines TLC to be a set of utility functions used by the model checker. Thus, in addition to
other items, a specification usually EXTENDS TLC.

Because it includes a notion of time sequences, TLA+ allows one to specify items for which the value changes
over time as well as items that have a fixed value. The keyword CONSTANTS declares the names of items that
retain a single, unchanging value, and the keyword VARIABLES declares the names of items for which the
value can change over time.

TLA+ does not specify a single sequence of state transitions. Instead, a TLA+ specification lists conditions
under which each transition can occur. Conditions can overlap, which means that more than one transition
can occur at a given time. The idea is that a TLA+ specification covers all possible orders of transitions.

To describe state transitions in TLA+, the second section of a specification contains a set of state predicates.
Each predicate contains a list of conditions that are required to be true to make activation of the predicate
possible (i.e., to make the transition possible). When reading a specification, one must remember that
predicates can be activated in any order, and the specification includes all possible orderings. An example will
help clarify the idea.

K. Shanmugam, MCA, AITS CC - Unit-5 Page 18

K. Shanmugam, MCA, AITS CC - Unit-5 Page 19

K. Shanmugam, MCA, AITS CC - Unit-5 Page 20

K. Shanmugam, MCA, AITS CC - Unit-5 Page 21

K. Shanmugam, MCA, AITS CC - Unit-5 Page 22

Conclusions About Temporal Logic Models

Three facts about mathematical models that use temporal logic should now be apparent. First, the
abstraction that a mathematical model describes differs dramatically from actual software. Second,
formulating a model requires one to understand mathematical logic as well as the details of a particular
modeling technology. Third, it may be difficult to create software that follows a model.

One uses a model to help conquer the complexity of system design. Ironically, a model can introduce
additional complexity. For example, writing a correct TLA+ specification can be extremely difficult, even if one
understands the general idea. Programmers accustomed to thinking about specifying algorithmic steps and
iterative processing must change to a mindset that uses a mathematical interpretation in which equations
and logic expressions describe the set of all possible outcomes. More important, details matter because a
minor mistake in a specification can have major consequences for correctness.

NOTE: Although a mathematical model may help a software engineer understand properties of a system,
using such a model introduces additional complexity because it requires an engineer to learn to think in new
ways, master concepts from mathematical logic, and learn the details of a language to express a model as well
as the tools used to check its validity.

