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UNIT-1 : INTRODUCTION  

An Operating System (OS) is an interface between computer user and computer hardware. An 

operating system is software which performs all the basic tasks like file management, memory 
management, process management, handling input and output, and controlling peripheral 

devices such as disk drives and printers. 

An operating system is software that enables applications to interact with a computer's 

hardware. The software that contains the core components of the operating system is called 

the kernel. 

The primary purposes of an Operating System are to enable applications (software’s) to 
interact with a computer's hardware and to manage a system's hardware and software 

resources. 

Some popular Operating Systems include Linux Operating System, Windows Operating 

System, VMS, OS/400, AIX, z/OS, etc. Today, Operating systems is found almost in every 

device like mobile phones, personal computers, mainframe computers, automobiles, TV, Toys 
etc. 

Definitions 

We can have a number of definitions of an Operating System. Let's go through few of them: 

An Operting System is the low-level software that supports a computer's basic functions, such 

as scheduling tasks and controlling peripherals. 

We can refine this definition as follows: 
An operating system is a program that acts as an interface between the user and the computer 

hardware and controls the execution of all kinds of programs. 

Operating System Generations 

Operating systems have been evolving over the years. We can categorise this evaluation based 

on different generations which is briefed below: 
0th Generation 

The term 0th generation is used to refer to the period of development of computing when 

Charles Babbage invented the Analytical Engine and later John Atanasoff created a computer 

in 1940. The hardware component technology of this period was electronic vacuum tubes. 

There was no Operating System available for this generation computer and computer programs 

were written in machine language. This computers in this generation were inefficient and 
dependent on the varying competencies of the individual programmer as operators. 

First Generation (1951-1956) : 

The first generation marked the beginning of commercial computing including the introduction 

of Eckert and Mauchly’s UNIVAC I in early 1951, and a bit later, the IBM 701. 

System operation was performed with the help of expert operators and without the benefit of an 
operating system for a time though programs began to be written in higher level, procedure-

oriented languages, and thus the operator’s routine expanded. Later mono-programmed 

operating system was developed, which eliminated some of the human intervention in running 

job and provided programmers with a number of desirable functions. These systems still 

continued to operate under the control of a human operator who used to follow a number of 

steps to execute a program. Programming language like FORTRAN was developed by John W. 
Backus in 1956. 

Second Generation (1956-1964) : 

The second generation of computer hardware was most notably characterised by transistors 

replacing vacuum tubes as the hardware component technology. The first operating system 

GMOS was developed by the IBM computer. GMOS was based on single stream batch 
processing system, because it collects all similar jobs in groups or batches and then submits 

the jobs to the operating system using a punch card to complete all jobs in a machine. 

Operating system is cleaned after completing one job and then continues to read and initiates 

the next job in punch card. 

Researchers began to experiment with multiprogramming and multiprocessing in their 

computing services called the time-sharing system. A noteworthy example is the Compatible 
Time Sharing System (CTSS), developed at MIT during the early 1960s. 

Third Generation (1964-1979) : 
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The third generation officially began in April 1964 with IBM’s announcement of its System/360 

family of computers. Hardware technology began to use integrated circuits (ICs) which yielded 

significant advantages in both speed and economy. 
Operating system development continued with the introduction and widespread adoption of 

multiprogramming. The idea of taking fuller advantage of the computer’s data channel I/O 

capabilities continued to develop. 

Another progress which leads to developing of personal computers in fourth generation is a 

new development of minicomputers with DEC PDP-1. The third generation was an exciting 

time, indeed, for the development of both computer hardware and the accompanying operating 
system. 

Fourth Generation (1979 – Present) : 

The fourth generation is characterised by the appearance of the personal computer and the 

workstation. The component technology of the third generation, was replaced by very large 

scale integration (VLSI). Many Operating Systems which we are using today like Windows, 
Linux, MacOS etc developed in the fourth generation. 

Operating System Organization: Operating Systems today generally consist of many distinct 

pieces or components. We can simplify our description of an OS by viewing it as many layers of 

related components. A generic OS layered diagram is pictured below. Note the component at 

the top of the diagram is the user, and the component at the bottom of the diagram is the 

physical hardware. Management (control) of all tasks in between these two physical 
components is the responsibility of the OS. 

What Operating Systems Do We begin our discussion by looking at the operating system’s role 

in the overall computer system. A computer system can be divided roughly into four 

components: the hardware, the operating system, the application programs, and a user (Figure 

1.1). 
The hardware— the central processing unit (CPU), the memory, and the input/output (I/O) 

devices—provides the basic computing resources for the system. The application programs—

such as word processors, spreadsheets, compilers, and web browsers—define the ways in 

which these resources are used to solve users’ computing problems. The operating system 

controls the hardware and coordinates its use among the various application programs for the 

various users. We can also view a computer system as consisting of hardware, software, and 
data. The operating system provides the means for proper use of these resources in the 

operation of the computer system. An operating system is similar to a government. Like a 

government, it performs no useful function by itself. It simply provides an environment within 

which other programs can do useful work. To understand more fully the operating system’s 

role, we next explore operating systems from two viewpoints: that of the user and that of the 
system. 

User View : 

The user’s view of the computer varies according to the interface being used.Many computer 

users sit with a laptop or in front of a PC consisting of amonitor, keyboard, and mouse. Such a 

system is designed for one user tomonopolize its resources. The goal is to maximize the work 

(or play) that theuser is performing. In this case, the operating system is designed mostly 
forease of use, with some attention paid to performance and security and nonepaid to resource 

utilization—how various hardware and software resources are shared. 

 

 



Prepared by: Satyam K , AITS , MCA             OS Notes Page 3 
 

 
Increasingly, many users interact with mobile devices such as smartphones and tablets—

devices that are replacing desktop and laptop computer systems for some users. These devices 

are typically connected to networks through cellular or other wireless technologies. The user 
interface for mobile computers generally features a touch screen, where the user interacts with 

the system by pressing and swiping fingers across the screen rather than using a physical 

keyboard and mouse. Many mobile devices also allow users to interact through a voice 

recognition interface, such as Apple’s Siri. Some computers have little or no user view. For 

example, embedded computers in home devices and automobiles may have numeric keypads 
and may turn indicator lights on or off to show status, but they and their operating systems 

and applications are designed primarily to run without user intervention. 

System View : 

From the computer’s point of view, the operating system is the program most intimately 

involved with the hardware. In this context, we can view an operating system as a resource 

allocator. A computer system has many resources that may be required to solve a problem: 
CPU time, memory space, storage space, I/O devices, and so on. The operating system acts as 

the manager of these resources. Facing numerous and possibly conflicting requests for 

resources, the operating system must decide how to allocate them to specific programs and 

users so that it can operate the computer system efficiently and fairly. A slightly different view 

of an operating system emphasizes the need to control the various I/O devices and user 
programs. An operating system is a control program. A control program manages the execution 

of user programs to prevent errors and improper use of the computer. It is especially concerned 

with the operation and control of I/O devices. 

Computer-System Organization : 

A modern general-purpose computer system consists of one or more CPUs and a number of 

device controllers connected through a common bus that provides access between components 
and shared memory (Figure 1.2). Each device controller is in charge of a specific type of device 

(for example, a disk drive, audio device, or graphics display). Depending on the controller, more 

than one device may be attached. For instance, one system USB port can connect to a USB 

hub, to which several devices can connect. A device controller maintains some local buffer 

storage and a set of special-purpose registers. The device controller is responsible for moving 
the data between the peripheral devices that it controls and its local buffer storage. Typically, 

operating systems have a device driver for each device controller. This device driver 

understands the device controller and provides the rest of the operating system with a uniform 

interface to the device. The CPU and the device controllers can execute in parallel, competing 

for memory cycles. To ensure orderly access to the shared memory, a memory controller 

synchronizes access to the memory. In the following subsections, we describe some basics of 
how such a system operates, focusing on three key aspects of the system. We start with 

interrupts, which alert the CPU to events that require attention. We then discuss storage 

structure and  I/O structure. 
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Interrupts : 

Consider a typical computer operation: a program performing I/O. To start an I/O operation, 

the device driver loads the appropriate registers in the device controller. The device controller, 

in turn, examines the contents of these registers to determine what action to take (such as 
―read a character from the keyboard‖). The controller starts the transfer of data from the device 

to its local buffer. Once the transfer of data is complete, the device controller informs the device 

driver that it has finished its operation. The device driver then gives control to other parts of 

the operating system, possibly returning the data or a pointer to the data if the operation was a 

read. For other operations, the device driver returns status information such as ―write 
completed successfully‖ or ―device busy‖. But how does the controller inform the device driver 

that it has finished its operation? This is accomplished via an interrupt. 

Hardware may trigger an interrupt at any time by sending a signal to the CPU, usually by way 

of the system bus. (There may be many buses within a computer system, but the system bus is 

the main communications path between the major components.) Interrupts are used for many 

other purposes as well and are a key part of how operating systems and hardware interact. 
When the CPU is interrupted, it stops what it is doing and immediately transfers execution to a 

fixed location. The fixed location usually contains the starting address where the service 

routine for the interrupt is located. The interrupt service routine executes; on completion, the 

CPU resumes the interrupted computation 

The basic interrupt mechanism works as follows. The CPU hardware has a wire called the 
interrupt-request line that the CPU senses after executing every instruction. When the CPU 

detects that a controller has asserted a signal on the interrupt-request line, it reads the 

interrupt number and jumps to the interrupt-handler routine by using that interrupt number 

as an index into the interrupt vector. It then starts execution at the address associated with 

that index. The interrupt handler saves any state it will be changing during its operation, 

determines the cause of the interrupt, performs the necessary processing, performs a state 
restore, and executes a return from interrupt instruction to return the CPU to the execution 

state prior to the interrupt. We say that the device controller raises an interrupt by asserting a 

signal on the interrupt request line, the CPU catches the interrupt and dispatches it to the 

interrupt handler, and the handler clears the interrupt by servicing the device. Figure 1.4 

summarizes the interrupt-driven I/O cycle. The basic interrupt mechanism just described 
enables the CPU to respond to an asynchronous event, as when a device controller becomes 

ready for service. In a modern operating system, however, we need more sophisticated 

interrupthandling features. 

1. We need the ability to defer interrupt handling during critical processing. 

2. We need an efficient way to dispatch to the proper interrupt handler for a device. 

3. We need multilevel interrupts, so that the operating system can distinguish between high- 
and low-priority interrupts and can respond with the appropriate degree of urgency 

In modern computer hardware, these three features are provided by the CPU and the interrupt-

controller hardware. 
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Most CPUs have two interrupt request lines. One is the nonmaskable interrupt, which is 
reserved for events such as unrecoverable memory errors. The second interrupt line is 

maskable: it can be turned off by the CPU before the execution of critical instruction sequences 

that must not be interrupted. The maskable interrupt is used by device controllers to request 

service. Recall that the purpose of a vectored interrupt mechanism is to reduce the need for a 

single interrupt handler to search all possible sources of interrupts to determine which one 
needs service. In practice, however, computers have more devices (and, hence, interrupt 

handlers) than they have address elements in the interrupt vector. A common way to solve this 

problem is to use interrupt chaining, in which each element in the interrupt vector points to 

the head of a list of interrupt handlers. When an interrupt is raised, the handlers on the 

corresponding list are called one by one, until one is found that can service the request. This 

structure is a compromise between the overhead of a huge interrupt table and the inefficiency 
of dispatching to a single interrupt handler. Figure 1.5 illustrates the design of the interrupt 

vector for Intel processors. The events from 0 to 31, which are nonmaskable, are used to signal 

various error conditions. The events from 32 to 255, which are maskable, are used for 

purposes such as device-generated interrupts. The interrupt mechanism also implements a 

system of interrupt priority levels. These levels enable the CPU to defer the handling of low-
priority interrupts without masking all interrupts and makes it possible for a high-priority 

interrupt to preempt the execution of a low-priority interrupt. 
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Storage Structure : The CPU can load instructions only from memory, so any programs must 

first be loaded into memory to run. General-purpose computers run most of their programs 

from rewritable memory, called main memory (also called random-access memory, or RAM).  
 

          Main memory commonly is implemented in a semiconductor technology called dynamic 

random-access memory (DRAM). Computers use other forms of memory as well. For example, 

the first program to run on computer power-on is a bootstrap program, which then loads the 

operating system. Since RAM is volatile—loses its content when power is turned off or 

otherwise lost—we cannot trust it to hold the bootstrap program. Instead, for this and some 
other purposes, the computer uses electrically erasable programmable read-only memory 

(EEPROM) and other forms of firmwar —storage that is infrequently written to and is 

nonvolatile. EEPROM can be changed but cannot be changed frequently. In addition, it is low 

speed, and so it contains mostly static programs and data that aren’t frequently used. For 

example, the iPhone uses EEPROM to store serial numbers and hardware information about 
the device. All forms of memory provide an array of bytes. Each byte has its own address. 

Interaction is achieved through a sequence of load or store instructions to specific memory 

addresses. The load instruction moves a byte or word from main memory to an internal register 

within the CPU, whereas the store instruction moves the content of a register to main memory. 

Aside from explicit loads and stores, the CPU automatically loads instructions from main 

memory for execution from the location stored in the program counter. A typical instruction–
execution cycle, as executed on a system with a von Neumann architecture, first fetches an 

instruction from memory and stores that instruction in the instruction register. The instruction 

is then decoded and may cause operands to be fetched from memory and stored in some 

internal register. After the instruction on the operands has been executed, the result may be 

stored back in memory. Notice that the memory unit sees only a stream of memory addresses. 
It does not know how they are generated (by the instruction counter, indexing, indirection, 

literal addresses, or some other means) or what they are for (instructions or data). Accordingly, 

we can ignore how a memory address is generated by a program. We are interested only in the 

sequence of memory addresses generated by the running program. Ideally, we want the 

programs and data to reside in main memory permanently. This arrangement usually is not 

possible on most systems for two reasons: 
 

1. Main memory is usually too small to store all needed programs and data permanently. 

2. Main memory, as mentioned, is volatile—it loses its contents when power is turned off or 

otherwise lost 

 
      Thus, most computer systems provide secondary storage as an extension of main memory. 

The main requirement for secondary storage is that it be able to hold large quantities of data 

permanently. The most common secondary-storage devices are hard-disk drives (HDDs) and 

nonvolatile memory (NVM) devices, which provide storage for both programs and data. Most 

programs (system and application) are stored in secondary storage until they are loaded into 

memory. Many programs then use secondary storage as both the source and the destination of 
their processing. Secondary storage is also much slower than main memory. Hence, the proper 

management of secondary storage is of central importance to a computer system, as we discuss 

in Chapter 11. In a larger sense, however, the storage structure that we have described —

consisting of registers, main memory, and secondary storage—is only one of many possible 

storage system designs. Other possible components include cache memory, CD-ROM or blu-
ray, magnetic tapes, and so on. Those that are slow enough and large enough that they are 

used only for special purposes — to store backup copies of material stored on other devices, for 

example— are called tertiary storage. Each storage system provides the basic functions of 

storing a datum and holding that datum until it is retrieved at a later time. The main 

differences among the various storage systems lie in speed, size, and volatility. 
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I/O Structure : 

A large portion of operating system code is dedicated to managing I/O, both because of its 

importance to the reliability and performance of a system and because of the varying nature of 
the devices. Recall from the beginning of this section that a general-purpose computer system 

consists of multiple devices, all of which exchange data via a common bus. The form of 

interrupt-driven I/O described in Section 1.2.1 is fine for moving small amounts of data but 

can produce high overhead when used for bulk data movement such as NVS I/O. To solve this 

problem, direct memory access (DMA) is used. After setting up buffers, pointers, and counters 

for the I/O device, the device controller transfers an entire block of data directly to or from the 
device and main memory, with no intervention by the CPU. Only one interrupt is generated per 

block, to tell the device driver that the operation has completed, rather than the one interrupt 

per byte generated for low-speed devices. While the device controller is performing these 

operations, the CPU is available to accomplish other work. 

 
Computer-System Architecture: 
A computer system can be organized in a number of different ways, which we can categorize 

roughly according to the number of general-purpose processors used . 

Single-Processor Systems: 

Many years ago, most computer systems used a single processor containing one CPU with a 

single processing core. The core is the component that executes instructions and registers for 
storing data locally. The one main CPU with its core is capable of executing a general-purpose 

instruction set, including instructions from processes. 

Multiprocessor Systems : 

On modern computers, from mobile devices to servers, multiprocessor systems now dominate 

the landscape of computing. Traditionally, such systems have two (or more) processors, each 

with a single-core CPU. The processors share the computer bus and sometimes the clock, 
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memory, and peripheral devices. The primary advantage of multiprocessor systems is increased 

throughput. That is, by increasing the number of processors, we expect to get more work done 

in less time. The speed-up ratio with N processors is not N, however; it is less than N. When 
multiple processors cooperate on a task, a certain amount of overhead is incurred in keeping 

all the parts working correctly. This overhead, plus contention for shared resources, lowers the 

expected gain from additional processors. 

The most common multiprocessor systems use symmetric multiprocessing (SMP), in which 

each peer CPU processor performs all tasks, including operating-system functions and user 

processes. 
The benefit of this model is that many processes can run simultaneously —N processes can 

run if there are N CPUs—without causing performance to deteriorate significantly. However, 

since the CPUs are separate, one may be sitting idle while another is overloaded, resulting in 

inefficiencies. These inefficiencies can be avoided if the processors share certain data 

structures. A multiprocessor system of this form will allow processes and resources—such as 
memory— to be shared dynamically among the various processors and can lower the workload 

variance among the processors. 

 
 

In addition, one chip with multiple cores uses significantly less power than multiple single-core 
chips, an important issue for mobile devices as well as laptops. 

Clustered Systems : 

Another type of multiprocessor system is a clustered system, which gathers together multiple 

CPUs 

Clustering is usually used to provide high-availability service— that is, service that will 
continue even if one or more systems in the cluster fail. Generally, we obtain high availability 

by adding a level of redundancy in the system. 

Clustering can be structured asymmetrically or symmetrically. In asymmetric clustering, one 

machine is in hot-standby mode while the other is running the applications. The hot-standby 

host machine does nothing but monitor the active server. If that server fails, the hot-standby 

host becomes the active server. In symmetric clustering, two or more hosts are running 
applications and are monitoring each other. This structure is obviously more efficient, as it 

uses all of the available hardware. However, it does require that more than one application be 

available to run. 

 
Operating-System Operations: 

An operating system provides the environment within which programs are executed. Internally, 

operating systems vary greatly, since they are organized along many different lines. There are, 

however, many commonalities, which we consider in this section. 
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For a computer to start running— for instance, when it is powered up or rebooted—it needs to 

have an initial program to run. As noted earlier, this initial program, or bootstrap program, 

tends to be simple. Typically, it is stored within the computer hardware in firmware. It 
initializes all aspects of the system, from CPU registers to device controllers to memory 

contents. The bootstrap program must know how to load the operating system and how to start 

executing that system. To accomplish this goal, the bootstrap program must locate the 

operating-system kernel and load it into memory. 

Once the kernel is loaded and executing, it can start providing services to the system and its 

users. Some services are provided outside of the kernel by system programs that are loaded 
into memory at boot time to become system daemons, which run the entire time the kernel is 

running. On Linux, the first system program is ―systemd,‖ and it starts many other daemons. 

Once this phase is complete, the system is fully booted, and the system waits for some event to 

occur. 

If there are no processes to execute, no I/O devices to service, and no users to whom to 
respond, an operating system will sit quietly, waiting for something to happen. Events are 

almost always signaled by the occurrence of an interrupt. In Section 1.2.1 we described 

hardware interrupts. Another form of interrupt is a trap (or an exception), which is a software-

generated interrupt caused either by an error (for example, division by zero or invalid memory 

access) or by a specific request from a user program that an operating-system service be 

performed by executing a special operation called a system call. 
Multiprogramming and Multitasking: 

One of the most important aspects of operating systems is the ability to run multiple programs, 

as a single program cannot, in general, keep either the CPU or the I/O devices busy at all 

times. Furthermore, users typically want to run more than one program at a time as well. 

Multiprogramming increases CPU utilization, as well as keeping users satisfied, by organizing 
programs so that the CPU always has one to execute. In a multiprogrammed system, a program 

in execution is termed a process. 

 

 The idea is as follows: The operating system keeps several processes in memory 

simultaneously (Figure 1.12). The operating system picks and begins to execute one of these 

processes. Eventually, the process may have to wait for some task, such as an I/O operation, 
to complete. In a non-multiprogrammed system, the CPU would sit idle. In a multiprogrammed 

system, the operating system simply switches to, and executes, another process. When that 

process needs to wait, the CPU switches to another process, and so on. Eventually, the first 

process finishes waiting and gets the CPU back. As long as at least one process needs to 

execute, the CPU is never idle. 
Multitasking is a logical extension of multiprogramming. In multitasking systems, the CPU 

executes multiple processes by switching among them, but the switches occur frequently, 

providing the user with a fast response time. Consider that when a process executes, it 

typically executes for only a short time before it either finishes or needs to perform I/O. I/O 

may be interactive; that is, output goes to a display for the user, and input comes from a user 

keyboard, mouse, or touch screen. Since interactive I/O typically runs at ―people speeds,‖ it 
may take a long time to complete. Input, for example, may be bounded by the user’s typing 

speed; seven characters per second is fast for people but incredibly slow for computers. Rather 

than let the CPU sit idle as this interactive input takes place, the operating system will rapidly 

switch the CPU to another process. 
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Dual-Mode and Multimode Operation: 

     Since the operating system and its users share the hardware and software resources of the 
computer system, a properly designed operating system must ensure that an incorrect (or 

malicious) program cannot cause other programs —or the operating system itself— to execute 

incorrectly. In order to ensure the proper execution of the system, we must be able to 

distinguish between the execution of operating-system code and user-defined code. The 

approach taken by most computer systems is to provide hardware support that allows 

differentiation among various modes of execution. 
At the very least, we need two separate modes of operation: user mode and kernel mode (also 

called supervisor mode, system mode, or privileged mode). A bit, called the mode bit, is added 

to the hardware of the computer to indicate the current mode: kernel (0) or user (1). With the 

mode bit, we can distinguish between a task that is executed on behalf of the operating system 

and one that is executed on behalf of the user. When the computer system is executing on 
behalf of a user application, the system is in user mode. However, when a user application 

requests a service from the operating system (via a system call), the system must transition 

from user to kernel mode to fulfill the request. This is shown in Figure 1.13. As we shall see, 

this architectural enhancement is useful for many other aspects of system operation as well. 

 
Timer : 

We must ensure that the operating system maintains control over the CPU. We cannot allow a 

user program to get stuck in an infinite loop or to fail to call system services and never return 
control to the operating system. To accomplish this goal, we can use a timer. A timer can be set 

to interrupt the computer after a specified period. The period may be fixed (for example, 1/60 

second) or variable (for example, from 1 millisecond to 1 second). A variable timer is generally 

implemented by a fixed-rate clock and a counter. The operating system sets the counter. Every 

time the clock ticks, the counter is decremented. When the counter reaches 0, an interrupt 
occurs. For instance, a 10-bit counter with a 1-millisecond clock allows interrupts at intervals 

from 1 millisecond to 1,024 milliseconds, in steps of 1 millisecond 

Before turning over control to the user, the operating system ensures that the timer is set to 

interrupt. If the timer interrupts, control transfers automatically to the operating system, 

which may treat the interrupt as a fatal error or may give the program more time. Clearly, 

instructions that modify the content of the timer are privileged. 
Operating-System Services: 

An operating system provides an environment for the execution of programs. It makes certain 

services available to programs and to the users of those programs. The specific services 

provided, of course, differ from one operating system to another, but we can identify common 
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classes. Figure 2.1 shows one view of the various operating-system services and how they 

interrelate. Note that these services also make the programming task easier for the 

programmer. 

 

User interface : 
     Almost all operating systems have a user interface (UI). This interface can take several 

forms. Most commonly, a graphical user interface (GUI) is used. Here, the interface is a window 

system with a mouse that serves as a pointing device to direct I/O, choose from menus, and 

make selections and a keyboard to enter text. Mobile systems such as phones and tablets 

provide a touch-screen interface, enabling users to slide their fingers across the screen or press 

buttons on the screen to select choices. Another option is a command-line interface (CLI), 
which uses text commands and a method for entering them (say, a keyboard for typing in 

commands in a specific format with specific options). Some systems provide two or all three of 

these variations. 

Program execution : The system must be able to load a program into memory and to run that 

program. The program must be able to end its execution, either normally or abnormally 

(indicating error). 
I/O operations : A running program may require I/O, which may involve a file or an I/O device. 

For specific devices, special functions may be desired (such as reading from a network interface 

or writing to a file system). For efficiency and protection, users usually cannot control I/O 

devices directly. Therefore, the operating system must provide a means to do I/O. 

• File-system manipulation : 
The file system is of particular interest. Obviously, programs need to read and write files and 

directories. They also need to create and delete them by name, search for a given file, and list 

file information. Finally, some operating systems include permissions management to allow or 

deny access to files or directories based on file ownership. Many operating systems provide a 

variety of file systems, sometimes to allow personal choice and sometimes to provide specific 

features or performance characteristics. 
Communications : There are many circumstances in which one process needs to exchange 

information with another process. Such communication may occur between processes that are 

executing on the same computer or between processes that are executing on different computer 

systems tied together by a network. Communications may be implemented via shared memory, 

in which two or more processes read and write to a shared section of memory, or message 
passing, in which packets of information in predefined formats are moved between processes 

by the operating system 

Error detection : The operating system needs to be detecting and correcting errors constantly. 

Errors may occur in the CPU and memory hardware (such as a memory error or a power 

failure), in I/O devices (such as a parity error on disk, a connection failure on a network, or 

lack of paper in the printer), and in the user program (such as an arithmetic overflow or an 
attempt to access an illegal memory location). For each type of error, the operating system 

should take the appropriate action to ensure correct and consistent computing. Sometimes, it 
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has no choice but to halt the system. At other times, it might terminate an error-causing 

process or return an error code to a process for the process to detect and possibly correct. 

User and Operating-System Interface: 
  We mentioned earlier that there are several ways for users to interface with the operating 

system. Here, we discuss three fundamental approaches. One provides a command-line 

interface, or command interpreter, that allows users to directly enter commands to be 

performed by the operating system. The other two allow users to interface with the operating 

system via a graphical user interface, or GUI. 

Command Interpreters: 
Most operating systems, including Linux, UNIX, and Windows, treat the command interpreter 

as a special program that is running when a process is initiated or when a user first logs on (on 

interactive systems). On systems with multiple command interpreters to choose from, the 

interpreters are known as shells. For example, on UNIX and Linux systems, a user may choose 

among several different shells, including the C shell, Bourne-Again shell, Korn shell, and 
others. Third-party shells and free user-written shells are also available. Most shells provide 

similar functionality, and a user’s choice of which shell to use is generally based on personal 

preference. Figure 2.2 shows the Bourne-Again (or bash) shell command interpreter being used 

on macOS. 

 

         The main function of the command interpreter is to get and execute the next user-
specified command. Many of the commands given at this level manipulate files: create, delete, 

list, print, copy, execute, and so on. The various shells available on UNIX systems operate in 

this way. These commands can be implemented in two general ways. 

In one approach, the command interpreter itself contains the code to execute the command. 

For example, a command to delete a file may cause the command interpreter to jump to a 
section of its code that sets up the parameters and makes the appropriate system call. In this 

case, the number of commands that can be given determines the size of the command 

interpreter, since each command requires its own implementing code. 

An alternative approach—used by UNIX, among other operating systems —implements most 

commands through system programs. In this case, the command interpreter does not 

understand the command in any way; it merely uses the command to identify a file to be 
loaded into memory and executed. Thus, the UNIX command to delete a file 

rm file.txt 

would search for a file called rm, load the file into memory, and execute it with the parameter 

file.txt. The logic associated with the rm command would be defined completely by the code in 

the file rm. In this way, programmers can add new commands to the system easily by creating 
new files with the proper program logic. The command-interpreter program, which can be 

small, does not have to be changed for new commands to be added. 

Graphical User Interface : 

A second strategy for interfacing with the operating system is through a userfriendly graphical 

user interface, or GUI. Here, rather than entering commands directly via a command-line 

interface, users employ a mouse-based windowand-menu system characterized by a desktop 
metaphor. The user moves the mouse to position its pointer on images, or icons, on the screen 

(the desktop) that represent programs, files, directories, and system functions. Depending on 

the mouse pointer’s location, clicking a button on the mouse can invoke a program, select a file 

or directory—known as a folder—or pull down a menu that contains commands. 

Touch-Screen Interface : 
Because a either a command-line interface or a mouse-and-keyboard system is impractical for 

most mobile systems, smartphones and handheld tablet computers typically use a touch-

screen interface. Here, users interact by making gestures on the touch screen— for example, 

pressing and swiping fingers across the screen. Although earlier smartphones included a 

physical keyboard, most smartphones and tablets now simulate a keyboard on the touch 

screen. Figure 2.3 illustrates the touch screen of the Apple iPhone. Both the iPad and the 
iPhone use the Springboard touch-screen interface. 
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System Calls : 

    System calls provide an interface to the services made available by an operating system. 

These calls are generally available as functions written in C and C++, although certain low-level 
tasks (for example, tasks where hardware must be accessed directly) may have to be written 

using assembly-language instructions. 

Example : 

Before we discuss how an operating system makes system calls available, let’s first use an 

example to illustrate how system calls are used: writing a simple program to read data from 

one file and copy them to another file. The first input that the program will need is the names 
of the two files: the input file and the output file. These names can be specified in many ways, 

depending on the operating-system design. One approach is to pass the names of the two files 

as part of the command— for example, the UNIX cp command: 

cp in.txt out.txt 

     This command copies the input file in.txt to the output file out.txt. A second approach is for 
the program to ask the user for the names. In an interactive system, this approach will require 

a sequence of system calls, first to write a prompting message on the screen and then to read 

from the keyboard the characters that define the two files. On mouse-based and icon-based 

systems, a menu of file names is usually displayed in a window. The user can then use the 

mouse to select the source name, and a window can be opened for the destination name to be 

specified. This sequence requires many I/O system calls. 
  

         Once the two file names have been obtained, the program must open the input file and 

create and open the output file. Each of these operations requires another system call. Possible 

error conditions for each system call must be handled. For example, when the program tries to 

open the input file, it may find that there is no file of that name or that the file is protected 
against access. In these cases, the program should output an error message (another sequence 

of system calls) and then terminate abnormally (another system call). If the input file exists, 

then we must create a new output file. We may find that there is already an output file with the 

same name. This situation may cause the program to abort (a system call), or we may delete 

the existing file (another system call) and create a new one (yet another system call). Another 

option, in an interactive system, is to ask the user (via a sequence of system calls to output the 
prompting message and to read the response from the terminal) whether to replace the existing 

file or to abort the program. 

    When both files are set up, we enter a loop that reads from the input file (a system call) and 

writes to the output file (another system call). Each read and write must return status 

information regarding various possible error conditions. On input, the program may find that 
the end of the file has been reached or that there was a hardware failure in the read (such as a 

parity error). The write operation may encounter various errors, depending on the output 

device (for example, no more available disk space). 
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   Another important factor in handling system calls is the run-time environment (RTE)— the 

full suite of software needed to execute applications written in a given programming language, 

including its compilers or interpreters as well as other software, such as libraries and loaders. 
The RTE provides a system-call interface that serves as the link to system calls made available 

by the operating system. The system-call interface intercepts function calls in the API and 

invokes the necessary system calls within the operating system. Typically, a number is 

associated with each system call, and the system-call interface maintains a table indexed 

according to these numbers. The systemcall interface then invokes the intended system call in 

the operating-system kernel and returns the status of the system call. 

 
System calls occur in different ways, depending on the computer in use. Often, more 

information is required than simply the identity of the desired system call. The exact type and 
amount of information vary according to the particular operating system and call. For example, 

to get input, we may need to specify the file or device to use as the source, as well as the 

address and length of the memory buffer into which the input should be read. Of course, the 

device or file and length may be implicit in the call. 

 
      Three general methods are used to pass parameters to the operating system. The simplest 

approach is to pass the parameters in registers. In some cases, however, there may be more 

parameters than registers. In these cases, the parameters are generally stored in a block, or 

table, in memory, and the address of the block is passed as a parameter in a register (Figure 

2.7). Linux uses a combination of these approaches. If there are five or fewer parameters, 

registers are used. If there are more than five parameters, the block method is used. 
Parameters also can be placed, or pushed, onto a stack by the program and popped off the 

stack by the operating system. Some operating systems prefer the block or stack method 

because those approaches do not limit the number or length of parameters being passed. 

Types of System Calls : 

System calls can be grouped roughly into six major categories: process control, fil 
management, device management, information maintenance, communications, and protection. 

Below, we briefly discuss the types of system calls that may be provided by an operating 

system. Most of these system calls support, or are supported by, concepts and functions that 

are discussed in later chapters. Figure 2.8 summarizes the types of system calls normally 

provided by an operating system. As mentioned, in this text, we normally refer to the system 

calls by generic names. Throughout the text, however, we provide examples of the actual 
counterparts to the system calls for UNIX, Linux, and Windows systems. 

Process Control : A running program needs to be able to halt its execution either normally 

(end()) or abnormally (abort()). If a system call is made to terminate the currently running 

program abnormally, or if the program runs into a problem and causes an error trap, a dump 

of memory is sometimes taken and an error message generated. The dump is written to a 
special log file on disk and may be examined by a debugger—a system program designed to aid 

the programmer in finding and correcting errors, or bugs— to determine the cause of the 

problem. Under either normal or abnormal circumstances, the operating system must transfer 

control to the invoking command interpreter. 

• File management : 

create file, delete file, open, close ,read, write, reposition, get file attributes, set file attributes 



Prepared by: Satyam K , AITS , MCA             OS Notes Page 15 
 

• Device management : 

request device, release device read, write, reposition 

◦ get device attributes, set device attributes 
◦ logically attach or detach devices 

• Information maintenance : 

◦ get time or date, set time or date 

◦ get system data, set system data 

◦ get process, file, or device attributes 

◦ set process, file, or device attributes 
• Communications : 

◦ create, delete communication connection 

◦ send, receive messages 

◦ transfer status information 

◦ attach or detach remote devices 
• Protection 

◦ get file permissions 

◦ set file permissions 

 
File Management: 

We first need to be able to create() and delete() files. Either system call requires the name of the 
file and perhaps some of the file’s attributes. Once the file is created, we need to open() it and 

to use it. We may also read(), write(), or reposition() (rewind or skip to the end of the file, for 

example). Finally, we need to close() the file, indicating that we are no longer using it. 

We may need these same sets of operations for directories if we have a directory structure for 

organizing files in the file system. In addition, for either files or directories, we need to be able 
to determine the values of various attributes and perhaps to set them if necessary. File 

attributes include the file name, file type, protection codes, accounting information, and so on. 

At least two system calls, get file attributes() and set file attributes(), are required for this 

function. Some operating systems provide many more calls, such as calls for file move() and 

copy(). Others might provide an API that performs those operations using code and other 

system calls, and others might provide system programs to perform the tasks. If the system 
programs are callable by other programs, then each can be considered an API by other system 

programs. 

Device Management : 

A process may need several resources to execute—main memory, disk drives, access to files, 

and so on. If the resources are available, they can be granted, and control can be returned to 



Prepared by: Satyam K , AITS , MCA             OS Notes Page 16 
 

the user process. Otherwise, the process will have to wait until sufficient resources are 

available. 

The various resources controlled by the operating system can be thought of as devices. Some of 
these devices are physical devices (for example, disk drives), while others can be thought of as 

abstract or virtual devices (for example, files). A system with multiple users may require us to 

first request() a device, to ensure exclusive use of it. After we are finished with the device, we 

release() it. These functions are similar to the open() and close() system calls for files. Other 

operating systems allow unmanaged access to devices. 

Information Maintenance : 
Many system calls exist simply for the purpose of transferring information between the user 

program and the operating system. For example, most systems have a system call to return the 

current time() and date(). Other system calls may return information about the system, such as 

the version number of the operating system, the amount of free memory or disk space, and so 

on. 
Another set of system calls is helpful in debugging a program. Many systems provide system 

calls to dump() memory. This provision is useful for debugging. The program strace, which is 

available on Linux systems, lists each system call as it is executed. Even microprocessors 

provide a CPU mode, known as single step, in which a trap is executed by the CPU after every 

instruction. The trap is usually caught by a debugger 

Many operating systems provide a time profile of a program to indicate the amount of time that 
the program executes at a particular location or set of locations. A time profile requires either a 

tracing facility or regular timer interrupts. At every occurrence of the timer interrupt, the value 

of the program counter is recorded. With sufficiently frequent timer interrupts, a statistical 

picture of the time spent on various parts of the program can be obtained. 

Communication : 
There are two common models of interprocess communication: the messagepassing model and 

the shared-memory model. In the message-passing model, the communicating processes 

exchange messages with one another to trans-fer information. Messages can be exchanged 

between the processes either directly or indirectly through a common mailbox. Before 

communication can take place, a connection must be opened. The name of the other 

communicator must be known, be it another process on the same system or a process on 
another computer connected by a communications network. Each computer in a network has a 

host name by which it is commonly known. A host also has a network identifier, such as an IP 

address. Similarly, each process has a process name, and this name is translated into an 

identifier by which the operating system can refer to the process. The get hostid() and get 

processid() system calls do this translation. The identifiers are then passed to the 
generalpurpose open() and close() calls provided by the file system or to specific open 

connection() and close connection() system calls, depending on the system’s model of 

communication. The recipient process usually must give its permission for communication to 

take place with an accept connection() call. Most processes that will be receiving connections 

are special-purpose daemons, which are system programs provided for that purpose. They 

execute a wait for connection() call and are awakened when a connection is made. The source 
of the communication, known as the client, and the receiving daemon, known as a server, then 

exchange messages by using read message() and write message() system calls. The close 

connection() call terminates the communication. 

Protection : 

Protection provides a mechanism for controlling access to the resources provided by a 
computer system. Historically, protection was a concern only on multiprogrammed computer 

systems with several users. However, with the advent of networking and the Internet, all 

computer systems. 

System Services : 

System services, also known as system utilities, provide a convenient environment for program 

development and execution. Some of them are simply user interfaces to system calls. Others 
are considerably more complex. They can be divided into these categories: 
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File management: These programs create, delete, copy, rename, print, list, and generally 

access and manipulate files and directories. 

Status information : Some programs simply ask the system for the date, time, amount of 
available memory or disk space, number of users, or similar status information. Others are 

more complex, providing detailed performance, logging, and debugging information. Typically, 

these programs format and print the output to the terminal or other output devices or files or 

display it in a window of the GUI. Some systems also support a registry, which is used to store 

and retrieve configuration information. 

File modification: Several text editors may be available to create and modify the content of 
files stored on disk or other storage devices. There may also be special commands to search 

contents of files or perform transformations of the text. 

Programming-language support : Compilers, assemblers, debuggers, and interpreters for 

common programming languages (such as C, C++, Java, and Python) are often provided with 

the operating system or available as a separate download. 
Program loading and execution :  Once a program is assembled or compiled, it must be 

loaded into memory to be executed. The system may provide absolute loaders, relocatable 

loaders, linkage editors, and overlay loaders. Debugging systems for either higher-level 

languages or machine language are needed as well. 

Communications : These programs provide the mechanism for creating virtual connections 

among processes, users, and computer systems. They allow users to send messages to one 
another’s screens, to browse web pages, to send e-mail messages, to log in remotely, or to 

transfer files from one machine to another. 

Background services. : All general-purpose systems have methods for launching certain 

system-program processes at boot time. Some of these processes terminate after completing 

their tasks, while others continue torun until the system is halted. Constantly running system-
program processes are known as services, subsystems, or daemons. 

 

Linkers and Loaders : 

Usually, a program resides on disk as a binary executable file— for example, a.out or prog.exe. 

To run on a CPU, the program must be brought into memory and placed in the context of a 

process. In this section, we describe the steps in this procedure, from compiling a program to 
placing it in memory, where it becomes eligible to run on an available CPU core. 

Source files are compiled into object files that are designed to be loaded into any physical 

memory location, a format known as an relocatable object fil . Next, the linker combines these 

relocatable object files into a single binary executable file. During the linking phase, other 

object files or libraries may be included as well, such as the standard C or math library. 
A loader is used to load the binary executable file into memory, where it is eligible to run on a 

CPU core. An activity associated with linking and loading is relocation, which assigns final 

addresses to the program parts and adjusts code and data in the program to match those 

addresses. 



Prepared by: Satyam K , AITS , MCA             OS Notes Page 18 
 

 
Object files and executable files typically have standard formats that include the compiled 

machine code and a symbol table containing metadata about functions and variables that are 

referenced in the program. For UNIX and Linux systems, this standard format is known as ELF 

(for Executable and Linkable Format). There are separate ELF formats for relocatable and 

executable files. One piece of information in the ELF file for executable files is the program’s 
entry point, which contains the address of the first instruction to be executed when the 

program runs. Windows systems use the Portable Executable (PE) format, and macOS uses the 

Mach-O format. 

Operating Systems Specific Applications : 

Fundamentally, applications compiled on one operating system are not executable on other 

operating systems. If they were, the world would be a better place, and our choice of what 
operating system to use would depend on utility and features rather than which applications 

were available. 

An application can be made available to run on multiple operating systems in one of three 

ways: 

• The application can be written in an interpreted language (such as Python or Ruby) that 
has an interpreter available for multiple operating systems. The interpreter reads each line of 

the source program, executes equivalent instructions on the native instruction set, and calls 

native operating system calls. Performance suffers relative to that for native applications, and 

the interpreter provides only a subset of each operating system’s features, possibly limiting the 

feature sets of the associated applications. 

• The application can be written in a language that includes a virtual machine containing 
the running application. The virtual machine is part of the language’s full RTE. One example of 

this method is Java. Java has an RTE that includes a loader, byte-code verifier, and other 

components that load the Java application into the Java virtual machine. This RTE has been 

Operating-System Structures ported, or developed, for many operating systems, from 

mainframes to smartphones, and in theory any Java app can run within the RTE wherever it is 
available. Systems of this kind have disadvantages similar to those of interpreters, discussed 

above. 

• The application developer can use a standard language or API in which the compiler 

generates binaries in a machine- and operating-systemspecific language. The application must 

be ported to each operating system on which it will run. This porting can be quite time 

consuming and must be done for each new version of the application, with subsequent testing 
and debugging. Perhaps the best-known example is the POSIX API and its set of standards for 

maintaining source-code compatibility between different variants of UNIX-like operating 

systems. 
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Each operating system has a binary format for applications that dictates the layout of the 

header, instructions, and variables. Those components need to be at certain locations in 
specified structures within an executable file so the operating system can open the file and load 

the application for proper execution. 

There are some approaches that have helped address, though not completely solve, these 

architectural differences. For example, Linux—and almost every UNIX system—has adopted the 

ELF format for binary executable files. Although ELF provides a common standard across 

Linux and UNIX systems, the ELF format is not tied to any specific computer architecture, so it 
does not guarantee that an executable file will run across different hardware platforms. 

Operating-System Design and Implementation : 

The first problem in designing a system is to define goals and specifications. At the highest 

level, the design of the system will be affected by the choice of hardware and the type of 

system: traditional desktop/laptop, mobile, distributed, or real time. 
Beyond this highest design level, the requirements may be much harder to specify. The 

requirements can, however, be divided into two basic groups: user goals and system goals. 

Users want certain obvious properties in a system. The system should be convenient to use, 

easy to learn and to use, reliable, safe, and fast. Of course, these specifications are not 

particularly useful in the system design, since there is no general agreement on how to achieve 

them. 
A similar set of requirements can be defined by the developers who must design, create, 

maintain, and operate the system. The system should be easy to design, implement, and 

maintain; and it should be flexible, reliable, error free, and efficient. Again, these requirements 

are vague and may be interpreted in various ways. 

Mechanisms and Policies : 
One important principle is the separation of policy from mechanism. Mechanisms determine 

how to do something; policies determine what will be done. For example, the timer construct 

(see Section 1.4.3) is a mechanism for ensuring CPU protection, but deciding how long the 

timer is to be set for a particular user is a policy decision. 

The separation of policy and mechanism is important for flexibility. Policies are likely to change 

across places or over time. In the worst case, each change in policy would require a change in 
the underlying mechanism. A general mechanism flexible enough to work across a range of 

policies is preferable. A change in policy would then require redefinition of only certain 

parameters of the system. For instance, consider a mechanism for giving priority to certain 

types of programs over others. If the mechanism is properly separated from policy, it can be 

used either to support a policy decision that I/O-intensive programs should have priority over 
CPU-intensive ones or to support the opposite policy. 

Microkernel-based operating systems (discussed in Section 2.8.3) take the separation of 

mechanism and policy to one extreme by implementing a basic set of primitive building blocks. 

These blocks are almost policy free, allowing more advanced mechanisms and policies to be 

added via user-created kernel modules or user programs themselves. In contrast, consider 

Windows, an enormously popular commercial operating system available for over three 
decades. Microsoft has closely encoded both mechanism and policy into the system to enforce a 

global look and feel across all devices that run the Windows operating system. All applications 

have similar interfaces, because the interface itself is built into the kernel and system libraries. 

Apple has adopted a similar strategy with its macOS and iOS operating systems. 

Implementation : 
Once an operating system is designed, it must be implemented. Because operating systems are 

collections of many programs, written by many people over a long period of time, it is difficult 

to make general statements about how they are implemented. 

 

Early operating systems were written in assembly language. Now, most are written in higher-

level languages such as C or C++, with small amountsof the system written in assembly 
language. In fact, more than one higherlevel language is often used. The lowest levels of the 

kernel might be written in assembly language and C. Higher-level routines might be written in 
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C and C++, and system libraries might be written in C++ or even higher-level languages. 

Android provides a nice example: its kernel is written mostly in C with some assembly 

language. Most Android system libraries are written in C or C++, and its application 
frameworks—which provide the developer interface to the system—are written mostly in Java. 

The only possible disadvantages of implementing an operating system in a higher-level 

language are reduced speed and increased storage requirements. This, however, is not a major 

issue in today’s systems. Although an expert assembly-language programmer can produce 

efficient small routines, for large programs a modern compiler can perform complex analysis 

and apply sophisticated optimizations that produce excellent code. Modern processors have 
deep pipelining and multiple functional units that can handle the details of complex 

dependencies much more easily than can the human mind. 

Operating-System Structure : 

The simplest structure for organizing an operating system is no structure at all. That is, place 

all of the functionality of the kernel into a single, static binary file that runs in a single address 
space. This approach—known as a monolithic structure—is a common technique for designing 

operating systems. 

An example of such limited structuring is the original UNIX operating system, which consists of 

two separable parts: the kernel and the system programs. The kernel is further separated into 

a series of interfaces and device drivers, which have been added and expanded over the years 

as UNIX has evolved. We can view the traditional UNIX operating system as being layered to 
some extent, as shown in Figure 2.12. Everything below the system-call interface and above 

the physical hardware is the kernel. The kernel provides the file system, CPU scheduling, 

memory management, and other operatingsystem functions through system calls. Taken in 

sum, that is an enormous amount of functionality to be combined into one single address 

space. 
The Linux operating system is based on UNIX and is structured similarly, as shown in Figure 

2.13. Applications typically use the glibc standard C library when communicating with the 

system call interface to the kernel. The Linux kernel is monolithic in that it runs entirely in 

kernel mode in a single address space, but as we shall see in Section 2.8.4, it does have a 

modular design that allows the kernel to be modified during run time. 

Despite the apparent simplicity of monolithic kernels, they are difficult to implement and 
extend. Monolithic kernels do have a distinct performance advantage, however: there is very 

little overhead in the system-call interface, and communication within the kernel is fast. 

Therefore, despite the drawbacksof monolithic kernels, their speed and efficiency explains why 

we still see evidence of this structure in the UNIX, Linux, and Windows operating systems. 

 
 

 
Layered Approach : 

The monolithic approach is often known as a tightly coupled system because changes to one 

part of the system can have wide-ranging effects on other parts. Alternatively, we could design 
a loosely coupled system. Such a system is divided into separate, smaller components that 
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have specific and limited functionality. All these components together comprise the kernel. The 

advantage of this modular approach is that changes in one component affect only that 

component, and no others, allowing system implementers more freedom in creating and 
changing the inner workings of the system. 

A system can be made modular in many ways. One method is the layered approach, in which 

the operating system is broken into a number of layers (levels). The bottom layer (layer 0) is the 

hardware; the highest (layer N) is the user interface. This layering structure is depicted in 

Figure 2.14. 

An operating-system layer is an implementation of an abstract object made up of data and the 
operations that can manipulate those data. A typical operating-system layer—say, layer M—

consists of data structures and a set of functions that can be invoked by higher-level layers. 

Layer M, in turn, can invoke operations on lower-level layers. 

The main advantage of the layered approach is simplicity of construction and debugging. 

 

 

This approach simplifies debugging and system verification. The first layer can be debugged 

without any concern for the rest of the system, because, by definition, it uses only the basic 

hardware (which is assumed correct) to implement its functions. Once the first layer is 
debugged, its correct functioning can be assumed while the second layer is debugged, and so 

on. If an error is found during the debugging of a particular layer, the error must be on that 

layer, because the layers below it are already debugged. Thus, the design and implementation 

of the system are simplified. 

Microkernels : 

We have already seen that the original UNIX system had a monolithic structure. As UNIX 
expanded, the kernel became large and difficult to manage. In the mid-1980s, researchers at 

Carnegie Mellon University developed an operating system called Mach that modularized the 

kernel using the microkernel approach. This method structures the operating system by 

removingall nonessential components from the kernel and implementing them as userlevel 

programs that reside in separate address spaces. The result is a smaller kernel. There is little 
consensus regarding which services should remain in the kernel and which should be 

implemented in user space. Typically, however, microkernels provide minimal process and 

memory management, in addition to a communication facility. Figure 2.15 illustrates the 

architecture of a typical microkernel. 
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Building and Booting an Operating System : 

It is possible to design, code, and implement an operating system specifically for one specific 

machine configuration. More commonly, however, operating systems are designed to run on 

any of a class of machines with a variety of peripheral configurations. 
Operating-System Generation : 

Most commonly, a computer system, when purchased, has an operating system already 

installed. For example, you may purchase a new laptop with Windows or macOS preinstalled. 

But suppose you wish to replace the preinstalled operating system or add additional operating 

systems. Or suppose you purchase a computer without an operating system. In these latter 

situations, you have a few options for placing the appropriate operating system on the 
computer and configuring it for use. 

If you are generating (or building) an operating system from scratch, you must follow these 

steps: 

1. Write the operating system source code (or obtain previously written source code). 

2. Configure the operating system for the system on which it will run. 
3. Compile the operating system. 

4. Install the operating system. 

5. Boot the computer and its new operating system 

However, most modern operating systems that support desktop and laptop computers as well 

as mobile devices have adopted the second approach. That is, the operating system is still 

generated for a specific hardware configuration, but the use of techniques such as loadable 
kernel modules provides modular support for dynamic changes to the system. 

We now illusrate how to build a Linux system from scratch, where it is typically necessary to 

perform the following steps: 

1. Download the Linux source code from http://www.kernel.org. 

2. Configure the kernel using the ―make menuconfig‖ command. This step generates the .config 
configuration file. 

3. Compile the main kernel using the ―make‖ command. The make command compiles the 

kernel based on the configuration parameters identified in the .config file, producing the file 

vmlinuz, which is the kernel image 

4. Compile the kernel modules using the ―make modules‖ command. Just as with compiling 

the kernel, module compilation depends on the configuration parameters specified in the 
.config file. 

5. Use the command ―make modules install‖ to install the kernel modules into vmlinuz. 

6. Install the new kernel on the system by entering the ―make install‖ command. 

System Boot : 

After an operating system is generated, it must be made available for use by the hardware. But 
how does the hardware know where the kernel is or how to load that kernel? The process of 

starting a computer by loading the kernel is known as booting the system. On most systems, 

the boot process proceeds as follows: 

1. A small piece of code known as the bootstrap program or boot loader locates the kernel. 

2. The kernel is loaded into memory and started. 

http://www.kernel.org/
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3. The kernel initializes hardware. 

4. The root file system is mounted 

Some computer systems use a multistage boot process: When the computer is first powered on, 
a small boot loader located in nonvolatile firmware known as BIOS is run. This initial boot 

loader usually does nothing more than load a second boot loader, which is located at a fixed 

disk location called the boot block. The program stored in the boot block may be sophisticated 

enough to load the entire operating system into memory and begin its execution. More 

typically, it is simple code (as it must fit in a single disk block) and knows only the address on 

disk and the length of the remainder of the bootstrap program. 
 

          Many recent computer systems have replaced the BIOS-based boot process with UEFI 

(Unified Extensible Firmware Interface). UEFI has several advantages over BIOS, including 

better support for 64-bit systems and larger disks. Perhaps the greatest advantage is that UEFI 

is a single, complete boot manager and therefore is faster than the multistage BIOS boot 
process. 

The boot process for mobile systems is slightly different from that for traditional PCs. For 

example, although its kernel is Linux-based, Android does not use GRUB and instead leaves it 

up to vendors to provide boot loaders. The most common Android boot loader is LK (for ―little 

kernel‖). Android systems use the same compressed kernel image as Linux, as well as an initial 

RAM file system. However, whereas Linux discards the initramfs once all necessary drivers 
have been loaded, Android maintains initramfs as the root file system for the device. Once the 

kernel has been loaded and the root file system mounted, Android starts the init process and 

creates a number of services before displaying the home screen. 

Finally, boot loaders for most operating systems—including Windows, Linux, and macOS, as 

well as both iOS and Android—provide booting into recovery mode or single-user mode for 
diagnosing hardware issues, fixing corrupt file systems, and even reinstalling the operating 

system. 

Operating-System Debugging : 

  Debugging is the activity of finding and fixing errors in a system, both in hardware and in 

software. Performance problems are considered bugs, so debugging can also include 

performance tuning, which seeks to improve performance by removing processing bottlenecks. 
Failure Analysis : 

If a process fails, most operating systems write the error information to a log fil to alert system 

administrators or users that the problem occurred. The operating system can also take a core 

dump—a capture of the memory of the process—and store it in a file for later analysis. 

(Memory was referred to as the―core‖ in the early days of computing.) Running programs and 
core dumps can be probed by a debugger, which allows a programmer to explore the code and 

memory of a process at the time of failure. 

Debugging user-level process code is a challenge. Operating-system kernel debugging is even 

more complex because of the size and complexity of the kernel, its control of the hardware, and 

the lack of user-level debugging tools. A failure in the kernel is called a crash. When a crash 

occurs, error information is saved to a log file, and the memory state is saved to a crash dump. 
Operating-system debugging and process debugging frequently use different tools and 

techniques due to the very different nature of these two tasks. Consider that a kernel failure in 

the file-system code would make it risky for the kernel to try to save its state to a file on the file 

system before rebooting. A common technique is to save the kernel’s memory state to a section 

of disk set aside for this purpose that contains no file system. If the kernel detects an 
unrecoverable error, it writes the entire contents of memory, or at least the kernel-owned parts 

of the system memory, to the disk area. When the system reboots, a process runs to gather the 

data from that area and write it to a crash dump file within a file system for analysis. 

Obviously, such strategies would be unnecessary for debugging ordinary user-level 

processes.Performance Monitoring and Tuning : 

We mentioned earlier that performance tuning seeks to improve performance by removing 
processing bottlenecks. To identify bottlenecks, we must be able to monitor system 

performance. Thus, the operating system must have some means of computing and displaying 
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measures of system behavior. Tools may be characterized as providing either per-process or 

system-wide observations. To make these observations, tools may use one of two approaches—

counters or tracing. 
Counters : 

Operating systems keep track of system activity through a series of counters, such as the 

number of system calls made or the number of operations performed to a network device or 

disk. The following are examples of Linux tools that use counters 

Per-Process : 

ps—reports information for a single process or selection of processes • 
top—reports real-time statistics for current processes 

System-Wide: 

vmstat—reports memory-usage statistics • 

netstat—reports statistics for network interfaces 

iostat—reports I/O usage for disks 
Most of the counter-based tools on Linux systems read statistics from the /proc file system. 

/proc is a ―pseudo‖ file system that exists only in kernel memory and is used primarily for 

querying various per-process as well as kernel statistics. The /proc file system is organized as 

a directory hierarchy, with the process (a unique integer value assigned to each process) 

appearing as a subdirectory below /proc. For example, the directory entry /proc/2155 would 

contain per-process statistics for the process with an ID of 2155. There are /proc entries for 
various kernel statistics as well. In both this chapter and Chapter 3, we provide programming 

projects where you will create and access the /proc file system. 

Tracing : 

Whereas counter-based tools simply inquire on the current value of certain statistics that are 

maintained by the kernel, tracing tools collect data for a specific event—such as the steps 
involved in a system-call invocation. The following are examples of Linux tools that trace 

events: 

Per-Process • strace— traces system calls invoked by a process 

gdb—a source-level debugger 

System-Wide • perf—a collection of Linux performance tools 

tcpdump—collects network packets 
Making operating systems easier to understand, debug, and tune as they run is an active area 

of research and practice. A new generation of kernelenabled performance analysis tools has 

made significant improvements in how this goal can be achieved. Next, we discuss BCC, a 

toolkit for dynamic kernel tracing in Linux. 

BCC : Debugging the interactions between user-level and kernel code is nearly impossible 
without a toolset that understands both sets of code and can instrument their interactions. For 

that toolset to be truly useful, it must be able to debug any area of a system, including areas 

that were not written with debugging in mind, and do so without affecting system reliability. 

This toolset must also have a minimal performance impact—ideally it should have no impact 

when not in use and a proportional impact during use. The BCC toolkit meets these 

requirements and provides a dynamic, secure, low-impact debugging environment. 
BCC (BPF Compiler Collection) is a rich toolkit that provides tracing features for Linux 

systems. BCC is a front-end interface to the eBPF (extended Berkeley Packet Filter) tool. The 

BPF technology was developed in the early 1990s for filtering traffic across a computer 

network. The ―extended‖ BPF (eBPF) added various features to BPF. eBPF programs are written 

in a subset of C and are compiled into eBPF instructions, which can be dynamically inserted 
into a running Linux system. The eBPF instructions can be used to capture specific events 

(such as a certain system call being invoked) or to monitor system performance (such as the 

time required to perform disk I/O). To ensure that eBPF instructions are well behaved, they are 

passed through a verifie before being inserted into the running Linux kernel. The verifier 

checks to make sure that the instructions do not affect system performance or security 
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UNIT-II 

 

The Process : 
Informally, as mentioned earlier, a process is a program in execution. The status of the current 

activity of a process is represented by the value of the program counter and the contents of the 

processor’s registers. The memory layout of a process is typically divided into multiple sections, 

and is shown in Figure 3.1. These sections include: 

Text section— the executable code 

Data section—global variables 
Heap section—memory that is dynamically allocated during program run time 

Stack section— temporary data storage when invoking functions (such as function parameters, 

return addresses, and local variables) 

 
Notice that the sizes of the text and data sections are fixed, as their sizes do not change during 

program run time. However, the stack and heap sections can shrink and grow dynamically 
during program execution. Each time a function is called, an activation record containing 

function parameters, local variables, and the return address is pushed onto the stack; when 

control is returned from the function, the activation record is popped from the stack. Similarly, 

the heap will grow as memory is dynamically allocated, and will shrink when memory is 

returned to the system. Although the stack and heap sections grow toward one another, the 

operating system must ensure they do not overlap one another. 
We emphasize that a program by itself is not a process. A program is a passive entity, such as 

a file containing a list of instructions stored on disk (often called an executable fil ). In contrast, 

a process is an active entity, with a program counter specifying the next instruction to execute 

and a set of associated resources. A program becomes a process when an executable file is 

loaded into memory. Two common techniques for loading executable files are double-clicking 
an icon representing the executable file and entering the name of the executable file on the 

command line (as in prog.exe or a.out). 

Although two processes may be associated with the same program, they are nevertheless 

considered two separate execution sequences. For instance, several users may be running 

different copies of the mail program, or the same user may invoke many copies of the web 

browser program. Each of these is a separate process; and although the text sections are 
equivalent, the data, heap, and stack sections vary. It is also common to have a process that 

spawns many processes as it runs. We discuss such matters in Section 3.4. 

Note that a process can itself be an execution environment for other code. The Java 

programming environment provides a good example. In most circumstances, an executable 

Java program is executed within the Java virtual machine (JVM). The JVM executes as a 
process that interprets the loaded Java code and takes actions (via native machine 

instructions) on behalf of that code. For example, to run the compiled Java program 

Program.class, we would enter 

java Program 

Process State : 

As a process executes, it changes state. The state of a process is defined in part by the current 
activity of that process. A process may be in one of the following states: 
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.New. The process is being created. 

• Running. Instructions are being executed. 

• Waiting. The process is waiting for some event to occur (such as an I/O completion or 
reception of a signal). 

• Ready. The process is waiting to be assigned to a processor. 

Terminated. The process has finished execution. 

 
Process Control Block : 

Each process is represented in the operating system by a process control block (PCB)—also 

called a task control block. 
It contains many pieces of information associated with a specific process, including these: 

Process state:The state may be new, ready, running, waiting, halted, and so on. 

Program counter: The counter indicates the address of the next instruction to be executed for 

this process. 

CPU registers: The registers vary in number and type, depending on the computer architecture. 

They include accumulators, index registers, stack pointers, and general-purpose registers, plus 
any condition-code information. Along with the program counter, this state information must 

be saved when an interrupt occurs, to allow the process to be continued correctly afterward 

when it is rescheduled to run. 

• CPU-scheduling information: This information includes a process priority, pointers to 

scheduling queues, and any other scheduling parameters. 
Memory-management information: This information may include such items as the value of the 

base and limit registers and the page tables, or the segment tables, depending on the memory 

system used by the operating system 

Accounting information: This information includes the amount of CPU and real time used, time 

limits, account numbers, job or process numbers, and so on. 

I/O status information: This information includes the list of I/O devices allocated to the 
process, a list of open files, and so on. 

Threads : 

The process model discussed so far has implied that a process is a program that performs a 

single thread of execution. For example, when a process is running a word-processor program, 

a single thread of instructions is being executed. 
Process Scheduling : 

The objective of multiprogramming is to have some process running at all times so as to 

maximize CPU utilization. The objective of time sharing is to switch a CPU core among 

processes so frequently that users can interact with each program while it is running. To meet 

these objectives, the process scheduler selects an available process (possibly from a set of 

several available processes) for program execution on a core. Each CPU core can run one 
process at a time. 
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For a system with a single CPU core, there will never be more than one process running at a 
time, whereas a multicore system can run multiple processes at one time. If there are more 

processes than cores, excess processes will have to wait until a core is free and can be 

rescheduled. The number of processes currently in memory is known as the degree of 

multiprogramming. 

 
Balancing the objectives of multiprogramming and time sharing also requires taking the 

general behavior of a process into account. In general, most processes can be described as 
either I/O bound or CPU bound. An I/O-bound process is one that spends more of its time 

doing I/O than it spends doing computations. A CPU-bound process, in contrast, generates 

I/O requests infrequently, using more of its time doing computations. 

Scheduling Queues : 

As processes enter the system, they are put into a ready queue, where they are ready and 
waiting to execute on a CPU’s core This queue is generally stored as a linked list; a ready-

queue header contains pointers to the first PCB in the list, and each PCB includes a pointer 

field that points to the next PCB in the ready queue. 

The system also includes other queues. When a process is allocated a CPU core, it executes for 

a while and eventually terminates, is interrupted, or waits for the occurrence of a particular 

event, such as the completion of an I/O request. Suppose the process makes an I/O request to 
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a device such as a disk. Since devices run significantly slower than processors, the process will 

have to wait for the I/O to become available. Processes that are waiting for a certain event to 

occur — such as completion of I/O — are placed in a wait queue 
A common representation of process scheduling is a queueing diagram, such as that in Figure 

3.5. Two types of queues are present: the ready queue and a set of wait queues. The circles 

represent the resources that serve the queues, and the arrows indicate the flow of processes in 

the system. 

A new process is initially put in the ready queue. It waits there until it is selected for execution, 

or dispatched. Once the process is allocated a CPU core and is executing, one of several events 

could o    

•The process could issue an I/O request and then be placed in an I/O wait queue. 
• The process could create a new child process and then be placed in a wait queue while it 

awaits the child’s termination 

• The process could be removed forcibly from the core, as a result of an 

CPU Scheduling : 

A process migrates among the ready queue and various wait queues throughout its lifetime. 

The role of the CPU scheduler is to select from among the processes that are in the ready 
queue and allocate a CPU core to one of them. The CPU scheduler must select a new process 

for the CPU frequently. An I/O-bound process may execute for only a few milliseconds before 

waiting for an I/O request. Although a CPU-bound process will require a CPU core for longer 

durations, the scheduler is unlikely to grant the core to a process for an extended period. 

Instead, it is likely designed to forcibly remove the CPU from a process and schedule another 
process to run. Therefore, the CPU scheduler executes at least once every 100 milliseconds, 

although typically much more frequently. 

 

Some operating systems have an intermediate form of scheduling, known as swapping, whose 

key idea is that sometimes it can be advantageous to remove a process from memory (and from 

active contention for the CPU) and thus reduce the degree of multiprogramming. Later, the 
process can be reintroduced into memory, and its execution can be continued where it left off. 

This scheme is known as swapping because a process can be ―swapped outrom memory to 

disk, where its current status is saved, and later ―swapped in‖ from disk back to memory, 

where its status is restored. Swapping is typically only necessary when memory has been 

overcommitted and must be freed up. 
CPU Scheduler : 

Whenever the CPU becomes idle, the operating system must select one of the processes in the 

ready queue to be executed. The selection process is carried out by the CPU scheduler, which 

selects a process from the processes in memory that are ready to execute and allocates the 

CPU to that process. 

Note that the ready queue is not necessarily a first-in, first-out (FIFO) queue. As we shall see 
when we consider the various scheduling algorithms, a ready queue can be implemented as a 

FIFO queue, a priority queue, a tree, or simply an unordered linked list. Conceptually, 

however, all the processes in the ready queue are lined up waiting for a chance to run on the 

CPU. The records in the queues are generally process control blocks (PCBs) of the processes. 

Preemptive and Nonpreemptive Scheduling : 
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CPU-scheduling decisions may take place under the following four circumstances: 

1. When a process switches from the running state to the waiting state (for example, as the 

result of an I/O request or an invocation of wait() for the termination of a child process) 
2. When a process switches from the running state to the ready state (for example, when an 

interrupt occurs) 

3. When a process switches from the waiting state to the ready state (for example, at 

completion of I/O) 

4. When a process terminates 

When scheduling takes place only under circumstances 1 and 4, we say that the scheduling 
scheme is nonpreemptive or cooperative. Otherwise, it is preemptive. Under nonpreemptive 

scheduling, once the CPU has been allocated to a process, the process keeps the CPU until it 

releases it either by terminating or by switching to the waiting state. Virtually all modern 

operating systems including Windows, macOS, Linux, and UNIX use preemptive scheduling 

algorithms. 
Unfortunately, preemptive scheduling can result in race conditions when data are shared 

among several processes. Consider the case of two processes that share data. While one 

process is updating the data, it is preempted so that the second process can run. The second 

process then tries to read the data, which are in an inconsistent state. 

Scheduling Criteria : 

Different CPU-scheduling algorithms have different properties, and the choice of a particular 
algorithm may favor one class of processes over another. In choosing which algorithm to use in 

a particular situation, we must consider the properties of the various algorithms. 

Many criteria have been suggested for comparing CPU-scheduling algorithms. Which 

characteristics are used for comparison can make a substantial difference in which algorithm 

is judged to be best. The criteria include the following: 
• CPU utilization: We want to keep the CPU as busy as possible. Conceptually, CPU utilization 

can range from 0 to 100 percent. In a real system, it should range from 40 percent (for a lightly 

loaded system) to 90 percent (for a heavily loaded system). (CPU utilization can be obtained by 

using the top command on Linux, macOS, and UNIX systems.) 

• Throughput: If the CPU is busy executing processes, then work is being done. One measure 

of work is the number of processes that are completed per time unit, called throughput. For 
long processes, this rate may be one process over several seconds; for short transactions, it 

may be tens of processes per second. 

Turnaround time :From the point of view of a particular process, the important criterion is how 

long it takes to execute that process. The interval from the time of submission of a process to 

the time of completion is the turnaround time. Turnaround time is the sum of the periods 
spent waiting in the ready queue, executing on the CPU, and doing I/O. 

Waiting time :The CPU-scheduling algorithm does not affect the amount of time during which a 

process executes or does I/O. It affects only the amount of time that a process spends waiting 

in the ready queue. Waiting time is the sum of the periods spent waiting in the ready queue. 

Response time :In an interactive system, turnaround time may not be the best criterion. Often, 

a process can produce some output fairly early and can continue computing new results while 
previous results are being output to the user. Thus, another measure is the time from the 

submission of a request until the first response is produced. This measure, called response 

time, is the time it takes to start responding, not the time it takes to output the response. 

Scheduling Algorithms : 

CPU scheduling deals with the problem of deciding which of the processes in the ready queue 
is to be allocated the CPU’s core. There are many different CPUscheduling algorithms. In this 

section, we describe several of them. Although most modern CPU architectures have multiple 

processing cores, we describe these scheduling algorithms in the context of only one processing 

core available. That is, a single CPU that has a single processing core, thus the system 

iscapable of only running one process at a time. 

First-Come, First-Served Scheduling : 
By far the simplest CPU-scheduling algorithm is the first-come first-serve (FCFS) scheduling 

algorithm. With this scheme, the process that requests the CPU first is allocated the CPU first. 
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The implementation of the FCFS policy is easily managed with a FIFO queue. When a process 

enters the ready queue, its PCB is linked onto the tail of the queue. When the CPU is free, it is 

allocated to the process at the head of the queue. The running process is then removed from 
the queue. The code for FCFS scheduling is simple to write and understand. 

On the negative side, the average waiting time under the FCFS policy is often quite long. 

Consider the following set of processes that arrive at time 0, with the length of the CPU burst 

given in milliseconds. 

 
If the processes arrive in the order P1, P2, P3, and are served in FCFS order, we get the result 
shown in the following Gantt chart, which is a bar chart that illustrates a particular schedule, 

including the start and finish times of each of the participating processes: 

 

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction is substantial. 

Thus, the average waiting time under an FCFS policy is generally not minimal and may vary 

substantially if the processes’ CPU burst times vary greatly. 
In addition, consider the performance of FCFS scheduling in a dynamic situation. Assume we 

have one CPU-bound process and many I/O-bound processes. As the processes flow around 

the system, the following scenario may result. The CPU-bound process will get and hold the 

CPU. During this time, all the other processes will finish their I/O and will move into the ready 

queue, waiting for the CPU. 
Shortest-Job-First Scheduling : 

A different approach to CPU scheduling is the shortest-job-firs (SJF) scheduling algorithm. This 

algorithm associates with each process the length of the process’s next CPU burst. When the 

CPU is available, it is assigned to the process that has the smallest next CPU burst. If the next 

CPU bursts of two processes are the same, FCFS scheduling is used to break the tie. Note that 

a more appropriate term for this scheduling method would be the shortest-next-CPU-burst 
algorithm, because scheduling depends on the length of the next CPU burst of a process, 

rather than its total length. We use the term SJF because most people and textbooks use this 

term to refer to this type of scheduling. 

 

before a long one decreases the waiting time of the short process more than it increases the 

waiting time of the long process. Consequently, the average waiting time decreases. 
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Although the SJF algorithm is optimal, it cannot be implemented at the level of CPU 

scheduling, as there is no way to know the length of the next CPU burst. One approach to this 

problem is to try to approximate SJF scheduling. We may not know the length of the next CPU 
burst, but we may be able to predict its value. We expect that the next CPU burst will be 

similar in length to the previous ones. By computing an approximation of the length of the next 

CPU burst, we can pick the process with the shortest predicted CPU burst. 

The next CPU burst is generally predicted as an exponential average of the measured lengths of 

previous CPU bursts. We can define the exponential average with the following formula. Let tn 

be the length of the nth CPU burst, and let τn+1 be our predicted value for the next CPU burst. 
Then, for α, 0 ≤ α ≤ 1, define 

τn+1 = α tn + (1 − α)τn. 

The value of tn contains our most recent information, while τn stores the past history. The 

parameter α controls the relative weight of recent and past history in our prediction. If α = 0, 

then τn+1 = τn, and recent history has no effect (current conditions are assumed to be 
transient). If α = 1, then τn+1 = tn, and only the most recent CPU burst matters (history is 

assumed to be old and irrelevant). More commonly, α = 1/2, so recent history and past history 

are equally weighted. The initial τ0 can be defined as a constant or as an overall system 

average. Figure 5.4 shows an exponential average with α = 1/2 and τ0 = 10. 

 
To understand the behavior of the exponential average, we can expand the formula for τn+1 by 
substituting for τn to find 

τn+1 = αtn + (1 − α)αtn−1 +···+ (1 − α) j αtn−j +···+ (1 − α) n+1 τ0. 

Typically, α is less than 1. As a result, (1 − α) is also less than 1, and each successive term has 

less weight than its predecessor. 

The SJF algorithm can be either preemptive or nonpreemptive. The choice arises when a new 
process arrives at the ready queue while a previous process is still executing. The next CPU 

burst of the newly arrived process may be shorter than what is left of the currently executing 

process. A preemptive SJF algorithm will preempt the currently executing process, whereas a 

nonpreemptive SJF algorithm will allow the currently running process to finish its CPU burst. 

Preemptive SJF scheduling is sometimes called shortest-remainingtime-firs scheduling. 
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Round-Robin Scheduling : 
The round-robin (RR) scheduling algorithm is similar to FCFS scheduling, but preemption is 

added to enable the system to switch between processes. A small unit of time, called a time 

quantum or time slice, is defined. A time quantum is generally from 10 to 100 milliseconds in 

length. The ready queue is treated as a circular queue. The CPU scheduler goes around the 

ready queue, allocating the CPU to each process for a time interval of up to 1 time quantum. 

To implement RR scheduling, we again treat the ready queue as a FIFO queue of processes. 
New processes are added to the tail of the ready queue. 

The CPU scheduler picks the first process from the ready queue, sets a timer to interrupt after 

1 time quantum, and dispatches the process. 

One of two things will then happen. The process may have a CPU burst of less than 1 time 

quantum. In this case, the process itself will release the CPU voluntarily. The scheduler will 
then proceed to the next process in the ready queue. If the CPU burst of the currently running 

process is longer than 1 time quantum, the timer will go off and will cause an interrupt to the 

operating system. A context switch will be executed, and the process will be put at the tail of 

the ready queue. The CPU scheduler will then select the next process in the ready queue. 

The average waiting time under the RR policy is often long. Consider the following set of 

processes that arrive at time 0, with the length of the CPU burst given in milliseconds: 
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number of context switches. Assume, for example, that we have only one process of 10 time 

units. If the quantum is 12 time units, the process finishes in less than 1 time quantum, with 

no overhead. If the quantum is 6 time units, however, the process requires 2 quanta, resulting 
in a context switch. If the time quantum is 1 time unit, then nine context switches will occur, 

slowing the execution of the process accordingly (Figure 5.5). 

Thus, we want the time quantum to be large with respect to the contextswitch time. If the 

context-switch time is approximately 10 percent of the time quantum, then about 10 percent of 

the CPU time will be spent in context switching. In practice, most modern systems have time 

quanta ranging from 10 to 100 milliseconds. The time required for a context switch is typically 
less than 10 microseconds; thus, the context-switch time is a small fraction of the time 

quantum. 

Priority Scheduling : 

The SJF algorithm is a special case of the general priority-scheduling algorithm. A priority is 

associated with each process, and the CPU is allocated to the process with the highest priority. 

Equal-priority processes are scheduled in FCFS order. An SJF algorithm is simply a priority 
algorithm where the priority (p) is the inverse of the (predicted) next CPU burst. The larger the 

CPU burst, the lower the priority, and vice versa. 

 
Note that we discuss scheduling in terms of high priority and low priority. Priorities are 

generally indicated by some fixed range of numbers, such as 0 to 7 or 0 to 4,095. However, 

there is no general agreement on whether 0 is the highest or lowest priority. Some systems use 

low numbers to represent low priority; others use low numbers for high priority. This difference 

can lead to confusion. In this text, we assume that low numbers represent high priority. As an 

example, consider the following set of processes, assumed to have arrived at time 0 in the order 
P1, P2, ···, P5, with the length of the CPU burst given in milliseconds: 
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Multilevel Queue Scheduling : 
With both priority and round-robin scheduling, all processes may be placed in a single queue, 

and the scheduler then selects the process with the highest priority to run. Depending on how 

the queues are managed, an O(n) search may be necessary to determine the highest-priority 

process. In practice, it is often easier to have separate queues for each distinct priority, and 

priority scheduling simply schedules the process in the highest-priority queue. This is 
illustrated in Figure 5.7. This approach—known as multilevel queue— also works well when 

priority scheduling is combined with round-robin: if there are multiple processes in the 

highest-priority queue, they are executed in round-robin order. In the most generalized form of 

this approach, a priority is assigned statically to each process, and a process remains in the 

same queue for the duration of its runtime. 

 

 
A multilevel queue scheduling algorithm can also be used to partition processes into several 

separate queues based on the process type (Figure 5.8). For example, a common division is 

made between foreground (interactive) processes and background (batch) processes. These two 

types of processes have different response-time requirements and so may have different 

scheduling needs. In addition, foreground processes may have priority (externally defined) over 
background processes. Separate queues might be used for foreground and background 

processes, and each queue might have its own scheduling algorithm. The foreground queue 

might be scheduled by an RR algorithm, for example, while the background queue is scheduled 

by an FCFS algorithm. 

In addition, there must be scheduling among the queues, which is commonly implemented as 

fixed-priority preemptive scheduling. For example, the real-time queue may have absolute 
priority over the interactive queue. Let’s look at an example of a multilevel queue scheduling 

algorithm with four queues, listed below in order of priority: 
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1. Real-time processes 

2. System processes 

3. Interactive processes 
4. Batch processes 

Each queue has absolute priority over lower-priority queues. No process in the batch queue, for 

example, could run unless the queues for real-time processes, system processes, and 

interactive processes were all empty. If an interactive process entered the ready queue while a 

batch process was running, the batch process would be preempted. 

Another possibility is to time-slice among the queues. Here, each queue gets a certain portion 
of the CPU time, which it can then schedule among its various processes. For instance, in the 

foreground –background queue example, the foreground queue can be given 80 percent of the 

CPU time for RR scheduling among its processes, while the background queue receives 20 

percent of the CPU to give to its processes on an FCFS basis. 

Multilevel Feedback Queue Scheduling : 
Normally, when the multilevel queue scheduling algorithm is used, processes are permanently 

assigned to a queue when they enter the system. If there are separate queues for foreground 

and background processes, for example, processes do not move from one queue to the other, 

since processes do not change their foreground or background nature. This setup has the 

advantage of low scheduling overhead, but it is inflexible. 

The multilevel feedback queue scheduling algorithm, in contrast, allows a process to move 
between queues. The idea is to separate processes according to the characteristics of their CPU 

bursts. If a process uses too much CPU time, it will be moved to a lower-priority queue. This 

scheme leaves I/O-bound and interactive processes—which are typically characterized by short 

CPU bursts —in the higher-priority queues. In addition, a process that waits too long in a 

lower-priority queue may be moved to a higher-priority queue. This form of aging prevents 
starvation. 

In general, a multilevel feedback queue scheduler is defined by the following parameters: 

• The number of queues 

• The scheduling algorithm for each queue 

• The method used to determine when to upgrade a process to a higherpriority queue 

• The method used to determine when to demote a process to a lowerpriority queue 
• The method used to determine which queue a process will enter when that process needs 

service 

Threads :   A thread is a basic unit of CPU utilization; it comprises a thread ID, a program 

counter (PC), a register set, and a stack. It shares with other threads belonging to the same 

process its code section, data section, and other operating-system resources, such as open files 
and signals. A traditional process has a single thread of control. If a process has multiple 

threads of control, it can perform more than one task at a time. Figure 4.1 illustrates the 

difference between a traditional single-threaded process and a multithreaded process. 

Most software applications that run on modern computers and mobile devices are 

multithreaded. An application typically is implemented as a separate process with several 

threads of control. Below we highlight a few examples of multithreaded applications: 
An application that creates photo thumbnails from a collection of images may use a separate 

thread to generate a thumbnail from each separate image. 

• Aweb browser might have one thread display images or text while another thread retrieves 

data from the network. 

• A word processor may have a thread for displaying graphics, another thread for responding to 
keystrokes from the user, and a third thread for performing spelling and grammar checking in 

the background. 
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Applications can also be designed to leverage processing capabilities on multicore systems. 

Such applications can perform several CPU-intensive tasks in parallel across the multiple 

computing cores. 

In certain situations, a single application may be required to perform several similar tasks. For 

example, a web server accepts client requests for web pages, images, sound, and so forth. A 
busy web server may have several (perhaps thousands of) clients concurrently accessing it. If 

the web server ran as a traditional single-threaded process, it would be able to service only one 

client at a time, and a client might have to wait a very long time for its request to be serviced. 

One solution is to have the server run as a single process that accepts requests. When the 

server receives a request, it creates a separate process to service that request. In fact, this 

process-creation method was in common use before threads became popular. Process creation 
is time consuming and resource intensive, however. If the new process will perform the same 

tasks as the existing process, why incur all that overhead? It is generally more efficient to use 

one process that contains multiple threads. If the web-server process is multithreaded, the 

server will create a separate thread that listens for client requests. When a request is made, 

rather than creating another process, the server creates a new thread to service the request 

and resumes listening for additional requests. This is illustrated in Figure 4.2. 
Most operating system kernels are also typically multithreaded. As an example, during system 

boot time on Linux systems, several kernel threads are created. Each thread performs a 

specific task, such as managing devices, memory management, or interrupt handling. The 

command ps -ef can be used to display the kernel threads on a running Linux system. 

Examining the output of this command will show the kernel thread kthreadd (with pid = 2), 
which serves as the parent of all other kernel threads. 

Many applications can also take advantage of multiple threads, including basic sorting, trees, 

and graph algorithms. In addition, programmers who must solve contemporary CPU-intensive 

problems in data mining, graphics, and artificial intelligence can leverage the power of modern 

multicore systems by designing solutions that run in parallel. 

 
 

 
The benefits of multithreaded programming can be broken down into four major categories: 
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1. Responsiveness. Multithreading an interactive application may allow a program to continue 

running even if part of it is blocked or is performing a lengthy operation, thereby increasing 

responsiveness to the user. This quality is especially useful in designing user interfaces. For 
instance, consider what happens when a user clicks a button that results in the performance 

of a time-consuming operation. A single-threaded application would be unresponsive to the 

user until the operation had been completed. In contrast, if the time-consuming operation is 

performed in a separate, asynchronous thread, the application remains responsive to the user. 

2. Resource sharing. Processes can share resources only through techniques such as shared 

memory and message passing. Such techniques must be explicitly arranged by the 
programmer. However, threads share the memory and the resources of the process to which 

they belong by default. The benefit of sharing code and data is that it allows an application to 

have several different threads of activity within the same address space. 

3. Economy. Allocating memory and resources for process creation is costly. Because threads 

share the resources of the process to which they belong, it is more economical to create and 

context-switch threads. Empirically gauging the difference in overhead can be difficult, but in 

general thread creation consumes less time and memory than process creation. Additionally, 

context switching is typically faster between threads than between processes. 

4. Scalability. The benefits of multithreading can be even greater in a multiprocessor 
architecture, where threads may be running in parallel on different processing cores. A single-

threaded process can run on only one processor, regardless how many are available. We 

explore this issue further in the following section. 

Multithreading Models : 

Our discussion so far has treated threads in a generic sense. However, support for threads may 

be provided either at the user level, for user threads, or by the kernel, for kernel threads. User 

threads are supported above the kernel and are managed without kernel support, whereas 

kernel threads are supported and managed directly by the operating system. Virtually all 

contemporary operating systems—including Windows, Linux, and macOS— support kernel 

threads. 

Ultimately, a relationship must exist between user threads and kernel threads, as illustrated in 
Figure 4.6. In this section, we look at three common ways of establishing such a relationship: 

the many-to-one model, the one-toone model, and the many-to-many model 

Many-to-One Model : 

The many-to-one model (Figure 4.7) maps many user-level threads to one kernel thread. 
Thread management is done by the thread library in user space, so it is efficient (we discuss 

thread libraries in Section 4.4). However, the entire process will block if a thread makes a 

blocking system call. Also, because only one thread can access the kernel at a time, multiple 

threads are unable to run in parallel on multi core systems. Green threads—a thread library 

available for Solaris systems and adopted in early versions of Java—used the many-toone 
model. However, very few systems continue to use the model because of its inability to take 

advantage of multiple processing cores, which have now become standard on most computer 

systems. 
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One-to-One Model : 

The one-to-one model (Figure 4.8) maps each user thread to a kernel thread. It provides more 

concurrency than the many-to-one model by allowing another thread to run when a thread 

makes a blocking system call. It also allows multiple threads to run in parallel on 

multiprocessors. The only drawback to this model is that creating a user thread requires 

creating the corresponding kernel thread, and a large number of kernel threads may burden 
the performance of a system. Linux, along with the family of Windows operating systems, 

implement the one-to-one model. 

Many-to-Many Model : 

The many-to-many model (Figure 4.9) multiplexes many user-level threads to a smaller or 
equal number of kernel threads. The number of kernel threads may be specific to either a 

particular application or a particular machine (an application may be allocated more kernel 

threads on a system with eight processing cores than a system with four cores). 
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Let’s consider the effect of this design on concurrency. Whereas the manyto-one model allows 

the developer to create as many user threads as she wishes, it does not result in parallelism, 

because the kernel can schedule only one kernel thread at a time. The one-to-one model allows 

greater concurrency, but the developer has to be careful not to create too many threads within 

an application. (In fact, on some systems, she may be limited in the number of threads she can 
create.) The many-to-many model suffers from neither of these shortcomings: developers can 

create as many user threads as necessary, and the corresponding kernel threads can run in 

parallel on a multiprocessor. Also, when a thread performs a blocking system call, the kernel 

can schedule another thread for execution. 

One variation on the many-to-many model still multiplexes many userlevel threads to a smaller 

or equal number of kernel threads but also allows a user-level thread to be bound to a kernel 

thread. This variation is sometimes referred to as the two-level model (Figure 4.10). 

Although the many-to-many model appears to be the most flexible of the models discussed, in 

practice it is difficult to implement. In addition, with an increasing number of processing cores 
appearing on most systems, limiting the number of kernel threads has become less important. 

As a result, most operating systems now use the one-to-one model. However, as we shall see in 

Section 4.5, some contemporary concurrency libraries have developers identify tasks that are 

then mapped to threads using the many-to-many model. 

Threading Issues : 

In this section, we discuss some of the issues to consider in designing multithreaded programs. 

The fork() and exec() System Calls : 

we described how the fork() system call is used to create a separate, duplicate process. The 

semantics of the fork() and exec() system calls change in a multithreaded program. 

If one thread in a program calls fork(), does the new process duplicate all threads, or is the new 

process single-threaded? Some UNIX systems have chosen to have two versions of fork(), one 

that duplicates all threads and another that duplicates only the thread that invoked the fork() 

system call. 

The exec() system call typically works in the same way as described in Chapter 3. That is, if a 

thread invokes the exec() system call, the program specified in the parameter to exec() will 

replace the entire process—including all threads. 

Which of the two versions of fork() to use depends on the application. If exec() is called 

immediately after forking, then duplicating all threads is unnecessary, as the program specified 

in the parameters to exec() will replace the process. In this instance, duplicating only the 
calling thread is appropriate. If, however, the separate process does not call exec() after forking, 

the separate process should duplicate all threads. 

Signal Handling : 

A signal is used in UNIX systems to notify a process that a particular event has occurred. A 

signal may be received either synchronously or asynchronously, depending on the source of 

and the reason for the event being signaled. All signals, whether synchronous or 

asynchronous, follow the same pattern: 

1. A signal is generated by the occurrence of a particular event. 
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2. The signal is delivered to a process. 

3. Once delivered, the signal must be handled. 

Synchronization : 

We’ve already seen that processes can execute concurrently or in parallel. Section 3.2.2 

introduced the role of process scheduling and described how the CPU scheduler switches 

rapidly between processes to provide concurrent execution. This means that one process may 

only partially complete execution before another process is scheduled. In fact, a process may 

be interrupted at any point in its instruction stream, and the processing core may be assigned 

to execute instructions of another process. Additionally, Section 4.2 introduced parallel 
execution, in which two instruction streams (representing different processes) execute 

simultaneously on separate processing cores. In this chapter, we explain how concurrent or 

parallel execution can contribute to issues involving the integrity of data shared by several 

processes. 

Let’s consider an example of how this can happen. In Chapter 3, we developed a model of a 

system consisting of cooperating sequential processes or threads, all running asynchronously 

and possibly sharing data. We illustrated this model with the producer–consumer problem, 
which is a representative paradigm of many operating system functions. Specifically, in Section 

3.5, we described how a bounded buffer could be used to enable processes to share memory 

Because of the importance of this issue, we devote a major portion of this chapter to process 

synchronization and coordination among cooperating processes. 

The Critical-Section Problem : 

We begin our consideration of process synchronization by discussing the socalled critical-
section problem. Consider a system consisting of n processes {P0, P1, ..., Pn−1}. Each process 

has a segment of code, called a critical section, in which the process may be accessing — and 

updating — data that is shared with at least one other process. The important feature of the 

system is that, when one process is executing in its critical section, no other process is allowed 

to execute in its critical section. That is, no two processes are executing in their critical 
sections at the same time. The critical-section problem is to design a protocol that the 

processes can use to synchronize their activity so as to cooperatively share data. Each process 

must request permission to enter its critical section. The section of code implementing this 

request is the entry section. The critical section may be followed by an exit section. The 

remaining code is the remainder section. The general structure of a typical process is shown in 

Figure 6.1. The entry section and exit section are enclosed in boxes to highlight these 

important segments of code. 

Highlight these important segments of code. A solution to the critical-section problem must 

satisfy the following three requirements: 

1. Mutual exclusion. If process Pi is executing in its critical section, then no other processes 

can be executing in their critical sections. 

2. Progress. If no process is executing in its critical section and some processes wish to enter 

their critical sections, then only those processes that are not executing in their remainder 

sections can participate in deciding which will enter its critical section next, and this selection 

cannot be postponed indefinitely. 

3. Bounded waiting. There exists a bound, or limit, on the number of times that other 

processes are allowed to enter their critical sections after a process has made a request to enter 

its critical section and before that request is granted. 
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We assume that each process is executing at a nonzero speed. However, we can make no 

assumption concerning the relative speed of the n processes. 

At a given point in time, many kernel-mode processes may be active in the operating system. 

As a result, the code implementing an operating system (kernel code) is subject to several 

possible race conditions. Consider as an example a kernel data structure that maintains a list 
of all open files in the system. This list must be modified when a new file is opened or closed 

(adding the file to the list or removing it from the list). If two processes were to open files 

simultaneously, the separate updates to this list could result in a race condition. 

Peterson’s Solution : 

Next, we illustrate a classic software-based solution to the critical-section problem known as 

Peterson’s solution. Because of the way modern computer architectures perform basic 

machine-language instructions, such as load and store, there are no guarantees that 

Peterson’s solution will work correctly on such architectures. However, we present the solution 

because it provides a good algorithmic description of solving the critical-section problem and 
illustrates some of the complexities involved in designing software that addresses the 

requirements of mutual exclusion, progress, and bounded waiting. 

Hardware Support for Synchronization : 

We have just described one software-based solution to the critical-section problem. (We refer to 
it as a software-based solution because the algorithm involves no special support from the 

operating system or specific hardware instructions to ensure mutual exclusion.) However, as 

discussed, software-based solutions are not guaranteed to work on modern computer 

architectures. In this section, we present three hardware instructions that provide support for 

solving the critical-section problem. These primitive operations can be used directly as 

synchronization tools, or they can be used to form the foundation of more abstract 

synchronization mechanisms. 

Memory Barriers : 

In Section 6.3, we saw that a system may reorder instructions, a policy that can lead to 
unreliable data states. How a computer architecture determines what memory guarantees it 

will provide to an application program is known as its memory model. In general, a memory 

model falls into one of two categories: 

1. Strongly ordered, where a memory modification on one processor is immediately visible to all 

other processors. 

2. Weakly ordered, where modifications to memory on one processor may not be immediately 

visible to other processors. 

Memory models vary by processor type, so kernel developers cannot make any assumptions 

regarding the visibility of modifications to memory on a shared-memory multiprocessor. To 

address this issue, computer architectures provide instructions that can force any changes in 

memory to be propagated to all other processors, thereby ensuring that memory modifications 
are visible tothreads running on other processors. Such instructions are known as memory 

barriers or memory fences. 

Hardware Instructions : 

Many modern computer systems provide special hardware instructions that allow us either to 
test and modify the content of a word or to swap the contents of two words atomically— that is, 

as one uninterruptible unit. We can use these special instructions to solve the critical-section 
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problem in a relatively simple manner. Rather than discussing one specific instruction for one 

specific machine, we abstract the main concepts behind these types of instructions by 

describing the test and set() and compare and swap() instructions. 

Mutex  Locks : 

The hardware-based solutions to the critical-section problem presented in Section 6.4 are 

complicated as well as generally inaccessible to application programmers. Instead, operating-

system designers build higher-level software tools to solve the critical-section problem. The 
simplest of these tools is the mutex lock. (In fact, the term mutex is short for mutual 

exclusion.) We use the mutex lock to protect critical sections and thus prevent race conditions. 

That is, a process must acquire the lock before entering a critical section; it releases the lock 

when it exits the critical section. The acquire()function acquires the lock, and the release() 

function releases the lock, as illustrated in Figure 6.10. 

A mutex lock has a boolean variable available whose value indicates if the lock is available or 

not. If the lock is available, a call to acquire() succeeds, and the lock is then considered 
unavailable. A process that attempts to acquire an unavailable lock is blocked until the lock is 

released. 

Semaphores : Mutex locks, as we mentioned earlier, are generally considered the simplest of 

synchronization tools. In this section, we examine a more robust tool that can behave similarly 

to a mutex lock but can also provide more sophisticated ways for processes to synchronize 

their activities. 

A semaphore S is an integer variable that, apart from initialization, is accessed only through 

two standard atomic operations: wait() and signal(). Semaphores were introduced by the Dutch 

computer scientist Edsger Dijkstra, and such, the wait() operation was originally termed P 

(from the Dutchproberen, ―to test‖); signal() was originally called V (from verhogen, ―to 

increment‖). The definition of wait() is as follows: 

 

 

Semaphore Usage : 

Operating systems often distinguish between counting and binary semaphores. The value of a 

counting semaphore can range over an unrestricted domain. The value of a binary semaphore 

can range only between 0 and 1. Thus, binary semaphores behave similarly to mutex locks. In 
fact, on systems that do not provide mutex locks, binary semaphores can be used instead for 

providing mutual exclusion. 
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Counting semaphores can be used to control access to a given resource consisting of a finite 

number of instances. The semaphore is initialized to the number of resources available. Each 

process that wishes to use a resource performs a wait() operation on the semaphore (thereby 
decrementing the count). When a process releases a resource, it performs a signal() operation 

(incrementing the count). When the count for the semaphore goes to 0, all resources are being 

used. After that, processes that wish to use a resource will block until the count becomes 

greater than 0. 

Monitors : 

Although semaphores provide a convenient and effective mechanism for process 

synchronization, using them incorrectly can result in timing errors that are difficult to detect, 

since these errors happen only if particular execution sequences take place, and these 

sequences do not always occur. 

We have seen an example of such errors in the use of a count in our solution to the producer–

consumer problem (Section 6.1). In that example, the timing problem happened only rarely, 
and even then the count value appeared to be reasonable—off by only 1. Nevertheless, the 

solution is obviously not an acceptable one. It is for this reason that mutex locks and 

semaphores were introduced in the first place. 

Deadlock : 

The implementation of a semaphore with a waiting queue may result in a situation where two 

or more processes are waiting indefinitely for an event that can be caused only by one of the 

waiting processes. The event in question is the execution of a signal() operation. When such a 

state is reached, these processes are said to be deadlocked. 

 

Classic Problems of Synchronization : 

In this section, we present a number of synchronization problems as examples of a large class 

of concurrency-control problems. These problems are used for testing nearly every newly 

proposed synchronization scheme. In our solutions to the problems, we use semaphores for 
synchronization, since that is thetraditional way to present such solutions. However, actual 

implementations of these solutions could use mutex locks in place of binary semaphores. 

The Bounded-Buffer Problem : 

The bounded-buffer problem was introduced in Section 6.1; it is commonly used to illustrate 

the power of synchronization primitives. Here, we present a general structure of this scheme 
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without committing ourselves to any particular implementation. We provide a related 

programming project in the exercises at the end of the chapter. 

In our problem, the producer and consumer processes share the following data structures: 

int n; 

semaphore mutex = 1; 

semaphore empty = n; 

semaphore full = 0 

We assume that the pool consists of n buffers, each capable of holding one item. The mutex 

binary semaphore provides mutual exclusion for accesses to the buffer pool and is initialized to 
the value 1. The empty and full semaphores count the number of empty and full buffers. The 

semaphore empty is initialized to the value n; the semaphore full is initialized to the value 0. 

The code for the producer process is shown in Figure 7.1, and the code for the consumer 

process is shown in Figure 7.2. Note the symmetry between the producer and the consumer. 

We can interpret this code as the producer producing full buffers for the consumer or as the 

consumer producing empty buffers for the producer. 

The Readers –Writers Problem : 

Suppose that a database is to be shared among several concurrent processes. Some of these 

processes may want only to read the database, whereas others may want to update (that is, 

read and write) the database. We distinguish between these two types of processes by referring 

to the former as readers and to the latter as writers. Obviously, if two readers access the 
shared data simultaneously, no adverse effects will result. However, if a writer and some other 

process (either a reader or a writer) access the database simultaneously, chaos may ensue. 

To ensure that these difficulties do not arise, we require that the writers have exclusive access 

to the shared database while writing to the database. This synchronization problem is referred 

to as the readers–writers problem. Since it was originally stated, it has been used to test nearly 

every new synchronization primitive. 

The readers–writers problem has several variations, all involving priorities. The simplest one, 

referred to as the first readers–writers problem, requires that no reader be kept waiting unless 

a writer has already obtained permission to use the shared object. In other words, no reader 
should wait for other readers to finish simply because a writer is waiting. The second readers–

writers problem requires that, once a writer is ready, that writer perform its write as soon as 

possible. In other words, if a writer is waiting to access the object, no new readers may start 

reading. 

A solution to either problem may result in starvation. In the first case, writers may starve; in 

the second case, readers may starve. For this reason, other variants of the problem have been 

proposed. Next, we present a solution to the first readers–writers problem. See the 
bibliographical notes at the end of the chapter for references describing starvation-free 

solutions to the second readers–writers problem. 

The Dining-Philosophers Problem : 

Consider five philosophers who spend their lives thinking and eating. The philosophers share a 
circular table surrounded by five chairs, each belonging to one philosopher. In the center of the 

table is a bowl of rice, and the table is laid with five single chopsticks (Figure 7.5). When a 

philosopher thinks, she does not interact with her colleagues. From time to time, a philosopher 
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gets hungry and tries to pick up the two chopsticks that are closest to her (the chopsticks that 

are between her and her left and right neighbors). A philosopher may pick up only one 

chopstick at a time. Obviously, she cannot pick up a chopstick that is already in the hand of a 
neighbor. When a hungry philosopher has both her chopsticks at the same time, she eats 

without releasing the chopsticks. When she is finished eating, she puts down both chopsticks 

and starts thinking again. 

The dining-philosophers problem is considered a classic synchronization problem neither 

because of its practical importance nor because computer scientists dislike philosophers but 

because it is an example of a large class of concurrency-control problems. It is a simple 

representation of the needto allocate several resources among several processes in a deadlock-

free and starvation-free manner. 

 

1 Semaphore Solution : 

One simple solution is to represent each chopstick with a semaphore. A philosopher tries to 

grab a chopstick by executing a wait() operation on that semaphore. She releases her 

chopsticks by executing the signal() operation on the appropriate semaphores. Thus, the 

shared data are 

semaphore chopstick[5]; 

where all the elements of chopstick are initialized to 1. The structure of philosopher i is shown 

in Figure 7.6. 

Although this solution guarantees that no two neighbors are eating simultaneously, it 

nevertheless must be rejected because it could create a deadlock. Suppose that all five 

philosophers become hungry at the same time and each grabs her left chopstick. All the 

elements of chopstick will now be equal to 0. When each philosopher tries to grab her right 

chopstick, she will be delayed forever 

Several possible remedies to the deadlock problem are the following: 

Allow at most four philosophers to be sitting simultaneously at the table. 

• Allow a philosopher to pick up her chopsticks only if both chopsticks are available (to do this, 

she must pick them up in a critical section). 

• Use an asymmetric solution— that is, an odd-numbered philosopher picks up first her left 

chopstick and then her right chopstick, whereas an evennumbered philosopher picks up her 

right chopstick and then her left chopstick. 

Methods for Handling Deadlocks : 

Generally speaking, we can deal with the deadlock problem in one of three ways: 
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• We can ignore the problem altogether and pretend that deadlocks never occur in the system. 

• We can use a protocol to prevent or avoid deadlocks, ensuring that the system will never 

enter a deadlocked state. 

• We can allow the system to enter a deadlocked state, detect it, and recover. 

The first solution is the one used by most operating systems, including Linux and Windows. It 

is then up to kernel and application developers to write programs that handle deadlocks, 

typically using approaches outlined in the second solution. Some systems—such as 

databases—adopt the third solution, allowing deadlocks to occur and then managing the 

recovery. 

Next, we elaborate briefly on the three methods for handling deadlocks. Then, in Section 8.5 

through Section 8.8, we present detailed algorithms. Before proceeding, we should mention 
that some researchers have argued that none of the basic approaches alone is appropriate for 

the entire spectrum of resourceallocation problems in operating systems. The basic approaches 

can be combined, however, allowing us to select an optimal approach for each class of 

resources in a system. 

To ensure that deadlocks never occur, the system can use either a deadlockprevention or a 

deadlock-avoidance scheme. Deadlock prevention provides a set of methods to ensure that at 

least one of the necessary conditions (Section 8.3.1) cannot hold. These methods prevent 
deadlocks by constraining how requests for resources can be made. We discuss these methods 

in Section 8.5. 

Deadlock avoidance requires that the operating system be given additional information in 

advance concerning which resources a thread will request and use during its lifetime. With this 

additional knowledge, the operating system can decide for each request whether or not the 

thread should wait. To decide whether the current request can be satisfied or must be delayed, 

the system must consider the resources currently available, the resources currently allocated 
to each thread, and the future requests and releases of each thread. We discuss these schemes 

in Section 8.6. 

If a system does not employ either a deadlock-prevention or a deadlockavoidance algorithm, 

then a deadlock situation may arise. In this environment, the system can provide an algorithm 

that examines the state of the system to determine whether a deadlock has occurred and an 

algorithm to recover from the deadlock (if a deadlock has indeed occurred). We discuss these 

issues in Section 8.7 and Section 8.8. 

Deadlock Prevention : 

As we noted in Section 8.3.1, for a deadlock to occur, each of the four necessary conditions 

must hold. By ensuring that at least one of these conditions cannot hold, we can prevent the 

occurrence of a deadlock. We elaborate on this approach by examining each of the four 

necessary conditions separately. 

Mutual Exclusion : The mutual-exclusion condition must hold. That is, at least one resource 
must be nonsharable. Sharable resources do not require mutually exclusive access and thus 

cannot be involved in a deadlock. Read-only files are a good example of a sharable resource. If 

several threads attempt to open a read-only file at the same time, they can be granted 

simultaneous access to the file. A thread never needs to wait for a sharable resource. In 

general, however, we cannot prevent deadlocks by denying the mutual-exclusion condition, 

because some resources are intrinsically nonsharable. For example, a mutex lock cannot be 

simultaneously shared by several threads. 
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Hold and Wait : To ensure that the hold-and-wait condition never occurs in the system, we 

must guarantee that, whenever a thread requests a resource, it does not hold any other 

resources. One protocol that we can use requires each thread to request and be allocated all its 
resources before it begins execution. This is, of course, impractical for most applications due to 

the dynamic nature of requesting resources. 

An alternative protocol allows a thread to request resources only when it has none. A thread 

may request some resources and use them. Before it can request any additional resources, it 

must release all the resources that it is currently allocated. 

Both these protocols have two main disadvantages. First, resource utilization may be low, since 

resources may be allocated but unused for a long period. For example, a thread may be 

allocated a mutex lock for its entire execution, yet only require it for a short duration. Second, 

starvation is possible. A thread that needs several popular resources may have to wait 
indefinitely, because at least one of the resources that it needs is always allocated to some 

other thread. 

Deadlock Avoidance : 

Deadlock-prevention algorithms, as discussed in Section 8.5, prevent deadlocks by limiting 
how requests can be made. The limits ensure that at least one of the necessary conditions for 

deadlock cannot occur. Possible side effects of preventing deadlocks by this method, however, 

are low device utilization and reduced system throughput. 

An alternative method for avoiding deadlocks is to require additional information about how 

resources are to be requested. For example, in a system with resources R1 and R2, the system 

might need to know that thread P will request first R1 and then R2 before releasing both 

resources, whereas thread Q will request R2 and then R1. With this knowledge of the complete 

sequence of requests and releases for each thread, the system can decide for each request 
whether or not the thread should wait in order to avoid a possible future deadlock. Each 

request requires that in making this decision the system consider the resources currently 

available, the resources currently allocated to each thread, and the future requests and 

releases of each thread. 

The various algorithms that use this approach differ in the amount and type of information 

required. The simplest and most useful model requires that each thread declare the maximum 

number of resources of each type that it may need. Given this a priori information, it is 
possible to construct an algorithm that ensures that the system will never enter a deadlocked 

state. A deadlockavoidance algorithm dynamically examines the resource-allocation state to 

ensure that a circular-wait condition can never exist. The resource-allocation state is defined 

by the number of available and allocated resources and the maximum demands of the threads. 

In the following sections, we explore two deadlock-avoidance algorithms. 

Safe State : 

A state is safe if the system can allocate resources to each thread (up to its maximum) in some 

order and still avoid a deadlock. More formally, a system is in a safe state only if there exists a 

safe sequence. A sequence of threads is a safe sequence for the current allocation state if, for 
each Ti , the resource requests that Ti can still make can be satisfied by the currently available 

resources plus the resources held by all Tj , with j < i. In this situation, if the resources that Ti 

needs are not immediately available, then Ti can wait until all Tj have finished. 
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needed resources, complete its designated task, return its allocated resources, and terminate. 
When Ti terminates, Ti+1 can obtain its needed resources, and so on. If no such sequence 

exists, then the system state is said to be unsafe 

A safe state is not a deadlocked state. Conversely, a deadlocked state is an unsafe state. Not all 

unsafe states are deadlocks, however (Figure 8.8). An unsafe state may lead to a deadlock. As 

long as the state is safe, the operating system can avoid unsafe (and deadlocked) states. In an 

unsafe state, the operating system cannot prevent threads from requesting resources in such a 

way that a deadlock occurs. The behavior of the threads controls unsafe states. 

Deadlock Detection : 

If a system does not employ either a deadlock-prevention or a deadlockavoidance algorithm, 

then a deadlock situation may occur. In this environment, the system may provide: 

•An algorithm that examines the state of the system to determine whether a deadlock has 

occurred • An algorithm to recover from the deadlock 

Next, we discuss these two requirements as they pertain to systems with only a single instance 

of each resource type, as well as to systems with several instances of each resource type. At 

this point, however, we note that a detection-and-recovery scheme requires overhead that 
includes not only the run-time costs of maintaining the necessary information and executing 

the detection algorithm but also the potential losses inherent in recovering from a deadlock 

Single Instance of Each Resource Type : 

If all resources have only a single instance, then we can define a deadlockdetection algorithm 

that uses a variant of the resource-allocation graph, called a wait-for graph. We obtain this 

graph from the resource-allocation graph by removing the resource nodes and collapsing the 

appropriate edges. 

 



Prepared by: Satyam K , AITS , MCA             OS Notes Page 49 
 

Recovery from Deadlock : 

When a detection algorithm determines that a deadlock exists, several alternatives are 

available. One possibility is to inform the operator that a deadlock has occurred and to let the 

operator deal with the deadlock manually. Another possibility is to let the system recover from 

the deadlock automatically. There are two options for breaking a deadlock. One is simply to 
abort one or more threads to break the circular wait. The other is to preempt some resources 

from one or more of the deadlocked threads. 

Process and Thread Termination : 

To eliminate deadlocks by aborting a process or thread, we use one of two methods. In both 

methods, the system reclaims all resources allocated to the terminated processes. 

Abort all deadlocked processes:This method clearly will break the deadlock cycle, but at great 
expense. The deadlocked processes may have computed for a long time, and the results of 

these partial computations must be discarded and probably will have to be recomputed later. 

Abort one process at a time until the deadlock cycle is eliminate:This method incurs 

considerable overhead, since after each process is aborted, a deadlock-detection algorithm 

must be invoked to determine whether any processes are still deadlocked. 

Aborting a process may not be easy. If the process was in the midst of updating a file, 

terminating it may leave that file in an incorrect state. Similarly, if the process was in the midst 

of updating shared data while holding a mutex lock, the system must restore the status of the 

lock as being available, although no guarantees can be made regarding the integrity of the 

shared data. 

If the partial termination method is used, then we must determine which deadlocked process 
(or processes) should be terminated. This determination is a policy decision, similar to CPU-

scheduling decisions. The question is basically an economic one; we should abort those 

processes whose termination will incur the minimum cost. Unfortunately, the term minimum 

cost is not a precise one. Many factors may affect which process is chosen, including. 

1. What the priority of the process is 

2. How long the process has computed and how much longer the process will compute before 

completing its designated task 

3. How many and what types of resources the process has used (for example, whether the 

resources are simple to preempt) 
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UNIT-III : MEMORY MANAGEMENT 

  Memory is central to the operation of a modern computer system. Memory consists of a large 

array of bytes, each with its own address. The CPU fetches instructions from memory 

according to the value of the program counter. These instructions may cause additional loading 

from and storing to specific memory addresses. 

A typical instruction-execution cycle, for example, first fetches an instruction from memory. 

The instruction is then decoded and may cause operands to be fetched from memory. After the 
instruction has been executed on the operands, results may be stored back in memory. The 

memory unit sees only a stream of memory addresses; it does not know how they are generated 

(by the instruction counter, indexing, indirection, literal addresses, and so on) or what they are 

for (instructions or data). Accordingly, we can ignore how a program generates a memory 

address. We are interested only in the sequence of memory addresses generated by the running 

program. 

Basic Hardware : 

Main memory and the registers built into each processing core are the only general-purpose 

storage that the CPU can access directly. There are machine instructions that take memory 
addresses as arguments, but none that take disk addresses. Therefore, any instructions in 

execution, and any data being used by the instructions, must be in one of these direct-access 

storage devices. If the data are not in memory, they must be moved there before the CPU can 

operate on them. 

Registers that are built into each CPU core are generally accessible within one cycle of the CPU 

clock. Some CPU cores can decode instructions and perform simple operations on register 

contents at the rate of one or more operations per clock tick. The same cannot be said of main 

memory, which is accessed via a transaction on the memory bus. Completing a memory access 
may take many cycles of the CPU clock. In such cases, the processor normally needs to stall, 

since it does not have the data required to complete the instruction that it is executing. This 

situation is intolerable because of the frequency of memory accesses. The remedy is to add fast 

memory between the CPU and main memory, typically on the CPU chip for fast access. Such a 

cache was described in Section 1.5.5. To manage a cache built into the CPU, the hardware 
automatically speeds up memory access without any operating-system control. (Recall from 

Section 5.5.2 that during a memory stall, a multithreaded core can switch from the stalled 

hardware thread to another hardware thread.) 

Not only are we concerned with the relative speed of accessing physical memory, but we also 

must ensure correct operation. For proper system operation, we must protect the operating 

system from access by user processes, as well as protect user processes from one another. This 

protection must be provided by the hardware, because the operating system doesn’t usually 
intervene between the CPU and its memory accesses (because of the resulting performance 

penalty). Hardware implements this production in several different ways, as we show 

throughout the chapter. Here, we outline one possible implementation. 
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We first need to make sure that each process has a separate memory space. Separate per-

process memory space protects the processes from each other and is fundamental to having 

multiple processes loaded in memory for concurrent execution. To separate memory spaces, we 

need the ability to determine the range of legal addresses that the process may access and to 
ensure that the process can access only these legal addresses. We can provide this protection 

by using two registers, usually a base and a limit, as illustrated in Figure 9.1. The base register 

holds the smallest legal physical memory address; the limit register specifies the size of the 

range. For example, if the base register holds 300040 and the limit register is 120900, then the 

program can legally access all addresses from 300040 through 420939 (inclusive). 

Protection of memory space is accomplished by having the CPU hardware compare every 

address generated in user mode with the registers. Any attempt by a program executing in user 

mode to access operating-system memory or other users’ memory results in a trap to the 
operating system, which treats the attempt as a fatal error (Figure 9.2). This scheme prevents a 

user program from (accidentally or deliberately) modifying the code or data structures of either 

the operating system or other users. 

The base and limit registers can be loaded only by the operating system, which uses a special 

privileged instruction. Since privileged instructions can be executed only in kernel mode, and 

since only the operating system executes in kernel mode, only the operating system can load 

the base and limit registers. This scheme allows the operating system to change the value of 

the registers but prevents user programs from changing the registers’ contents. 

The operating system, executing in kernel mode, is given unrestricted access to both operating-
system memory and users’ memory. This provision allows the operating system to load users’ 

programs into users’ memory, to dump out those programs in case of errors, to access and 

modify parameters of system calls, to perform I/O to and from user memory, and to provide 

many other services. Consider, for example, that an operating system for a multiprocessing 

system must execute context switches, storing the state of one process from the registers into 

main memory before loading the next process’s context from main memory into the registers. 

 

Address Binding : 
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Usually, a program resides on a disk as a binary executable file. To run, the program must be 

brought into memory and placed within the context of a process (as described in Section 2.5), 

where it becomes eligible for execution on an available CPU. As the process executes, it 
accesses instructions and data from memory. Eventually, the process terminates, and its 

memory is reclaimed for use by other processes. 

Most systems allow a user process to reside in any part of the physical memory. Thus, 

although the address space of the computer may start at 00000, the first address of the user 

process need not be 00000. You will see later how the operating system actually places a 

process in physical memory. 

In most cases, a user program goes through several steps—some of which may be optional—

before being executed (Figure 9.3). Addresses may be represented in different ways during 

these steps. Addresses in the source program are generally symbolic (such as the variable 
count). A compiler typically binds these symbolic addresses to relocatable addresses (such as 

―14 bytes from the beginning of this module‖). The linker or loader (see Section 2.5) in turn 

binds the relocatable addresses to absolute addresses (such as 74014). Each binding is a 

mapping from one address space to another. 

Classically, the binding of instructions and data to memory addresses can be done at any step 

along the way: 

Compile time:  If you know at compile time where the process will reside in memory, then 

absolute code can be generated. For example, if you know that a user process will reside 

starting at location R, then the generated compiler code will start at that location and extend 

up from there. If, at some later time, the starting location changes, then it will be necessary to 

recompile this code. 

 

• Load time: If it is not known at compile time where the process will reside in memory, then 

the compiler must generate relocatable code. In this case, final binding is delayed until load 

time. If the starting address changes, we need only reload the user code to incorporate this 

changed value. 

• Execution time: If the process can be moved during its execution from one memory segment 

to another, then binding must be delayed until run time. Special hardware must be available 



Prepared by: Satyam K , AITS , MCA             OS Notes Page 53 
 

for this scheme to work, as will be discussed in Section 9.1.3. Most operating systems use this 

method. 

A major portion of this chapter is devoted to showing how these various bindings can be 

implemented effectively in a computer system and to discussing appropriate hardware support. 

Logical Versus Physical Address Space : 

An address generated by the CPU is commonly referred to as a logical address, whereas an 

address seen by the memory unit— that is, the one loaded into the memory-address register of 

the memory—is commonly referred to as a physical address 

 

Binding addresses at either compile or load time generates identical logical and physical 

addresses. However, the execution-time address-binding scheme results in differing logical and 
physical addresses. In this case, we usually refer to the logical address as a virtual address. We 

use logical address and virtual address interchangeably in this text. The set of all logical 

addresses generated by a program is a logical address space. The set of all physical addresses 

corresponding to these logical addresses is a physical address space. Thus, in the execution-

time address-binding scheme, the logical and physical address spaces differ. 

The run-time mapping from virtual to physical addresses is done by a hardware device called 

the memory-management unit (MMU) (Figure 9.4). We can choose from many different methods 

to accomplish such mapping, as we discuss in Section 9.2 through Section 9.3. For the time 
being, we illustrate this mapping with a simple MMU scheme that is a generalization of the 

baseregister scheme described in Section 9.1.1. The base register is now called a relocation 

register. The value in the relocation register is added to every address generated by a user 

process at the time the address is sent to memory (see Figure 9.5). For example, if the base is 

at 14000, then an attempt by the user to address location 0 is dynamically relocated to 

location 14000; an access to location 346 is mapped to location 14346. 

The user program never accesses the real physical addresses. The program can create a pointer 
to location 346, store it in memory, manipulate it, and compare it with other addresses—all as 

the number 346. Only when it is used as a memory address (in an indirect load or store, 

perhaps) is it relocated relative to the base register. The user program deals with logical 

addresses. The memorymapping hardware converts logical addresses into physical addresses. 

This form of execution-time binding was discussed in Section 9.1.2. The final location of a 

referenced memory address is not determined until the reference is made. 

We now have two different types of addresses: logical addresses (in the range 0 to max) and 

physical addresses (in the range R + 0 to R + max for a base value R). The user program 
generates only logical addresses and thinks that the process runs in memory locations from 0 

to max. However, these logical addresses must be mapped to physical addresses before they 

are used. The concept of a logical address space that is bound to a separate physical address 

space is central to proper memory management. 
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Dynamic Loading : 

In our discussion so far, it has been necessary for the entire program and all data of a process 
to be in physical memory for the process to execute. The size of a process has thus been limited 

to the size of physical memory. To obtain better memory-space utilization, we can use dynamic 

loading. With dynamic loading, a routine is not loaded until it is called. All routines are kept on 

disk in a relocatable load format. The main program is loaded into memory and is executed. 

When a routine needs to call another routine, the calling routine first checks to see whether 

the other routine has been loaded. If it has not, the relocatable linking loader is called to load 
the desired routine into memory and to update the program’s address tables to reflect this 

change. Then control is passed to the newly loaded routine. 

The advantage of dynamic loading is that a routine is loaded only when it is needed. This 

method is particularly useful when large amounts of code are needed to handle infrequently 

occurring cases, such as error routines. In such a situation, although the total program size 

may be large, the portion that is used (and hence loaded) may be much smaller. 

Dynamic loading does not require special support from the operating system. It is the 

responsibility of the users to design their programs to take advantage of such a method. 

Operating systems may help the programmer, however, by providing library routines to 

implement dynamic loading. 

Dynamic Linking and Shared Libraries : 

Dynamically linked libraries (DLLs) are system libraries that are linked to user programs when 

the programs are run (refer back to Figure 9.3). Some operating systems support only static 
linking, in which system libraries are treated like any other object module and are combined by 

the loader into the binary program image. Dynamic linking, in contrast, is similar to dynamic 

loading. Here, though, linking, rather than loading, is postponed until execution time. This 

feature is usually used with system libraries, such as the standard C language library. Without 

this facility, each program on a system must include a copy of its language library (or at least 
the routines referenced by the program) in the executable image. This requirement not only 

increases the size of an executable image but also may waste main memory. A second 

advantage of DLLs is that these libraries can be shared among multiple processes, so that only 

one instance of the DLL in main memory. For this reason, DLLs are also known as shared 

libraries, and are used extensively in Windows and Linux systems. 

When a program references a routine that is in a dynamic library, the loader locates the DLL, 

loading it into memory if necessary. It then adjusts addresses that reference functions in the 

dynamic library to the location in memory where the DLL is stored. 
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Dynamically linked libraries can be extended to library updates (such as bug fixes). In addition, 

a library may be replaced by a new version, and all programs that reference the library will 

automatically use the new version. Without dynamic linking, all such programs would need to 
be relinked to gain access to the new library. So that programs will not accidentally execute 

new, incompatible versions of libraries, version information is included in both the program 

and the library. More than one version of a library may be loaded into memory, and each 

program uses its version information to decide which copy of the library to use. Versions with 

minor changes retain the same version number, whereas versions with major changes 

increment the number. Thus, only programs that are compiled with the new library version are 
affected by any incompatible changes incorporated in it. Other programs linked before the new 

library was installed will continue using the older library. 

Unlike dynamic loading, dynamic linking and shared libraries generally require help from the 

operating system. If the processes in memory are protected from one another, then the 

operating system is the only entity that can check to see whether the needed routine is in 

another process’s memory space or that can allow multiple processes to access the same 

memory addresses. We elaborate on this concept, as well as how DLLs can be shared by 

multiple processes, when we discuss paging in Section 9.3.4. 

Contiguous Memory Allocation : 

The main memory must accommodate both the operating system and the various user 

processes. We therefore need to allocate main memory in the most efficient way possible. This 

section explains one early method, contiguous memory allocation. 

The memory is usually divided into two partitions: one for the operating system and one for the 
user processes. We can place the operating system in either low memory addresses or high 

memory addresses. This decision depends on many factors, such as the location of the 

interrupt vector. However, many operating systems (including Linux and Windows) place the 

operating system in high memory, and therefore we discuss only that situation. 

We usually want several user processes to reside in memory at the same time. We therefore 

need to consider how to allocate available memory to the processes that are waiting to be 

brought into memory. In contiguous memory allocation, each process is contained in a single 
section of memory that is contiguous to the section containing the next process. Before 

discussing this memory allocation scheme further, though, we must address the issue of 

memory protection. 

Memory Protection : 

We can prevent a process from accessing memory that it does not own by combining two ideas 

previously discussed. If we have a system with a relocation register (Section 9.1.3), together 

with a limit register (Section 9.1.1), we accomplish our goal. The relocation register contains 

the value of the smallest physical address; the limit register contains the range of logical 

addresses (for example, relocation = 100040 and limit = 74600). Each logical address must fall 
within the range specified by the limit register. The MMU maps the logical address dynamically 

by adding the value in the relocation register. This mapped address is sent to memory (Figure 

9.6). 

When the CPU scheduler selects a process for execution, the dispatcher loads the relocation 

and limit registers with the correct values as part of the context switch. Because every address 

generated by a CPU is checked against these registers, we can protect both the operating 

system and the other users’ programs and data from being modified by this running process. 

The relocation-register scheme provides an effective way to allow the operating system’s size to 

change dynamically. This flexibility is desirable in many situations. For example, the operating 
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system contains code and buffer space for device drivers. If a device driver is not currently in 

use, it makes little sense to keep it in memory; instead, it can be loaded into memory only 

when it is needed. Likewise, when the device driver is no longer needed, it can be removed and 

its memory allocated for other needs. 

 

Memory Allocation : 

Now we are ready to turn to memory allocation. One of the simplest methods of allocating 

memory is to assign processes to variably sized partitions in memory, where each partition may 

contain exactly one process. In this variablepartition scheme, the operating system keeps a 

table indicating which parts of memory are available and which are occupied. Initially, all 
memory is available for user processes and is considered one large block of available memory, a 

hole. Eventually, as you will see, memory contains a set of holes of various sizes. 

Figure 9.7 depicts this scheme. Initially, the memory is fully utilized, containing processes 5, 8, 

and 2. After process 8 leaves, there is one contiguous hole. Later on, process 9 arrives and is 

allocated memory. Then process 5 departs, resulting in two noncontiguous holes. 

As processes enter the system, the operating system takes into account the memory 

requirements of each process and the amount of available memory space in determining which 

processes are allocated memory. When a process is allocated space, it is loaded into memory, 

where it can then compete for CPU time. When a process terminates, it releases its memory, 

which the operating system may then provide to another process. 

What happens when there isn’t sufficient memory to satisfy the demands of an arriving 
process? One option is to simply reject the process and provide an appropriate error message. 

Alternatively, we can place such processes into a wait queue. When memory is later released, 

the operating system checks the wait queue to determine if it will satisfy the memory demands 

of a waiting process. 

In general, as mentioned, the memory blocks available comprise a set of holes of various sizes 

scattered throughout memory. When a process arrives and needs memory, the system searches 

the set for a hole that is large enough for this process. If the hole is too large, it is split into two 

parts. One part is allocated to the arriving process; the other is returned to the set of holes. 
When a process terminates, it releases its block of memory, which is then placed back in the 

set of holes. If the new hole is adjacent to other holes, these adjacent holes are merged to form 

one larger hole. 

This procedure is a particular instance of the general dynamic storageallocation problem, 

which concerns how to satisfy a request of size n from a list of free holes. There are many 

solutions to this problem. The first-fit, best-fi , and worst-fi strategies are the ones most 

commonly used to select a free hole from the set of available holes. 
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• First fit: Allocate the first hole that is big enough. Searching can start either at the beginning 

of the set of holes or at the location where the previous first-fit search ended. We can stop 

searching as soon as we find a free hole that is large enough. 

Best fit: Allocate the smallest hole that is big enough. We must search the entire list, unless 

the list is ordered by size. This strategy produces the smallest leftover hole. 

Worst fit: Allocate the largest hole. Again, we must search the entire list, unless it is sorted by 

size. This strategy produces the largest leftover hole, which may be more useful than the 

smaller leftover hole from a best-fit approach. 

Fragmentation : 

Both the first-fit and best-fit strategies for memory allocation suffer from external 

fragmentation. As processes are loaded and removed from memory, the free memory space is 
broken into little pieces. External fragmentation exists when there is enough total memory 

space to satisfy a request but the available spaces are not contiguous: storage is fragmented 

into a large number of small holes. This fragmentation problem can be severe. In the worst 

case, we could have a block of free (or wasted) memory between every two processes. If all these 

small pieces of memory were in one big free block instead, we might be able to run several 

more processes. 

Whether we are using the first-fit or best-fit strategy can affect the amount of fragmentation. 
(First fit is better for some systems, whereas best fit is better for others.) Another factor is 

which end of a free block is allocated. (Which is the leftover piece— the one on the top or the 

one on the bottom?) No matter which algorithm is used, however, external fragmentation will 

be a problem. 

Depending on the total amount of memory storage and the average process size, external 

fragmentation may be a minor or a major problem. Statistical analysis of first fit, for instance, 

reveals that, even with some optimization, given N allocated blocks, another 0.5 N blocks will 
be lost to fragmentation. That is, one-third of memory may be unusable! This property is 

known as the 50-percent rule. 

Memory fragmentation can be internal as well as external. Consider a multiple-partition 

allocation scheme with a hole of 18,464 bytes. Suppose that the next process requests 18,462 

bytes. If we allocate exactly the requested block, we are left with a hole of 2 bytes. The overhead 

to keep track of this hole will be substantially larger than the hole itself. The general approach 

to avoiding this problem is to break the physical memory into fixed-sized blocks and allocate 

memory in units based on block size. With this approach, the memory allocated to a process 
may be slightly larger than the requested memory. The difference between these two numbers 

is internal fragmentation —unused memory that is internal to a partition. 

One solution to the problem of external fragmentation is compaction. The goal is to shuffle the 

memory contents so as to place all free memory together in one large block. Compaction is not 

always possible, however. If relocation is static and is done at assembly or load time, 

compaction cannot be done. It is possible only if relocation is dynamic and is done at execution 

time. If addresses are relocated dynamically, relocation requires only moving the program and 
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data and then changing the base register to reflect the new base address. When compaction is 

possible, we must determine its cost. The simplest compaction algorithm is to move all 

processes toward one end of memory; all holes move in the other direction, producing one large 

hole of available memory. This scheme can be expensive. 

Another possible solution to the external-fragmentation problem is to permit the logical 
address space of processes to be noncontiguous, thus allowing a process to be allocated 

physical memory wherever such memory is available. This is the strategy used in paging, the 

most common memory-management technique for computer systems. We describe paging in 

the following section. 

Paging : 

Memory management discussed thus far has required the physical address space of a process 

to be contiguous. We now introduce paging, a memorymanagement scheme that permits a 

process’s physical address space to be noncontiguous. Paging avoids external fragmentation 

and the associated need for compaction, two problems that plague contiguous memory 
allocation. Because it offers numerous advantages, paging in its various forms is used in most 

operating systems, from those for large servers through those for mobile devices. Paging is 

implemented through cooperation between the operating system and the computer hardware. 

Basic Method : 

The basic method for implementing paging involves breaking physical memory into fixed-sized 

blocks called frames and breaking logical memory into blocks of the same size called pages. 

When a process is to be executed, its pages are loaded into any available memory frames from 

their source (a file system or the backing store). The backing store is divided into fixed-sized 

blocks that are the same size as the memory frames or clusters of multiple frames. This rather 

simple idea has great functionality and wide ramifications. For example, the logical address 
space is now totally separate from the physical address space, so a process can have a logical 

64-bit address space even though the system has less than 264 bytes of physical memory. 

Every address generated by the CPU is divided into two parts: a page number (p) and a page 

offset (d): 
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The page number is used as an index into a per-process page table. This is illustrated in Figure 

9.8. The page table contains the base address of each frame in physical memory, and the offset 

is the location in the frame being referenced. Thus, the base address of the frame is combined 
with the page offset to define the physical memory address. The paging model of memory is 

shown in Figure 9.9. 

The following outlines the steps taken by the MMU to translate a logical address generated by 

the CPU to a physical address: 

1. Extract the page number p and use it as an index into the page table. 

2. Extract the corresponding frame number f from the page table. 

3. Replace the page number p in the logical address with the frame number f 

As the offset d does not change, it is not replaced, and the frame number and offset now 

comprise the physical address 

The page size (like the frame size) is defined by the hardware. The size of a page is a power of 2, 

typically varying between 4 KB and 1 GB per page, depending on the computer architecture. 
The selection of a power of 2 as a page size makes the translation of a logical address into a 

page number and page offset particularly easy. If the size of the logical address space is 2m, 

and a page size is 2n bytes, then the high-order m−n bits of a logical address designate the 

page number, and the n low-order bits designate the page offset. Thus, the logical address is as 

follows: 

 

 

When we use a paging scheme, we have no external fragmentation: any free frame can be 

allocated to a process that needs it. However, we may have some internal fragmentation. Notice 

that frames are allocated as units. If the memory requirements of a process do not happen to 

coincide with page boundaries, the last frame allocated may not be completely full. For 
example, if page size is 2,048 bytes, a process of 72,766 bytes will need 35 pages plus 1,086 

bytes. It will be allocated 36 frames, resulting in internal fragmentation of 2,048 − 1,086 = 962 

bytes. In the worst case, a process would need n pages plus 1 byte. It would be allocated n + 1 

frames, resulting in internal fragmentation of almost an entire frame. 
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Structure of the Page Table : 

In this section, we explore some of the most common techniques for structuring the page table, 

including hierarchical paging, hashed page tables, and inverted page tables. 

Hierarchical Paging : 

Most modern computer systems support a large logical address space (232 to 264). In such an 

environment, the page table itself becomes excessively large. For example, consider a system 

with a 32-bit logical address space. If the page size in such a system is 4 KB (212), then a page 

table may consist of over 1 million entries (220 = 232/212). Assuming that each entry consists 

of 4 bytes, each process may need up to 4 MB of physical address space for the page table 

alone. Clearly, we would not want to allocate the page table contiguously in main memory. One 
simple solution to this problem is to divide the page table into smaller pieces. We can 

accomplish this division in several ways. 

One way is to use a two-level paging algorithm, in which the page table itself is also paged 

(Figure 9.15). For example, consider again the system with a 32-bit logical address space and a 

page size of 4 KB. A logical address is divided into a page number consisting of 20 bits and a 

page offset consisting of 12 bits. Because we page the page table, the page number is further 

divided into a 10-bit page number and a 10-bit page offset. Thus, a logical address is as 

follows: 

 



Prepared by: Satyam K , AITS , MCA             OS Notes Page 61 
 

 

Hashed Page Tables : 

One approach for handling address spaces larger than 32 bits is to use a hashed page table, 

with the hash value being the virtual page number. Each entry in the hash table contains a 
linked list of elements that hash to the same location (to handle collisions). Each element 

consists of three fields: (1) the virtual page number, (2) the value of the mapped page frame, 

and (3) a pointer to the next element in the linked list. 

The algorithm works as follows: The virtual page number in the virtual address is hashed into 

the hash table. The virtual page number is compared with field 1 in the first element in the 

linked list. If there is a match, the corresponding page frame (field 2) is used to form the 

desired physical address. If there is no match, subsequent entries in the linked list are 

searched for a matching virtual page number. This scheme is shown in Figure 9.17. 

 

Swapping : 

Process instructions and the data they operate on must be in memory to be executed. However, 

a process, or a portion of a process, can be swapped temporarily out of memory to a backing 

store and then brought back into memory for continued execution (Figure 9.19). Swapping 
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makes it possible for the total physical address space of all processes to exceed the real 

physical memory of the system, thus increasing the degree of multiprogramming in a system. 

 

Standard Swapping : 

Standard swapping involves moving entire processes between main memory and a backing 

store. The backing store is commonly fast secondary storage. It must be large enough to 
accommodate whatever parts of processes need to be stored and retrieved, and it must provide 

direct access to these memory images. When a process or part is swapped to the backing store, 

the data structures associated with the process must be written to the backing store. For a 

multithreaded process, all per-thread data structures must be swapped as well. The operating 

system must also maintain metadata for processes that have been swapped out, so they can be 

restored when they are swapped back in to memory. 

The advantage of standard swapping is that it allows physical memory to be oversubscribed, so 

that the system can accommodate more processes than there is actual physical memory to 
store them. Idle or mostly idle processes are good candidates for swapping; any memory that 

has been allocated to these inactive processes can then be dedicated to active processes. If an 

inactive process that has been swapped out becomes active once again, it must then be 

swapped back in. This is illustrated in Figure 9.19. 

Virtual Memory : 

The memory-management algorithms outlined in Chapter 9 are necessary because of one basic 

requirement: the instructions being executed must be in physical memory. The first approach 

to meeting this requirement is to place the entire logical address space in physical memory. 

Dynamic linking can help to ease this restriction, but it generally requires special precautions 

and extra work by the programmer. 

The requirement that instructions must be in physical memory to be executed seems both 
necessary and reasonable; but it is also unfortunate, since it limits the size of a program to the 

size of physical memory. In fact, an examination of real programs shows us that, in many 

cases, the entire program is not needed. For instance, consider the following: 

Programs often have code to handle unusual error conditions. Since these errors seldom, if 

ever, occur in practice, this code is almost never executed. 

Arrays, lists, and tables are often allocated more memory than they actually need. An array 

may be declared 100 by 100 elements, even though it is seldom larger than 10 by 10 elements. 



Prepared by: Satyam K , AITS , MCA             OS Notes Page 63 
 

Certain options and features of a program may be used rarely. For instance, the routines on 

U.S. government computers that balance the budget have not been used in many years. 

Even in those cases where the entire program is needed, it may not all be needed at the same 

time. 

The ability to execute a program that is only partially in memory would confer many benefits: 

• A program would no longer be constrained by the amount of physical memory that is 

available. Users would be able to write programs for an extremely large virtual address space, 

simplifying the programming task. 

Because each program could take less physical memory, more programs could be run at the 

same time, with a corresponding increase in CPU utilization and throughput but with no 

increase in response time or turnaround time. 

Less I/O would be needed to load or swap portions of programs into memory, so each program 

would run faster. 

Thus, running a program that is not entirely in memory would benefit both the system and its 

users. 

Virtual memory involves the separation of logical memory as perceived by developers from 
physical memory. This separation allows an extremely large virtual memory to be provided for 

programmers when only a smaller physical memory is available (Figure 10.1). Virtual memory 

makes the task of programming much easier, because the programmer no longer needs to 

worry about the amount of physical memory available; she can concentrate instead on 

programming the problem that is to be solved. 

The virtual address space of a process refers to the logical (or virtual) view of how a process is 

stored in memory. Typically, this view is that a process begins at a certain logical address—say, 

address 0—and exists in contiguous memory, as shown in Figure 10.2. Recall from Chapter 9, 
though, that in fact physical memory is organized in page frames and that the physical page 

frames assigned to a process may not be contiguous. It is up to the memory-management unit 

(MMU) to map logical pages to physical page frames in memory. 

 

Note in Figure 10.2 that we allow the heap to grow upward in memory as it is used for dynamic 

memory allocation. Similarly, we allow for the stack to grow downward in memory through 

successive function calls. The large blank space (or hole) between the heap and the stack is 
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part of the virtual address space but will require actual physical pages only if the heap or stack 

grows. Virtual address spaces that include holes are known as sparse address spaces. Using a 

sparse address space is beneficial because the holes can be filled as the stack or heap 
segments grow or if we wish to dynamically link libraries (or possibly other shared objects) 

during program execution. 

 

 

In addition to separating logical memory from physical memory, virtual memory allows files 

and memory to be shared by two or more processes through page sharing (Section 9.3.4). This 

leads to the following benefits: 

System libraries such as the standard C library can be shared by several processes through 

mapping of the shared object into a virtual address space. Although each process considers the 

libraries to be part of its virtual address space, the actual pages where the libraries reside in 
physical memory are shared by all the processes (Figure 10.3). Typically, a library y is mapped 

read-only into the space of each process that is linked with it. 

Similarly, processes can share memory. Recall from Chapter 3 that two or more processes can 

communicate through the use of shared memory. Virtual memory allows one process to create 

a region of memory that it can share with another process. Processes sharing this region 

consider it part of their virtual address space, yet the actual physical pages of memory are 

shared, much as is illustrated in Figure 10.3. 

Pages can be shared during process creation with the fork() system call, thus speeding up 

process creation. 

Demand Paging : Consider how an executable program might be loaded from secondary 

storage into memory. One option is to load the entire program in physical memory at program 
execution time. However, a problem with this approach is that we may not initially need the 

entire program in memory. Suppose a program starts with a list of available options from 

which the user is to select. Loading the entire program into memory results in loading the 
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executable code for all options, regardless of whether or not an option is ultimately selected by 

the user. 

An alternative strategy is to load pages only as they are needed. This technique is known as 

demand paging and is commonly used in virtual memory systems. With demand-paged virtual 

memory, pages are loaded only when they are demanded during program execution. Pages that 
are never accessed are thus never loaded into physical memory. A demand-paging system is 

similar to a paging system with swapping (Section 9.5.2) where processes reside in secondary 

memory (usually an HDD or NVM device). Demand paging explains one of the primary benefits 

of virtual memory—by loading only y the portions of programs that are needed, memory is used 

more efficiently. 

The general concept behind demand paging, as mentioned, is to load a page in memory only 

when it is needed. As a result, while a process is executing, some pages will be in memory, and 
some will be in secondary storage. Thus, we need some form of hardware support to 

distinguish between the two. The valid – invalid bit scheme described in Section 9.3.3 can be 

used for this purpose. This time, however, when the bit is set to ―valid,‖ the associated page is 

both legal and in memory. If the bit is set to ―invalid,‖ the page either is not valid (that is, not in 

the logical address space of the process) or is valid but is currently in secondary storage. The 

page-table entry for a page that is brought into memory is set as usual, but the page-table 
entry for a page that is not currently in memory is simply marked invalid. This situation is 

depicted in Figure 10.4. (Notice that marking a page invalid will have no effect if the process 

never attempts to access that page.) 

 

 

But what happens if the process tries to access a page that was not brought into memory? 

Access to a page marked invalid causes a page fault. The paging hardware, in translating the 

address through the page table, will notice that the invalid bit is set, causing a trap to the 
operating system. This trap is the result of the operating system’s failure to bring the desired 

page into memory. The procedure for handling this page fault is straightforward (Figure 10.5): 

1. We check an internal table (usually kept with the process control block) for this process to 

determine whether the reference was a valid or an invalid memory access. 

2. If the reference was invalid, we terminate the process. If it was valid but we have not yet 

brought in that page, we now page it in. 

3. We find a free frame (by taking one from the free-frame list, for example). 
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4. We schedule a secondary storage operation to read the desired page into the newly allocated 

frame. 

5. When the storage read is complete, we modify the internal table kept with the process and 

the page table to indicate that the page is now in memory. 

6. We restart the instruction that was interrupted by the trap. The process can now access the 

page as though it had always been in memory. 

In the extreme case, we can start executing a process with no pages in memory. When the 

operating system sets the instruction pointer to the first instruction of the process, which is on 

a non-memory-resident page, the process immediately faults for the page. After this page is 

brought into memory, the process continues to execute, faulting as necessary until every page 

that it needs is in memory. At that point, it can execute with no more faults. This scheme is 

pure demand paging: never bring a page into memory until it is required. 

Theoretically, some programs could access several new pages of memory with each instruction 
execution (one page for the instruction and many for data), possibly causing multiple page 

faults per instruction. This situation would result in unacceptable system performance. 

Fortunately, analysis of running processes shows that this behavior is exceedingly unlikely. 

Programs tend to have locality of reference, described in Section 10.6.1, which results in 

reasonable performance from demand paging. 

The hardware to support demand paging is the same as the hardware for paging and swapping: 

Page table. This table has the ability to mark an entry invalid through a valid –invalid bit or a 

special value of protection bits 

.Secondary memory. This memory holds those pages that are not present in main memory. The 

secondary memory is usually a high-speed disk or NVM device. It is known as the swap device, 

and the section of storage used for this purpose is known as swap space. Swap-space 

allocation is discussed in Chapter 11. 

A crucial requirement for demand paging is the ability to restart any instruction after a page 
fault. Because we save the state (registers, condition code, instruction counter) of the 

interrupted process when the page fault occurs, we must be able to restart the process in 

exactly the same place and state, except that the desired page is now in memory and is 

accessible. In most cases, this requirement is easy to meet. A page fault may occur at any 

memory reference. If the page fault occurs on the instruction fetch, we can restart by fetching 
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the instruction again. If a page fault occurs while we are fetching an operand, we must fetch 

and decode the instruction again and then fetch the operand. 

As a worst-case example, consider a three-address instruction such as ADD the content of A to 

B, placing the result in C. These are the steps to execute this instruction: 

1. Fetch and decode the instruction (ADD). 

2. Fetch A. 

3. Fetch B. 

4. Add A and B. 

5. Store the sum in C. 

If we fault when we try to store in C (because C is in a page not currently in memory), we will 

have to get the desired page, bring it in, correct the page table, and restart the instruction. The 
restart will require fetching the instruction again, decoding it again, fetching the two operands 

again, and then adding again. However, there is not much repeated work (less than one 

complete instruction), and the repetition is necessary only when a page fault occurs. 

The major difficulty arises when one instruction may modify several different locations. For 

example, consider the IBM System 360/370 MVC (move character) instruction, which can 

move up to 256 bytes from one location to another (possibly overlapping) location. If either 

block (source or destination) straddles a page boundary, a page fault might occur after the 
move is partially done. In addition, if the source and destination blocks overlap, the source 

block may have been modified, in which case we cannot simply restart the instruction. 

Page Replacement : 

In our earlier discussion of the page-fault rate, we assumed that each page faults at most once, 
when it is first referenced. This representation is not strictly accurate, however. If a process of 

ten pages actually uses only half of them, then demand paging saves the I/O necessary to load 

the five pages that are never used. We could also increase our degree of multiprogramming by 

running twice as many processes. Thus, if we had forty frames, we could run eight processes, 

rather than the four that could run if each required ten frames (five of which were never used). 

If we increase our degree of multiprogramming, we are over-allocating memory. If we run six 

processes, each of which is ten pages in size but actually uses only five pages, we have higher 
CPU utilization and throughput, with ten frames to spare. It is possible, however, that each of 

these processes, for a particular data set, may suddenly try to use all ten of its pages, resulting 

in a need for sixty frames when only forty are available. 

Further, consider that system memory is not used only for holding program pages. Buffers 

forI/O also consume a considerable amount of memory. This use can increase the strain on 

memory-placement algorithms. Deciding how much memory to allocate to I/O and how much 

to program pages is a significant challenge. Some systems allocate a fixed percentage of 
memory for I/O buffers, whereas others allow both processes and the I/O subsystem to 

compete for all system memory. Section 14.6 discusses the integrated relationship between I/O 

buffers and virtual memory techniques. 

Over-allocation of memory manifests itself as follows. While a process is executing, a page fault 

occurs. The operating system determines where the desired page is residing on secondary 

storage but then finds that there are no free frames on the free-frame list; all memory is in use. 

This situation is illustrated in Figure 10.9, where the fact that there are no free frames is 

depicted by a question mark. 
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The operating system has several options at this point. It could terminate the process. 

However, demand paging is the operating system’s attempt to improve the computer system’s 

utilization and throughput. Users should not be aware that their processes are running on a 
paged system—paging should be logically transparent to the user. So this option is not the best 

choice. 

The operating system could instead use standard swapping and swap out a process, freeing all 

its frames and reducing the level of multiprogramming. However, as discussed in Section 9.5, 

standard swapping is no longer used by most operating systems due to the overhead of copying 

entire processes between memory and swap space. Most operating systems now combine 

swapping pages with page replacement, a technique we describe in detail in the remainder of 

this section. 

Basic Page Replacement : 

Page replacement takes the following approach. If no frame is free, we find one that is not 

currently being used and free it. We can free a frame by writing its contents to swap space and 
changing the page table (and all other tables) to indicate that the page is no longer in memory 

(Figure 10.10). We can now use the freed frame to hold the page for which the process faulted. 

We modify the page-fault service routine to include page replacement: 

1. Find the location of the desired page on secondary storage. 

2. Find a free frame: 

a. If there is a free frame, use it. 

b. If there is no free frame, use a page-replacement algorithm to select a victim frame. 

c. Write the victim frame to secondary storage (if necessary); change the page and frame tables 

accordingly. 

3. Read the desired page into the newly freed frame; change the page and frame tables. 

4. Continue the process from where the page fault occurred. 

 

Notice that, if no frames are free, two page transfers (one for the page-out and one for the page-

in) are required. This situation effectively doubles the page-fault service time and increases the 

effective access time accordingly. 

We can reduce this overhead by using a modify bit (or dirty bit). When this scheme is used, 

each page or frame has a modify bit associated with it in the hardware. The modify bit for a 
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page is set by the hardware whenever any byte in the page is written into, indicating that the 

page has been modified. When we select a page for replacement, we examine its modify bit. If 

the bit is set, we know that the page has been modified since it was read in from secondary 
storage. In this case, we must write the page to storage. If the modify bit is not set, however, 

the page has not been modified since it was read into memory. In this case, we need not write 

the memory page to storage: it is already there. This technique also applies to read-only pages 

(for example, pages of binary code). Such pages cannot be modified; thus, they may be 

discarded when desired. This scheme can significantly reduce the time required to service a 

page fault, since it reduces I/O time by one-half if the page has not been modified. 

FIFO Page Replacement : 

The simplest page-replacement algorithm is a first-in, first-out (FIFO) algorithm. A FIFO 

replacement algorithm associates with each page the time when that page was brought into 
memory. When a page must be replaced, the oldest page is chosen. Notice that it is not strictly 

necessary to record the time when a page is brought in. We can create a FIFO queue to hold all 

pages in memory. We replace the page at the head of the queue. When a page is brought into 

memory, we insert it at the tail of the queue. 

For our example reference string, our three frames are initially empty. The first three references 

(7, 0, 1) cause page faults and are brought into these empty frames. The next reference (2) 

replaces page 7, because page 7 was brought in first. Since 0 is the next reference and 0 is 

already in memory, we have no fault for this reference. The first reference to 3 results in 
replacement of page 0, since it is now first in line. Because of this replacement, the next 

reference, to 0, will fault. Page 1 is then replaced by page 0. This process continues as shown 

in Figure 10.12. Every time a fault occurs, we show which pages are in our three frames. There 

are fifteen faults altogether. 

Allocation of Frames : 

We turn next to the issue of allocation. How do we allocate the fixed amount of free memory 

among the various processes? If we have 93 free frames and two processes, how many frames 

does each process get? Consider a simple case of a system with 128 frames. The operating 

system may take 35, leaving 93 frames for the user process. Under pure demand paging, all 93 
frames would initially be put on the free-frame list. When a user process started execution, it 

would generate a sequence of page faults. The first 93 page faults would all get free frames 

from the free-frame list. When the free-frame list was exhausted, a page-replacement algorithm 

would be used to select one of the 93 in-memory pages to be replaced with the 94th, and so on. 

When the process terminated, the 93 frames would once again be placed on the free-frame list. 

There are many variations on this simple strategy. We can require that the operating system 

allocate all its buffer and table space from the free-frame list. When this space is not in use by 
the operating system, it can be used to support user paging. We can try to keep three free 

frames reserved on the free-frame list at all times. Thus, when a page fault occurs, there is a 

free frame available to page into. While the page swap is taking place, a replacement can be 

selected, which is then written to the storage device as the user process continues to execute. 

Other variants are also possible, but the basic strategy is clear: the user process is allocated 

any free frame. 

Minimum Number of Frames : 

Our strategies for the allocation of frames are constrained in various ways. We cannot, for 

example, allocate more than the total number of available frames (unless there is page 

sharing). We must also allocate at least a minimum number of frames. Here, we look more 

closely at the latter requirement. 
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One reason for allocating at least a minimum number of frames involves performance. 

Obviously, as the number of frames allocated to each process decreases, the page-fault rate 

increases, slowing process execution. In addition, remember that, when a page fault occurs 
before an executing instruction is complete, the instruction must be restarted. Consequently, 

we must have enough frames to hold all the different pages that any single instruction can 

reference. 

For example, consider a machine in which all memory-reference instructions may reference 

only one memory address. In this case, we need at least one frame for the instruction and one 

frame for the memory reference. In addition, if one-level indirect addressing is allowed (for 

example, a load instruction on frame 16 can refer to an address on frame 0, which is an 

indirect reference to frame 23), then paging requires at least three frames per process. (Think 

about what might happen if a process had only two frames.) 

The minimum number of frames is defined by the computer architecture. For example, if the 

move instruction for a given architecture includes more than one word for some addressing 

modes, the instruction itself may straddle two frames. In addition, if each of its two operands 

may be indirect references, a total of six frames are required. As another example, the move 

instruction for Intel 32- and 64-bit architectures allows data to move only from register to 

register and between registers and memory; it does not allow direct memoryto-memory 

movement, thereby limiting the required minimum number of frames for a process. 

Whereas the minimum number of frames per process is defined by the architecture, the 
maximum number is defined by the amount of available physical memory. In between, we are 

still left with significant choice in frame allocation 

Allocation Algorithms : 

The easiest way to split m frames among n processes is to give everyone an equal share, m/n 
frames (ignoring frames needed by the operating system for the moment). For instance, if there 

are 93 frames and 5 processes, each process will get 18 frames. The 3 leftover frames can be 

used as a free-frame buffer pool. This scheme is called equal allocation. 

An alternative is to recognize that various processes will need differing amounts of memory. 

Consider a system with a 1-KB frame size. If a small student process of 10 KB and an 

interactive database of 127 KB are the only two processes running in a system with 62 free 

frames, it does not make much sense to give each process 31 frames. The student process does 

not need more than 10 frames, so the other 21 are, strictly speaking, wasted. 

To solve this problem, we can use proportional allocation, in which we allocate available 
memory to each process according to its size. Let the size of the virtual memory for process pi 

be si , and define 

S = ∑ si . 

Then, if the total number of available frames is m, we allocate ai frames to process pi , where ai 

is approximately 

ai = si /S × m. 

Of course, we must adjust each ai to be an integer that is greater than the minimum number of 

frames required by the instruction set, with a sum not exceeding m. 

With proportional allocation, we would split 62 frames between two processes, one of 10 pages 

and one of 127 pages, by allocating 4 frames and 57 frames, respectively, since 

10/137 × 62 ≈ 4 and 127/137 × 62 ≈ 57. 
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In this way, both processes share the available frames according to their ―needs,‖ rather than 

equally. 

In both equal and proportional allocation, of course, the allocation may vary according to the 

multiprogramming level. If the multiprogramming level is increased, each process will lose 

some frames to provide the memory needed for the new process. Conversely, if the 
multiprogramming level decreases, the frames that were allocated to the departed process can 

be spread over the remaining processes. 

Notice that, with either equal or proportional allocation, a high-priority process is treated the 

same as a low-priority process. By its definition, however, we may want to give the high-priority 

process more memory to speed its execution, to the detriment of low-priority processes. One 

solution is to use a proportional allocation scheme wherein the ratio of frames depends not on 

the relative sizes of processes but rather on the priorities of processes or on a combination of 

size and priority. 

Global versus Local Allocation : 

Another important factor in the way frames are allocated to the various processes is page 

replacement. With multiple processes competing for frames, we can classify page-replacement 
algorithms into two broad categories: global replacement and local replacement. Global 

replacement allows a process to select a replacement frame from the set of all frames, even if 

that frame is currently allocated to some other process; that is, one process can take a frame 

from another. Local replacement requires that each process select from only its own set of 

allocated frames. 

For example, consider an allocation scheme wherein we allow highpriority processes to select 

frames from low-priority processes for replacement. A process can select a replacement from 

among its own frames or the frames of any lower-priority process. This approach allows a high-
priority process to increase its frame allocation at the expense of a low-priority process. 

Whereas with a local replacement strategy, the number of frames allocated to a process does 

not change, with global replacement, a process may happen to select only frames allocated to 

other processes, thus increasing the number of frames allocated to it (assuming that other 

processes do not choose its frames for replacement). 

One problem with a global replacement algorithm is that the set of pages in memory for a 

process depends not only on the paging behavior of that process, but also on the paging 
behavior of other processes. Therefore, the same process may perform quite differently (for 

example, taking 0.5 seconds for one execution and 4.3 seconds for the next execution) because 

of totally external circumstances. Such is not the case with a local replacement algorithm. 

Under local replacement, the set of pages in memory for a process is affected by the paging 

behavior of only that process. Local replacement might hinder a process, however, by not 
making available to it other, less used pages of memory. Thus, global replacement generally 

results in greater system throughput. It is therefore the more commonly used method. 

Next, we focus on one possible strategy that we can use to implement a global page-

replacement policy. With this approach, we satisfy all memory requests from the free-frame list, 

but rather than waiting for the list to drop to zero before we begin selecting pages for 

replacement, we trigger page replacement when the list falls below a certain threshold. This 

strategy attempts to ensure there is always sufficient free memory to satisfy new requests. 
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below this threshold, a kernel routine is triggered that begins reclaiming pages from all 
processes in the system (typically excluding the kernel). Such kernel routines are often known 

as reapers, and they may apply any of the pagereplacement algorithms covered in Section 10.4. 

When the amount of free memory reaches the maximum threshold, the reaper routine is 

suspended, only to resume once free memory again falls below the minimum threshold. 

In Figure 10.18, we see that at point a the amount of free memory drops below the minimum 

threshold, and the kernel begins reclaiming pages and adding them to the free-frame list. It 

continues until the maximum threshold is reached (point b). Over time, there are additional 

requests for memory, and at point c the amount of free memory again falls below the minimum 
threshold. Page reclamation resumes, only to be suspended when the amount of free memory 

reaches the maximum threshold (point d). This process continues as long as the system is 

running. 

Non-Uniform Memory Access : 

Thus far in our coverage of virtual memory, we have assumed that all main memory is created 

equal—or at least that it is accessed equally. On nonuniform memory access (NUMA) systems 

with multiple CPUs (Section 1.3.2), that is not the case. On these systems, a given CPU can 

access some sections of main memory faster than it can access others. These performance 

differences are caused by how CPUs and memory are interconnected in the system. Such a 
system is made up of multiple CPUs, each with its own local memory (Figure 10.19). The CPUs 

are organized using a shared system interconnect, and as you might expect, a CPU can access 

its local memory faster than memory local to another CPU. NUMA systems are without 

exception slower than systems in which all accesses to main memory are treated equally. 

However, as described in Section 1.3.2, NUMA systems can accommodate more CPUs and 
therefore achieve greater levels of throughput and par. 
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Managing which page frames are stored at which locations can significantly affect performance 

in NUMA systems. If we treat memory as uniform in such a system, CPUs may wait 

significantly longer for memory access than if we modify memory allocation algorithms to take 
NUMA into account. We described some of these modifications in Section 5.5.4. Their goal is to 

have memory frames allocated ―as close as possible‖ to the CPU on which the process is 

running. (The definition of close is ―with minimum latency,‖ which typically means on the same 

system board as the CPU). Thus, when a process incurs a page fault, a NUMA-aware virtual 

memory system will allocate that process a frame as close as possible to the CPU on which the 

process is running. 

To take NUMA into account, the scheduler must track the last CPU on which each process ran. 

If the scheduler tries to schedule each process onto its previous CPU, and the virtual memory 
system tries to allocate frames for the process close to the CPU on which it is being scheduled, 

then improved cache hits and decreased memory access times will result. 

Thrashing: 

Consider what occurs if a process does not have ―enough‖ frames— that is, it does not have the 

minimum number of frames it needs to support pages in the working set. The process will 

quickly page-fault. At this point, it must replace some page. However, since all its pages are in 

active use, it must replace a page that will be needed again right away. Consequently, it quickly 

faults again, and again, and again, replacing pages that it must bring back in immediately. 

This high paging activity is called thrashing. A process is thrashing if it is spending more time 

paging than executing. As you might expect, thrashing results in severe performance problems. 

Cause of Thrashing : 

Consider the following scenario, which is based on the actual behavior of early paging systems. 

The operating system monitors CPU utilization. If CPU utilization is too low, we increase the 
degree of multiprogramming by introducing a new process to the system. A global page-

replacement algorithm is used; it replaces pages without regard to the process to which they 

belong. Now suppose that a process enters a new phase in its execution and needs more 

frames. It starts faulting and taking frames away from other processes. These processes need 

those pages, however, and so they also fault, taking frames from other processes. These 
faulting processes must use the paging device to swap pages in and out. As they queue up for 

the paging device, the ready queue empties. As processes wait for the paging device, CPU 

utilization decreases. 

pties. As processes wait for the paging device, CPU utilization decreases. The CPU scheduler 

sees the decreasing CPU utilization and increases the degree of multiprogramming as a result. 

The new process tries to get started by taking frames from running processes, causing more 

page faults and a longer queue for the paging device. As a result, CPU utilization drops even 
further, and the CPU scheduler tries to increase the degree of multiprogramming even more. 

Thrashing has occurred, and system throughput plunges. The pagefault rate increases 

tremendously. As a result, the effective memory-access time increases. No work is getting done, 

because the processes are spending all their time paging. 

This phenomenon is illustrated in Figure 10.20, in which CPU utilization is plotted against the 

degree of multiprogramming. As the degree of multiprogramming increases, CPU utilization 

also increases, although more slowly, until a maximum is reached. If the degree of 

multiprogramming is increased further, thrashing sets in, and CPU utilization drops sharply. 
At this point, to increase CPU utilization and stop thrashing, we must decrease the degree of 

multiprogramming. We can limit the effects of thrashing by using a local replacement algorithm 

(or priority replacement algorithm). As mentioned earlier, local replacement requires that each 

process select from only its own set of allocated frames. Thus, if one process starts thrashing, 

it cannot steal frames from another process and cause the latter to thrash as well. However, 
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the problem is not entirely solved. If processes are thrashing, they will be in the queue for the 

paging device most of the time. The average service time for a page fault will increase because 

of the longer average queue for the paging device. Thus, the effective access time will increase 

even for a process that is not thrashing. 

To prevent thrashing, we must provide a process with as many frames as it needs. But how do 
we know how many frames it ―needs‖? One strategy starts by looking at how many frames a 

process is actually using. This approach defines the locality model of process execution. 

The locality model states that, as a process executes, it moves from locality to locality. A 

locality is a set of pages that are actively used together. A running program is generally 

composed of several different localities, which may overlap. For example, when a function is 

called, it defines a new locality. 

 

 

 

 

UNIT-IV 

Mass -Storage Structure : 

In this chapter, we discuss how mass storage— the nonvolatile storage system of a computer—

is structured. The main mass-storage system in modern computers is secondary storage, which 

is usually provided by hard disk drives (HDD) and nonvolatile memory (NVM) devices. Some 
systems also have slower, larger, tertiary storage, generally consisting of magnetic tape, optical 

disks, or even cloud storage. 

Because the most common and important storage devices in modern computer systems are 

HDDs and NVM devices, the bulk of this chapter is devoted to discussing these two types of 

storage. We first describe their physical structure. We then consider scheduling algorithms, 

which schedule the order of I/Os to maximize performance. Next, we discuss device formatting 

and management of boot blocks, damaged blocks, and swap space. Finally, we examine the 

structure of RAID systems. 

There are many types of mass storage, and we use the general term nonvolatile storage (NVS) 
or talk about storage ―drives‖ when the discussion includes all types. Particular devices, such 

as HDDs and NVM devices, are specified as appropriate. 

Overview of Mass-Storage Structure : 

The bulk of secondary storage for modern computers is provided by hard disk drives (HDDs) 
and nonvolatile memory (NVM) devices. In this section, we describe the basic mechanisms of 

these devices and explain how operating systems translate their physical properties to logical 

storage via address mapping. 
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Hard Disk Drives : 

Conceptually, HDDs are relatively simple (Figure 11.1). Each disk platter has a flat circular 

shape, like a CD. Common platter diameters range from 1.8 to 3.5 inches. The two surfaces of 

a platter are covered with a magnetic material. We store information by recording it 
magnetically on the platters, and we read information by detecting the magnetic pattern on the 

platters. 

A read –write head ―flies‖ just above each surface of every platter. The heads are attached to a 

disk arm that moves all the heads as a unit. The surface of a platter is logically divided into 

circular tracks, which are subdivided into sectors. The set of tracks at a given arm position 

make up a cylinder. There may be thousands of concentric cylinders in a disk drive, and each 

track may contain hundreds of sectors. Each sector has a fixed size and is the smallest unit of 

transfer. The sector size was commonly 512 bytes until around 2010. At that point, many 
manufacturers start migrating to 4KB sectors. The storage capacity of common disk drives is 

measured in gigabytes and terabytes. A disk drive with the cover removed is shown in Figure 

11.2. 

A disk drive motor spins it at high speed. Most drives rotate 60 to 250 times per second, 

specified in terms of rotations per minute (RPM). Common drives spin at 5,400, 7,200, 10,000, 

and 15,000 RPM. Some drives power down when not in use and spin up upon receiving an I/O 

request. Rotation speed relates to transfer rates. The transfer rate is the rate at which data flow 
between the drive and the computer. Another performance aspect, the positioning time, or 

random-access time, consists of two parts: the time necessary to move the disk arm to the 

desired cylinder, called the seek time, and the time necessary for the desired sector to rotate to 

the disk head, called the rotational latency. Typical disks can transfer tens to hundreds of 

megabytes of data per second, and they have seek times and rotational latencies of several 

milliseconds. They increase performance by having DRAM buffers in the drive controller. 
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The disk head flies on an extremely thin cushion (measured in microns) of air or another gas, 

such as helium, and there is a danger that the head will make contact with the disk surface. 

Although the disk platters are coated with a thin protective layer, the head will sometimes 

damage the magnetic surface. This accident is called a head crash. A head crash normally 
cannot be repaired; the entire disk must be replaced, and the data on the disk are lost unless 

they were backed up to other storage or RAID protected. (RAID is discussed in Section 11.8.) 

HDDs are sealed units, and some chassis that hold HDDs allow their removal without shutting 

down the system or storage chassis. This is helpful when a system needs more storage than 

can be connected at a given time or when it is necessary to replace a bad drive with a working 

one. Other types of storage media are also removable, including CDs, DVDs, and Blu-ray discs. 

Nonvolatile Memory Devices : 

Nonvolatile memory (NVM) devices are growing in importance. Simply described, NVM devices 

are electrical rather than mechanical. Most commonly, such a device is composed of a 

controller and flash NAND die semiconductor chips, which are used to store data. Other NVM 

technologies exist, like DRAM with battery backing so it doesn’t lose its contents, as well as 
other semiconductor technology like 3D XPoint, but they are far less common and so are not 

discussed in this book. 

Overview of Nonvolatile Memory Devices : 

Flash-memory-based NVM is frequently used in a disk-drive-like container, in which case it is 
called a solid-state disk (SSD) (Figure 11.3). In other instances, it takes the form of a USB drive 

(also known as a thumb drive or flash drive) or a DRAM stick. It is also surface-mounted onto 

motherboards as the main storage in devices like smartphones. In all forms, it acts and can be 

treated in the same way. Our discussion of NVM devices focuses on this technology. 

NVM devices can be more reliable than HDDs because they have no moving parts and can be 

faster because they have no seek time or rotational latency. In addition, they consume less 

power. On the negative side, they are more expensive per megabyte than traditional hard disks 
and have less capacity than the larger hard disks. Over time, however, the capacity of NVM 

devices has increased faster than HDD capacity, and their price has dropped more quickly, so 

their use is increasing dramatically. In fact, SSDs and similar devices are now used in some 

laptop computers to make them smaller, faster, and more energy-efficient. 

Because NVM devices can be much faster than hard disk drives, standard bus interfaces can 

cause a major limit on throughput. Some NVM devices are designed to connect directly to the 

system bus (PCIe, for example). This technology is changing other traditional aspects of 

computer design as well. 
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Some systems use it as a direct replacement for disk drives, while others use it as a new cache 

tier, moving data among magnetic disks, NVM, and main memory to optimize performance. 

NAND semiconductors have some characteristics that present their own storage and reliability 
challenges. For example, they can be read and written in a ―page‖ increment (similar to a 

sector), but data cannot be overwritten— rather, the NAND cells have to be erased first. The 

erasure, which occurs in a ―block‖ increment that is several pages in size, takes much more 

time than a read (the fastest operation) or a write (slower than read, but much faster than 

erase). Helping the situation is that NVM flash devices are composed of many die, with many 

datapaths to each die, so operations can happen in parallel (each using a datapath). NAND 
semiconductors also deteriorate with every erase cycle, and after approximately 100,000 

program-erase cycles (the specific number varies depending on the medium), the cells no 

longer retain data. Because of the write wear, and because there are no moving parts, NAND 

NVM lifespan is not measured in years but in Drive Writes Per Day (DWPD). That measure is 

how many times the drive capacity can be written per day before the drive fails. For example, a 

1 TB NAND drive with a 5 DWPD rating is expected to have 5 TB per day written to it for the 

warranty period without failure. 

Volatile Memory : 

It might seem odd to discuss volatile memory in a chapter on mass-storage structure, but it is 
justifiable because DRAM is frequently used as a mass-storage device. Specifically, RAM drives 

(which are known by many names, including RAM disks) act like secondary storage but are 

created by device drivers that carve out a section of the system’s DRAM and present it to the 

rest of the system as it if were a storage device. These ―drives‖ can be used as raw block 

devices, but more commonly, file systems are created on them for standard file operations. 

Computers already have buffering and caching, so what is the purpose of yet another use of 

DRAM for temporary data storage? After all, DRAM is volatile, and data on a RAM drive does 

not survive a system crash, shutdown, or power down. Caches and buffers are allocated by the 
programmer or operating system, whereas RAM drives allow the user (as well as the 

programmer) to place data in memory for temporary safekeeping using standard file operations. 

In fact, RAM drive functionality is useful enough that such drives are found in all major 

operating systems. On Linux there is /dev/ram, on macOS the diskutil command creates 

them, Windows has them via third-party tools, and Solaris and Linux create /tmp at boot time 

of type ―tmpfs‖, which is a RAM drive. 
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RAM drives are useful as high-speed temporary storage space. Although NVM devices are fast, 

DRAM is much faster, and I/O operations to RAM drives are the fastest way to create, read, 

write, and delete files and their contents. Many programs use (or could benefit from using) 
RAM drives for storing temporary files. For example, programs can share data easily by writing 

and reading files from a RAM drive. For another example, Linux at boot time creates a 

temporary root file system (initrd) that allows other parts of the system to have access to a root 

file system and its contents before the parts of the operating system that understand storage 

devices are loaded. 

Secondary Storage Connection Methods : 

A secondary storage device is attached to a computer by the system bus or an I/O bus. Several 

kinds of buses are available, including advanced technology attachment (ATA), serial ATA 

(SATA), eSATA, serial attached SCSI (SAS), universal serial bus (USB), and fibr channel (FC). 
The most common connection method is SATA. Because NVM devices are much faster than 

HDDs, the industry created a special, fast interface for NVM devices called NVM express 

(NVMe). NVMe directly connects the device to the system PCI bus, increasing throughput and 

decreasing latency compared with other connection methods. 

The data transfers on a bus are carried out by special electronic processors called controllers 

(or host-bus adapters (HBA)). The host controller is the controller at the computer end of the 

bus. A device controller is built into each storage device. To perform a mass storage I/O 

operation, the computer places a command into the host controller, typically using memory-
mapped I/O ports, as described in Section 12.2.1. The host controller then sends the command 

via messages to the device controller, and the controller operates the drive hardware to carry 

out the command. Device controllers usually have a built-in cache. Data transfer at the drive 

happens between the cache and the storage media, and data transfer to the host, at fast 

electronic speeds, occurs between the cache host DRAM via DMA. 

Address Mapping : 

Storage devices are addressed as large one-dimensional arrays of logical blocks, where the 

logical block is the smallest unit of transfer. Each logical block maps to a physical sector or 

semiconductor page. The one-dimensional array of logical blocks is mapped onto the sectors or 
pages of the device. Sector 0 could be the first sector of the first track on the outermost 

cylinder on an HDD, for example. The mapping proceeds in order through that track, then 

through the rest of the tracks on that cylinder, and then through the rest of the cylinders, from 

outermost to innermost. For NVM the mapping is from a tuple (finite ordered list) of chip, 

block, and page to an array of logical blocks. A logical block address (LBA) is easier for 

algorithms to use than a sector, cylinder, head tuple or chip, block, page tuple. 

By using this mapping on an HDD, we can—at least in theory—convert a logical block number 
into an old-style disk address that consists of a cylinder number, a track number within that 

cylinder, and a sector number within that track. In practice, it is difficult to perform this 

translation, for three reasons. First, most drives have some defective sectors, but the mapping 

hides this by substituting spare sectors from elsewhere on the drive. The logical block address 

stays sequential, but the physical sector location changes. Second, the number of sectors per 

track is not a constant on some drives. Third, disk manufacturers manage LBA to physical 
address mapping internally, so in current drives there is little relationship between LBA and 

physical sectors. In spite of these physical address vagaries, algorithms that deal with HDDs 

tend to assume that logical addresses are relatively related to physical addresses. That is, 

ascending logical addresses tend to mean ascending physical address. 

Let’s look more closely at the second reason. On media that use constant linear velocity (CLV), 

the density of bits per track is uniform. The farther a track is from the center of the disk, the 

greater its length, so the more sectors it can hold. As we move from outer zones to inner zones, 
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the number of sectors per track decreases. Tracks in the outermost zone typically hold 40 

percent more sectors than do tracks in the innermost zone. The drive increases its rotation 

speed as the head moves from the outer to the inner tracks to keep the same rate of data 
moving under the head. This method is used in CD-ROM and DVD-ROM drives. Alternatively, 

the disk rotation speed can stay constant; in this case, the density of bits decreases from inner 

tracks to outer tracks to keep the data rate constant (and performance relatively the same no 

matter where data is on the drive). This method is used in hard disks and is known as constant 

angular velocity (CAV). 

HDD Scheduling : 

One of the responsibilities of the operating system is to use the hardware efficiently. For HDDs, 

meeting this responsibility entails minimizing access time and maximizing data transfer 

bandwidth. 

For HDDs and other mechanical storage devices that use platters, access time has two major 

components, as mentioned in Section 11.1. The seek time is the time for the device arm to 
move the heads to the cylinder containing the desired sector, and the rotational latency is the 

additional time for the platter to rotate the desired sector to the head. The device bandwidth is 

the total number of bytes transferred, divided by the total time between the first request for 

service and the completion of the last transfer. We can improve both the access time and the 

bandwidth by managing the order in which storage I/O requests are serviced 

Whenever a process needs I/O to or from the drive, it issues a system call to the operating 

system. The request specifies several pieces of information: 

Whether this operation is input or output 

• The open file handle indicating the file to operate on 

• What the memory address for the transfer is 

• The amount of data to transfer 

If the desired drive and controller are available, the request can be serviced immediately. If the 

drive or controller is busy, any new requests for service will be placed in the queue of pending 

requests for that drive. For a multiprogramming system with many processes, the device queue 

may often have several pending requests. 

In the past, HDD interfaces required that the host specify which track and which head to use, 

and much effort was spent on disk scheduling algorithms. Drives newer than the turn of the 

century not only do not expose these controls to the host, but also map LBA to physical 

addresses under drive control. The current goals of disk scheduling include fairness, 
timeliness, and optimizations, such as bunching reads or writes that appear in sequence, as 

drives perform best with sequential I/O. Therefore some scheduling effort is still useful. Any 

one of several disk-scheduling algorithms can be used, and we discuss them next. Note that 

absolute knowledge of head location and physical block/cylinder locations is generally not 

possible on modern drives. But as a rough approximation, algorithms can assume that 
increasing LBAs mean increasing physical addresses, and LBAs close together equate to 

physical block proximity. 

FCFS Scheduling : 

The simplest form of disk scheduling is, of course, the first-come, first-served (FCFS) algorithm 
(or FIFO). This algorithm is intrinsically fair, but it generally does not provide the fastest 

service. Consider, for example, a disk queue with requests for I/O to blocks on cylinders. 
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98, 183, 37, 122, 14, 124, 65, 67, 

in that order. If the disk head is initially at cylinder 53, it will first move from 53 to 98, then to 

183, 37, 122, 14, 124, 65, and finally to 67, for a total head movement of 640 cylinders. This 

schedule is diagrammed in Figure 11.6. 

The wild swing from 122 to 14 and then back to 124 illustrates the problem with this schedule. 

If the requests for cylinders 37 and 14 could be serviced together, before or after the requests 

for 122 and 124, the total head movement could be decreased substantially, and performance 

could be thereby improved. 

SCAN Scheduling : 

In the SCAN algorithm, the disk arm starts at one end of the disk and moves toward the other 

end, servicing requests as it reaches each cylinder, until it gets to the other end of the disk. At 
the other end, the direction of head movement is reversed, and servicing continues. The head 

continuously scans back and forth across the disk. The SCAN algorithm is sometimes called 

the elevator algorithm, since the disk arm behaves just like an elevator in a building, first 

servicing all the requests going up and then reversing to service requests the other way. 

Let’s return to our example to illustrate. Before applying SCAN to schedule the requests on 

cylinders 98, 183, 37, 122, 14, 124, 65, and 67, we need to know the direction of head 

movement in addition to the head’s current position. Assuming that the disk arm is moving 
toward 0 and that the initial head position is again 53, the head will next service 37 and then 

14. At cylinder 0, the arm will reverse and will move toward the other end of the disk, servicing 

the requests at 65, 67, 98, 122, 124, and 183 (Figure 11.7). If a request arrives in the queue 

just in front of the head, it will be serviced almost immediately; a request arriving just behind 

the head will have to wait until the arm moves to the end of the disk, reverses direction, and 

comes back. 

C-SCAN Scheduling : 

Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to provide a more uniform 

wait time. Like SCAN, C-SCAN moves the head from one end of the disk to the other, servicing 
requests along the way. When the head reaches the other end, however, it immediately returns 

to the beginning of the disk without servicing any requests on the return trip. 

Let’s return to our example to illustrate. Before applying C-SCAN to schedule the requests on 

cylinders 98, 183, 37, 122, 14, 124, 65, and 67, we need to know the direction of head 

movement in which the requests are scheduled. Assuming that the requests are scheduled 

when the disk arm is moving from 0 to 199 and that the initial head position is again 53, the 

request will be served as depicted in Figure 11.8. The C-SCAN scheduling algorithm essentially 

treats the cylinders as a circular list that wraps around from the final cylinder to the first one. 

RAID Structure : 

Storage devices have continued to get smaller and cheaper, so it is now economically feasible to 

attach many drives to a computer system. Having a large number of drives in a system 
presents opportunities for improving the rate at which data can be read or written, if the drives 

are operated in parallel. Furthermore, this setup offers the potential for improving the 

reliability of data storage, because redundant information can be stored on multiple drives. 

Thus, failure of one drive does not lead to loss of data. A variety of disk-organization 

techniques, collectively called redundant arrays of independent disks (RAIDs), are commonly 

used to address the performance and reliability issues. 
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In the past, RAIDs composed of small, cheap disks were viewed as a costeffective alternative to 

large, expensive disks. Today, RAIDs are used for their higher reliability and higher data-

transfer rate rather than for economic reasons. Hence, the I in RAID, which once stood for 

―inexpensive,‖ now stands for ―independent.‖ 

Improvement of Reliability via Redundancy : 

Let’s first consider the reliability of a RAID of HDDs. The chance that some disk out of a set of 

N disks will fail is much greater than the chance that a specific single disk will fail. Suppose 
that the mean time between failures (MTBF) of a single disk is 100,000 hours. Then the MTBF 

of some disk in an array of 100 disks will be 100,000/100 = 1,000 hours, or 41.66 days, which 

is not long at all! If we store only one copy of the data, then each disk failure will result in loss 

of a significant amount of data—and such a high rate of data loss is unacceptable. 

The solution to the problem of reliability is to introduce redundancy; we store extra information 

that is not normally needed but can be used in the event of disk failure to rebuild the lost 

information. Thus, even if a disk fails, data are not lost. RAID can be applied to NVM devices as 
well, although NVM devices have no moving parts and therefore are less likely to fail than 

HDDs. 

The simplest (but most expensive) approach to introducing redundancy is to duplicate every 

drive. This technique is called mirroring. With mirroring, a logical disk consists of two physical 

drives, and every write is carried out on both drives. The result is called a mirrored volume. If 

one of the drives in the volume fails, the data can be read from the other. Data will be lost only 

if the second drive fails before the first failed drive is replaced. 

File Concept : 

Computers can store information on various storage media, such as NVM devices, HDDs, 

magnetic tapes, and optical disks. So that the computer system will be convenient to use, the 

operating system provides a uniform logical view of stored information. The operating system 
abstracts from the physical properties of its storage devices to define a logical storage unit, the 

fil . Files are mapped by the operating system onto physical devices. These storage devices are 

usually nonvolatile, so the contents are persistent between system reboots. 

A file is a named collection of related information that is recorded on secondary storage. From a 

user’s perspective, a file is the smallest allotment of logical secondary storage; that is, data 

cannot be written to secondary storage unless they are within a file. Commonly, files represent 

programs (both source and object forms) and data. Data files may be numeric, alphabetic, 

alphanumeric, or binary. Files may be free form, such as text files, or may be formatted rigidly. 
In general, a file is a sequence of bits, bytes, lines, or records, the meaning of which is defined 

by the file’s creator and user. The concept of a file is thus extremely general. 

Because files are the method users and applications use to store and retrieve data, and 

because they are so general purpose, their use has stretched beyond its original confines. For 

example, UNIX, Linux, and some other operating systems provide a proc file system that uses 

file-system interfaces to provide access to system information (such as process details). 

The information in a file is defined by its creator. Many different types of information may be 

stored in a file—source or executable programs, numeric or text data, photos, music, video, 

and so on. A file has a certain defined structure, which depends on its type. Atext fil is a 
sequence of characters organized into lines (and possibly pages). A source fil is a sequence of 

functions, each of which is further organized as declarations followed by executable 

statements. An executable fil is a series of code sections that the loader can bring into memory 

and execute. 
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File Attributes : 

A file is named, for the convenience of its human users, and is referred to by its name. A name 

is usually a string of characters, such as example.c. Some systems differentiate between 

uppercase and lowercase characters in names, whereas other systems do not. When a file is 

named, it becomes independent of the process, the user, and even the system that created it. 
For instance, one user might create the file example.c, and another user might edit that file by 

specifying its name. The file’s owner might write the file to a USB drive, send it as an e-mail 

attachment, or copy it across a network, and it could still be called example.c on the 

destination system. Unless there is a sharing and synchonization method, that second copy is 

now independent of the first and can be changed separately. 

A file’s attributes vary from one operating system to another but typically consist of these: 

• Name. The symbolic file name is the only information kept in humanreadable form. 

• Identifie . This unique tag, usually a number, identifies the file within the file system; it is the 

non-human-readable name for the file 

. • Type. This information is needed for systems that support different types of files. 

• Location. This information is a pointer to a device and to the location of the file on that 

device. 

• Size. The current size of the file (in bytes, words, or blocks) and possibly the maximum 

allowed size are included in this attribute. 

• Protection. Access-control information determines who can do reading, writing, executing, 

and so on. 

• Timestamps and user identificatio . This information may be kept for creation, last 

modification, and last use. These data can be useful for protection, security, and usage 

monitoring 

Some newer file systems also support extended file attributes, including character encoding of 

the file and security features such as a file checksum. Figure 13.1 illustrates a fil info window 

on macOS that displays a file’s attributes. 

The information about all files is kept in the directory structure, which resides on the same 

device as the files themselves. Typically, a directory entry consists of the file’s name and its 
unique identifier. The identifier in turn locates the other file attributes. It may take more than a 

kilobyte to record this information for each file. In a system with many files, the size of the 

directory itself may be megabytes or gigabytes. Because directories must match the volatility of 

the files, like files, they must be stored on the device and are usually brought into memory 

piecemeal, as needed. 
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File Operations : 

A file is an abstract data type. To define a file properly, we need to consider the operations that 
can be performed on files. The operating system can provide system calls to create, write, read, 

reposition, delete, and truncate files. Let’s examine what the operating system must do to 

perform each of these seven basic file operations. It should then be easy to see how other 

similar operations, such as renaming a file, can be implemented. 

Creating a file :Two steps are necessary to create a file. First, space in the file system must be 

found for the file. We discuss how to allocate space for the file in Chapter 14. Second, an entry 

for the new file must be made in a directory. 

• Opening a file . Rather than have all file operations specify a file name, causing the operating 

system to evaluate the name, check access permissions, and so on, all operations except create 
and delete require a file open() first. If successful, the open call returns a file handle that is 

used as an argument in the other calls. 

• Writing a file :. To write a file, we make a system call specifying both the open file handle and 

the information to be written to the file. The system must keep a write pointer to the location in 

the file where the next write is to take place if it is sequential. The write pointer must be 

updated whenever a write occurs. 

• Reading a fil . To read from a file, we use a system call that specifies the file handle and 

where (in memory) the next block of the file should be put. Again, the system needs to keep a 

read pointer to the location in the file where the next read is to take place, if sequential. Once 
the read has taken place, the read pointer is updated. Because a process is usually either 

reading from or writing to a file, the current operation location can be kept as a per-process 

current-file-positio pointer. Both the read and write operations use this same pointer, saving 

space and reducing system complexity. • Repositioning within a file: The current-file-position 

pointer of the open file is repositioned to a given value. Repositioning within a file need not 

involve any actual I/O. This file operation is also known as a file seek. 

• Deleting a file: To delete a file, we search the directory for the named file. Having found the 

associated directory entry, we release all file space, so that it can be reused by other files, and 
erase or mark as free the directory entry. Note that some systems allow hard links—multiple 

names (directory entries) for the same file. In this case the actual file contents is not deleted 

until the last link is deleted. 
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• Truncating a file :The user may want to erase the contents of a file but keep its attributes. 

Rather than forcing the user to delete the file and then recreate it, this function allows all 

attributes to remain unchanged—except for file length. The file can then be reset to length zero, 

and its file space can be released. 

These seven basic operations comprise the minimal set of required file operations. Other 
common operations include appending new information to the end of an existing file and 

renaming an existing file. These primitive operations can then be combined to perform other 

file operations. For instance, we can create a copy of a file by creating a new file and then 

reading from the old and writing to the new. We also want to have operations that allow a user 

to get and set the various attributes of a file. For example, we may want to have operations that 

allow a user to determine the status of a file, such as the file’s length, and to set file attributes, 

such as the file’s owner. 

As mentioned, most of the file operations mentioned involve searching the directory for the 

entry associated with the named file. To avoid this constant searching, many systems require 

that an open() system call be made before a file is first used. The operating system keeps a 

table, called the open-fil table, containing information about all open files. When a file 

operation is requested, the file is specified via an index into this table, so no searching is 

required. When the file is no longer being actively used, it is closed by the process, and the 
operating system removes its entry from the open-file table, potentially releasing locks. create() 

and delete() are system calls that work with closed rather than open files. 

Some systems implicitly open a file when the first reference to it is made. The file is 

automatically closed when the job or program that opened the file terminates. Most systems, 

however, require that the programmer open a file explicitly with the open() system call before 

that file can be used. The open() operation takes a file name and searches the directory, 

copying the directory entry into the open-file table. The open() call can also accept accessmode 
information—create, read-only, read –write, append-only, and so on. This mode is checked 

against the file’s permissions. If the request mode is allowed, the file is opened for the process. 

The open() system call typically returns a pointer to the entry in the open-file table. This 

pointer, not the actual file name, is used in all I/O operations, avoiding any further searching 

and simplifying the system-call interface. 

The implementation of the open() and close() operations is more complicated in an environment 

where several processes may open the file simultaneously. This may occur in a system where 

several different applications open the same file at the same time. Typically, the operating 
system uses two levels of internal tables: a per-process table and a system-wide table. The per-

process table tracks all files that a process has open. Stored in this table is information 

regarding the process’s use of the file. For instance, the current file pointer for each file is 

found here. Access rights to the file and accounting information can also be included. 

Each entry in the per-process table in turn points to a system-wide open-file table. The system-

wide table contains process-independent information, such as the location of the file on disk, 

access dates, and file size. Once a file has been opened by one process, the system-wide table 
includes an entry for the file. When another process executes an open() call, a new entry is 

simply added to the process’s open-file table pointing to the appropriate entry in the 

systemwide table. Typically, the open-file table also has an open count associated with each file 

to indicate how many processes have the file open. Each close() decreases this open count, and 

when the open count reaches zero, the file is no longer in use, and the file’s entry is removed 

from the open-file table. 

• File pointer: On systems that do not include a file offset as part of the read() and write() 
system calls, the system must track the last read – write location as a current-file-position 

pointer. This pointer is unique to each process operating on the file and therefore must be kept 

separate from the on-disk file attributes. 
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• File-open count:As files are closed, the operating system must reuse its open-file table 

entries, or it could run out of space in the table. Multiple processes may have opened a file, 

and the system must wait for the last file to close before removing the open-file table entry. The 
file-open count tracks the number of opens and closes and reaches zero on the last close. The 

system can then remove the entry. 

• Location of the file: Most file operations require the system to read or write data within the 

file. The information needed to locate the file (wherever it is located, be it on mass storage, on a 

file server across the network, or on a RAM drive) is kept in memory so that the system does 

not have to read it from the directory structure for each operation. 

• Access rights: Each process opens a file in an access mode. This information is stored on the 

per-process table so the operating system can allow or deny subsequent I/O requests. 

Some operating systems provide facilities for locking an open file (or sections of a file). File 

locks allow one process to lock a file and prevent other processes from gaining access to it. File 

locks are useful for files that are shared by several processes— for example, a system log file 

that can be accessed and modified by a number of processes in the system. 

File Types : 

When we design a file system—indeed, an entire operating system—we always consider 

whether the operating system should recognize and support file types. If an operating system 
recognizes the type of a file, it can then operate on the file in reasonable ways. For example, a 

common mistake occurs when a user tries to output the binary-object form of a program. This 

attempt normally produces garbage; however, the attempt can succeed if the operating system 

has been told that the file is a binary-object program. 

A common technique for implementing file types is to include the type as part of the file name. 

The name is split into two parts—a name and an extension, usually separated by a period 

(Figure 13.3). In this way, the user and the operating system can tell from the name alone what 
the type of a file is. Most operating systems allow users to specify a file name as a sequence of 

characters followed by a period and terminated by an extension made up of additional 

characters. Examples include resume.docx, server.c, and ReaderThread.cpp 

The system uses the extension to indicate the type of the file and the type of operations that 

can be done on that file. Only a file with a .com, .exe, or .sh extension can be executed, for 

instance. The .com and .exe files are two forms of binary executable files, whereas the .sh file is 

a shell script containing, in ASCII format, commands to the operating system. Application 

programs also use extensions to indicate file types in which they are interested. For example, 
Java compilers expect source files to have a .java extension, and the Microsoft Word word 

processor expects its files to end with a .doc or .docx extension. These extensions are not 

always required, so a user may specify a file without the extension (to save typing), and the 

application will look for a file with the given name and the extension it expects. Because these 

extensions are not supported by the operating system, they can be considered ―hints‖ to the 

applications that operate on them. 
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File Structure : 

File types also can be used to indicate the internal structure of the file. Source and object files 

have structures that match the expectations of the programs that read them. Further, certain 

files must conform to a required structure that is understood by the operating system. For 

example, the operating system requires that an executable file have a specific structure so that 
it can determine where in memory to load the file and what the location of the first instruction 

is. Some operating systems extend this idea into a set of system-supported file structures, with 

sets of special operations for manipulating files with those structures. 

This point brings us to one of the disadvantages of having the operating system support 

multiple file structures: it makes the operating system large and cumbersome. If the operating 

system defines five different file structures, it needs to contain the code to support these file 

structures. In addition, it may be necessary to define every file as one of the file types 

supported by the operating system. When new applications require information structured in 

ways not supported by the operating system, severe problems may result. 

Access Methods : 

Files store information. When it is used, this information must be accessed and read into 
computer memory. The information in the file can be accessed in several ways. Some systems 

provide only one access method for files. Others (such as mainframe operating systems) 

support many access methods, and choosing the right one for a particular application is a 

major design problem. 

Sequential Access : 

The simplest access method is sequential access. Information in the file is processed in order, 

one record after the other. This mode of access is by far the most common; for example, editors 

and compilers usually access files in this fashion. 

Reads and writes make up the bulk of the operations on a file. A read operation—read next()—

reads the next portion of the file and automatically advances a file pointer, which tracks the 

I/O location. Similarly, the write operation—write next()—appends to the end of the file and 
advances to the end of the newly written material (the new end of file). Such a file can be reset 

to the beginning, and on some systems, a program may be able to skip forward or backward n 

records for some integer n—perhaps only for n = 1. Sequential access, which is depicted in 

Figure 13.4, is based on a tape model of a file and works as well on sequential-access devices 

as it does on random-access ones. 
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Direct Access : 

Another method is direct access (or relative access). Here, a file is made up of fixed-length 

logical records that allow programs to read and write records rapidly in no particular order. The 

direct-access method is based on a disk model of a file, since disks allow random access to any 

file block. For direct access, the file is viewed as a numbered sequence of blocks or records. 
Thus, we may read block 14, then read block 53, and then write block 7. There are no 

restrictions on the order of reading or writing for a direct-access file. 

 

For the direct-access method, the file operations must be modified to include the block number 

as a parameter. Thus, we have read(n), where n is the block number, rather than read next(), 

and write(n) rather than write next(). An alternative approach is to retain read next() and write 

next() and to add an operation position file(n) where n is the block number. Then, to effect a 

read(n), we would position file(n) and then read next(). 

The block number provided by the user to the operating system is normally a relative block 
number. A relative block number is an index relative to the beginning of the file. Thus, the first 

relative block of the file is 0, the next is 1, and so on, even though the absolute disk address 

may be 14703 for the first block and 3192 for the second. The use of relative block numbers 

allows the operating system to decide where the file should be placed (called the allocation 

problem, as we discuss in Chapter 14) and helps to prevent the user from accessing portions of 

the file system that may not be part of her file. Some systems start their relative block numbers 

at 0; others start at 1. 

 

Other Access Methods : 

Other access methods can be built on top of a direct-access method. These methods generally 

involve the construction of an index for the file. The index, like an index in the back of a book, 
contains pointers to the various blocks. To find a record in the file, we first search the index 

and then use the pointer to access the file directly and to find the desired record. 

 

Directory Structure : 

The directory can be viewed as a symbol table that translates file names into their file control 

blocks. If we take such a view, we see that the directory itself can be organized in many ways. 

The organization must allow us to insert entries, to delete entries, to search for a named entry, 

and to list all the entries in the directory. In this section, we examine several schemes for 

defining the logical structure of the directory system. When considering a particular directory 

structure, we need to keep in mind the operations that are to be performed on a directory: 
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• Search for a file . We need to be able to search a directory structure to find the entry for a 

particular file. Since files have symbolic names, and similar names may indicate a relationship 

among files, we may want to be able to find all files whose names match a particular pattern. 

• Create a fil . New files need to be created and added to the directory. 

Delete a file: When a file is no longer needed, we want to be able to remove it from the 

directory. Note a delete leaves a hole in the directory structure and the file system may have a 

method to defragement the directory structure. 

List a directory :We need to be able to list the files in a directory and the contents of the 

directory entry for each file in the list. 

Rename a file: Because the name of a file represents its contents to its users, we must be able 

to change the name when the contents or use of the file changes. Renaming a file may also 

allow its position within the directory structure to be changed. 

Traverse the file system:We may wish to access every directory and every file within a directory 

structure. For reliability, it is a good idea to save the contents and structure of the entire file 

system at regular intervals. Often, we do this by copying all files to magnetic tape, other 

secondary storage, or across a network to another system or the cloud. This technique provides 

a backup copy in case of system failure. In addition, if a file is no longer in use, the file can be 

copied the backup target and the disk space of that file released for reuse by another file. 

Single-Level Directory : 

The simplest directory structure is the single-level directory. All files are contained in the same 

directory, which is easy to support and understand (Figure 13.7). 

 

A single-level directory has significant limitations, however, when the number of files increases 
or when the system has more than one user. Since all files are in the same directory, they must 

have unique names. If two users call their data file test.txt, then the unique-name rule is 

violated. For example, in one programming class, 23 students called the program for their 

second assignment prog2.c; another 11 called it assign2.c. Fortunately, most file systems 

support file names of up to 255 characters, so it is relatively easy to select unique file names. 

Even a single user on a single-level directory may find it difficult to remember the names of all 

the files as the number of files increases. It is not uncommon for a user to have hundreds of 

files on one computer system and an equal number of additional files on another system. 

Keeping track of so many files is a daunting task. 

Two-Level Directory : As we have seen, a single-level directory often leads to confusion of file 
names among different users. The standard solution is to create a separate directory for each 

user. 

In the two-level directory structure, each user has his own user fil directory (UFD). The UFDs 

have similar structures, but each lists only the files of a single user. When a user job starts or 

a user logs in, the system’s master fil directory (MFD) is searched. The MFD is indexed by user 

name or account number, and each entry points to the UFD for that user (Figure 13.8). 
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When a user refers to a particular file, only his own UFD is searched. Thus, different users may 

have files with the same name, as long as all the file names within each UFD are unique. To 

create a file for a user, the operating system searches only that user’s UFD to ascertain 
whether another file of that name cat bo a test a x data a user 1 user 2 user 3 user 4 exists. To 

delete a file, the operating system confines its search to the local UFD; thus, it cannot 

accidentally delete another user’s file that has the same name. 

 

Tree-Structured Directories : 

Once we have seen how to view a two-level directory as a two-level tree, the natural 
generalization is to extend the directory structure to a tree of arbitrary height (Figure 13.9). 

This generalization allows users to create their own subdirectories and to organize their files 

accordingly. A tree is the most common directory structure. The tree has a root directory, and 

every file in the system has a unique path name. 

A directory (or subdirectory) contains a set of files or subdirectories. In many implementations, 

a directory is simply another file, but it is treated in a special way. All directories have the same 

internal format. One bit in each directory entry defines the entry as a file (0) or as a 
subdirectory (1). Special system calls are used to create and delete directories. In this case the 

operating system (or the file system code) implements another file format, that of a directory. 

 

Acyclic-Graph Directories : 

Consider two programmers who are working on a joint project. The files associated with that 

project can be stored in a subdirectory, separating them from other projects and files of the two 

programmers. But since both programmers are equally responsible for the project, both want 

the subdirectory to be in their own directories. In this situation, the common subdirectory 

should be shared. A shared directory or file exists in the file system in two (or more) places at 

once. 
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Protection : 

When information is stored in a computer system, we want to keep it safe from physical 

damage (the issue of reliability) and improper access (the issue of protection). 

Reliability is generally provided by duplicate copies of files. Many computers have systems 

programs that automatically (or through computer-operator intervention) copy disk files to tape 

at regular intervals (once per day or week or month) to maintain a copy should a file system be 

accidentally destroyed. File systems can be damaged by hardware problems (such as errors in 

reading or writing), power surges or failures, head crashes, dirt, temperature extremes, and 
vandalism. Files may be deleted accidentally. Bugs in the file-system software can also cause 

file contents to be lost. Reliability was covered in more detail in Chapter 11. 

Protection can be provided in many ways. For a laptop system running a modern operating 

system, we might provide protection by requiring a user name and password authentication to 

access it, encrypting the secondary storage so even someone opening the laptop and removing 

the drive would have a difficult time accessing its data, and firewalling network access so that 

when it is in use it is difficult to break in via its network connection. In multiuser system, even 
valid access of the system needs more advanced mechanisms to allow only valid access of the 

data. 

Types of Access : 

The need to protect files is a direct result of the ability to access files. Systems that do not 
permit access to the files of other users do not need protection. Thus, we could provide 

complete protection by prohibiting access. Alternatively, we could provide free access with no 

protection. Both approaches are too extreme for general use. What is needed is controlled 

access. 

Protection mechanisms provide controlled access by limiting the types of file access that can be 

made. Access is permitted or denied depending on several factors, one of which is the type of 

access requested. Several different types of operations may be controlled: 

• Read:Read from the file. 

• Write: Write or rewrite the file. 

• Execute: Load the file into memory and execute it. 

• Append:Write new information at the end of the file. 

• Delete: Delete the file and free its space for possible reuse. 

read:Read
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• List:List the name and attributes of the file. 

• Attribute change: Changing the attributes of the file. 

Other operations, such as renaming, copying, and editing the file, may also be controlled. For 

many systems, however, these higher-level functions may be implemented by a system 

program that makes lower-level system calls. Protection is provided at only the lower level. For 

instance, copying a file may be implemented simply by a sequence of read requests. In this 

case, a user with read access can also cause the file to be copied, printed, and so on. 

Access Control : 

The most common approach to the protection problem is to make access dependent on the 

identity of the user. Different users may need different types of access to a file or directory. The 

most general scheme to implement identitydependent access is to associate with each file and 
directory an access-control list (ACL) specifying user names and the types of access allowed for 

each user. When a user requests access to a particular file, the operating system checks the 

access list associated with that file. If that user is listed for the requested access, the access is 

allowed. Otherwise, a protection violation occurs, and the user job is denied access to the file. 

This approach has the advantage of enabling complex access methodologies. The main problem 

with access lists is their length. If we want to allow everyone to read a file, we must list all 

users with read access. This technique has two undesirable consequences: 

• Constructing such a list may be a tedious and unrewarding task, especially if we do not know 

in advance the list of users in the system. 

• The directory entry, previously of fixed size, now must be of variable size, resulting in more 

complicated space management. 

These problems can be resolved by use of a condensed version of the access list. 

To condense the length of the access-control list, many systems recognize three classifications 

of users in connection with each file: 

• Owner. The user who created the file is the owner. 

• Group. A set of users who are sharing the file and need similar access is a group, or work 

group. 

• Other. All other users in the system. 

Memory-Mapped Files : 

There is one other method of accessing files, and it is very commonly used. Consider a 

sequential read of a file on disk using the standard system calls open(), read(), and write(). 

Each file access requires a system call and disk access. Alternatively, we can use the virtual 

memory techniques discussed in Chapter 10 to treat file I/O as routine memory accesses. This 

approach, known as memory mapping a file, allows a part of the virtual address space to be 
logically associated with the file. As we shall see, this can lead to significant performance 

increases. 

Basic Mechanism : 

Memory mapping a file is accomplished by mapping a disk block to a page (or pages) in 

memory. Initial access to the file proceeds through ordinary demand paging, resulting in a page 

fault. However, a page-sized portion of the file is read from the file system into a physical page 
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(some systems may opt to read in more than a page-sized chunk of memory at a time). 

Subsequent reads and writes to the file are handled as routine memory accesses. Manipulating 

files through memory rather than incurring the overhead of using the read() and write() system 

calls simplifies and speeds up file access and usage. 

Shared Memory in the Windows API : 

The general outline for creating a region of shared memory using memorymapped files in the 

Windows API involves first creating a fil mapping for the file to be mapped and then 
establishing a view of the mapped file in a process’s virtual address space. A second process 

can then open and create a view of the mapped file in its virtual address space. The mapped file 

represents the shared-memory object that will enable communication to take place between the 

processes. 

 

File-System Structure : 

Disks provide most of the secondary storage on which file systems are maintained. Two 

characteristics make them convenient for this purpose: 

1. A disk can be rewritten in place; it is possible to read a block from the disk, modify the 

block, and write it back into the same block. 

2. A disk can access directly any block of information it contains. Thus, it is simple to access 
any file either sequentially or randomly, and switching from one file to another requires the 

drive moving the read –write heads and waiting for the media to rotate. 

Nonvolatile memory (NVM) devices are increasingly used for file storage and thus as a location 

for file systems. They differ from hard disks in that they cannot be rewritten in place and they 

have different performance characteristics. We discuss disk and NVM-device structure in detail 

in Chapter 11. 

To improve I/O efficiency, I/O transfers between memory and mass storage are performed in 

units of blocks. Each block on a hard disk drive has one or more sectors. Depending on the 

disk drive, sector size is usually 512 bytes or 4,096 bytes. NVM devices usually have blocks of 

4,096 bytes, and the transfer methods used are similar to those used by disk drives. 

File systems provide efficient and convenient access to the storage device by allowing data to be 
stored, located, and retrieved easily. A file system poses two quite different design problems. 

The first problem is defining how the file system should look to the user. This task involves 

defining a file and its attributes, the operations allowed on a file, and the directory structure for 

organizing files. The second problem is creating algorithms and data structures to map the 

logical file system onto the physical secondary-storage devices. 
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File-System Operations : 

As was described in Section 13.1.2, operating systems implement open() and close() systems 

calls for processes to request access to file contents. In this section, we delve into the 

structures and operations used to implement filesystem operations. 

Several on-storage and in-memory structures are used to implement a file system. These 

structures vary depending on the operating system and the file system, but some general 

principles apply. 

On storage, the file system may contain information about how to boot an operating system 

stored there, the total number of blocks, the number and location of free blocks, the directory 
structure, and individual files. Many of these structures are detailed throughout the remainder 

of this chapter. Here, we describe them briefly: 

A boot control block (per volume) :can contain information needed by the system to boot an 

operating system from that volume. If the disk does not contain an operating system, this block 

can be empty. It is typically the first block of a volume. In UFS, it is called the boot block. In 

NTFS, it is the partition boot sector. 

• A volume control block (per volume) :contains volume details, such as the number of blocks 

in the volume, the size of the blocks, a free-block count and free-block pointers, and a free-FCB 

count and FCB pointers. In UFS, this is called a superblock. In NTFS, it is stored in the master 

fil table. 

• A directory structure (per file system): is used to organize the files. In UFS, this includes file 

names and associated inode numbers. In NTFS, it is stored in the master file table. 

• A per-file FCB contains many details about the file. It has a unique identifier number to allow 
association with a directory entry. In NTFS, this information is actually stored within the 

master file table, which uses a relational database structure, with a row per file. 

Directory Implementation : 

The selection of directory-allocation and directory-management algorithms significantly affects 

the efficiency, performance, and reliability of the file system. In this section, we discuss the 

trade-offs involved in choosing one of these algorithms. 

Directory Structure : 

The directory can be viewed as a symbol table that translates file names into their file control 

blocks. If we take such a view, we see that the directory itself can be organized in many ways. 

The organization must allow us to insert entries, to delete entries, to search for a named entry, 

and to list all the entries in the directory. In this section, we examine several schemes for 

defining the logical structure of the directory system. 

When considering a particular directory structure, we need to keep in mind the operations that 

are to be performed on a directory: 

Search for a file : We need to be able to search a directory structure to find the entry for a 

particular file. Since files have symbolic names, and similar 
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names may indicate a relationship among files, we may want to be able tofind all files whose 

names match a particular pattern. 

Create a file:. New files need to be created and added to the directory. 

Delete a file:. When a file is no longer needed, we want to be able to remove it from the 
directory. Note a delete leaves a hole in the directory structure and the file system may have a 

method to defragement the directory structure. 

List a directory.: We need to be able to list the files in a directory and the contents of the 

directory entry for each file in the list. 

Rename a file: Because the name of a file represents its contents to its users, we must be able 

to change the name when the contents or use of the file changes. Renaming a file may also 

allow its position within the directory structure to be changed. 

Traverse the file system.: We may wish to access every directory and every file within a 

directory structure. For reliability, it is a good idea to save the contents and structure of the 

entire file system at regular intervals. Often, we do this by copying all files to magnetic tape, 

other secondary storage, or across a network to another system or the cloud. This technique 
provides a backup copy in case of system failure. In addition, if a file is no longer in use, the 

file can be copied the backup target and the disk space of that file released for reuse by 

another file. 

Single-Level Directory : 

The simplest directory structure is the single-level directory. All files are con-tained in the same 

directory, which is easy to support and understand. 
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A single-level directory has significant limitations, however, when the number of files increases 

or when the system has more than one user. Since all files are in the same directory, they must 

have unique names. If two users call their data file test.txt, then the unique-name rule is 

violated. For example, in one programming class, 23 students called the program for their 
second assignment prog2.c; another 11 called it assign2.c. Fortunately, most file systems 

support file names of up to 255 characters, so it is relatively easy to select unique file names. 

Two-Level Directory : 

In the two-level directory structure, each user has his own user fil direc-tory (UFD). The UFDs 

have similar structures, but each lists only the files of a single user. When a user job starts or 

a user logs in, the system’s master fil directory (MFD) is searched. The MFD is indexed by user 

name or account number, and each entry points to the UFD for that user (Figure 13.8). 

When a user refers to a particular file, only his own UFD is searched. Thus, different users may 

have files with the same name, as long as all the file names within each UFD are unique. To 

create a file for a user, the operating system searches only that user’s UFD to ascertain 

whether another file of that name 

 

exists. To delete a file, the operating system confines its search to the local UFD; thus, it 

cannot accidentally delete another user’s file that has the same name. 

The user directories themselves must be created and deleted as necessary. A special system 

program is run with the appropriate user name and account information. The program creates 

a new UFD and adds an entry for it to the MFD. The execution of this program might be 
restricted to system administra-tors. The allocation of disk space for user directories can be 

handled with the techniques discussed in Chapter 14 for files themselves. 
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Although the two-level directory structure solves the name-collision prob-lem, it still has 

disadvantages. This structure effectively isolates one user from another. Isolation is an 

advantage when the users are completely independent but is a disadvantage when the users 
want to cooperate on some task and to access one another’s files. Some systems simply do not 

allow local user files to be accessed by other users. 

If access is to be permitted, one user must have the ability to name a file in another user’s 

directory. To name a particular file uniquely in a two-level directory, we must give both the 

user name and the file name. A two-level directory can be thought of as a tree, or an inverted 

tree, of height 2. The root of the tree is the MFD. Its direct descendants are the UFDs. The 

descendants of the UFDs are the files themselves. The files are the leaves of the tree. Specifying 

a user name and a file name defines a path in the tree from the root (the MFD) to a leaf (the 
specified file). Thus, a user name and a file name define a path name. Every file in the system 

has a path name. To name a file uniquely, a user must know the path name of the file desired. 

Tree-Structured Directories : 

Once we have seen how to view a two-level directory as a two-level tree, the natural 

generalization is to extend the directory structure to a tree of arbitrary height (Figure 13.9). 

This generalization allows users to create their own subdirectories and to organize their files 

accordingly. A tree is the most common directory structure. The tree has a root directory, and 

every file in the system has a unique path name. 

A directory (or subdirectory) contains a set of files or subdirectories. In many implementations, 

a directory is simply another file, but it is treated ina special way. All directories have the same 

internal format. One bit in each directory entry defines the entry as a file (0) or as a 

subdirectory (1). Special 
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system calls are used to create and delete directories. In this case the operating system (or the 

file system code) implements another file format, that of a directory. 

In normal use, each process has a current directory. The current directory should contain most 

of the files that are of current interest to the process. When reference is made to a file, the 

current directory is searched. If a file is needed that is not in the current directory, then the 
user usually must either specify a path name or change the current directory to be the 

directory holding that file. To change directories, a system call could be provided that takes a 

directory name as a parameter and uses it to redefine the current directory. Thus, the user can 

change her current directory whenever she wants. Other systems leave it to the application 

(say, a shell) to track and operate on a current directory, as each process could have different 

current directories. 

Acyclic-Graph Directories : 

Consider two programmers who are working on a joint project. The files asso- ciated with that 

project can be stored in a subdirectory, separating them from other projects and files of the two 
programmers. But since both programmers are equally responsible for the project, both want 

the subdirectory to be in their own directories. In this situation, the common subdirectory 

should be shared. A shared directory or file exists in the file system in two (or more) places at 

once. 

A tree structure prohibits the sharing of files or directories. An acyclic graph— that is, a graph 

with no cycles—allows directories to share subdirec- tories and files (Figure 13.10). The same 

file or subdirectory may be in two different directories. The acyclic graph is a natural 

generalization of the tree-structured directory scheme. 

It is important to note that a shared file (or directory) is not the same as two copies of the file. 

With two copies, each programmer can view the copy rather than the original, but if one 
programmer changes the file, the changes will not appear in the other’s copy. With a shared 

file, only one actual file exists, so any changes made by one person are immediately visible to 

the other. Sharing isparticularly important for subdirectories; a new file created by one person 

will automatically appear in all the shared subdirectories. 

 

When people are working as a team, all the files they want to share can be put into one 

directory. The home directory of each team member could contain this directory of shared files 
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as a subdirectory. Even in the case of a single user, the user’s file organization may require 

that some file be placed in different subdirectories. For example, a program written for a 

particular project should be both in the directory of all programs and in the directory for that 

project. 

Shared files and subdirectories can be implemented in several ways. A common way, 
exemplified by UNIX systems, is to create a new directory entry called a link. A link is 

effectively a pointer to another file or subdirectory. For example, a link may be implemented as 

an absolute or a relative path name. When a reference to a file is made, we search the 

directory. If the directory entry is marked as a link, then the name of the real file is included in 

the link information. We resolve the link by using that path name to locate the real file. Links 

are easily identified by their format in the directory entry (or by having a special type on 
systems that support types) and are effectively indirect pointers. The operating system ignores 

these links when traversing directory trees to preserve the acyclic structure of the system. 

Protection : 

When information is stored in a computer system, we want to keep it safe from physical 

damage (the issue of reliability) and improper access (the issueof protection). 

Reliability is generally provided by duplicate copies of files. Many comput-ers have systems 

programs that automatically (or through computer-operator intervention) copy disk files to tape 

at regular intervals (once per day or week or month) to maintain a copy should a file system be 

accidentally destroyed. File systems can be damaged by hardware problems (such as errors in 

reading or writing), power surges or failures, head crashes, dirt, temperature extremes,and 

vandalism. Files may be deleted accidentally. Bugs in the file-system soft-ware can also cause 

file contents to be lost. Reliability was covered in more 

Protection can be provided in many ways. For a laptop system running a modern operating 
system, we might provide protection by requiring a user name and password authentication to 

access it, encrypting the secondary stor-age so even someone opening the laptop and removing 

the drive would have a difficult time accessing its data, and firewalling network access so that 

when it is in use it is difficult to break in via its network connection. In multiuser system, even 

valid access of the system needs more advanced mechanisms to allow only valid access of the 

data. 

Types of Access : 

The need to protect files is a direct result of the ability to access files. Systems that do not 

permit access to the files of other users do not need protection. Thus, we could provide 
complete protection by prohibiting access. Alternatively, we could provide free access with no 

protection. Both approaches are too extreme for general use. What is needed is controlled 

access. 

Protection mechanisms provide controlled access by limiting the types of file access that can be 

made. Access is permitted or denied depending on several factors, one of which is the type of 

access requested. Several different types of operations may be controlled: 

• Read. Read from the file. 

• Write. Write or rewrite the file. 

• Execute. Load the file into memory and execute it. 

• Append. Write new information at the end of the file. 

• Delete. Delete the file and free its space for possible reuse. 
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• List. List the name and attributes of the file. 

• Attribute change. Changing the attributes of the file. 

Other operations, such as renaming, copying, and editing the file, may also be controlled. For 

many systems, however, these higher-level functions may be implemented by a system 

program that makes lower-level system calls. Protection is provided at only the lower level. For 

instance, copying a file may be implemented simply by a sequence of read requests. In this 

case, a user with read access can also cause the file to be copied, printed, and so on. 

Access Control 

The most common approach to the protection problem is to make access dependent on the 

identity of the user. Different users may need different types of access to a file or directory. The 

most general scheme to implement identitydependent access is to associate with each file and 
directory an access-control list (ACL) specifying user names and the types of access allowed for 

each user. When a user requests access to a particular file, the operating system checks the 

access list associated with that file. If that user is listed for the requested access, the access is 

allowed. Otherwise, a protection violation occurs, and the user job is denied access to the file. 

This approach has the advantage of enabling complex access methodologies. The main problem 

with access lists is their length. If we want to allow everyone to read a file, we must list all 

users with read access. This technique has two undesirable consequences: 

• Constructing such a list may be a tedious and unrewarding task, especially if we do not 

know in advance the list of users in the system. 

• The directory entry, previously of fixed size, now must be of variable size, resulting in 

more complicated space management. 

These problems can be resolved by use of a condensed version of the access ist. 

To condense the length of the access-control list, many systems recognize hree classifications 

of users in connection with each file: 

• Owner. The user who created the file is the owner. 

• Group. A set of users who are sharing the file and need similar access is a roup, or 

work group. 

• Other. All other users in the system. 

The most common recent approach is to combine access-control lists with he more general 

(and easier to implement) owner, group, and universe access- ontrol scheme just described. For 

example, Solaris uses the three categories of acess by default but allows access-control lists to 

be added to specific files and directories when more fine-grained access control is desired. 

To illustrate, consider a person, Sara, who is writing a new book. She has hired three graduate 

students (Jim, Dawn, and Jill) to help with the project. The text of the book is kept in a file 

named book.tex. The protection associated with this file is as follows: 

• Sara should be able to invoke all operations on the file. 

• Jim, Dawn, and Jill should be able only to read and write the file; they should not be 

allowed to delete the file. 
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• All other users should be able to read, but not write, the file. (Sara is interested in 

letting as many people as possible read the text so that she can obtain feedback.) 

With the more limited protection classification, only three fields are needed to define protection. 

Often, each field is a collection of bits, and each bit either allows or prevents the access 

associated with it. For example, the UNIX system defines three fields of three bits each—rwx, 
where r controls read access, w controls write access, and x controls execution. A separate field 

is kept for the file owner, for the file’s group, and for all other users. In this scheme, nine bits 

per file are needed to record protection information. Thus, for our example, the protection fields 

for the file book.tex are as follows: for the owner Sara, all bits are set; for the group text, the r 

and w bits are set; and for the universe, only the r bit is set. 

One difficulty in combining approaches comes in the user interface. Users must be able to tell 

when the optional ACL permissions are set on a file. In the Solaris example, a ―+‖ is appended 

to the regular permissions, as in: 

19 -rw-r--r--+ 1 jim staff 130 May 25 22:13 file1 

A separate set of commands, setfacl and getfacl, is used to manage the ACLs. 

Other Protection Approaches 

Another approach to the protection problem is to associate a password with each file. Just as 

access to the computer system is often controlled by a password, access to each file can be 

controlled in the same way. If the passwords are chosen randomly and changed often, this 

scheme may be effective in limiting access to a file. The use of passwords has a few 
disadvantages, however. First, the number of passwords that a user needs to remember may 

become large, making the scheme impractical. Second, if only one password is used for all the 

files, then once it is discovered, all files are accessible; protection is on an all-or-none basis. 

Some systems allow a user to associate a password with a subdirectory, rather than with an 

individual file, to address this problem. More commonly encryption of a partition or individual 

files provides strong protection, but password management is key. 

In addition, we probably want to control whether a user can determine the existence of a file in 
a directory. Sometimes, knowledge of the existence and name of a file is significant in itself. 

Thus, listing the contents of a directory must be a protected operation. Similarly, if a path 

name refers to a file in a directory, the user must be allowed access to both the directory and 

the file. In systems where files may have numerous path names (such as acyclic and general 

graphs), a given user may have different access rights to a particular file, depending on the 

path name used. 
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Memory-Mapped Files 

There is one other method of accessing files, and it is very commonly used. Consider a 

sequential read of a file on disk using the standard system calls open(), read(), and write(). 

Each file access requires a system call and disk access. Alternatively, we can use the virtual 

memory techniques discussed in treat file I/O as routine memory accesses. This approach, 

known as memory mapping a file, allows a part of the virtual address space to be logically 

associated with the file. As we shall see, this can lead to significant performance increases. 

Basic Mechanism 

Memory mapping a file is accomplished by mapping a disk block to a page (or pages) in 
memory. Initial access to the file proceeds through ordinary demand paging, resulting in a page 

fault. However, a page-sized portion of the file is read from the file system into a physical page 

(some systems may opt to read in more than a page-sized chunk of memory at a time). 
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Subsequent reads and writes to the file are handled as routine memory accesses. Manipulating 

files through memory rather than incurring the overhead of using the read() and write() system 

calls simplifies and speeds up file access and usage. 

Some operating systems provide memory mapping only through a specific system call and use 

the standard system calls to perform all other file I/O. However, some systems choose to 
memory-map a file regardless of whether the file was specified as memory-mapped. Let’s take 

Solaris as an example. If a file is specified as memory-mapped (using the mmap() system call), 

Solaris maps the file into the address space of the process. If a file is opened and accessed 

using ordinary system calls, such as open(), read(), and write(), Solaris still memory-maps the 

file; however, the file is mapped to the kernel address space. Regardless of how the file is 

opened, then, Solaris treats all file I/O as memory- mapped, allowing file access to take place 
via the efficient memory subsystem and avoiding system call overhead caused by each 

traditional read() and write(). 

Quite often, shared memory is in fact implemented by memory mapping files. Under this 

scenario, processes can communicate using shared memory by having the communicating 

processes memory-map the same file into their virtual address spaces. The memory-mapped 

file serves as the region of shared memory between the communicating processes. Where a 

POSIX shared-memory object is created and each communicating process memory-maps the 
object into its address space. In the following section, we discuss support in the Windows API 

for shared memory using memory-mapped files. 

Shared Memory in the Windows API 

The general outline for creating a region of shared memory using memorymapped files in the 
Windows API involves first creating a fil mapping for the file to be mapped and then 

establishing a view of the mapped file in a process’s virtual address space. A second process 

can then open and create a view of the mapped file in its virtual address space. The mapped file 

represents the shared-memory object that will enable communication to take place between the 

processes. 
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We next illustrate these steps in more detail. In this example, a producer process first creates a 
shared-memory object using the memory-mapping fea- tures available in the Windows API. The 

producer then writes a message to shared memory. After that, a consumer process opens a 

mapping to the sharedmemory object and reads the message written by the consumer. 

 

File -System Implementation 

File-System Structure 

Disks provide most of the secondary storage on which file systems are maintained. Two 

characteristics make them convenient for this purpose: 
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1. A disk can be rewritten in place; it is possible to read a block from the disk, modify the 

block, and write it back into the same block. 

2. A disk can access directly any block of information it contains. Thus, it is simple to access 

any file either sequentially or randomly, and switching from one file to another requires the 

drive moving the read –write heads and waiting for the media to rotate. 

To improve I/O efficiency, I/O transfers between memory and mass storage are performed in 

units of blocks. Each block on a hard disk drive has one or more sectors. Depending on the 
disk drive, sector size is usually 512 bytes or 4,096 bytes. NVM devices usually have blocks of 

4,096 bytes, and the transfer methods used are similar to those used by disk drives. 

File systems provide efficient and convenient access to the storage device by allowing data to be 

stored, located, and retrieved easily. A file system poses two quite different design problems. 

The first problem is defining how the file system should look to the user. This task involves 

defining a file and its attributes, the operations allowed on a file, and the directory structure for 

organizing files. The second problem is creating algorithms and data structures to map the 

logical file system onto the physical secondary-storage devices. 

The file system itself is generally composed of many different levels. The structure shown in 
Figure 14.1 is an example of a layered design. Each level in the design uses the features of 

lower levels to create new features for use by higher levels. 

The I/O control level consists of device drivers and interrupt handlers to transfer information 

between the main memory and the disk system. A device driver can be thought of as a 

translator. Its input consists of high level commands, such as ―retrieve block 123.‖ Its output 

consists of low-level, hardware-specific instructions that are used by the hardware controller, 

which interfaces the I/O device to the rest of the system. The device driver usually writes 

specific bit patterns to special locations in the I/O controller’s memory to tell the controller 

which device location to act on and what actions to take. 

The basic file system (called the ―block I/O subsystem‖ in Linux) needs only to issue generic 

commands to the appropriate device driver to read and write blocks on the storage device. It 

issues commands to the drive based on logical block addresses. It is also concerned with I/O 

request scheduling. This layer also manages the memory buffers and caches that hold various 

file-system, directory, and data blocks. A block in the buffer is allocated before the transfer of a 

mass storage block can occur. When the buffer is full, the buffer manager must find more 
buffer memory or free up buffer space to allow a requested I/O to complete. Caches are used to 

hold frequently used file-system metadata to improve performance, so managing their contents 

is critical for optimum system performance. 
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The file-organizatio module knows about files and their logical blocks. 

 

Each file’s logical blocks are numbered from 0 (or 1) through N. The file-organization module 

also includes the free-space manager, which tracks unal-located blocks and provides these 

blocks to the file-organization module when requested. 

Finally, the logical file system manages metadata information. Metadata includes all of the file-

system structure except the actual data (or contents of the files). The logical file system 

manages the directory structure to provide the file-organization module with the information 

the latter needs, given a symbolic file name. It maintains file structure via file-control blocks. A 
file control block (FCB) (an inode in UNIX file systems) contains information about the file, 

including ownership, permissions, and location of the file contents. The logical file system is 

also responsible for protection. 

When a layered structure is used for file-system implementation, duplication of code is 

minimized. The I/O control and sometimes the basic file-system code can be used by multiple 

file systems. Each file system can then have its own logical file-system and file-organization 

modules. Unfortunately, layering can introduce more operating-system overhead, which may 

result in decreased performance. The use of layering, including the decision about how many 

layers to use and what each layer should do, is a major challenge in designing new systems. 

Many file systems are in use today, and most operating systems support more than one. For 

example, most CD-ROMs are written in the ISO 9660 format, a standard format agreed on by 

CD-ROM manufacturers. In addition to removable-media file systems, each operating system 

has one or more disk- based file systems. UNIX uses the UNIX fil system (UFS), which is based 

on the Berkeley Fast File System (FFS). Windows supports disk file-system formats of FAT, 

FAT32, and NTFS (or Windows NT File System), as well as CD-ROM and DVD file-system 
formats. Although Linux supports over 130 different file systems, the standard Linux file 

system is known as the extended file system, with the most common versions being ext3 and 
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ext4. There are also distributed file systems in which a file system on a server is mounted by 

one or more client computers across a network. 

File-system research continues to be an active area of operating-system design and 

implementation. Google created its own file system to meet the company’s specific storage and 

retrieval needs, which include high- performance access from many clients across a very large 
number of disks. Another interesting project is the FUSE file system, which provides flexibility 

in file-system development and use by implementing and executing file systems as user-level 

rather than kernel-level code. Using FUSE, a user can add a new file system to a variety of 

operating systems and can use that file system to manage her files. 

File-System Operations 

Several on-storage and in-memory structures are used to implement a file system. These 

structures vary depending on the operating system and the file system, but some general 

principles apply. 

On storage, the file system may contain information about how to boot an operating system 

stored there, the total number of blocks, the number and location of free blocks, the directory 

structure, and individual files. Many of  these structures are detailed throughout the 

remainder of this chapter. Here, we describe them briefly: 

• A boot control block (per volume) can contain information needed by the system to boot 
an operating system from that volume. If the disk does not contain an operating system, 

this block can be empty. It is typically the first block of a volume. In UFS, it is called the 

boot block. In NTFS, it is the partition boot 

• A volume control block (per volume) contains volume details, such as the number of 

blocks in the volume, the size of the blocks, a free-block count and free-block pointers, 

and a free-FCB count and FCB pointers. In UFS, this is called a superblock. In NTFS, it 

is stored in the master fil table.sector. 

• A directory structure (per file system) is used to organize the files. In UFS, this includes 

file names and associated inode numbers. In NTFS, it is stored in the master file table. 

• A per-file FCB contains many details about the file. It has a unique identifier number to 

allow association with a directory entry. In NTFS, this information is actually stored 
within the master file table, which uses a relational database structure, with a row per 

file. 

The in-memory information is used for both file-system management and performance 

improvement via caching. The data are loaded at mount time, updated during file-system 

operations, and discarded at dismount. Several types of structures may be included. 

• An in-memory mount table contains information about each mounted volume. 

• An in-memory directory-structure cache holds the directory information of recently 

accessed directories. (For directories at which volumes are mounted, it can contain a 

pointer to the volume table.) 

• The system-wide open-fil table contains a copy of the FCB of each open file, as well as 

other information. 

• The per-process open-fil table contains pointers to the appropriate entries in the 

system-wide open-file table, as well as other information, for all files the process has 

open. 
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• Buffers hold file-system blocks when they are being read from or written to a file 

system. 

To create a new file, a process calls the logical file system. The logical file system knows the 

format of the directory structures. To create a new file, it allocates a new FCB. (Alternatively, if 

the file-system implementation creates all FCBs at file-system creation time, an FCB is 
allocated from the set of free FCBs.) The system then reads the appropriate directory into 

memory, updates it with the new file name and FCB, and writes it back to the file system. A 

typical FCB is shown in Figure 14.2. 

Some operating systems, including UNIX, treat a directory exactly the same as a file—one with 

a ―type‖ field indicating that it is a directory. Other operating systems, including Windows, 

implement separate system calls for files and directories and treat directories as entities 

separate from files. Whatever the larger structural issues, the logical file system can call the 
file-organization module to map the directory I/O into storage block locations, which are 

passed on to the basic file system and I/O control syste 

 

Some operating systems, including UNIX, treat a directory exactly the same as a file—one with 

a ―type‖ field indicating that it is a directory. Other operating systems, including Windows, 

implement separate system calls for files and directories and treat directories as entities 

separate from files. Whatever the larger structural issues, the logical file system can call the 
file-organization module to map the directory I/O into storage block locations, which are 

passed on to the basic file system and I/O control system. 

Usage 

Now that a file has been created, it can be used for I/O. First, though, it must be opened. The 
open() call passes a file name to the logical file system. The open() system call first searches the 

system-wide open-file table to see if the file is already in use by another process. If it is, a per-

process open-file table entry is created pointing to the existing system-wide open-file table. This 

algorithm can save substantial overhead. If the file is not already open, the directory structure 

is searched for the given file name. Parts of the directory structure are usually cached in 
memory to speed directory operations. Once the file is found, the FCB is copied into a system-

wide open-file table in memory. This table not only stores the FCB but also tracks the number 

of 

Next, an entry is made in the per-process open-file table, with a pointer to the entry in the 

system-wide open-file table and some other fields. These other fields may include a pointer to 

the current location in the file (for the next read() or write() operation) and the access mode in 

which the file is open. The open() call returns a pointer to the appropriate entry in the per-
process file-system table. All file operations are then performed via this pointer. The file name 
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may not be part of the open-file table, as the system has no use for it once the appropriate FCB 

is located on disk. It could be cached, though, to save time on subsequent opens of the same 

file. The name given to the entry varies. UNIX systems refer to it as a fil descriptor; Windows 

refers to it as a fil handle.processes that have the file open. 

When a process closes the file, the per-process table entry is removed, and the system-wide 
entry’s open count is decremented. When all users that have opened the file close it, any 

updated metadata are copied back to the disk-based directory structure, and the system-wide 

open-file table entry is removed. 

Directory Implementation : 

The selection of directory-allocation and directory-management algorithms significantly affects 

the efficiency, performance, and reliability of the file system. In this section, we discuss the 

trade-offs involved in choosing one of these algorithms 

 

Linear List : 

 

The simplest method of implementing a directory is to use a linear list of file names with 
pointers to the data blocks. This method is simple to program but time-consuming to execute. 

To create a new file, we must first search the directory to be sure that no existing file has the 

same name. Then, we add a new entry at the end of the directory. To delete a file, we search 

the directory for the named file and then release the space allocated to it. To reuse the directory 

entry, we can do one of several things. We can mark the entry as unused (by assigning it a 
special name, such as an all-blank name, assigning it an invalid inode number (such as 0), or 

by including a used –unused bit in each entry), or we can attach it to a list of free directory 

entries. A third alternative is to copy the last entry in the directory into the freed location and 

to decrease the length of the directory. A linked list can also be used to decrease the time 

required to delete a file. 

The real disadvantage of a linear list of directory entries is that finding a file requires a linear 

search. Directory information is used frequently, and users will notice if access to it is slow. In 

fact, many operating systems implement a software cache to store the most recently used 
directory information. A cache hit avoids the need to constantly reread the information from 

secondary storage. A sorted list allows a binary search and decreases the average search time. 

However, the requirement that the list be kept sorted may complicate creating and deleting 

files, since we may have to move substantial amounts ofdirectory information to maintain a 

sorted directory. A more sophisticated tree data structure, such as a balanced tree, might help 



Prepared by: Satyam K , AITS , MCA             OS Notes Page 109 
 

here. An advantage of the sorted list is that a sorted directory listing can be produced without a 

separate sort step. 

Hash Table : 

Another data structure used for a file directory is a hash table. Here, a linear list stores the 

directory entries, but a hash data structure is also used. The hash table takes a value 

computed from the file name and returns a pointer to the file name in the linear list. Therefore, 

it can greatly decrease the directory search time. Insertion and deletion are also fairly 
straightforward, although some provision must be made for collisions—situations in which two 

file names hash to the same location. 

The major difficulties with a hash table are its generally fixed size and the dependence of the 

hash function on that size. For example, assume that we make a linear-probing hash table that 

holds 64 entries. The hash function converts file names into integers from 0 to 63 (for instance, 

by using the remainder of a division by 64). If we later try to create a 65th file, we must enlarge 

the directory hash table—say, to 128 entries. As a result, we need a new hash function that 
must map file names to the range 0 to 127, and we must reorganize the existing directory 

entries to reflect their new hash-function values. 

Alternatively, we can use a chained-overflow hash table. Each hash entry can be a linked list 

instead of an individual value, and we can resolve collisions by adding the new entry to the 

linked list. Lookups may be somewhat slowed, because searching for a name might require 

stepping through a linked list of colliding table entries. Still, this method is likely to be much 

faster than a linear search through the entire directory. 

Allocation Methods : 

The direct-access nature of secondary storage gives us flexibility in the implementation of files. 

In almost every case, many files are stored on the same device. The main problem is how to 

allocate space to these files so that storage space is utilized effectively and files can be accessed 
quickly. Three major methods of allocating secondary storage space are in wide use: 

contiguous, linked, and indexed. Each method has advantages and disadvantages. Although 

some systems support all three, it is more common for a system to use one method for all files 

within a file-system type. 

Contiguous Allocation : 

Contiguous allocation requires that each file occupy a set of contiguous blocks on the device. 

Device addresses define a linear ordering on the device.With this ordering, assuming that only 

one job is accessing the device, accessing block b + 1 after block b normally requires no head 

movement. When head movement is needed (from the last sector of one cylinder to the first 

sector of the next cylinder), the head need only move from one track to the next. Thus, for 
HDDs, the number of disk seeks required for accessing contiguously allocated files is minimal 

(assuming blocks with close logical addresses are close physically), as is seek time when a seek 

is finally needed. 

Contiguous allocation of a file is defined by the address of the first block and length (in block 

units) of the file. If the file is n blocks long and starts at location b, then it occupies blocks b, b 

+ 1, b + 2, ..., b + n − 1. The directory entry for each file indicates the address of the starting 

block and the length of the area allocated for this file (Figure 14.4). Contiguous allocation is 

easy to implement but has limitations, and is therefore not used in modern file systems. 

Accessing a file that has been allocated contiguously is easy. For sequential access, the file 
system remembers the address of the last block referenced and, when necessary, reads the 

next block. For direct access to block i of a file that starts at block b, we can immediately 
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access block b + i. Thus, both sequential and direct access can be supported by contiguous 

allocation 

Contiguous allocation has some problems, however. One difficulty is finding space for a new 

file. The system chosen to manage free space determines how this task is accomplished; these 

management systems are discussed in Section 14.5. Any management system can be used, but 

some are slower than others. 

The contiguous-allocation problem can be seen as a particular application of the general 
dynamic storage-allocation problem discussed in Section 9.2, which involves how to satisfy a 

request of size n from a list of free holes. First fit and best fit are the most common strategies 

used to select a free hole from the set of available holes. Simulations have shown that both first 

fit and best fit are more efficient than worst fit in terms of both time and storage utilization. 

Neither first fit nor best fit is clearly best in terms of storage utilization, but first fit is generally 

faster. 

Linked Allocation : 

Linked allocation solves all problems of contiguous allocation. With linked allocation, each file 

is a linked list of storage blocks; the blocks may be scattered anywhere on the device. The 
directory contains a pointer to the first and last blocks of the file. For example, a file of five 

blocks might start at block 9 and continue at block 16, then block 1, then block 10, and finally 

block 25 (Figure 14.5). Each block contains a pointer to the next block. These pointers are not 

made available to the user. Thus, if each block is 512 bytes in size, and a block address (the 

pointer) requires 4 bytes, then the user sees blocks of 508 bytes. 

To create a new file, we simply create a new entry in the directory. With linked allocation, each 

directory entry has a pointer to the first block of the file. This pointer is initialized to null (the 

end-of-list pointer value) to signify an empty file. The size field is also set to 0. A write to the file 
causes the freespace management system to find a free block, and this new block is written to 

and is linked to the end of the file. To read a file, we simply read blocks by following the 

pointers from block to block. There is no external fragmentation with linked allocation, and any 

free block on the free-space list can be used to satisfy a request. The size of a file need not be 

declared when the file is created. A file can continue to grow as long as free blocks are 

available. Consequently, it is never necessary to compact disk space. 

Linked allocation does have disadvantages, however. The major problem is that it can be used 
effectively only for sequential-access files. To find the block of a file, we must start at the 

beginning of that file and follow the pointers until we get to the ith block. Each access to a 

pointer requires a storage device read, and some require an HDD seek. Consequently, it is 

inefficient to support a direct-access capability for linked-allocation files. 

 

Another disadvantage is the space required for the pointers. If a pointer requires 4 bytes out of 
a 512-byte block, then 0.78 percent of the disk is being used for pointers, rather than for 

information. Each file requires slightly more space than it would otherwise. 
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The usual solution to this problem is to collect blocks into multiples, called clusters, and to 

allocate clusters rather than blocks. For instance, the file system may define a cluster as four 

blocks and operate on the secondary storage device only in cluster units. Pointers then use a 
much smaller percentage of the file’s space. This method allows the logical-to-physical block 

mapping to remain simple but improves HDD throughput (because fewer disk-head seeks are 

required) and decreases the space needed for block allocation and free-list management. The 

cost of this approach is an increase in internal fragmentation, because more space is wasted 

when a cluster is partially full than when a block is partially full. Also random I/O performance 

suffers because a request for a small amount of data transfers a large amount of data. Clusters 
can be used to improve the disk-access time for many other algorithms as well, so they are 

used in most file systems. 

Yet another problem of linked allocation is reliability. Recall that the files are linked together by 

pointers scattered all over the device, and consider what would happen if a pointer was lost or 

damaged. A bug in the operating-system software or a hardware failure might result in picking 

up the wrong pointer. This error could in turn result in linking into the free-space list or into 

another file. One partial solution is to use doubly linked lists, and another is to store the file 
name and relative block number in each block. However, these schemes require even more 

overhead for each file. 

An important variation on linked allocation is the use of a file-allocatio table (FAT). This simple 

but efficient method of disk-space allocation was used by the MS-DOS operating system. A 

section of storage at the beginning of each volume is set aside to contain the table. The table 

has one entry for each block and is indexed by block number. The FAT is used in much the 

same way as a linked list. The directory entry contains the block number of the first block of 

the file. The table entry indexed by that block number contains the block number of the next 
block in the file. This chain continues until it reaches the last block, which has a special end-

of-file value as the table entry. An unused block is indicated by a table value of 0. Allocating a 

new block to a file is a simple matter of finding the first 0-valued table entry and replacing the 

previous endof-file value with the address of the new block. The 0 is then replaced with the 

end-of-file value. An illustrative example is the FAT structure shown in Figure 14.6 for a file 

consisting of disk blocks 217, 618, and 339. 

The FAT allocation scheme can result in a significant number of disk head seeks, unless the 
FAT is cached. The disk head must move to the start of the volume to read the FAT and find 

the location of the block in question, then move to the location of the block itself. In the worst 

case, both moves occur for each of the blocks. A benefit is that random-access time is 

improved, because the disk head can find the location of any block by reading the information 

in the FAT. 

 

Indexed Allocation : 

Linked allocation solves the external-fragmentation and size-declaration problems of 

contiguous allocation. However, in the absence of a FAT, linked allocation cannot support 
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efficient direct access, since the pointers to the blocks are scattered with the blocks themselves 

all over the disk and must be retrieved in order. Indexed allocation solves this problem by 

bringing all the pointers together into one location: the index block. 

Each file has its own index block, which is an array of storage-block addresses. The ith entry in 

the index block points to the ith block of the file. The directory contains the address of the 
index block (Figure 14.7). To find and read the ith block, we use the pointer in the ith index-

block entry. This scheme is similar to the paging scheme described in Section 9.3. 

When the file is created, all pointers in the index block are set to null. When the ith block is 

first written, a block is obtained from the free-space manager, and its address is put in the ith 

index-block entry. 

Indexed allocation supports direct access, without suffering from external fragmentation, 

because any free block on the storage device can satisfy a request for more space. Indexed 

allocation does suffer from wasted space, however. The pointer overhead of the index block is 

generally greater than the pointer overhead of linked allocation. Consider a common case in 
which we have a file of only one or two blocks. With linked allocation, we lose the space of only 

one pointer per block. With indexed allocation, an entire index block must be allocated, even if 

only one or two pointers will be non-null. 

This point raises the question of how large the index block should be. Every file must have an 

index block, so we want the index block to be as small as possible. If the index block is too 

small, however, it will not be able to hold enough pointers for a large file, and a mechanism will 

have to be available to deal with this issue. Mechanisms for this purpose include the following: 

Linked scheme:. An index block is normally one storage block. Thus, it can be read and 

written directly by itself. To allow for large files, we can link together several index blocks. For 

example, an index block might contain a small header giving the name of the file and a set of 
the first 100 disk-block addresses. The next address (the last word in the index block) is null 

(for a small file) or is a pointer to another index block (for a large file). 

• Multilevel index: A variant of linked representation uses a first-level index block to point to a 

set of second-level index blocks, which in turn point to the file blocks. To access a block, the 

operating system uses the first-level index to find a second-level index block and then uses that 

block to find the desired data block. This approach could be continued to a third or fourth 

level, depending on the desired maximum file size. With 4,096-byte blocks, we could store 
1,024 four-byte pointers in an index block. Two levels of indexes allow 1,048,576 data blocks 

and a file size of up to 4 GB. 

Free-Space Management : 

Since storage space is limited, we need to reuse the space from deleted files for new files, if 
possible. (Write-once optical disks allow only one write to any given sector, and thus reuse is 

not physically possible.) To keep track of free disk space, the system maintains a free-space 

list. The free-space list records all free device blocks— those not allocated to some file or 

directory. To create a file, we search the free-space list for the required amount of space and 

allocate that space to the new file. This space is then removed from the free-space list. When a 
file is deleted, its space is added to the free-space list. The free-space list, despite its name, is 

not necessarily implemented as a list, as we discuss next. 

Bit Vector : 

Frequently, the free-space list is implemented as a bitmap or bit vector. Each block is 

represented by 1 bit. If the block is free, the bit is 1; if the block is allocated, the bit is 0. 
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For example, consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and 

27 are free and the rest of the blocks are allocated. The free-space bitmap would be 

001111001111110001100000011100000 ... 

The main advantage of this approach is its relative simplicity and its efficiency in finding the 

first free block or n consecutive free blocks on the disk. Indeed, many computers supply bit-

manipulation instructions that can be used effectively for that purpose. One technique for 

finding the first free block on a system that uses a bit vector to allocate space is to sequentially 
check each word in the bitmap to see whether that value is not 0, since a 0-valued word 

contains only 0 bits and represents a set of allocated blocks. The first non-0 word is scanned 

for the first 1 bit, which is the location of the first free block. The calculation of the block 

number is 

(number of bits per word) × (number of 0-value words) + offset of first 1 bit. 

Again, we see hardware features driving software functionality. Unfortunately, bit vectors are 

inefficient unless the entire vector is kept in main memory (and is written to the device 

containing the file system occasionally for recovery needs). Keeping it in main memory is 

possible for smaller devices but not necessarily for larger ones. A 1.3-GB disk with 512-byte 
blocks would need a bitmap of over 332 KB to track its free blocks, although clustering the 

blocks in groups of four reduces this number to around 83 KB per disk. A 1-TB disk with 4-KB 

blocks would require 32 MB (240 / 212 = 228 bits = 225 bytes = 25 MB) to store its bitmap. 

Given that disk size constantly increases, the problem with bit vectors will continue to escalate 

as well. 

Linked List : 

Another approach to free-space management is to link together all the free blocks, keeping a 

pointer to the first free block in a special location in the file system and caching it in memory. 

This first block contains a pointer to the next free block, and so on. Recall our earlier example 
(Section 14.5.1), in which blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and 27 were 

free and the rest of the blocks were allocated. In this situation, we would keep a pointer to 

block 2 as the first free block. Block 2 would contain a pointer to block 3, which would point to 

block 4, which would point to block 5, which would point to block 8, and so on (Figure 14.9). 

This scheme is not efficient; to traverse the list, we must read each block, which requires 

substantial I/O time on HDDs. Fortunately, however, traversing the free list is not a frequent 
action. Usually the operating system simply needs a free block so that it can allocate that block 

to a file, so the first block in the free list is used. The FAT method incorporates free-block 

accounting into the allocation data structure. No separate method is needed. 

 

Grouping : 

A modification of the free-list approach stores the addresses of n free blocks in the first free 

block. The first n−1 of these blocks are actually free. The last block contains the addresses of 
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another n free blocks, and so on. The addresses of a large number of free blocks can now be 

found quickly, unlike the situation when the standard linked-list approach is used. 

Counting: 

Another approach takes advantage of the fact that, generally, several contiguous blocks may be 

allocated or freed simultaneously, particularly when space is allocated with the contiguous-

allocation algorithm or through clustering. Thus, rather than keeping a list of n free block 

addresses, we can keep the address of the first free block and the number (n) of free contiguous 
blocks that follow the first block. Each entry in the free-space list then consists of a device 

address and a count. Although each entry requires more space than would a simple disk 

address, the overall list is shorter, as long as the count is generally greater than 1. Note that 

this method of tracking free space is similar to the extent method of allocating blocks. These 

entries can be stored in a balanced tree, rather than a linked list, for efficient lookup, insertion, 

and deletion. 

Space Maps : 

Oracle’s ZFS file system (found in Solaris and some other operating systems) was designed to 

encompass huge numbers of files, directories, and even file systems (in ZFS, we can create file-
system hierarchies). On these scales, metadata I/O can have a large performance impact. 

Consider, for example, that if the free-space list is implemented as a bitmap, bitmaps must be 

modified both when blocks are allocated and when they are freed. Freeing 1 GB of data on a 1-

TB disk could cause thousands of blocks of bitmaps to be updated, because those data blocks 

could be scattered over the entire disk. Clearly, the data structures for such a system could be 

large and inefficient. 

In its management of free space, ZFS uses a combination of techniques to control the size of 

data structures and minimize the I/O needed to manage those structures. First, ZFS creates 
metaslabs to divide the space on the device into chunks of manageable size. A given volume 

may contain hundreds of metaslabs. Each metaslab has an associated space map. ZFS uses 

the counting algorithm to store information about free blocks. Rather than write counting 

structures to disk, it uses log-structured file-system techniques to record them. The space map 

is a log of all block activity (allocating and freeing), in time order, in counting format. When ZFS 
decides to allocate or free space from a metaslab, it loads the associated space map into 

memory in a balanced-tree structure (for very efficient operation), indexed by offset, and 

replays the log into that structure. The in-memory space map is then an accurate 

representation of the allocated and free space in the metaslab. ZFS also condenses the map as 

much as possible by combining contiguous free blocks into a single entry. Finally, the free-

space list is updated on disk as part of the transaction-oriented operations of ZFS. During the 
collection and sorting phase, block requests can still occur, and ZFS satisfies these requests 

from the log. In essence, the log plus the balanced tree is the free list. 
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UNIT-V : Virtual Machines 

The term virtualization has many meanings, and aspects of virtualization permeate all aspects 

of computing. Virtual machines are one instance of this trend. Generally, with a virtual 

machine, guest operating systems and applications run in an environment that appears to 

them to be native hardware and that behaves toward them as native hardware would but that 

also protects, manages, and limits them. 

The fundamental idea behind a virtual machine is to abstract the hardware of a single 
computer (the CPU, memory, disk drives, network interface cards, and so forth) into several 

different execution environments, thereby creating the illusion that each separate environment 

is running on its own private computer. This concept may seem similar to the layered approach 

of operating system implementation (see Section 2.8.2), and in some ways it is. In the case of 

virtualization, there is a layer that creates a virtual system on which operating systems or 

applications can run. 

Virtual machine implementations involve several components. At the base is the host, the 
underlying hardware system that runs the virtual machines. The virtual machine manager 

(VMM) (also known as a hypervisor) creates and runs virtual machines by providing an 

interface that is identical to the host (except in the case of paravirtualization, discussed later). 

Each guest process is provided with a virtual copy of the host (Figure 18.1). Usually, the guest 

process is in fact an operating system. A single physical machine can thus run multiple 

operating systems concurrently, each in its own virtual machine. 

Take a moment to note that with virtualization, the definition of ―operating system‖ once again 

blurs. For example, consider VMM software such as VMware ESX. This virtualization software 
is installed on the hardware, runs when the hardware boots, and provides services to 

applications. The services include traditional ones, such as scheduling and memory 

management, along with new types, such as migration of applications between systems. 

Furthermore, the applications are, in fact, guest operating systems. Is the VMware ESX VMM 

an operating system that, in turn, runs other operating systems? Certainly it acts like an 
operating system. For clarity, however, we call the component that provides virtual 

environments a VMM. 

The implementation of VMMs varies greatly. Options include the following: 

Hardware-based solutions that provide support for virtual machine creation and management 
via firmware. These VMMs, which are commonly found in mainframe and large to midsized 

servers, are generally known as type 0 hypervisors. IBM LPARs and Oracle LDOMs are 

examples. 

 

Operating-system-like software built to provide virtualization, including VMware ESX 

(mentioned above), Joyent SmartOS, and Citrix XenServer. These VMMs are known as type 1 

hypervisors. 
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General-purpose operating systems that provide standard functions as well as VMM functions, 

including Microsoft Windows Server with HyperV and Red Hat Linux with the KVM feature. 

Because such systems have a feature set similar to type 1 hypervisors, they are also known as 

type 1. 

Applications that run on standard operating systems but provide VMM features to guest 
operating systems. These applications, which include VMware Workstation and Fusion, 

Parallels Desktop, and Oracle VirtualBox, are type 2 hypervisors. 

Paravirtualization, a technique in which the guest operating system is modified to work in 

cooperation with the VMM to optimize performance. 

Programming-environment virtualization, in which VMMs do not virtualize real hardware but 

instead create an optimized virtual system. This technique is used by Oracle Java and 

Microsoft.Net. 

Emulators that allow applications written for one hardware environment to run on a very 

different hardware environment, such as a different type of CPU. 

Application containment, which is not virtualization at all but rather provides virtualization-

like features by segregating applications from the operating system. Oracle Solaris Zones, BSD 

Jails, and IBM AIX WPARs ―contain‖ applications, making them more secure and manageable 

The variety of virtualization techniques in use today is a testament to the breadth, depth, and 

importance of virtualization in modern computing. Virtualization is invaluable for data-center 

operations, efficient application development, and software testing, among many other uses. 

History : 

Virtual machines first appeared commercially on IBM mainframes in 1972. Virtualization was 

provided by the IBM VM operating system. This system has evolved and is still available. In 

addition, many of its original concepts are found in other systems, making it worth exploring. 

IBM VM/370 divided a mainframe into multiple virtual machines, each running its own 
operating system. A major difficulty with the VM approach involved disk systems. Suppose that 

the physical machine had three disk drives but wanted to support seven virtual machines. 

Clearly, it could not allocate a disk drive to each virtual machine. The solution was to provide 

virtual disks— termed minidisks in IBM’s VM operating system. The minidisks were identical to 

the system’s hard disks in all respects except size. The system implemented each minidisk by 

allocating as many tracks on the physical disks as the minidisk needed. 

Once the virtual machines were created, users could run any of the operating systems or 

software packages that were available on the underlying machine. For the IBM VM system, a 

user normally ran CMS—a single-user interactive operating system 

For many years after IBM introduced this technology, virtualization remained in its domain. 
Most systems could not support virtualization. However, a formal definition of virtualization 

helped to establish system requirements and a target for functionality. The virtualization 

requirements called for : 

Fidelity. A VMM provides an environment for programs that is essentially identical to the 

original machine. 

Performance. Programs running within that environment show only minor performance 

decreases. 

• Safety. The VMM is in complete control of system resources. 
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These requirements still guide virtualization efforts today 

By the late 1990s, Intel 80x86 CPUs had become common, fast, and rich in features. 

Accordingly, developers launched multiple efforts to implement virtualization on that platform. 

Both Xen and VMware created technologies, still used today, to allow guest operating systems 

to run on the 80x86. Since that time, virtualization has expanded to include all common CPUs, 
many commercial and open-source tools, and many operating systems. For example, the open-

source VirtualBox project (http://www.virtualbox.org) provides a program that runs on Intel 

x86 and AMD 64 CPUs and on Windows, Linux, macOS, and Solaris host operating systems. 

Possible guest operating systems include many versions of Windows, Linux, Solaris, and BSD, 

including even MS-DOS and IBM OS/2. 

Benefits and Features : 

Several advantages make virtualization attractive. Most of them are fundamentally related to 

the ability to share the same hardware yet run several different execution environments (that 

is, different operating systems) concurrently. 

One important advantage of virtualization is that the host system is protected from the virtual 

machines, just as the virtual machines are protected from each other. A virus inside a guest 
operating system might damage that operating system but is unlikely to affect the host or the 

other guests. Because each virtual machine is almost completely isolated from all other virtual 

machines, there are almost no protection problems 

A potential disadvantage of isolation is that it can prevent sharing of resources. Two 

approaches to providing sharing have been implemented. First, it is possible to share a file-

system volume and thus to share files. Second, it is possible to define a network of virtual 

machines, each of which can send information over the virtual communications network. The 

network is modeled after physical communication networks but is implemented in software. Of 
course, the VMM is free to allow any number of its guests to use physical resources, such as a 

physical network connection (with sharing provided by the VMM), in which case the allowed 

guests could communicate with each other via the physical network. 

One feature common to most virtualization implementations is the ability to freeze, or suspend, 

a running virtual machine. Many operating systems provide that basic feature for processes, 

but VMMs go one step further and allow copies and snapshots to be made of the guest. The 

copy can be used to create a new VM or to move a VM from one machine to another with its 
current state intact. The guest can then resume where it was, as if on its original machine, 

creating a clone. The snapshot records a point in time, and the guest can be reset to that point 

if necessary (for example, if a change was made but is no longer wanted). Often, VMMs allow 

many snapshots to be taken. For example, snapshots might record a guest’s state every day for 

a month, making restoration to any of those snapshot states possible. These abilities are used 

to good advantage in virtual environments. 

A virtual machine system is a perfect vehicle for operating-system research and development. 
Normally, changing an operating system is a difficult task. Operating systems are large and 

complex programs, and a change in one part may cause obscure bugs to appear in some other 

part. The power of the operating system makes changing it particularly dangerous. Because the 

operating system executes in kernel mode, a wrong change in a pointer could cause an error 

that would destroy the entire file system. Thus, it is necessary to test all changes to the 

operating system carefully. 

Of course, the operating system runs on and controls the entire machine, so the system must 

be stopped and taken out of use while changes are made and tested. This period is commonly 
called system-development time. Since it makes the system unavailable to users, system-



Prepared by: Satyam K , AITS , MCA             OS Notes Page 118 
 

development time on shared systems is often scheduled late at night or on weekends, when 

system load is low. 

A virtual-machine system can eliminate much of this latter problem. System programmers are 

given their own virtual machine, and system development is done on the virtual machine 

instead of on a physical machine. Normal system operation is disrupted only when a completed 

and tested change is ready to be put into production. 

Another advantage of virtual machines for developers is that multiple operating systems can 
run concurrently on the developer’s workstation. This virtualized workstation allows for rapid 

porting and testing of programs in varying environments. In addition, multiple versions of a 

program can run, each in its own isolated operating system, within one system. Similarly, 

qualityassurance engineers can test their applications in multiple environments without 

buying, powering, and maintaining a computer for each environment. 

A major advantage of virtual machines in production data-center use is system consolidation, 

which involves taking two or more separate systems and running them in virtual machines on 
one system. Such physical-to-virtual conversions result in resource optimization, since many 

lightly used systems can be combined to create one more heavily used system 

Consider, too, that management tools that are part of the VMM allow system administrators to 

manage many more systems than they otherwise could. A virtual environment might include 

100 physical servers, each running 20 virtual servers. Without virtualization, 2,000 servers 

would require several system administrators. With virtualization and its tools, the same work 

can be managed by one or two administrators. One of the tools that make this possible is 

templating, in which one standard virtual machine image, including an installed and 
configured guest operating system and applications, is saved and used as a source for multiple 

running VMs. Other features include managing the patching of all guests, backing up and 

restoring the guests, and monitoring their resource use. 

Virtualization can improve not only resource utilization but also resource management. Some 

VMMs include a live migration feature that moves a running guest from one physical server to 

another without interrupting its operation or active network connections. If a server is 

overloaded, live migration can thus free resources on the source host while not disrupting the 
guest. Similarly, when host hardware must be repaired or upgraded, guests can be migrated to 

other servers, the evacuated host can be maintained, and then the guests can be migrated 

back. This operation occurs without downtime and without interruption to users. 

Think about the possible effects of virtualization on how applications are deployed. If a system 

can easily add, remove, and move a virtual machine, then why install applications on that 

system directly? Instead, the application could be preinstalled on a tuned and customized 

operating system in a virtual machine. This method would offer several benefits for application 
developers. Application management would become easier, less tuning would be required, and 

technical support of the application would be more straightforward. System administrators 

would find the environment easier to manage as well. Installation would be simple, and 

redeploying the application to another system would be much easier than the usual steps of 

uninstalling and reinstalling. For widespread adoption of this methodology to occur, though, 

the format of virtual machines must be standardized so that any virtual machine will run on 
any virtualization platform. The ―Open Virtual Machine Format‖ is an attempt to provide such 

standardization, and it could succeed in unifying virtual machine formats. 

Virtualization has laid the foundation for many other advances in computer facility 

implementation, management, and monitoring. Cloud computing, for example, is made 

possible by virtualization in which resources such as CPU, memory, and I/O are provided as 

services to customers using Internet technologies. By using APIs, a program can tell a cloud 

computing facility to create thousands of VMs, all running a specific guest operating system 
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and application, that others can access via the Internet. Many multiuser games, photo-sharing 

sites, and other web services use this functionality. 

In the area of desktop computing, virtualization is enabling desktop and laptop computer users 

to connect remotely to virtual machines located in remote data centers and access their 

applications as if they were local. This practice can increase security, because no data are 
stored on local disks at the user’s site. The cost of the user’s computing resource may also 

decrease. The user must have networking, CPU, and some memory, but all that these system 

components need to do is display an image of the guest as its runs remotely (via a protocol 

such as RDP). Thus, they need not be expensive, high-performance components. Other uses of 

virtualization are sure to follow as it becomes more prevalent and hardware support continues 

to improve. 

Building Blocks : 

Although the virtual machine concept is useful, it is difficult to implement. Much work is 

required to provide an exact duplicate of the underlying machine. This is especially a challenge 
on dual-mode systems, where the underlying machine has only user mode and kernel mode. In 

this section, we examine the building blocks that are needed for efficient virtualization. Note 

that these building blocks are not required by type 0 hypervisors, as discussed in Section 

18.5.2. 

The ability to virtualize depends on the features provided by the CPU. If the features are 

sufficient, then it is possible to write a VMM that provides a guest environment. Otherwise, 

virtualization is impossible. VMMs use several techniques to implement virtualization, 

including trap-and-emulate and binary translation. We discuss each of these techniques in this 

section, along with the hardware support needed to support virtualization. 

As you read the section, keep in mind that an important concept found in most virtualization 
options is the implementation of a virtual CPU (VCPU). The VCPU does not execute code. 

Rather, it represents the state of the CPU as the guest machine believes it to be. For each 

guest, the VMM maintains a VCPU representing that guest’s current CPU state. When the 

guest is context-switched onto a CPU by the VMM, information from the VCPU is used to load 

the right context, much as a general-purpose operating system would use the PCB. 

Trap-and-Emulate : 

On a typical dual-mode system, the virtual machine guest can execute only in user mode 

(unless extra hardware support is provided). The kernel, of course, runs in kernel mode, and it 

is not safe to allow user-level code to run in kernel mode. Just as the physical machine has two 
modes, so must the virtual machine. Consequently, we must have a virtual user mode and a 

virtual kernel mode, both of which run in physical user mode. Those actions that cause a 

transfer from user mode to kernel mode on a real machine (such as a system call, an interrupt, 

or an attempt to execute a privileged instruction) must also cause a transfer from virtual user 

mode to virtual kernel mode in the virtual machine. 

How can such a transfer be accomplished? The procedure is as follows: When the kernel in the 

guest attempts to execute a privileged instruction, that is an error (because the system is in 
user mode) and causes a trap to the VMM in the real machine. The VMM gains control and 

executes (or ―emulates‖) the action that was attempted by the guest kernel on the part of the 

guest. 
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then returns control to the virtual machine. This is called the trap-and-emulate method and is 

shown in Figure 18.2. 

With privileged instructions, time becomes an issue. All nonprivileged instructions run natively 

on the hardware, providing the same performance for guests as native applications. Privileged 

instructions create extra overhead, however, causing the guest to run more slowly than it 

would natively. In addition, the CPU is being multiprogrammed among many virtual machines, 

which can further slow down the virtual machines in unpredictable ways. 

This problem has been approached in various ways. IBM VM, for example, allows normal 

instructions for the virtual machines to execute directly on the hardware. Only the privileged 

instructions (needed mainly for I/O) must be emulated and hence execute more slowly. In 

general, with the evolution of hardware, the performance of trap-and-emulate functionality has 

been improved, and cases in which it is needed have been reduced. For example, many CPUs 

now have extra modes added to their standard dual-mode operation. The VCPU need not keep 
track of what mode the guest operating system is in, because the physical CPU performs that 

function. In fact, some CPUs provide guest CPU state management in hardware, so the VMM 

need not supply that functionality, removing the extra overhead. 

Binary Translation : 

Some CPUs do not have a clean separation of privileged and nonprivileged instructions. 

Unfortunately for virtualization implementers, the Intel x86 CPU line is one of them. No 

thought was given to running virtualization on the x86 when it was designed. (In fact, the first 

CPU in the family— the Intel 4004, released in 1971—was designed to be the core of a 

calculator.) The chip has maintained backward compatibility throughout its lifetime, preventing 

changes that would have made virtualization easier through many generations 

Let’s consider an example of the problem. The command popf loads the flag register from the 
contents of the stack. If the CPU is in privileged mode, all of the flags are replaced from the 

stack. If the CPU is in user mode, then only some flags are replaced, and others are ignored. 

Because no trap is generated if popf is executed in user mode, the trap-and-emulate procedure 

is rendered useless. Other x86 instructions cause similar problems. For the purposes of this 

discussion, we will call this set of instructions special instructions. As recently as 1998, using 

the trap-and-emulate method to implement virtualization on the x86 was considered 

impossible because of these special instructions. 

This previously insurmountable problem was solved with the implementation of the binary 

translation technique. Binary translation is fairly simple in concept but complex in 

implementation. The basic steps are as follows: 

1. If the guest VCPU is in user mode, the guest can run its instructions natively on a 

physical CPU. 

2. If the guest VCPU is in kernel mode, then the guest believes that it is running in kernel 

mode. The VMM examines every instruction the guest executes in virtual kernel mode 
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by reading the next few instructions that the guest is going to execute, based on the 

guest’s program counter. Instructions other than special instructions are run natively. 

Special instructions are translated into a new set of instructions that perform the 

equivalent task— for example, changing the flags in the VCPU. 

Binary translation is shown in Figure 18.3. It is implemented by translation code within the 
VMM. The code reads native binary instructions dynamically from the guest, on demand, and 

generates native binary code that executes in place of the original code. 

 

 

The basic method of binary translation just described would execute correctly but perform 

poorly. Fortunately, the vast majority of instructions would execute natively. But how could 

performance be improved for the other instructions? We can turn to a specific implementation 

of binary translation, the VMware method, to see one way of improving performance. Here, 
caching provides the solution. The replacement code for each instruction that needs to be 

translated is cached. All later executions of that instruction run from the translation cache and 

need not be translated again. If the cache is large enough, this method can greatly improve 

performance. 

Let’s consider another issue in virtualization: memory management, specifically the page 

tables. How can the VMM keep page-table state both for guests that believe they are managing 

the page tables and for the VMM itself? A common method, used with both trap-and-emulate 
and binary translation, is to use nested page tables (NPTs). Each guest operating system 

maintains one or more page tables to translate from virtual to physical memory. The VMM 

maintains NPTs to represent the guest’s page-table state, just as it creates a VCPU to represent 

the guest’s CPU state. The VMM knows when the guest tries to change its page table, and it 

makes the equivalent change in the NPT. When the guest is on the CPU, the VMM puts the 

pointer to the appropriate NPT into the appropriate CPU register to make that table the active 
page table. If the guest needs to modify the page table (for example, fulfilling a page fault), then 

that operation must be intercepted by the VMM and appropriate changes made to the nested 

and system page tables. Unfortunately, the use of NPTs can cause TLB misses to increase, and 

many other complexities need to be addressed to achieve reasonable performance 

Although it might seem that the binary translation method creates large amounts of overhead, 

it performed well enough to launch a new industry aimed at virtualizing Intel x86-based 

systems. VMware tested the performance impact of binary translation by booting one such 
system, Windows XP, and immediately shutting it down while monitoring the elapsed time and 

the number of translations produced by the binary translation method. The result was 950,000 

translations, taking 3 microseconds each, for a total increase of 3 seconds (about 5 percent) 

over native execution of Windows XP. To achieve that result, developers used many 

performance improvements that we do not discuss here. For more information, consult the 

bibliographical notes at the end of this chapter. 
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Hardware Assistance : 

Without some level of hardware support, virtualization would be impossible. The more 

hardware support available within a system, the more feature-rich and stable the virtual 

machines can be and the better they can perform. In the Intel x86 CPU family, Intel added new 

virtualization support (the VT-x instructions) in successive generations beginning in 2005. 

Now, binary translation is no longer needed 

In fact, all major general-purpose CPUs now provide extended hardware support for 
virtualization. For example, AMD virtualization technology (AMDV) has appeared in several 

AMD processors starting in 2006. It defines two new modes of operation—host and guest— 

thus moving from a dual-mode to a multimode processor. The VMM can enable host mode, 

define the characteristics of each guest virtual machine, and then switch the system to guest 

mode, passing control of the system to a guest operating system that is running in the virtual 
machine. In guest mode, the virtualized operating system thinks it is running on native 

hardware and sees whatever devices are included in the host’s definition of the guest. If the 

guest tries to access a virtualized resource, then control is passed to the VMM to manage that 

interaction. The functionality in Intel VT-x is similar, providing root and nonroot modes, 

equivalent to host and guest modes. Both provide guest VCPU state data structures to load and 

save guest CPU state automatically during guest context switches. In addition, virtual machine 
control structures (VMCSs) are provided to manage guest and host state, as well as various 

guest execution controls, exit controls, and information about why guests exit back to the host. 

In the latter case, for example, a nested page-table violation caused by an attempt to access 

unavailable memory can result in the guest’s exit. 

AMD and Intel have also addressed memory management in the virtual environment. With 

AMD’s RVI and Intel’s EPT memory-management enhancements, VMMs no longer need to 

implement software NPTs. In essence, these CPUs implement nested page tables in hardware to 
allow the VMM to fully control paging while the CPUs accelerate the translation from virtual to 

physical addresses. The NPTs add a new layer, one representing the guest’s view of logical-to-

physical address translation. The CPU page-table walking function (traversing the data 

structure to find the desired data) includes this new layer as necessary, walking through the 

guest table to the VMM table to find the physical address desired. A TLB miss results in a 

performance penalty, because more tables (the guest and host page tables) must be traversed 
to complete the lookup. Figure 18.4 shows the extra translation work performed by the 

hardware to translate from a guest virtual address to a final physical address. 

I/O is another area improved by hardware assistance. Consider that the standard direct-

memory-access (DMA) controller accepts a target memory address and a source I/O device and 

transfers data between the two without operating-system action. Without hardware assistance, 

a guest might try to set up a DMA transfer that affects the memory of the VMM or other guests. 

In CPUs that provide hardware-assisted DMA (such as Intel CPUs with VT-d), even DMA has a 
level of indirection. First, the VMM sets up protection domains to tell the CPU which physical 

memory belongs to each guest. Next, it assigns the I/O devices to the protection domains, 

allowing them direct access to those memory regions and only those regions. The hardware 

then transforms the address in a DMA request issued by an I/O device to the host physical 

memory address associated with the I/O. In this manner, DMA transfers are passed through 

between a guest and a device without VMM interference. 

Similarly, interrupts must be delivered to the appropriate guest and must not be visible to 

other guests. By providing an interrupt remapping feature, CPUs with virtualization hardware 
assistance automatically deliver an interrupt destined for a guest to a core that is currently 

running a thread of that guest. That way, the guest receives interrupts without any need for 

the VMM to intercede in their delivery. Without interrupt remapping, malicious guests could 
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generate interrupts that could be used to gain control of the host system. (See the 

bibliographical notes at the end of this chapter for more details.) 

 

ARM architectures, specifically ARM v8 (64-bit) take a slightly different approach to hardware 

support of virtualization. They provide an entire exception level—EL2—which is even more 
privileged than that of the kernel (EL1). This allows the running of a secluded hypervisor, with 

its own MMU access and interrupt trapping. To allow for paravirtualization, a special 

instruction (HVC) is added. It allows the hypervisor to be called from guest kernels. This 

instruction can only be called from within kernel mode (EL1). 

An interesting side effect of hardware-assisted virtualization is that it allows for the creation of 

thin hypervisors. A good example is macOS’s hypervisor framework (―HyperVisor.framework‖), 

which is an operating-systemsupplied library that allows the creation of virtual machines in a 

few lines of code. The actual work is done via system calls, which have the kernel call the 
privileged virtualization CPU instructions on behalf of the hypervisor process, allowing 

management of virtual machines without the hypervisor needing to load a kernel module of its 

own to execute those calls. 

Types of VMs and Their Implementations : 

We’ve now looked at some of the techniques used to implement virtualization. Next, we 

consider the major types of virtual machines, their implementation, their functionality, and 

how they use the building blocks just described to create a virtual environment. Of course, the 

hardware on which the virtual machines are running can cause great variation in 

implementation methods. Here, we discuss the implementations in general, with the 

understanding that VMMs take advantage of hardware assistance where it is available. 

The Virtual Machine Life Cycle : 

Let’s begin with the virtual machine life cycle. Whatever the hypervisor type, at the time a 
virtual machine is created, its creator gives the VMM certain parameters. These parameters 

usually include the number of CPUs, amount of memory, networking details, and storage 

details that the VMM will take into account when creating the guest. For example, a user might 

want to create a new guest with two virtual CPUs, 4 GB of memory, 10 GB of disk space, one 

network interface that gets its IP address via DHCP, and access to the DVD drive. 
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The VMM then creates the virtual machine with those parameters. In the case of a type 0 

hypervisor, the resources are usually dedicated. In this situation, if there are not two virtual 

CPUs available and unallocated, the creation request in our example will fail. For other 
hypervisor types, the resources are dedicated or virtualized, depending on the type. Certainly, 

an IP address cannot be shared, but the virtual CPUs are usually multiplexed on the physical 

CPUs as discussed in Section 18.6.1. Similarly, memory management usually involves 

allocating more memory to guests than actually exists in physical memory. This is more 

complicated and is described in Section 18.6.2. 

Finally, when the virtual machine is no longer needed, it can be deleted. When this happens, 

the VMM first frees up any used disk space and then removes the configuration associated with 

the virtual machine, essentially forgetting the virtual machine. 

These steps are quite simple compared with building, configuring, running, and removing 
physical machines. Creating a virtual machine from an existing one can be as easy as clicking 

the ―clone‖ button and providing a new name and IP address. This ease of creation can lead to 

virtual machine sprawl, which occurs when there are so many virtual machines on a system 

that their use, history, and state become confusing and difficult to track. 

Type 0 Hypervisor : 

Type 0 hypervisors have existed for many years under many names, including ―partitions‖ and 

―domains.‖ They are a hardware feature, and that brings its own positives and negatives. 

Operating systems need do nothing special to take advantage of their features. The VMM itself 

is encoded in the firmware and loaded at boot time. In turn, it loads the guest images to run in 

each partition. The feature set of a type 0 hypervisor tends to be smaller than those of the other 
types because it is implemented in hardware. For example, a system might be split into four 

virtual systems, each with dedicated CPUs, memory, and I/O devices. Each guest believes that 

it has dedicated hardware because it does, simplifying many implementation details. 

 

I/O presents some difficulty, because it is not easy to dedicate I/O devices to guests if there are 

not enough. What if a system has two Ethernet ports and more than two guests, for example? 

Either all guests must get their own I/O devices, or the system must provided I/O device 

sharing. In these cases, the hypervisor manages shared access or grants all devices to a control 

partition. In the control partition, a guest operating system provides services (such as 

networking) via daemons to other guests, and the hypervisor routes I/O requests appropriately. 
Some type 0 hypervisors are even more sophisticated and can move physical CPUs and 

memory between running guests. In these cases, the guests are paravirtualized, aware of the 

virtualization and assisting in its execution. For example, a guest must watch for signals from 

the hardware or VMM that a hardware change has occurred, probe its hardware devices to 

detect the change, and add or subtract CPUs or memory from its available resources. 

Because type 0 virtualization is very close to raw hardware execution, it should be considered 

separately from the other methods discussed here. A type 0 hypervisor can run multiple guest 
operating systems (one in each hardware partition). All of those guests, because they are 

running on raw hardware, can in turn be VMMs. Essentially, each guest operating system in a 

type 0 hypervisor is a native operating system with a subset of hardware made available to it. 
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Because of that, each can have its own guest operating systems (Figure 18.5). Other types of 

hypervisors usually cannot provide this virtualization-withinvirtualization functionality. 

Type 1 Hypervisor : 

Type 1 hypervisors are commonly found in company data centers and are, in a sense, 

becoming ―the data-center operating system.‖ They are special-purpose operating systems that 

run natively on the hardware, but rather than providing system calls and other interfaces for 

running programs, they create, run, and manage guest operating systems. In addition to 
running on standard hardware, they can run on type 0 hypervisors, but not on other type 1 

hypervisors. Whatever the platform, guests generally do not know they are running on anything 

but the native hardware. 

Type 1 hypervisors run in kernel mode, taking advantage of hardware protection. Where the 

host CPU allows, they use multiple modes to give guest operating systems their own control 

and improved performance. They implement device drivers for the hardware they run on, since 

no other component could do so. Because they are operating systems, they must also provide 
CPU scheduling, memory management, I/O management, protection, and even security. 

Frequently, they provide APIs, but those APIs support applications in guests or external 

applications that supply features like backups, monitoring, and security. Many type 1 

hypervisors are closed-source commercial offerings, such as VMware ESX, while some are open 

source or hybrids of open and closed source, such as Citrix XenServer and its open Xen 

counterpart. 

By using type 1 hypervisors, data-center managers can control and manage the operating 

systems and applications in new and sophisticated ways. An important benefit is the ability to 
consolidate more operating systems and applications onto fewer systems. For example, rather 

than having ten systems running at 10 percent utilization each, a data center might have one 

server manage the entire load. If utilization increases, guests and their applications can be 

moved to less-loaded systems live, without interruption of service. Using snapshots and 

cloning, the system can save the states of guests and duplicate those states—a much easier 
task than restoring from backups or installing manually or via scripts and tools. The price of 

this increased manageability is the cost of the VMM (if it is a commercial product), the need to 

learn new management tools and methods, and the increased complexity. 

Another type of type 1 hypervisor includes various general-purpose operating systems with 

VMM functionality. Here, an operating system such as RedHat Enterprise Linux, Windows, or 

Oracle Solaris performs its normal duties as well as providing a VMM allowing other operating 

systems to run as guests. Because of their extra duties, these hypervisors typically provide 

fewer virtualization features than other type 1 hypervisors. In many ways, they treat a guest 
operating system as just another process, but they provide special handling when the guest 

tries to execute special instructions. 

Type 2 Hypervisor : 

Type 2 hypervisors are less interesting to us as operating-system explorers, because there is 

very little operating-system involvement in these applicationlevel virtual machine managers. 

This type of VMM is simply another process run and managed by the host, and even the host 

does not know that virtualization is happening within the VMM. 

Type 2 hypervisors have limits not associated with some of the other types. For example, a user 

needs administrative privileges to access many of the hardware assistance features of modern 

CPUs. If the VMM is being run by a standard user without additional privileges, the VMM 

cannot take advantage of these features. Due to this limitation, as well as the extra overhead of 
running a general-purpose operating system as well as guest operating systems, type 2 

hypervisors tend to have poorer overall performance than type 0 or type 1. 
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As is often the case, the limitations of type 2 hypervisors also provide some benefits. They run 
on a variety of general-purpose operating systems, and running them requires no changes to 

the host operating system. A student can use a type 2 hypervisor, for example, to test a non-

native operating system without replacing the native operating system. In fact, on an Apple 

laptop, a student could have versions of Windows, Linux, Unix, and less common operating 

systems all available for learning and experimentation. 

Paravirtualization : 

As we’ve seen, paravirtualization works differently than the other types of virtualization. Rather 

than try to trick a guest operating system into believing it has a system to itself, 

paravirtualization presents the guest with a system that is similar but not identical to the 
guest’s preferred system. The guest must be modified to run on the paravirtualized virtual 

hardware. The gain for this extra work is more efficient use of resources and a smaller 

virtualization layer. 

The Xen VMM became the leader in paravirtulization by implementing several techniques to 

optimize the performance of guests as well as of the host system. For example, as mentioned 

earlier, some VMMs present virtual devices to guests that appear to be real devices. Instead of 

taking that approach, the Xen VMM presented clean and simple device abstractions that allow 

efficient I/O as well as good I/O-related communication between the guest and the VMM. For 
each device used by each guest, there was a circular buffer shared by the guest and the VMM 

via shared memory. Read and write data are placed in this buffer, as shown in Figure 18.6. 

For memory management, Xen did not implement nested page tables. Rather, each guest had 

its own set of page tables, set to read-only. Xen required the guest to use a specific mechanism, 

a hypercall from the guest to the hypervisor VMM, when a page-table change was needed. This 

meant that the guest operating system’s kernel code must have been changed from the default 

code to these Xen-specific methods. To optimize performance, Xen allowed the guest to queue 
up multiple page-table changes asynchronously via hypercalls and then checked to ensure that 

the changes were complete before continuing operation. 

Xen allowed virtualization of x86 CPUs without the use of binary translation, instead requiring 

modifications in the guest operating systems like the one described above. Over time, Xen has 

taken advantage of hardware features supporting virtualization. As a result, it no longer 

requires modified guests and essentially does not need the paravirtualization method. 

Paravirtualization is still used in other solutions, however, such as type 0 hypervisors. 

Programming-Environment Virtualization : 

Another kind of virtualization, based on a different execution model, is the virtualization of 

programming environments. Here, a programming language is designed to run within a 

custom-built virtualized environment. For example, Oracle’s Java has many features that 
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depend on its running in the Java virtual machine (JVM), including specific methods for 

security and memory management. 

If we define virtualization as including only duplication of hardware, this is not really 

virtualization at all. But we need not limit ourselves to that definition. Instead, we can define a 

virtual environment, based on APIs, that provides a set of features we want to have available 
for a particular language and programs written in that language. Java programs run within the 

JVM environment, and the JVM is compiled to be a native program on systems on which it 

runs. This arrangement means that Java programs are written once and then can run on any 

system (including all of the major operating systems) on which a JVM is available. The same 

can be said of interpreted languages, which run inside programs that read each instruction 

and interpret it into native operations. 

Emulation : 

Virtualization is probably the most common method for running applications designed for one 

operating system on a different operating system, but on the same CPU. This method works 
relatively efficiently because the applications were compiled for the instruction set that the 

target system uses. 

But what if an application or operating system needs to run on a different CPU? Here, it is 

necessary to translate all of the source CPU’s instructions so that they are turned into the 

equivalent instructions of the target CPU. Such an environment is no longer virtualized but 

rather is fully emulated. 

Emulation is useful when the host system has one system architecture and the guest system 

was compiled for a different architecture. For example, suppose a company has replaced its 

outdated computer system with a new system but would like to continue to run certain 

important programs that were compiled for the old system. The programs could be run in an 
emulator that translates each of the outdated system’s instructions into the native instruction 

set of the new system. Emulation can increase the life of programs and allow us to explore old 

architectures without having an actual old machine. 

As may be expected, the major challenge of emulation is performance. Instruction-set 

emulation may run an order of magnitude slower than native instructions, because it may take 

ten instructions on the new system to read, parse, and simulate an instruction from the old 

system. Thus, unless the new machine is ten times faster than the old, the program running 
on the new machine will run more slowly than it did on its native hardware. Another challenge 

for emulator writers is that it is difficult to create a correct emulator because, in essence, this 

task involves writing an entire CPU in software. 

In spite of these challenges, emulation is very popular, particularly in gaming circles. Many 

popular video games were written for platforms that are no longer in production. Users who 

want to run those games frequently can find an emulator of such a platform and then run the 

game unmodified within the emulator. Modern systems are so much faster than old game 
consoles that even the Apple iPhone has game emulators and games available to run within 

them. 

Application Containment : 

The goal of virtualization in some instances is to provide a method to segregate applications, 
manage their performance and resource use, and create an easy way to start, stop, move, and 

manage them. In such cases, perhaps full-fledged virtualization is not needed. If the 

applications are all compiled for the same operating system, then we do not need complete 

virtualization to provide these features. We can instead use application containment. 
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Consider one example of application containment. Starting with version 10, Oracle Solaris has 

included containers, or zones, that create a virtual layer between the operating system and the 

applications. In this system, only one kernel is installed, and the hardware is not virtualized. 
Rather, the operating system and its devices are virtualized, providing processes within a zone 

with the impression that they are the only processes on the system. One or more containers 

can be created, and each can have its own applications, network stacks, network address and 

ports, user accounts, and so on. CPU and memory resources can be divided among the zones 

and the system-wide processes. Each zone, in fact, can run its own scheduler to optimize the 

performance of its applications on the allotted resources. Figure 18.7 shows a Solaris 10 

system with two containers and the standard ―global‖ user space. 

Containers are much lighter weight than other virtualization methods. That is, they use fewer 
system resources and are faster to instantiate and destroy, more similar to processes than 

virtual machines. For this reason, they are becoming more commonly used, especially in cloud 

computing. FreeBSD was perhaps the first operating system to include a container-like feature 

(called ―jails‖), and AIX has a similar feature. Linux added the LXC container feature in 2014. It 

is now included in the common Linux distributions via a flag in the clone() system call. (The 

source code for LXCis available at https://linuxcontainers.org/lxc/downloads.) 

 

Containers are also easy to automate and manage, leading to orchestration tools like docker 

and Kubernetes. Orchestration tools are means of automating and coordinating systems and 

services. Their aim is to make it simple to run entire suites of distributed applications, just as 

operating systems make it simple to run a single program. These tools offer rapid deployment 
of full applications, consisting of many processes within containers, and also offer monitoring 

and other administration features. For more on docker, see https://www.docker.com/what-

docker. Information about Kubernetes can be found at 

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes. 

Virtualization and Operating-System Components : 

Thus far, we have explored the building blocks of virtualization and the various types of 

virtualization. In this section, we take a deeper dive into the operating-system aspects of 

virtualization, including how the VMM provides core operating-system functions like 

scheduling, I/O, and memory management. Here, we answer questions such as these: How do 
VMMs schedule CPU use when guest operating systems believe they have dedicated CPUs? 

How can memory management work when many guests require large amounts of memory? 

CPU Scheduling : 

A system with virtualization, even a single-CPU system, frequently acts like a multiprocessor 
system. The virtualization software presents one or more virtual CPUs to each of the virtual 

https://linuxcontainers.org/lxc/downloads
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes
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machines running on the system and then schedules the use of the physical CPUs among the 

virtual machines. 

The significant variations among virtualization technologies make it difficult to summarize the 

effect of virtualization on scheduling. First, let’s consider the general case of VMM scheduling. 

The VMM has a number of physical CPUs available and a number of threads to run on those 
CPUs. The threads can be VMM threads or guest threads. Guests are configured with a certain 

number of virtual CPUs at creation time, and that number can be adjusted throughout the life 

of the VM. When there are enough CPUs to allocate the requested number to each guest, the 

VMM can treat the CPUs as dedicated and schedule only a given guest’s threads on that guest’s 

CPUs. In this situation, the guests act much like native operating systems running on native 

CPUs. 

Of course, in other situations, there may not be enough CPUs to go around. The VMM itself 
needs some CPU cycles for guest management and I/O management and can steal cycles from 

the guests by scheduling its threads across all of the system CPUs, but the impact of this 

action is relatively minor. More difficult is the case of overcommitment, in which the guests are 

configured for more CPUs than exist in the system. Here, a VMM can use standard scheduling 

algorithms to make progress on each thread but can also add a fairness aspect to those 

algorithms. For example, if there are six hardware CPUs and twelve guestallocated CPUs, the 
VMM can allocate CPU resources proportionally, giving each guest half of the CPU resources it 

believes it has. The VMM can still present all twelve virtual CPUs to the guests, but in mapping 

them onto physical CPUs, the VMM can use its scheduler to distribute them appropriately. 

Even given a scheduler that provides fairness, any guest operating-system scheduling 

algorithm that assumes a certain amount of progress in a given amount of time will most likely 

be negatively affected by virtualization. Consider a time-sharing operating system that tries to 

allot 100 milliseconds to each time slice to give users a reasonable response time. Within a 
virtual machine, this operating system receives only what CPU resources the virtualization 

system gives it. A 100-millisecond time slice may take much more than 100 milliseconds of 

virtual CPU time. Depending on how busy the system is, the time slice may take a second or 

more, resulting in very poor response times for users logged into that virtual machine. The 

effect on a real-time operating system can be even more serious. 

The net outcome of such scheduling is that individual virtualized operating systems receive 

only a portion of the available CPU cycles, even though they believe they are receiving all of the 

cycles and indeed are scheduling all of the cycles. Commonly, the time-of-day clocks in virtual 
machines are incorrect because timers take longer to trigger than they would on dedicated 

CPUs. Virtualization can thus undo the scheduling-algorithm efforts of the operating systems 

within virtual machines. 

To correct for this, the VMM makes an application available for each type of operating system 

that the system administrator can install into the guests. This application corrects clock drift 

and can have other functions, such as virtual device management. 

Memory Management : 

Efficient memory use in general-purpose operating systems is a major key to performance. In 

virtualized environments, there are more users of memory (the guests and their applications, 

as well as the VMM), leading to more pressure on memory use. Further adding to this pressure 

is the fact that VMMs typically overcommit memory, so that the total memory allocated to 
guests exceeds the amount that physically exists in the system. The extra need for efficient 

memory use is not lost on the implementers of VMMs, who take extensive measures to ensure 

the optimal use of memory. 
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For example, VMware ESX uses several methods of memory management. Before memory 

optimization can occur, the VMM must establish how much real memory each guest should 

use. To do that, the VMM first evaluates each guest’s maximum memory size. General-purpose 
operating systems do not expect the amount of memory in the system to change, so VMMs 

must maintain the illusion that the guest has that amount of memory. Next, the VMM 

computes a target real-memory allocation for each guest based on the configured memory for 

that guest and other factors, such as overcommitment and system load. It then uses the three 

low-level mechanisms listed below to reclaim memory from the guests. 

1. Recall that a guest believes it controls memory allocation via its pagetable management, 

whereas in reality the VMM maintains a nested page table that translates the guest 

page table to the real page table. The VMM can use this extra level of indirection to 
optimize the guest’s use of memory without the guest’s knowledge or help. One 

approach is to provide double paging. Here, the VMM has its own page-replacement 

algorithms and loads pages into a backing store that the guest believes is physical 

memory. Of course, the VMM knows less about the guest’s memory access patterns 

than the guest does, so its paging is less efficient, creating performance problems. 
VMMs do use this method when other methods are not available or are not providing 

enough free memory. However, it is not the preferred approach. 

2. A common solution is for the VMM to install in each guest a pseudo– device driver or 

kernel module that the VMM controls. (Apseudo–device driver uses device-driver 

interfaces, appearing to the kernel to be a device driver, but does not actually control a 

device. Rather, it is an easy way to add kernel-mode code without directly modifying the 
kernel.) This balloon memory manager communicates with the VMM and is told to 

allocate or deallocate memory. If told to allocate, it allocates memory and tells the 

operating system to pin the allocated pages into physical memory. Recall that pinning 

locks a page into physical memory so that it cannot be moved or paged out. To the 

guest, these pinned pages appear to decrease the amount of physical memory it has 
available, creating memory pressure. The guest then may free up other physical 

memory to be sure it has enough free memory. Meanwhile, the VMM, knowing that the 

pages pinned by the balloon process will never be used, removes those physical pages 

from the guest and allocates them to another guest. At the same time, the guest is 

using its own memory-management and paging algorithms to manage the available 

memory, which is the most efficient option. If memory pressure within the entire system 
decreases, the VMM will tell the balloon process within the guest to unpin and free 

some or all of the memory, allowing the guest more pages for its use. 

3. Another common method for reducing memory pressure is for the VMM to determine if 

the same page has been loaded more than once. If this is the case, the VMM reduces 

the number of copies of the page to one and maps the other users of the page to that 
one copy. VMware, for example, randomly samples guest memory and creates a hash 

for each page sampled. That hash value is a ―thumbprint‖ of the page. The hash of every 

page examined is compared with other hashes stored in a hash table. If there is a 

match, the pages are compared byte by byte to see if they really are identical. If they 

are, one page is freed, and its logical address is mapped to the other’s physical address. 

This technique might seem at first to be ineffective, but consider that guests run 
operating systems. If multiple guests run the same operating system, then only one 

copy of the active operating-system pages need be in memory. Similarly, multiple guests 

could be running the same set of applications, again a likely source of memory sharing. 

The overall effect of these mechanisms is to enable guests to behave and perform as if they had 

the full amount of memory requested, although in reality they have less. 

I/O : 
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In the area of I/O, hypervisors have some leeway and can be less concerned with how they 

represent the underlying hardware to their guests. Because of the wide variation in I/O 

devices, operating systems are used to dealing with varying and flexible I/O mechanisms. For 
example, an operating system’s device-driver mechanism provides a uniform interface to the 

operating system whatever the I/O device. Device-driver interfaces are designed to allow third-

party hardware manufacturers to provide device drivers connecting their devices to the 

operating system. Usually, device drivers can be dynamically loaded and unloaded. 

Virtualization takes advantage of this built-in flexibility by providing specific virtualized devices 

to guest operating systems. 

As described in Section 18.5, VMMs vary greatly in how they provide I/O to their guests. I/O 

devices may be dedicated to guests, for example, or the VMM may have device drivers onto 
which it maps guest I/O. The VMM may also provide idealized device drivers to guests. In this 

case, the guest sees an easy-to-control device, but in reality that simple device driver 

communicates to the VMM, which sends the requests to a more complicated real device 

through a more complex real device driver. I/O in virtual environments is complicated and 

requires careful VMM design and implementation. 

Consider the case of a hypervisor and hardware combination that allows devices to be 

dedicated to a guest and allows the guest to access those devices directly. Of course, a device 
dedicated to one guest is not available to any other guests, but this direct access can still be 

useful in some circumstances. The reason to allow direct access is to improve I/O performance. 

The less the hypervisor has to do to enable I/O for its guests, the faster the I/O can occur. 

With type 0 hypervisors that provide direct device access, guests can often run at the same 

speed as native operating systems. When type 0 hypervisors instead provide shared devices, 

performance may suffer. 

With direct device access in type 1 and 2 hypervisors, performance can be similar to that of 
native operating systems if certain hardware support is present. The hardware needs to provide 

DMA pass-through with facilities like VT-d, as well as direct interrupt delivery (interrupts going 

directly to the guests). Given how frequently interrupts occur, it should be no surprise that the 

guests on hardware without these features have worse performance than if they were running 

natively. 

In addition to direct access, VMMs provide shared access to devices. Consider a disk drive to 

which multiple guests have access. The VMM must provide protection while the device is being 

shared, assuring that a guest can access only the blocks specified in the guest’s configuration. 
In such instances, the VMM must be part of every I/O, checking it for correctness as well as 

routing the data to and from the appropriate devices and guests 

In the area of networking, VMMs also have work to do. General-purpose operating systems 

typically have one Internet protocol (IP) address, although they sometimes have more than 

one— for example, to connect to a management network, backup network, and production 

network. With virtualization, each guest needs at least one IP address, because that is the 

guest’s main mode of communication. Therefore, a server running a VMM may have dozens of 
addresses, and the VMM acts as a virtual switch to route the network packets to the addressed 

guests. 

The guests can be ―directly‖ connected to the network by an IP address that is seen by the 

broader network (this is known as bridging). Alternatively, the VMM can provide a network 

address translation (NAT) address. The NAT address is local to the server on which the guest is 

running, and the VMM provides routing between the broader network and the guest. The VMM 

also provides firewalling to guard connections between guests within the system and between 

guests and external systems. 

Storage Management : 
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An important question in determining how virtualization works is this: If multiple operating 

systems have been installed, what and where is the boot disk? Clearly, virtualized 

environments need to approach storage management differently than do native operating 
systems. Even the standard multiboot method of slicing the boot disk into partitions, installing 

a boot manager in one partition, and installing each other operating system in another 

partition is not sufficient, because partitioning has limits that would prevent it from working 

for tens or hundreds of virtual machines. 

Once again, the solution to this problem depends on the type of hypervisor. Type 0 hypervisors 

often allow root disk partitioning, partly because these systems tend to run fewer guests than 

other systems. Alternatively, a disk manager may be part of the control partition, and that disk 

manager may provide disk space (including boot disks) to the other partitions. 

Type 1 hypervisors store the guest root disk (and configuration information) in one or more files 
in the file systems provided by the VMM. Type 2 hypervisors store the same information in the 

host operating system’s file systems. In essence, a disk image, containing all of the contents of 

the root disk of the guest, is contained in one file in the VMM. Aside from the potential 

performance problems that causes, this is a clever solution, because it simplifies copying and 

moving guests. If the administrator wants a duplicate of the guest (for testing, for example), she 

simply copies the associated disk image of the guest and tells the VMM about the new copy. 
Booting the new virtual machine brings up an identical guest. Moving a virtual machine from 

one system to another that runs the same VMM is as simple as halting the guest, copying the 

image to the other system, and starting the guest there. 

Guests sometimes need more disk space than is available in their root disk image. For 

example, a nonvirtualized database server might use several file systems spread across many 

disks to store various parts of the database. Virtualizing such a database usually involves 

creating several files and having the VMM present those to the guest as disks. The guest then 
executes as usual, with the VMM translating the disk I/O requests coming from the guest into 

file I/O commands to the correct files. 

Frequently, VMMs provide a mechanism to capture a physical system as it is currently 

configured and convert it to a guest that the VMM can manage and run. This physical-to-

virtual (P-to-V) conversion reads the disk blocks of the physical system’s disks and stores them 

in files on the VMM’s system or on shared storage that the VMM can access. VMMs also 

provide a virtual-tophysical (V-to-P) procedure for converting a guest to a physical system. This 

procedure is sometimes needed for debugging: a problem could be caused by the VMM or 
associated components, and the administrator could attempt to solve the problem by removing 

virtualization from the problem variables. V-toP conversion can take the files containing all of 

the guest data and generate disk blocks on a physical disk, recreating the guest as a native 

operating system and applications. Once the testing is concluded, the original system can be 

reused for other purposes when the virtual machine returns to service, or the virtual machine 

can be deleted and the original system can continue to run. 

Live Migration : 

One feature not found in general-purpose operating systems but found in type 0 and type 1 

hypervisors is the live migration of a running guest from one system to another. We mentioned 
this capability earlier. Here, we explore the details of how live migration works and why VMMs 

can implement it relatively easily while general-purpose operating systems, in spite of some 

research attempts, cannot. 

First, let’s consider how live migration works. A running guest on one system is copied to 

another system running the same VMM. The copy occurs with so little interruption of service 

that users logged in to the guest, as well as network connections to the guest, continue without 

noticeable impact. This rather astonishing ability is very powerful in resource management and 
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hardware administration. After all, compare it with the steps necessary without virtualization: 

we must warn users, shut down the processes, possibly move the binaries, and restart the 

processes on the new system. Only then can users access the services again. With live 
migration, we can decrease the load on an overloaded system or make hardware or system 

changes with no discernable disruption for users. 

Live migration is made possible by the well-defined interface between each guest and the VMM 

and the limited state the VMM maintains for the guest. The VMM migrates a guest via the 

following steps: 

1. The source VMM establishes a connection with the target VMM and confirms that it is 

allowed to send a guest. 

2. The target creates a new guest by creating a new VCPU, new nested page table, and other 

state storage. 

3. The source sends all read-only memory pages to the target. 

4. The source sends all read–write pages to the target, marking them as clean. 

5. The source repeats step 4, because during that step some pages were probably modified by 

the guest and are now dirty. These pages need to be sent again and marked again as clean. 

6. When the cycle of steps 4 and 5 becomes very short, the source VMM freezes the guest, 

sends the VCPU’s final state, other state details, and the final dirty pages, and tells the target 

to start running the guest. Once the target acknowledges that the guest is running, the source 

terminates the guest. 

This sequence is shown in Figure 18.8. We conclude this discussion with a few interesting 

details and limitations concerning live migration. First, for network connections to continue 

uninterrupted, the network infrastructure needs to understand that a MAC address— the 

hardware networking address—can move between systems. Before virtualization, this did not 
happen, as the MAC address was tied to physical hardware. With virtualization, the MAC must 

be movable for existing networking connections to continue without resetting. Modern network 

switches understand this and route traffic wherever the MAC address is, even accommodating 

a move. 

 

A limitation of live migration is that no disk state is transferred. One reason live migration is 
possible is that most of the guest’s state is maintained within the guest— for example, open file 

tables, system-call state, kernel state, and so on. Because disk I/O is much slower than 

memory access, however, and used disk space is usually much larger than used memory, disks 

associated with the guest cannot be moved as part of a live migration. Rather, the disk must be 

remote to the guest, accessed over the network. In that case, disk access state is maintained 
within the guest, and network connections are all that matter to the VMM. The network 

connections are maintained during the migration, so remote disk access continues. Typically, 
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NFS, CIFS, or iSCSI is used to store virtual machine images and any other storage a guest 

needs access to. These network-based storage accesses simply continue when the network 

connections are continued once the guest has been migrated. 

Live migration makes it possible to manage data centers in entirely new ways. For example, 

virtualization management tools can monitor all the VMMs in an environment and 
automatically balance resource use by moving guests between the VMMs. These tools can also 

optimize the use of electricity and cooling by migrating all guests off selected servers if other 

servers can handle the load and powering down the selected servers entirely. If the load 

increases, the tools can power up the servers and migrate guests back to them. 

Distributed File Systems(DFS): 

Although the World Wide Web is the predominant distributed system in use today, it is not the 

only one. Another important and popular use of distributed computing is the distributed fil 

system, or DFS. 

To explain the structure of a DFS, we need to define the terms service, server, and client in the 

DFS context. A service is a software entity running on one or more machines and providing a 

particular type of function to clients. A server is the service software running on a single 
machine. A client is a process that can invoke a service using a set of operations that form its 

client interface. Sometimes a lower-level interface is defined for the actual crossmachine 

interaction; it is the intermachine interface. 

Using this terminology, we say that a file system provides file services to clients. A client 

interface for a file service is formed by a set of primitive file operations, such as create a file, 

delete a file, read from a file, and write to a file. The primary hardware component that a file 

server controls is a set of local secondary-storage devices (usually, hard disks or solid-state 

drives) on which files are stored and from which they are retrieved according to the clients’ 

requests. 

A DFS is a file system whose clients, servers, and storage devices are dispersed among the 

machines of a distributed system. Accordingly, service activity has to be carried out across the 

network. Instead of a single centralized data repository, the system frequently has multiple and 

independent storage devices. As you will see, the concrete configuration and implementation of 

a DFS may vary from system to system. In some configurations, servers run on dedicated 

machines. In others, a machine can be both a server and a client. 

The distinctive features of a DFS are the multiplicity and autonomy of clients and servers in 

the system. Ideally, though, a DFS should appear to its clients to be a conventional, centralized 
file system. That is, the client interface of a DFS should not distinguish between local and 

remote files. It is up to the DFS to locate the files and to arrange for the transport of the data. A 

transparent DFS—like the transparent distributed systems mentioned earlier— facilitates user 

mobility by bringing a user’s environment (for example, the user’s home directory) to wherever 

the user logs in. 

The most important performance measure of a DFS is the amount of time needed to satisfy 

service requests. In conventional systems, this time consists of storage-access time and a small 
amount of CPU-processing time. In a DFS, however, a remote access has the additional 

overhead associated with the distributed structure. This overhead includes the time to deliver 

the request to a server, as well as the time to get the response across the network back to the 

client. For each direction, in addition to the transfer of the information, there is the CPU 

overhead of running the communication protocol software. The performance of a DFS can be 

viewed as another dimension of the DFS’s transparency. That is, the performance of an ideal 

DFS would be comparable to that of a conventional file system. 
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The basic architecture of a DFS depends on its ultimate goals. Two widely used architectural 

models we discuss here are the client–server model and the cluster-based model. The main goal 

of a client–server architecture is to allow transparent file sharing among one or more clients as 
if the files were stored locally on the individual client machines. The distributed file systems 

NFS and OpenAFS are prime examples. NFS is the most common UNIX-based DFS. It has 

several versions, and here we refer to NFS Version 3 unless otherwise noted. 

If many applications need to be run in parallel on large data sets with high availability and 

scalability, the cluster-based model is more appropriate than the client–server model. Two well-

known examples are the Google file system and the open-source HDFS, which runs as part of 

the Hadoop framework. 

The Client –Server DFS Model : 

Figure 19.12 illustrates a simple DFS client–server model. The server stores both files and 

metadata on attached storage. In some systems, more than one server can be used to store 

different files. Clients are connected to the server through a network and can request access to 
files in the DFS by contacting the server through a well-known protocol such as NFS Version 3. 

The server is responsible for carrying out authentication, checking the requested file 

permissions, and, if warranted, delivering the file to the requesting client. When a client makes 

changes to the file, the client must somehow deliver those changes to the server (which holds 

the master copy of the file). The client’s and the server’s versions of the file should be kept 

consistent in a way that minimizes network traffic and the server’s workload to the extent 

possible. 

 

The network file system (NFS) protocol was originally developed by Sun Microsystems as an 

open protocol, which encouraged early adoption across different architectures and systems. 

From the beginning, the focus of NFS was simple and fast crash recovery in the face of server 
failure. To implement this goal, the NFS server was designed to be stateless; it does not keep 

track of which client is accessing which file or of things such as open file descriptors and file 

pointers. This means that, whenever a client issues a file operation (say, to read a file), that 

operation has to be idempotent in the face of server crashes. Idempotent describes an operation 

that can be issued more than once yet return the same result. In the case of a read operation, 
the client keeps track of the state (such as the file pointer) and can simply reissue the 

operation if the server has crashed and come back online. You can read more about the NFS 

implementation in Section 15.8. 

The Andrew fil system (OpenAFS) was created at Carnegie Mellon University with a focus on 

scalability. Specifically, the researchers wanted to design a protocol that would allow the server 

to support as many clients as possible. This meant minimizing requests and traffic to the 

server. When a client requests a file, the file’s contents are downloaded from the server and 
stored on the client’s local storage. Updates to the file are sent to the server when the file is 

closed, and new versions of the file are sent to the client when the file is opened. In 

comparison, NFS is quite chatty and will send block read and write requests to the server as 

the file is being used by a client. 

Both OpenAFS and NFS are meant to be used in addition to local file systems. In other words, 

you would not format a hard drive partition with the NFS file system. Instead, on the server, 
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you would format the partition with a local file system of your choosing, such as ext4, and 

export the shared directories via the DFS. In the client, you would simply attach the exported 

directories to your file-system tree. In this way, the DFS can be separated from responsibility 

for the local file system and can concentrate on distributed tasks. 

The DFS client–server model, by design, may suffer from a single point of failure if the server 
crashes. Computer clustering can help resolve this problem by using redundant components 

and clustering methods such that failures are detected and failing over to working components 

continues server operations. In addition, the server presents a bottleneck for all requests for 

both data and metadata, which results in problems of scalability and bandwidth. 19.6.2 The 

Cluster-Based DFS Model. 

The Cluster-Based DFS Model : 

As the amount of data, I/O workload, and processing expands, so does the need for a DFS to 

be fault-tolerant and scalable. Large bottlenecks cannot be tolerated, and system component 

failures must be expected. Cluster-based architecture was developed in part to meet these 

needs. 

Figure 19.13 illustrates a sample cluster-based DFS model. This is the basic model presented 
by the Google file system (GFS) and the Hadoop distributed fil system (HDFS). One or more 

clients are connected via a network to a master metadata server and several data servers that 

house ―chunks‖ (or portions) of files. The metadata server keeps a mapping of which data 

servers hold chunks of which files, as well as a traditional hierarchical mapping of directories 

and files. Each file chunk is stored on a data server and is replicated a certain number of times 

(for example, three times) to protect against component failure and for faster access to the data 

(servers containing the replicated chunks have fast access to those chunks). 

 

To obtain access to a file, a client must first contact the metadata server. The metadata server 

then returns to the client the identities of the data servers that hold the requested file chunks. 

The client can then contact the closest data server (or servers) to receive the file information. 

Different chunks of the file can be read or written to in parallel if they are stored on different 
data servers, and the metadata server may need to be contacted only once in the entire 

process. This makes the metadata server less likely to be a performance bottleneck. The 

metadata server is also responsible for redistributing and balancing the file chunks among the 

data servers. 

GFS was released in 2003 to support large distributed data-intensive applications. The design 

of GFS was influenced by four main observations: 

• Hardware component failures are the norm rather than the exception and should be routinely 

expected. 

•Files stored on such a system are very large. 
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•Most files are changed by appending new data to the end of the file rather than overwriting 

existing data. 

•Redesigning the applications and file system API increases the system’s flexibility 

Consistent with the fourth observation, GFS exports its own API and requires applications to 

be programmed with this API. 

Shortly after developing GFS, Google developed a modularized software layer called MapReduce 

to sit on top of GFS. MapReduce allows developers to carry out large-scale parallel 

computations more easily and utilizes the benefits of the lower-layer file system. Later, HDFS 

and the Hadoop framework (which includes stackable modules like MapReduce on top of 
HDFS) were created based on Google’s work. Like GFS and MapReduce, Hadoop supports the 

processing of large data sets in distributed computing environments. As suggested earlier, the 

drive for such a framework occurred because traditional systems could not scale to the 

capacity and performance needed by ―big data‖ projects (at least not at reasonable prices). 

Examples of big data projects include crawling and analyzing social media, customer data, and 

large amounts of scientific data points for trends. 

DFS Naming and Transparency : 

Naming is a mapping between logical and physical objects. For instance, users deal with logical 

data objects represented by file names, whereas the system manipulates physical blocks of 
data stored on disk tracks. Usually, a user refers to a file by a textual name. The latter is 

mapped to a lower-level numerical identifier that in turn is mapped to disk blocks. This 

multilevel mapping provides users with an abstraction of a file that hides the details of how 

and where on the disk the file is stored. 

In a transparent DFS, a new dimension is added to the abstraction: that of hiding where in the 

network the file is located. In a conventional file system, the range of the naming mapping is an 

address within a disk. In a DFS, this range is expanded to include the specific machine on 
whose disk the file is stored. Going one step further with the concept of treating files as 

abstractions leads to the possibility of fil replication. Given a file name, the mapping returns a 

set of the locations of this file’s replicas. In this abstraction, both the existence of multiple 

copies and their locations are hidden. 

Naming Structures : 

We need to differentiate two related notions regarding name mappings in a DFS : 

1. Location transparency. The name of a file does not reveal any hint of the file’s physical 

storage location. 

2. Location independence. The name of a file need not be changed when the file’s physical 

storage location changes. 

Both definitions relate to the level of naming discussed previously, since files have different 

names at different levels (that is, user-level textual names and system-level numerical 

identifiers). A location-independent naming scheme is a dynamic mapping, since it can map 

the same file name to different locations at two different times. Therefore, location 

independence is a stronger property than location transparency. 

In practice, most of the current DFSs provide a static, location-transparent mapping for user-

level names. Some supportfil migration— that is, changing the location of a file automatically, 
providing location independence. Open AFS supports location independence and file mobility, 

for example. HDFS includes file migration but does so without following POSIX standards, 
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providing more flexibility in implementation and interface. HDFS keeps track of the location of 

data but hides this information from clients. This dynamic location transparency allows the 

underlying mechanism to self-tune. In another example, Amazon’s S3 cloud storage facility 
provides blocks of storage on demand via APIs, placing the storage where it sees fit and moving 

the data as necessary to meet performance, reliability, and capacity requirements. 

A few aspects can further differentiate location independence and static location transparency: 

Naming Schemes : 

There are three main approaches to naming schemes in a DFS. In the simplest approach, a file 

is identified by some combination of its host name and local name, which guarantees a unique 
system-wide name. In Ibis, for instance, a file is identified uniquely by the name host:local-

name, where local-name is a UNIX-like path. The Internet URL system also uses this approach. 

This naming scheme is neither location transparent nor location independent. The DFS is 

structured as a collection of isolated component units, each of which is an entire conventional 

file system. Component units remain isolated, although means are provided to refer to remote 

files. We do not consider this scheme any further here. 

The second approach was popularized by NFS. NFS provides a means to attach remote 
directories to local directories, thus giving the appearance of a coherent directory tree. Early 

NFS versions allowed only previously mounted remote directories to be accessed transparently. 

The advent of the automount feature allowed mounts to be done on demand based on a table of 

mount points and file-structure names. Components are integrated to support transparent 

sharing, but this integration is limited and is not uniform, because each machine may attach 

different remote directories to its tree. The resulting structure is versatile. 

We can achieve total integration of the component file systems by using a third approach. Here, 

a single global name structure spans all the files in the system. OpenAFS provides a single 
global namespace for the files and directories it exports, allowing a similar user experience 

across different client machines. Ideally, the composed file-system structure is the same as the 

structure of a conventional file system. In practice, however, the many special files (for 

example, UNIX device files and machine-specific binary directories) make this goal difficult to 

attain. 

To evaluate naming structures, we look at their administrative complexity. The most complex 

and most difficult-to-maintain structure is the NFS structure. Because any remote directory 
can be attached anywhere on the local directory tree, the resulting hierarchy can be highly 

unstructured. If a server becomes unavailable, some arbitrary set of directories on different 

machines becomes unavailable. In addition, a separate accreditation mechanism controls 

which machine is allowed to attach which directory to its tree. Thus, a user might be able to 

access a remote directory tree on one client but be denied access on another client. 

Implementation Techniques : 

Implementation of transparent naming requires a provision for the mapping of a file name to 

the associated location. To keep this mapping manageable, we must aggregate sets of files into 

component units and provide the mapping on a component-unit basis rather than on a single-
file basis. This aggregation serves administrative purposes as well. UNIX-like systems use the 

hierarchical directory tree to provide name-to-location mapping and to aggregate files 

recursively into directories. 

To enhance the availability of the crucial mapping information, we can use replication, local 

caching, or both. As we noted, location independence means that the mapping changes over 

time. Hence, replicating the mapping makes a simple yet consistent update of this information 

impossible. To overcome this obstacle, we can introduce low-level, location-independent file 
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identifiers. (OpenAFS uses this approach.) Textual file names are mapped to lower-level file 

identifiers that indicate to which component unit the file belongs. These identifiers are still 

location independent. They can be replicated and cached freely without being invalidated by 
migration of component units. The inevitable price is the need for a second level of mapping, 

which maps component units to locations and needs a simple yet consistent update 

mechanism. Implementing UNIX-like directory trees using these low-level, location-

independent identifiers makes the whole hierarchy invariant under component-unit migration. 

The only aspect that does change is the component-unit location mapping. 

A common way to implement low-level identifiers is to use structured names. These names are 

bit strings that usually have two parts. The first part identifies the component unit to which 

the file belongs; the second part identifies the particular file within the unit. Variants with 
more parts are possible. The invariant of structured names, however, is that individual parts of 

the name are unique at all times only within the context of the rest of the parts. We can obtain 

uniqueness at all times by taking care not to reuse a name that is still in use, by adding 

sufficiently more bits (this method is used in OpenAFS), or by using a timestamp as one part of 

the name (as was done in Apollo Domain). Another way to view this process is that we are 
taking a location-transparent system, such as Ibis, and adding another level of abstraction to 

produce a location-independent naming scheme. 

Remote File Access : 

Next, let’s consider a user who requests access to a remote file. The server storing the file has 

been located by the naming scheme, and now the actual data transfer must take place. 

One way to achieve this transfer is through a remote-service mechanism, whereby requests for 
accesses are delivered to the server, the server machine performs the accesses, and their 

results are forwarded back to the user. One of the most common ways of implementing remote 

service is the RPC paradigm, which we discussed in Chapter 3. A direct analogy exists between 

disk-access methods in conventional file systems and the remote-service method in a DFS: 

using the remote-service method is analogous to performing a disk access for each access 

request. 

To ensure reasonable performance of a remote-service mechanism, we can use a form of 
caching. In conventional file systems, the rationale for caching is to reduce disk I/O (thereby 

increasing performance), whereas in DFSs, the goal is to reduce both network traffic and disk 

I/O. In the following discussion, we describe the implementation of caching in a DFS and 

contrast it with the basic remote-service paradigm. 

Basic Caching Scheme : 

The concept of caching is simple. If the data needed to satisfy the access request are not 

already cached, then a copy of the data is brought from the server to the client system. 

Accesses are performed on the cached copy. The idea is to retain recently accessed disk blocks 

in the cache, so that repeated accesses to the same information can be handled locally, without 
additional network traffic. A replacement policy (for example, the least-recently-used algorithm) 

keeps the cache size bounded. No direct correspondence exists between accesses and traffic to 

the server. Files are still identified with one master copy residing at the server machine, but 

copies (or parts) of the file are scattered in different caches. When a cached copy is modified, 

the changes need to be reflected on the master copy to preserve the relevant consistency 

semantics. The problem of keeping the cached copies consistent with the master file is the 
cacheconsistency problem, which we discuss in Section 19.8.4. DFS caching could just as 

easily be called network virtual memory. It acts similarly to demandpaged virtual memory, 

except that the backing store usually is a remote server rather than a local disk. NFS allows 

the swap space to be mounted remotely, so it actually can implement virtual memory over a 

network, though with a resulting performance penalty. 
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The granularity of the cached data in a DFS can vary from blocks of a file to an entire file. 

Usually, more data are cached than are needed to satisfy a single access, so that many 

accesses can be served by the cached data. This procedure is much like disk read-ahead 
(Section 14.6.2). OpenAFS caches files in large chunks (64 KB). The other systems discussed 

here support caching of individual blocks driven by client demand. Increasing the caching unit 

increases the hit ratio, but it also increases the miss penalty, because each miss requires more 

data to be transferred. It increases the potential for consistency problems as well. Selecting the 

unit of caching involves considering parameters such as the network transfer unit and the RPC 

protocol service unit (if an RPC protocol is used). The network transfer unit (for Ethernet, a 
packet) is about 1.5 KB, so larger units of cached data need to be disassembled for delivery and 

reassembled on reception. 

Block size and total cache size are obviously of importance for blockcaching schemes. In UNIX-

like systems, common block sizes are 4 KB and 8 KB. For large caches (over 1 MB), large block 

sizes (over 8 KB) are beneficial. For smaller caches, large block sizes are less beneficial because 

they result in fewer blocks in the cache and a lower hit ratio. 

Cache Location : 

Where should the cached data be stored—on disk or in main memory? Disk caches have one 

clear advantage over main-memory caches: they are reliable. Modifications to cached data are 

lost in a crash if the cache is kept in volatile memory. Moreover, if the cached data are kept on 

disk, they are still there during recovery, and there is no need to fetch them again. Main-

memory caches have several advantages of their own, however: 

• Main-memory caches permit workstations to be diskless. 

• Data can be accessed more quickly from a cache in main memory than from one on a disk. 

• Technology is moving toward larger and less expensive memory. The resulting performance 

speedup is predicted to outweigh the advantages of disk caches. 

• The server caches (used to speed up disk I/O) will be in main memory regardless of where 

user caches are located; if we use main-memory caches on the user machine, too, we can build 

a single caching mechanism for use by both servers and users. 

Many remote-access implementations can be thought of as hybrids of caching and remote 
service. In NFS, for instance, the implementation is based on remote service but is augmented 

with client- and server-side memory caching for performance. Thus, to evaluate the two 

methods, we must evaluate the degree to which either method is emphasized. The NFS protocol 

and most implementations do not provide disk caching (but OpenAFS does). 

Case Studies : 

The Linux System 

Linux History : 

Linux looks and feels much like any other UNIX system; indeed, UNIX compatibility has been a 

major design goal of the Linux project. However, Linux is much younger than most UNIX 

systems. Its development began in 1991, when a Finnish university student, Linus Torvalds, 

began creating a small but selfcontained kernel for the 80386 processor, the first true 32-bit 

processor in Intel’s range of PC-compatible CPUs. 

Early in its development, the Linux source code was made available free— both at no cost and 

with minimal distributional restrictions—on the Internet. As a result, Linux’s history has been 

one of collaboration by many developers from all around the world, corresponding almost 
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exclusively over the Internet. From an initial kernel that partially implemented a small subset 

of the UNIX system services, the Linux system has grown to include all of the functionality 

expected of a modern UNIX system. 

In its early days, Linux development revolved largely around the central operating-system 

kernel— the core, privileged executive that manages all system resources and interacts directly 
with the computer hardware. We need much more than this kernel, of course, to produce a full 

operating system. We thus need to make a distinction between the Linux kernel and a complete 

Linux system. The Linux kernel is an original piece of software developed from scratch by the 

Linux community. The Linux system, as we know it today, includes a multitude of components, 

some written from scratch, others borrowed from other development projects, and still others 

created in collaboration with other teams. 

The basic Linux system is a standard environment for applications and user programming, but 
it does not enforce any standard means of managing the available functionality as a whole. As 

Linux has matured, a need has arisen for another layer of functionality on top of the Linux 

system. This need has been met by various Linux distributions. A Linux distribution includes 

all the standard components of the Linux system, plus a set of administrative tools to simplify 

the initial installation and subsequent upgrading of Linux and to manage installation and 

removal of other packages on the system. A modern distribution also typically includes tools for 
management of file systems, creation and management of user accounts, administration of 

networks, web browsers, word processors, and so on. 

The Linux Kernel : 

The first Linux kernel released to the public was version 0.01, dated May 14, 1991. It had no 
networking, ran only on 80386-compatible Intel processors and PC hardware, and had 

extremely limited device-driver support. The virtual memory subsystem was also fairly basic 

and included no support for memory-mapped files; however, even this early incarnation 

supported shared pages with copy-on-write and protected address spaces. The only file system 

supported was the Minix file system, as the first Linux kernels were crossdeveloped on a Minix 

platform. 

The next milestone, Linux 1.0, was released on March 14, 1994. This release culminated three 
years of rapid development of the Linux kernel. Perhaps the single biggest new feature was 

networking: 1.0 included support for UNIX’s standard TCP/IP networking protocols, as well as 

a BSD-compatible socket interface for networking programming. Device-driver support was 

added for running IP over Ethernet or (via the PPP or SLIP protocols) over serial lines or 

modems. 

The 1.0 kernel also included a new, much enhanced file system without the limitations of the 

original Minix file system, and it supported a range of SCSI controllers for high-performance 
disk access. The developers extended the vir-tual memory subsystem to support paging to 

swap files and memory mapping of arbitrary files (but only read-only memory mapping was 

implemented in 1.0). 

A range of extra hardware support was included in this release. Although still restricted to the 

Intel PC platform, hardware support had grown to include floppy-disk and CD-ROM devices, as 

well as sound cards, a range of mice, and international keyboards. Floating-point emulation 

was provided in the kernel for 80386 users who had no 80387 math coprocessor. System V 

UNIX-style interprocess communication (IPC), including shared memory, semaphores, and 

message queues, was implemented. 

At this point, development started on the 1.1 kernel stream, but numerous bug-fix patches 
were released subsequently for 1.0. A pattern was adopted as the standard numbering 

convention for Linux kernels. Kernels with an odd minor-version number, such as 1.1 or 2.5, 
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are development kernels; evennumbered minor-version numbers are stable production kernels. 

Updates for the stable kernels are intended only as remedial versions, whereas the 

development kernels may include newer and relatively untested functionality. As we will see, 

this pattern remained in effect until version 3. 

In March 1995, the 1.2 kernel was released. This release did not offer nearly the same 
improvement in functionality as the 1.0 release, but it did support a much wider variety of 

hardware, including the new PCI hardware bus architecture. Developers added another PC-

specific feature—support for the 80386 CPU’s virtual 8086 mode— to allow emulation of the 

DOS operating system for PC computers. They also updated the IP implementation with 

support for accounting and firewalling. Simple support for dynamically loadable and 

unloadable kernel modules was supplied as well. 

The 1.2 kernel was the final PC-only Linux kernel. The source distribution for Linux 1.2 
included partially implemented support for SPARC, Alpha, and MIPS CPUs, but full integration 

of these other architectures did not begin until after the stable 1.2 kernel was released. 

The Linux 1.2 release concentrated on wider hardware support and more complete 

implementations of existing functionality. Much new functionality was under development at 

the time, but integration of the new code into the main kernel source code was deferred until 

after the stable 1.2 kernel was released. As a result, the 1.3 development stream saw a great 

deal of new functionality added to the kernel. 

This work was released in June 1996 as Linux version 2.0. This release was given a major 

version-number increment because of two major new capabilities: support for multiple 

architectures, including a 64-bit native Alpha port, and symmetric multiprocessing (SMP) 
support. Additionally, the memorymanagement code was substantially improved to provide a 

unified cache for file-system data independent of the caching of block devices. As a result of 

this change, the kernel offered greatly increased file-system and virtualmemory performance. 

For the first time, file-system caching was extended to networked file systems, and writable 

memory-mapped regions were also supported. Other major improvements included the 
addition of internal kernel threads, a mechanism exposing dependencies between loadable 

modules, support for the automatic loading of modules on demand, file-system quotas, and 

POSIX-compatible real-time process-scheduling classes. 

Improvements continued with the release of Linux 2.2 in 1999. A port to UltraSPARC systems 

was added. Networking was enhanced with more flexible firewalling, improved routing and 

traffic management, and support for TCP large window and selective acknowledgement. Acorn, 

Apple, and NT disks could now be read, and NFS was enhanced with a new kernel-mode NFS 

daemon. Signal handling, interrupts, and some I/O were locked at a finer level than before to 

improve symmetric multiprocessor (SMP) performance. 

Linux kernel version 3.0 was released in July 2011. The major version bump from 2 to 3 

occurred to commemorate the twentieth anniversary of Linux. New features include improved 

virtualization support, a new page write-back facility, improvements to the memory-

management system, and yet another new thread scheduler— the Completely Fair Scheduler 

(CFS). 

Linux kernel version 4.0 was released in April 2015. This time the major version bump was 

entirely arbitrary; Linux kernel developers simply grew tired of ever-larger minor versions. 

Today Linux kernel versions do not signify anything other than release ordering. The 4.0 kernel 
series provided support for new architectures, improved mobile functionality, and many 

iterative improvements. We focus on this newest kernel in the remainder of this chapter. 

The Linux System : 
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As we noted earlier, the Linux kernel forms the core of the Linux project, but other components 

make up a complete Linux operating system. Whereas the Linux kernel is composed entirely of 

code written from scratch specifically for the Linux project, much of the supporting software 
that makes up the Linux system is not exclusive to Linux but is common to a number of 

UNIXlike operating systems. In particular, Linux uses many tools developed as part of 

Berkeley’s BSD operating system, 

This sharing of tools has worked in both directions. The main system libraries of Linux were 

originated by the GNU project, but the Linux community greatly improved the libraries by 

addressing omissions, inefficiencies, and bugs. Other components, such as the GNU C 

compiler (gcc), were already of sufficiently high quality to be used directly in Linux. The 

network administration tools under Linux were derived from code first developed for 4.3 BSD, 
but more recent BSD derivatives, such as FreeBSD, have borrowed code from Linux in return. 

Examples of this sharing include the Intel floating-point-emulation math library and the PC 

sound-hardware device drivers. 

The Linux system as a whole is maintained by a loose network of developers collaborating over 

the Internet, with small groups or individuals having responsibility for maintaining the 

integrity of specific components. A small number of public Internet file-transfer-protocol (FTP) 

archive sites act as de facto standard repositories for these components. The File System 
Hierarchy Standard document is also maintained by the Linux community as a means of 

ensuring compatibility across the various system components. This standard specifies the 

overall layout of a standard Linux file system; it determines under which directory names 

configuration files, libraries, system binaries, and run-time data files should be stored. 

Linux Distributions : 

These collections, or distributions, include much more than just the basic Linux system. They 

typically include extra system-installation and management utilities, as well as precompiled 

and ready-to-install packages of many of the common UNIX tools, such as news servers, web 

browsers, text-processing and editing tools, and even games. 

The first distributions managed these packages by simply providing a means of unpacking all 

the files into the appropriate places. One of the important contributions of modern 
distributions, however, is advanced package management. Today’s Linux distributions include 

a package-tracking database that allows packages to be installed, upgraded, or removed 

painlessly. 

The SLS distribution, dating back to the early days of Linux, was the first collection of Linux 

packages that was recognizable as a complete distribution. Although it could be installed as a 

single entity, SLS lacked the packagemanagement tools now expected of Linux distributions. 

The Slackware distribution represented a great improvement in overall quality, even though it 
also had poor package management. In fact, it is still one of the most widely installed 

distributions in the Linux community. 

Since Slackware’s release, many commercial and noncommercial Linux distributions have 

become available. Red Hat and Debian are particularly popular distributions; the first comes 

from a commercial Linux support company and the second from the free-software Linux 

community. Other commercially supported versions of Linux include distributions from 

Canonical and SuSE, and many others. There are too many Linux distributions in circulation 

for us to list all of them here. The variety of distributions does not prevent Linux distributions 
from being compatible, however. The RPM package file format is used, or at least understood, 

by the majority of distributions, and commercial applications distributed in this format can be 

installed and run on any distribution that can accept RPM files. 

Linux Licensing : 
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The Linux kernel is distributed under version 2.0 of the GNU General Public License (GPL), the 

terms of which are set out by the Free Software Foundation. Linux is not public-domain 

software. Public domain implies that the authors have waived copyright rights in the software, 
but copyright rights in Linux code are still held by the code’s various authors. Linux is free 

software, how-ever, in the sense that people can copy it, modify it, use it in any manner they 

want, and give away (or sell) their own copies. 

Components of a Linux System : 

The Linux system is composed of three main bodies of code, in line with most traditional UNIX 

implementations: 

1. Kernel. The kernel is responsible for maintaining all the important abstractions of the 

operating system, including such things as virtual memory and processes. 

2. System libraries. The system libraries define a standard set of functions through which 

applications can interact with the kernel. These functions implement much of the operating-

system functionality that does not need the full privileges of kernel code. The most important 

system library is the C library, known as libc. In addition to providing the standard C library, 

libc implements the user mode side of the Linux system call interface, as well as other critical 

system-level interfaces. 

3. System utilities. The system utilities are programs that perform individual, specialized 
management tasks. Some system utilities are invoked just once to initialize and configure some 

aspect of the system. Others— known as daemons in UNIX terminology—run permanently, 

handling such tasks as responding to incoming network connections, accepting logon requests 

from terminals, and updating log files. 

 

with full access to all the physical resources of the computer. Linux refers to this privileged 

mode as kernel mode. Under Linux, no user code is built into the kernel. Any operating-

system-support code that does not need to run in kernel mode is placed into the system 

libraries and runs in user mode. Unlike kernel mode, user mode has access only to a controlled 

subset of the system’s resources. 

Although various modern operating systems have adopted a messagepassing architecture for 

their kernel internals, Linux retains UNIX’s historical model: the kernel is created as a single, 
monolithic binary. The main reason is performance. Because all kernel code and data 

structures are kept in a single address space, no context switches are necessary when a thread 

calls an operating-system function or when a hardware interrupt is delivered. Moreover, the 

kernel can pass data and make requests between various subsystems using relatively cheap C 

function invocation and not more complicated interprocess communication (IPC). This single 

address space contains not only the core scheduling and virtual memory code but all kernel 

code, including all device drivers, file systems, and networking code. 
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Kernel Modules : 

The Linux kernel has the ability to load and unload arbitrary sections of kernel code on 

demand. These loadable kernel modules run in privileged kernel mode and as a consequence 

have full access to all the hardware capabilities of the machine on which they run. In theory, 

there is no restriction on what a kernel module is allowed to do. Among other things, a kernel 

module can implement a device driver, a file system, or a networking protocol. 

Kernel modules are convenient for several reasons. Linux’s source code is free, so anybody 
wanting to write kernel code is able to compile a modified kernel and to reboot into that new 

functionality. However, recompiling, relinking, and reloading the entire kernel is a cumbersome 

cycle to undertake when you are developing a new driver. If you use kernel modules, you do 

not have to make a new kernel to test a new driver— the driver can be compiled on its own and 

loaded into the already running kernel. Of course, once a new driver is written, it can be 
distributed as a module so that other users can benefit from it without having to rebuild their 

kernels. 

This latter point has another implication. Because it is covered by the GPL license, the Linux 

kernel cannot be released with proprietary components added to it unless those new 

components are also released under the GPL and the source code for them is made available on 

demand. The kernel’s module interface allows third parties to write and distribute, on their 

own terms, device drivers or file systems that could not be distributed under the GPL. 

Kernel modules allow a Linux system to be set up with a standard minimal kernel, without any 

extra device drivers built in. Any device drivers that the user needs can be either loaded 

explicitly by the system at startup or loaded automatically by the system on demand and 
unloaded when not in use. For example, a mouse driver can be loaded when a USB mouse is 

plugged into the system and unloaded when the mouse is unplugged. 

The module support under Linux has four components: 

1. The module-management system allows modules to be loaded into memory and to 

communicate with the rest of the kernel. 

2. The module loader and unloader, which are user-mode utilities, work with the module-

management system to load a module into memory. 

3. The driver-registration system allows modules to tell the rest of the kernel that a new driver 

has become available. 

4. A conflict-resolutio mechanism allows different device drivers to reserve hardware resources 

and to protect those resources from accidental use by another driver. 

 


