
Prepared by: Satyam K , AITS , MCA OS Notes Page 1

UNIT-1 : INTRODUCTION

An Operating System (OS) is an interface between computer user and computer hardware. An

operating system is software which performs all the basic tasks like file management, memory
management, process management, handling input and output, and controlling peripheral

devices such as disk drives and printers.

An operating system is software that enables applications to interact with a computer's

hardware. The software that contains the core components of the operating system is called

the kernel.

The primary purposes of an Operating System are to enable applications (software’s) to
interact with a computer's hardware and to manage a system's hardware and software

resources.

Some popular Operating Systems include Linux Operating System, Windows Operating

System, VMS, OS/400, AIX, z/OS, etc. Today, Operating systems is found almost in every

device like mobile phones, personal computers, mainframe computers, automobiles, TV, Toys
etc.

Definitions

We can have a number of definitions of an Operating System. Let's go through few of them:

An Operting System is the low-level software that supports a computer's basic functions, such

as scheduling tasks and controlling peripherals.

We can refine this definition as follows:
An operating system is a program that acts as an interface between the user and the computer

hardware and controls the execution of all kinds of programs.

Operating System Generations

Operating systems have been evolving over the years. We can categorise this evaluation based

on different generations which is briefed below:
0th Generation

The term 0th generation is used to refer to the period of development of computing when

Charles Babbage invented the Analytical Engine and later John Atanasoff created a computer

in 1940. The hardware component technology of this period was electronic vacuum tubes.

There was no Operating System available for this generation computer and computer programs

were written in machine language. This computers in this generation were inefficient and
dependent on the varying competencies of the individual programmer as operators.

First Generation (1951-1956) :

The first generation marked the beginning of commercial computing including the introduction

of Eckert and Mauchly’s UNIVAC I in early 1951, and a bit later, the IBM 701.

System operation was performed with the help of expert operators and without the benefit of an
operating system for a time though programs began to be written in higher level, procedure-

oriented languages, and thus the operator’s routine expanded. Later mono-programmed

operating system was developed, which eliminated some of the human intervention in running

job and provided programmers with a number of desirable functions. These systems still

continued to operate under the control of a human operator who used to follow a number of

steps to execute a program. Programming language like FORTRAN was developed by John W.
Backus in 1956.

Second Generation (1956-1964) :

The second generation of computer hardware was most notably characterised by transistors

replacing vacuum tubes as the hardware component technology. The first operating system

GMOS was developed by the IBM computer. GMOS was based on single stream batch
processing system, because it collects all similar jobs in groups or batches and then submits

the jobs to the operating system using a punch card to complete all jobs in a machine.

Operating system is cleaned after completing one job and then continues to read and initiates

the next job in punch card.

Researchers began to experiment with multiprogramming and multiprocessing in their

computing services called the time-sharing system. A noteworthy example is the Compatible
Time Sharing System (CTSS), developed at MIT during the early 1960s.

Third Generation (1964-1979) :

Prepared by: Satyam K , AITS , MCA OS Notes Page 2

The third generation officially began in April 1964 with IBM’s announcement of its System/360

family of computers. Hardware technology began to use integrated circuits (ICs) which yielded

significant advantages in both speed and economy.
Operating system development continued with the introduction and widespread adoption of

multiprogramming. The idea of taking fuller advantage of the computer’s data channel I/O

capabilities continued to develop.

Another progress which leads to developing of personal computers in fourth generation is a

new development of minicomputers with DEC PDP-1. The third generation was an exciting

time, indeed, for the development of both computer hardware and the accompanying operating
system.

Fourth Generation (1979 – Present) :

The fourth generation is characterised by the appearance of the personal computer and the

workstation. The component technology of the third generation, was replaced by very large

scale integration (VLSI). Many Operating Systems which we are using today like Windows,
Linux, MacOS etc developed in the fourth generation.

Operating System Organization: Operating Systems today generally consist of many distinct

pieces or components. We can simplify our description of an OS by viewing it as many layers of

related components. A generic OS layered diagram is pictured below. Note the component at

the top of the diagram is the user, and the component at the bottom of the diagram is the

physical hardware. Management (control) of all tasks in between these two physical
components is the responsibility of the OS.

What Operating Systems Do We begin our discussion by looking at the operating system’s role

in the overall computer system. A computer system can be divided roughly into four

components: the hardware, the operating system, the application programs, and a user (Figure

1.1).
The hardware— the central processing unit (CPU), the memory, and the input/output (I/O)

devices—provides the basic computing resources for the system. The application programs—

such as word processors, spreadsheets, compilers, and web browsers—define the ways in

which these resources are used to solve users’ computing problems. The operating system

controls the hardware and coordinates its use among the various application programs for the

various users. We can also view a computer system as consisting of hardware, software, and
data. The operating system provides the means for proper use of these resources in the

operation of the computer system. An operating system is similar to a government. Like a

government, it performs no useful function by itself. It simply provides an environment within

which other programs can do useful work. To understand more fully the operating system’s

role, we next explore operating systems from two viewpoints: that of the user and that of the
system.

User View :

The user’s view of the computer varies according to the interface being used.Many computer

users sit with a laptop or in front of a PC consisting of amonitor, keyboard, and mouse. Such a

system is designed for one user tomonopolize its resources. The goal is to maximize the work

(or play) that theuser is performing. In this case, the operating system is designed mostly
forease of use, with some attention paid to performance and security and nonepaid to resource

utilization—how various hardware and software resources are shared.

Prepared by: Satyam K , AITS , MCA OS Notes Page 3

Increasingly, many users interact with mobile devices such as smartphones and tablets—

devices that are replacing desktop and laptop computer systems for some users. These devices

are typically connected to networks through cellular or other wireless technologies. The user
interface for mobile computers generally features a touch screen, where the user interacts with

the system by pressing and swiping fingers across the screen rather than using a physical

keyboard and mouse. Many mobile devices also allow users to interact through a voice

recognition interface, such as Apple’s Siri. Some computers have little or no user view. For

example, embedded computers in home devices and automobiles may have numeric keypads
and may turn indicator lights on or off to show status, but they and their operating systems

and applications are designed primarily to run without user intervention.

System View :

From the computer’s point of view, the operating system is the program most intimately

involved with the hardware. In this context, we can view an operating system as a resource

allocator. A computer system has many resources that may be required to solve a problem:
CPU time, memory space, storage space, I/O devices, and so on. The operating system acts as

the manager of these resources. Facing numerous and possibly conflicting requests for

resources, the operating system must decide how to allocate them to specific programs and

users so that it can operate the computer system efficiently and fairly. A slightly different view

of an operating system emphasizes the need to control the various I/O devices and user
programs. An operating system is a control program. A control program manages the execution

of user programs to prevent errors and improper use of the computer. It is especially concerned

with the operation and control of I/O devices.

Computer-System Organization :

A modern general-purpose computer system consists of one or more CPUs and a number of

device controllers connected through a common bus that provides access between components
and shared memory (Figure 1.2). Each device controller is in charge of a specific type of device

(for example, a disk drive, audio device, or graphics display). Depending on the controller, more

than one device may be attached. For instance, one system USB port can connect to a USB

hub, to which several devices can connect. A device controller maintains some local buffer

storage and a set of special-purpose registers. The device controller is responsible for moving
the data between the peripheral devices that it controls and its local buffer storage. Typically,

operating systems have a device driver for each device controller. This device driver

understands the device controller and provides the rest of the operating system with a uniform

interface to the device. The CPU and the device controllers can execute in parallel, competing

for memory cycles. To ensure orderly access to the shared memory, a memory controller

synchronizes access to the memory. In the following subsections, we describe some basics of
how such a system operates, focusing on three key aspects of the system. We start with

interrupts, which alert the CPU to events that require attention. We then discuss storage

structure and I/O structure.

Prepared by: Satyam K , AITS , MCA OS Notes Page 4

Interrupts :

Consider a typical computer operation: a program performing I/O. To start an I/O operation,

the device driver loads the appropriate registers in the device controller. The device controller,

in turn, examines the contents of these registers to determine what action to take (such as
―read a character from the keyboard‖). The controller starts the transfer of data from the device

to its local buffer. Once the transfer of data is complete, the device controller informs the device

driver that it has finished its operation. The device driver then gives control to other parts of

the operating system, possibly returning the data or a pointer to the data if the operation was a

read. For other operations, the device driver returns status information such as ―write
completed successfully‖ or ―device busy‖. But how does the controller inform the device driver

that it has finished its operation? This is accomplished via an interrupt.

Hardware may trigger an interrupt at any time by sending a signal to the CPU, usually by way

of the system bus. (There may be many buses within a computer system, but the system bus is

the main communications path between the major components.) Interrupts are used for many

other purposes as well and are a key part of how operating systems and hardware interact.
When the CPU is interrupted, it stops what it is doing and immediately transfers execution to a

fixed location. The fixed location usually contains the starting address where the service

routine for the interrupt is located. The interrupt service routine executes; on completion, the

CPU resumes the interrupted computation

The basic interrupt mechanism works as follows. The CPU hardware has a wire called the
interrupt-request line that the CPU senses after executing every instruction. When the CPU

detects that a controller has asserted a signal on the interrupt-request line, it reads the

interrupt number and jumps to the interrupt-handler routine by using that interrupt number

as an index into the interrupt vector. It then starts execution at the address associated with

that index. The interrupt handler saves any state it will be changing during its operation,

determines the cause of the interrupt, performs the necessary processing, performs a state
restore, and executes a return from interrupt instruction to return the CPU to the execution

state prior to the interrupt. We say that the device controller raises an interrupt by asserting a

signal on the interrupt request line, the CPU catches the interrupt and dispatches it to the

interrupt handler, and the handler clears the interrupt by servicing the device. Figure 1.4

summarizes the interrupt-driven I/O cycle. The basic interrupt mechanism just described
enables the CPU to respond to an asynchronous event, as when a device controller becomes

ready for service. In a modern operating system, however, we need more sophisticated

interrupthandling features.

1. We need the ability to defer interrupt handling during critical processing.

2. We need an efficient way to dispatch to the proper interrupt handler for a device.

3. We need multilevel interrupts, so that the operating system can distinguish between high-
and low-priority interrupts and can respond with the appropriate degree of urgency

In modern computer hardware, these three features are provided by the CPU and the interrupt-

controller hardware.

Prepared by: Satyam K , AITS , MCA OS Notes Page 5

Most CPUs have two interrupt request lines. One is the nonmaskable interrupt, which is
reserved for events such as unrecoverable memory errors. The second interrupt line is

maskable: it can be turned off by the CPU before the execution of critical instruction sequences

that must not be interrupted. The maskable interrupt is used by device controllers to request

service. Recall that the purpose of a vectored interrupt mechanism is to reduce the need for a

single interrupt handler to search all possible sources of interrupts to determine which one
needs service. In practice, however, computers have more devices (and, hence, interrupt

handlers) than they have address elements in the interrupt vector. A common way to solve this

problem is to use interrupt chaining, in which each element in the interrupt vector points to

the head of a list of interrupt handlers. When an interrupt is raised, the handlers on the

corresponding list are called one by one, until one is found that can service the request. This

structure is a compromise between the overhead of a huge interrupt table and the inefficiency
of dispatching to a single interrupt handler. Figure 1.5 illustrates the design of the interrupt

vector for Intel processors. The events from 0 to 31, which are nonmaskable, are used to signal

various error conditions. The events from 32 to 255, which are maskable, are used for

purposes such as device-generated interrupts. The interrupt mechanism also implements a

system of interrupt priority levels. These levels enable the CPU to defer the handling of low-
priority interrupts without masking all interrupts and makes it possible for a high-priority

interrupt to preempt the execution of a low-priority interrupt.

Prepared by: Satyam K , AITS , MCA OS Notes Page 6

Storage Structure : The CPU can load instructions only from memory, so any programs must

first be loaded into memory to run. General-purpose computers run most of their programs

from rewritable memory, called main memory (also called random-access memory, or RAM).

 Main memory commonly is implemented in a semiconductor technology called dynamic

random-access memory (DRAM). Computers use other forms of memory as well. For example,

the first program to run on computer power-on is a bootstrap program, which then loads the

operating system. Since RAM is volatile—loses its content when power is turned off or

otherwise lost—we cannot trust it to hold the bootstrap program. Instead, for this and some
other purposes, the computer uses electrically erasable programmable read-only memory

(EEPROM) and other forms of firmwar —storage that is infrequently written to and is

nonvolatile. EEPROM can be changed but cannot be changed frequently. In addition, it is low

speed, and so it contains mostly static programs and data that aren’t frequently used. For

example, the iPhone uses EEPROM to store serial numbers and hardware information about
the device. All forms of memory provide an array of bytes. Each byte has its own address.

Interaction is achieved through a sequence of load or store instructions to specific memory

addresses. The load instruction moves a byte or word from main memory to an internal register

within the CPU, whereas the store instruction moves the content of a register to main memory.

Aside from explicit loads and stores, the CPU automatically loads instructions from main

memory for execution from the location stored in the program counter. A typical instruction–
execution cycle, as executed on a system with a von Neumann architecture, first fetches an

instruction from memory and stores that instruction in the instruction register. The instruction

is then decoded and may cause operands to be fetched from memory and stored in some

internal register. After the instruction on the operands has been executed, the result may be

stored back in memory. Notice that the memory unit sees only a stream of memory addresses.
It does not know how they are generated (by the instruction counter, indexing, indirection,

literal addresses, or some other means) or what they are for (instructions or data). Accordingly,

we can ignore how a memory address is generated by a program. We are interested only in the

sequence of memory addresses generated by the running program. Ideally, we want the

programs and data to reside in main memory permanently. This arrangement usually is not

possible on most systems for two reasons:

1. Main memory is usually too small to store all needed programs and data permanently.

2. Main memory, as mentioned, is volatile—it loses its contents when power is turned off or

otherwise lost

 Thus, most computer systems provide secondary storage as an extension of main memory.

The main requirement for secondary storage is that it be able to hold large quantities of data

permanently. The most common secondary-storage devices are hard-disk drives (HDDs) and

nonvolatile memory (NVM) devices, which provide storage for both programs and data. Most

programs (system and application) are stored in secondary storage until they are loaded into

memory. Many programs then use secondary storage as both the source and the destination of
their processing. Secondary storage is also much slower than main memory. Hence, the proper

management of secondary storage is of central importance to a computer system, as we discuss

in Chapter 11. In a larger sense, however, the storage structure that we have described —

consisting of registers, main memory, and secondary storage—is only one of many possible

storage system designs. Other possible components include cache memory, CD-ROM or blu-
ray, magnetic tapes, and so on. Those that are slow enough and large enough that they are

used only for special purposes — to store backup copies of material stored on other devices, for

example— are called tertiary storage. Each storage system provides the basic functions of

storing a datum and holding that datum until it is retrieved at a later time. The main

differences among the various storage systems lie in speed, size, and volatility.

Prepared by: Satyam K , AITS , MCA OS Notes Page 7

I/O Structure :

A large portion of operating system code is dedicated to managing I/O, both because of its

importance to the reliability and performance of a system and because of the varying nature of
the devices. Recall from the beginning of this section that a general-purpose computer system

consists of multiple devices, all of which exchange data via a common bus. The form of

interrupt-driven I/O described in Section 1.2.1 is fine for moving small amounts of data but

can produce high overhead when used for bulk data movement such as NVS I/O. To solve this

problem, direct memory access (DMA) is used. After setting up buffers, pointers, and counters

for the I/O device, the device controller transfers an entire block of data directly to or from the
device and main memory, with no intervention by the CPU. Only one interrupt is generated per

block, to tell the device driver that the operation has completed, rather than the one interrupt

per byte generated for low-speed devices. While the device controller is performing these

operations, the CPU is available to accomplish other work.

Computer-System Architecture:
A computer system can be organized in a number of different ways, which we can categorize

roughly according to the number of general-purpose processors used .

Single-Processor Systems:

Many years ago, most computer systems used a single processor containing one CPU with a

single processing core. The core is the component that executes instructions and registers for
storing data locally. The one main CPU with its core is capable of executing a general-purpose

instruction set, including instructions from processes.

Multiprocessor Systems :

On modern computers, from mobile devices to servers, multiprocessor systems now dominate

the landscape of computing. Traditionally, such systems have two (or more) processors, each

with a single-core CPU. The processors share the computer bus and sometimes the clock,

Prepared by: Satyam K , AITS , MCA OS Notes Page 8

memory, and peripheral devices. The primary advantage of multiprocessor systems is increased

throughput. That is, by increasing the number of processors, we expect to get more work done

in less time. The speed-up ratio with N processors is not N, however; it is less than N. When
multiple processors cooperate on a task, a certain amount of overhead is incurred in keeping

all the parts working correctly. This overhead, plus contention for shared resources, lowers the

expected gain from additional processors.

The most common multiprocessor systems use symmetric multiprocessing (SMP), in which

each peer CPU processor performs all tasks, including operating-system functions and user

processes.
The benefit of this model is that many processes can run simultaneously —N processes can

run if there are N CPUs—without causing performance to deteriorate significantly. However,

since the CPUs are separate, one may be sitting idle while another is overloaded, resulting in

inefficiencies. These inefficiencies can be avoided if the processors share certain data

structures. A multiprocessor system of this form will allow processes and resources—such as
memory— to be shared dynamically among the various processors and can lower the workload

variance among the processors.

In addition, one chip with multiple cores uses significantly less power than multiple single-core
chips, an important issue for mobile devices as well as laptops.

Clustered Systems :

Another type of multiprocessor system is a clustered system, which gathers together multiple

CPUs

Clustering is usually used to provide high-availability service— that is, service that will
continue even if one or more systems in the cluster fail. Generally, we obtain high availability

by adding a level of redundancy in the system.

Clustering can be structured asymmetrically or symmetrically. In asymmetric clustering, one

machine is in hot-standby mode while the other is running the applications. The hot-standby

host machine does nothing but monitor the active server. If that server fails, the hot-standby

host becomes the active server. In symmetric clustering, two or more hosts are running
applications and are monitoring each other. This structure is obviously more efficient, as it

uses all of the available hardware. However, it does require that more than one application be

available to run.

Operating-System Operations:

An operating system provides the environment within which programs are executed. Internally,

operating systems vary greatly, since they are organized along many different lines. There are,

however, many commonalities, which we consider in this section.

Prepared by: Satyam K , AITS , MCA OS Notes Page 9

For a computer to start running— for instance, when it is powered up or rebooted—it needs to

have an initial program to run. As noted earlier, this initial program, or bootstrap program,

tends to be simple. Typically, it is stored within the computer hardware in firmware. It
initializes all aspects of the system, from CPU registers to device controllers to memory

contents. The bootstrap program must know how to load the operating system and how to start

executing that system. To accomplish this goal, the bootstrap program must locate the

operating-system kernel and load it into memory.

Once the kernel is loaded and executing, it can start providing services to the system and its

users. Some services are provided outside of the kernel by system programs that are loaded
into memory at boot time to become system daemons, which run the entire time the kernel is

running. On Linux, the first system program is ―systemd,‖ and it starts many other daemons.

Once this phase is complete, the system is fully booted, and the system waits for some event to

occur.

If there are no processes to execute, no I/O devices to service, and no users to whom to
respond, an operating system will sit quietly, waiting for something to happen. Events are

almost always signaled by the occurrence of an interrupt. In Section 1.2.1 we described

hardware interrupts. Another form of interrupt is a trap (or an exception), which is a software-

generated interrupt caused either by an error (for example, division by zero or invalid memory

access) or by a specific request from a user program that an operating-system service be

performed by executing a special operation called a system call.
Multiprogramming and Multitasking:

One of the most important aspects of operating systems is the ability to run multiple programs,

as a single program cannot, in general, keep either the CPU or the I/O devices busy at all

times. Furthermore, users typically want to run more than one program at a time as well.

Multiprogramming increases CPU utilization, as well as keeping users satisfied, by organizing
programs so that the CPU always has one to execute. In a multiprogrammed system, a program

in execution is termed a process.

 The idea is as follows: The operating system keeps several processes in memory

simultaneously (Figure 1.12). The operating system picks and begins to execute one of these

processes. Eventually, the process may have to wait for some task, such as an I/O operation,
to complete. In a non-multiprogrammed system, the CPU would sit idle. In a multiprogrammed

system, the operating system simply switches to, and executes, another process. When that

process needs to wait, the CPU switches to another process, and so on. Eventually, the first

process finishes waiting and gets the CPU back. As long as at least one process needs to

execute, the CPU is never idle.
Multitasking is a logical extension of multiprogramming. In multitasking systems, the CPU

executes multiple processes by switching among them, but the switches occur frequently,

providing the user with a fast response time. Consider that when a process executes, it

typically executes for only a short time before it either finishes or needs to perform I/O. I/O

may be interactive; that is, output goes to a display for the user, and input comes from a user

keyboard, mouse, or touch screen. Since interactive I/O typically runs at ―people speeds,‖ it
may take a long time to complete. Input, for example, may be bounded by the user’s typing

speed; seven characters per second is fast for people but incredibly slow for computers. Rather

than let the CPU sit idle as this interactive input takes place, the operating system will rapidly

switch the CPU to another process.

Prepared by: Satyam K , AITS , MCA OS Notes Page 10

Dual-Mode and Multimode Operation:

 Since the operating system and its users share the hardware and software resources of the
computer system, a properly designed operating system must ensure that an incorrect (or

malicious) program cannot cause other programs —or the operating system itself— to execute

incorrectly. In order to ensure the proper execution of the system, we must be able to

distinguish between the execution of operating-system code and user-defined code. The

approach taken by most computer systems is to provide hardware support that allows

differentiation among various modes of execution.
At the very least, we need two separate modes of operation: user mode and kernel mode (also

called supervisor mode, system mode, or privileged mode). A bit, called the mode bit, is added

to the hardware of the computer to indicate the current mode: kernel (0) or user (1). With the

mode bit, we can distinguish between a task that is executed on behalf of the operating system

and one that is executed on behalf of the user. When the computer system is executing on
behalf of a user application, the system is in user mode. However, when a user application

requests a service from the operating system (via a system call), the system must transition

from user to kernel mode to fulfill the request. This is shown in Figure 1.13. As we shall see,

this architectural enhancement is useful for many other aspects of system operation as well.

Timer :

We must ensure that the operating system maintains control over the CPU. We cannot allow a

user program to get stuck in an infinite loop or to fail to call system services and never return
control to the operating system. To accomplish this goal, we can use a timer. A timer can be set

to interrupt the computer after a specified period. The period may be fixed (for example, 1/60

second) or variable (for example, from 1 millisecond to 1 second). A variable timer is generally

implemented by a fixed-rate clock and a counter. The operating system sets the counter. Every

time the clock ticks, the counter is decremented. When the counter reaches 0, an interrupt
occurs. For instance, a 10-bit counter with a 1-millisecond clock allows interrupts at intervals

from 1 millisecond to 1,024 milliseconds, in steps of 1 millisecond

Before turning over control to the user, the operating system ensures that the timer is set to

interrupt. If the timer interrupts, control transfers automatically to the operating system,

which may treat the interrupt as a fatal error or may give the program more time. Clearly,

instructions that modify the content of the timer are privileged.
Operating-System Services:

An operating system provides an environment for the execution of programs. It makes certain

services available to programs and to the users of those programs. The specific services

provided, of course, differ from one operating system to another, but we can identify common

Prepared by: Satyam K , AITS , MCA OS Notes Page 11

classes. Figure 2.1 shows one view of the various operating-system services and how they

interrelate. Note that these services also make the programming task easier for the

programmer.

User interface :
 Almost all operating systems have a user interface (UI). This interface can take several

forms. Most commonly, a graphical user interface (GUI) is used. Here, the interface is a window

system with a mouse that serves as a pointing device to direct I/O, choose from menus, and

make selections and a keyboard to enter text. Mobile systems such as phones and tablets

provide a touch-screen interface, enabling users to slide their fingers across the screen or press

buttons on the screen to select choices. Another option is a command-line interface (CLI),
which uses text commands and a method for entering them (say, a keyboard for typing in

commands in a specific format with specific options). Some systems provide two or all three of

these variations.

Program execution : The system must be able to load a program into memory and to run that

program. The program must be able to end its execution, either normally or abnormally

(indicating error).
I/O operations : A running program may require I/O, which may involve a file or an I/O device.

For specific devices, special functions may be desired (such as reading from a network interface

or writing to a file system). For efficiency and protection, users usually cannot control I/O

devices directly. Therefore, the operating system must provide a means to do I/O.

• File-system manipulation :
The file system is of particular interest. Obviously, programs need to read and write files and

directories. They also need to create and delete them by name, search for a given file, and list

file information. Finally, some operating systems include permissions management to allow or

deny access to files or directories based on file ownership. Many operating systems provide a

variety of file systems, sometimes to allow personal choice and sometimes to provide specific

features or performance characteristics.
Communications : There are many circumstances in which one process needs to exchange

information with another process. Such communication may occur between processes that are

executing on the same computer or between processes that are executing on different computer

systems tied together by a network. Communications may be implemented via shared memory,

in which two or more processes read and write to a shared section of memory, or message
passing, in which packets of information in predefined formats are moved between processes

by the operating system

Error detection : The operating system needs to be detecting and correcting errors constantly.

Errors may occur in the CPU and memory hardware (such as a memory error or a power

failure), in I/O devices (such as a parity error on disk, a connection failure on a network, or

lack of paper in the printer), and in the user program (such as an arithmetic overflow or an
attempt to access an illegal memory location). For each type of error, the operating system

should take the appropriate action to ensure correct and consistent computing. Sometimes, it

Prepared by: Satyam K , AITS , MCA OS Notes Page 12

has no choice but to halt the system. At other times, it might terminate an error-causing

process or return an error code to a process for the process to detect and possibly correct.

User and Operating-System Interface:
 We mentioned earlier that there are several ways for users to interface with the operating

system. Here, we discuss three fundamental approaches. One provides a command-line

interface, or command interpreter, that allows users to directly enter commands to be

performed by the operating system. The other two allow users to interface with the operating

system via a graphical user interface, or GUI.

Command Interpreters:
Most operating systems, including Linux, UNIX, and Windows, treat the command interpreter

as a special program that is running when a process is initiated or when a user first logs on (on

interactive systems). On systems with multiple command interpreters to choose from, the

interpreters are known as shells. For example, on UNIX and Linux systems, a user may choose

among several different shells, including the C shell, Bourne-Again shell, Korn shell, and
others. Third-party shells and free user-written shells are also available. Most shells provide

similar functionality, and a user’s choice of which shell to use is generally based on personal

preference. Figure 2.2 shows the Bourne-Again (or bash) shell command interpreter being used

on macOS.

 The main function of the command interpreter is to get and execute the next user-
specified command. Many of the commands given at this level manipulate files: create, delete,

list, print, copy, execute, and so on. The various shells available on UNIX systems operate in

this way. These commands can be implemented in two general ways.

In one approach, the command interpreter itself contains the code to execute the command.

For example, a command to delete a file may cause the command interpreter to jump to a
section of its code that sets up the parameters and makes the appropriate system call. In this

case, the number of commands that can be given determines the size of the command

interpreter, since each command requires its own implementing code.

An alternative approach—used by UNIX, among other operating systems —implements most

commands through system programs. In this case, the command interpreter does not

understand the command in any way; it merely uses the command to identify a file to be
loaded into memory and executed. Thus, the UNIX command to delete a file

rm file.txt

would search for a file called rm, load the file into memory, and execute it with the parameter

file.txt. The logic associated with the rm command would be defined completely by the code in

the file rm. In this way, programmers can add new commands to the system easily by creating
new files with the proper program logic. The command-interpreter program, which can be

small, does not have to be changed for new commands to be added.

Graphical User Interface :

A second strategy for interfacing with the operating system is through a userfriendly graphical

user interface, or GUI. Here, rather than entering commands directly via a command-line

interface, users employ a mouse-based windowand-menu system characterized by a desktop
metaphor. The user moves the mouse to position its pointer on images, or icons, on the screen

(the desktop) that represent programs, files, directories, and system functions. Depending on

the mouse pointer’s location, clicking a button on the mouse can invoke a program, select a file

or directory—known as a folder—or pull down a menu that contains commands.

Touch-Screen Interface :
Because a either a command-line interface or a mouse-and-keyboard system is impractical for

most mobile systems, smartphones and handheld tablet computers typically use a touch-

screen interface. Here, users interact by making gestures on the touch screen— for example,

pressing and swiping fingers across the screen. Although earlier smartphones included a

physical keyboard, most smartphones and tablets now simulate a keyboard on the touch

screen. Figure 2.3 illustrates the touch screen of the Apple iPhone. Both the iPad and the
iPhone use the Springboard touch-screen interface.

Prepared by: Satyam K , AITS , MCA OS Notes Page 13

System Calls :

 System calls provide an interface to the services made available by an operating system.

These calls are generally available as functions written in C and C++, although certain low-level
tasks (for example, tasks where hardware must be accessed directly) may have to be written

using assembly-language instructions.

Example :

Before we discuss how an operating system makes system calls available, let’s first use an

example to illustrate how system calls are used: writing a simple program to read data from

one file and copy them to another file. The first input that the program will need is the names
of the two files: the input file and the output file. These names can be specified in many ways,

depending on the operating-system design. One approach is to pass the names of the two files

as part of the command— for example, the UNIX cp command:

cp in.txt out.txt

 This command copies the input file in.txt to the output file out.txt. A second approach is for
the program to ask the user for the names. In an interactive system, this approach will require

a sequence of system calls, first to write a prompting message on the screen and then to read

from the keyboard the characters that define the two files. On mouse-based and icon-based

systems, a menu of file names is usually displayed in a window. The user can then use the

mouse to select the source name, and a window can be opened for the destination name to be

specified. This sequence requires many I/O system calls.

 Once the two file names have been obtained, the program must open the input file and

create and open the output file. Each of these operations requires another system call. Possible

error conditions for each system call must be handled. For example, when the program tries to

open the input file, it may find that there is no file of that name or that the file is protected
against access. In these cases, the program should output an error message (another sequence

of system calls) and then terminate abnormally (another system call). If the input file exists,

then we must create a new output file. We may find that there is already an output file with the

same name. This situation may cause the program to abort (a system call), or we may delete

the existing file (another system call) and create a new one (yet another system call). Another

option, in an interactive system, is to ask the user (via a sequence of system calls to output the
prompting message and to read the response from the terminal) whether to replace the existing

file or to abort the program.

 When both files are set up, we enter a loop that reads from the input file (a system call) and

writes to the output file (another system call). Each read and write must return status

information regarding various possible error conditions. On input, the program may find that
the end of the file has been reached or that there was a hardware failure in the read (such as a

parity error). The write operation may encounter various errors, depending on the output

device (for example, no more available disk space).

Prepared by: Satyam K , AITS , MCA OS Notes Page 14

 Another important factor in handling system calls is the run-time environment (RTE)— the

full suite of software needed to execute applications written in a given programming language,

including its compilers or interpreters as well as other software, such as libraries and loaders.
The RTE provides a system-call interface that serves as the link to system calls made available

by the operating system. The system-call interface intercepts function calls in the API and

invokes the necessary system calls within the operating system. Typically, a number is

associated with each system call, and the system-call interface maintains a table indexed

according to these numbers. The systemcall interface then invokes the intended system call in

the operating-system kernel and returns the status of the system call.

System calls occur in different ways, depending on the computer in use. Often, more

information is required than simply the identity of the desired system call. The exact type and
amount of information vary according to the particular operating system and call. For example,

to get input, we may need to specify the file or device to use as the source, as well as the

address and length of the memory buffer into which the input should be read. Of course, the

device or file and length may be implicit in the call.

 Three general methods are used to pass parameters to the operating system. The simplest

approach is to pass the parameters in registers. In some cases, however, there may be more

parameters than registers. In these cases, the parameters are generally stored in a block, or

table, in memory, and the address of the block is passed as a parameter in a register (Figure

2.7). Linux uses a combination of these approaches. If there are five or fewer parameters,

registers are used. If there are more than five parameters, the block method is used.
Parameters also can be placed, or pushed, onto a stack by the program and popped off the

stack by the operating system. Some operating systems prefer the block or stack method

because those approaches do not limit the number or length of parameters being passed.

Types of System Calls :

System calls can be grouped roughly into six major categories: process control, fil
management, device management, information maintenance, communications, and protection.

Below, we briefly discuss the types of system calls that may be provided by an operating

system. Most of these system calls support, or are supported by, concepts and functions that

are discussed in later chapters. Figure 2.8 summarizes the types of system calls normally

provided by an operating system. As mentioned, in this text, we normally refer to the system

calls by generic names. Throughout the text, however, we provide examples of the actual
counterparts to the system calls for UNIX, Linux, and Windows systems.

Process Control : A running program needs to be able to halt its execution either normally

(end()) or abnormally (abort()). If a system call is made to terminate the currently running

program abnormally, or if the program runs into a problem and causes an error trap, a dump

of memory is sometimes taken and an error message generated. The dump is written to a
special log file on disk and may be examined by a debugger—a system program designed to aid

the programmer in finding and correcting errors, or bugs— to determine the cause of the

problem. Under either normal or abnormal circumstances, the operating system must transfer

control to the invoking command interpreter.

• File management :

create file, delete file, open, close ,read, write, reposition, get file attributes, set file attributes

Prepared by: Satyam K , AITS , MCA OS Notes Page 15

• Device management :

request device, release device read, write, reposition

◦ get device attributes, set device attributes
◦ logically attach or detach devices

• Information maintenance :

◦ get time or date, set time or date

◦ get system data, set system data

◦ get process, file, or device attributes

◦ set process, file, or device attributes
• Communications :

◦ create, delete communication connection

◦ send, receive messages

◦ transfer status information

◦ attach or detach remote devices
• Protection

◦ get file permissions

◦ set file permissions

File Management:

We first need to be able to create() and delete() files. Either system call requires the name of the
file and perhaps some of the file’s attributes. Once the file is created, we need to open() it and

to use it. We may also read(), write(), or reposition() (rewind or skip to the end of the file, for

example). Finally, we need to close() the file, indicating that we are no longer using it.

We may need these same sets of operations for directories if we have a directory structure for

organizing files in the file system. In addition, for either files or directories, we need to be able
to determine the values of various attributes and perhaps to set them if necessary. File

attributes include the file name, file type, protection codes, accounting information, and so on.

At least two system calls, get file attributes() and set file attributes(), are required for this

function. Some operating systems provide many more calls, such as calls for file move() and

copy(). Others might provide an API that performs those operations using code and other

system calls, and others might provide system programs to perform the tasks. If the system
programs are callable by other programs, then each can be considered an API by other system

programs.

Device Management :

A process may need several resources to execute—main memory, disk drives, access to files,

and so on. If the resources are available, they can be granted, and control can be returned to

Prepared by: Satyam K , AITS , MCA OS Notes Page 16

the user process. Otherwise, the process will have to wait until sufficient resources are

available.

The various resources controlled by the operating system can be thought of as devices. Some of
these devices are physical devices (for example, disk drives), while others can be thought of as

abstract or virtual devices (for example, files). A system with multiple users may require us to

first request() a device, to ensure exclusive use of it. After we are finished with the device, we

release() it. These functions are similar to the open() and close() system calls for files. Other

operating systems allow unmanaged access to devices.

Information Maintenance :
Many system calls exist simply for the purpose of transferring information between the user

program and the operating system. For example, most systems have a system call to return the

current time() and date(). Other system calls may return information about the system, such as

the version number of the operating system, the amount of free memory or disk space, and so

on.
Another set of system calls is helpful in debugging a program. Many systems provide system

calls to dump() memory. This provision is useful for debugging. The program strace, which is

available on Linux systems, lists each system call as it is executed. Even microprocessors

provide a CPU mode, known as single step, in which a trap is executed by the CPU after every

instruction. The trap is usually caught by a debugger

Many operating systems provide a time profile of a program to indicate the amount of time that
the program executes at a particular location or set of locations. A time profile requires either a

tracing facility or regular timer interrupts. At every occurrence of the timer interrupt, the value

of the program counter is recorded. With sufficiently frequent timer interrupts, a statistical

picture of the time spent on various parts of the program can be obtained.

Communication :
There are two common models of interprocess communication: the messagepassing model and

the shared-memory model. In the message-passing model, the communicating processes

exchange messages with one another to trans-fer information. Messages can be exchanged

between the processes either directly or indirectly through a common mailbox. Before

communication can take place, a connection must be opened. The name of the other

communicator must be known, be it another process on the same system or a process on
another computer connected by a communications network. Each computer in a network has a

host name by which it is commonly known. A host also has a network identifier, such as an IP

address. Similarly, each process has a process name, and this name is translated into an

identifier by which the operating system can refer to the process. The get hostid() and get

processid() system calls do this translation. The identifiers are then passed to the
generalpurpose open() and close() calls provided by the file system or to specific open

connection() and close connection() system calls, depending on the system’s model of

communication. The recipient process usually must give its permission for communication to

take place with an accept connection() call. Most processes that will be receiving connections

are special-purpose daemons, which are system programs provided for that purpose. They

execute a wait for connection() call and are awakened when a connection is made. The source
of the communication, known as the client, and the receiving daemon, known as a server, then

exchange messages by using read message() and write message() system calls. The close

connection() call terminates the communication.

Protection :

Protection provides a mechanism for controlling access to the resources provided by a
computer system. Historically, protection was a concern only on multiprogrammed computer

systems with several users. However, with the advent of networking and the Internet, all

computer systems.

System Services :

System services, also known as system utilities, provide a convenient environment for program

development and execution. Some of them are simply user interfaces to system calls. Others
are considerably more complex. They can be divided into these categories:

Prepared by: Satyam K , AITS , MCA OS Notes Page 17

File management: These programs create, delete, copy, rename, print, list, and generally

access and manipulate files and directories.

Status information : Some programs simply ask the system for the date, time, amount of
available memory or disk space, number of users, or similar status information. Others are

more complex, providing detailed performance, logging, and debugging information. Typically,

these programs format and print the output to the terminal or other output devices or files or

display it in a window of the GUI. Some systems also support a registry, which is used to store

and retrieve configuration information.

File modification: Several text editors may be available to create and modify the content of
files stored on disk or other storage devices. There may also be special commands to search

contents of files or perform transformations of the text.

Programming-language support : Compilers, assemblers, debuggers, and interpreters for

common programming languages (such as C, C++, Java, and Python) are often provided with

the operating system or available as a separate download.
Program loading and execution : Once a program is assembled or compiled, it must be

loaded into memory to be executed. The system may provide absolute loaders, relocatable

loaders, linkage editors, and overlay loaders. Debugging systems for either higher-level

languages or machine language are needed as well.

Communications : These programs provide the mechanism for creating virtual connections

among processes, users, and computer systems. They allow users to send messages to one
another’s screens, to browse web pages, to send e-mail messages, to log in remotely, or to

transfer files from one machine to another.

Background services. : All general-purpose systems have methods for launching certain

system-program processes at boot time. Some of these processes terminate after completing

their tasks, while others continue torun until the system is halted. Constantly running system-
program processes are known as services, subsystems, or daemons.

Linkers and Loaders :

Usually, a program resides on disk as a binary executable file— for example, a.out or prog.exe.

To run on a CPU, the program must be brought into memory and placed in the context of a

process. In this section, we describe the steps in this procedure, from compiling a program to
placing it in memory, where it becomes eligible to run on an available CPU core.

Source files are compiled into object files that are designed to be loaded into any physical

memory location, a format known as an relocatable object fil . Next, the linker combines these

relocatable object files into a single binary executable file. During the linking phase, other

object files or libraries may be included as well, such as the standard C or math library.
A loader is used to load the binary executable file into memory, where it is eligible to run on a

CPU core. An activity associated with linking and loading is relocation, which assigns final

addresses to the program parts and adjusts code and data in the program to match those

addresses.

Prepared by: Satyam K , AITS , MCA OS Notes Page 18

Object files and executable files typically have standard formats that include the compiled

machine code and a symbol table containing metadata about functions and variables that are

referenced in the program. For UNIX and Linux systems, this standard format is known as ELF

(for Executable and Linkable Format). There are separate ELF formats for relocatable and

executable files. One piece of information in the ELF file for executable files is the program’s
entry point, which contains the address of the first instruction to be executed when the

program runs. Windows systems use the Portable Executable (PE) format, and macOS uses the

Mach-O format.

Operating Systems Specific Applications :

Fundamentally, applications compiled on one operating system are not executable on other

operating systems. If they were, the world would be a better place, and our choice of what
operating system to use would depend on utility and features rather than which applications

were available.

An application can be made available to run on multiple operating systems in one of three

ways:

• The application can be written in an interpreted language (such as Python or Ruby) that
has an interpreter available for multiple operating systems. The interpreter reads each line of

the source program, executes equivalent instructions on the native instruction set, and calls

native operating system calls. Performance suffers relative to that for native applications, and

the interpreter provides only a subset of each operating system’s features, possibly limiting the

feature sets of the associated applications.

• The application can be written in a language that includes a virtual machine containing
the running application. The virtual machine is part of the language’s full RTE. One example of

this method is Java. Java has an RTE that includes a loader, byte-code verifier, and other

components that load the Java application into the Java virtual machine. This RTE has been

Operating-System Structures ported, or developed, for many operating systems, from

mainframes to smartphones, and in theory any Java app can run within the RTE wherever it is
available. Systems of this kind have disadvantages similar to those of interpreters, discussed

above.

• The application developer can use a standard language or API in which the compiler

generates binaries in a machine- and operating-systemspecific language. The application must

be ported to each operating system on which it will run. This porting can be quite time

consuming and must be done for each new version of the application, with subsequent testing
and debugging. Perhaps the best-known example is the POSIX API and its set of standards for

maintaining source-code compatibility between different variants of UNIX-like operating

systems.

Prepared by: Satyam K , AITS , MCA OS Notes Page 19

Each operating system has a binary format for applications that dictates the layout of the

header, instructions, and variables. Those components need to be at certain locations in
specified structures within an executable file so the operating system can open the file and load

the application for proper execution.

There are some approaches that have helped address, though not completely solve, these

architectural differences. For example, Linux—and almost every UNIX system—has adopted the

ELF format for binary executable files. Although ELF provides a common standard across

Linux and UNIX systems, the ELF format is not tied to any specific computer architecture, so it
does not guarantee that an executable file will run across different hardware platforms.

Operating-System Design and Implementation :

The first problem in designing a system is to define goals and specifications. At the highest

level, the design of the system will be affected by the choice of hardware and the type of

system: traditional desktop/laptop, mobile, distributed, or real time.
Beyond this highest design level, the requirements may be much harder to specify. The

requirements can, however, be divided into two basic groups: user goals and system goals.

Users want certain obvious properties in a system. The system should be convenient to use,

easy to learn and to use, reliable, safe, and fast. Of course, these specifications are not

particularly useful in the system design, since there is no general agreement on how to achieve

them.
A similar set of requirements can be defined by the developers who must design, create,

maintain, and operate the system. The system should be easy to design, implement, and

maintain; and it should be flexible, reliable, error free, and efficient. Again, these requirements

are vague and may be interpreted in various ways.

Mechanisms and Policies :
One important principle is the separation of policy from mechanism. Mechanisms determine

how to do something; policies determine what will be done. For example, the timer construct

(see Section 1.4.3) is a mechanism for ensuring CPU protection, but deciding how long the

timer is to be set for a particular user is a policy decision.

The separation of policy and mechanism is important for flexibility. Policies are likely to change

across places or over time. In the worst case, each change in policy would require a change in
the underlying mechanism. A general mechanism flexible enough to work across a range of

policies is preferable. A change in policy would then require redefinition of only certain

parameters of the system. For instance, consider a mechanism for giving priority to certain

types of programs over others. If the mechanism is properly separated from policy, it can be

used either to support a policy decision that I/O-intensive programs should have priority over
CPU-intensive ones or to support the opposite policy.

Microkernel-based operating systems (discussed in Section 2.8.3) take the separation of

mechanism and policy to one extreme by implementing a basic set of primitive building blocks.

These blocks are almost policy free, allowing more advanced mechanisms and policies to be

added via user-created kernel modules or user programs themselves. In contrast, consider

Windows, an enormously popular commercial operating system available for over three
decades. Microsoft has closely encoded both mechanism and policy into the system to enforce a

global look and feel across all devices that run the Windows operating system. All applications

have similar interfaces, because the interface itself is built into the kernel and system libraries.

Apple has adopted a similar strategy with its macOS and iOS operating systems.

Implementation :
Once an operating system is designed, it must be implemented. Because operating systems are

collections of many programs, written by many people over a long period of time, it is difficult

to make general statements about how they are implemented.

Early operating systems were written in assembly language. Now, most are written in higher-

level languages such as C or C++, with small amountsof the system written in assembly
language. In fact, more than one higherlevel language is often used. The lowest levels of the

kernel might be written in assembly language and C. Higher-level routines might be written in

Prepared by: Satyam K , AITS , MCA OS Notes Page 20

C and C++, and system libraries might be written in C++ or even higher-level languages.

Android provides a nice example: its kernel is written mostly in C with some assembly

language. Most Android system libraries are written in C or C++, and its application
frameworks—which provide the developer interface to the system—are written mostly in Java.

The only possible disadvantages of implementing an operating system in a higher-level

language are reduced speed and increased storage requirements. This, however, is not a major

issue in today’s systems. Although an expert assembly-language programmer can produce

efficient small routines, for large programs a modern compiler can perform complex analysis

and apply sophisticated optimizations that produce excellent code. Modern processors have
deep pipelining and multiple functional units that can handle the details of complex

dependencies much more easily than can the human mind.

Operating-System Structure :

The simplest structure for organizing an operating system is no structure at all. That is, place

all of the functionality of the kernel into a single, static binary file that runs in a single address
space. This approach—known as a monolithic structure—is a common technique for designing

operating systems.

An example of such limited structuring is the original UNIX operating system, which consists of

two separable parts: the kernel and the system programs. The kernel is further separated into

a series of interfaces and device drivers, which have been added and expanded over the years

as UNIX has evolved. We can view the traditional UNIX operating system as being layered to
some extent, as shown in Figure 2.12. Everything below the system-call interface and above

the physical hardware is the kernel. The kernel provides the file system, CPU scheduling,

memory management, and other operatingsystem functions through system calls. Taken in

sum, that is an enormous amount of functionality to be combined into one single address

space.
The Linux operating system is based on UNIX and is structured similarly, as shown in Figure

2.13. Applications typically use the glibc standard C library when communicating with the

system call interface to the kernel. The Linux kernel is monolithic in that it runs entirely in

kernel mode in a single address space, but as we shall see in Section 2.8.4, it does have a

modular design that allows the kernel to be modified during run time.

Despite the apparent simplicity of monolithic kernels, they are difficult to implement and
extend. Monolithic kernels do have a distinct performance advantage, however: there is very

little overhead in the system-call interface, and communication within the kernel is fast.

Therefore, despite the drawbacksof monolithic kernels, their speed and efficiency explains why

we still see evidence of this structure in the UNIX, Linux, and Windows operating systems.

Layered Approach :

The monolithic approach is often known as a tightly coupled system because changes to one

part of the system can have wide-ranging effects on other parts. Alternatively, we could design
a loosely coupled system. Such a system is divided into separate, smaller components that

Prepared by: Satyam K , AITS , MCA OS Notes Page 21

have specific and limited functionality. All these components together comprise the kernel. The

advantage of this modular approach is that changes in one component affect only that

component, and no others, allowing system implementers more freedom in creating and
changing the inner workings of the system.

A system can be made modular in many ways. One method is the layered approach, in which

the operating system is broken into a number of layers (levels). The bottom layer (layer 0) is the

hardware; the highest (layer N) is the user interface. This layering structure is depicted in

Figure 2.14.

An operating-system layer is an implementation of an abstract object made up of data and the
operations that can manipulate those data. A typical operating-system layer—say, layer M—

consists of data structures and a set of functions that can be invoked by higher-level layers.

Layer M, in turn, can invoke operations on lower-level layers.

The main advantage of the layered approach is simplicity of construction and debugging.

This approach simplifies debugging and system verification. The first layer can be debugged

without any concern for the rest of the system, because, by definition, it uses only the basic

hardware (which is assumed correct) to implement its functions. Once the first layer is
debugged, its correct functioning can be assumed while the second layer is debugged, and so

on. If an error is found during the debugging of a particular layer, the error must be on that

layer, because the layers below it are already debugged. Thus, the design and implementation

of the system are simplified.

Microkernels :

We have already seen that the original UNIX system had a monolithic structure. As UNIX
expanded, the kernel became large and difficult to manage. In the mid-1980s, researchers at

Carnegie Mellon University developed an operating system called Mach that modularized the

kernel using the microkernel approach. This method structures the operating system by

removingall nonessential components from the kernel and implementing them as userlevel

programs that reside in separate address spaces. The result is a smaller kernel. There is little
consensus regarding which services should remain in the kernel and which should be

implemented in user space. Typically, however, microkernels provide minimal process and

memory management, in addition to a communication facility. Figure 2.15 illustrates the

architecture of a typical microkernel.

Prepared by: Satyam K , AITS , MCA OS Notes Page 22

Building and Booting an Operating System :

It is possible to design, code, and implement an operating system specifically for one specific

machine configuration. More commonly, however, operating systems are designed to run on

any of a class of machines with a variety of peripheral configurations.
Operating-System Generation :

Most commonly, a computer system, when purchased, has an operating system already

installed. For example, you may purchase a new laptop with Windows or macOS preinstalled.

But suppose you wish to replace the preinstalled operating system or add additional operating

systems. Or suppose you purchase a computer without an operating system. In these latter

situations, you have a few options for placing the appropriate operating system on the
computer and configuring it for use.

If you are generating (or building) an operating system from scratch, you must follow these

steps:

1. Write the operating system source code (or obtain previously written source code).

2. Configure the operating system for the system on which it will run.
3. Compile the operating system.

4. Install the operating system.

5. Boot the computer and its new operating system

However, most modern operating systems that support desktop and laptop computers as well

as mobile devices have adopted the second approach. That is, the operating system is still

generated for a specific hardware configuration, but the use of techniques such as loadable
kernel modules provides modular support for dynamic changes to the system.

We now illusrate how to build a Linux system from scratch, where it is typically necessary to

perform the following steps:

1. Download the Linux source code from http://www.kernel.org.

2. Configure the kernel using the ―make menuconfig‖ command. This step generates the .config
configuration file.

3. Compile the main kernel using the ―make‖ command. The make command compiles the

kernel based on the configuration parameters identified in the .config file, producing the file

vmlinuz, which is the kernel image

4. Compile the kernel modules using the ―make modules‖ command. Just as with compiling

the kernel, module compilation depends on the configuration parameters specified in the
.config file.

5. Use the command ―make modules install‖ to install the kernel modules into vmlinuz.

6. Install the new kernel on the system by entering the ―make install‖ command.

System Boot :

After an operating system is generated, it must be made available for use by the hardware. But
how does the hardware know where the kernel is or how to load that kernel? The process of

starting a computer by loading the kernel is known as booting the system. On most systems,

the boot process proceeds as follows:

1. A small piece of code known as the bootstrap program or boot loader locates the kernel.

2. The kernel is loaded into memory and started.

http://www.kernel.org/

Prepared by: Satyam K , AITS , MCA OS Notes Page 23

3. The kernel initializes hardware.

4. The root file system is mounted

Some computer systems use a multistage boot process: When the computer is first powered on,
a small boot loader located in nonvolatile firmware known as BIOS is run. This initial boot

loader usually does nothing more than load a second boot loader, which is located at a fixed

disk location called the boot block. The program stored in the boot block may be sophisticated

enough to load the entire operating system into memory and begin its execution. More

typically, it is simple code (as it must fit in a single disk block) and knows only the address on

disk and the length of the remainder of the bootstrap program.

 Many recent computer systems have replaced the BIOS-based boot process with UEFI

(Unified Extensible Firmware Interface). UEFI has several advantages over BIOS, including

better support for 64-bit systems and larger disks. Perhaps the greatest advantage is that UEFI

is a single, complete boot manager and therefore is faster than the multistage BIOS boot
process.

The boot process for mobile systems is slightly different from that for traditional PCs. For

example, although its kernel is Linux-based, Android does not use GRUB and instead leaves it

up to vendors to provide boot loaders. The most common Android boot loader is LK (for ―little

kernel‖). Android systems use the same compressed kernel image as Linux, as well as an initial

RAM file system. However, whereas Linux discards the initramfs once all necessary drivers
have been loaded, Android maintains initramfs as the root file system for the device. Once the

kernel has been loaded and the root file system mounted, Android starts the init process and

creates a number of services before displaying the home screen.

Finally, boot loaders for most operating systems—including Windows, Linux, and macOS, as

well as both iOS and Android—provide booting into recovery mode or single-user mode for
diagnosing hardware issues, fixing corrupt file systems, and even reinstalling the operating

system.

Operating-System Debugging :

 Debugging is the activity of finding and fixing errors in a system, both in hardware and in

software. Performance problems are considered bugs, so debugging can also include

performance tuning, which seeks to improve performance by removing processing bottlenecks.
Failure Analysis :

If a process fails, most operating systems write the error information to a log fil to alert system

administrators or users that the problem occurred. The operating system can also take a core

dump—a capture of the memory of the process—and store it in a file for later analysis.

(Memory was referred to as the―core‖ in the early days of computing.) Running programs and
core dumps can be probed by a debugger, which allows a programmer to explore the code and

memory of a process at the time of failure.

Debugging user-level process code is a challenge. Operating-system kernel debugging is even

more complex because of the size and complexity of the kernel, its control of the hardware, and

the lack of user-level debugging tools. A failure in the kernel is called a crash. When a crash

occurs, error information is saved to a log file, and the memory state is saved to a crash dump.
Operating-system debugging and process debugging frequently use different tools and

techniques due to the very different nature of these two tasks. Consider that a kernel failure in

the file-system code would make it risky for the kernel to try to save its state to a file on the file

system before rebooting. A common technique is to save the kernel’s memory state to a section

of disk set aside for this purpose that contains no file system. If the kernel detects an
unrecoverable error, it writes the entire contents of memory, or at least the kernel-owned parts

of the system memory, to the disk area. When the system reboots, a process runs to gather the

data from that area and write it to a crash dump file within a file system for analysis.

Obviously, such strategies would be unnecessary for debugging ordinary user-level

processes.Performance Monitoring and Tuning :

We mentioned earlier that performance tuning seeks to improve performance by removing
processing bottlenecks. To identify bottlenecks, we must be able to monitor system

performance. Thus, the operating system must have some means of computing and displaying

Prepared by: Satyam K , AITS , MCA OS Notes Page 24

measures of system behavior. Tools may be characterized as providing either per-process or

system-wide observations. To make these observations, tools may use one of two approaches—

counters or tracing.
Counters :

Operating systems keep track of system activity through a series of counters, such as the

number of system calls made or the number of operations performed to a network device or

disk. The following are examples of Linux tools that use counters

Per-Process :

ps—reports information for a single process or selection of processes •
top—reports real-time statistics for current processes

System-Wide:

vmstat—reports memory-usage statistics •

netstat—reports statistics for network interfaces

iostat—reports I/O usage for disks
Most of the counter-based tools on Linux systems read statistics from the /proc file system.

/proc is a ―pseudo‖ file system that exists only in kernel memory and is used primarily for

querying various per-process as well as kernel statistics. The /proc file system is organized as

a directory hierarchy, with the process (a unique integer value assigned to each process)

appearing as a subdirectory below /proc. For example, the directory entry /proc/2155 would

contain per-process statistics for the process with an ID of 2155. There are /proc entries for
various kernel statistics as well. In both this chapter and Chapter 3, we provide programming

projects where you will create and access the /proc file system.

Tracing :

Whereas counter-based tools simply inquire on the current value of certain statistics that are

maintained by the kernel, tracing tools collect data for a specific event—such as the steps
involved in a system-call invocation. The following are examples of Linux tools that trace

events:

Per-Process • strace— traces system calls invoked by a process

gdb—a source-level debugger

System-Wide • perf—a collection of Linux performance tools

tcpdump—collects network packets
Making operating systems easier to understand, debug, and tune as they run is an active area

of research and practice. A new generation of kernelenabled performance analysis tools has

made significant improvements in how this goal can be achieved. Next, we discuss BCC, a

toolkit for dynamic kernel tracing in Linux.

BCC : Debugging the interactions between user-level and kernel code is nearly impossible
without a toolset that understands both sets of code and can instrument their interactions. For

that toolset to be truly useful, it must be able to debug any area of a system, including areas

that were not written with debugging in mind, and do so without affecting system reliability.

This toolset must also have a minimal performance impact—ideally it should have no impact

when not in use and a proportional impact during use. The BCC toolkit meets these

requirements and provides a dynamic, secure, low-impact debugging environment.
BCC (BPF Compiler Collection) is a rich toolkit that provides tracing features for Linux

systems. BCC is a front-end interface to the eBPF (extended Berkeley Packet Filter) tool. The

BPF technology was developed in the early 1990s for filtering traffic across a computer

network. The ―extended‖ BPF (eBPF) added various features to BPF. eBPF programs are written

in a subset of C and are compiled into eBPF instructions, which can be dynamically inserted
into a running Linux system. The eBPF instructions can be used to capture specific events

(such as a certain system call being invoked) or to monitor system performance (such as the

time required to perform disk I/O). To ensure that eBPF instructions are well behaved, they are

passed through a verifie before being inserted into the running Linux kernel. The verifier

checks to make sure that the instructions do not affect system performance or security

Prepared by: Satyam K , AITS , MCA OS Notes Page 25

UNIT-II

The Process :
Informally, as mentioned earlier, a process is a program in execution. The status of the current

activity of a process is represented by the value of the program counter and the contents of the

processor’s registers. The memory layout of a process is typically divided into multiple sections,

and is shown in Figure 3.1. These sections include:

Text section— the executable code

Data section—global variables
Heap section—memory that is dynamically allocated during program run time

Stack section— temporary data storage when invoking functions (such as function parameters,

return addresses, and local variables)

Notice that the sizes of the text and data sections are fixed, as their sizes do not change during

program run time. However, the stack and heap sections can shrink and grow dynamically
during program execution. Each time a function is called, an activation record containing

function parameters, local variables, and the return address is pushed onto the stack; when

control is returned from the function, the activation record is popped from the stack. Similarly,

the heap will grow as memory is dynamically allocated, and will shrink when memory is

returned to the system. Although the stack and heap sections grow toward one another, the

operating system must ensure they do not overlap one another.
We emphasize that a program by itself is not a process. A program is a passive entity, such as

a file containing a list of instructions stored on disk (often called an executable fil). In contrast,

a process is an active entity, with a program counter specifying the next instruction to execute

and a set of associated resources. A program becomes a process when an executable file is

loaded into memory. Two common techniques for loading executable files are double-clicking
an icon representing the executable file and entering the name of the executable file on the

command line (as in prog.exe or a.out).

Although two processes may be associated with the same program, they are nevertheless

considered two separate execution sequences. For instance, several users may be running

different copies of the mail program, or the same user may invoke many copies of the web

browser program. Each of these is a separate process; and although the text sections are
equivalent, the data, heap, and stack sections vary. It is also common to have a process that

spawns many processes as it runs. We discuss such matters in Section 3.4.

Note that a process can itself be an execution environment for other code. The Java

programming environment provides a good example. In most circumstances, an executable

Java program is executed within the Java virtual machine (JVM). The JVM executes as a
process that interprets the loaded Java code and takes actions (via native machine

instructions) on behalf of that code. For example, to run the compiled Java program

Program.class, we would enter

java Program

Process State :

As a process executes, it changes state. The state of a process is defined in part by the current
activity of that process. A process may be in one of the following states:

Prepared by: Satyam K , AITS , MCA OS Notes Page 26

.New. The process is being created.

• Running. Instructions are being executed.

• Waiting. The process is waiting for some event to occur (such as an I/O completion or
reception of a signal).

• Ready. The process is waiting to be assigned to a processor.

Terminated. The process has finished execution.

Process Control Block :

Each process is represented in the operating system by a process control block (PCB)—also

called a task control block.
It contains many pieces of information associated with a specific process, including these:

Process state:The state may be new, ready, running, waiting, halted, and so on.

Program counter: The counter indicates the address of the next instruction to be executed for

this process.

CPU registers: The registers vary in number and type, depending on the computer architecture.

They include accumulators, index registers, stack pointers, and general-purpose registers, plus
any condition-code information. Along with the program counter, this state information must

be saved when an interrupt occurs, to allow the process to be continued correctly afterward

when it is rescheduled to run.

• CPU-scheduling information: This information includes a process priority, pointers to

scheduling queues, and any other scheduling parameters.
Memory-management information: This information may include such items as the value of the

base and limit registers and the page tables, or the segment tables, depending on the memory

system used by the operating system

Accounting information: This information includes the amount of CPU and real time used, time

limits, account numbers, job or process numbers, and so on.

I/O status information: This information includes the list of I/O devices allocated to the
process, a list of open files, and so on.

Threads :

The process model discussed so far has implied that a process is a program that performs a

single thread of execution. For example, when a process is running a word-processor program,

a single thread of instructions is being executed.
Process Scheduling :

The objective of multiprogramming is to have some process running at all times so as to

maximize CPU utilization. The objective of time sharing is to switch a CPU core among

processes so frequently that users can interact with each program while it is running. To meet

these objectives, the process scheduler selects an available process (possibly from a set of

several available processes) for program execution on a core. Each CPU core can run one
process at a time.

Prepared by: Satyam K , AITS , MCA OS Notes Page 27

For a system with a single CPU core, there will never be more than one process running at a
time, whereas a multicore system can run multiple processes at one time. If there are more

processes than cores, excess processes will have to wait until a core is free and can be

rescheduled. The number of processes currently in memory is known as the degree of

multiprogramming.

Balancing the objectives of multiprogramming and time sharing also requires taking the

general behavior of a process into account. In general, most processes can be described as
either I/O bound or CPU bound. An I/O-bound process is one that spends more of its time

doing I/O than it spends doing computations. A CPU-bound process, in contrast, generates

I/O requests infrequently, using more of its time doing computations.

Scheduling Queues :

As processes enter the system, they are put into a ready queue, where they are ready and
waiting to execute on a CPU’s core This queue is generally stored as a linked list; a ready-

queue header contains pointers to the first PCB in the list, and each PCB includes a pointer

field that points to the next PCB in the ready queue.

The system also includes other queues. When a process is allocated a CPU core, it executes for

a while and eventually terminates, is interrupted, or waits for the occurrence of a particular

event, such as the completion of an I/O request. Suppose the process makes an I/O request to

Prepared by: Satyam K , AITS , MCA OS Notes Page 28

a device such as a disk. Since devices run significantly slower than processors, the process will

have to wait for the I/O to become available. Processes that are waiting for a certain event to

occur — such as completion of I/O — are placed in a wait queue
A common representation of process scheduling is a queueing diagram, such as that in Figure

3.5. Two types of queues are present: the ready queue and a set of wait queues. The circles

represent the resources that serve the queues, and the arrows indicate the flow of processes in

the system.

A new process is initially put in the ready queue. It waits there until it is selected for execution,

or dispatched. Once the process is allocated a CPU core and is executing, one of several events

could o

•The process could issue an I/O request and then be placed in an I/O wait queue.
• The process could create a new child process and then be placed in a wait queue while it

awaits the child’s termination

• The process could be removed forcibly from the core, as a result of an

CPU Scheduling :

A process migrates among the ready queue and various wait queues throughout its lifetime.

The role of the CPU scheduler is to select from among the processes that are in the ready
queue and allocate a CPU core to one of them. The CPU scheduler must select a new process

for the CPU frequently. An I/O-bound process may execute for only a few milliseconds before

waiting for an I/O request. Although a CPU-bound process will require a CPU core for longer

durations, the scheduler is unlikely to grant the core to a process for an extended period.

Instead, it is likely designed to forcibly remove the CPU from a process and schedule another
process to run. Therefore, the CPU scheduler executes at least once every 100 milliseconds,

although typically much more frequently.

Some operating systems have an intermediate form of scheduling, known as swapping, whose

key idea is that sometimes it can be advantageous to remove a process from memory (and from

active contention for the CPU) and thus reduce the degree of multiprogramming. Later, the
process can be reintroduced into memory, and its execution can be continued where it left off.

This scheme is known as swapping because a process can be ―swapped outrom memory to

disk, where its current status is saved, and later ―swapped in‖ from disk back to memory,

where its status is restored. Swapping is typically only necessary when memory has been

overcommitted and must be freed up.
CPU Scheduler :

Whenever the CPU becomes idle, the operating system must select one of the processes in the

ready queue to be executed. The selection process is carried out by the CPU scheduler, which

selects a process from the processes in memory that are ready to execute and allocates the

CPU to that process.

Note that the ready queue is not necessarily a first-in, first-out (FIFO) queue. As we shall see
when we consider the various scheduling algorithms, a ready queue can be implemented as a

FIFO queue, a priority queue, a tree, or simply an unordered linked list. Conceptually,

however, all the processes in the ready queue are lined up waiting for a chance to run on the

CPU. The records in the queues are generally process control blocks (PCBs) of the processes.

Preemptive and Nonpreemptive Scheduling :

Prepared by: Satyam K , AITS , MCA OS Notes Page 29

CPU-scheduling decisions may take place under the following four circumstances:

1. When a process switches from the running state to the waiting state (for example, as the

result of an I/O request or an invocation of wait() for the termination of a child process)
2. When a process switches from the running state to the ready state (for example, when an

interrupt occurs)

3. When a process switches from the waiting state to the ready state (for example, at

completion of I/O)

4. When a process terminates

When scheduling takes place only under circumstances 1 and 4, we say that the scheduling
scheme is nonpreemptive or cooperative. Otherwise, it is preemptive. Under nonpreemptive

scheduling, once the CPU has been allocated to a process, the process keeps the CPU until it

releases it either by terminating or by switching to the waiting state. Virtually all modern

operating systems including Windows, macOS, Linux, and UNIX use preemptive scheduling

algorithms.
Unfortunately, preemptive scheduling can result in race conditions when data are shared

among several processes. Consider the case of two processes that share data. While one

process is updating the data, it is preempted so that the second process can run. The second

process then tries to read the data, which are in an inconsistent state.

Scheduling Criteria :

Different CPU-scheduling algorithms have different properties, and the choice of a particular
algorithm may favor one class of processes over another. In choosing which algorithm to use in

a particular situation, we must consider the properties of the various algorithms.

Many criteria have been suggested for comparing CPU-scheduling algorithms. Which

characteristics are used for comparison can make a substantial difference in which algorithm

is judged to be best. The criteria include the following:
• CPU utilization: We want to keep the CPU as busy as possible. Conceptually, CPU utilization

can range from 0 to 100 percent. In a real system, it should range from 40 percent (for a lightly

loaded system) to 90 percent (for a heavily loaded system). (CPU utilization can be obtained by

using the top command on Linux, macOS, and UNIX systems.)

• Throughput: If the CPU is busy executing processes, then work is being done. One measure

of work is the number of processes that are completed per time unit, called throughput. For
long processes, this rate may be one process over several seconds; for short transactions, it

may be tens of processes per second.

Turnaround time :From the point of view of a particular process, the important criterion is how

long it takes to execute that process. The interval from the time of submission of a process to

the time of completion is the turnaround time. Turnaround time is the sum of the periods
spent waiting in the ready queue, executing on the CPU, and doing I/O.

Waiting time :The CPU-scheduling algorithm does not affect the amount of time during which a

process executes or does I/O. It affects only the amount of time that a process spends waiting

in the ready queue. Waiting time is the sum of the periods spent waiting in the ready queue.

Response time :In an interactive system, turnaround time may not be the best criterion. Often,

a process can produce some output fairly early and can continue computing new results while
previous results are being output to the user. Thus, another measure is the time from the

submission of a request until the first response is produced. This measure, called response

time, is the time it takes to start responding, not the time it takes to output the response.

Scheduling Algorithms :

CPU scheduling deals with the problem of deciding which of the processes in the ready queue
is to be allocated the CPU’s core. There are many different CPUscheduling algorithms. In this

section, we describe several of them. Although most modern CPU architectures have multiple

processing cores, we describe these scheduling algorithms in the context of only one processing

core available. That is, a single CPU that has a single processing core, thus the system

iscapable of only running one process at a time.

First-Come, First-Served Scheduling :
By far the simplest CPU-scheduling algorithm is the first-come first-serve (FCFS) scheduling

algorithm. With this scheme, the process that requests the CPU first is allocated the CPU first.

Prepared by: Satyam K , AITS , MCA OS Notes Page 30

The implementation of the FCFS policy is easily managed with a FIFO queue. When a process

enters the ready queue, its PCB is linked onto the tail of the queue. When the CPU is free, it is

allocated to the process at the head of the queue. The running process is then removed from
the queue. The code for FCFS scheduling is simple to write and understand.

On the negative side, the average waiting time under the FCFS policy is often quite long.

Consider the following set of processes that arrive at time 0, with the length of the CPU burst

given in milliseconds.

If the processes arrive in the order P1, P2, P3, and are served in FCFS order, we get the result
shown in the following Gantt chart, which is a bar chart that illustrates a particular schedule,

including the start and finish times of each of the participating processes:

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction is substantial.

Thus, the average waiting time under an FCFS policy is generally not minimal and may vary

substantially if the processes’ CPU burst times vary greatly.
In addition, consider the performance of FCFS scheduling in a dynamic situation. Assume we

have one CPU-bound process and many I/O-bound processes. As the processes flow around

the system, the following scenario may result. The CPU-bound process will get and hold the

CPU. During this time, all the other processes will finish their I/O and will move into the ready

queue, waiting for the CPU.
Shortest-Job-First Scheduling :

A different approach to CPU scheduling is the shortest-job-firs (SJF) scheduling algorithm. This

algorithm associates with each process the length of the process’s next CPU burst. When the

CPU is available, it is assigned to the process that has the smallest next CPU burst. If the next

CPU bursts of two processes are the same, FCFS scheduling is used to break the tie. Note that

a more appropriate term for this scheduling method would be the shortest-next-CPU-burst
algorithm, because scheduling depends on the length of the next CPU burst of a process,

rather than its total length. We use the term SJF because most people and textbooks use this

term to refer to this type of scheduling.

before a long one decreases the waiting time of the short process more than it increases the

waiting time of the long process. Consequently, the average waiting time decreases.

Prepared by: Satyam K , AITS , MCA OS Notes Page 31

Although the SJF algorithm is optimal, it cannot be implemented at the level of CPU

scheduling, as there is no way to know the length of the next CPU burst. One approach to this

problem is to try to approximate SJF scheduling. We may not know the length of the next CPU
burst, but we may be able to predict its value. We expect that the next CPU burst will be

similar in length to the previous ones. By computing an approximation of the length of the next

CPU burst, we can pick the process with the shortest predicted CPU burst.

The next CPU burst is generally predicted as an exponential average of the measured lengths of

previous CPU bursts. We can define the exponential average with the following formula. Let tn

be the length of the nth CPU burst, and let τn+1 be our predicted value for the next CPU burst.
Then, for α, 0 ≤ α ≤ 1, define

τn+1 = α tn + (1 − α)τn.

The value of tn contains our most recent information, while τn stores the past history. The

parameter α controls the relative weight of recent and past history in our prediction. If α = 0,

then τn+1 = τn, and recent history has no effect (current conditions are assumed to be
transient). If α = 1, then τn+1 = tn, and only the most recent CPU burst matters (history is

assumed to be old and irrelevant). More commonly, α = 1/2, so recent history and past history

are equally weighted. The initial τ0 can be defined as a constant or as an overall system

average. Figure 5.4 shows an exponential average with α = 1/2 and τ0 = 10.

To understand the behavior of the exponential average, we can expand the formula for τn+1 by
substituting for τn to find

τn+1 = αtn + (1 − α)αtn−1 +···+ (1 − α) j αtn−j +···+ (1 − α) n+1 τ0.

Typically, α is less than 1. As a result, (1 − α) is also less than 1, and each successive term has

less weight than its predecessor.

The SJF algorithm can be either preemptive or nonpreemptive. The choice arises when a new
process arrives at the ready queue while a previous process is still executing. The next CPU

burst of the newly arrived process may be shorter than what is left of the currently executing

process. A preemptive SJF algorithm will preempt the currently executing process, whereas a

nonpreemptive SJF algorithm will allow the currently running process to finish its CPU burst.

Preemptive SJF scheduling is sometimes called shortest-remainingtime-firs scheduling.

Prepared by: Satyam K , AITS , MCA OS Notes Page 32

Round-Robin Scheduling :
The round-robin (RR) scheduling algorithm is similar to FCFS scheduling, but preemption is

added to enable the system to switch between processes. A small unit of time, called a time

quantum or time slice, is defined. A time quantum is generally from 10 to 100 milliseconds in

length. The ready queue is treated as a circular queue. The CPU scheduler goes around the

ready queue, allocating the CPU to each process for a time interval of up to 1 time quantum.

To implement RR scheduling, we again treat the ready queue as a FIFO queue of processes.
New processes are added to the tail of the ready queue.

The CPU scheduler picks the first process from the ready queue, sets a timer to interrupt after

1 time quantum, and dispatches the process.

One of two things will then happen. The process may have a CPU burst of less than 1 time

quantum. In this case, the process itself will release the CPU voluntarily. The scheduler will
then proceed to the next process in the ready queue. If the CPU burst of the currently running

process is longer than 1 time quantum, the timer will go off and will cause an interrupt to the

operating system. A context switch will be executed, and the process will be put at the tail of

the ready queue. The CPU scheduler will then select the next process in the ready queue.

The average waiting time under the RR policy is often long. Consider the following set of

processes that arrive at time 0, with the length of the CPU burst given in milliseconds:

Prepared by: Satyam K , AITS , MCA OS Notes Page 33

number of context switches. Assume, for example, that we have only one process of 10 time

units. If the quantum is 12 time units, the process finishes in less than 1 time quantum, with

no overhead. If the quantum is 6 time units, however, the process requires 2 quanta, resulting
in a context switch. If the time quantum is 1 time unit, then nine context switches will occur,

slowing the execution of the process accordingly (Figure 5.5).

Thus, we want the time quantum to be large with respect to the contextswitch time. If the

context-switch time is approximately 10 percent of the time quantum, then about 10 percent of

the CPU time will be spent in context switching. In practice, most modern systems have time

quanta ranging from 10 to 100 milliseconds. The time required for a context switch is typically
less than 10 microseconds; thus, the context-switch time is a small fraction of the time

quantum.

Priority Scheduling :

The SJF algorithm is a special case of the general priority-scheduling algorithm. A priority is

associated with each process, and the CPU is allocated to the process with the highest priority.

Equal-priority processes are scheduled in FCFS order. An SJF algorithm is simply a priority
algorithm where the priority (p) is the inverse of the (predicted) next CPU burst. The larger the

CPU burst, the lower the priority, and vice versa.

Note that we discuss scheduling in terms of high priority and low priority. Priorities are

generally indicated by some fixed range of numbers, such as 0 to 7 or 0 to 4,095. However,

there is no general agreement on whether 0 is the highest or lowest priority. Some systems use

low numbers to represent low priority; others use low numbers for high priority. This difference

can lead to confusion. In this text, we assume that low numbers represent high priority. As an

example, consider the following set of processes, assumed to have arrived at time 0 in the order
P1, P2, ···, P5, with the length of the CPU burst given in milliseconds:

Prepared by: Satyam K , AITS , MCA OS Notes Page 34

Multilevel Queue Scheduling :
With both priority and round-robin scheduling, all processes may be placed in a single queue,

and the scheduler then selects the process with the highest priority to run. Depending on how

the queues are managed, an O(n) search may be necessary to determine the highest-priority

process. In practice, it is often easier to have separate queues for each distinct priority, and

priority scheduling simply schedules the process in the highest-priority queue. This is
illustrated in Figure 5.7. This approach—known as multilevel queue— also works well when

priority scheduling is combined with round-robin: if there are multiple processes in the

highest-priority queue, they are executed in round-robin order. In the most generalized form of

this approach, a priority is assigned statically to each process, and a process remains in the

same queue for the duration of its runtime.

A multilevel queue scheduling algorithm can also be used to partition processes into several

separate queues based on the process type (Figure 5.8). For example, a common division is

made between foreground (interactive) processes and background (batch) processes. These two

types of processes have different response-time requirements and so may have different

scheduling needs. In addition, foreground processes may have priority (externally defined) over
background processes. Separate queues might be used for foreground and background

processes, and each queue might have its own scheduling algorithm. The foreground queue

might be scheduled by an RR algorithm, for example, while the background queue is scheduled

by an FCFS algorithm.

In addition, there must be scheduling among the queues, which is commonly implemented as

fixed-priority preemptive scheduling. For example, the real-time queue may have absolute
priority over the interactive queue. Let’s look at an example of a multilevel queue scheduling

algorithm with four queues, listed below in order of priority:

Prepared by: Satyam K , AITS , MCA OS Notes Page 35

1. Real-time processes

2. System processes

3. Interactive processes
4. Batch processes

Each queue has absolute priority over lower-priority queues. No process in the batch queue, for

example, could run unless the queues for real-time processes, system processes, and

interactive processes were all empty. If an interactive process entered the ready queue while a

batch process was running, the batch process would be preempted.

Another possibility is to time-slice among the queues. Here, each queue gets a certain portion
of the CPU time, which it can then schedule among its various processes. For instance, in the

foreground –background queue example, the foreground queue can be given 80 percent of the

CPU time for RR scheduling among its processes, while the background queue receives 20

percent of the CPU to give to its processes on an FCFS basis.

Multilevel Feedback Queue Scheduling :
Normally, when the multilevel queue scheduling algorithm is used, processes are permanently

assigned to a queue when they enter the system. If there are separate queues for foreground

and background processes, for example, processes do not move from one queue to the other,

since processes do not change their foreground or background nature. This setup has the

advantage of low scheduling overhead, but it is inflexible.

The multilevel feedback queue scheduling algorithm, in contrast, allows a process to move
between queues. The idea is to separate processes according to the characteristics of their CPU

bursts. If a process uses too much CPU time, it will be moved to a lower-priority queue. This

scheme leaves I/O-bound and interactive processes—which are typically characterized by short

CPU bursts —in the higher-priority queues. In addition, a process that waits too long in a

lower-priority queue may be moved to a higher-priority queue. This form of aging prevents
starvation.

In general, a multilevel feedback queue scheduler is defined by the following parameters:

• The number of queues

• The scheduling algorithm for each queue

• The method used to determine when to upgrade a process to a higherpriority queue

• The method used to determine when to demote a process to a lowerpriority queue
• The method used to determine which queue a process will enter when that process needs

service

Threads : A thread is a basic unit of CPU utilization; it comprises a thread ID, a program

counter (PC), a register set, and a stack. It shares with other threads belonging to the same

process its code section, data section, and other operating-system resources, such as open files
and signals. A traditional process has a single thread of control. If a process has multiple

threads of control, it can perform more than one task at a time. Figure 4.1 illustrates the

difference between a traditional single-threaded process and a multithreaded process.

Most software applications that run on modern computers and mobile devices are

multithreaded. An application typically is implemented as a separate process with several

threads of control. Below we highlight a few examples of multithreaded applications:
An application that creates photo thumbnails from a collection of images may use a separate

thread to generate a thumbnail from each separate image.

• Aweb browser might have one thread display images or text while another thread retrieves

data from the network.

• A word processor may have a thread for displaying graphics, another thread for responding to
keystrokes from the user, and a third thread for performing spelling and grammar checking in

the background.

Prepared by: Satyam K , AITS , MCA OS Notes Page 36

Applications can also be designed to leverage processing capabilities on multicore systems.

Such applications can perform several CPU-intensive tasks in parallel across the multiple

computing cores.

In certain situations, a single application may be required to perform several similar tasks. For

example, a web server accepts client requests for web pages, images, sound, and so forth. A
busy web server may have several (perhaps thousands of) clients concurrently accessing it. If

the web server ran as a traditional single-threaded process, it would be able to service only one

client at a time, and a client might have to wait a very long time for its request to be serviced.

One solution is to have the server run as a single process that accepts requests. When the

server receives a request, it creates a separate process to service that request. In fact, this

process-creation method was in common use before threads became popular. Process creation
is time consuming and resource intensive, however. If the new process will perform the same

tasks as the existing process, why incur all that overhead? It is generally more efficient to use

one process that contains multiple threads. If the web-server process is multithreaded, the

server will create a separate thread that listens for client requests. When a request is made,

rather than creating another process, the server creates a new thread to service the request

and resumes listening for additional requests. This is illustrated in Figure 4.2.
Most operating system kernels are also typically multithreaded. As an example, during system

boot time on Linux systems, several kernel threads are created. Each thread performs a

specific task, such as managing devices, memory management, or interrupt handling. The

command ps -ef can be used to display the kernel threads on a running Linux system.

Examining the output of this command will show the kernel thread kthreadd (with pid = 2),
which serves as the parent of all other kernel threads.

Many applications can also take advantage of multiple threads, including basic sorting, trees,

and graph algorithms. In addition, programmers who must solve contemporary CPU-intensive

problems in data mining, graphics, and artificial intelligence can leverage the power of modern

multicore systems by designing solutions that run in parallel.

The benefits of multithreaded programming can be broken down into four major categories:

Prepared by: Satyam K , AITS , MCA OS Notes Page 37

1. Responsiveness. Multithreading an interactive application may allow a program to continue

running even if part of it is blocked or is performing a lengthy operation, thereby increasing

responsiveness to the user. This quality is especially useful in designing user interfaces. For
instance, consider what happens when a user clicks a button that results in the performance

of a time-consuming operation. A single-threaded application would be unresponsive to the

user until the operation had been completed. In contrast, if the time-consuming operation is

performed in a separate, asynchronous thread, the application remains responsive to the user.

2. Resource sharing. Processes can share resources only through techniques such as shared

memory and message passing. Such techniques must be explicitly arranged by the
programmer. However, threads share the memory and the resources of the process to which

they belong by default. The benefit of sharing code and data is that it allows an application to

have several different threads of activity within the same address space.

3. Economy. Allocating memory and resources for process creation is costly. Because threads

share the resources of the process to which they belong, it is more economical to create and

context-switch threads. Empirically gauging the difference in overhead can be difficult, but in

general thread creation consumes less time and memory than process creation. Additionally,

context switching is typically faster between threads than between processes.

4. Scalability. The benefits of multithreading can be even greater in a multiprocessor
architecture, where threads may be running in parallel on different processing cores. A single-

threaded process can run on only one processor, regardless how many are available. We

explore this issue further in the following section.

Multithreading Models :

Our discussion so far has treated threads in a generic sense. However, support for threads may

be provided either at the user level, for user threads, or by the kernel, for kernel threads. User

threads are supported above the kernel and are managed without kernel support, whereas

kernel threads are supported and managed directly by the operating system. Virtually all

contemporary operating systems—including Windows, Linux, and macOS— support kernel

threads.

Ultimately, a relationship must exist between user threads and kernel threads, as illustrated in
Figure 4.6. In this section, we look at three common ways of establishing such a relationship:

the many-to-one model, the one-toone model, and the many-to-many model

Many-to-One Model :

The many-to-one model (Figure 4.7) maps many user-level threads to one kernel thread.
Thread management is done by the thread library in user space, so it is efficient (we discuss

thread libraries in Section 4.4). However, the entire process will block if a thread makes a

blocking system call. Also, because only one thread can access the kernel at a time, multiple

threads are unable to run in parallel on multi core systems. Green threads—a thread library

available for Solaris systems and adopted in early versions of Java—used the many-toone
model. However, very few systems continue to use the model because of its inability to take

advantage of multiple processing cores, which have now become standard on most computer

systems.

Prepared by: Satyam K , AITS , MCA OS Notes Page 38

One-to-One Model :

The one-to-one model (Figure 4.8) maps each user thread to a kernel thread. It provides more

concurrency than the many-to-one model by allowing another thread to run when a thread

makes a blocking system call. It also allows multiple threads to run in parallel on

multiprocessors. The only drawback to this model is that creating a user thread requires

creating the corresponding kernel thread, and a large number of kernel threads may burden
the performance of a system. Linux, along with the family of Windows operating systems,

implement the one-to-one model.

Many-to-Many Model :

The many-to-many model (Figure 4.9) multiplexes many user-level threads to a smaller or
equal number of kernel threads. The number of kernel threads may be specific to either a

particular application or a particular machine (an application may be allocated more kernel

threads on a system with eight processing cores than a system with four cores).

Prepared by: Satyam K , AITS , MCA OS Notes Page 39

Let’s consider the effect of this design on concurrency. Whereas the manyto-one model allows

the developer to create as many user threads as she wishes, it does not result in parallelism,

because the kernel can schedule only one kernel thread at a time. The one-to-one model allows

greater concurrency, but the developer has to be careful not to create too many threads within

an application. (In fact, on some systems, she may be limited in the number of threads she can
create.) The many-to-many model suffers from neither of these shortcomings: developers can

create as many user threads as necessary, and the corresponding kernel threads can run in

parallel on a multiprocessor. Also, when a thread performs a blocking system call, the kernel

can schedule another thread for execution.

One variation on the many-to-many model still multiplexes many userlevel threads to a smaller

or equal number of kernel threads but also allows a user-level thread to be bound to a kernel

thread. This variation is sometimes referred to as the two-level model (Figure 4.10).

Although the many-to-many model appears to be the most flexible of the models discussed, in

practice it is difficult to implement. In addition, with an increasing number of processing cores
appearing on most systems, limiting the number of kernel threads has become less important.

As a result, most operating systems now use the one-to-one model. However, as we shall see in

Section 4.5, some contemporary concurrency libraries have developers identify tasks that are

then mapped to threads using the many-to-many model.

Threading Issues :

In this section, we discuss some of the issues to consider in designing multithreaded programs.

The fork() and exec() System Calls :

we described how the fork() system call is used to create a separate, duplicate process. The

semantics of the fork() and exec() system calls change in a multithreaded program.

If one thread in a program calls fork(), does the new process duplicate all threads, or is the new

process single-threaded? Some UNIX systems have chosen to have two versions of fork(), one

that duplicates all threads and another that duplicates only the thread that invoked the fork()

system call.

The exec() system call typically works in the same way as described in Chapter 3. That is, if a

thread invokes the exec() system call, the program specified in the parameter to exec() will

replace the entire process—including all threads.

Which of the two versions of fork() to use depends on the application. If exec() is called

immediately after forking, then duplicating all threads is unnecessary, as the program specified

in the parameters to exec() will replace the process. In this instance, duplicating only the
calling thread is appropriate. If, however, the separate process does not call exec() after forking,

the separate process should duplicate all threads.

Signal Handling :

A signal is used in UNIX systems to notify a process that a particular event has occurred. A

signal may be received either synchronously or asynchronously, depending on the source of

and the reason for the event being signaled. All signals, whether synchronous or

asynchronous, follow the same pattern:

1. A signal is generated by the occurrence of a particular event.

Prepared by: Satyam K , AITS , MCA OS Notes Page 40

2. The signal is delivered to a process.

3. Once delivered, the signal must be handled.

Synchronization :

We’ve already seen that processes can execute concurrently or in parallel. Section 3.2.2

introduced the role of process scheduling and described how the CPU scheduler switches

rapidly between processes to provide concurrent execution. This means that one process may

only partially complete execution before another process is scheduled. In fact, a process may

be interrupted at any point in its instruction stream, and the processing core may be assigned

to execute instructions of another process. Additionally, Section 4.2 introduced parallel
execution, in which two instruction streams (representing different processes) execute

simultaneously on separate processing cores. In this chapter, we explain how concurrent or

parallel execution can contribute to issues involving the integrity of data shared by several

processes.

Let’s consider an example of how this can happen. In Chapter 3, we developed a model of a

system consisting of cooperating sequential processes or threads, all running asynchronously

and possibly sharing data. We illustrated this model with the producer–consumer problem,
which is a representative paradigm of many operating system functions. Specifically, in Section

3.5, we described how a bounded buffer could be used to enable processes to share memory

Because of the importance of this issue, we devote a major portion of this chapter to process

synchronization and coordination among cooperating processes.

The Critical-Section Problem :

We begin our consideration of process synchronization by discussing the socalled critical-
section problem. Consider a system consisting of n processes {P0, P1, ..., Pn−1}. Each process

has a segment of code, called a critical section, in which the process may be accessing — and

updating — data that is shared with at least one other process. The important feature of the

system is that, when one process is executing in its critical section, no other process is allowed

to execute in its critical section. That is, no two processes are executing in their critical
sections at the same time. The critical-section problem is to design a protocol that the

processes can use to synchronize their activity so as to cooperatively share data. Each process

must request permission to enter its critical section. The section of code implementing this

request is the entry section. The critical section may be followed by an exit section. The

remaining code is the remainder section. The general structure of a typical process is shown in

Figure 6.1. The entry section and exit section are enclosed in boxes to highlight these

important segments of code.

Highlight these important segments of code. A solution to the critical-section problem must

satisfy the following three requirements:

1. Mutual exclusion. If process Pi is executing in its critical section, then no other processes

can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and some processes wish to enter

their critical sections, then only those processes that are not executing in their remainder

sections can participate in deciding which will enter its critical section next, and this selection

cannot be postponed indefinitely.

3. Bounded waiting. There exists a bound, or limit, on the number of times that other

processes are allowed to enter their critical sections after a process has made a request to enter

its critical section and before that request is granted.

Prepared by: Satyam K , AITS , MCA OS Notes Page 41

We assume that each process is executing at a nonzero speed. However, we can make no

assumption concerning the relative speed of the n processes.

At a given point in time, many kernel-mode processes may be active in the operating system.

As a result, the code implementing an operating system (kernel code) is subject to several

possible race conditions. Consider as an example a kernel data structure that maintains a list
of all open files in the system. This list must be modified when a new file is opened or closed

(adding the file to the list or removing it from the list). If two processes were to open files

simultaneously, the separate updates to this list could result in a race condition.

Peterson’s Solution :

Next, we illustrate a classic software-based solution to the critical-section problem known as

Peterson’s solution. Because of the way modern computer architectures perform basic

machine-language instructions, such as load and store, there are no guarantees that

Peterson’s solution will work correctly on such architectures. However, we present the solution

because it provides a good algorithmic description of solving the critical-section problem and
illustrates some of the complexities involved in designing software that addresses the

requirements of mutual exclusion, progress, and bounded waiting.

Hardware Support for Synchronization :

We have just described one software-based solution to the critical-section problem. (We refer to
it as a software-based solution because the algorithm involves no special support from the

operating system or specific hardware instructions to ensure mutual exclusion.) However, as

discussed, software-based solutions are not guaranteed to work on modern computer

architectures. In this section, we present three hardware instructions that provide support for

solving the critical-section problem. These primitive operations can be used directly as

synchronization tools, or they can be used to form the foundation of more abstract

synchronization mechanisms.

Memory Barriers :

In Section 6.3, we saw that a system may reorder instructions, a policy that can lead to
unreliable data states. How a computer architecture determines what memory guarantees it

will provide to an application program is known as its memory model. In general, a memory

model falls into one of two categories:

1. Strongly ordered, where a memory modification on one processor is immediately visible to all

other processors.

2. Weakly ordered, where modifications to memory on one processor may not be immediately

visible to other processors.

Memory models vary by processor type, so kernel developers cannot make any assumptions

regarding the visibility of modifications to memory on a shared-memory multiprocessor. To

address this issue, computer architectures provide instructions that can force any changes in

memory to be propagated to all other processors, thereby ensuring that memory modifications
are visible tothreads running on other processors. Such instructions are known as memory

barriers or memory fences.

Hardware Instructions :

Many modern computer systems provide special hardware instructions that allow us either to
test and modify the content of a word or to swap the contents of two words atomically— that is,

as one uninterruptible unit. We can use these special instructions to solve the critical-section

Prepared by: Satyam K , AITS , MCA OS Notes Page 42

problem in a relatively simple manner. Rather than discussing one specific instruction for one

specific machine, we abstract the main concepts behind these types of instructions by

describing the test and set() and compare and swap() instructions.

Mutex Locks :

The hardware-based solutions to the critical-section problem presented in Section 6.4 are

complicated as well as generally inaccessible to application programmers. Instead, operating-

system designers build higher-level software tools to solve the critical-section problem. The
simplest of these tools is the mutex lock. (In fact, the term mutex is short for mutual

exclusion.) We use the mutex lock to protect critical sections and thus prevent race conditions.

That is, a process must acquire the lock before entering a critical section; it releases the lock

when it exits the critical section. The acquire()function acquires the lock, and the release()

function releases the lock, as illustrated in Figure 6.10.

A mutex lock has a boolean variable available whose value indicates if the lock is available or

not. If the lock is available, a call to acquire() succeeds, and the lock is then considered
unavailable. A process that attempts to acquire an unavailable lock is blocked until the lock is

released.

Semaphores : Mutex locks, as we mentioned earlier, are generally considered the simplest of

synchronization tools. In this section, we examine a more robust tool that can behave similarly

to a mutex lock but can also provide more sophisticated ways for processes to synchronize

their activities.

A semaphore S is an integer variable that, apart from initialization, is accessed only through

two standard atomic operations: wait() and signal(). Semaphores were introduced by the Dutch

computer scientist Edsger Dijkstra, and such, the wait() operation was originally termed P

(from the Dutchproberen, ―to test‖); signal() was originally called V (from verhogen, ―to

increment‖). The definition of wait() is as follows:

Semaphore Usage :

Operating systems often distinguish between counting and binary semaphores. The value of a

counting semaphore can range over an unrestricted domain. The value of a binary semaphore

can range only between 0 and 1. Thus, binary semaphores behave similarly to mutex locks. In
fact, on systems that do not provide mutex locks, binary semaphores can be used instead for

providing mutual exclusion.

Prepared by: Satyam K , AITS , MCA OS Notes Page 43

Counting semaphores can be used to control access to a given resource consisting of a finite

number of instances. The semaphore is initialized to the number of resources available. Each

process that wishes to use a resource performs a wait() operation on the semaphore (thereby
decrementing the count). When a process releases a resource, it performs a signal() operation

(incrementing the count). When the count for the semaphore goes to 0, all resources are being

used. After that, processes that wish to use a resource will block until the count becomes

greater than 0.

Monitors :

Although semaphores provide a convenient and effective mechanism for process

synchronization, using them incorrectly can result in timing errors that are difficult to detect,

since these errors happen only if particular execution sequences take place, and these

sequences do not always occur.

We have seen an example of such errors in the use of a count in our solution to the producer–

consumer problem (Section 6.1). In that example, the timing problem happened only rarely,
and even then the count value appeared to be reasonable—off by only 1. Nevertheless, the

solution is obviously not an acceptable one. It is for this reason that mutex locks and

semaphores were introduced in the first place.

Deadlock :

The implementation of a semaphore with a waiting queue may result in a situation where two

or more processes are waiting indefinitely for an event that can be caused only by one of the

waiting processes. The event in question is the execution of a signal() operation. When such a

state is reached, these processes are said to be deadlocked.

Classic Problems of Synchronization :

In this section, we present a number of synchronization problems as examples of a large class

of concurrency-control problems. These problems are used for testing nearly every newly

proposed synchronization scheme. In our solutions to the problems, we use semaphores for
synchronization, since that is thetraditional way to present such solutions. However, actual

implementations of these solutions could use mutex locks in place of binary semaphores.

The Bounded-Buffer Problem :

The bounded-buffer problem was introduced in Section 6.1; it is commonly used to illustrate

the power of synchronization primitives. Here, we present a general structure of this scheme

Prepared by: Satyam K , AITS , MCA OS Notes Page 44

without committing ourselves to any particular implementation. We provide a related

programming project in the exercises at the end of the chapter.

In our problem, the producer and consumer processes share the following data structures:

int n;

semaphore mutex = 1;

semaphore empty = n;

semaphore full = 0

We assume that the pool consists of n buffers, each capable of holding one item. The mutex

binary semaphore provides mutual exclusion for accesses to the buffer pool and is initialized to
the value 1. The empty and full semaphores count the number of empty and full buffers. The

semaphore empty is initialized to the value n; the semaphore full is initialized to the value 0.

The code for the producer process is shown in Figure 7.1, and the code for the consumer

process is shown in Figure 7.2. Note the symmetry between the producer and the consumer.

We can interpret this code as the producer producing full buffers for the consumer or as the

consumer producing empty buffers for the producer.

The Readers –Writers Problem :

Suppose that a database is to be shared among several concurrent processes. Some of these

processes may want only to read the database, whereas others may want to update (that is,

read and write) the database. We distinguish between these two types of processes by referring

to the former as readers and to the latter as writers. Obviously, if two readers access the
shared data simultaneously, no adverse effects will result. However, if a writer and some other

process (either a reader or a writer) access the database simultaneously, chaos may ensue.

To ensure that these difficulties do not arise, we require that the writers have exclusive access

to the shared database while writing to the database. This synchronization problem is referred

to as the readers–writers problem. Since it was originally stated, it has been used to test nearly

every new synchronization primitive.

The readers–writers problem has several variations, all involving priorities. The simplest one,

referred to as the first readers–writers problem, requires that no reader be kept waiting unless

a writer has already obtained permission to use the shared object. In other words, no reader
should wait for other readers to finish simply because a writer is waiting. The second readers–

writers problem requires that, once a writer is ready, that writer perform its write as soon as

possible. In other words, if a writer is waiting to access the object, no new readers may start

reading.

A solution to either problem may result in starvation. In the first case, writers may starve; in

the second case, readers may starve. For this reason, other variants of the problem have been

proposed. Next, we present a solution to the first readers–writers problem. See the
bibliographical notes at the end of the chapter for references describing starvation-free

solutions to the second readers–writers problem.

The Dining-Philosophers Problem :

Consider five philosophers who spend their lives thinking and eating. The philosophers share a
circular table surrounded by five chairs, each belonging to one philosopher. In the center of the

table is a bowl of rice, and the table is laid with five single chopsticks (Figure 7.5). When a

philosopher thinks, she does not interact with her colleagues. From time to time, a philosopher

Prepared by: Satyam K , AITS , MCA OS Notes Page 45

gets hungry and tries to pick up the two chopsticks that are closest to her (the chopsticks that

are between her and her left and right neighbors). A philosopher may pick up only one

chopstick at a time. Obviously, she cannot pick up a chopstick that is already in the hand of a
neighbor. When a hungry philosopher has both her chopsticks at the same time, she eats

without releasing the chopsticks. When she is finished eating, she puts down both chopsticks

and starts thinking again.

The dining-philosophers problem is considered a classic synchronization problem neither

because of its practical importance nor because computer scientists dislike philosophers but

because it is an example of a large class of concurrency-control problems. It is a simple

representation of the needto allocate several resources among several processes in a deadlock-

free and starvation-free manner.

1 Semaphore Solution :

One simple solution is to represent each chopstick with a semaphore. A philosopher tries to

grab a chopstick by executing a wait() operation on that semaphore. She releases her

chopsticks by executing the signal() operation on the appropriate semaphores. Thus, the

shared data are

semaphore chopstick[5];

where all the elements of chopstick are initialized to 1. The structure of philosopher i is shown

in Figure 7.6.

Although this solution guarantees that no two neighbors are eating simultaneously, it

nevertheless must be rejected because it could create a deadlock. Suppose that all five

philosophers become hungry at the same time and each grabs her left chopstick. All the

elements of chopstick will now be equal to 0. When each philosopher tries to grab her right

chopstick, she will be delayed forever

Several possible remedies to the deadlock problem are the following:

Allow at most four philosophers to be sitting simultaneously at the table.

• Allow a philosopher to pick up her chopsticks only if both chopsticks are available (to do this,

she must pick them up in a critical section).

• Use an asymmetric solution— that is, an odd-numbered philosopher picks up first her left

chopstick and then her right chopstick, whereas an evennumbered philosopher picks up her

right chopstick and then her left chopstick.

Methods for Handling Deadlocks :

Generally speaking, we can deal with the deadlock problem in one of three ways:

Prepared by: Satyam K , AITS , MCA OS Notes Page 46

• We can ignore the problem altogether and pretend that deadlocks never occur in the system.

• We can use a protocol to prevent or avoid deadlocks, ensuring that the system will never

enter a deadlocked state.

• We can allow the system to enter a deadlocked state, detect it, and recover.

The first solution is the one used by most operating systems, including Linux and Windows. It

is then up to kernel and application developers to write programs that handle deadlocks,

typically using approaches outlined in the second solution. Some systems—such as

databases—adopt the third solution, allowing deadlocks to occur and then managing the

recovery.

Next, we elaborate briefly on the three methods for handling deadlocks. Then, in Section 8.5

through Section 8.8, we present detailed algorithms. Before proceeding, we should mention
that some researchers have argued that none of the basic approaches alone is appropriate for

the entire spectrum of resourceallocation problems in operating systems. The basic approaches

can be combined, however, allowing us to select an optimal approach for each class of

resources in a system.

To ensure that deadlocks never occur, the system can use either a deadlockprevention or a

deadlock-avoidance scheme. Deadlock prevention provides a set of methods to ensure that at

least one of the necessary conditions (Section 8.3.1) cannot hold. These methods prevent
deadlocks by constraining how requests for resources can be made. We discuss these methods

in Section 8.5.

Deadlock avoidance requires that the operating system be given additional information in

advance concerning which resources a thread will request and use during its lifetime. With this

additional knowledge, the operating system can decide for each request whether or not the

thread should wait. To decide whether the current request can be satisfied or must be delayed,

the system must consider the resources currently available, the resources currently allocated
to each thread, and the future requests and releases of each thread. We discuss these schemes

in Section 8.6.

If a system does not employ either a deadlock-prevention or a deadlockavoidance algorithm,

then a deadlock situation may arise. In this environment, the system can provide an algorithm

that examines the state of the system to determine whether a deadlock has occurred and an

algorithm to recover from the deadlock (if a deadlock has indeed occurred). We discuss these

issues in Section 8.7 and Section 8.8.

Deadlock Prevention :

As we noted in Section 8.3.1, for a deadlock to occur, each of the four necessary conditions

must hold. By ensuring that at least one of these conditions cannot hold, we can prevent the

occurrence of a deadlock. We elaborate on this approach by examining each of the four

necessary conditions separately.

Mutual Exclusion : The mutual-exclusion condition must hold. That is, at least one resource
must be nonsharable. Sharable resources do not require mutually exclusive access and thus

cannot be involved in a deadlock. Read-only files are a good example of a sharable resource. If

several threads attempt to open a read-only file at the same time, they can be granted

simultaneous access to the file. A thread never needs to wait for a sharable resource. In

general, however, we cannot prevent deadlocks by denying the mutual-exclusion condition,

because some resources are intrinsically nonsharable. For example, a mutex lock cannot be

simultaneously shared by several threads.

Prepared by: Satyam K , AITS , MCA OS Notes Page 47

Hold and Wait : To ensure that the hold-and-wait condition never occurs in the system, we

must guarantee that, whenever a thread requests a resource, it does not hold any other

resources. One protocol that we can use requires each thread to request and be allocated all its
resources before it begins execution. This is, of course, impractical for most applications due to

the dynamic nature of requesting resources.

An alternative protocol allows a thread to request resources only when it has none. A thread

may request some resources and use them. Before it can request any additional resources, it

must release all the resources that it is currently allocated.

Both these protocols have two main disadvantages. First, resource utilization may be low, since

resources may be allocated but unused for a long period. For example, a thread may be

allocated a mutex lock for its entire execution, yet only require it for a short duration. Second,

starvation is possible. A thread that needs several popular resources may have to wait
indefinitely, because at least one of the resources that it needs is always allocated to some

other thread.

Deadlock Avoidance :

Deadlock-prevention algorithms, as discussed in Section 8.5, prevent deadlocks by limiting
how requests can be made. The limits ensure that at least one of the necessary conditions for

deadlock cannot occur. Possible side effects of preventing deadlocks by this method, however,

are low device utilization and reduced system throughput.

An alternative method for avoiding deadlocks is to require additional information about how

resources are to be requested. For example, in a system with resources R1 and R2, the system

might need to know that thread P will request first R1 and then R2 before releasing both

resources, whereas thread Q will request R2 and then R1. With this knowledge of the complete

sequence of requests and releases for each thread, the system can decide for each request
whether or not the thread should wait in order to avoid a possible future deadlock. Each

request requires that in making this decision the system consider the resources currently

available, the resources currently allocated to each thread, and the future requests and

releases of each thread.

The various algorithms that use this approach differ in the amount and type of information

required. The simplest and most useful model requires that each thread declare the maximum

number of resources of each type that it may need. Given this a priori information, it is
possible to construct an algorithm that ensures that the system will never enter a deadlocked

state. A deadlockavoidance algorithm dynamically examines the resource-allocation state to

ensure that a circular-wait condition can never exist. The resource-allocation state is defined

by the number of available and allocated resources and the maximum demands of the threads.

In the following sections, we explore two deadlock-avoidance algorithms.

Safe State :

A state is safe if the system can allocate resources to each thread (up to its maximum) in some

order and still avoid a deadlock. More formally, a system is in a safe state only if there exists a

safe sequence. A sequence of threads is a safe sequence for the current allocation state if, for
each Ti , the resource requests that Ti can still make can be satisfied by the currently available

resources plus the resources held by all Tj , with j < i. In this situation, if the resources that Ti

needs are not immediately available, then Ti can wait until all Tj have finished.

Prepared by: Satyam K , AITS , MCA OS Notes Page 48

needed resources, complete its designated task, return its allocated resources, and terminate.
When Ti terminates, Ti+1 can obtain its needed resources, and so on. If no such sequence

exists, then the system state is said to be unsafe

A safe state is not a deadlocked state. Conversely, a deadlocked state is an unsafe state. Not all

unsafe states are deadlocks, however (Figure 8.8). An unsafe state may lead to a deadlock. As

long as the state is safe, the operating system can avoid unsafe (and deadlocked) states. In an

unsafe state, the operating system cannot prevent threads from requesting resources in such a

way that a deadlock occurs. The behavior of the threads controls unsafe states.

Deadlock Detection :

If a system does not employ either a deadlock-prevention or a deadlockavoidance algorithm,

then a deadlock situation may occur. In this environment, the system may provide:

•An algorithm that examines the state of the system to determine whether a deadlock has

occurred • An algorithm to recover from the deadlock

Next, we discuss these two requirements as they pertain to systems with only a single instance

of each resource type, as well as to systems with several instances of each resource type. At

this point, however, we note that a detection-and-recovery scheme requires overhead that
includes not only the run-time costs of maintaining the necessary information and executing

the detection algorithm but also the potential losses inherent in recovering from a deadlock

Single Instance of Each Resource Type :

If all resources have only a single instance, then we can define a deadlockdetection algorithm

that uses a variant of the resource-allocation graph, called a wait-for graph. We obtain this

graph from the resource-allocation graph by removing the resource nodes and collapsing the

appropriate edges.

Prepared by: Satyam K , AITS , MCA OS Notes Page 49

Recovery from Deadlock :

When a detection algorithm determines that a deadlock exists, several alternatives are

available. One possibility is to inform the operator that a deadlock has occurred and to let the

operator deal with the deadlock manually. Another possibility is to let the system recover from

the deadlock automatically. There are two options for breaking a deadlock. One is simply to
abort one or more threads to break the circular wait. The other is to preempt some resources

from one or more of the deadlocked threads.

Process and Thread Termination :

To eliminate deadlocks by aborting a process or thread, we use one of two methods. In both

methods, the system reclaims all resources allocated to the terminated processes.

Abort all deadlocked processes:This method clearly will break the deadlock cycle, but at great
expense. The deadlocked processes may have computed for a long time, and the results of

these partial computations must be discarded and probably will have to be recomputed later.

Abort one process at a time until the deadlock cycle is eliminate:This method incurs

considerable overhead, since after each process is aborted, a deadlock-detection algorithm

must be invoked to determine whether any processes are still deadlocked.

Aborting a process may not be easy. If the process was in the midst of updating a file,

terminating it may leave that file in an incorrect state. Similarly, if the process was in the midst

of updating shared data while holding a mutex lock, the system must restore the status of the

lock as being available, although no guarantees can be made regarding the integrity of the

shared data.

If the partial termination method is used, then we must determine which deadlocked process
(or processes) should be terminated. This determination is a policy decision, similar to CPU-

scheduling decisions. The question is basically an economic one; we should abort those

processes whose termination will incur the minimum cost. Unfortunately, the term minimum

cost is not a precise one. Many factors may affect which process is chosen, including.

1. What the priority of the process is

2. How long the process has computed and how much longer the process will compute before

completing its designated task

3. How many and what types of resources the process has used (for example, whether the

resources are simple to preempt)

Prepared by: Satyam K , AITS , MCA OS Notes Page 50

UNIT-III : MEMORY MANAGEMENT

 Memory is central to the operation of a modern computer system. Memory consists of a large

array of bytes, each with its own address. The CPU fetches instructions from memory

according to the value of the program counter. These instructions may cause additional loading

from and storing to specific memory addresses.

A typical instruction-execution cycle, for example, first fetches an instruction from memory.

The instruction is then decoded and may cause operands to be fetched from memory. After the
instruction has been executed on the operands, results may be stored back in memory. The

memory unit sees only a stream of memory addresses; it does not know how they are generated

(by the instruction counter, indexing, indirection, literal addresses, and so on) or what they are

for (instructions or data). Accordingly, we can ignore how a program generates a memory

address. We are interested only in the sequence of memory addresses generated by the running

program.

Basic Hardware :

Main memory and the registers built into each processing core are the only general-purpose

storage that the CPU can access directly. There are machine instructions that take memory
addresses as arguments, but none that take disk addresses. Therefore, any instructions in

execution, and any data being used by the instructions, must be in one of these direct-access

storage devices. If the data are not in memory, they must be moved there before the CPU can

operate on them.

Registers that are built into each CPU core are generally accessible within one cycle of the CPU

clock. Some CPU cores can decode instructions and perform simple operations on register

contents at the rate of one or more operations per clock tick. The same cannot be said of main

memory, which is accessed via a transaction on the memory bus. Completing a memory access
may take many cycles of the CPU clock. In such cases, the processor normally needs to stall,

since it does not have the data required to complete the instruction that it is executing. This

situation is intolerable because of the frequency of memory accesses. The remedy is to add fast

memory between the CPU and main memory, typically on the CPU chip for fast access. Such a

cache was described in Section 1.5.5. To manage a cache built into the CPU, the hardware
automatically speeds up memory access without any operating-system control. (Recall from

Section 5.5.2 that during a memory stall, a multithreaded core can switch from the stalled

hardware thread to another hardware thread.)

Not only are we concerned with the relative speed of accessing physical memory, but we also

must ensure correct operation. For proper system operation, we must protect the operating

system from access by user processes, as well as protect user processes from one another. This

protection must be provided by the hardware, because the operating system doesn’t usually
intervene between the CPU and its memory accesses (because of the resulting performance

penalty). Hardware implements this production in several different ways, as we show

throughout the chapter. Here, we outline one possible implementation.

Prepared by: Satyam K , AITS , MCA OS Notes Page 51

We first need to make sure that each process has a separate memory space. Separate per-

process memory space protects the processes from each other and is fundamental to having

multiple processes loaded in memory for concurrent execution. To separate memory spaces, we

need the ability to determine the range of legal addresses that the process may access and to
ensure that the process can access only these legal addresses. We can provide this protection

by using two registers, usually a base and a limit, as illustrated in Figure 9.1. The base register

holds the smallest legal physical memory address; the limit register specifies the size of the

range. For example, if the base register holds 300040 and the limit register is 120900, then the

program can legally access all addresses from 300040 through 420939 (inclusive).

Protection of memory space is accomplished by having the CPU hardware compare every

address generated in user mode with the registers. Any attempt by a program executing in user

mode to access operating-system memory or other users’ memory results in a trap to the
operating system, which treats the attempt as a fatal error (Figure 9.2). This scheme prevents a

user program from (accidentally or deliberately) modifying the code or data structures of either

the operating system or other users.

The base and limit registers can be loaded only by the operating system, which uses a special

privileged instruction. Since privileged instructions can be executed only in kernel mode, and

since only the operating system executes in kernel mode, only the operating system can load

the base and limit registers. This scheme allows the operating system to change the value of

the registers but prevents user programs from changing the registers’ contents.

The operating system, executing in kernel mode, is given unrestricted access to both operating-
system memory and users’ memory. This provision allows the operating system to load users’

programs into users’ memory, to dump out those programs in case of errors, to access and

modify parameters of system calls, to perform I/O to and from user memory, and to provide

many other services. Consider, for example, that an operating system for a multiprocessing

system must execute context switches, storing the state of one process from the registers into

main memory before loading the next process’s context from main memory into the registers.

Address Binding :

Prepared by: Satyam K , AITS , MCA OS Notes Page 52

Usually, a program resides on a disk as a binary executable file. To run, the program must be

brought into memory and placed within the context of a process (as described in Section 2.5),

where it becomes eligible for execution on an available CPU. As the process executes, it
accesses instructions and data from memory. Eventually, the process terminates, and its

memory is reclaimed for use by other processes.

Most systems allow a user process to reside in any part of the physical memory. Thus,

although the address space of the computer may start at 00000, the first address of the user

process need not be 00000. You will see later how the operating system actually places a

process in physical memory.

In most cases, a user program goes through several steps—some of which may be optional—

before being executed (Figure 9.3). Addresses may be represented in different ways during

these steps. Addresses in the source program are generally symbolic (such as the variable
count). A compiler typically binds these symbolic addresses to relocatable addresses (such as

―14 bytes from the beginning of this module‖). The linker or loader (see Section 2.5) in turn

binds the relocatable addresses to absolute addresses (such as 74014). Each binding is a

mapping from one address space to another.

Classically, the binding of instructions and data to memory addresses can be done at any step

along the way:

Compile time: If you know at compile time where the process will reside in memory, then

absolute code can be generated. For example, if you know that a user process will reside

starting at location R, then the generated compiler code will start at that location and extend

up from there. If, at some later time, the starting location changes, then it will be necessary to

recompile this code.

• Load time: If it is not known at compile time where the process will reside in memory, then

the compiler must generate relocatable code. In this case, final binding is delayed until load

time. If the starting address changes, we need only reload the user code to incorporate this

changed value.

• Execution time: If the process can be moved during its execution from one memory segment

to another, then binding must be delayed until run time. Special hardware must be available

Prepared by: Satyam K , AITS , MCA OS Notes Page 53

for this scheme to work, as will be discussed in Section 9.1.3. Most operating systems use this

method.

A major portion of this chapter is devoted to showing how these various bindings can be

implemented effectively in a computer system and to discussing appropriate hardware support.

Logical Versus Physical Address Space :

An address generated by the CPU is commonly referred to as a logical address, whereas an

address seen by the memory unit— that is, the one loaded into the memory-address register of

the memory—is commonly referred to as a physical address

Binding addresses at either compile or load time generates identical logical and physical

addresses. However, the execution-time address-binding scheme results in differing logical and
physical addresses. In this case, we usually refer to the logical address as a virtual address. We

use logical address and virtual address interchangeably in this text. The set of all logical

addresses generated by a program is a logical address space. The set of all physical addresses

corresponding to these logical addresses is a physical address space. Thus, in the execution-

time address-binding scheme, the logical and physical address spaces differ.

The run-time mapping from virtual to physical addresses is done by a hardware device called

the memory-management unit (MMU) (Figure 9.4). We can choose from many different methods

to accomplish such mapping, as we discuss in Section 9.2 through Section 9.3. For the time
being, we illustrate this mapping with a simple MMU scheme that is a generalization of the

baseregister scheme described in Section 9.1.1. The base register is now called a relocation

register. The value in the relocation register is added to every address generated by a user

process at the time the address is sent to memory (see Figure 9.5). For example, if the base is

at 14000, then an attempt by the user to address location 0 is dynamically relocated to

location 14000; an access to location 346 is mapped to location 14346.

The user program never accesses the real physical addresses. The program can create a pointer
to location 346, store it in memory, manipulate it, and compare it with other addresses—all as

the number 346. Only when it is used as a memory address (in an indirect load or store,

perhaps) is it relocated relative to the base register. The user program deals with logical

addresses. The memorymapping hardware converts logical addresses into physical addresses.

This form of execution-time binding was discussed in Section 9.1.2. The final location of a

referenced memory address is not determined until the reference is made.

We now have two different types of addresses: logical addresses (in the range 0 to max) and

physical addresses (in the range R + 0 to R + max for a base value R). The user program
generates only logical addresses and thinks that the process runs in memory locations from 0

to max. However, these logical addresses must be mapped to physical addresses before they

are used. The concept of a logical address space that is bound to a separate physical address

space is central to proper memory management.

Prepared by: Satyam K , AITS , MCA OS Notes Page 54

Dynamic Loading :

In our discussion so far, it has been necessary for the entire program and all data of a process
to be in physical memory for the process to execute. The size of a process has thus been limited

to the size of physical memory. To obtain better memory-space utilization, we can use dynamic

loading. With dynamic loading, a routine is not loaded until it is called. All routines are kept on

disk in a relocatable load format. The main program is loaded into memory and is executed.

When a routine needs to call another routine, the calling routine first checks to see whether

the other routine has been loaded. If it has not, the relocatable linking loader is called to load
the desired routine into memory and to update the program’s address tables to reflect this

change. Then control is passed to the newly loaded routine.

The advantage of dynamic loading is that a routine is loaded only when it is needed. This

method is particularly useful when large amounts of code are needed to handle infrequently

occurring cases, such as error routines. In such a situation, although the total program size

may be large, the portion that is used (and hence loaded) may be much smaller.

Dynamic loading does not require special support from the operating system. It is the

responsibility of the users to design their programs to take advantage of such a method.

Operating systems may help the programmer, however, by providing library routines to

implement dynamic loading.

Dynamic Linking and Shared Libraries :

Dynamically linked libraries (DLLs) are system libraries that are linked to user programs when

the programs are run (refer back to Figure 9.3). Some operating systems support only static
linking, in which system libraries are treated like any other object module and are combined by

the loader into the binary program image. Dynamic linking, in contrast, is similar to dynamic

loading. Here, though, linking, rather than loading, is postponed until execution time. This

feature is usually used with system libraries, such as the standard C language library. Without

this facility, each program on a system must include a copy of its language library (or at least
the routines referenced by the program) in the executable image. This requirement not only

increases the size of an executable image but also may waste main memory. A second

advantage of DLLs is that these libraries can be shared among multiple processes, so that only

one instance of the DLL in main memory. For this reason, DLLs are also known as shared

libraries, and are used extensively in Windows and Linux systems.

When a program references a routine that is in a dynamic library, the loader locates the DLL,

loading it into memory if necessary. It then adjusts addresses that reference functions in the

dynamic library to the location in memory where the DLL is stored.

Prepared by: Satyam K , AITS , MCA OS Notes Page 55

Dynamically linked libraries can be extended to library updates (such as bug fixes). In addition,

a library may be replaced by a new version, and all programs that reference the library will

automatically use the new version. Without dynamic linking, all such programs would need to
be relinked to gain access to the new library. So that programs will not accidentally execute

new, incompatible versions of libraries, version information is included in both the program

and the library. More than one version of a library may be loaded into memory, and each

program uses its version information to decide which copy of the library to use. Versions with

minor changes retain the same version number, whereas versions with major changes

increment the number. Thus, only programs that are compiled with the new library version are
affected by any incompatible changes incorporated in it. Other programs linked before the new

library was installed will continue using the older library.

Unlike dynamic loading, dynamic linking and shared libraries generally require help from the

operating system. If the processes in memory are protected from one another, then the

operating system is the only entity that can check to see whether the needed routine is in

another process’s memory space or that can allow multiple processes to access the same

memory addresses. We elaborate on this concept, as well as how DLLs can be shared by

multiple processes, when we discuss paging in Section 9.3.4.

Contiguous Memory Allocation :

The main memory must accommodate both the operating system and the various user

processes. We therefore need to allocate main memory in the most efficient way possible. This

section explains one early method, contiguous memory allocation.

The memory is usually divided into two partitions: one for the operating system and one for the
user processes. We can place the operating system in either low memory addresses or high

memory addresses. This decision depends on many factors, such as the location of the

interrupt vector. However, many operating systems (including Linux and Windows) place the

operating system in high memory, and therefore we discuss only that situation.

We usually want several user processes to reside in memory at the same time. We therefore

need to consider how to allocate available memory to the processes that are waiting to be

brought into memory. In contiguous memory allocation, each process is contained in a single
section of memory that is contiguous to the section containing the next process. Before

discussing this memory allocation scheme further, though, we must address the issue of

memory protection.

Memory Protection :

We can prevent a process from accessing memory that it does not own by combining two ideas

previously discussed. If we have a system with a relocation register (Section 9.1.3), together

with a limit register (Section 9.1.1), we accomplish our goal. The relocation register contains

the value of the smallest physical address; the limit register contains the range of logical

addresses (for example, relocation = 100040 and limit = 74600). Each logical address must fall
within the range specified by the limit register. The MMU maps the logical address dynamically

by adding the value in the relocation register. This mapped address is sent to memory (Figure

9.6).

When the CPU scheduler selects a process for execution, the dispatcher loads the relocation

and limit registers with the correct values as part of the context switch. Because every address

generated by a CPU is checked against these registers, we can protect both the operating

system and the other users’ programs and data from being modified by this running process.

The relocation-register scheme provides an effective way to allow the operating system’s size to

change dynamically. This flexibility is desirable in many situations. For example, the operating

Prepared by: Satyam K , AITS , MCA OS Notes Page 56

system contains code and buffer space for device drivers. If a device driver is not currently in

use, it makes little sense to keep it in memory; instead, it can be loaded into memory only

when it is needed. Likewise, when the device driver is no longer needed, it can be removed and

its memory allocated for other needs.

Memory Allocation :

Now we are ready to turn to memory allocation. One of the simplest methods of allocating

memory is to assign processes to variably sized partitions in memory, where each partition may

contain exactly one process. In this variablepartition scheme, the operating system keeps a

table indicating which parts of memory are available and which are occupied. Initially, all
memory is available for user processes and is considered one large block of available memory, a

hole. Eventually, as you will see, memory contains a set of holes of various sizes.

Figure 9.7 depicts this scheme. Initially, the memory is fully utilized, containing processes 5, 8,

and 2. After process 8 leaves, there is one contiguous hole. Later on, process 9 arrives and is

allocated memory. Then process 5 departs, resulting in two noncontiguous holes.

As processes enter the system, the operating system takes into account the memory

requirements of each process and the amount of available memory space in determining which

processes are allocated memory. When a process is allocated space, it is loaded into memory,

where it can then compete for CPU time. When a process terminates, it releases its memory,

which the operating system may then provide to another process.

What happens when there isn’t sufficient memory to satisfy the demands of an arriving
process? One option is to simply reject the process and provide an appropriate error message.

Alternatively, we can place such processes into a wait queue. When memory is later released,

the operating system checks the wait queue to determine if it will satisfy the memory demands

of a waiting process.

In general, as mentioned, the memory blocks available comprise a set of holes of various sizes

scattered throughout memory. When a process arrives and needs memory, the system searches

the set for a hole that is large enough for this process. If the hole is too large, it is split into two

parts. One part is allocated to the arriving process; the other is returned to the set of holes.
When a process terminates, it releases its block of memory, which is then placed back in the

set of holes. If the new hole is adjacent to other holes, these adjacent holes are merged to form

one larger hole.

This procedure is a particular instance of the general dynamic storageallocation problem,

which concerns how to satisfy a request of size n from a list of free holes. There are many

solutions to this problem. The first-fit, best-fi , and worst-fi strategies are the ones most

commonly used to select a free hole from the set of available holes.

Prepared by: Satyam K , AITS , MCA OS Notes Page 57

• First fit: Allocate the first hole that is big enough. Searching can start either at the beginning

of the set of holes or at the location where the previous first-fit search ended. We can stop

searching as soon as we find a free hole that is large enough.

Best fit: Allocate the smallest hole that is big enough. We must search the entire list, unless

the list is ordered by size. This strategy produces the smallest leftover hole.

Worst fit: Allocate the largest hole. Again, we must search the entire list, unless it is sorted by

size. This strategy produces the largest leftover hole, which may be more useful than the

smaller leftover hole from a best-fit approach.

Fragmentation :

Both the first-fit and best-fit strategies for memory allocation suffer from external

fragmentation. As processes are loaded and removed from memory, the free memory space is
broken into little pieces. External fragmentation exists when there is enough total memory

space to satisfy a request but the available spaces are not contiguous: storage is fragmented

into a large number of small holes. This fragmentation problem can be severe. In the worst

case, we could have a block of free (or wasted) memory between every two processes. If all these

small pieces of memory were in one big free block instead, we might be able to run several

more processes.

Whether we are using the first-fit or best-fit strategy can affect the amount of fragmentation.
(First fit is better for some systems, whereas best fit is better for others.) Another factor is

which end of a free block is allocated. (Which is the leftover piece— the one on the top or the

one on the bottom?) No matter which algorithm is used, however, external fragmentation will

be a problem.

Depending on the total amount of memory storage and the average process size, external

fragmentation may be a minor or a major problem. Statistical analysis of first fit, for instance,

reveals that, even with some optimization, given N allocated blocks, another 0.5 N blocks will
be lost to fragmentation. That is, one-third of memory may be unusable! This property is

known as the 50-percent rule.

Memory fragmentation can be internal as well as external. Consider a multiple-partition

allocation scheme with a hole of 18,464 bytes. Suppose that the next process requests 18,462

bytes. If we allocate exactly the requested block, we are left with a hole of 2 bytes. The overhead

to keep track of this hole will be substantially larger than the hole itself. The general approach

to avoiding this problem is to break the physical memory into fixed-sized blocks and allocate

memory in units based on block size. With this approach, the memory allocated to a process
may be slightly larger than the requested memory. The difference between these two numbers

is internal fragmentation —unused memory that is internal to a partition.

One solution to the problem of external fragmentation is compaction. The goal is to shuffle the

memory contents so as to place all free memory together in one large block. Compaction is not

always possible, however. If relocation is static and is done at assembly or load time,

compaction cannot be done. It is possible only if relocation is dynamic and is done at execution

time. If addresses are relocated dynamically, relocation requires only moving the program and

Prepared by: Satyam K , AITS , MCA OS Notes Page 58

data and then changing the base register to reflect the new base address. When compaction is

possible, we must determine its cost. The simplest compaction algorithm is to move all

processes toward one end of memory; all holes move in the other direction, producing one large

hole of available memory. This scheme can be expensive.

Another possible solution to the external-fragmentation problem is to permit the logical
address space of processes to be noncontiguous, thus allowing a process to be allocated

physical memory wherever such memory is available. This is the strategy used in paging, the

most common memory-management technique for computer systems. We describe paging in

the following section.

Paging :

Memory management discussed thus far has required the physical address space of a process

to be contiguous. We now introduce paging, a memorymanagement scheme that permits a

process’s physical address space to be noncontiguous. Paging avoids external fragmentation

and the associated need for compaction, two problems that plague contiguous memory
allocation. Because it offers numerous advantages, paging in its various forms is used in most

operating systems, from those for large servers through those for mobile devices. Paging is

implemented through cooperation between the operating system and the computer hardware.

Basic Method :

The basic method for implementing paging involves breaking physical memory into fixed-sized

blocks called frames and breaking logical memory into blocks of the same size called pages.

When a process is to be executed, its pages are loaded into any available memory frames from

their source (a file system or the backing store). The backing store is divided into fixed-sized

blocks that are the same size as the memory frames or clusters of multiple frames. This rather

simple idea has great functionality and wide ramifications. For example, the logical address
space is now totally separate from the physical address space, so a process can have a logical

64-bit address space even though the system has less than 264 bytes of physical memory.

Every address generated by the CPU is divided into two parts: a page number (p) and a page

offset (d):

Prepared by: Satyam K , AITS , MCA OS Notes Page 59

The page number is used as an index into a per-process page table. This is illustrated in Figure

9.8. The page table contains the base address of each frame in physical memory, and the offset

is the location in the frame being referenced. Thus, the base address of the frame is combined
with the page offset to define the physical memory address. The paging model of memory is

shown in Figure 9.9.

The following outlines the steps taken by the MMU to translate a logical address generated by

the CPU to a physical address:

1. Extract the page number p and use it as an index into the page table.

2. Extract the corresponding frame number f from the page table.

3. Replace the page number p in the logical address with the frame number f

As the offset d does not change, it is not replaced, and the frame number and offset now

comprise the physical address

The page size (like the frame size) is defined by the hardware. The size of a page is a power of 2,

typically varying between 4 KB and 1 GB per page, depending on the computer architecture.
The selection of a power of 2 as a page size makes the translation of a logical address into a

page number and page offset particularly easy. If the size of the logical address space is 2m,

and a page size is 2n bytes, then the high-order m−n bits of a logical address designate the

page number, and the n low-order bits designate the page offset. Thus, the logical address is as

follows:

When we use a paging scheme, we have no external fragmentation: any free frame can be

allocated to a process that needs it. However, we may have some internal fragmentation. Notice

that frames are allocated as units. If the memory requirements of a process do not happen to

coincide with page boundaries, the last frame allocated may not be completely full. For
example, if page size is 2,048 bytes, a process of 72,766 bytes will need 35 pages plus 1,086

bytes. It will be allocated 36 frames, resulting in internal fragmentation of 2,048 − 1,086 = 962

bytes. In the worst case, a process would need n pages plus 1 byte. It would be allocated n + 1

frames, resulting in internal fragmentation of almost an entire frame.

Prepared by: Satyam K , AITS , MCA OS Notes Page 60

Structure of the Page Table :

In this section, we explore some of the most common techniques for structuring the page table,

including hierarchical paging, hashed page tables, and inverted page tables.

Hierarchical Paging :

Most modern computer systems support a large logical address space (232 to 264). In such an

environment, the page table itself becomes excessively large. For example, consider a system

with a 32-bit logical address space. If the page size in such a system is 4 KB (212), then a page

table may consist of over 1 million entries (220 = 232/212). Assuming that each entry consists

of 4 bytes, each process may need up to 4 MB of physical address space for the page table

alone. Clearly, we would not want to allocate the page table contiguously in main memory. One
simple solution to this problem is to divide the page table into smaller pieces. We can

accomplish this division in several ways.

One way is to use a two-level paging algorithm, in which the page table itself is also paged

(Figure 9.15). For example, consider again the system with a 32-bit logical address space and a

page size of 4 KB. A logical address is divided into a page number consisting of 20 bits and a

page offset consisting of 12 bits. Because we page the page table, the page number is further

divided into a 10-bit page number and a 10-bit page offset. Thus, a logical address is as

follows:

Prepared by: Satyam K , AITS , MCA OS Notes Page 61

Hashed Page Tables :

One approach for handling address spaces larger than 32 bits is to use a hashed page table,

with the hash value being the virtual page number. Each entry in the hash table contains a
linked list of elements that hash to the same location (to handle collisions). Each element

consists of three fields: (1) the virtual page number, (2) the value of the mapped page frame,

and (3) a pointer to the next element in the linked list.

The algorithm works as follows: The virtual page number in the virtual address is hashed into

the hash table. The virtual page number is compared with field 1 in the first element in the

linked list. If there is a match, the corresponding page frame (field 2) is used to form the

desired physical address. If there is no match, subsequent entries in the linked list are

searched for a matching virtual page number. This scheme is shown in Figure 9.17.

Swapping :

Process instructions and the data they operate on must be in memory to be executed. However,

a process, or a portion of a process, can be swapped temporarily out of memory to a backing

store and then brought back into memory for continued execution (Figure 9.19). Swapping

Prepared by: Satyam K , AITS , MCA OS Notes Page 62

makes it possible for the total physical address space of all processes to exceed the real

physical memory of the system, thus increasing the degree of multiprogramming in a system.

Standard Swapping :

Standard swapping involves moving entire processes between main memory and a backing

store. The backing store is commonly fast secondary storage. It must be large enough to
accommodate whatever parts of processes need to be stored and retrieved, and it must provide

direct access to these memory images. When a process or part is swapped to the backing store,

the data structures associated with the process must be written to the backing store. For a

multithreaded process, all per-thread data structures must be swapped as well. The operating

system must also maintain metadata for processes that have been swapped out, so they can be

restored when they are swapped back in to memory.

The advantage of standard swapping is that it allows physical memory to be oversubscribed, so

that the system can accommodate more processes than there is actual physical memory to
store them. Idle or mostly idle processes are good candidates for swapping; any memory that

has been allocated to these inactive processes can then be dedicated to active processes. If an

inactive process that has been swapped out becomes active once again, it must then be

swapped back in. This is illustrated in Figure 9.19.

Virtual Memory :

The memory-management algorithms outlined in Chapter 9 are necessary because of one basic

requirement: the instructions being executed must be in physical memory. The first approach

to meeting this requirement is to place the entire logical address space in physical memory.

Dynamic linking can help to ease this restriction, but it generally requires special precautions

and extra work by the programmer.

The requirement that instructions must be in physical memory to be executed seems both
necessary and reasonable; but it is also unfortunate, since it limits the size of a program to the

size of physical memory. In fact, an examination of real programs shows us that, in many

cases, the entire program is not needed. For instance, consider the following:

Programs often have code to handle unusual error conditions. Since these errors seldom, if

ever, occur in practice, this code is almost never executed.

Arrays, lists, and tables are often allocated more memory than they actually need. An array

may be declared 100 by 100 elements, even though it is seldom larger than 10 by 10 elements.

Prepared by: Satyam K , AITS , MCA OS Notes Page 63

Certain options and features of a program may be used rarely. For instance, the routines on

U.S. government computers that balance the budget have not been used in many years.

Even in those cases where the entire program is needed, it may not all be needed at the same

time.

The ability to execute a program that is only partially in memory would confer many benefits:

• A program would no longer be constrained by the amount of physical memory that is

available. Users would be able to write programs for an extremely large virtual address space,

simplifying the programming task.

Because each program could take less physical memory, more programs could be run at the

same time, with a corresponding increase in CPU utilization and throughput but with no

increase in response time or turnaround time.

Less I/O would be needed to load or swap portions of programs into memory, so each program

would run faster.

Thus, running a program that is not entirely in memory would benefit both the system and its

users.

Virtual memory involves the separation of logical memory as perceived by developers from
physical memory. This separation allows an extremely large virtual memory to be provided for

programmers when only a smaller physical memory is available (Figure 10.1). Virtual memory

makes the task of programming much easier, because the programmer no longer needs to

worry about the amount of physical memory available; she can concentrate instead on

programming the problem that is to be solved.

The virtual address space of a process refers to the logical (or virtual) view of how a process is

stored in memory. Typically, this view is that a process begins at a certain logical address—say,

address 0—and exists in contiguous memory, as shown in Figure 10.2. Recall from Chapter 9,
though, that in fact physical memory is organized in page frames and that the physical page

frames assigned to a process may not be contiguous. It is up to the memory-management unit

(MMU) to map logical pages to physical page frames in memory.

Note in Figure 10.2 that we allow the heap to grow upward in memory as it is used for dynamic

memory allocation. Similarly, we allow for the stack to grow downward in memory through

successive function calls. The large blank space (or hole) between the heap and the stack is

Prepared by: Satyam K , AITS , MCA OS Notes Page 64

part of the virtual address space but will require actual physical pages only if the heap or stack

grows. Virtual address spaces that include holes are known as sparse address spaces. Using a

sparse address space is beneficial because the holes can be filled as the stack or heap
segments grow or if we wish to dynamically link libraries (or possibly other shared objects)

during program execution.

In addition to separating logical memory from physical memory, virtual memory allows files

and memory to be shared by two or more processes through page sharing (Section 9.3.4). This

leads to the following benefits:

System libraries such as the standard C library can be shared by several processes through

mapping of the shared object into a virtual address space. Although each process considers the

libraries to be part of its virtual address space, the actual pages where the libraries reside in
physical memory are shared by all the processes (Figure 10.3). Typically, a library y is mapped

read-only into the space of each process that is linked with it.

Similarly, processes can share memory. Recall from Chapter 3 that two or more processes can

communicate through the use of shared memory. Virtual memory allows one process to create

a region of memory that it can share with another process. Processes sharing this region

consider it part of their virtual address space, yet the actual physical pages of memory are

shared, much as is illustrated in Figure 10.3.

Pages can be shared during process creation with the fork() system call, thus speeding up

process creation.

Demand Paging : Consider how an executable program might be loaded from secondary

storage into memory. One option is to load the entire program in physical memory at program
execution time. However, a problem with this approach is that we may not initially need the

entire program in memory. Suppose a program starts with a list of available options from

which the user is to select. Loading the entire program into memory results in loading the

Prepared by: Satyam K , AITS , MCA OS Notes Page 65

executable code for all options, regardless of whether or not an option is ultimately selected by

the user.

An alternative strategy is to load pages only as they are needed. This technique is known as

demand paging and is commonly used in virtual memory systems. With demand-paged virtual

memory, pages are loaded only when they are demanded during program execution. Pages that
are never accessed are thus never loaded into physical memory. A demand-paging system is

similar to a paging system with swapping (Section 9.5.2) where processes reside in secondary

memory (usually an HDD or NVM device). Demand paging explains one of the primary benefits

of virtual memory—by loading only y the portions of programs that are needed, memory is used

more efficiently.

The general concept behind demand paging, as mentioned, is to load a page in memory only

when it is needed. As a result, while a process is executing, some pages will be in memory, and
some will be in secondary storage. Thus, we need some form of hardware support to

distinguish between the two. The valid – invalid bit scheme described in Section 9.3.3 can be

used for this purpose. This time, however, when the bit is set to ―valid,‖ the associated page is

both legal and in memory. If the bit is set to ―invalid,‖ the page either is not valid (that is, not in

the logical address space of the process) or is valid but is currently in secondary storage. The

page-table entry for a page that is brought into memory is set as usual, but the page-table
entry for a page that is not currently in memory is simply marked invalid. This situation is

depicted in Figure 10.4. (Notice that marking a page invalid will have no effect if the process

never attempts to access that page.)

But what happens if the process tries to access a page that was not brought into memory?

Access to a page marked invalid causes a page fault. The paging hardware, in translating the

address through the page table, will notice that the invalid bit is set, causing a trap to the
operating system. This trap is the result of the operating system’s failure to bring the desired

page into memory. The procedure for handling this page fault is straightforward (Figure 10.5):

1. We check an internal table (usually kept with the process control block) for this process to

determine whether the reference was a valid or an invalid memory access.

2. If the reference was invalid, we terminate the process. If it was valid but we have not yet

brought in that page, we now page it in.

3. We find a free frame (by taking one from the free-frame list, for example).

Prepared by: Satyam K , AITS , MCA OS Notes Page 66

4. We schedule a secondary storage operation to read the desired page into the newly allocated

frame.

5. When the storage read is complete, we modify the internal table kept with the process and

the page table to indicate that the page is now in memory.

6. We restart the instruction that was interrupted by the trap. The process can now access the

page as though it had always been in memory.

In the extreme case, we can start executing a process with no pages in memory. When the

operating system sets the instruction pointer to the first instruction of the process, which is on

a non-memory-resident page, the process immediately faults for the page. After this page is

brought into memory, the process continues to execute, faulting as necessary until every page

that it needs is in memory. At that point, it can execute with no more faults. This scheme is

pure demand paging: never bring a page into memory until it is required.

Theoretically, some programs could access several new pages of memory with each instruction
execution (one page for the instruction and many for data), possibly causing multiple page

faults per instruction. This situation would result in unacceptable system performance.

Fortunately, analysis of running processes shows that this behavior is exceedingly unlikely.

Programs tend to have locality of reference, described in Section 10.6.1, which results in

reasonable performance from demand paging.

The hardware to support demand paging is the same as the hardware for paging and swapping:

Page table. This table has the ability to mark an entry invalid through a valid –invalid bit or a

special value of protection bits

.Secondary memory. This memory holds those pages that are not present in main memory. The

secondary memory is usually a high-speed disk or NVM device. It is known as the swap device,

and the section of storage used for this purpose is known as swap space. Swap-space

allocation is discussed in Chapter 11.

A crucial requirement for demand paging is the ability to restart any instruction after a page
fault. Because we save the state (registers, condition code, instruction counter) of the

interrupted process when the page fault occurs, we must be able to restart the process in

exactly the same place and state, except that the desired page is now in memory and is

accessible. In most cases, this requirement is easy to meet. A page fault may occur at any

memory reference. If the page fault occurs on the instruction fetch, we can restart by fetching

Prepared by: Satyam K , AITS , MCA OS Notes Page 67

the instruction again. If a page fault occurs while we are fetching an operand, we must fetch

and decode the instruction again and then fetch the operand.

As a worst-case example, consider a three-address instruction such as ADD the content of A to

B, placing the result in C. These are the steps to execute this instruction:

1. Fetch and decode the instruction (ADD).

2. Fetch A.

3. Fetch B.

4. Add A and B.

5. Store the sum in C.

If we fault when we try to store in C (because C is in a page not currently in memory), we will

have to get the desired page, bring it in, correct the page table, and restart the instruction. The
restart will require fetching the instruction again, decoding it again, fetching the two operands

again, and then adding again. However, there is not much repeated work (less than one

complete instruction), and the repetition is necessary only when a page fault occurs.

The major difficulty arises when one instruction may modify several different locations. For

example, consider the IBM System 360/370 MVC (move character) instruction, which can

move up to 256 bytes from one location to another (possibly overlapping) location. If either

block (source or destination) straddles a page boundary, a page fault might occur after the
move is partially done. In addition, if the source and destination blocks overlap, the source

block may have been modified, in which case we cannot simply restart the instruction.

Page Replacement :

In our earlier discussion of the page-fault rate, we assumed that each page faults at most once,
when it is first referenced. This representation is not strictly accurate, however. If a process of

ten pages actually uses only half of them, then demand paging saves the I/O necessary to load

the five pages that are never used. We could also increase our degree of multiprogramming by

running twice as many processes. Thus, if we had forty frames, we could run eight processes,

rather than the four that could run if each required ten frames (five of which were never used).

If we increase our degree of multiprogramming, we are over-allocating memory. If we run six

processes, each of which is ten pages in size but actually uses only five pages, we have higher
CPU utilization and throughput, with ten frames to spare. It is possible, however, that each of

these processes, for a particular data set, may suddenly try to use all ten of its pages, resulting

in a need for sixty frames when only forty are available.

Further, consider that system memory is not used only for holding program pages. Buffers

forI/O also consume a considerable amount of memory. This use can increase the strain on

memory-placement algorithms. Deciding how much memory to allocate to I/O and how much

to program pages is a significant challenge. Some systems allocate a fixed percentage of
memory for I/O buffers, whereas others allow both processes and the I/O subsystem to

compete for all system memory. Section 14.6 discusses the integrated relationship between I/O

buffers and virtual memory techniques.

Over-allocation of memory manifests itself as follows. While a process is executing, a page fault

occurs. The operating system determines where the desired page is residing on secondary

storage but then finds that there are no free frames on the free-frame list; all memory is in use.

This situation is illustrated in Figure 10.9, where the fact that there are no free frames is

depicted by a question mark.

Prepared by: Satyam K , AITS , MCA OS Notes Page 68

The operating system has several options at this point. It could terminate the process.

However, demand paging is the operating system’s attempt to improve the computer system’s

utilization and throughput. Users should not be aware that their processes are running on a
paged system—paging should be logically transparent to the user. So this option is not the best

choice.

The operating system could instead use standard swapping and swap out a process, freeing all

its frames and reducing the level of multiprogramming. However, as discussed in Section 9.5,

standard swapping is no longer used by most operating systems due to the overhead of copying

entire processes between memory and swap space. Most operating systems now combine

swapping pages with page replacement, a technique we describe in detail in the remainder of

this section.

Basic Page Replacement :

Page replacement takes the following approach. If no frame is free, we find one that is not

currently being used and free it. We can free a frame by writing its contents to swap space and
changing the page table (and all other tables) to indicate that the page is no longer in memory

(Figure 10.10). We can now use the freed frame to hold the page for which the process faulted.

We modify the page-fault service routine to include page replacement:

1. Find the location of the desired page on secondary storage.

2. Find a free frame:

a. If there is a free frame, use it.

b. If there is no free frame, use a page-replacement algorithm to select a victim frame.

c. Write the victim frame to secondary storage (if necessary); change the page and frame tables

accordingly.

3. Read the desired page into the newly freed frame; change the page and frame tables.

4. Continue the process from where the page fault occurred.

Notice that, if no frames are free, two page transfers (one for the page-out and one for the page-

in) are required. This situation effectively doubles the page-fault service time and increases the

effective access time accordingly.

We can reduce this overhead by using a modify bit (or dirty bit). When this scheme is used,

each page or frame has a modify bit associated with it in the hardware. The modify bit for a

Prepared by: Satyam K , AITS , MCA OS Notes Page 69

page is set by the hardware whenever any byte in the page is written into, indicating that the

page has been modified. When we select a page for replacement, we examine its modify bit. If

the bit is set, we know that the page has been modified since it was read in from secondary
storage. In this case, we must write the page to storage. If the modify bit is not set, however,

the page has not been modified since it was read into memory. In this case, we need not write

the memory page to storage: it is already there. This technique also applies to read-only pages

(for example, pages of binary code). Such pages cannot be modified; thus, they may be

discarded when desired. This scheme can significantly reduce the time required to service a

page fault, since it reduces I/O time by one-half if the page has not been modified.

FIFO Page Replacement :

The simplest page-replacement algorithm is a first-in, first-out (FIFO) algorithm. A FIFO

replacement algorithm associates with each page the time when that page was brought into
memory. When a page must be replaced, the oldest page is chosen. Notice that it is not strictly

necessary to record the time when a page is brought in. We can create a FIFO queue to hold all

pages in memory. We replace the page at the head of the queue. When a page is brought into

memory, we insert it at the tail of the queue.

For our example reference string, our three frames are initially empty. The first three references

(7, 0, 1) cause page faults and are brought into these empty frames. The next reference (2)

replaces page 7, because page 7 was brought in first. Since 0 is the next reference and 0 is

already in memory, we have no fault for this reference. The first reference to 3 results in
replacement of page 0, since it is now first in line. Because of this replacement, the next

reference, to 0, will fault. Page 1 is then replaced by page 0. This process continues as shown

in Figure 10.12. Every time a fault occurs, we show which pages are in our three frames. There

are fifteen faults altogether.

Allocation of Frames :

We turn next to the issue of allocation. How do we allocate the fixed amount of free memory

among the various processes? If we have 93 free frames and two processes, how many frames

does each process get? Consider a simple case of a system with 128 frames. The operating

system may take 35, leaving 93 frames for the user process. Under pure demand paging, all 93
frames would initially be put on the free-frame list. When a user process started execution, it

would generate a sequence of page faults. The first 93 page faults would all get free frames

from the free-frame list. When the free-frame list was exhausted, a page-replacement algorithm

would be used to select one of the 93 in-memory pages to be replaced with the 94th, and so on.

When the process terminated, the 93 frames would once again be placed on the free-frame list.

There are many variations on this simple strategy. We can require that the operating system

allocate all its buffer and table space from the free-frame list. When this space is not in use by
the operating system, it can be used to support user paging. We can try to keep three free

frames reserved on the free-frame list at all times. Thus, when a page fault occurs, there is a

free frame available to page into. While the page swap is taking place, a replacement can be

selected, which is then written to the storage device as the user process continues to execute.

Other variants are also possible, but the basic strategy is clear: the user process is allocated

any free frame.

Minimum Number of Frames :

Our strategies for the allocation of frames are constrained in various ways. We cannot, for

example, allocate more than the total number of available frames (unless there is page

sharing). We must also allocate at least a minimum number of frames. Here, we look more

closely at the latter requirement.

Prepared by: Satyam K , AITS , MCA OS Notes Page 70

One reason for allocating at least a minimum number of frames involves performance.

Obviously, as the number of frames allocated to each process decreases, the page-fault rate

increases, slowing process execution. In addition, remember that, when a page fault occurs
before an executing instruction is complete, the instruction must be restarted. Consequently,

we must have enough frames to hold all the different pages that any single instruction can

reference.

For example, consider a machine in which all memory-reference instructions may reference

only one memory address. In this case, we need at least one frame for the instruction and one

frame for the memory reference. In addition, if one-level indirect addressing is allowed (for

example, a load instruction on frame 16 can refer to an address on frame 0, which is an

indirect reference to frame 23), then paging requires at least three frames per process. (Think

about what might happen if a process had only two frames.)

The minimum number of frames is defined by the computer architecture. For example, if the

move instruction for a given architecture includes more than one word for some addressing

modes, the instruction itself may straddle two frames. In addition, if each of its two operands

may be indirect references, a total of six frames are required. As another example, the move

instruction for Intel 32- and 64-bit architectures allows data to move only from register to

register and between registers and memory; it does not allow direct memoryto-memory

movement, thereby limiting the required minimum number of frames for a process.

Whereas the minimum number of frames per process is defined by the architecture, the
maximum number is defined by the amount of available physical memory. In between, we are

still left with significant choice in frame allocation

Allocation Algorithms :

The easiest way to split m frames among n processes is to give everyone an equal share, m/n
frames (ignoring frames needed by the operating system for the moment). For instance, if there

are 93 frames and 5 processes, each process will get 18 frames. The 3 leftover frames can be

used as a free-frame buffer pool. This scheme is called equal allocation.

An alternative is to recognize that various processes will need differing amounts of memory.

Consider a system with a 1-KB frame size. If a small student process of 10 KB and an

interactive database of 127 KB are the only two processes running in a system with 62 free

frames, it does not make much sense to give each process 31 frames. The student process does

not need more than 10 frames, so the other 21 are, strictly speaking, wasted.

To solve this problem, we can use proportional allocation, in which we allocate available
memory to each process according to its size. Let the size of the virtual memory for process pi

be si , and define

S = ∑ si .

Then, if the total number of available frames is m, we allocate ai frames to process pi , where ai

is approximately

ai = si /S × m.

Of course, we must adjust each ai to be an integer that is greater than the minimum number of

frames required by the instruction set, with a sum not exceeding m.

With proportional allocation, we would split 62 frames between two processes, one of 10 pages

and one of 127 pages, by allocating 4 frames and 57 frames, respectively, since

10/137 × 62 ≈ 4 and 127/137 × 62 ≈ 57.

Prepared by: Satyam K , AITS , MCA OS Notes Page 71

In this way, both processes share the available frames according to their ―needs,‖ rather than

equally.

In both equal and proportional allocation, of course, the allocation may vary according to the

multiprogramming level. If the multiprogramming level is increased, each process will lose

some frames to provide the memory needed for the new process. Conversely, if the
multiprogramming level decreases, the frames that were allocated to the departed process can

be spread over the remaining processes.

Notice that, with either equal or proportional allocation, a high-priority process is treated the

same as a low-priority process. By its definition, however, we may want to give the high-priority

process more memory to speed its execution, to the detriment of low-priority processes. One

solution is to use a proportional allocation scheme wherein the ratio of frames depends not on

the relative sizes of processes but rather on the priorities of processes or on a combination of

size and priority.

Global versus Local Allocation :

Another important factor in the way frames are allocated to the various processes is page

replacement. With multiple processes competing for frames, we can classify page-replacement
algorithms into two broad categories: global replacement and local replacement. Global

replacement allows a process to select a replacement frame from the set of all frames, even if

that frame is currently allocated to some other process; that is, one process can take a frame

from another. Local replacement requires that each process select from only its own set of

allocated frames.

For example, consider an allocation scheme wherein we allow highpriority processes to select

frames from low-priority processes for replacement. A process can select a replacement from

among its own frames or the frames of any lower-priority process. This approach allows a high-
priority process to increase its frame allocation at the expense of a low-priority process.

Whereas with a local replacement strategy, the number of frames allocated to a process does

not change, with global replacement, a process may happen to select only frames allocated to

other processes, thus increasing the number of frames allocated to it (assuming that other

processes do not choose its frames for replacement).

One problem with a global replacement algorithm is that the set of pages in memory for a

process depends not only on the paging behavior of that process, but also on the paging
behavior of other processes. Therefore, the same process may perform quite differently (for

example, taking 0.5 seconds for one execution and 4.3 seconds for the next execution) because

of totally external circumstances. Such is not the case with a local replacement algorithm.

Under local replacement, the set of pages in memory for a process is affected by the paging

behavior of only that process. Local replacement might hinder a process, however, by not
making available to it other, less used pages of memory. Thus, global replacement generally

results in greater system throughput. It is therefore the more commonly used method.

Next, we focus on one possible strategy that we can use to implement a global page-

replacement policy. With this approach, we satisfy all memory requests from the free-frame list,

but rather than waiting for the list to drop to zero before we begin selecting pages for

replacement, we trigger page replacement when the list falls below a certain threshold. This

strategy attempts to ensure there is always sufficient free memory to satisfy new requests.

Prepared by: Satyam K , AITS , MCA OS Notes Page 72

below this threshold, a kernel routine is triggered that begins reclaiming pages from all
processes in the system (typically excluding the kernel). Such kernel routines are often known

as reapers, and they may apply any of the pagereplacement algorithms covered in Section 10.4.

When the amount of free memory reaches the maximum threshold, the reaper routine is

suspended, only to resume once free memory again falls below the minimum threshold.

In Figure 10.18, we see that at point a the amount of free memory drops below the minimum

threshold, and the kernel begins reclaiming pages and adding them to the free-frame list. It

continues until the maximum threshold is reached (point b). Over time, there are additional

requests for memory, and at point c the amount of free memory again falls below the minimum
threshold. Page reclamation resumes, only to be suspended when the amount of free memory

reaches the maximum threshold (point d). This process continues as long as the system is

running.

Non-Uniform Memory Access :

Thus far in our coverage of virtual memory, we have assumed that all main memory is created

equal—or at least that it is accessed equally. On nonuniform memory access (NUMA) systems

with multiple CPUs (Section 1.3.2), that is not the case. On these systems, a given CPU can

access some sections of main memory faster than it can access others. These performance

differences are caused by how CPUs and memory are interconnected in the system. Such a
system is made up of multiple CPUs, each with its own local memory (Figure 10.19). The CPUs

are organized using a shared system interconnect, and as you might expect, a CPU can access

its local memory faster than memory local to another CPU. NUMA systems are without

exception slower than systems in which all accesses to main memory are treated equally.

However, as described in Section 1.3.2, NUMA systems can accommodate more CPUs and
therefore achieve greater levels of throughput and par.

Prepared by: Satyam K , AITS , MCA OS Notes Page 73

Managing which page frames are stored at which locations can significantly affect performance

in NUMA systems. If we treat memory as uniform in such a system, CPUs may wait

significantly longer for memory access than if we modify memory allocation algorithms to take
NUMA into account. We described some of these modifications in Section 5.5.4. Their goal is to

have memory frames allocated ―as close as possible‖ to the CPU on which the process is

running. (The definition of close is ―with minimum latency,‖ which typically means on the same

system board as the CPU). Thus, when a process incurs a page fault, a NUMA-aware virtual

memory system will allocate that process a frame as close as possible to the CPU on which the

process is running.

To take NUMA into account, the scheduler must track the last CPU on which each process ran.

If the scheduler tries to schedule each process onto its previous CPU, and the virtual memory
system tries to allocate frames for the process close to the CPU on which it is being scheduled,

then improved cache hits and decreased memory access times will result.

Thrashing:

Consider what occurs if a process does not have ―enough‖ frames— that is, it does not have the

minimum number of frames it needs to support pages in the working set. The process will

quickly page-fault. At this point, it must replace some page. However, since all its pages are in

active use, it must replace a page that will be needed again right away. Consequently, it quickly

faults again, and again, and again, replacing pages that it must bring back in immediately.

This high paging activity is called thrashing. A process is thrashing if it is spending more time

paging than executing. As you might expect, thrashing results in severe performance problems.

Cause of Thrashing :

Consider the following scenario, which is based on the actual behavior of early paging systems.

The operating system monitors CPU utilization. If CPU utilization is too low, we increase the
degree of multiprogramming by introducing a new process to the system. A global page-

replacement algorithm is used; it replaces pages without regard to the process to which they

belong. Now suppose that a process enters a new phase in its execution and needs more

frames. It starts faulting and taking frames away from other processes. These processes need

those pages, however, and so they also fault, taking frames from other processes. These
faulting processes must use the paging device to swap pages in and out. As they queue up for

the paging device, the ready queue empties. As processes wait for the paging device, CPU

utilization decreases.

pties. As processes wait for the paging device, CPU utilization decreases. The CPU scheduler

sees the decreasing CPU utilization and increases the degree of multiprogramming as a result.

The new process tries to get started by taking frames from running processes, causing more

page faults and a longer queue for the paging device. As a result, CPU utilization drops even
further, and the CPU scheduler tries to increase the degree of multiprogramming even more.

Thrashing has occurred, and system throughput plunges. The pagefault rate increases

tremendously. As a result, the effective memory-access time increases. No work is getting done,

because the processes are spending all their time paging.

This phenomenon is illustrated in Figure 10.20, in which CPU utilization is plotted against the

degree of multiprogramming. As the degree of multiprogramming increases, CPU utilization

also increases, although more slowly, until a maximum is reached. If the degree of

multiprogramming is increased further, thrashing sets in, and CPU utilization drops sharply.
At this point, to increase CPU utilization and stop thrashing, we must decrease the degree of

multiprogramming. We can limit the effects of thrashing by using a local replacement algorithm

(or priority replacement algorithm). As mentioned earlier, local replacement requires that each

process select from only its own set of allocated frames. Thus, if one process starts thrashing,

it cannot steal frames from another process and cause the latter to thrash as well. However,

Prepared by: Satyam K , AITS , MCA OS Notes Page 74

the problem is not entirely solved. If processes are thrashing, they will be in the queue for the

paging device most of the time. The average service time for a page fault will increase because

of the longer average queue for the paging device. Thus, the effective access time will increase

even for a process that is not thrashing.

To prevent thrashing, we must provide a process with as many frames as it needs. But how do
we know how many frames it ―needs‖? One strategy starts by looking at how many frames a

process is actually using. This approach defines the locality model of process execution.

The locality model states that, as a process executes, it moves from locality to locality. A

locality is a set of pages that are actively used together. A running program is generally

composed of several different localities, which may overlap. For example, when a function is

called, it defines a new locality.

UNIT-IV

Mass -Storage Structure :

In this chapter, we discuss how mass storage— the nonvolatile storage system of a computer—

is structured. The main mass-storage system in modern computers is secondary storage, which

is usually provided by hard disk drives (HDD) and nonvolatile memory (NVM) devices. Some
systems also have slower, larger, tertiary storage, generally consisting of magnetic tape, optical

disks, or even cloud storage.

Because the most common and important storage devices in modern computer systems are

HDDs and NVM devices, the bulk of this chapter is devoted to discussing these two types of

storage. We first describe their physical structure. We then consider scheduling algorithms,

which schedule the order of I/Os to maximize performance. Next, we discuss device formatting

and management of boot blocks, damaged blocks, and swap space. Finally, we examine the

structure of RAID systems.

There are many types of mass storage, and we use the general term nonvolatile storage (NVS)
or talk about storage ―drives‖ when the discussion includes all types. Particular devices, such

as HDDs and NVM devices, are specified as appropriate.

Overview of Mass-Storage Structure :

The bulk of secondary storage for modern computers is provided by hard disk drives (HDDs)
and nonvolatile memory (NVM) devices. In this section, we describe the basic mechanisms of

these devices and explain how operating systems translate their physical properties to logical

storage via address mapping.

Prepared by: Satyam K , AITS , MCA OS Notes Page 75

Hard Disk Drives :

Conceptually, HDDs are relatively simple (Figure 11.1). Each disk platter has a flat circular

shape, like a CD. Common platter diameters range from 1.8 to 3.5 inches. The two surfaces of

a platter are covered with a magnetic material. We store information by recording it
magnetically on the platters, and we read information by detecting the magnetic pattern on the

platters.

A read –write head ―flies‖ just above each surface of every platter. The heads are attached to a

disk arm that moves all the heads as a unit. The surface of a platter is logically divided into

circular tracks, which are subdivided into sectors. The set of tracks at a given arm position

make up a cylinder. There may be thousands of concentric cylinders in a disk drive, and each

track may contain hundreds of sectors. Each sector has a fixed size and is the smallest unit of

transfer. The sector size was commonly 512 bytes until around 2010. At that point, many
manufacturers start migrating to 4KB sectors. The storage capacity of common disk drives is

measured in gigabytes and terabytes. A disk drive with the cover removed is shown in Figure

11.2.

A disk drive motor spins it at high speed. Most drives rotate 60 to 250 times per second,

specified in terms of rotations per minute (RPM). Common drives spin at 5,400, 7,200, 10,000,

and 15,000 RPM. Some drives power down when not in use and spin up upon receiving an I/O

request. Rotation speed relates to transfer rates. The transfer rate is the rate at which data flow
between the drive and the computer. Another performance aspect, the positioning time, or

random-access time, consists of two parts: the time necessary to move the disk arm to the

desired cylinder, called the seek time, and the time necessary for the desired sector to rotate to

the disk head, called the rotational latency. Typical disks can transfer tens to hundreds of

megabytes of data per second, and they have seek times and rotational latencies of several

milliseconds. They increase performance by having DRAM buffers in the drive controller.

Prepared by: Satyam K , AITS , MCA OS Notes Page 76

The disk head flies on an extremely thin cushion (measured in microns) of air or another gas,

such as helium, and there is a danger that the head will make contact with the disk surface.

Although the disk platters are coated with a thin protective layer, the head will sometimes

damage the magnetic surface. This accident is called a head crash. A head crash normally
cannot be repaired; the entire disk must be replaced, and the data on the disk are lost unless

they were backed up to other storage or RAID protected. (RAID is discussed in Section 11.8.)

HDDs are sealed units, and some chassis that hold HDDs allow their removal without shutting

down the system or storage chassis. This is helpful when a system needs more storage than

can be connected at a given time or when it is necessary to replace a bad drive with a working

one. Other types of storage media are also removable, including CDs, DVDs, and Blu-ray discs.

Nonvolatile Memory Devices :

Nonvolatile memory (NVM) devices are growing in importance. Simply described, NVM devices

are electrical rather than mechanical. Most commonly, such a device is composed of a

controller and flash NAND die semiconductor chips, which are used to store data. Other NVM

technologies exist, like DRAM with battery backing so it doesn’t lose its contents, as well as
other semiconductor technology like 3D XPoint, but they are far less common and so are not

discussed in this book.

Overview of Nonvolatile Memory Devices :

Flash-memory-based NVM is frequently used in a disk-drive-like container, in which case it is
called a solid-state disk (SSD) (Figure 11.3). In other instances, it takes the form of a USB drive

(also known as a thumb drive or flash drive) or a DRAM stick. It is also surface-mounted onto

motherboards as the main storage in devices like smartphones. In all forms, it acts and can be

treated in the same way. Our discussion of NVM devices focuses on this technology.

NVM devices can be more reliable than HDDs because they have no moving parts and can be

faster because they have no seek time or rotational latency. In addition, they consume less

power. On the negative side, they are more expensive per megabyte than traditional hard disks
and have less capacity than the larger hard disks. Over time, however, the capacity of NVM

devices has increased faster than HDD capacity, and their price has dropped more quickly, so

their use is increasing dramatically. In fact, SSDs and similar devices are now used in some

laptop computers to make them smaller, faster, and more energy-efficient.

Because NVM devices can be much faster than hard disk drives, standard bus interfaces can

cause a major limit on throughput. Some NVM devices are designed to connect directly to the

system bus (PCIe, for example). This technology is changing other traditional aspects of

computer design as well.

Prepared by: Satyam K , AITS , MCA OS Notes Page 77

Some systems use it as a direct replacement for disk drives, while others use it as a new cache

tier, moving data among magnetic disks, NVM, and main memory to optimize performance.

NAND semiconductors have some characteristics that present their own storage and reliability
challenges. For example, they can be read and written in a ―page‖ increment (similar to a

sector), but data cannot be overwritten— rather, the NAND cells have to be erased first. The

erasure, which occurs in a ―block‖ increment that is several pages in size, takes much more

time than a read (the fastest operation) or a write (slower than read, but much faster than

erase). Helping the situation is that NVM flash devices are composed of many die, with many

datapaths to each die, so operations can happen in parallel (each using a datapath). NAND
semiconductors also deteriorate with every erase cycle, and after approximately 100,000

program-erase cycles (the specific number varies depending on the medium), the cells no

longer retain data. Because of the write wear, and because there are no moving parts, NAND

NVM lifespan is not measured in years but in Drive Writes Per Day (DWPD). That measure is

how many times the drive capacity can be written per day before the drive fails. For example, a

1 TB NAND drive with a 5 DWPD rating is expected to have 5 TB per day written to it for the

warranty period without failure.

Volatile Memory :

It might seem odd to discuss volatile memory in a chapter on mass-storage structure, but it is
justifiable because DRAM is frequently used as a mass-storage device. Specifically, RAM drives

(which are known by many names, including RAM disks) act like secondary storage but are

created by device drivers that carve out a section of the system’s DRAM and present it to the

rest of the system as it if were a storage device. These ―drives‖ can be used as raw block

devices, but more commonly, file systems are created on them for standard file operations.

Computers already have buffering and caching, so what is the purpose of yet another use of

DRAM for temporary data storage? After all, DRAM is volatile, and data on a RAM drive does

not survive a system crash, shutdown, or power down. Caches and buffers are allocated by the
programmer or operating system, whereas RAM drives allow the user (as well as the

programmer) to place data in memory for temporary safekeeping using standard file operations.

In fact, RAM drive functionality is useful enough that such drives are found in all major

operating systems. On Linux there is /dev/ram, on macOS the diskutil command creates

them, Windows has them via third-party tools, and Solaris and Linux create /tmp at boot time

of type ―tmpfs‖, which is a RAM drive.

Prepared by: Satyam K , AITS , MCA OS Notes Page 78

RAM drives are useful as high-speed temporary storage space. Although NVM devices are fast,

DRAM is much faster, and I/O operations to RAM drives are the fastest way to create, read,

write, and delete files and their contents. Many programs use (or could benefit from using)
RAM drives for storing temporary files. For example, programs can share data easily by writing

and reading files from a RAM drive. For another example, Linux at boot time creates a

temporary root file system (initrd) that allows other parts of the system to have access to a root

file system and its contents before the parts of the operating system that understand storage

devices are loaded.

Secondary Storage Connection Methods :

A secondary storage device is attached to a computer by the system bus or an I/O bus. Several

kinds of buses are available, including advanced technology attachment (ATA), serial ATA

(SATA), eSATA, serial attached SCSI (SAS), universal serial bus (USB), and fibr channel (FC).
The most common connection method is SATA. Because NVM devices are much faster than

HDDs, the industry created a special, fast interface for NVM devices called NVM express

(NVMe). NVMe directly connects the device to the system PCI bus, increasing throughput and

decreasing latency compared with other connection methods.

The data transfers on a bus are carried out by special electronic processors called controllers

(or host-bus adapters (HBA)). The host controller is the controller at the computer end of the

bus. A device controller is built into each storage device. To perform a mass storage I/O

operation, the computer places a command into the host controller, typically using memory-
mapped I/O ports, as described in Section 12.2.1. The host controller then sends the command

via messages to the device controller, and the controller operates the drive hardware to carry

out the command. Device controllers usually have a built-in cache. Data transfer at the drive

happens between the cache and the storage media, and data transfer to the host, at fast

electronic speeds, occurs between the cache host DRAM via DMA.

Address Mapping :

Storage devices are addressed as large one-dimensional arrays of logical blocks, where the

logical block is the smallest unit of transfer. Each logical block maps to a physical sector or

semiconductor page. The one-dimensional array of logical blocks is mapped onto the sectors or
pages of the device. Sector 0 could be the first sector of the first track on the outermost

cylinder on an HDD, for example. The mapping proceeds in order through that track, then

through the rest of the tracks on that cylinder, and then through the rest of the cylinders, from

outermost to innermost. For NVM the mapping is from a tuple (finite ordered list) of chip,

block, and page to an array of logical blocks. A logical block address (LBA) is easier for

algorithms to use than a sector, cylinder, head tuple or chip, block, page tuple.

By using this mapping on an HDD, we can—at least in theory—convert a logical block number
into an old-style disk address that consists of a cylinder number, a track number within that

cylinder, and a sector number within that track. In practice, it is difficult to perform this

translation, for three reasons. First, most drives have some defective sectors, but the mapping

hides this by substituting spare sectors from elsewhere on the drive. The logical block address

stays sequential, but the physical sector location changes. Second, the number of sectors per

track is not a constant on some drives. Third, disk manufacturers manage LBA to physical
address mapping internally, so in current drives there is little relationship between LBA and

physical sectors. In spite of these physical address vagaries, algorithms that deal with HDDs

tend to assume that logical addresses are relatively related to physical addresses. That is,

ascending logical addresses tend to mean ascending physical address.

Let’s look more closely at the second reason. On media that use constant linear velocity (CLV),

the density of bits per track is uniform. The farther a track is from the center of the disk, the

greater its length, so the more sectors it can hold. As we move from outer zones to inner zones,

Prepared by: Satyam K , AITS , MCA OS Notes Page 79

the number of sectors per track decreases. Tracks in the outermost zone typically hold 40

percent more sectors than do tracks in the innermost zone. The drive increases its rotation

speed as the head moves from the outer to the inner tracks to keep the same rate of data
moving under the head. This method is used in CD-ROM and DVD-ROM drives. Alternatively,

the disk rotation speed can stay constant; in this case, the density of bits decreases from inner

tracks to outer tracks to keep the data rate constant (and performance relatively the same no

matter where data is on the drive). This method is used in hard disks and is known as constant

angular velocity (CAV).

HDD Scheduling :

One of the responsibilities of the operating system is to use the hardware efficiently. For HDDs,

meeting this responsibility entails minimizing access time and maximizing data transfer

bandwidth.

For HDDs and other mechanical storage devices that use platters, access time has two major

components, as mentioned in Section 11.1. The seek time is the time for the device arm to
move the heads to the cylinder containing the desired sector, and the rotational latency is the

additional time for the platter to rotate the desired sector to the head. The device bandwidth is

the total number of bytes transferred, divided by the total time between the first request for

service and the completion of the last transfer. We can improve both the access time and the

bandwidth by managing the order in which storage I/O requests are serviced

Whenever a process needs I/O to or from the drive, it issues a system call to the operating

system. The request specifies several pieces of information:

Whether this operation is input or output

• The open file handle indicating the file to operate on

• What the memory address for the transfer is

• The amount of data to transfer

If the desired drive and controller are available, the request can be serviced immediately. If the

drive or controller is busy, any new requests for service will be placed in the queue of pending

requests for that drive. For a multiprogramming system with many processes, the device queue

may often have several pending requests.

In the past, HDD interfaces required that the host specify which track and which head to use,

and much effort was spent on disk scheduling algorithms. Drives newer than the turn of the

century not only do not expose these controls to the host, but also map LBA to physical

addresses under drive control. The current goals of disk scheduling include fairness,
timeliness, and optimizations, such as bunching reads or writes that appear in sequence, as

drives perform best with sequential I/O. Therefore some scheduling effort is still useful. Any

one of several disk-scheduling algorithms can be used, and we discuss them next. Note that

absolute knowledge of head location and physical block/cylinder locations is generally not

possible on modern drives. But as a rough approximation, algorithms can assume that
increasing LBAs mean increasing physical addresses, and LBAs close together equate to

physical block proximity.

FCFS Scheduling :

The simplest form of disk scheduling is, of course, the first-come, first-served (FCFS) algorithm
(or FIFO). This algorithm is intrinsically fair, but it generally does not provide the fastest

service. Consider, for example, a disk queue with requests for I/O to blocks on cylinders.

Prepared by: Satyam K , AITS , MCA OS Notes Page 80

98, 183, 37, 122, 14, 124, 65, 67,

in that order. If the disk head is initially at cylinder 53, it will first move from 53 to 98, then to

183, 37, 122, 14, 124, 65, and finally to 67, for a total head movement of 640 cylinders. This

schedule is diagrammed in Figure 11.6.

The wild swing from 122 to 14 and then back to 124 illustrates the problem with this schedule.

If the requests for cylinders 37 and 14 could be serviced together, before or after the requests

for 122 and 124, the total head movement could be decreased substantially, and performance

could be thereby improved.

SCAN Scheduling :

In the SCAN algorithm, the disk arm starts at one end of the disk and moves toward the other

end, servicing requests as it reaches each cylinder, until it gets to the other end of the disk. At
the other end, the direction of head movement is reversed, and servicing continues. The head

continuously scans back and forth across the disk. The SCAN algorithm is sometimes called

the elevator algorithm, since the disk arm behaves just like an elevator in a building, first

servicing all the requests going up and then reversing to service requests the other way.

Let’s return to our example to illustrate. Before applying SCAN to schedule the requests on

cylinders 98, 183, 37, 122, 14, 124, 65, and 67, we need to know the direction of head

movement in addition to the head’s current position. Assuming that the disk arm is moving
toward 0 and that the initial head position is again 53, the head will next service 37 and then

14. At cylinder 0, the arm will reverse and will move toward the other end of the disk, servicing

the requests at 65, 67, 98, 122, 124, and 183 (Figure 11.7). If a request arrives in the queue

just in front of the head, it will be serviced almost immediately; a request arriving just behind

the head will have to wait until the arm moves to the end of the disk, reverses direction, and

comes back.

C-SCAN Scheduling :

Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to provide a more uniform

wait time. Like SCAN, C-SCAN moves the head from one end of the disk to the other, servicing
requests along the way. When the head reaches the other end, however, it immediately returns

to the beginning of the disk without servicing any requests on the return trip.

Let’s return to our example to illustrate. Before applying C-SCAN to schedule the requests on

cylinders 98, 183, 37, 122, 14, 124, 65, and 67, we need to know the direction of head

movement in which the requests are scheduled. Assuming that the requests are scheduled

when the disk arm is moving from 0 to 199 and that the initial head position is again 53, the

request will be served as depicted in Figure 11.8. The C-SCAN scheduling algorithm essentially

treats the cylinders as a circular list that wraps around from the final cylinder to the first one.

RAID Structure :

Storage devices have continued to get smaller and cheaper, so it is now economically feasible to

attach many drives to a computer system. Having a large number of drives in a system
presents opportunities for improving the rate at which data can be read or written, if the drives

are operated in parallel. Furthermore, this setup offers the potential for improving the

reliability of data storage, because redundant information can be stored on multiple drives.

Thus, failure of one drive does not lead to loss of data. A variety of disk-organization

techniques, collectively called redundant arrays of independent disks (RAIDs), are commonly

used to address the performance and reliability issues.

Prepared by: Satyam K , AITS , MCA OS Notes Page 81

In the past, RAIDs composed of small, cheap disks were viewed as a costeffective alternative to

large, expensive disks. Today, RAIDs are used for their higher reliability and higher data-

transfer rate rather than for economic reasons. Hence, the I in RAID, which once stood for

―inexpensive,‖ now stands for ―independent.‖

Improvement of Reliability via Redundancy :

Let’s first consider the reliability of a RAID of HDDs. The chance that some disk out of a set of

N disks will fail is much greater than the chance that a specific single disk will fail. Suppose
that the mean time between failures (MTBF) of a single disk is 100,000 hours. Then the MTBF

of some disk in an array of 100 disks will be 100,000/100 = 1,000 hours, or 41.66 days, which

is not long at all! If we store only one copy of the data, then each disk failure will result in loss

of a significant amount of data—and such a high rate of data loss is unacceptable.

The solution to the problem of reliability is to introduce redundancy; we store extra information

that is not normally needed but can be used in the event of disk failure to rebuild the lost

information. Thus, even if a disk fails, data are not lost. RAID can be applied to NVM devices as
well, although NVM devices have no moving parts and therefore are less likely to fail than

HDDs.

The simplest (but most expensive) approach to introducing redundancy is to duplicate every

drive. This technique is called mirroring. With mirroring, a logical disk consists of two physical

drives, and every write is carried out on both drives. The result is called a mirrored volume. If

one of the drives in the volume fails, the data can be read from the other. Data will be lost only

if the second drive fails before the first failed drive is replaced.

File Concept :

Computers can store information on various storage media, such as NVM devices, HDDs,

magnetic tapes, and optical disks. So that the computer system will be convenient to use, the

operating system provides a uniform logical view of stored information. The operating system
abstracts from the physical properties of its storage devices to define a logical storage unit, the

fil . Files are mapped by the operating system onto physical devices. These storage devices are

usually nonvolatile, so the contents are persistent between system reboots.

A file is a named collection of related information that is recorded on secondary storage. From a

user’s perspective, a file is the smallest allotment of logical secondary storage; that is, data

cannot be written to secondary storage unless they are within a file. Commonly, files represent

programs (both source and object forms) and data. Data files may be numeric, alphabetic,

alphanumeric, or binary. Files may be free form, such as text files, or may be formatted rigidly.
In general, a file is a sequence of bits, bytes, lines, or records, the meaning of which is defined

by the file’s creator and user. The concept of a file is thus extremely general.

Because files are the method users and applications use to store and retrieve data, and

because they are so general purpose, their use has stretched beyond its original confines. For

example, UNIX, Linux, and some other operating systems provide a proc file system that uses

file-system interfaces to provide access to system information (such as process details).

The information in a file is defined by its creator. Many different types of information may be

stored in a file—source or executable programs, numeric or text data, photos, music, video,

and so on. A file has a certain defined structure, which depends on its type. Atext fil is a
sequence of characters organized into lines (and possibly pages). A source fil is a sequence of

functions, each of which is further organized as declarations followed by executable

statements. An executable fil is a series of code sections that the loader can bring into memory

and execute.

Prepared by: Satyam K , AITS , MCA OS Notes Page 82

File Attributes :

A file is named, for the convenience of its human users, and is referred to by its name. A name

is usually a string of characters, such as example.c. Some systems differentiate between

uppercase and lowercase characters in names, whereas other systems do not. When a file is

named, it becomes independent of the process, the user, and even the system that created it.
For instance, one user might create the file example.c, and another user might edit that file by

specifying its name. The file’s owner might write the file to a USB drive, send it as an e-mail

attachment, or copy it across a network, and it could still be called example.c on the

destination system. Unless there is a sharing and synchonization method, that second copy is

now independent of the first and can be changed separately.

A file’s attributes vary from one operating system to another but typically consist of these:

• Name. The symbolic file name is the only information kept in humanreadable form.

• Identifie . This unique tag, usually a number, identifies the file within the file system; it is the

non-human-readable name for the file

. • Type. This information is needed for systems that support different types of files.

• Location. This information is a pointer to a device and to the location of the file on that

device.

• Size. The current size of the file (in bytes, words, or blocks) and possibly the maximum

allowed size are included in this attribute.

• Protection. Access-control information determines who can do reading, writing, executing,

and so on.

• Timestamps and user identificatio . This information may be kept for creation, last

modification, and last use. These data can be useful for protection, security, and usage

monitoring

Some newer file systems also support extended file attributes, including character encoding of

the file and security features such as a file checksum. Figure 13.1 illustrates a fil info window

on macOS that displays a file’s attributes.

The information about all files is kept in the directory structure, which resides on the same

device as the files themselves. Typically, a directory entry consists of the file’s name and its
unique identifier. The identifier in turn locates the other file attributes. It may take more than a

kilobyte to record this information for each file. In a system with many files, the size of the

directory itself may be megabytes or gigabytes. Because directories must match the volatility of

the files, like files, they must be stored on the device and are usually brought into memory

piecemeal, as needed.

Prepared by: Satyam K , AITS , MCA OS Notes Page 83

File Operations :

A file is an abstract data type. To define a file properly, we need to consider the operations that
can be performed on files. The operating system can provide system calls to create, write, read,

reposition, delete, and truncate files. Let’s examine what the operating system must do to

perform each of these seven basic file operations. It should then be easy to see how other

similar operations, such as renaming a file, can be implemented.

Creating a file :Two steps are necessary to create a file. First, space in the file system must be

found for the file. We discuss how to allocate space for the file in Chapter 14. Second, an entry

for the new file must be made in a directory.

• Opening a file . Rather than have all file operations specify a file name, causing the operating

system to evaluate the name, check access permissions, and so on, all operations except create
and delete require a file open() first. If successful, the open call returns a file handle that is

used as an argument in the other calls.

• Writing a file :. To write a file, we make a system call specifying both the open file handle and

the information to be written to the file. The system must keep a write pointer to the location in

the file where the next write is to take place if it is sequential. The write pointer must be

updated whenever a write occurs.

• Reading a fil . To read from a file, we use a system call that specifies the file handle and

where (in memory) the next block of the file should be put. Again, the system needs to keep a

read pointer to the location in the file where the next read is to take place, if sequential. Once
the read has taken place, the read pointer is updated. Because a process is usually either

reading from or writing to a file, the current operation location can be kept as a per-process

current-file-positio pointer. Both the read and write operations use this same pointer, saving

space and reducing system complexity. • Repositioning within a file: The current-file-position

pointer of the open file is repositioned to a given value. Repositioning within a file need not

involve any actual I/O. This file operation is also known as a file seek.

• Deleting a file: To delete a file, we search the directory for the named file. Having found the

associated directory entry, we release all file space, so that it can be reused by other files, and
erase or mark as free the directory entry. Note that some systems allow hard links—multiple

names (directory entries) for the same file. In this case the actual file contents is not deleted

until the last link is deleted.

Prepared by: Satyam K , AITS , MCA OS Notes Page 84

• Truncating a file :The user may want to erase the contents of a file but keep its attributes.

Rather than forcing the user to delete the file and then recreate it, this function allows all

attributes to remain unchanged—except for file length. The file can then be reset to length zero,

and its file space can be released.

These seven basic operations comprise the minimal set of required file operations. Other
common operations include appending new information to the end of an existing file and

renaming an existing file. These primitive operations can then be combined to perform other

file operations. For instance, we can create a copy of a file by creating a new file and then

reading from the old and writing to the new. We also want to have operations that allow a user

to get and set the various attributes of a file. For example, we may want to have operations that

allow a user to determine the status of a file, such as the file’s length, and to set file attributes,

such as the file’s owner.

As mentioned, most of the file operations mentioned involve searching the directory for the

entry associated with the named file. To avoid this constant searching, many systems require

that an open() system call be made before a file is first used. The operating system keeps a

table, called the open-fil table, containing information about all open files. When a file

operation is requested, the file is specified via an index into this table, so no searching is

required. When the file is no longer being actively used, it is closed by the process, and the
operating system removes its entry from the open-file table, potentially releasing locks. create()

and delete() are system calls that work with closed rather than open files.

Some systems implicitly open a file when the first reference to it is made. The file is

automatically closed when the job or program that opened the file terminates. Most systems,

however, require that the programmer open a file explicitly with the open() system call before

that file can be used. The open() operation takes a file name and searches the directory,

copying the directory entry into the open-file table. The open() call can also accept accessmode
information—create, read-only, read –write, append-only, and so on. This mode is checked

against the file’s permissions. If the request mode is allowed, the file is opened for the process.

The open() system call typically returns a pointer to the entry in the open-file table. This

pointer, not the actual file name, is used in all I/O operations, avoiding any further searching

and simplifying the system-call interface.

The implementation of the open() and close() operations is more complicated in an environment

where several processes may open the file simultaneously. This may occur in a system where

several different applications open the same file at the same time. Typically, the operating
system uses two levels of internal tables: a per-process table and a system-wide table. The per-

process table tracks all files that a process has open. Stored in this table is information

regarding the process’s use of the file. For instance, the current file pointer for each file is

found here. Access rights to the file and accounting information can also be included.

Each entry in the per-process table in turn points to a system-wide open-file table. The system-

wide table contains process-independent information, such as the location of the file on disk,

access dates, and file size. Once a file has been opened by one process, the system-wide table
includes an entry for the file. When another process executes an open() call, a new entry is

simply added to the process’s open-file table pointing to the appropriate entry in the

systemwide table. Typically, the open-file table also has an open count associated with each file

to indicate how many processes have the file open. Each close() decreases this open count, and

when the open count reaches zero, the file is no longer in use, and the file’s entry is removed

from the open-file table.

• File pointer: On systems that do not include a file offset as part of the read() and write()
system calls, the system must track the last read – write location as a current-file-position

pointer. This pointer is unique to each process operating on the file and therefore must be kept

separate from the on-disk file attributes.

Prepared by: Satyam K , AITS , MCA OS Notes Page 85

• File-open count:As files are closed, the operating system must reuse its open-file table

entries, or it could run out of space in the table. Multiple processes may have opened a file,

and the system must wait for the last file to close before removing the open-file table entry. The
file-open count tracks the number of opens and closes and reaches zero on the last close. The

system can then remove the entry.

• Location of the file: Most file operations require the system to read or write data within the

file. The information needed to locate the file (wherever it is located, be it on mass storage, on a

file server across the network, or on a RAM drive) is kept in memory so that the system does

not have to read it from the directory structure for each operation.

• Access rights: Each process opens a file in an access mode. This information is stored on the

per-process table so the operating system can allow or deny subsequent I/O requests.

Some operating systems provide facilities for locking an open file (or sections of a file). File

locks allow one process to lock a file and prevent other processes from gaining access to it. File

locks are useful for files that are shared by several processes— for example, a system log file

that can be accessed and modified by a number of processes in the system.

File Types :

When we design a file system—indeed, an entire operating system—we always consider

whether the operating system should recognize and support file types. If an operating system
recognizes the type of a file, it can then operate on the file in reasonable ways. For example, a

common mistake occurs when a user tries to output the binary-object form of a program. This

attempt normally produces garbage; however, the attempt can succeed if the operating system

has been told that the file is a binary-object program.

A common technique for implementing file types is to include the type as part of the file name.

The name is split into two parts—a name and an extension, usually separated by a period

(Figure 13.3). In this way, the user and the operating system can tell from the name alone what
the type of a file is. Most operating systems allow users to specify a file name as a sequence of

characters followed by a period and terminated by an extension made up of additional

characters. Examples include resume.docx, server.c, and ReaderThread.cpp

The system uses the extension to indicate the type of the file and the type of operations that

can be done on that file. Only a file with a .com, .exe, or .sh extension can be executed, for

instance. The .com and .exe files are two forms of binary executable files, whereas the .sh file is

a shell script containing, in ASCII format, commands to the operating system. Application

programs also use extensions to indicate file types in which they are interested. For example,
Java compilers expect source files to have a .java extension, and the Microsoft Word word

processor expects its files to end with a .doc or .docx extension. These extensions are not

always required, so a user may specify a file without the extension (to save typing), and the

application will look for a file with the given name and the extension it expects. Because these

extensions are not supported by the operating system, they can be considered ―hints‖ to the

applications that operate on them.

Prepared by: Satyam K , AITS , MCA OS Notes Page 86

File Structure :

File types also can be used to indicate the internal structure of the file. Source and object files

have structures that match the expectations of the programs that read them. Further, certain

files must conform to a required structure that is understood by the operating system. For

example, the operating system requires that an executable file have a specific structure so that
it can determine where in memory to load the file and what the location of the first instruction

is. Some operating systems extend this idea into a set of system-supported file structures, with

sets of special operations for manipulating files with those structures.

This point brings us to one of the disadvantages of having the operating system support

multiple file structures: it makes the operating system large and cumbersome. If the operating

system defines five different file structures, it needs to contain the code to support these file

structures. In addition, it may be necessary to define every file as one of the file types

supported by the operating system. When new applications require information structured in

ways not supported by the operating system, severe problems may result.

Access Methods :

Files store information. When it is used, this information must be accessed and read into
computer memory. The information in the file can be accessed in several ways. Some systems

provide only one access method for files. Others (such as mainframe operating systems)

support many access methods, and choosing the right one for a particular application is a

major design problem.

Sequential Access :

The simplest access method is sequential access. Information in the file is processed in order,

one record after the other. This mode of access is by far the most common; for example, editors

and compilers usually access files in this fashion.

Reads and writes make up the bulk of the operations on a file. A read operation—read next()—

reads the next portion of the file and automatically advances a file pointer, which tracks the

I/O location. Similarly, the write operation—write next()—appends to the end of the file and
advances to the end of the newly written material (the new end of file). Such a file can be reset

to the beginning, and on some systems, a program may be able to skip forward or backward n

records for some integer n—perhaps only for n = 1. Sequential access, which is depicted in

Figure 13.4, is based on a tape model of a file and works as well on sequential-access devices

as it does on random-access ones.

Prepared by: Satyam K , AITS , MCA OS Notes Page 87

Direct Access :

Another method is direct access (or relative access). Here, a file is made up of fixed-length

logical records that allow programs to read and write records rapidly in no particular order. The

direct-access method is based on a disk model of a file, since disks allow random access to any

file block. For direct access, the file is viewed as a numbered sequence of blocks or records.
Thus, we may read block 14, then read block 53, and then write block 7. There are no

restrictions on the order of reading or writing for a direct-access file.

For the direct-access method, the file operations must be modified to include the block number

as a parameter. Thus, we have read(n), where n is the block number, rather than read next(),

and write(n) rather than write next(). An alternative approach is to retain read next() and write

next() and to add an operation position file(n) where n is the block number. Then, to effect a

read(n), we would position file(n) and then read next().

The block number provided by the user to the operating system is normally a relative block
number. A relative block number is an index relative to the beginning of the file. Thus, the first

relative block of the file is 0, the next is 1, and so on, even though the absolute disk address

may be 14703 for the first block and 3192 for the second. The use of relative block numbers

allows the operating system to decide where the file should be placed (called the allocation

problem, as we discuss in Chapter 14) and helps to prevent the user from accessing portions of

the file system that may not be part of her file. Some systems start their relative block numbers

at 0; others start at 1.

Other Access Methods :

Other access methods can be built on top of a direct-access method. These methods generally

involve the construction of an index for the file. The index, like an index in the back of a book,
contains pointers to the various blocks. To find a record in the file, we first search the index

and then use the pointer to access the file directly and to find the desired record.

Directory Structure :

The directory can be viewed as a symbol table that translates file names into their file control

blocks. If we take such a view, we see that the directory itself can be organized in many ways.

The organization must allow us to insert entries, to delete entries, to search for a named entry,

and to list all the entries in the directory. In this section, we examine several schemes for

defining the logical structure of the directory system. When considering a particular directory

structure, we need to keep in mind the operations that are to be performed on a directory:

Prepared by: Satyam K , AITS , MCA OS Notes Page 88

• Search for a file . We need to be able to search a directory structure to find the entry for a

particular file. Since files have symbolic names, and similar names may indicate a relationship

among files, we may want to be able to find all files whose names match a particular pattern.

• Create a fil . New files need to be created and added to the directory.

Delete a file: When a file is no longer needed, we want to be able to remove it from the

directory. Note a delete leaves a hole in the directory structure and the file system may have a

method to defragement the directory structure.

List a directory :We need to be able to list the files in a directory and the contents of the

directory entry for each file in the list.

Rename a file: Because the name of a file represents its contents to its users, we must be able

to change the name when the contents or use of the file changes. Renaming a file may also

allow its position within the directory structure to be changed.

Traverse the file system:We may wish to access every directory and every file within a directory

structure. For reliability, it is a good idea to save the contents and structure of the entire file

system at regular intervals. Often, we do this by copying all files to magnetic tape, other

secondary storage, or across a network to another system or the cloud. This technique provides

a backup copy in case of system failure. In addition, if a file is no longer in use, the file can be

copied the backup target and the disk space of that file released for reuse by another file.

Single-Level Directory :

The simplest directory structure is the single-level directory. All files are contained in the same

directory, which is easy to support and understand (Figure 13.7).

A single-level directory has significant limitations, however, when the number of files increases
or when the system has more than one user. Since all files are in the same directory, they must

have unique names. If two users call their data file test.txt, then the unique-name rule is

violated. For example, in one programming class, 23 students called the program for their

second assignment prog2.c; another 11 called it assign2.c. Fortunately, most file systems

support file names of up to 255 characters, so it is relatively easy to select unique file names.

Even a single user on a single-level directory may find it difficult to remember the names of all

the files as the number of files increases. It is not uncommon for a user to have hundreds of

files on one computer system and an equal number of additional files on another system.

Keeping track of so many files is a daunting task.

Two-Level Directory : As we have seen, a single-level directory often leads to confusion of file
names among different users. The standard solution is to create a separate directory for each

user.

In the two-level directory structure, each user has his own user fil directory (UFD). The UFDs

have similar structures, but each lists only the files of a single user. When a user job starts or

a user logs in, the system’s master fil directory (MFD) is searched. The MFD is indexed by user

name or account number, and each entry points to the UFD for that user (Figure 13.8).

Prepared by: Satyam K , AITS , MCA OS Notes Page 89

When a user refers to a particular file, only his own UFD is searched. Thus, different users may

have files with the same name, as long as all the file names within each UFD are unique. To

create a file for a user, the operating system searches only that user’s UFD to ascertain
whether another file of that name cat bo a test a x data a user 1 user 2 user 3 user 4 exists. To

delete a file, the operating system confines its search to the local UFD; thus, it cannot

accidentally delete another user’s file that has the same name.

Tree-Structured Directories :

Once we have seen how to view a two-level directory as a two-level tree, the natural
generalization is to extend the directory structure to a tree of arbitrary height (Figure 13.9).

This generalization allows users to create their own subdirectories and to organize their files

accordingly. A tree is the most common directory structure. The tree has a root directory, and

every file in the system has a unique path name.

A directory (or subdirectory) contains a set of files or subdirectories. In many implementations,

a directory is simply another file, but it is treated in a special way. All directories have the same

internal format. One bit in each directory entry defines the entry as a file (0) or as a
subdirectory (1). Special system calls are used to create and delete directories. In this case the

operating system (or the file system code) implements another file format, that of a directory.

Acyclic-Graph Directories :

Consider two programmers who are working on a joint project. The files associated with that

project can be stored in a subdirectory, separating them from other projects and files of the two

programmers. But since both programmers are equally responsible for the project, both want

the subdirectory to be in their own directories. In this situation, the common subdirectory

should be shared. A shared directory or file exists in the file system in two (or more) places at

once.

Prepared by: Satyam K , AITS , MCA OS Notes Page 90

Protection :

When information is stored in a computer system, we want to keep it safe from physical

damage (the issue of reliability) and improper access (the issue of protection).

Reliability is generally provided by duplicate copies of files. Many computers have systems

programs that automatically (or through computer-operator intervention) copy disk files to tape

at regular intervals (once per day or week or month) to maintain a copy should a file system be

accidentally destroyed. File systems can be damaged by hardware problems (such as errors in

reading or writing), power surges or failures, head crashes, dirt, temperature extremes, and
vandalism. Files may be deleted accidentally. Bugs in the file-system software can also cause

file contents to be lost. Reliability was covered in more detail in Chapter 11.

Protection can be provided in many ways. For a laptop system running a modern operating

system, we might provide protection by requiring a user name and password authentication to

access it, encrypting the secondary storage so even someone opening the laptop and removing

the drive would have a difficult time accessing its data, and firewalling network access so that

when it is in use it is difficult to break in via its network connection. In multiuser system, even
valid access of the system needs more advanced mechanisms to allow only valid access of the

data.

Types of Access :

The need to protect files is a direct result of the ability to access files. Systems that do not
permit access to the files of other users do not need protection. Thus, we could provide

complete protection by prohibiting access. Alternatively, we could provide free access with no

protection. Both approaches are too extreme for general use. What is needed is controlled

access.

Protection mechanisms provide controlled access by limiting the types of file access that can be

made. Access is permitted or denied depending on several factors, one of which is the type of

access requested. Several different types of operations may be controlled:

• Read:Read from the file.

• Write: Write or rewrite the file.

• Execute: Load the file into memory and execute it.

• Append:Write new information at the end of the file.

• Delete: Delete the file and free its space for possible reuse.

read:Read

Prepared by: Satyam K , AITS , MCA OS Notes Page 91

• List:List the name and attributes of the file.

• Attribute change: Changing the attributes of the file.

Other operations, such as renaming, copying, and editing the file, may also be controlled. For

many systems, however, these higher-level functions may be implemented by a system

program that makes lower-level system calls. Protection is provided at only the lower level. For

instance, copying a file may be implemented simply by a sequence of read requests. In this

case, a user with read access can also cause the file to be copied, printed, and so on.

Access Control :

The most common approach to the protection problem is to make access dependent on the

identity of the user. Different users may need different types of access to a file or directory. The

most general scheme to implement identitydependent access is to associate with each file and
directory an access-control list (ACL) specifying user names and the types of access allowed for

each user. When a user requests access to a particular file, the operating system checks the

access list associated with that file. If that user is listed for the requested access, the access is

allowed. Otherwise, a protection violation occurs, and the user job is denied access to the file.

This approach has the advantage of enabling complex access methodologies. The main problem

with access lists is their length. If we want to allow everyone to read a file, we must list all

users with read access. This technique has two undesirable consequences:

• Constructing such a list may be a tedious and unrewarding task, especially if we do not know

in advance the list of users in the system.

• The directory entry, previously of fixed size, now must be of variable size, resulting in more

complicated space management.

These problems can be resolved by use of a condensed version of the access list.

To condense the length of the access-control list, many systems recognize three classifications

of users in connection with each file:

• Owner. The user who created the file is the owner.

• Group. A set of users who are sharing the file and need similar access is a group, or work

group.

• Other. All other users in the system.

Memory-Mapped Files :

There is one other method of accessing files, and it is very commonly used. Consider a

sequential read of a file on disk using the standard system calls open(), read(), and write().

Each file access requires a system call and disk access. Alternatively, we can use the virtual

memory techniques discussed in Chapter 10 to treat file I/O as routine memory accesses. This

approach, known as memory mapping a file, allows a part of the virtual address space to be
logically associated with the file. As we shall see, this can lead to significant performance

increases.

Basic Mechanism :

Memory mapping a file is accomplished by mapping a disk block to a page (or pages) in

memory. Initial access to the file proceeds through ordinary demand paging, resulting in a page

fault. However, a page-sized portion of the file is read from the file system into a physical page

Prepared by: Satyam K , AITS , MCA OS Notes Page 92

(some systems may opt to read in more than a page-sized chunk of memory at a time).

Subsequent reads and writes to the file are handled as routine memory accesses. Manipulating

files through memory rather than incurring the overhead of using the read() and write() system

calls simplifies and speeds up file access and usage.

Shared Memory in the Windows API :

The general outline for creating a region of shared memory using memorymapped files in the

Windows API involves first creating a fil mapping for the file to be mapped and then
establishing a view of the mapped file in a process’s virtual address space. A second process

can then open and create a view of the mapped file in its virtual address space. The mapped file

represents the shared-memory object that will enable communication to take place between the

processes.

File-System Structure :

Disks provide most of the secondary storage on which file systems are maintained. Two

characteristics make them convenient for this purpose:

1. A disk can be rewritten in place; it is possible to read a block from the disk, modify the

block, and write it back into the same block.

2. A disk can access directly any block of information it contains. Thus, it is simple to access
any file either sequentially or randomly, and switching from one file to another requires the

drive moving the read –write heads and waiting for the media to rotate.

Nonvolatile memory (NVM) devices are increasingly used for file storage and thus as a location

for file systems. They differ from hard disks in that they cannot be rewritten in place and they

have different performance characteristics. We discuss disk and NVM-device structure in detail

in Chapter 11.

To improve I/O efficiency, I/O transfers between memory and mass storage are performed in

units of blocks. Each block on a hard disk drive has one or more sectors. Depending on the

disk drive, sector size is usually 512 bytes or 4,096 bytes. NVM devices usually have blocks of

4,096 bytes, and the transfer methods used are similar to those used by disk drives.

File systems provide efficient and convenient access to the storage device by allowing data to be
stored, located, and retrieved easily. A file system poses two quite different design problems.

The first problem is defining how the file system should look to the user. This task involves

defining a file and its attributes, the operations allowed on a file, and the directory structure for

organizing files. The second problem is creating algorithms and data structures to map the

logical file system onto the physical secondary-storage devices.

Prepared by: Satyam K , AITS , MCA OS Notes Page 93

File-System Operations :

As was described in Section 13.1.2, operating systems implement open() and close() systems

calls for processes to request access to file contents. In this section, we delve into the

structures and operations used to implement filesystem operations.

Several on-storage and in-memory structures are used to implement a file system. These

structures vary depending on the operating system and the file system, but some general

principles apply.

On storage, the file system may contain information about how to boot an operating system

stored there, the total number of blocks, the number and location of free blocks, the directory
structure, and individual files. Many of these structures are detailed throughout the remainder

of this chapter. Here, we describe them briefly:

A boot control block (per volume) :can contain information needed by the system to boot an

operating system from that volume. If the disk does not contain an operating system, this block

can be empty. It is typically the first block of a volume. In UFS, it is called the boot block. In

NTFS, it is the partition boot sector.

• A volume control block (per volume) :contains volume details, such as the number of blocks

in the volume, the size of the blocks, a free-block count and free-block pointers, and a free-FCB

count and FCB pointers. In UFS, this is called a superblock. In NTFS, it is stored in the master

fil table.

• A directory structure (per file system): is used to organize the files. In UFS, this includes file

names and associated inode numbers. In NTFS, it is stored in the master file table.

• A per-file FCB contains many details about the file. It has a unique identifier number to allow
association with a directory entry. In NTFS, this information is actually stored within the

master file table, which uses a relational database structure, with a row per file.

Directory Implementation :

The selection of directory-allocation and directory-management algorithms significantly affects

the efficiency, performance, and reliability of the file system. In this section, we discuss the

trade-offs involved in choosing one of these algorithms.

Directory Structure :

The directory can be viewed as a symbol table that translates file names into their file control

blocks. If we take such a view, we see that the directory itself can be organized in many ways.

The organization must allow us to insert entries, to delete entries, to search for a named entry,

and to list all the entries in the directory. In this section, we examine several schemes for

defining the logical structure of the directory system.

When considering a particular directory structure, we need to keep in mind the operations that

are to be performed on a directory:

Search for a file : We need to be able to search a directory structure to find the entry for a

particular file. Since files have symbolic names, and similar

Prepared by: Satyam K , AITS , MCA OS Notes Page 94

names may indicate a relationship among files, we may want to be able tofind all files whose

names match a particular pattern.

Create a file:. New files need to be created and added to the directory.

Delete a file:. When a file is no longer needed, we want to be able to remove it from the
directory. Note a delete leaves a hole in the directory structure and the file system may have a

method to defragement the directory structure.

List a directory.: We need to be able to list the files in a directory and the contents of the

directory entry for each file in the list.

Rename a file: Because the name of a file represents its contents to its users, we must be able

to change the name when the contents or use of the file changes. Renaming a file may also

allow its position within the directory structure to be changed.

Traverse the file system.: We may wish to access every directory and every file within a

directory structure. For reliability, it is a good idea to save the contents and structure of the

entire file system at regular intervals. Often, we do this by copying all files to magnetic tape,

other secondary storage, or across a network to another system or the cloud. This technique
provides a backup copy in case of system failure. In addition, if a file is no longer in use, the

file can be copied the backup target and the disk space of that file released for reuse by

another file.

Single-Level Directory :

The simplest directory structure is the single-level directory. All files are con-tained in the same

directory, which is easy to support and understand.

Prepared by: Satyam K , AITS , MCA OS Notes Page 95

A single-level directory has significant limitations, however, when the number of files increases

or when the system has more than one user. Since all files are in the same directory, they must

have unique names. If two users call their data file test.txt, then the unique-name rule is

violated. For example, in one programming class, 23 students called the program for their
second assignment prog2.c; another 11 called it assign2.c. Fortunately, most file systems

support file names of up to 255 characters, so it is relatively easy to select unique file names.

Two-Level Directory :

In the two-level directory structure, each user has his own user fil direc-tory (UFD). The UFDs

have similar structures, but each lists only the files of a single user. When a user job starts or

a user logs in, the system’s master fil directory (MFD) is searched. The MFD is indexed by user

name or account number, and each entry points to the UFD for that user (Figure 13.8).

When a user refers to a particular file, only his own UFD is searched. Thus, different users may

have files with the same name, as long as all the file names within each UFD are unique. To

create a file for a user, the operating system searches only that user’s UFD to ascertain

whether another file of that name

exists. To delete a file, the operating system confines its search to the local UFD; thus, it

cannot accidentally delete another user’s file that has the same name.

The user directories themselves must be created and deleted as necessary. A special system

program is run with the appropriate user name and account information. The program creates

a new UFD and adds an entry for it to the MFD. The execution of this program might be
restricted to system administra-tors. The allocation of disk space for user directories can be

handled with the techniques discussed in Chapter 14 for files themselves.

Prepared by: Satyam K , AITS , MCA OS Notes Page 96

Although the two-level directory structure solves the name-collision prob-lem, it still has

disadvantages. This structure effectively isolates one user from another. Isolation is an

advantage when the users are completely independent but is a disadvantage when the users
want to cooperate on some task and to access one another’s files. Some systems simply do not

allow local user files to be accessed by other users.

If access is to be permitted, one user must have the ability to name a file in another user’s

directory. To name a particular file uniquely in a two-level directory, we must give both the

user name and the file name. A two-level directory can be thought of as a tree, or an inverted

tree, of height 2. The root of the tree is the MFD. Its direct descendants are the UFDs. The

descendants of the UFDs are the files themselves. The files are the leaves of the tree. Specifying

a user name and a file name defines a path in the tree from the root (the MFD) to a leaf (the
specified file). Thus, a user name and a file name define a path name. Every file in the system

has a path name. To name a file uniquely, a user must know the path name of the file desired.

Tree-Structured Directories :

Once we have seen how to view a two-level directory as a two-level tree, the natural

generalization is to extend the directory structure to a tree of arbitrary height (Figure 13.9).

This generalization allows users to create their own subdirectories and to organize their files

accordingly. A tree is the most common directory structure. The tree has a root directory, and

every file in the system has a unique path name.

A directory (or subdirectory) contains a set of files or subdirectories. In many implementations,

a directory is simply another file, but it is treated ina special way. All directories have the same

internal format. One bit in each directory entry defines the entry as a file (0) or as a

subdirectory (1). Special

Prepared by: Satyam K , AITS , MCA OS Notes Page 97

system calls are used to create and delete directories. In this case the operating system (or the

file system code) implements another file format, that of a directory.

In normal use, each process has a current directory. The current directory should contain most

of the files that are of current interest to the process. When reference is made to a file, the

current directory is searched. If a file is needed that is not in the current directory, then the
user usually must either specify a path name or change the current directory to be the

directory holding that file. To change directories, a system call could be provided that takes a

directory name as a parameter and uses it to redefine the current directory. Thus, the user can

change her current directory whenever she wants. Other systems leave it to the application

(say, a shell) to track and operate on a current directory, as each process could have different

current directories.

Acyclic-Graph Directories :

Consider two programmers who are working on a joint project. The files asso- ciated with that

project can be stored in a subdirectory, separating them from other projects and files of the two
programmers. But since both programmers are equally responsible for the project, both want

the subdirectory to be in their own directories. In this situation, the common subdirectory

should be shared. A shared directory or file exists in the file system in two (or more) places at

once.

A tree structure prohibits the sharing of files or directories. An acyclic graph— that is, a graph

with no cycles—allows directories to share subdirec- tories and files (Figure 13.10). The same

file or subdirectory may be in two different directories. The acyclic graph is a natural

generalization of the tree-structured directory scheme.

It is important to note that a shared file (or directory) is not the same as two copies of the file.

With two copies, each programmer can view the copy rather than the original, but if one
programmer changes the file, the changes will not appear in the other’s copy. With a shared

file, only one actual file exists, so any changes made by one person are immediately visible to

the other. Sharing isparticularly important for subdirectories; a new file created by one person

will automatically appear in all the shared subdirectories.

When people are working as a team, all the files they want to share can be put into one

directory. The home directory of each team member could contain this directory of shared files

Prepared by: Satyam K , AITS , MCA OS Notes Page 98

as a subdirectory. Even in the case of a single user, the user’s file organization may require

that some file be placed in different subdirectories. For example, a program written for a

particular project should be both in the directory of all programs and in the directory for that

project.

Shared files and subdirectories can be implemented in several ways. A common way,
exemplified by UNIX systems, is to create a new directory entry called a link. A link is

effectively a pointer to another file or subdirectory. For example, a link may be implemented as

an absolute or a relative path name. When a reference to a file is made, we search the

directory. If the directory entry is marked as a link, then the name of the real file is included in

the link information. We resolve the link by using that path name to locate the real file. Links

are easily identified by their format in the directory entry (or by having a special type on
systems that support types) and are effectively indirect pointers. The operating system ignores

these links when traversing directory trees to preserve the acyclic structure of the system.

Protection :

When information is stored in a computer system, we want to keep it safe from physical

damage (the issue of reliability) and improper access (the issueof protection).

Reliability is generally provided by duplicate copies of files. Many comput-ers have systems

programs that automatically (or through computer-operator intervention) copy disk files to tape

at regular intervals (once per day or week or month) to maintain a copy should a file system be

accidentally destroyed. File systems can be damaged by hardware problems (such as errors in

reading or writing), power surges or failures, head crashes, dirt, temperature extremes,and

vandalism. Files may be deleted accidentally. Bugs in the file-system soft-ware can also cause

file contents to be lost. Reliability was covered in more

Protection can be provided in many ways. For a laptop system running a modern operating
system, we might provide protection by requiring a user name and password authentication to

access it, encrypting the secondary stor-age so even someone opening the laptop and removing

the drive would have a difficult time accessing its data, and firewalling network access so that

when it is in use it is difficult to break in via its network connection. In multiuser system, even

valid access of the system needs more advanced mechanisms to allow only valid access of the

data.

Types of Access :

The need to protect files is a direct result of the ability to access files. Systems that do not

permit access to the files of other users do not need protection. Thus, we could provide
complete protection by prohibiting access. Alternatively, we could provide free access with no

protection. Both approaches are too extreme for general use. What is needed is controlled

access.

Protection mechanisms provide controlled access by limiting the types of file access that can be

made. Access is permitted or denied depending on several factors, one of which is the type of

access requested. Several different types of operations may be controlled:

• Read. Read from the file.

• Write. Write or rewrite the file.

• Execute. Load the file into memory and execute it.

• Append. Write new information at the end of the file.

• Delete. Delete the file and free its space for possible reuse.

Prepared by: Satyam K , AITS , MCA OS Notes Page 99

• List. List the name and attributes of the file.

• Attribute change. Changing the attributes of the file.

Other operations, such as renaming, copying, and editing the file, may also be controlled. For

many systems, however, these higher-level functions may be implemented by a system

program that makes lower-level system calls. Protection is provided at only the lower level. For

instance, copying a file may be implemented simply by a sequence of read requests. In this

case, a user with read access can also cause the file to be copied, printed, and so on.

Access Control

The most common approach to the protection problem is to make access dependent on the

identity of the user. Different users may need different types of access to a file or directory. The

most general scheme to implement identitydependent access is to associate with each file and
directory an access-control list (ACL) specifying user names and the types of access allowed for

each user. When a user requests access to a particular file, the operating system checks the

access list associated with that file. If that user is listed for the requested access, the access is

allowed. Otherwise, a protection violation occurs, and the user job is denied access to the file.

This approach has the advantage of enabling complex access methodologies. The main problem

with access lists is their length. If we want to allow everyone to read a file, we must list all

users with read access. This technique has two undesirable consequences:

• Constructing such a list may be a tedious and unrewarding task, especially if we do not

know in advance the list of users in the system.

• The directory entry, previously of fixed size, now must be of variable size, resulting in

more complicated space management.

These problems can be resolved by use of a condensed version of the access ist.

To condense the length of the access-control list, many systems recognize hree classifications

of users in connection with each file:

• Owner. The user who created the file is the owner.

• Group. A set of users who are sharing the file and need similar access is a roup, or

work group.

• Other. All other users in the system.

The most common recent approach is to combine access-control lists with he more general

(and easier to implement) owner, group, and universe access- ontrol scheme just described. For

example, Solaris uses the three categories of acess by default but allows access-control lists to

be added to specific files and directories when more fine-grained access control is desired.

To illustrate, consider a person, Sara, who is writing a new book. She has hired three graduate

students (Jim, Dawn, and Jill) to help with the project. The text of the book is kept in a file

named book.tex. The protection associated with this file is as follows:

• Sara should be able to invoke all operations on the file.

• Jim, Dawn, and Jill should be able only to read and write the file; they should not be

allowed to delete the file.

Prepared by: Satyam K , AITS , MCA OS Notes Page 100

• All other users should be able to read, but not write, the file. (Sara is interested in

letting as many people as possible read the text so that she can obtain feedback.)

With the more limited protection classification, only three fields are needed to define protection.

Often, each field is a collection of bits, and each bit either allows or prevents the access

associated with it. For example, the UNIX system defines three fields of three bits each—rwx,
where r controls read access, w controls write access, and x controls execution. A separate field

is kept for the file owner, for the file’s group, and for all other users. In this scheme, nine bits

per file are needed to record protection information. Thus, for our example, the protection fields

for the file book.tex are as follows: for the owner Sara, all bits are set; for the group text, the r

and w bits are set; and for the universe, only the r bit is set.

One difficulty in combining approaches comes in the user interface. Users must be able to tell

when the optional ACL permissions are set on a file. In the Solaris example, a ―+‖ is appended

to the regular permissions, as in:

19 -rw-r--r--+ 1 jim staff 130 May 25 22:13 file1

A separate set of commands, setfacl and getfacl, is used to manage the ACLs.

Other Protection Approaches

Another approach to the protection problem is to associate a password with each file. Just as

access to the computer system is often controlled by a password, access to each file can be

controlled in the same way. If the passwords are chosen randomly and changed often, this

scheme may be effective in limiting access to a file. The use of passwords has a few
disadvantages, however. First, the number of passwords that a user needs to remember may

become large, making the scheme impractical. Second, if only one password is used for all the

files, then once it is discovered, all files are accessible; protection is on an all-or-none basis.

Some systems allow a user to associate a password with a subdirectory, rather than with an

individual file, to address this problem. More commonly encryption of a partition or individual

files provides strong protection, but password management is key.

In addition, we probably want to control whether a user can determine the existence of a file in
a directory. Sometimes, knowledge of the existence and name of a file is significant in itself.

Thus, listing the contents of a directory must be a protected operation. Similarly, if a path

name refers to a file in a directory, the user must be allowed access to both the directory and

the file. In systems where files may have numerous path names (such as acyclic and general

graphs), a given user may have different access rights to a particular file, depending on the

path name used.

Prepared by: Satyam K , AITS , MCA OS Notes Page 101

Memory-Mapped Files

There is one other method of accessing files, and it is very commonly used. Consider a

sequential read of a file on disk using the standard system calls open(), read(), and write().

Each file access requires a system call and disk access. Alternatively, we can use the virtual

memory techniques discussed in treat file I/O as routine memory accesses. This approach,

known as memory mapping a file, allows a part of the virtual address space to be logically

associated with the file. As we shall see, this can lead to significant performance increases.

Basic Mechanism

Memory mapping a file is accomplished by mapping a disk block to a page (or pages) in
memory. Initial access to the file proceeds through ordinary demand paging, resulting in a page

fault. However, a page-sized portion of the file is read from the file system into a physical page

(some systems may opt to read in more than a page-sized chunk of memory at a time).

Prepared by: Satyam K , AITS , MCA OS Notes Page 102

Subsequent reads and writes to the file are handled as routine memory accesses. Manipulating

files through memory rather than incurring the overhead of using the read() and write() system

calls simplifies and speeds up file access and usage.

Some operating systems provide memory mapping only through a specific system call and use

the standard system calls to perform all other file I/O. However, some systems choose to
memory-map a file regardless of whether the file was specified as memory-mapped. Let’s take

Solaris as an example. If a file is specified as memory-mapped (using the mmap() system call),

Solaris maps the file into the address space of the process. If a file is opened and accessed

using ordinary system calls, such as open(), read(), and write(), Solaris still memory-maps the

file; however, the file is mapped to the kernel address space. Regardless of how the file is

opened, then, Solaris treats all file I/O as memory- mapped, allowing file access to take place
via the efficient memory subsystem and avoiding system call overhead caused by each

traditional read() and write().

Quite often, shared memory is in fact implemented by memory mapping files. Under this

scenario, processes can communicate using shared memory by having the communicating

processes memory-map the same file into their virtual address spaces. The memory-mapped

file serves as the region of shared memory between the communicating processes. Where a

POSIX shared-memory object is created and each communicating process memory-maps the
object into its address space. In the following section, we discuss support in the Windows API

for shared memory using memory-mapped files.

Shared Memory in the Windows API

The general outline for creating a region of shared memory using memorymapped files in the
Windows API involves first creating a fil mapping for the file to be mapped and then

establishing a view of the mapped file in a process’s virtual address space. A second process

can then open and create a view of the mapped file in its virtual address space. The mapped file

represents the shared-memory object that will enable communication to take place between the

processes.

Prepared by: Satyam K , AITS , MCA OS Notes Page 103

We next illustrate these steps in more detail. In this example, a producer process first creates a
shared-memory object using the memory-mapping fea- tures available in the Windows API. The

producer then writes a message to shared memory. After that, a consumer process opens a

mapping to the sharedmemory object and reads the message written by the consumer.

File -System Implementation

File-System Structure

Disks provide most of the secondary storage on which file systems are maintained. Two

characteristics make them convenient for this purpose:

Prepared by: Satyam K , AITS , MCA OS Notes Page 104

1. A disk can be rewritten in place; it is possible to read a block from the disk, modify the

block, and write it back into the same block.

2. A disk can access directly any block of information it contains. Thus, it is simple to access

any file either sequentially or randomly, and switching from one file to another requires the

drive moving the read –write heads and waiting for the media to rotate.

To improve I/O efficiency, I/O transfers between memory and mass storage are performed in

units of blocks. Each block on a hard disk drive has one or more sectors. Depending on the
disk drive, sector size is usually 512 bytes or 4,096 bytes. NVM devices usually have blocks of

4,096 bytes, and the transfer methods used are similar to those used by disk drives.

File systems provide efficient and convenient access to the storage device by allowing data to be

stored, located, and retrieved easily. A file system poses two quite different design problems.

The first problem is defining how the file system should look to the user. This task involves

defining a file and its attributes, the operations allowed on a file, and the directory structure for

organizing files. The second problem is creating algorithms and data structures to map the

logical file system onto the physical secondary-storage devices.

The file system itself is generally composed of many different levels. The structure shown in
Figure 14.1 is an example of a layered design. Each level in the design uses the features of

lower levels to create new features for use by higher levels.

The I/O control level consists of device drivers and interrupt handlers to transfer information

between the main memory and the disk system. A device driver can be thought of as a

translator. Its input consists of high level commands, such as ―retrieve block 123.‖ Its output

consists of low-level, hardware-specific instructions that are used by the hardware controller,

which interfaces the I/O device to the rest of the system. The device driver usually writes

specific bit patterns to special locations in the I/O controller’s memory to tell the controller

which device location to act on and what actions to take.

The basic file system (called the ―block I/O subsystem‖ in Linux) needs only to issue generic

commands to the appropriate device driver to read and write blocks on the storage device. It

issues commands to the drive based on logical block addresses. It is also concerned with I/O

request scheduling. This layer also manages the memory buffers and caches that hold various

file-system, directory, and data blocks. A block in the buffer is allocated before the transfer of a

mass storage block can occur. When the buffer is full, the buffer manager must find more
buffer memory or free up buffer space to allow a requested I/O to complete. Caches are used to

hold frequently used file-system metadata to improve performance, so managing their contents

is critical for optimum system performance.

Prepared by: Satyam K , AITS , MCA OS Notes Page 105

The file-organizatio module knows about files and their logical blocks.

Each file’s logical blocks are numbered from 0 (or 1) through N. The file-organization module

also includes the free-space manager, which tracks unal-located blocks and provides these

blocks to the file-organization module when requested.

Finally, the logical file system manages metadata information. Metadata includes all of the file-

system structure except the actual data (or contents of the files). The logical file system

manages the directory structure to provide the file-organization module with the information

the latter needs, given a symbolic file name. It maintains file structure via file-control blocks. A
file control block (FCB) (an inode in UNIX file systems) contains information about the file,

including ownership, permissions, and location of the file contents. The logical file system is

also responsible for protection.

When a layered structure is used for file-system implementation, duplication of code is

minimized. The I/O control and sometimes the basic file-system code can be used by multiple

file systems. Each file system can then have its own logical file-system and file-organization

modules. Unfortunately, layering can introduce more operating-system overhead, which may

result in decreased performance. The use of layering, including the decision about how many

layers to use and what each layer should do, is a major challenge in designing new systems.

Many file systems are in use today, and most operating systems support more than one. For

example, most CD-ROMs are written in the ISO 9660 format, a standard format agreed on by

CD-ROM manufacturers. In addition to removable-media file systems, each operating system

has one or more disk- based file systems. UNIX uses the UNIX fil system (UFS), which is based

on the Berkeley Fast File System (FFS). Windows supports disk file-system formats of FAT,

FAT32, and NTFS (or Windows NT File System), as well as CD-ROM and DVD file-system
formats. Although Linux supports over 130 different file systems, the standard Linux file

system is known as the extended file system, with the most common versions being ext3 and

Prepared by: Satyam K , AITS , MCA OS Notes Page 106

ext4. There are also distributed file systems in which a file system on a server is mounted by

one or more client computers across a network.

File-system research continues to be an active area of operating-system design and

implementation. Google created its own file system to meet the company’s specific storage and

retrieval needs, which include high- performance access from many clients across a very large
number of disks. Another interesting project is the FUSE file system, which provides flexibility

in file-system development and use by implementing and executing file systems as user-level

rather than kernel-level code. Using FUSE, a user can add a new file system to a variety of

operating systems and can use that file system to manage her files.

File-System Operations

Several on-storage and in-memory structures are used to implement a file system. These

structures vary depending on the operating system and the file system, but some general

principles apply.

On storage, the file system may contain information about how to boot an operating system

stored there, the total number of blocks, the number and location of free blocks, the directory

structure, and individual files. Many of these structures are detailed throughout the

remainder of this chapter. Here, we describe them briefly:

• A boot control block (per volume) can contain information needed by the system to boot
an operating system from that volume. If the disk does not contain an operating system,

this block can be empty. It is typically the first block of a volume. In UFS, it is called the

boot block. In NTFS, it is the partition boot

• A volume control block (per volume) contains volume details, such as the number of

blocks in the volume, the size of the blocks, a free-block count and free-block pointers,

and a free-FCB count and FCB pointers. In UFS, this is called a superblock. In NTFS, it

is stored in the master fil table.sector.

• A directory structure (per file system) is used to organize the files. In UFS, this includes

file names and associated inode numbers. In NTFS, it is stored in the master file table.

• A per-file FCB contains many details about the file. It has a unique identifier number to

allow association with a directory entry. In NTFS, this information is actually stored
within the master file table, which uses a relational database structure, with a row per

file.

The in-memory information is used for both file-system management and performance

improvement via caching. The data are loaded at mount time, updated during file-system

operations, and discarded at dismount. Several types of structures may be included.

• An in-memory mount table contains information about each mounted volume.

• An in-memory directory-structure cache holds the directory information of recently

accessed directories. (For directories at which volumes are mounted, it can contain a

pointer to the volume table.)

• The system-wide open-fil table contains a copy of the FCB of each open file, as well as

other information.

• The per-process open-fil table contains pointers to the appropriate entries in the

system-wide open-file table, as well as other information, for all files the process has

open.

Prepared by: Satyam K , AITS , MCA OS Notes Page 107

• Buffers hold file-system blocks when they are being read from or written to a file

system.

To create a new file, a process calls the logical file system. The logical file system knows the

format of the directory structures. To create a new file, it allocates a new FCB. (Alternatively, if

the file-system implementation creates all FCBs at file-system creation time, an FCB is
allocated from the set of free FCBs.) The system then reads the appropriate directory into

memory, updates it with the new file name and FCB, and writes it back to the file system. A

typical FCB is shown in Figure 14.2.

Some operating systems, including UNIX, treat a directory exactly the same as a file—one with

a ―type‖ field indicating that it is a directory. Other operating systems, including Windows,

implement separate system calls for files and directories and treat directories as entities

separate from files. Whatever the larger structural issues, the logical file system can call the
file-organization module to map the directory I/O into storage block locations, which are

passed on to the basic file system and I/O control syste

Some operating systems, including UNIX, treat a directory exactly the same as a file—one with

a ―type‖ field indicating that it is a directory. Other operating systems, including Windows,

implement separate system calls for files and directories and treat directories as entities

separate from files. Whatever the larger structural issues, the logical file system can call the
file-organization module to map the directory I/O into storage block locations, which are

passed on to the basic file system and I/O control system.

Usage

Now that a file has been created, it can be used for I/O. First, though, it must be opened. The
open() call passes a file name to the logical file system. The open() system call first searches the

system-wide open-file table to see if the file is already in use by another process. If it is, a per-

process open-file table entry is created pointing to the existing system-wide open-file table. This

algorithm can save substantial overhead. If the file is not already open, the directory structure

is searched for the given file name. Parts of the directory structure are usually cached in
memory to speed directory operations. Once the file is found, the FCB is copied into a system-

wide open-file table in memory. This table not only stores the FCB but also tracks the number

of

Next, an entry is made in the per-process open-file table, with a pointer to the entry in the

system-wide open-file table and some other fields. These other fields may include a pointer to

the current location in the file (for the next read() or write() operation) and the access mode in

which the file is open. The open() call returns a pointer to the appropriate entry in the per-
process file-system table. All file operations are then performed via this pointer. The file name

Prepared by: Satyam K , AITS , MCA OS Notes Page 108

may not be part of the open-file table, as the system has no use for it once the appropriate FCB

is located on disk. It could be cached, though, to save time on subsequent opens of the same

file. The name given to the entry varies. UNIX systems refer to it as a fil descriptor; Windows

refers to it as a fil handle.processes that have the file open.

When a process closes the file, the per-process table entry is removed, and the system-wide
entry’s open count is decremented. When all users that have opened the file close it, any

updated metadata are copied back to the disk-based directory structure, and the system-wide

open-file table entry is removed.

Directory Implementation :

The selection of directory-allocation and directory-management algorithms significantly affects

the efficiency, performance, and reliability of the file system. In this section, we discuss the

trade-offs involved in choosing one of these algorithms

Linear List :

The simplest method of implementing a directory is to use a linear list of file names with
pointers to the data blocks. This method is simple to program but time-consuming to execute.

To create a new file, we must first search the directory to be sure that no existing file has the

same name. Then, we add a new entry at the end of the directory. To delete a file, we search

the directory for the named file and then release the space allocated to it. To reuse the directory

entry, we can do one of several things. We can mark the entry as unused (by assigning it a
special name, such as an all-blank name, assigning it an invalid inode number (such as 0), or

by including a used –unused bit in each entry), or we can attach it to a list of free directory

entries. A third alternative is to copy the last entry in the directory into the freed location and

to decrease the length of the directory. A linked list can also be used to decrease the time

required to delete a file.

The real disadvantage of a linear list of directory entries is that finding a file requires a linear

search. Directory information is used frequently, and users will notice if access to it is slow. In

fact, many operating systems implement a software cache to store the most recently used
directory information. A cache hit avoids the need to constantly reread the information from

secondary storage. A sorted list allows a binary search and decreases the average search time.

However, the requirement that the list be kept sorted may complicate creating and deleting

files, since we may have to move substantial amounts ofdirectory information to maintain a

sorted directory. A more sophisticated tree data structure, such as a balanced tree, might help

Prepared by: Satyam K , AITS , MCA OS Notes Page 109

here. An advantage of the sorted list is that a sorted directory listing can be produced without a

separate sort step.

Hash Table :

Another data structure used for a file directory is a hash table. Here, a linear list stores the

directory entries, but a hash data structure is also used. The hash table takes a value

computed from the file name and returns a pointer to the file name in the linear list. Therefore,

it can greatly decrease the directory search time. Insertion and deletion are also fairly
straightforward, although some provision must be made for collisions—situations in which two

file names hash to the same location.

The major difficulties with a hash table are its generally fixed size and the dependence of the

hash function on that size. For example, assume that we make a linear-probing hash table that

holds 64 entries. The hash function converts file names into integers from 0 to 63 (for instance,

by using the remainder of a division by 64). If we later try to create a 65th file, we must enlarge

the directory hash table—say, to 128 entries. As a result, we need a new hash function that
must map file names to the range 0 to 127, and we must reorganize the existing directory

entries to reflect their new hash-function values.

Alternatively, we can use a chained-overflow hash table. Each hash entry can be a linked list

instead of an individual value, and we can resolve collisions by adding the new entry to the

linked list. Lookups may be somewhat slowed, because searching for a name might require

stepping through a linked list of colliding table entries. Still, this method is likely to be much

faster than a linear search through the entire directory.

Allocation Methods :

The direct-access nature of secondary storage gives us flexibility in the implementation of files.

In almost every case, many files are stored on the same device. The main problem is how to

allocate space to these files so that storage space is utilized effectively and files can be accessed
quickly. Three major methods of allocating secondary storage space are in wide use:

contiguous, linked, and indexed. Each method has advantages and disadvantages. Although

some systems support all three, it is more common for a system to use one method for all files

within a file-system type.

Contiguous Allocation :

Contiguous allocation requires that each file occupy a set of contiguous blocks on the device.

Device addresses define a linear ordering on the device.With this ordering, assuming that only

one job is accessing the device, accessing block b + 1 after block b normally requires no head

movement. When head movement is needed (from the last sector of one cylinder to the first

sector of the next cylinder), the head need only move from one track to the next. Thus, for
HDDs, the number of disk seeks required for accessing contiguously allocated files is minimal

(assuming blocks with close logical addresses are close physically), as is seek time when a seek

is finally needed.

Contiguous allocation of a file is defined by the address of the first block and length (in block

units) of the file. If the file is n blocks long and starts at location b, then it occupies blocks b, b

+ 1, b + 2, ..., b + n − 1. The directory entry for each file indicates the address of the starting

block and the length of the area allocated for this file (Figure 14.4). Contiguous allocation is

easy to implement but has limitations, and is therefore not used in modern file systems.

Accessing a file that has been allocated contiguously is easy. For sequential access, the file
system remembers the address of the last block referenced and, when necessary, reads the

next block. For direct access to block i of a file that starts at block b, we can immediately

Prepared by: Satyam K , AITS , MCA OS Notes Page 110

access block b + i. Thus, both sequential and direct access can be supported by contiguous

allocation

Contiguous allocation has some problems, however. One difficulty is finding space for a new

file. The system chosen to manage free space determines how this task is accomplished; these

management systems are discussed in Section 14.5. Any management system can be used, but

some are slower than others.

The contiguous-allocation problem can be seen as a particular application of the general
dynamic storage-allocation problem discussed in Section 9.2, which involves how to satisfy a

request of size n from a list of free holes. First fit and best fit are the most common strategies

used to select a free hole from the set of available holes. Simulations have shown that both first

fit and best fit are more efficient than worst fit in terms of both time and storage utilization.

Neither first fit nor best fit is clearly best in terms of storage utilization, but first fit is generally

faster.

Linked Allocation :

Linked allocation solves all problems of contiguous allocation. With linked allocation, each file

is a linked list of storage blocks; the blocks may be scattered anywhere on the device. The
directory contains a pointer to the first and last blocks of the file. For example, a file of five

blocks might start at block 9 and continue at block 16, then block 1, then block 10, and finally

block 25 (Figure 14.5). Each block contains a pointer to the next block. These pointers are not

made available to the user. Thus, if each block is 512 bytes in size, and a block address (the

pointer) requires 4 bytes, then the user sees blocks of 508 bytes.

To create a new file, we simply create a new entry in the directory. With linked allocation, each

directory entry has a pointer to the first block of the file. This pointer is initialized to null (the

end-of-list pointer value) to signify an empty file. The size field is also set to 0. A write to the file
causes the freespace management system to find a free block, and this new block is written to

and is linked to the end of the file. To read a file, we simply read blocks by following the

pointers from block to block. There is no external fragmentation with linked allocation, and any

free block on the free-space list can be used to satisfy a request. The size of a file need not be

declared when the file is created. A file can continue to grow as long as free blocks are

available. Consequently, it is never necessary to compact disk space.

Linked allocation does have disadvantages, however. The major problem is that it can be used
effectively only for sequential-access files. To find the block of a file, we must start at the

beginning of that file and follow the pointers until we get to the ith block. Each access to a

pointer requires a storage device read, and some require an HDD seek. Consequently, it is

inefficient to support a direct-access capability for linked-allocation files.

Another disadvantage is the space required for the pointers. If a pointer requires 4 bytes out of
a 512-byte block, then 0.78 percent of the disk is being used for pointers, rather than for

information. Each file requires slightly more space than it would otherwise.

Prepared by: Satyam K , AITS , MCA OS Notes Page 111

The usual solution to this problem is to collect blocks into multiples, called clusters, and to

allocate clusters rather than blocks. For instance, the file system may define a cluster as four

blocks and operate on the secondary storage device only in cluster units. Pointers then use a
much smaller percentage of the file’s space. This method allows the logical-to-physical block

mapping to remain simple but improves HDD throughput (because fewer disk-head seeks are

required) and decreases the space needed for block allocation and free-list management. The

cost of this approach is an increase in internal fragmentation, because more space is wasted

when a cluster is partially full than when a block is partially full. Also random I/O performance

suffers because a request for a small amount of data transfers a large amount of data. Clusters
can be used to improve the disk-access time for many other algorithms as well, so they are

used in most file systems.

Yet another problem of linked allocation is reliability. Recall that the files are linked together by

pointers scattered all over the device, and consider what would happen if a pointer was lost or

damaged. A bug in the operating-system software or a hardware failure might result in picking

up the wrong pointer. This error could in turn result in linking into the free-space list or into

another file. One partial solution is to use doubly linked lists, and another is to store the file
name and relative block number in each block. However, these schemes require even more

overhead for each file.

An important variation on linked allocation is the use of a file-allocatio table (FAT). This simple

but efficient method of disk-space allocation was used by the MS-DOS operating system. A

section of storage at the beginning of each volume is set aside to contain the table. The table

has one entry for each block and is indexed by block number. The FAT is used in much the

same way as a linked list. The directory entry contains the block number of the first block of

the file. The table entry indexed by that block number contains the block number of the next
block in the file. This chain continues until it reaches the last block, which has a special end-

of-file value as the table entry. An unused block is indicated by a table value of 0. Allocating a

new block to a file is a simple matter of finding the first 0-valued table entry and replacing the

previous endof-file value with the address of the new block. The 0 is then replaced with the

end-of-file value. An illustrative example is the FAT structure shown in Figure 14.6 for a file

consisting of disk blocks 217, 618, and 339.

The FAT allocation scheme can result in a significant number of disk head seeks, unless the
FAT is cached. The disk head must move to the start of the volume to read the FAT and find

the location of the block in question, then move to the location of the block itself. In the worst

case, both moves occur for each of the blocks. A benefit is that random-access time is

improved, because the disk head can find the location of any block by reading the information

in the FAT.

Indexed Allocation :

Linked allocation solves the external-fragmentation and size-declaration problems of

contiguous allocation. However, in the absence of a FAT, linked allocation cannot support

Prepared by: Satyam K , AITS , MCA OS Notes Page 112

efficient direct access, since the pointers to the blocks are scattered with the blocks themselves

all over the disk and must be retrieved in order. Indexed allocation solves this problem by

bringing all the pointers together into one location: the index block.

Each file has its own index block, which is an array of storage-block addresses. The ith entry in

the index block points to the ith block of the file. The directory contains the address of the
index block (Figure 14.7). To find and read the ith block, we use the pointer in the ith index-

block entry. This scheme is similar to the paging scheme described in Section 9.3.

When the file is created, all pointers in the index block are set to null. When the ith block is

first written, a block is obtained from the free-space manager, and its address is put in the ith

index-block entry.

Indexed allocation supports direct access, without suffering from external fragmentation,

because any free block on the storage device can satisfy a request for more space. Indexed

allocation does suffer from wasted space, however. The pointer overhead of the index block is

generally greater than the pointer overhead of linked allocation. Consider a common case in
which we have a file of only one or two blocks. With linked allocation, we lose the space of only

one pointer per block. With indexed allocation, an entire index block must be allocated, even if

only one or two pointers will be non-null.

This point raises the question of how large the index block should be. Every file must have an

index block, so we want the index block to be as small as possible. If the index block is too

small, however, it will not be able to hold enough pointers for a large file, and a mechanism will

have to be available to deal with this issue. Mechanisms for this purpose include the following:

Linked scheme:. An index block is normally one storage block. Thus, it can be read and

written directly by itself. To allow for large files, we can link together several index blocks. For

example, an index block might contain a small header giving the name of the file and a set of
the first 100 disk-block addresses. The next address (the last word in the index block) is null

(for a small file) or is a pointer to another index block (for a large file).

• Multilevel index: A variant of linked representation uses a first-level index block to point to a

set of second-level index blocks, which in turn point to the file blocks. To access a block, the

operating system uses the first-level index to find a second-level index block and then uses that

block to find the desired data block. This approach could be continued to a third or fourth

level, depending on the desired maximum file size. With 4,096-byte blocks, we could store
1,024 four-byte pointers in an index block. Two levels of indexes allow 1,048,576 data blocks

and a file size of up to 4 GB.

Free-Space Management :

Since storage space is limited, we need to reuse the space from deleted files for new files, if
possible. (Write-once optical disks allow only one write to any given sector, and thus reuse is

not physically possible.) To keep track of free disk space, the system maintains a free-space

list. The free-space list records all free device blocks— those not allocated to some file or

directory. To create a file, we search the free-space list for the required amount of space and

allocate that space to the new file. This space is then removed from the free-space list. When a
file is deleted, its space is added to the free-space list. The free-space list, despite its name, is

not necessarily implemented as a list, as we discuss next.

Bit Vector :

Frequently, the free-space list is implemented as a bitmap or bit vector. Each block is

represented by 1 bit. If the block is free, the bit is 1; if the block is allocated, the bit is 0.

Prepared by: Satyam K , AITS , MCA OS Notes Page 113

For example, consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and

27 are free and the rest of the blocks are allocated. The free-space bitmap would be

001111001111110001100000011100000 ...

The main advantage of this approach is its relative simplicity and its efficiency in finding the

first free block or n consecutive free blocks on the disk. Indeed, many computers supply bit-

manipulation instructions that can be used effectively for that purpose. One technique for

finding the first free block on a system that uses a bit vector to allocate space is to sequentially
check each word in the bitmap to see whether that value is not 0, since a 0-valued word

contains only 0 bits and represents a set of allocated blocks. The first non-0 word is scanned

for the first 1 bit, which is the location of the first free block. The calculation of the block

number is

(number of bits per word) × (number of 0-value words) + offset of first 1 bit.

Again, we see hardware features driving software functionality. Unfortunately, bit vectors are

inefficient unless the entire vector is kept in main memory (and is written to the device

containing the file system occasionally for recovery needs). Keeping it in main memory is

possible for smaller devices but not necessarily for larger ones. A 1.3-GB disk with 512-byte
blocks would need a bitmap of over 332 KB to track its free blocks, although clustering the

blocks in groups of four reduces this number to around 83 KB per disk. A 1-TB disk with 4-KB

blocks would require 32 MB (240 / 212 = 228 bits = 225 bytes = 25 MB) to store its bitmap.

Given that disk size constantly increases, the problem with bit vectors will continue to escalate

as well.

Linked List :

Another approach to free-space management is to link together all the free blocks, keeping a

pointer to the first free block in a special location in the file system and caching it in memory.

This first block contains a pointer to the next free block, and so on. Recall our earlier example
(Section 14.5.1), in which blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and 27 were

free and the rest of the blocks were allocated. In this situation, we would keep a pointer to

block 2 as the first free block. Block 2 would contain a pointer to block 3, which would point to

block 4, which would point to block 5, which would point to block 8, and so on (Figure 14.9).

This scheme is not efficient; to traverse the list, we must read each block, which requires

substantial I/O time on HDDs. Fortunately, however, traversing the free list is not a frequent
action. Usually the operating system simply needs a free block so that it can allocate that block

to a file, so the first block in the free list is used. The FAT method incorporates free-block

accounting into the allocation data structure. No separate method is needed.

Grouping :

A modification of the free-list approach stores the addresses of n free blocks in the first free

block. The first n−1 of these blocks are actually free. The last block contains the addresses of

Prepared by: Satyam K , AITS , MCA OS Notes Page 114

another n free blocks, and so on. The addresses of a large number of free blocks can now be

found quickly, unlike the situation when the standard linked-list approach is used.

Counting:

Another approach takes advantage of the fact that, generally, several contiguous blocks may be

allocated or freed simultaneously, particularly when space is allocated with the contiguous-

allocation algorithm or through clustering. Thus, rather than keeping a list of n free block

addresses, we can keep the address of the first free block and the number (n) of free contiguous
blocks that follow the first block. Each entry in the free-space list then consists of a device

address and a count. Although each entry requires more space than would a simple disk

address, the overall list is shorter, as long as the count is generally greater than 1. Note that

this method of tracking free space is similar to the extent method of allocating blocks. These

entries can be stored in a balanced tree, rather than a linked list, for efficient lookup, insertion,

and deletion.

Space Maps :

Oracle’s ZFS file system (found in Solaris and some other operating systems) was designed to

encompass huge numbers of files, directories, and even file systems (in ZFS, we can create file-
system hierarchies). On these scales, metadata I/O can have a large performance impact.

Consider, for example, that if the free-space list is implemented as a bitmap, bitmaps must be

modified both when blocks are allocated and when they are freed. Freeing 1 GB of data on a 1-

TB disk could cause thousands of blocks of bitmaps to be updated, because those data blocks

could be scattered over the entire disk. Clearly, the data structures for such a system could be

large and inefficient.

In its management of free space, ZFS uses a combination of techniques to control the size of

data structures and minimize the I/O needed to manage those structures. First, ZFS creates
metaslabs to divide the space on the device into chunks of manageable size. A given volume

may contain hundreds of metaslabs. Each metaslab has an associated space map. ZFS uses

the counting algorithm to store information about free blocks. Rather than write counting

structures to disk, it uses log-structured file-system techniques to record them. The space map

is a log of all block activity (allocating and freeing), in time order, in counting format. When ZFS
decides to allocate or free space from a metaslab, it loads the associated space map into

memory in a balanced-tree structure (for very efficient operation), indexed by offset, and

replays the log into that structure. The in-memory space map is then an accurate

representation of the allocated and free space in the metaslab. ZFS also condenses the map as

much as possible by combining contiguous free blocks into a single entry. Finally, the free-

space list is updated on disk as part of the transaction-oriented operations of ZFS. During the
collection and sorting phase, block requests can still occur, and ZFS satisfies these requests

from the log. In essence, the log plus the balanced tree is the free list.

Prepared by: Satyam K , AITS , MCA OS Notes Page 115

UNIT-V : Virtual Machines

The term virtualization has many meanings, and aspects of virtualization permeate all aspects

of computing. Virtual machines are one instance of this trend. Generally, with a virtual

machine, guest operating systems and applications run in an environment that appears to

them to be native hardware and that behaves toward them as native hardware would but that

also protects, manages, and limits them.

The fundamental idea behind a virtual machine is to abstract the hardware of a single
computer (the CPU, memory, disk drives, network interface cards, and so forth) into several

different execution environments, thereby creating the illusion that each separate environment

is running on its own private computer. This concept may seem similar to the layered approach

of operating system implementation (see Section 2.8.2), and in some ways it is. In the case of

virtualization, there is a layer that creates a virtual system on which operating systems or

applications can run.

Virtual machine implementations involve several components. At the base is the host, the
underlying hardware system that runs the virtual machines. The virtual machine manager

(VMM) (also known as a hypervisor) creates and runs virtual machines by providing an

interface that is identical to the host (except in the case of paravirtualization, discussed later).

Each guest process is provided with a virtual copy of the host (Figure 18.1). Usually, the guest

process is in fact an operating system. A single physical machine can thus run multiple

operating systems concurrently, each in its own virtual machine.

Take a moment to note that with virtualization, the definition of ―operating system‖ once again

blurs. For example, consider VMM software such as VMware ESX. This virtualization software
is installed on the hardware, runs when the hardware boots, and provides services to

applications. The services include traditional ones, such as scheduling and memory

management, along with new types, such as migration of applications between systems.

Furthermore, the applications are, in fact, guest operating systems. Is the VMware ESX VMM

an operating system that, in turn, runs other operating systems? Certainly it acts like an
operating system. For clarity, however, we call the component that provides virtual

environments a VMM.

The implementation of VMMs varies greatly. Options include the following:

Hardware-based solutions that provide support for virtual machine creation and management
via firmware. These VMMs, which are commonly found in mainframe and large to midsized

servers, are generally known as type 0 hypervisors. IBM LPARs and Oracle LDOMs are

examples.

Operating-system-like software built to provide virtualization, including VMware ESX

(mentioned above), Joyent SmartOS, and Citrix XenServer. These VMMs are known as type 1

hypervisors.

Prepared by: Satyam K , AITS , MCA OS Notes Page 116

General-purpose operating systems that provide standard functions as well as VMM functions,

including Microsoft Windows Server with HyperV and Red Hat Linux with the KVM feature.

Because such systems have a feature set similar to type 1 hypervisors, they are also known as

type 1.

Applications that run on standard operating systems but provide VMM features to guest
operating systems. These applications, which include VMware Workstation and Fusion,

Parallels Desktop, and Oracle VirtualBox, are type 2 hypervisors.

Paravirtualization, a technique in which the guest operating system is modified to work in

cooperation with the VMM to optimize performance.

Programming-environment virtualization, in which VMMs do not virtualize real hardware but

instead create an optimized virtual system. This technique is used by Oracle Java and

Microsoft.Net.

Emulators that allow applications written for one hardware environment to run on a very

different hardware environment, such as a different type of CPU.

Application containment, which is not virtualization at all but rather provides virtualization-

like features by segregating applications from the operating system. Oracle Solaris Zones, BSD

Jails, and IBM AIX WPARs ―contain‖ applications, making them more secure and manageable

The variety of virtualization techniques in use today is a testament to the breadth, depth, and

importance of virtualization in modern computing. Virtualization is invaluable for data-center

operations, efficient application development, and software testing, among many other uses.

History :

Virtual machines first appeared commercially on IBM mainframes in 1972. Virtualization was

provided by the IBM VM operating system. This system has evolved and is still available. In

addition, many of its original concepts are found in other systems, making it worth exploring.

IBM VM/370 divided a mainframe into multiple virtual machines, each running its own
operating system. A major difficulty with the VM approach involved disk systems. Suppose that

the physical machine had three disk drives but wanted to support seven virtual machines.

Clearly, it could not allocate a disk drive to each virtual machine. The solution was to provide

virtual disks— termed minidisks in IBM’s VM operating system. The minidisks were identical to

the system’s hard disks in all respects except size. The system implemented each minidisk by

allocating as many tracks on the physical disks as the minidisk needed.

Once the virtual machines were created, users could run any of the operating systems or

software packages that were available on the underlying machine. For the IBM VM system, a

user normally ran CMS—a single-user interactive operating system

For many years after IBM introduced this technology, virtualization remained in its domain.
Most systems could not support virtualization. However, a formal definition of virtualization

helped to establish system requirements and a target for functionality. The virtualization

requirements called for :

Fidelity. A VMM provides an environment for programs that is essentially identical to the

original machine.

Performance. Programs running within that environment show only minor performance

decreases.

• Safety. The VMM is in complete control of system resources.

Prepared by: Satyam K , AITS , MCA OS Notes Page 117

These requirements still guide virtualization efforts today

By the late 1990s, Intel 80x86 CPUs had become common, fast, and rich in features.

Accordingly, developers launched multiple efforts to implement virtualization on that platform.

Both Xen and VMware created technologies, still used today, to allow guest operating systems

to run on the 80x86. Since that time, virtualization has expanded to include all common CPUs,
many commercial and open-source tools, and many operating systems. For example, the open-

source VirtualBox project (http://www.virtualbox.org) provides a program that runs on Intel

x86 and AMD 64 CPUs and on Windows, Linux, macOS, and Solaris host operating systems.

Possible guest operating systems include many versions of Windows, Linux, Solaris, and BSD,

including even MS-DOS and IBM OS/2.

Benefits and Features :

Several advantages make virtualization attractive. Most of them are fundamentally related to

the ability to share the same hardware yet run several different execution environments (that

is, different operating systems) concurrently.

One important advantage of virtualization is that the host system is protected from the virtual

machines, just as the virtual machines are protected from each other. A virus inside a guest
operating system might damage that operating system but is unlikely to affect the host or the

other guests. Because each virtual machine is almost completely isolated from all other virtual

machines, there are almost no protection problems

A potential disadvantage of isolation is that it can prevent sharing of resources. Two

approaches to providing sharing have been implemented. First, it is possible to share a file-

system volume and thus to share files. Second, it is possible to define a network of virtual

machines, each of which can send information over the virtual communications network. The

network is modeled after physical communication networks but is implemented in software. Of
course, the VMM is free to allow any number of its guests to use physical resources, such as a

physical network connection (with sharing provided by the VMM), in which case the allowed

guests could communicate with each other via the physical network.

One feature common to most virtualization implementations is the ability to freeze, or suspend,

a running virtual machine. Many operating systems provide that basic feature for processes,

but VMMs go one step further and allow copies and snapshots to be made of the guest. The

copy can be used to create a new VM or to move a VM from one machine to another with its
current state intact. The guest can then resume where it was, as if on its original machine,

creating a clone. The snapshot records a point in time, and the guest can be reset to that point

if necessary (for example, if a change was made but is no longer wanted). Often, VMMs allow

many snapshots to be taken. For example, snapshots might record a guest’s state every day for

a month, making restoration to any of those snapshot states possible. These abilities are used

to good advantage in virtual environments.

A virtual machine system is a perfect vehicle for operating-system research and development.
Normally, changing an operating system is a difficult task. Operating systems are large and

complex programs, and a change in one part may cause obscure bugs to appear in some other

part. The power of the operating system makes changing it particularly dangerous. Because the

operating system executes in kernel mode, a wrong change in a pointer could cause an error

that would destroy the entire file system. Thus, it is necessary to test all changes to the

operating system carefully.

Of course, the operating system runs on and controls the entire machine, so the system must

be stopped and taken out of use while changes are made and tested. This period is commonly
called system-development time. Since it makes the system unavailable to users, system-

Prepared by: Satyam K , AITS , MCA OS Notes Page 118

development time on shared systems is often scheduled late at night or on weekends, when

system load is low.

A virtual-machine system can eliminate much of this latter problem. System programmers are

given their own virtual machine, and system development is done on the virtual machine

instead of on a physical machine. Normal system operation is disrupted only when a completed

and tested change is ready to be put into production.

Another advantage of virtual machines for developers is that multiple operating systems can
run concurrently on the developer’s workstation. This virtualized workstation allows for rapid

porting and testing of programs in varying environments. In addition, multiple versions of a

program can run, each in its own isolated operating system, within one system. Similarly,

qualityassurance engineers can test their applications in multiple environments without

buying, powering, and maintaining a computer for each environment.

A major advantage of virtual machines in production data-center use is system consolidation,

which involves taking two or more separate systems and running them in virtual machines on
one system. Such physical-to-virtual conversions result in resource optimization, since many

lightly used systems can be combined to create one more heavily used system

Consider, too, that management tools that are part of the VMM allow system administrators to

manage many more systems than they otherwise could. A virtual environment might include

100 physical servers, each running 20 virtual servers. Without virtualization, 2,000 servers

would require several system administrators. With virtualization and its tools, the same work

can be managed by one or two administrators. One of the tools that make this possible is

templating, in which one standard virtual machine image, including an installed and
configured guest operating system and applications, is saved and used as a source for multiple

running VMs. Other features include managing the patching of all guests, backing up and

restoring the guests, and monitoring their resource use.

Virtualization can improve not only resource utilization but also resource management. Some

VMMs include a live migration feature that moves a running guest from one physical server to

another without interrupting its operation or active network connections. If a server is

overloaded, live migration can thus free resources on the source host while not disrupting the
guest. Similarly, when host hardware must be repaired or upgraded, guests can be migrated to

other servers, the evacuated host can be maintained, and then the guests can be migrated

back. This operation occurs without downtime and without interruption to users.

Think about the possible effects of virtualization on how applications are deployed. If a system

can easily add, remove, and move a virtual machine, then why install applications on that

system directly? Instead, the application could be preinstalled on a tuned and customized

operating system in a virtual machine. This method would offer several benefits for application
developers. Application management would become easier, less tuning would be required, and

technical support of the application would be more straightforward. System administrators

would find the environment easier to manage as well. Installation would be simple, and

redeploying the application to another system would be much easier than the usual steps of

uninstalling and reinstalling. For widespread adoption of this methodology to occur, though,

the format of virtual machines must be standardized so that any virtual machine will run on
any virtualization platform. The ―Open Virtual Machine Format‖ is an attempt to provide such

standardization, and it could succeed in unifying virtual machine formats.

Virtualization has laid the foundation for many other advances in computer facility

implementation, management, and monitoring. Cloud computing, for example, is made

possible by virtualization in which resources such as CPU, memory, and I/O are provided as

services to customers using Internet technologies. By using APIs, a program can tell a cloud

computing facility to create thousands of VMs, all running a specific guest operating system

Prepared by: Satyam K , AITS , MCA OS Notes Page 119

and application, that others can access via the Internet. Many multiuser games, photo-sharing

sites, and other web services use this functionality.

In the area of desktop computing, virtualization is enabling desktop and laptop computer users

to connect remotely to virtual machines located in remote data centers and access their

applications as if they were local. This practice can increase security, because no data are
stored on local disks at the user’s site. The cost of the user’s computing resource may also

decrease. The user must have networking, CPU, and some memory, but all that these system

components need to do is display an image of the guest as its runs remotely (via a protocol

such as RDP). Thus, they need not be expensive, high-performance components. Other uses of

virtualization are sure to follow as it becomes more prevalent and hardware support continues

to improve.

Building Blocks :

Although the virtual machine concept is useful, it is difficult to implement. Much work is

required to provide an exact duplicate of the underlying machine. This is especially a challenge
on dual-mode systems, where the underlying machine has only user mode and kernel mode. In

this section, we examine the building blocks that are needed for efficient virtualization. Note

that these building blocks are not required by type 0 hypervisors, as discussed in Section

18.5.2.

The ability to virtualize depends on the features provided by the CPU. If the features are

sufficient, then it is possible to write a VMM that provides a guest environment. Otherwise,

virtualization is impossible. VMMs use several techniques to implement virtualization,

including trap-and-emulate and binary translation. We discuss each of these techniques in this

section, along with the hardware support needed to support virtualization.

As you read the section, keep in mind that an important concept found in most virtualization
options is the implementation of a virtual CPU (VCPU). The VCPU does not execute code.

Rather, it represents the state of the CPU as the guest machine believes it to be. For each

guest, the VMM maintains a VCPU representing that guest’s current CPU state. When the

guest is context-switched onto a CPU by the VMM, information from the VCPU is used to load

the right context, much as a general-purpose operating system would use the PCB.

Trap-and-Emulate :

On a typical dual-mode system, the virtual machine guest can execute only in user mode

(unless extra hardware support is provided). The kernel, of course, runs in kernel mode, and it

is not safe to allow user-level code to run in kernel mode. Just as the physical machine has two
modes, so must the virtual machine. Consequently, we must have a virtual user mode and a

virtual kernel mode, both of which run in physical user mode. Those actions that cause a

transfer from user mode to kernel mode on a real machine (such as a system call, an interrupt,

or an attempt to execute a privileged instruction) must also cause a transfer from virtual user

mode to virtual kernel mode in the virtual machine.

How can such a transfer be accomplished? The procedure is as follows: When the kernel in the

guest attempts to execute a privileged instruction, that is an error (because the system is in
user mode) and causes a trap to the VMM in the real machine. The VMM gains control and

executes (or ―emulates‖) the action that was attempted by the guest kernel on the part of the

guest.

Prepared by: Satyam K , AITS , MCA OS Notes Page 120

then returns control to the virtual machine. This is called the trap-and-emulate method and is

shown in Figure 18.2.

With privileged instructions, time becomes an issue. All nonprivileged instructions run natively

on the hardware, providing the same performance for guests as native applications. Privileged

instructions create extra overhead, however, causing the guest to run more slowly than it

would natively. In addition, the CPU is being multiprogrammed among many virtual machines,

which can further slow down the virtual machines in unpredictable ways.

This problem has been approached in various ways. IBM VM, for example, allows normal

instructions for the virtual machines to execute directly on the hardware. Only the privileged

instructions (needed mainly for I/O) must be emulated and hence execute more slowly. In

general, with the evolution of hardware, the performance of trap-and-emulate functionality has

been improved, and cases in which it is needed have been reduced. For example, many CPUs

now have extra modes added to their standard dual-mode operation. The VCPU need not keep
track of what mode the guest operating system is in, because the physical CPU performs that

function. In fact, some CPUs provide guest CPU state management in hardware, so the VMM

need not supply that functionality, removing the extra overhead.

Binary Translation :

Some CPUs do not have a clean separation of privileged and nonprivileged instructions.

Unfortunately for virtualization implementers, the Intel x86 CPU line is one of them. No

thought was given to running virtualization on the x86 when it was designed. (In fact, the first

CPU in the family— the Intel 4004, released in 1971—was designed to be the core of a

calculator.) The chip has maintained backward compatibility throughout its lifetime, preventing

changes that would have made virtualization easier through many generations

Let’s consider an example of the problem. The command popf loads the flag register from the
contents of the stack. If the CPU is in privileged mode, all of the flags are replaced from the

stack. If the CPU is in user mode, then only some flags are replaced, and others are ignored.

Because no trap is generated if popf is executed in user mode, the trap-and-emulate procedure

is rendered useless. Other x86 instructions cause similar problems. For the purposes of this

discussion, we will call this set of instructions special instructions. As recently as 1998, using

the trap-and-emulate method to implement virtualization on the x86 was considered

impossible because of these special instructions.

This previously insurmountable problem was solved with the implementation of the binary

translation technique. Binary translation is fairly simple in concept but complex in

implementation. The basic steps are as follows:

1. If the guest VCPU is in user mode, the guest can run its instructions natively on a

physical CPU.

2. If the guest VCPU is in kernel mode, then the guest believes that it is running in kernel

mode. The VMM examines every instruction the guest executes in virtual kernel mode

Prepared by: Satyam K , AITS , MCA OS Notes Page 121

by reading the next few instructions that the guest is going to execute, based on the

guest’s program counter. Instructions other than special instructions are run natively.

Special instructions are translated into a new set of instructions that perform the

equivalent task— for example, changing the flags in the VCPU.

Binary translation is shown in Figure 18.3. It is implemented by translation code within the
VMM. The code reads native binary instructions dynamically from the guest, on demand, and

generates native binary code that executes in place of the original code.

The basic method of binary translation just described would execute correctly but perform

poorly. Fortunately, the vast majority of instructions would execute natively. But how could

performance be improved for the other instructions? We can turn to a specific implementation

of binary translation, the VMware method, to see one way of improving performance. Here,
caching provides the solution. The replacement code for each instruction that needs to be

translated is cached. All later executions of that instruction run from the translation cache and

need not be translated again. If the cache is large enough, this method can greatly improve

performance.

Let’s consider another issue in virtualization: memory management, specifically the page

tables. How can the VMM keep page-table state both for guests that believe they are managing

the page tables and for the VMM itself? A common method, used with both trap-and-emulate
and binary translation, is to use nested page tables (NPTs). Each guest operating system

maintains one or more page tables to translate from virtual to physical memory. The VMM

maintains NPTs to represent the guest’s page-table state, just as it creates a VCPU to represent

the guest’s CPU state. The VMM knows when the guest tries to change its page table, and it

makes the equivalent change in the NPT. When the guest is on the CPU, the VMM puts the

pointer to the appropriate NPT into the appropriate CPU register to make that table the active
page table. If the guest needs to modify the page table (for example, fulfilling a page fault), then

that operation must be intercepted by the VMM and appropriate changes made to the nested

and system page tables. Unfortunately, the use of NPTs can cause TLB misses to increase, and

many other complexities need to be addressed to achieve reasonable performance

Although it might seem that the binary translation method creates large amounts of overhead,

it performed well enough to launch a new industry aimed at virtualizing Intel x86-based

systems. VMware tested the performance impact of binary translation by booting one such
system, Windows XP, and immediately shutting it down while monitoring the elapsed time and

the number of translations produced by the binary translation method. The result was 950,000

translations, taking 3 microseconds each, for a total increase of 3 seconds (about 5 percent)

over native execution of Windows XP. To achieve that result, developers used many

performance improvements that we do not discuss here. For more information, consult the

bibliographical notes at the end of this chapter.

Prepared by: Satyam K , AITS , MCA OS Notes Page 122

Hardware Assistance :

Without some level of hardware support, virtualization would be impossible. The more

hardware support available within a system, the more feature-rich and stable the virtual

machines can be and the better they can perform. In the Intel x86 CPU family, Intel added new

virtualization support (the VT-x instructions) in successive generations beginning in 2005.

Now, binary translation is no longer needed

In fact, all major general-purpose CPUs now provide extended hardware support for
virtualization. For example, AMD virtualization technology (AMDV) has appeared in several

AMD processors starting in 2006. It defines two new modes of operation—host and guest—

thus moving from a dual-mode to a multimode processor. The VMM can enable host mode,

define the characteristics of each guest virtual machine, and then switch the system to guest

mode, passing control of the system to a guest operating system that is running in the virtual
machine. In guest mode, the virtualized operating system thinks it is running on native

hardware and sees whatever devices are included in the host’s definition of the guest. If the

guest tries to access a virtualized resource, then control is passed to the VMM to manage that

interaction. The functionality in Intel VT-x is similar, providing root and nonroot modes,

equivalent to host and guest modes. Both provide guest VCPU state data structures to load and

save guest CPU state automatically during guest context switches. In addition, virtual machine
control structures (VMCSs) are provided to manage guest and host state, as well as various

guest execution controls, exit controls, and information about why guests exit back to the host.

In the latter case, for example, a nested page-table violation caused by an attempt to access

unavailable memory can result in the guest’s exit.

AMD and Intel have also addressed memory management in the virtual environment. With

AMD’s RVI and Intel’s EPT memory-management enhancements, VMMs no longer need to

implement software NPTs. In essence, these CPUs implement nested page tables in hardware to
allow the VMM to fully control paging while the CPUs accelerate the translation from virtual to

physical addresses. The NPTs add a new layer, one representing the guest’s view of logical-to-

physical address translation. The CPU page-table walking function (traversing the data

structure to find the desired data) includes this new layer as necessary, walking through the

guest table to the VMM table to find the physical address desired. A TLB miss results in a

performance penalty, because more tables (the guest and host page tables) must be traversed
to complete the lookup. Figure 18.4 shows the extra translation work performed by the

hardware to translate from a guest virtual address to a final physical address.

I/O is another area improved by hardware assistance. Consider that the standard direct-

memory-access (DMA) controller accepts a target memory address and a source I/O device and

transfers data between the two without operating-system action. Without hardware assistance,

a guest might try to set up a DMA transfer that affects the memory of the VMM or other guests.

In CPUs that provide hardware-assisted DMA (such as Intel CPUs with VT-d), even DMA has a
level of indirection. First, the VMM sets up protection domains to tell the CPU which physical

memory belongs to each guest. Next, it assigns the I/O devices to the protection domains,

allowing them direct access to those memory regions and only those regions. The hardware

then transforms the address in a DMA request issued by an I/O device to the host physical

memory address associated with the I/O. In this manner, DMA transfers are passed through

between a guest and a device without VMM interference.

Similarly, interrupts must be delivered to the appropriate guest and must not be visible to

other guests. By providing an interrupt remapping feature, CPUs with virtualization hardware
assistance automatically deliver an interrupt destined for a guest to a core that is currently

running a thread of that guest. That way, the guest receives interrupts without any need for

the VMM to intercede in their delivery. Without interrupt remapping, malicious guests could

Prepared by: Satyam K , AITS , MCA OS Notes Page 123

generate interrupts that could be used to gain control of the host system. (See the

bibliographical notes at the end of this chapter for more details.)

ARM architectures, specifically ARM v8 (64-bit) take a slightly different approach to hardware

support of virtualization. They provide an entire exception level—EL2—which is even more
privileged than that of the kernel (EL1). This allows the running of a secluded hypervisor, with

its own MMU access and interrupt trapping. To allow for paravirtualization, a special

instruction (HVC) is added. It allows the hypervisor to be called from guest kernels. This

instruction can only be called from within kernel mode (EL1).

An interesting side effect of hardware-assisted virtualization is that it allows for the creation of

thin hypervisors. A good example is macOS’s hypervisor framework (―HyperVisor.framework‖),

which is an operating-systemsupplied library that allows the creation of virtual machines in a

few lines of code. The actual work is done via system calls, which have the kernel call the
privileged virtualization CPU instructions on behalf of the hypervisor process, allowing

management of virtual machines without the hypervisor needing to load a kernel module of its

own to execute those calls.

Types of VMs and Their Implementations :

We’ve now looked at some of the techniques used to implement virtualization. Next, we

consider the major types of virtual machines, their implementation, their functionality, and

how they use the building blocks just described to create a virtual environment. Of course, the

hardware on which the virtual machines are running can cause great variation in

implementation methods. Here, we discuss the implementations in general, with the

understanding that VMMs take advantage of hardware assistance where it is available.

The Virtual Machine Life Cycle :

Let’s begin with the virtual machine life cycle. Whatever the hypervisor type, at the time a
virtual machine is created, its creator gives the VMM certain parameters. These parameters

usually include the number of CPUs, amount of memory, networking details, and storage

details that the VMM will take into account when creating the guest. For example, a user might

want to create a new guest with two virtual CPUs, 4 GB of memory, 10 GB of disk space, one

network interface that gets its IP address via DHCP, and access to the DVD drive.

Prepared by: Satyam K , AITS , MCA OS Notes Page 124

The VMM then creates the virtual machine with those parameters. In the case of a type 0

hypervisor, the resources are usually dedicated. In this situation, if there are not two virtual

CPUs available and unallocated, the creation request in our example will fail. For other
hypervisor types, the resources are dedicated or virtualized, depending on the type. Certainly,

an IP address cannot be shared, but the virtual CPUs are usually multiplexed on the physical

CPUs as discussed in Section 18.6.1. Similarly, memory management usually involves

allocating more memory to guests than actually exists in physical memory. This is more

complicated and is described in Section 18.6.2.

Finally, when the virtual machine is no longer needed, it can be deleted. When this happens,

the VMM first frees up any used disk space and then removes the configuration associated with

the virtual machine, essentially forgetting the virtual machine.

These steps are quite simple compared with building, configuring, running, and removing
physical machines. Creating a virtual machine from an existing one can be as easy as clicking

the ―clone‖ button and providing a new name and IP address. This ease of creation can lead to

virtual machine sprawl, which occurs when there are so many virtual machines on a system

that their use, history, and state become confusing and difficult to track.

Type 0 Hypervisor :

Type 0 hypervisors have existed for many years under many names, including ―partitions‖ and

―domains.‖ They are a hardware feature, and that brings its own positives and negatives.

Operating systems need do nothing special to take advantage of their features. The VMM itself

is encoded in the firmware and loaded at boot time. In turn, it loads the guest images to run in

each partition. The feature set of a type 0 hypervisor tends to be smaller than those of the other
types because it is implemented in hardware. For example, a system might be split into four

virtual systems, each with dedicated CPUs, memory, and I/O devices. Each guest believes that

it has dedicated hardware because it does, simplifying many implementation details.

I/O presents some difficulty, because it is not easy to dedicate I/O devices to guests if there are

not enough. What if a system has two Ethernet ports and more than two guests, for example?

Either all guests must get their own I/O devices, or the system must provided I/O device

sharing. In these cases, the hypervisor manages shared access or grants all devices to a control

partition. In the control partition, a guest operating system provides services (such as

networking) via daemons to other guests, and the hypervisor routes I/O requests appropriately.
Some type 0 hypervisors are even more sophisticated and can move physical CPUs and

memory between running guests. In these cases, the guests are paravirtualized, aware of the

virtualization and assisting in its execution. For example, a guest must watch for signals from

the hardware or VMM that a hardware change has occurred, probe its hardware devices to

detect the change, and add or subtract CPUs or memory from its available resources.

Because type 0 virtualization is very close to raw hardware execution, it should be considered

separately from the other methods discussed here. A type 0 hypervisor can run multiple guest
operating systems (one in each hardware partition). All of those guests, because they are

running on raw hardware, can in turn be VMMs. Essentially, each guest operating system in a

type 0 hypervisor is a native operating system with a subset of hardware made available to it.

Prepared by: Satyam K , AITS , MCA OS Notes Page 125

Because of that, each can have its own guest operating systems (Figure 18.5). Other types of

hypervisors usually cannot provide this virtualization-withinvirtualization functionality.

Type 1 Hypervisor :

Type 1 hypervisors are commonly found in company data centers and are, in a sense,

becoming ―the data-center operating system.‖ They are special-purpose operating systems that

run natively on the hardware, but rather than providing system calls and other interfaces for

running programs, they create, run, and manage guest operating systems. In addition to
running on standard hardware, they can run on type 0 hypervisors, but not on other type 1

hypervisors. Whatever the platform, guests generally do not know they are running on anything

but the native hardware.

Type 1 hypervisors run in kernel mode, taking advantage of hardware protection. Where the

host CPU allows, they use multiple modes to give guest operating systems their own control

and improved performance. They implement device drivers for the hardware they run on, since

no other component could do so. Because they are operating systems, they must also provide
CPU scheduling, memory management, I/O management, protection, and even security.

Frequently, they provide APIs, but those APIs support applications in guests or external

applications that supply features like backups, monitoring, and security. Many type 1

hypervisors are closed-source commercial offerings, such as VMware ESX, while some are open

source or hybrids of open and closed source, such as Citrix XenServer and its open Xen

counterpart.

By using type 1 hypervisors, data-center managers can control and manage the operating

systems and applications in new and sophisticated ways. An important benefit is the ability to
consolidate more operating systems and applications onto fewer systems. For example, rather

than having ten systems running at 10 percent utilization each, a data center might have one

server manage the entire load. If utilization increases, guests and their applications can be

moved to less-loaded systems live, without interruption of service. Using snapshots and

cloning, the system can save the states of guests and duplicate those states—a much easier
task than restoring from backups or installing manually or via scripts and tools. The price of

this increased manageability is the cost of the VMM (if it is a commercial product), the need to

learn new management tools and methods, and the increased complexity.

Another type of type 1 hypervisor includes various general-purpose operating systems with

VMM functionality. Here, an operating system such as RedHat Enterprise Linux, Windows, or

Oracle Solaris performs its normal duties as well as providing a VMM allowing other operating

systems to run as guests. Because of their extra duties, these hypervisors typically provide

fewer virtualization features than other type 1 hypervisors. In many ways, they treat a guest
operating system as just another process, but they provide special handling when the guest

tries to execute special instructions.

Type 2 Hypervisor :

Type 2 hypervisors are less interesting to us as operating-system explorers, because there is

very little operating-system involvement in these applicationlevel virtual machine managers.

This type of VMM is simply another process run and managed by the host, and even the host

does not know that virtualization is happening within the VMM.

Type 2 hypervisors have limits not associated with some of the other types. For example, a user

needs administrative privileges to access many of the hardware assistance features of modern

CPUs. If the VMM is being run by a standard user without additional privileges, the VMM

cannot take advantage of these features. Due to this limitation, as well as the extra overhead of
running a general-purpose operating system as well as guest operating systems, type 2

hypervisors tend to have poorer overall performance than type 0 or type 1.

Prepared by: Satyam K , AITS , MCA OS Notes Page 126

As is often the case, the limitations of type 2 hypervisors also provide some benefits. They run
on a variety of general-purpose operating systems, and running them requires no changes to

the host operating system. A student can use a type 2 hypervisor, for example, to test a non-

native operating system without replacing the native operating system. In fact, on an Apple

laptop, a student could have versions of Windows, Linux, Unix, and less common operating

systems all available for learning and experimentation.

Paravirtualization :

As we’ve seen, paravirtualization works differently than the other types of virtualization. Rather

than try to trick a guest operating system into believing it has a system to itself,

paravirtualization presents the guest with a system that is similar but not identical to the
guest’s preferred system. The guest must be modified to run on the paravirtualized virtual

hardware. The gain for this extra work is more efficient use of resources and a smaller

virtualization layer.

The Xen VMM became the leader in paravirtulization by implementing several techniques to

optimize the performance of guests as well as of the host system. For example, as mentioned

earlier, some VMMs present virtual devices to guests that appear to be real devices. Instead of

taking that approach, the Xen VMM presented clean and simple device abstractions that allow

efficient I/O as well as good I/O-related communication between the guest and the VMM. For
each device used by each guest, there was a circular buffer shared by the guest and the VMM

via shared memory. Read and write data are placed in this buffer, as shown in Figure 18.6.

For memory management, Xen did not implement nested page tables. Rather, each guest had

its own set of page tables, set to read-only. Xen required the guest to use a specific mechanism,

a hypercall from the guest to the hypervisor VMM, when a page-table change was needed. This

meant that the guest operating system’s kernel code must have been changed from the default

code to these Xen-specific methods. To optimize performance, Xen allowed the guest to queue
up multiple page-table changes asynchronously via hypercalls and then checked to ensure that

the changes were complete before continuing operation.

Xen allowed virtualization of x86 CPUs without the use of binary translation, instead requiring

modifications in the guest operating systems like the one described above. Over time, Xen has

taken advantage of hardware features supporting virtualization. As a result, it no longer

requires modified guests and essentially does not need the paravirtualization method.

Paravirtualization is still used in other solutions, however, such as type 0 hypervisors.

Programming-Environment Virtualization :

Another kind of virtualization, based on a different execution model, is the virtualization of

programming environments. Here, a programming language is designed to run within a

custom-built virtualized environment. For example, Oracle’s Java has many features that

Prepared by: Satyam K , AITS , MCA OS Notes Page 127

depend on its running in the Java virtual machine (JVM), including specific methods for

security and memory management.

If we define virtualization as including only duplication of hardware, this is not really

virtualization at all. But we need not limit ourselves to that definition. Instead, we can define a

virtual environment, based on APIs, that provides a set of features we want to have available
for a particular language and programs written in that language. Java programs run within the

JVM environment, and the JVM is compiled to be a native program on systems on which it

runs. This arrangement means that Java programs are written once and then can run on any

system (including all of the major operating systems) on which a JVM is available. The same

can be said of interpreted languages, which run inside programs that read each instruction

and interpret it into native operations.

Emulation :

Virtualization is probably the most common method for running applications designed for one

operating system on a different operating system, but on the same CPU. This method works
relatively efficiently because the applications were compiled for the instruction set that the

target system uses.

But what if an application or operating system needs to run on a different CPU? Here, it is

necessary to translate all of the source CPU’s instructions so that they are turned into the

equivalent instructions of the target CPU. Such an environment is no longer virtualized but

rather is fully emulated.

Emulation is useful when the host system has one system architecture and the guest system

was compiled for a different architecture. For example, suppose a company has replaced its

outdated computer system with a new system but would like to continue to run certain

important programs that were compiled for the old system. The programs could be run in an
emulator that translates each of the outdated system’s instructions into the native instruction

set of the new system. Emulation can increase the life of programs and allow us to explore old

architectures without having an actual old machine.

As may be expected, the major challenge of emulation is performance. Instruction-set

emulation may run an order of magnitude slower than native instructions, because it may take

ten instructions on the new system to read, parse, and simulate an instruction from the old

system. Thus, unless the new machine is ten times faster than the old, the program running
on the new machine will run more slowly than it did on its native hardware. Another challenge

for emulator writers is that it is difficult to create a correct emulator because, in essence, this

task involves writing an entire CPU in software.

In spite of these challenges, emulation is very popular, particularly in gaming circles. Many

popular video games were written for platforms that are no longer in production. Users who

want to run those games frequently can find an emulator of such a platform and then run the

game unmodified within the emulator. Modern systems are so much faster than old game
consoles that even the Apple iPhone has game emulators and games available to run within

them.

Application Containment :

The goal of virtualization in some instances is to provide a method to segregate applications,
manage their performance and resource use, and create an easy way to start, stop, move, and

manage them. In such cases, perhaps full-fledged virtualization is not needed. If the

applications are all compiled for the same operating system, then we do not need complete

virtualization to provide these features. We can instead use application containment.

Prepared by: Satyam K , AITS , MCA OS Notes Page 128

Consider one example of application containment. Starting with version 10, Oracle Solaris has

included containers, or zones, that create a virtual layer between the operating system and the

applications. In this system, only one kernel is installed, and the hardware is not virtualized.
Rather, the operating system and its devices are virtualized, providing processes within a zone

with the impression that they are the only processes on the system. One or more containers

can be created, and each can have its own applications, network stacks, network address and

ports, user accounts, and so on. CPU and memory resources can be divided among the zones

and the system-wide processes. Each zone, in fact, can run its own scheduler to optimize the

performance of its applications on the allotted resources. Figure 18.7 shows a Solaris 10

system with two containers and the standard ―global‖ user space.

Containers are much lighter weight than other virtualization methods. That is, they use fewer
system resources and are faster to instantiate and destroy, more similar to processes than

virtual machines. For this reason, they are becoming more commonly used, especially in cloud

computing. FreeBSD was perhaps the first operating system to include a container-like feature

(called ―jails‖), and AIX has a similar feature. Linux added the LXC container feature in 2014. It

is now included in the common Linux distributions via a flag in the clone() system call. (The

source code for LXCis available at https://linuxcontainers.org/lxc/downloads.)

Containers are also easy to automate and manage, leading to orchestration tools like docker

and Kubernetes. Orchestration tools are means of automating and coordinating systems and

services. Their aim is to make it simple to run entire suites of distributed applications, just as

operating systems make it simple to run a single program. These tools offer rapid deployment
of full applications, consisting of many processes within containers, and also offer monitoring

and other administration features. For more on docker, see https://www.docker.com/what-

docker. Information about Kubernetes can be found at

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes.

Virtualization and Operating-System Components :

Thus far, we have explored the building blocks of virtualization and the various types of

virtualization. In this section, we take a deeper dive into the operating-system aspects of

virtualization, including how the VMM provides core operating-system functions like

scheduling, I/O, and memory management. Here, we answer questions such as these: How do
VMMs schedule CPU use when guest operating systems believe they have dedicated CPUs?

How can memory management work when many guests require large amounts of memory?

CPU Scheduling :

A system with virtualization, even a single-CPU system, frequently acts like a multiprocessor
system. The virtualization software presents one or more virtual CPUs to each of the virtual

https://linuxcontainers.org/lxc/downloads
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes

Prepared by: Satyam K , AITS , MCA OS Notes Page 129

machines running on the system and then schedules the use of the physical CPUs among the

virtual machines.

The significant variations among virtualization technologies make it difficult to summarize the

effect of virtualization on scheduling. First, let’s consider the general case of VMM scheduling.

The VMM has a number of physical CPUs available and a number of threads to run on those
CPUs. The threads can be VMM threads or guest threads. Guests are configured with a certain

number of virtual CPUs at creation time, and that number can be adjusted throughout the life

of the VM. When there are enough CPUs to allocate the requested number to each guest, the

VMM can treat the CPUs as dedicated and schedule only a given guest’s threads on that guest’s

CPUs. In this situation, the guests act much like native operating systems running on native

CPUs.

Of course, in other situations, there may not be enough CPUs to go around. The VMM itself
needs some CPU cycles for guest management and I/O management and can steal cycles from

the guests by scheduling its threads across all of the system CPUs, but the impact of this

action is relatively minor. More difficult is the case of overcommitment, in which the guests are

configured for more CPUs than exist in the system. Here, a VMM can use standard scheduling

algorithms to make progress on each thread but can also add a fairness aspect to those

algorithms. For example, if there are six hardware CPUs and twelve guestallocated CPUs, the
VMM can allocate CPU resources proportionally, giving each guest half of the CPU resources it

believes it has. The VMM can still present all twelve virtual CPUs to the guests, but in mapping

them onto physical CPUs, the VMM can use its scheduler to distribute them appropriately.

Even given a scheduler that provides fairness, any guest operating-system scheduling

algorithm that assumes a certain amount of progress in a given amount of time will most likely

be negatively affected by virtualization. Consider a time-sharing operating system that tries to

allot 100 milliseconds to each time slice to give users a reasonable response time. Within a
virtual machine, this operating system receives only what CPU resources the virtualization

system gives it. A 100-millisecond time slice may take much more than 100 milliseconds of

virtual CPU time. Depending on how busy the system is, the time slice may take a second or

more, resulting in very poor response times for users logged into that virtual machine. The

effect on a real-time operating system can be even more serious.

The net outcome of such scheduling is that individual virtualized operating systems receive

only a portion of the available CPU cycles, even though they believe they are receiving all of the

cycles and indeed are scheduling all of the cycles. Commonly, the time-of-day clocks in virtual
machines are incorrect because timers take longer to trigger than they would on dedicated

CPUs. Virtualization can thus undo the scheduling-algorithm efforts of the operating systems

within virtual machines.

To correct for this, the VMM makes an application available for each type of operating system

that the system administrator can install into the guests. This application corrects clock drift

and can have other functions, such as virtual device management.

Memory Management :

Efficient memory use in general-purpose operating systems is a major key to performance. In

virtualized environments, there are more users of memory (the guests and their applications,

as well as the VMM), leading to more pressure on memory use. Further adding to this pressure

is the fact that VMMs typically overcommit memory, so that the total memory allocated to
guests exceeds the amount that physically exists in the system. The extra need for efficient

memory use is not lost on the implementers of VMMs, who take extensive measures to ensure

the optimal use of memory.

Prepared by: Satyam K , AITS , MCA OS Notes Page 130

For example, VMware ESX uses several methods of memory management. Before memory

optimization can occur, the VMM must establish how much real memory each guest should

use. To do that, the VMM first evaluates each guest’s maximum memory size. General-purpose
operating systems do not expect the amount of memory in the system to change, so VMMs

must maintain the illusion that the guest has that amount of memory. Next, the VMM

computes a target real-memory allocation for each guest based on the configured memory for

that guest and other factors, such as overcommitment and system load. It then uses the three

low-level mechanisms listed below to reclaim memory from the guests.

1. Recall that a guest believes it controls memory allocation via its pagetable management,

whereas in reality the VMM maintains a nested page table that translates the guest

page table to the real page table. The VMM can use this extra level of indirection to
optimize the guest’s use of memory without the guest’s knowledge or help. One

approach is to provide double paging. Here, the VMM has its own page-replacement

algorithms and loads pages into a backing store that the guest believes is physical

memory. Of course, the VMM knows less about the guest’s memory access patterns

than the guest does, so its paging is less efficient, creating performance problems.
VMMs do use this method when other methods are not available or are not providing

enough free memory. However, it is not the preferred approach.

2. A common solution is for the VMM to install in each guest a pseudo– device driver or

kernel module that the VMM controls. (Apseudo–device driver uses device-driver

interfaces, appearing to the kernel to be a device driver, but does not actually control a

device. Rather, it is an easy way to add kernel-mode code without directly modifying the
kernel.) This balloon memory manager communicates with the VMM and is told to

allocate or deallocate memory. If told to allocate, it allocates memory and tells the

operating system to pin the allocated pages into physical memory. Recall that pinning

locks a page into physical memory so that it cannot be moved or paged out. To the

guest, these pinned pages appear to decrease the amount of physical memory it has
available, creating memory pressure. The guest then may free up other physical

memory to be sure it has enough free memory. Meanwhile, the VMM, knowing that the

pages pinned by the balloon process will never be used, removes those physical pages

from the guest and allocates them to another guest. At the same time, the guest is

using its own memory-management and paging algorithms to manage the available

memory, which is the most efficient option. If memory pressure within the entire system
decreases, the VMM will tell the balloon process within the guest to unpin and free

some or all of the memory, allowing the guest more pages for its use.

3. Another common method for reducing memory pressure is for the VMM to determine if

the same page has been loaded more than once. If this is the case, the VMM reduces

the number of copies of the page to one and maps the other users of the page to that
one copy. VMware, for example, randomly samples guest memory and creates a hash

for each page sampled. That hash value is a ―thumbprint‖ of the page. The hash of every

page examined is compared with other hashes stored in a hash table. If there is a

match, the pages are compared byte by byte to see if they really are identical. If they

are, one page is freed, and its logical address is mapped to the other’s physical address.

This technique might seem at first to be ineffective, but consider that guests run
operating systems. If multiple guests run the same operating system, then only one

copy of the active operating-system pages need be in memory. Similarly, multiple guests

could be running the same set of applications, again a likely source of memory sharing.

The overall effect of these mechanisms is to enable guests to behave and perform as if they had

the full amount of memory requested, although in reality they have less.

I/O :

Prepared by: Satyam K , AITS , MCA OS Notes Page 131

In the area of I/O, hypervisors have some leeway and can be less concerned with how they

represent the underlying hardware to their guests. Because of the wide variation in I/O

devices, operating systems are used to dealing with varying and flexible I/O mechanisms. For
example, an operating system’s device-driver mechanism provides a uniform interface to the

operating system whatever the I/O device. Device-driver interfaces are designed to allow third-

party hardware manufacturers to provide device drivers connecting their devices to the

operating system. Usually, device drivers can be dynamically loaded and unloaded.

Virtualization takes advantage of this built-in flexibility by providing specific virtualized devices

to guest operating systems.

As described in Section 18.5, VMMs vary greatly in how they provide I/O to their guests. I/O

devices may be dedicated to guests, for example, or the VMM may have device drivers onto
which it maps guest I/O. The VMM may also provide idealized device drivers to guests. In this

case, the guest sees an easy-to-control device, but in reality that simple device driver

communicates to the VMM, which sends the requests to a more complicated real device

through a more complex real device driver. I/O in virtual environments is complicated and

requires careful VMM design and implementation.

Consider the case of a hypervisor and hardware combination that allows devices to be

dedicated to a guest and allows the guest to access those devices directly. Of course, a device
dedicated to one guest is not available to any other guests, but this direct access can still be

useful in some circumstances. The reason to allow direct access is to improve I/O performance.

The less the hypervisor has to do to enable I/O for its guests, the faster the I/O can occur.

With type 0 hypervisors that provide direct device access, guests can often run at the same

speed as native operating systems. When type 0 hypervisors instead provide shared devices,

performance may suffer.

With direct device access in type 1 and 2 hypervisors, performance can be similar to that of
native operating systems if certain hardware support is present. The hardware needs to provide

DMA pass-through with facilities like VT-d, as well as direct interrupt delivery (interrupts going

directly to the guests). Given how frequently interrupts occur, it should be no surprise that the

guests on hardware without these features have worse performance than if they were running

natively.

In addition to direct access, VMMs provide shared access to devices. Consider a disk drive to

which multiple guests have access. The VMM must provide protection while the device is being

shared, assuring that a guest can access only the blocks specified in the guest’s configuration.
In such instances, the VMM must be part of every I/O, checking it for correctness as well as

routing the data to and from the appropriate devices and guests

In the area of networking, VMMs also have work to do. General-purpose operating systems

typically have one Internet protocol (IP) address, although they sometimes have more than

one— for example, to connect to a management network, backup network, and production

network. With virtualization, each guest needs at least one IP address, because that is the

guest’s main mode of communication. Therefore, a server running a VMM may have dozens of
addresses, and the VMM acts as a virtual switch to route the network packets to the addressed

guests.

The guests can be ―directly‖ connected to the network by an IP address that is seen by the

broader network (this is known as bridging). Alternatively, the VMM can provide a network

address translation (NAT) address. The NAT address is local to the server on which the guest is

running, and the VMM provides routing between the broader network and the guest. The VMM

also provides firewalling to guard connections between guests within the system and between

guests and external systems.

Storage Management :

Prepared by: Satyam K , AITS , MCA OS Notes Page 132

An important question in determining how virtualization works is this: If multiple operating

systems have been installed, what and where is the boot disk? Clearly, virtualized

environments need to approach storage management differently than do native operating
systems. Even the standard multiboot method of slicing the boot disk into partitions, installing

a boot manager in one partition, and installing each other operating system in another

partition is not sufficient, because partitioning has limits that would prevent it from working

for tens or hundreds of virtual machines.

Once again, the solution to this problem depends on the type of hypervisor. Type 0 hypervisors

often allow root disk partitioning, partly because these systems tend to run fewer guests than

other systems. Alternatively, a disk manager may be part of the control partition, and that disk

manager may provide disk space (including boot disks) to the other partitions.

Type 1 hypervisors store the guest root disk (and configuration information) in one or more files
in the file systems provided by the VMM. Type 2 hypervisors store the same information in the

host operating system’s file systems. In essence, a disk image, containing all of the contents of

the root disk of the guest, is contained in one file in the VMM. Aside from the potential

performance problems that causes, this is a clever solution, because it simplifies copying and

moving guests. If the administrator wants a duplicate of the guest (for testing, for example), she

simply copies the associated disk image of the guest and tells the VMM about the new copy.
Booting the new virtual machine brings up an identical guest. Moving a virtual machine from

one system to another that runs the same VMM is as simple as halting the guest, copying the

image to the other system, and starting the guest there.

Guests sometimes need more disk space than is available in their root disk image. For

example, a nonvirtualized database server might use several file systems spread across many

disks to store various parts of the database. Virtualizing such a database usually involves

creating several files and having the VMM present those to the guest as disks. The guest then
executes as usual, with the VMM translating the disk I/O requests coming from the guest into

file I/O commands to the correct files.

Frequently, VMMs provide a mechanism to capture a physical system as it is currently

configured and convert it to a guest that the VMM can manage and run. This physical-to-

virtual (P-to-V) conversion reads the disk blocks of the physical system’s disks and stores them

in files on the VMM’s system or on shared storage that the VMM can access. VMMs also

provide a virtual-tophysical (V-to-P) procedure for converting a guest to a physical system. This

procedure is sometimes needed for debugging: a problem could be caused by the VMM or
associated components, and the administrator could attempt to solve the problem by removing

virtualization from the problem variables. V-toP conversion can take the files containing all of

the guest data and generate disk blocks on a physical disk, recreating the guest as a native

operating system and applications. Once the testing is concluded, the original system can be

reused for other purposes when the virtual machine returns to service, or the virtual machine

can be deleted and the original system can continue to run.

Live Migration :

One feature not found in general-purpose operating systems but found in type 0 and type 1

hypervisors is the live migration of a running guest from one system to another. We mentioned
this capability earlier. Here, we explore the details of how live migration works and why VMMs

can implement it relatively easily while general-purpose operating systems, in spite of some

research attempts, cannot.

First, let’s consider how live migration works. A running guest on one system is copied to

another system running the same VMM. The copy occurs with so little interruption of service

that users logged in to the guest, as well as network connections to the guest, continue without

noticeable impact. This rather astonishing ability is very powerful in resource management and

Prepared by: Satyam K , AITS , MCA OS Notes Page 133

hardware administration. After all, compare it with the steps necessary without virtualization:

we must warn users, shut down the processes, possibly move the binaries, and restart the

processes on the new system. Only then can users access the services again. With live
migration, we can decrease the load on an overloaded system or make hardware or system

changes with no discernable disruption for users.

Live migration is made possible by the well-defined interface between each guest and the VMM

and the limited state the VMM maintains for the guest. The VMM migrates a guest via the

following steps:

1. The source VMM establishes a connection with the target VMM and confirms that it is

allowed to send a guest.

2. The target creates a new guest by creating a new VCPU, new nested page table, and other

state storage.

3. The source sends all read-only memory pages to the target.

4. The source sends all read–write pages to the target, marking them as clean.

5. The source repeats step 4, because during that step some pages were probably modified by

the guest and are now dirty. These pages need to be sent again and marked again as clean.

6. When the cycle of steps 4 and 5 becomes very short, the source VMM freezes the guest,

sends the VCPU’s final state, other state details, and the final dirty pages, and tells the target

to start running the guest. Once the target acknowledges that the guest is running, the source

terminates the guest.

This sequence is shown in Figure 18.8. We conclude this discussion with a few interesting

details and limitations concerning live migration. First, for network connections to continue

uninterrupted, the network infrastructure needs to understand that a MAC address— the

hardware networking address—can move between systems. Before virtualization, this did not
happen, as the MAC address was tied to physical hardware. With virtualization, the MAC must

be movable for existing networking connections to continue without resetting. Modern network

switches understand this and route traffic wherever the MAC address is, even accommodating

a move.

A limitation of live migration is that no disk state is transferred. One reason live migration is
possible is that most of the guest’s state is maintained within the guest— for example, open file

tables, system-call state, kernel state, and so on. Because disk I/O is much slower than

memory access, however, and used disk space is usually much larger than used memory, disks

associated with the guest cannot be moved as part of a live migration. Rather, the disk must be

remote to the guest, accessed over the network. In that case, disk access state is maintained
within the guest, and network connections are all that matter to the VMM. The network

connections are maintained during the migration, so remote disk access continues. Typically,

Prepared by: Satyam K , AITS , MCA OS Notes Page 134

NFS, CIFS, or iSCSI is used to store virtual machine images and any other storage a guest

needs access to. These network-based storage accesses simply continue when the network

connections are continued once the guest has been migrated.

Live migration makes it possible to manage data centers in entirely new ways. For example,

virtualization management tools can monitor all the VMMs in an environment and
automatically balance resource use by moving guests between the VMMs. These tools can also

optimize the use of electricity and cooling by migrating all guests off selected servers if other

servers can handle the load and powering down the selected servers entirely. If the load

increases, the tools can power up the servers and migrate guests back to them.

Distributed File Systems(DFS):

Although the World Wide Web is the predominant distributed system in use today, it is not the

only one. Another important and popular use of distributed computing is the distributed fil

system, or DFS.

To explain the structure of a DFS, we need to define the terms service, server, and client in the

DFS context. A service is a software entity running on one or more machines and providing a

particular type of function to clients. A server is the service software running on a single
machine. A client is a process that can invoke a service using a set of operations that form its

client interface. Sometimes a lower-level interface is defined for the actual crossmachine

interaction; it is the intermachine interface.

Using this terminology, we say that a file system provides file services to clients. A client

interface for a file service is formed by a set of primitive file operations, such as create a file,

delete a file, read from a file, and write to a file. The primary hardware component that a file

server controls is a set of local secondary-storage devices (usually, hard disks or solid-state

drives) on which files are stored and from which they are retrieved according to the clients’

requests.

A DFS is a file system whose clients, servers, and storage devices are dispersed among the

machines of a distributed system. Accordingly, service activity has to be carried out across the

network. Instead of a single centralized data repository, the system frequently has multiple and

independent storage devices. As you will see, the concrete configuration and implementation of

a DFS may vary from system to system. In some configurations, servers run on dedicated

machines. In others, a machine can be both a server and a client.

The distinctive features of a DFS are the multiplicity and autonomy of clients and servers in

the system. Ideally, though, a DFS should appear to its clients to be a conventional, centralized
file system. That is, the client interface of a DFS should not distinguish between local and

remote files. It is up to the DFS to locate the files and to arrange for the transport of the data. A

transparent DFS—like the transparent distributed systems mentioned earlier— facilitates user

mobility by bringing a user’s environment (for example, the user’s home directory) to wherever

the user logs in.

The most important performance measure of a DFS is the amount of time needed to satisfy

service requests. In conventional systems, this time consists of storage-access time and a small
amount of CPU-processing time. In a DFS, however, a remote access has the additional

overhead associated with the distributed structure. This overhead includes the time to deliver

the request to a server, as well as the time to get the response across the network back to the

client. For each direction, in addition to the transfer of the information, there is the CPU

overhead of running the communication protocol software. The performance of a DFS can be

viewed as another dimension of the DFS’s transparency. That is, the performance of an ideal

DFS would be comparable to that of a conventional file system.

Prepared by: Satyam K , AITS , MCA OS Notes Page 135

The basic architecture of a DFS depends on its ultimate goals. Two widely used architectural

models we discuss here are the client–server model and the cluster-based model. The main goal

of a client–server architecture is to allow transparent file sharing among one or more clients as
if the files were stored locally on the individual client machines. The distributed file systems

NFS and OpenAFS are prime examples. NFS is the most common UNIX-based DFS. It has

several versions, and here we refer to NFS Version 3 unless otherwise noted.

If many applications need to be run in parallel on large data sets with high availability and

scalability, the cluster-based model is more appropriate than the client–server model. Two well-

known examples are the Google file system and the open-source HDFS, which runs as part of

the Hadoop framework.

The Client –Server DFS Model :

Figure 19.12 illustrates a simple DFS client–server model. The server stores both files and

metadata on attached storage. In some systems, more than one server can be used to store

different files. Clients are connected to the server through a network and can request access to
files in the DFS by contacting the server through a well-known protocol such as NFS Version 3.

The server is responsible for carrying out authentication, checking the requested file

permissions, and, if warranted, delivering the file to the requesting client. When a client makes

changes to the file, the client must somehow deliver those changes to the server (which holds

the master copy of the file). The client’s and the server’s versions of the file should be kept

consistent in a way that minimizes network traffic and the server’s workload to the extent

possible.

The network file system (NFS) protocol was originally developed by Sun Microsystems as an

open protocol, which encouraged early adoption across different architectures and systems.

From the beginning, the focus of NFS was simple and fast crash recovery in the face of server
failure. To implement this goal, the NFS server was designed to be stateless; it does not keep

track of which client is accessing which file or of things such as open file descriptors and file

pointers. This means that, whenever a client issues a file operation (say, to read a file), that

operation has to be idempotent in the face of server crashes. Idempotent describes an operation

that can be issued more than once yet return the same result. In the case of a read operation,
the client keeps track of the state (such as the file pointer) and can simply reissue the

operation if the server has crashed and come back online. You can read more about the NFS

implementation in Section 15.8.

The Andrew fil system (OpenAFS) was created at Carnegie Mellon University with a focus on

scalability. Specifically, the researchers wanted to design a protocol that would allow the server

to support as many clients as possible. This meant minimizing requests and traffic to the

server. When a client requests a file, the file’s contents are downloaded from the server and
stored on the client’s local storage. Updates to the file are sent to the server when the file is

closed, and new versions of the file are sent to the client when the file is opened. In

comparison, NFS is quite chatty and will send block read and write requests to the server as

the file is being used by a client.

Both OpenAFS and NFS are meant to be used in addition to local file systems. In other words,

you would not format a hard drive partition with the NFS file system. Instead, on the server,

Prepared by: Satyam K , AITS , MCA OS Notes Page 136

you would format the partition with a local file system of your choosing, such as ext4, and

export the shared directories via the DFS. In the client, you would simply attach the exported

directories to your file-system tree. In this way, the DFS can be separated from responsibility

for the local file system and can concentrate on distributed tasks.

The DFS client–server model, by design, may suffer from a single point of failure if the server
crashes. Computer clustering can help resolve this problem by using redundant components

and clustering methods such that failures are detected and failing over to working components

continues server operations. In addition, the server presents a bottleneck for all requests for

both data and metadata, which results in problems of scalability and bandwidth. 19.6.2 The

Cluster-Based DFS Model.

The Cluster-Based DFS Model :

As the amount of data, I/O workload, and processing expands, so does the need for a DFS to

be fault-tolerant and scalable. Large bottlenecks cannot be tolerated, and system component

failures must be expected. Cluster-based architecture was developed in part to meet these

needs.

Figure 19.13 illustrates a sample cluster-based DFS model. This is the basic model presented
by the Google file system (GFS) and the Hadoop distributed fil system (HDFS). One or more

clients are connected via a network to a master metadata server and several data servers that

house ―chunks‖ (or portions) of files. The metadata server keeps a mapping of which data

servers hold chunks of which files, as well as a traditional hierarchical mapping of directories

and files. Each file chunk is stored on a data server and is replicated a certain number of times

(for example, three times) to protect against component failure and for faster access to the data

(servers containing the replicated chunks have fast access to those chunks).

To obtain access to a file, a client must first contact the metadata server. The metadata server

then returns to the client the identities of the data servers that hold the requested file chunks.

The client can then contact the closest data server (or servers) to receive the file information.

Different chunks of the file can be read or written to in parallel if they are stored on different
data servers, and the metadata server may need to be contacted only once in the entire

process. This makes the metadata server less likely to be a performance bottleneck. The

metadata server is also responsible for redistributing and balancing the file chunks among the

data servers.

GFS was released in 2003 to support large distributed data-intensive applications. The design

of GFS was influenced by four main observations:

• Hardware component failures are the norm rather than the exception and should be routinely

expected.

•Files stored on such a system are very large.

Prepared by: Satyam K , AITS , MCA OS Notes Page 137

•Most files are changed by appending new data to the end of the file rather than overwriting

existing data.

•Redesigning the applications and file system API increases the system’s flexibility

Consistent with the fourth observation, GFS exports its own API and requires applications to

be programmed with this API.

Shortly after developing GFS, Google developed a modularized software layer called MapReduce

to sit on top of GFS. MapReduce allows developers to carry out large-scale parallel

computations more easily and utilizes the benefits of the lower-layer file system. Later, HDFS

and the Hadoop framework (which includes stackable modules like MapReduce on top of
HDFS) were created based on Google’s work. Like GFS and MapReduce, Hadoop supports the

processing of large data sets in distributed computing environments. As suggested earlier, the

drive for such a framework occurred because traditional systems could not scale to the

capacity and performance needed by ―big data‖ projects (at least not at reasonable prices).

Examples of big data projects include crawling and analyzing social media, customer data, and

large amounts of scientific data points for trends.

DFS Naming and Transparency :

Naming is a mapping between logical and physical objects. For instance, users deal with logical

data objects represented by file names, whereas the system manipulates physical blocks of
data stored on disk tracks. Usually, a user refers to a file by a textual name. The latter is

mapped to a lower-level numerical identifier that in turn is mapped to disk blocks. This

multilevel mapping provides users with an abstraction of a file that hides the details of how

and where on the disk the file is stored.

In a transparent DFS, a new dimension is added to the abstraction: that of hiding where in the

network the file is located. In a conventional file system, the range of the naming mapping is an

address within a disk. In a DFS, this range is expanded to include the specific machine on
whose disk the file is stored. Going one step further with the concept of treating files as

abstractions leads to the possibility of fil replication. Given a file name, the mapping returns a

set of the locations of this file’s replicas. In this abstraction, both the existence of multiple

copies and their locations are hidden.

Naming Structures :

We need to differentiate two related notions regarding name mappings in a DFS :

1. Location transparency. The name of a file does not reveal any hint of the file’s physical

storage location.

2. Location independence. The name of a file need not be changed when the file’s physical

storage location changes.

Both definitions relate to the level of naming discussed previously, since files have different

names at different levels (that is, user-level textual names and system-level numerical

identifiers). A location-independent naming scheme is a dynamic mapping, since it can map

the same file name to different locations at two different times. Therefore, location

independence is a stronger property than location transparency.

In practice, most of the current DFSs provide a static, location-transparent mapping for user-

level names. Some supportfil migration— that is, changing the location of a file automatically,
providing location independence. Open AFS supports location independence and file mobility,

for example. HDFS includes file migration but does so without following POSIX standards,

Prepared by: Satyam K , AITS , MCA OS Notes Page 138

providing more flexibility in implementation and interface. HDFS keeps track of the location of

data but hides this information from clients. This dynamic location transparency allows the

underlying mechanism to self-tune. In another example, Amazon’s S3 cloud storage facility
provides blocks of storage on demand via APIs, placing the storage where it sees fit and moving

the data as necessary to meet performance, reliability, and capacity requirements.

A few aspects can further differentiate location independence and static location transparency:

Naming Schemes :

There are three main approaches to naming schemes in a DFS. In the simplest approach, a file

is identified by some combination of its host name and local name, which guarantees a unique
system-wide name. In Ibis, for instance, a file is identified uniquely by the name host:local-

name, where local-name is a UNIX-like path. The Internet URL system also uses this approach.

This naming scheme is neither location transparent nor location independent. The DFS is

structured as a collection of isolated component units, each of which is an entire conventional

file system. Component units remain isolated, although means are provided to refer to remote

files. We do not consider this scheme any further here.

The second approach was popularized by NFS. NFS provides a means to attach remote
directories to local directories, thus giving the appearance of a coherent directory tree. Early

NFS versions allowed only previously mounted remote directories to be accessed transparently.

The advent of the automount feature allowed mounts to be done on demand based on a table of

mount points and file-structure names. Components are integrated to support transparent

sharing, but this integration is limited and is not uniform, because each machine may attach

different remote directories to its tree. The resulting structure is versatile.

We can achieve total integration of the component file systems by using a third approach. Here,

a single global name structure spans all the files in the system. OpenAFS provides a single
global namespace for the files and directories it exports, allowing a similar user experience

across different client machines. Ideally, the composed file-system structure is the same as the

structure of a conventional file system. In practice, however, the many special files (for

example, UNIX device files and machine-specific binary directories) make this goal difficult to

attain.

To evaluate naming structures, we look at their administrative complexity. The most complex

and most difficult-to-maintain structure is the NFS structure. Because any remote directory
can be attached anywhere on the local directory tree, the resulting hierarchy can be highly

unstructured. If a server becomes unavailable, some arbitrary set of directories on different

machines becomes unavailable. In addition, a separate accreditation mechanism controls

which machine is allowed to attach which directory to its tree. Thus, a user might be able to

access a remote directory tree on one client but be denied access on another client.

Implementation Techniques :

Implementation of transparent naming requires a provision for the mapping of a file name to

the associated location. To keep this mapping manageable, we must aggregate sets of files into

component units and provide the mapping on a component-unit basis rather than on a single-
file basis. This aggregation serves administrative purposes as well. UNIX-like systems use the

hierarchical directory tree to provide name-to-location mapping and to aggregate files

recursively into directories.

To enhance the availability of the crucial mapping information, we can use replication, local

caching, or both. As we noted, location independence means that the mapping changes over

time. Hence, replicating the mapping makes a simple yet consistent update of this information

impossible. To overcome this obstacle, we can introduce low-level, location-independent file

Prepared by: Satyam K , AITS , MCA OS Notes Page 139

identifiers. (OpenAFS uses this approach.) Textual file names are mapped to lower-level file

identifiers that indicate to which component unit the file belongs. These identifiers are still

location independent. They can be replicated and cached freely without being invalidated by
migration of component units. The inevitable price is the need for a second level of mapping,

which maps component units to locations and needs a simple yet consistent update

mechanism. Implementing UNIX-like directory trees using these low-level, location-

independent identifiers makes the whole hierarchy invariant under component-unit migration.

The only aspect that does change is the component-unit location mapping.

A common way to implement low-level identifiers is to use structured names. These names are

bit strings that usually have two parts. The first part identifies the component unit to which

the file belongs; the second part identifies the particular file within the unit. Variants with
more parts are possible. The invariant of structured names, however, is that individual parts of

the name are unique at all times only within the context of the rest of the parts. We can obtain

uniqueness at all times by taking care not to reuse a name that is still in use, by adding

sufficiently more bits (this method is used in OpenAFS), or by using a timestamp as one part of

the name (as was done in Apollo Domain). Another way to view this process is that we are
taking a location-transparent system, such as Ibis, and adding another level of abstraction to

produce a location-independent naming scheme.

Remote File Access :

Next, let’s consider a user who requests access to a remote file. The server storing the file has

been located by the naming scheme, and now the actual data transfer must take place.

One way to achieve this transfer is through a remote-service mechanism, whereby requests for
accesses are delivered to the server, the server machine performs the accesses, and their

results are forwarded back to the user. One of the most common ways of implementing remote

service is the RPC paradigm, which we discussed in Chapter 3. A direct analogy exists between

disk-access methods in conventional file systems and the remote-service method in a DFS:

using the remote-service method is analogous to performing a disk access for each access

request.

To ensure reasonable performance of a remote-service mechanism, we can use a form of
caching. In conventional file systems, the rationale for caching is to reduce disk I/O (thereby

increasing performance), whereas in DFSs, the goal is to reduce both network traffic and disk

I/O. In the following discussion, we describe the implementation of caching in a DFS and

contrast it with the basic remote-service paradigm.

Basic Caching Scheme :

The concept of caching is simple. If the data needed to satisfy the access request are not

already cached, then a copy of the data is brought from the server to the client system.

Accesses are performed on the cached copy. The idea is to retain recently accessed disk blocks

in the cache, so that repeated accesses to the same information can be handled locally, without
additional network traffic. A replacement policy (for example, the least-recently-used algorithm)

keeps the cache size bounded. No direct correspondence exists between accesses and traffic to

the server. Files are still identified with one master copy residing at the server machine, but

copies (or parts) of the file are scattered in different caches. When a cached copy is modified,

the changes need to be reflected on the master copy to preserve the relevant consistency

semantics. The problem of keeping the cached copies consistent with the master file is the
cacheconsistency problem, which we discuss in Section 19.8.4. DFS caching could just as

easily be called network virtual memory. It acts similarly to demandpaged virtual memory,

except that the backing store usually is a remote server rather than a local disk. NFS allows

the swap space to be mounted remotely, so it actually can implement virtual memory over a

network, though with a resulting performance penalty.

Prepared by: Satyam K , AITS , MCA OS Notes Page 140

The granularity of the cached data in a DFS can vary from blocks of a file to an entire file.

Usually, more data are cached than are needed to satisfy a single access, so that many

accesses can be served by the cached data. This procedure is much like disk read-ahead
(Section 14.6.2). OpenAFS caches files in large chunks (64 KB). The other systems discussed

here support caching of individual blocks driven by client demand. Increasing the caching unit

increases the hit ratio, but it also increases the miss penalty, because each miss requires more

data to be transferred. It increases the potential for consistency problems as well. Selecting the

unit of caching involves considering parameters such as the network transfer unit and the RPC

protocol service unit (if an RPC protocol is used). The network transfer unit (for Ethernet, a
packet) is about 1.5 KB, so larger units of cached data need to be disassembled for delivery and

reassembled on reception.

Block size and total cache size are obviously of importance for blockcaching schemes. In UNIX-

like systems, common block sizes are 4 KB and 8 KB. For large caches (over 1 MB), large block

sizes (over 8 KB) are beneficial. For smaller caches, large block sizes are less beneficial because

they result in fewer blocks in the cache and a lower hit ratio.

Cache Location :

Where should the cached data be stored—on disk or in main memory? Disk caches have one

clear advantage over main-memory caches: they are reliable. Modifications to cached data are

lost in a crash if the cache is kept in volatile memory. Moreover, if the cached data are kept on

disk, they are still there during recovery, and there is no need to fetch them again. Main-

memory caches have several advantages of their own, however:

• Main-memory caches permit workstations to be diskless.

• Data can be accessed more quickly from a cache in main memory than from one on a disk.

• Technology is moving toward larger and less expensive memory. The resulting performance

speedup is predicted to outweigh the advantages of disk caches.

• The server caches (used to speed up disk I/O) will be in main memory regardless of where

user caches are located; if we use main-memory caches on the user machine, too, we can build

a single caching mechanism for use by both servers and users.

Many remote-access implementations can be thought of as hybrids of caching and remote
service. In NFS, for instance, the implementation is based on remote service but is augmented

with client- and server-side memory caching for performance. Thus, to evaluate the two

methods, we must evaluate the degree to which either method is emphasized. The NFS protocol

and most implementations do not provide disk caching (but OpenAFS does).

Case Studies :

The Linux System

Linux History :

Linux looks and feels much like any other UNIX system; indeed, UNIX compatibility has been a

major design goal of the Linux project. However, Linux is much younger than most UNIX

systems. Its development began in 1991, when a Finnish university student, Linus Torvalds,

began creating a small but selfcontained kernel for the 80386 processor, the first true 32-bit

processor in Intel’s range of PC-compatible CPUs.

Early in its development, the Linux source code was made available free— both at no cost and

with minimal distributional restrictions—on the Internet. As a result, Linux’s history has been

one of collaboration by many developers from all around the world, corresponding almost

Prepared by: Satyam K , AITS , MCA OS Notes Page 141

exclusively over the Internet. From an initial kernel that partially implemented a small subset

of the UNIX system services, the Linux system has grown to include all of the functionality

expected of a modern UNIX system.

In its early days, Linux development revolved largely around the central operating-system

kernel— the core, privileged executive that manages all system resources and interacts directly
with the computer hardware. We need much more than this kernel, of course, to produce a full

operating system. We thus need to make a distinction between the Linux kernel and a complete

Linux system. The Linux kernel is an original piece of software developed from scratch by the

Linux community. The Linux system, as we know it today, includes a multitude of components,

some written from scratch, others borrowed from other development projects, and still others

created in collaboration with other teams.

The basic Linux system is a standard environment for applications and user programming, but
it does not enforce any standard means of managing the available functionality as a whole. As

Linux has matured, a need has arisen for another layer of functionality on top of the Linux

system. This need has been met by various Linux distributions. A Linux distribution includes

all the standard components of the Linux system, plus a set of administrative tools to simplify

the initial installation and subsequent upgrading of Linux and to manage installation and

removal of other packages on the system. A modern distribution also typically includes tools for
management of file systems, creation and management of user accounts, administration of

networks, web browsers, word processors, and so on.

The Linux Kernel :

The first Linux kernel released to the public was version 0.01, dated May 14, 1991. It had no
networking, ran only on 80386-compatible Intel processors and PC hardware, and had

extremely limited device-driver support. The virtual memory subsystem was also fairly basic

and included no support for memory-mapped files; however, even this early incarnation

supported shared pages with copy-on-write and protected address spaces. The only file system

supported was the Minix file system, as the first Linux kernels were crossdeveloped on a Minix

platform.

The next milestone, Linux 1.0, was released on March 14, 1994. This release culminated three
years of rapid development of the Linux kernel. Perhaps the single biggest new feature was

networking: 1.0 included support for UNIX’s standard TCP/IP networking protocols, as well as

a BSD-compatible socket interface for networking programming. Device-driver support was

added for running IP over Ethernet or (via the PPP or SLIP protocols) over serial lines or

modems.

The 1.0 kernel also included a new, much enhanced file system without the limitations of the

original Minix file system, and it supported a range of SCSI controllers for high-performance
disk access. The developers extended the vir-tual memory subsystem to support paging to

swap files and memory mapping of arbitrary files (but only read-only memory mapping was

implemented in 1.0).

A range of extra hardware support was included in this release. Although still restricted to the

Intel PC platform, hardware support had grown to include floppy-disk and CD-ROM devices, as

well as sound cards, a range of mice, and international keyboards. Floating-point emulation

was provided in the kernel for 80386 users who had no 80387 math coprocessor. System V

UNIX-style interprocess communication (IPC), including shared memory, semaphores, and

message queues, was implemented.

At this point, development started on the 1.1 kernel stream, but numerous bug-fix patches
were released subsequently for 1.0. A pattern was adopted as the standard numbering

convention for Linux kernels. Kernels with an odd minor-version number, such as 1.1 or 2.5,

Prepared by: Satyam K , AITS , MCA OS Notes Page 142

are development kernels; evennumbered minor-version numbers are stable production kernels.

Updates for the stable kernels are intended only as remedial versions, whereas the

development kernels may include newer and relatively untested functionality. As we will see,

this pattern remained in effect until version 3.

In March 1995, the 1.2 kernel was released. This release did not offer nearly the same
improvement in functionality as the 1.0 release, but it did support a much wider variety of

hardware, including the new PCI hardware bus architecture. Developers added another PC-

specific feature—support for the 80386 CPU’s virtual 8086 mode— to allow emulation of the

DOS operating system for PC computers. They also updated the IP implementation with

support for accounting and firewalling. Simple support for dynamically loadable and

unloadable kernel modules was supplied as well.

The 1.2 kernel was the final PC-only Linux kernel. The source distribution for Linux 1.2
included partially implemented support for SPARC, Alpha, and MIPS CPUs, but full integration

of these other architectures did not begin until after the stable 1.2 kernel was released.

The Linux 1.2 release concentrated on wider hardware support and more complete

implementations of existing functionality. Much new functionality was under development at

the time, but integration of the new code into the main kernel source code was deferred until

after the stable 1.2 kernel was released. As a result, the 1.3 development stream saw a great

deal of new functionality added to the kernel.

This work was released in June 1996 as Linux version 2.0. This release was given a major

version-number increment because of two major new capabilities: support for multiple

architectures, including a 64-bit native Alpha port, and symmetric multiprocessing (SMP)
support. Additionally, the memorymanagement code was substantially improved to provide a

unified cache for file-system data independent of the caching of block devices. As a result of

this change, the kernel offered greatly increased file-system and virtualmemory performance.

For the first time, file-system caching was extended to networked file systems, and writable

memory-mapped regions were also supported. Other major improvements included the
addition of internal kernel threads, a mechanism exposing dependencies between loadable

modules, support for the automatic loading of modules on demand, file-system quotas, and

POSIX-compatible real-time process-scheduling classes.

Improvements continued with the release of Linux 2.2 in 1999. A port to UltraSPARC systems

was added. Networking was enhanced with more flexible firewalling, improved routing and

traffic management, and support for TCP large window and selective acknowledgement. Acorn,

Apple, and NT disks could now be read, and NFS was enhanced with a new kernel-mode NFS

daemon. Signal handling, interrupts, and some I/O were locked at a finer level than before to

improve symmetric multiprocessor (SMP) performance.

Linux kernel version 3.0 was released in July 2011. The major version bump from 2 to 3

occurred to commemorate the twentieth anniversary of Linux. New features include improved

virtualization support, a new page write-back facility, improvements to the memory-

management system, and yet another new thread scheduler— the Completely Fair Scheduler

(CFS).

Linux kernel version 4.0 was released in April 2015. This time the major version bump was

entirely arbitrary; Linux kernel developers simply grew tired of ever-larger minor versions.

Today Linux kernel versions do not signify anything other than release ordering. The 4.0 kernel
series provided support for new architectures, improved mobile functionality, and many

iterative improvements. We focus on this newest kernel in the remainder of this chapter.

The Linux System :

Prepared by: Satyam K , AITS , MCA OS Notes Page 143

As we noted earlier, the Linux kernel forms the core of the Linux project, but other components

make up a complete Linux operating system. Whereas the Linux kernel is composed entirely of

code written from scratch specifically for the Linux project, much of the supporting software
that makes up the Linux system is not exclusive to Linux but is common to a number of

UNIXlike operating systems. In particular, Linux uses many tools developed as part of

Berkeley’s BSD operating system,

This sharing of tools has worked in both directions. The main system libraries of Linux were

originated by the GNU project, but the Linux community greatly improved the libraries by

addressing omissions, inefficiencies, and bugs. Other components, such as the GNU C

compiler (gcc), were already of sufficiently high quality to be used directly in Linux. The

network administration tools under Linux were derived from code first developed for 4.3 BSD,
but more recent BSD derivatives, such as FreeBSD, have borrowed code from Linux in return.

Examples of this sharing include the Intel floating-point-emulation math library and the PC

sound-hardware device drivers.

The Linux system as a whole is maintained by a loose network of developers collaborating over

the Internet, with small groups or individuals having responsibility for maintaining the

integrity of specific components. A small number of public Internet file-transfer-protocol (FTP)

archive sites act as de facto standard repositories for these components. The File System
Hierarchy Standard document is also maintained by the Linux community as a means of

ensuring compatibility across the various system components. This standard specifies the

overall layout of a standard Linux file system; it determines under which directory names

configuration files, libraries, system binaries, and run-time data files should be stored.

Linux Distributions :

These collections, or distributions, include much more than just the basic Linux system. They

typically include extra system-installation and management utilities, as well as precompiled

and ready-to-install packages of many of the common UNIX tools, such as news servers, web

browsers, text-processing and editing tools, and even games.

The first distributions managed these packages by simply providing a means of unpacking all

the files into the appropriate places. One of the important contributions of modern
distributions, however, is advanced package management. Today’s Linux distributions include

a package-tracking database that allows packages to be installed, upgraded, or removed

painlessly.

The SLS distribution, dating back to the early days of Linux, was the first collection of Linux

packages that was recognizable as a complete distribution. Although it could be installed as a

single entity, SLS lacked the packagemanagement tools now expected of Linux distributions.

The Slackware distribution represented a great improvement in overall quality, even though it
also had poor package management. In fact, it is still one of the most widely installed

distributions in the Linux community.

Since Slackware’s release, many commercial and noncommercial Linux distributions have

become available. Red Hat and Debian are particularly popular distributions; the first comes

from a commercial Linux support company and the second from the free-software Linux

community. Other commercially supported versions of Linux include distributions from

Canonical and SuSE, and many others. There are too many Linux distributions in circulation

for us to list all of them here. The variety of distributions does not prevent Linux distributions
from being compatible, however. The RPM package file format is used, or at least understood,

by the majority of distributions, and commercial applications distributed in this format can be

installed and run on any distribution that can accept RPM files.

Linux Licensing :

Prepared by: Satyam K , AITS , MCA OS Notes Page 144

The Linux kernel is distributed under version 2.0 of the GNU General Public License (GPL), the

terms of which are set out by the Free Software Foundation. Linux is not public-domain

software. Public domain implies that the authors have waived copyright rights in the software,
but copyright rights in Linux code are still held by the code’s various authors. Linux is free

software, how-ever, in the sense that people can copy it, modify it, use it in any manner they

want, and give away (or sell) their own copies.

Components of a Linux System :

The Linux system is composed of three main bodies of code, in line with most traditional UNIX

implementations:

1. Kernel. The kernel is responsible for maintaining all the important abstractions of the

operating system, including such things as virtual memory and processes.

2. System libraries. The system libraries define a standard set of functions through which

applications can interact with the kernel. These functions implement much of the operating-

system functionality that does not need the full privileges of kernel code. The most important

system library is the C library, known as libc. In addition to providing the standard C library,

libc implements the user mode side of the Linux system call interface, as well as other critical

system-level interfaces.

3. System utilities. The system utilities are programs that perform individual, specialized
management tasks. Some system utilities are invoked just once to initialize and configure some

aspect of the system. Others— known as daemons in UNIX terminology—run permanently,

handling such tasks as responding to incoming network connections, accepting logon requests

from terminals, and updating log files.

with full access to all the physical resources of the computer. Linux refers to this privileged

mode as kernel mode. Under Linux, no user code is built into the kernel. Any operating-

system-support code that does not need to run in kernel mode is placed into the system

libraries and runs in user mode. Unlike kernel mode, user mode has access only to a controlled

subset of the system’s resources.

Although various modern operating systems have adopted a messagepassing architecture for

their kernel internals, Linux retains UNIX’s historical model: the kernel is created as a single,
monolithic binary. The main reason is performance. Because all kernel code and data

structures are kept in a single address space, no context switches are necessary when a thread

calls an operating-system function or when a hardware interrupt is delivered. Moreover, the

kernel can pass data and make requests between various subsystems using relatively cheap C

function invocation and not more complicated interprocess communication (IPC). This single

address space contains not only the core scheduling and virtual memory code but all kernel

code, including all device drivers, file systems, and networking code.

Prepared by: Satyam K , AITS , MCA OS Notes Page 145

Kernel Modules :

The Linux kernel has the ability to load and unload arbitrary sections of kernel code on

demand. These loadable kernel modules run in privileged kernel mode and as a consequence

have full access to all the hardware capabilities of the machine on which they run. In theory,

there is no restriction on what a kernel module is allowed to do. Among other things, a kernel

module can implement a device driver, a file system, or a networking protocol.

Kernel modules are convenient for several reasons. Linux’s source code is free, so anybody
wanting to write kernel code is able to compile a modified kernel and to reboot into that new

functionality. However, recompiling, relinking, and reloading the entire kernel is a cumbersome

cycle to undertake when you are developing a new driver. If you use kernel modules, you do

not have to make a new kernel to test a new driver— the driver can be compiled on its own and

loaded into the already running kernel. Of course, once a new driver is written, it can be
distributed as a module so that other users can benefit from it without having to rebuild their

kernels.

This latter point has another implication. Because it is covered by the GPL license, the Linux

kernel cannot be released with proprietary components added to it unless those new

components are also released under the GPL and the source code for them is made available on

demand. The kernel’s module interface allows third parties to write and distribute, on their

own terms, device drivers or file systems that could not be distributed under the GPL.

Kernel modules allow a Linux system to be set up with a standard minimal kernel, without any

extra device drivers built in. Any device drivers that the user needs can be either loaded

explicitly by the system at startup or loaded automatically by the system on demand and
unloaded when not in use. For example, a mouse driver can be loaded when a USB mouse is

plugged into the system and unloaded when the mouse is unplugged.

The module support under Linux has four components:

1. The module-management system allows modules to be loaded into memory and to

communicate with the rest of the kernel.

2. The module loader and unloader, which are user-mode utilities, work with the module-

management system to load a module into memory.

3. The driver-registration system allows modules to tell the rest of the kernel that a new driver

has become available.

4. A conflict-resolutio mechanism allows different device drivers to reserve hardware resources

and to protect those resources from accidental use by another driver.

