UNI 1
BASICS OF SURVEYING
\Rightarrow Detrition
\Rightarrow principles of surveying.
\Rightarrow classification of surveying.
=7 principles of chain surveying.
\Rightarrow Methods of measuring horizontal \& slope distance,
\Rightarrow Ranging
\Rightarrow working of prismatic compass
\Rightarrow Types of bearing.
\Rightarrow declination.
\Rightarrow Dip, Local attraction.
\Rightarrow planetable surveying, errors.
Definition:-
It is an art of determing relative possition on the earth surface By means of horizontal and vertical distance, and horizontal and vertical angles.
principle of surveying :-

1. Working from whole to part
2. To locate New station by attest two measurements from fixed referance points.
classification of surveying:-
1 primary dassification
Q. plane scroveying
b. Geotic Surveying

Secondary classification:-
(a) Based on purpose:-
(i) Gedogical surveying
(ii) mine surveying
(ii) Arch Archaeological surveying
(iv) military surveying
(D) Based on field [Nature of field]:-
(i) land survey
(ii) Hydrological survey
(c) Based on methods
(i) Triangulation - where the area is to be survey is divided
(ii) Traversing. in to Network of triangles

It is in the
may be open (or)
(di bet based on
(i) chain survey
(ii) compass survey -

(v) EDA - Electronic Distance measurement
(a) T.S -Total station
(b) D.G.P.S - Differential global possition system
(c) lidar
(i) photo grammatic survey
(iii) plane table survey: It is an graphical method

By which points are plotted on the paper
peale:-
It is an freed ratio that every distance on the plane which corresponding distance on the ground Type's of scales:-
(4) plain scale
(2) diagonal scale-
(3.) Vernier scale -
(4) scale of chords
principles of chain surveying:-
*he main principle of chain survey is to be provide frame work which consists of number of well conditic.
forming
tingles triangles.

* The triangle is to be well condition which contains no angle smatter then 30° and angle greater then $\geq 120^{\circ}$
Types of chains:-

1. metric chain

光. Gunter chain
3. Engineering chain.
4. Revenew chain
5. Steed chain-

Instruments of chain survey:-

1. chain
2. Tape
3. Ranging rods
4. offset rods
5. pegs
6. cross staff \rightarrow short doll sat
7. optical square \rightarrow manor armory - ing offset

B Arrows
9 plumber

Grows in chaining:-
(1Instricmental errors \rightarrow Instrument) dialer
(2) Observational errors
(a) gross errors \rightarrow careless ness, blundermistakal without hate ie
(b) Systematic error \rightarrow AArthmatic crow
(c) accendital error.
(or) \rightarrow due to human defect
random Error
correction to be applied:-
(a) Type's
\Rightarrow length correction
\Rightarrow Temperature correction
\Rightarrow pul correction
\Rightarrow sag correction
\Rightarrow slope correction
Error:- measured value - true value correction:- True value - measured value

$\begin{aligned} 1 \text { length correction } & \text { : correct distance }=\left(\frac{L^{\prime}}{L}\right) \times \text { measured } \\ L^{\prime} & =\text { actual incorrect length of chain } \\ L & =\text { dial }\end{aligned}$

$$
\begin{aligned}
& L^{\prime}=\text { actual incorrect length of chain } \\
& L=\text { lengl destinated length of chain }
\end{aligned}
$$

2. Temperature correction:-
changes in temperature $\alpha=$

$$
C_{t}=\alpha\left(T_{m}-T_{0}\right) \times 2
$$

$\alpha=$ coefficient of thermal Expasion
$F_{m}=$ mean temperature twang the measurement
$T_{0}=$ standard tempeadature
$L=$ measured distance
(3) pull correction:-

$$
c_{P}=\left(\frac{P-P_{0}}{A E}\right) \times L
$$

$P=$ pull applyed during the measurement
$P_{0}=$ standard pull
$L=$ measured length
$A=$ cross section area
$E=$ corns modulus of elasticity
(4) Sag correction:-

$$
c_{s}=\frac{c w^{2}}{24 n^{2} p^{2}}
$$

$L=$ destinated length
$P=$ pul applyed
$w=$ Total weight of Tape
$n=$ number of equal Bays (o nspan)
(5) Slope correction:-

$$
C_{3}=\frac{n^{2}}{2 L}
$$

If θ is given then $C_{s}=L(1-\cos \theta)$
problem:-
20 m steel tape was standardised on a flat ground at a temperature of $20^{\circ} \mathrm{C}$ under the pul of 15 kg .
The tape was used in catenary at the temperature of $30^{\circ} \mathrm{C}$ under the pull of 10 kg . The c / s area of a Tape is $22 \mathrm{~mm}^{2}$ and total weight is 400 gens . the Eoungs modulus and coeffecent of thermal expansion for the steel tape is $21000 \mathrm{~kg} / \mathrm{mm}^{2}$ and $11 \times 10^{-6} / \mathrm{C}$ respeclandy find corrected distance
CIf H is 5 cm then what is the slope correction.

Given

$$
\begin{aligned}
\text { Length } & -20 \mathrm{~m} \\
T_{0} & =20^{\circ} \mathrm{C} \\
T_{m} & =30^{\circ} \mathrm{C} \\
P_{0} & =15 \mathrm{~kg} \\
P & =10 \mathrm{~kg} \\
A & =22 \mathrm{~mm}^{2} \\
\omega & =400 \mathrm{grams}^{2}-0.4 \mathrm{~kg} \\
\alpha & =11 \times 10^{-6} \\
E & =21000 \mathrm{~kg} / \mathrm{mm}^{2} \\
h & =50 \mathrm{~m}=0.5
\end{aligned}
$$

(4) correction for temperature:-

$$
\begin{aligned}
C_{t} & =\alpha\left(T_{m}-T_{0}\right) \times L \\
& =11 \times 10^{-6}(30-20) \times 20 \\
& =2.2 \times 10^{-3} \\
& =0.002
\end{aligned}
$$

(ii) correction for pul

$$
\begin{aligned}
C P & =\left(\frac{P-P_{0}}{A E}\right)^{L} \\
& =\left(\frac{10-15}{22 \times 21000}\right) \times 20 \\
& =-0.00021
\end{aligned}
$$

(iii) correction for slope

$$
\text { for sag }=\frac{c \omega^{2}}{24 n^{2} p^{2}}
$$

$$
\begin{array}{rlr}
c_{s} & =\frac{h^{2}}{2 L} & =\frac{20 \times(0.4)^{2}}{24 \times(1)^{2} \times 10^{2}} \\
& =\frac{(0.05)^{2}}{2{ }^{2} 20} \frac{5^{2}}{2 \times 20} & =-0.00133 \mathrm{M} \\
& =0.025 \\
& =6.25 \times 10^{-5} &
\end{array}
$$

$$
\begin{aligned}
\text { Total correction } & =c_{t}+c_{p}-c_{s}+s_{s} \\
& =0.0022-0.000210-0.00133+0.025 \\
& =0.625 \mathrm{~m} \\
\text { Total length } & =20+0.625 \\
& =20.625 \mathrm{~m}
\end{aligned}
$$

(2) A line was measured with a steed tape 80 m at $25^{\circ} \mathrm{C}$ and pul of 15 kg the temperature during the measurement was $35^{\circ} \mathrm{C}$ and peel applyed $2^{\text {is kg }}$. Assuming Tape to be Supported at every $30^{4} \mathrm{~m}$, calculate true length, If c / s Amen $0.020 \mathrm{~m}^{2}$, co-effecient of thermal Expantion 3×10^{-6}, modulus of clasicity 2.1×10^{6} the weight of total material 0.8 kg .

Given:-

$$
\begin{aligned}
\text { Length } & =30 \mathrm{~m} \\
T_{0} & =25^{\circ} \mathrm{C} \\
P_{0} & =15 \mathrm{~kg} \\
T_{m} & =35^{\circ} \mathrm{C} \\
P & =25 \mathrm{~kg} \\
A & =0.020 \mathrm{~m}^{2} \\
义 & =3 \times 10^{-6} \\
E & =2.1 \times 10^{6} \\
\omega & =0.8 \mathrm{~kg} .
\end{aligned}
$$

(i) correction for temperature :-

$$
\begin{aligned}
c_{t} & =\alpha\left(T_{m}-T_{0}\right) \times L \\
& =3 \times 10^{-6}\left(35-25^{\circ}\right) \times 30 \\
& =0.000900
\end{aligned}
$$

(2) Correction for pecs :-

$$
\begin{aligned}
C_{S} & =\left(\frac{P-P_{0}}{A E}\right) \times L \\
& =\left(\frac{25-15}{0.020 \times 21 \times 10^{6}}\right) \times 30 \\
& =0.0071400
\end{aligned}
$$

(3) correction for sag:-

$$
\begin{aligned}
& =\frac{L \omega^{2}}{24 \times 0^{2} \times p^{2}} \\
& =\frac{30 \times(0.8)^{2}}{24 \times 1 \times(25)^{2}} \\
& =0.00128 \mathrm{~m}
\end{aligned}
$$

(ब)
Total correction:-

$$
\begin{aligned}
& =0.000900+0.00714-0.00120 \\
& =0.0067
\end{aligned}
$$

Total length $=3010,0067$

$$
=30.006 \mathrm{~m}
$$

(3)

A steed tape som long standaridised at $55^{\circ} \mathrm{C}$ with a pure of $10^{\circ} \mathrm{kg}$. find correction for Tape length if Temperas cure at the time of measurement is $80^{\circ \circ}$. weight of the tape 0.82 kg and area $0.051 \mathrm{~cm}^{2}$, ceeppiciont of Expansion Q2 $\times 10^{-6}$ Elasticity is $2.109 \times 10^{6} \mathrm{~kg} / \mathrm{cm}^{2}$ pul extracted 516 kg Given,

$$
\begin{aligned}
& \text { Length }=20 \\
& T_{0}=55^{\circ} \mathrm{C} \\
& P_{0}=10 \mathrm{~kg}
\end{aligned}
$$

$$
\begin{aligned}
& T_{m}=80^{\circ} \mathrm{C} \\
& w=16 \mathrm{~kg} \\
& w=0.81 \mathrm{cg} \\
& \alpha=6.2 \times 10^{-6} \\
& E=2.109 \times 106 \\
& A=0.051 \mathrm{~cm}^{2}
\end{aligned}
$$

(1) Correction for temperature

$$
\begin{aligned}
c t & =\alpha\left(T_{\mathrm{m}}-7_{0}\right) \times L \\
& =6.2 \times 10^{-6}(80-55) \times 20 \\
& =0.0031 \mathrm{~m}
\end{aligned}
$$

(2)

Correction for puce:-

$$
\begin{aligned}
C S & =\left(\frac{P-P_{0}}{A E}\right) \times L \\
& =\left(\frac{16-10}{0.051 \times 2.109 \times 10^{6}}\right) \times 20 \\
& =0.0011 \mathrm{~m}
\end{aligned}
$$

(3) correction for sag:-

$$
\begin{aligned}
c_{S} & =\frac{c \omega^{2}}{24 \sigma^{2} \times p^{2}} \\
& =\frac{20 \times(00.8)^{2}}{24 \times 1^{2} \times 16^{2}} \\
& =0.00208 \mathrm{~m}
\end{aligned}
$$

Total correction i-

$$
\begin{aligned}
& =0.0031+0.0011-0.00200 \\
& =0.0021
\end{aligned}
$$

Total length:-

$$
\begin{aligned}
& =20+0.0021 \\
& =20.0021 \mathrm{~m}
\end{aligned}
$$

prismatic compass:-
principle of compass surveying:-
The principle of compass surveying is traversing which invades series of connected lines
working of prismatic compass:-
The working of prismatic compass involves the following steps
Centering, - leveling, observing the bearing
Types of bearings:-
"Types of meridian:-
meridian is a standard direction from which bearing of survey lines are measured
There are three types of meridians.

1. True meridian
2. magnetic meridian
3. arbitary meridian
bearing:-
It is an horizontal angle made by survey lines with veferance to meridian
Types
1 True bearing
4. magnetic bearing

Qeporesentation of beading:-

1. $w<B$ [whde cirlo bearing]

2 Queadrantal bearing

Conversion of whole cirk bearing in to Quadrantal bearing :-

SNO	$W C B$	$Q . B$	Rule
1	$B / \omega 0^{\circ}-90$	$N E$	$Q B=\omega C B$
2	$B / \omega 90^{\circ}-180^{\circ}$	$S E$	$Q B=180-\omega C B$
3	$B / \omega 180^{\circ}-270^{\circ}$	$S W$	$Q B=\omega C B-180$
4.	$B / \omega 270^{\circ}-380^{\circ}$	$N W$	$Q B=360-10 C B$

(1)

Convest the following w.C B lines in to $Q B$ (a) $0,132^{\circ}$
(b) $O B 109^{\circ}$
(c) $0 C 21 i$
(d) 00303°

Solution:- $10 . C \cdot B \cdot$ of $O A=32^{\circ}$
(a)

$$
\begin{aligned}
& Q B=W C B \\
& 32^{\circ}=N 32^{\circ} \mathrm{E}
\end{aligned}
$$

(C)

$$
\begin{gathered}
Q B=W C B-180 \\
=11-180^{\circ}
\end{gathered}
$$

(b) $Q \subset C B$. of $O B=109^{\circ}$

$$
\begin{aligned}
Q B & =180-\omega C B \\
& =180^{\circ}-109^{\circ} \\
& =571 \mathrm{E}
\end{aligned}
$$

$$
=531 \mathrm{w}
$$

$$
\text { W.CB Of OP }=303^{\circ}
$$

(d)

$$
\begin{aligned}
Q B & =360^{\circ}-W C B \\
& =360^{\circ}-303^{\circ} \\
& =N 57 \mathrm{~W}
\end{aligned}
$$

2 Convert Reduced Bearing in to whole. Circe bearing.
(a) $M 52^{\circ} 30^{\prime} \mathrm{E}$ ($N \mathrm{OC}$)
(e) $S 30^{\circ} 15^{\circ} \mathrm{E}$ (SC)
(c) $585^{\circ} 49^{\prime}$ w (500)
d) $\mathrm{N}, 5^{\circ} 10^{\prime} \mathrm{O}$ (New)
(a) $\quad O C B=Q C O$

$$
=N 5230^{\prime}
$$

(b)

$$
\begin{aligned}
& S 30^{\circ} 15^{\prime} F \\
& \begin{aligned}
R B & =180-w C B \\
& =180-30^{\circ} 15^{\prime} \\
& =149^{\circ} .45^{\prime}
\end{aligned}
\end{aligned}
$$

(c)

$$
\begin{aligned}
R B & =W C B+180^{\circ} \\
& =85^{\circ} 45^{\prime}+180^{\circ} \\
& =265^{\circ} 45^{\prime}
\end{aligned}
$$

(d)

$$
\begin{aligned}
Q B & =360^{\circ}-W C B \\
& =360^{\circ}-15^{\circ} 10^{\prime} \\
& =344^{\circ} 50^{\prime}
\end{aligned}
$$

Local attraction:-
Local attraction is also known as error value. The compass needle is affected by presence of iron and steel such as electric cables, steel girders E.IC. they will deflect the needle and this disturbance effect is known as local attraction.
Fore bearing and back bearing:fore bearing i-
Fore bearing is a line measuring forward direction of Scornay lines

Back Bearing:-
Back Bearing is a line mearing fostoand backward direction is called Back Bearing
n. theol error
(1) The followings observed in traversing with compass cohere local attraction is suspended find amount of local attraction. at different stations correct the bearing of lines and inclined angles

Line	$F B$	$B B$
$A B$	$59^{\circ} 00^{\prime}$	$239^{\prime} 0^{\prime}$
$B C$	$139^{\circ} 30^{\prime}$	$317^{\prime} 0^{\prime}$
$C D$	$215^{\circ} 15^{\prime}$	$36^{\circ} 30^{\prime}$
$D E$	$208^{\circ} 0^{\prime}$	$29^{\prime} 0^{\prime}$
$E A$	$318^{\prime} 30^{\prime}$	$138^{\circ} 45^{\prime}$

$*^{x+*}$
Note:- The difference between bore bearing and back bearing of suanoylines shout be
Equal to 180°

Solution:-
The line $A B$
$B B$ of $B A$ - $F B$ of $A B$

- $239^{\circ} 0^{\circ}-99^{\circ} 00^{\circ}$ [No correction of A]
tee line EA
$B B$ of $E A-F B$ of $A E$

$$
\begin{aligned}
& =138^{\circ} 45^{\prime}-318^{\circ} 30^{\prime} \\
& =-17945^{\prime}
\end{aligned}
$$

Adding
The line EA

$$
\begin{aligned}
& =F B \text { of } E A-B B \text { of } E A \\
& =318^{\circ} 30^{\prime}-138^{\circ} 45^{\prime} \\
& =179^{\circ} 45^{\prime} \\
& =180^{\circ}-179^{\circ} 45^{\prime} \\
& =0.15^{\prime}
\end{aligned}
$$

Here $0^{\circ} 15^{\prime}$ correction at " E "
The line $D E$

$$
\begin{aligned}
& =\text { Actual }+ \text { correction } \\
& =29^{\prime} 0^{\prime}+0^{\circ} 15^{\prime} \\
& =29^{\circ} 15^{\prime} \\
& =F \cdot B \text { of } D E-B . B \text { of } \\
& =208^{\circ} 0^{\prime}-29^{\circ} 15^{\prime} \\
& =178^{\circ} 45^{\circ} \\
& =180^{\circ}-178^{\circ} 45^{\prime} \\
& =1^{\circ} 15^{\prime}
\end{aligned}
$$

Here i 15^{\prime} correction at D
The line $C D$

$$
\begin{aligned}
& =\text { Actual }+ \text { Correction } \\
& =36^{\circ} 30^{\prime}+i 15^{\prime} \\
& =35^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& =F \cdot B O^{f} C D-B \cdot B O^{\prime} O C \\
& =215^{\circ} 15^{\prime}-37^{\prime} 45^{\prime} \\
& =177^{\circ} 30^{\prime} \\
& =180-177^{\circ} 30^{\prime} \\
& =20^{\circ}
\end{aligned}
$$

Here $2^{\circ} 30^{\prime}$ correction at C

The lire $B C$

$$
\begin{aligned}
& \text { lire } B C \\
& =\text { Actual }+ \text { correction } \\
& =317^{\circ} 0^{\prime}+2^{\circ} 30^{\prime} \\
& =319^{\circ} 30^{\prime} \\
& =B B 0^{\circ} B C-F B \text { of } C B \\
& =319^{\circ} 30^{\prime}-139^{\circ} 30^{\prime} \\
& =140^{\circ} / 30^{\circ}=180^{\circ} 0
\end{aligned}
$$

$$
=1880-x^{1} x^{2} 301
$$

$$
\neq 2^{\circ} / 30^{\prime}
$$

Total corrections $A=0, B=0$
Hexer $1 /$ ste correction at B

$$
C=2^{\circ} 30^{\prime}, D=15^{\prime}
$$

$$
\therefore \in G g^{\circ}, 15^{\circ}
$$

$$
=2^{\circ} 30^{\prime}+115^{\prime}+015^{\prime}
$$

$$
=40^{\prime} 0^{\prime \prime}
$$

\therefore local attraction is $4^{\circ} 0^{\prime} 0^{\prime \prime}$ \qquad

The following bearings where observed while Traversing with compass

$$
\begin{gathered}
A=0^{\circ} \\
B=-25^{\prime}
\end{gathered}
$$

determine local attraction and corrected bearing AIt is a poem open traversing.

If it is open traverse Assume correction as 0° at A

$$
A=0^{\circ}
$$

$1 B$ completed.

$$
c=-35^{\prime} \text { error }
$$

$A=\$$ Assuming a is a zero

line	$F \cdot B$	$B . B$
$A B$	$44^{\circ} 40^{\prime}(A)$	$223^{\circ} 20^{\prime}(B)$
$B C$	$96^{\circ} 20^{\prime}(B)$	$274^{\circ} 18^{\prime}(C)$
$C D$	$30^{\prime} 40^{\prime}(C)$	$212^{\circ} 20^{\prime}(D)$
$D E$	$320^{\circ} 12^{\prime}(D)$	$140^{\circ} 12{ }^{\prime}$

Assuming A is a sorio

274 18'- $95^{\prime} 40^{\circ}$
$178^{\prime} 38^{\prime}$
$180^{\circ}-11837$
122

Nosed Traverse problems

Line	$F B$	B, B
$A B$	$75^{\circ} 5^{\prime}$	254°
$A 0^{\prime}$		
$B C$	$115^{\circ} 20^{\prime}$	$296^{\circ} 35^{\prime}$
$C D$	$165^{\circ} 35^{\prime}$	$345^{\circ} 35^{\prime}$
$D E$	$224^{\circ} 50^{\prime}$	$44^{\circ} 5^{\prime}$
$E A$	$304^{\circ} 50^{\prime}$	$125^{\circ} 5^{\prime}$

No Error at C.B $=180=1800$
There is wo correction in C and D

(1) following Bearings are taken at closed trevorsc

Line	$F \cdot B$	$B \cdot B$
$A B$	$80^{\circ} 10^{\prime}$	(1)
$B C$	$120^{\circ} 20^{\prime}$	(B)
$C D$	$170^{\circ} 50^{\prime}$	300^{\prime}
$D E$	230^{\prime}	$350^{\circ} 50^{\prime}$
$E A$	$310^{\circ} 20^{\prime}$	$49^{\circ} 30^{\prime}$
E ($)$	$130^{\circ} 15$	

compute interior angles and correct them with flowing Errors.

$$
\text { At angle } \begin{aligned}
\angle A & =B \cdot B \text { of } A E-E \cdot B \cdot \text { of } A B \\
& =130^{\circ} 15^{\prime}-80^{\prime} 10^{\prime} \\
& =50^{\circ} 5^{\prime} \\
\text { At angle } \angle B & =B \cdot B 0^{\prime} B A-F \cdot B \text { ot } B C \\
& =2 \pi 9^{\prime}-120^{\circ} 20^{\prime} \\
& =138^{\circ} 40^{\prime}
\end{aligned}
$$

At angle $L C=B \cdot B$ of $-C B-F B$ of $C D$

$$
=301^{\circ} 50^{\circ}-170^{\circ} 50^{\circ}
$$

$$
=13 i 0^{\prime}
$$

At angle $L D=B \cdot B o f D C-E \cdot B$ of $D E$

$$
=350^{\circ} 50^{\prime}-230^{\circ} 10^{\prime}
$$

$$
=120^{\circ} 40^{\circ}
$$

$$
\begin{aligned}
\text { At angle } L E & =B \cdot B \text { of } E D-F \cdot B \text { of } E A T \\
& =49^{\circ} 50^{\circ}-310^{\circ} 20^{\prime} \\
& =-260^{\circ} 50^{\circ} \\
& =360^{\circ}-260^{\circ} 90^{\circ} \\
& =99^{\circ} 10^{\circ}
\end{aligned}
$$

Adding
Check: $(2 n-u) 90^{\circ}=\angle A+\angle B+\angle C+\angle D+\angle E$

$$
\begin{aligned}
& =(2 \times 5-4) 90^{\circ}=50^{\circ} 5^{\prime}+13840^{\prime}+130^{\prime} 0^{\prime}+120^{\circ} 40^{\prime} \\
& =540^{\circ}+99^{\circ} 10^{\circ} \\
& =54 \hat{0}=539^{\circ} 351 \\
& =540^{\circ}-539^{\circ} 35^{\prime} \\
& \text { Error }=0.24 \\
& \angle A=50^{\circ} 5^{\prime}+5^{\prime}=50^{\circ} 10^{\prime} \\
& \text { (I) }=188^{\circ} 40^{\prime}+51=188^{\prime} 45^{\prime} \\
& L=13 \mathrm{PO}^{\prime}+\theta^{\prime}=13 \mathrm{is}^{\prime} \\
& \angle D=120^{\circ} 40^{\circ}+5^{\prime}=120^{\circ} 45^{\prime} \\
& L E=99^{\circ} 10^{\circ}+5^{\prime}=99^{\circ} 15^{\prime} \\
& \angle A+\angle B+\angle C+\angle D+\angle E=540^{\circ} 0^{\circ} \\
& \therefore \quad(2 \times 5-4) 90^{\circ}=\angle A+\angle B+\angle C+\angle D+\angle E \\
& 540^{\circ}=540^{\circ}
\end{aligned}
$$

(2) The bearings of closed traverse A, B, C, D, E

Line	$F . B$	$B . B$
$A B$	$105^{\circ} 15^{\prime}$	$285^{\circ} 1^{\prime}$
$B C$	$20^{\circ} 0^{\prime}$	$200^{\prime} 0^{\prime}$
$C D$	$229^{\circ} 30^{\prime}$	$49^{\circ} 30^{\prime}$
$D E$	$187^{\circ} 15^{\prime}$	$7^{\circ} 151$
$E A$	$122^{\circ} 45^{\circ}$	$302^{\circ} 45^{\prime}$

compute the interior angles

$$
\begin{aligned}
& \angle A=B \cdot B \text { ot }^{+} E-F \cdot B \text { of } A B \\
& =12 x^{\circ} A 5^{1}-105^{\prime} \\
& =302^{\circ} 45^{\prime}-105^{\prime} 15^{\prime} \\
& L^{\prime}=19130^{\prime}=360-199^{\circ} 30^{\circ}=169^{\circ} 30^{\prime} \\
& \angle B=B \cdot B \text { of } B A-F \cdot B \text { of } B C \\
& =285^{\circ} 15-20^{\circ} 0^{\prime} \\
& \angle B=265^{\circ} 1^{\prime}-360^{\circ}=94^{\circ} \text { 铭 } \\
& \angle C=B \cdot B \text { of } C \cdot B=F \cdot B \text { of } C D \\
& =200^{\circ} 0^{\prime}-229^{\circ} 30^{\prime} \\
& =+29^{\circ} 30^{\circ} \\
& \triangle D=B \cdot B \text { of } O C_{8}+F \cdot B \text { of } D E \\
& =49^{\circ} 80^{\circ}-187^{\prime} 15^{\prime} \\
& =+137^{\circ} 45^{\prime} \\
& L E=B \cdot B{ }^{\circ} f E D-F \cdot B \text { of } E A \\
& =7^{\prime} 15^{\prime}-122^{\circ} 45^{\prime} \\
& =115^{\circ} 30^{\prime} \\
& \text { check }=(2 n-u) 90^{\circ}=\angle A+\angle B+\angle C+\angle D+L E \\
& \begin{aligned}
(2 \times 5-4) 90^{\circ}= & 101888^{\prime} \\
& 162^{\prime} 30^{\prime}+94^{\prime} 45^{\prime}+29^{\circ} 30^{\prime}
\end{aligned} \\
& 540^{\circ}+137^{\circ} 45^{\prime}+11530^{\prime} \\
& 540^{\circ}=540^{\circ}
\end{aligned}
$$

declination:-

The Declination at the plane is horizontal angle between true meridian and magnetic meridian It is known as declination
2. If magnetic meridian is at right xis side
[East side of true meridian] then the decunation is said to be positive
3. If It is at (west side) of true meridian that is sard to be negative.

problem
(1) The following bearing is taken on a closed compass traverse.

$$
\begin{aligned}
& \text { decualine } \\
& \begin{array}{lll}
A B & 80^{\circ} 10^{\prime} & 259^{\circ} 0^{\prime} \\
B C & 120^{\circ} 20^{\prime} & 301^{\circ} 50^{\prime}
\end{array} \\
& C D \text { \$70 } 50^{\prime} \quad 350^{\circ} 50^{\prime}- \\
& \text { DE } 230^{\circ} 10^{\circ} \quad 49^{\circ} 30^{\prime} \\
& \text { EA } 310^{\prime} 20^{\prime} \quad 180^{\circ} 15^{\prime}
\end{aligned}
$$

at what station do you suspect 10 cal at traction. determine correct magnetice bearing if declination was $5^{\circ} 10^{\circ} \mathrm{E}$ then what is the true bearing

Line obsesmed correction corrected TruE Bearing R mad

The following F.B and B.B when observed in th traversing with a compass in the place when e local attraction is suspected find corrected f. Band B.B and True Bearing of zach lines. Given that magnetic direction 10° To

Line

2Mipi- Nip is also known as magnetic indination.
2. The magnetic inclination is an angle made with horkontal by earth magnetic field lines.
3 These lines lies in different points on Earth. Surface.
Ranging:-
Ranging is known as method of locating or) Establishing intermediate points on a stright line between two fixed points
There are two types of Ranging
1 Direct ranging
2. Indirect ranging
plane table susineying
It is an graphical method by which point are plotted on the paper
Apparatus

1. Spot lever
2. Alidade
3. Trough comas
4. plumbing fork main
5. plane table
6. Tape ?
7. Ranging rods

Errors:-

1. Instrumental Error

2 sighting Error
3. plotting Errors
eamethods of plane table:- Lab
1 radiation method
2 Intersecting method
3. Traverse method
4. resting method
(a) Two point resecting probiom
(b) There pint problion

UNIT:-2

LEVELLING CONTOURING AND

- THEODOLITE SURVEYING
leveling
\Rightarrow Basic Detinations
\Rightarrow Types of levers
\Rightarrow Types of levelling staffs
\Rightarrow Temporary adjustment
\Rightarrow methods of levelling.
F (a) Hight of instrument
(b) Rise and fall
(c) Effects of arvacture and Refraction?
levelling:- It deals with determination. of elevation of points.
Datum line :- Referance line
Any surface to which elevations are referred is known as datum
mean sea bend:-
The average height of sea at all the stages of tides at several places.
Elevation:-
Elevation is a point by which vertical distance of a point above and below the surface of Earth

Bench mark:-
It is an relative permanent point
of referance with respective datum line
Types of Bench mars:-

1) Wis [great trigonometric survey]
2) p wo permanent benchmark
3) Temporary benchmark
4) trbatery bench mark

GIf: It is Established by survey of India at a intervel of 100 km all over the conuntry
permanent bench mark:-
It is established between GiTs bench mark By the central govenmant agencies life puD (public works department
These points are located at raiuays stations poling and kilometer stones, wall ot bridges
Temporary bench mark:-
It is a Reference point on which day work is closed and continued for nest day.
Aspotary bench mark:-
It is an Assumed bench mark for small leveling
Fore Sight:-
It is lost sight taken before moving the Instrament.
Back sight:
It is a first sight taken after setting of the Instrument

Types of levels :-
1 Dumphy level
2. wye (a) y level
3. Tilting level
4. Auto level.

Acumphy level:-
It is an simple and compact instacement, Telescope is rigidy[fixed] To its supports. where No rotations.

Tilting levee
Tilting level is also knwon as Indian office pattrian. In this telescope is sightly tilted [marineml
y tend:-
It is a combination of bumphy level and tilting level. In This telescope is rotated and moved and raised,
Auto level:-
It is a self aligning instrument die to presence of compensation device [prism]
Types of leveling staff:-

1. Self reading levelling staff

2 Target levelling staff.
self reading :-
a ordinary staff
b. fording staff
c. Stop with telescopic

Temporary Adjustments of level

1. Setting up the level, lig no ustmant
2. levelling up toot scon - 1 Adjusimant in Trataumen.

Methods of levellings

1. Browmetric levelleng when usid for Atmosprome

2 Trignometric levelling-indirect, level angle form disbric
3 sprit levelling-harizntal line unbas-

- Atribsiphesuic. paressure ot to $/ 4$

If α and D values is kniocon basic redes are applyed [sine ricle cossure] and we find the height
(a) simple levelling
(b) differential leveluing.
(c) fly levelling
(e) precise lenelling
(t) Vecipsocal levelling in lo. ingil : "Norg water bodjes's
determination of leveleing:-
$H I$ - Highi of Instrument. Fire and fau method

Hight of Instrument:-

$$
H I=B \cdot S+R L
$$

QL $=H I$ - FS(or) IS - Intermidiate sight tight of instrument is also called collimation problem:-

The following staff readings where observed Successfuny with level of instrument having $0.675,1230,0^{35}, 750,2.565,2.225,1.935,1.835$. $3.220,3.115$ and 2.875 . The first staff reading was taken with staff held on bench mark. with reduced level 100 m .
The Instrument have been shifted After the second $2^{n d}, 5^{\text {th }}$ and $8^{\text {th }}$ reading Enter the readings in the level book and find R.L of the points

check:-

$$
\begin{aligned}
\Sigma B S-E E S & =\text { last RL- first RL } \\
6.475-9.550 & =96.928-100 \\
3.075 & =3.075
\end{aligned}
$$

Rise and fou method:-

1. The following readings where observed successty with levelling Instrument. The Instrument
shifted after $5^{\text {th }}$ and $11^{\text {th }}$ reading $0.585,1.010,1.735,3.295, \frac{3.775}{4}, 0.350,1300,1.795$, $2.575,3.375,3.895,1.735$, 0. $635,1.605$.

Draw page of level book and determine RL at various points By which first reading of $R L$ was taken as 135.00 m ,

$$
\begin{aligned}
& S B S=2.670 \\
& S_{\text {PS }}=9.275 \\
& E \text { Raise }=11 \\
& S \text { fall }=7.705
\end{aligned}
$$

Check:-

$$
\begin{aligned}
& S_{B S}-S_{F S}=2670-9.275=-6.605 \\
& S_{R}-S_{L}=1.1-7.705=-6.605 \\
& \text { laSt } R L-\text { firt RL } \\
& 128.395-185 \\
& =
\end{aligned}
$$

(2) The following readings where observed successfung with levelling Instrument the Instrument has shiffted $6^{\text {th }}, 10^{\text {th }}$
$0.680,1.455,1.855,2.330,2.885,3.380$ $1.055,1860,2.265,3540,0.835,0.948,1.530$ 2.250, RL was 80.750

$$
\begin{aligned}
& \Sigma_{B S}=71 \\
& \Sigma_{1 S}-692 \\
& S_{R}=7 \\
& S_{B}=66
\end{aligned}
$$

Choar.

$$
\begin{array}{rl}
5 R i b-s_{1} & 2 a!p \\
0-66 & =74.15=30.750 \\
66 & =66
\end{array}
$$

Effects of curv

1. human exros
2. Instrumental exros
3. Natceral Esros
(a) Coervatune Error \rightarrow Depen

Insirument has a more
a form of errros

If the idistane is loss the line of hosizonlal line will be lie on Smon
single lire

By applying pythogroes theorem.:

$$
\begin{aligned}
&\left(R+c_{c}\right)^{2}=R^{2}+d^{2} \\
& R^{2}+2 R C_{c}+c_{c}^{2}=R^{2}+d^{2} \\
& c_{c}\left(2 R+c_{c}\right)=d^{2} \\
& C_{c}=\frac{d^{2}}{2 R+c_{c}}=\frac{d^{2}}{2 R}
\end{aligned}
$$

C_{c} is negate
Refraction:-

$$
\begin{aligned}
& C_{R}=Y_{7} C_{C} \\
& C_{R}=\frac{1}{2} \times \frac{d^{2}}{2 R} \\
& C_{R}=\frac{d^{2}}{14 R}
\end{aligned}
$$

$$
\frac{\Sigma f_{0}}{2 x(x))} \quad \frac{E l_{\text {all }}}{2 x(x-1}
$$

$$
\leq .
$$

In rise and beau method the gradient is

$$
\text { gradient }=\frac{\text { Efael }}{L(n-2)}
$$

$n=$ no. of readings
Included $=$ previous line $\pm 180-$ Next line.

UpPer in-2

Cocont Contourning:-
\Rightarrow Definition
\Rightarrow uses of contarers
\Rightarrow characteristics of contocert
\Rightarrow methods of contores
\Rightarrow Intexpolation method
\Rightarrow Drawing of contour

Definition:
It is an Imaginary line on the ground surds. joining points of Equal elevations. Joining lines is known as contour lines A group of contour lines Represents contour map.

Contour Interval:-
The vertical distance between any two conseatime contocers. is called contour Interval
(un)
rom It is a difference between RL of two contocirs is known an contocer interval
tiorizontal Equivalent:-
1T The horizontal distance between any two contousa unsedutive contocers is called cintomral equivalent
contour gradient:-

$$
=\frac{\text { contour Interval }}{\text { Horizontal equivalent. }}
$$

The ratio between contour Interval and horizontal Gquiratent
use's of contours:-

1. It is used to calculate capacity of resin wow

2 It is used to calculate slope of driange
3. It is used to alain canals, roads, and railway lines
4. It is used to determine direction of ground surface
5. It is estimated quantity of catting and filling
6. It is used to find the possible route of communication between two points.
Characteristics of contour (ur) properties af contact

1. Two contour lines of different Elevations can cross eachother in the case of over hanging diff
2
2. If two contocer lines of different Elevations can unite to form a line

In the case of crit vertical cliff
5. contour lines are close together which indicates steep slope.
4. If contour lines apart (ar) [for] which indicates gentle slope.
5. If contocer lines with more higher walk $R L$ values Inside which represents hill
6. If rend contour lines with how move lower RL values Inside which represents valley

7 The contour lines cross with ridge line at a sight angle it forms u-shape contuses
\& The contour lines cross with valley line at a right angle it forms V-shape contour

10. The contour lines must be close's but cannot be with in the limit of map [ma pscale] Methods of contours:-

1. direct method
2. Indirect method
direct method:-
3. In this method R.L values are joined directly on the field
4. This method is suitable in the case of smaller areas.
5. It is highly accuracy.
6. This method takes move time consumption

5 This method is expensive.

Indirect method i-

1. In this method contour lines are joined withe reference to guiding points It is divided in p the o types
(a) Square method (or) coordinate method (b) cross sectional method

2. This method is suitable for larger areas

2 It is haviving 1000 accuracy
3. It consumes less time
4. It is less expensive

Gross section method:-

1. It is suitable for very large areas
eg:- roads, railways, canal the
2. It having low accuracy

3 It consumes less time
4 It is not expenciy
Interpolation method:-
1 estimation method
2. Asthmatic calculation method
3. graphical method

Estimate method:-
This method is used for small scale work only
2. This method is extremely rough method

3 In this method position of contour between guiding point are located. By Estimation

Asthmatic Calculations:-

1. It is very accurate method. and time consuming
2. The position of contocer points are located by arthmats Calculations.
Ex:- a, b, c, d are the guiding points having Elevations 607.4, bour, 617.3, 612.5,604.3 respectively as shown in fig.

position of 605, 615, will be passes through a, b, c, d.
graphical method:-
In this method the point, are plotted based on x-axis and y-axis

Drawing (or) Sketching of contours:-

1. After Interpolation of contour between the guide points are joined smoothly and it forms smooth Came
2. while drawing the contour line fundamental properties should be consider.
(characlaislia)

3 contour lines should be Inked with the help of black and brown colour
4. The contour lines for roads, canals and ralooay lines showed be shown in brown colour.

UMIT:-3.
Areas \& volumes
Areas:-
20 u sen
\rightarrow Determination of area consisting Regular Intervals \Rightarrow Determination of area consisting Irregular Intervals Methods of calculating areas(or) computation of area:1. Wividing total area in to Number of triangles.
2. Based on offset to the base line.
3. Based on latitudes and depatklures. directions
4. Based of co-ordinates. Total station
5. Based on map.
6. Based on mechanical method. planimelas no o
Based or offsets to the base line urger ar ns,

There are four rules used for calculating area Based on offsets to the base line.

1. Mid-ordinate rule.

* ${ }^{2}$. Average (or) meanordinate rule

33 Trapezoidal rule
** 4 simpson's one third rule
Mid-ordinate rule:-
In this rule Base line is divided in to No. of divisions and ordinates are measured mid point of each division

formula:-

$$
\begin{aligned}
A=d \Sigma 0 \int \Sigma 0 & =\text { ordinates }, \text { sum ot mid cowtinal } \\
d & =\text { distance of each divisions }
\end{aligned}
$$

2. Mean (or) Average ordinate rule :-

In this method offsets are measiened to each point of division of the base line.
formula :-

$$
A=\frac{L}{n+1} \leq 0 \quad A=\frac{n-1}{n}\left(0,10,10_{1}+\right.
$$

$L=\|_{x} d$
$L=$ length of base line
$n=$ number of divisions.
$d=$ distance at Each division
$\Sigma O=$ sum of ordinates
3. Trapezoidal rale :-

In this Rule we will assume figures as Trapezoid d this method is more accurate than the above methods formula :-

$$
\left.A=\left[\frac{0_{0}+0_{n}}{2}\right)+0_{1}+0_{2}+0_{3}+\ldots+0_{n-1}\right] d
$$

Simpson's on third rato:-

$$
A=\frac{d}{3}\left[\left(0_{0}+O_{n}\right)+4\left(0,10_{3}+O_{5} 1 \ldots+O_{n}\right)+2\left(0_{2}+O_{4} 1-+0_{n_{2}}\right]\right]
$$

Note: Simpson's rule is applicable only when
Number of ordinates in odd contitions
$0=$ ordinates
$n=$ Number of Ordinates
$d=$ distance at Each division

Regular interval problems(or, Regular boundary probrang
The following perpondicalar offsets where taken of every 10 m Interval from the survey line two the survey lines at ixriqular boundary lines by applying
(i) mid ordinate
(ii) Average omen ordinate
(V) Trapezoidal rule
(iv) $\operatorname{sim} p$ sons lute

(i) mid rule

$$
\begin{aligned}
A= & d \Sigma 0 \\
= & 10\left(0.10,+0.10_{3}+\ldots+0_{8}\right) \\
= & 10(3.25+5.60+4.20+6.65+8.75+6.20+3.25 \\
& 14.20+5.68) \\
= & 477.55 q . m . \mathrm{m}^{2}
\end{aligned}
$$

(ii) Average rule

$$
\begin{aligned}
& n=\text { no. of ordinates }=9 \\
& \begin{aligned}
A= & \frac{9-1}{9}(3.25+5.60,4.20+6.65+8.75+6.20+3.25 \\
& +4.20+5.65) \\
= & 42.44 \mathrm{~m}^{2}
\end{aligned}
\end{aligned}
$$

(iii) trapezoidal rule

$$
\begin{aligned}
A & =\frac{d}{2}\left[\frac{\left(O_{0}+O_{n}\right)}{2}+\left(0,1 \theta_{5}+0_{4}+\ldots+O_{n-1}\right) d\right. \\
& =\frac{3.25+5.65}{2}+4(5.60+4.2016 .68+8.75+6.20+ \\
& =433 \mathrm{~m}^{2}
\end{aligned}
$$

$$
43: 3 \times 10
$$

(iv) Simpson's rue

$$
\begin{aligned}
& \frac{d}{3}\left(\left(0_{0}+0_{n}\right)+4\left(0_{1}+0_{5}+0_{5}+0_{7}\right)+2\left(0_{2}+0_{4}+0_{6}+0_{8}\right)\right. \\
= & \frac{10}{3}[(3.25+5.65)+4(5.6046 .65+6.20+4.20)+2(4.201 \\
& 8.75+3.25) \\
= & 439.67 \mathrm{~m}^{2}
\end{aligned}
$$

The series s of offsets where taken from chain line to a curved boundasy Ire at Interval of 15 m . compute Area between chain line, carked boundary and and of offsets by using average ordinal hue Trapezoidal rue, simpsons rue

$$
\begin{array}{ccccccc}
0,2.65,3.80, & 3.75, & 4.65 & 3.60, & 4.95, & 5.85 \\
0 & 0 & 0 & 0 & 0, & 0 .
\end{array}
$$

(i) esverage

$$
\begin{aligned}
& =\frac{8-1}{8}[0+2.65+3.80+3.75+4.6513 .60+4.95+5.85] \\
& \times 15 \\
& =388.95 \mathrm{~m}^{2}
\end{aligned}
$$

(ii)
Trapezoidal

$$
\left.\frac{o_{0}+o_{0}}{2}+0_{1}+0_{2}+0_{3}+\ldots+0_{7}\right) d
$$

$$
=\frac{0+5.85}{2}+(2.65+3.80+3.75+4.65+3.60+4.95) 15
$$

$$
=394.8 \mathrm{~m}^{2}
$$

(iii) simpson's rue in cyan case only we can use

$$
0,2.65,3.80,3.75,4.65+3.60,4.95 .
$$

Apply simpsons rue from 1 th $7^{\text {th }}$ ordinate

$$
\begin{aligned}
& \frac{15}{3}[(0+4.95)+4(2.65+3.75+3.60)+2(3.8 \\
= & 309.25 \mathrm{~m}^{2} \\
8^{\text {th }} \text { ordinate } & \rightarrow \frac{90+0 n}{2} \times \mathrm{d} \\
= & \frac{4.95+5.85}{2} \times 15=81 \mathrm{~m}^{2} \\
\text { Total Area } & =309.2+8) \\
& =390.2 \mathrm{~m}^{2},
\end{aligned}
$$

Irrigular boundaryes:-
The distance between each division will not be same (or) equal
problems
(1) The following perpendicular offsets where taken wien chan line an iarigular boundary.

chainage :	0	10	25	42	60	75
Offsets	15.5	86,2	31.8	21.6	29	31.5

Calculate Area between chain line, boundary and and offsets by using trapezoidal rule
Solution:-
Trapezodial rule

$$
\begin{aligned}
\Delta & =\left(\frac{0_{0}+0_{n}}{2}\right) d \\
\text { Area } \Delta_{1} & =\left[\frac{15.5+26.2}{2}\right) \times 10=208.5 \mathrm{~m}^{2} \\
\Delta_{2} & =\left(\frac{26.2+31.8}{2}\right) \times 15=435 \mathrm{~m}^{2} \\
\Delta_{3} & =\left(\frac{31.8+26.6}{2}\right) \times 17=487.9 \mathrm{~m}^{2} \\
\Delta_{4} & =\left(\frac{25.6+29}{2}\right) \times 18=491.4 \mathrm{~m}^{2} \\
\Delta_{r} & =\left(\frac{29+31.5}{2}\right) \times 15=453.7 \mathrm{~m}^{2} \\
\text { Total Area } & =\Delta_{1}+\Delta_{2}+\Delta 3+\Delta_{4} 4 \Delta_{\mathrm{r}} \\
& =2076.5 \mathrm{~m}^{2}
\end{aligned}
$$

(2) The following perpendicular offset, whore late from chain line as follows. Calculate Area bduon Survey lire, boundary and and offset by using Trapezoidal rule, and simpsons rules. io

(1) $d=\$ 5$
(2) $d=10$
(5) $d=20$

Trapezoidal rue

$$
\Delta_{1}=\left[\frac{0_{0}+0_{n}}{2} g d \varepsilon 0\right] d
$$

consider section (1)

$$
\begin{aligned}
& = \\
& \Delta_{1}=\left[\frac{0+60}{2}+15+30+45\right] \times 15 \\
& \Delta_{1}=\left[\frac{260410.6}{2}+8.5+10.7+12.8\right] \times 15 \\
& \Delta_{1}=616.5 \mathrm{~m}^{2}
\end{aligned}
$$

consider section (2)

$$
\begin{aligned}
\Delta_{2} & =\left[\frac{10.6+8.3}{2}+9.5\right] \times 10 \\
& =189.5 \mathrm{~m}^{2}
\end{aligned}
$$

consider section (3)

$$
\begin{aligned}
\Delta_{3} & =\left[\frac{8.3+4.4}{2}+7.9+6.4\right] \times 20 \\
& =413 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Total } & \text { Area }=\Delta_{1}+\Delta_{2}+\Delta_{3} \\
& =616.5+189.5+413 \\
& =1219 \mathrm{~m}^{2}
\end{aligned}
$$

Simpson's rule :-

Section (1)

$$
\begin{aligned}
& =\frac{d}{3}\left[\left(0_{0}+0_{n}\right)+4\left(0_{7}+0_{3} t+2\left(0_{2}+0_{n}\right)\right.\right. \\
& =\frac{15}{3}[(7.60+10.6)+4(8.5+12.8)+2(10.7)] \\
& =4386 \mathrm{n}^{2} 624 \mathrm{~m}^{2}
\end{aligned}
$$

Section (2)

$$
\begin{aligned}
& =\frac{d}{3}\left[\left(0_{0}+0_{n}\right)+4(10.6)\right] \\
& \left.=\frac{10}{3}[10.6+8.3)+4(9.5)+2(0)\right] \\
& =189.67 \cdot \mathrm{~m}^{2}
\end{aligned}
$$

section (3)

$$
\begin{array}{llll}
8.3 & 7.9 & 6.4 & 4.4
\end{array}
$$

Apply this rule foxe from $1+03$

$$
\begin{aligned}
& \left.=\frac{20}{3}[8.3+9.4)+4(7.9)+2(9)\right] \\
& =388.61 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
4^{\text {th }} \text { ordinate } & \rightarrow \frac{0_{0}+0_{n}}{2} \times d \\
& =\frac{64+4.4}{2} \times 20 \\
& =108
\end{aligned}
$$

Total area $=30867+108$

$$
=507.67 \mathrm{~m}^{2} 416.6 \mathrm{~m}^{2}-\Delta_{3}
$$

total ard - D, + No, 1.2

$$
\begin{aligned}
& =624+189.61+416 \\
& =1230.3 \mathrm{~m}^{2}
\end{aligned}
$$

Volumes:-

1. determination of volume by using $c /$ setronal level method
(a) Trapezoidal formula
(b) prismoidial formula simpsons
2. [volume of earth work, cuttings, and embankments]
3. Determination of volume for barrow pits

Determination of volume by using cross sectional method.

There are 5 cross setronals are present

1. level section
\& Two level section
2. Three level section
3. Side hl two level section
4. Multilevel section.
level section:-

$$
A=(b+n h) h
$$

Here
$b=$ width of formation
$h_{1}=$ depth of formation (or) height from center
$n=$ horritontal to 1 vertical [ground level]

Two lend Section:-

$$
A=\frac{\left[n \times\left(\frac{D}{n}\right)^{2}+m^{2}\left(b h+n h^{2}\right)\right]}{\left(m^{2}-n^{2}\right)}
$$

Here,
$m=$ Horizontal distance to 1 vertical [Inclined condition]

Three- level section:-

$$
A=\left[\frac{b}{4}\left(h_{1}+h_{2}\right)+\frac{h}{2}\left(\omega_{1}+\omega_{2}\right)\right]
$$

$h_{1}, h_{2}=$ side heights.

$$
w_{1}, w_{2}=\text { side width }
$$

For calculating volume at cross section Level method we have two formulas

1. Trapezoidal formula

$$
v=d\left[\frac{A_{1}+A_{n}}{2}+A_{2}+A_{3}+\ldots+A_{n}+\right]
$$

2. prismoidal formula

$$
v=\frac{d}{3}\left[A^{+A_{n}+}+4\left(A_{2}+A_{4}+A_{6}+\cdots\right)+2\left(A_{3}+A_{5}+A_{7} \cdot 2\right)\right]
$$

problems
(1) The prismoidal Railway Embankment 10 m width with side slope $11 / 2$ to l Assume ground is to be levelled in a direction to a center line. with Calculate volume in a length of 120 m , the centre height at 20 m Interval being $2.2,3.7,3.6,4.0,3.8$, 2. $8,2.5$.

Given,
width of formation $(e)=10 \mathrm{~m}$
slide slope $=11 / 2: 1$

$$
n=1.5
$$

$$
\begin{aligned}
\text { Total length } & =120 \mathrm{~m} \\
\text { Interval } & =20 \mathrm{~m} .
\end{aligned}
$$

Same level

$$
\begin{aligned}
& A=(b+n h) h \\
& A_{1}=\left(b+n \times h_{1}\right) h_{1}=(10+1.5 \times 2.2) 2.2=29.26 \mathrm{~m}^{2} \\
& A_{2}=(10+1.5 \times 3.7) 3.7=57.53 \mathrm{~m}^{2} \\
& A_{3}=(10+1.5 \times 3.8) 3.8=59.66 \mathrm{~m}^{2} \\
& A_{4}=(10+1.5 \times 4.0) 4.0=64 \mathrm{~m}^{2} \\
& A_{5}=(10+1.5 \times 3.8) 3.8=59.66 \mathrm{~m}^{2} \\
& A_{6}=(10+1.5 \times 2.8) 28=39.76 \mathrm{~m}^{2} \\
& A_{1}=(10+1.5 \times 2.5) 2.5=34.37 \mathrm{~m}^{2}
\end{aligned}
$$

Trapezoidal

$$
\begin{aligned}
& v=d\left[\frac{A_{1}+A_{n}}{2}+A_{2}+A_{5}+A_{4}+A_{5} d A_{0}\right] \\
&=20\left[\frac{29.26+34.37}{2}+57.53+59.66+64+59.66+59.76\right. \\
&134.37]
\end{aligned}
$$

$$
V=6249.8 \mathrm{~m}^{3}
$$

prismoidal

$$
\begin{aligned}
& v\left.=\frac{d}{3}\left(A_{1}+A_{n}\right)+u\left(O_{2}+O_{4}+O_{6}+\ldots\right)+2\left(O_{3}+O_{8}+\ldots\right)\right) \\
&=\frac{20}{3}\left[\left(A_{1}+A_{n}\right)+u\left(A_{2}+A_{4}+A_{0}\right)+2\left(A_{3}+A_{5}\right)\right. \\
&=\frac{20}{3}[(29.26+34.37)+4(57.53)+64+36.7)+2(59.6+ \\
& 6356 \\
&=6316.36 \mathrm{~m}^{2}
\end{aligned}
$$

(2) The railway embankment 400 m long 12 m wide at any formation level, it has side slope 231. The ground level at every 100 m along the central line as follows. the formation level at Echainage is 207. and embankment has raising gradient I in 100. The ground is level across central line Calculate the volume of Garth work.

Distance	0	100	200	300	400
PL	204.8	206.2	207.5	207.2	208.3

Given,

$$
\begin{aligned}
b & =12 \mathrm{~m} \\
n & =2 \\
h & =? \\
\text { total } & =400 \mathrm{~m} .
\end{aligned}
$$

Distance	R.L	formation	level th
0	204.8	$201.0^{\text {tin } 100}$	$207-204.8=22$
100	2062	208	$208-206.2=1.8$
200	207.5	209	15
300	207.2	210	2.8
400	208.3	211	27

level section:-

$$
\begin{aligned}
& \text { Area } \\
& A_{1}=(12+2 \times 2.2) 2.2=36.08 \mathrm{~m}^{2} \\
& A_{2}=(12+2 \times 1.8) 1.8=28.08 \mathrm{~m}^{2} \\
& A_{3}=(12+2 \times 1.5) 1.5=630 \mathrm{~mm}^{2} 22.5 \mathrm{~m}^{2} \\
& A_{4}=(12 \neq 2 \times 2.8) 28=49.2 \mathrm{~m}^{2} \\
& A_{55}=(12 \not 12 \times 2.7) 27=46.9 \mathrm{~m}^{2}
\end{aligned}
$$

Trapozoldal:

$$
\begin{aligned}
& V=d\left[\frac{A_{1}+A_{n}}{2}+A_{2}+A_{3}+A_{4}\right] \\
& d=100 \\
&=100\left[\frac{36.08+46.9}{2}+28.08+22.5+49.2\right) \\
&=14127 \mathrm{~m}^{3}
\end{aligned}
$$

prismoidal

$$
\begin{aligned}
& =\frac{100}{3}[(36.08+46.9)+4(28.06+49.2)+2(22.8)] \\
& =14587 \mathrm{~m}^{3} \quad 14570
\end{aligned}
$$

(3) find out volume of Earth work in a road cutting 120 m long. from the center line as follows formation with rom side Slope 1 in $1(n=1)$, Average depth of cutting along the centre line 5 m , slope of ground in a c / s to 1

$$
\begin{aligned}
& A=\frac{\left[n \times\left(\frac{b}{2}\right)^{2}+m^{2}\left(b h+n h^{2}\right)\right]}{\left(n^{2}-n^{2}\right)} \\
& b=10 \mathrm{~m} \quad 1 \text { to }=n=1 \\
& h=5 \mathrm{~m} \quad 1061=m=10
\end{aligned}
$$

$$
\begin{aligned}
A & =\left[\frac{\left[n \alpha\left(\frac{b}{2}\right)^{2}+m^{2}\left(b n+n h^{2}\right)\right.}{m^{2}-n^{2}}\right] \\
& =\frac{\left[1 \times\left(\frac{10}{2}\right)^{2}+10^{2}\left(10 \times 5+1 \times 5^{2}\right)\right.}{10^{2}-1^{2}} \\
& =76.01 \mathrm{~m}^{3} \\
V & =A \times v \\
V & =76 \times 120 \\
& =9120 \mathrm{~m}^{3}
\end{aligned}
$$

(4) The following three level cross section of two stations of two stations 50 m appast the width of formation level 12 m calculate volume of cutting between two stations
Station
cross sections
500 1

$$
\begin{array}{llll}
-1 & (.3 / 0.1 & (2.8 / 0 & 4.6 / 10.8 \\
2 & 2.9 / 8.9 & 3.7 / 0 & 6.9 / 12.9
\end{array}
$$

Three level
Station (1)

$$
\begin{aligned}
& A_{1}=\left[\frac{b}{4}\left(h_{1}+h_{2}\right)+\frac{h}{2}\left(w_{1}+w_{2}\right)\right] \\
& b=12 \mathrm{~m} \quad=\left[\frac{12}{4}(4.6+1.7)+\frac{2.8}{2}(10.6+77)\right] \\
& h_{1}=2.8 \quad A_{1}=44.52 \mathrm{~m}^{2} \\
& w_{1}=10.6 \quad \\
& w_{2}=7.7 \\
& h_{1}=46 \\
& h_{2}=1.7
\end{aligned}
$$

Section (2)

$$
\begin{aligned}
& h=3.7, \quad h_{1}=6.9 \quad h_{2}=2.9, \omega_{1}=12.9, \omega_{2}=8.9, b=12 \mathrm{~m} \\
A_{2}= & {\left[\frac{b}{4}\left(h_{1}+h_{2}\right)+\frac{h}{2}\left(\omega_{1}+\omega_{2}\right)\right] } \\
= & {\left[\frac{12}{4}(6.9+2.9)+\frac{3.7}{2}(12.9+8.9)\right] } \\
A_{2} & =69.73 \mathrm{~m}^{2}
\end{aligned}
$$

Trapezoidal.

$$
\begin{aligned}
v & =\left(\frac{A_{1}+A_{n}}{2}\right) d \\
& =\left[\frac{44.52+69.73}{2}\right] 50 \\
& =2856 \mathrm{~m}^{3}
\end{aligned}
$$

prismodial formula when in even case

$$
v=\frac{L}{6}\left(A_{1}+4 A_{m}+A_{2}\right)
$$

prismoidal formula

$$
\text { Three level }=\left[\frac{b}{4}\left(h_{1}+h_{2}\right)+\frac{h}{2}\left(\omega_{1}+\omega_{2}\right)\right]
$$

Even case $V=\frac{V}{6} A_{1}+4 A m+A_{2}$

$$
A_{n}=?
$$

$$
\begin{array}{ll}
b=12 m & \\
h=2.8 \rightarrow \text { section (1) } & h=\frac{28+3.7}{2}=3.25 \mathrm{~m} \\
n=3.7 \rightarrow \text { section (2) } & \\
h_{1}=4.6 \text { section (1) } & h_{1}=\frac{4.6+6.9}{2}=5.75 \\
h_{1}=6.9 \text { section (2) } &
\end{array}
$$

$$
\begin{aligned}
& w_{1}=10.6 \text { @ section (1) } \omega_{1}=\frac{10.6+12.9}{2}=11.75 \\
& \omega_{1}=12.9 @ \text { section (2) } \\
& h_{2}=1.7 \text { @ section (1) } \quad h_{2}=\frac{1.7+2.9}{2}=2.3 \\
& h_{2}=2.8 \text { @ section (2) } \\
& \omega_{2} \text { a } \operatorname{section}(1)=27 \\
& \omega_{2}=8.9 \text { a section (ㄷ) } \\
& \left.A_{m}=\frac{b}{4}\left(h_{1 \text { mean }}+h_{2 \text { mean }}\right)+\frac{h_{\text {mean }}}{2}\left(\omega_{1} \text { meant } \omega_{2} \text { mean }\right)\right] \\
& =\left[\frac{12}{4}(5.75+2.3)+\frac{3.25}{2}(14.75+8: 3)\right] \\
& A_{m}=56 . \mathrm{mm}^{2}
\end{aligned}
$$

Substituting the A_{m} in prismoidal rule

$$
\begin{aligned}
r & =\frac{L}{6}\left(A_{1}+A_{1} A_{m}+A_{2}\right) \\
& =\frac{50}{6}[44.52+69.73+4(56.7)] \\
& =2843^{3}
\end{aligned}
$$

Volume of Barrow pit:-
In the case of Barrow pits total area is divided in to Number of Rectangles and triangles

1. If t is reactanglear condition (or) square

$$
v=\left[\frac{h_{a+h_{b}+h_{c}+h_{d}}^{u}}{u}\right] \times A
$$

2 If it is triangular condition

$$
r=\left[\frac{h_{a+k_{b}}+h_{c}}{3}\right]+A
$$

A Rectangular plot $A B C D$ forms a pit Excavated for Road work. E is a point of Intersection of diagonals. calculate volume of Excavation at following points, length of $A B 50 \mathrm{~m}$ length of $B C 80 \mathrm{~m}$.

point	A	B	C	D	E
original level	45.2	49.8	51.2	47.2	52.0
final level	38.6	39.8	42.6	40.8	425

Solution:-
Depth of cutting at $A=45.2-88.6=6.6 \mathrm{~m}$
Depth of cutting at $B=49.8-39.8=10 \mathrm{~m}$
Depth of cutting at $C=512-42.6=8.6 \mathrm{~m}$
Depth of cutting at $D=47.2-40.8=6 . \mathrm{gm}$
Wept of cutting at $E=52.0-42.5=95 \mathrm{~m}$

$$
\text { Consider } \begin{aligned}
& \triangle A B E=\frac{h_{a} 4 h_{B}+h_{c}}{3}=\frac{6.6+10+9.5}{3}-8.7 \mathrm{~m} \\
& \begin{aligned}
A=\frac{1}{2} \times 50 \times 40=1000 \mathrm{~m}^{2}=8, h & =\text { (Arerg. height) } \times \text { Area } \\
& =\frac{1}{2} \times b \times h \\
& =\frac{1}{2} \times 50 \times 40=1000 \mathrm{~m}^{2} \\
V & =8.7 \times 1000=8700 \mathrm{~m}^{3}
\end{aligned}
\end{aligned}
$$

(2)

$$
\triangle A E D=\frac{16.9+9+66}{3}=763=1000 \times 7.53=7600 \mathrm{~m}^{3}
$$

(3) $\Delta B_{\in C}=\frac{10+9.8+8.6}{3}=9.36=1000 \times 9.36=9366 \mathrm{~m}^{3}$,
(a)

$$
\triangle D E C=\frac{6.81+95+8.6}{3}=8.3=1000 \times 8.36=8166 \mathrm{~m}^{3}
$$

$$
\begin{aligned}
\text { Total Volume } & =8700+7500+9366+8166 \\
& =33732 \mathrm{pn}^{3} 11
\end{aligned}
$$

(2) An excavation to be made for a resoivis

Qom long 12 m width at a bottom surface has side slope 2 in 1 calculate volume of excavation if? Depth is 4 m . The Ground surface is levelled before the excavation.
length of resoivor at Top

$$
\begin{aligned}
& =L+2 n h \\
& =20+2 \times 2 \times u=36 \mathrm{~m}
\end{aligned}
$$

width of reservior at pop

$$
\begin{aligned}
& =b+2 n h \\
& =12 \times 2 \times 2 \times u=28 \mathrm{~m}
\end{aligned}
$$

length of reservoir at mid height.

$$
=\frac{20+36}{2}=28 \mathrm{~m}
$$

width of reservoir at mid height

$$
\begin{aligned}
& =\frac{12+28}{2}=20 \mathrm{~m} \\
& \text { Side width }=(28-20)=\mathrm{Bm}
\end{aligned}
$$

Area of bottom Resoiver $=20 \times 12=240 \mathrm{~m}^{2}$

$$
\begin{aligned}
\text { Area at } T_{0 p} & =36 \times 28
\end{aligned}
$$

Area of resoiner at mid height $=28 \times 20=560 \mathrm{~m}^{2}$
The area of $A B C D$ And $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are parallel to each other since prismoidal formula can be used prismoidal formula at Gen

$$
\begin{aligned}
V & =\frac{\omega^{\text {depth }}}{6}\left(A_{1}+A_{2}+4 A_{m}\right) \\
& =\frac{9}{6}(240+1008+560) \\
& =2325 \mathrm{~m}^{3}
\end{aligned}
$$

$$
\text { Genit: } 乡
$$

part \Rightarrow
ceres
\rightarrow Types of carver
\rightarrow Neccesty of curves
\rightarrow Elements of sample cure
\rightarrow setting out of carne
parsi- B
construction survey
\rightarrow Introduction (Selling out)
\rightarrow Building setting out
\rightarrow culvert setting out

Types of carves:
(i) Horizontal, vertical curves

Horizontal Cure: (i) Simple curve
(ii) Compound curve
(1) Reverse curve
vertical curve :- (i) summit
(iv) Nelly

Simple Cure:-
It consists of a single arc

Compound curve:-
It consists of two (er) move single, arc's
Reverse curve:-
It consists of two circular arcs with opposite direction

Necessity of curve:
It is used to change the direction
It is used to change the alignment
It is used t cross obstcale,
It decreases sped

1. Back Tangent the distance from A to 1 2) forward Tangent - He distance from $t_{2}-0$ 3 point of curve $(P C)$ - starting point cooke is han as point of cure 4 point of Intersection (P.5)
2. point of tangency (R_{T}) - ending point ut point od cure 6 Intersection angle. The angle b/w vandvs
I Deflection angle The angle at any point on a care blwpe ac PO_{O}
o Tangent distone (t) - distance blu p_{C} to Pr/Pr top ut

$$
T=R \tan \frac{\Delta}{2}
$$

a. External distance (E) - distance from mid point of cure to PC
10. length of carve (c). Total longth of wove from

$$
\text { Pe } C \cdot R \times \sec \frac{2}{2}
$$

1. length of chord to ri_{i}. the arc joints De pit

$$
L^{\prime}=2 R \sin \frac{1}{2} 川
$$

12 long chord- the ordinate from mid point of chose to mid point of curve
15 Move ordinate $M,=R\left[1-\frac{(\cos s)}{2}\right]$
part:- B
construction survey [setting outs]
Introduction:-
It is a process of transferring the distance from the plan already prepared to the ground before setting is cared construction (a) setting out the plan as designed and prepared is set out on the ground in the correct position
Setting for the controls
1 Horizontal controls bundroy. Way
2 vertical control he a,
Setting out of building.
It is depend on founcodition
Instruct
steel tape
two metallic tapes. Right angle, souls, hammer
Circumscribing Rectangh

Based on centre lino:-

Setting out of culterl:

$$
\frac{y}{y}=
$$

R

Curves: Definition and Types | Curves| Surveying

Definition of Curves:

Curves are regular bends provided in the lines of communication like roads, railways etc. and also in canals to bring about the gradual change of direction. They are also used in the vertical plane at all changes of grade to avoid the abrupt change of grade at the apex.

Curves provided in the horizontal plane to have the gradual change in direction are known as Horizontal curves, whereas those provided in the vertical plane to obtain the gradual change in grade are known as vertical curves. Curves are laid out on the ground along the centre line of the work. They may be circular or parabolic.

Classification of Curves:

(i) Simple,
(ii) Compound
(iii) Reverse and
(iv) Deviation
(i) Simple Curve:

A simple curve consists of a single arc of a circle connecting two straights. It has radius of the same magnitude throughout. In fig. 11.1 T1 D T2 is the simple curve

Fig 11.1
(ii) Compound Curve:

A compound curve consists of two or more simple curves having different radii bending in the same direction and lying on the same side of the common tangent. Their centres lie on the same side of the curve. In fig. 11.2, T1 P T2 is the compound curve with T1O1 and PO2 as its radii.

Fig 11.2
(iii) Reverse (or Serpentine) Curve:

A reverse or serpentine curve is made up of two arcs having equal or different radii bending in opposite directions with a common tangent at their junction. Their centres lie of opposite sides of the curve. In fig. 11.3 T1 P T2 is the reverse curve with T1O1 and PO2 as its radii.

Fig 113
Reverse curves are used when the straights arc parallel or intersect at a very small angle. They are commonly used in railway sidings and sometimes on railway tracks and roads meant for low speeds. They should be avoided as far as possible on main railway lines and highways where speeds are necessarily high.

(iv) Deviation Curve:

A deviation curve is simply a combination of two reverse curves. It is used when it becomes necessary to deviate from a given straight path in order to avoid
intervening obstructions such as a bend of river, a building, etc. In fig. 11.4. $T_{1} E^{E} E_{2}$ is the deviation curve with $\mathrm{T}_{1} \mathrm{O}, \mathrm{EO}_{2}$ and FO_{2} as its radii.

Fig 11.4

Names of Various Parts of a Curve: (Fig. 11.5):

(i) The two straight lines $A B$ and $B C$, which are connected by the curve are called the tangents or straights to the curve.
(ii) The points of intersection of the two straights (B) is called the intersection point or the vertex.
(iii) When the curve deflects to the right side of the progress of survey as in fig. 11.5, it is termed as right-handed curve and when to the left, it is termed as left-handed curve.
(iv) The lines $A B$ and $B C$ are tangents to the curves. $A B$ is called the first tangent or the rear tangent $B C$ is called the second tangent or the forward tangent.
(v) The points (T_{1} and T_{2}) at which the curve touches the tangents are called the tangent points. The beginning of the curve $\left(T_{1}\right)$ is called the tangent curve point and the end of the curve (T 2) is called the curve tangent point.
(vi) The angle between the tangent lines $A B$ and $B C(A B C)$ is called the angle of intersection (I)

Fig 11.5
(vii) The angle by which the forward tangent deflects from the rear tangent is called the deflection angle (ϕ) of the curve.
(viii) The distance the two tangent point of intersection to the tangent point is called the tangent length ($B T_{1}$ and $B T_{2}$).
(ix) The line joining the two tangent points (T_{1} and T_{2}) is known as the long-chord
(x) The $\operatorname{arc} \mathrm{T}_{1} \mathrm{FT}$ 2 is called the length of the curve.
(xi) The mid-point (F) of the $\operatorname{arc}\left(\mathrm{T}_{1} \mathrm{FT}_{2}\right)$ in called summit or apex of the curve.
(xii) The distance from the point of intersection to the apex of the curve BF is called the apex distance.
(xiii) The distance between the apex of the curve and the midpoint of the long chord (EF) is called the versed sine of the curve.
(xiv) The angle subtended at the centre of the curve by the arc $\mathrm{T}_{1} \mathrm{FT}_{2}$ is known as the Central angle and is equal to the deflection angle (ϕ).

Elements of a Curve (Fig. 11.5):
(i) Angle of intersection + Deflection angle $=180^{\circ}$ or $\quad I+\phi=180^{\circ}$(Eqn. 11.1)
(ii) $\measuredangle \mathrm{T}_{1} \mathrm{OT}_{2}=180^{\circ}-\mathrm{I}=\phi$
...(Eqn. 11.2.)
(i.e. the central angle $=$ the deflection angle).
(iii) Tangent length $=\mathrm{BT}_{1}=\mathrm{BT}_{2}=\mathrm{OT}_{1}$ tan $\frac{\phi}{2}$

$$
=\mathrm{R} \tan \frac{\phi}{2} \quad \ldots \cdot \ldots
$$

(iv) Length of Long Chord $=2 \mathrm{~T}_{1} \mathrm{E}=2 \times \mathrm{OT}_{1} \sin \left(\frac{}{2}\right)$

$$
=2 R \sin \frac{\phi}{2} \quad \ldots \ldots(\text { Eqn. 11.4 })
$$

(v) Length of the curve $=$ Length of the arc $\mathrm{T}_{1} \mathrm{FT}_{2}$

$$
\begin{align*}
& =\mathrm{R} \phi \text { (in radians) } \\
& =\frac{\pi \mathrm{R} \phi}{18 \varrho^{\circ}} \tag{Eqn.11.5}
\end{align*}
$$

(vi) Apex distance $=\mathrm{BF}=\mathrm{BO}-\mathrm{OF}$

$$
\begin{aligned}
& =\mathrm{R} \sec \frac{\phi}{2}-\mathrm{R} \\
& =\mathrm{R}\left(\sec \frac{\phi}{2}-1\right) \ldots \quad \ldots(\text { Eqn. 11.6 })
\end{aligned}
$$

(vii) Versed sine of the curve $=\mathrm{EF}=\mathrm{OF}-\mathrm{OE}$

$$
\begin{aligned}
& =R-R \cos \frac{\phi}{2} \\
& =R\left(1=\cos \frac{\phi}{2}\right)=R \text { versine } \frac{\phi}{2} \ldots \ldots(\text { Eqn. 11.7 })
\end{aligned}
$$

Designation of Curves:

A curve may be designated either by the radius or by the angle subtended at the centre by a chord of particular length In India, a curve is designated by the angle (in degrees) subtended at the centre by a chord of 30 metres (100 ft .) length. This angle is called the degree of the curve (D).

The relation between the radius and the degree of the curve may be determined as follows:

Fig. 11.6

Let $\mathrm{R}=$ The radius of the curves in meters

$D=$ The degree of the curve

$\mathrm{MN}=$ The chord, 30m long

$P=$ The mid-point of the chord
In $\triangle \mathrm{OMP}, \mathrm{OM}=\mathrm{R}$

$$
\begin{gathered}
\mathrm{MP}=\frac{1}{2} \mathrm{MN}=15 \mathrm{~m} \\
\angle \mathrm{MOP}=\frac{\mathrm{D}}{2}
\end{gathered}
$$

Then, $\sin \frac{\mathrm{D}}{2} \equiv \frac{\mathrm{MP}}{\mathrm{OM}}, \frac{15}{\mathrm{R}}$
or

$$
\begin{equation*}
R=\frac{15}{\sin \frac{D}{2}} \quad \text { (Exact) } \tag{Eqn.11.8}
\end{equation*}
$$

But when D is small, $\sin \frac{D}{2}$ may be assumed approximately equal to $=\frac{\mathrm{D}}{2}$ in radians.

$$
\begin{aligned}
& \mathrm{R}=\frac{15}{\frac{\mathrm{D}}{2} \times \frac{\pi}{180^{\circ}}}=\frac{15 \times 360}{\pi \mathrm{D}} \\
& =\frac{171.87}{\mathrm{D}}
\end{aligned}
$$

or say, $\mathrm{R}=\frac{1719}{\mathrm{D}} \quad$ (approximate)

The approximate relation holds good up to 5° curves. For higher degree curves, the exact relation should be used.

Methods of Curve Ranging:

A curve may be set out:

1. By linear methods, where chain and tape are used.
2. By angular or instrumental methods, where a theodolite with or without a chain is used.

Before starting setting out a curve by any method, the exact positions of the tangent points between which the curve lies, must be determined.

For this, proceed as follows: (Fig. 11.5)
(i) Having fixed the directions of the straights, produce them to meet at point (B).
(ii) Set up a theodolite at the intersection point (B) and measure the angle of intersection (I). Then find the deflection angle (ϕ) by subtracting (I) from 180°. i.e., $\phi=180^{\circ}$ \qquad
(iii) Calculate the tangent length from the Eqn. 11.3:

$\left(\right.$ tan lenght $\left.=R \tan \frac{\Phi}{2}\right)$

(iv) Measure the tangent length $\left(B T_{1}\right)$ backward along the rear tangent $B A$ from the intersection point B, thus locating the position of T_{1}.
(v) Similarly, locate the position of T_{2} by measuring the same distance forward along the forward tangent $B C$ from B,

Having located the positions of the tangent points T_{1} and T_{2}; their changes may be determined. The change of T_{1} is obtained by subtracting the tangent length from the known change of the intersection point B. And the change of T_{2} is found by adding the length of the curve to the change to T_{1}.

Then the pegs are fixed at equal intervals on the curve. The interval between the pegs is usually 30 m or one chain length. This distance should actually be measured
along the arc, but in practice it is measured along the chord, as the difference between the chord and the corresponding arc is small and hence negligible. In order that this difference is always small and negligible, the length of the chord should not be more than $1 / 20$ th of the radius of the curve. The curve is then obtained by joining all these pegs.

The distances along the centre line of the curve are continuously measured from the point of beginning of the line up to the end, i.e., the pegs along the centre line of the work should be at equal interval from the beginning of the line to the end. There should be no break in the regularity of their spacing in passing from a tangent to a curve or from a curve to a tangent.

For this reason, the first peg on the curve is fixed at such a distance from the first tangent point $\left(T_{1}\right)$ that its change becomes the whole number of chains i.e. the whole number of peg interval. The length of the first chord is thus less than the peg interval and is called as a sub- chord. Similarly, there will be a sub chord at the end of the curve. Thus, a curve usually consists of two-chords and a number of full chords. This is made clear from the following example.

Linear Methods of Setting out Curves

The following are the methods of setting out simple circular curves by linear methods and by the use of chain and tape: 1. By ordinates from the Long chord 2. By Successive Bisection of Arcs. 3. By Offsets from the Tangents. 4. By Offsets from Chords Produced.

Method \# 1. By Ordinates from the Long Chord (Fig. 11.8):
Let T1T2=L= the length of the Long chord
$E D=00=$ the offset at mid-point (e) of the long chord (the versed sine)
$P Q=O x=$ the offset at distance x from E
Draw QQ1 parallel to T1 T2 meeting DE at Q1

Fig. 11.8
Join $O Q$ cutting $T_{1} T_{2}$ in P_{1}.
From the $\quad \triangle O Q Q_{1}, O Q^{2}=Q Q_{1}{ }^{2}+O Q_{1}{ }^{2}$
But $\quad O Q=\mathrm{R} ; \mathrm{QQ}_{1}=x$
and $\quad \mathrm{OQ}_{1}=\mathrm{OE}+\mathrm{EQ}_{1}=\left(\mathrm{R}-\mathrm{Q}_{3}\right)+\mathrm{O}_{x}$

$$
\mathrm{R}^{2}=x^{2}\left\{\left(\mathrm{R}-\mathrm{O}_{0}\right)+\mathrm{O}_{0}\right\}^{2}
$$

or

$$
\left(\mathrm{R}-\mathrm{O}_{0}\right)+\mathrm{O}_{x}=\sqrt{ } \mathrm{R}^{2}-x^{2}
$$

Hence

$$
\mathrm{O}_{x}=\sqrt{\mathrm{R}^{2}-x^{2}}-\left(\mathrm{R}-\mathrm{O}_{\infty}\right)
$$

(Exact)

Where

$$
\mathrm{O}_{0}=\mathrm{ED}=\mathrm{OD}-\mathrm{OE}
$$

$$
=\mathrm{R}-\sqrt{\mathrm{R}^{2}\left(\frac{\mathrm{~L}}{2}\right)^{2}}
$$

When the radius of the curve is large as compared with the length of the long chord, the offset may be equated by the approximate formula which is derived as follows:

Here O_{x} is assumed to be equal to the radial ordinate QP_{1}.

$$
\mathrm{QP} \times 2 \mathrm{R}=\mathrm{T}_{1} \mathrm{P} \times \mathrm{PT}_{2}
$$

or

$$
\mathrm{QP}_{1}=\frac{\mathrm{T}_{1} \mathrm{P} \times \mathrm{PT}_{2}}{2 \mathrm{R}}
$$

Now $\mathrm{T}_{1} \mathrm{P}=x$, and $\mathrm{PT}_{2}=\mathrm{L}-x$

$$
\mathrm{Q}_{x}=\frac{x(\mathrm{~L}-x)}{2 \mathrm{R}}(\text { approximate }) \quad \ldots . .(\text { Eqn. 11.11) }
$$

Note:

In the exact equation (11.1), the distance x of the point P is measured from the mid-point of the long chords; while in the approximate equation (11.11), it is measured from the first tangent point (T1).

Procedure of Setting Out the Curve:

(i) Divide the long chord into an even number of equal parts.
(ii) Calculate the offsets by the equation 11.10 at each of the points of division.

Note:

1. Since the curve is symmetrical on both sides of the middle- ordinate, the offsets for the right-hand half of the curve are the same as those for the left-hand half.

ADVERTISEMENTS:
2. If the offsets are found by the approximate equation (11.11), the long chord should be divided into a convenient number of equal parts and the calculated offsets laid out at each of the points of division.

This method is used for setting out short curves e.g., curves for street bends.

Method \# 2. By Successive Bisections of Arcs (Fig 11.10):

It is also known as Versine Method. Join T1 T2 and bisect it at E. Set out the offset ED the versed since equal to:
$R\left(1-\cos \frac{\phi}{2}\right.$, thus fixing the point Don the curve

Fig. 11.10.

Join T1D and DT2 and bisect them at F and G respectively. Then set outsets FH and GK at F and G each equal to $R\left(1-\cos \frac{\Phi}{4}\right)$ thus fixing two more points H and K on the curve. Then each of the offsets to be set out at mid points of the chords T1H, HD, DK and KT2 is equal to $R\left(1-\cos \frac{\Phi}{8}\right)$.By repeating this process, set out as many point as are required.

This method is suitable where the ground outside the curve is not favorable to the tangents.

Method \# 3. By Offsets from the Tangents:

The offsets may be either radial or perpendicular to the tangents.
(a) By Radial Offsets (Fig 11.11a):

Fig 11.11 (a)

Let $\mathrm{O}_{x}=\mathrm{PP}_{1}=$ the radial offset at P at a distance of x from T_{1} along the tangent AB

$$
\begin{aligned}
& \mathrm{PP}_{1}=\mathrm{OP}-\mathrm{OP}_{1} \text {, where } \mathrm{OP}=\sqrt{\mathrm{R}^{2}+x^{2}} \text { and } \mathrm{OP}_{1}=\mathrm{R} \\
& \qquad \mathrm{O}_{x}=\sqrt{\mathrm{R}^{2}+x^{2}}-\mathrm{R} \quad \text { (exact) } \ldots \quad \ldots \text { (Eqn. 11.12) }
\end{aligned}
$$

When the radius is large, the offsets may be calculated by the approximate formula, which may be derived as under:

$$
\begin{array}{ll}
& \mathrm{PT}_{1}{ }^{2}=\mathrm{PP}_{1} \times\left(2 \mathrm{R}+\mathrm{PP}_{1}\right) \\
\text { i.e. } & x^{2}=\mathrm{O}_{x}\left(2 \mathrm{R}+\mathrm{O}_{x}\right)=2 \mathrm{RO}_{x}+\mathrm{O}_{x}{ }^{2}
\end{array}
$$

Since $\mathrm{O}_{x}{ }^{2}$ is very small as compared with 2 R , it may be neglected.

$$
\begin{align*}
& \mathrm{x}^{2}=2 \mathrm{R} \cdot \mathrm{O}_{\mathrm{x}} \\
& \text { or } \quad \mathrm{O}_{\mathrm{x}}=\frac{x^{2}}{2 \mathrm{R}} \quad \text { (approximate) }
\end{align*}
$$

(b) By Offsets perpendicular to the Tangents (Fig 11.11,b):

Let $\mathrm{O}_{x}=\mathrm{PP}_{1}=$ the perpendicular offset at P at a distance of x from T_{1} along the tangent AB .

Draw $\mathrm{P}_{1} \mathrm{P}_{2}$ parallel to BT_{1}, meeting OT_{1} at P_{2}
Then $\mathrm{P}_{1} \mathrm{P}_{2}=\mathrm{PT}_{1}=x ; \mathrm{T}_{1} \mathrm{P}_{2}=\mathrm{PP}_{1}=\mathrm{O}_{x}$.
Now $\quad \mathrm{T}_{1} \mathrm{P}_{2}=\mathrm{OT}_{1}-\mathrm{OP}_{2}$
where $\mathrm{OT}_{1}=\mathrm{R}$, and $\mathrm{OP}_{2}=\sqrt{\mathrm{R}^{2}-x^{2}}$

$$
\begin{equation*}
\text { . } \mathrm{O}_{\mathrm{x}}=\mathrm{R}-\sqrt{\mathrm{R}^{2}-x^{2}} \quad \text { (exact) } \tag{Eqn.11.14}
\end{equation*}
$$

Fig. 11.11 (b)

The approximate formula may be obtained similarly as in (a) above ,

$$
\begin{equation*}
\mathrm{O}_{x}=\frac{x^{2}}{2 \mathrm{R}} \quad \text { (approximate) } \tag{Eqn.11.15}
\end{equation*}
$$

Procedure of setting out the curve:
(i) Locate the tangent points T 1 and T 2 .
(ii) Measure equal distances, say 15 or 30 m along the tangent from T 1 .
(iii) Set out the offsets calculated by any of the above methods at each distance, thus obtaining the required points on the curve.
(iv) Continue the process until the apex of the curve is reached.
(v) Set out the other half of the curve from the second tangent.

This method is suitable for setting out sharp curves where the ground outside the curve is favourable for chaining.

Method \# 4. By Offsets from Chords Produced (Fig. 11.12):

Fig. 11.12

Let $A B=$ the first tangent; $T 1=$ the first tangent point E, F, G etc. on the successive points on the curve T1E $=\mathrm{T} 1 \mathrm{E} 1=\mathrm{C} 1=$ the first chords.

EF, FG, etc. = the successive chords of length C2, C3 etc., each being equal to the full chord.
$\angle \mathrm{BT} 1 \mathrm{E}=\alpha$ in radians $=$ the angle between the tangents BT 1 and the first chord T1E.
$\mathrm{E} 1 \mathrm{E}=\mathrm{O} 1=$ the offset from the tangent BT1
$\mathrm{E} 2 \mathrm{~F}=02=$ the offset from the chord T1E produced.
Produce T1E to E2 such tharEE2 $=$ C2. Draw the tangent DEF1 at E meeting the first tangent at D and E2F at F1.
$\angle B T 1 E=\alpha$ in the radians= the angle between the tangents BT1and the first chord T1E.
$\mathrm{E} 1 \mathrm{E}=01=$ the offset from the tangent BT1
$\mathrm{E} 2 \mathrm{~F}=\mathrm{O} 2=$ the offset from the chord T1E produced.

Produce T1E to E2 such that EE2= C2. Draw the tangent DEF1at E meeting the first tangent at D and E2Fat F1.

The formula for the offsets may be derived a under:
$\angle \mathrm{BT} 1 \mathrm{E}=\mathrm{x}$
$\angle T 1 O E=2 x$

The angle subtended by any chord at the center is twice the angle between the chord and the tangent

$$
\frac{\operatorname{arc} \mathrm{T}_{1} \mathrm{E}}{\text { Radius } \mathrm{OT}_{1}}=2 \alpha
$$

But arc $\mathrm{T}_{1} \mathrm{E}$ is approximately equal to chord $\mathrm{T}_{1} \mathrm{E}=\mathrm{C}_{1}$

$$
\begin{array}{ll}
& \frac{\mathrm{C}_{1}}{\mathrm{R}}=2 \alpha \\
\text { or } & \alpha=\frac{\mathrm{C}_{1}}{2 \mathrm{R}} \\
\text { Also } & \frac{\operatorname{arc} \mathrm{E}_{1} \mathrm{E}}{\mathrm{~T}_{1} \mathrm{E}}=\alpha
\end{array}
$$

But $\operatorname{arc} \mathrm{E}_{1} \mathrm{E}$ is approximately equal to chord $\mathrm{E}_{1} \mathrm{E}=\mathrm{O}_{1}$

$$
\mathrm{O}_{1}=\mathrm{C}_{1} \times \alpha
$$

Putting here the value of α as calculated above.

$$
\begin{align*}
& \mathrm{O}_{1}=\mathrm{C}_{1} \times \frac{\mathrm{C}_{1}}{2 \mathrm{R}}=\frac{\mathrm{C}_{1}^{2}}{2 \mathrm{R}} \quad \ldots \tag{Eqn.11.16}\\
& \mathrm{O}_{2}=\text { offset } \mathrm{E}_{2} \mathrm{~F}=\mathrm{E}_{2} \mathrm{~F}_{1}+\mathrm{F}_{1} \mathrm{~F}
\end{align*}
$$

To find out $\mathrm{F}_{2} \mathrm{~F}_{1}$, consider the two triangles $\mathrm{T}_{1} \mathrm{EE}_{1}$ and $\mathrm{EF}_{1} \mathrm{E}_{2}$
$\angle \mathrm{E}_{2} \mathrm{EF}_{1}=\angle \mathrm{DET}_{1}$ (vertically opposite angles) :
$\angle \mathrm{DET}_{1}=\angle \mathrm{DT}_{1} \mathrm{E}$, since $\mathrm{DT}_{1}=\mathrm{DE}$, both being trangents to the circle.

$$
\angle \mathrm{E}_{1} \mathrm{EF}_{1}=\angle \mathrm{DET}_{1}=\angle \mathrm{DT} T_{1} \mathrm{E}
$$

Both the Δs being nearly isosceles, may be taken as approximately similar.

$$
\begin{array}{ll}
& \\
& \frac{\mathrm{E}_{2} \mathrm{~F}_{1}}{\mathrm{EE}_{2}}=\frac{\mathrm{E}_{1} \mathrm{E}}{\mathrm{~T}_{1} \mathrm{E}_{1}} \\
\text { i.e. } & \frac{\mathrm{E}_{2} \mathrm{~F}}{\mathrm{C}_{2}}=\frac{\mathrm{O}_{1}}{\mathrm{C}_{1}} \\
\text { or } & \\
& \mathrm{E}_{2} \mathrm{~F}_{1}=\frac{\mathrm{C}_{2} \times \mathrm{O}_{1}}{\mathrm{C}_{2}} \\
& = \\
& \\
& \frac{\mathrm{C}_{2}}{\mathrm{C}_{1}} \times \frac{\mathrm{C}_{1}^{2}}{2 \mathrm{R}}=\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{2 \mathrm{R}}
\end{array}
$$

$\mathrm{F}_{1} \mathrm{~F}$ being the offset from the tangent at E , is equal to

$$
\begin{align*}
& \frac{E F^{2}}{2 R} \equiv \frac{C_{2}^{2}}{2 R} \\
& \text { the second offset, } O_{2}=\frac{C_{1} C_{2}}{2 R}+\frac{C_{2}^{2}}{2 R} \\
& =\frac{C_{2}\left(C_{1}+C_{2}\right)}{2 R} \tag{Eqn.11.17}
\end{align*}
$$

Similarly the third offset, $\mathrm{O}_{3}=\frac{\mathrm{C}_{3}\left(\mathrm{C}_{2}+\mathrm{C}_{3}\right)}{2 \mathrm{R}}$
Since
$\mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}_{1}$ \qquad .etc,

$$
\begin{equation*}
\mathrm{O}_{3}=\frac{\mathrm{C}_{2}^{2}}{\mathrm{R}} \quad \ldots . \ldots \tag{Eqn.11.18}
\end{equation*}
$$

Each of the remaining offsets 04,05 etc expect the last one $(O n)$ is equal to 03 . Since the length of the last chord is usually less than the length of the chord, the last offset,

$$
\begin{equation*}
\mathrm{O}_{n}=\frac{\mathrm{C}_{n}\left(\mathrm{C}_{n-1}+\mathrm{C}_{n}\right)}{2 \mathrm{R}} \quad \ldots \quad \ldots \tag{Eqn.11.19}
\end{equation*}
$$

(i) Locate the tangent points (T 1 and T 2) and find out their changes. From these changes, calculate lengths of first and last sub-chords and find out the offsets by using the equations 11.16 to 11.19.
(ii) Mark a point E1 along the first tangent T1B such that T1E1 equals the length of the first sub-chord.
(iii) With the zero end of the chain (or tape) at T1 and radius = T1E1, swing an arc E1E and cut off $\mathrm{E} 1 \mathrm{E}=\mathrm{O} 1$, thus fixing the first point E on the curve.
(iv) Pull the chain forward in the direction of T1E produced until the length EE2 becomes equal to the second chord C2.
(v) Hold the zero end of the chain at E. and radius $=C 2$, swing an arc E2F and cut off $\mathrm{E} 2 \mathrm{~F}=\mathrm{O} 2$, thus fixing the second point F on the curve.
(vi) Continue the process until the end of the curve is reached. The last point fixed in this way should coincide with the previously located point T2. If not, find the closing error. If it is large i.e., more than 2 m , the whole curve are moved sideways by an amount proportional to the square of their distances from the tangent point T1. The closing error is thus distributed among all the points.

This method is very commonly used for setting out road curves.

Angular Methods for Setting out Curves

The following two methods are the methods of setting out simple circular curves by angular or instrumental methods: 1. By Rankine's Tangential Angles. 2. By Two Theodolites.

Method \# 1. Rankine's Method of Tangential or Deflection Angles: (Fig. 11.14):

In this method, the curve is set out by the tangential angles (also known as deflection angles) with a theodolite and a chain (or tape). The method is also called as chain and theodolite method.

The deflection angles are calculated as follows:

Fig. 11.14

Let T1 and T2 be the tangent points and $A B$ the first tangent to the curve.

D, E, F, etc. =the successive points on the curve,
$R=$ the radius of the curve.
C1, C2, C3 etc. $=$ the lengths of the chords T1D, DE, EF etc., i.e., 1st, 2 nd, 3 rd chords etc.

ADVERTISEMENTS:
$\delta 1, \delta 2, \delta 3$ etc. $=$ the tangential angles which each of the chords $\mathrm{T} 1 \mathrm{D} 1, \mathrm{DE}, \mathrm{EF}$, etc., makes with the respective tangents T1, D, E. etc.
$\Delta 1, \Delta 2, \Delta 3$ etc. $=$ the total tangential or deflection angles which the chords T1D, $D E, E F$, etc. make with the first tangent $A B$.

Now the chord $\mathrm{T}_{1} \mathrm{D}$ is approximately equal to $\operatorname{arc} \mathrm{T}_{1} \mathrm{D}=\mathrm{C}_{1}$

$$
\begin{aligned}
& \angle \mathrm{BT}_{1} \mathrm{D}=\delta_{1}=\frac{1}{2} \angle \mathrm{~T}_{1} \mathrm{OD}=2 \delta_{1} \angle \mathrm{~T}_{1} \mathrm{OD}=2 \delta_{1} \\
& \frac{\operatorname{arc} \mathrm{~T}_{1} \mathrm{D}}{\text { Radius } \mathrm{OT}_{1}}=\angle \mathrm{T}_{1} \mathrm{OD} \text { in radians }
\end{aligned}
$$

or

$$
\frac{\mathrm{C}_{1}}{\mathrm{R}}=2 \delta_{1} \text { radians }
$$

or $\quad \delta_{1}=\frac{C_{1}}{R}$ radians

$$
=\frac{\mathrm{C}_{1}}{2 \mathrm{R}} \times \frac{180}{\pi} \text { degrees }
$$

$$
\begin{equation*}
=\frac{C_{1}}{2 R} \times \frac{180}{\pi} \times 60 \text { minutes } \tag{Eqn.11.20}
\end{equation*}
$$

Similarly, $\delta_{2}=1718.9 \frac{C_{2}}{R} ; \delta_{3}=1718.9 \frac{C_{3}}{R}$; and so on

$$
\begin{equation*}
\delta_{n}=1718.9 \frac{\mathrm{C}_{n}}{\mathrm{R}} \text { minutes } \quad \ldots \tag{Eqn.11.21}
\end{equation*}
$$

Since each of the chord lengths C2, C3, C4............. Cn-1 is equal to the length of the full chord, $\delta 2=\delta 3=\delta 4$. \qquad $\delta \mathrm{n}-1$.

The total tangential angle (Δ_{1}) for the first chord ($\mathrm{T}_{1} \mathrm{D}$)

$$
\begin{aligned}
& = & \angle \mathrm{BT} T_{1} \mathrm{D}=\delta_{1} \\
\therefore & & \Delta_{1}=\delta_{1}
\end{aligned}
$$

The total tangential angle $\left(\Delta_{2}\right)$ for the second chord $(\mathrm{DE})=\angle \mathrm{BT}_{1} \mathrm{E}$ But $\quad \angle \mathrm{BT}_{1} \mathrm{E}=\angle \mathrm{BT}_{1} \mathrm{D}+\angle \mathrm{DT}_{1} \mathrm{E}$

It is well known preposition of geometry that the angle between the tangent and a chord equals the angle which the chord subtends in the opposite segment.

Now $\angle D T 1 E$ is the angle subtended by the chord DE in the opposite segment, therefore, it is equal to the tangential angle ($\delta 2$) between the tangent D and the chard DE

$$
\begin{array}{ll}
\therefore & \Delta_{2}=\delta_{1}+\delta_{2}=\Delta_{1}+\delta_{2} \\
\text { Similarly, } & \Delta_{3}=\delta_{1}+\delta_{2}+\delta_{3}=\Delta_{2}+\delta_{3} \\
. & \Delta_{n}+\delta_{1}+\delta_{2}+\delta_{3} \ldots \ldots \ldots \ldots \ldots+\delta_{n} . \ldots \\
& =\Delta_{n-1}+\delta_{n}
\end{array}
$$

Check:
The total deflection angle BT1 T2 $=\Delta n=\frac{\Phi}{2}$
where ϕ is the deflection angle of the curve.
If the degree of die curve (D) is known, the deflection angle for 30 m chord is equal $1 / 2 \mathrm{D}$ degrees, and that for the sub-chord of length C1,

$$
\begin{align*}
& =\frac{\mathrm{C}_{1}}{30} \times \frac{\mathrm{D}}{2} \text { degrees } \\
\delta_{1} & =\frac{\mathrm{C}_{1} \times \mathrm{D}}{60} ; \quad \delta_{2}=\delta_{3} \ldots \ldots \ldots . \delta_{n-1}=\frac{\mathrm{D}}{2} ; \\
\delta_{n} & =\frac{\mathrm{C}_{n} \times \mathrm{D}}{60} \quad \ldots \quad \ldots \tag{Eqn.11.23}
\end{align*}
$$

Procedure of Setting out the Curve:
(i) Locate the tangent points (T1 and T2) and find out their changes. From these changes, calculate the lengths of first and last sub-chords and the total deflection angles for all points on the curve as described above.
(ii) Set up and level the theodolite at the first tangent point (T1).
(iii) Set the Vernier A of the horizontal circle to zero and direct the telescope to the ranging rod at the intersection point B and bisect it.
(iv) Loosen the Vernier plate and set the Vernier A to the first deflection angle $\Delta 1$, the telescope is thus directed along T1D. Then along this line, measure T1D equal in length to the first sub-chord, thus fixing the first point D on the curve.
(v) Loosen the upper clamp and set the Vernier A to the second deflection angle $\Delta 2$, the line of sight is now directed along T1E. Hold the zero end of the chain at D and swing the other end until the arrow held at that end is bisected by the line of sight, thus fixing the second point (E) on the curve.
(vi) Continue the process until the end of the curve is reached. The end point thus located must coincide with the previously located point (T2). If not, the distance between them is the closing error. If it is within the permissible limit, only the last few pegs may be adjusted; otherwise the curve should be set out again.

Note:

In the case of a left-handed curve, each of the values $\Delta 1, \Delta 2 \Delta 3$ etc, should be subtracted from 360° to obtain the required value to which the vernier is to be set i.e. the vernier should be set to $\left(360^{\circ}-\Delta 1\right)$, $\left(360^{\circ}-\Delta 2\right),\left(360^{\circ}-\Delta 2\right)$ etc. to obtain the $1 \mathrm{st}, 2 \mathrm{n}, 3 \mathrm{rd}$ etc, points on the curve.

This method gives highly accurate results and is most commonly used for railway and other important curves.

Table of Deflection Angles

Point	Chainage in metres	Length of chord in metres	Deflection Angle (δ)	Total Angle (Δ)	Thendolite vernier Reading	Remarks
T_{1}	$39+6.30$	$\alpha \cdots$	$0 \cdots$	\cdots		
1	$40+00$	23.70	15830	15830	15840	The curve is a
2	$41+00$	30	23000	42830	42840	right-handed
3	$42+00$	30	23000	65830	65840	one.
4	$43+00$	30	23000	92830	92840	The least count of the instrument in 5
$44+00$	30	23000	115830	115840		
6	$45+00$	30	23000	142830	142840	
7	$46+00$	30	23000	165840	165840	20 "
T_{2}	$46+12.30$	12.30	10130	180000	180000	

Method \# 2. Two-Theodolite Method (Fig. 11.16):

This method is very useful in the absence of chain or tape and also when ground is not favorable for accurate chaining. This is simple and accurate method but requires essentially two instruments and two surveyors to operate upon them, so it is not as commonly used as the method of deflection angles. In this method, the property of circle 'that the angle between the tangent and the chord equals the angle which that chord subtends in the opposite segment' is used.

Fig. 11.16

Let D, E, F, etc. be the points on the curve. The angle $(\Delta 1)$ between the tangent T1B and the chord T1D i.e. $\angle B T 1 D=\angle T 1 T 2 D$. Similarly, $\angle B T 1 E=\triangle 2=\angle T 1 T 2 E$, and $\angle B T 1 F=\Delta 3=\angle T 1 T 2 F$ etc. The total deflection angles $\Delta 1, \Delta 2, \Delta 3$, etc. are calculated from the given data as in the first method (i.e. as in Rankine's method of deflection angles).

Procedure of setting out the curve:

(i) Set up two theodolites, one at T1 and the other at T2.
(ii) Set Vernier of the horizontal circle of each of the theodolites to zero.
(iii) Turn the instrument at T1 to sight the intersection point B and that at T2 to sight T1.
(iv) Set the Vernier of each of the instruments to read the first deflection angle $\Delta 1$. Now the line of sight of the instrument at T1 is along T1D and that of the instrument at T2 is along T2D. Their point of intersection is the required point on the curve Direct the assistant to move the ranging rod until it is sighted exactly by both the theodolites, thus fixing the point D on the curve.
(v) Then set the Vernier of each of the instrument to the second deflection angle $\Delta 2$, proceed as before to obtained the second point (E) on the curve.
(vi) Repeat the process until the whole curve is set out.

Note:

It may so happen that the point T1 may not be visible from the point T2. In such a case, direct the telescope of the instrument at T2 towards B with the Vernier A set to zero. Now loosen the Vernier plate and set the Vernier A to read an angle of $\left(360^{\circ}-\frac{\Phi}{2}\right)$ curve, set the Vernier A to read $\left(360^{\circ}-\frac{\Phi}{2}+\Delta_{1}\right)$. Similarly, for the second point E, set the Vernier A to $\left(360^{\circ}-\frac{\Phi}{2}+\Delta_{2}\right)$, and so on.

Transition Curves:

A non-circular curve of varying radius introduced between a straight and a circular curve for the purpose of giving easy changes of direction of a route is called a transition or easement curve. It is also inserted between two branches of a compound or reverse curve.

Advantages of providing a transition curve at each end of a circular curve:
(i) The transition from the tangent to the circular curve and from the circular curve to the tangent is made gradual.
(ii) It provides satisfactory means of obtaining a gradual increase of super-elevation from zero on the tangent to the required full amount on the main circular curve.
(iii) Danger of derailment, side skidding or overturning of vehicles is eliminated.
(iv) Discomfort to passengers is eliminated.

Conditions to be fulfilled by the transition curve:
(i) It should meet the tangent line as well as the circular curve tangentially.
(ii) The rate of increase of curvature along the transition curve should be the same as that of increase of super-elevation.
(iii) The length of the transition curve should be such that the full super-elevation is attained at the junction with the circular curve.
(iv) Its radius at the junction with the circular curve should be equal to that of circular curve.

There are three types of transition curves in common use:
(1) A cubic parabola,
(2) A cubical spiral, and
(3) A lemniscate, the first two are used on railways and highways both, while the third on highways only.

When the transition curves are introduced at each end of the main circular curve, the combination thus obtained is known as combined or Composite Curve.

Super-Elevation or Cant:

When a vehicle passes from a straight to a curve, it is acted upon by a centrifugal force in addition to its own weight, both acting through the centre of gravity of the vehicle. The centrifugal force acts horizontally and tends to push the vehicle off the track.

In order to counteract this effect the outer edge of the track is super elevated or raised above the inner one. This raising of the outer edge above the inner one is called super elevation or cant. The amount of super-elevation depends upon the speed of the vehicle and radius of the curve.

Fig. 11.24

Let:

W = the weight of vehicle acting vertically downwards.
$\mathrm{F}=$ the centrifugal force acting horizontally,
$\mathrm{v}=$ the speed of the vehicle in meters/sec.
$\mathrm{g}=$ the acceleration due to gravity, 9.81 meters $/ \mathrm{sec}^{2}$.
$R=$ the radius of the curve in meters,
$\mathrm{h}=$ the super-elevation in meters.
$\mathrm{b}=$ the breadth of the road or the distance between the centres of the rails in meters.

Then for equilibrium, the resultant of the weight and the centrifugal force should be equal and opposite to the reaction perpendicular to the road or rail surface.

The centrifugal force, $\mathrm{F}=\frac{\mathrm{W} v^{2}}{g \mathrm{R}}$

$$
\therefore \quad \frac{\mathrm{F}}{\mathrm{~W}} \equiv \frac{v^{2}}{g \mathrm{R}}
$$

If θ is the inclination of the road or rail surface, the inclination of the vertical is also θ

$$
\tan \theta=\frac{d c}{a c}=\frac{\mathrm{F}}{\mathrm{~W}}=\frac{v^{2}}{g \mathrm{R}}
$$

uper-elevation $=b \tan \theta$.

$$
=\frac{b v^{2}}{g R} \quad \ldots \quad \ldots \quad \text { (Eqn. 11.28) }
$$

Characteristics of a Transition Curve (Fig 11.25):

Here two straights $A B$ and $B C$ make a deflection angle Δ, and a circular curve $E E^{\prime}$ of radius R, with two transition curves $T E$ and $E^{\prime} T^{\prime}$ at the two ends, has been inserted between the straights.
(i) It is clear from the figure that in order to fit in the transition curves at the ends, a circular imaginary curve ($\mathrm{T}_{1} \mathrm{~F}_{1} \mathrm{~T}_{2}$) of slightly greater radius has to be shifted towards the centre as (E_{1} EFE E1. The distance through which the curve is shifted is known as shift (S) of the curve, and is equal to $\frac{\mathrm{L}^{2}}{24 \mathrm{R}}$ where L is the length of each transition curve and R is the radius of the desired circular curve ($E F E^{\prime}$). The length of shift ($\left(T_{1} E_{1}\right)$ and the transition curve (TE) mutually bisect each other.

Fig. 11.25:

Fig 1125
(ii) The tangent length for the combined curve
$=\mathrm{OT}_{1} \tan \frac{\Delta}{2}+\frac{\mathrm{L}}{2}$
$=(R+S) \tan \frac{\Delta}{2}+\frac{L}{2}$
(iii) The spiral angle $\phi_{1}=\frac{\frac{L}{2}}{R}=\frac{L}{2 R}$ radians
(iv) The central angle for the circular curve:
(v) Length of the circular curve EFE'

$=\frac{\pi R\left(\Delta-2 \phi_{1}\right)}{180^{\circ}}$, where Δ and ϕ_{1} are in degrees.

(vi) Length of the combined curve TEE' ${ }^{\prime \prime}$ "

$$
\begin{aligned}
& =\mathrm{TE}+\mathrm{EE}^{\prime}+\mathrm{E}^{\prime} \mathrm{T}^{\prime} \\
& =\mathrm{L}+\frac{\pi \mathrm{R}\left(\Delta-2 \phi_{1}\right)}{180^{\circ}}+\mathrm{L} \\
& =\frac{\pi \mathrm{R}\left(\Delta-2 \phi_{1}\right)}{180^{\circ}}+2 \mathrm{~L}
\end{aligned}
$$

(vii) Change of beginning (T) of the combined curve $=$ Change of the intersection point (B)-total tangent length for the combined curve (BT).
(viii) Change of the junction point (E) of the transition curve and the circular curve $=$ Change of $\mathrm{T}+$ length of the transition curve (L).
(ix) Change of the other junction point (E^{\prime}) of the circular curve and the other transition curve-change of $E+$ length of the circular curve.
(x) Change of the end point (T^{\prime}) of the combined curve = change of $\mathrm{E}^{\prime}+$ length of the transition curve.

Check:

The change of T thus obtained should $b e=$ change of $T+$ length of the combined curve.

Note:

The points on the combined curve should be pegged out with through change so that there will be sub-chords at each end of the transition curve and of the circular curve.
(xi) The deflection angle for any point on the transition curve distant I from the beginnings of combined curve (T),

$$
\begin{aligned}
\alpha & =\frac{l^{2}}{6 \mathrm{RL}} \text { radians }=\frac{1800 l^{2}}{\pi \mathrm{RL}} \text { minutes. } \\
& =\frac{573 l^{2}}{\mathrm{RL}} \text { minutes. }
\end{aligned}
$$

Check:

The deflection angle for the full length of the transition curve:

$$
\begin{aligned}
\alpha & =\frac{l^{2}}{6 \mathrm{RL}}=\frac{\mathrm{L}^{2}}{6 \mathrm{RL}} \quad(\because l=\mathrm{L}) \\
& =\frac{\mathrm{L}}{6 \mathrm{R}} \text { radians }=\frac{1}{3} \phi_{1}
\end{aligned}
$$

(xii) The deflection angles for the circular curve are found from:

$$
\delta_{n}=1718.9 \frac{\mathrm{C}_{n}}{\mathrm{R}} \text { minutes. }
$$

Check:

The deflection angle for the full length of the circular curve:
$\Delta_{\mathrm{n}}=\frac{1}{2} \times$ Central angle
i.e., $\Delta_{n}=\frac{1}{2} \times\left(\Delta-2 \emptyset_{1}\right)$
(xiii) The offsets for the transition curve are found from:

Perpendicular offset, $y=\frac{x^{3}}{6 R L}$, where x is measured along the tangent $T B$

Tangentail offset, $y=\frac{l^{3}}{6 R L}$, where I is measured along the curve

Check: (a) The offset at half the length of the transition curve,

$$
\begin{aligned}
y & =\frac{l^{3}}{6 \mathrm{RL}}=\frac{(L / 2)^{3}}{6 \mathrm{RL}}(\because l=\mathrm{L} / 2) \\
& =\frac{\mathrm{L}^{2}}{48 \mathrm{R}}=\frac{1}{2} \mathrm{~S}
\end{aligned}
$$

(b) The offset at junction point on the transition curve,

$$
\begin{aligned}
y=\frac{l^{3}}{6 \mathrm{RL}}=\frac{\mathrm{L}^{3}}{6 \mathrm{RL}} & =\frac{\mathrm{L}^{2}}{6 \mathrm{R}}(\because l=\mathrm{L}) \\
& =4 \mathrm{~S}
\end{aligned}
$$

(xiv) The offsets for the circular curve from chords producers are found from:

$$
\mathrm{O}_{n}=\frac{C_{n}\left(C_{n=1}+C_{n}\right)}{2 R}
$$

Method of Setting Out Combined Curve by reflection Angles (Fig. 11.25):

The first transition curve is set out from T by the deflection angles and the circular curve from the junction point E. The second transition curve is then set out from T' and the work is checked on the junction point E' which has been previously fixed from E.
(i) Assume or calculate the length of the transition curve.
(ii) Calculate the value of the shift by:
$\mathrm{S}=\frac{L^{2}}{24 R}$
(iii) Locate the tangent point T by measuring backward the total tangent length BT (article 11.14, ii) from the intersection point B along $B A$, and the other tangent T by measuring forward the same distance from B along $B C$.
(iv) Set up a theodolite at T, set the Vernier A to zero and bisect B.
(v) Release the upper clamp and set the Vernier to the first deflection angle (x_{1}) As obtained from the table of deflection angles, the line of sight is thus directed along the first point on the transition curve. Place zero end of the tape at T and measure
along this line a distance equal to first sub chords, thus locating first point on the transition curve.
(vi) Repeat the process, until the end of the curve E is reached.

Check:

The last deflection angle should be equal to $\phi_{1} / 3$, and the perpendicular offset from the tangent TB for the last point E should be equal to $4 S$.

Note:

The distance to each of the successive points on the transition curve is measured from T.
(vii) Having laid the transition curve, shift the theodolite to E and set it up and level it accurately.
(viii) Set the Vernier to a reading($360^{\circ}-2 / 3 \quad \phi 1$) for a right-hand curve (or 2/3 $\quad \phi$ 1) for a left-hand curve and lake a back sight on T. Loosen the upper clamp and turn the telescope clockwise through an angle $2 / 3 \quad \phi 1$ the telescope is thus directed towards common tangent at E and the Vernier reads 360°. Transit the telescope, now it points towards the forward direction of the common tangent at E i.e. towards the tangent for the circular curve.
(ix) Set the Vernier to the first tabulated deflection angle for the circular curve, and locate the first point on the circular curve as already explained in simple curves.
(x) Set out the complete circular curve up to E^{\prime} in the usual way

Check:

The last deflection angle should be equal to $\frac{1}{2}\left(\Delta-2 \Phi_{1}\right)$
(xi) Set out the other transition curve from T as before. The point E^{\prime} to be set from T should be the same as already set out from E.

Method of Setting Out a Combined Curve by Tangential Offsets (Fig. 11.25):
(i) Assume or calculate the length of the transition curve.
(ii) find the value of the shift train, $S=\frac{L^{2}}{24 R}$
(iii) Locate the tangent points T and T as in article (11.15, iii),
(iv) Calculate the offset for the transition curve as in article (11.14 xiv)
(v) Locate die points on the transition curve as well as on the circular curves by setting out the respective offsets.

UNIT - 5
MODERN FIELD SURVEY SYSTEMS

EDH

* Measurement principle of EDM
* characteristics of EDM.
* Accuracy in EDM

Total station

* Introduction
* Advantages and types
* Applications
* field procedure

GPS

* Introduction
* working principal
* DGps receivers
* Application
* lidar

Methods of distance measurement

1. DDM (er) Direct distance measurement:-

This is mainly done by chaining (or) Taping.
2. ODM (or) optical distance measurement :-

This measurement is conducted by tachometry, borisital subsense method or telemetric method. These ane carried out with the help of optical wedge attachment
3. EDM Electronic electromagnetic Distance measuremm.

What is EDM:

* It is a surveying instrument and It is us $\in d$ for measuring distance electronically, between two through the electromagnetic rays. 100 km

The wave's are used in EDM.

1. Micro wave - iongrange, freq 3-30 GH2, Tellusometor

2 Visible light -medium, freq $5 \times 10^{111} 12$, Geodimeler
3. Infrared - shoat, freq $3 \times 10^{14} \mathrm{~Hz}$. Arstomat

Basic functions:-

Generation, \rightarrow modulation \rightarrow Tansmission \rightarrow propogation \rightarrow Reflection -
Reception - Demodulation \rightarrow distance meascistanent

Applications of TVs

* Detailed survey
* controlled survey
* Height measurement
* Fixing of missing pillars
* Reseaction
* Area calculations $6+c$
* Remote distare measurement NROHS(or) missing lip measurement.
$1^{\text {st }}$ unit formulas
Tomperatuno $L_{t}=\alpha\left(r_{m}-T_{0}\right) L$
length $=\frac{L}{L} \times$ measured distance
pule $=\left(\frac{P-P_{0}}{A E}\right) c$.
sag $=\frac{c \omega^{2}}{2 \sin ^{2} p^{2}} \quad$ slope $=\frac{h^{2}}{2^{2}} \quad L(1-\cos 0)$

QCB - to was owe
NE WC
SE 180-WCD

s
180

B W NCO- 180

$$
B D=F O \pm 180
$$

NW 360- WCO

Included angles
Indeeded angle $=$ B.B of previous lire - F-B of reach
check $\quad(2 n-u) 90$

Raise and fall method Height of instrument
In these method where He place is shift at that point is FS and that shifted front side is BS.

Unit - 5

Electronic
Distance Measurement and

Remote Sensing

GIT
Geographic Information system

* It is an computer based, tool for mapping and analysing things that exist and events that happeris on earth.
* Gie technology integrates common database operatation such as query, qstatictical analysis with unique visualization and geographic analys is benifity offered by analysis
principles of GIS
* It containdstare's information a bout the world as a collection of thematic layer that can bp linked together by geography.
* Geographic references

Themes
drainage system land use pattern - Road Network water Distribution Network. Topography

Time period.

* It contain's either an explicit geographic reference, such as latitude and longitude (or) Natimal grid coordinate (on) an implicit reference such as address, postal code, concur Name, forest Details etc.

Components of Gil
A working Gis Integrates five key component's

1. Soft ware
2. Hardware
3. Data
4. people
5. Method.
6. Software

* Tool for input 4 manipulation of GIS * A database Managerrient system

2. Hardware

* It's a computer on which Gif operates.

3. Data

Most important contact 4 component of a GIS is the Data geographic data and related tabulated data (an be collected in house (or) purchased from a commercial data provider 4. people.

Gis technology is of limited value with out the people who manage the system and Develop plan's for applying it to real world problem's.

Method
A successful bis operates according to a well Designed plan an Method.

Application: of GIS: θ

* Inconcept of Geographic information infrastructure has brought about a dramatic philosophical and technological revolution in the Develspement of wis
* Gus is became an important tool for Government officials to manage land and Natural Resources.

Major operation areas
of GIS

1. Academic

* Research in engineering / sciences
* Humanities \& Science.

2. Industry

* Surveying \& mapping
x Transportation -vehicle tracking
$*$ forestry and Resources.
3 Business
- Bonking
* Real cite - Building management Scanned with CamScanner

Government

* National topography mapping
* voting
* Surveying and mapping
* waste water service I management

Military

* Training, command \& control
* Intelligence gathering.

Electronic Distance Measurement
EDO
Introduction

* EDM's are mountable with optic/ electronic thodolites.
* EDM was first Introduced in 1950.
* Initially EDM used to Measure Distance
* Electronic theodolite was rapid a advance technology they are available in lighter, simpler and less expansive instruments Nowadays.
Principle's of EDM

Where
C - Velocity in $\mathrm{km} / \mathrm{sec}$
λ - wave length in metres
f - frequency in H_{2} (cyclelsec):

* The principle of EDM currently used in Total station. Distance Measurement through waves

Types of EDM

Depending upon Different wave length

1. Infroved wave Instrument
2. light wave system
3. Microwave Instrument
4. Geodimeter
5. Tellurometer.
6. Distomat
7. Electronic theodolite.

Infrared system I Instrument

* This equipement helped \& working with modulated infrared wave's.
* The use of Infrared Instrument is high in (ir) engineering furry Work's.
* al though these type of Instruments used to measure maximum Distance of about 3 to 5 km only.
* Distomatés, electronic theodolites of total station comes under this catogory.
* In this system, Instrument; are having accuracy of $\pm 10 \mathrm{~mm}$ per km can be obtained.

Electronic theodolites of
Total Station

* Vernier theodolite have least count of $20^{\prime \prime}$ (or) $10^{\prime \prime}$.
* Micro optical electronic theodolite having least count of 0.1^{11}.
* Electronic theodolites are the most accurate Intrument; for direct observations.
* These Introments works withe electronic speed \& most accurasy.

Use's of Electronic Theodolite.

* used for angle Measurement
* used for wide Distance for angular and Distance Measurement
* It is comparable with theodolite accessories
* It can connect with computer throw. RS 232 inter face connection.

Total station
Total station is a combination of electronic theodolite and EDM.

components of Total Station.

Components of Total station

* Sight collimation
* on hoard Battery
* Battary locking Lever.
- Telescope eye piele
* Teles cope focusing knob.
* Telescope grip
* Vertical motional Clamp
* Vertical Tangent screw.
* Horizontal motion clamp
* horizontal Tangent screw.
* Plate Level
* Instrument Center Mark
* Display unit
* Serial signal connection.

Types of Total station

1. Manual total station
2. Semi automatic
3. Automatic total station.
procedure

* Select a suitable position for Instrument station, which is suitable for observer to take readings.
* Remove the plastic cap from the telescope tripod.
* Instrument Height is an impartark aspect far effective and comfortable surveying process
* level up the total station to un Arbitany point.
* To occupy the existing station above reference point first koughy level up the tripod. head right above the point.
* For levelling up the circular bubble attached to the level is useful.
levelling up
* adjust the three foot screws to make Level the instrument
* after levelling measure the Height of the instrument from the center marked point on the side of the Instrument to the ground and rote that value of HI
precausioris to be taken during Total station surveying
* Do not make the total station wet.
* Tare maximum care while removed Battery and data tool from the total station.
* Never Release the handle Before total station is fixed on it
* Use Both hands to hold total station e every time.
* DO not carry tripod without Removing Total station.
* Don'r choose hot climate for Total station world.
* Because Climate may Influence in Result's and errors may occuring during those kind of activities.

Advantage's:-

* Quick setting of the instrument on the tripod using laser plumont.
* plotting and area computation at any user Required scale can be done.
* Using Robotic total station single surveyor Can perform the whole survey work's
* Integration of Data is possible \& easy to arrive Result".
* Automation of would map's and full GIS map creation is possible.

Dis advantage's

* Instrument is costly
* Skilled person's Required to perform surveying worlds
* field check is not possible.
* Result Depending upon Climatic condition's.

