AK23 Regulations
Year : | Semester : | Branch of Study : Common to All
Subject L T/CLC P | Credits
Code:23ABS9904 4 2 0 3

Subject Name:Linear Algebra and Calculus

Course Outcomes (CO): Student will be able to

1. Analyze the matrix algebraic techniques for engineering applications.

2. Understand the concept of Eigen values, Eigen vectors and quadratic forms.
3. Analyzethe mean value theorems for real timeapplications.

4. Apply the concepts of partial differentiation to functions of several variables.

5. Apply the multivariable integral calculus for computation of Area and Volume.

CO | Action Verb | Knowledge Statement Condition Criteria Blooms
level
1 | Analyze the matrix algebraic techniques for engineering L4
applications.
2 | Understand | the concept of eigen values, eigen | - L2
vectors and quadratic forms.
3 | Analyze the mean value theorems for real time L4
applications.
4 | Apply the concept of Maxima and to functions of several L3
Minima variables.
5 | Apply the multivariable integral calculus | for computation of Area L3
and volume.
Unit I: Matrices 12hrs

Rank of a matrix by Echelon form, Normal form, Cauchy-Binet formula (without proof).Inverse of Non-singular
matrices by Gauss-Jordan method,system oflinear equations:solving system of Homogeneous and Non-homogeneous
equations by Gauss Elimination method, Jacobi and Gauss Seidel Iteration methods.

Unit 11:Eigen values, Eigen vectors and Orthogonal Transformation 9hrs

Eigen values, Eigen vectors and their properties,Diagonalization of a matrix,Cayley-Hamilton theorem (without
proof),finding inverse and power of a matrix by Cayley-Hamilton theorem, Quadratic forms and Nature of the
Quadratic forms, Reduction of quadratic form to canonical forms by Orthogonal Transformation.

Unit 111: Calculus 9hrs

Mean Value Theorems:Rolle’s theorem, Lagrange’s mean value theorem with their geometrical interpretation,
Cauchy’s mean value theorem, Taylor’s and Maclaurin's theorems with remainders (without proof), problems and
applications on the above theorems.

Unit 1V: Partial differentiation and Applications(Multi Variable Calculus) 10hrs
Functions of several variables: Continuity and Differentiability, Partial derivatives, total derivatives, chain rule,
Directional derivative, Taylor’s and Maclaurin's series expansion of functions of two variables,Jacobians, Functional
dependence, Maxima and Minima of functions of two variables, method of Lagrange multipliers.

Unit V: Multiple Integrals 10hrs
Double integrals, triple integrals change of order of integration, change of Variables to polar, Cylindrical and
Spherical coordinates, Finding areas(by double integrals) and volumes (bydouble integrals and triple integrals).

Textbooks:
1. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017.
2. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.




References:

1. Thomas Calculus, George B. Thomas, Maurice D. Weir and Joel Hass,Pearson Publishers, 2018, 14th Edition.
2. Advanced Engineering Mathematics, R. K. Jain and S. R. K. lyengar,Alpha Science International Ltd., 25th

Edition(9th reprint).
3. Advanced Modern Engineering Mathematics, Glyn James, Pearsonpublishers, 2018, 5 th Edition.

4. Advanced Engineering Mathematics, Micheael Greenberg, ,Pearsonpublishers, 9 th edition.
5. Higher Engineering Mathematics, H. K Das, Er. RajnishVerma, S. ChandPublications,2014, Third Edition
(Reprint 2021)

Mapping of COs to POs

(60) PO1 PO2 | PO3 PO4 | POS | PO6 | PO7 | PO8 | PO9 PO10 | PO11 | PO12

1 3

2 2

3 3

4 3

5 3

(Levels of Correlation, viz., 1-Low, 2-Moderate, 3 High)

CO-PO mapping justification:

CO | Percentage of contact hours over | CO Program PO(s): Action verb and | Level of
the total planned contact hours Outcome BTL Correlation
Lesson Plan % correlation | Verb BTL | (PO) (for PO1 to POS) (0-3)
(Hrs)

1 10 14 2 Analyze L4 PO2 Analyze 3

2 15 214 | 3 Understand | L2 PO2 Apply 2

3 15 214 | 3 Analyze L4 PO2 Analyze 3

4 16 228 | 3 Apply L3 PO1 Apply 3

5 14 20 3 Apply L3 PO1 Apply 3

co1: Analyze the matrix algebraic techniques that are needed for engineering applications.
Action Verb: Analyze(L4)

PO2 Verbs: Analyze (L4)
CO1 Action Verb is equal toPO2verb ; Therefore correlation is high (3).

co2: Understand the concept of eigen values, eigen vectors and quadratic forms.

Action Verb: Understand (L2)

PO1 Verbs: Apply (L3)
CO2 Action Verb is low level to PO1 verb by one level; Therefore correlation is moderate (2).

co3: Analyze the mean value theorems for real life problems.

Action Verb: Analyze (L4)

PO1 Verb: Analyze (L4)
CO3 Action Verb level is equal to PO2 verb; Therefore correlation is high (3).

coa4:Apply the concept of Maxima and Minima of functions of several variables.

Action Verb: Apply (L3)
PO2 Verb: Apply (L3)
CO4 Action Verb level is equal to PO1 verb; Therefore correlation is high (3).

cos: Apply the multivariable integral calculus for computation of area and volume.
Action Verb: Apply(L3)
PO1 Verb: Apply (L3)

COS5 Action verb is high level to PO1 verb; therefore the correlation is high (3).




UNIT-I

MATRICES
Real Matrices:
REAL MATRIX: A Matrix A= (aij) is said to be a real matrix if every element a; of Alis areal

1 2 3
number. Ex:18 0 -1
5 -6 9

SYMMETRIC MATRIX: A Matrix A= (aij) is said to be a symmetric matrix if
aij=ajifor i and j .Thus A is symmetric matrix if A=AT:

1 2 3
Ex:|2 6 9

3 97

SKEW-SYMMETRIC MATRIX: A real Matrix A= (aij) is said to be a skew-symmetric matrix if aj=

-gji for every i and j. Thus A is skew-symmetric if
A=-AT

Note: Every diagonal element of a skew-symmetric matrix is necessarily zero.

0 a -b
Ex:1—-a O C
b —-¢c 0

ORTHOGONAL MATRIX: A real Matrix A= (aij) is said to be a orthogonal matrix

If Al=-AT
1 2 2
Ex: % 2 1 -2
-2 2 -1

Complex Matrices:

Complex matrix: A matrix A is called a complex matrix if the elements of A are complex.

2+3i 5
Ex: . .
6-71 —5+I




Conjugate complex matrix: If the elements of the matrix of A are replaced by their conjugate
complexes then the resulting matrix is defined as conjugate complex matrix.It is denoted by A bar

2+3i 5 2-3i 5
Ex: If A= . . ] .
6-71 —-5+i 6+71 —5-I

} , then conjugate of A = {

Hermition: A complex square matrix A is said to be a Hermition if A= A’=A"

2 1+4j 2+
1-j 1 j
2+) - 1

Skew-Hermition: A complex square matrix A is said to be skew-Hermition if A=-A’

PRy

Unitary: A complex square matrix A is said to Unitary if A*=conjugate (AT )

2-12 -1
A= _2—|.-'2 i 2—|.-'2 i 0
0 0 i

Idempotent Matrix: A square matrix is said to be Idempotent if A>=A

11
M:[D 0]

Elementary row Transformation:

1) Interchange of two rows, if it" row and j'" row are interchanged it is denoted as Ri—Rj

2) Multiplication of each element of a row with a non-zero scalar if ith row is multiplied with K then it is
denoted as Ri—>KRi

3) Multiplying every element of a row with a non-zero scalar and adding to the corresponding elements of
another row. If all the elements of ith row are multiplied with k and added to the corresponding elements of
jth row then it is denoted by Rj—>Rj+kRi

Elementary column Transformation:

1) Interchange of two rows, if it" column and j*" column are interchanged it is denoted as Ci—Cj




2) Multiplication of each element of a column with a non-zero scalar if ith column is multiplied with K then
it is denoted as Ci—>KCi

3) Multiplying every element of a column with a non-zero scalar and adding to the corresponding elements
of another column. If all the elements of ith column are multiplied with k and added to the corresponding
elements of jth column then it is denoted by Cj—Cj+kCi

Elementary Matrix:
A matrix which is obtained by applying elementary transformations in known as Elementary matrix.

Rank of a Matrix:

A matrix is said to be of rank r if

(i) It has atleast one non-zero minor of order r and

(ii) Every minor of order higher than r vanishes.

And it is denoted by p(A).

Properties:

1) The rank of a null matrix is zero.

2) For a non-zero matrix A,p(A) > 1

3) The rank of every non-singular matrix of order n is n. The rank of a singular matrix of order n is <n.
4) The rank of a unit matrix of order n is n.

5) The rank of an mxn matrix < min(m,n).

6) The rank of a matrix every element of which is unity is unity.
Different methods to find the rank of a matrix:

Method 1:

Echelon form: A matrix is said to be Echelon form if

1) Zero rows, if any, are below any non-zero row

2) The first non-zero entry in each non-zero row is equal to one

3) The number of zeros before the first non-zero elements in a row is less than the number of such zeros in
the next rows.




Ex: the rank of matrix which is in Echelon form is 3 since the no. of non-zero rows is

o O O O
O O B W
O r N B~

o O O -

Note: Apply only row operations.

Method 2:

, 0
Normal Form: Every mxn matrix of rank r can be reduced to the form | or {IO' O}

by a finite chain of elementary row or column operations.

2 -2 0 6
) 2 0 2 _ .
Ex: the rank of matrix A= 10 3 after applying elementary operations reduced to normal form as
1 -2 1 2
1000
01 00|.|I30
0010 {0 0}
0 00O

the rank of A is 3.

Finding the Inverse of a Nonsingular Matrix using Row/Column Transformations(Gauss-Jordan
Method):

1 1
2 1
1 2
EXAMPLE: Find the inverse of the matrix using the Gauss-Jordan method.
21 1 1 0 0
1 21 0 10
11 2 001
Solution: Consider the matrix A sequence of steps in the Gauss-Jordan

method are:
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EXERCISE : Find the inverse of the following matrices using the Gauss-Jordan method.

B
e
[

o X
lmm;.|__
|

<+ =
i .
RE

8. Thus, the inverse of the given matrix is




Consistency of System of Linear equations (Homogeneous and NonHomogeneous) Using Rank of the
Matrix:

Nature of solution:

1. m #n non-homogeneous with m equations and n unknowns
The system of equations AX=B is said to be

i) consistent if rank of A = rank of [AB]
i) consistent and unique solution if rank of A =rank of [AB]=r=n
Where r is the rank of A and n is the no. of unknowns.

iii) Consistent and an infinite no. of solutions if rank of A <rank of [AB] i.e., r <n. In this case
we have to give arbitrary values to n-r variables and the remaining variables can be expressed
in terms of these arbitrary values.

iv) Inconsistent if rank of A # rank of [AB]

2. m = n non-homogeneous equations with n equations and n unknowns

If A be an n-rowed non-singular matrix, the ranks of matrices A and [AB] are both n. Therefore the
system of equations AX=B is consistent i.e., possesses a solution.

3. Method of finding the rank of A and [AB]:

Reduce the augmented matrix [A:B] to Echelon form by elementary row transformations.

Ex: Discuss for what values of A and p the simultaneous equations
X+y+z =6, x+2y+3z = 10, x+2y+Az = p have

(iv)  nosolution
(v) A unique solution
(vi)  Aninfinite no. of solutions
Sol: The given equations can be written as AX=B

1 1 1]|x 6
e, (1 2 3||y|=|10
1 2 4|z Y7,




111 6
and we have the augmented matrix [AB] = |1 2 3 10
1 2 14 Y7,
11 1 . 6
101 2 . 4 |R—>R»Ri; R3—R3R;
01 2-1 U1—6
1 1 6
“ 10 2 4 R3—R3-R>
0 0 2-3 . u-10

Case-1: When  2A#3, then rank of A = 3 = rank of [AB]. So that the system of equations is consistent.
And r=3=n, so the system has unique solution.

Case-II: When A=3 and p+#10, then rank of A = 2. And rank of [AB] = 3.
Therefore rank of A # rank of [AB]. So the system is inconsistent.
Case-III: When A=3 and p=10, then rank of A = rank of [AB] = 2.
Therefore the system is consistent and has an infinite no. of solutions.
Since the no. of unknowns = n =3 >rank of A = 2.

Homogeneous linear equations

Consider the system of m homogeneous equations in n unknowns

Au Xy T A Xp Fovereee + 8 Xp =0
Aoy Xy T Qpp X Toveeeeenns + Qe Xn:0

1)

(1) can be written as AX=0




fan a2z - — an]
a1 a2 — — aon
Where A is the coefficient matrix formed by A=| = = — = 7
|ami dm2 — — amn |
[ X1 ] 0]
X2
X=| " | andB=
_Xn_ _O_

Consistency: The matrix A and [AB] are same. So rank of A = rank of [AB]
Therefore the system (1) is always consistent.

Nature of solution:

Trivial solution: Obviously Xx1=X,=X3= -------- =xn=0 is always a solution of the given system and this
solution is called trivial solution.

Therefore trivial solution or zero solution always exists.
Non-Trivial solution: Let r be the rank of the matrix A and n be the no. of unknowns.

Case-1: If r=n, the equations AX=0 will have n-n i.e., no linearly independent solutions. In this
case, the zero solution will be the only solution.

Case-11: If r<n, we shall have n-r linearly independent solutions. Any linear combination of these n-
r solutions will also be a solution of AX=0.

Case-l11: If m<n then r<m<n. Thus in this case n-r > 0.

Therefore when the no. of equations < No. of unknowns, the equations will have an infinite no. of
solutions.

Ex: Show that the only real number A for which the system

X+2y+3z = Ax, 3x+y+2z = Ay, 2x+3y+z = Az has non-zero solution is 6 and solve them
when A=6.




Sol: Given system of equations can be expressed as AX=0

1-4 2 3 X 0
WhereA=| 3 1-14 2 |;X=|y|landO=|0
2 3 1-2 z 0

Here the no. of variables =n = 3.

The given system of equations possesses a non-zero (non-zero) solution, if rank of A < number of
unknowns i.e., rank of A < 3.

For this we must have detA =0

6-4 6-4 6-41

i.e., 3 1-4 2 =0 R1—R1+R2+R3

2 3 1-2

1 1 1
e, (6-») 3 1-2 2 |=0

2 3 1-2

1 0 0

i.e., (6-1) 3 -2-24 -1 |=0 Co—C2-Cy, C3—C3-Cy
2 1 -1-1

i.e., (6-1) W+3A+3)=0
1.e., A = 6 is the only real value and other values are complex.

When A = 6, the given system becomes




CMR Institute Of Technology Redefining the Quality

-5 2 3 X
= |0 -19 19 ||y|=|0 R>—5R2+3R1, R3—5R3+2R;
0 19 -19||z 0

-5 2 3 ||x] |0
= |0 -19 19||y|=|0 R3—R3+R:
0 0 0|z 0

= -5x+2y+3z=0and -19y+19z2 =0

= y=z

Since rank of A < No. of unknowns i.e.,r<n (2 <3)

Therefore, the given system has infinite no. of non-trivial solutions.

Let z=k = y=k and -5x+2k+3k =0 = x=k

. =Kk, y=k and z=Kk is the solutions

Solving mxn and nxm Linear System of Equations by Gauss Elimination:

GAUSSIAN ELIMINATION METHOD: Consider the system of linear
axth.X.rcx.=d,

equation s X th, X, *C.x.=d,
as Xt X, s X: = ds

al bl cl di

The augmented matrix is [A:B]= a2 b2 c2 d2
a3 b3 c3 d3

After performing row operations or column operations we get

al bl c1 d1
[A:B]=| 0 b2 c2 d2
0 0 c3 d3

Ex: solve the equations




2xX1 +x2+x3=10
3x1 + 2x2 +3x3 =18

X1 + 4x2 + 9x3 = 16 using gauss elimination method

2 1 1 10
Sol: The augmented matrix of the given matrix is[AB]=|{3 2 3 18
1 4 9 16

2 1 1 10
[AB] ~ |0 1/2 3/2 3| Ri—2RsR:
0 7/2 17/4 11

2 1 1 10
[AB] " |0 1/2 3/2 3 | Rs—Rs-7R:
0O 0 -2 -10

This augmented matrix corresponds to the following upper triangular system. By backward substitution we
get

2x1 + x2 + x3 =10; %x2+ gx3:3; -2x3=-10

X3=5:x2=-9:x1=7

CAYLEY-HAMILTON THEOREM:

Every square matrix satisfies its own characteristics equation
Verification: Example 1: Cayley-Hamilton theorem

11
A=
21
1-2 1
2 1-24

Consider the matrix

Its characteristic polynomial is

p(/’L)zdet(A-/ll):‘ ‘:(1-1)2-2:12-2,1-1

P(A)=AZ-2A-1
= 11 11 -2 11 - 10



http://s-mat-pcs.oulu.fi/~mpa/matreng/ematr4_1.htm#karakteristinen

UNIT-II
Eigen Values,Eigen Vectors and Orthogonal Transformation

Introduction

In mathematics, a matrix is a rectangular array numbers.Matrices
consisting of only one column or row are called vrctors,while higher -
dimensional, arrays of numbers are called tensors.Matrix can also keep track
of the coefficients in a system of linear equations.For a square matrix, the
determinant and inverse matrix govern the behavior of solutions to the
corresponding system of linear equations, and eigen values and eigen vectors
provide insight into the geometry of the associated linear transformation.

Applications

1.Physics makes use of them in various domains, for example in geometrical
optics and matrix mechanics.

2.Matrices encoding distances of knot points in a graph, such as cities
connected by roads, are used in graph theory, and computer graphics use
matrices to encode projections of three-dimensional spact onto a two-
dimensional screen.

3. Serialism and dodecaphonism are musical movements of the 20th century
that utilize a square mathematical matrix to determine the pattern of music
intervals.

Characteristic Equation

For a Linear transformation the characteristic equation [Latent equation] can
be defined as |A—AI|=0 where A is the given matrix from the linear equation
and is the eigen constant or characteristic constant and I is the unit matrix
with respect to the order of A.



Problems

¢ Find the characteristic equation of (_2 1 ;)

Solution:

Let A = (_21 ;)

The characteristic equation of A is12 —s;A+s, =0

s, =sum of the main diagonal elements=2+2=4

12 1

5 l=4+1=5

s2=|A|
Hence the required characteristic equationis 2> — 44+ 5 =0

¢ Find the characteristic equation of ((1) %)

Solution:

Let A = ((1) g)

The characteristic equation of A is A2 —s;1+ s, =0

51 =Sum of the main diagonal elements=1+2=3
1 2
%qm=% A=2—0=2

Hence the required characteristic equationis 22 =31+ 2 =0

1 1 1
¢ Find the characteristic equation of (1 2 2).
1 2 3

Solution:

Given matrix is a 3x3 matrix



The characteristic equation of A is 23 — 5,42 + 5,4 —s3 =0
s; =sum of the main diagonal elements=1+2+3=6

s, =sum of the minors of main diagonal elements
_12 2 1 1 1 1
=[5 3+l s+l 2

=6-4)+@B-D+2-1) =2+2+1=5

s3 = |A|
1 1 1
=11 2 2
1 2 3

=16-4)—-13-2)+1(2-2)
=2-1=1

Hence the required characteristic equation is 2> — 642 + 51— 1 =0

2 0 1
¢ Find the characteristic equation of [O 2 0].
1 0 2
Solution:

Given matrix is a 3x3 matrix

The characteristic equation of A is A3 — §;4% + 5,4 —s3 =0
s; =Sum of the main diagonal elements=2+2+2=6

S, =Sum of the minors of main diagonal element
12 0] .12 1] .12 0
=lo 2+l o+ 15 2l
=4+ (4 — 1) +4=4+3+4=11

s3 = |A|



2 0 1
=0 2 0
1 0 2

=2(4—-0)—0+1(0—-2)
=8-2 =6

Hence the required characteristic equationis 13> — 612 + 114 — 6 = 0

EIGEN VALUES : Let A be a square matrix .The characteristic equation of A

is |A — AI| = 0.The roots of the characteristic equation are called Eigen
values of A.
EIGEN VECTOR: Let A be a square matrix .If there exists a non -zero
column vector X such that AX=AX, then the vector X is called an Eigen
vector of A corresponding to the Eigen value of A.

Properties of Eigen values.

Solution:

i)The sum of the eigen values of a matrix is equal to the trace of the matrix

and product of the eigen values is equal to the determinant of the matrix.

ii)A square matrix A and its transpose AT have the same eigen values.

Problems

e Prove that a square matrix and its transpose has the same eigen values.

Solution:

Let A be a square matrix of order n.

The characteristic equation of Aand AT are |[A — AI| =0 and

|AT —AI| =0
Since the determinant value is unaltered by the interchange of rows and

columns.



(i.e) 14] = |AT|
Hence characteristic equation of A and A7 are identical

Therefore the eigen values of A and AT are the same.

4 1

o IfA=(3 2

), find the eigen value of 43,

Solution:

The characteristic equation of A is 12 —s;A+s, =0

51=4‘+2=6

S _|4 1
2713 2
=8—-3=5

The characteristic equation of A is A2 =61+ 5 =0
A-5A-1)=0
A=15
Eigen values of the given matrix A are 1,5

Eigen values of the matrix A3 are 1,125

1 1)_

¢ Find the eigen values of A = (_1 1

Solution:

The characteristic equation of A is 12 —s;A+ s, =0

51=1+1=2
o |1 1
27121 1
=14+41=2

The characteristic equation of A is > =21 +2 =0



A= >
A_zim
2
A=1+i

~ The eigen valuesare1l +iand 1 —1i

—-15 4 3
¢ Find the sum and product of the eigen values of ( 10 -12 6)
20 —4 2

without finding the eigen values.
Solution:
Sum of the eigen values of A = trace of he matrix A
=—-15—-12+2
= —25
Product of the Eigen Values of A=|A|
=—15(—24 + 24) — 4(20 — 120) + 3(—40+240)
= —4(—-100)+3(200)
=400+600
=1000
¢ Find the sum and product of the eigen values of
-2 2 -3
( 2 1 —6) without
-1 -2 0
finding the eigen values.
Solution:
Sum of the eigen values of A = trace of he matrix A
=—-24+1+0=-1
Product of the Eigen Values of A=|A|



=-2(0-12)-2(0—-6)—3(—4+1)
=24+124+9
=45

¢ Find the sum and product of the eigen values of

-10 -2 -5
( 2 2 3 >with0ut
-5 3 5

finding the eigen values.
Solution:
Sum of the eigen values of A = trace of the matrix A
= 10+2+45=17
Product of the Eigen Values of A=|A|
= 10(10 —9) + 2(10 + 15) — 5(6+10)
=10+4+2(25) — 5(16)
=10+ 50—-80 = -20

1 1 3
o IfthematrixA4 = <1 5 1>, find the eigen values of A1,
3 1 1

Solution:

The characteristic equation of Ais A3 — 5,12 + 5,4 —s3 =0

s;=14+54+1=7
s=ly sl Al
=65-1D)+G-1)+(1-9)

—44+4-8=0

1 1 3
1 51
31 1

53=




=1(5—1) — 1(1 — 3) + 3(1 — 15)
=4+2—-42=-36

The characteristic equation of Ais A3 — 742 + 36 = 0

IfA=-2then (=2)3-7(-2)2+36=0

. A=—2isaroot.

Using synthetic division,

21 -7 0 36
0 -2 18 -36

L
1 -9 18 0

sA=—-2andA?-91+18=0
(A=3)(1—6) =0
A=36

Hence, The Eigen values of A are —2,3,6

The Eigen values of A1 are _71%,

o |

e Find the eigen values of 242 if A = (

& A
N =
~—

Solution:

The characteristic equation of A is A2 —s;1+s, =0

s;=4+2=6
oot 1
2713 2

=8—-3=5



The characteristic equation of A is 22 =61+ 5 =0

A=15
Eigen values of A are 1,5
Eigen values of A% are 1,25
Eigen values of 242 are 2,50
2 2 1
e Two eigen values of the matrix 4 = (1 3 1) are equal to 1(one)
1 2 2

each. Find the eigen values of A1,
Solution:
Let A4,4,,13 be the Eigen values of A.
Given that 4; =1, = 1.
We know that,
Sum of the eigen values of A = trace of the matrix A
Therefore, A; + A, + 13 =24+3+2
=1+ 14+4;=7
A3 =5
“A =1 1,=1,1;=5

Therefore, Eigen values of A “lare 1,1,%

8 -6 2
e If3and 15 are two eigen values of A = <—6 7 —4), find |Al|.
2 -4 3

Solution:

Let A4,4,,43 be the Eigen values of A.
Given A; =3, A, =15, A3 =?

We know that,

Sum of the eigen values =sum of the main diagonal elements



= M+, +A;,=84+7+3
= 3+15+1;=18
= A3 =0
~ The eigen values are 3,15,0.
|A| = Product of the eigen values
=(3)(15)(0)
= |4 =0

3 00
¢ Find the eigen values of the inverse of the matrix 4 = <8 4 0).
2 2 5

Solution:

Given matrix A is a lower triangular matrix.

The eigen values of a triangular matrix are just the diagonal elements of
the matrix

Hence eigen values of A are 3,4,5

» Eigen values of A~ are=,~,=
3’4’5
1 1 3
e If3 and 6 are the eigen values of A = (1 5 1). Write down the eigen
31 1

values of A1 and 3A.
Solution:
Let A4,4,,13 be the Eigen values of A
Giventhat A, =3 and 4, =6
We know that,
Sum of the eigen values =sum of the main diagonal elements
= M+A,+43=1+5+1
= 3+6+ A3=7
= A3=7-9



= 2,3 - _2
Hence the eigen values of A are —2,3,6
Eigen values of 3A are —6,9,18

. _ -1
Eigen values of A1 are —

wlr

)

NN

1 2 3
e Find the eigen values of A3 given A = (O 2 —7>.
0O 0 3
Solution:

For a Triangular matrix, the diagonal elements are its Eigen
values.

Therefore, The eigen values of A are 1,2,3

The eigen values of A3 are 1,8,27

6 -2 2
e Two eigen values of A = (—2 3 —1) are 2 and 8. Find the
2 -1 3

third eigen values.
Solution:
Let 14,1, ,1;5 be the Eigen values of A
Given A, =2, 1, =8, A3 =?
We know that,

Sum of the eigen values =sum of the main diagonal elements

= A=12-10 = ;=2

6 -2 2
e The product of the two eigen values of 4 = (—2 3 —1)is 16.

Find the third eigen value.



Solution:
Let the eigen values of Abe 44, 1,, 45
Given 1; 4, = 16.
By the property, |A|= product of the eigen values

= Al =21 A5 A3
6 -2 2
).1 AZ /13 = —2 3 _1
2 -1 3

161; =6(9—1) +2(—=6 +2) + 2(2 — 6)

=6(8) + 2(—4) + 2(—4)

=48—-8 — 8 = 32
— /13:% = /13 == 2

3 1 4
¢ Find the sum of the squares of the eigen values of A = (0 2 6).
0 0 5
Solution:

Given matrix A is a upper triangular matrix.
For a Triangular matrix, the diagonal elements are its Eigen values.

-~ Eigen values of A are 3,2,5
Sum of the squares of the eigen values of A=9+4+25=38

¢ If the sum of two eigen values and trace of the matrix A are equal,
find the value of |A|.
Solution:
Let A4,4,,13 be the Eigen values of A.
By the property, Sum of the eigen values of A =Trace of the matrix A
(e + A, +A3= 1+ 4,

- /13=0



By the property, |A|= product of the eigen values
(le) |A|zll AZ /13 =0

e Prove that the eigen values of —3A4~1 are the same as those of

4=(; 1)

Solution:
The characteristic equation of A is12 —s;A+s, =0

5;=1+1=2
w=ly )
=1—4= -3
The characteristic equation of A is 12—21—-3 =10
>A1+1)A-3)=0=>1=-1,3
Eigen values of A are —1,3
Eigen values of A" !are —1%

Eigen values of =347 ! are 3,—1

- Eigen values of A =Eigen values of —3471

4 6 6
e Two eigen values of A = ( 1 3 2 ) are equal and they are double
-1 -5 -2

the third. Find the eigen value of A2
Solution:
Let A4,4,,4; be the Eigen values of A.
Given A, = 4, = 215

Sum of the eigen values =sum of the main diagonal elements



= /11 + AZ +2.3=4‘+3—2

= M+ A4+—=—=5
= 214 +/12—1= 5, where A3 =/12—1
514
“1_5
= 2
A
/11 = 2 =AZ

20 =2 =2 2;=1
Eigen values of A are 2,2,1

Eigen values of A% are 4,4,1.

Problems

6 -6 5
¢ Find the eigen values and eigen vectors of 4 = (14 -13 10)
7 -6 4

Solution:

The characteristic equation of Ais A3 —s;4%2 + 5,4 —s3 =0

5126—13"'4
=10 -13 = -3

S2 = |14 —13| + |_13 10| + |

= (—78 + 84) + (=52 + 60) + (24 — 35)

=6+8—-11=3



s3 = |A|
—6(8) + 6(56 — 70) + 5(—84 + 91)
— 48— 84 +35=—1
The characteristic equation of Ais 2> + 322 +31+1=0
IfA=-1,then(-1)*+3-3+1=0
~A=—1lisaroot.

Using synthetic division,

-11 3 3 1

1 2 1 0
s A=—1landA*+21+1=0

= 1=-1,-1,-1

To find eigen vectors solve (A —ANX =0

6—A —6 5 X1 0
= ( 14 -13-1 10 )(xz) = <0> —————— (D)
7 —6 4 — A/ \X3 0

Case (i): WhenA = —-1in (1),

6+1  —6 JNYZAN
( 14 —13+1 10 <x2> - 0)
7 —6  4+1/\x3 0

7 =6 5\ (%) (0
(14 ~12 10 <x2>= 0)
7 —6 5/ \x3 0




= 7%, — 6x,+5x3 =0
14x1 — 12.X'2 + 1OX3 =0
7x1 - 6x2 + SX3 = 0

The above equations represents the same equation 7x; — 6x,+5x3 = 0

Choosing arbitrary values for x;, letx; = 0

6X2=5.7C3
X2 X3
5 6

o

Choosing arbitrary values for x, ,let x, = 0

7x1 = _5x3
X1 X3
-5 7

(9

Choosing arbitrary values for x5, letx; = 0

7x1=6x2
X1 X2
6 7



Eigen vectors of A are

(e

6 -2 2
¢ Find the eigen values and eigen vectors of 4 = (—2 3 —1)
2 -1 3

Solution:

The characteristic equation of Ais A3 — 5,12 + 5,4 —s3 =0
s =6+3+3=12
Sl SR R A L
=(18-4)+(9-1)+(18-4)

=14+8+14=36

s3 = |A]
=6(9—-1)+2(—6+2)+2(2-06)
=48—-8—-8 =32

The characteristic equation of Ais A3 —124%2 + 364 —32 =0
IfA=2,then (2)3 -12(2)2+36(2)—32=0
~ A= 2isaroot.

Using synthetic division,




1 -10 16 0
2 A=2andA?—-101+16=0

= A=228

To find eigen vectors solve (A—ANX =0

6—-1 -2 2 X1 0
-(=2 sma —)(m)=(o) ------ 0
2 -1 3-1/\X3 0

Case (i): When A = 2 in (1), we get,
6—2 =2 2 X1 0
2 -1 3-=2/\X3 0
4 =2 2\ /%1 0
2 1 1/ \x3 0

_le+xZ_X3 =O

4x, — 2x,+2x3 =0

le — X2 + X3 = O
The above equations represents the same equation 2x; —x, +x3 =0
Choosing arbitrary values for x;, letx; = 0

XZ=x3

0



Choosing arbitrary values for x,, letx, = 0

2x1 = —X3
X1 X3
-1 2

Case (ii): When 1 = 81in (1),

6—8 =2 2 X1 0
(—2 sg -1 ><>=<0>
2 -1 3-8/ \X3 0
-2 =2 2 X1

<—2 s _1> ()

2 -1 -5/ \X3

—le - ZXZ+ZX3 = 0
—2x1 —5x, —x3 =0
le_xz _SX3 :0
Solving first two equations using cross rule method
X1 X2 X3
2+10 —-4-2 10-4
X1 X2 X3

12 -6 6
X1 Xz X3
2 -1 1

()

Eigen vectors of A are



(@)

2 -2 2
¢ Find the eigen values and eigen vectors of A=(1 1 1 )
1 3 -1

Solution:

The characteristic equation of Ais A3 — 5,12 + 5,4 —s3 =0
s1=2+1-1=2
Ol PR R P ) et
=2+2)+(-1-3)+(-2-2)
=4—-4—-4=—-4
s3 = |4]
=2(-1-3)+2(-1-1)+23-1)
=—-8—-4+4=-8
The characteristic equation of Ais A3 — 212 —41+8 =10

IfA =2,then (2)3 —2(2)?—-4(2)+8=0
s~ A = 2isaroot.
Using synthetic division,

2 1 -2 -4 8




1 0 -4 0
s A=2and *—4=0

= A=22,-2

To find eigen vectors solve (A—A)X =0

2—A =2 2 X1 0
:>( 1 1 _/1 1 >(xz) B (0) ______
1 3 —1—-A/ \X3 0

Case (i): When A = 2 in (1).

2—-2 =2 2 X1 0
(2 1 )(x)=(o)
1 3 —1-2/ \x3 0

0 -2 2 X1 0

[ -0

1 3 -=-3/\X3 0

xl—x2+X3=0

0xq1 — 2x5+2x3 =0

X1+3x2_3x3=0

Solving first two equations using cross rule method
X1 Xz X3
—24+2 2-0 042
X1 X2 X3

0 2 2

o

0
X, = (1) as an eigen vector corresponding to A = 2
1



Case (ii): When A = -2 in (1)

2+2 =2 2 X1 0
( 1 1+2 1 )(x2>=<0)

1 3 -1+ 2/ \X3 0

4 =2 2\ /%1 0
SEE0

1 3 1/ \x3 0

4x1 - 2x2+2x3 =0
X1 +3x,+x3=0

x1+3x2+x3=0

Solving first two equations using cross rule method
X1 X2 X3

—2-6 2—-4 1242
X1 X2 X3

-8 -2 14
X1 X2 X3
—4 -1 7

—4
7
Eigen vectors of A are

e

1 0 0
¢ Find the eigen values and eigen vectors of A=<0 3 —1).
0 -1 3

Solution:

The characteristic equation of Ais 23 — 5,42 + 5,4 —s3 =0



s;=1+3+4+3=7

2=ly ol 15 Fl+lg 3l
=3+(9—-1)+3=14

s3 = |A]
=1(9—-1) — 0+0=8

The characteristic equation of Ais 23 — 7142 + 141 -8 =0
If A =1, then 1-74+14-8=0
s~ A= 1lisaroot.

Using synthetic division,

11 -7 14 -8
0 1 -6 8

L
1 -6 8 0

~A=1and2A*-61+8=0
= 1=124

To find eigen vectors solve (A—A)X =0

1-2 0 0 X1 0
i( 0 3_A _1 )(xz) B <0> ______
0 -1 3-1/\X3 0

Case (i): When1 =1



1-1 0 0 X1 0
(0 51 = )(x)=(o)
0 -1 3-1/ \x3 0
0 O 0\ /*1 0
2 20
0 -1 2 X3 0

0xq + 0x,+0x3 =0
0xqy +2x5, —x3=0
0x1 —x, +2x3=0
Solving last two equations using cross rule method
X1 —X2 X3

4—1 0—-0 0-0
X1 X2 X3

Case (ii) : when A = 2in (1)
1-2 0 0 X1 0
( 0 32 1 )<>=(0>
0 -1 3-2/\X3 0
-1 0 0\ /% 0
0 -1 1 X3 0

_xl + Ox2+OX3 - O
0x1 + xz - x3 == 0
0x1 - x2 + X3 == O

Solving first two equations using cross rule method



()

Case (iii) : when A =4in (1)

1-4 0 0 X1 0
(0" s=e - ](x)=(o)
0 -1 3—-4/\X3 0
-3 0 0 X1 0
(52 2

0 -1 -1/ \x3 0

—3x1 + OXZ+0x3 = O

Oxl—xz—X3 =O
0x1—x2—x3 =O

Solving first two equations using cross rule method

0 -3 3
X1 X2 X3
0 -1 1

Eigen vectors of A are



o= (D)= () =)

-2 2 -3
Find the eigen values and eigen vectors of ( 2 1 —6).
-1 -2 0

Solution:

The characteristic equation of Ais A3 — s;4% + 5,4 —s3 =0
s;=—2+4+1+0=-1
el AT R WU L PRy
=—12-3-6=-21
s3 = |A]
=(-2)(0—-12)—-2(0—-6)+ (—3)(—4+1)
=24+12+9 =45

The characteristic equation of Ais A3 + 12 — 211 —45 =0
IfA=-3,then (—3)3 + (—3)? —21(-3) —45=0

~ A =-=3isaroot.

Using synthetic division,

-311 1 -21 -45




A=-31>-21-15=0
= A=-3,-3,5

To find eigen vectors solve (A—ANX =0

—2—-2 2 -3\ /% 0
:>( 2 1-1 -6 )(xz)=<o) —————— (D
—1 —2  0—-1/ \x3 0

Case (i): When 4 = -3 in (1),

—2+3 2 -3 X1 0
( 2 1+3 —6)(x2>=<0>
-1 -2 043/ \X3 0
1 2 =3\ /%1 0
(2% )6
-1 -2 3 X3 0

X1 + ZXZ —3x3 =0
2x1 + 4x2 - 6x3 == 0

—X1 — Z.XZ + BX3 = O
The above equations represents the same equation x; + 2x, —3x3 =0

Choosing arbitrary values for x4, letx; = 0

ZXZ =3x3
X2 X3
3 2

o

Choosing arbitrary values for x,, letx, = 0



Case(ii) : When A = 5in (1),

—-2-5 2 -3 X1 0
5 20
-1 -2 0-=5/\x3 0
-7 2 =3\ /% 0
&2 )0

-1 -2 =5/ \X3 0

—7x1 + 2x, —3x3 =0
2x; —4x, — 6x3 =0
—X1 —2x, —5x3 =0
Solving first two equations using cross rule method

X1 . TX2 X3
—12—-12 4246 28—4

X1 X2 X3
—24  —48 24
X1 Xy X3
12 4

(3

Eigen vectors of A are



=(9) =)= (1)

7 -2 =2
¢ Find the eigen values and eigen vectors of A =(—2 1 4 )
-2 4 1

Solution:
The characteristic equation of Ais A3 — 5,12 + 5,4 —s3 =0

s;=7+1+1=9

e R B P
=(7T-4)+(1—-16)+(7—4)
=3-154+3=-9

s3 = |A]

= 7(—15) + 2(—2 +8) —2(—8 + 2)
=105+ 12+ 12 = —81

The characteristic equation of Ais 23> —912 — 91+ 81 =0

IfA = 3,then (3)3—9(3)2—9(3) + 81 =0

~ A =3isaroot.
Using synthetic division,

3 1 -9 -9 81




1 -6 -27 0
A=322%-61-27=0

= A1=39-3

To find eigen vectors solve (A—ANHX =0

7—A =2 —2 X1 0
-(= 1ma 2 )(m)=(o) —----- 0
-2 4 1 -4/ \X3 0

Case (i): When 4 =3 in (1),

7-3 -2 =2\ /% 0
(_2 123 4 ><>=<0>
-2 4 1-3/\x; 0
4 -2 =2\ /% 0
22 )00
—2 4 =2/ \x3 0

4‘X1 - 2x2 - ZX3 = O
_2x1 - 2x2 + 4‘X3 = 0
_le + 4x2 - ZX3 = 0

Solving first two equations using cross rule method
X1 TX3 X3
—-8—-4 16—-4 -8-—4
X1 X3 X3
—12 —12 -12
X1 _ X2 X3

1 1 1

ol




Case (ii): When 4 =9 in (1),

7—9 =2 -2 X1 0
(2 )
-2 4 1—-9/ \Xx3 0
-2 =2 =2\ /% 0
2 )0
-2 4 -8/ \X3 0

_le - ZXZ - ZX3 == 0
—le - 8X2 + 4x3 =0
_2x1 + 4‘X2 - 8X3 = 0

Solving first two equations using cross rule method

Case (iii): When 4 = —3in (1)

743 -2 =2\ /% 0
(_2 143 4><xz)=<o>
-2 4 1+3/\x; 0
10 —2 =2\ /% 0
21 o))
—2 4 4/ \x3 0

10x1 - 2x2 - ZX3 = O

_le + 4x2 + 4x3 = O



—2x1 +4x, +4x3 =0

Solving first two equations using cross rule method

X1 —X2 X3
—8+8 40—4 40—4
X1 _ X2 X3
0 -36 36

()

Eigen vectors of A are
1 -2 0
1 1 1

0 1 1
e Find the eigen values and eigen vectors of (1 0 1).
1 10

Solution:

The characteristic equation of Ais A3 —s;4%2 + 5,1 —s3 =0

s;=04+04+0=0

=lp ol +ly ol +[7 o
=-1-1-1=-3

s3 = |A]

=0-100—1) + 1(1) = 2



The characteristic equation of Ais 23 =012 —31—-2=10
If1 =2, then (2)> —0(2)2—3(2) =2 =0
s~ A =2isaroot.

Using synthetic division,

2 1 0 -3 -2
0 2 4 2

L
1 2 1 0

A=2212421+1=0
=1=2,-1,-1

To find eigen vectors solve (A—AX =0

0-21 1 1 X1 0
-(17 0=a 1 )(m)=(0) ------ )
1 1 0—A/ \X3 0

Case (i): When 41 =2in (1)
0-2 1 1 X1 0
(1702 1 )(x)=(o)
1 1 0—2/\X3 0
-2 1 1\ /%
1 1 =2/\X3

_le‘l‘xz +x3=0

o O O
N~

X1 —2x,+x3=0

x1+xZ_ZX3=O



Solving first two equations using cross rule method
X1 —X5 X3
1+2 —2-1 4-1
X1 X2 X3

3 3 3
X1 X2 X3
1 1 1

Case (ii)): when 1 = —1in (1)

0+1 1 1
( 1 0+1 1
_|_

1 1 0
1 1 1\ /% 0
1 1 1/ \Xx3 0
xl + XZ + X3 = 0
X1 + Xy + X3 = 0
X1 + Xy + x3 = 0
The above equations represents the same equation x; + x, + x3 =0

Choosing arbitrary values for x;, letx; = 0

Xy = —X3
X2 X3
1 -1



Choosing arbitrary values for x,, letx, = 0

x1 e _xg
X1 X3
-1 1

Eigen vectors of A are
1 0 -1
1 -1 1

Cayley-Hamilton theorem.

Every square matrix satisfies its own characteristic equation.

Problems
: : .._(5 3
¢ Verify Cayley Hamilton theorem for the matrix 4 = ( 1 3).

Solution:

The characteristic equation of A is 12 —s;A+ s, =0
By Cayley Hamilton theorem, A% —s; A+ s, =0
Here,s; =5+3 =8
w=l)
=15-3=12

Toprove A2 —8A+ 121 =0

4= 3G )



(25+3 15+9)

5+3 349
- (288 ?2})
A2 —8A+12]= (255:33 135:99)_'_(_—480 :éi) * (102 102)

(0 0
_(0 0)
-~ Cayley Hamilton theorem is verified.
e Use Cayley Hamilton theorem to find A’of the given matrix
_ (5 3
4= (1 3)
Solution:

The characteristic equation of A is 12 —s;A+ s, =0

51=5+3
=8
S:|5 3
2711 3
=15-3
=12

By Cayley Hamilton theorem,we have A2 —8 A + 121 = 0
Premultiply by A on both sides, we get A3 — 842+ 124 =0

> A =842 — 124
a7=(7 )G )G 2

o=o( -nG )

(26244 19962)_(?3 gg)



_ (15624 16506)

e Use Cayley Hamilton theorem to find A’of the given matrix
_ (-1 3
a= (3 )
Solution:
The characteristic equation of A is 12 —s;A+ s, =0
Sl = _1 + 4‘
=3
|71 3| _4_g=_
s2_|2 )| =—4-6=-10
By Cayley Hamilton theorem, we have A2 — 3 4 — 10 = 0
Premultiply by A on both sides, we get A3 — 342 — 104 =0
= A® =347+ 104
2_(—1 3\(-1 3
4°= ( 2 4)( 2 4)
=( 1+6 -3+ 12)
—-2+8 6+16

Z(Z 292)

“ A =3 (Z 292) +10 (_21 i)

(18 66)* (30 40

z(éflz 15076)

Verify Cayley ~Hamilton therorem . Also find A~ 'and A*,



1 0 3
ifA=12 1 -1]|.
1 -1 1
Solution:

The characteristic equation of Ais 23 — 5,12 + 5,4 —s3 =0

s;=1+14+1=3

sw=ly A+l T
—1+(1-1) + (1 - 3)
=14+0-2 = -1

s3 = |A]
=1(1-1)— 02 +1)+3(=2—1)
=0-0+3(=3) = -9

The characteristic equation of Ais A3 — 312 -14+9=0

By Cayley Hamilton Theorem,

A3 —34°—-A+9I=0  ———————— (D
Verification:
1 0 37111 O 3
A2=2 1 -—-1|]2 1 -1
1 -1 1111 -1 1

1+0+3 0+0-3 3+0+3
2+2—-1 0+1+1 6—-1-1
1-2+1 0-1-1 3+1+1

4 -3 6
=3 2 4
0 -2 5



A3 = A.A?

—3 6
= —1
—2 5
44040 —34+40-6 6+0+15
=[(8+34+0 —-6+2+2 12+4-5
4—3+0 —-3-2-2 6-4+5
4 -9 21
=[11 -2 11]
1 -7 7
A3 —34%2 - A+09I
4 -9 21 4 -3 6] 1 0 3
=[11 -2 11|-3[3 2 4|-|]2 1 -1
1 -7 7 o -2 51 1 -1 1
00 0
=[o 0 o0
00 0
To find A~1: Multiply both sidesby A~1in (1), we get
A2 —3A—-1+9 A 1=0
1
=>A‘1=—§[A2—3A—I]
_1[14 -3 6] -3 0 -9 [-1 O
A'=—|[3 2 4a|+|-6 -3 3|+|0 -1
lo -2 51 [-3 3 -3 0 0
0 -3 -3
=—|-3 -2 7
-3 1 1
0 3 3
=3 2 -7
3 -1 -1

To Find A*:

_|_

9
0
0

0
0
-1

|

0
9
0

0
0
9

|



Multiply both sides by A in (1), we get

A* =343 —A*+94=0

= A*=34%34+4%2-94

4 -9 211 [4 -3 6 1 0 3
=3|11 -2 11{+|3 2 4]—92 1 —1]

1 -7 7 0 -2 5 1 -1 1

12 -27 63 4 -3 6 (-9 0 =27
=[33 -6 33|+|3 2 4|+]|-18 -9

3 -21 21 0 -2 5 L -9 9

[12+4-9 —-27-3+0 63+6—27
=133+3—-18 —-6+2—-9 33+4+9

1 3+0-9 -21-2+9 21+5-9

[ 7 =30 42
=118 —13 46]

-6 —14 17

e Verify Cayley ~-Hamilton therorem . Also find A"and A*,

1 2 -3
ifA=12 5 —4|.
3 7 -51
Solution:

The characteristic equation of Ais A3 — 5,42 + 5,14 —s3 =0

51:1+5_5:1

-2
-5

=y s+l e+l
= (5—4) + (=25 + 28) + (=5 +6)
=1+3+1=5

s3 = |A]

=1(3) — 2(—10 + 12) — 2(14 — 15)



=3—-4+2=1

The characteristic equation of Ais > =12 +51—-1=0

By Cayley Hamilton Theorem,

A3 —A?+54A-1=0———— — — (D
Verification:
1 2 -2111 2 -2
A2=12 5 —4”2 5 —4]
3 7 =5113 7 =5
-1 -2 0
=0 1 -4
2 6 -9
A3 = A% A
-1 -2 011 2 =2
=|0 1 —4”2 5 —4]
2 6 —9113 7 -5
-5 =12 10
=[—-10 -23 16
—-13 —-29 17

A3 —A>+54—1

(-5 =12 10 -1 -2
=[-10 -23 16|/—1| 0 1
2 6

—13 -29 17

oo OO R
coo ©OrRr O
OO O kR OO

0
—4
-9

To find A~1: Multiply both sidesby A~1in (1), we get

Al =4%2-A+5I

+5

1 2
2 5
3 7

-2
—4
-5

|



AZ

EEIE
#14
S

-4 2
=—2 1 O

-1 -1 1

0 0
5 0

0 5

To Find A*: Multiply both sides by 4 in (1), we get

A* — A3 +542—-A=0

=A3—-54°+ A

-5 —-12 01 1 2 =2
A*=1-10 =23 -5 —4|+12 5 -4
—13 -29 —9] I3 7 -5
-5 —-12 10 01 1 2 -2
=|-10 -23 16 0 —5 20|+|2 5 -4
—13 —-29 17 —10 —-30 451 13 7 -5

1 0 8

=|-8 =23 32

—20 —-52 57

e Verify Cayley ~-Hamilton therorem . Also find A"land A*,

1 2 3
ifA = -1 4|

3 1 -1
Solution:

The characteristic equation of Ais A3 —s;42 + 5,4 —s3 =0

s;=1—-1-1=-1



Szzlé —21|+|_11 —41|+|§ —31|
=(-1-4)+(1-4)+(-1-9)
=-5-3-10=—18

s3 = |A]
=1(-3)—2(-2-12)+3(2+3)

= —3+28+415=40

The characteristic equation of Ais 23 + 12 — 184 —40 =0

By Cayley Hamilton Theorem,

A3 +A2—184—-40I=0——— — — — (D
Verification:
1 2 3711 2 3
A2=12 -1 4|]2 -1 4
3 1 —-1l13 1 -1
14 3 8
=12 9 -2
(2 4 14
14 3 87111 2 3 44 33 46
A3=112 9 =2l|12 -1 4 |=1|24 13 74
2 4 14113 1 -1 52 14 8
A3 + A% — 184 — 401
44 33 46 14 3 8 1 2
=124 13 74|+[12 9 -2|-18|2 -1
52 14 8 2 4 14 3 1

1 0 0
—4010 1 O

0 0 1



0 0 O
=0 0 O
0 0 O
To find A~1: Multiply both sidesby A~1in (1), we get

a_ L.
A [A% + A — 18]

40
114 3 8 1 2 3 -18 0 0
A—1=ZB 12 9 =2|+|2 -1 4|+l 0 =18 o0
2 4 14 3 1 -1 0 0 -—18
[-3 5 1
=14 -10 2
5 5 -5

To Find A*: Multiply both sides by 4 in (1), we get

A* + A3 — 1842 - 40A =0

A* = —A3 + 184% + 404

44 33 46 14 3 8 1 2 3
A*=—124 13 74|+18|12 9 -—-2[+40[2 -1 4 ]
52 —14 8 2 4 14 3 1 -1
—44 —33 —46] [252 54 144 40 80 120
=|-24 —-13 -—-74|+|216 162 -—-36[+|80 —40 160
—52 14 -8 36 72 2521 1120 40 —40
248 101 218
= 1272 109 50]
(104 126 204

e Verify Cayley -Hamilton therorem . Also find A-1and A*,

2 -1 2
ifA=|-1 2 -—-1|.

1 -1 2
Solution:

The characteristic equation of Ais A3 — 5,12 + 5,4 —s3 =0



$1=2+2+2=6

=24 1% S+
=U4-D+U-1DH)+A -
=3+3+2=8

s3 = |A]

|22
1 2

2)

=2(4-1)+1(-2+1)+2(1-2)

=6—-—1—-2=3

The characteristic equation of Ais 23 — 612 +81—3 =0

By Cayley Hamilton Theorem,

A3 —6A42+84—-31=0—————— (1)

Verification:

1 -1 2 1 -1
7 —6 9
=[-5 6 -6

=[-7—-10—-5 6+12+5
| 7+5+10 —-6-6-—10

[ 29 —-28 38
=|-22 23 28
| 22 =22 29

2 -1 21712 -1 2
A2=|-1 2 -=1||-1 2 -1

7 |
2 -1 21[7 -6 9
AB=]-1 2 -—4[—5 6 —6]
21ls -5 7

(14+5+10 -12-6—-10 18+6+ 14

—-9-12-7
9+6+ 14




A3 — 6A4% +8A4 — 31

29 -—28 38 7 —6 9 2 -1 2
=[—22 23 —28]—6[—5 6 —6|+8[-1 2 —1]
22 =22 29 5 =5 7 1 -1 2
1 0 0
—3|0 1 0
0 0 1
0 0 O
=<0 0 O)
0 0 O
To find A~1: Multiply both sidesby A~1in (1), we get
1
A‘1=§[A2—6A+8I]
1{[7 -6 9 2 -1 2 1 0 O
A-1=§[—5 6 —6]—6—1 2 -—-1|+8|0 1 0]
5 -5 7 1 -1 2 0 0 1

) 3 0 -3
=3 1 2 0
~1 1 3
To find A*: Multiply both sides by 4 in (1), we get
A* —6A3+842-34=0
A* =643 —84%2 + 34
= 6 [ 642 — 8A + 31]-84% + 34
= 36A4% — 484 + 18] — 84% + 34

= 28A4% — 45A + 18I

7 —6 9 2 -1 2 18 0 O
A*=28|-5 6 —6]-45|-1 2 -—1|+]|0 18 0
5 -5 7 1 -1 2 0 0 18




[ 196 —168 252 90 —-45 90 18 0 O
=|—-140 168 —-168|—|—45 90 —45(+|0 18 O
[ 140 —-140 196 45 —45 90 0O 0 18

=1-95 96 —123
1 95  -95 124

e Verify Cayley ~-Hamilton therorem . Also find A"land A*,

124 —123 162]

1 0 -2
ifA=12 2 4|

0 0 2
Solution:

The characteristic equation of Ais A3 — 5,42 + 5,4 —s3 =0

s;=1+242=5

10
82=|2 2

[+lo 2l*le
=(2-0)+(4-0)+(2-0)
=2+4+2=8
s3 = |A|
=1(4-0)+0-2(0-0) =4
The characteristic equation of Ais 23 =512 +81—4 =0

By Cayley Hamilton Theorem,

A3 —5A°4+8A—4[=0—————— (1D
Verification:
1 0 =211 0 =2
A2=12 2 4||2 2 4
0o 0 21lo 0o 2




A3

(1 0 -14
=|14 8 28
L0 0 8

1 0 -6
=6 4 12
0 0 4

AZ

it

1+0+0 0+0+0

=[6+8+0 0+8+0

0+0+0 0+0+0

A3 —54% + 84 — 4]
1 0
=P4 8
0 0

0

1

0

1
— 4]0
0

0 0 O
=10 0 O
0 0 O
To find A~1: Multiply both sidesby A~1

1

AT = (A%~ 547 + 84]
1 0 —14

At 14 8 28
0 0 8

1+0+0 0+0+0
=(2+4+0 0+4+0
0+0+0 0+0+0

—2+0-4
—4+8+8
04+0+4

i

0
0
1

—2+0-12
—12 + 16 + 24

8

|

|

1 0
—5|6 4

0+ 0+

-4

0 O

8

1 0
6 4
0 O

—6
12
4

+ 8

—6
12
4

in (1), we get

+ 8

1 0
2 2
0 O

1
2
0

H

0
2
0

—2
4
2

|



1 0 -14 -5 0 30 8 0 -16
== [14 8 28 |+|-30 —-20 -—-60(+|16 16 32]
0 0 8 0 0 -20 0 0 16
1[4 0 0]
=10 4 O
0 0 4

To find A*: Multiply both sides by A in (1), we get
A* =543 +84%2-44A=0
A* =543 —84% + 44

(5 0 —=70] —8 0 48 4 0 -8
A*=|[70 40 140|+|-48 —-32 —-96|/+|8 8 16
L0 O 40 | 0 0 —32 0O 0 8
(1 0 —30]
=130 16 60
L 0 0 16 |
e Verify Cayley ~-Hamilton theorem . Also find A~ 'and A*,
-1 0 3
ifA={8 1 -7]|
-3 0 8
Solution:

The characteristic equation of Ais A3 — 5,42 + 5,4 —s3 =0

s;=—-14+1+8=8
n=lg U+l S+
=—1+8+(-8+9)

=8+1—-1=28



s3 = |A|
=-18—-0)+0+3(0+3)=1
The characteristic equation of Ais 23 =812 +81—1 =10
By Cayley Hamilton Theorem,
A3 —842+8A—-1=0—————— @Y

Verification:

-1 0 37[-1 0 3

A=18 1 -7||8 1 -7
-3 0 81L-3 0 8

' 14+0-9 04+0+0 —3+0+24
=|-84+8+21 0+14+0 24—7-56
[340-24 04+0+0 —9+0+64

(-8 0 21
=21 1 —39]
21 O

A=

S ENE

8+0—63 0+0+0 -21+0+165
=|—-64+21+147 0+1+0 168-39—385
24+0—-168 0+0+0 —-63+0+440

[—55 0 144]

104 1 -256

—144 0 377
—55 0 144 -8 0 21
A3—8A2+8A—I:[104 1 —256]-8[ 21 1 -39+
—144 0 377 —-21 0 55
-1 0 37[1L 0 O
8[8 1 —7H0 1 0]
-3 0 8110 o 1



To find A~1: Multiply both sidesby A~1in (1), we get

A"l =A% —-8A +8I

-8 0 21
21 1 -39
—-21 0 55

[8 0 -3

8 0 24
—64 -8 56
24 0 —-64

A= + +{0 8 0

0 0 8

800]

—43 10 17
3 0 -1

To find A*: Multiply both sides by 4 in (1), we get

A*—8A4°+8A*-A=0
A*=84°—-84*+ A
=8 [842 -84 +1]-84%+ A

= 564% — 63A + 81

= 56| 21 -39 8 1 —-7|+|/0 8 O
-3 0 8 0 0 8

63 0 -—189] [8 O 0]

[—8 0 21 -1 0 3
— 63 +

800]

1

[—21 0 55
[—-8 0 21 ]

=56(21 1 -39+

[—21 0 55

[—377 0 987]

—504 —-63 441 0 8 0
189 0 5041 10 0 8

+

672 1 2625
—987 0 2584

e Verify Cayley ~-Hamilton therorem . Also find A"and A*,



ifA =

7 2 -2
-6 -1 2|
6 2 -1

The characteristic equation of Ais 23 — 5,42 + 5,4 —s3 =0

s;=7-1-1=5

w=lls Sl+150 A+l 2

=(-7+12)+(1-4)+ (-7 +12)
=5-3+5=7

s3 = |A|
=7(-3)—2(6—-12) —2(—-12+6)
=-21+12+12=3

The characteristic equation of Ais 2> =512 + 74 -3 =0

By Cayley Hamilton Theorem,

A3 —5A2+7A-31=0—————— (1D
Verification:
[ 7 2 =2117 2 =2
A2=|-6 -1 2||-6 -1 2
) 2 -—-1ll6 2 -1

(49 —-12-12 14-2—-4 —-14+4+2
=(-42+6+12 -12+1+4 12-2-2
[ 42 —-12 -6 12-2-2 —-12+4+4+1

25 8 -8
=|-24 -7 8
24 8 -7

A3 = A.A?



7 2 —2][25 8 -8
=l-6 -1 2||-24 -7 8
6 2 -1ll24 8 -7

[ 175—-48—-48 56—-14—-16 —-56+16+ 14
=[—-150+24+48 —-48+7+16 48-—-8-14
[ 150 — 48 — 24 48—-14—-8 —-48+16+7

[ 79 26 —26]

—-78 =25 26
78 26 —25

79 26 —26
A3 —5A2+74A-31=|-78 =25 26 |—
78 26 —25

[ 25 8 -8 7 2 =2 1 0 O
5[-24 -7 8 |+7|-6 -1 2]-3[0 1 0]
[ 24 8 -7 6 2 —11 [0 0 1
0 0 O
=[0 O O]
0 0 O

To find A~1: Multiply both sidesby A~!in (1), we get

1
Al = §[A2 — 54+ 71]

25 8 -8 —35 —-10 10 7 0 O

A‘1=§ —-24 -7 8|+ 30 5 —10(+([0 7 0]

24 8 =7 —-30 —-10 5 0 0 7
-3 =2 2
A-1=§l6 5 —2]
-6 —2 5

To Find A*: Multiply both sides by 4 in (1), we get

A* — 543 +74* -34=0

A* =543 —74* + 34



79 26 =26 25 8 -8 7 2 =2
A4=5[—78 —25 26]—7[—24 -7 8|+3|-6 -1 2]
78 26 =25 24 8 -7 6 2 -1
395 130 -—130 —175 —-56 56 21 6 —6
=[—390 —125 130 |+| 168 49 —-56|+|-18 -3 6]
390 130 -—125 —168 —-56 49 18 6 -3

—240 =79 80

[241 80 —80]
240 80 -79

Orthogonal reduction of a symmetric matrix to Diagonal form.

Orthogonal matrix

A square matrix A is said to be an orthogonal matrix, if ATA = AAT =1

Diagonalisation of a matrix

The process of finding a matrix M such that M~AM = D, where D

is the diagonal matrix, is called as Diagonalisation of A.

Problems

o Show that A =(_c::nee i;’;g) is orthogonal.

Solution:
(i.e) ATA = AAT =1

407 = (530 cose) (ing cost))

=( cos?0 + sin’0 —cos0sinf + sichosH)
—sinfcosO + cosBsind sin%0 + cos?6



(o 1)

=]
Similarly, ATA=1
S ATA = AAT =1
Hence A is orthogonal matrix.

e Construct a Diagonalised matrix by an orthogonal transformation of

6 -2 2
A=|-2 3 -1]|.

2 -1 3
Solution:

The characteristic equation of Ais A3 — 5,12 + 5,4 —s3 =0

s1=6+3+3=12

we 1S T S
=(18—-4)+(9—-1)+ (18 —-4)
=14+8+14=36

s3 = |4]
=6(9—-1)+2(—6+2)+2(2—-6)
=48 — 8 —8=32

The characteristic equation of Ais 23 —124%2 + 364 —32 =0
IfA=2,then(2)3-12(2)2+36(2)—32=0
~ A= 2isaroot.

Using synthetic division,



1 -10 16 0
A=2and 2> —-101+16=0

A=228

To find eigen vectors solve (A—A)X =0

6—4 =2 2 X1 0
” ( _2 3 B A _1 ><x2> ] <0> ______
2 -1 3-1/\x3 0

Case (i): When A = 8 in (1),

6—8 -2 2 X1 0
<—2 3-8 —1><x2>=<0>

2 -1 3-8/ \X3 0

-2 =2 2 X1 0
(= 2))-(

2 -1 -=5/\X3 0

_2x1 - 2x2+ZX3 = 0
_le - SXZ - X3 = 0
2x1 — Xy — SX3 =0

Solving first two equations using cross rule method

X1 X2 X3

2+10 —4-2 10—4
X1 X2 X3

12 -6 6



Case(ii): When A = 2 in (1),
6—2 =2 2 X1 0
< -2 3-2 -1 ><x2>=<0)
2 -1 3-2/\X3 0
4 =2 2 X1 0
2 1 1/\X% 0

—2x1+x5,—x3=0

4X1 - 2xZ+ZX3 = O

2x1 — X3 + X3 = 0
The above equations represents the same equation 2x; —x, +x3 =0
Choosing arbitrary values for x4, letx; = 0

x2=X3

0
==(3
1
l
Let X5 = <m>
n

Xi"X5=0=2l-m+n=0 .rrrerrrnn.n (1)

X, X3=0=0l4+m+n=0 .oerrrrrrerrrns (2)



Solving (1) and (2) we get

-2 1
2 -1
Now clearly any two eigen vectors are pairwise orthogonal.
e X X," = X,X3' =X3X," =0
2

~. The Modal Matrix M= (— 1
1

[ )
[

RN
\/

To Prove: NTAN=D(8,2,2)

To find Normalised matrix

S NI
Sl=Sl- o
Al LSl Sl

NT =

S = &l
Sl -l 5l L
Sl -l 5l




To find AN

2, L
6 -2 21| V3
AN=|-2 3 —1] = = =
o V6 V2 43
2 -1 3 1 1 -1
V6 V2 3
-r124+2+42 0—-2+2 6—2—-2
NG V2 V3
_ —4-3-1 0+3-1 —2+3+1
- V6 V2 V3
44143 0—-1+3 2—1-3
% Vv B
r16 0 2
V6 V3
B -8 2 2
V6 V2 V3
8 2 =2
V6 V2 /3
Calculate D = NT AN
L S T
6 Vo V||V e
olo L Ll 2 2
- V2 V2||Ve V2 43
1 1 118 2 2
L/§ V3 \/5“-\/3 V2 \/§J

32+8+8 0-2+2 4-2-2

6 V12 V18

0—-8+8 0+2+2 0+2-2

V12 2 V6

16—8—8 0+42-2 24242
/18 NG 3

8 0 0
=0 2 0|=D(822)
0 0 2



¢ Construct a Diagonalised matrix by an orthogonal transformation of

10 -2 -5
A=|-2 2 3
-5 3 5
Solution:

The characteristic equation of Ais A3 — s;4%2 + 5,14 —s3 =0

s;=10+2+5=17

w=|l 1+l s+l

5
=(20 — 4) + (10 — 9) + (50 —25)
=16+1+25=42
s3 = |A|
=10(10 — 9) + 2(—10 + 15) — 5(—6+10)
=10(1)+2(5) - 5(4)
=10+10—-20=0

The characteristic equation of Ais A3 —174% + 424 =0

AA2—171+42)=0
AA=3)A+14) =0
A =03,14

To find eigen vectors solve (A—ANHX =0

10—-14 =2 -5 X1 0
-2 2oa 3 )(m)=(o) ------ )
-5 3 5—-A1/ \X3 0



Case (i):

When A = 0 in (1),
10—-0 =2 -5 X1 0
(—2 220 3 ><)=<0>
-5 3 5—-0/ \X3 0
10 -2 -5\ /% 0
-5 3 5/ \X3 0

10x1 - ZXZ - SX3 =0

_le + 2x2 + 3x3 = 0

_5x1+3_2x3=0

Solving first two equations using cross rule method

x1 _ _XZ _ x3
—6+10 30—10 20-—14
X1 X2 X3

4 =20 16
X1 Xz X3
1 -5 4

Case (ii): When 1 = 3 in (1),

10-3 =2 -5 X1 0
(=2 50 o))
-5 3 5—3/ \X3 0
7 =2 =5\/%1 0

2 9))-0)

-5 3 2 X3 0

7x1 - ZXZ - SX3 == 0

_2x1 — Xy + 3X3 = O



—5x; +3+2x3=0

Solving first two equations using cross rule method
X1 X2 X3
—6-5 21—-10 —-7-4
X1 X2 X3
—11 —11 -11
X1 X2 X3

1 1 1

1
1
Case (iii): When 4 = 14 in (1),

10-14 -2 —5 \ /%1 0
( PP TR )();@
-5 3 5-—14/ \x3 0
—4 -2 -5\ /%
(—2 12 3 )<x2>
-5 3 -9/ \x3

_4‘x1 - ZXZ - 5x3 =0

Il
-~
o O O
<__—

_le - 12x2 + 3X3 = O
—5x1 + 3X2 - 9x3 = 0

Solving first two equations using cross rule method
X1 —X5 X3
—6-60 —12-10 48-4
X1 X2 X3
—66 22 44
X1 X2 X3
-3 1 2




()

Now clearly any two eigen vectors are pairwise orthogonal.

Le X.X," =X, X" =X3X," =0

1 1 -3
~ The Modal Matrix M=<—5 1 1 >
4 1 2

To Prove : N” AN=D(0,3,14)

To find Normalised matrix

Josi-g EvE-E

[ = P

I I
Hial-a- H-2E-

To find AN
1 1 3
10 —2 —5\|V#2 V3 Vi
5 1 1
AN=<—2 2 3)— = =
Va2 3 V14
-5 3 5 4 1 2
Va2 3 14



104+10-20 10—-2-5 -30—-2-10 i L“Z
Vaz V3 via V3 Vid
_ —-2-10+12 —24+2+43 6+2+6 _ i i
NZw3 V3 Via V3 Vi4
—-5—-15+20 —54+3+5 15+3+10 0 i ﬁ
Vaz V3 Vit 3 Vid
Calculate D = NT AN
-1 -5 4--0 3 —42
Va2 42 a2 V3 V14
b 1 1 1 0 3 14
|1V3 V3 V3 V3 V14
-3 1 2 0 3 28
V14 V14 V1all V3 /14
3—-5+12 —42-70+112
V126 /588
_ 3+3+3 —424+14+28
— : =
0 —9+434+6 126+14+56
NZY) 14
0 0 0
=[0 3 0]=D(0314)
0 0 14

¢ Construct a Diagonalised matrix by an orthogonal transformation of

8 -6 2
A=|-6 7 —4|.
2 -4 3
Solution:

The characteristic equation of Ais A3 —s;42 + 5,4 —s3 =0

s;,=8+7+3 =18

=% P+ b S



=(56—-36)+(21—-16)+ (24— 4)
=20+5+20=45

s3 = |4]
=8(21 —16) + 6(—18 + 8) + 2(24 — 14)
=8(5) + 6(—10) + 2(10)
=40 — 60 + 20=0

The characteristic equation of Ais A3 — 184% + 454 =0

= A2 —-181+45)=0
=  AA1=-15(A-3)=0
=  1=0315

To find eigen vectors solve (A—ANX =0

8—1 —6 2 X1 0
N ( _6 7 By /1 _4 ) (xz) ) <0> ______
2 —4 3-1/\X3 0
Case (i): When A =0in (1),
8—0 -6 2 X1 0
2 -4 3-0/\X3 0
8 -6 2 X1 0
2 -4 3 X3 0

8x1 - 6x2 + Z.X3 == O

—6x1 +7x, —4x3 =0



2x1 +3xy +3x3 =0

Solving first two equations using cross rule method
X1 —X2 X3
24—14 -32+12 56-36

X1 X3 X3

10 20 20
X1 X2 X3
1 2 2

1
X1 = (2)
2
Case (ii): When A = 3 in (1),

8—3 -6 2 X1 0
2 -4 3-3 X3 0
5 -6 2 X1 0
2 -4 0 X3 0
5x1 —6x, +2x3=0

_6X1 + 4‘X2 - 4‘X3 = 0

2x1+3x,+0x3 =0

Solving last two equations using cross rule method
X1 —X2 X3

24—8 —20+12 20-36
X1 X2 X3

16 8 —16
X1 X2 X3
2 1 =2

(3



Case (iii): When 4 = 15,

8 —15 —6 2 X1 0
( 6 7 15 - 4><xz)=<0>
2 —4 3—-15 X3 0
-7 —6 2 X1 0
2 -4 -12 X3 0
—7X1 - 6X2 + 2x3 =0

_6X1 - 8X2 - 4‘x3 = 0

le - 4‘X2 - 12.X3 =0

solve last two equations using cross rule method

X1 TX2 X3
24+16 28+12 56-—36
X1 X2 X3
40 —40 20
X1 X X3
2 21

()

Now clearly any two eigen vectors are pairwise orthogonal.

Le X X,T =X, X" =X:X," =0

1 2 2
-~ The Modal Matrix M=<2 1 2)
2 -2 1
To Prove : NT AN=D(0,3,15)

To find Normalised matrix



12 2
3 3 3 1 2 2
2 1 2 1

N=15 3 —§=§[2 1 —2]
2 -2 1| ¥ 21
3 3 3

To find AN

8 -6 2 . 1 2 2
AN=<—6 7 —4)5[2 1 —2]
2 —4 3 2 -2 1
[ 8—12+4 16—-6—-4 16+ 12+ 12

=2|-6+14-8 —12+7+8 —12-14—4
| 2-8+46 4—-4-6  4+8+3

1[0 6 30
=3[0 3 -30
0 —6 15

Calculate D = NT AN

1

D=3|2 —2 —30
2 6

1[0 0

5|0 27 ] l ] D(0,3,15)
0 o 135] lo 0 15

¢ Construct a Diagonalised matrix by an orthogonal transformation of

@)

1 -1 -1
A=|1-1 1 -1|.
-1 -1 1

Solution:



The characteristic equation of Ais 23 — 5,42 + 5,14 —s3 =0

s;=1+1+1 =3

52 = |_11 _11| + |_11 _11| + |_11 _11|
—1-D+1-1+1-1=0
s3 = |A]
11— +1(-1-1)—1(1+1) = -4

The characteristic equation of Ais 23 =312 +4 =0
If A =—-1,then —1-3+4=0
~ A= —1lisaroot.

Using synthetic division,

-1,1 -3 0 4
0 -1 4 -4

L
1 -4 4 0

A=—land 2> —41+4=0
A=-1,(1-2)2=0
A=-122,

To find eigen vectors solve (A—ANX =0

2—A =2 2 X1 0
:< 1 1 _A 1 ><x2> B <0> ______
1 3 —1—-21/ \X3 0



Case (i): When A = —1in (1),
1+1 -1 -1 X1 0
( -1 1+1 -1 )<x2>=(0>
-1 -1 141/ \X3 0
2 -1 -1\ /% 0
52 200
-1 -1 2 X3 0

le_xz_x3=0
—x1+2x2—X3=0

—xl—x2+ZX3 =0

Solving first two equations using cross rule method
X1 —X5 X3
1+2 —2-1 4-1
X1 X2 X3

3 3 3
X1 X2 X3
1 1 1

1
w3
1
Case (ii): When 4 = 2 in (1),
1-2 -1 -1 X1 0
(5 2B
-1 -1 1-2/\X3 0
-1 -1 -1\ /*% 0
SRR
-1 -1 -1/ \X3 0

_xl_xz_x3:0

—X1—X; —x3=0



—X1— X, —x3 =0
The above equations represents the same equation —x; —x, —x3 =0

Choosing arbitrary values for x;, letx; = 0

xz == _x3
Xy x3
1 -1

To find the third eigen vector orthogonal to X;and X,,since the matrix A

is symmetric.

l
Let X5 = <m>
n

X\"X3=0=14+m+n=0 .oreevrrrrrrrrrn (1)

"X =0=0l4+m-—n=0 .ooerrrrrrrrrreenn. (2)

Solving (1) and (2) we get

X1 —X2 X3

1-1 Z1-0 1-0

X1 X2 X3

2711



Now clearly any two eigen vectors are pairwise orthogonal.

e X X, =X, X" =X:X,"=0

1 0 =2
~ The Modal Matrix M=<1 1 1 )
1 -1 1
To Prove: NT AN=D(-1,2,2)

To find Normalised matrix

1 -2
s VY 7
1 1 1
NEE G
1 -1 1
B3 vz V6
-1 1 1-
V3 V3 3
1 -1
NT=[0 — —
V2 A2
2 1 1
V6 V6 /6.
To find AN
1 -2
o e
1 1 1
AN=|-1 1 —1]55%
-1 -1 1111 -1 1
5 = &

Slb Sl o
BRI REIFS



Calculate D = NT AN

ot o=t , =
V3 V3 V3||V3 V6

polo L =X 2 2
B V2 V2Z||V3 V2 V6
-2 1 1f=t =2 2
V6 V6 V6llv3 V2 /6
—1 0 0

=[o 2 o|=D(-122)
0 0 2

e Construct a Diagonalised matrix by an orthogonal transformation

1 0 0
of A=(0 3 -1}|.
0 -1 3
Solution:

The characteristic equation of Ais A3 —s;42 + 5,4 —s3 =0

51=1+3+3=7

52:|—31 3 1+l 3|+|(1) g|
=9 —1+3+3=14

s = |A]

=19-1)-0+0=8

The characteristic equation of Ais A3 — 742 + 141 -8 =10
If A =1 ,thenl-7+14-8=0
~A=1isaroot.

Using synthetic division



1 -6 8 0
A=1,1%-61+8=0

A=1,1=24
A=124

To find eigen vectors solve (A—ANHX =0

1-21 0 0 X1 0
:>( 0 3_/1 _1 )(xz) B <0> ______
0 -1 3-1/\x3 0

Case (i): When 4 = 1in (1),
1-1 0 0 X1 0
( 0 a-1 -1 )<>=(o)
0 -1 3-1/\X3 0
0 O 0 X1 0
0 -1 2 X3 0

0xqy +2x5 —x3=0

0x1 -I-0x2 + OX3 == 0

Oxl_x2+ZX3 =0

Solving last two equations using cross rule method




Case (ii): When 4 = 2 in (1),
1-2 0 0 X1 0
( 0 s-2 -1 )()(0)
0 -1 3-2/\X3 0
-1 0 0 X1 0
0 -1 1/ \%x3 0

—X1+0xZ+OX3 =0
Ox; +x, —x3=0

0x1—x2+x3=0

Solving first two equations using cross rule method
X1 —X5 X3
0—-0 1-0 —-1-0
X1 X2 X3

0 -1 -1
X1 X2 X3
0 1 1

0
XZ = (1)
1
Case (iii) : When 4 = 4 in (1),

1-4 0 0 X1 0
0 -1 3-4/\x3 0



-3 0 0 X1 0

0 -1 -1/ \x3 0

_3x1 + OxZ + 0x3 == 0
0x1 - xz - x3 = 0

Oxl_xz_X3=0

Solving first two equations using cross rule method

0 -3 3
X1 Xz X3
0 -1 1

Now clearly any two eigen vectors are pairwise orthogonal.
Le X X,T =X, X" =X:X,T =0

1 0 O
~ The Modal Matrix M=<0 1 —1)
0 1 1

To Prove: NT AN=D(1,2,4)

To find Normalised matrix



1 0 0
0 1 -1
N=| V2 V2
0 1 1
L V2 W2
1 0 0
0 1 1
NT = V2 2
0 -1 1
L V2 W2
To Find AN
1 0 O
1 0 0 o L -1
AN=|0 3 -1 V2 N2
0 -1 31l|]p L L
V2 N2
1+404+40 0+0+0 0+0+0
3 1 3 1
0+0+0 0+ ﬁ_ﬁ O—E—E
1 3 1 3
0+0+0 O—E NG O+E+ﬁ
1 0 0
=[0 V2 -2V2
0 V2 2v2

Calculate D = NT AN

1 0 0
o L 1 1 00

D = N 2 —2\/_ 0 2 0|=D(1,24)
-1 0 0 4
oﬁﬁO\/_ 242

¢ Construct a Diagonalised matrix by an orthogonal transformation of



7 -2 0
A=|-2 6 -2|.
0 -2 5
Solution:

The characteristic equation of Ais 23 — 5,42 + 5,14 —s3 =0

s;=7+6+5=18

527 |—72 _62| T |—62 _52| + |3 g
=(42—-4)+(30—-4)+(35—-0)
=38+426+4+35=99

s3 = |A]
=7(30 — 4) + 2(—=10 — 0) + 0
=7(26)+2(~10)=162

The characteristic equation of Ais A3 — 1812 + 991 — 162 =0
If A = 3,then(3)3 — 18(3)2+ 99(3) — 162 =0
~ A =3isaroot.

Using synthetic division

31 -18 99 -162
0 3 -45 162

L
1 -15 54 0

A=3,12-151+54=0



A=3,1=96
A=396

To find eigen vectors solve (A—A)X =0

7—1 =2 0 X1 0
(N N p— o
0 -2 5—=1/\x3 0
Case (i): When 1 = 3in (1),
7—3 =2 0 X1 0
( 2 6os 2 )()(o)
0 -2 5-3/\X3 0
4 =2 0 X1 0
0o -2 2 X3 0
4x; — 2x5 + 0x3 =0
_le + 3XZ - 2x3 = 0

0x1 - 2x2 + ZXB == 0

Solving first two equations using cross rule method

4 8 8
X1 X2 X3
1 2 2

Case (ii): When 1 = 6in (1),



1 -2 0 X1 0
0 -2 -1/ \X3 0
X1 —2x, +0x3 =0
—2x1 +0x, —2x3 =0

0x1—2x2—x3 =0

Solving first two equations using cross rule method
X1 —X2 X3

4—0 —2-0 0-4
X1 X2 X3

4 2 —4
X1 X2 X3
4 2 -4

o[}

Case (iii): When A = 9in (1),

7—9 =2 0 X1 0
(=2 69 =2 )(x)=(o)
0 -2 5-9/\X3 0

-2 =2 0 X1 0
(2 2

0 -2 —4/\x3 0

_le - 3x2 - 2x3 =0

_2x1 - 2x2 + 0x3 == 0

0x1 - 2x2 _4‘X3 = 0



Solving first two equations using cross rule method

Now clearly any two eigen vectors are pairwise orthogonal.
e X X, = XX =X:X,"=0

1 2 2
~ The Modal Matrix M=<2 1 —2)
2 -2 1

To Prove: NT AN=D(3,6,9)

To find Normalised matrix

11 2 2
N=zl2 1 -2
2 -2 1
1 2 2

T
N=§F 1 —4
2 -2 1

To Find AN

AN=

7—201122
-2 6 =272 1 =2

0 -2 5112 -2 1



7—4+0 14—-2+0 14+440
—24+12—-4 —44+6+4 —4—-12-2
0—4+10 0-2-10 O0+4+5

13 12 18 1 4 6
6 6 —18[=[2 2 -6

l6 =12 o9l 2 -2 3

_1

Calculate D = NT AN

(1 4 eyl 2 2
D=312 2 —6[|2 1 -2
2 -4 31l2 -2 1

{[l+4+4 4+4-8 6-12+6
=3|2+2-4 8+2+8 12-6-6
2-4+42 8-4—-4 12412+3

L 9 0 O 3 0 0
==10 18 0 |=|0 6 0]|=D(3,69)
10 27

0 0 0 9
2 0 -1
o Verify that the eigenvectors of the real symmetric matrixA=| 0 2 0 |are
-1 0 2

orthogonal in pairs.
Solution:

The characteristic equation of Ais 23 — 5,42 + 5,4 —s3 =0

s;=24+24+2=6
s=lo ol +15 Z1+l 2
=4+3+4=11

s3 = |A|

=2(4—0) + 0(1) — 1(0 + 2)



=8 — 2=6

The characteristic equation of Ais 23 — 612+ 111 -6 =0
IfA =1, then1-64+11-6=0
~ A =1lisaroot.

Using synthetic division

1,1 -6 11 -6

1 -5 6 0
A=1,2-51+6=0

A=1,1=23

A=123

To find eigen vectors solve (A—AX =0

2—4A 0 -1 X1 0
:< O 2_/1 O ><x2> } <O> _____
-1 0 2—A) \X3 0

Case (i): When A =1in (1),

2—1 0 -1 X1 0
(o 2-1 0 )(=)=(o)
-1 0 2—1/ \X3 0
1 0 -1\ /% 0
(50 o))
-1 0 1 X3 0

x1+0x; —x3=0



Oxy +x, +0x3 =0
—x1+0x2 +X3=0

Solve first two equations using cross rule method
X1 X X3
0O+1 0-0 1-0
X1 Xz X3

1 0 1

ol

Case(ii): When A = 2 in (1),

2—2 0 -1 X1 0
(0" 2=z o J(x)=(o]
-1 0 2—2/ \X3 0

OX1+OXZ_X3 =O
Ox1+0x2+0x3 =0
_X1+OxZ+OX3 =O

Solving first and last equations using cross rule method
X1 —Xy X3
0+0 0-1 040
X1 X2 X3




Case (iii) : When 4 = 3 in (1),

2—3 0 -1 X1 0
50 D))
-1 0 2—3/ \X3 0
-1 0 -1\/*% 0
(5 3 )0
-1 0 -1/ \X3 0

_x1+0xZ_X3=O
Ox;y —x,+0x3 =0

—x1+0xy —x3=0

Solving first two equations using cross rule method
X4 —X5 X3
0—1 0+0 1-0
X1 X2 X3

-1 0 1

-1
1
Eigen vectors of A are

G-

To prove the orthogonality condition :
X, X,T =0, X,X37=0, X3X,7=0
1

ie X1X2T=<0> (0 1 0)=0
1



0
X2X3T=<1> (=1 0 1)=0
0

-1
X3X1T=<O)(1 0 1)=0
1
e X, X, =X, X" =X:X," =0

= The eigen vectors are pairwise orthogonal.

3 -1
Verify that the eigenvectors of the real symmetric matrix A=[—-1 5
1 -1

are orthogonal in pairs.

Solution:

The characteristic equation of Ais 23 — 5,42 + 5,14 —s3 =0

s=|2 Sl a1 S
=14+48+14=36
s3 = |A]

=3(14) + 1(=3+ 1) + 1(1 = 5)
=42 — 2 — 4=36

The characteristic equation of Ais A3 — 1112 + 361 —36 =0
IfA=2,then(2)® —11(2)> +36(2) —36 =0

~ A= 2isaroot.



Using synthetic division

21 -18 36 -36
0 2 -18 36

L
1 -9 18 0

A=2,12-91+18=0
A=2,1=36
1=236

To find eigen vectors solve (A—AI)X =0

3-14 -1 1 X1 0
-(=0 e )(=m)=(o) ------ )
1 -1 3-1/\X3 0

Case (i): When A = 2in (1),
3—-2 -1 1 X1 0
( D5 o )(HO)
1 -1 3-2/\X3 0
1 -1 1 X1 0
1 -1 1 X3 0

X1 —%x3 +x3 =0
—Xx1+3x;, —x3=0

xl_x2+X3 =0

Solving first two equations using cross rule method



Case (ii): when A =3 in (1),

3—-3 -1 1 X1 0
(= s=s - )(x)=(o)
1 -1 3-3/\X3 0
0 -1 1 X1 0
(o))
1 -1 0/\*3 0

0x; —x,+x3=0

—x1+2x2—X3=0

X1 — Xo + OX3 == 0
Solving first two equations using cross rule method
X1 TX2 X3
1-2 0+1 0-1
X1 X2 X3

11T 1
X1 X2 X3
1 1 1

ol

Case (iii): When A = 6in (1),

3—-6 -1 1 X1 0
1 -1 3-6/\X3 0



-3 -1 1 X1 0
1 -1 -3/ \X3 0
—3x1 —x, +x3=0

_xl_xz_x3=0

X1 — X — 3.X3 =0
Solving first two equations using cross rule method
X1 TX2 X3
1+1 3+1 3-1
X1 _ X2 X3

2 —4 2

X1 Xz X3

1 -2 1

1
1
Eigen vectors of A are

(BB

To prove the orthogonality condition :

X1X2T =0, X2X3T=O, X3X1T=0
1
ie X1X2T=< 0 )(1 1 1)=0
-1

1
X2X3T=(1> (1 -2 1)=0
1



1
X:x,T = (—2) (1 0 -1)=0
1

e X X,  =X,X"=XX"=0

= The eigen vectors are pairwise orthogonal.

1 -1 0
Verify that the eigenvectors of the real symmetric matrix A=<—1 2 1)

o 1 1
are orthogonal in pairs.

Solution:

The characteristic equation of Ais A3 — 5,42 + 5,4 —s3 =0
s1=1+2+1=4

2|

e N R
=2-1D)+(1-0+(2-1)
=1+1+1=3

s3 = |A|
=1(2—-1)+1(—-1-0)+0=0

The characteristic equation of Ais 2> —4A2 +31—-0=0

AA2—41+3) =0
A=0,1%2—41+3=0
1=0,1,3

To find eigen vectors solve (A —ANX =0



1-1 -1 0 X1 0
:< _1 2_/1 1 ><x2> ] <0> ______
0 1 1—-A/ \X3 0

Case (i): When 1 = 0in (1),
1-0 -1 0 X1 0
0 1 1—-0/ \X3 0
1 -1 0\ /*1 0
0 1 1/ \Xx3 0
x1 - x2 + Ox3 = 0
—X1+2xZ +X3 =0

OX1+xZ+X3=O

Solving first two equations using cross rule method

X1 X2 X3
-1-0 1-0 2-1
X1 X2 X3
1 -1 1
X1 X2 X3
11 -1

Case (ii)): When 1 =1in (1),

1-1 -1 0 X1 0
(= 2o1 1 )(x)=(o)
0 1 1—-1/ \X3 0
0 -1 0\ /* 0
1)
0 1 0/ \X3 0

0xq1 —x,+0x3 =0



—x1+x, +x3=0

0x1+x2+OX3 =0

Solving first two equations using cross rule method

Case (iii):

-1 0 -1
X1 Xz X3
1 0 1

When A =3in (1),
1-3 -1 0 X1 0
(_1 223 1 )<>=(o>
0 1 1-3/\X3 0
-2 -1 0\ /% 0
0 1 -2/ \X3 0

_le — X + OX3 = 0

—xl—x2+X3=0

Ox; +x, —2x3 =0

Solving first two equations using cross rule method

X1 X X3
-1-0 -2-0 2-1
X1 X2 X3

-1~ 21




Eigen vectors of A are

(3500 =(2)

To prove the orthogonality condition :

X1X2T =O, X2X3T=0, X3X1T=O
1
ie X1X2T=< 1 )(1 0 1)=0
-1

1
X2X3T=<O> (-1 2 1)=0
1

—1
X3X1T=(2>(1 1 —-1)=0
1

e X X,  =X,X" =X:X,"=0

= The eigen vectors are pairwise orthogonal.



UNIT 11

CALCULUS

Rolle’s Mean Value Theorem:

Suppose f( 'x) is a function that satisfies all of the following.

) is continuous on the closed interval [a,b].

f(x

7(x);

( is dlfferentlable on the open interval (a,b).
&

)=f

r _
Then there is a number ¢ such that & << € < b and f (C)_ 0. Or, in other words f( .}t?) has a
critical point in (a,b).

Let’s take a look at a quick example that uses Rolle’s Theorem.

f(x) —Ax’ +x +T7x-2

Example 1 Show that has exactly one real root.

Solution

From basic Algebra principles we know that since f( ‘x) is a 5™ degree polynomial it will have five
roots. What we’re being asked to prove here is that only one of those 5 is a real number and the other
4 must be complex roots.

First, we should show that it does have at least one real root. To do this note that f ( 0) =2 and

thatf(l):loandsowecanseethatf(o){0{f(l). Now,becausef(x) isa

polynomial we know that it is continuous everywhere and so a number ¢ such that O<c<land

f((?) = 0. In other words f( :f) has at least one real root.

We now need to show that this is in fact the only real root. To do this we’ll use an argument that is

called contradiction proof. What we’ll do is assume that f ( ‘x) has at least two real roots. This
means that we can find real numbers a and b Sthere might be more, but all we need for this particular

argument is two) such that f(ﬂ) = f (b =0

. But if we do this then we know from Rolle’s




' _
Theorem that there must then be another number ¢ such that f (C) =0 f (‘7): O Thisis
a problem however. The derivative of this function is,

fix)= 20x* +3x% +7

Because the exponents on the first two terms are even we know that the first two terms will always be
greater than or equal to zero and we are then going to add a positive number onto that and so we can
see that the smallest the derivative will ever be is 7 and this contradicts the statement above that says

r
we MUST have a number ¢ such that f (C) o 0. We reached these contradictory statements by

assuming that f( .}t?) has at least two roots. Since this assumption leads to a contradiction the
assumption must be false and so we can only have a single real root.

Geometrical Interpretation of Rolle’s Mean Value Theorem:

The proof of the mean value theorem is very simple and intuitive. We just need our intuition and a little
of algebra. To prove it, we'll use a new theorem of its own: Rolle's Theorem.

This theorem says that given a continuous function g on an interval [a,b], such that g(a)=g(b), then there
IS some c, such that:

<= o= h
And:
flle) =0

Graphically, this theorem says the following:




Given a function that looks like that, there is a point ¢, such that the derivative is zero at that point. That
implies that the tangent line at that point is horizontal. Why? Because the derivative is the slope of the
tangent line. Slope zero implies horizontal line.

Lagrange’s Mean Value Theorem

Suppose f( x) is a function that satisfies both of the following.

1. f( ‘x) is continuous on the closed interval [a,b].

2. f( ‘x) is differentiable on the open interval (a,b).

Then there is a number ¢ such thata < ¢ < b and

_f(6)-f(a)

f'(¢)=

b

Or,

Let’s now take a look at a couple of examples using the Mean Value Theorem.




Example: Determine all the numbers ¢ which satisfy the conclusions of the Mean Value Theorem for
the following function.

f(.:!c:)zx3 +2x'—x on [—1,2]
Solution

There isn’t really a whole lot to this problem other than to notice that since f ( .?C) is a polynomial it
is both continuous and differentiable (i.e. the derivative exists) on the interval given.First let’s find the
derivative.

f(x)=3x" +4x-1

Now, to find the numbers that satisfy the conclusions of the Mean Value Theorem all we need to do
is plug this into the formula given by the Mean Value Theorem.

f(2)- (1)

A

14-2 12
3t +de—1= ==Y
3
Now, this is just a quadratic equation,
3¢’ +4c—1=4
3¢t +4¢-5=0

Using the quadratic formula on this we get,

. ~4+ /16— 4(3)(-5) _ 42476
6 6




So, solving gives two values of c.

:ﬂzg_jgﬁ ﬂ:_g_“%

C C =

Notice that only one of these is actually in the interval given in the problem. That means that we will
exclude the second one (since it isn’t in the interval). The number that we’re after in this problem is,

c=10.7863

Be careful to not assume that only one of the numbers will work. It is possible for both of them to
work.

Cauchy’s Mean Value Theorem:-

Statement:- If two functions f(x) and g(x) are derivable in a closed interval [a,b] and g'(x) # O for any
value of x in [a,b] then there exists at least one value ‘c’ of x belonging to the open interval (a,b) such
that

f(b) — f(a) = f(c)
g(b)-g(@ dg'(c

Fact

X

r
1. If f (x) >0 for every x on some interval |, then f( ) Is increasing on the interval.

-t

r
2. |f f (x ) < for every x on some interval I, then f( ) is decreasing on the interval.

X

r —
3. |If f (‘x)_ 0 for every x on some interval |, then f( ) Is constant on the interval.

First Derivative Test

Suppose that X = € is a critical point of f( .?'C) then,




r r
1. If f (I)} I::Itothe left of X = € and f (JC){ I:Jtothe rightof X = C then X =
is a relative maximum.

r r
2. If f (x){ I:]tothe left of X = Cand f (‘x)} I:]tothe rightof X =€ then X = ¢
is a relative minimum.

r
3. If f ( .I'C) is the same sign on both sides of X = € then X = € is neither a relative
maximum nor a relative minimum.

Definition

1. We say that f(x) has an absolute (or global) maximumat if  for every x in the domain we
are working on.

2. We say that f(x) has a relative (or local) maximumat if  for every x in some open
interval around

3. We say that f(x) has an absolute (or global) minimumat if  for every x in the domain we
are working on.

4.  We say that f(x) has a relative (or local) minimum at if ~ for every x in some open interval
around

, c /J
L — !
|

| v
LY ¥ Ry

',
\'.

N

\
Abs. Min.




Example: Verify Cauchy’s mean value theorem for f(x):& and g(x)= in [a,b] when

Bk

O<a<b.

Sol: -

Given f (x):&.g(x):%
-+ f(x)—g(x) are conts in [a,b] & f(x), g(x) are derivable in (a,b)

LX) = T&g (x )—XL\/; exists in (a,b)

Also g'(x) =0+ xe(a,b)=R"

. F(X)g(x) are satisfics all conditions of cauchy’s mean value Theorem.

VERIFICATION: -

1 —
By Cauchy’s mean value Theorem. Is al least one ¢ €(a,b) such that r©_ f(b)-7(a)
gc) g(b)-g(a)

1

1

R T i e NG ISCSNCCY
2cJc b +a Jab

Here ¢ is Geometric mean of a & b

". Cauchy’s mean value theorem verified

Generalised Mean Value Theorems

Taylor’s theorem
If a function f(x) is such that f(x), f 1(x) ........ {1 (x) are continuous in [a,a+h] and f™M(x) exists for
all xe(a,a+h) then there exists 6<(0,1) such that

hn—l
Z(n-1)

f(a+h)=f(a)+hf 1(a)+ f "(@)+———— fOD(a)+ R




h"1-6)""
(n-1'p

If p=1 we get Cauchy’s form of Reminder and

Here Rn= f (a +6 h) is called the Taylor’s reminder after n terms

If p=nwe get Lagrange’s form of reminder

Maclaurin’s theorem:
If a function f(x) is such that
(i) f(x), F1(x) ,....... (™1 (x) are continuous in [0,x] and (ii) f™(x) exists for all

xe(0,x) then there exists 6 (0,1) such that

2 n-1
fx:f0+xf10+x—f”o et X FO-D0)+ R
(=F(0)xt H0)+ = £(0) e 1R,
x"(L-9)""
where Rp= f ™ (9 X) 1s called the Maclaurin’s reminD.E.r after n
(n-D!p
terms

If p=1we get Cauchy’s form and

If p =nwe get Lagrange’s form of reminder.

Verify Taylor’s Theorem for f (X) = (1— X)% with Lagrange’s form of remainder up to 2 terms in

the interval [0,1]
Sol: -

Given f(x)=(1-x)" = f(x)=—(1-x)"
-+ £1(x) is polynomias in x
-+ f1(x) is conts in [0,1] & f*(x) is derivable in (0,1)

They f(x) satisfies all condition of Taylor’s theorem .

By Taylor’s theorem with Lagrange’s form of remainder is at least one c e (0,1) such that

f (b)= f(a)+(bl;f)fl(a)+Rn




When R, =—(b—a2“f ©

Heren=p=2;a=0,b=1

F(1)= £ (0)+ Q) +-—© = £ (0)=1 (1) =0
I el
1
Now fl(x)=_75(1—x)%, f1(0)=%5:> f“(x)z?(l— x)2 f1(c) =
0=1-24 15(1 ) = (1—c)”* v 38 4 1 10 g
2 215 5 25
Hence c=0.36 €(0,1)

". Taylor’s Theorem is verified.

2 4
Show that Cosx:l—x—+x————

21 41
Sol : -wkt From Maclaurin’s series
f(x)=f (0)+xf (0)+ f“(O) f“l(O) f (0)+——
Given
f (x)=cosx f(0)=1
f1(X) = —sin x f1(0)=0
f1(x) = —Cosx f10) = -1
f™(x) =sin x f*0)=0
f*(x) = Cosx f4(0)=1

2 4
Now Cosx=l—x—+x—+——
21 41

15 1
—@-c)?

2 (1-c)

16 _9 036
25 25




UNIT-1V

Partial Differentiation and Application (Multivariable Calculus)
Partial Differential Co-Efficient

e LetZbe afunction in two or more variables,it can be differentiated with
respect to each of the variable by assuming that it varies only with that
variable and others treated as constants.These differential Co-efficients are

. . . . 9z 9z 0
Known as Partial differential Co-efficient.They are denoted by a—i , £ ,a—t
etc..

e.g.s

du du
° =e*si — —
If u =e*siny find P and %

U _ pXgi

5. = €’ siny

M~ e*cos

ady - y

o u = sin(x2+y?)

ou
— = ] 2 2
oo = 2x sin(x2+y?)
u _ 2y sin(x2+y?)
ay

Chain Rule For Partial Differentiation

e u= f(x,y)andx = f(s),y = f(s)
du Ou dx Ou dy

35 ox 9s 9y os

e ¢=f(uv,w)andu = f(x),v=f(x),w=f(x),
dp 0P du 0¢ dv 0¢ dw
dx Ou dx Ov dx Ow dx

Problems

o If¢=f(y—z,z—x,x—y),showthat% +% +%=0
Givengp = f(y—z,z—x,x—y)
Letu=y—2z
v=z-—X
w=x-—Yy

By chain rule,



6¢) a¢ au+a¢ dv a¢> ow
dx Ou dx  Ov dox  ow ox

(®+ (1H-(D

— "’_‘P % .
T ow ov (1)
Similarly,
06 _0¢ _ 9P . 2)

dy odu ow

9z v du
Adding (1),(2) and (3), we get,

99 _ 29 _ 00 3)

0 [ 9% | 9% _
6x+6y+az_0

. . .0 0
e Ifu=e*siny where x = st? and y=s2t .Find a_:l and a—’:.
Given that u =e*siny, where x = st? and y =s2t

By chain rule,

du OJu ax+au dy

ds 0x ds 0Oy ds
= (e*siny)(t?) + (e*cosy)(2st)
= e*(t%siny + 2stcosy)

du Ou Ox L ou ou ay

ot ox ot dy at

= (e*siny)(2st) + (e*cosy)(s?)
= e*(2st siny + s?cosy).

dv  dv , Ov
o Ifv = (y—-2)(z—x)(x—1y),provethat £+5+£—0.

v= (U -2)z-x)x-y)
= (yz—z* —xy + xz)(x — y)
= xyz — xz* — x*y + x°z — y?z + yz® + xy* — xyz



= xy? +yz? + x%z — xz*> — x%*y — y*z

@= y2 +2xz — 2xy — 2% e (1)

Z; 2xy + 22 —x% —2yz  cemmmeemee- (2)
Z—Z=2yz+x2—2xz—y2 ---------------- (3)

Adding (1), (2) and (3)

dv dv 0Jv 5 5 5 5

E @+a——y + 2xz — 2xy —z° + 2xy + z* — x° — 2yz

+2yz + x? — 2xz — y? =0

_f(x Y=z ou  Ou, _Ou_
° Ifu—f(y,z,x),provethat xax+yay+zaz—0 (L6)

Givenu = f(£ Y E)

)y _ )
vy z' x

Letu = f(p,q,r), where p =§,q =3;7

Z
¥ ==
X
du Ju ap+6u aq+au or
dx Op 0x 0q 0x Or Ox

ZZ_ZG) _() ar (_Z)

Jiw_zow 0
yop x?0r
Ju Oudp Odudq OJuodr
dy op dy 0qdy  or dy
ou (—x\ OJu (1\ OJu
=5 (57)+5 )+ 5 ©
1du x odu
20 yiop T T T TTTTTToC (2)

du Oudp Oudq Ouor
dz 0p 0z 0q 0z Or 0z



Z2

ou ou (—yy Ou /1
=5 @ +5. ()5 (3)

_10u yodu

“xor z%d0¢q 3)

Therefore, from (1), (2) and (3), we get,

Ju ou Ju x0u zJdu yodu xdu zdu yodu
X—+y—+z0—=—F7——7

0x dy dz yodp x6r+2%_;%+;§_2£
= (0 = RHS
e Ifu = f(x,y),where x = r coso, y = rsine, prove that
ou\ 2 ou\ 2 au\2 1 [ou\?
&) +G) =G) +=G) 0o
Given u = f(x,y) ,x = rcos6,y = rsinf
du OJu 6x+6u dy
or 0x or 9y or
_ ou OU (MO  oommeee e
= (cosO) + 3y (sinb) (D)
du OJu 6x+6u dy
96  9x 90  Jy 30
du . Ju
= ——(=rsinf) + 3y (rcos@) ------m-mmmmmm e (2)

Therefore, from (1)and (2), we get,
RHS — (6u>2 s 1 <6u>2
~ \or r2\00

B au( 9)+6u(,8)2+1 du _9+0u( 6)2

=\ 32 cos 3y sin = ax( rsing) 3y rcos
w2 ou ou . . w2 1 . ou\2

= [(E) cos?0 + 255 cos@sind + sin?0 (5) ] + r—z[rzsmze (5) —

ouou i ou\ 2
2 —=— r2cos0sinb + r?cos?6 (—)
0x 0y dy



o2 <6u)2 + sin28 <6u)2 + sin28 <6u)2 ' cos26 (6u>2
= CcoS ax Sin ay Sin ax CcoS ay

ou\* ou” ou\*>  ou?
— 2 2 2 20\ — _
= <6x) (cos“B + sin“0) + <6y) (sin“0 + cos“0) = <6x) (ay) LHS

o Ifu= f(x—yy— —-Xx), provethat—+ +—=0

Given u=f(x —y,y—2,z—x)
Letu = f(p,q,v), where p=x—y,q=y—2zr=2z—x
du_duop ouoq ouor
dx OJp 0x dq dx Or Ox
= )+ 20 + 28 (1)
ap dq or
ou Jdu

op or L

du Odu 0p+6u dq OJu Or
ay ap dy 0q ay or 6y

du du du
= (_1)+% D+ (0)

Ju Jdu

aq op (2)
du OJu 6p+6u 6q+6u or
9z ap dz 0q 0z Or 0z
ou ou ou
=55 @+5 (D5

Ju OJu

or o¢q 3)
Therefore, From (1), (2) and (3), we get,

au au Ju Odu Ou OJdu dJdu OJdu OJu

ox oy Tz o artag aptar ag” VTR

o Ifu = f(x24+2yz, y2+2zx),prove that



du du du
2 _ 2 _ - 2 _ —_—
O -2 o+ -y gt (P - ) g,

Given u = f(x? + 2yz,y? + 2zx)

Letu = f(p,q), where p = x% + 2yz,q = y? + 2zx
du Ju ap+au dq
dx Op 0x 0q 0x

au ou
= — (Zx) + — (ZZ)

du du dp  0du dq
dy 0Op dy aq dy
au
=— (ZZ) + = (2)')

26u+2 ou 2

du Ju 6p L ou ou aq
oz ap oz dq 0z

a—” @2y) + a— (2%)

Therefore, From (1), (2) and (3), we get,
Ju Jdu Ju
2 _ 2 _ 2 _
(y* —zx) Fvia (x* —yz) 3y + (z° —xy) 3
ou ou ou
— 2 _ 2 _ 2 _ —
=2x (y° —zx) _6p + 2z (y* — zx) 3q + 2z(x* — yz) o

ou Ju u
2 __ 2 __ 2 _ _
+ 2y(x yZz) _aq + 2y(z xy) _ap + 2x(z xy) 3



ou
— [2xy? — 2zx% + 2zx* — 2yz® + 2yz* — 2xy?]

ou 2 2 2 2 2 2
+%[Zzy — 2xz° + 2yx° — 2zy° + 2xz° — 2yx“]
= 0 = RHS
2
o Ifu = (x24+y?+22)1/2 prove that— + — + 37 = %

Given thatu = (x24+y24z2)1/2
By chain rule,
ou

1 2 2 21—1
— =S @2 +y? + 277 (2x)

X
JaT+yT+ D)

By quotient rule,

92y JEZ+y2+z2) (1) —x (%)(x2 +y% + zz)_%(Zx)

0x* W@ +y? +29))?
2, .2
ye+z
= 3 ~ - - T T TS~ (1)
(x? +y? +z2)2
Similarly,
0’u _ x% + z2 @
2 = 3 - - - - - --—-—-—-—--
dy (x%2 +y2+422)2
d%u x% + y?
072 = 3 -0~ (3)
(x2+y%2+2z2)2
Adding (1)(2)and (3)

62u_|_62u_|_62u_x2+zz+yz+zz+x2+y2
x2  dy?  0z2

3
(x2 +y?% +z?%)2



_2(x*+y*+2%)

3
(x2 +y%2+2z2)2
2 2

1
(x2 + y% + z2)2

e Ifz = f(uv)where u = x + yandv = x—y,

dz dz dz
showthat 2—=—+ —
du ox dy

Given z = f(u,v)
where u=x+y,v=x-—y
62_ 0z 6u+6z dv
dx Ou d0x Ov 0x
0z 0z
=5, W+ (D)

0z 0z
= (1)

T ou v
0z 0z du 0z dv
9y oudy vy
0z 0z
== () +5 (-1
dz 0z
~ou ov
Therefore, From (1) and (2), we get,
0z 0z 0z 0z 0z 0z

RIS =5t & o vt o av

— 2% s
- Tou '
o Ifz = f(x,y), wherex = u + v,y = uv, prove that
0z 0z 0z 0z
u£+va—xa +2y£.(L6)

Given z = f(x,y)



where x =u+v,y = uv

0z 0z E)x_l_az dy
du 0x du dy du

0z 0z
=5 W+5, @

0z 0z
=3 + v@ ———————————————————— (1)
dz 0z 0x 0z dy
v~ 9x v ' dy ov
- LW+ w
0z 0z
= 3 +u@ ———————————————— (2)
Therefore, From (1) and (2), we get,
LHS = u%+v%—u% +uv%+v% +uv%
Ju ov d0x dy 0x ay

0z
= (u+v)— +(uv+uv)—y

r°)

= ( +) = +2 P 2 42y — R
=u+v uvay X yay—
3
e Show that ia—u+za—u—210.gu, where logu—(

10u
udx

10u
uay

(3x+4y)

Differentiating partially w.r.to x by quotient rule,

_Bx+4y)Bx*) -7 +y°)B) _

6x3 + 12x%y — 3y3

(3x + 4y)? (3x + 4y)?
Differentiating partially w.r.to y by quotient rule,

_Bx+4)By*) - P +yH @) _

-—

8y3 + 9xy? — 4x3

(3x + 4y)? (3x + 4y)?

Multiplying (1) by x and (2) by y we get,

-=(2)



x0u _ 6x*+12x%y — 3xy?
udx (3x + 4y)?

you 8y*+9xy® —4x%y
udy (3x + 4y)?
Adding (4) and (5), we get,
x ou N you 6x*+12x%y —3xy> + 8y* + 9xy> — 4x3y
udx udy (3x + 4y)?

_ 6x* +8x%y + 6xy® + 8y*
B (3x + 4y)?
_6x(x®+y3) +8y(x® +y°)
B (3x + 4y)?
_ (6x +8y)(x® +¥?)
B (3x + 4y)?
_23x +4y)(x* +y*)
B (3x + 4y)?
2 +y%)
~ (3x +4y)
xou you

— 4+ __ =2
u6x+u6y logu

o Ifz = f(u,v), whereu = x2—y2and v = 2xy, prove that

G+ (5) =+ |G +G) ]
Given z = f(u,v)
where u = x? — y%,v = 2xy
dz 0z du 0z dv
ax " guox v ox

_az @ )+6z )
T ou x av(”



62_62 6u+az v
dy oOu dy Ov dy
0z

_ 5 0z )
—a(— }’)+%( X)

Therefore, From (1) and (2), Squaring and addding, we get,

LHS—(aZ>2+ (62)2_<2 6z+2 OZ)Z_I_ ( , az+2 az>2

— \ox dy) xau yav yau xav

_ 402 (22)° 9202 | 202 (92)° 4 402 (92) _ gy 2292 | 442 (%2)

= 4x (E)u) + 8xy du 6v+4y (6v) +4y (6u) 8xy Ju 6v+ 4x (E)v)
2 2

= (g—i) [4x% + 4y?] + (2_127) [4x2 + 4y?]
_ ax? 4 7] [(g_i)z + (g_;)j

= 4(x? + y?) [(Z—i)z + (2_127)2] = RHS
Total Differential Coefficient Of A Function
Let Z be a function in two variables x and y.If Z is continuous, then the
total differential coefficient of Z is given by dz = 3—5 dx + z—i dy
e.g.
¢ Find the total differential coefficient of the function u = tan (3x — y +
2z).
Given,u = tan (3x —y + 2z).

u ou u
du—adx+£dy+£dz ------------------ (1)



u
Pl 3sec?(3x — y + 2z)
— = —sec?(3x —y + 22)

ou
— 2 f—
P 2sec*(3x —y + 22)

Substituting in (1)

du = 3sec?(3x —y + 2z)dx — sec?(3x — y + 2z)dy
+ 2sec?(3x —y + 22)dz

du = sec?(3x —y + 2z)(3dx — dy + 2dz)

e Find %, ifu = log(x + y + z),wherex = e”%, y = sint, z = cost

Given,u = log(x + y + z2),

where x = et

du du dx+6u dy_l_au dz
dt 0x dt 09y dt 0z dt

, ¥y = sint, z = cost

= —— (—e™H+

T x+y+z

1
X+y+z

1 .
(cost) + prew (—sint)

cost — sint — et

"~ e~t + sint + cost

. idu .
e Find d—l:, if u = e*, where x = (a2—t2)1/2, y = sin3t

Given, u = e* , where x = (a?2—t2)1/2,y = sin3t
du du dx+6u dy
dt 0x dt 0dy dt
1
= ye"y%(a2 — t2)27 1 (=2t) + xe*¥3sintcost

—yt .
= ¥V [ﬁ + 3xsm2tcost]

« Find %, ifu = x3y? + x2y3 where x = at?,y = 2at.



du OJudx Oudy
dt " oxdt 9y dt
= (Bx%y? 4+ 2xy3)(2at) + (2x3y + 3x%y?)(2a)
= (3a%t*4a?t? + 2at?8a3t3)(2at) + (2a3t®2at + 3a%t*4a?*t?)(2a)
=4a*t>(3t + 4)(2at) + 4a*t®(t + 3)(2a)
= 8a°t®(3t + 4) + 8a°t®(t + 3)
=8a’°t®(3t+4+t+3)
= 8a’t®(4t + 7)

. Find%,ifu=§, wherex = ef,andy = log t.(L1)

Given, u =§ ,where x = ef,andy = log .
du Ou dx+6u dy
dt 0dx dt dy dt
_ 1, (zX\1
_ye +(y2)t
1 —et 1
t

t

- logt ¢ -I_(logt)2

et 1
= Togt (1~ TTog 1)
logt tlogt

o Ifu= sin‘l(x —vy),where x = 3tand y = 4t3. Show that(:li—ltl =

1-t2
Given, u = sin"1(x — y)
where x =3t and y =4t

du du 6x+6u dy
dt  dx ot dy ot

_ 2
=——(@3 )_—(12t2)=&
\/1 (x ¥)? J1-(x-y)? J1-(x-y)?

Now 1 — (x —y)? =1 — (3t — 4t3)?



=1—t%(3 — 4t%)?

=1—t%(9 — 24t? + 16t*)

=1 —9t? + 24t* — 16t°
=1-—t?—8t?+8t*+ 16t* — 16t°
= (1 -t?)(1—-8t*+ 16t%)

= (1 -t — 4t?)?

du 3(1 — 4t2) 3
dt [1-o)1 422 Vi-2

Implicit Function

A function of the form f(x, y) =0 is called an implicit function.
e.g.l.6x3 + 12x%y —3y3 =0
e.g.2. x> +y* = 3ax?y

For an implicit function f (x,y) = 0,

af
Y _Tox
dx of
dy

e Find %, when x3 + y? = 3ax?y

Let f(x,y) =x3+y3— 3ax?y.

of
@ _ox
dx of

dy
af 5
a—3x — 6axy
Of _ . 2 2
@—3)1 — 3ax

dy —(3x”—6axy)
dx  3y? —3ax?




3x(x —6ay) —x(x— 6ay)
302 -axd) (2 -ax?)

e Find %, whenx¥ +y* = ¢

Letu(x,y) =x¥Y +y* —¢

Jdu
dy " ox
dx  Ou
dy
ou
B | x
i VX + y*logy
ou v N
ay—x ogx + xy*~

dy  —(x?"' +y*logy)
T dt xYlogx + xy*~1

Taylor’s Theorem For A Function Of Two Variables.

If f(x,y) and all its partial derivatives are finite and continuous at all
points, then the Taylor series of f (x, y) about the point (a, b) is given
by

fey) = f(ab) + [(x —a)fe(a,b) + v = b)f, (a,b)]

+E [(x — @)*fix(a, b) + 2(x — @) (¥ — b)fxy(a, b)

+ (y - b)zfyy(a’ b)] + -

Write the Taylor’s series expansion of x”near the point (1, 1) up to the

second degree terms
Taylor’s series expansion of x” near the point (1, 1) is given by

6f ( 1) df(1,1) N
dy

xy—f(11)+ | &= D + -1



LI (D 02 (1D , *F(LD)
a|e- 2L SR 2 - D - DT - 1 S

Function Value at (1,1)

f=a

fx = yxy—l

fy = x”logx [since logl = 0]

S| O B

fxx =y(y—1)xY~?

[N

fry = yx¥ Hogx + x¥71

fyy = x¥(logx)? 0

xy=1+%[(x—1)1+(y—1)0]

1
+5 [(x — D2(0) + 2(x — Dy — 1) + (y — D?(0)]

x¥ = [(x - D]+ [Z(x -D-D]+

e Write the Taylor series expansion of e*log(1 + y) in powers of x and y up
to the terms of first degree.
Taylor’s series expansion of e*log (1 + y) near the point (0, 0) or

Maclaurin’s expansion is given by

af (0,0 af (0,0
log(1 +7) = 00 + 1 -0 L2+ - LD
Function Value at (0,0)
f=e*log(1+y) 0 [since logl = 0]
fx = e*log (1+y) 0
fy = e* - !

1+y




e*log(1+y) =0+ [(x)O + W1+ =y
e Expand x2y+3y-2 in powers of (x — 1) and (y + 2) up to the third
terms

Taylor’s series about the point (a, b)is given by
fG,y) =f(a,b) +— [(x — a)fi(a,b) + (y — b)f,(a, b)]

T % [(x — @) fix(@,b) + 2(x — &) (y = b) fyy (a,b) + (¥ — b)?f,y(a,b)] +
Taylor’s series about the point (1, —2)is given by

x%y +3y —2 =f(1,—2)+%[(x— af(l —2)

0f(1,-2
O 4 (42 f<y>]

_I_

1 0%f(1,-2 92 F(1,—2 af1 .

Function Value at (1,-2)
f =x%y+3y -2 (D2(-2)+3(—2)—-2=-2—-6—-2=-10

fe = 2xy 2(D)(-2)=—4
fy=x*+3 (1)>?+3=4

fux =2y 2(=2)=~

fry = 2x 2(1)=2

fyy =0 0

frxx =0 0

frxy = 2 2

frayy =0 0

fyyy =0 0

Using the table values



x?y+3y 2= 10+~ [(x —1D(—4)+ (y+2)4] + [(x —1)%(-4) +
20— Dy +2)2+(+2)%0] + 5[(x - 1)°0) +3(x —1)*(y +2)2 +
+3(x — D) (y +2)%(0) + (y + 2)30] +

= —10+ [ 4(x -1 +4(y +2)] + [ —4(x — 1% + 4(x - D(y + 2)]

+%[6(x ~12(y +2)] +

=-10-4[x-D-@+2)]-2[x-1)?-(x- D +2)]
+ (- DG+ 2]+
e Expand f(x,y) = x%y + siny + e* in Taylor’s series about the point
(1,7).(L2)

Taylor's series about the point (a, b)is given by
fGy) = f(ab) + [(x - )fe(a,b) + (v~ b)fy(a,b)]

+%[(x —a)?fox(a,b) + 2(x — a)(y — b) fxy(a,b)

+ (= b)?fy(a,b)] +

Taylor series about the point (1, i) is

X2y + siny + e* —f(ln)+—[( _ 1) f( ”)+( _ )af(ln)
+% (x—1)2%+2(x—1)(y—n) 2;;;;}”)
+ (y —m)? 62];()112, ™)
o0 D 561y - )a;f}a’;)
a3f(1,7r) 3f(1 ],

+ 3(x — D(y — m)?

d0x0y? t -’



Function Value at (1, )

f =x%y + siny + e* f=m+e
fx = 2xy +e” fr=2m+e
fy = x* + cosy fy=0
fux =2y +e* fax =2m +e

fry = 2x fry =2
fyy = —siny fyy =0
foxx = €7 fuxx = €
faxy = 2 faxy = 2
fayy =0 feyy =0
fyyy = —cosy fyyy =1

x’y+siny+e*=m+e +%[(x— D2 +e) + (y —m)(0)]
4ol - D22 +e) 4 26~ DO M@ + (& ~12(O)]

+5,[0 = DPe + 3 — D*(y —~ m)(@) + 3¢ - D&y - M*(0)
+ (=P + -

1
x2y+siny+ex=n+e+F[(x—1)(2n+e)]+

= 12@n + €) + 40— Dy — )]

b le(x = D 4 60c— D2y = m) + (v — )] + -

e Write the Taylor’s series expansion of e*siny near the point (-1, z/4)

up to the third degree terms.

Taylor’s series about the point (a, b)is given by



1
f(X,y) = f(a; b) + F[(x - a)fx(a, b) + (y - b)fy(a' b)]
(G~ (@, b) + 202~ ) — By (@, )

+(y — b)*fyy(a, b)] +

m
Taylor’s series about the point (— 1, Z) is given by

n T
m 1 of (-L7 w Of (-1,
ersiny = £ (~1.3) + 3 W”%W—z) (ay 2
2f bua o2 _1%
(“DZM”(“D(%Z) aﬁay )+(y—
T 262f(—1,g) 1 ( ) 3f( 4)
Z) 6—3/2]+§[(x+1)3 e +3(x + 1)? (y—z) %70y +
20%f f( 1—)
3(x+ 1) (y__) ax(ayz) ( __)3 ]_l_ ERPPRPPPS
Function Value at (—1, %)
f = e*siny ,.m 171
f=e sm—=—(—>
4 e\y2
= e*si 1/1
fr = e*siny £ = e—1sin%=5(ﬁ)
=e” 1/1
fy = e*cosy f, 26_1C05%=Z(ﬁ)
= e’si 1/1
fex = e¥siny foo = e”“"%ﬁ(ﬁ)
=e” 1/1
ho Z o foo = ¢ 05 =2 ()




by ety fiy = —etsing = =5 ()
frwe = €15 fooe = e 05 =5 ()
fooy = €05y froy = 05T = 2 ()
oy =m0y fi = —e"tsin =~ ()
esiny =2 + e+ DI+ (- D)
tpler o)+ 2w+ 0 -e()+ - (55
raler () vaer (- D)

o= (-1 03

= exsiny =2 () [1+ G+ D+ (-5 + 2@+ D+

2(x+1)(y—%)—(y—§)2}+%{(x+1)3+ 3+ 12 (y - 1) -

T 2 T 3
3+ D (y-3) —(v-3) }+]
Maclaurin’s Expansion Of f(x,y)

Taylor's series about the point (0,0) is known as Maclaurin’s
Expansion

Maclaurin’s expansion of f(x, y)is given by



af( 0, - O)af(gc;,o)

fy) =£(0,0) + = [( —0)

f( 0 4 20— 03y — 0) f( 0,

( — 0)?

92£(0,0
(=0 f( )]

1 93£(0,0) 93 f(0,0)

+§[(x — 0)3T+ 3(x — 0)?(y — 0) 3x70y

3
+3G -0 -0 LR+ -0

3f(O 0)]

e Write down the Maclaurin’s series for sin(x + y).

Maclaurin’s expansion of f(x, y)is given by

af(O 0) af(0,0)
0

+ @ —-0)

fy) =£(0,0) + = [( —0)

PFO0 o aZf<o,o>]

2 (x — 0)2 zf( )+2( —0)(y = 0) +(y—0)
2! 0xdy Y dy?
1

+§ (x—0)3 % +3(x —0)*(y — 0) a;{cgg}?)
9°£(0,0) 9°£(0,0)
+3(x —0)(y — 0)? 520y +(y—0)3T] +

Function Value at (0,0)
f =sin(x +y) 0
fx =cos (x+y) 1
fy =cos(x+y) 1
fex = —sin(x +y) 0
fey = —sin(x +y) 0
fyy = —sin(x +y) 0

frxx = —c0s (x +¥) -1




fraxy = —Cos (x + ) -1
fryy = —c0s (x +y) -1
fyyy = —cos (x +y) -1

Substituting the table values,

sin(x +y) =0 +3

2(x = 0)(y —0)0 + (y — 0)*0]

3(x —0)*’(y —0)(=1) + 3(x —0)(y — 0)*(-1) +

(y—0P3(=D]+
sin(x +y) = (x +y) —%(x+y)3 +

~[(x— 0)1+ (y — 0)1] +-[(x—0)20 +

+ [ — 03 (-1) +

e Write down the Maclaurin’s series for e**” .

Maclaurin’s expansion of e**Y is given by

o =100 + [ _O)af(oc)) ‘o _O)af«; 0)
1 2f( 0) a%f (0 0)
+5[<x 0)? =57+ 2 = 0y = 0 =+ (v = 0)

,02£(0,0)

dy?

Function

Value at (0,0)

f = Xty

[ S == IS SN =Y




1 1
e =1+ 5[0)1+ 1]+ 5 [()* 1+ 21+ 0)* 1] + -~

Jacobian.

If u(x,y) and v(x, y) are functions in two variables x and y,then the

Jacobian of u and v w.r.t x and y is given by the determinant

Properties Of Jacobian

d(wy) A(xy)
T axy) Ta(wy)

o(wv) _ d(ww) 9(r,s)

Ta(xy)  A(rs) Ta(xy)

3. Ifu(x,y) and v(x, y) are functionally independent, then

d(u,v)
o(x,y)

e Ifu = 2xy,v=x%2—-y%,x = rcoso andy = rsino, find——~

By the property of jacobian,
d(w,v) dwv) d(xy)

a(r,0) d(x,y) a(r,0)

Now,

d(u,v)
o(x,y)

0x
v

0x

2x

du OJu
ox oy
v  odv|’
ox dy
o(u,v)
ar,0)



= —4y? — 4x?

= —4(x* + y?)

= —4(r?cos?0 + r?sin?0)

=—4r*? @ —————————— (2)

dx 0x
ox,y) _|or a6
a(r,0) |0y 0y

ar 96

_ |cos@ —rsind
sin@ rcos6

= (rcos?8 + rsin?0)

=1 —mmm——— - 3
substituting (2)and (3) in (1)
%((1;"1;)) = —4712(r) = —4r3
e Ifx =1rcos0,y =rsinf and z = ¢.Find :((:”—g";)).
dr 00 Od¢

d(x,y,z) |0y dy Ody
a(r,0,p) “lor o8 dp
dz 0z 0z
ar 96 do
cos@ —rsinf 0

sin@ rcos6@ O
0 0 1

= cosf(rcosf — 0) + rsinf(sind —0) + 0

= rcos?0 + rsin’6 =r



e Ifx=u(l1+v),y=v(1+u), find 2Y)
o(u,v)

Jox Ox
a(x,y) — ou OJv
a(u,v) dy 0Oy
ou O0v
_ |11+ u
v 14+u

=14+u+v+uv—uv

=(14+v)(1+u) —uv

=14+u+v

a(x,y)

—_pT — T
o Ifx=e"seco,y=e" tano find 3r8)

. dx dx
Given, x=e" secO == e’ secl; i e"secl tand;

d P)
y=e"tand = a—izer tan®; %z e’ sec® 6

dx 0Ox
oxy) _|ar a6
a(r,0) |0y Oy

ar a0

e secO e'secOtand o 3 o 2
= =e“"(sec® 0) — e“"(secBOtan-6
e"tand e sec?H ( ) ( )

= e?"secH(sec? 6 — tan?*0) = e?*"sech

o(x,y) o(u,v) 1

o Ifu = x2,v = y? prove that =1.
o(u,v) o(x,y)

fu=x2=x=vu and v=y2 =y =+v
dx Ox 1ou  duy
d(x,y) d(u,v) _ Ju ov| |9x ay
d(w,v) d(x,y) |0y Oy| [dv dv
du Odvl lox OJy




i 1

_[2Vu 2x 0‘
- 1 0 2y
2V
L, 4 L 4y =1
= Axy = Axy = —.4xy =
W ) T afmyE ) T ayTY
e fu=xyzv+xy+yz+zx,w=x+y+z Find ZE:::;
Ju Jdu Jdu
ox dy 0z

o(u,v,w) B dv o0v Jv
a(x,y,w) ~|ox dy 0z
ow Jdw oJw

dx 0y 0z

vz XZ Xy
=ly+z x+z x+Yy

1 1 1

= 1(x%z + zxy — x*y — xyz) — 1(xyz + y?z — xy* — xyz) +
1(xyz + z%y — xyz — xz?)

=x*(z—y) —y*(z—x)+z*(y —x)

o(xy) d(uvy)

e Ifx =uv, y =%, show that duv) d(xy)

Given, x = UV = =-mmeeeemememeeeee- (1)

u

y == e (2)

v

(1) multiplied with (2)
xy = uv.% =u? e (3)

(1) divided with (2)

XX 2
IR =v )

v

From (1)&(2) , From (3)&(4)



P Zua =y
O0x du
5 ZUE =X
ay 1 v 1
u v V5=
Oy _ v o _ _x
v v2 2v dy  y2
y X
d(x,y) o(u,v) _ v1 uu 2u  2u
Wwv) axy) |, 2|l =X
2vy 2vy

- [(V;—E ) - (. )] [(g %) -Gy 2117y)]

- [__u B E] [ 4uvy 4zfvy] N [ ju] [_ 42{7}1]

X X
= =1

vy ()

¢ If we transform from three dimensional Cartesian co-ordinates (x, y, z)

to spherical polar co-ordinates (7, 8, ¢). Show that the Jacobian of
x,y,z withrespecttor, 6, ¢ is r’siné
Spherical polar co-ordinates are,
x =rsinfcose
y =rsin 0sing
zZ = rcos6

dx Ox O0x
dor 00 Od¢
d(x,y,z) |0y dy 0y
a(r,0,9) |or 090 dg
dz 0z 0z

dr 00 OJdg




sinfcosp rcosfcosp —rsinfsing
= |sinfsing rcosOsing rsinfcosp
cosf —rsinf 0

= cosO[r?sinfcosOcos*¢ + r?sinfcosOsin? @]
+ rsinf[rsin®0cos?@ + rsin?0sin? |
= c0sOr?sinfcosB[cos?@ + sin?@] + rsinfrsin?0[cos?p + sin?¢]
= [cos?@ + sin®@](r?sinfcos?0 + r?sinfsin?0)

= r2s5inf(cos?0 + sin*@) = r?sinf

_ _ _ a(x,y,z)

o fu=x+y+2z,uv=y+ z,uvw = z, evaluate. Aanw)
Ox OJ0x Ox
Ju Jdv Jw

d0(x,y,z) |0y dy dy
o(w,v,w) |ou v ow

0: 0z 0z

du Jdv oJdw
Let u=x+y+z oo (D)
uw=y+z e (2)
Uvw =z mmmeemmeeeeeee- 3)

Put (2)in (1) we get,
u=x+ur = x=u—uw = x= u(l-—-v)
Put (3) in (2) we get,
w=y+uvw = y=uw-—uvw =y = uv(l—w)

From (3) we get, z = uvw.

ox ox ox
S = 1 — - — = 1 — _= — _—=

x = u( V) o v, U, 0

ay dy ay
= —_ - — = —_ P = —_ - L =

Y = Uuv — uvw o v(1l—w); ™ u(l —w); ™ uv
0z 0z 0z

Z = Uvw = — =vw; — =uw; = Uuv

ou av a_v



dx Ox Ox

ou E ow (1 — 17) —u 0
oxyz) _ |9y 9y ady| _ 1 1
d(uvw) |ou ov ow| v(l-w) u(l-w) -—w
dz 0z 0z vw uw uv

du v ow
=1 —v)(W?v — uPvw + uPvw) + u(uv? — uvw+ uv?w)
= u?v — u?v? + utvi=utv
Stationary Points.

Let f(x,y) be a function in x and y.Then the points at which

] ] . : :
é = 0 and é = 0 are called stationary points. At these points the

function takes an extreme value.
Maximum Value, Minimum Value And Extreme Value Of A Function

Of Two Variables.

4. A function is said to have a maximum value at the point (a, b)
if f(a,b) > f(a + h,b + k) for all small values of h and k.

5. A function is said to have a minimum value at the point (a, b)
if f(a,b) < f(a+ h,b + k) for all small values of h and k.

6. A function is said to have an extreme value at the point (a, b)
if it is either maximum or minimum at (a, b).

Define Saddle Point Of A Function f(x, y).

Let f(x,y) be a function in x and y.The point (a, b) is said to be a saddle

point ,if the function is neither maximum nor minimum at that point

Working Rule To Find Maximum/ Minimum Value

¢ Find the stationary points (a,b)

: _ 0% n_ 0%f
* Find the values A= ——,B= 3%y

2
,C= a_]; and A= AC — B? atall the
oy

stationary points.

e IfA>0and AorB> 0at(ab),Then the function has a minima at (a,b)



IfA> 0 and A or B< 0 at (a,b),Then the function has a maxima at (a,b)

If A< 0,Then (a,b) is a saddle point.

If A=0,Then the nothing can be decided.

Examine the stationary points of the function

f(x,y) = x3 +y3 —3x— 12y + 20 and also state their nature.
Given that f(x,y) = x3 + y3 — 3x — 12y + 20

To find stationary points

U —0=3x2-3=0=3x%—-1) =0

0x
= x% =
= X = 1 - (1)
g_fy“=o=>3y2—12=0=>3(y2—4) =0
= y? =
=y =12 - (2))
~. The stationary points are (—1,—-2),(—1,2),(1,—2),and (1,2)
_9%f _
A= pyche 6x
_ 0% _
- dx0y o
_ 9% _
=57 =
2 62 62
Points A= ﬂ B = f C = —f A= AC — B? | Extremum
0> dxdy dy?
(-1,-2) | —6<0 0 —-12<0 72> 0 Maximum
Saddle
(-1,2) |—6<0 0 12 —72<0
point
Saddle
(1,-2), 6 0 ~12 —72<0
point




6> 0
(1,2)

0 12> 0

72> 0

Minimum

The maximum value at (-1, —2) is

fl,y) =(—1)3 4+ (-2)3 —=3(-1) —12(-2) + 20
—1—-8+3+24+20=38

The minimum value at (1,2) is

flx,y) = (1) +(2)3—-3(1) —12(2) + 20

=14+8-3-24+20=2

e Examine f(x,y) = x3+3xy2—15x2—15y24+72x for extreme values

To find stationary points :

ox

= x2+y2-10x +24 =0 -----mo-mmem-

9 —0 = 3x2 + 3y2 —30x+72 =0

af _ _
@—0=>6xy 30y =0

= y(6x —30) =0
= y=0o0r6x—30=0
= y=0o0orx=5
Put y=0in (1)
= x%-10x +24 =0
(x—6)(x—4)=0=x=4,6
~ For y = 0 the points are (4,0) and (6,0).
Letx =5in(1),weget, 25+y2—-50+24 =0
=S@y?-1)=0= y?2=1=y=+1
The points are (5,1) (5,—1)
~. The stationary points are (4,0), (6,0), (5,1), (5,—1)

0 e 30 =2y
A=25=6x-30; C=5==06x-30



0% f

- 0xdy - 6_’)/
A= AC — B?
POINTS _9*f B= _9%f | A= AC — B? | EXTREMUM
A= C=
0x? dy?
0%f
0x0y
(4,0) —6<0 0 —6<0 |36>0 MAXIMA
(6,0) 6>0 0 6>0 |36>0 MINIMA
(5,—1) 0 —6<0 |0 —36<0 SADDLE
POINT
(5,1) 0 6>0 0 —36<0 SADDLE
POINT

e Examine the function f(x, y)= x3y2(12 — x — y) for extreme values

Given that f(x,y) = 12x3y2 — x*y? — x3y3

To find stationary points

2 = 0= 36x%y? — 4x3y? — 3x%y% = 0 = x?y?(36 — 4x — 3y) =0
= x=0,y=00r36—-4x—-3y =0
= 4x +3y =36 ----mmmmemeeeeee- (1)
% = 0 = 24x3y — 2x*y — 3x3y% = 0 =x3y(24 — 2x — 3y) = 0
= x=0,y=00r24—-2x—-3y =0
= 2x+3y =24 e (2)
Solving (1) and (2),
2)x2=4x+6y =48 -m-ommmememeeeee- 3)
(D)= 4x+3y =36  ----mmmmemmee- (4)

B)-@4) = 3y=12=y=4 andx=6



x=0in(1) =y=12 = (0,12)
y=0in(l) = x=9= (9,0
x=0in(2)=y=8=(0,8)
y=0in(2) =>x=12= (12,0)

The stationary points are (0,0), (0,12),(9,0), (0,8),(12,0) and (6,4)

A= é)z_f = 72xy? — 12x%y? — 6xy3
0x?
B = a(z;fy = 72x%y — 8x3y — 9x%y?
C= giy]; = 24x3 — 2x* — 6x3y
Points . a’f B d%f o 0*f | A= AC— | Extremum
0x? d0xdy dy? | g2
(0,0) |0 0 0 0 Nothing
can be
decided
0,12) |0 0 0 0 Nothing
can be
decided
(90 |0 0 4374 0 Nothing
can be
decided
0,8) |0 0 0 0 Nothing
can be
decided




(12,0) |0 0 0 0 Nothing
can be
decided

(6,4) |—2304 —1728 —2592 >0 Maximum

The maximum value at (6,4) is
flx,v)=(6)3(4)?(12 -6 — 4) = 6912
Lagrange’s Method For Constrained Maxima And Minima

Let f(x,y, z) be the function whose maximum/ minimum to be found

subject to the constraint @(x,y,z) = 0.
By Lagrange’s Method,

e Form the auxiliary function F = f + A ¢,where A is the Lagrangian

multiplier.

e Solve for (x,y, z) from the equations

oF

0F OF
T—po L=
0x !

ay_ 9z

minimum value of f(x,y,z)

e Examine the minimum value of x24+y2+4z2 when xyz = a3.

Let f(x,y,z) =x*>+y?+z% and ¢(x,y,2z) = xyz—a?

By Lagrange’s method F = f + A¢
(i.e) F=x*+y*+2z%)+ A(xyz — a®)

oF 0 2x + A 0
_—= e =
Ox X YZ
2x
= A= e ¢))
aF—0 = 2y+Axz=0
6y_ y XZ =
= R — (2)

XZ

0, —=0 and o(x,y,z) = 0to find maximum/




OF
—=0 = 2z4+X&xy=0

0z
N — 3)

=
xy

From (1)and (2), we get

2x 2y

vz xz

] x2=y2

= X =Y smmmemmmmemmmemeoeeeeoeeoe- 4)
From (2)and (3) We get
_y_ 2z
Xz - Xy
= y2 =72
= Y= Z e (5)

From (4) and (5), we get
X=y=2z
Using this in xyz =a3 , we get,
X)) = a?
= x3=a3
= x=a
LX=y=2z=a
~ (a,a,a) is apoint of minima and [, = a* + a® + a*? = 3a?
e The temperature at any point (x,y, z) in spaceis givenby T = kxyz?,
where k is a constant. Determine the highest temperature on the
surface of the sphere x24+y2+4z% = a2
Given Temperature T = kxyz?,
such that x2+y?+2z2 = a?
f(x,y,2) = kxyz?



@(x,y,z) =x*+y? +z%2—a®
By Lagrange’s Method,

Let F = f + Ag, where A is Lagrangian Multiplier.

= F = kxyz® + A(x? + y? + z% — a?%)

aF—O = kyz? +21x =0
ox vz x=5
—kyz?
= A= TTT
oF _ = kxz? + 21y =0
3y - XZ y =0,
. —kxz?
- = = = —
2y
oF 0 2k + 21 0
— - =
5 XyZ z ,
1 —2kxyz I
e = = —
2z Xy
From (1) and (2), we get,
~kyz*  —kxz®
2x 2y
— Y272 = x272
— y? = x2
—t X = y _________

From (2) and (3), we get,

—kxz?
2y -
= xz? = 2xy?
= z% = 2y°
= 2y=z  ———————-



From (4) and (5),we get,x =y &z = 2y

Using this in x* + y? + z* — a®> = 0, we get,

y2+y2+(\/7y)2—a2=0,

= 2y% +2y%? —a? =0,
= 4y? —a?2 =0
= 4y? = a?
= 2 Sy=2
Y T TYT3

a

From (4),we get, x=3

a a
From (5),we get, z=42 — = —
(5), we g 2=

Therefore, the maximum temperature on the given surface is

ay say [/ a \2 a*
T=k(3)(3) (ﬁ) =kg
e Determine the minimum value of x> + y* + z2whenx + y + z = 3a.
Let f(x,y,z) =x%+y? +z?
and o(x,y,z) =x+y+z—3a=0
By Lagrange’s Method,
Let F = f + Ag, where A is Lagrangian Multiplier.
F=((x?4+y2+z)+Ax+y+z—3a)

doF
—=0 = 2x+ A1 =0,
ox
= A=-2x—-——"—"—"—"—"—"———— — — (D)
oF 0 2y + A
_— : =
oy Y ’



oF
— =0 =2z4+41=0,
0z

From (1), (2)and(3),we get,
—2x = =2y =—-2z
= XxX=y=z
Using thisinx +y + z — 3a = 0,we get
3x—3a=0 =>x=a
= x=a=y=z2
Therefore, Minimum value of f(x,y,z) = a? +a%? +a? = 3a*

e Determine the volume of the largest rectangular solid which can be
. . . . . q X% y2 72
inscribed in the ellipsoid StEta= 1

Let the volume of the solid be xyz which is maximised in such a way

ZZ

. . . . x?  y?
that itcan beinscribedin =S +=+=5=1
a b c
2 2 2
Let f(x,y,z) = xyz and <p(x,y,z)=§—2+2]—2+i—2—1
By Lagrange’s method F =f+A1¢
: _ vtz
(i.e) F—xyz+/"t[az+bz+c2 1]
. aF_O - +2x/1_0
Coox Ytz =
2
—yza
= A= —— e — - (1
oF A
—=0 = xz+—5=0



e 2
= > ©)
oF 0 = xv 4+ 224 0
0z T
—yxc?
= A= 3)
From (1) &(2) we get
—vra?2 —y7h2 2 2
yza’ _ xzb - ya _ ﬂ
2x 2y X y
=  y2a? = x2h?
X Y
= 2 b (4)
From (2) &(3) we get
— 2 _ 2 2 2
xzb _ Tyxe - zb _ye
2y 2z y Z
y_%¢
= 3=t ©

Xy z - _ bx cx 6
a b ¢ Y= 'Z_a (6)
x2 y? 22
We know that ?+ﬁ+§=1
x% b%*x? c%*x?
= ?+a2b2+a262:1
= 3%=1
a
= x?2 @ = a4
xXc =— X =—
3 V3
a
b(=
Equation () = y= —-= (\/§)=i
a a V3
a
c(=)
cx c
and z = —i——



The rectangular solid in a cube with dimensions are

a b c

= =— zZ=—F=
B 7T V3

a b c abc
~ Volume = xyz =—=X—=X—==

BB V3 33

e Determine the minimum value of x™y"zP when x + y + z = a.

Let f(x,y,z) =x™y"zP and ¢(x,y,z) = x+y+z—a
By Lagrange’s method F =f+1¢

(i.e) F=x"y"zZP +A(x+y+z—a)

. oF m-1,,n,p
.a=0=>mx y'zP +1=0
= A=—-mx™y"zP €))
oF m,,n—1,p
@=0 = nx"y" " zP+A=0
= A=—-—nx™y" 2P (2)
a—F=O = pxMy"zP"l+21=0
0z

= A=—px™y"zP7l 3)
From (1) &(2), we get
_ mxm—lynzp — _ nxmyn—lzp

— mxm—lyn — nxmyn—l

= my =nx

From (2) &(3), we get

_ nxmyn—lzp =—p xmynzp—l



= nz = py

y z
- @ e —— = 5
= 5)
From (4) &(5), we get
X z nx X
—:J—IZ— :}y:—’zzp—
m n p m m
Now consider, x+y+z=a
nx px
= xXx+—+—=a
m m

= mx+nx+px=am

_am
e mtn+p
am
_n(m+n+p)_ na
Y= m T m+n+p
am
Z_p(m+n+p)_ pa
B m T m+n+p

. The minimum value of f(x,y,z)

“ () Ganry) Ganes)

" \m+n+p/ \m+n+p) \m+n+p
mmn"pP

(m +n + p)mtntp

m+n+p

=a



Unit-V
Multiple Integrals

Area Between Curves

In this section we are going to look at finding the area between two curves. There are actually two
cases that we are going to be looking at.

In the first case we want to determine the area between Y= f(x) and Y—8 (x) on the

interval [a,b]. We are also going to assume that f(x) = glX . Take a look at the following
sketch to get an idea of what we’re initially going to look at.

¥

A:ij(x)—g(x)dx (1)

The second case is almost identical to the first case. Here we are going to determine the area between

X :f(_}’) and ¥ ,g(y) on the interval [c,d] with f(y) = g(y)_




In this case the formula is,

A= ("1 (»)-g(r)ay @

In the first case we will use,

upper lower
A= _ — _ , a=x=b
i function function
In the second case we will use,
“( right left
A= c<y=d

function - function

[

Using these formulas will always force us to think about what is going on with each problem and to
make sure that we’ve got the correct order of functions when we go to use the formula.

Let’s work an example.




N _ ’
Example 1 Determine the area of the region enclosed by ' = % and ¥ = VX
Solution
First of all, just what do we mean by ““area enclosed by”. This means that the region we’re

interested in must have one of the two curves on every boundary of the region. So, here is a graph
of the two functions with the enclosed region shaded.

08 J-‘?:"JII';

06
041
y=x
02}
] ] 1 | | x
02 04 0.6 0.3 1. 12

Note that we don’t take any part of the region to the right of the intersection point of these two
graphs. In this region there is no boundary on the right side and so is not part of the enclosed
area. Remember that one of the given functions must be on the each boundary of the enclosed
region.

Also from this graph it’s clear that the upper function will be dependent on the range of X’s that we
use. Because of this you should always sketch of a graph of the region. Without a sketch it’s often
easy to mistake which of the two functions is the larger. In this case most would probably say that

Y = X" is the upper function and they would be right for the vast majority of the x’s. However, in
this case it is the lower of the two functions.

The limits of integration for this will be the intersection points of the two curves. In this case it’s

pretty easy to see that they will intersect at X — 0 and x =1 so these are the limits of
integration.

So, the integral that we’ll need to compute to find the area is,




upper lower
function function

Before moving on to the next example, there are a couple of important things to note.

First, in almost all of these problems a graph is pretty much required. Often the bounding region,
which will give the limits of integration, is difficult to determine without a graph.

Also, it can often be difficult to determine which of the functions is the upper function and which is
the lower function without a graph. This is especially true in cases like the last example where the
answer to that question actually depended upon the range of x’s that we were using.

Let’s work some more examples.

Double Integrals Over General Regions

In the previous section we looked at double integrals over rectangular regions. The problem with this
is that most of the regions are not rectangular so we need to now look at the following double integral,

fﬂjf (%,3)dA

where D is any region.

There are two types of regions that we need to look at. Here is a sketch of both of them.




Case | ¥ Case 2

The double integral for both of these cases are defined in terms of iterated integrals as follows.

¥ egalx)
In Case 1 jjf(x,y)cfxﬁlzj '[El(x) f(x,y)dydx

In Case 2

d ¥
[5Gyt [ (21 (ny)avas

Properties

[/ (xy)+g(x y)a =Iﬂjf(xa y) fi4+jﬂjg(xa y)d4

1. D




Hcf(x,y)ficl = cﬂf(x,y) dA4

2. D D , Where ¢ is any constant.

3. If the region D can be split into two separate regions D1 and D> then the integral can be written as

J;J.f(x,y)dflzgf(x,y)ciﬁlJr_gf(x,y)dA

Example 1 Evaluate each of the following integrals over the given region D.

il e’ dd ;
@°5 1D:{(x,y)|1£y£2,y£x£y}
[ 49—y’ a4
(b) D , D is the region bounded by ¥ = \/-; and Y = le
6x" — 40 ydA
(©) '.[Dj , D is the triangle with vertices (09 3), (1?1), and (5? 3).
Solution

JjeEdLl 3
(@ D ,DZ{(X,}’)H‘?_‘J}PEZ,yixﬁ_‘:y}

Okay, this first one is set up to just use the formula above so let’s do that.




3
If4w—y dA _ 5 o
(b) D , D is the region bounded by Y=NXgnd V=%

In this case we need to determine the two inequalities for x and y that we need to do the
integral. The best way to do this is the graph the two curves. Here is a sketch.

¥
1 p
03} y=nfx
06k
04k
y=x
02k
! 1 1 1 1 x
02 04 06 08 1

So, from the sketch we can see that that two inequalities are,

0<x<l ¥ <y<ax

We can now do the integral,




a1 ﬁ
jj4xy—y3fi4: DLE 41}#—}#3 dy dx
D ot
a1 1 -\E
= [2@2—1}’4] dx
0 x®
a1
= z.:w:2 2x?+lx”dx
ul:l‘q'
(Lo le 1 ) _ 35
12 4 52 , 156

|[6x" —40yda

() D

, D is the triangle with vertices (0? 3), (15‘1), and (Sﬁ 3).

We got even less information about the region this time. Let’s start this off by sketching the

triangle.




Since we have two points on each edge it is easy to get the equations for each edge and so we’ll
leave it to you to verify the equations.

Now, there are two ways to describe this region. If we use functions of x, as shown in the image we
will have to break the region up into two different pieces since the lower function is different

depending upon the value of x. In this case the region would be given by D= Dl w D

D ={(x,y)[0<x<], —2x+3< y<3}

1

2 where,

D, = (x,y)|1£x£5, lx+l£y£3
2 2

Note the ._/ is the “union” symbol and just means that D is the region we get by combing the two
regions. If we do this then we’ll need to do two separate integrals, one for each of the regions.

To avoid this we could turn things around and solve the two equations for x to get,

1 3
=—2x+3 — X=——y+—
4 2}’ 2
1 1
y=Ex+E — x=2y-1

If we do this we can notice that the same function is always on the right and the same function is
always on the left and so the region is,

1 3
Dz{(x,y)|—5y+5£x£2y—l, liiy{_i?)}

Writing the region in this form means doing a single integral instead of the two integrals we’d have
to do otherwise.

|




Either way should give the same answer and so we can get an example in the notes of splitting a
region up let’s do both integrals.

Solution 1

jjéx — 40y dd = jjﬁx —40yd4+_[_[6x — 40ydA
J J.zmtﬁx —40ydydx+J I 16x — A0y dydx

f(6xy 20y)

_j 125° ~180+20(3 — dx+j 3% +15x1 - 180+20 (Lx+ L) dx

sz,ierJ1 (6x y—20y2)31 , dx

—r—

12

1 5

_ (3x4 —180x—%(3—2x)31 +(—%x4 50— 180x+43—”(%x+%)3)

0 1

935

3
That was a lot of work. Notice however, that after we did the first substitution that we didn’t
multiply everything out. The two quadratic terms can be easily integrated with a basic Calc |
substitution and so we didn’t bother to multiply them out. We’ll do that on occasion to make some
of these integrals a little easier.

Solution 2

This solution will be a lot less work since we are only going to do a single integral.




ffox* —40yaa=| [, 6x° —40ydxay
o

Ji1 TP
3 -

= | (2% -40m)[, b
Ji ETAry

= (50y2 —12y +4(2y-1)° +(—é-y+%)4)r
1
_935
3

So, the numbers were a little messier, but other than that there was much less work for the same
result

Triple Integrals

Now that we know how to integrate over a two-dimensional region we need to move on to integrating

over a three-dimensional region. We used a double integral to integrate over a two-dimensional
region and so it shouldn’t be too surprising that we’ll use a triple integral to integrate over a three
dimensional region. The notation for the general triple integrals is,

I/ o)

Let’s start simple by integrating over the box,

B:[a:,b]x[cj d]x[r,s]

]V




Note that when using this notation we list the x’s first, the y’s second and the z’s third.

The triple integral in this case is,

J1r@yz)av =[ [ [, f(3.9.2)dslyet

Note that we integrated with respect to x first, then y, and finally z here, but in fact there is no reason
to the integrals in this order. There are 6 different possible orders to do the integral in and which
order you do the integral in will depend upon the function and the order that you feel will be the
easiest. We will get the same answer regardless of the order however.

Let’s do a quick example of this type of triple integral.

Example 1 Evaluate the following integral.

Mooz g1 32 o

Solution

Just to make the point that order doesn’t matter let’s use a different order from that listed
above. We’ll do the integral in the following order.




[[[8xszav = '23£8@zdzdxdy
E

i 2
oo

= j Axy dx dy

_-22x2 |3d
= | 24"y dy

= [ 10ydy=15

Before moving on to more general regions let’s get a nice geometric interpretation about the triple
integral out of the way so we can use it in some of the examples to follow.

Fact

The volume of the three-dimensional region E is given by the integral,

V:J.J;J.dV

Let’s now move on the more general three-dimensional regions. We have three different possibilities

for a general region. Here is a sketch of the first possibility.




z =uy(x.0);

z=w(xy)]

In this case we define the region E as follows,
E= {(x:y,z) (xy)eD, u(x,y)<z<u, (x,y)}

where (‘x?y) €D is the notation that means that the point ('x’ _}’) lies in the region D from the
xy-plane. In this case we will evaluate the triple integral as follows,

J!'J'f(xjy:.z) av = Lﬂﬁ:)ﬂx’ ¥,2) dz}ﬂ

where the double integral can be evaluated in any of the methods that we saw in the previous couple
of sections. In other words, we can integrate first with respect to x, we can integrate first with respect

to y, or we can use polar coordinates as needed.

|| 2xav

Example 2 Evaluate E where E is the region under the plane 2x+3y+z=6
that lies in the first octant.

Solution




We should first define octant. Just as the two-dimensional coordinates system can be divided into
four quadrants the three-dimensional coordinate system can be divided into eight octants. The first
octant is the octant in which all three of the coordinates are positive.

Here is a sketch of the plane in the first octant.

We now need to determine the region D in the xy-plane. We can get a visualization of the region by
pretending to look straight down on the object from above. What we see will be the region D in the

xy-plane. So D will be the triangle with vertices at (0? 0), (3? 0), and (0? 2). Here is a sketch
of D.




Now we need the limits of integration. Since we are under the plane and in the first octant (so

we’re above the plane Z = 0 ) we have the following limits for z.

0 <z<6-2x—-3y

We can integrate the double integral over D using either of the following two sets of inequalities.

0<x<3

0£y£—§x+2

Since neither really holds an advantage over the other we’ll use the first one. The integral is then,

Uixi—%y+3

0<y<2

jgzxdvz j j [ [ Qxdz}i’fl

J] 2xz|s_2x_3y A
D
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3 _Ex_'_
ID3 22x(6—2x—3y)dydx
1]
3 —Ex+2
(12xy——4x%y——ﬂxy2)n3 dx
0
ﬂ'34
—x'—8x'+12xdx
03
1, 8 3
-x"—=x +6x°
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Change of Variables

[(r(glx))g(x)dx=["f(u)du where u=g(x)

In essence this is taking an integral in terms of x’s and changing it into terms of U’s. We want to do
something similar for double and triple integrals. In fact we’ve already done this to a certain extent
when we converted double integrals to polar coordinates and when we converted triple integrals to
cylindrical or spherical coordinates. The main difference is that we didn’t actually go through the
details of where the formulas came from. If you recall, in each of those cases we commented that we
would justify the formulas for dA and dV eventually. Now is the time to do that justification.

While often the reason for changing variables is to get us an integral that we can do with the new
variables, another reason for changing variables is to convert the region into a nicer region to work
with. When we were converting the polar, cylindrical or spherical coordinates we didn’t worry about
this change since it was easy enough to determine the new limits based on the given region. That is
not always the case however. So, before we move into changing variables with multiple integrals we
first need to see how the region may change with a change of variables.

First we need a little notation out of the way. We call the equations that define the change of
variables a transformation. Also we will typically start out with a region, R, in xy-coordinates and
transform it into a region in uv-coordinates.

Example 1 Determine the new region that we get by applying the given transformation to the
region R.
2
o=
(@) Ris the ellipse 36 and the transformation is

_H
TS y=3v




x 4

_ _ Y==-=
(b) R is the region bounded by ¥ = —¥ + 4 y=x+1 znq 3 3 andthe

1
x:E(quv),y: E(u—v)'

transformation is

Solution

2
#
xt 4 Y 1 X=—
() R is the ellipse 36 and the transformation is 2. ¥y=3

There really isn’t too much to do with this one other than to plug the transformation into the
equation for the ellipse and see what we get.

2
Ez+(3v) i
2 36

ut 9v'
4 36
u+v =4

So, we started out with an ellipse and after the transformation we had a disk of radius 2.

x 4

_ _ Y==-=
(b) R is the region bounded by ¥ = =¥+ 4 y=x+1 5nq 3 3 andthe

1
x:E(quv),y: E(u—v).

transformation is

As with the first part we’ll need to plug the transformation into the equation, however, in this case
we will need to do it three times, once for each equation. Before we do that let’s sketch the graph
of the region and see what we’ve got.




So, we have a triangle. Now, let’s go through the transformation. We will apply the transformation
to each edge of the triangle and see where we get.

Let'sdo ¥ = =X+ % first. Plugging in the transformation gives,

1 1
E(H— v)_—E(u+v)—|—4
U—v=—uu—v+3
2u=8
u=4

The first boundary transforms very nicely into a much simpler equation.

Now let’s take a look at ¥ — ¥ + 1




