

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 1

UNIT-I

Introduction to Linear Data Structures: Definition and importance of linear data structures, Abstract

data types (ADTs) and their implementation, Overview of time and space complexity analysis for linear

data structures. Searching Techniques: Linear & Binary Search, Sorting Techniques: Bubble sort, Selection

sort, Insertion Sort.

What is data structure?

 A data structure is a data organization, management and storage format that enable efficient

access and modification. a data structure is a collection of data values, the relationships among them,

and the functions or operations that can be applied to the data.

Introduction

Data Structure can be defined as the group of data elements which provides an efficient way of

storing and organizing data in the computer so that it can be used efficiently. Some examples of Data

Structures are arrays, Linked List, Stack, Queue, etc. Data Structures are widely used in almost every aspect

of Computer Science i.e. operating System, Compiler Design, Artificial intelligence, Graphics and many

more.

Data Structures are the main part of many computer science algorithms as they enable the

programmers to handle the data in an efficient way. It plays a vital role in enhancing the performance of

software or a program as the main function of the software is to store and retrieve the user's data as fast as

possible

Basic Terminology

Data structures are the building blocks of any program or the software. Choosing the appropriate

data structure for a program is the most difficult task for a programmer. Following terminology is used as

far as data structures are concerned

Data: Data can be defined as an elementary value or the collection of value.

For example, student's name and its id are the data about the student.

Group Items: Data items which have subordinate data items are called Group item.

For example, name of a student can have first name and the last name.

Record: Record can be defined as the collection of various data items.

For example, if we talk about the student entity, then its name, address, course and marks can be

grouped together to form the record for the student.

File: A File is a collection of various records of one type of entity,

For example, if there are 60 employees in the class, then there will be 20 records in the related file

where each record contains the data about each employee.

Attribute and Entity: An entity represents the class of certain objects. it contains various attributes. Each

attribute represents the particular property of that entity.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 2

Field: Field is a single elementary unit of information representing the attribute of an entity.

Need of Data Structures

As applications are getting complex and amount of data is increasing day by day, there may arise

the following problems:

Processor speed: To handle very large amount of data, high speed processing is required, but as the data is

growing day by day to the billions of files per entity, processor may fail to deal with that much amount of

data.

Data Search: Consider an inventory size of 106 items in a store, If our application needs to search for a

particular item, it needs to traverse 106 items every time, results in slowing down the search process.

Multiple requests: If thousands of users are searching the data simultaneously on a web server, then there

are the chances that a very large server can be failed during that process. In order to solve the above

problems, data structures are used. Data is organized to form a data structure in such a way that all items

are not required to be searched and required data can be searched instantly.

Advantages of Data Structures

Efficiency: Efficiency of a program depends upon the choice of data structures.

For example: suppose, we have some data and we need to perform the search for a particular record.

In that case, if we organize our data in an array, we will have to search sequentially element by element.

Hence, using array may not be very efficient here. There are better data structures which can make the

search process efficient like ordered array, binary search tree or hash tables.

Reusability: Data structures are reusable, i.e. once we have implemented a particular data structure, we can

use it at any other place. Implementation of data structures can be compiled into libraries which can be used

by different clients.

Abstraction: Data structure is specified by the ADT which provides a level of abstraction. The client

program uses the data structure through interface only, without getting into the implementation details.

Data Structure Classification

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 3

Linear Data Structures: A data structure is called linear if all of its elements are arranged in the linear

order. In linear data structures, the elements are stored in non-hierarchical way where each element has the

successors and predecessors except the first and last element.

➢ It's a data structure that stores and manages data in a linear order.

➢ The data elements of the sequence are linked from one to the next.

➢ Implementing the linear structure of data within a computer's RAM is simple, provided that the data

are organized sequentially.

➢ Array, queue. Stack, linked list, etc., are a few examples of such a structure.

➢ Only one relationship exists between the data elements in the data structure.

➢ Because the data elements are stored on a single level, it is possible to traverse the data elements in

one run.

➢ If a linear data storage structure is used, it is not well utilized.

➢ The complexity of the structure's time increases with an increase in its size.

Characteristics of Linear Data Structure:

➢ Sequential Organization: In linear data structures, data elements are arranged sequentially, one

after the other. Each element has a unique predecessor (except for the first element) and a unique

successor (except for the last element)

➢ Order Preservation: The order in which elements are added to the data structure is preserved. This

means that the first element added will be the first one to be accessed or removed, and the last

element added will be the last one to be accessed or removed.

➢ Fixed or Dynamic Size: Linear data structures can have either fixed or dynamic sizes. Arrays

typically have a fixed size when they are created, while other structures like linked lists, stacks, and

queues can dynamically grow or shrink as elements are added or removed.

➢ Efficient Access: Accessing elements within a linear data structure is typically efficient. For

example, arrays offer constant-time access to elements using their index.

Types of Linear Data Structures:

Arrays: An array is a collection of similar type of data items and each data item is called an element of the

array. The data type of the element may be any valid data type like char, int, float or double.

The elements of array share the same variable name but each one carries a different index number

known as subscript. The array can be one dimensional, two dimensional or multidimensional.

The individual elements of the array age are:

age[0], age[1], age[2], age[3],......... age[98], age[99].

Linked List: Linked list is a linear data structure which is used to maintain a list in the memory. It can be

seen as the collection of nodes stored at non-contiguous memory locations. Each node of the list contains a

pointer to its adjacent node.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 4

Stack: Stack is a linear list in which insertion and deletions are allowed only at one end, called top.A stack

is an abstract data type (ADT), can be implemented in most of the programming languages. It is named as

stack because it behaves like a real-world stack.

For example: - piles of plates or deck of cards etc.

Queue: Queue is a linear list in which elements can be inserted only at one end called rear and deleted only

at the other end called front.

It is an abstract data structure, similar to stack. Queue is opened at both end therefore it follows First-In-

First-Out (FIFO) methodology for storing the data items.

Advantages of Linear Data Structures

➢ Efficient data access: Elements can be easily accessed by their position in the sequence.

➢ Dynamic sizing: Linear data structures can dynamically adjust their size as elements are added or

removed.

➢ Ease of implementation: Linear data structures can be easily implemented using arrays or linked

lists.

➢ Versatility: Linear data structures can be used in various applications, such as searching, sorting,

and manipulation of data.

➢ Simple algorithms: Many algorithms used in linear data structures are simple and straightforward.

Disadvantages of Linear Data Structures

➢ Limited data access: Accessing elements not stored at the end or the beginning of the sequence can

be time-consuming.

➢ Memory overhead: Maintaining the links between elements in linked lists and pointers in stacks

and queues can consume additional memory.

➢ Complex algorithms: Some algorithms used in linear data structures, such as searching and

sorting, can be complex and time-consuming.

➢ Inefficient use of memory: Linear data structures can result in inefficient use of memory if there

are gaps in the memory allocation.

➢ Unsuitable for certain operations: Linear data structures may not be suitable for operations that

require constant random access to elements, such as searching for an element in a large dataset.

Non-Linear Data Structures: This data structure does not form a sequence i.e. each item or element is

connected with two or more other items in a non-linear arrangement. The data elements are not arranged in

sequential structure.

Types of Non-Linear Data Structures:

Trees: Trees are multilevel data structures with a hierarchical relationship among its elements known as

nodes. The bottommost nodes in the hierarchy are called leaf node while the topmost node is called root

node. Each node contains pointers to point adjacent nodes.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 5

Tree data structure is based on the parent-child relationship among the nodes. Each node in the tree

can have more than one child except the leaf nodes whereas each node can have at most one parent except

the root node. Trees can be classified into many categories.

Graphs: Graphs can be defined as the pictorial representation of the set of elements (represented by

vertices) connected by the links known as edges. A graph is different from tree in the sense that a graph can

have cycle while the tree cannot have the one.

Operations on data structure

1) Traversing: Every data structure contains the set of data elements. Traversing the data structure means

visiting each element of the data structure in order to perform some specific operation like searching or

sorting.

Example: If we need to calculate the average of the marks obtained by a student in 6 different

subjects, we need to traverse the complete array of marks and calculate the total sum, then we will divide

that sum by the number of subjects i.e. 6, in order to find the average.

2) Insertion: Insertion can be defined as the process of adding the elements to the data structure at any

location.

If the size of data structure is n then we can only insert n-1 data elements into it.

3) Deletion: The process of removing an element from the data structure is called Deletion. We can delete

an element from the data structure at any random location.

If we try to delete an element from an empty data structure then underflow occurs.

4) Searching: The process of finding the location of an element within the data structure is called

Searching. There are two algorithms to perform searching, Linear Search and Binary Search.

5) Sorting: The process of arranging the data structure in a specific order is known as Sorting. There are

many algorithms that can be used to perform sorting, for example, insertion sort, selection sort, bubble sort,

etc.

6) Merging: When two lists List A and List B of size M and N respectively, of similar type of elements,

clubbed or joined to produce the third list, List C of size (M+N), then this process is called merging

Characteristics of a Data Structure

➢ Correctness − Data structure implementation should implement its interface correctly.

➢ Time Complexity − Running time or the execution time of operations of data structure must be as

small as possible.

➢ Space Complexity − Memory usage of a data structure operation should be as little as possible.

Abstract data types (ADTs) and their implementation

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 6

What is abstract data type?

An abstract data type is an abstraction of a data structure that provides only the interface to which

the data structure must adhere. The interface does not give any specific details about something should be

implemented or in what programming language.

In other words, we can say that abstract data types are the entities that are definitions of data and operations

but do not have implementation details. In this case, we know the data that we are storing and the

operations that can be performed on the data, but we don't know about the implementation details. The

reason for not having implementation details is that every programming language has a different

implementation strategy

For example; a C data structure is implemented using structures while a C++ data structure is

implemented using objects and classes.

For example, a List is an abstract data type that is implemented using a dynamic array and linked

list. A queue is implemented using linked list-based queue, array-based queue, and stack-based queue. A

Map is implemented using Tree map, hash map, or hash table.

Abstract data type model

Before knowing about the abstract data type model, we should know about abstraction and encapsulation.

➢ Abstraction: It is a technique of hiding the internal details from the user and only showing the

necessary details to the user.

➢ Encapsulation: It is a technique of combining the data and the member function in a single unit is

known as encapsulation.

➢ The above figure shows the ADT model. There are two types of models in the ADT model, i.e., the

public function and the private function.

➢ The ADT model also contains the data structures that we are using in a program. In this model, first

encapsulation is performed, i.e., all the data is wrapped in a single unit, i.e., ADT.

➢ Then, the abstraction is performed means showing the operations that can be performed on the data

structure and what are the data structures that we are using in a program.

Let's understand the abstract data type with a real-world example.

If we consider the smartphone. We look at the high specifications of the smartphone, such as:

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 7

➢ 4 GB RAM

➢ Snapdragon 2.2ghz processor

➢ 5-inch LCD screen

➢ Dual camera

➢ Android 13.0

The above specifications of the smartphone are the data, and we can also perform the following

operations on the smartphone:

➢ call (): We can call through the smartphone.

➢ text (): We can text a message.

➢ photo (): We can click a photo.

➢ video (): We can also make a video.

The smartphone is an entity whose data or specifications and operations are given above. The

abstract/logical view and operations are the abstract or logical views of a smartphone.

The implementation view of the above abstract/logical view is given below:

class Smartphone

{

 private:

 int ramSize;

 string processorName;

 float screenSize;

 int cameraCount;

 string androidVersion;

 public:

 void call();

 void text();

 void photo();

 void video();

}

The above code is the implementation of the specifications and operations that can be performed on the

smartphone. The implementation view can differ because the syntax of programming languages is different,

but the abstract/logical view of the data structure would remain the same. Therefore, we can say that the

abstract/logical view is independent of the implementation view.

Features of ADT:

Abstract data types (ADTs) are a way of encapsulating data and operations on that data into a single unit.

Some of the key features of ADTs include:

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 8

➢ Abstraction: The user does not need to know the implementation of the data structure only essentials

are provided.

➢ Better Conceptualization: ADT gives us a better conceptualization of the real world.

➢ Robust: The program is robust and has the ability to catch errors.

➢ Encapsulation: ADTs hide the internal details of the data and provide a public interface for users to

interact with the data. This allows for easier maintenance and modification of the data structure.

➢ Data Abstraction: ADTs provide a level of abstraction from the implementation details of the data.

Users only need to know the operations that can be performed on the data, not how those operations are

implemented.

➢ Data Structure Independence: ADTs can be implemented using different data structures, such as

arrays or linked lists, without affecting the functionality of the ADT.

➢ Information Hiding: ADTs can protect the integrity of the data by allowing access only to authorized

users and operations. This helps prevent errors and misuse of the data.

➢ Modularity: ADTs can be combined with other ADTs to form larger, more complex data structures.

This allows for greater flexibility and modularity in programming.

Overall, ADTs provide a powerful tool for organizing and manipulating data in a structured and efficient

manner. Abstract data types (ADTs) have several advantages and disadvantages that should be considered

when deciding to use them in software development.

Advantages:

➢ Encapsulation: ADTs provide a way to encapsulate data and operations into a single unit, making it

easier to manage and modify the data structure.

➢ Abstraction: ADTs allow users to work with data structures without having to know the

implementation details, which can simplify programming and reduce errors.

➢ Data Structure Independence: ADTs can be implemented using different data structures, which can

make it easier to adapt to changing needs and requirements.

➢ Information Hiding: ADTs can protect the integrity of data by controlling access and preventing

unauthorized modifications.

➢ Modularity: ADTs can be combined with other ADTs to form more complex data structures, which

can increase flexibility and modularity in programming.

Disadvantages:

➢ Overhead: Implementing ADTs can add overhead in terms of memory and processing, which can

affect performance.

➢ Complexity: ADTs can be complex to implement, especially for large and complex data structures.

➢ Learning Curve: Using ADTs requires knowledge of their implementation and usage, which can take

time and effort to learn.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 9

➢ Limited Flexibility: Some ADTs may be limited in their functionality or may not be suitable for all

types of data structures.

➢ Cost: Implementing ADTs may require additional resources and investment, which can increase the

cost of development.

Abstract Data Types Overview

Abstract Data Type Other Common Names Commonly Implemented with

List Sequence Array, Linked List

Queue

Array, Linked List

Double-ended Queue Dequeue, Deque Array, Doubly-linked List

Stack

Array, Linked List

Associative Array Dictionary, Hash Map, Hash, Map** Hash Table

Set

Red-black Tree, Hash Table

Priority Queue Heap Heap

Overview of time and space complexity analysis for linear data structures.

What is Performance Analysis of an algorithm?

If we want to go from city "A" to city "B", there can be many ways of doing this. We can go by

flight, by bus, by train and also by bicycle. Depending on the availability and convenience, we choose the

one which suits us. Similarly, in computer science, there are multiple algorithms to solve a problem. When

we have more than one algorithm to solve a problem, we need to select the best one. Performance analysis

helps us to select the best algorithm from multiple algorithms to solve a problem.

When there are multiple alternative algorithms to solve a problem, we analyze them and pick the one which

is best suitable for our requirements.

Def 1: -Performance of an algorithm is a process of making evaluative judgement about algorithms.

Def 2: -Performance of an algorithm means predicting the resources which are required to an

algorithm to perform its task.

That means when we have multiple algorithms to solve a problem, we need to select a suitable

algorithm to solve that problem.

https://brilliant.org/wiki/lists/
https://brilliant.org/wiki/arrays/
https://brilliant.org/wiki/linked-lists/
https://brilliant.org/wiki/queues-basic/
https://brilliant.org/wiki/arrays/
https://brilliant.org/wiki/linked-lists/
https://brilliant.org/wiki/double-ended-queues/
https://brilliant.org/wiki/arrays/
https://brilliant.org/wiki/linked-lists/
https://brilliant.org/wiki/stacks/
https://brilliant.org/wiki/arrays/
https://brilliant.org/wiki/linked-lists/
https://brilliant.org/wiki/associative-arrays/
https://brilliant.org/wiki/hash-tables/
https://brilliant.org/wiki/sets-adt/
https://brilliant.org/wiki/red-black-tree/
https://brilliant.org/wiki/hash-tables/
https://brilliant.org/wiki/priority-queues/
https://brilliant.org/wiki/heaps/

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 10

We compare algorithms with each other which are solving the same problem, to select the best algorithm.

To compare algorithms, we use a set of parameters or set of elements like memory required by that

algorithm, the execution speed of that algorithm, easy to understand, easy to implement, etc.,

Generally, the performance of an algorithm depends on the following elements...

➢ Whether that algorithm is providing the exact solution for the problem?

➢ Whether it is easy to understand?

➢ Whether it is easy to implement?

➢ How much space (memory) it requires to solve the problem?

➢ How much time it takes to solve the problem? Etc.,

When we want to analyze an algorithm, we consider only the space and time required by that particular

algorithm and we ignore all the remaining elements.

Based on this information, performance analysis of an algorithm can also be defined

Performance analysis of an algorithm is the process of calculating space and time required by that

algorithm.

➢ Space required to complete the task of that algorithm (Space Complexity). It includes program

space and data space

➢ Time required to complete the task of that algorithm (Time Complexity)

What is Space complexity?

When we design an algorithm to solve a problem, it needs some computer memory to complete its

execution. For any algorithm, memory is required for the following purposes...

➢ To store program instructions.

➢ To store constant values.

➢ To store variable values.

➢ And for few other things like function calls, jumping statements etc,.

Space complexity of an algorithm can be defined as

Total amount of computer memory required by an algorithm to complete its execution is called as

space complexity of that algorithm.

Generally, when a program is under execution it uses the computer memory for THREE reasons.

1. Instruction Space: It is the amount of memory used to store compiled version of instructions.

2. Environmental Stack: It is the amount of memory used to store information of partially executed

functions at the time of function call.

3. Data Space: It is the amount of memory used to store all the variables and constants.

Note - When we want to perform analysis of an algorithm based on its Space complexity, we consider only

Data Space and ignore Instruction Space as well as Environmental Stack.

That means we calculate only the memory required to store Variables, Constants, Structures, etc.,

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 11

To calculate the space complexity, we must know the memory required to store different datatype

values (according to the compiler). For example, the C Programming Language compiler requires the

following...

1. 2 bytes to store Integer value.

2. 4 bytes to store Floating Point value.

3. 1 byte to store Character value.

4. 6 (OR) 8 bytes to store double value.

Consider the following piece of code...

int square (int a)

{

 return a*a;

}

In the above piece of code, it requires 2 bytes of memory to store variable 'a' and another 2 bytes of

memory is used for return value.

That means, totally it requires 4 bytes of memory to complete its execution. And these 4 bytes of

memory is fixed for any input value of 'a'. This space complexity is said to be Constant Space

Complexity.

If any algorithm requires a fixed amount of space for all input values then that space complexity is said to be

Constant Space Complexity.

Consider the following piece of code...

int sum(int A[], int n)

{

 int sum = 0, i;

 for(i = 0; i < n; i++)

 sum = sum + A[i];

 return sum;

}

In the above piece of code it requires

'n*2' bytes of memory to store array variable 'a[]'

2 bytes of memory for integer parameter 'n'

4 bytes of memory for local integer variables 'sum' and 'i' (2 bytes each)

2 bytes of memory for return value.

That means, totally it requires '2n+8' bytes of memory to complete its execution. Here, the total

amount of memory required depends on the value of 'n'. As 'n' value increases the space required also

increases proportionately. This type of space complexity is said to be Linear Space Complexity.

If the amount of space required by an algorithm is increased with the increase of input value, then

that space complexity is said to be Linear Space Complexity.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 12

Space Complexity:

The space needed by algorithm is the sum of following components

➢ A fixed part→that is independent of the characteristics of input and output. Example Number &

size. In this includes instructions space [space for code] + Space for simple variables + Fixed-size

component variables + Space for constant & soon.

➢ A variable part→ that consists of the space needed by component variables whose size is dependent

on the particular problem instance being solved + The space needed by referenced variables +

Recursion stack space.

The space requirement S(P) of any algorithm P can be written as

C→Constant

SP→ Instance characteristics.

Find space complexity of iterative

Algorithm of sum of ‘n’ numbers.

Find space complexity for Recursive algorithm:

Algorithm:

Algorithm sum(a,n)

//Here a is array of Size n

{

S:=0;

if(n≤0)) then return 0;

for i:=1 to n do

s:=s+a[i];

return s;

}

Space complexity S(P):

s→1 word

i→1 word

n→1 word

a→n word

Word is a String of bits stored in computer

memory, its size is a 4 to 64 bits.

Algorithm:

Algorithm RSUM(a,n)

//a is an array of size n

{

If(n≤0) then return 0;

Else return a[n]+RSUM(a,n-1);

}

Space Complexity:

The recursion stack space includes space for the

formal parameters, the local variables and the return

address.

Return address requires→1 word memory

Each call to RSUM requires→ at least 3words (It

includes space for the values of n, the return address

and a pointer to a[]).

The depth recursion is n+1

The recursion stack space needed is ≥3(n+1)

S(P)=C+ SP

S(P)≥ n+3

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 13

What is Time complexity?

Every algorithm requires some amount of computer time to execute its instruction to perform the

task. This computer time required is called time complexity.

The time complexity of an algorithm can be defined as.

The time complexity of an algorithm is the total amount of time required by an algorithm to

complete its execution.

Generally, the running time of an algorithm depends upon the following...

1. Whether it is running on Single processor machine or Multi processor machine.

2. Whether it is a 32 bit machine or 64 bit machine.

3. Read and Write speed of the machine.

4. The amount of time required by an algorithm to

perform Arithmetic operations, logical operations, return value and assignment operations etc.,

5. Input data

Note - When we calculate time complexity of an algorithm, we consider only input data and ignore the

remaining things, as they are machine dependent. We check only, how our program is behaving for the

different input values to perform all the operations like Arithmetic, Logical, Return value and Assignment

etc.,

Calculating Time Complexity of an algorithm based on the system configuration is a very difficult

task because the configuration changes from one system to another system. To solve this problem, we must

assume a model machine with a specific configuration. So that, we can able to calculate generalized time

complexity according to that model machine.

To calculate the time complexity of an algorithm, we need to define a model machine. Let us

assume a machine with following configuration...

1. It is a Single processor machine

2. It is a 32-bit Operating System machine

3. It performs sequential execution

4. It requires 1 unit of time for Arithmetic and Logical operations

5. It requires 1 unit of time for Assignment and Return value

6. It requires 1 unit of time for Read and Write operations

Now, we calculate the time complexity of following example code by using the above-defined model

machine...

Consider the following piece of code...

int sum(int a, int b)

{

 return a+b;

}

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 14

In the above sample code, it requires 1 unit of time to calculate a+b and 1 unit of time to return the value.

That means, totally it takes 2 units of time to complete its execution. And it does not change based on the

input values of a and b. That means for all input values, it requires the same amount of time i.e. 2 units.

If any program requires a fixed amount of time for all input values then its time complexity is said to

be Constant Time Complexity.

Consider the following piece of code...

int sum (int A [], int n)

{

 int sum = 0, i;

 for (i = 0; i < n; i++)

 sum = sum + A[i];

 return sum;

}

For the above code, time complexity can be calculated as

➢ In above calculation

➢ Cost is the amount of computer time required for a single operation in each line.

➢ Repetition is the amount of computer time required by each operation for all its repeatations.

➢ Total is the amount of computer time required by each operation to execute.

➢ So above code requires '4n+4' Units of computer time to complete the task. Here the exact time is

not fixed. And it changes based on the n value. If we increase the n value then the time required

also increases linearly.

Totally it takes '4n+4' units of time to complete its execution and it is Linear Time Complexity.

If the amount of time required by an algorithm is increased with the increase of input value then that

time complexity is said to be Linear Time Complexity.

Here RUN means Compile + Execution.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 15

Time Complexity

But we are neglecting tc Because the compile time does not depends on the instance characteristics. The

compiled program will be run several times without recompilation.

So T(P)= tp

Here tp → instance characteristics.

For example:

The program p do some operations like ADD, SUB, MUL etc.

If we knew the characteristics of the compiler to be used, we could process to determine the number of

additions, subtractions, multiplications, divisions, compares, loads, stores and so on.

We obtain tp(n) express as follow:

tp(n)=CaADD(n)+ CSSUB(n)+ CmMUL(n)+ CdDIV(n)+…........

n→ Instance characteristics

Ca, CS, Cm, Cd, …... → time needed for an addition, Subtraction, multiplication, division, and etc.

ADD, SUBB, MUL, DIV → Are functions, whose values are the numbers of additions,

subtractions, multiplications,.. etc, that are performed when the code

for p is used on an instance with characteristics.

Performance Measurement

Program step: Program step is the syntactically or semantically meaningful segment of a program. And it

has an execution time that is independent of the instance characteristics.

Example:

➢ For comment→//-- zero steps

➢ For assignment statements (Which does not involve any calls to other algorithms)

 := →one step

➢ For iterative statements such as “for, while and until-repeat” statements, we consider the step counts

only for control part of the statement.

For while loop “while (<expr>) do “ : the step count for control part of a while stmt is →

Number of step counts for assignable to <expr>

For for loop ie for i:=<expr> to <expr1> do: The step count of control part of “for” statement is→

Sum of the count of <expr> & <expr1> N and remaining execution of the “for” statement, i.e., one.

 We determine the number of steps needed by a program to solve a particular problem. For this there

are two methods.

1) First method is, introduce a new variable “count” in to the program for finding number of steps in

program.

2) Second method is, building a “table” in which we list the total number of steps contributed by each

statement.

T(P)=tc+tp

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 16

Example for 1st method:

Find time complexity of Iterative algorithm

of sum of ‘n’ numbers.

Find time complexity for Recursive algorithm:

Algorithm:

Algorithm sum(a,n)

{

// count is global it is initially zero

S:=0;

Count:=count+1; // count for assignment

for i:=1 to n do

{

Count :=count+1; //for “for” loop

s:=s+a[i];

count :=count+1; //for assingment

}

Count :=count+1; //for last time of for loop

Count :=count+1; // for return stmt

return s;

}

Finally count values is =2n+3;

So total number of steps= 2n+3

Algorithm:

Algorithm RSUM(a,n)

{

Count :=count+1; // for if condition

If(n≤0) then

{

Count:=count+1; // for return stmt

return 0;

}

Else {

Count :=count+1;

//for the addition, function invocation & return

return a[n]+RSUM(a,n-1);

}

}

If n=0 then tRsum(0)=2

If n>0 then increases by 2, ie., 2+ tRsum(n-1)

Means

tRsum(n)=2+ tRsum(n-1)

 =2+2+ tRsum(n-2)

 =2+2+2+ tRsum(n-3)

 .

 .

 =2(n)+ tRsum(n-n)

 =2n+ tRsum(0)=2n+2

In the above example the recursive algorithm has less time complexity then iterative algorithm.

Example for 2nd method:

Find time complexity of Algorithm of sum of ‘n’ numbers.

Statements s/e Frequency Total steps

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 17

1. Algorithm sum(a,n)

2. {

3. S:=0;

4. for i:=1 to n do

5. s:=s+a[i];

6. return s;

7. }

0

0

1

1

1

1

0

_

_

1

n+1

n

1

_

0

0

1

n+1

n

1

0

 2n+3

Find time complexity for Recursive algorithm

Statements s/e Frequency

n=0 n>0

Total steps

n=0 n>0

1. Algorithm RSUM(a,n)

2. {

3. If(n≤0) then

4. return 0;

5. Else

6. return a[n]+RSUM(a,n-1);

7. }

0

0

1

1

0

1+x

0

_ _

_ _

1 1

1 0

0 1

_ _

_ _

_ _

1 1

1 0

0 1+x

0 0

 2 2+x

 Here x= tRsum(n-1)

Asymptotic Notation:

A problem may have numerous (many) algorithmic solutions. In order to choose the best algorithm

for a particular task, you need to be able to judge how long a particular solution will take to run.

Asymptotic notation of an algorithm is a mathematical representation of its complexity

Asymptotic notation is used to judge the best algorithm among numerous algorithms for a particular

problem.

Asymptotic complexity is a way of expressing the main component of algorithms like

➢ Cost

➢ Time complexity

➢ Space complexity

Some Asymptotic notations are

 1. Big oh→O

 2. Omega→Ω

 3. Theta →θ

 4. Little oh→o

 5. Little Omega→ω

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 18

1. Big - Oh Notation (O)

Big - Oh notation is used to define the upper bound of an algorithm in terms of Time Complexity.

That means Big - Oh notation always indicates the maximum time required by an algorithm for all input

values. That means Big - Oh notation describes the worst case of an algorithm time complexity.

Big - Oh Notation can be defined as follows...

The function f(n) =O(g(n)) (read as “f of n is big oh of g of n) iff (if and only if) there exit positive

constants c and n0 such that f(n)<=c*g(n) for all n, n>=n0

f(n)=O(g(n))

Consider the following graph drawn for the values of f(n) and C g(n) for input (n) value on X-Axis and

time required is on Y-Axis

In above graph after a particular input value n0, always C g(n) is greater than f(n) which indicates the

algorithm's upper bound.

Example

Consider the following f(n) and g(n)...

f(n) = 3n + 2

g(n) = n

If we want to represent f(n) as O(g(n)) then it must satisfy f(n) <= C x g(n) for all values of C >

0 and n0>= 1

f(n) <= C g(n)

⇒3n + 2 <= C n

Above condition is always TRUE for all values of C = 4 and n >= 2.

By using Big - Oh notation we can represent the time complexity as follows...

3n + 2 = O(n)

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 19

2. Big - Omega Notation (Ω)

Big - Omega notation is used to define the lower bound of an algorithm in terms of Time Complexity.

That means Big - Omega notation always indicates the minimum time required by an algorithm for all input

values. That means Big - Omega notation describes the best case of an algorithm time complexity.

Big - Omega Notation can be defined as follows...

 The function f(n) = Ω(g(n)) (read as “f of n is omega of g of n) iff (if and only if) there exit positive

constants c and n0 such that f(n)>=c*g(n) for all n, n>=n0 f(n) =

Ω(g(n))

Consider the following graph drawn for the values of f(n) and C g(n) for input (n) value on X-Axis and

time required is on Y-Axis

In above graph after a particular input value n0, always C x g(n) is less than f(n) which indicates the

algorithm's lower bound.

Example

Consider the following f(n) and g(n)...

f(n) = 3n + 2

g(n) = n

If we want to represent f(n) as Ω(g(n)) then it must satisfy f(n) >= C g(n) for all values of C > 0 and n0>=

1

f(n) >= C g(n)

⇒3n + 2 <= C n

Above condition is always TRUE for all values of C = 1 and n >= 1.

By using Big - Omega notation we can represent the time complexity as follows...

3n + 2 = Ω(n)

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 20

3. Big - Theta Notation (Θ)

Big - Theta notation is used to define the average bound of an algorithm in terms of Time Complexity.

That means Big - Theta notation always indicates the average time required by an algorithm for all input

values. That means Big - Theta notation describes the average case of an algorithm time complexity.

Big - Theta Notation can be defined as follows...

The function f(n) = Θ (g(n)) (read as “f of n is theta of g of n) iff (if and only if) there exist positive

constants c1,c2 and n0 such thatc1*g(n)<= f(n)<=c2*g(n) for all n, n>=n0

f(n) = Θ(g(n))

Consider the following graph drawn for the values of f(n) and C g(n) for input (n) value on X-Axis and

time required is on Y-Axis

In above graph after a particular input value n0, always C1 g(n) is less than f(n) and C2 g(n) is greater

than f(n) which indicates the algorithm's average bound.

Example

Consider the following f(n) and g(n)...

f(n) = 3n + 2

g(n) = n

If we want to represent f(n) as Θ(g(n)) then it must satisfy C1 g(n) <= f(n) >= C2 g(n) for all values of C1,

C2 > 0 and n0>= 1

C1 g(n) <= f(n) >= ⇒C2 g(n)

C1 n <= 3n + 2 >= C2 n

Above condition is always TRUE for all values of C1 = 1, C2 = 4 and n >= 1.

By using Big - Theta notation we can represent the time complexity as follows...

3n + 2 = Θ (n)

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 21

1. Little oh: o

The function f(n)=o(g(n)) (read as “f of n is little oh of g of n”) iff

Lim f(n)/g(n)=0 for all n, n≥0

n→~

Example:

3n+2= o(n2) as

Lim ((3n+2)/n2)=0

n→~

2. Little Omega:ω

The function f(n)= ω (g(n)) (read as “f of n is little ohomega of g of n”) iff

Lim g(n)/f(n)=0 for all n, n≥0

n→~

Example:

3n+2= o(n2) as

Lim (n2/(3n+2) =0

n→~

Graph for visualize the relationships between these notations

Performance Measurement

Searching Techniques:

What is Search?

Search is a process of finding a value in a list of values. In other words, searching is the process of locating

given value position in a list of values.

Linear Search Algorithm (Sequential Search Algorithm)

Linear search algorithm finds a given element in a list of elements with O(n) time complexity where n is

total number of elements in the list. This search process starts comparing search element with the first

element in the list. If both are matched then result is element found otherwise search element is compared

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 22

with the next element in the list. Repeat the same until search element is compared with the last element in

the list, if that last element also doesn't match, then the result is "Element not found in the list". That means,

the search element is compared with element by element in the list.

Linear search is implemented using following steps...

• Step 1 - Read the search element from the user.

• Step 2 - Compare the search element with the first element in the list.

• Step 3 - If both are matched, then display "Given element is found!!!" and terminate the function

• Step 4 - If both are not matched, then compare search element with the next element in the list.

• Step 5 - Repeat steps 3 and 4 until search element is compared with last element in the list.

• Step 6 - If last element in the list also doesn't match, then display "Element is not found!!!" and

terminate the function.

Example

Consider the following list of elements and the element to be searched...

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 23

Implementation of Linear Search Algorithm using C

Example

#include <stdio.h>

int main()

{

 int a[10], i, item,n;

 printf("\nEnter number of elements of an array:\n");

 scanf("%d",&n);

 printf("\nEnter elements: \n");

 for (i=0; i<n; i++)

 scanf("%d", &a[i]);

 printf("\nEnter item to search: ");

 scanf("%d", &item);

 for (i=0; i<=9; i++)

 if (item == a[i])

 {

 printf("\nItem found at location %d", i+1);

 break;

 }

 if (i > 9)

 printf("\nItem does not exist.");

 return 0;

}

Output

Enter number of elements of an

array:

9

Enter elements:

11

2

3

55

33

66

12

677

66

Enter item to search: 12

Item found at location 7

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 24

Binary Search Algorithm

Binary search algorithm finds a given element in a list of elements with O(log n) time complexity

where n is total number of elements in the list. The binary search algorithm can be used with only a sorted

list of elements. That means the binary search is used only with a list of elements that are already arranged

in an order. The binary search cannot be used for a list of elements arranged in random order. This search

process starts comparing the search element with the middle element in the list. If both are matched, then

the result is "element found". Otherwise, we check whether the search element is smaller or larger than the

middle element in the list. If the search element is smaller, then we repeat the same process for the left

sublist of the middle element. If the search element is larger, then we repeat the same process for the right

sublist of the middle element. We repeat this process until we find the search element in the list or until we

left with a sublist of only one element. And if that element also doesn't match with the search element, then

the result is "Element not found in the list".

Binary search is implemented using following steps...

Step 1 - Read the search element from the user.

Step 2 - Find the middle element in the sorted list.

Step 3 - Compare the search element with the middle element in the sorted list.

Step 4 - If both are matched, then display "Given element is found!!!" and terminate the function.

Step 5 - If both are not matched, then check whether the search element is smaller or larger than the middle

element.

Step 6 - If the search element is smaller than middle element, repeat steps 2, 3, 4 and 5 for the left sublist of

the middle element.

Step 7 - If the search element is larger than middle element, repeat steps 2, 3, 4 and 5 for the right sublist of

the middle element.

Step 8 - Repeat the same process until we find the search element in the list or until sublist contains only

one element.

Step 9 - If that element also doesn't match with the search element, then display "Element is not found in

the list!!!" and terminate the function.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 25

Example

Consider the following list of elements and the element to be searched...

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 26

Binary Search Algorithm using C

Binary Search is defined as a searching algorithm used in a sorted array by repeatedly dividing

the search interval in half. The idea of binary search is to use the information that the array is sorted

and reduce the time complexity to O(log N).

Conditions for when to apply Binary Search in a Data Structure:

To apply Binary Search algorithm:

• The data structure must be sorted.

• Access to any element of the data structure takes constant time.

Binary Search Algorithm:

Divide the search space into two halves by finding the middle index “mid”.

Compare the middle element of the search space with the key.

➢ If the key is found at middle element, the process is terminated.

➢ If the key is not found at middle element, choose which half will be used as the next search space.

➢ If the key is smaller than the middle element, then the left side is used for next search.

➢ If the key is larger than the middle element, then the right side is used for next search.

➢ This process is continued until the key is found or the total search space is exhausted.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 27

How does Binary Search work?

Consider an array arr[] = {2, 5, 8, 12, 16, 23, 38, 56, 72, 91}, and the target = 23.

First Step: Calculate the mid and compare the mid element with the key. If the key is less than mid

element, move to left and if it is greater than the mid then move search space to the right.

• Key (i.e., 23) is greater than current mid element (i.e., 16). The search space moves to the

right.

➢ Key is less than the current mid 56. The search space moves to the left.

Second Step: If the key matches the value of the mid element, the element is found and stop search.

How to Implement Binary Search?

The Binary Search Algorithm can be implemented in the following two ways

➢ Iterative Binary Search Algorithm

➢ Recursive Binary Search Algorithm

Given below are the pseudocodes for the approaches.

1. Iterative Binary Search Algorithm:

Here we use a while loop to continue the process of comparing the key and splitting the search space in two

halves.

// C program to implement iterative Binary Search

#include <stdio.h>

// An iterative binary search function.

int binarySearch(int arr[], int l, int r, int x)

{

 while (l <= r)

OutPut:- Element is present at

index 3

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 28

{

 int m = l + (r - l) / 2;

 // Check if x is present at mid

 if (arr[m] == x)

 return m;

 // If x greater, ignore left half

 if (arr[m] < x)

 l = m + 1;

 // If x is smaller, ignore right half

 else

 r = m - 1;

 }

 // If we reach here, then element was not present

 return -1;

}

int main(void)

{

 int arr[] = { 2, 3, 4, 10, 40 };

 int n = sizeof(arr) / sizeof(arr[0]);

 int x = 10;

 int result = binarySearch(arr, 0, n - 1, x);

 (result == -1) ? printf("Element is not present in array"):

 printf("Element is present at index %d",result);

 return 0;

}

Time Complexity: O (log N)

Auxiliary Space: O (1)

2. Recursive Binary Search Algorithm:

Create a recursive function and compare the mid of the search space with the key. And based on the

result either return the index where the key is found or call the recursive function for the next search space.

// C program to implement recursive Binary Search

#include <stdio.h>

// A recursive binary search function. It returns location of x in given array

arr[l..r] is present, otherwise -1

int binarySearch(int arr[], int l, int r, int x)

{

 if (r >= l)

{

 int mid = l + (r - l) / 2;

// If the element is present at the middle itself

 if (arr[mid] == x)

 return mid;

// If element is smaller than mid, then it can only be present in left subarray

Output

Element is present at

index 3

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 29

 if (arr[mid] > x)

 return binarySearch(arr, l, mid - 1, x);

// Else the element can only be present in right subarray

 return binarySearch(arr, mid + 1, r, x);

 }

// We reach here when element is not present in array

 return -1;

}

// Driver code

int main()

{

 int arr[] = { 2, 3, 4, 10, 40 };

 int n = sizeof(arr) / sizeof(arr[0]);

 int x = 10;

 int result = binarySearch(arr, 0, n - 1, x);

 (result == -1)

 ? printf("Element is not present in array")

 : printf("Element is present at index %d", result);

 return 0;

}

Complexity Analysis of Binary Search:

Time Complexity:

Best Case: O(1)

Average Case: O(log N)

Worst Case: O(log N)

Auxiliary Space: O(1), If the recursive call stack is considered then the auxiliary space will be O(logN).

Advantages of Binary Search:

➢ Binary search is faster than linear search, especially for large arrays.

➢ More efficient than other searching algorithms with a similar time complexity, such as interpolation

search or exponential search.

➢ Binary search is well-suited for searching large datasets that are stored in external memory, such as

on a hard drive or in the cloud.

Drawbacks of Binary Search:

➢ The array should be sorted.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 30

➢ Binary search requires that the data structure being searched be stored in contiguous memory

locations.

➢ Binary search requires that the elements of the array be comparable, meaning that they must be able

to be ordered.

Applications of Binary Search:

➢ Binary search can be used as a building block for more complex algorithms used in machine

learning, such as algorithms for training neural networks or finding the optimal hyperparameters for

a model.

➢ It can be used for searching in computer graphics such as algorithms for ray tracing or texture

mapping.

➢ It can be used for searching a database.

Sorting Techniques:

What is Sorting?

A Sorting Algorithm is used to rearrange a given array or list of elements according to a comparison

operator on the elements. The comparison operator is used to decide the new order of elements in the

respective data structure.

For Example: The below list of characters is sorted in increasing order of their ASCII values. That

is, the character with a lesser ASCII value will be placed first than the character with a higher ASCII value.

Bubble Sort

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent

elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and

worst-case time complexity is quite high.

Bubble Sort Algorithm

➢ Traverse from left and compare adjacent elements and the higher one is placed at right side.

➢ In this way, the largest element is moved to the rightmost end at first.

➢ This process is then continued to find the second largest and place it and so on until the data is sorted.

How does Bubble Sort Work?

Let us understand the working of bubble sort with the help of the following illustration:

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 31

Input: arr[] = {6, 3, 0, 5}

First Pass:

The largest element is placed in its correct position, i.e., the end of the array.

Second Pass:

Place the second largest element at correct position

Third Pass:

Place the remaining two elements at their correct positions.

Total no. of passes: n-1

Total no. of comparisons: n*(n-1)/2

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 32

Implementation of Bubble Sort

// Optimized implementation of Bubble sort

#include <stdbool.h>

#include <stdio.h>

void swap(int* xp, int* yp)

{

 int temp = *xp;

 *xp = *yp;

 *yp = temp;

}

// An optimized version of Bubble Sort

void bubbleSort(int arr[], int n)

{

 int i, j;

 bool swapped;

 for (i = 0; i < n - 1; i++)

 {

 swapped = false;

 for (j = 0; j < n - i - 1; j++)

 {

 if (arr[j] > arr[j + 1])

 {

 swap(&arr[j], &arr[j + 1]);

 swapped = true;

 }

 }

// If no two elements were swapped by inner loop, then break

 if (swapped == false)

 break;

 }

}

// Function to print an array

void printArray(int arr[], int size)

{

 int i;

 for (i = 0; i < size; i++)

 printf("%d ", arr[i]);

}

// Driver program to test above functions

int main()

{

 int arr[] = { 64, 34, 25, 12, 22, 11, 90,2,8,99 };

 int n = sizeof(arr) / sizeof(arr[0]);

 bubbleSort(arr, n);

 printf("Sorted array: \n");

Output

Sorted array:

2 8 11 12 22 25 34 64 90 99

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 33

 printArray(arr, n);

 return 0;

}

Complexity Analysis of Bubble Sort:

Time Complexity: O(N2)

Auxiliary Space: O (1)

Advantages of Bubble Sort:

➢ Bubble sort is easy to understand and implement.

➢ It does not require any additional memory space.

➢ It is a stable sorting algorithm, meaning that elements with the same key value maintain their

relative order in the sorted output.

Disadvantages of Bubble Sort:

➢ Bubble sort has a time complexity of O(N2) which makes it very slow for large data sets.

➢ Bubble sort is a comparison-based sorting algorithm, which means that it requires a comparison

operator to determine the relative order of elements in the input data set. It can limit the efficiency

of the algorithm in certain cases.

Selection Sort Algorithm

Selection Sort algorithm is used to arrange a list of elements in a particular order (Ascending or

Descending). In selection sort, the first element in the list is selected and it is compared repeatedly with all

the remaining elements in the list. If any element is smaller than the selected element (for Ascending order),

then both are swapped so that first position is filled with the smallest element in the sorted order. Next, we

select the element at a second position in the list and it is compared with all the remaining elements in the

list. If any element is smaller than the selected element, then both are swapped. This procedure is repeated

until the entire list is sorted.

Step by Step Process

Step 1 - Select the first element of the list (i.e., Element at first position in the list).

Step 2: Compare the selected element with all the other elements in the list.

Step 3: In every comparison, if any element is found smaller than the selected element (for Ascending

order), then both are swapped.

Step 4: Repeat the same procedure with element in the next position in the list till the entire list is sorted.

Selection Sort Logic

//Selection sort logic

 for(i=0; i<size; i++)

{

 for(j=i+1; j<size; j++)

{

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 34

 if(list[i] > list[j])

 {

 temp=list[i];

 list[i]=list[j];

 list[j]=temp;

 }

 }

 }

How does Selection Sort Algorithm work?

Let’s consider the following array as an example: arr[] = {64, 25, 12, 22, 11}

First pass:

➢ For the first position in the sorted array, the whole array is traversed from index 0 to 4 sequentially.

The first position where 64 is stored presently, after traversing whole array it is clear that 11 is the

lowest value.

➢ Thus, replace 64 with 11. After one iteration 11, which happens to be the least value in the array,

tends to appear in the first position of the sorted list.

Second Pass:

➢ For the second position, where 25 is present, again traverse the rest of the array in a sequential manner.

➢ After traversing, we found that 12 is the second lowest value in the array and it should appear at the

second place in the array, thus swap these values.

Third Pass:

➢ Now, for third place, where 25 is present again traverse the rest of the array and find the third least

value present in the array.

➢ While traversing, 22 came out to be the third least value and it should appear at the third place in the

array, thus swap 22 with element present at third position.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 35

Fourth pass:

➢ Similarly, for fourth position traverse the rest of the array and find the fourth least element in the array

➢ As 25 is the 4th lowest value hence, it will place at the fourth position.

Fifth Pass:

➢ At last the largest value present in the array automatically get placed at the last position in the array

➢ The resulted array is the sorted array.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 36

Example 2

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 37

Implementation of Selection Sort

// C program for implementation of selection sort

#include <stdio.h>

void swap(int *xp, int *yp)

{

 int temp = *xp;

 *xp = *yp;

 *yp = temp;

}

void selectionSort(int arr[], int n)

{

 int i, j, min_idx;

 // One by one move boundary of unsorted subarray

 for (i = 0; i < n-1; i++)

 {

 // Find the minimum element in unsorted array

 min_idx = i;

 for (j = i+1; j < n; j++)

 if (arr[j] < arr[min_idx])

 min_idx = j;

 // Swap the found minimum element with the first element

 if(min_idx != i)

 swap(&arr[min_idx], &arr[i]);

 }

}

/* Function to print an array */

void printArray(int arr[], int size)

{

 int i;

 for (i=0; i < size; i++)

 printf("%d ", arr[i]);

 printf("\n");

}

// Driver program to test above functions

int main()

{

 int arr[] = {64, 25, 12, 22, 11};

 int n = sizeof(arr)/sizeof(arr[0]);

 selectionSort(arr, n);

 printf("Sorted array: \n");

 printArray(arr, n);

 return 0;

}

Output

Sorted array:

11 12 22 25 64

Complexity Analysis of Selection Sort

Time Complexity: The time complexity of Selection Sort is O(N2) as there are two nested loops:

➢ One loop to select an element of Array one by one = O(N)

➢ Another loop to compare that element with every other Array element = O(N)

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 38

➢ Therefore overall complexity = O(N) * O(N) = O(N*N) = O(N2)

Auxiliary Space: O(1) as the only extra memory used is for temporary variables while swapping two

values in Array. The selection sort never makes more than O(N) swaps and can be useful when memory

writing is costly.

Advantages of Selection Sort Algorithm

➢ Simple and easy to understand.

➢ Works well with small datasets.

Disadvantages of the Selection Sort Algorithm

➢ Selection sort has a time complexity of O(n^2) in the worst and average case.

➢ Does not work well on large datasets.

➢ Does not preserve the relative order of items with equal keys which means it is not stable.

Insertion Sort

Insertion sort algorithm arranges a list of elements in a particular order. In insertion sort algorithm,

every iteration moves an element from unsorted portion to sorted portion until all the elements are sorted in

the list.

Insertion sort is a simple sorting algorithm that works similarly to the way you sort playing cards in

your hands. The array is virtually split into a sorted and an unsorted part. Values from the unsorted part are

picked and placed in the correct position in the sorted part.

Insertion Sort Algorithm

To sort an array of size N in ascending order iterate over the array and compare the current element

(key) to its predecessor, if the key element is smaller than its predecessor, compare it to the elements

before. Move the greater elements one position up to make space for the swapped element.

Step by Step Process

Step 1 - Assume that first element in the list is in sorted portion and all the remaining elements are in

unsorted portion.

Step 2: Take first element from the unsorted portion and insert that element into the sorted portion in the

order specified.

Step 3: Repeat the above process until all the elements from the unsorted portion are moved into the sorted

portion.

Insertion Sort Logic

 for i = 1 to size-1

{

 temp = list[i];

 j = i-1;

 while ((temp < list[j]) && (j > 0)) {

 list[j] = list[j-1];

 j = j - 1;

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 39

 }

 list[j] = temp;

 }

Working of Insertion Sort algorithm

Consider an example: arr[]: {12, 11, 13, 5, 6}

12 11 13 5 6

First Pass:

➢ Initially, the first two elements of the array are compared in insertion sort.

12 11 13 5 6

➢ Here, 12 is greater than 11 hence they are not in the ascending order and 12 is not at its

correct position. Thus, swap 11 and 12.

➢ So, for now 11 is stored in a sorted sub-array.

 11 12 13 5 6

Second Pass:

➢ Now, move to the next two elements and compare them

 11 12 13 5 6

➢ Here, 13 is greater than 12, thus both elements seems to be in ascending order, hence, no

swapping will occur. 12 also stored in a sorted sub-array along with 11

Third Pass:

➢ Now, two elements are present in the sorted sub-array which are 11 and 12

➢ Moving forward to the next two elements which are 13 and 5

 11 12 13 5 6

➢ Both 5 and 13 are not present at their correct place so swap them

 11 12 5 13 6

➢ After swapping, elements 12 and 5 are not sorted, thus swap again

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 40

 11 5 12 13 6

➢ Here, again 11 and 5 are not sorted, hence swap again

 5 11 12 13 6

➢ Here, 5 is at its correct position

Fourth Pass:

➢ Now, the elements which are present in the sorted sub-array are 5, 11 and 12

➢ Moving to the next two elements 13 and 6

 5 11 12 13 6

➢ Clearly, they are not sorted, thus perform swap between both

 5 11 12 6 13

➢ Now, 6 is smaller than 12, hence, swap again

 5 11 6 12 13

➢ Here, also swapping makes 11 and 6 unsorted hence, swap again

 5 6 11 12 13

➢ Finally, the array is completely sorted.

Example

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 41

Implementation of Insertion Sort Algorithm

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 42

// C program for insertion sort

#include <math.h>

#include <stdio.h>

/* Function to sort an array using insertion sort*/

void insertionSort(int arr[], int n)

{

 int i, key, j;

 for (i = 1; i < n; i++)

 {

 key = arr[i];

 j = i - 1;

/* Move elements of arr[0..i-1], that are greater than key, to one

position ahead of their current position */

 while (j >= 0 && arr[j] > key)

 {

 arr[j + 1] = arr[j];

 j = j - 1;

 }

 arr[j + 1] = key;

 }

}

// A utility function to print an array of size n

void printArray(int arr[], int n)

{

 int i;

 for (i = 0; i < n; i++)

 printf("%d ", arr[i]);

 printf("\n");

}

/* Driver program to test insertion sort */

int main()

{

 int arr[] = { 12, 11, 13, 5, 6 };

 int n = sizeof(arr) / sizeof(arr[0]);

 insertionSort(arr, n);

 printArray(arr, n);

 return 0;

}

Output

5 6 11 12 13

Complexity Analysis of Insertion Sort:

Time Complexity: O(N^2)

Auxiliary Space: O(1)

Time Complexity of Insertion Sort

➢ The worst-case time complexity of the Insertion sort is O(N^2)

➢ The average case time complexity of the Insertion sort is O(N^2)

➢ The time complexity of the best case is O(N).

Space Complexity of Insertion Sort

The auxiliary space complexity of Insertion Sort is O(1)

Characteristics of Insertion Sort

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 43

➢ This algorithm is one of the simplest algorithms with a simple implementation

➢ Basically, Insertion sort is efficient for small data values

➢ Insertion sort is adaptive in nature, i.e. it is appropriate for data sets that are already partially sorted.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 1

UNIT-II

Linked Lists: Singly linked lists: representation and operations, doubly linked lists and circular linked lists,

Comparing arrays and linked lists, Applications of linked lists.

LINKED LISTS

 Linked List is a linear data structure, in which elements are not stored at a contiguous location,

rather they are linked using pointers. Linked List forms a series of connected nodes, where each node stores

the data and the address of the next node

A linked l ist is ordered collection of finite Homogeneous data elements called nodes where the

linear order is maintained by means of links or pointers.

A linked list is a data structure consisting of a group of nodes which together represent a sequence.

Under the simplest form, each node is composed of data and a reference (in other words, a link) to the next

node in the sequence; more complex variants add additional links. This structure allows for efficient

insertion or removal of elements from any position in the sequence.

Node Structure: A node in a linked list typically consists of two components:

Data: It holds the actual value or data associated with the node.

Next Pointer: It stores the memory address (reference) of the next node in the sequence.

Head and Tail: The linked list is accessed through the head node, which points to the first node in the

list. The last node in the list points to NULL or nullptr, indicating the end of the list. This node is known

as the tail node.

Memory Representation of Linked Lists

START
1

 DATA NEXT

 1 H 4

 2

 3

 4 E 7

 5

 6

 7 L 8

 8 L 10

 9

 10 O -1

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 2

 Let us see how a linked list is maintained in the memory, in order to form a linked list, we need a

structure called node which has two fields, DATA and NEXT. Data will store the information part and next

will store the address of the node in sequence. We see that the variable START is used to store the address

of the first node.

Why linked list data structure needed?

➢ Dynamic Data structure: The size of memory can be allocated or de-allocated at run time based

on the operation insertion or deletion.

➢ Ease of Insertion/Deletion: The insertion and deletion of elements are simpler than arrays since

no elements need to be shifted after insertion and deletion, Just the address needed to be updated.

➢ Efficient Memory Utilization: As we know Linked List is a dynamic data structure the size

increases or decreases as per the requirement so this avoids the wastage of memory.

➢ Implementation: Various advanced data structures can be implemented using a linked list like a

stack, queue, graph, hash maps, etc.

Example:

➢ In a system, if we maintain a sorted list of IDs in an array id[] = [1000, 1010, 1050, 2000, 2040].

➢ If we want to insert a new ID 1005, then to maintain the sorted order, we have to move all the

elements after 1000 (excluding 1000).

➢ Deletion is also expensive with arrays until unless some special techniques are used. For example, to

delete 1010 in id[], everything after 1010 has to be moved due to this so much work is being done

which affects the efficiency of the code.

Types of Linked Lists

➢ Single linked list

➢ Double linked list

➢ Circular linked list

Representation of a Linked List

There are two ways to represent a linked list in memory:

1. Static representation using array

2. Dynamic representation using free pool of storage

 Linked lists are a way to store data with structures so that the programmer can automatically create a new

place to store data whenever necessary. Specifically, the programmer writes a struct definition that contains

variables holding information about something and that has a pointer to a struct of its same type (it has to

be a pointer--otherwise, every time an element was created, it would create a new element, infinitely). Each

of these individuals structs or classes in the list is commonly known as a node or element of the list.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 3

Head node in linked list

 The entry point into a linked list is called the head of the list. It should be noted that head is not a

separate node, but the reference to the first node. If the list is empty then the head is a null reference.

Linked list is a dynamic data structure.

Node is represented as

Struct node

{

int data;

struct node *next;

}

Linked List Operations

• Display/ Traverse− Displays the complete list.

• Search − Searches an element using the given key.

• Insertion − Adds an element at the beginning of the list.

• Deletion − Deletes an element at the beginning of the list.

Traversing/Display

Start with the head and access each node until you reach null. Do not change the head reference

Algorithm for Traversing a Linked List

Step 1: [Initialize] Set Ptr = Start

Step 2: Repeat Steps 3 &4 While Ptr != Null

Step 3: Apply Process to Ptr->Data

Step 4: Set Ptr = Ptr->Next

 [End Of Loop]

Step 5: Exit

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 4

#include<stdio.h>

#include<stdlib.h>

void createNode(int);

void traverse();

struct node

{

 int data;

 struct node *next;

};

struct node *head;

void main ()

{

 int choice,item;

 do

 {

 printf("\n1.Insert Node\n2.Traverse\n3.Exit\n4.Enter your

choice:\n");

 scanf("%d",&choice);

 switch(choice)

 {

 case 1:

 printf("\nEnter the element to insert:\n");

 scanf("%d",&item);

 createNode(item);

 break;

 case 2:

 traverse();

 break;

 case 3:

 exit(0);

 break;

 default:

 printf("\nPlease enter a valid choice.\n");

 }

 }while(choice != 3);

}

void createNode(int item)

 {

 struct node *ptr = (struct node *)malloc(sizeof(struct node *));

 if(ptr == NULL)

 {

 printf("\nOVERFLOW\n");

 }

 else

 {

 ptr->data = item;

 ptr->next = head;

 head = ptr;

 printf("\nNode inserted successfully!!\n");

 }

 }

void traverse()

Output:

1.Insert Node

2.Traverse

3.Exit

4.Enter your choice:

1

Enter the element to insert:

2

Node inserted successfully!!

1.Insert Node

2.Traverse

3.Exit

4.Enter your choice:

1

Enter the element to insert:

4

Node inserted successfully!!

1.Insert Node

2.Traverse

3.Exit

4.Enter your choice:

1

Enter the element to insert:

6

Node inserted successfully!!

1.Insert Node

2.Traverse

3.Exit

4.Enter your choice:

2

printing values

6

4

2

1.Insert Node

2.Traverse

3.Exit

4.Enter your choice:

1

Enter the element to insert:

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 5

 {

 struct node *ptr;

 ptr = head;

 if(ptr == NULL)

 {

 printf("List is Empty.");

 }

 else

 {

 printf("printing values\n");

 while (ptr!=NULL)

 {

 printf("\n%d",ptr->data);

 ptr = ptr -> next;

 }

 }

 }

8

Node inserted successfully!!

1.Insert Node

2.Traverse

3.Exit

4.Enter your choice:

2

printing values

8

6

4

2

1.Insert Node

2.Traverse

3.Exit

4.Enter your choice:

3

Algorithm to Search a Linked List

Step 1: [Initialize] Set Ptr = Start

Step 2: Repeat Step 3 While Ptr! = Null

Step 3: If Val = Ptr->Data

 Set Pos = Ptr

 Go To Step 5

 Else

 Set Ptr = Ptr->Next

 [End of If]

[End of Loop]

Step 4: Set Pos = Null

Step 5: Exit

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 6

#include<stdio.h>

#include<stdlib.h>

struct node

{

 int data;

 struct node *next;

};

void addLast(struct node **head, int val)

{

 //create a new node

 struct node *newNode = malloc(sizeof(struct node));

 newNode->data = val;

 newNode->next = NULL;

 //if head is NULL, it is an empty list

 if(*head == NULL)

 *head = newNode;

 //Otherwise, find the last node and add the newNode

 else

 {

 struct node *lastNode = *head;

 //last node's next address will be NULL.

 while(lastNode->next != NULL)

 {

 lastNode = lastNode->next;

 }

 //add the newNode at the end of the linked list

 lastNode->next = newNode;

 }

}

int searchNode(struct node *head,int key)

{

 struct node *temp = head;

 //iterate the entire linked list and print the data

 while(temp != NULL)

 {

 //key found return 1.

 if(temp->data == key)

 return 1;

 temp = temp->next;

 }

 //key not found

 return -1;

}

int main()

{

 struct node *head = NULL;

 addLast(&head,10);

 addLast(&head,20);

 addLast(&head,30);

 //change the key and try it yourself.

 if(searchNode(head,20) == 1)

 printf("Search Found\n");

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 7

 else

 printf("Search Not Found\n");

 return 0;

}

Inserting a Node at the Beginning

 Suppose we want to add a new node with the data 9 and add it as the first node of the list. Then

the changes will do in the linked list. Allocate the memory for the new node and initialize its DATA part to

9. Add the new node as the first node of the list by making the NEXT part of the new node contain the

address of the START. Now make START to point to the first node of the list.

Algorithm to Insert a New Node in the Beginning

Step 1: if avail = null,

 Write overflow

 Go to step 7

[End of if]

Step 2: set new_node = avail

Step 3: set avail = avail->next

Step 4: set new_node->data = val

Step 5: set new_node->next = start

Step 6: set start = new_node

Step 7: exit

// C program to show inserting a node at front of given Linked List

#include <stdio.h>

#include <stdlib.h>

// A linked list node

struct Node

{

 int data;

 struct Node* next;

};

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 8

// Given a reference (pointer to pointer) to the head of a list and an

int, inserts a new node on the front of the list.

void insertAtFront(struct Node** head_ref, int new_data)

{

 // 1. allocate node

 struct Node* new_node

 = (struct Node*)malloc(sizeof(struct Node));

 // 2. put in the data

 new_node->data = new_data;

 // 3. Make next of new node as head

 new_node->next = (*head_ref);

 // 4. move the head to point to the new node

 (*head_ref) = new_node;

}

// This function prints contents of linked list starting from head

void printList(struct Node* node)

{

 while (node != NULL)

 {

 printf(" %d", node->data);

 node = node->next;

 }

 printf("\n");

}

// Driver code

int main()

{

 // Start with the empty list

 struct Node* head = NULL;

 insertAtFront(&head, 1);

 insertAtFront(&head, 2);

 insertAtFront(&head, 3);

 insertAtFront(&head, 4);

 insertAtFront(&head, 5);

 insertAtFront(&head, 6);

 printf("After inserting nodes at their front: ");

 printList(head);

 return 0;

}

Time Complexity: O(1)

Auxiliary Space: O(1)

Inserting a Node at the End

 If we want to add a node with data 9 as the last node of the list,Then insert a new node at the end

of a linked list. Take pointer variable initialize with START. That is the pointer now points to the first node

of the linked list. With the help of loop will traverse through the linked list to reach the last node. Once

reached the last node the next of the last node to store the address of the new node, then last node next will

contains NULL.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 9

Algorithm to Insert a New Node at the End of the Linked List

Step 1: if avail = null, then

 Write overflow

 go to step 10

 [end of if]

Step 2: set new_node = avail

Step 3: set avail = avail->next

Step 4: set new_node->data = val

Step 5: set new_node->next = null

Step 6: set ptr = start

Step 7: repeat step 8 while ptr->next! = null

Step 8: set ptr = ptr ->next

 [End of loop]

Step 9: set ptr->next = new_node

Step 10: exit

#include <stdio.h>

#include <stdlib.h>

// A linked list node

struct Node

{

 int data;

 struct Node* next;

};

// Given a reference (pointer to pointer) to the head of a list and an int,

inserts a new node on the front of the list.

void push(struct Node** head_ref, int new_data)

{

 // Create a new node

 struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));

 new_node->data = new_data;

Output

Created Linked list is:

2 3 4 5 6

After inserting 1 at the

end: 2 3 4 5 6 1

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 10

 // Make the new node point to the current head

 new_node->next = (*head_ref);

 // Update the head to point to the new node

 (*head_ref) = new_node;

}

// Given a reference (pointer to pointer) to the head of a list and an int,

appends a new node at the end

void append(struct Node** head_ref, int new_data)

{

 // Create a new node

 struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));

 new_node->data = new_data;

 // Store the head reference in a temporary variable

 struct Node* last = *head_ref;

// Set the next pointer of the new node as NULL since it will be the last

node

 new_node->next = NULL;

// If the Linked List is empty, make the new node as the head and return

 if (*head_ref == NULL)

 {

 *head_ref = new_node;

 return;

 }

 // Else traverse till the last node

 while (last->next != NULL)

 {

 last = last->next;

 }

// Change the next pointer of the last node to point to the new node

 last->next = new_node;

}

// This function prints the contents of the linked list starting from the head

void printList(struct Node* node)

{

 while (node != NULL) {

 printf(" %d", node->data);

 node = node->next;

 }

}

// Driver code

int main()

{

 // Start with an empty list

 struct Node* head = NULL;

 // Insert nodes at the beginning of the linked list

 push(&head, 6);

 push(&head, 5);

 push(&head, 4);

 push(&head, 3);

 push(&head, 2);

 printf("Created Linked list is: ");

 printList(head);

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 11

 // Insert 1 at the end

 append(&head, 1);

 printf("\nAfter inserting 1 at the end: ");

 printList(head);

 return 0;

}

Inserting a Node after Node

ALGORITHM TO INSERT A NEW NODE AFTER A NODE

Step 1: if avail = null, then

 Write overflow

 Go to step 12

 [End of if]

Step 2: set new_node = avail

Step 3: set avail = avail->next

Step 4: set new_node->data = val

Step 5: set ptr = start

Step 6: set preptr = ptr

Step 7: repeat steps 8 and 9 while preptr->data != num

Step 8: set preptr = ptr

Step 9: set ptr = ptr->next

 [end of loop]

Step 10: preptr->next = new_node

Step 11: set new_node->next = ptr

Step 12: exit

// C program to show inserting a node after a given node in given Linked List

#include <stdio.h>

#include <stdlib.h>

 // A linked list node

struct Node {

 int data;

 struct Node* next;

};

 // Given a node prev_node, insert a new node after the given prev_node

void insertAfter(struct Node* prev_node, int new_data)

{

Output

Created Linked list

is: 2 3 4 5 6

After inserting 1

after 2: 2 1 3 4 5 6

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 12

 // 1. check if the given prev_node is NULL

 if (prev_node == NULL)

{

 printf("The given previous node cannot be NULL");

 return;

 }

 // 2. allocate new node

 struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));

 // 3. put in the data

 new_node->data = new_data;

 // 4. Make next of new node as next of prev_node

 new_node->next = prev_node->next;

 // 5. move the next of prev_node as new_node

 prev_node->next = new_node;

}

 // Function to insert element in LL

void push(struct Node** head_ref, int new_data)

{

 struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));

 new_node->data = new_data;

 new_node->next = (*head_ref);

 (*head_ref) = new_node;

}

// This function prints contents of linked list starting from head

void printList(struct Node* node)

{

 while (node != NULL)

 {

 printf(" %d", node->data);

 node = node->next;

 }

 printf("\n");

}

 // Driver code

int main()

{

 // Start with the empty list

 struct Node* head = NULL;

 push(&head, 6);

 push(&head, 5);

 push(&head, 4);

 push(&head, 3);

 push(&head, 2);

 printf("Created Linked list is: ");

 printList(head);

 // Insert 1 at the beginning.

 insertAfter(head, 1);

 printf("After inserting 1 after 2: ");

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 13

 printList(head);

 return 0;

}

Time Complexity: O(1)

Auxiliary Space: O(1)

INSERTING "BEFORE"

ALGORITHM TO INSERT A NEW NODE BEFORE A NODE

Step 1: if avail = null, then

 Write overflow

 Go to step 12

 [End of if]

Step 2: set new_node = avail

Step 3: set avail = avail->next

Step 4: set new_node->data = val

Step 5: set ptr = start

Step 6: set preptr = ptr

Step 7: repeat steps 8 and 9 while ptr->data != num

Step 8: set preptr = ptr

Step 9: set ptr = ptr->next

 [end of loop]

Step 10: preptr->next = new_node

Step 11: set new_node->next = ptr

Step 12: exit

Find a node containing "key" and insert a new node before that node. In the picture below, we insert a new

node before "a":

For the sake of convenience, we maintain two references prev and cur. When we move along the list we

shift these two references, keeping prev one step before cur. We continue until cur reaches the node before

which we need to make an insertion. If cur reaches null, we don't insert, otherwise we insert a new node

between prev and cur.

// C program to show inserting a node at front of given Linked List

#include <stdio.h>

#include <stdlib.h>

// A linked list node

struct Node

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 14

{

 int data;

 struct Node* next;

};

// Given a reference (pointer to pointer)to the head of a list and an int,

inserts a new node on the front of the list.

void insertAtFront(struct Node** head_ref, int new_data)

{

 // 1. allocate node

 struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));

 // 2. put in the data

 new_node->data = new_data;

 // 3. Make next of new node as head

 new_node->next = (*head_ref);

 // 4. move the head to point to the new node

 (*head_ref) = new_node;

}

// This function prints contents of linked list starting from head

void printList(struct Node* node)

{

 while (node != NULL)

 {

 printf(" %d", node->data);

 node = node->next;

 }

 printf("\n");

}

// Driver code

int main()

{

 // Start with the empty list

 struct Node* head = NULL;

 insertAtFront(&head, 1);

 insertAtFront(&head, 2);

 insertAtFront(&head, 3);

 insertAtFront(&head, 4);

 insertAtFront(&head, 5);

 insertAtFront(&head, 6);

 printf("After inserting nodes at their front: ");

 printList(head);

 return 0;

}

Deleting the First Node

Algorithm to Delete the First Node from the Linked List

Step 1: if start = null, then

 Write underflow

 Go to step 5

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 15

 [End of if]

Step 2: set ptr = start

Step 3: set start = start->next

Step 4: free ptr

Step 5: exit

ALGORITHM TO DELETE THE LAST NODE

Step 1: if start = null, then

 Write underflow

 Go to step 8

 [End of if]

Step 2: set ptr = start

Step 3: repeat steps 4 and 5 while ptr->next != null

Step 4: set preptr = ptr

Step 5: set ptr = ptr->next

 [End of loop]

Step 6: set preptr->next = null

Step 7: free ptr

Step 8: exit

ALGORITHM TO DELETE THE NODE AFTER A GIVEN NODE FROM THE LINKED LIST

Step 1: if start = null, then

 Write underflow

 Go to step 10

 [end of if]

Step 2: set ptr = start

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 16

Step 3: set preptr = ptr

Step 4: repeat step 5 and 6 while pretr->data!=num

Step 5: set preptr = ptr

Step 6: set ptr = ptr->next

 [End of loop]

step7: set temp = ptr->next

Step 8: set preptr->next = temp->next

Step 9: free temp

Step 10: exit

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 17

/* Program: Deleting a node in the linked list Language: C */

#include<stdio.h>

#include<stdlib.h>

struct node

{

 int data;

 struct node *next;

};

void addLast(struct node **head, int val)

{

 //create a new node

 struct node *newNode = malloc(sizeof(struct node));

 newNode->data = val;

 newNode->next = NULL;

 //if head is NULL, it is an empty list

 if(*head == NULL)

 *head = newNode;

 //Otherwise, find the last node and add the newNode

 else

 {

 struct node *lastNode = *head;

 //last node's next address will be NULL.

 while(lastNode->next != NULL)

 {

 lastNode = lastNode->next;

 }

 //add the newNode at the end of the linked list

 lastNode->next = newNode;

 }

void deleteNode(struct node **head, int key)

{

 //temp is used to freeing the memory

 struct node *temp;

//key found on the head node. //move to head node to the next and free the

head.

 if((*head)->data == key)

 {

 temp = *head; //backup to free the memory

 *head = (*head)->next;

 free(temp);

 }

 else

 {

 struct node *current = *head;

 while(current->next != NULL)

 {

 //if yes, we need to delete the current->next node

 if(current->next->data == key)

 {

 temp = current->next;

 //node will be disconnected from the linked list.

 current->next = current->next->next;

OutPut

Linked List Elements:

10 ->20 ->30 ->NULL

Deleted 10. The New

Linked List:

20 ->30 ->NULL

Deleted 30. The New

Linked List:

20 ->NULL

Deleted 20. The New

Linked List:

NULL

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 18

 free(temp);

 break;

 }

 //Otherwise, move the current node and proceed

 else

 current = current->next;

 }

 }

}

void printList(struct node *head)

{

 struct node *temp = head;

 //iterate the entire linked list and print the data

 while(temp != NULL)

 {

 printf("%d ->", temp->data);

 temp = temp->next;

 }

 printf("NULL\n");

}

int main()

{

 struct node *head = NULL;

 addLast(&head,10);

 addLast(&head,20);

 addLast(&head,30);

 printf("Linked List Elements:\n");

 printList(head);

 //delete first node

 deleteNode(&head,10);

 printf("Deleted 10. The New Linked List:\n");

 printList(head);

 //delete last node

 deleteNode(&head,30);

 printf("Deleted 30. The New Linked List:\n");

 printList(head);

 //delete 20

 deleteNode(&head,20);

 printf("Deleted 20. The New Linked List:\n");

 printList(head);

 return 0;

}

Circular Linked List

In a circular linked list, the last node contains a pointer to the first node of the list. We can have a circular

singly listed list as well as circular doubly linked list. While traversing a circular linked list, we can begin at

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 19

any node and traverse the list in any direction forward or backward until we reach the same node where we

had started. Thus, a circular linked list has no beginning and no ending.

1. A circular linked list is a linked list in which the head element's previous pointer points to the tail

element and the tail element's next pointer points to the head element.

2. A circularly linked list node looks exactly the same as a linear singly linked list.

A circularly linked list, or simply circular list, is a linked list in which the last node is always points to the

first node. This type of list can be build just by replacing the NULL pointer at the end of the list with a

pointer which points to the first node. There is no first or last node in the circular list.

Circular linked lists are widely used in operating systems for task maintenance. We will now discuss an

example where a circular linked list is used. When we are surfing the Internet, we can use the Back button

and the Forward button to move to the previous pages that we have already visited. How is this done? The

answer is simple.

A circular linked list is used to maintain the sequence of the Web pages visited. Traversing this

circular linked list either in forward or backward direction helps to revisit the pages again using Back and

Forward buttons. Actually, this is done using either the circular stack or the circular queue.

Advantages:

➢ Any node can be traversed starting from any other node in the list.

➢ There is no need of NULL pointer to signal the end of the list and hence, all pointers contain valid

addresses.

➢ In contrast to singly linked list, deletion operation in circular list is simplified as the search for the

previous node of an element to be deleted can be started from that item itself.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 20

Insert a new node in the beginning of circular the linked list

We will see how a new node is added into an already existing linked list. We will take two cases and then

see how insertion is done in each case.

Case 1: The new node is inserted at the beginning of the circular linked list.

Case 2: The new node is inserted at the end of the circular linked list.

Algorithm to insert a new node in the beginning of circular the linked list

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 21

Algorithm to insert a new node at the end of the circular linked list

 Inserting a new node at the end of a circular linked list take pointer variable and initialize with

start, the pointer points the first node of the circular linked list, with the help of the loop traverse through

the linked list to reach the last node, once reached the last node change the pointer next of the last node to

store the address of the first node which is denoted by START.

// C program for the above operation

#include <stdio.h>

#include <stdlib.h>

// Structure of a linked list node

struct node {

 int info;

 struct node* next;

};

// Pointer to last node in the list

struct node* last = NULL;

// Function to insert a node in the starting of the list

void insertAtFront(int data)

{

 // Initialize a new node

 struct node* temp;

 temp = (struct node*)malloc(sizeof(struct node));

 // If the new node is the only node in the list

 if (last == NULL)

OutPut

Data = 30

Data = 20

Data = 10

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 22

 {

 temp->info = data;

 temp->next = temp;

 last = temp;

 }

// Else last node contains the reference of the new node and new node

contains the reference of the previous first node

 else

 {

 temp->info = data;

 temp->next = last->next;

 // last node now has reference of the new node temp

 last->next = temp;

 }

}

// Function to print the list

void viewList()

{

 // If list is empty

 if (last == NULL)

 printf("\nList is empty\n");

 // Else print the list

 else {

 struct node* temp;

 temp = last->next;

// While first node is not reached again, print, since the list is circular

 do

 {

 printf("\nData = %d", temp->info);

 temp = temp->next;

 } while (temp != last->next);

 }

}

// Driver Code

int main()

{

 // Function Call

 insertAtFront(10);

 insertAtFront(20);

 insertAtFront(30);

 // Print list

 viewList();

 return 0;

}

Delete the node from the circular linked list

 Deleting a node form the circular linked list will take two cases and then see how deletion is done

in each case. Rest of the cases of deletion is same as that given for singly linked list lists.

 Case 1: the first node is deleted

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 23

 Case 2: the last node is deleted

Algorithm to delete the first node from the circular linked list

Step 1: If Start = Null, Then

 Write Underflow

 Go To Step 8

 [End Of If]

Step 2: Set Ptr = Start

Step 3: Repeat Step 4 While Ptr->Next != Start

Step 4: Set Ptr = Ptr->Next

 [End of If]

Step 5: Set Ptr->Next = Start->Next

Step 6: Free Start

Step 7: Set Start = Ptr->Next

Step 8: Exit

Consider the circular linked list when we want to delete a node from the beginning of the list, then the take

a variable pointer and make it point to the START node of the list and move pointer further so that it now

points to the last node of the list. The NEXT part of the pointer is made to point to the second node of the

list and the memory of the first node is freed. The second node becomes the first node of the list.

Deleting the Last Node from a Circular Linked List

Consider the circular linked list suppose we want to delete the last nodefrom the linked list, then the

following changes will be done in the linked list.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 24

Algorithm to delete the last node from the circular linked list

/* Program: Deleting a node in the linked list Language: C */

#include<stdio.h>

#include<stdlib.h>

struct node

{

 int data;

 struct node *next;

};

void addLast(struct node **head, int val)

{

 //create a new node

 struct node *newNode = malloc(sizeof(struct node));

 newNode->data = val;

 newNode->next = NULL;

 //if head is NULL, it is an empty list

 if(*head == NULL)

 *head = newNode;

 //Otherwise, find the last node and add the newNode

 else

 {

 struct node *lastNode = *head;

 //last node's next address will be NULL.

Output

Linked List Elements:

10 ->20 ->30 ->NULL

Deleted 10. The New Linked

List:

20 ->30 ->NULL

Deleted 30. The New Linked

List:

20 ->NULL

Deleted 20. The New Linked

List:

NULL

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 25

 while(lastNode->next != NULL)

 {

 lastNode = lastNode->next;

 }

 //add the newNode at the end of the linked list

 lastNode->next = newNode;

 }

}

void deleteNode(struct node **head, int key)

{

 //temp is used to freeing the memory

 struct node *temp;

 //key found on the head node.

 //move to head node to the next and free the head.

 if((*head)->data == key)

 {

 temp = *head; //backup to free the memory

 *head = (*head)->next;

 free(temp);

 }

 else

 {

 struct node *current = *head;

 while(current->next != NULL)

 {

 //if yes, we need to delete the current->next node

 if(current->next->data == key)

 {

 temp = current->next;

 //node will be disconnected from the linked list.

 current->next = current->next->next;

 free(temp);

 break;

 }

 //Otherwise, move the current node and proceed

 else

 current = current->next;

 }

 }

}

void printList(struct node *head)

{

 struct node *temp = head;

 //iterate the entire linked list and print the data

 while(temp != NULL)

 {

 printf("%d ->", temp->data);

 temp = temp->next;

 }

 printf("NULL\n");

}

int main()

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 26

{

 struct node *head = NULL;

 addLast(&head,10);

 addLast(&head,20);

 addLast(&head,30);

 printf("Linked List Elements:\n");

 printList(head);

 //delete first node

 deleteNode(&head,10);

 printf("Deleted 10. The New Linked List:\n");

 printList(head);

 //delete last node

 deleteNode(&head,30);

 printf("Deleted 30. The New Linked List:\n");

 printList(head);

 //delete 20

 deleteNode(&head,20);

 printf("Deleted 20. The New Linked List:\n");

 printList(head);

 return 0;

}

DOUBLY LINKED LISTS

A doubly linked list or a two-way linked list is a more complex type of linked list which containsa pointer

to the next as well as the previous node in the sequence. Therefore, it consists of threeparts—data, a pointer

to the next node, and a pointer to the previous node.

Doubly linked list can be representation as,

struct node

{

struct node *prev;

int data;

struct node *next;

};

The PREV field of the first node and the NEXT field of the last node will contain NULL. The PREV

Field is used to store the address of the preceding node, which enables us to traverse the list in the

Backward direction.

Thus, we see that a doubly linked list calls for more space per node and more expensive basic

Operations. However, a doubly linked list provides the ease to manipulate the elements of the

List as it maintains pointers to nodes in both the directions (forward and backward). The main

Advantage of using a doubly linked list is that it makes searching twice as efficient. Let us view

How a doubly linked list is maintained in the memory.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 27

We see that a variable START is used to store the address of the first node. In this

Example, START = 1, so the first data is stored at address 1, which is H. Since this is the first node, it has

no previous node and hence stores NULL or –1 in the PREV field. We will traverse the list until we reach a

position where the NEXT entry contains –1 or NULL. This denotes the end of the linked list. When we

traverse the DATA and NEXT in this manner, we will finally see that the linked list in the above example

stores characters that when put together form the word HELLO.

Inserting a New Node in a Doubly Linked List

In this section, we will discuss how a new node is added into an already existing doubly linked list. We will

take four cases and then see how insertion is done in each case.

Case 1: The new node is inserted at the beginning.

Case 2: The new node is inserted at the end.

Case 3: The new node is inserted after a given node.

Case 4: The new node is inserted before a given node.

Inserting a Node in a Doubly Linked List

To insert a new node at the beginning of a doubly linked list, we first check whether memory is

available for the new node. If the free memory has exhausted, then an OVERFLOW message is printed.

Otherwise, if free memory cell is available, then we allocate Space for the new node. Set its DATA part

with the given VAL and the NEXT part is initialized with the address of the first node of the list, which is

stored in START. Now, since the new node is added as the first node of the list, it will now be known as the

START node, that is, the START pointer variable will now hold the address of NEW_NODE.

Algorithm to insert a new node in the beginning of the doubly linked list

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 28

Inserting a Node at the Beginning of a Doubly Linked List

Consider the doubly linked list, suppose we want to add a new node with data9 as the first node of the list.

Then the following changes will be done in the linked list.

Inserting a Node at the End of a Doubly Linked List

To insert a new node at the end of a doubly linked list, we take a pointer variable PTR and initialize

it with START. In the while loop, we traverse through the linked list to reach the last node. Once we reach

the last node, we change the NEXT pointer of the last node to store the address of the new node. Remember

that the NEXT field of the new node contains NULL which signifies the end of the linked list. The PREV

field of the NEW_NODE will be set so that it points to the node pointed by PTR (now the second last node

of the list).

Algorithm to insert a new node at the end of the doubly linked list

Consider the doubly linked list and we want to add a new node with data at the last node of the list. Then

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 29

Inserting a Node after a Given Node in a Doubly Linked List

To insert a new node after a given node in a doubly linked list, we take a pointer PTR and initialize

it with START. That is, PTR now points to the first node of the linked list. In the while loop, we traverse

through the linked list to reach the node that has its value equal to NUM. We need to reach this node

because the new node will be inserted after this node. Once we reach this node, we change the NEXT and

PREV fields in such a way that the new node is inserted after the desired node.

Algorithm to insert a new node after a given node

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 30

Inserting a Node before a Given Node in a Doubly Linked List

Consider the doubly linked list to add a new node with value before the node containing 3. Before

discussing the changes that will be done in the linked list, let us first look at the algorithm In Step 1, we

first check whether memory is available for the new node. In Step 5, we take a pointer variable PTR and

initialize it with START. That is, PTR now points to the first node of the linked list. In the while loop, we

traverse through the linked list to reach the node that has its value equal to NUM. We need to reach this

node because the new node will be inserted before this node. Once we reach this node, we change the

NEXT and PREV fields in such a way that the new node is inserted before the desired node.

Algorithm to insert a new node before a node that has value NUM

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 31

#include<stdio.h>

#include<stdlib.h>

struct Node

{

 int data;

 struct Node *next;

 struct Node *prev;

};

void insertStart (struct Node **head, int data)

{

 struct Node *newNode = (struct Node *) malloc (sizeof (struct Node));

 newNode->data = data;

 newNode->next = *head;

 newNode->prev = NULL;

 //If the linked list already had atleast 1 node

 if (*head != NULL) (*head)->prev = newNode;

 // *head->prev = newNode; would not work it has (*head) must be used

changing the new head to this freshly entered node

 *head = newNode;

}

// function to print the doubly linked list

void display (struct Node *node)

{

 struct Node *end;

 printf ("List in Forward direction: ");

 while (node != NULL)

 {

 printf (" %d ", node->data);

 end = node;

 node = node->next;

 }

 printf ("\nList in backward direction: ");

 while (end != NULL)

 {

Output

List in Forward

direction: 20 16

12

List in backward

direction: 12 16

20

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 32

 printf (" %d ", end->data);

 end = end->prev;

 }

}

int main ()

{

 struct Node *head = NULL;

 /*Need & i.e. address as we need to change head address only needs to

traverse and access items temporarily */

 insertStart (&head, 12);

 insertStart (&head, 16);

 insertStart (&head, 20);

 /*No need for & i.e. address as we do not need to change head address */

 display (head);

 return 0;

}

Deleting a Node from a Doubly Linked List

In this section, we will see how a node is deleted from an already existing doubly linked list. We

Will take four cases and then see how deletion is done in each case.

Case 1: The first node is deleted.

Case 2: The last node is deleted.

Case 3: The node after a given node is deleted.

Case 4: The node before a given node is deleted.

Deleting the First Node from a Doubly Linked List

When we want to delete a node from thebeginning of the list, then the following changes will be done in

the linked list.

Algorithm to delete the first node from the doubly linked list

To delete the first node of a doubly linked list, we check if the linked list exists or not. If START

=NULL, then it signifies that there are no nodes in the list and the control is transferred to the last statement

of the algorithm. However, if there are nodes in the linked list, then we use a temporary pointer variable

PTR that is set to point to the first node of the list. For this, we initialize PTR with START that stores the

address of the first node of the list. In Step 3, START is made to point to the next node in sequence and

finally the memory occupied by PTR (initially the first node of the list) is freed and returned to the free

pool.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 33

Deleting the Last Node from a Doubly Linked List

To delete the last node of a doubly linked list, we take a pointer variable PTR and initialize it with START.

That is, PTR now points to the first node of the linked list. The while loop traverses through the list to reach

the last node, once we reach the last node, we can also access the second last node by taking its address

from the PREV field of the last node. To delete the last node, we simply have to set the next field of second

last node to NULL, so that it now becomes the (new) last node of the linked list. The memory of the

previous last node is freed and returned to the free pool.

Algorithm to delete the last node of the doubly linked list

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 34

Deleting the Node after a Given Node in a Doubly Linked List

To delete a node after a given node of a doubly linked list, we take a pointer variable PTR and

initialize it with START. That is, PTR now points to the first node of the doubly linked list. The while loop

traverses through the linked list to reach the given node, Once we reach the node containing VAL, the node

succeeding it can be easily accessed by using the address stored in its NEXT field. The NEXT field of the

given node is set to contain the contents in the NEXT field of the succeeding node. Finally, the memory of

the node succeeding the given node is freed and returned to the free pool.

Algorithm to delete the node after a given node from the doubly linked list

Deleting the Node before a Given Node in a Doubly Linked List

To delete a node before a given node of a doubly linked list, we take a pointer variable PTR and

initialize it with START. That is, PTR now points to the first node of the linked list. The while loop

traverses through the linked list to reach the desired node, Once we reach the node containing VAL, the

PREV field of PTRis set to contain the address of the node preceding the node which comes before PTR.

The memory of the node preceding PTR is freed and returned to the free pool.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 35

Algorithm to delete the node before a given node from the doubly linked list

Hence, we see that we can insert or delete a node in a constant number of operations given only that

node’s address. Note that this is not possible in the case of a singly linked list which requires the previous

node’s address also to perform the same operation

#include<stdio.h>

#include<stdlib.h>

struct Node

{

 int data;

 struct Node *next;

 struct Node *prev;

};

int getLength (struct Node *node);

void insert (struct Node **head, int data)

{

 struct Node *freshNode = (struct Node *) malloc (sizeof (struct Node));

 freshNode->data = data;

 freshNode->next = *head;

OUTPUT

List in Forward direction:

12 11 10 9 8 7

List in backward direction:

7 8 9 10 11 12

12 deleted

List in Forward direction:

11 10 9 8 7

List in backward direction:

7 8 9 10 11

7 deleted

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 36

 freshNode->prev = NULL;

 // If the linked list already had atleast 1 node

 if (*head != NULL)

 (*head)->prev = freshNode;

 // freshNode will become head

 *head = freshNode;

}

void deleteFront (struct Node **head)

{

 struct Node *tempNode = *head;

 // if DLL is empty

 if (*head == NULL)

 {

 printf ("Linked List Empty, nothing to delete\n");

 return;

 }

 // if Linked List has only 1 node

 if (tempNode->next == NULL)

 {

 printf ("%d deleted\n", tempNode->data);

 *head = NULL;

 return;

 }

 // move head to next node

 *head = (*head)->next;

 // assign head node's previous to NULL

 (*head)->prev = NULL;

 printf ("%d deleted\n", tempNode->data);

 free (tempNode);

}

void deleteEnd (struct Node **head)

{

 struct Node *tempNode = *head;

 // if DLL is empty

 if (*head == NULL)

 {

 printf ("Linked List Empty, nothing to delete\n");

 return;

 }

 // if Linked List has only 1 node

 if (tempNode->next == NULL)

 {

 printf ("%d deleted\n", tempNode->data);

 *head = NULL;

 return;

 }

 // else traverse to the last node

 while (tempNode->next != NULL)

 tempNode = tempNode->next;

 struct Node *secondLast = tempNode->prev;

 // Curr assign 2nd last node's next to Null

 secondLast->next = NULL;

List in Forward direction:

11 10 9 8

List in backward direction:

8 9 10 11

9 deleted

List in Forward direction:

11 10 8

List in backward direction:

8 10 11

11 deleted

List in Forward direction:

10 8

List in backward direction:

8 10

8 deleted

List in Forward direction:

10

List in backward direction:

10

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 37

 printf ("%d deleted\n", tempNode->data);

 free (tempNode);

}

void deleteNthNode (struct Node **head, int n)

{

 //if the head node itself needs to be deleted

 int len = getLength (*head);

 // not valid

 if (n < 1 || n > len)

 {

 printf ("Enter valid position\n");

 return;

 }

 // delete the first node

 if (n == 1)

 {

 deleteFront (head);

 return;

 }

 if (n == len)

 {

 deleteEnd (head);

 return;

 }

 struct Node *tempNode = *head;

 // traverse to the nth node

 while (--n)

 {

 tempNode = tempNode->next;

 }

 struct Node *previousNode = tempNode->prev; // (n-1)th node

 struct Node *nextNode = tempNode->next; // (n+1)th node

 // assigning (n-1)th node's next pointer to (n+1)th node

 previousNode->next = tempNode->next;

 // assigning (n+1)th node's previous pointer to (n-1)th node

 nextNode->prev = tempNode->prev;

 // deleting nth node

 printf ("%d deleted \n", tempNode->data);

 free (tempNode);

}

// required for deleteNthNode

int getLength (struct Node *node)

{

 int len = 0;

 while (node != NULL)

 {

 node = node->next;

 len++;

 }

 return len;

}

//function to print the doubly linked list

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 38

void display (struct Node *node)

{

 struct Node *end = NULL;

 printf ("List in Forward direction: ");

 while (node != NULL)

 {

 printf (" %d ", node->data);

 end = node;

 node = node->next;

 }

 printf ("\nList in backward direction:");

 while (end != NULL)

 {

 printf (" %d ", end->data);

 end = end->prev;

 }

 printf ("\n\n");

}

int main ()

{

 struct Node *head = NULL;

 insert (&head, 7);

 insert (&head, 8);

 insert (&head, 9);

 insert (&head, 10);

 insert (&head, 11);

 insert (&head, 12);

 display (head);

 deleteFront (&head);

 display (head);

 deleteEnd (&head);

 display (head);

 // delete 3rd node

 deleteNthNode (&head, 3);

 display (head);

 // delete 1st node

 deleteNthNode (&head, 1);

 display (head);

 // delete 1st node

 deleteEnd (&head);

 display (head);

 return 0;

}

CIRCULAR DOUBLY LINKED LISTS

A circular doubly linked list or a circular two-way linked list is a more complex type of linked list

which contains a pointer to the next as well as the previous node in the sequence. The difference between a

doubly linked and a circular doubly linked list is same as that exists between a singly linked list and a

circular linked list. The circular doubly linked list does not contain NULL in the previous field of the first

node and the next field of the last node. Rather, the next field of the last node stores the address of the first

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 39

node of the list, i.e., START. Similarly, the previous field of the first field stores the address of the last

node.

Since a circular doubly linked list contains three parts in its structure, it calls for more space per node and

more expensive basic operations. However, a circular doubly linked list provides the ease to manipulate the

elements of the list as it maintains pointers to nodes in both the directions (forward and backward). The

main advantage of using a circular doubly linked list is that it makes search operation twice as efficient.

Let us view how a circular doubly linked list is maintained in the memory.

We see that a variable START is used to store the address of the first node. Here in this example,

START = 1, so the first data is stored at address 1, which is H. Since this is the first node, it stores the

address of the last node of the list in its previous field. The corresponding NEXT stores the address of the

next node, which is 3. So, we will look at address3 to fetch the next data item. The previous field will

contain the address of the first node. The second data element obtained from address 3 is E. We repeat this

procedure until we reach a position where the NEXT entry stores the address of the first element of the list.

This denotes the end of the linked list, that is, the node that contains the address of the first node is actually

the last node of the list.

Inserting a New Node in a Circular Doubly Linked List

We will see how a new node is added into an already existing circular doubly linked list. We will take two

cases and then see how insertion is done in each case. Rests of the cases are similar to that given for doubly

linked lists.

Case 1: The new node is inserted at the beginning.

Case 2: The new node is inserted at the end.

Inserting a Node at the Beginning of a Circular Doubly Linked List

To insert anew node at the beginning of a circular doubly linked list, we first check whether

Memory is available for the new node. If the free memory has exhausted, then an OVERFLOW message

is printed. Otherwise, we allocate space for the new node. Set its data part with the given VAL and

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 40

its next part is initialized with the address of the first node of the list, which is stored in START.

Now since the new node is added as the first node of the list, it will now be known as the START node, that

is, the START pointer variable will now hold the address of NEW_NODE. Since it is a circular

doubly linked list, the PREV field of the NEW_ NODE is set to contain the address of the last node.

Algorithm to insert a new node in the beginning of the circular doubly linked list

Inserting a Node at the End of a Circular Doubly Linked List

To insert a new node at the end of a circular doubly linked list, we take a pointer variable PTR and initialize

it with START. That is, PTR now points to the first node of the linked list. In the while loop, we traverse

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 41

through the linked list to reach the last node. Once we reach the last node, in Step 9, we change the NEXT

pointer of the last node to store the address of the new node. The PREV field of the NEW_NODE will be

set so that it points to the node pointed by PTR (now the second last node of the list).

Algorithm to insert a new node at the end of the circular doubly linked list

#include<stdio.h>

#include<stdlib.h>

struct Node

{

 int data;

 struct Node *next;

};

void insertStart (struct Node **head, int data)

{

 struct Node *newNode = (struct Node *) malloc (sizeof (struct Node));

 newNode->data = data;

Output

Insert at beginning: 1 2

Insert at End: 1 2 30 40

Insert at Specific Position:

1 2 5 30 40

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 42

 // if its the first node being entered

 if (*head == NULL)

 {

 *head = newNode;

 (*head)->next = *head;

 return;

 }

 // if LL already as >=1 node

 struct Node *curr = *head;

 // traverse till last node in LL

 while (curr->next != *head)

 {

 curr = curr->next;

 }

 // assign LL's last node's next as this new node

 curr->next = newNode;

 // assign newNode's next as current head

 newNode->next = *head;

 // change head to this new node

 *head = newNode;

}

void insertLast (struct Node **head, int data)

{

 struct Node *newNode = (struct Node *) malloc (sizeof (struct Node));

 newNode->data = data;

 // if its the first node being entered

 if (*head == NULL)

 {

 *head = newNode;

 (*head)->next = *head;

 return;

 }

 // if LL already as >=1 node

 struct Node *curr = *head;

 // traverse till last node in LL

 while (curr->next != *head)

 {

 curr = curr->next;

 }

 // assign LL's current last node's next as this new node

 curr->next = newNode;

 // assign this new node's next as current head of LL

 newNode->next = *head;

}

void insertPosition (int data, int pos, struct Node **head)

//function to insert element at specific position

{

 struct Node *newnode, *curNode;

 int i;

 if (*head == NULL)

 {

 printf ("List is empty");

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 43

 }

 if (pos == 1)

 {

 insertStart (head, data);

 return;

 }

 else

 {

 newnode = (struct Node *) malloc (sizeof (struct Node));

 newnode->data = data;

 curNode = *head;

 while (--pos > 1)

 {

 curNode = curNode->next;

 }

 newnode->next = curNode->next;

 curNode->next = newnode;

 }

}

void display (struct Node *head)

{

 // if there are no node in LL

 if (head == NULL)

 return;

 struct Node *temp = head;

 //need to take care of circular structure of LL

 do

 {

 printf ("%d ", temp->data);

 temp = temp->next;

 }

 while (temp != head);

 printf ("\n");

}

int main ()

{

 struct Node *head = NULL;

 printf("Insert at beginning: ");

 insertStart (&head, 2);

 insertStart (&head, 1);

 display (head);

 printf("Insert at End: ");

 insertLast (&head, 30);

 insertLast (&head, 40);

 display (head);

 printf("Insert at Specific Position: ");

 insertPosition (5, 3, &head);

 display (head);

 return 0;

}

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 44

Deleting a Node from a Circular Doubly Linked List

We will see how a node is deleted from an already existing circular doubly linked list. We will take

two cases and then see how deletion is done in each case. Rest of the cases is same as that given for doubly

linked lists.

Case 1: The first node is deleted.

Case 2: The last node is deleted.

Deleting the First Node from a Circular Doubly Linked List

 When we want to delete a node from the beginning of the list, then the following changes will be

done in the linked list, to delete the first node from a circular doubly linked list. we check if the linked list

exists or not. If START = NULL, then it signifies that there are no nodes in the list and the control is

transferred to the last statement of the algorithm.

However, if there are nodes in the linked list, then we use a pointer variable PTR that is set to point

to the first node of the list. For this, we initialize PTR with START that stores the address of the first node

of the list. The while loop traverses through the list to reach the last node. Once we reach the last node, the

NEXT pointer of PTR is set to contain the address of the node that succeeds START. Finally, START is

made to point to the next node in the sequence and the memory occupied by the first node of the list is freed

and returned to the free pool.

Algorithm to delete the first node from the circular doubly linked list

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 45

Deleting the Last Node from a Circular Doubly Linked List

To delete the last node from a circular doubly linked list, we take a pointer variable PTR and

initialize it with START. That is, PTR now points to the first node of the linked list. The while loop

Traverses through the list to reach the last node. Once we reach the last node, we can also access the second

last node by taking its address from the PREV field of the last node. To delete the last node, we simply

have to set the next field of the second last node to contain the address of START, so that it now becomes

the (new) last node of the linked list. The memory of the previous last node is freed and returned to the free

pool.

Algorithm to delete the last node of the circular doubly linked list

#include<stdio.h>

#include<stdlib.h>

// structure for Circular Linked List

struct Node

{

 int data;

 struct Node *next;

};

int calcSize (struct Node *head);

void deleteBegin(struct Node **head)

{

 struct Node *tempNode = *head;

 // if there are no nodes in Linked List can't delete

Output

16 15 14 13 12 11 10

15 14 13 12 11 10

15 14 13 12 11

15 14 12 11

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 46

 if (*head == NULL)

 {

 printf ("Linked List Empty, nothing to delete");

 return;

 }

 // if only 1 node in CLL

 if (tempNode->next == *head)

 {

 *head = NULL;

 return;

 }

 struct Node *curr = *head;

 // traverse till last node in CLL

 while (curr->next != *head)

 curr = curr->next;

 // assign last node's next to 2nd node in CLL

 curr->next = (*head)->next;

 // move head to next node

 *head = (*head)->next;

 free (tempNode);

}

void deleteEnd (struct Node **head)

{

 struct Node *tempNode = *head;

 struct Node *previous;

 // if there are no nodes in Linked List can't delete

 if (*head == NULL)

 {

 printf ("Linked List Empty, nothing to delete");

 return;

 }

 // if Linked List has only 1 node

 if (tempNode->next == *head)

 {

 *head = NULL;

 return;

 }

 // else traverse to the last node

 while (tempNode->next != *head)

 {

 // store previous link node as we need to change its next val

 previous = tempNode;

 tempNode = tempNode->next;

 }

 // Curr assign 2nd last node's next to head

 previous->next = *head;

 // delete the last node

 free (tempNode);

 // 2nd last now becomes the last node

}

void deletePos (struct Node **head, int n)

{

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 47

 int size = calcSize (*head);

 if (n < 1 || size < n)

 {

 printf ("Can't delete, %d is not a valid position\n", n);

 }

 else if (n == 1)

 deleteBegin(head);

 else if (n == size)

 deleteEnd (head);

 else

 {

 struct Node *tempNode = *head;

 struct Node *previous;

 // traverse to the nth node

 while (--n)

 {

 // store previous link node as we need to change its next val

 previous = tempNode;

 tempNode = tempNode->next;

 }

 // change previous node's next node to nth node's next node

 previous->next = tempNode->next;

 // delete this nth node

 free (tempNode);

 }

}

void insert (struct Node **head, int data)

{

 struct Node *newNode = (struct Node *) malloc (sizeof (struct

Node));

 newNode->data = data;

 if (*head == NULL)

 {

 *head = newNode;

 (*head)->next = *head;

 return;

 }

 struct Node *curr = *head;

 while (curr->next != *head)

 {

 curr = curr->next;

 }

 curr->next = newNode;

 newNode->next = *head;

 *head = newNode;

}

int calcSize (struct Node *head)

{

 int size = 0;

 struct Node *temp = head;

 if (temp == NULL)

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 48

 return size;

 do

 {

 size++;

 temp = temp->next;

 }

 while (temp != head);

 return size;

}

void display (struct Node *head)

{

 // if there are no node in CLL

 if (head == NULL)

 return;

 struct Node *temp = head;

 //need to take care of circular structure of CLL

 do

 {

 printf ("%d ", temp->data);

 temp = temp->next;

 }

 while (temp != head);

 printf ("\n");

}

int main ()

{

 // first node will be null at creation

 struct Node *head = NULL;

 insert (&head, 10);

 insert (&head, 11);

 insert (&head, 12);

 insert (&head, 13);

 insert (&head, 14);

 insert (&head, 15);

 insert (&head, 16);

 display (head);

 deleteBegin(&head);

 display (head);

 deleteEnd (&head);

 display (head);

 deletePos (&head, 3);

 display (head);

 return 0;

}

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 49

APPLICATIONS OF LINKED LISTS

Linked lists can be used to represent polynomials and the different operations that can be performed

on them. We will see how polynomials are represented in the memory using linked lists.

Polynomial Representation

Let us see how a polynomial is represented in the memory using a linked list. Consider a polynomial

6x3 + 9x2 + 7x + 1. Every individual term in a polynomial consists of two parts, a coefficient

and a power. Here, 6, 9, 7, and 1 are the coefficients of the terms that have 3, 2, 1, and 0 as their

powers respectively.

Every term of a polynomial can be represented as a node of the linked list. Figure shows

the linked representation of the terms of the above polynomial.

Linked representation of a polynomial Now that we know how polynomials are represented using nodes of

a linked list, let us write a program to perform operations on polynomials.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 1

UNIT-III

Stacks: Introduction to stacks: properties and operations, implementing stacks using arrays and linked lists,

Applications of stacks in expression evaluation, backtracking, reversing list etc.

INTRODUCTION

Stack is an important data structure which stores its elements in an ordered manner. We will explain the

concept of stacks using an analogy. You must have seen a pile of plates where one plate is placed on top of

another as shown in Fig. Now, when you want to remove a plate, you remove the topmost plate first.

Hence, you can add and remove an element (i.e., a plate) only at/from one position which is the topmost

position.

A stack is a linear data structure which uses the same principle, i.e., the elements in a stack are

added and removed only from one end, which is called the TOP. Hence, a stack is called a LIFO (Last-In-

First-Out) data structure, as the element that was inserted last is the first one to be taken out.

A Stack is a linear data structure that follows the LIFO (Last-In-First-Out) or FILO (First -In- Last -

Out) principle. Stack has one end, It contains only one pointer top pointer pointing to the topmost element

of the stack. Whenever an element is added in the stack, it is added on the top of the stack, and the element

can be deleted only from the stack. In other words, a stack can be defined as a container in which

insertion and deletion can be done from the one end known as the top of the stack.

Some key points related to stack

➢ It is called as stack because it behaves like a real-world stack, piles of books, etc.

➢ A Stack is an abstract data type with a pre-defined capacity, which means that it can store the

elements of a limited size.

➢ It is a data structure that follows some order to insert and delete the elements, and that order can be

LIFO or FILO.

Working of Stack

➢ Stack works on the LIFO pattern. As we can observe in the below figure there are five memory

blocks in the stack; therefore, the size of the stack is 5.

➢ Suppose we want to store the elements in a stack and let's assume that stack is empty. We have

taken the stack of size 5 as shown below in which we are pushing the elements one by one until the

stack becomes full.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 2

Since our stack is full as the size of the stack is 5. In the above cases, we can observe that it goes

from the top to the bottom when we were entering the new element in the stack. The stack gets filled up

from the bottom to the top.

When we perform the delete operation on the stack, there is only one way for entry and exit as the

other end is closed. It follows the LIFO pattern, which means that the value entered first will be removed

last. In the above case, the value 5 is entered first, so it will be removed only after the deletion of all the

other elements.

Standard Stack Operations

Push (): When we insert an element in a stack then the operation is known as a push. If the stack is full

then the overflow condition occurs.

Pop (): When we delete an element from the stack, the operation is known as a pop. If the stack is empty

means that no element exists in the stack, this state is known as an underflow state.

isEmpty (): It determines whether the stack is empty or not.

isFull (): It determines whether the stack is full or not.'

Peek (): It returns the element at the given position.

Count (): It returns the total number of elements available in a stack.

Change (): It changes the element at the given position.

Display (): It prints all the elements available in the stack.

PUSH operation

The steps involved in the PUSH operation is given below:

➢ Before inserting an element in a stack, we check whether the stack is full.

➢ If we try to insert the element in a stack, and the stack is full, then the overflow condition occurs.

➢ When we initialize a stack, we set the value of top as -1 to check that the stack is empty.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 3

➢ When the new element is pushed in a stack, first, the value of the top gets incremented,

i.e., top=top+1, and the element will be placed at the new position of the top.

➢ The elements will be inserted until we reach the max size of the stack.

POP operation

The steps involved in the POP operation is given below:

➢ Before deleting the element from the stack, we check whether the stack is empty.

➢ If we try to delete the element from the empty stack, then the underflow condition occurs.

➢ If the stack is not empty, we first access the element which is pointed by the top

➢ Once the pop operation is performed, the top is decremented by 1, i.e., top=top-1.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 4

Stack Can be Representation in two ways

➢ Array Representation

➢ Linked List Representation

ARRAY REPRESENTATION OF STACKS

In the computer’s memory, stacks can be represented as a linear array. Every stack has a variable

called TOP associated with it, which is used to store the address of the topmost element of the stack. It is

this position where the element will be added to or deleted from. There is another variable called MAX,

which is used to store the maximum number of elements that the stack can hold. If TOP = NULL, then it

indicates that the stack is empty and if TOP = MAX–1, then the stack is full.(You must be wondering why

we have written MAX–1. It is because array indices start from 0.)

The stack in Fig. shows that TOP = 4, so insertions and deletions will be done at this position.In the above

stack, five more elements can still be stored.

Push Operation

The push operation is used to insert an element into the stack. The new element is added at thetopmost

position of the stack. However, before inserting the value, we must first check if TOP=MAX–1,because if

that is the case, then the stack is full and no more insertions can be done. If an attemptis made to insert a

value in a stack that is already full, an OVERFLOW message is printed.

To insert an element with value 6, we first check if TOP=MAX–1. If the condition is false, then we

increment the value of TOP and store the new element at the position given by stack [TOP].

Algorithm to PUSH an element in a stack

Step 1: If Top = Max-1, Then

 Print “Overflow”

 Goto Step 4

 [End Of If]

Step 2: Set Top = Top + 1

Step 3: Set Stack [Top] = Value

Step 4: End

To insert an element in a stack, we first check for the OVERFLOW condition, then TOPis incremented so

that it points to the next location in the array, the value is stored in the stack at the location pointed by TOP.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 5

Pop Operation

The pop operation is used to delete the topmost element from thestack. However, before deleting the

value, we must first check if TOP=NULL because if that is the case, then it means the stack is emptyand no

more deletions can be done. If an attempt is made to delete a value from a stack that isalready empty, an

UNDERFLOW message is printed.

Algorithm to POP an element from a stack

Step 1: If Top = Null, Then

 Print “Underflow”

 Goto Step 4

 [End Of If]

Step 2: Set Val = Stack[Top]

Step 3: Set Top = Top - 1

Step 4: End

To delete the topmost element, we first check if TOP=NULL. If the condition is false, then wedecrement

the value pointed by TOP.

To delete an element from a stack, we first check for the UNDERFLOW condition, the value of the

location in the stack pointed by TOP is stored in VAL, TOP is decremented.

#include <stdio.h>

int stack[100],i,j,choice=0,n,top=-1;

void push();

void pop();

void show();

void main ()

{

 printf("Enter the number of elements in the stack ");

 scanf("%d",&n);

 printf("*********Stack operations using array*********");

printf("\n--\n");

 while(choice != 4)

 {

 printf("Chose one from the below options...\n");

 printf("\n1.Push\n2.Pop\n3.Show\n4.Exit");

 printf("\n Enter your choice \n");

 scanf("%d",&choice);

 switch(choice)

Output

Enter the number of elements in the

stack 6

*********Stack operations using

array*********

--

Chose one from the below options...

1.Push

2.Pop

3.Show

4.Exit

 Enter your choice

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 6

 {

 case 1:

 {

 push();

 break;

 }

 case 2:

 {

 pop();

 break;

 }

 case 3:

 {

 show();

 break;

 }

 case 4:

 {

 printf("Exiting....");

 break;

 }

 default:

 {

 printf("Please Enter valid choice ");

 }

 };

 }

}

void push ()

{

 int val;

 if (top == n)

 printf("\n Overflow");

 else

 {

 printf("Enter the value?");

 scanf("%d",&val);

 top = top +1;

 stack[top] = val;

 }

}

void pop ()

{

 if(top == -1)

 printf("Underflow");

 else

 top = top -1;

}

void show()

{

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 7

 for (i=top;i>=0;i--)

 {

 printf("%d\n",stack[i]);

 }

 if(top == -1)

 {

 printf("Stack is empty");

 }

}

Peek/Peep Operation

Peek is an operation that returns the value of the top most element of the stack without deleting it

from the stack. However, the Peek operation first checks if the stack is empty, i.e., if TOP = NULL, then an

appropriate message is printed, else the value is returned.

Algorithm for Peek/Peep Operation

 Step 1: If Top =Null, Then

 Print “Stack Is Empty”

 Go To Step 3

 [End of If]

Step 2: Return Stack [Top]

Step 3: End

Here, the Peek operation will return 5, as it is the value of the topmost element of the stack.

LINKED REPRESENTATION OF STACKs

We have seen how a stack is created using an array. This technique of creating a stack is easy, but

the drawback is that the array must be declared to have some fixed size. In case the stack is a very small

one or its maximum size is known in advance, then the array implementation of the stack gives an efficient

implementation. But if the array size cannot be determined in advance, then the other alternative, i.e.,

linked representation, is used.

The storage requirement of linked representation of the stack with n elements is O(n), and the

typical time requirement for the operations is O(1).In a linked stack, every node has two parts one that

stores data and another that stores the address of the next node. The START pointer of the linked list is

used as TOP. All insertions and deletions are done at the node pointed by TOP. If TOP = NULL, then it

indicates that the stack is empty.

Linked list allocates the memory dynamically. However, time complexity in both the scenario is

same for all the operations i.e. push, pop and peek.

In linked list implementation of stack, the nodes are maintained non-contiguously in the memory.

Each node contains a pointer to its immediate successor node in the stack. Stack is said to be overflown if

the space left in the memory heap is not enough to create a node.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 8

The top most node in the stack always contains null in its address field. Lets discuss the way in

which, each operation is performed in linked list implementation of stack.

Adding a node to the stack (Push operation)

Adding a node to the stack is referred to as push operation. Pushing an element to a stack in linked

list implementation is different from that of an array implementation. In order to push an element onto the

stack, the following steps are involved.

➢ Create a node first and allocate memory to it.

➢ If the list is empty then the item is to be pushed as the start node of the list. This includes assigning

value to the data part of the node and assign null to the address part of the node.

➢ If there are some nodes in the list already, then we have to add the new element in the beginning of the

list (to not violate the property of the stack). For this purpose, assign the address of the starting element

to the address field of the new node and make the new node, the starting node of the list.

Time Complexity: o (1)

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 9

Push Operation

The push operation is used to insert an element into the stack. The new element is added at the

topmost position of the stack.

Algorithm to PUSH an element in a linked stack

Step 1: allocate memory for the new node and name it as new_node

Step 2: set new_node->data = val

Step 3: if top = null, then

 set new_node->next = null

 set top = new_node

 else

 set new_node->next = top

 set top = new_node

 [end of if]

Step 4: end

To insert an element with value, we first check if TOP=NULL, then we allocate memory for a new node,

store the value in its DATA part and NULL in its NEXT part. The new node will then be called TOP.

However, if TOP! =NULL, then we insert the new node at the beginning of the linked stack and name this

new node as TOP.

To push an element into a linked stack, memory is allocated for the new node, the DATA part of the

new node is initialized with the value to be stored in the node, and we check if the new node is the first

node of the linked list. This is done by checking if TOP = NULL. In case the IF statement evaluates to true,

then NULL is stored in the NEXT part of the node and the new node is called TOP. However, if the new

node is not the first node in the list, then it is added before the first node of the list (that is, the TOP node)

and termed as TOP.

Pop Operation

The pop operation is used to delete the topmost element from a stack. However, before deleting the

value, we must first check if TOP=NULL, because if this is the case, then it means that the stack is empty

and no more deletions can be done. If an attempt is made to delete a value from a stack that is already

empty, an UNDERFLOW message is printed.

Deleting a node from the top of stack is referred to as pop operation. Deleting a node from the

linked list implementation of stack is different from that in the array implementation.

➢ Check for the underflow condition: The underflow condition occurs when we try to pop from an

already empty stack. The stack will be empty if the head pointer of the list points to null.

➢ Adjust the head pointer accordingly: In stack, the elements are popped only from one end,

therefore, the value stored in the head pointer must be deleted and the node must be freed. The next

node of the head node now becomes the head node.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 10

Time Complexity : o(n)

Algorithm to POP an element from a stack

Step 1: If Top = Null, Then

 Print “Underflow”

Goto Step 5

 [End Of If]

Step 2: Set Ptr = Top

Step 3: Set Top = Top ->Next

Step 4: Free Ptr

Step 5: End

In case TOP! =NULL, then we will delete the node pointed by TOP, and make TOP point to the second

element of the linked stack.

To delete an element from a stack, we first check for the UNDERFLOW condition, we use a pointer PTR

that points to TOP, TOP is made to point to the next node in sequence, the memory occupied by PTR is

given back to the free pool.

Display the nodes (Traversing)

Displaying all the nodes of a stack needs traversing all the nodes of the linked list organized in the form of

stack.

➢ Copy the head pointer into a temporary pointer.

➢ Move the temporary pointer through all the nodes of the list and print the value field attached to

every node.

Time Complexity: o(n)

#include<stdio.h>

#include<stdlib.h>

struct Node

{

 int data;

 struct Node *next;

};

OUTPUT:

Linked List

30->20->10->NULL

Poped element = 30

After the pop, the new

linked list

20->10->NULL

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 11

struct Node *head = NULL;

void push(int val)

{

 //create new node

 struct Node *newNode = malloc(sizeof(struct Node));

 newNode->data = val;

 //make the new node points to the head node

 newNode->next = head;

//make the new node as head node so that head will always point the

last inserted data

 head = newNode;

}

void pop()

{

 //temp is used to free the head node

 struct Node *temp;

 if(head == NULL)

 printf("Stack is Empty\n");

 else

 {

 printf("Poped element = %d\n", head->data);

 //backup the head node

 temp = head;

 //make the head node points to the next node.logically removing the

node

 head = head->next;

 //free the poped element's memory

 free(temp);

 }

}

//print the linked list

void display()

{

 struct Node *temp = head;

 //iterate the entire linked list and print the data

Poped element = 20

After the pop, the new

linked list

10->NULL

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 12

 while(temp != NULL)

 {

 printf("%d->", temp->data);

 temp = temp->next;

 }

 printf("NULL\n");

}

int main()

{

 push(10);

 push(20);

 push(30);

 printf("Linked List\n");

 display();

 pop();

 printf("After the pop, the new linked list\n");

 display();

 pop();

 printf("After the pop, the new linked list\n");

 display();

 return 0;

}

MULTIPLE STACKS

While implementing a stack using an array, we had seen that the size of the array must be known in

advance. If the stack is allocated less space, then frequent OVERFLOW conditions will be encountered.

To deal with this problem, the code will have to be modified to reallocate more space for the array. In case

we allocate a large amount of space for the stack, it may result in sheer wastage of memory. Thus, there lies

a trade-off between the frequency of overflows and the space allocated. So, a better solution to deal with

this problem is to have multiple stacks or to have more than one stack in the same array of sufficient size.

An array STACK[n] is used to represent two stacks, Stack A and Stack B. The value of n is such that the

combined size of both the stacks will never exceed n. While operating on these stacks, it is important to

note one thing Stack A will grow from left to right, whereas Stack B will grow from right to left at the same

time. Extending this concept to multiple stacks, a stack can also be used to represent number of stacks in

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 13

the same array. That is, if we have a STACK[n], then each stack I will be allocated an equal amount of

space bounded by indices b[i] and e[i].

Implement two stacks in an array

Here, we will create two stacks, and we will implement these two stacks using only one array, i.e., both the

stacks would be using the same array for storing elements.

There are two approaches to implement two stacks using one array:

First Approach

First, we will divide the array into two sub-arrays. The array will be divided into two equal parts.

First, the sub-array would be considered stack1 and another sub array would be considered stack2.

For example, if we have an array of n equal to 8 elements. The array would be divided into two equal

parts, i.e., 4 size each shown as below:

The first subarray would be stack 1 named as st1, and the second subarray would be stack 2 named as st2.

On st1, we would perform push1() and pop1() operations, while in st2, we would perform push2() and

pop2() operations. The stack1 would be from 0 to n/2, and stack2 would be from n/2 to n-1.

If the size of the array is odd. For example, the size of an array is 9 then the left subarray would be of 4

size, and the right subarray would be of 5 size shown as below:

Disadvantage of using this approach

Stack overflow condition occurs even if there is a space in the array. In the above example, if we are

performing push1() operation on the stack1. Once the element is inserted at the 3rd index and if we try to

insert more elements, then it leads to the overflow error even there is a space left in the array.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 14

Second Approach

In this approach, we are having a single array named as 'a'. In this case, stack1 starts from 0 while

stack2 starts from n-1. Both the stacks start from the extreme corners, i.e., Stack1 starts from the leftmost

corner (at index 0), and Stack2 starts from the rightmost corner (at index n-1). Stack1 extends in the right

direction, and stack2 extends in the left direction,

If we push 'a' into stack1 and 'q' into stack2

Therefore, we can say that this approach overcomes the problem of the first approach. In this case,

the stack overflow condition occurs only when top1 + 1 = top2. This approach provides a space-efficient

implementation means that when the array is full, then only it will show the overflow error. In contrast, the

first approach shows the overflow error even if the array is not full.

SOURCE CODE

#include <stdio.h>

#define SIZE 20

 int array[SIZE]; // declaration of array type variable.

int top1 = -1;

int top2 = SIZE;

//Function to push data into stack1

void push1 (int data)

{

// checking the overflow condition

 if (top1 < top2 - 1)

 {

 top1++;

 array[top1] = data;

 }

 else

 {

 printf ("Stack is full");

 }

}

// Function to push data into stack2

void push2 (int data)

{

// checking overflow condition

if (top1 < top2 - 1)

 {

 top2--;

 array[top2] = data;

 }

 else

 {

 printf ("Stack is full..\n");

 }

}

OUT PUT

We can push a total of 20 values

Value Pushed in Stack 1 is 1

Value Pushed in Stack 1 is 2

Value Pushed in Stack 1 is 3

Value Pushed in Stack 1 is 4

Value Pushed in Stack 1 is 5

Value Pushed in Stack 1 is 6

Value Pushed in Stack 1 is 7

Value Pushed in Stack 1 is 8

Value Pushed in Stack 1 is 9

Value Pushed in Stack 1 is 10

Value Pushed in Stack 2 is 11

Value Pushed in Stack 2 is 12

Value Pushed in Stack 2 is 13

Value Pushed in Stack 2 is 14

Value Pushed in Stack 2 is 15

Value Pushed in Stack 2 is 16

Value Pushed in Stack 2 is 17

Value Pushed in Stack 2 is 18

Value Pushed in Stack 2 is 19

Value Pushed in Stack 2 is 20

10 9 8 7 6 5 4 3 2 1

20 19 18 17 16 15 14 13 12 11

Pushing Value in Stack 1 is 11

Stack is full10 is being popped

from Stack 1

9 is being popped from Stack 1

8 is being popped from Stack 1

7 is being popped from Stack 1

6 is being popped from Stack 1

5 is being popped from Stack 1

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 15

//Function to pop data from the Stack1

void pop1 ()

{

// Checking the underflow condition

 if (top1 >= 0)

 {

 int popped_element = array[top1];

 top1--;

 printf ("%d is being popped from Stack 1\n", popped_element);

 }

 else

 {

 printf ("Stack is Empty \n");

 }

}

// Function to remove the element from the Stack2

void pop2 ()

{

// Checking underflow condition

if (top2 < SIZE)

 {

 int popped_element = array[top2];

 top2--;

 printf ("%d is being popped from Stack 1\n", popped_element);

 }

 else

 {

 printf ("Stack is Empty!\n");

 }

}

//Functions to Print the values of Stack1

void display_stack1 ()

{

 int i;

 for (i = top1; i >= 0; --i)

 {

 printf ("%d ", array[i]);

 }

 printf ("\n");

}

// Function to print the values of Stack2

void display_stack2 ()

{

 int i;

 for (i = top2; i < SIZE; ++i)

 {

 printf ("%d ", array[i]);

 }

 printf ("\n");

}

int main()

{

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 16

 int ar[SIZE];

 int i;

 int num_of_ele;

 printf ("We can push a total of 20 values\n");

 //Number of elements pushed in stack 1 is 10

 //Number of elements pushed in stack 2 is 10

// loop to insert the elements into Stack1

for (i = 1; i <= 10; ++i)

 {

 push1(i);

 printf ("Value Pushed in Stack 1 is %d\n", i);

 }

// loop to insert the elements into Stack2.

for (i = 11; i <= 20; ++i)

 {

 push2(i);

 printf ("Value Pushed in Stack 2 is %d\n", i);

 }

 //Print Both Stacks

 display_stack1 ();

 display_stack2 ();

 //Pushing on Stack Full

 printf ("Pushing Value in Stack 1 is %d\n", 11);

 push1 (11);

 //Popping All Elements from Stack 1

 num_of_ele = top1 + 1;

 while (num_of_ele)

 {

 pop1 ();

 --num_of_ele;

 }

 // Trying to Pop the element From the Empty Stack

 pop1 ();

 return 0;

}

APPLICATIONS OF STACKS

In this section we will discuss typical problems where stacks can be easily applied for a simpleand

efficient solution. The topics that will be discussed in this section include the following:

➢ Reversing a list

➢ Parentheses checker/ Delimiter Checking

➢ Expression evaluation:

✓ Conversion of an infix expression into a postfix expression

✓ Evaluation of a postfix expression

✓ Conversion of an infix expression into a prefix expression

✓ Evaluation of a prefix expression

➢ Recursion

➢ Tower of Hanoi

➢ Function calls

➢ Backtracking

➢ Syntax parsing

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 17

Reversing a List

A list of numbers can be reversed by reading each number from an array starting from the firstindex

and pushing it on a stack. Once all the numbers have been read, the numbers can be poppedone at a time

and then stored in the array starting from the first index.

Write a program to reverse a list of given numbers.

#include <stdio.h>

#include <stdlib.h>

struct linked_list

{

 int data;

 struct linked_list *next;

};

int stack[30], top = -1;

struct linked_list* head = NULL;

int printfromstack(int stack[])

{

 printf("Stack:");

 while(top>=0)

 {

 printf("%d ", stack[top--]);

 }

}

int push(struct linked_list** head, int n)

{

 struct linked_list* newnode = (struct

linked_list*)malloc(sizeof(struct linked_list));

 newnode->data = n;

 newnode->next = (*head);

 (*head) = newnode;

}

int intostack(struct linked_list* head)

 {

 printf("Linked list:");

 while(head!=NULL)

 {

 printf("%d ", head->data);

 stack[++top] = head->data;

 head = head->next;

 }

}

int main(int argc, char const *argv[])

{

 push(&head, 10);

 push(&head, 20);

 push(&head, 30);

 push(&head, 40);

 intostack(head);

 printfromstack(stack);

 return 0;

}

Output

Linked list:40 30 20 10

Stack:10 20 30 40

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 18

Implementing Parentheses Checker

Stacks can be used to check the validity of parentheses in any algebraic expression. For example, an

algebraic expression is valid if for every open bracket there is a corresponding closing bracket. For

example, the expression (A+B} is invalid but an expression {A + (B – C)} is valid. Look at the program

below which traverses an algebraic expression to check for its validity.

Algorithm :

1. Declare a structure for character stack.

2. Now traverse the expression string exp.

3. If the current character is a starting bracket (‘(‘ or ‘{‘ or ‘[‘) then push it to stack.

4. If the current character is a closing bracket (‘)’ or ‘}’ or ‘]’) then pop from stack and if the popped

character is the matching starting bracket then fine else brackets are not balanced.

5. After complete traversal, if there is some starting bracket left in stack then “NOT BALANCED”

Write a program to check nesting of parentheses using a stack.

#include <stdio.h>

#include <stdlib.h>

#define MAX 100

struct stack

{

 char stck[MAX];

 int top;

}s;

void push(char item)

{

 if (s.top == (MAX - 1))

 printf("Stack is Full\n");

 else

 {

 s.top = s.top + 1;

 s.stck[s.top] = item;

 }

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 19

}

void pop()

{

 if (s.top == -1)

 printf("Stack is Empty\n");

 else

 s.top = s.top - 1;

}

int checkPair(char val1,char val2){

 return ((val1=='(' && val2==')')||(val1=='[' && val2==']')||(val1=='{' && val2=='}'));

}

int checkBalanced(char expr[], int len)

{

 int i;

 for (i = 0; i < len; i++)

 {

 if (expr[i] == '(' || expr[i] == '[' || expr[i] == '{')

 {

 push(expr[i]);

 }

 else

 {

 // exp = {{}}}

 // if you look closely above {{}} will be matched with pair, Thus, stack "Empty"

 //but an extra closing parenthesis like '}' will never be matched

 //so there is no point looking forward

 if (s.top == -1)

 return 0;

 else if(checkPair(s.stck[s.top],expr[i]))

 {

 pop();

 continue;

 }

 // will only come here if stack is not empty

 // pair wasn't found and it's some closing parenthesis

 //Example : {{}}(]

 return 0;

 }

 }

 return 1;

}

int main()

{

 char exp[MAX] = "({})[]{}";

 int i = 0;

 s.top = -1;

 int len = strlen(exp);

 checkBalanced(exp, len)?printf("Balanced"): printf("Not Balanced");

 return 0;

}

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 20

Evaluation of Arithmetic Expressions

Polish Notations

Infix, postfix, and prefix notations are three different but equivalent notations of writing algebraic

expressions. But before learning about prefix and postfix notations, let us first see what an infix notation is.

We all are familiar with the infix notation of writing algebraic expressions.

While writing a arithmetic expression using infix notation, the operator is placed in between the

operands. For example, A+B; here, plus operator are placed between the two operands A and B. Although

it is easy for us to write expressions using infix notation, computers find it difficult to parse as the computer

needs a lot of information to evaluate the expression. Information is needed about operator precedence and

associability rules, and brackets which override these rules. So, computers work more efficiently with

expressions written using prefix and postfix notations.

Postfix notation was developed by Jan Łukasiewicz who was a Polish logician, mathematician, and

philosopher. His aim was to develop a parenthesis-free prefix notation (also known as Polish notation) and

a postfix notation, which is better known as Reverse Polish Notation or RPN.

In postfix notation, as the name suggests, the operator is placed after the operands. For example, if

an expression is written as A+B in infix notation, the same expression can be written as AB+ in postfix

notation. The order of evaluation of a postfix expression is always from left to right. Even brackets cannot

alter the order of evaluation.

Operator Precedence and Associativity in C

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 21

Evaluation of Arithmetic Expression requires two steps:

✓ First, convert the given expression into special notation.

✓ Evaluate the expression in this new notation.

Notations for Arithmetic Expression

There are three notations to represent an arithmetic expression:

➢ Infix Notation

➢ Prefix Notation

➢ Postfix Notation

Infix Notation

The infix notation is a convenient way of writing an expression in which each operator is placed

between the operands. Infix expressions can be parenthesized or un-parenthesized depending upon the

problem requirement.

Example: A + B, (C - D) etc.

All these expressions are in infix notation because the operator comes between the operands.

Prefix Notation

The prefix notation places the operator before the operands. This notation was introduced by the

Polish mathematician and hence often referred to as polish notation.

Example: + A B, -CD etc.

All these expressions are in prefix notation because the operator comes before the operands.

Postfix Notation

The postfix notation places the operator after the operands. This notation is just the reverse of Polish

notation and also known as Reverse Polish notation.

Example: AB +, CD+, etc.

All these expressions are in postfix notation because the operator comes after the operands.

Conversion of an Infix Expression into a Postfix Expression

Let I be an algebraic expression written in infix notation. I may contain parentheses, operands, and

operators. For simplicity of the algorithm we will use only +, –, *, /, %operators. The precedence of these

operators can be given as follows:

Higher priority *, /, %

Lower priority +, –

No doubt, the order of evaluation of these operators can be changed by making use of parentheses.

For example, if we have an expression A + B * C, then first B * C will be done and the result will be added

to A. But the same expression if written as, (A + B) * C, will evaluate A + B first and then the result will be

multiplied with C.

The algorithm given below transforms an infix expression into postfix expression, as shown in Fig.

The algorithm accepts an infix expression that may contain operators, operands, and parentheses. For

simplicity, we assume that the infix operation contains only modulus (%), multiplication (*), division (/),

addition (+), and subtraction (―) operators and that operators with same precedence are performed from

left-to-right.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 22

The algorithm uses a stack to temporarily hold operators. The postfix expression is obtained from

left-to-right using the operands from the infix expression and the operators which are removed from the

stack. The first step in this algorithm is to push a left parenthesis on the stack and to add a corresponding

right parenthesis at the end of the infix expression. The algorithm is repeated until the stack is empty.

Algorithm to convert an Infix notation into postfix notation

1. Add the open and close parentheses () at starting and ending of the expression

2. Scan each and every individual character of the expression

3. If it symbols or operator encountered push it into the stack

4. IF an operand (whether a digit or an alphabet) is encountered, Add it to the postfix expression.

5. IF a “)” is encountered, then;

A. Repeatedly pop from stack and add it to the postfix expression until a “(” is encountered.

 B. Discard the “(“. That is, remove the “(“from stack and do not add it to the postfix expression

6. In stack if entered operator is less than precedence of existing operator than compare both the

operators, which is having high precedence that operator is added to expression.

7. In Stack if entered operator is same precedence or greater than precedence existing operator than no

need to change remain the same.

8. Repeatedly pop from the stack and add it to the postfix expression until the stack is empty.

9. EXIT

Convert the following infix expression into postfix expression using the algorithm

 A – (B / C + (D % E * F) / G)* H

A – (B / C + (D % E * F) / G)* H)

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 23

Evaluation of a Postfix Expression

The ease of evaluation acts as the driving force for computers to translate an infix notation into a

postfix notation. That is, given an algebraic expression written in infix notation, the computer first converts

the expression into the equivalent postfix notation and then evaluates the postfix expression.

Both these tasks converting the infix notation into postfix notation and evaluating the postfix

expression make extensive use of stacks as the primary tool.

Using stacks, any postfix expression can be evaluated very easily. Every character of the postfix

expression is scanned from left to right. If the character encountered is an operand, it is pushed on to the

stack. However, if an operator is encountered, then the top two values are popped fromthe stack and the

operator is applied on these values. The result is then pushed on to the stack.

Let us now take an example that makes use of this algorithm. Consider the infix expressiongiven as 9 – ((3

* 4) + 8) / 4. Evaluate the expression.

The infix expression 9 – ((3 * 4) + 8) / 4 can be written as 9 3 4 * 8 + 4 / – using postfix notation.

Look at Table 7.1, which shows the procedure.

Recursion

Recursion which is an implicit application of the STACK ADT, A recursive function is defined as a

function that calls itself to solve a smaller version of its task until a final call is made which does not

require a call to itself. Since a recursive function repeatedly calls itself, it makes use of the system stack to

temporarily store the return address and local variables of the calling function. Every recursive solution has

two major cases.

• Base case, in which the problem is simple enough to be solved directly without making any further

calls to the same function.

• Recursive case, in which first the problem at hand is divided into simpler sub-parts. Second the

function calls itself but with sub-parts of the problem obtained in the first step. Third, the result is

obtained by combining the solutions of simpler sub-parts.

Therefore, recursion is defining large and complex problems in terms of smaller and more easily solvable

problems. In recursive functions, a complex problem is defined in terms of simpler problems and the

simplest problem is given explicitly.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 24

To understand recursive functions, let us take an example of calculating factorial of a number. To

calculate n!, we multiply the number with factorial of the number that is 1 less than that number. In other

words,

n! = n x (n–1)!

Now if you look at the problem carefully, you can see that we can write a recursive function to calculate the

factorial of a number. Every recursive function must have a base case and a recursive case. For the factorial

function,

• Base case is when n = 1, because if n = 1, the result will be 1 as1! = 1.

• Recursive case of the factorial function will call itself but with a smaller value of n, this case can be

given as factorial(n) = n × factorial (n–1)Look at the following program which calculates the

factorial of a number recursively.

NOTE: Every recursive function must have at least one base case. Otherwise, the recursive function will

generate an infinite sequence of calls, thereby resulting in an error condition known as an infinite stack.

The Fibonacci Series

The Fibonacci series can be given as

0 1 1 2 3 5 8 13 21 34 55 ……

That is, the third term of the series is the sum of the first and second terms. Similarly, fourth term is the

sum of second and third terms, and so on. Now we will design a recursive solution to find the nth term of

the Fibonacci series. The general formula to do so can be given as.

As per the formula, FIB(0) =0 and FIB(1) = 1. So we have two base cases. This is necessary

because every problem is divided into two smaller problems.

Write a program to print the Fibonacci series using recursion.

#include <stdio.h>

int Fibonacci(int);

int main()

{

int n, i = 0, res;

printf("Enter the number of terms\n");

scanf("%d",&n);

printf("Fibonacci series\n");

for(i = 0; i < n; i++)

{

res = Fibonacci(i);

printf("%d\t",res);

}

OUTPUT

Enter the number of terms

Fibonacci series

0 1 1 2 3

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 25

return 0;

}

int Fibonacci(int n)

{

if (n == 0)

return 0;

else if (n == 1)

return 1;

else

return (Fibonacci(n–1) + Fibonacci(n–2));

}

Tower of Hanoi

The tower of Hanoi is one of the main applications of recursion. It says, ‘if you can solve n–1 cases, then

you can easily solve the nth case’.

 Three rings mounted on pole A. The problem is to move all these rings from pole A to pole C while

maintaining the same order. The main issue is that the smaller disk must always come above the larger disk.

We will be doing this using a spare pole. In our case, A is the source pole, C is the destination pole, and B

is the spare pole. To transfer all the three rings from A to C, we will first shift the upper two rings (n–1

rings) from the source pole to the spare pole. We move the first two rings from pole A to B .

Now that n–1 rings have been removed from pole A, the nth ring can be easily moved from the

source pole (A) to the destination pole (C).

The final step is to move the n–1 rings from the spare pole (B) to the destination pole (C).

To summarize, the solution to our problem of moving n rings from A to C using B as spare can be given as:

Base case: if n=1

• Move the ring from A to C using B as spare

Recursive case:

• Move n – 1 rings from A to B using C as spare

• Move the one ring left on A to C using B as spare

• Move n – 1 rings from B to C using A as spare

Recursion versus Iteration

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 26

Recursion is more of a top-down approach to problem solving in which the original problem is divided into

smaller sub-problems. On the contrary, iteration follows a bottom-up approach that begins with what is

known and then constructing the solution step by step.

Recursion is an excellent way of solving complex problems especially when the problem can be

defined in recursive terms. For such problems, a recursive code can be written and modified in a much

simpler and clearer manner.

However, recursive solutions are not always the best solutions. In some cases, recursive programs

may require substantial amount of run-time overhead. Therefore, when implementing a recursive solution,

there is a trade-off involved between the time spent in constructing and maintaining the program and the

cost incurred in running-time and memory space required for the execution of the program.

The advantages of using a recursive program include the following:

• Recursive solutions often tend to be shorter and simpler than non-recursive ones.

• Code is clearer and easier to use.

• Recursion works similar to the original formula to solve a problem.

• Recursion follows a divide and conquer technique to solve problems.

• In some (limited) instances, recursion may be more efficient.

The drawbacks/disadvantages of using a recursive program include the following:

• For some programmers and readers, recursion is a difficult concept.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 27

• Recursion is implemented using system stack. If the stack space on the system is limited, recursion

to a deeper level will be difficult to implement.

• Aborting a recursive program in midstream can be a very slow process.

• Using a recursive function takes more memory and time to execute as compared to its non-recursive

counterpart.

• It is difficult to find bugs, particularly while using global variables.

• The advantages of recursion pay off for the extra overhead involved in terms of time and space

required.

Processing Function Calls:

Stack plays an important role in programs that call several functions in succession. Suppose we have a

program containing three functions: A, B, and C. function A invokes function B, which invokes the function C.

When we invoke function A, which contains a call to function B, then its processing will not be completed

until function B has completed its execution and returned. Similarly for function B and C. So we observe that

function A will only be completed after function B is completed and function B will only be completed after function

C is completed. Therefore, function A is first to be started and last to be completed. To conclude, the above function

activity matches the last in first out behavior and can easily be handled using Stack.

Consider addrA, addrB, addrC be the addresses of the statements to which control is returned after

completing the function A, B, and C, respectively.

The above figure shows that return addresses appear in the Stack in the reverse order in which the functions were

called. After each function is completed, the pop operation is performed, and execution continues at the address

removed from the Stack. Thus the program that calls several functions in succession can be handled optimally by the

stack data structure. Control returns to each function at a correct place, which is the reverse order of the calling

sequence.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 28

Backtracking

Backtracking is a problem-solving algorithmic technique that involves finding a solution

incrementally by trying different options and undoing them if they lead to a dead end.

It is commonly used in situations where you need to explore multiple possibilities to solve a problem,

like searching for a path in a maze or solving puzzles like Sudoku. When a dead end is reached, the

algorithm backtracks to the previous decision point and explores a different path until a solution is found

or all possibilities have been exhausted.

How Does a Backtracking Algorithm Work?

A backtracking algorithm works by recursively exploring all possible solutions to a problem. It starts

by choosing an initial solution, and then it explores all possible extensions of that solution. If an

extension leads to a solution, the algorithm returns that solution. If an extension does not lead to a

solution, the algorithm backtracks to the previous solution and tries a different extension.

The following is a general outline of how a backtracking algorithm works:

1. Choose an initial solution.

2. Explore all possible extensions of the current solution.

3. If an extension leads to a solution, return that solution.

4. If an extension does not lead to a solution, backtrack to the previous solution and try a

different extension.

5. Repeat steps 2-4 until all possible solutions have been explored.

When to use a Backtracking algorithm?

When we have multiple choices, then we make the decisions from the available choices. In the following

cases, we need to use the backtracking algorithm:

✓ A piece of sufficient information is not available to make the best choice, so we use the

backtracking strategy to try out all the possible solutions.

✓ Each decision leads to a new set of choices. Then again, we backtrack to make new decisions. In

this case, we need to use the backtracking strategy.

How does Backtracking work?

Backtracking is a systematic method of trying out various sequences of decisions until you find

out that works. Let's understand through an example.

We start with a start node. First, we move to node A. Since it is not a feasible solution so we

move to the next node, i.e., B. B is also not a feasible solution, and it is a dead-end so we backtrack from

node B to node A.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 29

Suppose another path exists from node A to node C. So, we move from node A to node C. It is also a

dead-end, so again backtrack from node C to node A. We move from node A to the starting node

Now we will check any other path exists from the starting node. So, we move from start node to the node

D. Since it is not a feasible solution so we move from node D to node E. The node E is also not a feasible

solution. It is a dead end so we backtrack from node E to node D.

Suppose another path exists from node D to node F. So, we move from node D to node F. Since it is not a

feasible solution and it's a dead-end, we check for another path from node F.

Suppose there is another path exists from the node F to node G so move from node F to node G. The

node G is a success node.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 30

The terms related to the backtracking are:

➢ Live node: The nodes that can be further generated are known as live nodes.

➢ E node: The nodes whose children are being generated and become a success node.

➢ Success node: The node is said to be a success node if it provides a feasible solution.

➢ Dead node: The node which cannot be further generated and also does not provide a feasible

solution is known as a dead node.

Many problems can be solved by backtracking strategy, and that problems satisfy complex set of

constraints, and these constraints are of two types:

➢ Implicit constraint: It is a rule in which how each element in a tuple is related.

➢ Explicit constraint: The rules that restrict each element to be chosen from the given set.

Applications of Backtracking

➢ N-queen problem

➢ Sum of subset problem

➢ Graph coloring

➢ Hamiliton cycle

➢ Solving puzzles (e.g., Sudoku, crossword puzzles)

➢ Finding the shortest path through a maze

➢ Scheduling problems

➢ Resource allocation problems

➢ Network optimization problems

Example 2 of Backtracking Algorithm

Example: Finding the shortest path through a maze

Input: A maze represented as a 2D array, where 0 represents an open space and 1 represents a wall.

Algorithm:

1. Start at the starting point.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 31

2. For each of the four possible directions (up, down, left, right), try moving in that direction.

3. If moving in that direction leads to the ending point, return the path taken.

4. If moving in that direction does not lead to the ending point, backtrack to the previous position

and try a different direction.

5. Repeat steps 2-4 until the ending point is reached or all possible paths have been explored.

When to Use a Backtracking Algorithm?

Backtracking algorithms are best used to solve problems that have the following characteristics:

• There are multiple possible solutions to the problem.

• The problem can be broken down into smaller subproblems.

• The subproblems can be solved independently.

Difference between the Backtracking and Recursion

Recursion is a technique that calls the same function again and again until you reach the base case.

Backtracking is an algorithm that finds all the possible solutions and selects the desired solution from the given set of

solutions.

Advantages of Stacks:

✓ Simplicity: Stacks are a simple and easy-to-understand data structure, making them suitable for a

wide range of applications.

✓ Efficiency: Push and pop operations on a stack can be performed in constant time (O(1)),

providing efficient access to data.

✓ Last-in, First-out (LIFO): Stacks follow the LIFO principle, ensuring that the last element added

to the stack is the first one removed. This behavior is useful in many scenarios, such as function

calls and expression evaluation.

✓ Limited memory usage: Stacks only need to store the elements that have been pushed onto them,

making them memory-efficient compared to other data structures.

Disadvantages of Stacks:

✓ Limited access: Elements in a stack can only be accessed from the top, making it difficult to

retrieve or modify elements in the middle of the stack.

✓ Potential for overflow: If more elements are pushed onto a stack than it can hold, an overflow

error will occur, resulting in a loss of data.

✓ Not suitable for random access: Stacks do not allow for random access to elements, making

them unsuitable for applications where elements need to be accessed in a specific order.

✓ Limited capacity: Stacks have a fixed capacity, which can be a limitation if the number of

elements that need to be stored is unknown or highly variable.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 1

UNIT-IV

Queues: Introduction to queues: properties and operations, implementing queues using arrays and linked

lists, Applications of queues in breadth-first search, scheduling, etc.

Deques: Introduction to deques (double-ended queues), Operations on deques and their applications.

A queue is an important data structure which is extensively used in computer applications. In this

we will study the operations that can be performed on a queue. Will also discuss the implementation of a

queue by using both arrays as well as linked lists, Will illustrate different types of queues like multiple

queues, double ended queues, circular queues, and priority queues. And also lists some real-world

applications of queues.

INTRODUCTION

A queue is a linear data structure where elements are stored in the FIFO (First in First Out)

principle where the first element inserted would be the first element to be accessed. A queue is an Abstract

Data Type (ADT) similar to stack, the thing that makes queue different from stack is that a queue is open at

both its ends. The data is inserted into the queue through one end and deleted from it using the other end.

Queue is very frequently used in most programming languages.

A real-world example of queue can be a single-lane one-way road, where the vehicle enters first, exits first.

More real-world examples can be seen as queues at the ticket windows and bus-stops.

Let us explain the concept of queues using the analogies given below.

➢ People moving on an escalator. The people who got on the escalator first will be the first one to step

out of it.

➢ People waiting for a bus. The first person standing in the line will be the first one to get into the bus.

➢ People standing outside the ticketing window of a cinema hall. The first person in the line will get

the ticket first and thus will be the first one to move out of it.

➢ Cars lined at a toll bridge. The first car to reach the bridge will be the first to leave.

A queue is a FIFO (First-In, First-Out) data structure in which the element that is inserted first is the

first one to be taken out. The elements in a queue are added at one end called the REAR and removed from

the other end called the FRONT. Queues can be implemented by using either arrays or linked lists.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 2

Basic Operations of Queue

➢ Enqueue (Insert): Adds an element to the rear of the queue.

➢ Dequeue (Delete): Removes and returns the element from the front of the queue.

➢ Peek: Returns the element at the front of the queue without removing it.

➢ isEmpty: Checks if the queue is empty.

➢ isFull: Checks if the queue is full.

REPRESENTATION OF QUEUES

➢ Array

➢ Linked List

ARRAY REPRESENTATION OF QUEUES

Queues can be easily represented using linear arrays. There are two variables i.e. front and rear, that

are implemented in the case of every queue. Front and rear variables point to the position from where

insertions and deletions are performed in a queue. Initially, the value of front and queue is -1 which

represents an empty queue. Array representation of a queue containing 5 elements along with the respective

values of front and rear.

The queue of characters forming the English word "HELLO". Since, No deletion is performed in the queue

till now, therefore the value of front remains -1 . However, the value of rear increases by one every time an

insertion is performed in the queue. After inserting an element into the queue. The value of rear will

become 5 while the value of front remains same.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 3

After deleting an element, the value of front will increase from -1 to 0.

ALGORITHM TO INSERT AN ELEMENT IN A QUEUE

Step 1: If Rear = Max-1

Write Overflow

Goto Step 4

[End of If]

Step 2: If Front = -1 and Rear = -1

Set Front = Rear = 0

Else

Set Rear = Rear + 1

[End of If]

Step 3: Set Queue [Rear] = Num

Step 4: Exit

The algorithm to insert an element in a queue, In Step 1, we first check for the overflow condition.

In Step 2, we check if the queue is empty. In case the queue is empty, then both FRONT and REAR are set

to zero, so that the new value can be stored at the 0th location. Otherwise, if the queue already has some

values, then REAR is incremented so that it points to the next location in the array. In Step 3, the value is

stored in the queue at the location pointed by REAR.

Similarly, before deleting an element from a queue, we must check for underflow conditions. An

underflow condition occurs when we try to delete an element from a queue that is already empty. If

FRONT = –1 and REAR = –1, it means there is no element in the queue.

QUEUE INSERTION LOGIC

void insert (int queue[], int max, int front, int rear, int item)

{

 if (rear + 1 == max)

 {

 printf("overflow");

 }

 else

 {

 if(front == -1 && rear == -1)

 {

 front = 0;

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 4

 rear = 0;

 }

 else

 {

 rear = rear + 1;

 }

 queue[rear]=item;

 }

}

ALGORITHM TO DELETE AN ELEMENT FROM A QUEUE

Step 1: If Front = -1 or Front > Rear

Write Underflow

Else

Set Front = Front + 1

[End of If]

Step 2: Exit

The algorithm to delete an element from a queue, In Step 1, we check for underflow condition. An

underflow occurs if FRONT = –1 or FRONT > REAR. However, if queue has some values, then FRONT is

incremented so that it now points to the next value in the queue.

Note: The process of inserting an element in the queue is called en-queue, and the process of deleting an

element from the queue is called de-queue.

QUEUE DELECTION LOGIC

int delete (int queue[], int max, int front, int rear)

{

 int y;

 if (front == -1 || front > rear)

 {

 printf("underflow");

 }

 else

 {

 y = queue[front];

 if(front == rear)

 {

 front = rear = -1;

 else

 front = front + 1;

 }

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 5

 return y;

 }

}

EXAMPLE: -

Queues can be easily represented using linear arrays. As stated earlier, every queue has front and

rear variables that point to the position from where deletions and insertions can be done, respectively.

In above Fig FRONT = 0 and REAR = 5. Suppose we want to add another element with value 45, then

REAR would be incremented by 1 and the value would be stored at the position pointed by REAR.

Here, FRONT = 0 and REAR = 6. Every time a new element has to be added, we repeat the same

procedure.

If we want to delete an element from the queue, then the value of FRONT will be incremented. Deletions

are done from only this end of the queue. Here, FRONT = 1 and REAR = 6.

#include<stdio.h>

#include<stdlib.h>

#define maxsize 5

void insert();

void delete();

void display();

int front = -1, rear = -1;

int queue[maxsize];

void main ()

{

 int choice;

 while(choice != 4)

 {

 printf("\n*************************Main Menu*****************************\n");

printf("\n==\n");

 printf("\n1.insert an element\n2.Delete an element\n3.Display the queue\n4.Exit\n");

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 6

 printf("\nEnter your choice ?");

 scanf("%d",&choice);

 switch(choice)

 {

 case 1:

 insert();

 break;

 case 2:

 delete();

 break;

 case 3:

 display();

 break;

 case 4:

 exit(0);

 break;

 default:

 printf("\nEnter valid choice??\n");

 }

 }

}

void insert()

{

 int item;

 printf("\nEnter the element\n");

 scanf("\n%d",&item);

 if(rear == maxsize-1)

 {

 printf("\nOVERFLOW\n");

 return;

 }

 if(front == -1 && rear == -1)

 {

 front = 0;

 rear = 0;

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 7

 }

 else

 {

 rear = rear+1;

 }

 queue[rear] = item;

 printf("\nValue inserted ");

}

void delete()

{

 int item;

 if (front == -1 || front > rear)

 {

 printf("\nUNDERFLOW\n");

 return;

 }

 else

 {

 item = queue[front];

 if(front == rear)

 {

 front = -1;

 rear = -1 ;

 }

 else

 {

 front = front + 1;

 }

 printf("\nvalue deleted ");

 }

}

void display()

{

 int i;

 if(rear == -1)

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 8

 {

 printf("\nEmpty queue\n");

 }

 else

 {

printf("\nprinting values\n");

 for(i=front;i<=rear;i++)

 {

 printf("\n%d\n",queue[i]);

 }

 }

}

Drawback of array implementation

Although, the technique of creating a queue is easy, but there are some drawbacks of using this

technique to implement a queue.

➢ Memory wastage: The space of the array, which is used to store queue elements, can never be reused

to store the elements of that queue because the elements can only be inserted at front end and the value

of front might be so high so that, all the space before that, can never be filled.

It shows how the memory space is wasted in the array representation of queue. a queue of size 10 having 3

elements, is shown. The value of the front variable is 5, therefore, we cannot re-insert the values in the

place of already deleted element before the position of front. That much space of the array is wasted and

cannot be used in the future (for this queue).

Deciding the array size

On of the most common problem with array implementation is the size of the array which requires

to be declared in advance. Due to the fact that, the queue can be extended at runtime depending upon the

problem, the extension in the array size is a time taking process and almost impossible to be performed at

runtime since a lot of reallocations take place. Due to this reason, we can declare the array large enough so

that we can store queue elements as enough as possible but the main problem with this declaration is that,

most of the array slots (nearly half) can never be reused. It will again lead to memory wastage.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 9

LINKED REPRESENTATION OF QUEUES

We have seen how a queue is created using an array. Although this technique of creating a queue is

easy, its drawback is that the array must be declared to have some fixed size. If we allocate space for 50

elements in the queue and it hardly uses 20–25 locations, then half of the space will be wasted. And in case

we allocate less memory locations for a queue that might end up growing large and large, then a lot of re-

allocations will have to be done, thereby creating a lot of over head and consuming a lot of time.

In case the queue is a very small one or its maximum size is known in advance, then the array

implementation of the queue gives an efficient implementation. But if the array size cannot be determined

in advance, the other alternative, i.e., the linked representation is used. The storage requirement of linked

representation of a queue with n elements is O(n) and the typical time requirement for operations is O(1).

In a linked queue, every element has two parts, one that stores the data and another that stores the

address of the next element. The START pointer of the linked list is used as FRONT. Here, we will also

use another pointer called REAR, which will store the address of the last element in the queue. All

insertions will be done at the rear end and all the deletions will be done at the front end. If

FRONT = REAR = NULL, then it indicates that the queue is empty.

Operation on Linked Queue

There are two basic operations which can be implemented on the linked queues.

➢ Insertion

➢ Deletion.

The insert operation adds an element to the end of the queue, and the delete operation removes an

element from the front or the start of the queue. Apart from this, there is another operation peek which

returns the value of the first element of the queue.

Insert Operation

The insert operation is used to insert an element into a queue. The new element is added as thelast

element of the queue. To insert an element with value 9, we first check if FRONT=NULL. If the condition

holds, then the queue is empty. So, we allocate memory fora new node, store the value in its data part and

NULL in its next part. The new node will then becalled both FRONT and rear. However, if FRONT!=

NULL, then we will insert the new node at the rear end of the linked queue and name this new_node as

rear.

Firstly, allocate the memory for the new node ptr

Ptr = (struct node *) malloc (sizeof(struct node));

There can be the two scenario of inserting this new node ptr into the linked queue.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 10

In the first scenario, we insert element into an empty queue. In this case, the condition front =

NULL becomes true. Now, the new element will be added as the only element of the queue and the next

pointer of front and rear pointer both, will point to NULL.

ALGORITHM TO INSERT AN ELEMENT IN A LINKED QUEUE

➢ Step 1: Allocate the space for the new node PTR

➢ Step 2: SET PTR -> DATA = VAL

➢ Step 3: IF FRONT = NULL

SET FRONT = REAR = PTR

SET FRONT -> NEXT = REAR -> NEXT = NULL

ELSE

SET REAR -> NEXT = PTR

SET REAR = PTR

SET REAR -> NEXT = NULL

[END OF IF]

➢ Step 4: END

The algorithm to insert an element in a linked queue, In Step 1, the memory is allocated for the new

node. In Step2, the DATA part of the new node is initialized with the value to be stored in the node. In

Step3, we check if the new node is the first node of the linked queue. This is done by checking if FRONT =

NULL. If this is the case, then the new node is tagged as FRONT as well as REAR. Also NULL is stored in

the NEXT part of the node (which is also the FRONT and the REAR node). However, if the new node is

not the first node in the list, then it is added at the REAR end of the linked queue (or the last node of the

queue).

LINKED QUEUE INSERTION LOGIC

void insert(struct node *ptr, int item;)

{

 ptr = (struct node *) malloc (sizeof(struct node));

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 11

 if(ptr == NULL)

 {

 printf("\nOVERFLOW\n");

 return;

 }

 else

 {

 ptr -> data = item;

 if(front == NULL)

 {

 front = ptr;

 rear = ptr;

 front -> next = NULL;

 rear -> next = NULL;

 }

 else

 {

 rear -> next = ptr;

 rear = ptr;

 rear->next = NULL;

 }

 }

}

Delete Operation

The delete operation is used to delete the element that is first inserted in a queue, i.e., the element

whose address is stored in FRONT. However, before deleting the value, we must first check if

FRONT=NULL because if this is the case, then the queue is empty and no more deletions can be done. If

an attempt is made to delete a value from a queue that is already empty, an underflow message is printed.

 To delete an element, we first check if FRONT=NULL. If the condition is false, then we delete the

first node pointed by FRONT. The FRONT will now point to the second element of the linked queue.

ALGORITHM TO DELETE AN ELEMENT IN A LINKED QUEUE

➢ Step 1: IF FRONT = NULL

Write " Underflow "

Go to Step 5

[END OF IF]

➢ Step 2: SET PTR = FRONT

➢ Step 3: SET FRONT = FRONT -> NEXT

➢ Step 4: FREE PTR

➢ Step 5: END

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 12

The algorithm to delete an element from a linked queue, In Step 1, we first check for the underflow

condition. If the condition is true, then an appropriate message is displayed, otherwise in Step 2, we use a

pointer PTR that points to FRONT. In Step 3, FRONT is made to point to the next node in sequence. In

Step 4, the memory occupied by PTR is given back to the free pool.

LINKED QUEUE DELETION LOGIC

void delete (struct node *ptr)

{

 if(front == NULL)

 {

 printf("\nUNDERFLOW\n");

 return;

 }

 else

 {

 ptr = front;

 front = front -> next;

 free(ptr);

 }

}

Program implementing all the operations on Linked Queue

#include<stdio.h>

#include<stdlib.h>

struct node

{

 int data;

 struct node *next;

};

struct node *front;

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 13

struct node *rear;

void insert();

void delete();

void display();

void main ()

{

 int choice;

 while(choice != 4)

 {

 printf("\n*************************Main Menu*****************************\n");

printf("\n===\n");

 printf("\n1.insert an element\n2.Delete an element\n3.Display the queue\n4.Exit\n");

 printf("\nEnter your choice ?");

 scanf("%d",& choice);

 switch(choice)

 {

 case 1:

 insert();

 break;

 case 2:

 delete();

 break;

 case 3:

 display();

 break;

 case 4:

 exit(0);

 break;

 default:

 printf("\nEnter valid choice??\n");

 }

 }

}

void insert()

{

 struct node *ptr;

 int item;

 ptr = (struct node *) malloc (sizeof(struct node));

 if(ptr == NULL)

 {

 printf("\nOVERFLOW\n");

 return;

 }

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 14

 else

 {

 printf("\nEnter value?\n");

 scanf("%d",&item);

 ptr -> data = item;

 if(front == NULL)

 {

 front = ptr;

 rear = ptr;

 front -> next = NULL;

 rear -> next = NULL;

 }

 else

 {

 rear -> next = ptr;

 rear = ptr;

 rear->next = NULL;

 }

 }

}

void delete ()

{

 struct node *ptr;

 if(front == NULL)

 {

 printf("\nUNDERFLOW\n");

 return;

 }

 else

 {

 ptr = front;

 front = front -> next;

 free(ptr);

 }

}

void display()

{

 struct node *ptr;

 ptr = front;

 if(front == NULL)

 {

 printf("\nEmpty queue\n");

 }

 else

 { printf("\nprinting values\n");

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 15

 while(ptr != NULL)

 {

 printf("\n%d\n",ptr -> data);

 ptr = ptr -> next;

 }

 }

}

APPLICATIONS OF QUEUES IN BREADTH- FIRST

Some common applications of Queue data structure:

➢ Task Scheduling: Queues can be used to schedule tasks based on priority or the order in which

they were received.

➢ Resource Allocation: Queues can be used to manage and allocate resources, such as printers or

CPU processing time.

➢ Batch Processing: Queues can be used to handle batch processing jobs, such as data analysis or

image rendering.

➢ Message Buffering: Queues can be used to buffer messages in communication systems, such as

message queues in messaging systems or buffers in computer networks.

➢ Event Handling: Queues can be used to handle events in event-driven systems, such as GUI

applications or simulation systems.

➢ Traffic Management: Queues can be used to manage traffic flow in transportation systems, such as

airport control systems or road networks.

➢ Operating systems: Operating systems often use queues to manage processes and resources. For

example, a process scheduler might use a queue to manage the order in which processes are

executed.

➢ Network protocols: Network protocols like TCP and UDP use queues to manage packets that are

transmitted over the network. Queues can help to ensure that packets are delivered in the correct

order and at the appropriate rate.

➢ Printer queues: In printing systems, queues are used to manage the order in which print jobs are

processed. Jobs are added to the queue as they are submitted, and the printer processes them in the

order they were received.

➢ Web servers: Web servers use queues to manage incoming requests from clients. Requests are

added to the queue as they are received, and they are processed by the server in the order they were

received.

➢ Breadth-first search algorithm: The breadth-first search algorithm uses a queue to explore nodes

in a graph level-by-level. The algorithm starts at a given node, adds its neighbors to the queue, and

then processes each neighbor in turn.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 16

Useful Applications of Queue

➢ When a resource is shared among multiple consumers. Examples include CPU scheduling, Disk

Scheduling.

➢ When data is transferred asynchronously (data not necessarily received at the same rate as sent)

between two processes. Examples include IO Buffers, pipes, etc.

Applications of Queue in Operating systems:

➢ Semaphores

➢ FCFS (first come first serve) scheduling, example: FIFO queue

➢ Spooling in printers

➢ Buffer for devices like keyboard

➢ CPU Scheduling

➢ Memory management

Applications of Queue in Networks:

➢ Queues in routers/ switches

➢ Mail Queues

➢ Variations: (Deque, Priority Queue, Doubly Ended Priority Queue)

Some other applications of Queue:

➢ Applied as waiting lists for a single shared resource like CPU, Disk, and Printer.

➢ Applied as buffers on MP3 players and portable CD players.

➢ Applied on Operating system to handle the interruption.

➢ Applied to add a song at the end or to play from the front.

➢ Applied on WhatsApp when we send messages to our friends and they don’t have an internet

connection then these messages are queued on the server of WhatsApp.

➢ Traffic software (Each light gets on one by one after every time of interval of time.)

BFS algorithm

Breadth-first search is a graph traversal algorithm that starts traversing the graph from the root

node and explores all the neighboring nodes. Then, it selects the nearest node and explores all the

unexplored nodes. While using BFS for traversal, any node in the graph can be considered as the root

node.

There are many ways to traverse the graph, but among them, BFS is the most commonly used

approach. It is a recursive algorithm to search all the vertices of a tree or graph data structure. BFS puts

every vertex of the graph into two categories –

➢ visited

➢ non-visited.

It selects a single node in a graph and, after that, visits all the nodes adjacent to the selected node.

https://www.geeksforgeeks.org/cpu-scheduling-in-operating-systems/
https://www.geeksforgeeks.org/disk-scheduling-algorithms/
https://www.geeksforgeeks.org/disk-scheduling-algorithms/
https://www.geeksforgeeks.org/i-o-buffering-and-its-various-techniques/#:~:text=A%20buffer%20is%20a%20memory,consumer%20of%20the%20data%20stream.
https://www.geeksforgeeks.org/pipe-system-call/
https://en.wikipedia.org/wiki/Semaphore_(programming)#:~:text=In%20computer%20science%2C%20a%20semaphore,as%20a%20multitasking%20operating%20system.
https://www.geeksforgeeks.org/deque-set-1-introduction-applications/
https://www.geeksforgeeks.org/priority-queue-set-1-introduction/
https://www.geeksforgeeks.org/double-ended-priority-queue/

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 17

APPLICATIONS OF BFS ALGORITHM

➢ BFS can be used to find the neighboring locations from a given source location.

➢ In a peer-to-peer network, BFS algorithm can be used as a traversal method to find all the

neighboring nodes. Most torrent clients, such as BitTorrent, uTorrent, etc. employ this process to

find "seeds" and "peers" in the network.

➢ BFS can be used in web crawlers to create web page indexes. It is one of the main algorithms that

can be used to index web pages. It starts traversing from the source page and follows the links

associated with the page. Here, every web page is considered as a node in the graph.

➢ BFS is used to determine the shortest path and minimum spanning tree.

➢ BFS is also used in Cheney's technique to duplicate the garbage collection.

➢ It can be used in ford-Fulkerson method to compute the maximum flow in a flow network.

ALGORITHM

Step 1: SET STATUS = 1 (ready state) for each node in G

Step 2: Enqueue the starting node A and set its STATUS = 2 (waiting state)

Step 3: Repeat Steps 4 and 5 until QUEUE is empty

Step 4: Dequeue a node N. Process it and set its STATUS = 3 (processed state).

Step 5: Enqueue all the neighbors of N that are in the ready state (whose STATUS = 1) and set their

STATUS = 2

(waiting state)

[END OF LOOP]

Step 6: EXIT

EXAMPLE OF BFS ALGORITHM

let's understand the working of BFS algorithm by using an example. In the example given below, there is a

directed graph having 7 vertices.

In the above graph, minimum path 'P' can be found by using the BFS that will start from Node A and end at

Node E. The algorithm uses two queues, namely QUEUE1 and QUEUE2. QUEUE1 holds all the nodes

that are to be processed, while QUEUE2 holds all the nodes that are processed and deleted from QUEUE1.

Step 1 - First, add A to queue1 and NULL to queue2.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 18

QUEUE1 = {A}

QUEUE2 = {NULL}

Step 2 - Now, delete node A from queue1 and add it into queue2. Insert all neighbors of node A to queue1.

QUEUE1 = {B, D}

QUEUE2 = {A}

Step 3 - Now, delete node B from queue1 and add it into queue2. Insert all neighbors of node B to queue1.

QUEUE1 = {D, C, F}

QUEUE2 = {A, B}

Step 4 - Now, delete node D from queue1 and add it into queue2. Insert all neighbors of node D to queue1.

The only neighbor of Node D is F since it is already inserted, so it will not be inserted again.

QUEUE1 = {C, F}

QUEUE2 = {A, B, D}

Step 5 - Delete node C from queue1 and add it into queue2. Insert all neighbors of node C to queue1.

QUEUE1 = {F, E, G}

QUEUE2 = {A, B, D, C}

Step 6 - Delete node F from queue1 and add it into queue2. Insert all neighbors of node F to queue1. Since

all the neighbors of node F are already present, we will not insert them again.

QUEUE1 = {E, G}

QUEUE2 = {A, B, D, C, F}

Step 7 - Delete node E from queue1. Since all of its neighbors have already been added, so we will not

insert them again. Now, all the nodes are visited, and the target node E is encountered into queue2.

QUEUE1 = {G}

QUEUE2 = {A, B, D, C, F, E}

EXAMPLE 2

Step1: Initially queue and visited arrays are empty.

Step2: Push node 0 into queue and mark it visited.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 19

Step 3: Remove node 0 from the front of queue and visit the unvisited neighbours and push them into

queue.

Step 4: Remove node 1 from the front of queue and visit the unvisited neighbours and push them into

queue.

Step 5: Remove node 2 from the front of queue and visit the unvisited neighbors and push them into queue.

Step 6: Remove node 3 from the front of queue and visit the unvisited neighbours and push them into

queue.

As we can see that every neighbor of node 3 is visited, so move to the next node that are in the front of the

queue.

Steps 7: Remove node 4 from the front of queue and visit the unvisited neighbors and push them into

queue.

As we can see that every neighbor of node 4 are visited, so move to the next node that is in the front of the

queue.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 20

Now, Queue becomes empty, So, terminate this process of iteration.

IMPLEMENTATION OF BFS ALGORITHM

#include <stdio.h>

#include <stdlib.h>

#define SIZE 40

struct queue

{

 int items[SIZE];

 int front;

 int rear;

};

struct queue* createQueue();

void enqueue(struct queue* q, int);

int dequeue(struct queue* q);

void display(struct queue* q);

int isEmpty(struct queue* q);

void printQueue(struct queue* q);

struct node

{

 int vertex;

 struct node* next;

};

struct node* createNode(int);

struct Graph

{

 int numVertices;

 struct node** adjLists;

 int* visited;

};

OUTPUT

Queue contains

0 Resetting queue Visited 0

Queue contains

2 1 Visited 2

Queue contains

1 4 Visited 1

Queue contains

4 3 Visited 4

Queue contains

3 Resetting queue Visited 3

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 21

// BFS algorithm

void bfs(struct Graph* graph, int startVertex)

{

 struct queue* q = createQueue();

 graph->visited[startVertex] = 1;

 enqueue(q, startVertex);

 while (!isEmpty(q))

 {

 printQueue(q);

 int currentVertex = dequeue(q);

 printf("Visited %d\n", currentVertex);

 struct node* temp = graph->adjLists[currentVertex];

 while (temp)

 {

 int adjVertex = temp->vertex;

 if (graph->visited[adjVertex] == 0)

 {

 graph->visited[adjVertex] = 1;

 enqueue(q, adjVertex);

 }

 temp = temp->next;

 }

 }

}

// Creating a node

struct node* createNode(int v)

{

 struct node* newNode = malloc(sizeof(struct node));

 newNode->vertex = v;

 newNode->next = NULL;

 return newNode;

}

// Creating a graph

struct Graph* createGraph(int vertices)

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 22

{

 struct Graph* graph = malloc(sizeof(struct Graph));

 graph->numVertices = vertices;

 graph->adjLists = malloc(vertices * sizeof(struct node*));

 graph->visited = malloc(vertices * sizeof(int));

 int i;

 for (i = 0; i < vertices; i++)

 {

 graph->adjLists[i] = NULL;

 graph->visited[i] = 0;

 }

 return graph;

}

// Add edge

void addEdge(struct Graph* graph, int src, int dest) {

 // Add edge from src to dest

 struct node* newNode = createNode(dest);

 newNode->next = graph->adjLists[src];

 graph->adjLists[src] = newNode;

 // Add edge from dest to src

 newNode = createNode(src);

 newNode->next = graph->adjLists[dest];

 graph->adjLists[dest] = newNode;

}

// Create a queue

struct queue* createQueue()

{

 struct queue* q = malloc(sizeof(struct queue));

 q->front = -1;

 q->rear = -1;

 return q;

}

// Check if the queue is empty

int isEmpty(struct queue* q)

{

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 23

 if (q->rear == -1)

 return 1;

 else

 return 0;

}

// Adding elements into queue

void enqueue(struct queue* q, int value)

{

 if (q->rear == SIZE - 1)

 printf("\nQueue is Full!!");

 else {

 if (q->front == -1)

 q->front = 0;

 q->rear++;

 q->items[q->rear] = value;

 }

}

// Removing elements from queue

int dequeue(struct queue* q)

 {

 int item;

 if (isEmpty(q))

 {

 printf("Queue is empty");

 item = -1;

 }

else

{

 item = q->items[q->front];

 q->front++;

 if (q->front > q->rear)

{

 printf("Resetting queue ");

 q->front = q->rear = -1;

 }

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 24

 }

 return item;

}

// Print the queue

void printQueue(struct queue* q)

{

 int i = q->front;

 if (isEmpty(q))

 {

 printf("Queue is empty");

 }

else

{

 printf("\nQueue contains \n");

 for (i = q->front; i < q->rear + 1; i++)

 {

 printf("%d ", q->items[i]);

 }

 }

}

int main()

{

 struct Graph* graph = createGraph(6);

 addEdge(graph, 0, 1);

 addEdge(graph, 0, 2);

 addEdge(graph, 1, 2);

 addEdge(graph, 1, 4);

 addEdge(graph, 1, 3);

 addEdge(graph, 2, 4);

 addEdge(graph, 3, 4);

 bfs(graph, 0);

 return 0;

}

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 25

COMPLEXITY OF BFS ALGORITHM

Time complexity of BFS depends upon the data structure used to represent the graph. The time complexity

of BFS algorithm is O(V+E), since in the worst case, BFS algorithm explores every node and edge. In a

graph, the number of vertices is O(V), whereas the number of edges is O(E).

The space complexity of BFS can be expressed as O(V), where V is the number of vertices.

TYPES OF QUEUES

A queue data structure can be classified into the following types:

1. Circular Queue

2. Deque

3. Priority Queue

4. Multiple Queues

Circular Queues

In linear queues, we have discussed so far that insertions can be done only at one end called

theREAR and deletions are always done from the other end called the FRONT.

Here, FRONT = 0 and REAR = 9.

Now, if you want to insert another value, it will not be possible because the queue is completelyfull. There

is no empty space where the value can be inserted. Consider a scenario in which twosuccessive deletions

are made.

Here, front = 2 and REAR = 9.

Even though thereis space available, the overflow condition still exists because the condition rear =

MAX – 1 still holdstrue. This is a major drawback of a linear queue.

To resolve this problem, we have two solutions. First, shift the elements tothe left so that the vacant

space can be occupied and utilized efficiently. Butthis can be very time-consuming, especially when the

queue is quite large.The second option is to use a circular queue. In the circular queue, thefirst index comes

right after the last index.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 26

The circular queue will be full only when front = 0 and rear = Max – 1. Acircular queue is

implemented in the same manner as a linear queue isimplemented. The only difference will be in thecode

that performs insertion and deletionoperations. For insertion, we now have to checkfor the following three

conditions:

• If front = 0 and rear = MAX – 1, then the circular queue is full.

• Ifrear! = MAX – 1, then rear will be incremented and the value will be inserted.

• If front! = 0 and rear = MAX – 1, then it means that the queue is not full. So, set rear = 0 and insert

the new element there

ALGORITHM TO INSERT AN ELEMENT IN A CIRCULAR QUEUE

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 27

The algorithm to insert an element in a circular queue, In Step 1, we check for the overflow

condition. In Step 2, we make two checks. First to see if the queue is empty, and second to see if the REAR

end has already reached the maximum capacity while there are certain free locations before the FRONT

end. In Step 3, the value is stored in the queue at the location pointed by REAR.

After seeing how a new element is added in a circular queue, let us now discuss how deletions are

performed in this case. To delete an element, again we check for three conditions.

• If front = –1, then there are no elements in the queue. So, an underflow condition will be reported.

• If the queue is not empty and front = rear, then after deleting the element at the frontthe queue

becomes empty and so front and rear are set to –1.

• If the queue is not empty and front = MAX–1, then after deleting the element at the front, front is

set to 0.

ALGORITHM TO DELETE AN ELEMENT FROM A CIRCULAR QUEUE

Which shows the algorithm to delete an element from a circular queue, In Step 1, we check for the

underflow condition. In Step 2, the value of the queue at the location pointed by FRONT is stored in VAL.

In Step 3,we make two checks. First to see if the queue has become empty after deletion and second to see

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 28

if FRONT has reached the maximum capacity of the queue. The value of FRONT is then updated based on

the outcome of these checks.

DEQUES

A queue is a data structure in which whatever comes first will go out first, and it follows the FIFO

(First-In-First-Out) policy. Insertion in the queue is done from one end known as the rear end or

the tail, whereas the deletion is done from another end known as the front end or the head of the queue.

The real-world example of a queue is the ticket queue outside a cinema hall, where the person who

enters first in the queue gets the ticket first, and the person enters last in the queue gets the ticket at last.

The deque stands for Double Ended Queue. Deque is a linear data structure where the insertion and

deletion operations are performed from both ends. We can say that deque is a generalized version of the

queue.

Though the insertion and deletion in a deque can be performed on both ends, it does not follow the FIFO

rule.

TYPES OF DEQUE

➢ Input restricted queue

➢ Output restricted queue

INPUT RESTRICTED QUEUE

In input restricted queue, insertion operation can be performed at only one end, while deletion can

be performed from both ends.

OUTPUT RESTRICTED QUEUE

In output restricted queue, deletion operation can be performed at only one end, while insertion can

be performed from both ends.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 29

OPERATIONS PERFORMED ON DEQUE

➢ Insertion at front

➢ Insertion at rear

➢ Deletion at front

➢ Deletion at rear

We can also perform peek operations in the deque along with the operations listed above. Through peek

operation, we can get the deque's front and rear elements of the deque. So, in addition to the above

operations, following operations are also supported in deque -

➢ Get the front item from the deque

➢ Get the rear item from the deque

➢ Check whether the deque is full or not

➢ Checks whether the deque is empty or not

Insertion at the front end

In this operation, the element is inserted from the front end of the queue. Before implementing the

operation, we first have to check whether the queue is full or not. If the queue is not full, then the element

can be inserted from the front end by using the below conditions -

➢ If the queue is empty, both rear and front are initialized with 0. Now, both will point to the first

element.

➢ Otherwise, check the position of the front if the front is less than 1 (front < 1), then reinitialize it

by front = n - 1, i.e., the last index of the array.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 30

INSERTION AT THE REAR END

In this operation, the element is inserted from the rear end of the queue. Before implementing the

operation, we first have to check again whether the queue is full or not. If the queue is not full, then the

element can be inserted from the rear end.

➢ If the queue is empty, both rear and front are initialized with 0. Now, both will point to the first

element.

➢ Otherwise, increment the rear by 1. If the rear is at last index (or size - 1), then instead of increasing it

by 1, we have to make it equal to 0.

DELETION AT THE FRONT END

➢ In this operation, the element is deleted from the front end of the queue. Before implementing the

operation, we first have to check whether the queue is empty or not.

➢ If the queue is empty, i.e., front = -1, it is the underflow condition, and we cannot perform the

deletion. If the queue is not full, then the element can be inserted from the front end.

➢ If the deque has only one element, set rear = -1 and front = -1.

➢ Else if front is at end (that means front = size - 1), set front = 0.

➢ Else increment the front by 1, (i.e., front = front + 1).

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 31

DELETION AT THE REAR END

In this operation, the element is deleted from the rear end of the queue. Before implementing the operation,

we first have to check whether the queue is empty or not.

➢ If the queue is empty, i.e., front = -1, it is the underflow condition, and we cannot perform the

deletion.

➢ If the deque has only one element, set rear = -1 and front = -1.

➢ If rear = 0 (rear is at front), then set rear = n - 1.

➢ Else, decrement the rear by 1 (or, rear = rear -1).

Check empty

This operation is performed to check whether the deque is empty or not. If front = -1, it means that the

deque is empty.

Check full

✓ This operation is performed to check whether the deque is full or not. If front = rear + 1, or front = 0

and rear = n - 1 it means that the deque is full.

✓ The time complexity of all of the above operations of the deque is O(1), i.e., constant.

APPLICATIONS OF DEQUE

➢ Deque can be used as both stack and queue, as it supports both operations.

➢ Deque can be used as a palindrome checker means that if we read the string from both ends, the

string would be the same.

IMPLEMENTATION OF DEQUE

#include <stdio.h>

#define size 5

int deque[size];

int f = -1, r = -1;

// insert_front function will insert the value from the front

void insert_front(int x)

{

OUTOUT

Elements in a deque

are: 10 20 30 50 80

The value of the

element at front is: 10

The value of the

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 32

 if((f==0 && r==size-1) || (f==r+1))

 {

 printf("Overflow");

 }

 else if((f==-1) && (r==-1))

 {

 f=r=0;

 deque[f]=x;

 }

 else if(f==0)

 {

 f=size-1;

 deque[f]=x;

 }

 else

 {

 f=f-1;

 deque[f]=x;

 }

}

// insert_rear function will insert the value from the rear

void insert_rear(int x)

{

 if((f==0 && r==size-1) || (f==r+1))

 {

 printf("Overflow");

 }

 else if((f==-1) && (r==-1))

 {

 r=0;

 deque[r]=x;

 }

 else if(r==size-1)

 {

 r=0;

 deque[r]=x;

 }

 else

 {

 r++;

 deque[r]=x;

 }

}

// display function prints all the value of deque.

void display()

element at rear is 80

The deleted element

is 10

The deleted element

is 80

Elements in a deque

are: 20 30 50

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 33

{

 int i=f;

 printf("\nElements in a deque are: ");

 while(i!=r)

 {

 printf("%d ",deque[i]);

 i=(i+1)%size;

 }

 printf("%d",deque[r]);

}

// getfront function retrieves the first value of the deque.

void getfront()

{

 if((f==-1) && (r==-1))

 {

 printf("Deque is empty");

 }

 else

 {

 printf("\nThe value of the element at front is: %d", deque[f]);

 }

}

// getrear function retrieves the last value of the deque.

void getrear()

{

 if((f==-1) && (r==-1))

 {

 printf("Deque is empty");

 }

 else

 {

 printf("\nThe value of the element at rear is %d", deque[r]);

 }

}

// delete_front() function deletes the element from the front

void delete_front()

{

 if((f==-1) && (r==-1))

 {

 printf("Deque is empty");

 }

 else if(f==r)

 {

 printf("\nThe deleted element is %d", deque[f]);

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 34

 f=-1;

 r=-1;

 }

 else if(f==(size-1))

 {

 printf("\nThe deleted element is %d", deque[f]);

 f=0;

 }

 else

 {

 printf("\nThe deleted element is %d", deque[f]);

 f=f+1;

 }

}

// delete_rear() function deletes the element from the rear

void delete_rear()

{

 if((f==-1) && (r==-1))

 {

 printf("Deque is empty");

 }

 else if(f==r)

 {

 printf("\nThe deleted element is %d", deque[r]);

 f=-1;

 r=-1;

 }

 else if(r==0)

 {

 printf("\nThe deleted element is %d", deque[r]);

 r=size-1;

 }

 else

 {

 printf("\nThe deleted element is %d", deque[r]);

 r=r-1;

 }

}

int main()

{

 insert_front(20);

 insert_front(10);

 insert_rear(30);

 insert_rear(50);

 insert_rear(80);

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 35

 display(); // Calling the display function to retrieve the values of deque

 getfront(); // Retrieve the value at front-end

 getrear(); // Retrieve the value at rear-end

 delete_front();

 delete_rear();

 display(); // calling display function to retrieve values after deletion

 return 0;

}

APPLICATIONS OF DEQUE

➢ Deque can be used as both stack and queue, as it supports both operations.

➢ Deque can be used as a palindrome checker means that if we read the string from both ends, the

string would be the same.

PRIORITY QUEUES

A priority queue is a data structure in which each element is assigned a priority. The priority of the

element will be used to determine the order in which the elements will be processed. The general rules of

processing the elements of a priority queue are

• An element with higher priority is processed before an element with a lower priority.

• Two elements with the same priority are processed on a first-come-first-served (FCFS) basis.

A priority queue can be thought of as a modified queue in which when an element has to be removed from

the queue, the one with the highest-priority is retrieved first. The priority of the element can be set based on

various factors. Priority queues are widely used in operating systems to execute the highest priority process

first. The priority of the process may be set based on the CPU time it requires to get executed completely.

For example, if there are three processes, where the first process needs 5 ns to complete, the second process

needs 4 ns, and the third process needs 7 ns, then the second process will have the highest priority and will

thus be the first to be executed. However, CPU time is not the only factor that determines the priority,

rather it is just one among several factors. Another factor is the importance of one process over another. In

case we have to run two processes at the same time, where one process is concerned with online order

booking and the second with printing of stock details, then obviously the online booking is more important

and must be executed first.

Implementation of a Priority Queue

There are two ways to implement a priority queue. We can either use a sorted list to store the

elements so that when an element has to be taken out, the queue will not have to be searched for the

element with the highest priority or we can use an unsorted list so that insertions are always done at the end

of the list. Every time when an element has to be removed from the list, the element with the highest

priority will be searched and removed. While a sorted list takes O(n) time to insert an element in the list, it

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 36

takes only O(1) time to delete an element. On the contrary, an unsorted list will take O(1) time to insert an

element and O(n) time to delete an element from the list. Practically, both these techniques are inefficient

and usually a blend of these two approaches is adopted that takes roughly O(log n) time or less.

Linked Representation of a Priority Queue

In the computer memory, a priority queue can be represented using arrays or linked lists. When a

priority queue is implemented using a linked list, then every node of the list will have three parts:(a) the

information or data part, (b) the priority number of the element, and (c) the address of the next element. If

we are using a sorted linked list, then the element with the higher priority will precede the element with the

lower priority.

Lower priority number means higher priority. For example, if there are two elements A and B, where A has

a priority number 1 and B has a priority number 5, then A will be processed before B as it has higher

priority than B.

The priority queue is a sorted priority queue having six elements. From the queue, we cannot make

out whether A was inserted before E or whether E joined the queue before A because the list is not sorted

based on FCFS. Here, the element with a higher priority comes before the element with a lower priority.

However, we can definitely say that C was inserted in the queue before D because when two elements have

the same priority the elements are arranged and processed on FCFS principle.

Insertion: when a new element has to be inserted in a priority queue, we have to traverse the entire

list until we find a node that has a priority lower than that of the new element. The new node is inserted

before the node with the lower priority. However, if there exists an element that has the same priority as the

new element, the new element is inserted after that element.

If we have to insert a new element with data = F and priority number = 4, then the element will beinserted

before D that has priority number 5, which is lower priority than that of the new element.

However, if we have a new element with data = F and priority number = 2, then the element willbe inserted

after B, as both these elements have the same priority but the insertions are done onFCFS basis

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 37

Deletion: Deletion is a very simple process in this case. The first node of the list will be deletedand the data

of that node will be processed first.

Array Representation of a Priority Queue

When arrays are used to implement a priority queue, then a separate queue for each priority number is

maintained. Each of these queues will be implemented using circular arrays or circular queues. Every

individual queue will have its own FRONT and REAR pointers.

We use a two-dimensional array for this purpose where each queue will be allocated the same amount of

space. Look at the two-dimensional representation of a priority queue given below. Given the front and rear

values of each queue, the two-dimensional matrix can be formed.

FRONT [K] and REAR[K] contain the front and rear values of row K, where K is the priority

number. Note that here we are assuming that the row and column indices start from 1, not 0. Obviously,

while programming, we will not take such assumptions.

Insertion: To insert a new element with priority Kin the priority queue, add the element at the rear end of

row K, where K is the row number as well as the priority number of that element. For example, if we have

to insert an element R with priority number 3,then the priority queue will be.

Deletion: To delete an element, we find the first non empty queue and then process the front element of the

first non-empty queue. In our priority queue, the first non-empty queue is the one with priority number

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 38

1 and the front element is A, so A will be deleted and processed first. In technical terms, find the element

with the smallest K, such that FRONT [K] != NULL.

Multiple Queues

When we implement a queue using an array, the size of the array must be known in advance. If the queue is

allocated less space, then frequent overflow conditions will be encountered. To deal with this problem, the

code will have to be modified to reallocate more space for the array.

In case we allocate a large amount of space for the queue, it will result in sheer wastage of the memory.

Thus, there lies a tradeoff between the frequency of overflows and the space allocated.

So a better solution to deal with this problem is to have multiple queues or to have more than one queue in

the same array of sufficient size. Figure 8.31 illustrates this concept.

In the figure, an array Queue[n] is used to represent two queues, Queue A and Queue B. The value of n is

such that the combined size of both the queues will never exceed n. While operating on these queues, it is

important to note one thing queue A will grow from left to right, whereas queue B will grow from right to

left at the same time.

Extending the concept to multiple queues, a queue can also be used to represent n number of queues in the

same array. That is, if we have a QUEUE[n],then each queue I will be allocated an equal amount of space

bounded by indices b[i] and e[i].

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 1

UNIT-V

Trees: Introduction to Trees, Binary Search Tree –Insertion, Deletion & Traversal

Hashing: Brief introduction to hashing and hash functions, Collision resolution techniques: chaining and

open addressing, Hash tables: basic implementation and operations, Applications of hashing in unique

identifier generation, caching, etc.

Introduction

Tree is a non-linear data structure which organizes data in a hierarchical structure and this is a recursive

definition. OR

A tree is a connected graph without any circuits.

OR

If in a graph, there is one and only one path between every pair of vertices, then graph is called as a tree.

Properties

✓ There is one and only one path between every pair of vertices in a tree.

✓ A tree with n vertices has exactly (n-1) edges.

✓ A graph is a tree if and only if it is minimally connected.

✓ Any connected graph with n vertices and (n-1) edges is a tree.

Tree Terminology

Root

✓ The first node from where the tree originates is called as a root node.

✓ In any tree, there must be only one root node.

✓ We can never have multiple root nodes in a tree data structure.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 2

Here, node A is the only root node

Edge

✓ The connecting link between any two nodes is called as an edge.

✓ In a tree with n number of nodes, there is exactly (n-1) number of edges.

Example

 Parent

✓ The node which has a branch from it to any other node is called as a parent node.

✓ In other words, the node which has one or more children is called as a parent node.

✓ In a tree, a parent node can have any number of child nodes.

Example

Here,

✓ Node A is the parent of nodes B and C

✓ Node B is the parent of nodes D, E and F

✓ Node C is the parent of nodes G and H

✓ Node E is the parent of nodes I and J

✓ Node G is the parent of node K

Child

✓ The node which is a descendant of some node is called as a child node.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 3

✓ All the nodes except root node are child nodes.

Example

Here,

✓ Nodes B and C are the children of node A

✓ Nodes D, E and F are the children of node B

✓ Nodes G and H are the children of node C

✓ Nodes I and J are the children of node E

✓ Node K is the child of node G

Siblings

✓ Nodes which belong to the same parent are called as siblings.

✓ In other words, nodes with the same parent are sibling nodes.

Example

Here,

✓ Nodes B and C are siblings

✓ Nodes D, E and F are siblings

✓ Nodes G and H are siblings

✓ Nodes I and J are siblings

Degree

✓ Degree of a node is the total number of children of that node.

✓ Degree of a tree is the highest degree of a node among all the nodes in the tree.

Example

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 4

Here,

✓ Degree of node A = 2

✓ Degree of node B = 3

✓ Degree of node C = 2

✓ Degree of node D = 0

✓ Degree of node E = 2

✓ Degree of node F = 0

✓ Degree of node G = 1

✓ Degree of node H = 0

✓ Degree of node I = 0

✓ Degree of node J = 0

✓ Degree of node K = 0

Internal Node

✓ The node which has at least one child is called as an internal node.

✓ Internal nodes are also called as non-terminal nodes.

✓ Every non-leaf node is an internal node.

Example

Here, nodes A, B, C, E and G are internal nodes.

Leaf Node

✓ The node which does not have any child is called as a leaf node.

✓ Leaf nodes are also called as external nodes or terminal nodes.

Here, nodes D, I, J, F, K and H are leaf nodes.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 5

 Level

✓ In a tree, each step from top to bottom is called as level of a tree.

✓ The level count starts with 0 and increments by 1 at each level or step.

Example

Height

✓ Total number of edges that lies on the longest path from any leaf node to a particular node is called

as height of that node.

✓ Height of a tree is the height of root node.

✓ Height of all leaf nodes = 0

Example

Here

✓ Height of node A = 3

✓ Height of node B = 2

✓ Height of node C = 2

✓ Height of node D = 0

✓ Height of node E = 1

✓ Height of node F = 0

✓ Height of node G = 1

✓ Height of node H = 0

✓ Height of node I = 0

✓ Height of node J = 0

✓ Height of node K = 0

Depth

✓ Total number of edges from root node to a particular node is called as depth of that node.

✓ Depth of a tree is the total number of edges from root node to a leaf node in the longest path.

✓ Depth of the root node = 0

✓ The terms “level” and “depth” are used interchangeably.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 6

Example

Here

✓ Depth of node A = 0

✓ Depth of node B = 1

✓ Depth of node C = 1

✓ Depth of node D = 2

✓ Depth of node E = 2

✓ Depth of node F = 2

✓ Depth of node G = 2

✓ Depth of node H = 2

✓ Depth of node I = 3

✓ Depth of node J = 3

✓ Depth of node K = 3

Sub-tree

✓ In a tree, each child from a node forms a sub-tree recursively.

✓ Every child node forms a sub-tree on its parent node.

Example

Forest

✓ A forest is a set of disjoint trees.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 7

Advantages of Tree

✓ Tree reflects structural relationships in the data.

✓ It is used to represent hierarchies.

✓ It provides an efficient insertion and searching operations.

✓ Trees are flexible. It allows to move subtrees around with minimum effort.

Types of Trees

1. General trees

2. Forests trees

3. Binary trees

4. Binary search trees

5. Expression trees

6. Tournament trees

General Trees

General trees are data structures that store elements hierarchically. The top node of a tree is the root

node and each node, except the root, has a parent. A node in a general tree (except the leaf nodes) may have

zero or more sub-trees. General trees which have 3 sub-trees per node are called ternary trees. However, the

number of sub-trees for any node may be variable. For example, a node can have 1 sub-tree, whereas some

other node can have 3 sub-trees.

Although general trees can be represented as ADTs, there is always a problem when another sub-tree is

added to a node that already has the maximum number of sub-trees attached to it. Even the algorithms for

searching, traversing, adding, and deleting nodes become much more complex as there are not just two

possibilities for any node but multiple possibilities.

To overcome the complexities of a general tree, it may be represented as a graph data structure, thereby

losing many of the advantages of the tree processes. Therefore, a better option is to convert general trees

into binary trees.

A general tree when converted to a binary tree may not end up being well formed or full, but the advantages

of such a conversion enable the programmer to use the algorithms for processes that are used for binary

trees with minor modifications.

Forests trees

A forest tree is a disjoint union of trees. A set of disjoint trees (or forests) is obtained by deleting the root

and the edges connecting the root node to nodes at level 1.

We have already seen that every node of a tree is the root of some sub-tree. Therefore, all the sub-trees

immediately below a node form a forest.

A forest can also be defined as an ordered set of zero or more general trees. While a general tree

must have a root, a forest on the other hand may be empty because by definition it is a set, and sets can be

empty.

We can convert a forest tree into a general tree by adding a single node as the root node of the tree.

Similarly, we can convert a general tree into a forest by deleting the root node of the tree.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 8

Binary Tree

✓ Binary tree is a special tree data structure in which each node can have at most 2 children.

✓ Thus, in a binary tree, each node has either 0 child or 1 child or 2 children.

Binary Tree Properties

1 Minimum number of nodes in a binary tree of height H = H + 1

Example

To construct a binary tree of height = 4, we need at least 4 + 1 = 5 nodes.

2. Maximum number of nodes in a binary tree of height H = 2H+1 – 1

Example

 Maximum number of nodes in a binary tree of height 3

= 23+1 – 1

= 16 – 1

= 15 node

Thus, in a binary tree of height = 3, maximum number of nodes that can be inserted = 15.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 9

We cannot insert more number of nodes in this binary tree

3. Total Number of leaf nodes in a Binary Tree = Total Number of nodes with 2 children + 1

Example

Here

Number of leaf nodes = 3

Number of nodes with 2 children = 2

Clearly, number of leaf nodes is one greater than number of nodes with 2 children.

This verifies the above relation.

4. Maximum number of nodes at any level ‘L’ in a binary tree = 2L

Example

 Maximum number of nodes at level-2 in a binary tree

= 22

= 4

Thus, in a binary tree, maximum number of nodes that can be present at level-2 = 4.

Types of Binary Trees

✓ Rooted Binary Tree

✓ Full / Strictly Binary Tree

✓ Complete / Perfect Binary Tree

✓ Almost Complete Binary Tree

✓ Skewed Binary Tree

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 10

1. Rooted Binary Tree

A rooted binary tree is a binary tree that satisfies the following 2 properties

✓ It has a root node.

✓ Each node has at most 2 children.

Example:

2. Full / Strictly Binary Tree-

A binary tree in which every node has either 0 or 2 children is called as a full binary tree.

Full binary tree is also called as strictly binary tree.

Example:

Here

✓ First binary tree is not a full binary tree.

✓ This is because node C has only 1 child.

3. Complete / Perfect Binary Tree

A complete binary tree is a binary tree that satisfies the following 2 properties

✓ Every internal node has exactly 2 children.

✓ All the leaf nodes are at the same level.

Complete binary tree is also called as Perfect binary tree.

Example:

 Here

✓ First binary tree is not a complete binary tree.

✓ This is because all the leaf nodes are not at the same level.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 11

4. Almost Complete Binary Tree

An almost complete binary tree is a binary tree that satisfies the following 2 properties

✓ All the levels are completely filled except possibly the last level.

✓ The last level must be strictly filled from left to right.

Example:

5. Skewed Binary Tree

A skewed binary tree is a binary tree that satisfies the following 2 properties

✓ All the nodes except one node have one and only one child.

✓ The remaining node has no child.

 OR

✓ A skewed binary tree is a binary tree of n nodes such that its depth is (n-1).

Example:

Binary Tree Representations

A binary tree data structure is represented using two methods. Those methods are as follows...

✓ Array Representation

✓ Linked List Representation

Consider the following binary tree

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 12

 1. Array Representation of Binary Tree

In array representation of a binary tree, we use one-dimensional array (1-D Array) to represent a

binary tree.

To represent a binary tree of depth 'n' using array representation, we need one dimensional array with a

maximum size of 2n + 1.

2. Linked List Representation of Binary Tree

We use a double linked list to represent a binary tree. In a double linked list, every node consists of

three fields. First field for storing left child address, second for storing actual data and third for storing right

child address.

The above example of the binary tree represented using Linked list representation is

Linked Representation

struct node

{

 int data;

 struct node *left;

 struct node *right;

};

Binary Tree Traversals

 Traversal is a process to visit all the nodes of a tree and may print their values too. Because, all

nodes are connected via edges (links) we always start from the root (head) node. That is, we cannot

randomly access a node in a tree. There are three ways which we use to traverse a tree.

✓ Pre-order Traversal

✓ In-order Traversal

✓ Post-order Traversal

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 13

Pre-order Traversal

In this traversal method, the root node is visited first, then the left sub tree and finally the right sub tree.

We start from A, and following pre-order traversal, we first visit A itself and then move to its left

sub tree B. B is also traversed pre-order. The process goes on until all the nodes are visited. The output of

pre-order traversal of this tree will be

A → B → D → E → C → F → G

Steps

✓ Visit the root node

✓ traverse the left sub-tree in pre-order

✓ traverse the right sub-tree in pre-order

 Root → Left → Right

Algorithm

Step 1: Repeat Steps 2 to 4 while TREE! = NULL

Step 2: Write TREE -> DATA

Step 3: PREORDER (TREE -> LEFT)

Step 4: PREORDER (TREE -> RIGHT)

[END OF LOOP]

Step 5: END

Traverse the entire tree starting from the root node keeping yourself to the left.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 14

Example

Traverse the following binary tree by using pre-order traversal

✓ Since, the traversal scheme, we are using is pre-order traversal, therefore, the first element to be

printed is 18.

✓ Traverse the left sub-tree recursively. The root node of the left sub-tree is 211, print it and move to

left.

✓ Left is empty therefore print the right children and move to the right sub-tree of the root.

✓ 20 are the root of sub-tree therefore, print it and move to its left. Since left sub-tree is empty

therefore move to the right and print the only element present there i.e. 190.

✓ Therefore, the printing sequence will be 18, 211, 90, 20, and 190.

Applications

✓ Preorder traversal is used to get prefix expression of an expression tree.

✓ Preorder traversal is used to create a copy of the tree.

In order Traversal

In this traversal method, the left sub tree is visited first, then the root and later the right sub-tree. We

should always remember that every node may represent a sub tree itself.

If a binary tree is traversed in-order, the output will produce sorted key values in an ascending

order.

We start from A, and following in-order traversal, we move to its left sub tree B. B is also traversed

in-order. The process goes on until all the nodes are visited. The output of in order traversal of this tree will

be −

D → B → E → A → F → C → G

Steps

✓ Traverse the left sub-tree in in-order

✓ Visit the root

✓ Traverse the right sub-tree in in-order

Left → Root → Right

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 15

Algorithm

Step 1: Repeat Steps 2 to 4 while TREE! = NULL

Step 2: INORDER (TREE –> LEFT)

Step 3: Write TREE –> DATA

Step 4: INORDER (TREE –> RIGHT)

[END OF LOOP]

Step 5: END

Example

Traverse the following binary tree by using in-order traversal.

✓ Print the left most node of the left sub-tree i.e. 23.

✓ Print the root of the left sub-tree i.e. 211.

✓ Print the right child i.e. 89.

✓ Print the root node of the tree i.e. 18.

✓ Then, move to the right sub-tree of the binary tree and print the left most node i.e. 10.

✓ Print the root of the right sub-tree i.e. 20.

✓ Print the right child i.e. 32.

✓ Hence, the printing sequence will be 23, 211, 89, 18, 10, 20, and 32.

Application

 In order traversal is used to get infix expression of an expression tree.

Post-order Traversal

In this traversal method, the root node is visited last, hence the name. First we traverse the left sub

tree, then the right sub tree and finally the root node.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 16

 We start from A, and following Post-order traversal, we first visit the left subtree B. B is also

traversed post-order. The process goes on until all the nodes are visited. The output of post-order traversal

of this tree will be

D → E → B → F → G → C → A

Steps

✓ Traverse the left sub-tree in post-order

✓ Traverse the right sub-tree in post-order

✓ visit the root

Left → Right → Root

Algorithm

Step 1: Repeat Steps 2 to 4 while TREE! = NULL

Step 2: POSTORDER (TREE -> LEFT)

Step 3: POSTORDER (TREE -> RIGHT)

Step 4: Write TREE -> DATA

[END OF LOOP]

Step 5: END

Example

Traverse the following tree by using post-order traversal

✓ Print the left child of the left sub-tree of binary tree i.e. 23.

✓ Print the right child of the left sub-tree of binary tree i.e. 89.

✓ Print the root node of the left sub-tree i.e. 211.

✓ Now, before printing the root node, move to right sub-tree and print the left child i.e. 10.

✓ Print 32 i.e. right child.

✓ Print the root node 20.

✓ Now, at the last, print the root of the tree i.e. 18.

✓ The printing sequence will be 23, 89, 211, 10, 32, and 18.

Applications

✓ Post order traversal is used to get postfix expression of an expression tree.

✓ Post order traversal is used to delete the tree.

✓ This is because it deletes the children first and then it deletes the parent.

Binary Search Trees

✓ Binary Search tree can be defined as a class of binary trees, in which the nodes are arranged in a

specific order. This is also called ordered binary tree.

✓ In a binary search tree, the value of all the nodes in the left sub-tree is less than the value of the root.

✓ Similarly, value of all the nodes in the right sub-tree is greater than or equal to the value of the root.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 17

✓ This rule will be recursively applied to all the left and right sub-trees of the root.

A Binary search tree is shown in the above figure. As the constraint applied on the BST, we can see

that the root node 30 doesn't contain any value greater than or equal to 30 in its left sub-tree and it also

doesn't contain any value less than 30 in its right sub-tree.

Advantages of using binary search tree

✓ Searching become very efficient in a binary search tree since, we get a hint at each step, about

which sub-tree contains the desired element.

✓ The binary search tree is considered as efficient data structure in compare to arrays and linked lists.

In searching process, it removes half sub-tree at every step. Searching for an element in a binary

search tree takes o(log2n) time. In worst case, the time it takes to search an element is 0(n).

✓ It also speed up the insertion and deletion operations as compare to that in array and linked list.

Create the binary search tree using the following data elements.

43, 10, 79, 90, 12, 54, 11, 9, 50

✓ Insert 43 into the tree as the root of the tree.

✓ Read the next element, if it is lesser than the root node element insert it as the root of the left sub-

tree.

✓ Otherwise, insert it as the root of the right of the right sub-tree.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 18

Operations on Binary Search Tree

Searching means finding or locating some specific element or node within a data structure.

However, searching for some specific node in binary search tree is pretty easy due to the fact that, element

in BST is stored in a particular order.

✓ Compare the element with the root of the tree.

✓ If the item is matched then return the location of the node.

✓ Otherwise check if item is less than the element present on root, if so then move to the left sub-tree.

✓ If not, then move to the right sub-tree.

✓ Repeat this procedure recursively until match found.

✓ If element is not found then return NULL.

Algorithm:

Search (ROOT, ITEM)

Step 1: IF ROOT -> DATA = ITEM OR ROOT = NULL

 Return ROOT

 ELSE

 IF ROOT < ROOT -> DATA

 Return search (ROOT -> LEFT, ITEM)

 ELSE

 Return search (ROOT -> RIGHT, ITEM)

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 19

 [END OF IF]

 [END OF IF]

Step 2: END

Example

Insertion

Insert function is used to add a new element in a binary search tree at appropriate location. Insert

function is to be designed in such a way that, it must node violate the property of binary search tree at each

value.

✓ Allocate the memory for tree.

✓ Set the data part to the value and set the left and right pointer of tree, point to NULL.

✓ If the item to be inserted, will be the first element of the tree, then the left and right of this node will

point to NULL.

✓ Else, check if the item is less than the root element of the tree, if this is true, then recursively

perform this operation with the left of the root.

✓ If this is false, then perform this operation recursively with the right sub-tree of the root.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 20

Algorithm for Insert (TREE, ITEM)

Step 1: IF TREE = NULL

 Allocate memory for TREE

 SET TREE -> DATA = ITEM

 SET TREE -> LEFT = TREE -> RIGHT = NULL

 ELSE

 IF ITEM < TREE -> DATA

 Insert (TREE -> LEFT, ITEM)

 ELSE

 Insert (TREE -> RIGHT, ITEM)

 [END OF IF]

 [END OF IF]

Step 2: END

ITEM=95

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 21

Deletion

Delete function is used to delete the specified node from a binary search tree. However, we must

delete a node from a binary search tree in such a way, that the property of binary search tree doesn't violate.

There are three situations of deleting a node from binary search tree.

The node to be deleted is a leaf node

It is the simplest case, in this case, replace the leaf node with the NULL and simple free the allocated space.

In the following image, we are deleting the node 85, since the node is a leaf node, therefore the node

will be replaced with NULL and allocated space will be freed.

The node to be deleted has only one child.

In this case, replace the node with its child and delete the child node, which now contains the value

which is to be deleted. Simply replace it with the NULL and free the allocated space.

In the following Example, the node 12 is to be deleted. It has only one child. The node will be

replaced with its child node and the replaced node 12 (which is now leaf node) will simply be deleted.

The node to be deleted has two children.

It is a bit complexed case compare to other two cases. However, the node which is to be deleted is

replaced with its in-order successor or predecessor recursively until the node value (to be deleted) is placed

on the leaf of the tree. After the procedure, replace the node with NULL and free the allocated space.

In the following Example, the node 50 is to be deleted which is the root node of the tree. The in-

order traversal of the tree given below.

6, 25, 30, 50, 52, 60, 70, 75.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 22

Replace 50 with its in-order successor 52. Now, 50 will be moved to the leaf of the tree, which will simply

be deleted.

Algorithm for Delete (TREE, ITEM)

Step 1: IF TREE = NULL

 Write "item not found in the tree" ELSE IF ITEM < TREE -> DATA

 Delete (TREE->LEFT, ITEM)

 ELSE IF ITEM > TREE -> DATA

 Delete (TREE -> RIGHT, ITEM)

 ELSE IF TREE -> LEFT AND TREE -> RIGHT

 SET TEMP = find Largest Node (TREE -> LEFT)

 SET TREE -> DATA = TEMP -> DATA

 Delete (TREE -> LEFT, TEMP -> DATA)

 ELSE

 SET TEMP = TREE

 IF TREE -> LEFT = NULL AND TREE -> RIGHT = NULL

 SET TREE = NULL

 ELSE IF TREE -> LEFT! = NULL

 SET TREE = TREE -> LEFT

 ELSE

 SET TREE = TREE -> RIGHT

 [END OF IF]

 FREE TEMP

[END OF IF]

Step 2: END

Counting Binary Trees

The recursive structure of a binary tree makes it easy to count nodes recursively. There are 3 things

we can count:

✓ The total number of nodes

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 23

✓ The number of leaf nodes

✓ The number of internal nodes

Counting all nodes

The number of nodes in a binary tree is the number of nodes in the root’s left sub tree, plus the

number of nodes in its right sub tree, plus one (for the root itself).

Counting leaf nodes

This is similar, except that we only return 1 if we are a leaf node. Otherwise, we recursive into the

left and right sub trees and return the sum of the leaves in them.

Counting internal nodes

This is the counterpart of counting leaves. If we are an internal node, we count 1 for ourselves, then

recursive into the left and right sub trees and sum the count of internal nodes in them.

HASH TABLES

➢ Hash table is a data structure used for storing and retrieving data quickly. Insertion of data in the

hash table is based on the key value. Hence every entry in the hash table is associate with some

key. For example, for an employee record in the hash table employee ID will works as a key.

➢ Using the hash key the required piece of data can be searched in the hash table by few or more key

comparisons. The searching time is dependent upon the size of the hash table.

➢ The effective representation of dictionary can be done using hash table. We can place the dictionary

entries in the hash table using hash function.

➢ Buck and Home bucket

➢ The hash function H(key) is used to map a several dictionary entries in the hash table. Each

function of hash table is called bucket. The function H(k) is home bucket for the dictionary with

pail whose value is key.

 5

15 4

 3

10 2

 1

 0

Hash table

 In the above diagram or hash table location 2 or 4 is called as home bucket and location 0,1,3,5 are

called as bucket.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 24

Static and Dynamic hashing

There are two types of hashing. They are:

1. Static hashing

2. Dynamic hashing

Static hashing

Static hashing is a hashing technique in which keys are stored in which keys are stored in hash table with

fixed size.

Dynamic hashing

 In this hashing table, the hash function is modified dynamically number of records grow.

Hash function

 Hash function is a function which is used to put data into hash table. Hence one can use the same as

function to retrieve the data from hash table. Thus, hash function is used implement a hash table.

 There are several types of hash function.

1. Division hash function method

2. Mid square hash function method

3. Multiplication or multiplicative hash function

4. Digit folding or folding hash function

Division hash function method

The hash function depends upon the remainder of the division. Typically the division is the table length.

Syntax or Formula

H (key) = K % table size

Example:-

 Insert following values or records

54, 72, 89, 37 into hash table. The hash table size is 10.

The following determines hash table with size 10.

 9

 8

 7

 6

 5

 4

 3

 2

 1

 0

The record 54 is inserted into above hash table by using division hash function.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 25

H (key)=k % table size

H(Key) =54%10=4

The record 54 is inserted at 4th location.

The record 72 is inserted into above hash table by using division hash function.

H (key)=k % table size

H(Key)=72%10=2

The record 72 is inserted at 2nd location.

The record 89 is inserted into above hash table by using division hash function.

H (key)=k % table size

H(Key) =89%10=9

The record 89 is inserted at 9th position or location.

The record 37 is inserted into above hash table by using division hash function.

H (key)=k % table size

H(Key) =37%10=7

The record 37 is inserted at 7th position.

The following hash table determines the inserting records 54, 72, 89, 37 into hash table.

Mid square hash function

89

37

54

72

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 26

In the mid square method, the key is squared and the middle or mid part of the result is used as index or

position or location.

Example the records 311, 3112, 3114 are inserted to hash table. Assume that hash table size is 1000.

Syntax or formula

H(Key) = K2

The record 3111 by using mid square.

H(key) =K2

= (3111)2

=9678321

783 is the middle part of 9678321. So, 783 is the index of 3111.

The record 3112 by using mid square

H (Key) = (3112)2

 = 9684544

845 is the middle part of 9684544. So, 845 is the index of 3112.

The record 3113 by using mid square

H (Key) = (3113)2

 = 9690769

 907 is the middle part of 9690769. So, 907 is the index of 3113.

Multiplicative hash function

3111 783

3112 845

3113 907

 999

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 27

 The given record is multiplied by some constant value. The formula computing hash key is

 H (Key) = floor (P*(fractional part of key*A))

Where ‘P’ is an integer constant and ‘A’ is real constant.

 Donald Knuth suggested to use constant A = 0.61803398987.

Example:-

Insert the following records 107, 108, 109, 110 into hash table . Here P =50.

107 inserted into hash table by using multiplicative hash function.

H (Key) = floor (P*(fractional part of key*A))

 = floor (50*(107* 0.61803398987)

 = floor (3306.4818)

 =3306

108 inserted into hash table by using multiplicative hash function.

H (Key) = floor (50*(108* 0.61803398987)

 = floor (3337.3835)

 = 3337

109 inserted into hash table by using multiplicative hash function.

H (Key) = floor (50*(109* 0.61803398987)

 = floor (3368.2852)

 = 3368

110 inserted into hash table by using multiplicative hash function.

H (Key) = floor (50*(110* 0.61803398987)

 = floor (3399.1869)

 = 3399

The following diagram determines the 107, 108, 109, 110 values into hash table.

Digit folding or folding hash function

 0

107 3306

108 3337

109 3368

110 3399

 3999

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 28

 The key value is divided into separate parts and using some simple operation this parts are combined to

produce hash key.

Example:-

Consider the record 1, 2, 3, 6, 5, 4, 1, 2 then it is divided into separate parts 123, 654, 12 and this all are

added together.

H (Key) = 123+ 654 + 12 +789

The record 123, 654, 12 will be placed at a location 789 in the hash table.

Collision Resolution Technique

If collision occurs then it should be handled by applying some techniques. Such techniques are called

collision resolution technique.

 The goal of collision resolution techniques is to minimize collisions. There are two methods of handling

collisions.

1. Open hashing or Separate Chain hashing

2. Closed hashing or Open addressing

 The difference between open hashing and closed hashing is that in Open hashing the collision are stored

outside table and in Closed hashing the collisions are stored in the same table at some another slot.

Open hashing

 In collision handling method chaining is a concept which introduces an additional fields with data i.e.,

chain. A separate chain table is maintained for colliding data when collision occurs then linked list is

maintained at home bucket.

Example:-

Consider the keys to be placed in the in their home buckets are 50, 700, 76, 85, 92, 73 and 101

A chain is maintained for colliding elements. For distance 131 has a home bucket index 1.

Similarly, keys 21 and 61 demand for home bucket index 1. Hence a chain is maintained at index 1.

Similarly, the chain at index 4 and 7 is maintained.

Closed hashing

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 29

 Closed hashing collision resolution strategy or technique which users following technique.

1. Linear probing

2. Quadratic probing

3. Double probing or Double hashing

Linear probing

 This is the easiest method of handling collision. When collision occurs i.e., when two records demand

for the same home bucket in the hash table then collision can be solved by placing the second record

linearly down whenever the empty bucket is found. When use linear probing the hash table is represented

as a one-dimensional array with indices that range from 0 to desired table size-1.

Example: -

 Consider that following keys are to be inserted in the hash table 131, 4, 8, 7, 21, 5, 31, 61, 9, 29.The

hash table size is 10.

Initially we will put the following keys in the hash table 131, 4, 8, 7.

We will use division hash function. That means that keys are placed using formula.

 H (Key) = key % table size

For instance, the element 131 can be placed at H (Key) = 131 % 10 =1.

Index 1 will be the home bucket for 131. Continuing in the fashion we will place 4,8,7.

0 Null

1 131

2 Null

3 Null

4 4

5 Null

6 Null

7 7

8 8

9 Null

Now the next to be inserted is 21. According to hash function H (Key) = 21 % 10 =1.

 But the index 1 location already occupied with 131 i.e., collision occurs. To resolve this collision we

will linearly move down from 1 to empty location is found. Therefore 21 will be placed at index 2. If the

next element is 5 then we get home bucket for 5 as index 5 this bucket is empty so, we will put the

element 5 at index 5.

0 Null

1 131

2 21

3 Null

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 30

After placing record keys 31, 61 the hash table will be

The next record key that comes is 9. According to decision as function it demands for the home bucket 9. Hence we

will place 9 at index 9.

0 Null

1 131

2 21

3 31

4 4

5 5

6 61

7 7

8 8

9 9

 Now the next final record key is 29 and it hashes a key 9. But home bucket 9 is already occupied. And

there is no next empty bucket as the table size is limited to index 9. The overflow occurs to handle it we move back

to bucket 0 and is the location over there is empty 29 will be placed at 0th index.

0 29

1 131

2 21

3 31

4 4

5 5

6 61

7 7

8 8

9 9

Quadratic probing

4 4

5 5

6 Null

7 7

8 8

9 Null

0 Null

1 131

2 21

3 31

4 4

5 5

6 61

7 7

8 8

9 Null

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 31

Quadratic probing operates by taking original hash value and adding successive values of quadratic polynomial to the

stating value.

 This method uses following formula.

 H(Key) = (H (Key) + i2) % m

 Where ‘m’ can be table size or any prime number.

Example: - If we have insert following elements in the hash table with table size 10.

37, 19, 55, 22, 17, 49, 87.

Initially we will put following keys into hash table.

37,19,55,22.

0

1

2 22

3

4

5 55

6

7 37

8

9

Now, if you want to place 17 a collision will be occurs 17. 17 % 10 = 7, but bucket 7 has already an element 37.

Hence we will apply quadratic probing to insert this record in the hash table.

H (Key) = (H (Key) + i2) % m

Consider I =0

H (key) = (17+02) % 10 = 17 % 10 = 7.

Then i=1

H (Key) = (17 + 12) % 10 =18 % 10 = 8.

The bucket 8 is empty. Hence, we will place the element of the index 8.

 Now if you want to place 49 a collision will be occurred 49 % 10 = 9 and bucket 9 as already occupied with 19.

Hence we will applying quadratic probing to insert this record in the hash table.

Hi (Key) = (H (Key) + i2) % m

I =0

 = (49 + 0) % 10 = 49 % 10 = 9

I = 1

 = (49 + 12) % 10 = 50 % 10 = 0

0 49

1

2 22

3

4

5 55

6

7 37

8 17

9 19

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 32

The bucket 0 is empty.

Hence the value 49 is inserted at a 0th position.

Now to place 87 we will use quadratic probing.

H(Key) = (87 + 02) % 10 = 87 % 10 = 7

H(Key) = (87 + 12) % 10 = 88 % 10 = 8

H(Key) = (87 + 22) % 10 = 91 % 10 = 1

0 49

1 87

2 22

3

4

5 55

6

7 37

8 17

9 19

Double probing or double hashing

Double hashing is a technique in which a second hash function is applied to key when a collision occurs by applying

the second has function we will get number of positions from the point of Collision inserted.

By using following formulas, we can find out the double hashing.

H1 (key) = k % table size

H2(key) = M - (K % M)

Where M is prime number smaller than the size of the table.

Example: consider the following elements to be placed in the Hash table of size 10.

37, 90, 45, 22, 17, 49, 55.

Inside Initially the elements using the formula for H1 (key). Insert 37, 90, 45, 22.

37 % 10 = 7

90 % 10 = 0

45 % 10 = 5

22 % 10 = 2

Now if 17 is to be inserted then

H1 (17) = 17 % 10 = 7

0 90

1

2 22

3

4

5 45

6

7 37

8

9

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 33

Here collision will be occur because 7th position already occupied with element 37 or record 37. So we can apply

second hash function to key.

H2 (key) = M-(K%M)

Here M is prime number smaller than the size of the table.

Let us prime number is M = 7

H2 (17) =7-(17%7)

 = 7 - 3 = 4

That means we have to insert the elements on 10 at 4 places from value 37 or 7th position.

17 will be placed at index 1.

Now to insert number 49 at location 9th position that is 49 % 10 = 9.

Now to insert number 55.

H1 (55) = 55 % 10 = 5 that is collision will be occur. Because the location 5 already occupied with 45. So, we can

apply second hash function.

H2 (55) = 7 - (55 % 7) = 7 - 6 = 1

That means we have to take one jump from index 5 to place 55.

0 90

1 17

2 22

3

4

5 45

6

7 37

8

9

0 90

1 17

2 22

3

4

5 45

6

7 37

8

9 49

0 90

1 17

2 22

3

4

5 45

6 55

7 37

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 34

Rehashing

 Rehashing is a technique in which table is resized that is the size of table is double by creating a new table. It is

preferable if the total size of new table is a prime number. There are situation in which rehashing is required.

i) When the table size is completely full.

ii) With Quadratic probing when the table is filled half.

iii) When insertion fail due to over flow.

 In such situations, we have to transfer entries from old table to new table.

Example:

 Consider we have to insert the elements 37, 90, 55, 22, 17, 49 and 87 the table size is 10 and will use hash function.

H (key) = K % Table size

Initially insert following elements 37, 90, 55, 22

Now you can insert 17 into hash table. Here collision will be occur. Because the 7th location already occupied with

37. So, by using linear probing the element 17 is insert at 8th position.

 Now this table is almost full. So, next element 87 is not inserted into hash table because the hash table is

overflow. Hence we will rehashing by double the size for new table that becomes 20. But 20 is not prime number

we will prefer to make table size as 23 and new hash function will be

 H (key) = k % 23

37 % 23 = 14

90 % 23 = 21

8

9 49

0 90

1

2 22

3

4

5 55

6

7 37

8

9

0 90

1

2 22

3

4

5 55

6

7 37

8 17

9

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 35

55 % 23 = 9

22 % 23 = 22

17 % 23 = 17

49 % 23 = 3

 87 % 23 = 18

Applications of hashing in unique identifier generation

✓ Database indexing: Hashing is used to index and retrieve data efficiently in databases and other

data storage systems.

✓ Password storage: Hashing is used to store passwords securely by applying a hash function to the

password and storing the hashed result, rather than the plain text password.

✓ Data compression: Hashing is used in data compression algorithms, such as the Huffman coding

algorithm, to encode data efficiently.

✓ Search algorithms: Hashing is used to implement search algorithms, such as hash tables and bloom

filters, for fast lookups and queries.

✓ Cryptography: Hashing is used in cryptography to generate digital signatures, message

authentication codes (MACs), and key derivation functions.

0

1

2

3 49

4

5

6

7

8

9 55

10

11

12

13

14 37

15

16

17 17

18 87

19

20

21 90

22 22

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 36

✓ Load balancing: Hashing is used in load-balancing algorithms, such as consistent hashing, to

distribute requests to servers in a network.

✓ Blockchain: Hashing is used in blockchain technology, such as the proof-of-work algorithm, to

secure the integrity and consensus of the blockchain.

✓ Image processing: Hashing is used in image processing applications, such as perceptual hashing, to

detect and prevent image duplicates and modifications.

✓ File comparison: Hashing is used in file comparison algorithms, such as the MD5 and SHA-1 hash

functions, to compare and verify the integrity of files.

✓ Fraud detection: Hashing is used in fraud detection and cybersecurity applications, such as

intrusion detection and antivirus software, to detect and prevent malicious activities.

Hashing provides constant time search, insert and delete operations on average. This is why hashing is one

of the most used data structure, example problems are, distinct elements, counting frequencies of items,

finding duplicates, etc.

There are many other applications of hashing, including modern-day cryptography hash functions. Some of

these applications are listed below:

➢ Message Digest

➢ Password Verification

➢ Data Structures(Programming Languages)

➢ Compiler Operation

➢ Rabin-Karp Algorithm

➢ Linking File name and path together

➢ Game Boards

➢ Graphics

Data Structures(Programming Languages):

Various programming languages have hash table based Data Structures. The basic idea is to create a

key-value pair where key is supposed to be a unique value, whereas value can be same for different keys.

This implementation is seen in unordered_set & unordered_map in C++, HashSet & HashMap in java, dict

in python etc.

Advantages of Applications of Hashing

➢ Efficiency: Hashing allows for fast lookups, searches, and retrievals of data, with an average time

complexity of O(1) for hash table lookups.

➢ Dynamic: Hashing is a dynamic data structure that can be easily resized, making it suitable for

growing and changing datasets.

P BHANU PRAKASH 9551234604 bhanuprakash.p1311@gmail.com 37

➢ Secure: Hashing provides a secure method for storing and retrieving sensitive information, such as

passwords, as the original data is transformed into a hash value that is difficult to reverse.

➢ Simple: Hashing is a simple and straightforward concept, making it easy to implement and

understand.

➢ Scalable: Hashing can be scaled to handle large amounts of data, making it suitable for big data

applications.

➢ Uniqueness: Hashing ensures the uniqueness of data, as two different inputs will result in two

different hash values, avoiding collisions.

➢ Verification: Hashing can be used for data verification, such as checking the integrity of files, as

even a small change in the input data will result in a different hash value.

➢ Space-efficient: Hashing is a space-efficient method for storing and retrieving data, as it only stores

the hash values, reducing the amount of memory required.

➢ Error detection: Hashing can be used for error detection, as it can detect errors in data

transmission, storage, or processing.

➢ Speed: Hashing is a fast and efficient method for processing data, making it suitable for real-time

and high-performance applications.
